Compare commits

..

51 Commits

Author SHA1 Message Date
Bagatur
a1ecf827c3 stuff 2023-12-27 17:53:42 -05:00
Bagatur
5a40db5387 fmt 2023-12-27 17:48:00 -05:00
Bagatur
e46ab1c580 cr 2023-12-27 17:11:29 -05:00
Bagatur
80efbad918 fmt 2023-12-27 16:54:10 -05:00
Bagatur
52b9e064ce fmt 2023-12-27 16:52:45 -05:00
Bagatur
ffa2b5732f Merge branch 'master' into bagatur/stuff_docs_lcel 2023-12-27 16:45:42 -05:00
Bagatur
50c9d652f4 fix 2023-12-27 16:45:34 -05:00
Bagatur
ded7fa3df7 new syntax 2023-12-27 16:33:15 -05:00
Bagatur
958f75df10 Merge branch 'master' into bagatur/stuff_docs_lcel 2023-12-27 14:49:46 -05:00
Bagatur
c063a87aec fmt 2023-12-27 12:57:07 -05:00
Bagatur
2ca8f94d07 fmt 2023-12-27 12:54:46 -05:00
Bagatur
f55adeaf8e Merge branch 'master' into bagatur/stuff_docs_lcel 2023-12-27 12:49:40 -05:00
Bagatur
da0d18c184 fmt 2023-12-27 12:49:29 -05:00
Bagatur
531c68dc5f with_name 2023-12-27 11:43:07 -05:00
Bagatur
7d6e8d6ed5 fmt 2023-12-27 11:06:10 -05:00
Bagatur
78ff12812c fmt 2023-12-27 10:48:38 -05:00
Bagatur
66c3c4fb4b cr 2023-12-27 10:14:45 -05:00
Bagatur
e01a3458e9 cr 2023-12-27 01:23:36 -05:00
Bagatur
581172dc51 fmt 2023-12-26 19:57:15 -05:00
Bagatur
7ba35b0ff4 fmt 2023-12-26 19:11:09 -05:00
Bagatur
0725ed1ee5 fmt 2023-12-26 19:05:45 -05:00
Bagatur
4edc79ad04 fmt 2023-12-26 19:04:07 -05:00
Bagatur
11d14c8b95 fmt 2023-12-26 18:56:52 -05:00
Bagatur
d06d6b99e3 fmt 2023-12-26 18:24:38 -05:00
Bagatur
be4c76cd87 fmt 2023-12-26 17:46:33 -05:00
Bagatur
ad3bf1fa94 fmt 2023-12-26 17:27:42 -05:00
Bagatur
299851bcac fmt 2023-12-26 17:25:06 -05:00
Bagatur
4747cfafee fmt 2023-12-26 17:21:35 -05:00
Bagatur
ba1b41c54d fmt 2023-12-26 17:10:43 -05:00
Bagatur
7b2886a0a2 fmt 2023-12-26 16:32:55 -05:00
Bagatur
6859509a17 fmt 2023-12-26 16:15:11 -05:00
Bagatur
d9bbe2f144 fmt 2023-12-26 15:54:40 -05:00
Bagatur
5d1ca93cbf fmt 2023-12-26 15:34:11 -05:00
Bagatur
ce1a1b5892 merge 2023-12-26 15:30:09 -05:00
Bagatur
93c17e0783 fmt 2023-12-26 13:57:42 -05:00
Bagatur
7ad09ce887 refactor 2023-12-26 13:47:52 -05:00
Bagatur
35b0a48635 fmt 2023-12-26 13:11:56 -05:00
Bagatur
01739a7b23 fmt 2023-12-26 12:08:48 -05:00
Bagatur
6f3c0ee781 rerank 2023-12-26 12:06:08 -05:00
Bagatur
fb43f69997 fmt 2023-12-26 10:54:18 -05:00
Bagatur
f8cae684b4 fix 2023-12-26 10:49:06 -05:00
Bagatur
107a02bf51 collapse 2023-12-26 10:16:46 -05:00
Bagatur
011908a442 fmt 2023-12-22 18:17:22 -05:00
Bagatur
d418259865 wip 2023-12-22 16:23:05 -05:00
Bagatur
a732063a77 fmt 2023-12-22 15:30:00 -05:00
Bagatur
492506cf82 fmt 2023-12-22 14:45:06 -05:00
Bagatur
00b0f6586e refine 2023-12-22 14:30:25 -05:00
Bagatur
b50c9e0ae9 fmt 2023-12-22 13:43:19 -05:00
Bagatur
87ff61acde fmt 2023-12-22 13:42:19 -05:00
Bagatur
a515261753 fmt 2023-12-22 13:41:17 -05:00
Bagatur
43471f36c4 rfc 2023-12-22 13:24:23 -05:00
2064 changed files with 79335 additions and 117136 deletions

View File

@@ -5,84 +5,60 @@ body:
- type: markdown
attributes:
value: >
Thank you for taking the time to file a bug report.
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
if there's another way to solve your problem:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
[API Reference](https://api.python.langchain.com/en/stable/),
[GitHub search](https://github.com/langchain-ai/langchain),
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue)
- type: checkboxes
id: checks
attributes:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: I added a very descriptive title to this issue.
required: true
- label: I searched the LangChain documentation with the integrated search.
required: true
- label: I used the GitHub search to find a similar question and didn't find it.
required: true
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Example Code
description: |
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
If you're including an error message, please include the full stack trace not just the last error.
**Important!** Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
Thank you for taking the time to file a bug report. Before creating a new
issue, please make sure to take a few moments to check the issue tracker
for existing issues about the bug.
placeholder: |
The following code:
```python
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
raise NotImplementedError('For demo purpose')
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
```
Include both the error and the full stack trace if reporting an exception!
- type: textarea
id: description
attributes:
label: Description
description: |
What is the problem, question, or error?
Write a short description telling what you are doing, what you expect to happen, and what is currently happening.
placeholder: |
* I'm trying to use the `langchain` library to do X.
* I expect to see Y.
* Instead, it does Z.
validations:
required: true
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us.
placeholder: |
"pip freeze | grep langchain"
platform
python version
placeholder: LangChain version, platform, python version, ...
validations:
required: true
- type: textarea
id: who-can-help
attributes:
label: Who can help?
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
The core maintainers strive to read all issues, but tagging them will help them prioritize.
Please tag fewer than 3 people.
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoader Abstractions
- @eyurtsev
LLM/Chat Wrappers
- @hwchase17
- @agola11
Tools / Toolkits
- ...
placeholder: "@Username ..."
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: "The problem arises when using:"
options:
- label: "The official example notebooks/scripts"
- label: "My own modified scripts"
- type: checkboxes
id: related-components
attributes:
@@ -101,3 +77,30 @@ body:
- label: "Chains"
- label: "Callbacks/Tracing"
- label: "Async"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a [code sample](https://stackoverflow.com/help/minimal-reproducible-example) that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

View File

@@ -1,9 +1,6 @@
blank_issues_enabled: true
version: 2.1
contact_links:
- name: 🤔 Question or Problem
about: Ask a question or ask about a problem in GitHub Discussions.
url: https://github.com/langchain-ai/langchain/discussions
- name: Discord
url: https://discord.gg/6adMQxSpJS
about: General community discussions

18
.github/ISSUE_TEMPLATE/other.yml vendored Normal file
View File

@@ -0,0 +1,18 @@
name: Other Issue
description: Raise an issue that wouldn't be covered by the other templates.
title: "Issue: <Please write a comprehensive title after the 'Issue: ' prefix>"
labels: [04 - Other]
body:
- type: textarea
attributes:
label: "Issue you'd like to raise."
description: >
Please describe the issue you'd like to raise as clearly as possible.
Make sure to include any relevant links or references.
- type: textarea
attributes:
label: "Suggestion:"
description: >
Please outline a suggestion to improve the issue here.

