mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-04 16:20:16 +00:00
Compare commits
158 Commits
langchain-
...
mdrxy/invo
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e98fc34203 | ||
|
|
43b9d3d904 | ||
|
|
27d81cf3d9 | ||
|
|
313ed7b401 | ||
|
|
f0f1e28473 | ||
|
|
d204f0dd55 | ||
|
|
0e6c172893 | ||
|
|
8ee0cbba3c | ||
|
|
00259b0061 | ||
|
|
4fb1132e30 | ||
|
|
a6690eb9fd | ||
|
|
f69f9598f5 | ||
|
|
8d0fb2d04b | ||
|
|
8042b04da6 | ||
|
|
4790c7265a | ||
|
|
fb74265175 | ||
|
|
21b61aaf9a | ||
|
|
03138f41a0 | ||
|
|
aeea0e3ff8 | ||
|
|
fd891ee3d4 | ||
|
|
aca7c1fe6a | ||
|
|
b8cdbc4eca | ||
|
|
791d309c06 | ||
|
|
d3d23e2372 | ||
|
|
2375c3a4d0 | ||
|
|
0199b56bda | ||
|
|
00345c4de9 | ||
|
|
7f9727ee08 | ||
|
|
08cd5bb9b4 | ||
|
|
987031f86c | ||
|
|
7a8c6398a4 | ||
|
|
f691dc348f | ||
|
|
86252d2ae6 | ||
|
|
8bd2403518 | ||
|
|
4dd9110424 | ||
|
|
8fc1973bbf | ||
|
|
a3b20b0ef5 | ||
|
|
301a425151 | ||
|
|
3db8c60112 | ||
|
|
8d110599cb | ||
|
|
c9e847fcb8 | ||
|
|
174e685139 | ||
|
|
601fa7d672 | ||
|
|
7e39cd18c5 | ||
|
|
2f32c444b8 | ||
|
|
9721684501 | ||
|
|
a4e135b508 | ||
|
|
d111965448 | ||
|
|
fe740a9397 | ||
|
|
b2b835cb36 | ||
|
|
4656f727da | ||
|
|
34800332bf | ||
|
|
06ba80ff68 | ||
|
|
2bd8096faa | ||
|
|
a0331285d7 | ||
|
|
8f68a08528 | ||
|
|
71651c4a11 | ||
|
|
44ec1f32b2 | ||
|
|
0c81499243 | ||
|
|
624300cefa | ||
|
|
0aac20e655 | ||
|
|
2c9cfa8817 | ||
|
|
397cd89988 | ||
|
|
153db48c92 | ||
|
|
527d62de3a | ||
|
|
80c595d7da | ||
|
|
db438d8dcc | ||
|
|
803d19f31e | ||
|
|
2f604eb9a0 | ||
|
|
3ae37b5987 | ||
|
|
4f71c35eb0 | ||
|
|
156ae2e69b | ||
|
|
f4f919768e | ||
|
|
7932e1edd1 | ||
|
|
0c7294f608 | ||
|
|
024422e9b0 | ||
|
|
d52036accc | ||
|
|
5b701b5189 | ||
|
|
8848b3e018 | ||
|
|
5c961ca4f6 | ||
|
|
c0e4361192 | ||
|
|
c1d65a7d7f | ||
|
|
80068432ed | ||
|
|
b9dcce95be | ||
|
|
be83ce74a7 | ||
|
|
1167e7458e | ||
|
|
d5fd0bca35 | ||
|
|
3ae7535f42 | ||
|
|
6eaa17205c | ||
|
|
30d646b576 | ||
|
|
262c83763f | ||
|
|
0024dffa68 | ||
|
|
98797f367a | ||
|
|
1563099f3f | ||
|
|
98d5f469e3 | ||
|
|
0ddab9ff20 | ||
|
|
91b2bb3417 | ||
|
|
7f259863e1 | ||
|
|
c8df6c7ec9 | ||
|
|
cf2b4bbe09 | ||
|
|
09a616fe85 | ||
|
|
46bbd52e81 | ||
|
|
8b663ed6c6 | ||
|
|
166c027434 | ||
|
|
8426db47f1 | ||
|
|
4a2a3fcd43 | ||
|
|
d46dcf4a60 | ||
|
|
d2ac3b375c | ||
|
|
1e38fd2ce3 | ||
|
|
1b9ec25755 | ||
|
|
f8244b9108 | ||
|
|
155e3740bc | ||
|
|
f9b4e501a8 | ||
|
|
5a50802c9a | ||
|
|
9a7e66be60 | ||
|
|
5597b277c5 | ||
|
|
a1da5697c6 | ||
|
|
11a54b1f1a | ||
|
|
5ccdcd7b7b | ||
|
|
ee4c2510eb | ||
|
|
54a3c5f85c | ||
|
|
7090060b68 | ||
|
|
7db9e60601 | ||
|
|
e5d0a4e4d6 | ||
|
|
457ce9c4b0 | ||
|
|
27b6b53f20 | ||
|
|
f55186b38f | ||
|
|
374f414c91 | ||
|
|
9b3f3dc8d9 | ||
|
|
afc3b1824c | ||
|
|
130b7e6170 | ||
|
|
d40fa534c1 | ||
|
|
20bd296421 | ||
|
|
9259eea846 | ||
|
|
afcb097ef5 | ||
|
|
088095b663 | ||
|
|
c31236264e | ||
|
|
02001212b0 | ||
|
|
00244122bd | ||
|
|
6727d6e8c8 | ||
|
|
5036bd7adb | ||
|
|
ec2b34a02d | ||
|
|
145d38f7dd | ||
|
|
68c70da33e | ||
|
|
754528d23f | ||
|
|
ac706c77d4 | ||
|
|
8493887b6f | ||
|
|
a647073b26 | ||
|
|
e120604774 | ||
|
|
06d8754b0b | ||
|
|
6e108c1cb4 | ||
|
|
bc4251b9e0 | ||
|
|
2543007436 | ||
|
|
ba83f58141 | ||
|
|
fb490b0c39 | ||
|
|
419c173225 | ||
|
|
4011257c25 | ||
|
|
9de0892a77 |
@@ -15,12 +15,12 @@ You may use the button above, or follow these steps to open this repo in a Codes
|
||||
1. Click **Create codespace on master**.
|
||||
|
||||
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
|
||||
|
||||
|
||||
## VS Code Dev Containers
|
||||
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
|
||||
> [!NOTE]
|
||||
> [!NOTE]
|
||||
> If you click the link above you will open the main repo (`langchain-ai/langchain`) and *not* your local cloned repo. This is fine if you only want to run and test the library, but if you want to contribute you can use the link below and replace with your username and cloned repo name:
|
||||
|
||||
```txt
|
||||
|
||||
@@ -4,7 +4,7 @@ services:
|
||||
build:
|
||||
dockerfile: libs/langchain/dev.Dockerfile
|
||||
context: ..
|
||||
|
||||
|
||||
networks:
|
||||
- langchain-network
|
||||
|
||||
|
||||
2
.github/CODE_OF_CONDUCT.md
vendored
2
.github/CODE_OF_CONDUCT.md
vendored
@@ -129,4 +129,4 @@ For answers to common questions about this code of conduct, see the FAQ at
|
||||
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
|
||||
[Mozilla CoC]: https://github.com/mozilla/diversity
|
||||
[FAQ]: https://www.contributor-covenant.org/faq
|
||||
[translations]: https://www.contributor-covenant.org/translations
|
||||
[translations]: https://www.contributor-covenant.org/translations
|
||||
|
||||
2
.github/CONTRIBUTING.md
vendored
2
.github/CONTRIBUTING.md
vendored
@@ -7,4 +7,4 @@ To learn how to contribute to LangChain, please follow the [contribution guide h
|
||||
|
||||
## New features
|
||||
|
||||
For new features, please start a new [discussion](https://forum.langchain.com/), where the maintainers will help with scoping out the necessary changes.
|
||||
For new features, please start a new [discussion on our forum](https://forum.langchain.com/), where the maintainers will help with scoping out the necessary changes.
|
||||
|
||||
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -5,7 +5,7 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thank you for taking the time to file a bug report.
|
||||
Thank you for taking the time to file a bug report.
|
||||
|
||||
Use this to report BUGS in LangChain. For usage questions, feature requests and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
|
||||
|
||||
@@ -50,7 +50,7 @@ body:
|
||||
|
||||
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
|
||||
|
||||
**Important!**
|
||||
**Important!**
|
||||
|
||||
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
|
||||
@@ -58,14 +58,14 @@ body:
|
||||
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
|
||||
|
||||
placeholder: |
|
||||
The following code:
|
||||
The following code:
|
||||
|
||||
```python
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
def bad_code(inputs) -> int:
|
||||
raise NotImplementedError('For demo purpose')
|
||||
|
||||
|
||||
chain = RunnableLambda(bad_code)
|
||||
chain.invoke('Hello!')
|
||||
```
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/documentation.yml
vendored
2
.github/ISSUE_TEMPLATE/documentation.yml
vendored
@@ -14,7 +14,7 @@ body:
|
||||
|
||||
Do **NOT** use this to ask usage questions or reporting issues with your code.
|
||||
|
||||
If you have usage questions or need help solving some problem,
|
||||
If you have usage questions or need help solving some problem,
|
||||
please use the [LangChain Forum](https://forum.langchain.com/).
|
||||
|
||||
If you're in the wrong place, here are some helpful links to find a better
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/privileged.yml
vendored
2
.github/ISSUE_TEMPLATE/privileged.yml
vendored
@@ -8,7 +8,7 @@ body:
|
||||
|
||||
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead.
|
||||
|
||||
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
|
||||
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
|
||||
or are a regular contributor to LangChain with previous merged pull requests.
|
||||
- type: checkboxes
|
||||
id: privileged
|
||||
|
||||
2
.github/actions/people/Dockerfile
vendored
2
.github/actions/people/Dockerfile
vendored
@@ -4,4 +4,4 @@ RUN pip install httpx PyGithub "pydantic==2.0.2" pydantic-settings "pyyaml>=5.3.
|
||||
|
||||
COPY ./app /app
|
||||
|
||||
CMD ["python", "/app/main.py"]
|
||||
CMD ["python", "/app/main.py"]
|
||||
|
||||
6
.github/actions/people/action.yml
vendored
6
.github/actions/people/action.yml
vendored
@@ -4,8 +4,8 @@ description: "Generate the data for the LangChain People page"
|
||||
author: "Jacob Lee <jacob@langchain.dev>"
|
||||
inputs:
|
||||
token:
|
||||
description: 'User token, to read the GitHub API. Can be passed in using {{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}'
|
||||
description: "User token, to read the GitHub API. Can be passed in using {{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}"
|
||||
required: true
|
||||
runs:
|
||||
using: 'docker'
|
||||
image: 'Dockerfile'
|
||||
using: "docker"
|
||||
image: "Dockerfile"
|
||||
|
||||
25
.github/scripts/check_diff.py
vendored
25
.github/scripts/check_diff.py
vendored
@@ -3,14 +3,12 @@ import json
|
||||
import os
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import Dict, List, Set
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Set
|
||||
|
||||
import tomllib
|
||||
|
||||
from packaging.requirements import Requirement
|
||||
|
||||
from get_min_versions import get_min_version_from_toml
|
||||
|
||||
from packaging.requirements import Requirement
|
||||
|
||||
LANGCHAIN_DIRS = [
|
||||
"libs/core",
|
||||
@@ -38,7 +36,7 @@ IGNORED_PARTNERS = [
|
||||
]
|
||||
|
||||
PY_312_MAX_PACKAGES = [
|
||||
"libs/partners/chroma", # https://github.com/chroma-core/chroma/issues/4382
|
||||
"libs/partners/chroma", # https://github.com/chroma-core/chroma/issues/4382
|
||||
]
|
||||
|
||||
|
||||
@@ -85,9 +83,9 @@ def dependents_graph() -> dict:
|
||||
for depline in extended_deps:
|
||||
if depline.startswith("-e "):
|
||||
# editable dependency
|
||||
assert depline.startswith(
|
||||
"-e ../partners/"
|
||||
), "Extended test deps should only editable install partner packages"
|
||||
assert depline.startswith("-e ../partners/"), (
|
||||
"Extended test deps should only editable install partner packages"
|
||||
)
|
||||
partner = depline.split("partners/")[1]
|
||||
dep = f"langchain-{partner}"
|
||||
else:
|
||||
@@ -271,7 +269,7 @@ if __name__ == "__main__":
|
||||
dirs_to_run["extended-test"].add(dir_)
|
||||
elif file.startswith("libs/standard-tests"):
|
||||
# TODO: update to include all packages that rely on standard-tests (all partner packages)
|
||||
# note: won't run on external repo partners
|
||||
# Note: won't run on external repo partners
|
||||
dirs_to_run["lint"].add("libs/standard-tests")
|
||||
dirs_to_run["test"].add("libs/standard-tests")
|
||||
dirs_to_run["lint"].add("libs/cli")
|
||||
@@ -285,7 +283,7 @@ if __name__ == "__main__":
|
||||
elif file.startswith("libs/cli"):
|
||||
dirs_to_run["lint"].add("libs/cli")
|
||||
dirs_to_run["test"].add("libs/cli")
|
||||
|
||||
|
||||
elif file.startswith("libs/partners"):
|
||||
partner_dir = file.split("/")[2]
|
||||
if os.path.isdir(f"libs/partners/{partner_dir}") and [
|
||||
@@ -303,7 +301,10 @@ if __name__ == "__main__":
|
||||
f"Unknown lib: {file}. check_diff.py likely needs "
|
||||
"an update for this new library!"
|
||||
)
|
||||
elif file.startswith("docs/") or file in ["pyproject.toml", "uv.lock"]: # docs or root uv files
|
||||
elif file.startswith("docs/") or file in [
|
||||
"pyproject.toml",
|
||||
"uv.lock",
|
||||
]: # docs or root uv files
|
||||
docs_edited = True
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import sys
|
||||
|
||||
import tomllib
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
26
.github/scripts/get_min_versions.py
vendored
26
.github/scripts/get_min_versions.py
vendored
@@ -1,5 +1,5 @@
|
||||
from collections import defaultdict
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import Optional
|
||||
|
||||
if sys.version_info >= (3, 11):
|
||||
@@ -8,17 +8,13 @@ else:
|
||||
# for python 3.10 and below, which doesnt have stdlib tomllib
|
||||
import tomli as tomllib
|
||||
|
||||
from packaging.requirements import Requirement
|
||||
from packaging.specifiers import SpecifierSet
|
||||
from packaging.version import Version
|
||||
|
||||
|
||||
import requests
|
||||
from packaging.version import parse
|
||||
import re
|
||||
from typing import List
|
||||
|
||||
import re
|
||||
|
||||
import requests
|
||||
from packaging.requirements import Requirement
|
||||
from packaging.specifiers import SpecifierSet
|
||||
from packaging.version import Version, parse
|
||||
|
||||
MIN_VERSION_LIBS = [
|
||||
"langchain-core",
|
||||
@@ -72,11 +68,13 @@ def get_minimum_version(package_name: str, spec_string: str) -> Optional[str]:
|
||||
spec_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", spec_string)
|
||||
# rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1 (can be anywhere in constraint string)
|
||||
for y in range(1, 10):
|
||||
spec_string = re.sub(rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y+1}", spec_string)
|
||||
spec_string = re.sub(
|
||||
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}", spec_string
|
||||
)
|
||||
# rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
for x in range(1, 10):
|
||||
spec_string = re.sub(
|
||||
rf"\^{x}\.(\d+)\.(\d+)", rf">={x}.\1.\2,<{x+1}", spec_string
|
||||
rf"\^{x}\.(\d+)\.(\d+)", rf">={x}.\1.\2,<{x + 1}", spec_string
|
||||
)
|
||||
|
||||
spec_set = SpecifierSet(spec_string)
|
||||
@@ -169,12 +167,12 @@ def check_python_version(version_string, constraint_string):
|
||||
# rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1.0 (can be anywhere in constraint string)
|
||||
for y in range(1, 10):
|
||||
constraint_string = re.sub(
|
||||
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y+1}.0", constraint_string
|
||||
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}.0", constraint_string
|
||||
)
|
||||
# rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
for x in range(1, 10):
|
||||
constraint_string = re.sub(
|
||||
rf"\^{x}\.0\.(\d+)", rf">={x}.0.\1,<{x+1}.0.0", constraint_string
|
||||
rf"\^{x}\.0\.(\d+)", rf">={x}.0.\1,<{x + 1}.0.0", constraint_string
|
||||
)
|
||||
|
||||
try:
|
||||
|
||||
47
.github/scripts/prep_api_docs_build.py
vendored
47
.github/scripts/prep_api_docs_build.py
vendored
@@ -3,9 +3,10 @@
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import yaml
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any
|
||||
from typing import Any, Dict
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
def load_packages_yaml() -> Dict[str, Any]:
|
||||
@@ -28,7 +29,6 @@ def get_target_dir(package_name: str) -> Path:
|
||||
def clean_target_directories(packages: list) -> None:
|
||||
"""Remove old directories that will be replaced."""
|
||||
for package in packages:
|
||||
|
||||
target_dir = get_target_dir(package["name"])
|
||||
if target_dir.exists():
|
||||
print(f"Removing {target_dir}")
|
||||
@@ -38,7 +38,6 @@ def clean_target_directories(packages: list) -> None:
|
||||
def move_libraries(packages: list) -> None:
|
||||
"""Move libraries from their source locations to the target directories."""
|
||||
for package in packages:
|
||||
|
||||
repo_name = package["repo"].split("/")[1]
|
||||
source_path = package["path"]
|
||||
target_dir = get_target_dir(package["name"])
|
||||
@@ -68,23 +67,33 @@ def main():
|
||||
package_yaml = load_packages_yaml()
|
||||
|
||||
# Clean target directories
|
||||
clean_target_directories([
|
||||
p
|
||||
for p in package_yaml["packages"]
|
||||
if (p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref"))
|
||||
and p["repo"] != "langchain-ai/langchain"
|
||||
and p["name"] != "langchain-ai21" # Skip AI21 due to dependency conflicts
|
||||
])
|
||||
clean_target_directories(
|
||||
[
|
||||
p
|
||||
for p in package_yaml["packages"]
|
||||
if (
|
||||
p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref")
|
||||
)
|
||||
and p["repo"] != "langchain-ai/langchain"
|
||||
and p["name"]
|
||||
!= "langchain-ai21" # Skip AI21 due to dependency conflicts
|
||||
]
|
||||
)
|
||||
|
||||
# Move libraries to their new locations
|
||||
move_libraries([
|
||||
p
|
||||
for p in package_yaml["packages"]
|
||||
if not p.get("disabled", False)
|
||||
and (p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref"))
|
||||
and p["repo"] != "langchain-ai/langchain"
|
||||
and p["name"] != "langchain-ai21" # Skip AI21 due to dependency conflicts
|
||||
])
|
||||
move_libraries(
|
||||
[
|
||||
p
|
||||
for p in package_yaml["packages"]
|
||||
if not p.get("disabled", False)
|
||||
and (
|
||||
p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref")
|
||||
)
|
||||
and p["repo"] != "langchain-ai/langchain"
|
||||
and p["name"]
|
||||
!= "langchain-ai21" # Skip AI21 due to dependency conflicts
|
||||
]
|
||||
)
|
||||
|
||||
# Delete ones without a pyproject.toml
|
||||
for partner in Path("langchain/libs/partners").iterdir():
|
||||
|
||||
416
.github/tools/git-restore-mtime
vendored
416
.github/tools/git-restore-mtime
vendored
@@ -81,56 +81,93 @@ import time
|
||||
__version__ = "2022.12+dev"
|
||||
|
||||
# Update symlinks only if the platform supports not following them
|
||||
UPDATE_SYMLINKS = bool(os.utime in getattr(os, 'supports_follow_symlinks', []))
|
||||
UPDATE_SYMLINKS = bool(os.utime in getattr(os, "supports_follow_symlinks", []))
|
||||
|
||||
# Call os.path.normpath() only if not in a POSIX platform (Windows)
|
||||
NORMALIZE_PATHS = (os.path.sep != '/')
|
||||
NORMALIZE_PATHS = os.path.sep != "/"
|
||||
|
||||
# How many files to process in each batch when re-trying merge commits
|
||||
STEPMISSING = 100
|
||||
|
||||
# (Extra) keywords for the os.utime() call performed by touch()
|
||||
UTIME_KWS = {} if not UPDATE_SYMLINKS else {'follow_symlinks': False}
|
||||
UTIME_KWS = {} if not UPDATE_SYMLINKS else {"follow_symlinks": False}
|
||||
|
||||
|
||||
# Command-line interface ######################################################
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=__doc__.split('\n---')[0])
|
||||
parser = argparse.ArgumentParser(description=__doc__.split("\n---")[0])
|
||||
|
||||
group = parser.add_mutually_exclusive_group()
|
||||
group.add_argument('--quiet', '-q', dest='loglevel',
|
||||
action="store_const", const=logging.WARNING, default=logging.INFO,
|
||||
help="Suppress informative messages and summary statistics.")
