mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-13 22:32:33 +00:00
Compare commits
159 Commits
eugene/age
...
bagatur/cl
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
61644408c2 | ||
|
|
43700be083 | ||
|
|
4ef0ed4ddc | ||
|
|
91230ef5d1 | ||
|
|
39b3c6d94c | ||
|
|
9b0a531aa2 | ||
|
|
63e2acc964 | ||
|
|
881d1c3ec5 | ||
|
|
e3828bee43 | ||
|
|
2454fefc53 | ||
|
|
84bf5787a7 | ||
|
|
6f7a414955 | ||
|
|
cc2e30fa13 | ||
|
|
3b649f4331 | ||
|
|
c0d453d8ac | ||
|
|
021b0484a8 | ||
|
|
f63906a9c2 | ||
|
|
3ccbe11363 | ||
|
|
fc84083ce5 | ||
|
|
9d32af72ce | ||
|
|
3613d8a2ad | ||
|
|
0f99646ca6 | ||
|
|
177af65dc4 | ||
|
|
f175bf7d7b | ||
|
|
e5878c467a | ||
|
|
2f348c695a | ||
|
|
50959abf0c | ||
|
|
b9495da92d | ||
|
|
eec3347939 | ||
|
|
92bc80483a | ||
|
|
0e76d84137 | ||
|
|
aa35b43bcd | ||
|
|
f2b2d59e82 | ||
|
|
f60f59d69f | ||
|
|
6bc6d64a12 | ||
|
|
65b231d40b | ||
|
|
ed118950fe | ||
|
|
aa2e642ce3 | ||
|
|
6b9e3ed9e9 | ||
|
|
ecd4f0a7ec | ||
|
|
27ad65cc68 | ||
|
|
7d444724d7 | ||
|
|
5d8c147332 | ||
|
|
3502a407d9 | ||
|
|
ca014d5b04 | ||
|
|
1e80113ac9 | ||
|
|
27ed2673da | ||
|
|
f238217cea | ||
|
|
2af813c7eb | ||
|
|
679a3ae933 | ||
|
|
7ad9eba8f4 | ||
|
|
58f0ba306b | ||
|
|
ec9642d667 | ||
|
|
5c73fd5bba | ||
|
|
fb940d11df | ||
|
|
1fa056c324 | ||
|
|
11327e6b64 | ||
|
|
2709d3e5f2 | ||
|
|
c5f6b828ad | ||
|
|
e7ddec1f2c | ||
|
|
49aff3ea5b | ||
|
|
60b1bd02d7 | ||
|
|
9e9ad9b0e9 | ||
|
|
d350be959d | ||
|
|
d0e101e4e0 | ||
|
|
bc0cb1148a | ||
|
|
8597484195 | ||
|
|
9c2f1f07a0 | ||
|
|
f406dc3872 | ||
|
|
da96c511d1 | ||
|
|
b0c3e3db2b | ||
|
|
d91126fc64 | ||
|
|
3606c5d5e9 | ||
|
|
a35e5f19a8 | ||
|
|
06fe2f4fb0 | ||
|
|
ce10fe0c2f | ||
|
|
e5cf1e2414 | ||
|
|
f3601b0aaf | ||
|
|
c323742f4f | ||
|
|
f974eb5b8b | ||
|
|
4df14a61fc | ||
|
|
8840a8cc95 | ||
|
|
3d34347a85 | ||
|
|
62a2e9ee19 | ||
|
|
6b6269441c | ||
|
|
5f057f24ac | ||
|
|
076593382a | ||
|
|
c5656a4905 | ||
|
|
770f57196e | ||
|
|
52114bdfac | ||
|
|
ca288d8f2c | ||
|
|
476fb328ee | ||
|
|
697a6f2c80 | ||
|
|
061e63eef2 | ||
|
|
d196646811 | ||
|
|
5cf06db3b3 | ||
|
|
d334efc848 | ||
|
|
251afda549 | ||
|
|
7220124368 | ||
|
|
ee378a0f40 | ||
|
|
ddf4e7c633 | ||
|
|
ce21392a21 | ||
|
|
9e779ca846 | ||
|
|
daa9ccae52 | ||
|
|
7c57cfd8f0 | ||
|
|
beec7259c8 | ||
|
|
b11fd3bedc | ||
|
|
7306032dcf | ||
|
|
21e0df937f | ||
|
|
15c2b4a47e | ||
|
|
fb676d8a9b | ||
|
|
6137c7608d | ||
|
|
e80aab2275 | ||
|
|
ce7723c1e5 | ||
|
|
8799b028a6 | ||
|
|
fb7e66b809 | ||
|
|
c0773ab329 | ||
|
|
14244bd7e5 | ||
|
|
768e5e33bc | ||
|
|
86321a949f | ||
|
|
60d6a416e6 | ||
|
|
f7706637a8 | ||
|
|
0fa06732b7 | ||
|
|
7b084b4cc7 | ||
|
|
bccb07f93e | ||
|
|
3f75fd41cc | ||
|
|
eb6e385dc5 | ||
|
|
74bac7bda1 | ||
|
|
845e407e08 | ||
|
|
a74f3a4979 | ||
|
|
efe6cfafe2 | ||
|
|
1afac77439 | ||
|
|
9fb09c1c30 | ||
|
|
eb76f9c9fe | ||
|
|
bc60203d0f | ||
|
|
c697c89ca4 | ||
|
|
69533c8628 | ||
|
|
6a48ea43ec | ||
|
|
6a2889a4ec | ||
|
|
95020637bc | ||
|
|
d5808f786c | ||
|
|
13b90232c1 | ||
|
|
9b3962fc25 | ||
|
|
e26e1f8b37 | ||
|
|
eb9b334a6b | ||
|
|
560bb49c99 | ||
|
|
81d1ba05dc | ||
|
|
74d9fc2f9e | ||
|
|
bdd90ae2ee | ||
|
|
5efec068c9 | ||
|
|
ec4dab0449 | ||
|
|
f454e95461 | ||
|
|
782dd44be9 | ||