View File

@@ -26,9 +26,8 @@ inputs:
runs:
using: composite
steps:
- uses: actions/setup-python@v5
- uses: actions/setup-python@v4
name: Setup python ${{ inputs.python-version }}
id: setup-python
with:
python-version: ${{ inputs.python-version }}
@@ -75,8 +74,7 @@ runs:
env:
POETRY_VERSION: ${{ inputs.poetry-version }}
PYTHON_VERSION: ${{ inputs.python-version }}
# Install poetry using the python version installed by setup-python step.
run: pipx install "poetry==$POETRY_VERSION" --python '${{ steps.setup-python.outputs.python-path }}' --verbose
run: pipx install "poetry==$POETRY_VERSION" --python "python$PYTHON_VERSION" --verbose
- name: Restore pip and poetry cached dependencies
uses: actions/cache@v3

View File

@@ -13,10 +13,6 @@ if __name__ == "__main__":
files = sys.argv[1:]
dirs_to_run = set()
if len(files) == 300:
# max diff length is 300 files - there are likely files missing
raise ValueError("Max diff reached. Please manually run CI on changed libs.")
for file in files:
if any(
file.startswith(dir_)
@@ -52,5 +48,4 @@ if __name__ == "__main__":
dirs_to_run.update(LANGCHAIN_DIRS)
else:
pass
json_output = json.dumps(list(dirs_to_run))
print(f"dirs-to-run={json_output}")
print(json.dumps(list(dirs_to_run)))

View File

@@ -37,12 +37,6 @@ jobs:
shell: bash
run: poetry install --with test,test_integration
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: Run integration tests
shell: bash
env:
@@ -50,7 +44,6 @@ jobs:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: |
make integration_tests

View File

@@ -1,5 +1,5 @@
name: release
run-name: Release ${{ inputs.working-directory }} by @${{ github.actor }}
on:
workflow_call:
inputs:
@@ -149,12 +149,6 @@ jobs:
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: Run integration tests
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
env:
@@ -162,16 +156,9 @@ jobs:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
- name: Run unit tests with minimum dependency versions
if: ${{ (inputs.working-directory == 'libs/langchain') || (inputs.working-directory == 'libs/community') || (inputs.working-directory == 'libs/experimental') }}
run: |
poetry run pip install -r _test_minimum_requirements.txt
make tests
working-directory: ${{ inputs.working-directory }}
publish:
needs:

View File

@@ -5,6 +5,11 @@ on:
push:
branches: [master]
pull_request:
paths:
- ".github/actions/**"
- ".github/tools/**"
- ".github/workflows/**"
- "libs/**"
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
@@ -21,14 +26,13 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- id: files
uses: Ana06/get-changed-files@v2.2.0
- id: set-matrix
run: |
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
run: echo "dirs-to-run=$(python .github/scripts/check_diff.py ${{ steps.files.outputs.all }})" >> $GITHUB_OUTPUT
outputs:
dirs-to-run: ${{ steps.set-matrix.outputs.dirs-to-run }}
ci:

View File

@@ -36,7 +36,7 @@ jobs:
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
uses: 'google-github-actions/auth@v1'
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'

View File

@@ -10,7 +10,7 @@ build:
tools:
python: "3.11"
commands:
- python -m virtualenv $READTHEDOCS_VIRTUALENV_PATH
- python -mvirtualenv $READTHEDOCS_VIRTUALENV_PATH
- python -m pip install --upgrade --no-cache-dir pip setuptools
- python -m pip install --upgrade --no-cache-dir sphinx readthedocs-sphinx-ext
- python -m pip install ./libs/partners/*

View File

@@ -61,13 +61,13 @@
],
"source": [
"# Local\n",
"from langchain_community.chat_models import ChatOllama\n",
"from langchain.chat_models import ChatOllama\n",
"\n",
"llama2_chat = ChatOllama(model=\"llama2:13b-chat\")\n",
"llama2_code = ChatOllama(model=\"codellama:7b-instruct\")\n",
"\n",
"# API\n",
"from langchain_community.llms import Replicate\n",
"from langchain.llms import Replicate\n",
"\n",
"# REPLICATE_API_TOKEN = getpass()\n",
"# os.environ[\"REPLICATE_API_TOKEN\"] = REPLICATE_API_TOKEN\n",
@@ -107,7 +107,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import SQLDatabase\n",
"from langchain.utilities import SQLDatabase\n",
"\n",
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info=0)\n",
"\n",
@@ -125,7 +125,7 @@
"id": "654b3577-baa2-4e12-a393-f40e5db49ac7",
"metadata": {},
"source": [
"## Query a SQL Database \n",
"## Query a SQL DB \n",
"\n",
"Follow the runnables workflow [here](https://python.langchain.com/docs/expression_language/cookbook/sql_db)."
]
@@ -149,9 +149,8 @@
],
"source": [
"# Prompt\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"# Update the template based on the type of SQL Database like MySQL, Microsoft SQL Server and so on\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
@@ -278,7 +277,7 @@
"source": [
"# Prompt\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"\n",
"template = \"\"\"Given an input question, convert it to a SQL query. No pre-amble. Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",

View File

@@ -101,7 +101,7 @@
"If you want to use the provided folder, then simply opt for a [pdf loader](https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf) for the document:\n",
"\n",
"```\n",
"from langchain_community.document_loaders import PyPDFLoader\n",
"from langchain.document_loaders import PyPDFLoader\n",
"loader = PyPDFLoader(path + fname)\n",
"docs = loader.load()\n",
"tables = [] # Ignore w/ basic pdf loader\n",
@@ -198,9 +198,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"# Generate summaries of text elements\n",
@@ -341,7 +341,7 @@
"Add raw docs and doc summaries to [Multi Vector Retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector#summary): \n",
"\n",
"* Store the raw texts, tables, and images in the `docstore`.\n",
"* Store the texts, table summaries, and image summaries in the `vectorstore` for efficient semantic retrieval."
"* Store the texts, table summaries, and image summaries in the `vectorstore` for semantic retrieval."
]
},
{
@@ -353,11 +353,11 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"\n",
"def create_multi_vector_retriever(\n",

View File

@@ -93,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import PyPDFLoader\n",
"from langchain.document_loaders import PyPDFLoader\n",
"\n",
"loader = PyPDFLoader(\"./cj/cj.pdf\")\n",
"docs = loader.load()\n",
@@ -158,11 +158,11 @@
}
],
"source": [
"from langchain.chat_models import ChatVertexAI\n",
"from langchain.llms import VertexAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatVertexAI\n",
"from langchain_community.llms import VertexAI\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain_core.messages import AIMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda\n",
"\n",
"\n",
@@ -243,7 +243,7 @@
"import base64\n",
"import os\n",
"\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain.schema.messages import HumanMessage\n",
"\n",
"\n",
"def encode_image(image_path):\n",
@@ -342,11 +342,11 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import VertexAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.embeddings import VertexAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"\n",
"def create_multi_vector_retriever(\n",
@@ -440,7 +440,7 @@
"import re\n",
"\n",
"from IPython.display import HTML, display\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
"from PIL import Image\n",
"\n",
"\n",

View File

@@ -235,9 +235,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},
{
@@ -318,11 +318,11 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",

View File

@@ -211,9 +211,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},
{
@@ -373,11 +373,11 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",

View File

@@ -209,9 +209,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate"
"from langchain.chat_models import ChatOllama\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},
{
@@ -376,10 +376,10 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import GPT4AllEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.embeddings import GPT4AllEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"# The vectorstore to use to index the child chunks\n",

View File

@@ -62,7 +62,7 @@
"path = \"/Users/rlm/Desktop/cpi/\"\n",
"\n",
"# Load\n",
"from langchain_community.document_loaders import PyPDFLoader\n",
"from langchain.document_loaders import PyPDFLoader\n",
"\n",
"loader = PyPDFLoader(path + \"cpi.pdf\")\n",
"pdf_pages = loader.load()\n",
@@ -132,8 +132,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"baseline = Chroma.from_texts(\n",
" texts=all_splits_pypdf_texts,\n",
@@ -160,9 +160,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text for retrieval. \\\n",

View File

@@ -29,7 +29,7 @@
"outputs": [],
"source": [
"from langchain.chains import AnalyzeDocumentChain\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)"
]