|
||||
group.add_argument('--verbose', '-v', action="count", help="""
|
||||
group.add_argument(
|
||||
"--quiet",
|
||||
"-q",
|
||||
dest="loglevel",
|
||||
action="store_const",
|
||||
const=logging.WARNING,
|
||||
default=logging.INFO,
|
||||
help="Suppress informative messages and summary statistics.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--verbose",
|
||||
"-v",
|
||||
action="count",
|
||||
help="""
|
||||
Print additional information for each processed file.
|
||||
Specify twice to further increase verbosity.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--cwd', '-C', metavar="DIRECTORY", help="""
|
||||
parser.add_argument(
|
||||
"--cwd",
|
||||
"-C",
|
||||
metavar="DIRECTORY",
|
||||
help="""
|
||||
Run as if %(prog)s was started in directory %(metavar)s.
|
||||
This affects how --work-tree, --git-dir and PATHSPEC arguments are handled.
|
||||
See 'man 1 git' or 'git --help' for more information.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--git-dir', dest='gitdir', metavar="GITDIR", help="""
|
||||
parser.add_argument(
|
||||
"--git-dir",
|
||||
dest="gitdir",
|
||||
metavar="GITDIR",
|
||||
help="""
|
||||
Path to the git repository, by default auto-discovered by searching
|
||||
the current directory and its parents for a .git/ subdirectory.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--work-tree', dest='workdir', metavar="WORKTREE", help="""
|
||||
parser.add_argument(
|
||||
"--work-tree",
|
||||
dest="workdir",
|
||||
metavar="WORKTREE",
|
||||
help="""
|
||||
Path to the work tree root, by default the parent of GITDIR if it's
|
||||
automatically discovered, or the current directory if GITDIR is set.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--force', '-f', default=False, action="store_true", help="""
|
||||
parser.add_argument(
|
||||
"--force",
|
||||
"-f",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Force updating files with uncommitted modifications.
|
||||
Untracked files and uncommitted deletions, renames and additions are
|
||||
always ignored.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--merge', '-m', default=False, action="store_true", help="""
|
||||
parser.add_argument(
|
||||
"--merge",
|
||||
"-m",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Include merge commits.
|
||||
Leads to more recent times and more files per commit, thus with the same
|
||||
time, which may or may not be what you want.
|
||||
@@ -138,71 +175,130 @@ def parse_args():
|
||||
are found sooner, which can improve performance, sometimes substantially.
|
||||
But as merge commits are usually huge, processing them may also take longer.
|
||||
By default, merge commits are only used for files missing from regular commits.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--first-parent', default=False, action="store_true", help="""
|
||||
parser.add_argument(
|
||||
"--first-parent",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Consider only the first parent, the "main branch", when evaluating merge commits.
|
||||
Only effective when merge commits are processed, either when --merge is
|
||||
used or when finding missing files after the first regular log search.
|
||||
See --skip-missing.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--skip-missing', '-s', dest="missing", default=True,
|
||||
action="store_false", help="""
|
||||
parser.add_argument(
|
||||
"--skip-missing",
|
||||
"-s",
|
||||
dest="missing",
|
||||
default=True,
|
||||
action="store_false",
|
||||
help="""
|
||||
Do not try to find missing files.
|
||||
If merge commits were not evaluated with --merge and some files were
|
||||
not found in regular commits, by default %(prog)s searches for these
|
||||
files again in the merge commits.
|
||||
This option disables this retry, so files found only in merge commits
|
||||
will not have their timestamp updated.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--no-directories', '-D', dest='dirs', default=True,
|
||||
action="store_false", help="""
|
||||
parser.add_argument(
|
||||
"--no-directories",
|
||||
"-D",
|
||||
dest="dirs",
|
||||
default=True,
|
||||
action="store_false",
|
||||
help="""
|
||||
Do not update directory timestamps.
|
||||
By default, use the time of its most recently created, renamed or deleted file.
|
||||
Note that just modifying a file will NOT update its directory time.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--test', '-t', default=False, action="store_true",
|
||||
help="Test run: do not actually update any file timestamp.")
|
||||
parser.add_argument(
|
||||
"--test",
|
||||
"-t",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="Test run: do not actually update any file timestamp.",
|
||||
)
|
||||
|
||||
parser.add_argument('--commit-time', '-c', dest='commit_time', default=False,
|
||||
action='store_true', help="Use commit time instead of author time.")
|
||||
parser.add_argument(
|
||||
"--commit-time",
|
||||
"-c",
|
||||
dest="commit_time",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="Use commit time instead of author time.",
|
||||
)
|
||||
|
||||
parser.add_argument('--oldest-time', '-o', dest='reverse_order', default=False,
|
||||
action='store_true', help="""
|
||||
parser.add_argument(
|
||||
"--oldest-time",
|
||||
"-o",
|
||||
dest="reverse_order",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Update times based on the oldest, instead of the most recent commit of a file.
|
||||
This reverses the order in which the git log is processed to emulate a
|
||||
file "creation" date. Note this will be inaccurate for files deleted and
|
||||
re-created at later dates.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--skip-older-than', metavar='SECONDS', type=int, help="""
|
||||
parser.add_argument(
|
||||
"--skip-older-than",
|
||||
metavar="SECONDS",
|
||||
type=int,
|
||||
help="""
|
||||
Ignore files that are currently older than %(metavar)s.
|
||||
Useful in workflows that assume such files already have a correct timestamp,
|
||||
as it may improve performance by processing fewer files.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--skip-older-than-commit', '-N', default=False,
|
||||
action='store_true', help="""
|
||||
parser.add_argument(
|
||||
"--skip-older-than-commit",
|
||||
"-N",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Ignore files older than the timestamp it would be updated to.
|
||||
Such files may be considered "original", likely in the author's repository.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--unique-times', default=False, action="store_true", help="""
|
||||
parser.add_argument(
|
||||
"--unique-times",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="""
|
||||
Set the microseconds to a unique value per commit.
|
||||
Allows telling apart changes that would otherwise have identical timestamps,
|
||||
as git's time accuracy is in seconds.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('pathspec', nargs='*', metavar='PATHSPEC', help="""
|
||||
parser.add_argument(
|
||||
"pathspec",
|
||||
nargs="*",
|
||||
metavar="PATHSPEC",
|
||||
help="""
|
||||
Only modify paths matching %(metavar)s, relative to current directory.
|
||||
By default, update all but untracked files and submodules.
|
||||
""")
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('--version', '-V', action='version',
|
||||
version='%(prog)s version {version}'.format(version=get_version()))
|
||||
parser.add_argument(
|
||||
"--version",
|
||||
"-V",
|
||||
action="version",
|
||||
version="%(prog)s version {version}".format(version=get_version()),
|
||||
)
|
||||
|
||||
args_ = parser.parse_args()
|
||||
if args_.verbose:
|
||||
@@ -212,17 +308,18 @@ def parse_args():
|
||||
|
||||
|
||||
def get_version(version=__version__):
|
||||
if not version.endswith('+dev'):
|
||||
if not version.endswith("+dev"):
|
||||
return version
|
||||
try:
|
||||
cwd = os.path.dirname(os.path.realpath(__file__))
|
||||
return Git(cwd=cwd, errors=False).describe().lstrip('v')
|
||||
return Git(cwd=cwd, errors=False).describe().lstrip("v")
|
||||
except Git.Error:
|
||||
return '-'.join((version, "unknown"))
|
||||
return "-".join((version, "unknown"))
|
||||
|
||||
|
||||
# Helper functions ############################################################
|
||||
|
||||
|
||||
def setup_logging():
|
||||
"""Add TRACE logging level and corresponding method, return the root logger"""
|
||||
logging.TRACE = TRACE = logging.DEBUG // 2
|
||||
@@ -255,11 +352,13 @@ def normalize(path):
|
||||
if path and path[0] == '"':
|
||||
# Python 2: path = path[1:-1].decode("string-escape")
|
||||
# Python 3: https://stackoverflow.com/a/46650050/624066
|
||||
path = (path[1:-1] # Remove enclosing double quotes
|
||||
.encode('latin1') # Convert to bytes, required by 'unicode-escape'
|
||||
.decode('unicode-escape') # Perform the actual octal-escaping decode
|
||||
.encode('latin1') # 1:1 mapping to bytes, UTF-8 encoded
|
||||
.decode('utf8', 'surrogateescape')) # Decode from UTF-8
|
||||
path = (
|
||||
path[1:-1] # Remove enclosing double quotes
|
||||
.encode("latin1") # Convert to bytes, required by 'unicode-escape'
|
||||
.decode("unicode-escape") # Perform the actual octal-escaping decode
|
||||
.encode("latin1") # 1:1 mapping to bytes, UTF-8 encoded
|
||||
.decode("utf8", "surrogateescape")
|
||||
) # Decode from UTF-8
|
||||
if NORMALIZE_PATHS:
|
||||
# Make sure the slash matches the OS; for Windows we need a backslash
|
||||
path = os.path.normpath(path)
|
||||
@@ -282,12 +381,12 @@ def touch_ns(path, mtime_ns):
|
||||
|
||||
def isodate(secs: int):
|
||||
# time.localtime() accepts floats, but discards fractional part
|
||||
return time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(secs))
|
||||
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(secs))
|
||||
|
||||
|
||||
def isodate_ns(ns: int):
|
||||
# for integers fromtimestamp() is equivalent and ~16% slower than isodate()
|
||||
return datetime.datetime.fromtimestamp(ns / 1000000000).isoformat(sep=' ')
|
||||
return datetime.datetime.fromtimestamp(ns / 1000000000).isoformat(sep=" ")
|
||||
|
||||
|
||||
def get_mtime_ns(secs: int, idx: int):
|
||||
@@ -305,35 +404,49 @@ def get_mtime_path(path):
|
||||
|
||||
# Git class and parse_log(), the heart of the script ##########################
|
||||
|
||||
|
||||
class Git:
|
||||
def __init__(self, workdir=None, gitdir=None, cwd=None, errors=True):
|
||||
self.gitcmd = ['git']
|
||||
self.gitcmd = ["git"]
|
||||
self.errors = errors
|
||||
self._proc = None
|
||||
if workdir: self.gitcmd.extend(('--work-tree', workdir))
|
||||
if gitdir: self.gitcmd.extend(('--git-dir', gitdir))
|
||||
if cwd: self.gitcmd.extend(('-C', cwd))
|
||||
if workdir:
|
||||
self.gitcmd.extend(("--work-tree", workdir))
|
||||
if gitdir:
|
||||
self.gitcmd.extend(("--git-dir", gitdir))
|
||||
if cwd:
|
||||
self.gitcmd.extend(("-C", cwd))
|
||||
self.workdir, self.gitdir = self._get_repo_dirs()
|
||||
|
||||
def ls_files(self, paths: list = None):
|
||||
return (normalize(_) for _ in self._run('ls-files --full-name', paths))
|
||||
return (normalize(_) for _ in self._run("ls-files --full-name", paths))
|
||||
|
||||
def ls_dirty(self, force=False):
|
||||
return (normalize(_[3:].split(' -> ', 1)[-1])
|
||||
for _ in self._run('status --porcelain')
|
||||
if _[:2] != '??' and (not force or (_[0] in ('R', 'A')
|
||||
or _[1] == 'D')))
|
||||
return (
|
||||
normalize(_[3:].split(" -> ", 1)[-1])
|
||||
for _ in self._run("status --porcelain")
|
||||
if _[:2] != "??" and (not force or (_[0] in ("R", "A") or _[1] == "D"))
|
||||
)
|
||||
|
||||
def log(self, merge=False, first_parent=False, commit_time=False,
|
||||
reverse_order=False, paths: list = None):
|
||||
cmd = 'whatchanged --pretty={}'.format('%ct' if commit_time else '%at')
|
||||
if merge: cmd += ' -m'
|
||||
if first_parent: cmd += ' --first-parent'
|
||||
if reverse_order: cmd += ' --reverse'
|
||||
def log(
|
||||
self,
|
||||
merge=False,
|
||||
first_parent=False,
|
||||
commit_time=False,
|
||||
reverse_order=False,
|
||||
paths: list = None,
|
||||
):
|
||||
cmd = "whatchanged --pretty={}".format("%ct" if commit_time else "%at")
|
||||
if merge:
|
||||
cmd += " -m"
|
||||
if first_parent:
|
||||
cmd += " --first-parent"
|
||||
if reverse_order:
|
||||
cmd += " --reverse"
|
||||
return self._run(cmd, paths)
|
||||
|
||||
def describe(self):
|
||||
return self._run('describe --tags', check=True)[0]
|
||||
return self._run("describe --tags", check=True)[0]
|
||||
|
||||
def terminate(self):
|
||||
if self._proc is None:
|
||||
@@ -345,18 +458,22 @@ class Git:
|
||||
pass
|
||||
|
||||
def _get_repo_dirs(self):
|
||||
return (os.path.normpath(_) for _ in
|
||||
self._run('rev-parse --show-toplevel --absolute-git-dir', check=True))
|
||||
return (
|
||||
os.path.normpath(_)
|
||||
for _ in self._run(
|
||||
"rev-parse --show-toplevel --absolute-git-dir", check=True
|
||||
)
|
||||
)
|
||||
|
||||
def _run(self, cmdstr: str, paths: list = None, output=True, check=False):
|
||||
cmdlist = self.gitcmd + shlex.split(cmdstr)
|
||||
if paths:
|
||||
cmdlist.append('--')
|
||||
cmdlist.append("--")
|
||||
cmdlist.extend(paths)
|
||||
popen_args = dict(universal_newlines=True, encoding='utf8')
|
||||
popen_args = dict(universal_newlines=True, encoding="utf8")
|
||||
if not self.errors:
|
||||
popen_args['stderr'] = subprocess.DEVNULL
|
||||
log.trace("Executing: %s", ' '.join(cmdlist))
|
||||
popen_args["stderr"] = subprocess.DEVNULL
|
||||
log.trace("Executing: %s", " ".join(cmdlist))
|
||||
if not output:
|
||||
return subprocess.call(cmdlist, **popen_args)
|
||||
if check:
|
||||
@@ -379,30 +496,26 @@ def parse_log(filelist, dirlist, stats, git, merge=False, filterlist=None):
|
||||
mtime = 0
|
||||
datestr = isodate(0)
|
||||
for line in git.log(
|
||||
merge,
|
||||
args.first_parent,
|
||||
args.commit_time,
|
||||
args.reverse_order,
|
||||
filterlist
|
||||
merge, args.first_parent, args.commit_time, args.reverse_order, filterlist
|
||||
):
|
||||
stats['loglines'] += 1
|
||||
stats["loglines"] += 1
|
||||
|
||||
# Blank line between Date and list of files
|
||||
if not line:
|
||||
continue
|
||||
|
||||
# Date line
|
||||
if line[0] != ':': # Faster than `not line.startswith(':')`
|
||||
stats['commits'] += 1
|
||||
if line[0] != ":": # Faster than `not line.startswith(':')`
|
||||
stats["commits"] += 1
|
||||
mtime = int(line)
|
||||
if args.unique_times:
|
||||
mtime = get_mtime_ns(mtime, stats['commits'])
|
||||
mtime = get_mtime_ns(mtime, stats["commits"])
|
||||
if args.debug:
|
||||
datestr = isodate(mtime)
|
||||
continue
|
||||
|
||||
# File line: three tokens if it describes a renaming, otherwise two
|
||||
tokens = line.split('\t')
|
||||
tokens = line.split("\t")
|
||||
|
||||
# Possible statuses:
|
||||
# M: Modified (content changed)
|
||||
@@ -411,7 +524,7 @@ def parse_log(filelist, dirlist, stats, git, merge=False, filterlist=None):
|
||||
# T: Type changed: to/from regular file, symlinks, submodules
|
||||
# R099: Renamed (moved), with % of unchanged content. 100 = pure rename
|
||||
# Not possible in log: C=Copied, U=Unmerged, X=Unknown, B=pairing Broken
|
||||
status = tokens[0].split(' ')[-1]
|
||||
status = tokens[0].split(" ")[-1]
|
||||
file = tokens[-1]
|
||||
|
||||
# Handles non-ASCII chars and OS path separator
|
||||
@@ -419,56 +532,76 @@ def parse_log(filelist, dirlist, stats, git, merge=False, filterlist=None):
|
||||
|
||||
def do_file():
|
||||
if args.skip_older_than_commit and get_mtime_path(file) <= mtime:
|
||||
stats['skip'] += 1
|
||||
stats["skip"] += 1
|
||||
return
|
||||
if args.debug:
|
||||
log.debug("%d\t%d\t%d\t%s\t%s",
|
||||
stats['loglines'], stats['commits'], stats['files'],
|
||||
datestr, file)
|
||||
log.debug(
|
||||
"%d\t%d\t%d\t%s\t%s",
|
||||
stats["loglines"],
|
||||
stats["commits"],
|
||||
stats["files"],
|
||||
datestr,
|
||||
file,
|
||||
)
|
||||
try:
|
||||
touch(os.path.join(git.workdir, file), mtime)
|
||||
stats['touches'] += 1
|
||||
stats["touches"] += 1
|
||||
except Exception as e:
|
||||
log.error("ERROR: %s: %s", e, file)
|
||||
stats['errors'] += 1
|
||||
stats["errors"] += 1
|
||||
|
||||
def do_dir():
|
||||
if args.debug:
|
||||
log.debug("%d\t%d\t-\t%s\t%s",
|
||||
stats['loglines'], stats['commits'],
|
||||
datestr, "{}/".format(dirname or '.'))
|
||||
log.debug(
|
||||
"%d\t%d\t-\t%s\t%s",
|
||||
stats["loglines"],
|
||||
stats["commits"],
|
||||
datestr,
|
||||
"{}/".format(dirname or "."),
|
||||
)
|
||||
try:
|
||||
touch(os.path.join(git.workdir, dirname), mtime)
|
||||
stats['dirtouches'] += 1
|
||||
stats["dirtouches"] += 1
|
||||
except Exception as e:
|
||||
log.error("ERROR: %s: %s", e, dirname)
|
||||
stats['direrrors'] += 1
|
||||
stats["direrrors"] += 1
|
||||
|
||||
if file in filelist:
|
||||
stats['files'] -= 1
|
||||
stats["files"] -= 1
|
||||
filelist.remove(file)
|
||||
do_file()
|
||||
|
||||
if args.dirs and status in ('A', 'D'):
|
||||
if args.dirs and status in ("A", "D"):
|
||||
dirname = os.path.dirname(file)
|
||||
if dirname in dirlist:
|
||||
dirlist.remove(dirname)
|
||||
do_dir()
|
||||
|
||||
# All files done?
|
||||
if not stats['files']:
|
||||
if not stats["files"]:
|
||||
git.terminate()
|
||||
return
|
||||
|
||||
|
||||
# Main Logic ##################################################################
|
||||
|
||||
|
||||
def main():
|
||||
start = time.time() # yes, Wall time. CPU time is not realistic for users.