|
|
112208baa5 | ||
|
|
129552e3d6 | ||
|
|
438beb6c94 | ||
|
|
ebb6ad4f7a | ||
|
|
437cebc955 | ||
|
|
80d41a8da3 |
7
.github/ISSUE_TEMPLATE/config.yml
vendored
7
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,9 +1,12 @@
|
||||
blank_issues_enabled: true
|
||||
blank_issues_enabled: false
|
||||
version: 2.1
|
||||
contact_links:
|
||||
- name: 🤔 Question or Problem
|
||||
about: Ask a question or ask about a problem in GitHub Discussions.
|
||||
url: https://github.com/langchain-ai/langchain/discussions
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/q-a
|
||||
- name: Discord
|
||||
url: https://discord.gg/6adMQxSpJS
|
||||
about: General community discussions
|
||||
- name: Show and tell
|
||||
about: Show what you built with LangChain
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/show-and-tell
|
||||
|
||||
25
.github/ISSUE_TEMPLATE/privileged.yml
vendored
Normal file
25
.github/ISSUE_TEMPLATE/privileged.yml
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
name: 🔒 Privileged
|
||||
description: You are a LangChain maintainer, or was asked directly by a maintainer to create an issue here. If not, check the other options.
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for your interest in LangChain! 🚀
|
||||
|
||||
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation in a [Question in GitHub Discussions](https://github.com/langchain-ai/langchain/discussions/categories/q-a) instead.
|
||||
|
||||
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
|
||||
or are a regular contributor to LangChain with previous merged merged pull requests.
|
||||
- type: checkboxes
|
||||
id: privileged
|
||||
attributes:
|
||||
label: Privileged issue
|
||||
description: Confirm that you are allowed to create an issue here.
|
||||
options:
|
||||
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create an issue here.
|
||||
required: true
|
||||
- type: textarea
|
||||
id: content
|
||||
attributes:
|
||||
label: Issue Content
|
||||
description: Add the content of the issue here.
|
||||
2
.github/workflows/_all_ci.yml
vendored
2
.github/workflows/_all_ci.yml
vendored
@@ -32,7 +32,7 @@ concurrency:
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
|
||||
@@ -9,7 +9,7 @@ on:
|
||||
description: "From which folder this pipeline executes"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
2
.github/workflows/_dependencies.yml
vendored
2
.github/workflows/_dependencies.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Relative path to the langchain library folder"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
6
.github/workflows/_integration_test.yml
vendored
6
.github/workflows/_integration_test.yml
vendored
@@ -8,10 +8,11 @@ on:
|
||||
type: string
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
environment: Scheduled testing
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
@@ -51,6 +52,9 @@ jobs:
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
run: |
|
||||
make integration_tests
|
||||
|
||||
|
||||
2
.github/workflows/_lint.yml
vendored
2
.github/workflows/_lint.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Relative path to the langchain library folder"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