View File

@@ -28,9 +28,9 @@
"outputs": [],
"source": [
"from langchain.agents import Tool\n",
"from langchain_community.tools.file_management.read import ReadFileTool\n",
"from langchain_community.tools.file_management.write import WriteFileTool\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"from langchain.tools.file_management.read import ReadFileTool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
"from langchain.utilities import SerpAPIWrapper\n",
"\n",
"search = SerpAPIWrapper()\n",
"tools = [\n",
@@ -62,8 +62,8 @@
"outputs": [],
"source": [
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings"
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import FAISS"
]
},
{
@@ -100,8 +100,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_experimental.autonomous_agents import AutoGPT"
]
},
{
@@ -167,7 +167,7 @@
},
"outputs": [],
"source": [
"from langchain_community.chat_message_histories import FileChatMessageHistory\n",
"from langchain.memory.chat_message_histories import FileChatMessageHistory\n",
"\n",
"agent = AutoGPT.from_llm_and_tools(\n",
" ai_name=\"Tom\",\n",

View File

@@ -39,10 +39,10 @@
"\n",
"import nest_asyncio\n",
"import pandas as pd\n",
"from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.docstore.document import Document\n",
"from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Needed synce jupyter runs an async eventloop\n",
"nest_asyncio.apply()"
@@ -93,8 +93,8 @@
"from typing import Optional\n",
"\n",
"from langchain.agents import tool\n",
"from langchain_community.tools.file_management.read import ReadFileTool\n",
"from langchain_community.tools.file_management.write import WriteFileTool\n",
"from langchain.tools.file_management.read import ReadFileTool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
"\n",
"ROOT_DIR = \"./data/\"\n",
"\n",
@@ -311,8 +311,8 @@
"# Memory\n",
"import faiss\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import FAISS\n",
"\n",
"embeddings_model = OpenAIEmbeddings()\n",
"embedding_size = 1536\n",

View File

@@ -31,8 +31,9 @@
"source": [
"from typing import Optional\n",
"\n",
"from langchain_experimental.autonomous_agents import BabyAGI\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings"
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import BabyAGI"
]
},
{
@@ -53,7 +54,7 @@
"outputs": [],
"source": [
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.vectorstores import FAISS"
"from langchain.vectorstores import FAISS"
]
},
{

View File

@@ -28,9 +28,10 @@
"from typing import Optional\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_experimental.autonomous_agents import BabyAGI\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings"
"from langchain_experimental.autonomous_agents import BabyAGI"
]
},
{
@@ -62,7 +63,7 @@
"%pip install faiss-cpu > /dev/null\n",
"%pip install google-search-results > /dev/null\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.vectorstores import FAISS"
"from langchain.vectorstores import FAISS"
]
},
{
@@ -107,8 +108,8 @@
"source": [
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
"from langchain.chains import LLMChain\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"from langchain_openai import OpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import SerpAPIWrapper\n",
"\n",
"todo_prompt = PromptTemplate.from_template(\n",
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",

View File

@@ -36,6 +36,7 @@
"source": [
"from typing import List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import (\n",
" HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
@@ -45,8 +46,7 @@
" BaseMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_openai import ChatOpenAI"
")"
]
},
{

View File

@@ -47,9 +47,9 @@
"outputs": [],
"source": [
"from IPython.display import SVG\n",
"from langchain.llms import OpenAI\n",
"from langchain_experimental.cpal.base import CPALChain\n",
"from langchain_experimental.pal_chain import PALChain\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0, max_tokens=512)\n",
"cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)\n",

View File

@@ -23,9 +23,9 @@
"metadata": {},
"source": [
"1. Prepare data:\n",
" 1. Upload all python project files using the `langchain_community.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 1. Upload all python project files using the `langchain.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain_community.vectorstores.DeepLake`\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain.vectorstores.DeepLake`\n",
"2. Question-Answering:\n",
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
" 2. Prepare questions.\n",
@@ -166,7 +166,7 @@
}
],
"source": [
"from langchain_community.document_loaders import TextLoader\n",
"from langchain.document_loaders import TextLoader\n",
"\n",
"root_dir = \"../../../../../../libs\"\n",
"\n",
@@ -657,7 +657,7 @@
}
],
"source": [
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"embeddings"
@@ -706,7 +706,7 @@
{
"data": {
"text/plain": [
"<langchain_community.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
"<langchain.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
]
},
"execution_count": 15,
@@ -715,7 +715,7 @@
}
],
"source": [
"from langchain_community.vectorstores import DeepLake\n",
"from langchain.vectorstores import DeepLake\n",
"\n",
"username = \"<USERNAME_OR_ORG>\"\n",
"\n",
@@ -740,7 +740,7 @@
"metadata": {},
"outputs": [],
"source": [
"# from langchain_community.vectorstores import DeepLake\n",
"# from langchain.vectorstores import DeepLake\n",
"\n",
"# db = DeepLake.from_documents(\n",
"# texts, embeddings, dataset_path=f\"hub://{<org_id>}/langchain-code\", runtime={\"tensor_db\": True}\n",
@@ -834,7 +834,7 @@
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo-0613\"\n",

View File

@@ -40,12 +40,12 @@
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain_community.agent_toolkits import NLAToolkit\n",
"from langchain_community.tools.plugin import AIPlugin\n",
"from langchain_openai import OpenAI"
"from langchain.tools.plugin import AIPlugin"
]
},
{
@@ -114,9 +114,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings"
"from langchain.vectorstores import FAISS"
]
},
{

View File

@@ -65,12 +65,12 @@
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain_community.agent_toolkits import NLAToolkit\n",
"from langchain_community.tools.plugin import AIPlugin\n",
"from langchain_openai import OpenAI"
"from langchain.tools.plugin import AIPlugin"
]
},
{
@@ -138,9 +138,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings"
"from langchain.vectorstores import FAISS"
]
},
{

View File

@@ -80,7 +80,7 @@
"outputs": [],
"source": [
"# Connecting to Databricks with SQLDatabase wrapper\n",
"from langchain_community.utilities import SQLDatabase\n",
"from langchain.utilities import SQLDatabase\n",
"\n",
"db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")"
]
@@ -93,7 +93,7 @@
"outputs": [],
"source": [
"# Creating a OpenAI Chat LLM wrapper\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
]
@@ -115,7 +115,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import SQLDatabaseChain\n",
"from langchain.utilities import SQLDatabaseChain\n",
"\n",
"db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
]
@@ -177,7 +177,7 @@
"outputs": [],
"source": [
"from langchain.agents import create_sql_agent\n",
"from langchain_community.agent_toolkits import SQLDatabaseToolkit\n",
"from langchain.agents.agent_toolkits import SQLDatabaseToolkit\n",
"\n",
"toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n",
"agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"

View File

@@ -52,12 +52,13 @@
"import os\n",
"\n",
"from langchain.chains import RetrievalQA\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.text_splitter import (\n",
" CharacterTextSplitter,\n",
" RecursiveCharacterTextSplitter,\n",
")\n",
"from langchain_community.vectorstores import DeepLake\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"from langchain.vectorstores import DeepLake\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",

View File

@@ -470,13 +470,13 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
")\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_openai import ChatOpenAI"
"from langchain_core.output_parsers import StrOutputParser"
]
},
{
@@ -545,11 +545,11 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores.chroma import Chroma\n",
"from langchain.vectorstores.chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"\n",
"def build_retriever(text_elements, tables, table_summaries):\n",

View File

@@ -39,7 +39,7 @@
"source": [
"from elasticsearch import Elasticsearch\n",
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI"
]
},
{

View File

@@ -22,8 +22,8 @@
"from typing import List, Optional\n",
"\n",
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_core.pydantic_v1 import BaseModel"
]
},
{
@@ -153,7 +153,7 @@
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"from langchain_core.runnables import Runnable\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.messages import SystemMessage\n",
"from langchain_core.language_models import BaseLanguageModel\n",
"\n",

View File

@@ -20,7 +20,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms.fake import FakeListLLM"
"from langchain.llms.fake import FakeListLLM"
]
},
{

View File

@@ -73,9 +73,10 @@
" AsyncCallbackManagerForRetrieverRun,\n",
" CallbackManagerForRetrieverRun,\n",
")\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.schema import BaseRetriever, Document\n",
"from langchain_community.utilities import GoogleSerperAPIWrapper\n",
"from langchain_openai import ChatOpenAI, OpenAI"
"from langchain.utilities import GoogleSerperAPIWrapper"
]
},
{