|
||||
stats = {_: 0 for _ in ('loglines', 'commits', 'touches', 'skip', 'errors',
|
||||
'dirtouches', 'direrrors')}
|
||||
stats = {
|
||||
_: 0
|
||||
for _ in (
|
||||
"loglines",
|
||||
"commits",
|
||||
"touches",
|
||||
"skip",
|
||||
"errors",
|
||||
"dirtouches",
|
||||
"direrrors",
|
||||
)
|
||||
}
|
||||
|
||||
logging.basicConfig(level=args.loglevel, format='%(message)s')
|
||||
logging.basicConfig(level=args.loglevel, format="%(message)s")
|
||||
log.trace("Arguments: %s", args)
|
||||
|
||||
# First things first: Where and Who are we?
|
||||
@@ -499,13 +632,16 @@ def main():
|
||||
|
||||
# Symlink (to file, to dir or broken - git handles the same way)
|
||||
if not UPDATE_SYMLINKS and os.path.islink(fullpath):
|
||||
log.warning("WARNING: Skipping symlink, no OS support for updates: %s",
|
||||
path)
|
||||
log.warning(
|
||||
"WARNING: Skipping symlink, no OS support for updates: %s", path
|
||||
)
|
||||
continue
|
||||
|
||||
# skip files which are older than given threshold
|
||||
if (args.skip_older_than
|
||||
and start - get_mtime_path(fullpath) > args.skip_older_than):
|
||||
if (
|
||||
args.skip_older_than
|
||||
and start - get_mtime_path(fullpath) > args.skip_older_than
|
||||
):
|
||||
continue
|
||||
|
||||
# Always add files relative to worktree root
|
||||
@@ -519,15 +655,17 @@ def main():
|
||||
else:
|
||||
dirty = set(git.ls_dirty())
|
||||
if dirty:
|
||||
log.warning("WARNING: Modified files in the working directory were ignored."
|
||||
"\nTo include such files, commit your changes or use --force.")
|
||||
log.warning(
|
||||
"WARNING: Modified files in the working directory were ignored."
|
||||
"\nTo include such files, commit your changes or use --force."
|
||||
)
|
||||
filelist -= dirty
|
||||
|
||||
# Build dir list to be processed
|
||||
dirlist = set(os.path.dirname(_) for _ in filelist) if args.dirs else set()
|
||||
|
||||
stats['totalfiles'] = stats['files'] = len(filelist)
|
||||
log.info("{0:,} files to be processed in work dir".format(stats['totalfiles']))
|
||||
stats["totalfiles"] = stats["files"] = len(filelist)
|
||||
log.info("{0:,} files to be processed in work dir".format(stats["totalfiles"]))
|
||||
|
||||
if not filelist:
|
||||
# Nothing to do. Exit silently and without errors, just like git does
|
||||
@@ -544,10 +682,18 @@ def main():
|
||||
if args.missing and not args.merge:
|
||||
filterlist = list(filelist)
|
||||
missing = len(filterlist)
|
||||
log.info("{0:,} files not found in log, trying merge commits".format(missing))
|
||||
log.info(
|
||||
"{0:,} files not found in log, trying merge commits".format(missing)
|
||||
)
|
||||
for i in range(0, missing, STEPMISSING):
|
||||
parse_log(filelist, dirlist, stats, git,
|
||||
merge=True, filterlist=filterlist[i:i + STEPMISSING])
|
||||
parse_log(
|
||||
filelist,
|
||||
dirlist,
|
||||
stats,
|
||||
git,
|
||||
merge=True,
|
||||
filterlist=filterlist[i : i + STEPMISSING],
|
||||
)
|
||||
|
||||
# Still missing some?
|
||||
for file in filelist:
|
||||
@@ -556,29 +702,33 @@ def main():
|
||||
# Final statistics
|
||||
# Suggestion: use git-log --before=mtime to brag about skipped log entries
|
||||
def log_info(msg, *a, width=13):
|
||||
ifmt = '{:%d,}' % (width,) # not using 'n' for consistency with ffmt
|
||||
ffmt = '{:%d,.2f}' % (width,)
|
||||
ifmt = "{:%d,}" % (width,) # not using 'n' for consistency with ffmt
|
||||
ffmt = "{:%d,.2f}" % (width,)
|
||||
# %-formatting lacks a thousand separator, must pre-render with .format()
|
||||
log.info(msg.replace('%d', ifmt).replace('%f', ffmt).format(*a))
|
||||
log.info(msg.replace("%d", ifmt).replace("%f", ffmt).format(*a))
|
||||
|
||||
log_info(
|
||||
"Statistics:\n"
|
||||
"%f seconds\n"
|
||||
"%d log lines processed\n"
|
||||
"%d commits evaluated",
|
||||
time.time() - start, stats['loglines'], stats['commits'])
|
||||
"Statistics:\n%f seconds\n%d log lines processed\n%d commits evaluated",
|
||||
time.time() - start,
|
||||
stats["loglines"],
|
||||
stats["commits"],
|
||||
)
|
||||
|
||||
if args.dirs:
|
||||
if stats['direrrors']: log_info("%d directory update errors", stats['direrrors'])
|
||||
log_info("%d directories updated", stats['dirtouches'])
|
||||
if stats["direrrors"]:
|
||||
log_info("%d directory update errors", stats["direrrors"])
|
||||
log_info("%d directories updated", stats["dirtouches"])
|
||||
|
||||
if stats['touches'] != stats['totalfiles']:
|
||||
log_info("%d files", stats['totalfiles'])
|
||||
if stats['skip']: log_info("%d files skipped", stats['skip'])
|
||||
if stats['files']: log_info("%d files missing", stats['files'])
|
||||
if stats['errors']: log_info("%d file update errors", stats['errors'])
|
||||
if stats["touches"] != stats["totalfiles"]:
|
||||
log_info("%d files", stats["totalfiles"])
|
||||
if stats["skip"]:
|
||||
log_info("%d files skipped", stats["skip"])
|
||||
if stats["files"]:
|
||||
log_info("%d files missing", stats["files"])
|
||||
if stats["errors"]:
|
||||
log_info("%d file update errors", stats["errors"])
|
||||
|
||||
log_info("%d files updated", stats['touches'])
|
||||
log_info("%d files updated", stats["touches"])
|
||||
|
||||
if args.test:
|
||||
log.info("TEST RUN - No files modified!")
|
||||
|
||||
11
.github/workflows/_release.yml
vendored
11
.github/workflows/_release.yml
vendored
@@ -220,7 +220,7 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v5
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -379,7 +379,7 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v5
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
with:
|
||||
name: dist
|
||||
@@ -388,11 +388,12 @@ jobs:
|
||||
- name: Test against ${{ matrix.partner }}
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
run: |
|
||||
# Identify latest tag
|
||||
# Identify latest tag, excluding pre-releases
|
||||
LATEST_PACKAGE_TAG="$(
|
||||
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
|
||||
| awk '{print $2}' \
|
||||
| sed 's|refs/tags/||' \
|
||||
| grep -Ev '==[^=]*(\.?dev[0-9]*|\.?rc[0-9]*)$' \
|
||||
| sort -Vr \
|
||||
| head -n 1
|
||||
)"
|
||||
@@ -446,7 +447,7 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v5
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -485,7 +486,7 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v5
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
2
.github/workflows/_test.yml
vendored
2
.github/workflows/_test.yml
vendored
@@ -79,4 +79,4 @@ jobs:
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
|
||||
|
||||
|
||||
2
.github/workflows/_test_pydantic.yml
vendored
2
.github/workflows/_test_pydantic.yml
vendored
@@ -64,4 +64,4 @@ jobs:
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
|
||||
2
.github/workflows/_test_release.yml
vendored
2
.github/workflows/_test_release.yml
vendored
@@ -85,7 +85,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: actions/download-artifact@v5
|
||||
with:
|
||||
name: test-dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
2
.github/workflows/api_doc_build.yml
vendored
2
.github/workflows/api_doc_build.yml
vendored
@@ -52,7 +52,6 @@ jobs:
|
||||
run: |
|
||||
# Get unique repositories
|
||||
REPOS=$(echo "$REPOS_UNSORTED" | sort -u)
|
||||
|
||||
# Checkout each unique repository
|
||||
for repo in $REPOS; do
|
||||
# Validate repository format (allow any org with proper format)
|
||||
@@ -68,7 +67,6 @@ jobs:
|
||||
echo "Error: Invalid repository name: $REPO_NAME"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Checking out $repo to $REPO_NAME"
|
||||
git clone --depth 1 https://github.com/$repo.git $REPO_NAME
|
||||
done
|
||||
|
||||
1
.github/workflows/check_diffs.yml
vendored
1
.github/workflows/check_diffs.yml
vendored
@@ -30,6 +30,7 @@ jobs:
|
||||
build:
|
||||
name: 'Detect Changes & Set Matrix'
|
||||
runs-on: ubuntu-latest
|
||||
if: ${{ !contains(github.event.pull_request.labels.*.name, 'ci-ignore') }}
|
||||
steps:
|
||||
- name: '📋 Checkout Code'
|
||||
uses: actions/checkout@v4
|
||||
|
||||
1
.github/workflows/codspeed.yml
vendored
1
.github/workflows/codspeed.yml
vendored
@@ -20,6 +20,7 @@ jobs:
|
||||
codspeed:
|
||||
name: 'Benchmark'
|
||||
runs-on: ubuntu-latest
|
||||
if: ${{ !contains(github.event.pull_request.labels.*.name, 'codspeed-ignore') }}
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
|
||||
@@ -11,4 +11,4 @@
|
||||
"MD046": {
|
||||
"style": "fenced"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
4
.vscode/settings.json
vendored
4
.vscode/settings.json
vendored
@@ -21,7 +21,7 @@
|
||||
"[python]": {
|
||||
"editor.formatOnSave": true,
|
||||
"editor.codeActionsOnSave": {
|
||||
"source.organizeImports": "explicit",
|
||||
"source.organizeImports.ruff": "explicit",
|
||||
"source.fixAll": "explicit"
|
||||
},
|
||||
"editor.defaultFormatter": "charliermarsh.ruff"
|
||||
@@ -77,4 +77,6 @@
|
||||
"editor.tabSize": 2,
|
||||
"editor.insertSpaces": true
|
||||
},
|
||||
"python.terminal.activateEnvironment": false,
|
||||
"python.defaultInterpreterPath": "./.venv/bin/python"
|
||||
}
|
||||
|
||||
@@ -9,15 +9,13 @@
|
||||
</div>
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/releases)
|
||||
[](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://pypistats.org/packages/langchain-core)
|
||||
[](https://pypistats.org/packages/langchain-core)
|
||||
[](https://star-history.com/#langchain-ai/langchain)
|
||||
[](https://github.com/langchain-ai/langchain/issues)
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
[<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://twitter.com/langchainai)
|
||||
[](https://codspeed.io/langchain-ai/langchain)
|
||||
[](https://twitter.com/langchainai)
|
||||
|
||||
> [!NOTE]
|
||||
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
@@ -68,7 +66,7 @@ reliably handle complex tasks with LangGraph, our low-level agent orchestration
|
||||
framework. LangGraph offers customizable architecture, long-term memory, and
|
||||
human-in-the-loop workflows — and is trusted in production by companies like LinkedIn,
|
||||
Uber, Klarna, and GitLab.
|
||||
- [LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/langgraph_platform/) - Deploy
|
||||
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy
|
||||
and scale agents effortlessly with a purpose-built deployment platform for long
|
||||
running, stateful workflows. Discover, reuse, configure, and share agents across
|
||||
teams — and iterate quickly with visual prototyping in
|
||||
@@ -85,3 +83,4 @@ concepts behind the LangChain framework.
|
||||
- [LangChain Forum](https://forum.langchain.com/): Connect with the community and share all of your technical questions, ideas, and feedback.
|
||||
- [API Reference](https://python.langchain.com/api_reference/): Detailed reference on
|
||||
navigating base packages and integrations for LangChain.
|
||||
- [Chat LangChain](https://chat.langchain.com/): Ask questions & chat with our documentation
|
||||
|
||||
@@ -63,4 +63,4 @@ Notebook | Description
|
||||
[rag-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag-locally-on-intel-cpu.ipynb) | Perform Retrieval-Augmented-Generation (RAG) on locally downloaded open-source models using langchain and open source tools and execute it on Intel Xeon CPU. We showed an example of how to apply RAG on Llama 2 model and enable it to answer the queries related to Intel Q1 2024 earnings release.
|
||||
[visual_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/visual_RAG_vdms.ipynb) | Performs Visual Retrieval-Augmented-Generation (RAG) using videos and scene descriptions generated by open source models.
|
||||
[contextual_rag.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/contextual_rag.ipynb) | Performs contextual retrieval-augmented generation (RAG) prepending chunk-specific explanatory context to each chunk before embedding.
|
||||
[rag-agents-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/local_rag_agents_intel_cpu.ipynb) | Build a RAG agent locally with open source models that routes questions through one of two paths to find answers. The agent generates answers based on documents retrieved from either the vector database or retrieved from web search. If the vector database lacks relevant information, the agent opts for web search. Open-source models for LLM and embeddings are used locally on an Intel Xeon CPU to execute this pipeline.
|
||||
[rag-agents-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/local_rag_agents_intel_cpu.ipynb) | Build a RAG agent locally with open source models that routes questions through one of two paths to find answers. The agent generates answers based on documents retrieved from either the vector database or retrieved from web search. If the vector database lacks relevant information, the agent opts for web search. Open-source models for LLM and embeddings are used locally on an Intel Xeon CPU to execute this pipeline.
|
||||
|
||||
@@ -79,6 +79,17 @@
|
||||
"tool_executor = ToolExecutor(tools)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "168152fc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"📘 **Note on `SystemMessage` usage with LangGraph-based agents**\n",
|
||||
"\n",
|
||||
"When constructing the `messages` list for an agent, you *must* manually include any `SystemMessage`s.\n",
|
||||
"Unlike some agent executors in LangChain that set a default, LangGraph requires explicit inclusion."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fe6e8f78-1ef7-42ad-b2bf-835ed5850553",
|
||||
|
||||
@@ -97,7 +97,7 @@ def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
|
||||
if type(type_) is typing_extensions._TypedDictMeta: # type: ignore
|
||||
kind: ClassKind = "TypedDict"
|
||||
elif type(type_) is typing._TypedDictMeta: # type: ignore
|
||||
kind: ClassKind = "TypedDict"
|
||||
kind = "TypedDict"
|
||||
elif (
|
||||
issubclass(type_, Runnable)
|
||||
and issubclass(type_, BaseModel)
|
||||
@@ -189,7 +189,7 @@ def _load_package_modules(
|
||||
if isinstance(package_directory, str)
|
||||
else package_directory
|
||||
)
|
||||
modules_by_namespace = {}
|
||||
modules_by_namespace: Dict[str, ModuleMembers] = {}
|
||||
|
||||
# Get the high level package name
|
||||
package_name = package_path.name
|
||||
@@ -283,7 +283,7 @@ def _construct_doc(
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 2
|
||||
|
||||
|
||||
"""
|
||||
index_autosummary = """
|
||||
"""
|
||||
@@ -365,9 +365,9 @@ def _construct_doc(
|
||||
|
||||
module_doc += f"""\
|
||||
:template: {template}
|
||||
|
||||
|
||||
{class_["qualified_name"]}
|
||||
|
||||
|
||||
"""
|
||||
index_autosummary += f"""
|
||||
{class_["qualified_name"]}
|
||||
@@ -545,13 +545,20 @@ def _build_index(dirs: List[str]) -> None:
|
||||
"ai21": "AI21",
|
||||
"ibm": "IBM",
|
||||
}
|
||||
ordered = ["core", "langchain", "text-splitters", "community", "experimental"]
|
||||
ordered = [
|
||||
"core",
|
||||
"langchain",
|
||||
"text-splitters",
|
||||
"community",
|
||||
"experimental",
|
||||
"standard-tests",
|
||||
]
|
||||
main_ = [dir_ for dir_ in ordered if dir_ in dirs]
|
||||
integrations = sorted(dir_ for dir_ in dirs if dir_ not in main_)
|
||||
doc = """# LangChain Python API Reference
|
||||
|
||||
Welcome to the LangChain Python API reference. This is a reference for all
|
||||
`langchain-x` packages.
|
||||
Welcome to the LangChain Python API reference. This is a reference for all
|
||||
`langchain-x` packages.
|
||||
|
||||
For user guides see [https://python.langchain.com](https://python.langchain.com).