# This env var allows us to get inline annotations when ruff has complaints.
|
||||
|
||||
17
.github/workflows/_release.yml
vendored
17
.github/workflows/_release.yml
vendored
@@ -16,11 +16,12 @@ on:
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.10"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.ref == 'refs/heads/master'
|
||||
environment: Scheduled testing
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
outputs:
|
||||
@@ -117,11 +118,18 @@ jobs:
|
||||
# are not found on test PyPI can be resolved and installed anyway.
|
||||
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
|
||||
# package because VERSION will not have been uploaded to regular PyPI yet.
|
||||
#
|
||||
# - attempt install again after 5 seconds if it fails because there is
|
||||
# sometimes a delay in availability on test pypi
|
||||
run: |
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION"
|
||||
"$PKG_NAME==$VERSION" || \
|
||||
( \
|
||||
sleep 5 && \
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" \
|
||||
)
|
||||
|
||||
# Replace all dashes in the package name with underscores,
|
||||
# since that's how Python imports packages with dashes in the name.
|
||||
@@ -163,6 +171,9 @@ jobs:
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
run: make integration_tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
|
||||
2
.github/workflows/_test.yml
vendored
2
.github/workflows/_test.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Relative path to the langchain library folder"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
2
.github/workflows/_test_release.yml
vendored
2
.github/workflows/_test_release.yml
vendored
@@ -9,7 +9,7 @@ on:
|
||||
description: "From which folder this pipeline executes"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
|
||||
2
.github/workflows/scheduled_test.yml
vendored
2
.github/workflows/scheduled_test.yml
vendored
@@ -6,7 +6,7 @@ on:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
2
.github/workflows/templates_ci.yml
vendored
2
.github/workflows/templates_ci.yml
vendored
@@ -24,7 +24,7 @@ concurrency:
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
WORKDIR: "templates"
|
||||
|
||||
jobs:
|
||||
|
||||
@@ -49,7 +49,7 @@ The LangChain libraries themselves are made up of several different packages.
|
||||
- **[`langchain-community`](libs/community)**: Third party integrations.
|
||||
- **[`langchain`](libs/langchain)**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
|
||||

|
||||

|
||||
|
||||
## 🧱 What can you build with LangChain?
|
||||
**❓ Retrieval augmented generation**
|
||||
|
||||
@@ -82,7 +82,7 @@
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"\n",
|
||||
"# LLM\n",
|
||||
"from langchain_community.llms import Together\n",
|
||||
"from langchain_together import Together\n",
|
||||
"\n",
|
||||
"llm = Together(\n",
|
||||
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
|
||||
|
||||
@@ -6,7 +6,7 @@ pydantic<2
|
||||
autodoc_pydantic==1.8.0
|
||||
myst_parser
|
||||
nbsphinx==0.8.9
|
||||
sphinx==4.5.0
|
||||
sphinx>=5
|
||||
sphinx-autobuild==2021.3.14
|
||||
sphinx_rtd_theme==1.0.0
|
||||
sphinx-typlog-theme==0.8.0
|
||||
|
||||
@@ -32,7 +32,7 @@ For a [development container](https://containers.dev/), see the [.devcontainer f
|
||||
|
||||
### Dependency Management: Poetry and other env/dependency managers
|
||||
|
||||
This project utilizes [Poetry](https://python-poetry.org/) v1.6.1+ as a dependency manager.
|
||||
This project utilizes [Poetry](https://python-poetry.org/) v1.7.1+ as a dependency manager.
|
||||
|
||||
❗Note: *Before installing Poetry*, if you use `Conda`, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
|
||||
|
||||
@@ -75,7 +75,7 @@ make test
|
||||
|
||||
If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running
|
||||
Poetry v1.6.1+. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases.
|
||||
If you are still seeing this bug on v1.6.1, you may also try disabling "modern installation"
|
||||
If you are still seeing this bug on v1.6.1+, you may also try disabling "modern installation"
|
||||
(`poetry config installer.modern-installation false`) and re-installing requirements.
|
||||
See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
|
||||
|
||||
|
||||
@@ -177,7 +177,7 @@
|
||||
"source": [
|
||||
"## Get the prompts\n",
|
||||
"\n",
|
||||
"An important part of every chain is the prompts that are used. You can get the graphs present in the chain:"
|
||||
"An important part of every chain is the prompts that are used. You can get the prompts present in the chain:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -14,7 +14,7 @@ This framework consists of several parts.
|
||||
- **[LangServe](/docs/langserve)**: A library for deploying LangChain chains as a REST API.