View File

@@ -47,10 +47,11 @@
"from datetime import datetime, timedelta\n",
"from typing import List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers import TimeWeightedVectorStoreRetriever\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"from langchain.vectorstores import FAISS\n",
"from termcolor import colored"
]
},

View File

@@ -75,8 +75,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import HuggingGPT\n",
"from langchain_openai import OpenAI\n",
"\n",
"# %env OPENAI_API_BASE=http://localhost:8000/v1"
]

View File

@@ -20,7 +20,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.human import HumanInputChatModel"
"from langchain.chat_models.human import HumanInputChatModel"
]
},
{

View File

@@ -19,7 +19,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms.human import HumanInputLLM"
"from langchain.llms.human import HumanInputLLM"
]
},
{

View File

@@ -21,8 +21,9 @@
"outputs": [],
"source": [
"from langchain.chains import HypotheticalDocumentEmbedder, LLMChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings"
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate"
]
},
{
@@ -171,7 +172,7 @@
"outputs": [],
"source": [
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"with open(\"../../state_of_the_union.txt\") as f:\n",
" state_of_the_union = f.read()\n",

View File

@@ -49,7 +49,7 @@
"source": [
"# pick and configure the LLM of your choice\n",
"\n",
"from langchain_openai import OpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")"
]

View File

@@ -43,8 +43,8 @@
}
],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_experimental.llm_bash.base import LLMBashChain\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",

View File

@@ -42,7 +42,7 @@
],
"source": [
"from langchain.chains import LLMCheckerChain\n",
"from langchain_openai import OpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0.7)\n",
"\n",

View File

@@ -46,7 +46,7 @@
],
"source": [
"from langchain.chains import LLMMathChain\n",
"from langchain_openai import OpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_math = LLMMathChain.from_llm(llm, verbose=True)\n",

View File

@@ -331,7 +331,7 @@
],
"source": [
"from langchain.chains import LLMSummarizationCheckerChain\n",
"from langchain_openai import OpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=2)\n",
@@ -822,7 +822,7 @@
],
"source": [
"from langchain.chains import LLMSummarizationCheckerChain\n",
"from langchain_openai import OpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=3)\n",
@@ -1096,7 +1096,7 @@
],
"source": [
"from langchain.chains import LLMSummarizationCheckerChain\n",
"from langchain_openai import OpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, max_checks=3, verbose=True)\n",

View File

@@ -14,8 +14,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_experimental.llm_symbolic_math.base import LLMSymbolicMathChain\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_symbolic_math = LLMSymbolicMathChain.from_llm(llm)"

View File

@@ -57,9 +57,9 @@
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.memory import ConversationBufferWindowMemory\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_openai import OpenAI"
"from langchain.prompts import PromptTemplate"
]
},
{

View File

@@ -91,8 +91,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_core.messages import HumanMessage, SystemMessage"
]
},
{

View File

@@ -187,7 +187,7 @@
"\n",
"import chromadb\n",
"import numpy as np\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
"from PIL import Image as _PILImage\n",
"\n",
@@ -315,10 +315,10 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"def prompt_func(data_dict):\n",

View File

@@ -43,8 +43,8 @@
"outputs": [],
"source": [
"from langchain.agents import AgentType, initialize_agent\n",
"from langchain.tools import SteamshipImageGenerationTool\n",
"from langchain_openai import OpenAI"
"from langchain.llms import OpenAI\n",
"from langchain.tools import SteamshipImageGenerationTool"
]
},
{

View File

@@ -28,11 +28,11 @@
"source": [
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_openai import ChatOpenAI"
")"
]
},
{

View File

@@ -33,6 +33,7 @@
"from typing import Callable, List\n",
"\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.prompts import (\n",
" PromptTemplate,\n",
@@ -40,8 +41,7 @@
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_openai import ChatOpenAI"
")"
]
},
{

View File

@@ -27,13 +27,13 @@
"from typing import Callable, List\n",
"\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_openai import ChatOpenAI"
")"
]
},
{

View File

@@ -31,10 +31,10 @@
"from os import environ\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.utilities import SQLDatabase\n",
"from langchain.utilities import SQLDatabase\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from langchain_openai import OpenAI\n",
"from sqlalchemy import MetaData, create_engine\n",
"\n",
"MYSCALE_HOST = \"msc-4a9e710a.us-east-1.aws.staging.myscale.cloud\"\n",
@@ -57,7 +57,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import HuggingFaceInstructEmbeddings\n",
"from langchain.embeddings import HuggingFaceInstructEmbeddings\n",
"from langchain_experimental.sql.vector_sql import VectorSQLOutputParser\n",
"\n",
"output_parser = VectorSQLOutputParser.from_embeddings(\n",
@@ -75,10 +75,10 @@
"outputs": [],
"source": [
"from langchain.callbacks import StdOutCallbackHandler\n",
"from langchain_community.utilities.sql_database import SQLDatabase\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities.sql_database import SQLDatabase\n",
"from langchain_experimental.sql.prompt import MYSCALE_PROMPT\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from langchain_openai import OpenAI\n",
"\n",
"chain = VectorSQLDatabaseChain(\n",
" llm_chain=LLMChain(\n",
@@ -117,6 +117,7 @@
"outputs": [],
"source": [
"from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_experimental.retrievers.vector_sql_database import (\n",
" VectorSQLDatabaseChainRetriever,\n",
")\n",
@@ -125,7 +126,6 @@
" VectorSQLDatabaseChain,\n",
" VectorSQLRetrieveAllOutputParser,\n",
")\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"output_parser_retrieve_all = VectorSQLRetrieveAllOutputParser.from_embeddings(\n",
" output_parser.model\n",

View File

@@ -20,10 +20,10 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.document_loaders import TextLoader\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings"
"from langchain.vectorstores import Chroma"
]
},
{
@@ -52,8 +52,8 @@
"source": [
"from langchain.chains import create_qa_with_sources_chain\n",
"from langchain.chains.combine_documents.stuff import StuffDocumentsChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate"
]
},
{

View File

@@ -28,8 +28,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_core.messages import HumanMessage, SystemMessage"
]
},
{
@@ -414,7 +414,7 @@
"BREAKING CHANGES:\n",
"- To use Azure embeddings with OpenAI V1, you'll need to use the new `AzureOpenAIEmbeddings` instead of the existing `OpenAIEmbeddings`. `OpenAIEmbeddings` continue to work when using Azure with `openai<1`.\n",
"```python\n",
"from langchain_openai import AzureOpenAIEmbeddings\n",
"from langchain.embeddings import AzureOpenAIEmbeddings\n",
"```\n",
"\n",
"\n",
@@ -456,8 +456,8 @@
"from typing import Literal\n",
"\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",

View File

@@ -47,12 +47,12 @@
"import inspect\n",
"\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_openai import ChatOpenAI"
")"
]
},
{

View File

@@ -30,14 +30,15 @@
"outputs": [],
"source": [
"from langchain.chains import LLMMathChain\n",
"from langchain_community.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_core.tools import Tool\n",
"from langchain_experimental.plan_and_execute import (\n",
" PlanAndExecute,\n",
" load_agent_executor,\n",
" load_chat_planner,\n",
")\n",
"from langchain_openai import ChatOpenAI, OpenAI"
")"
]
},
{

View File

@@ -81,8 +81,8 @@
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.retrievers import KayAiRetriever\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
"retriever = KayAiRetriever.create(\n",

View File

@@ -17,8 +17,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.pal_chain import PALChain\n",
"from langchain_openai import OpenAI"
"from langchain.llms import OpenAI\n",
"from langchain_experimental.pal_chain import PALChain"
]
},
{

View File

@@ -27,7 +27,7 @@
],
"source": [
"from langchain.chains import create_citation_fuzzy_match_chain\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI"
]
},
{

View File

@@ -59,13 +59,11 @@
"from baidubce.auth.bce_credentials import BceCredentials\n",
"from baidubce.bce_client_configuration import BceClientConfiguration\n",
"from langchain.chains.retrieval_qa import RetrievalQA\n",
"from langchain.document_loaders.baiducloud_bos_directory import BaiduBOSDirectoryLoader\n",
"from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n",
"from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_community.document_loaders.baiducloud_bos_directory import (\n",
" BaiduBOSDirectoryLoader,\n",
")\n",
"from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings\n",
"from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n",
"from langchain_community.vectorstores import BESVectorStore"
"from langchain.vectorstores import BESVectorStore"
]
},
{