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Async programming with langchain
|
||||
# Async programming with LangChain
|
||||
|
||||
:::info Prerequisites
|
||||
* [Runnable interface](/docs/concepts/runnables)
|
||||
@@ -12,7 +12,7 @@ You are expected to be familiar with asynchronous programming in Python before r
|
||||
This guide specifically focuses on what you need to know to work with LangChain in an asynchronous context, assuming that you are already familiar with asynchronous programming.
|
||||
:::
|
||||
|
||||
## Langchain asynchronous APIs
|
||||
## LangChain asynchronous APIs
|
||||
|
||||
Many LangChain APIs are designed to be asynchronous, allowing you to build efficient and responsive applications.
|
||||
|
||||
|
||||
@@ -147,7 +147,7 @@ An `AIMessage` has the following attributes. The attributes which are **standard
|
||||
| `tool_calls` | Standardized | Tool calls associated with the message. See [tool calling](/docs/concepts/tool_calling) for details. |
|
||||
| `invalid_tool_calls` | Standardized | Tool calls with parsing errors associated with the message. See [tool calling](/docs/concepts/tool_calling) for details. |
|
||||
| `usage_metadata` | Standardized | Usage metadata for a message, such as [token counts](/docs/concepts/tokens). See [Usage Metadata API Reference](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html). |
|
||||
| `id` | Standardized | An optional unique identifier for the message, ideally provided by the provider/model that created the message. |
|
||||
| `id` | Standardized | An optional unique identifier for the message, ideally provided by the provider/model that created the message. See [Message IDs](#message-ids) for details. |
|
||||
| `response_metadata` | Raw | Response metadata, e.g., response headers, logprobs, token counts. |
|
||||
|
||||
#### content
|
||||
@@ -243,3 +243,37 @@ At the moment, the output of the model will be in terms of LangChain messages, s
|
||||
need OpenAI format for the output as well.
|
||||
|
||||
The [convert_to_openai_messages](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.convert_to_openai_messages.html) utility function can be used to convert from LangChain messages to OpenAI format.
|
||||
|
||||
## Message IDs
|
||||
|
||||
LangChain messages include an optional `id` field that serves as a unique identifier. Understanding when and how these IDs are assigned can be helpful for debugging, tracing, and working with message history.
|
||||
|
||||
### When Messages Get IDs
|
||||
|
||||
Messages receive IDs in the following scenarios:
|
||||
|
||||
**Automatically assigned by LangChain:**
|
||||
- When generated through chat model invocation (`.invoke()`, `.stream()`, `.astream()`) with an active run manager/tracing context
|
||||
- IDs follow the format:
|
||||
- `run-$RUN_ID` (e.g., `run-ba48f958-6402-41a5-b461-5e250a4ebd36-0`)
|
||||
- `run-$RUN_ID-$IDX` (e.g., `run-ba48f958-6402-41a5-b461-5e250a4ebd36-1`) when there are multiple generations from a single chat model invocation.
|
||||
|
||||
**Provider-assigned IDs (highest priority):**
|
||||
- When the model provider assigns its own ID to the message
|
||||
- These take precedence over LangChain-generated run IDs
|
||||
- Format varies by provider
|
||||
|
||||
### When Messages Don't Get IDs
|
||||
|
||||
Messages will **not** receive IDs in these situations:
|
||||
|
||||
- **Manual message creation**: Messages created directly (e.g., `AIMessage(content="hello")`) without going through chat models
|
||||
- **No run manager context**: When there's no active callback/tracing infrastructure
|
||||
|
||||
### ID Priority System
|
||||
|
||||
LangChain follows a clear precedence system for message IDs:
|
||||
|
||||
1. **Provider-assigned IDs** (highest priority): IDs from the model provider
|
||||
2. **LangChain run IDs** (medium priority): IDs starting with `run-`
|
||||
3. **Manual IDs** (lowest priority): IDs explicitly set by users
|
||||
|
||||
@@ -53,17 +53,29 @@ This is how you use MessagesPlaceholder.
|
||||
|
||||
```python
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import HumanMessage, AIMessage
|
||||
|
||||
prompt_template = ChatPromptTemplate([
|
||||
("system", "You are a helpful assistant"),
|
||||
MessagesPlaceholder("msgs")
|
||||
])
|
||||
|
||||
# Simple example with one message
|
||||
prompt_template.invoke({"msgs": [HumanMessage(content="hi!")]})
|
||||
|
||||
# More complex example with conversation history
|
||||
messages_to_pass = [
|
||||
HumanMessage(content="What's the capital of France?"),
|
||||
AIMessage(content="The capital of France is Paris."),
|
||||
HumanMessage(content="And what about Germany?")
|
||||
]
|
||||
|
||||
formatted_prompt = prompt_template.invoke({"msgs": messages_to_pass})
|
||||
print(formatted_prompt)
|
||||
```
|
||||
|
||||
This will produce a list of two messages, the first one being a system message, and the second one being the HumanMessage we passed in.
|
||||
|
||||
This will produce a list of four messages total: the system message plus the three messages we passed in (two HumanMessages and one AIMessage).
|
||||
If we had passed in 5 messages, then it would have produced 6 messages in total (the system message plus the 5 passed in).
|
||||
This is useful for letting a list of messages be slotted into a particular spot.
|
||||
|
||||
|
||||
@@ -29,6 +29,22 @@ model_with_structure = model.with_structured_output(schema)
|
||||
structured_output = model_with_structure.invoke(user_input)
|
||||
```
|
||||
|
||||
:::warning[Tool Order Matters]
|
||||
|
||||
When combining structured output with additional tools, bind tools **first**, then apply structured output:
|
||||
|
||||
```python
|
||||
# Correct
|
||||
model_with_tools = model.bind_tools([tool1, tool2])
|
||||
structured_model = model_with_tools.with_structured_output(schema)
|
||||
|
||||
# Incorrect - will cause tool resolution errors
|
||||
structured_model = model.with_structured_output(schema)
|
||||
broken_model = structured_model.bind_tools([tool1, tool2])
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
## Schema definition
|
||||
|
||||
The central concept is that the output structure of model responses needs to be represented in some way.
|
||||
|
||||
@@ -31,7 +31,7 @@ The key attributes that correspond to the tool's **schema**:
|
||||
The key methods to execute the function associated with the **tool**:
|
||||
|
||||
- **invoke**: Invokes the tool with the given arguments.
|
||||
- **ainvoke**: Invokes the tool with the given arguments, asynchronously. Used for [async programming with Langchain](/docs/concepts/async).
|
||||
- **ainvoke**: Invokes the tool with the given arguments, asynchronously. Used for [async programming with LangChain](/docs/concepts/async).
|
||||
|
||||
## Create tools using the `@tool` decorator
|
||||
|
||||
@@ -171,6 +171,26 @@ Please see the [InjectedState](https://langchain-ai.github.io/langgraph/referenc
|
||||
|
||||
Please see the [InjectedStore](https://langchain-ai.github.io/langgraph/reference/prebuilt/#langgraph.prebuilt.tool_node.InjectedStore) documentation for more details.
|
||||
|
||||
## Tool Artifacts vs. Injected State
|
||||
|
||||
Although similar conceptually, tool artifacts in LangChain and [injected state in LangGraph](https://langchain-ai.github.io/langgraph/reference/agents/#langgraph.prebuilt.tool_node.InjectedState) serve different purposes and operate at different levels of abstraction.
|
||||
|
||||
**Tool Artifacts**
|
||||
|
||||
- **Purpose:** Store and pass data between tool executions within a single chain/workflow
|
||||
- **Scope:** Limited to tool-to-tool communication
|
||||
- **Lifecycle:** Tied to individual tool calls and their immediate context
|
||||
- **Usage:** Temporary storage for intermediate results that tools need to share
|
||||
|
||||
**Injected State (LangGraph)**
|
||||
|
||||
- **Purpose:** Maintain persistent state across the entire graph execution
|
||||
- **Scope:** Global to the entire graph workflow
|
||||
- **Lifecycle:** Persists throughout the entire graph execution and can be saved/restored
|
||||
- **Usage:** Long-term state management, conversation memory, user context, workflow checkpointing
|
||||
|
||||
Tool artifacts are ephemeral data passed between tools, while injected state is persistent workflow-level state that survives across multiple steps, tool calls, and even execution sessions in LangGraph.
|
||||
|
||||
## Best practices
|
||||
|
||||
When designing tools to be used by models, keep the following in mind:
|
||||
|
||||
@@ -9,6 +9,14 @@ This project utilizes [uv](https://docs.astral.sh/uv/) v0.5+ as a dependency man
|
||||
|
||||
Install `uv`: **[documentation on how to install it](https://docs.astral.sh/uv/getting-started/installation/)**.
|
||||
|
||||
### Windows Users
|
||||
|
||||
If you're on Windows and don't have `make` installed, you can install it via:
|
||||
- **Option 1**: Install via [Chocolatey](https://chocolatey.org/): `choco install make`
|
||||
- **Option 2**: Install via [Scoop](https://scoop.sh/): `scoop install make`
|
||||
- **Option 3**: Use [Windows Subsystem for Linux (WSL)](https://docs.microsoft.com/en-us/windows/wsl/)
|
||||
- **Option 4**: Use the direct `uv` commands shown in the sections below
|
||||
|
||||
## Different packages
|
||||
|
||||
This repository contains multiple packages:
|
||||
@@ -48,7 +56,11 @@ uv sync
|
||||
Then verify dependency installation:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make test
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
uv run --group test pytest -n auto --disable-socket --allow-unix-socket tests/unit_tests
|
||||
```
|
||||
|
||||
## Testing
|
||||
@@ -61,7 +73,11 @@ If you add new logic, please add a unit test.
|
||||
To run unit tests:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make test
|
||||
|
||||
# If you don't have make (Windows alternative):
|
||||
uv run --group test pytest -n auto --disable-socket --allow-unix-socket tests/unit_tests
|
||||
```
|
||||
|
||||
There are also [integration tests and code-coverage](../testing.mdx) available.
|
||||
@@ -72,7 +88,12 @@ If you are only developing `langchain_core`, you can simply install the dependen
|
||||
|
||||
```bash
|
||||
cd libs/core
|
||||
|
||||
# If you have `make` installed:
|
||||
make test
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
uv run --group test pytest -n auto --disable-socket --allow-unix-socket tests/unit_tests
|
||||
```
|
||||
|
||||
## Formatting and linting
|
||||
@@ -86,20 +107,37 @@ Formatting for this project is done via [ruff](https://docs.astral.sh/ruff/rules
|
||||
To run formatting for docs, cookbook and templates:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make format
|
||||
|
||||
# If you don't have make (Windows alternative):
|
||||
uv run --all-groups ruff format .
|
||||
uv run --all-groups ruff check --fix .
|
||||
```
|
||||
|
||||
To run formatting for a library, run the same command from the relevant library directory:
|
||||
|
||||
```bash
|
||||
cd libs/{LIBRARY}
|
||||
|
||||
# If you have `make` installed:
|
||||
make format
|
||||
|
||||
# If you don't have make (Windows alternative):
|
||||
uv run --all-groups ruff format .
|
||||
uv run --all-groups ruff check --fix .
|
||||
```
|
||||
|
||||
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make format_diff
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
# First, get the list of modified files:
|
||||
git diff --relative=libs/langchain --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$' | xargs uv run --all-groups ruff format
|
||||
git diff --relative=libs/langchain --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$' | xargs uv run --all-groups ruff check --fix
|
||||
```
|
||||
|
||||
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
|
||||
@@ -111,20 +149,40 @@ Linting for this project is done via a combination of [ruff](https://docs.astral
|
||||
To run linting for docs, cookbook and templates:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make lint
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
uv run --all-groups ruff check .
|
||||
uv run --all-groups ruff format . --diff
|
||||
uv run --all-groups mypy . --cache-dir .mypy_cache
|
||||
```
|
||||
|
||||
To run linting for a library, run the same command from the relevant library directory:
|
||||
|
||||
```bash
|
||||
cd libs/{LIBRARY}
|
||||
|
||||
# If you have `make` installed:
|
||||
make lint
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
uv run --all-groups ruff check .
|
||||
uv run --all-groups ruff format . --diff
|
||||
uv run --all-groups mypy . --cache-dir .mypy_cache
|
||||
```
|
||||
|
||||
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make lint_diff
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
# First, get the list of modified files:
|
||||
git diff --relative=libs/langchain --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$' | xargs uv run --all-groups ruff check
|
||||
git diff --relative=libs/langchain --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$' | xargs uv run --all-groups ruff format --diff
|
||||
git diff --relative=libs/langchain --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$' | xargs uv run --all-groups mypy --cache-dir .mypy_cache
|
||||
```
|
||||
|
||||
This can be very helpful when you've made changes to only certain parts of the project and want to ensure your changes meet the linting standards without having to check the entire codebase.
|
||||
@@ -139,13 +197,21 @@ Note that `codespell` finds common typos, so it could have false-positive (corre
|
||||
To check spelling for this project:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make spell_check
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
uv run --all-groups codespell --toml pyproject.toml
|
||||
```
|
||||
|
||||
To fix spelling in place:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make spell_fix
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
uv run --all-groups codespell --toml pyproject.toml -w
|
||||
```
|
||||
|
||||
If codespell is incorrectly flagging a word, you can skip spellcheck for that word by adding it to the codespell config in the `pyproject.toml` file.
|
||||
@@ -157,6 +223,49 @@ If codespell is incorrectly flagging a word, you can skip spellcheck for that wo
|
||||
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure'
|
||||
```
|
||||
|
||||
### Pre-commit
|
||||
|
||||
We use [pre-commit](https://pre-commit.com/) to ensure commits are formatted/linted.
|
||||
|
||||
#### Installing Pre-commit
|
||||
|
||||
First, install pre-commit:
|
||||
|
||||
```bash
|
||||
# Option 1: Using uv (recommended)
|
||||
uv tool install pre-commit
|
||||
|
||||
# Option 2: Using Homebrew (globally for macOS/Linux)
|
||||
brew install pre-commit
|
||||
|
||||
# Option 3: Using pip
|
||||
pip install pre-commit
|
||||
```
|
||||
|
||||
Then install the git hook scripts:
|
||||
|
||||
```bash
|
||||
pre-commit install
|
||||
```
|
||||
|
||||
#### How Pre-commit Works
|
||||
|
||||
Once installed, pre-commit will automatically run on every `git commit`. Hooks are specified in `.pre-commit-config.yaml` and will:
|
||||
|
||||
- Format code using `ruff` for the specific library/package you're modifying
|
||||
- Only run on files that have changed
|
||||
- Prevent commits if formatting fails
|
||||
|
||||
#### Skipping Pre-commit
|
||||
|
||||
In exceptional cases, you can skip pre-commit hooks with:
|
||||
|
||||
```bash
|
||||
git commit --no-verify
|
||||
```
|
||||
|
||||
However, this is discouraged as the CI system will still enforce the same formatting rules.
|
||||
|
||||
## Working with optional dependencies
|
||||
|
||||
`langchain`, `langchain-community`, and `langchain-experimental` rely on optional dependencies to keep these packages lightweight.
|
||||
|
||||
@@ -124,6 +124,47 @@ start "" htmlcov/index.html || open htmlcov/index.html
|
||||
|
||||
```
|
||||
|
||||
## Snapshot Testing
|
||||
|
||||
Some tests use [syrupy](https://github.com/tophat/syrupy) for snapshot testing, which captures the output of functions and compares them to stored snapshots. This is particularly useful for testing JSON schema generation and other structured outputs.
|
||||
|
||||
### Updating Snapshots
|
||||
|
||||
To update snapshots when the expected output has legitimately changed:
|
||||
|
||||
```bash
|
||||
uv run --group test pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
### Pydantic Version Compatibility Issues
|
||||
|
||||
Pydantic generates different JSON schemas across versions, which can cause snapshot test failures in CI when tests run with different Pydantic versions than what was used to generate the snapshots.
|
||||
|
||||
**Symptoms:**
|
||||
- CI fails with snapshot mismatches showing differences like missing or extra fields.
|
||||
- Tests pass locally but fail in CI with different Pydantic versions
|
||||
|
||||
**Solution:**
|
||||
Locally update snapshots using the same Pydantic version that CI uses:
|
||||
|
||||
1. **Identify the failing Pydantic version** from CI logs (e.g., `2.7.0`, `2.8.0`, `2.9.0`)
|
||||
|
||||
2. **Update snapshots with that version:**
|
||||
```bash
|
||||
uv run --with "pydantic==2.9.0" --group test pytest tests/unit_tests/path/to/test.py::test_name --snapshot-update
|
||||
```
|
||||
|
||||
3. **Verify compatibility across supported versions:**
|
||||
```bash
|
||||
# Test with the version you used to update
|
||||
uv run --with "pydantic==2.9.0" --group test pytest tests/unit_tests/path/to/test.py::test_name
|
||||
|
||||
# Test with other supported versions
|
||||
uv run --with "pydantic==2.8.0" --group test pytest tests/unit_tests/path/to/test.py::test_name
|
||||
```
|
||||
|
||||
**Note:** Some tests use `@pytest.mark.skipif` decorators to only run with specific Pydantic version ranges (e.g., `PYDANTIC_VERSION_AT_LEAST_210`). Make sure to understand these constraints when updating snapshots.
|
||||
|
||||
## Coverage
|
||||
|
||||
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
|
||||
|
||||
@@ -159,7 +159,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": null,
|
||||
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
|
||||
"metadata": {
|
||||
"execution": {
|
||||
@@ -183,7 +183,7 @@
|
||||
],
|
||||
"source": [
|
||||
"configurable_model.invoke(\n",
|
||||
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}}\n",
|
||||
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-latest\"}}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -234,7 +234,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": null,
|
||||
"id": "6c8755ba-c001-4f5a-a497-be3f1db83244",
|
||||
"metadata": {
|
||||
"execution": {
|
||||
@@ -261,7 +261,7 @@
|
||||
" \"what's your name\",\n",
|
||||
" config={\n",
|
||||
" \"configurable\": {\n",
|
||||
" \"first_model\": \"claude-3-5-sonnet-20240620\",\n",
|
||||
" \"first_model\": \"claude-3-5-sonnet-latest\",\n",
|
||||
" \"first_temperature\": 0.5,\n",
|
||||
" \"first_max_tokens\": 100,\n",
|
||||
" }\n",
|
||||
@@ -336,7 +336,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"id": "e57dfe9f-cd24-4e37-9ce9-ccf8daf78f89",
|
||||
"metadata": {
|
||||
"execution": {
|
||||
@@ -368,14 +368,14 @@
|
||||
"source": [
|
||||
"llm_with_tools.invoke(\n",
|
||||
" \"what's bigger in 2024 LA or NYC\",\n",
|
||||
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}},\n",
|
||||
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-latest\"}},\n",
|
||||
").tool_calls"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "langchain",
|
||||
"display_name": "langchain-monorepo",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -389,7 +389,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.16"
|
||||
"version": "3.12.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
"\n",
|
||||
":::tip\n",
|
||||
"\n",
|
||||
"The **default** implementation does **not** provide support for token-by-token streaming, but it ensures that the the model can be swapped in for any other model as it supports the same standard interface.\n",
|
||||
"The **default** implementation does **not** provide support for token-by-token streaming, but it ensures that the model can be swapped in for any other model as it supports the same standard interface.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
|
||||
@@ -741,13 +741,13 @@
|
||||
"\n",
|
||||
"If you're using tools with agents, you will likely need an error handling strategy, so the agent can recover from the error and continue execution.\n",
|
||||
"\n",
|
||||
"A simple strategy is to throw a `ToolException` from inside the tool and specify an error handler using `handle_tool_error`. \n",
|
||||
"A simple strategy is to throw a `ToolException` from inside the tool and specify an error handler using `handle_tool_errors`. \n",
|
||||
"\n",
|
||||
"When the error handler is specified, the exception will be caught and the error handler will decide which output to return from the tool.\n",
|
||||
"\n",
|
||||
"You can set `handle_tool_error` to `True`, a string value, or a function. If it's a function, the function should take a `ToolException` as a parameter and return a value.\n",
|
||||
"You can set `handle_tool_errors` to `True`, a string value, or a function. If it's a function, the function should take a `ToolException` as a parameter and return a value.\n",
|
||||
"\n",
|
||||
"Please note that only raising a `ToolException` won't be effective. You need to first set the `handle_tool_error` of the tool because its default value is `False`."
|
||||
"Please note that only raising a `ToolException` won't be effective. You need to first set the `handle_tool_errors` of the tool because its default value is `False`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -777,7 +777,7 @@
|
||||
"id": "9d93b217-1d44-4d31-8956-db9ea680ff4f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Here's an example with the default `handle_tool_error=True` behavior."
|
||||
"Here's an example with the default `handle_tool_errors=True` behavior."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -807,7 +807,7 @@
|
||||
"source": [
|
||||
"get_weather_tool = StructuredTool.from_function(\n",
|
||||
" func=get_weather,\n",
|
||||
" handle_tool_error=True,\n",
|
||||
" handle_tool_errors=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"get_weather_tool.invoke({\"city\": \"foobar\"})"
|
||||
@@ -818,7 +818,7 @@
|
||||
"id": "f91d6dc0-3271-4adc-a155-21f2e62ffa56",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can set `handle_tool_error` to a string that will always be returned."
|
||||
"We can set `handle_tool_errors` to a string that will always be returned."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -848,7 +848,7 @@
|
||||
"source": [
|
||||
"get_weather_tool = StructuredTool.from_function(\n",
|
||||
" func=get_weather,\n",
|
||||
" handle_tool_error=\"There is no such city, but it's probably above 0K there!\",\n",
|
||||
" handle_tool_errors=\"There is no such city, but it's probably above 0K there!\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"get_weather_tool.invoke({\"city\": \"foobar\"})"
|
||||
@@ -893,7 +893,7 @@
|
||||
"\n",
|
||||
"get_weather_tool = StructuredTool.from_function(\n",
|
||||
" func=get_weather,\n",
|
||||
" handle_tool_error=_handle_error,\n",
|
||||
" handle_tool_errors=_handle_error,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"get_weather_tool.invoke({\"city\": \"foobar\"})"
|
||||
|
||||
@@ -323,7 +323,7 @@
|
||||
"source": [
|
||||
"## RAG based approach\n",
|
||||
"\n",
|
||||
"Another simple idea is to chunk up the text, but instead of extracting information from every chunk, just focus on the the most relevant chunks.\n",
|
||||
"Another simple idea is to chunk up the text, but instead of extracting information from every chunk, just focus on the most relevant chunks.\n",
|
||||
"\n",
|
||||
":::caution\n",
|
||||
"It can be difficult to identify which chunks are relevant.\n",
|
||||
|
||||
@@ -104,7 +104,7 @@
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"`filter_messages` can be used in an imperatively (like above) or declaratively, making it easy to compose with other components in a chain:"
|
||||
"`filter_messages` can be used imperatively (like above) or declaratively, making it easy to compose with other components in a chain:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -34,7 +34,7 @@ These are the core building blocks you can use when building applications.