|
||||
- **[LangSmith](/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
|
||||

|
||||

|
||||
|
||||
Together, these products simplify the entire application lifecycle:
|
||||
- **Develop**: Write your applications in LangChain/LangChain.js. Hit the ground running using Templates for reference.
|
||||
|
||||
@@ -59,7 +59,7 @@ In this quickstart, we will walk through a few different ways of doing that.
|
||||
We will start with a simple LLM chain, which just relies on information in the prompt template to respond.
|
||||
Next, we will build a retrieval chain, which fetches data from a separate database and passes that into the prompt template.
|
||||
We will then add in chat history, to create a conversation retrieval chain. This allows you interact in a chat manner with this LLM, so it remembers previous questions.
|
||||
Finally, we will build an agent - which utilizes and LLM to determine whether or not it needs to fetch data to answer questions.
|
||||
Finally, we will build an agent - which utilizes an LLM to determine whether or not it needs to fetch data to answer questions.
|
||||
We will cover these at a high level, but there are lot of details to all of these!
|
||||
We will link to relevant docs.
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ Platforms with tracing capabilities like [LangSmith](/docs/langsmith/) and [Wand
|
||||
|
||||
For anyone building production-grade LLM applications, we highly recommend using a platform like this.
|
||||
|
||||

|
||||

|
||||
|
||||
## `set_debug` and `set_verbose`
|
||||
|
||||
|
||||
@@ -53,9 +53,16 @@
|
||||
"- AquilaChat-7B"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -65,83 +72,105 @@
|
||||
"from langchain_community.chat_models import QianfanChatEndpoint\n",
|
||||
"from langchain_core.language_models.chat_models import HumanMessage\n",
|
||||
"\n",
|
||||
"os.environ[\"QIANFAN_AK\"] = \"your_ak\"\n",
|
||||
"os.environ[\"QIANFAN_SK\"] = \"your_sk\"\n",
|
||||
"\n",
|
||||
"chat = QianfanChatEndpoint(\n",
|
||||
" streaming=True,\n",
|
||||
")\n",
|
||||
"res = chat([HumanMessage(content=\"write a funny joke\")])"
|
||||
"os.environ[\"QIANFAN_AK\"] = \"Your_api_key\"\n",
|
||||
"os.environ[\"QIANFAN_SK\"] = \"You_secret_Key\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[INFO] [09-15 20:00:36] logging.py:55 [t:139698882193216]: requesting llm api endpoint: /chat/eb-instant\n",
|
||||
"[INFO] [09-15 20:00:37] logging.py:55 [t:139698882193216]: async requesting llm api endpoint: /chat/eb-instant\n"
|
||||
]
|
||||
},
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='您好!请问您需要什么帮助?我将尽力回答您的问题。')"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chat = QianfanChatEndpoint(streaming=True)\n",
|
||||
"messages = [HumanMessage(content=\"Hello\")]\n",
|
||||
"chat.invoke(messages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='您好!有什么我可以帮助您的吗?')"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"await chat.ainvoke(messages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[AIMessage(content='您好!有什么我可以帮助您的吗?')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chat.batch([messages])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Streaming"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"chat resp: content='您好,您似乎输入' additional_kwargs={} example=False\n",
|
||||
"chat resp: content='了一个话题标签,请问需要我帮您找到什么资料或者帮助您解答什么问题吗?' additional_kwargs={} example=False\n",
|
||||
"chat resp: content='' additional_kwargs={} example=False\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[INFO] [09-15 20:00:39] logging.py:55 [t:139698882193216]: async requesting llm api endpoint: /chat/eb-instant\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"generations=[[ChatGeneration(text=\"The sea is a vast expanse of water that covers much of the Earth's surface. It is a source of travel, trade, and entertainment, and is also a place of scientific exploration and marine conservation. The sea is an important part of our world, and we should cherish and protect it.\", generation_info={'finish_reason': 'finished'}, message=AIMessage(content=\"The sea is a vast expanse of water that covers much of the Earth's surface. It is a source of travel, trade, and entertainment, and is also a place of scientific exploration and marine conservation. The sea is an important part of our world, and we should cherish and protect it.\", additional_kwargs={}, example=False))]] llm_output={} run=[RunInfo(run_id=UUID('d48160a6-5960-4c1d-8a0e-90e6b51a209b'))]\n",
|
||||
"astream content='The sea is a vast' additional_kwargs={} example=False\n",
|
||||