View File

@@ -30,8 +30,8 @@
"outputs": [],
"source": [
"import pinecone\n",
"from langchain_community.vectorstores import Pinecone\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import Pinecone\n",
"\n",
"pinecone.init(api_key=\"...\", environment=\"...\")"
]
@@ -86,8 +86,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_openai import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},
{

View File

@@ -42,8 +42,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.sql_database import SQLDatabase\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"CONNECTION_STRING = \"postgresql+psycopg2://postgres:test@localhost:5432/vectordb\" # Replace with your own\n",
"db = SQLDatabase.from_uri(CONNECTION_STRING)"
@@ -88,7 +88,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"\n",
"embeddings_model = OpenAIEmbeddings()"
]
@@ -219,7 +219,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"template = \"\"\"You are a Postgres expert. Given an input question, first create a syntactically correct Postgres query to run, then look at the results of the query and return the answer to the input question.\n",
"Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per Postgres. You can order the results to return the most informative data in the database.\n",
@@ -267,9 +267,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"db = SQLDatabase.from_uri(\n",
" CONNECTION_STRING\n",

View File

@@ -31,11 +31,11 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI"
"from langchain_core.runnables import RunnablePassthrough"
]
},
{

View File

@@ -49,13 +49,14 @@
"from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS\n",
"from langchain.chains import LLMChain, RetrievalQA\n",
"from langchain.chains.base import Chain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM, OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.prompts.base import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain_community.llms import BaseLLM\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma\n",
"from pydantic import BaseModel, Field"
]
},

View File

@@ -17,10 +17,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompt_values import PromptValue\n",
"from langchain_openai import ChatOpenAI"
"from langchain_core.prompt_values import PromptValue"
]
},
{

View File

@@ -255,7 +255,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-4\")\n",
"res = model.predict(\n",
@@ -1083,8 +1083,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import ElasticsearchStore\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import ElasticsearchStore\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]

View File

@@ -51,9 +51,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_experimental.smart_llm import SmartLLMChain\n",
"from langchain_openai import ChatOpenAI"
"from langchain_experimental.smart_llm import SmartLLMChain"
]
},
{

View File

@@ -9,8 +9,8 @@ To set it up, follow the instructions on https://database.guide/2-sample-databas
```python
from langchain_openai import OpenAI
from langchain_community.utilities import SQLDatabase
from langchain.llms import OpenAI
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
```
@@ -200,8 +200,8 @@ result["intermediate_steps"]
How to add memory to a SQLDatabaseChain:
```python
from langchain_openai import OpenAI
from langchain_community.utilities import SQLDatabase
from langchain.llms import OpenAI
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
```
@@ -647,7 +647,7 @@ Sometimes you may not have the luxury of using OpenAI or other service-hosted la
import logging
import torch
from transformers import AutoTokenizer, GPT2TokenizerFast, pipeline, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from langchain_community.llms import HuggingFacePipeline
from langchain.llms import HuggingFacePipeline
# Note: This model requires a large GPU, e.g. an 80GB A100. See documentation for other ways to run private non-OpenAI models.
model_id = "google/flan-ul2"
@@ -679,7 +679,7 @@ local_llm = HuggingFacePipeline(pipeline=pipe)
```python
from langchain_community.utilities import SQLDatabase
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
db = SQLDatabase.from_uri("sqlite:///../../../../notebooks/Chinook.db", include_tables=['Customer'])
@@ -994,9 +994,9 @@ Now that you have some examples (with manually corrected output SQL), you can do
```python
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
from langchain_community.vectorstores import Chroma
from langchain.vectorstores import Chroma
example_prompt = PromptTemplate(
input_variables=["table_info", "input", "sql_cmd", "sql_result", "answer"],

View File

@@ -23,10 +23,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_openai import ChatOpenAI"
"from langchain_core.runnables import RunnableLambda"
]
},
{
@@ -129,7 +129,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"\n",
"search = DuckDuckGoSearchAPIWrapper(max_results=4)\n",
"\n",

View File

@@ -1,156 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0fc0309d-4d49-4bb5-bec0-bd92c6fddb28",
"metadata": {},
"source": [
"## Together AI + RAG\n",
" \n",
"[Together AI](https://python.langchain.com/docs/integrations/llms/together) has a broad set of OSS LLMs via inference API.\n",
"\n",
"See [here](https://api.together.xyz/playground). We use `\"mistralai/Mixtral-8x7B-Instruct-v0.1` for RAG on the Mixtral paper.\n",
"\n",
"Download the paper:\n",
"https://arxiv.org/pdf/2401.04088.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet pypdf chromadb tiktoken openai langchain-together"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ab49327-0532-4480-804c-d066c302a322",
"metadata": {},
"outputs": [],
"source": [
"# Load\n",
"from langchain_community.document_loaders import PyPDFLoader\n",
"\n",
"loader = PyPDFLoader(\"~/Desktop/mixtral.pdf\")\n",
"data = loader.load()\n",
"\n",
"# Split\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"\"\"\"\n",
"from langchain_together.embeddings import TogetherEmbeddings\n",
"embeddings = TogetherEmbeddings(model=\"togethercomputer/m2-bert-80M-8k-retrieval\")\n",
"\"\"\"\n",
"vectorstore = Chroma.from_documents(\n",
" documents=all_splits,\n",
" collection_name=\"rag-chroma\",\n",
" embedding=OpenAIEmbeddings(),\n",
")\n",
"\n",
"retriever = vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4efaddd9-3dbb-455c-ba54-0ad7f2d2ce0f",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n",
"# RAG prompt\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"# LLM\n",
"from langchain_community.llms import Together\n",
"\n",
"llm = Together(\n",
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
" temperature=0.0,\n",
" max_tokens=2000,\n",
" top_k=1,\n",
")\n",
"\n",
"# RAG chain\n",
"chain = (\n",
" RunnableParallel({\"context\": retriever, \"question\": RunnablePassthrough()})\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "88b1ee51-1b0f-4ebf-bb32-e50e843f0eeb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
]
},
{
"cell_type": "markdown",
"id": "755cf871-26b7-4e30-8b91-9ffd698470f4",
"metadata": {},
"source": [
"Trace: \n",
"\n",
"https://smith.langchain.com/public/935fd642-06a6-4b42-98e3-6074f93115cd/r"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -24,7 +24,7 @@
}
],
"source": [
"from langchain_openai import OpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=1, max_tokens=512, model=\"gpt-3.5-turbo-instruct\")"
]

View File

@@ -37,8 +37,8 @@
"import getpass\n",
"import os\n",
"\n",
"from langchain_community.vectorstores import DeepLake\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores import DeepLake\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",
@@ -110,7 +110,7 @@
"source": [
"import os\n",
"\n",
"from langchain_community.document_loaders import TextLoader\n",
"from langchain.document_loaders import TextLoader\n",
"\n",
"root_dir = \"./the-algorithm\"\n",
"docs = []\n",
@@ -3809,7 +3809,7 @@
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"

View File

@@ -24,13 +24,13 @@
"source": [
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_openai import ChatOpenAI"
")"
]
},
{

View File

@@ -24,11 +24,11 @@
"source": [
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_openai import ChatOpenAI"
")"
]
},
{

View File

@@ -599,7 +599,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)"
]

View File

@@ -20,4 +20,4 @@ wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O
yarn
poetry run quarto preview docs
quarto preview docs