|
||||
[Chat Models](/docs/concepts/chat_models) are newer forms of language models that take messages in and output a message.
|
||||
See [supported integrations](/docs/integrations/chat/) for details on getting started with chat models from a specific provider.
|
||||
|
||||
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
|
||||
- [How to: initialize any model in one line](/docs/how_to/chat_models_universal_init/)
|
||||
- [How to: work with local models](/docs/how_to/local_llms)
|
||||
- [How to: do function/tool calling](/docs/how_to/tool_calling)
|
||||
- [How to: get models to return structured output](/docs/how_to/structured_output)
|
||||
@@ -47,7 +47,7 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
|
||||
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
|
||||
- [How to: stream tool calls](/docs/how_to/tool_streaming)
|
||||
- [How to: handle rate limits](/docs/how_to/chat_model_rate_limiting)
|
||||
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
|
||||
- [How to: few-shot prompt tool behavior](/docs/how_to/tools_few_shot)
|
||||
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
|
||||
- [How to: force a specific tool call](/docs/how_to/tool_choice)
|
||||
- [How to: pass multimodal data directly to models](/docs/how_to/multimodal_inputs/)
|
||||
@@ -64,8 +64,8 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
|
||||
|
||||
[Prompt Templates](/docs/concepts/prompt_templates) are responsible for formatting user input into a format that can be passed to a language model.
|
||||
|
||||
- [How to: use few shot examples](/docs/how_to/few_shot_examples)
|
||||
- [How to: use few shot examples in chat models](/docs/how_to/few_shot_examples_chat/)
|
||||
- [How to: use few-shot examples](/docs/how_to/few_shot_examples)
|
||||
- [How to: use few-shot examples in chat models](/docs/how_to/few_shot_examples_chat/)
|
||||
- [How to: partially format prompt templates](/docs/how_to/prompts_partial)
|
||||
- [How to: compose prompts together](/docs/how_to/prompts_composition)
|
||||
- [How to: use multimodal prompts](/docs/how_to/multimodal_prompts/)
|
||||
@@ -168,7 +168,7 @@ See [supported integrations](/docs/integrations/vectorstores/) for details on ge
|
||||
|
||||
Indexing is the process of keeping your vectorstore in-sync with the underlying data source.
|
||||
|
||||
- [How to: reindex data to keep your vectorstore in-sync with the underlying data source](/docs/how_to/indexing)
|
||||
- [How to: reindex data to keep your vectorstore in sync with the underlying data source](/docs/how_to/indexing)
|
||||
|
||||
### Tools
|
||||
|
||||
@@ -178,7 +178,7 @@ LangChain [Tools](/docs/concepts/tools) contain a description of the tool (to pa
|
||||
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)
|
||||
- [How to: use chat models to call tools](/docs/how_to/tool_calling)
|
||||
- [How to: pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model)
|
||||
- [How to: pass run time values to tools](/docs/how_to/tool_runtime)
|
||||
- [How to: pass runtime values to tools](/docs/how_to/tool_runtime)
|
||||
- [How to: add a human-in-the-loop for tools](/docs/how_to/tools_human)
|
||||
- [How to: handle tool errors](/docs/how_to/tools_error)
|
||||
- [How to: force models to call a tool](/docs/how_to/tool_choice)
|
||||
@@ -297,7 +297,7 @@ For a high-level tutorial, check out [this guide](/docs/tutorials/sql_qa/).
|
||||
You can use an LLM to do question answering over graph databases.
|
||||
For a high-level tutorial, check out [this guide](/docs/tutorials/graph/).
|
||||
|
||||
- [How to: add a semantic layer over the database](/docs/how_to/graph_semantic)
|
||||
- [How to: add a semantic layer over a database](/docs/how_to/graph_semantic)
|
||||
- [How to: construct knowledge graphs](/docs/how_to/graph_constructing)
|
||||
|
||||
### Summarization
|
||||
@@ -345,7 +345,7 @@ LangGraph is an extension of LangChain aimed at
|
||||
building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
|
||||
|
||||
LangGraph documentation is currently hosted on a separate site.
|
||||
You can peruse [LangGraph how-to guides here](https://langchain-ai.github.io/langgraph/how-tos/).
|
||||
You can find the [LangGraph guides here](https://langchain-ai.github.io/langgraph/guides/).
|
||||
|
||||
## [LangSmith](https://docs.smith.langchain.com/)
|
||||
|
||||
|
||||
@@ -199,7 +199,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def _clear():\n",
|
||||
" \"\"\"Hacky helper method to clear content. See the `full` mode section to to understand why it works.\"\"\"\n",
|
||||
" \"\"\"Hacky helper method to clear content. See the `full` mode section to understand why it works.\"\"\"\n",
|
||||
" index([], record_manager, vectorstore, cleanup=\"full\", source_id_key=\"source\")"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -46,7 +46,7 @@
|
||||
"\n",
|
||||
"1. [`llama.cpp`](https://github.com/ggerganov/llama.cpp): C++ implementation of llama inference code with [weight optimization / quantization](https://finbarr.ca/how-is-llama-cpp-possible/)\n",
|
||||
"2. [`gpt4all`](https://docs.gpt4all.io/index.html): Optimized C backend for inference\n",
|
||||
"3. [`Ollama`](https://ollama.ai/): Bundles model weights and environment into an app that runs on device and serves the LLM\n",
|
||||
"3. [`ollama`](https://github.com/ollama/ollama): Bundles model weights and environment into an app that runs on device and serves the LLM\n",
|
||||
"4. [`llamafile`](https://github.com/Mozilla-Ocho/llamafile): Bundles model weights and everything needed to run the model in a single file, allowing you to run the LLM locally from this file without any additional installation steps\n",
|
||||
"\n",
|
||||
"In general, these frameworks will do a few things:\n",
|
||||
@@ -74,12 +74,12 @@
|
||||
"\n",
|
||||
"## Quickstart\n",
|
||||
"\n",
|
||||
"[`Ollama`](https://ollama.ai/) is one way to easily run inference on macOS.\n",
|
||||
"[Ollama](https://ollama.com/) is one way to easily run inference on macOS.\n",
|
||||
" \n",
|
||||
"The instructions [here](https://github.com/jmorganca/ollama?tab=readme-ov-file#ollama) provide details, which we summarize:\n",
|
||||
"The instructions [here](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) provide details, which we summarize:\n",
|
||||
" \n",
|
||||
"* [Download and run](https://ollama.ai/download) the app\n",
|
||||
"* From command line, fetch a model from this [list of options](https://github.com/jmorganca/ollama): e.g., `ollama pull llama3.1:8b`\n",
|
||||
"* From command line, fetch a model from this [list of options](https://ollama.com/search): e.g., `ollama pull gpt-oss:20b`\n",
|
||||
"* When the app is running, all models are automatically served on `localhost:11434`\n"
|
||||
]
|
||||
},
|
||||
@@ -95,7 +95,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": null,
|
||||
"id": "86178adb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -111,11 +111,11 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_ollama import OllamaLLM\n",
|
||||
"from langchain_ollama import ChatOllama\n",
|
||||
"\n",
|
||||
"llm = OllamaLLM(model=\"llama3.1:8b\")\n",
|
||||
"llm = ChatOllama(model=\"gpt-oss:20b\", validate_model_on_init=True)\n",
|
||||
"\n",
|
||||
"llm.invoke(\"The first man on the moon was ...\")"
|
||||
"llm.invoke(\"The first man on the moon was ...\").content"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -200,7 +200,7 @@
|
||||
"\n",
|
||||
"### Running Apple silicon GPU\n",
|
||||
"\n",
|
||||
"`Ollama` and [`llamafile`](https://github.com/Mozilla-Ocho/llamafile?tab=readme-ov-file#gpu-support) will automatically utilize the GPU on Apple devices.\n",
|
||||
"`ollama` and [`llamafile`](https://github.com/Mozilla-Ocho/llamafile?tab=readme-ov-file#gpu-support) will automatically utilize the GPU on Apple devices.\n",
|
||||
" \n",
|
||||
"Other frameworks require the user to set up the environment to utilize the Apple GPU.\n",
|
||||
"\n",
|
||||
@@ -212,15 +212,15 @@
|
||||
"\n",
|
||||
"In particular, ensure that conda is using the correct virtual environment that you created (`miniforge3`).\n",
|
||||
"\n",
|
||||
"E.g., for me:\n",
|
||||
"e.g., for me:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"```shell\n",
|
||||
"conda activate /Users/rlm/miniforge3/envs/llama\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"With the above confirmed, then:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"```shell\n",
|
||||
"CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install -U llama-cpp-python --no-cache-dir\n",
|
||||
"```"
|
||||
]
|
||||
@@ -236,20 +236,16 @@
|
||||
"\n",
|
||||
"1. [`HuggingFace`](https://huggingface.co/TheBloke) - Many quantized model are available for download and can be run with framework such as [`llama.cpp`](https://github.com/ggerganov/llama.cpp). You can also download models in [`llamafile` format](https://huggingface.co/models?other=llamafile) from HuggingFace.\n",
|
||||
"2. [`gpt4all`](https://gpt4all.io/index.html) - The model explorer offers a leaderboard of metrics and associated quantized models available for download \n",
|
||||
"3. [`Ollama`](https://github.com/jmorganca/ollama) - Several models can be accessed directly via `pull`\n",
|
||||
"3. [`ollama`](https://github.com/jmorganca/ollama) - Several models can be accessed directly via `pull`\n",
|
||||
"\n",
|
||||
"### Ollama\n",
|
||||
"\n",
|
||||
"With [Ollama](https://github.com/jmorganca/ollama), fetch a model via `ollama pull <model family>:<tag>`:\n",
|
||||
"\n",
|
||||
"* E.g., for Llama 2 7b: `ollama pull llama2` will download the most basic version of the model (e.g., smallest # parameters and 4 bit quantization)\n",
|
||||
"* We can also specify a particular version from the [model list](https://github.com/jmorganca/ollama?tab=readme-ov-file#model-library), e.g., `ollama pull llama2:13b`\n",
|
||||
"* See the full set of parameters on the [API reference page](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.ollama.Ollama.html)"
|
||||
"With [Ollama](https://github.com/ollama/ollama), fetch a model via `ollama pull <model family>:<tag>`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"execution_count": null,
|
||||
"id": "8ecd2f78",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -265,7 +261,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = OllamaLLM(model=\"llama2:13b\")\n",
|
||||
"llm = ChatOllama(model=\"gpt-oss:20b\")\n",
|
||||
"llm.invoke(\"The first man on the moon was ... think step by step\")"
|
||||
]
|
||||
},
|
||||
@@ -694,7 +690,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": "langchain",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -708,7 +704,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
"version": "3.12.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -88,7 +88,7 @@
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"`merge_message_runs` can be used in an imperatively (like above) or declaratively, making it easy to compose with other components in a chain:"
|
||||
"`merge_message_runs` can be used imperatively (like above) or declaratively, making it easy to compose with other components in a chain:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"id": "f2195672-0cab-4967-ba8a-c6544635547d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How deal with high cardinality categoricals when doing query analysis\n",
|
||||
"# How to deal with high-cardinality categoricals when doing query analysis\n",
|
||||
"\n",
|
||||
"You may want to do query analysis to create a filter on a categorical column. One of the difficulties here is that you usually need to specify the EXACT categorical value. The issue is you need to make sure the LLM generates that categorical value exactly. This can be done relatively easy with prompting when there are only a few values that are valid. When there are a high number of valid values then it becomes more difficult, as those values may not fit in the LLM context, or (if they do) there may be too many for the LLM to properly attend to.\n",
|
||||
"\n",
|
||||
|
||||
@@ -614,6 +614,7 @@
|
||||
" HumanMessage(\"Now about caterpillars\", name=\"example_user\"),\n",
|
||||
" AIMessage(\n",
|
||||
" \"\",\n",
|
||||
" name=\"example_assistant\",\n",
|
||||
" tool_calls=[\n",
|
||||
" {\n",
|
||||
" \"name\": \"joke\",\n",
|
||||
@@ -909,7 +910,7 @@
|
||||
" ),\n",
|
||||
" (\"human\", \"{query}\"),\n",
|
||||
" ]\n",
|
||||
").partial(schema=People.schema())\n",
|
||||
").partial(schema=People.model_json_schema())\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Custom parser\n",
|
||||
@@ -997,6 +998,91 @@
|
||||
"\n",
|
||||
"chain.invoke({\"query\": query})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "xfejabhtn2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Combining with Additional Tools\n",
|
||||
"\n",
|
||||
"When you need to use both structured output and additional tools (like web search), note the order of operations:\n",
|
||||
"\n",
|
||||
"**Correct Order**:\n",
|
||||
"```python\n",
|
||||
"# 1. Bind tools first\n",
|
||||
"llm_with_tools = llm.bind_tools([web_search_tool, calculator_tool])\n",
|
||||
"\n",
|
||||
"# 2. Apply structured output\n",
|
||||
"structured_llm = llm_with_tools.with_structured_output(MySchema)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"**Incorrect Order**:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# This will fail with \"Tool 'MySchema' not found\" error\n",
|
||||
"structured_llm = llm.with_structured_output(MySchema)\n",
|
||||
"broken_llm = structured_llm.bind_tools([web_search_tool])\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "653798ca",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Why Order Matters:**\n",
|
||||
"`with_structured_output()` internally uses tool calling to enforce the schema. When you bind additional tools afterward, it creates a conflict in the tool resolution system."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1345f4a4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Complete Example:**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0835637b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from pydantic import BaseModel, Field\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class SearchResult(BaseModel):\n",
|
||||
" \"\"\"Structured search result.\"\"\"\n",
|
||||
"\n",
|
||||
" query: str = Field(description=\"The search query\")\n",
|
||||
" findings: str = Field(description=\"Summary of findings\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Define tools\n",
|
||||
"search_tool = {\n",
|
||||
" \"type\": \"function\",\n",
|
||||
" \"function\": {\n",
|
||||
" \"name\": \"web_search\",\n",
|
||||
" \"description\": \"Search the web for information\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\"query\": {\"type\": \"string\", \"description\": \"Search query\"}},\n",
|
||||
" \"required\": [\"query\"],\n",
|
||||
" },\n",
|
||||
" },\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"# Correct approach\n",
|
||||
"llm = ChatOpenAI()\n",
|
||||
"llm_with_search = llm.bind_tools([search_tool])\n",
|
||||
"structured_search_llm = llm_with_search.with_structured_output(SearchResult)\n",
|
||||
"\n",
|
||||
"# Now you can use both search and get structured output\n",
|
||||
"result = structured_search_llm.invoke(\"Search for latest AI research and summarize\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
@@ -147,7 +147,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": null,
|
||||
"id": "74de0286-b003-4b48-9cdd-ecab435515ca",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -157,7 +157,7 @@
|
||||
"\n",
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"\n",
|
||||
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
|
||||
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-latest\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -38,7 +38,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -53,7 +53,7 @@
|
||||
"if \"ANTHROPIC_API_KEY\" not in os.environ:\n",
|
||||
" os.environ[\"ANTHROPIC_API_KEY\"] = getpass()\n",
|
||||
"\n",
|
||||
"model = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
|
||||
"model = ChatAnthropic(model=\"claude-3-5-sonnet-latest\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -53,7 +53,7 @@
|
||||
"\n",
|
||||
"To keep the most recent messages, we set `strategy=\"last\"`. We'll also set `include_system=True` to include the `SystemMessage`, and `start_on=\"human\"` to make sure the resulting chat history is valid. \n",
|
||||
"\n",
|
||||
"This is a good default configuration when using `trim_messages` based on token count. Remember to adjust `token_counter` and `max_tokens` for your use case.\n",
|
||||
"This is a good default configuration when using `trim_messages` based on token count. Remember to adjust `token_counter` and `max_tokens` for your use case. Keep in mind that new queries added to the chat history will be included in the token count unless you trim prior to adding the new query.\n",
|
||||
"\n",
|
||||
"Notice that for our `token_counter` we can pass in a function (more on that below) or a language model (since language models have a message token counting method). It makes sense to pass in a model when you're trimming your messages to fit into the context window of that specific model:"
|
||||
]
|
||||
@@ -525,7 +525,7 @@
|
||||
"id": "4d91d390-e7f7-467b-ad87-d100411d7a21",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Looking at the LangSmith trace we can see that before the messages are passed to the model they are first trimmed: https://smith.langchain.com/public/65af12c4-c24d-4824-90f0-6547566e59bb/r\n",
|
||||
"Looking at [the LangSmith trace](https://smith.langchain.com/public/65af12c4-c24d-4824-90f0-6547566e59bb/r) we can see that before the messages are passed to the model they are first trimmed.\n",
|
||||
"\n",
|
||||
"Looking at just the trimmer, we can see that it's a Runnable object that can be invoked like all Runnables:"
|
||||
]
|
||||
@@ -620,7 +620,7 @@
|
||||
"id": "556b7b4c-43cb-41de-94fc-1a41f4ec4d2e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Looking at the LangSmith trace we can see that we retrieve all of our messages but before the messages are passed to the model they are trimmed to be just the system message and last human message: https://smith.langchain.com/public/17dd700b-9994-44ca-930c-116e00997315/r"
|
||||
"Looking at [the LangSmith trace](https://smith.langchain.com/public/17dd700b-9994-44ca-930c-116e00997315/r) we can see that we retrieve all of our messages but before the messages are passed to the model they are trimmed to be just the system message and last human message."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -630,7 +630,7 @@
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For a complete description of all arguments head to the API reference: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html"
|
||||
"For a complete description of all arguments head to the [API reference](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html)."