"astream content=' expanse of water, a place of mystery and adventure. It is the source of many cultures and civilizations, and a center of trade and exploration. The sea is also a source of life and beauty, with its unique marine life and diverse' additional_kwargs={} example=False\n",
|
||||
"astream content=' coral reefs. Whether you are swimming, diving, or just watching the sea, it is a place that captivates the imagination and transforms the spirit.' additional_kwargs={} example=False\n"
|
||||
"您好!有什么我可以帮助您的吗?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.schema import HumanMessage\n",
|
||||
"from langchain_community.chat_models import QianfanChatEndpoint\n",
|
||||
"\n",
|
||||
"chatLLM = QianfanChatEndpoint()\n",
|
||||
"res = chatLLM.stream([HumanMessage(content=\"hi\")], streaming=True)\n",
|
||||
"for r in res:\n",
|
||||
" print(\"chat resp:\", r)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async def run_aio_generate():\n",
|
||||
" resp = await chatLLM.agenerate(\n",
|
||||
" messages=[[HumanMessage(content=\"write a 20 words sentence about sea.\")]]\n",
|
||||
" )\n",
|
||||
" print(resp)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"await run_aio_generate()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async def run_aio_stream():\n",
|
||||
" async for res in chatLLM.astream(\n",
|
||||
" [HumanMessage(content=\"write a 20 words sentence about sea.\")]\n",
|
||||
" ):\n",
|
||||
" print(\"astream\", res)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"await run_aio_stream()"
|
||||
"try:\n",
|
||||
" for chunk in chat.stream(messages):\n",
|
||||
" print(chunk.content, end=\"\", flush=True)\n",
|
||||
"except TypeError as e:\n",
|
||||
" print(\"\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -151,39 +180,36 @@
|
||||
"source": [
|
||||
"## Use different models in Qianfan\n",
|
||||
"\n",
|
||||
"In the case you want to deploy your own model based on Ernie Bot or third-party open-source model, you could follow these steps:\n",
|
||||
"The default model is ERNIE-Bot-turbo, in the case you want to deploy your own model based on Ernie Bot or third-party open-source model, you could follow these steps:\n",
|
||||
"\n",
|
||||
"- 1. (Optional, if the model are included in the default models, skip it)Deploy your model in Qianfan Console, get your own customized deploy endpoint.\n",
|
||||
"- 2. Set up the field called `endpoint` in the initialization:"
|
||||
"1. (Optional, if the model are included in the default models, skip it) Deploy your model in Qianfan Console, get your own customized deploy endpoint.\n",
|
||||
"2. Set up the field called `endpoint` in the initialization:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[INFO] [09-15 20:00:50] logging.py:55 [t:139698882193216]: requesting llm api endpoint: /chat/bloomz_7b1\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='你好!很高兴见到你。' additional_kwargs={} example=False\n"
|
||||
]
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Hello,可以回答问题了,我会竭尽全力为您解答,请问有什么问题吗?')"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chatBloom = QianfanChatEndpoint(\n",
|
||||
"chatBot = QianfanChatEndpoint(\n",
|
||||
" streaming=True,\n",
|
||||
" model=\"BLOOMZ-7B\",\n",
|
||||
" model=\"ERNIE-Bot\",\n",
|
||||
")\n",
|
||||
"res = chatBloom([HumanMessage(content=\"hi\")])\n",
|
||||
"print(res)"
|
||||
"\n",
|
||||
"messages = [HumanMessage(content=\"Hello\")]\n",
|
||||
"chatBot.invoke(messages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -202,35 +228,25 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[INFO] [09-15 20:00:57] logging.py:55 [t:139698882193216]: requesting llm api endpoint: /chat/eb-instant\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='您好,您似乎输入' additional_kwargs={} example=False\n",
|
||||
"content='了一个文本字符串,但并没有给出具体的问题或场景。' additional_kwargs={} example=False\n",
|
||||
"content='如果您能提供更多信息,我可以更好地回答您的问题。' additional_kwargs={} example=False\n",
|
||||
"content='' additional_kwargs={} example=False\n"
|
||||
]
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='您好!有什么我可以帮助您的吗?')"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"res = chat.stream(\n",
|
||||
" [HumanMessage(content=\"hi\")],\n",
|
||||
"chat.invoke(\n",
|
||||
" [HumanMessage(content=\"Hello\")],\n",
|
||||
" **{\"top_p\": 0.4, \"temperature\": 0.1, \"penalty_score\": 1},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"for r in res:\n",
|
||||
" print(r)"
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -250,7 +266,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
"version": "3.9.18"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
||||
@@ -16,29 +16,58 @@
|
||||
"# ErnieBotChat\n",
|
||||
"\n",
|
||||