View File

@@ -32,7 +32,7 @@ There isn't any special setup for it.
See a [usage example](/docs/integrations/llms/INCLUDE_REAL_NAME).
```python
from langchain_community.llms import integration_class_REPLACE_ME
from langchain.llms import integration_class_REPLACE_ME
```
## Text Embedding Models
@@ -40,7 +40,7 @@ from langchain_community.llms import integration_class_REPLACE_ME
See a [usage example](/docs/integrations/text_embedding/INCLUDE_REAL_NAME)
```python
from langchain_community.embeddings import integration_class_REPLACE_ME
from langchain.embeddings import integration_class_REPLACE_ME
```
## Chat models
@@ -48,7 +48,7 @@ from langchain_community.embeddings import integration_class_REPLACE_ME
See a [usage example](/docs/integrations/chat/INCLUDE_REAL_NAME)
```python
from langchain_community.chat_models import integration_class_REPLACE_ME
from langchain.chat_models import integration_class_REPLACE_ME
```
## Document Loader
@@ -56,5 +56,5 @@ from langchain_community.chat_models import integration_class_REPLACE_ME
See a [usage example](/docs/integrations/document_loaders/INCLUDE_REAL_NAME).
```python
from langchain_community.document_loaders import integration_class_REPLACE_ME
from langchain.document_loaders import integration_class_REPLACE_ME
```

View File

@@ -1,27 +0,0 @@
# langchain-core
## 0.1.7 (Jan 5, 2024)
#### Deleted
No deletions.
#### Deprecated
- `BaseChatModel` methods `__call__`, `call_as_llm`, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.invoke` instead.
- `BaseChatModel` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.ainvoke` instead.
- `BaseLLM` methods `__call__, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseLLM.invoke` instead.
- `BaseLLM` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseLLM.ainvoke` instead.
#### Fixed
- Restrict recursive URL scraping: [#15559](https://github.com/langchain-ai/langchain/pull/15559)
#### Added
No additions.
#### Beta
- Marked `langchain_core.load.load` and `langchain_core.load.loads` as beta.
- Marked `langchain_core.beta.runnables.context.ContextGet` and `langchain_core.beta.runnables.context.ContextSet` as beta.

View File

@@ -1,36 +0,0 @@
# langchain
## 0.1.0 (Jan 5, 2024)
#### Deleted
No deletions.
#### Deprecated
Deprecated classes and methods will be removed in 0.2.0
| Deprecated | Alternative | Reason |
|---------------------------------|-----------------------------------|------------------------------------------------|
| ChatVectorDBChain | ConversationalRetrievalChain | More general to all retrievers |
| create_ernie_fn_chain | create_ernie_fn_runnable | Use LCEL under the hood |
| created_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
| NatBotChain | | Not used |
| create_openai_fn_chain | create_openai_fn_runnable | Use LCEL under the hood |
| create_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
| load_query_constructor_chain | load_query_constructor_runnable | Use LCEL under the hood |
| VectorDBQA | RetrievalQA | More general to all retrievers |
| Sequential Chain | LCEL | Obviated by LCEL |
| SimpleSequentialChain | LCEL | Obviated by LCEL |
| TransformChain | LCEL/RunnableLambda | Obviated by LCEL |
| create_tagging_chain | create_structured_output_runnable | Use LCEL under the hood |
| ChatAgent | create_react_agent | Use LCEL builder over a class |
| ConversationalAgent | create_react_agent | Use LCEL builder over a class |
| ConversationalChatAgent | create_json_chat_agent | Use LCEL builder over a class |
| initialize_agent | Individual create agent methods | Individual create agent methods are more clear |
| ZeroShotAgent | create_react_agent | Use LCEL builder over a class |
| OpenAIFunctionsAgent | create_openai_functions_agent | Use LCEL builder over a class |
| OpenAIMultiFunctionsAgent | create_openai_tools_agent | Use LCEL builder over a class |
| SelfAskWithSearchAgent | create_self_ask_with_search | Use LCEL builder over a class |
| StructuredChatAgent | create_structured_chat_agent | Use LCEL builder over a class |
| XMLAgent | create_xml_agent | Use LCEL builder over a class |

53
docs/docs/community.md Normal file
View File

@@ -0,0 +1,53 @@
# Community navigator
Hi! Thanks for being here. Were lucky to have a community of so many passionate developers building with LangChainwe have so much to teach and learn from each other. Community members contribute code, host meetups, write blog posts, amplify each others work, become each other's customers and collaborators, and so much more.
Whether youre new to LangChain, looking to go deeper, or just want to get more exposure to the world of building with LLMs, this page can point you in the right direction.
- **🦜 Contribute to LangChain**
- **🌍 Meetups, Events, and Hackathons**
- **📣 Help Us Amplify Your Work**
- **💬 Stay in the loop**
# 🦜 Contribute to LangChain
LangChain is the product of over 5,000+ contributions by 1,500+ contributors, and there is ******still****** so much to do together. Here are some ways to get involved:
- **[Open a pull request](https://github.com/langchain-ai/langchain/issues):** Wed appreciate all forms of contributionsnew features, infrastructure improvements, better documentation, bug fixes, etc. If you have an improvement or an idea, wed love to work on it with you.
- **[Read our contributor guidelines:](./contributing/)** We ask contributors to follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow, run a few local checks for formatting, linting, and testing before submitting, and follow certain documentation and testing conventions.
- **First time contributor?** [Try one of these PRs with the “good first issue” tag](https://github.com/langchain-ai/langchain/contribute).
- **Become an expert:** Our experts help the community by answering product questions in Discord. If thats a role youd like to play, wed be so grateful! (And we have some special experts-only goodies/perks we can tell you more about). Send us an email to introduce yourself at hello@langchain.dev and well take it from there!
- **Integrate with LangChain:** If your product integrates with LangChainor aspires towe want to help make sure the experience is as smooth as possible for you and end users. Send us an email at hello@langchain.dev and tell us what youre working on.
- **Become an Integration Maintainer:** Partner with our team to ensure your integration stays up-to-date and talk directly with users (and answer their inquiries) in our Discord. Introduce yourself at hello@langchain.dev if youd like to explore this role.
# 🌍 Meetups, Events, and Hackathons
One of our favorite things about working in AI is how much enthusiasm there is for building together. We want to help make that as easy and impactful for you as possible!
- **Find a meetup, hackathon, or webinar:** You can find the one for you on our [global events calendar](https://mirror-feeling-d80.notion.site/0bc81da76a184297b86ca8fc782ee9a3?v=0d80342540df465396546976a50cfb3f).
- **Submit an event to our calendar:** Email us at events@langchain.dev with a link to your event page! We can also help you spread the word with our local communities.
- **Host a meetup:** If you want to bring a group of builders together, we want to help! We can publicize your event on our event calendar/Twitter, share it with our local communities in Discord, send swag, or potentially hook you up with a sponsor. Email us at events@langchain.dev to tell us about your event!
- **Become a meetup sponsor:** We often hear from groups of builders that want to get together, but are blocked or limited on some dimension (space to host, budget for snacks, prizes to distribute, etc.). If youd like to help, send us an email to events@langchain.dev we can share more about how it works!
- **Speak at an event:** Meetup hosts are always looking for great speakers, presenters, and panelists. If youd like to do that at an event, send us an email to hello@langchain.dev with more information about yourself, what you want to talk about, and what city youre based in and well try to match you with an upcoming event!
- **Tell us about your LLM community:** If you host or participate in a community that would welcome support from LangChain and/or our team, send us an email at hello@langchain.dev and let us know how we can help.
# 📣 Help Us Amplify Your Work
If youre working on something youre proud of, and think the LangChain community would benefit from knowing about it, we want to help you show it off.
- **Post about your work and mention us:** We love hanging out on Twitter to see what people in the space are talking about and working on. If you tag [@langchainai](https://twitter.com/LangChainAI), well almost certainly see it and can show you some love.
- **Publish something on our blog:** If youre writing about your experience building with LangChain, wed love to post (or crosspost) it on our blog! E-mail hello@langchain.dev with a draft of your post! Or even an idea for something you want to write about.
- **Get your product onto our [integrations hub](https://integrations.langchain.com/):** Many developers take advantage of our seamless integrations with other products, and come to our integrations hub to find out who those are. If you want to get your product up there, tell us about it (and how it works with LangChain) at hello@langchain.dev.
# ☀️ Stay in the loop
Heres where our team hangs out, talks shop, spotlights cool work, and shares what were up to. Wed love to see you there too.
- **[Twitter](https://twitter.com/LangChainAI):** We post about what were working on and what cool things were seeing in the space. If you tag @langchainai in your post, well almost certainly see it, and can show you some love!
- **[Discord](https://discord.gg/6adMQxSpJS):** connect with over 30,000 developers who are building with LangChain.
- **[GitHub](https://github.com/langchain-ai/langchain):** Open pull requests, contribute to a discussion, and/or contribute
- **[Subscribe to our bi-weekly Release Notes](https://6w1pwbss0py.typeform.com/to/KjZB1auB):** a twice/month email roundup of the coolest things going on in our orbit

View File

@@ -1,26 +0,0 @@
---
sidebar_position: 6
sidebar_label: FAQ
---
# Frequently Asked Questions
## Pull Requests (PRs)
### How do I allow maintainers to edit my PR?
When you submit a pull request, there may be additional changes
necessary before merging it. Oftentimes, it is more efficient for the
maintainers to make these changes themselves before merging, rather than asking you
to do so in code review.
By default, most pull requests will have a
`✅ Maintainers are allowed to edit this pull request.`
badge in the right-hand sidebar.
If you do not see this badge, you may have this setting off for the fork you are
pull-requesting from. See [this Github docs page](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/allowing-changes-to-a-pull-request-branch-created-from-a-fork)
for more information.
Notably, Github doesn't allow this setting to be enabled for forks in **organizations** ([issue](https://github.com/orgs/community/discussions/5634)).
If you are working in an organization, we recommend submitting your PR from a personal
fork in order to enable this setting.