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -124,7 +124,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": null,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -132,7 +132,7 @@
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"\n",
|
||||
"llm = ChatAnthropic(\n",
|
||||
" model=\"claude-3-5-sonnet-20240620\",\n",
|
||||
" model=\"claude-3-5-sonnet-latest\",\n",
|
||||
" temperature=0,\n",
|
||||
" max_tokens=1024,\n",
|
||||
" timeout=None,\n",
|
||||
@@ -1240,6 +1240,58 @@
|
||||
"response = llm_with_tools.invoke(\"How do I update a web app to TypeScript 5.5?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "kloc4rvd1w",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Web search + structured output\n",
|
||||
"\n",
|
||||
"When combining web search tools with structured output, it's important to **bind the tools first and then apply structured output**:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "rjjergy6ef",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from pydantic import BaseModel, Field\n",
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Define structured output schema\n",
|
||||
"class ResearchResult(BaseModel):\n",
|
||||
" \"\"\"Structured research result from web search.\"\"\"\n",
|
||||
"\n",
|
||||
" topic: str = Field(description=\"The research topic\")\n",
|
||||
" summary: str = Field(description=\"Summary of key findings\")\n",
|
||||
" key_points: list[str] = Field(description=\"List of important points discovered\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Configure web search tool\n",
|
||||
"websearch_tools = [\n",
|
||||
" {\n",
|
||||
" \"type\": \"web_search_20250305\",\n",
|
||||
" \"name\": \"web_search\",\n",
|
||||
" \"max_uses\": 10,\n",
|
||||
" }\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20241022\")\n",
|
||||
"\n",
|
||||
"# Correct order: bind tools first, then structured output\n",
|
||||
"llm_with_search = llm.bind_tools(websearch_tools)\n",
|
||||
"research_llm = llm_with_search.with_structured_output(ResearchResult)\n",
|
||||
"\n",
|
||||
"# Now you can use both web search and get structured output\n",
|
||||
"result = research_llm.invoke(\"Research the latest developments in quantum computing\")\n",
|
||||
"print(f\"Topic: {result.topic}\")\n",
|
||||
"print(f\"Summary: {result.summary}\")\n",
|
||||
"print(f\"Key Points: {result.key_points}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1478cdc6-2e52-4870-80f9-b4ddf88f2db2",
|
||||
|
||||
@@ -129,7 +129,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -137,7 +137,7 @@
|
||||
"from langchain_aws import ChatBedrockConverse\n",
|
||||
"\n",
|
||||
"llm = ChatBedrockConverse(\n",
|
||||
" model_id=\"anthropic.claude-3-5-sonnet-20240620-v1:0\",\n",
|
||||
" model_id=\"anthropic.claude-3-5-sonnet-latest-v1:0\",\n",
|
||||
" # region_name=...,\n",
|
||||
" # aws_access_key_id=...,\n",
|
||||
" # aws_secret_access_key=...,\n",
|
||||
|
||||
@@ -52,7 +52,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatHuggingFace](https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html) | [langchain_huggingface](https://python.langchain.com/api_reference/huggingface/index.html) | ✅ | ❌ | ❌ |  |  |\n",
|
||||
"| [ChatHuggingFace](https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html) | [langchain-huggingface](https://python.langchain.com/api_reference/huggingface/index.html) | ✅ | ❌ | ❌ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
@@ -61,7 +61,7 @@
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"To access `langchain_huggingface` models you'll need to create a/an `Hugging Face` account, get an API key, and install the `langchain_huggingface` integration package.\n",
|
||||
"To access `langchain_huggingface` models you'll need to create a `Hugging Face` account, get an API key, and install the `langchain-huggingface` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/mistral) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatMistralAI](https://python.langchain.com/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html) | [langchain_mistralai](https://python.langchain.com/api_reference/mistralai/index.html) | ❌ | beta | ✅ |  |  |\n",
|
||||
"| [ChatMistralAI](https://python.langchain.com/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html) | [langchain-mistralai](https://python.langchain.com/api_reference/mistralai/index.html) | ❌ | beta | ✅ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
@@ -34,7 +34,7 @@
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"To access `ChatMistralAI` models you'll need to create a Mistral account, get an API key, and install the `langchain_mistralai` integration package.\n",
|
||||
"To access `ChatMistralAI` models you'll need to create a Mistral account, get an API key, and install the `langchain-mistralai` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
@@ -80,7 +80,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain Mistral integration lives in the `langchain_mistralai` package:"
|
||||
"The LangChain Mistral integration lives in the `langchain-mistralai` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,7 +90,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_mistralai"
|
||||
"%pip install -qU langchain-mistralai"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -41,7 +41,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatNVIDIA](https://python.langchain.com/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html) | [langchain_nvidia_ai_endpoints](https://python.langchain.com/api_reference/nvidia_ai_endpoints/index.html) | ✅ | beta | ❌ |  |  |\n",
|
||||
"| [ChatNVIDIA](https://python.langchain.com/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html) | [langchain-nvidia-ai-endpoints](https://python.langchain.com/api_reference/nvidia_ai_endpoints/index.html) | ✅ | beta | ❌ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
@@ -102,7 +102,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain NVIDIA AI Endpoints integration lives in the `langchain_nvidia_ai_endpoints` package:"
|
||||
"The LangChain NVIDIA AI Endpoints integration lives in the `langchain-nvidia-ai-endpoints` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -17,9 +17,9 @@
|
||||
"source": [
|
||||
"# ChatOllama\n",
|
||||
"\n",
|
||||
"[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as Llama 2, locally.\n",
|
||||
"[Ollama](https://ollama.com/) allows you to run open-source large language models, such as `gpt-oss`, locally.\n",
|
||||
"\n",
|
||||
"Ollama bundles model weights, configuration, and data into a single package, defined by a Modelfile.\n",
|
||||
"`ollama` bundles model weights, configuration, and data into a single package, defined by a Modelfile.\n",
|
||||
"\n",
|
||||
"It optimizes setup and configuration details, including GPU usage.\n",
|
||||
"\n",
|
||||
@@ -28,14 +28,14 @@
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/ollama) | Package downloads | Package latest |\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/ollama) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatOllama](https://python.langchain.com/v0.2/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html) | [langchain-ollama](https://python.langchain.com/v0.2/api_reference/ollama/index.html) | ✅ | ❌ | ✅ |  |  |\n",
|
||||
"| [ChatOllama](https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html#chatollama) | [langchain-ollama](https://python.langchain.com/api_reference/ollama/index.html) | ✅ | ❌ | ✅ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: |:----------------------------------------------------:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |\n",
|
||||
"| ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
@@ -45,17 +45,17 @@
|
||||
" * macOS users can install via Homebrew with `brew install ollama` and start with `brew services start ollama`\n",
|
||||
"* Fetch available LLM model via `ollama pull <name-of-model>`\n",
|
||||
" * View a list of available models via the [model library](https://ollama.ai/library)\n",
|
||||
" * e.g., `ollama pull llama3`\n",
|
||||
" * e.g., `ollama pull gpt-oss:20b`\n",
|
||||
"* This will download the default tagged version of the model. Typically, the default points to the latest, smallest sized-parameter model.\n",
|
||||
"\n",
|
||||
"> On Mac, the models will be download to `~/.ollama/models`\n",
|
||||
">\n",
|
||||
"> On Linux (or WSL), the models will be stored at `/usr/share/ollama/.ollama/models`\n",
|
||||
"\n",
|
||||
"* Specify the exact version of the model of interest as such `ollama pull vicuna:13b-v1.5-16k-q4_0` (View the [various tags for the `Vicuna`](https://ollama.ai/library/vicuna/tags) model in this instance)\n",
|
||||
"* Specify the exact version of the model of interest as such `ollama pull gpt-oss:20b` (View the [various tags for the `Vicuna`](https://ollama.ai/library/vicuna/tags) model in this instance)\n",
|
||||
"* To view all pulled models, use `ollama list`\n",
|
||||
"* To chat directly with a model from the command line, use `ollama run <name-of-model>`\n",
|
||||
"* View the [Ollama documentation](https://github.com/ollama/ollama/tree/main/docs) for more commands. You can run `ollama help` in the terminal to see available commands.\n"
|
||||
"* View the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/README.md) for more commands. You can run `ollama help` in the terminal to see available commands.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -102,7 +102,11 @@
|
||||
"id": "b18bd692076f7cf7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Make sure you're using the latest Ollama version for structured outputs. Update by running:"
|
||||
":::warning\n",
|
||||
"Make sure you're using the latest Ollama version!\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"Update by running:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -257,10 +261,10 @@
|
||||
"source": [
|
||||
"## Tool calling\n",
|
||||
"\n",
|
||||
"We can use [tool calling](/docs/concepts/tool_calling/) with an LLM [that has been fine-tuned for tool use](https://ollama.com/search?&c=tools) such as `llama3.1`:\n",
|
||||
"We can use [tool calling](/docs/concepts/tool_calling/) with an LLM [that has been fine-tuned for tool use](https://ollama.com/search?&c=tools) such as `gpt-oss`:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"ollama pull llama3.1\n",
|
||||
"ollama pull gpt-oss:20b\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Details on creating custom tools are available in [this guide](/docs/how_to/custom_tools/). Below, we demonstrate how to create a tool using the `@tool` decorator on a normal python function."
|
||||
@@ -268,7 +272,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": null,
|
||||
"id": "f767015f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -300,7 +304,8 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"llm = ChatOllama(\n",
|
||||
" model=\"llama3.1\",\n",
|
||||
" model=\"gpt-oss:20b\",\n",
|
||||
" validate_model_on_init=True,\n",
|
||||
" temperature=0,\n",
|
||||
").bind_tools([validate_user])\n",
|
||||
"\n",
|
||||
@@ -321,9 +326,7 @@
|
||||
"source": [
|
||||
"## Multi-modal\n",
|
||||
"\n",
|
||||
"Ollama has support for multi-modal LLMs, such as [bakllava](https://ollama.com/library/bakllava) and [llava](https://ollama.com/library/llava).\n",
|
||||
"\n",
|
||||
" ollama pull bakllava\n",
|
||||
"Ollama has limited support for multi-modal LLMs, such as [gemma3](https://ollama.com/library/gemma3)\n",
|
||||
"\n",
|
||||
"Be sure to update Ollama so that you have the most recent version to support multi-modal."
|
||||
]
|
||||
@@ -518,7 +521,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": "langchain",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -532,7 +535,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
"version": "3.12.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -447,6 +447,163 @@
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c5d9d19d-8ab1-4d9d-b3a0-56ee4e89c528",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Custom tools\n",
|
||||
"\n",
|
||||
":::info Requires ``langchain-openai>=0.3.29``\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"[Custom tools](https://platform.openai.com/docs/guides/function-calling#custom-tools) support tools with arbitrary string inputs. They can be particularly useful when you expect your string arguments to be long or complex."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "a47c809b-852f-46bd-8b9e-d9534c17213d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"================================\u001b[1m Human Message \u001b[0m=================================\n",
|
||||
"\n",
|
||||
"Use the tool to calculate 3^3.\n",
|
||||
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
|
||||
"\n",
|
||||
"[{'id': 'rs_6894ff5747c0819d9b02fc5645b0be9c000169fd9fb68d99', 'summary': [], 'type': 'reasoning'}, {'call_id': 'call_7SYwMSQPbbEqFcKlKOpXeEux', 'input': 'print(3**3)', 'name': 'execute_code', 'type': 'custom_tool_call', 'id': 'ctc_6894ff5b9f54819d8155a63638d34103000169fd9fb68d99', 'status': 'completed'}]\n",
|
||||
"Tool Calls:\n",
|
||||
" execute_code (call_7SYwMSQPbbEqFcKlKOpXeEux)\n",
|
||||
" Call ID: call_7SYwMSQPbbEqFcKlKOpXeEux\n",
|
||||
" Args:\n",
|
||||
" __arg1: print(3**3)\n",
|
||||
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
|
||||
"Name: execute_code\n",
|
||||
"\n",
|
||||
"[{'type': 'custom_tool_call_output', 'output': '27'}]\n",
|
||||
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
|
||||
"\n",
|
||||
"[{'type': 'text', 'text': '27', 'annotations': [], 'id': 'msg_6894ff5db3b8819d9159b3a370a25843000169fd9fb68d99'}]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_openai import ChatOpenAI, custom_tool\n",
|
||||
"from langgraph.prebuilt import create_react_agent\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@custom_tool\n",
|
||||
"def execute_code(code: str) -> str:\n",
|
||||
" \"\"\"Execute python code.\"\"\"\n",
|
||||
" return \"27\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-5\", output_version=\"responses/v1\")\n",
|
||||
"\n",
|
||||
"agent = create_react_agent(llm, [execute_code])\n",
|
||||
"\n",
|
||||
"input_message = {\"role\": \"user\", \"content\": \"Use the tool to calculate 3^3.\"}\n",
|
||||
"for step in agent.stream(\n",
|
||||
" {\"messages\": [input_message]},\n",
|
||||
" stream_mode=\"values\",\n",
|
||||
"):\n",
|
||||
" step[\"messages\"][-1].pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5ef93be6-6d4c-4eea-acfd-248774074082",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<details>\n",
|
||||
"<summary>Context-free grammars</summary>\n",
|
||||
"\n",
|
||||
"OpenAI supports the specification of a [context-free grammar](https://platform.openai.com/docs/guides/function-calling#context-free-grammars) for custom tool inputs in `lark` or `regex` format. See [OpenAI docs](https://platform.openai.com/docs/guides/function-calling#context-free-grammars) for details. The `format` parameter can be passed into `@custom_tool` as shown below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "2ae04586-be33-49c6-8947-7867801d868f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"================================\u001b[1m Human Message \u001b[0m=================================\n",
|
||||
"\n",
|
||||
"Use the tool to calculate 3^3.\n",
|
||||
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
|
||||
"\n",
|
||||
"[{'id': 'rs_689500828a8481a297ff0f98e328689c0681550c89797f43', 'summary': [], 'type': 'reasoning'}, {'call_id': 'call_jzH01RVhu6EFz7yUrOFXX55s', 'input': '3 * 3 * 3', 'name': 'do_math', 'type': 'custom_tool_call', 'id': 'ctc_6895008d57bc81a2b84d0993517a66b90681550c89797f43', 'status': 'completed'}]\n",
|
||||
"Tool Calls:\n",
|
||||
" do_math (call_jzH01RVhu6EFz7yUrOFXX55s)\n",
|
||||
" Call ID: call_jzH01RVhu6EFz7yUrOFXX55s\n",
|
||||
" Args:\n",
|
||||
" __arg1: 3 * 3 * 3\n",
|
||||
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
|
||||
"Name: do_math\n",
|
||||
"\n",
|
||||
"[{'type': 'custom_tool_call_output', 'output': '27'}]\n",
|
||||
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
|
||||
"\n",
|
||||
"[{'type': 'text', 'text': '27', 'annotations': [], 'id': 'msg_6895009776b881a2a25f0be8507d08f20681550c89797f43'}]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_openai import ChatOpenAI, custom_tool\n",
|
||||
"from langgraph.prebuilt import create_react_agent\n",
|
||||
"\n",
|
||||
"grammar = \"\"\"\n",
|
||||
"start: expr\n",
|
||||
"expr: term (SP ADD SP term)* -> add\n",
|
||||
"| term\n",
|
||||
"term: factor (SP MUL SP factor)* -> mul\n",
|
||||
"| factor\n",
|
||||
"factor: INT\n",
|
||||
"SP: \" \"\n",
|
||||
"ADD: \"+\"\n",
|
||||
"MUL: \"*\"\n",
|
||||
"%import common.INT\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"format_ = {\"type\": \"grammar\", \"syntax\": \"lark\", \"definition\": grammar}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# highlight-next-line\n",
|
||||
"@custom_tool(format=format_)\n",
|
||||
"def do_math(input_string: str) -> str:\n",
|
||||
" \"\"\"Do a mathematical operation.\"\"\"\n",
|
||||
" return \"27\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-5\", output_version=\"responses/v1\")\n",
|
||||
"\n",
|
||||
"agent = create_react_agent(llm, [do_math])\n",
|
||||
"\n",
|
||||
"input_message = {\"role\": \"user\", \"content\": \"Use the tool to calculate 3^3.\"}\n",
|
||||
"for step in agent.stream(\n",
|
||||
" {\"messages\": [input_message]},\n",
|
||||
" stream_mode=\"values\",\n",
|
||||
"):\n",
|
||||
" step[\"messages\"][-1].pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c63430c9-c7b0-4e92-a491-3f165dddeb8f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</details>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "84833dd0-17e9-4269-82ed-550639d65751",
|
||||
|
||||
@@ -69,7 +69,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_agentql"
|
||||
"%pip install -qU langchain-agentql"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -310,7 +310,7 @@
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"\n",
|
||||
"chain = load_qa_chain(llm=OpenAI(), chain_type=\"map_reduce\")\n",
|
||||
"query = [\"Who are the autors?\"]\n",
|
||||
"query = [\"Who are the authors?\"]\n",
|
||||
"\n",
|
||||
"chain.run(input_documents=documents, question=query)"
|
||||
]
|
||||
|
||||
@@ -25,7 +25,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet azureml-fsspec, azure-ai-generative"
|
||||
"%pip install --upgrade --quiet azureml-fsspec azure-ai-generative"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -16,7 +16,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [BSHTMLLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"| [BSHTMLLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
@@ -52,7 +52,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community** and **bs4**."
|
||||
"Install **langchain-community** and **bs4**."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -61,7 +61,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community bs4"
|
||||
"%pip install -qU langchain-community bs4"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -245,7 +245,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -q --progress-bar off --no-warn-conflicts langchain-core langchain-huggingface langchain_milvus langchain python-dotenv"
|
||||
"%pip install -q --progress-bar off --no-warn-conflicts langchain-core langchain-huggingface langchain-milvus langchain python-dotenv"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/web_loaders/firecrawl/)|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [FireCrawlLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.firecrawl.FireCrawlLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"| [FireCrawlLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.firecrawl.FireCrawlLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/file_loaders/json/)|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [JSONLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"| [JSONLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
@@ -51,7 +51,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community** and **jq**:"
|
||||
"Install **langchain-community** and **jq**:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -60,7 +60,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community jq "
|
||||
"%pip install -qU langchain-community jq "
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [MathPixPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.MathpixPDFLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"| [MathPixPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.MathpixPDFLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
@@ -60,7 +60,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community**."