"[ERNIE-Bot](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/jlil56u11) is a large language model developed by Baidu, covering a huge amount of Chinese data.\n",
|
||||
"This notebook covers how to get started with ErnieBot chat models.\n",
|
||||
"This notebook covers how to get started with ErnieBot chat models."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Deprecated Warning**\n",
|
||||
"\n",
|
||||
"We recommend users using `langchain_community.chat_models.ErnieBotChat` \n",
|
||||
"to use `langchain_community.chat_models.QianfanChatEndpoint` instead.\n",
|
||||
"\n",
|
||||
"documentation for `QianfanChatEndpoint` is [here](./baidu_qianfan_endpoint).\n",
|
||||
"\n",
|
||||
"they are 4 why we recommend users to use `QianfanChatEndpoint`:\n",
|
||||
"\n",
|
||||
"**Note:** We recommend users using this class to switch to [Baidu Qianfan](./baidu_qianfan_endpoint). they are 3 why we recommend users to use `QianfanChatEndpoint`:\n",
|
||||
"1. `QianfanChatEndpoint` support more LLM in the Qianfan platform.\n",
|
||||
"2. `QianfanChatEndpoint` support streaming mode.\n",
|
||||
"3. `QianfanChatEndpoint` support function calling usgage.\n",
|
||||
"\n",
|
||||
"4. `ErnieBotChat` is lack of maintenance and deprecated."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Some tips for migration:\n",
|
||||
"\n",
|
||||
"- change `ernie_client_id` to `qianfan_ak`, also change `ernie_client_secret` to `qianfan_sk`.\n",
|
||||
"- install `qianfan` package. \n",
|
||||
" ```\n",
|
||||
" pip install qianfan\n",
|
||||
" ```"
|
||||
"- install `qianfan` package. like `pip install qianfan`\n",
|
||||
"- change `ErnieBotChat` to `QianfanChatEndpoint`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import HumanMessage\n",
|
||||
"from langchain_community.chat_models import ErnieBotChat"
|
||||
"from langchain_community.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint\n",
|
||||
"\n",
|
||||
"chat = QianfanChatEndpoint(\n",
|
||||
" qianfan_ak=\"your qianfan ak\",\n",
|
||||
" qianfan_sk=\"your qianfan sk\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -47,6 +76,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import HumanMessage\n",
|
||||
"from langchain_community.chat_models import ErnieBotChat\n",
|
||||
"\n",
|
||||
"chat = ErnieBotChat(\n",
|
||||
" ernie_client_id=\"YOUR_CLIENT_ID\", ernie_client_secret=\"YOUR_CLIENT_SECRET\"\n",
|
||||
")"
|
||||
|
||||
@@ -320,11 +320,26 @@
|
||||
"4. Message may be blocked if they violate the safety checks of the LLM. In this case, the model will return an empty response."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "75fdfad6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "92b5aca5",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
"source": [
|
||||
"## Additional Configuraation\n",
|
||||
"\n",
|
||||
"You can pass the following parameters to ChatGoogleGenerativeAI in order to customize the SDK's behavior:\n",
|
||||
"\n",
|
||||
"- `client_options`: [Client Options](https://googleapis.dev/python/google-api-core/latest/client_options.html#module-google.api_core.client_options) to pass to the Google API Client, such as a custom `client_options[\"api_endpoint\"]`\n",
|
||||
"- `transport`: The transport method to use, such as `rest`, `grpc`, or `grpc_asyncio`."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -35,29 +34,18 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.3.2\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -67,7 +55,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -76,7 +64,7 @@
|
||||
"AIMessage(content=\" J'aime la programmation.\")"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -92,6 +80,40 @@
|
||||
"chain.invoke({})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Gemini doesn't support SystemMessage at the moment, but it can be added to the first human message in the row. If you want such behavior, just set the `convert_system_message_to_human` to `True`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"J'aime la programmation.\")"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"system = \"You are a helpful assistant who translate English to French\"\n",
|
||||
"human = \"Translate this sentence from English to French. I love programming.\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
|
||||
"\n",
|
||||
"chat = ChatVertexAI(model_name=\"gemini-pro\", convert_system_message_to_human=True)\n",
|
||||
"\n",
|
||||
"chain = prompt | chat\n",
|
||||
"chain.invoke({})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -101,7 +123,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -110,7 +132,7 @@
|
||||
"AIMessage(content=' プログラミングが大好きです')"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -122,6 +144,8 @@