View File

@@ -12,9 +12,9 @@ As an open-source project in a rapidly developing field, we are extremely open t
There are many ways to contribute to LangChain. Here are some common ways people contribute:
- [**Documentation**](./documentation.mdx): Help improve our docs, including this one!
- [**Code**](./code.mdx): Help us write code, fix bugs, or improve our infrastructure.
- [**Integrations**](integrations.mdx): Help us integrate with your favorite vendors and tools.
- [**Documentation**](./documentation): Help improve our docs, including this one!
- [**Code**](./code): Help us write code, fix bugs, or improve our infrastructure.
- [**Integrations**](./integrations): Help us integrate with your favorite vendors and tools.
### 🚩GitHub Issues
@@ -40,8 +40,3 @@ smooth for future contributors.
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
If you are finding these difficult (or even just annoying) to work with, feel free to contact a maintainer for help -
we do not want these to get in the way of getting good code into the codebase.
# 🌟 Recognition
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.

View File

@@ -53,9 +53,9 @@ And we would write tests in:
- Integration tests: `libs/community/tests/integration_tests/chat_models/test_parrot_link.py`
And add documentation to:
- `docs/docs/integrations/chat/parrot_link.ipynb`
- `docs/docs/
## Partner Packages
Partner packages are in `libs/partners/*` and are installed by users with `pip install langchain-{partner}`, and exported members can be imported with code like

View File

@@ -0,0 +1,56 @@
---
sidebar_label: Package Versioning
sidebar_position: 4
---
# 📕 Package Versioning
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
a maintainer and published to [PyPI](https://pypi.org/).
The different packages are versioned slightly differently.
## `langchain-core`
`langchain-core` is currently on version `0.1.x`.
As `langchain-core` contains the base abstractions and runtime for the whole LangChain ecosystem, we will communicate any breaking changes with advance notice and version bumps. The exception for this is anything in `langchain_core.beta`. The reason for `langchain_core.beta` is that given the rate of change of the field, being able to move quickly is still a priority, and this module is our attempt to do so.
Minor version increases will occur for:
- Breaking changes for any public interfaces NOT in `langchain_core.beta`
Patch version increases will occur for:
- Bug fixes
- New features
- Any changes to private interfaces
- Any changes to `langchain_core.beta`
## `langchain`
`langchain` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase. Any changes to public interfaces are nearly always done in a backwards compatible way and will be communicated ahead of time when they are not backwards compatible.
We are targeting January 2024 for a release of `langchain` v0.1, at which point `langchain` will adopt the same versioning policy as `langchain-core`.
## `langchain-community`
`langchain-community` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase.
## `langchain-experimental`
`langchain-experimental` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase.
## Partner Packages
Partner packages are versioned independently.
# 🌟 Recognition
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.

View File

@@ -12,20 +12,18 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 1,
"id": "af4381de",
"metadata": {},
"outputs": [],
"source": [
"from langchain import hub\n",
"from langchain.agents import AgentExecutor, tool\n",
"from langchain.agents.output_parsers import XMLAgentOutputParser\n",
"from langchain_community.chat_models import ChatAnthropic"
"from langchain.agents import AgentExecutor, XMLAgent, tool\n",
"from langchain.chat_models import ChatAnthropic"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "24cc8134",
"metadata": {},
"outputs": [],
@@ -35,7 +33,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "67c0b0e4",
"metadata": {},
"outputs": [],
@@ -48,7 +46,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"id": "7203b101",
"metadata": {},
"outputs": [],
@@ -58,18 +56,18 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 5,
"id": "b68e756d",
"metadata": {},
"outputs": [],
"source": [
"# Get the prompt to use - you can modify this!\n",
"prompt = hub.pull(\"hwchase17/xml-agent-convo\")"
"# Get prompt to use\n",
"prompt = XMLAgent.get_default_prompt()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 6,
"id": "61ab3e9a",
"metadata": {},
"outputs": [],
@@ -109,27 +107,27 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 7,
"id": "e92f1d6f",
"metadata": {},
"outputs": [],
"source": [
"agent = (\n",
" {\n",
" \"input\": lambda x: x[\"input\"],\n",
" \"agent_scratchpad\": lambda x: convert_intermediate_steps(\n",
" \"question\": lambda x: x[\"question\"],\n",
" \"intermediate_steps\": lambda x: convert_intermediate_steps(\n",
" x[\"intermediate_steps\"]\n",
" ),\n",
" }\n",
" | prompt.partial(tools=convert_tools(tool_list))\n",
" | model.bind(stop=[\"</tool_input>\", \"</final_answer>\"])\n",
" | XMLAgentOutputParser()\n",
" | XMLAgent.get_default_output_parser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 8,
"id": "6ce6ec7a",
"metadata": {},
"outputs": [],
@@ -139,7 +137,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 9,
"id": "fb5cb2e3",
"metadata": {},
"outputs": [
@@ -150,8 +148,10 @@
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m <tool>search</tool><tool_input>weather in New York\u001b[0m\u001b[36;1m\u001b[1;3m32 degrees\u001b[0m\u001b[32;1m\u001b[1;3m <tool>search</tool>\n",
"<tool_input>weather in New York\u001b[0m\u001b[36;1m\u001b[1;3m32 degrees\u001b[0m\u001b[32;1m\u001b[1;3m <final_answer>The weather in New York is 32 degrees\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m <tool>search</tool>\n",
"<tool_input>weather in new york\u001b[0m\u001b[36;1m\u001b[1;3m32 degrees\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"\n",
"<final_answer>The weather in New York is 32 degrees\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
@@ -159,17 +159,17 @@
{
"data": {
"text/plain": [
"{'input': 'whats the weather in New york?',\n",
"{'question': 'whats the weather in New york?',\n",
" 'output': 'The weather in New York is 32 degrees'}"
]
},
"execution_count": 14,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.invoke({\"input\": \"whats the weather in New york?\"})"
"agent_executor.invoke({\"question\": \"whats the weather in New york?\"})"
]
},
{

View File

@@ -10,16 +10,6 @@
"Example of how to use LCEL to write Python code."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0653c7c7",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-core langchain-experimental langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -27,12 +17,12 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import (\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
")\n",
"from langchain_experimental.utilities import PythonREPL\n",
"from langchain_openai import ChatOpenAI"
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_experimental.utilities import PythonREPL"
]
},
{

View File

@@ -12,16 +12,6 @@
"One especially useful technique is to use embeddings to route a query to the most relevant prompt. Here's a very simple example."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b793a0aa",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-core langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -29,11 +19,12 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.utils.math import cosine_similarity\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"\n",
"physics_template = \"\"\"You are a very smart physics professor. \\\n",
"You are great at answering questions about physics in a concise and easy to understand manner. \\\n",

View File

@@ -10,16 +10,6 @@
"This shows how to add memory to an arbitrary chain. Right now, you can use the memory classes but need to hook it up manually"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18753dee",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -29,10 +19,10 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"prompt = ChatPromptTemplate.from_messages(\n",