|
||||
"Install **langchain-community**."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -69,7 +69,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community"
|
||||
"%pip install -qU langchain-community"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"source": [
|
||||
"[Socrata](https://dev.socrata.com/foundry/data.sfgov.org/vw6y-z8j6) provides an API for city open data. \n",
|
||||
"\n",
|
||||
"For a dataset such as [SF crime](https://data.sfgov.org/Public-Safety/Police-Department-Incident-Reports-Historical-2003/tmnf-yvry), to to the `API` tab on top right. \n",
|
||||
"For a dataset such as [SF crime](https://data.sfgov.org/Public-Safety/Police-Department-Incident-Reports-Historical-2003/tmnf-yvry), see the `API` tab on top right. \n",
|
||||
"\n",
|
||||
"That provides you with the `dataset identifier`.\n",
|
||||
"\n",
|
||||
|
||||
334
docs/docs/integrations/document_loaders/oxylabs.ipynb
Normal file
334
docs/docs/integrations/document_loaders/oxylabs.ipynb
Normal file
@@ -0,0 +1,334 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Oxylabs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"[Oxylabs](https://oxylabs.io/) is a web intelligence collection platform that enables companies worldwide to unlock data-driven insights.\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"Oxylabs document loader allows to load data from search engines, e-commerce sites, travel platforms, and any other website. It supports geolocation, browser rendering, data parsing, multiple user agents and many more parameters. Check out [Oxylabs documentation](https://developers.oxylabs.io/scraping-solutions/web-scraper-api) for more information.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | Pricing |\n",
|
||||
"|:--------------|:------------------------------------------------------------------|:-----:|:------------:|:-----------------------------:|\n",
|
||||
"| OxylabsLoader | [langchain-oxylabs](https://github.com/oxylabs/langchain-oxylabs) | ✅ | ❌ | Free 5,000 results for 1 week |\n",
|
||||
"\n",
|
||||
"### Loader features\n",
|
||||
"| Document Lazy Loading |\n",
|
||||
"|:---------------------:|\n",
|
||||
"| ✅ |\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Install the required dependencies.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -U langchain-oxylabs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Credentials\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Set up the proper API keys and environment variables.\n",
|
||||
"Create your API user credentials: Sign up for a free trial or purchase the product\n",
|
||||
"in the [Oxylabs dashboard](https://dashboard.oxylabs.io/en/registration)\n",
|
||||
"to create your API user credentials (OXYLABS_USERNAME and OXYLABS_PASSWORD)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OXYLABS_USERNAME\"] = getpass.getpass(\"Enter your Oxylabs username: \")\n",
|
||||
"os.environ[\"OXYLABS_PASSWORD\"] = getpass.getpass(\"Enter your Oxylabs password: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialization"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-06T10:57:51.630011Z",
|
||||
"start_time": "2025-08-06T10:57:51.623814Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_oxylabs import OxylabsLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-06T10:57:53.685413Z",
|
||||
"start_time": "2025-08-06T10:57:53.628859Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = OxylabsLoader(\n",
|
||||
" urls=[\n",
|
||||
" \"https://sandbox.oxylabs.io/products/1\",\n",
|
||||
" \"https://sandbox.oxylabs.io/products/2\",\n",
|
||||
" ],\n",
|
||||
" params={\"markdown\": True},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": "## Load"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-06T10:59:51.487327Z",
|
||||
"start_time": "2025-08-06T10:59:48.592743Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2751\n",
|
||||
"[](/)\n",
|
||||
"\n",
|
||||
"Game platforms:\n",
|
||||
"\n",
|
||||
"* **All**\n",
|
||||
"\n",
|
||||
"* [Nintendo platform](/products/category/nintendo)\n",
|
||||
"\n",
|
||||
"+ wii\n",
|
||||
"+ wii-u\n",
|
||||
"+ nintendo-64\n",
|
||||
"+ switch\n",
|
||||
"+ gamecube\n",
|
||||
"+ game-boy-advance\n",
|
||||
"+ 3ds\n",
|
||||
"+ ds\n",
|
||||
"\n",
|
||||
"* [Xbox platform](/products/category/xbox-platform)\n",
|
||||
"\n",
|
||||
"* **Dreamcast**\n",
|
||||
"\n",
|
||||
"* [Playstation platform](/products/category/playstation-platform)\n",
|
||||
"\n",
|
||||
"* **Pc**\n",
|
||||
"\n",
|
||||
"* **Stadia**\n",
|
||||
"\n",
|
||||
"Go Back\n",
|
||||
"\n",
|
||||
"Note!This is a sandbox website used for web scraping. Information listed in this website does not have any real meaning and should not be associated with the actual products.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## The Legend of Zelda: Ocarina of Time\n",
|
||||
"\n",
|
||||
"**Developer:** Nintendo**Platform:****Type:** singleplayer\n",
|
||||
"\n",
|
||||
"As a young boy, Link is tricked by Ganondorf, the King of the Gerudo Thieves. The evil human uses Link to g\n",
|
||||
"5542\n",
|
||||
"[](/)\n",
|
||||
"\n",
|
||||
"Game platforms:\n",
|
||||
"\n",
|
||||
"* **All**\n",
|
||||
"\n",
|
||||
"* [Nintendo platform](/products/category/nintendo)\n",
|
||||
"\n",
|
||||
"+ wii\n",
|
||||
"+ wii-u\n",
|
||||
"+ nintendo-64\n",
|
||||
"+ switch\n",
|
||||
"+ gamecube\n",
|
||||
"+ game-boy-advance\n",
|
||||
"+ 3ds\n",
|
||||
"+ ds\n",
|
||||
"\n",
|
||||
"* [Xbox platform](/products/category/xbox-platform)\n",
|
||||
"\n",
|
||||
"* **Dreamcast**\n",
|
||||
"\n",
|
||||
"* [Playstation platform](/products/category/playstation-platform)\n",
|
||||
"\n",
|
||||
"* **Pc**\n",
|
||||
"\n",
|
||||
"* **Stadia**\n",
|
||||
"\n",
|
||||
"Go Back\n",
|
||||
"\n",
|
||||
"Note!This is a sandbox website used for web scraping. Information listed in this website does not have any real meaning and should not be associated with the actual products.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## Super Mario Galaxy\n",
|
||||
"\n",
|
||||
"**Developer:** Nintendo**Platform:****Type:** singleplayer\n",
|
||||
"\n",
|
||||
"[Metacritic's 2007 Wii Game of the Year] The ultimate Nintendo hero is taking the ultimate step ... out into space. Join Mario as he ushers in a new era of video games, de\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for document in loader.load():\n",
|
||||
" print(document.page_content[:1000])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"metadata": {},
|
||||
"cell_type": "markdown",
|
||||
"source": "## Lazy Load"
|
||||
},
|
||||
{
|
||||
"metadata": {},
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"execution_count": null,
|
||||
"source": [
|
||||
"for document in loader.lazy_load():\n",
|
||||
" print(document.page_content[:1000])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Advanced examples\n",
|
||||
"\n",
|
||||
"The following examples show the usage of `OxylabsLoader` with geolocation, currency, pagination and user agent parameters for Amazon Search and Google Search sources."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-06T11:04:19.901122Z",
|
||||
"start_time": "2025-08-06T11:04:19.838933Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = OxylabsLoader(\n",
|
||||
" queries=[\"gaming headset\", \"gaming chair\", \"computer mouse\"],\n",
|
||||
" params={\n",
|
||||
" \"source\": \"amazon_search\",\n",
|
||||
" \"parse\": True,\n",
|
||||
" \"geo_location\": \"DE\",\n",
|
||||
" \"currency\": \"EUR\",\n",
|
||||
" \"pages\": 3,\n",
|
||||
" },\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-06T11:07:17.648142Z",
|
||||
"start_time": "2025-08-06T11:07:17.595629Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = OxylabsLoader(\n",
|
||||
" queries=[\"europe gdp per capita\", \"us gdp per capita\"],\n",
|
||||
" params={\n",
|
||||
" \"source\": \"google_search\",\n",
|
||||
" \"parse\": True,\n",
|
||||
" \"geo_location\": \"Paris, France\",\n",
|
||||
" \"user_agent_type\": \"mobile\",\n",
|
||||
" },\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"[More information about this package.](https://github.com/oxylabs/langchain-oxylabs)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -15,7 +15,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support|\n",
|
||||
"|:-----------------------------------------------------------------------------------------------------------------------------------------------------| :--- | :---: | :---: | :---: |\n",
|
||||
"| [PDFMinerLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFMinerLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ |\n",
|
||||
"| [PDFMinerLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFMinerLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ |\n",
|
||||
"\n",
|
||||
"--------- \n",
|
||||
"\n",
|
||||
@@ -60,7 +60,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community** and **pdfminer**."
|
||||
"Install **langchain-community** and **pdfminer**."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -82,7 +82,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community pdfminer.six"
|
||||
"%pip install -qU langchain-community pdfminer.six"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -938,7 +938,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain_openai"
|
||||
"%pip install -qU langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [PDFPlumberLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFPlumberLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"| [PDFPlumberLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFPlumberLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
@@ -47,7 +47,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community**."
|
||||
"Install **langchain-community**."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -56,7 +56,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community"
|
||||
"%pip install -qU langchain-community"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -117,7 +117,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The fields:\n",
|
||||
" - `es_host_url` is the endpoint to to MetadataIQ Elasticsearch database\n",
|
||||
" - `es_host_url` is the endpoint to MetadataIQ Elasticsearch database\n",
|
||||
" - `es_index_index` is the name of the index where PowerScale writes it file system metadata\n",
|
||||
" - `es_api_key` is the **encoded** version of your elasticsearch API key\n",
|
||||
" - `folder_path` is the path on PowerScale to be queried for changes"
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [PyMuPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyMuPDFLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"| [PyMuPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyMuPDFLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"\n",
|
||||
"--------- \n",
|
||||
"\n",
|
||||
@@ -60,7 +60,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community** and **pymupdf**."
|
||||
"Install **langchain-community** and **pymupdf**."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -71,7 +71,7 @@
|
||||
"start_time": "2025-01-16T09:48:33.057015Z"
|
||||
}
|
||||
},
|
||||
"source": "%pip install -qU langchain_community pymupdf",
|
||||
"source": "%pip install -qU langchain-community pymupdf",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
@@ -569,7 +569,7 @@
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"%pip install -qU langchain_openai"
|
||||
"%pip install -qU langchain-openai"
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
|
||||
@@ -23,7 +23,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [PyMuPDF4LLMLoader](https://github.com/lakinduboteju/langchain-pymupdf4llm) | [langchain_pymupdf4llm](https://pypi.org/project/langchain-pymupdf4llm) | ✅ | ❌ | ❌ |\n",
|
||||
"| [PyMuPDF4LLMLoader](https://github.com/lakinduboteju/langchain-pymupdf4llm) | [langchain-pymupdf4llm](https://pypi.org/project/langchain-pymupdf4llm) | ✅ | ❌ | ❌ |\n",
|
||||
"\n",
|
||||
"### Loader features\n",
|
||||
"\n",
|
||||
@@ -61,7 +61,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community** and **langchain-pymupdf4llm**."
|
||||
"Install **langchain-community** and **langchain-pymupdf4llm**."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -78,7 +78,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community langchain-pymupdf4llm"
|
||||
"%pip install -qU langchain-community langchain-pymupdf4llm"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -554,7 +554,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain_openai"
|
||||
"%pip install -qU langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [PyPDFDirectoryLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"| [PyPDFDirectoryLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
@@ -53,7 +53,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community**."
|
||||
"Install **langchain-community**."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -74,7 +74,7 @@
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": "%pip install -qU langchain_community pypdf pillow"
|
||||
"source": "%pip install -qU langchain-community pypdf pillow"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [PyPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"| [PyPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
" \n",
|
||||
"--------- \n",
|
||||
"\n",
|
||||
@@ -60,7 +60,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community** and **pypdf**."
|
||||
"Install **langchain-community** and **pypdf**."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -81,7 +81,7 @@
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": "%pip install -qU langchain_community pypdfium2"
|
||||
"source": "%pip install -qU langchain-community pypdfium2"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -802,7 +802,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain_openai"
|
||||
"%pip install -qU langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [PyPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"| [PyPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
" \n",
|
||||
"--------- \n",
|
||||
"\n",
|
||||
@@ -60,7 +60,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community** and **pypdf**."
|
||||
"Install **langchain-community** and **pypdf**."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -82,7 +82,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community pypdf"
|
||||
"%pip install -qU langchain-community pypdf"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -818,7 +818,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain_openai"
|
||||
"%pip install -qU langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/web_loaders/recursive_url_loader/)|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [RecursiveUrlLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"| [RecursiveUrlLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
"\n",
|
||||
"This loader fetches the text from the Posts of Subreddits or Reddit users, using the `praw` Python package.\n",
|
||||
"\n",
|
||||
"Make a [Reddit Application](https://www.reddit.com/prefs/apps/) and initialize the loader with with your Reddit API credentials."
|
||||
"Make a [Reddit Application](https://www.reddit.com/prefs/apps/) and initialize the loader with your Reddit API credentials."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/web_loaders/sitemap/)|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [SiteMapLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.sitemap.SitemapLoader.html#langchain_community.document_loaders.sitemap.SitemapLoader) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"| [SiteMapLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.sitemap.SitemapLoader.html#langchain_community.document_loaders.sitemap.SitemapLoader) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
@@ -51,7 +51,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"Install **langchain_community**."
|
||||
"Install **langchain-community**."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -16,7 +16,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/file_loaders/unstructured/)|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [UnstructuredLoader](https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html) | [langchain_unstructured](https://python.langchain.com/api_reference/unstructured/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"| [UnstructuredLoader](https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html) | [langchain-unstructured](https://python.langchain.com/api_reference/unstructured/index.html) | ✅ | ❌ | ✅ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
|
||||
@@ -151,10 +151,10 @@
|
||||
"Red arrow magic !\n",
|
||||
"Something white\n",
|
||||
"Something Red\n",
|
||||
"This a a completly useless diagramm, cool !!\n",
|
||||
"This a completely useless diagram, cool !!\n",
|
||||
"\n",
|
||||
"But this is for example !\n",
|
||||
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"This diagram is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"This is a page with something...\n",
|
||||
"\n",
|
||||
"WAW I have learned something !\n",
|
||||
@@ -183,10 +183,10 @@
|
||||
"This is a title\n",
|
||||
"Something white\n",
|
||||
"Something Red\n",
|
||||
"This a a completly useless diagramm, cool !!\n",
|
||||
"This a completely useless diagram, cool !!\n",
|
||||
"\n",
|
||||
"But this is for example !\n",
|
||||
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"This diagram is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"Another RED arrow wow\n",
|
||||
"Arrow with point but red\n",
|
||||
"Green line\n",
|
||||
@@ -219,10 +219,10 @@
|
||||
"Red arrow magic !\n",
|
||||
"Something white\n",
|
||||
"Something Red\n",
|
||||
"This a a completly useless diagramm, cool !!\n",
|
||||
"This a completely useless diagram, cool !!\n",
|
||||
"\n",
|
||||
"But this is for example !\n",
|
||||
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"This diagram is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor\n",
|
||||
"\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0-\\u00a0incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in\n",
|
||||
"\n",
|
||||
@@ -252,10 +252,10 @@
|
||||
"This is a title\n",
|
||||
"Something white\n",
|
||||
"Something Red\n",
|
||||
"This a a completly useless diagramm, cool !!\n",
|
||||
"This a completely useless diagram, cool !!\n",
|
||||
"\n",
|
||||
"But this is for example !\n",
|
||||
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"This diagram is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"\n",
|
||||
"------ Page 7 ------\n",
|
||||
"Title page : Useful ↔ Useless page\n",
|
||||
@@ -276,10 +276,10 @@
|
||||
"This is a title\n",
|
||||
"Something white\n",
|
||||
"Something Red\n",
|
||||
"This a a completly useless diagramm, cool !!\n",
|
||||
"This a completely useless diagram, cool !!\n",
|
||||
"\n",
|
||||
"But this is for example !\n",
|
||||
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"This diagram is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"Title of this document : BLABLABLA\n",
|
||||
"\n",
|
||||
"------ Page 8 ------\n",
|
||||
@@ -359,10 +359,10 @@
|
||||
"Red arrow magic !\n",
|
||||
"Something white\n",
|
||||
"Something Red\n",
|
||||
"This a a completly useless diagramm, cool !!\n",
|
||||
"This a completely useless diagram, cool !!\n",
|
||||
"\n",
|
||||
"But this is for example !\n",
|
||||
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"This diagram is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"Useful\\u2194 Useless page\\u00a0\n",
|
||||
"\n",
|
||||
"Tests of some exotics characters :\\u00a0\\u00e3\\u00e4\\u00e5\\u0101\\u0103 \\u00fc\\u2554\\u00a0\\u00a0\\u00bc \\u00c7 \\u25d8\\u25cb\\u2642\\u266b\\u2640\\u00ee\\u2665\n",
|
||||
@@ -444,10 +444,10 @@
|
||||
"Red arrow magic !\n",
|
||||
"Something white\n",
|
||||
"Something Red\n",
|
||||
"This a a completly useless diagramm, cool !!\n",
|
||||
"This a completely useless diagram, cool !!\n",
|
||||
"\n",
|
||||
"But this is for example !\n",
|
||||
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"This diagram is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
|
||||
"Only connectors on this page. This is the CoNNeCtor page\n"
|
||||
]
|
||||
}
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support|\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [WebBaseLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"| [WebBaseLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n",
|
||||
"### Loader features\n",
|
||||
"| Source | Document Lazy Loading | Native Async Support\n",
|
||||
"| :---: | :---: | :---: | \n",
|
||||
@@ -44,7 +44,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community beautifulsoup4"
|
||||
"%pip install -qU langchain-community beautifulsoup4"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -261,7 +261,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU upstash_redis"
|
||||
"%pip install -qU upstash-redis"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -1543,7 +1543,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain_astradb\n",
|
||||
"%pip install -qU langchain-astradb\n",
|
||||
"\n",
|
||||
"import getpass\n",
|
||||
"\n",
|
||||
@@ -2683,7 +2683,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_couchbase"
|
||||
"%pip install -qU langchain-couchbase"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -34,7 +34,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain_aws"
|
||||
"%pip install --upgrade --quiet langchain-aws"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -22,7 +22,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/cohere/) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [Cohere](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.cohere.Cohere.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ❌ | beta | ✅ |  |  |\n"
|
||||
"| [Cohere](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.cohere.Cohere.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | beta | ✅ |  |  |\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -22,7 +22,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.1/docs/integrations/llms/fireworks/) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [Fireworks](https://python.langchain.com/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html#langchain_fireworks.llms.Fireworks) | [langchain_fireworks](https://python.langchain.com/api_reference/fireworks/index.html) | ❌ | ❌ | ✅ |  |  |"
|
||||
"| [Fireworks](https://python.langchain.com/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html#langchain_fireworks.llms.Fireworks) | [langchain-fireworks](https://python.langchain.com/api_reference/fireworks/index.html) | ❌ | ❌ | ✅ |  |  |"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -59,7 +59,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"You need to install the `langchain_fireworks` python package for the rest of the notebook to work."
|
||||
"You need to install the `langchain-fireworks` python package for the rest of the notebook to work."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -44,9 +44,7 @@
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet llama-cpp-python"
|
||||
]
|
||||
"source": "%pip install --upgrade --quiet llama-cpp-python"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -64,9 +62,7 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
|
||||
]
|
||||
"source": "!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -80,9 +76,7 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
|
||||
]
|
||||
"source": "!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -100,9 +94,7 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
|
||||
]
|
||||
"source": "!CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -116,9 +108,7 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
|
||||
]
|
||||
"source": "!CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --no-binary :all: --no-cache-dir"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -174,9 +164,7 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!python -m pip install -e . --force-reinstall --no-cache-dir"
|
||||
]
|
||||
"source": "!python -m pip install -e . --force-reinstall --no-cache-dir"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -718,4 +706,4 @@
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
}
|
||||
@@ -29,7 +29,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [NVIDIA](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html) | [langchain_nvidia_ai_endpoints](https://python.langchain.com/api_reference/nvidia_ai_endpoints/index.html) | ✅ | beta | ❌ |  |  |\n",
|
||||
"| [NVIDIA](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html) | [langchain-nvidia-ai-endpoints](https://python.langchain.com/api_reference/nvidia_ai_endpoints/index.html) | ✅ | beta | ❌ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
@@ -71,7 +71,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain NVIDIA AI Endpoints integration lives in the `langchain_nvidia_ai_endpoints` package:"
|
||||
"The LangChain NVIDIA AI Endpoints integration lives in the `langchain-nvidia-ai-endpoints` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
215
docs/docs/integrations/memory/recallio_memory.ipynb
Normal file
215
docs/docs/integrations/memory/recallio_memory.ipynb
Normal file
@@ -0,0 +1,215 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# RecallioMemory + LangChain Integration Demo\n",
|
||||
"A minimal notebook to show drop-in usage of RecallioMemory in LangChain (with scoped writes and recall)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install recallio langchain langchain-recallio openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup: API Keys & Imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_recallio.memory import RecallioMemory\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Set your keys here or use environment variables\n",
|
||||
"RECALLIO_API_KEY = os.getenv(\"RECALLIO_API_KEY\", \"YOUR_RECALLIO_API_KEY\")\n",
|
||||
"OPENAI_API_KEY = os.getenv(\"OPENAI_API_KEY\", \"YOUR_OPENAI_API_KEY\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize RecallioMemory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"memory = RecallioMemory(\n",
|
||||
" project_id=\"project_abc\",\n",
|
||||
" api_key=RECALLIO_API_KEY,\n",
|
||||
" session_id=\"demo-session-001\",\n",
|
||||
" user_id=\"demo-user-42\",\n",
|
||||
" default_tags=[\"test\", \"langchain\"],\n",
|
||||
" return_messages=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Build a LangChain ConversationChain with RecallioMemory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# You can swap in any supported LLM here\n",
|
||||
"llm = ChatOpenAI(api_key=OPENAI_API_KEY, temperature=0)\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"The following is a friendly conversation between a human and an AI. \"\n",
|
||||
" \"The AI is talkative and provides lots of specific details from its context. \"\n",
|
||||
" \"If the AI does not know the answer to a question, it truthfully says it does not know.\",\n",
|
||||
" ),\n",
|
||||
" (\"placeholder\", \"{history}\"), # RecallioMemory will fill this slot\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# LCEL chain that returns an AIMessage\n",
|
||||
"base_chain = prompt | llm\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Create a stateful chain using RecallioMemory\n",
|
||||
"def chat_with_memory(user_input: str):\n",
|
||||
" # Load conversation history from memory\n",
|
||||
" memory_vars = memory.load_memory_variables({\"input\": user_input})\n",
|
||||
"\n",
|
||||
" # Run the chain with history and user input\n",
|
||||
" response = base_chain.invoke(\n",
|
||||
" {\"input\": user_input, \"history\": memory_vars.get(\"history\", \"\")}\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # Save the conversation to memory\n",
|
||||
" memory.save_context({\"input\": user_input}, {\"output\": response.content})\n",
|
||||
"\n",
|
||||
" return response"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example: Chat with Memory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Bot: Hello Guillaume! It's nice to meet you. How can I assist you today?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# First user message – note the AI remembers the name\n",
|
||||
"resp1 = chat_with_memory(\"Hi! My name is Guillaume. Remember that.\")\n",
|
||||
"print(\"Bot:\", resp1.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Bot: Your name is Guillaume.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Second user message – AI should recall the name from memory\n",
|
||||
"resp2 = chat_with_memory(\"What is my name?\")\n",
|
||||
"print(\"Bot:\", resp2.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## See What Is Stored in Recallio\n",
|
||||
"This is for debugging/demo only; in production, you wouldn't do this on every run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Current memory variables: {'history': [HumanMessage(content='Name is Guillaume', additional_kwargs={}, response_metadata={})]}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(\"Current memory variables:\", memory.load_memory_variables({}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Clear Memory (Optional Cleanup - Requires Manager level Key)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# memory.clear()\n",
|
||||
"# print(\"Memory cleared.\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.10"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
38
docs/docs/integrations/providers/anchor_browser.mdx
Normal file
38
docs/docs/integrations/providers/anchor_browser.mdx
Normal file
@@ -0,0 +1,38 @@
|
||||
# Anchor Browser
|
||||
|
||||
[Anchor](https://anchorbrowser.io?utm=langchain) is the platform for AI Agentic browser automation, which solves the challenge of automating workflows for web applications that lack APIs or have limited API coverage. It simplifies the creation, deployment, and management of browser-based automations, transforming complex web interactions into simple API endpoints.