|
||||
"human = \"{text}\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
|
||||
"\n",
|
||||
"chat = ChatVertexAI()\n",
|
||||
"\n",
|
||||
"chain = prompt | chat\n",
|
||||
"\n",
|
||||
"chain.invoke(\n",
|
||||
@@ -134,7 +158,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"execution": {
|
||||
@@ -154,7 +177,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
@@ -165,27 +188,51 @@
|
||||
"text": [
|
||||
" ```python\n",
|
||||
"def is_prime(n):\n",
|
||||
" if n <= 1:\n",
|
||||
" return False\n",
|
||||
" for i in range(2, n):\n",
|
||||
" if n % i == 0:\n",
|
||||
" return False\n",
|
||||
" return True\n",
|
||||
" \"\"\"\n",
|
||||
" Check if a number is prime.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" n: The number to check.\n",
|
||||
"\n",
|
||||
" Returns:\n",
|
||||
" True if n is prime, False otherwise.\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" # If n is 1, it is not prime.\n",
|
||||
" if n == 1:\n",
|
||||
" return False\n",
|
||||
"\n",
|
||||
" # Iterate over all numbers from 2 to the square root of n.\n",
|
||||
" for i in range(2, int(n ** 0.5) + 1):\n",
|
||||
" # If n is divisible by any number from 2 to its square root, it is not prime.\n",
|
||||
" if n % i == 0:\n",
|
||||
" return False\n",
|
||||
"\n",
|
||||
" # If n is divisible by no number from 2 to its square root, it is prime.\n",
|
||||
" return True\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def find_prime_numbers(n):\n",
|
||||
" prime_numbers = []\n",
|
||||
" for i in range(2, n + 1):\n",
|
||||
" if is_prime(i):\n",
|
||||
" prime_numbers.append(i)\n",
|
||||
" return prime_numbers\n",
|
||||
" \"\"\"\n",
|
||||
" Find all prime numbers up to a given number.\n",
|
||||
"\n",
|
||||
"print(find_prime_numbers(100))\n",
|
||||
"```\n",
|
||||
" Args:\n",
|
||||
" n: The upper bound for the prime numbers to find.\n",
|
||||
"\n",
|
||||
"Output:\n",
|
||||
" Returns:\n",
|
||||
" A list of all prime numbers up to n.\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]\n",
|
||||
" # Create a list of all numbers from 2 to n.\n",
|
||||
" numbers = list(range(2, n + 1))\n",
|
||||
"\n",
|
||||
" # Iterate over the list of numbers and remove any that are not prime.\n",
|
||||
" for number in numbers:\n",
|
||||
" if not is_prime(number):\n",
|
||||
" numbers.remove(number)\n",
|
||||
"\n",
|
||||
" # Return the list of prime numbers.\n",
|
||||
" return numbers\n",
|
||||
"```\n"
|
||||
]
|
||||
}
|
||||
@@ -199,6 +246,143 @@
|
||||
"print(message.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Full generation info\n",
|
||||
"\n",
|
||||
"We can use the `generate` method to get back extra metadata like [safety attributes](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_confidence_scoring) and not just chat completions\n",
|
||||
"\n",
|
||||
"Note that the `generation_info` will be different depending if you're using a gemini model or not.\n",
|
||||
"\n",
|
||||
"### Gemini model\n",
|
||||
"\n",
|
||||
"`generation_info` will include:\n",
|
||||
"\n",
|
||||
"- `is_blocked`: whether generation was blocked or not\n",
|
||||
"- `safety_ratings`: safety ratings' categories and probability labels"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'is_blocked': False,\n",
|
||||
" 'safety_ratings': [{'category': 'HARM_CATEGORY_HARASSMENT',\n",
|
||||
" 'probability_label': 'NEGLIGIBLE'},\n",
|
||||
" {'category': 'HARM_CATEGORY_HATE_SPEECH',\n",
|
||||
" 'probability_label': 'NEGLIGIBLE'},\n",
|
||||
" {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT',\n",
|
||||
" 'probability_label': 'NEGLIGIBLE'},\n",
|
||||
" {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',\n",
|
||||
" 'probability_label': 'NEGLIGIBLE'}]}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from pprint import pprint\n",
|
||||
"\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from langchain_google_vertexai import ChatVertexAI, HarmBlockThreshold, HarmCategory\n",
|
||||
"\n",
|
||||
"human = \"Translate this sentence from English to French. I love programming.\"\n",
|
||||
"messages = [HumanMessage(content=human)]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chat = ChatVertexAI(\n",
|
||||
" model_name=\"gemini-pro\",\n",
|
||||
" safety_settings={\n",
|
||||
" HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"result = chat.generate([messages])\n",
|
||||
"pprint(result.generations[0][0].generation_info)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Non-gemini model\n",
|
||||
"\n",
|
||||
"`generation_info` will include:\n",
|
||||
"\n",
|
||||
"- `is_blocked`: whether generation was blocked or not\n",
|
||||