View File

@@ -10,16 +10,6 @@
"This shows how to add in moderation (or other safeguards) around your LLM application."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6acf3505",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 20,
@@ -28,8 +18,8 @@
"outputs": [],
"source": [
"from langchain.chains import OpenAIModerationChain\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import OpenAI"
"from langchain.llms import OpenAI\n",
"from langchain.prompts import ChatPromptTemplate"
]
},
{

View File

@@ -19,14 +19,6 @@
"Runnables can easily be used to string together multiple Chains"
]
},
{
"cell_type": "raw",
"id": "0f316b5c",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 4,
@@ -47,9 +39,9 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt1 = ChatPromptTemplate.from_template(\"what is the city {person} is from?\")\n",
"prompt2 = ChatPromptTemplate.from_template(\n",

View File

@@ -35,14 +35,6 @@
"Note, you can mix and match PromptTemplate/ChatPromptTemplates and LLMs/ChatModels as you like here."
]
},
{
"cell_type": "raw",
"id": "ef79a54b",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -50,8 +42,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {foo}\")\n",
"model = ChatOpenAI()\n",

View File

@@ -12,16 +12,6 @@
"With LCEL, it's easy to add custom functionality for managing the size of prompts within your chain or agent. Let's look at simple agent example that can search Wikipedia for information."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1846587d",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai wikipedia"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -29,17 +19,19 @@
"metadata": {},
"outputs": [],
"source": [
"# !pip install langchain wikipedia\n",
"\n",
"from operator import itemgetter\n",
"\n",
"from langchain.agents import AgentExecutor, load_tools\n",
"from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
"from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.prompts.chat import ChatPromptValue\n",
"from langchain.tools import WikipediaQueryRun\n",
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_function\n",
"from langchain_community.utilities import WikipediaAPIWrapper\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_openai import ChatOpenAI"
"from langchain.tools.render import format_tool_to_openai_function\n",
"from langchain.utilities import WikipediaAPIWrapper"
]
},
{

View File

@@ -26,7 +26,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai faiss-cpu tiktoken"
"!pip install langchain openai faiss-cpu tiktoken"
]
},
{
@@ -38,11 +38,12 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings"
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough"
]
},
{

View File

@@ -19,14 +19,6 @@
"We can replicate our SQLDatabaseChain with Runnables."
]
},
{
"cell_type": "raw",
"id": "b3121aa8",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -34,7 +26,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
@@ -51,7 +43,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import SQLDatabase"
"from langchain.utilities import SQLDatabase"
]
},
{
@@ -101,9 +93,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"\n",

View File

@@ -17,7 +17,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai duckduckgo-search"
"!pip install duckduckgo-search"
]
},
{
@@ -27,10 +27,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.tools import DuckDuckGoSearchRun\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI"
"from langchain_core.output_parsers import StrOutputParser"
]
},
{

View File

@@ -30,38 +30,30 @@
"The most basic and common use case is chaining a prompt template and a model together. To see how this works, let's create a chain that takes a topic and generates a joke:"
]
},
{
"cell_type": "raw",
"id": "278b0027",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain-core langchain-community langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 7,
"id": "466b65b3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why don't ice creams ever get invited to parties?\\n\\nBecause they always drip when things heat up!\""
"\"Why did the ice cream go to therapy?\\n\\nBecause it had too many toppings and couldn't find its cone-fidence!\""
]
},
"execution_count": 1,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a short joke about {topic}\")\n",
"model = ChatOpenAI(model=\"gpt-4\")\n",
"model = ChatOpenAI()\n",
"output_parser = StrOutputParser()\n",
"\n",
"chain = prompt | model | output_parser\n",
@@ -97,7 +89,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 8,
"id": "b8656990",
"metadata": {},
"outputs": [
@@ -107,7 +99,7 @@
"ChatPromptValue(messages=[HumanMessage(content='tell me a short joke about ice cream')])"
]
},
"execution_count": 2,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -119,7 +111,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 9,
"id": "e6034488",
"metadata": {},
"outputs": [
@@ -129,7 +121,7 @@
"[HumanMessage(content='tell me a short joke about ice cream')]"
]
},
"execution_count": 3,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -140,7 +132,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 10,
"id": "60565463",
"metadata": {},
"outputs": [
@@ -150,7 +142,7 @@
"'Human: tell me a short joke about ice cream'"
]
},
"execution_count": 4,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -171,17 +163,17 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 11,
"id": "33cf5f72",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Why don't ice creams ever get invited to parties?\\n\\nBecause they always bring a melt down!\")"
"AIMessage(content=\"Why did the ice cream go to therapy? \\n\\nBecause it had too many toppings and couldn't find its cone-fidence!\")"
]
},
"execution_count": 5,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -201,23 +193,23 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 12,
"id": "8feb05da",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\nRobot: Why did the ice cream truck break down? Because it had a meltdown!'"
"'\\n\\nRobot: Why did the ice cream go to therapy? Because it had a rocky road.'"
]
},
"execution_count": 6,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_openai.llms import OpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")\n",
"llm.invoke(prompt_value)"
@@ -332,12 +324,12 @@
"# Requires:\n",
"# pip install langchain docarray tiktoken\n",
"\n",
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.vectorstores import DocArrayInMemorySearch\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"from langchain_openai.chat_models import ChatOpenAI\n",
"from langchain_openai.embeddings import OpenAIEmbeddings\n",
"\n",
"vectorstore = DocArrayInMemorySearch.from_texts(\n",
" [\"harrison worked at kensho\", \"bears like to eat honey\"],\n",
@@ -494,7 +486,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -12,16 +12,6 @@
"Suppose we have a simple prompt + model sequence:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c5dad8b5",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -29,10 +19,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI"
"from langchain_core.runnables import RunnablePassthrough"
]
},
{

View File

@@ -34,16 +34,6 @@
"With LLMs we can configure things like temperature"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40ed76a2",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 35,
@@ -51,9 +41,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_core.runnables import ConfigurableField\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(temperature=0).configurable_fields(\n",
" temperature=ConfigurableField(\n",
@@ -273,10 +263,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatAnthropic, ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatAnthropic\n",
"from langchain_core.runnables import ConfigurableField\n",
"from langchain_openai import ChatOpenAI"
"from langchain_core.runnables import ConfigurableField"
]
},
{

View File

@@ -1,136 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "b45110ef",
"metadata": {},
"source": [
"# Create a runnable with the `@chain` decorator\n",
"\n",
"You can also turn an arbitrary function into a chain by adding a `@chain` decorator. This is functionaly equivalent to wrapping in a [`RunnableLambda`](./functions).\n",
"\n",
"This will have the benefit of improved observability by tracing your chain correctly. Any calls to runnables inside this function will be traced as nested childen.\n",
"\n",
"It will also allow you to use this as any other runnable, compose it in chain, etc.\n",
"\n",
"Let's take a look at this in action!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "23b2b564",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d9370420",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import chain\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b7f74f7e",
"metadata": {},
"outputs": [],
"source": [
"prompt1 = ChatPromptTemplate.from_template(\"Tell me a joke about {topic}\")\n",
"prompt2 = ChatPromptTemplate.from_template(\"What is the subject of this joke: {joke}\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "2b0365c4",
"metadata": {},
"outputs": [],
"source": [
"@chain\n",
"def custom_chain(text):\n",
" prompt_val1 = prompt1.invoke({\"topic\": text})\n",
" output1 = ChatOpenAI().invoke(prompt_val1)\n",
" parsed_output1 = StrOutputParser().invoke(output1)\n",
" chain2 = prompt2 | ChatOpenAI() | StrOutputParser()\n",
" return chain2.invoke({\"joke\": parsed_output1})"
]
},
{
"cell_type": "markdown",
"id": "904d6872",
"metadata": {},
"source": [
"`custom_chain` is now a runnable, meaning you will need to use `invoke`"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "6448bdd3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The subject of this joke is bears.'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"custom_chain.invoke(\"bears\")"
]
},
{
"cell_type": "markdown",
"id": "aa767ea9",
"metadata": {},
"source": [
"If you check out your LangSmith traces, you should see a `custom_chain` trace in there, with the calls to OpenAI nested underneath"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1245bdc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Some files were not shown because too many files have changed in this diff Show More