|
||||
|
||||
`langchain-anchorbrowser` provides 3 main tools:
|
||||
- `AnchorContentTool` - For web content extractions in Markdown or HTML format.
|
||||
- `AnchorScreenshotTool` - For web page screenshots.
|
||||
- `AnchorWebTaskTools` - To perform web tasks.
|
||||
|
||||
## Quickstart
|
||||
|
||||
### Installation
|
||||
|
||||
Install the package:
|
||||
|
||||
```bash
|
||||
pip install langchain-anchorbrowser
|
||||
```
|
||||
|
||||
### Usage
|
||||
|
||||
Import and utilize your intended tool. The full list of Anchor Browser available tools see **Tool Features** table in [Anchor Browser tool page](/docs/integrations/tools/anchor_browser)
|
||||
|
||||
```python
|
||||
from langchain_anchorbrowser import AnchorContentTool
|
||||
|
||||
# Get Markdown Content for https://www.anchorbrowser.io
|
||||
AnchorContentTool().invoke(
|
||||
{"url": "https://www.anchorbrowser.io", "format": "markdown"}
|
||||
)
|
||||
```
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- [PyPi](https://pypi.org/project/langchain-anchorbrowser)
|
||||
- [Github](https://github.com/anchorbrowser/langchain-anchorbrowser)
|
||||
- [Anchor Browser Docs](https://docs.anchorbrowser.io/introduction?utm=langchain)
|
||||
- [Anchor Browser API Reference](https://docs.anchorbrowser.io/api-reference/ai-tools/perform-web-task?utm=langchain)
|
||||
@@ -929,6 +929,41 @@ from langchain_google_community.gmail.search import GmailSearch
|
||||
from langchain_google_community.gmail.send_message import GmailSendMessage
|
||||
```
|
||||
|
||||
### MCP Toolbox
|
||||
|
||||
[MCP Toolbox](https://github.com/googleapis/genai-toolbox) provides a simple and efficient way to connect to your databases, including those on Google Cloud like [Cloud SQL](https://cloud.google.com/sql/docs) and [AlloyDB](https://cloud.google.com/alloydb/docs/overview). With MCP Toolbox, you can seamlessly integrate your database with LangChain to build powerful, data-driven applications.
|
||||
|
||||
#### Installation
|
||||
|
||||
To get started, [install the Toolbox server and client](https://github.com/googleapis/genai-toolbox/releases/).
|
||||
|
||||
|
||||
[Configure](https://googleapis.github.io/genai-toolbox/getting-started/configure/) a `tools.yaml` to define your tools, and then execute toolbox to start the server:
|
||||
|
||||
```bash
|
||||
toolbox --tools-file "tools.yaml"
|
||||
```
|
||||
|
||||
Then, install the Toolbox client:
|
||||
|
||||
```bash
|
||||
pip install toolbox-langchain
|
||||
```
|
||||
|
||||
#### Getting Started
|
||||
|
||||
Here is a quick example of how to use MCP Toolbox to connect to your database:
|
||||
|
||||
```python
|
||||
from toolbox_langchain import ToolboxClient
|
||||
|
||||
async with ToolboxClient("http://127.0.0.1:5000") as client:
|
||||
|
||||
tools = client.load_toolset()
|
||||
```
|
||||
|
||||
See [usage example and setup instructions](/docs/integrations/tools/toolbox).
|
||||
|
||||
### Memory
|
||||
|
||||
Store conversation history using Google Cloud databases.
|
||||
|
||||
@@ -1,18 +1,11 @@
|
||||
# ChatGradient
|
||||
# DigitalOcean Gradient
|
||||
|
||||
This will help you getting started with DigitalOcean Gradient [chat models](/docs/concepts/chat_models).
|
||||
|
||||
## Overview
|
||||
### Integration details
|
||||
|
||||
| Class | Package | Package downloads | Package latest |
|
||||
| :--- | :--- | :---: | :---: |
|
||||
| [ChatGradient](https://python.langchain.com/api_reference/langchain-gradient/chat_models/langchain_gradient.chat_models.ChatGradient.html) | [langchain-gradient](https://python.langchain.com/api_reference/langchain-gradient/) |  |  |
|
||||
|
||||
|
||||
## Setup
|
||||
|
||||
langchain-gradient uses DigitalOcean Gradient Platform.
|
||||
langchain-gradient uses DigitalOcean's Gradient™ AI Platform.
|
||||
|
||||
Create an account on DigitalOcean, acquire a `DIGITALOCEAN_INFERENCE_KEY` API key from the Gradient Platform, and install the `langchain-gradient` integration package.
|
||||
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
# Ollama
|
||||
|
||||
>[Ollama](https://ollama.com/) allows you to run open-source large language models,
|
||||
> such as [Llama3.1](https://ai.meta.com/blog/meta-llama-3-1/), locally.
|
||||
> such as [gpt-oss](https://ollama.com/library/gpt-oss), locally.
|
||||
>
|
||||
>`Ollama` bundles model weights, configuration, and data into a single package, defined by a Modelfile.
|
||||
>It optimizes setup and configuration details, including GPU usage.
|
||||
>For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).
|
||||
|
||||
See [this guide](/docs/how_to/local_llms) for more details
|
||||
on how to use `Ollama` with LangChain.
|
||||
See [this guide](/docs/how_to/local_llms#ollama) for more details
|
||||
on how to use `ollama` with LangChain.
|
||||
|
||||
## Installation and Setup
|
||||
### Ollama installation
|
||||
@@ -26,7 +26,7 @@ ollama serve
|
||||
After starting ollama, run `ollama pull <name-of-model>` to download a model from the [Ollama model library](https://ollama.ai/library):
|
||||
|
||||
```bash
|
||||
ollama pull llama3.1
|
||||
ollama pull gpt-oss:20b
|
||||
```
|
||||
|
||||
- This will download the default tagged version of the model. Typically, the default points to the latest, smallest sized-parameter model.
|
||||
|
||||
31
docs/docs/integrations/providers/recallio.ipynb
Normal file
31
docs/docs/integrations/providers/recallio.ipynb
Normal file
@@ -0,0 +1,31 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Recallio\n",
|
||||
"\n",
|
||||
"[Recallio](https://recallio.ai/) is a powerfull API allowing to store, index, and retrieve application “memories” with built-in fact extraction, dynamic summaries, reranked recall, and a full knowledge-graph layer.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## Installation\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install langchain-recallio\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"from langchain_recallio.memory import RecallioMemory\n",
|
||||
"```"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
26
docs/docs/integrations/providers/scrapeless.mdx
Normal file
26
docs/docs/integrations/providers/scrapeless.mdx
Normal file
@@ -0,0 +1,26 @@
|
||||
# Scrapeless
|
||||
|
||||
[Scrapeless](https://scrapeless.com) offers flexible and feature-rich data acquisition services with extensive parameter customization and multi-format export support.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
```bash
|
||||
pip install langchain-scrapeless
|
||||
```
|
||||
|
||||
You'll need to set up your Scrapeless API key:
|
||||
|
||||
```python
|
||||
import os
|
||||
os.environ["SCRAPELESS_API_KEY"] = "your-api-key"
|
||||
```
|
||||
|
||||
## Tools
|
||||
|
||||
The Scrapeless integration provides several tools:
|
||||
|
||||
- [ScrapelessDeepSerpGoogleSearchTool](/docs/integrations/tools/scrapeless_scraping_api) - Enables comprehensive extraction of Google SERP data across all result types.
|
||||
- [ScrapelessDeepSerpGoogleTrendsTool](/docs/integrations/tools/scrapeless_scraping_api) - Retrieves keyword trend data from Google, including popularity over time, regional interest, and related searches.
|
||||
- [ScrapelessUniversalScrapingTool](/docs/integrations/tools/scrapeless_universal_scraping) - Access and extract data from JS-Render websites that typically block bots.
|
||||
- [ScrapelessCrawlerCrawlTool](/docs/integrations/tools/scrapeless_crawl) - Crawl a website and its linked pages to extract comprehensive data.
|
||||
- [ScrapelessCrawlerScrapeTool](/docs/integrations/tools/scrapeless_crawl) - Extract information from a single webpage.
|
||||
43
docs/docs/integrations/providers/siliconflow.mdx
Normal file
43
docs/docs/integrations/providers/siliconflow.mdx
Normal file
@@ -0,0 +1,43 @@
|
||||
# langchain-siliconflow
|
||||
|
||||
This package contains the LangChain integration with SiliconFlow
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install -U langchain-siliconflow
|
||||
```
|
||||
|
||||
And you should configure credentials by setting the following environment variables:
|
||||
|
||||
```bash
|
||||
export SILICONFLOW_API_KEY="your-api-key"
|
||||
```
|
||||
|
||||
You can set the following environment variable to use the `.cn` endpoint:
|
||||
|
||||
```bash
|
||||
export SILICONFLOW_BASE_URL="https://api.siliconflow.cn/v1"
|
||||
```
|
||||
|
||||
## Chat Models
|
||||
|
||||
`ChatSiliconFlow` class exposes chat models from SiliconFlow.
|
||||
|
||||
```python
|
||||
from langchain_siliconflow import ChatSiliconFlow
|
||||
|
||||
llm = ChatSiliconFlow()
|
||||
llm.invoke("Sing a ballad of LangChain.")
|
||||
```
|
||||
|
||||
## Embeddings
|
||||
|
||||
`SiliconFlowEmbeddings` class exposes embeddings from SiliconFlow.
|
||||
|
||||
```python
|
||||
from langchain_siliconflow import SiliconFlowEmbeddings
|
||||
|
||||
embeddings = SiliconFlowEmbeddings()
|
||||
embeddings.embed_query("What is the meaning of life?")
|
||||
```
|
||||
23
docs/docs/integrations/providers/toolbox-langchain.mdx
Normal file
23
docs/docs/integrations/providers/toolbox-langchain.mdx
Normal file
@@ -0,0 +1,23 @@
|
||||
# MCP Toolbox
|
||||
|
||||
The [MCP Toolbox](https://googleapis.github.io/genai-toolbox/getting-started/introduction/) in LangChain allows you to equip an agent with a set of tools. When the agent receives a query, it can intelligently select and use the most appropriate tool provided by MCP Toolbox to fulfill the request.
|
||||
|
||||
## What is it?
|
||||
|
||||
MCP Toolbox is essentially a container for your tools. Think of it as a multi-tool device for your agent; it can hold any tools you create. The agent then decides which specific tool to use based on the user's input.
|
||||
|
||||
This is particularly useful when you have an agent that needs to perform a variety of tasks that require different capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
To get started, you'll need to install the necessary package:
|
||||
|
||||
```bash
|
||||
pip install toolbox-langchain
|
||||
```
|
||||
|
||||
## Tutorial
|
||||
|
||||
For a complete, step-by-step guide on how to create, configure, and use MCP Toolbox with your agents, please refer to our detailed Jupyter notebook tutorial.
|
||||
|
||||
**[➡️ View the full tutorial here](/docs/integrations/tools/toolbox)**.
|
||||
101
docs/docs/integrations/providers/truefoundry.mdx
Normal file
101
docs/docs/integrations/providers/truefoundry.mdx
Normal file
@@ -0,0 +1,101 @@
|
||||
# TrueFoundry
|
||||
|
||||
TrueFoundry provides an enterprise-ready [AI Gateway](https://www.truefoundry.com/ai-gateway) to provide governance and observability to agentic frameworks like LangChain. TrueFoundry AI Gateway serves as a unified interface for LLM access, providing:
|
||||
|
||||
- **Unified API Access**: Connect to 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) through one API
|
||||
- **Low Latency**: Sub-3ms internal latency with intelligent routing and load balancing
|
||||
- **Enterprise Security**: SOC 2, HIPAA, GDPR compliance with RBAC and audit logging
|
||||
- **Quota and cost management**: Token-based quotas, rate limiting, and comprehensive usage tracking
|
||||
- **Observability**: Full request/response logging, metrics, and traces with customizable retention
|
||||
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before integrating LangChain with TrueFoundry, ensure you have:
|
||||
|
||||
1. **TrueFoundry Account**: A [TrueFoundry account](https://www.truefoundry.com/register) with at least one model provider configured. Follow quick start guide [here](https://docs.truefoundry.com/gateway/quick-start)
|
||||
2. **Personal Access Token**: Generate a token by following the [TrueFoundry token generation guide](https://docs.truefoundry.com/gateway/authentication)
|
||||
|
||||
## Quickstart
|
||||
|
||||
You can connect to TrueFoundry's unified LLM gateway through the `ChatOpenAI` interface.
|
||||
|
||||
- Set the `base_url` to your TrueFoundry endpoint (explained below)
|
||||
- Set the `api_key` to your TrueFoundry [PAT (Personal Access Token)](https://docs.truefoundry.com/gateway/authentication#personal-access-token-pat)
|
||||
- Use the same `model-name` as shown in the unified code snippet
|
||||
|
||||

|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
pip install langchain-openai
|
||||
```
|
||||
|
||||
### Basic Setup
|
||||
|
||||
Connect to TrueFoundry by updating the `ChatOpenAI` model in LangChain:
|
||||
|
||||
```python
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
llm = ChatOpenAI(
|
||||
api_key=TRUEFOUNDRY_API_KEY,
|
||||
base_url=TRUEFOUNDRY_GATEWAY_BASE_URL,
|
||||
model="openai-main/gpt-4o" # Similarly you can call any model from any model provider
|
||||
)
|
||||
|
||||
llm.invoke("What is the meaning of life, universe and everything?")
|
||||
```
|
||||
|
||||
The request is routed through your TrueFoundry gateway to the specified model provider. TrueFoundry automatically handles rate limiting, load balancing, and observability.
|
||||
|
||||
### LangGraph Integration
|
||||
|
||||
|
||||
```python
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langgraph.graph import StateGraph, MessagesState
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
# Define your LangGraph workflow
|
||||
def call_model(state: MessagesState):
|
||||
model = ChatOpenAI(
|
||||
api_key=TRUEFOUNDRY_API_KEY,
|
||||
base_url=TRUEFOUNDRY_GATEWAY_BASE_URL,
|
||||
# Copy the exact model name from gateway
|
||||
model="openai-main/gpt-4o"
|
||||
)
|
||||
response = model.invoke(state["messages"])
|
||||
return {"messages": [response]}
|
||||
|
||||
# Build workflow
|
||||
workflow = StateGraph(MessagesState)
|
||||
workflow.add_node("agent", call_model)
|
||||
workflow.set_entry_point("agent")
|
||||
workflow.set_finish_point("agent")
|
||||
|
||||
app = workflow.compile()
|
||||
|
||||
# Run agent through TrueFoundry
|
||||
result = app.invoke({"messages": [HumanMessage(content="Hello!")]})
|
||||
```
|
||||
|
||||
|
||||
## Observability and Governance
|
||||
|
||||

|
||||
|
||||
With the Metrics Dashboard, you can monitor and analyze:
|
||||
|
||||
- **Performance Metrics**: Track key latency metrics like Request Latency, Time to First Token (TTFS), and Inter-Token Latency (ITL) with P99, P90, and P50 percentiles
|
||||
- **Cost and Token Usage**: Gain visibility into your application's costs with detailed breakdowns of input/output tokens and the associated expenses for each model
|
||||
- **Usage Patterns**: Understand how your application is being used with detailed analytics on user activity, model distribution, and team-based usage
|
||||
- **Rate Limiting & Load Balancing**: Configure limits, distribute traffic across models, and set up fallbacks
|
||||
|
||||
## Support
|
||||
|
||||
For questions, issues, or support:
|
||||
|
||||
- **Email**: [support@truefoundry.com](mailto:support@truefoundry.com)
|
||||
- **Documentation**: [https://docs.truefoundry.com/](https://docs.truefoundry.com/)
|
||||
@@ -67,7 +67,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community wikipedia"
|
||||
"%pip install -qU langchain-community wikipedia"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -31,7 +31,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | JS support | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
|
||||
"| [AstraDBByteStore](https://python.langchain.com/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html) | [langchain_astradb](https://python.langchain.com/api_reference/astradb/index.html) | ❌ | ❌ |  |  |\n",
|
||||
"| [AstraDBByteStore](https://python.langchain.com/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html) | [langchain-astradb](https://python.langchain.com/api_reference/astradb/index.html) | ❌ | ❌ |  |  |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
@@ -60,7 +60,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain AstraDB integration lives in the `langchain_astradb` package:"
|
||||
"The LangChain AstraDB integration lives in the `langchain-astradb` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -69,7 +69,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_astradb"
|
||||
"%pip install -qU langchain-astradb"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -29,7 +29,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/cassandra_storage) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
|
||||
"| [CassandraByteStore](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ✅ |  |  |\n",
|
||||
"| [CassandraByteStore](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ✅ |  |  |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
@@ -44,7 +44,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain `CassandraByteStore` integration lives in the `langchain_community` package. You'll also need to install the `cassio` package or the `cassandra-driver` package as a peer dependency depending on which initialization method you're using:"
|
||||
"The LangChain `CassandraByteStore` integration lives in the `langchain-community` package. You'll also need to install the `cassio` package or the `cassandra-driver` package as a peer dependency depending on which initialization method you're using:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -53,7 +53,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_community\n",
|
||||
"%pip install -qU langchain-community\n",
|
||||
"%pip install -qU cassandra-driver\n",
|
||||
"%pip install -qU cassio"
|
||||
]
|
||||
|
||||
@@ -29,7 +29,7 @@
|
||||
"\n",
|
||||
"| Class | Package | Local | JS support | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ElasticsearchEmbeddingsCache](https://python.langchain.com/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html) | [langchain_elasticsearch](https://python.langchain.com/api_reference/elasticsearch/index.html) | ✅ | ❌ |  |  |\n",
|
||||
"| [ElasticsearchEmbeddingsCache](https://python.langchain.com/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html) | [langchain-elasticsearch](https://python.langchain.com/api_reference/elasticsearch/index.html) | ✅ | ❌ |  |  |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
@@ -42,7 +42,7 @@
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain `ElasticsearchEmbeddingsCache` integration lives in the `__package_name__` package:"
|
||||
"The LangChain `ElasticsearchEmbeddingsCache` integration lives in the `langchain-elasticsearch` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -51,7 +51,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_elasticsearch"
|
||||
"%pip install -qU langchain-elasticsearch"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user