"- `safety_attributes`: a dictionary mapping safety attributes to their scores"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'is_blocked': False,\n",
|
||||
" 'safety_attributes': {'Derogatory': 0.1,\n",
|
||||
" 'Finance': 0.3,\n",
|
||||
" 'Insult': 0.1,\n",
|
||||
" 'Sexual': 0.1}}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chat = ChatVertexAI() # default is `chat-bison`\n",
|
||||
"\n",
|
||||
"result = chat.generate([messages])\n",
|
||||
"pprint(result.generations[0][0].generation_info)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Function Calling with Gemini\n",
|
||||
"\n",
|
||||
"We can call Gemini models with tools."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"MyModel(name='Erick', age=27)"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_google_vertexai import create_structured_runnable\n",
|
||||
"\n",
|
||||
"llm = ChatVertexAI(model_name=\"gemini-pro\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class MyModel(BaseModel):\n",
|
||||
" name: str\n",
|
||||
" age: int\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chain = create_structured_runnable(MyModel, llm)\n",
|
||||
"chain.invoke(\"My name is Erick and I'm 27 years old\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -210,7 +394,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -224,7 +408,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -268,7 +452,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -309,8 +493,14 @@
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"environment": {
|
||||
"kernel": "python3",
|
||||
"name": "common-cpu.m108",
|
||||
"type": "gcloud",
|
||||
"uri": "gcr.io/deeplearning-platform-release/base-cpu:m108"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -324,7 +514,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.10.10"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
||||
135
docs/docs/integrations/chat/llama_edge.ipynb
Normal file
135
docs/docs/integrations/chat/llama_edge.ipynb
Normal file
@@ -0,0 +1,135 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# LlamaEdge\n",
|
||||
"\n",
|
||||
"[LlamaEdge](https://github.com/second-state/LlamaEdge) allows you to chat with LLMs of [GGUF](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/README.md) format both locally and via chat service.\n",
|
||||
"\n",
|
||||
"- `LlamaEdgeChatService` provides developers an OpenAI API compatible service to chat with LLMs via HTTP requests.\n",
|
||||
"\n",
|
||||
"- `LlamaEdgeChatLocal` enables developers to chat with LLMs locally (coming soon).\n",
|
||||
"\n",
|
||||
"Both `LlamaEdgeChatService` and `LlamaEdgeChatLocal` run on the infrastructure driven by [WasmEdge Runtime](https://wasmedge.org/), which provides a lightweight and portable WebAssembly container environment for LLM inference tasks.\n",
|
||||
"\n",
|
||||
"## Chat via API Service\n",
|
||||
"\n",
|
||||
"`LlamaEdgeChatService` works on the `llama-api-server`. Following the steps in [llama-api-server quick-start](https://github.com/second-state/llama-utils/tree/main/api-server#readme), you can host your own API service so that you can chat with any models you like on any device you have anywhere as long as the internet is available."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_models.llama_edge import LlamaEdgeChatService\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Chat with LLMs in the non-streaming mode"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Bot] Hello! The capital of France is Paris.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# service url\n",
|
||||
"service_url = \"https://b008-54-186-154-209.ngrok-free.app\"\n",
|
||||
"\n",
|
||||
"# create wasm-chat service instance\n",
|
||||
"chat = LlamaEdgeChatService(service_url=service_url)\n",
|
||||
"\n",
|
||||
"# create message sequence\n",
|
||||
"system_message = SystemMessage(content=\"You are an AI assistant\")\n",
|
||||
"user_message = HumanMessage(content=\"What is the capital of France?\")\n",
|
||||
"messages = [system_message, user_message]\n",
|
||||
"\n",
|
||||
"# chat with wasm-chat service\n",
|
||||
"response = chat(messages)\n",
|
||||
"\n",
|
||||
"print(f\"[Bot] {response.content}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Chat with LLMs in the streaming mode"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Bot] Hello! I'm happy to help you with your question. The capital of Norway is Oslo.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# service url\n",
|
||||
"service_url = \"https://b008-54-186-154-209.ngrok-free.app\"\n",
|
||||
"\n",
|
||||
"# create wasm-chat service instance\n",
|
||||
"chat = LlamaEdgeChatService(service_url=service_url, streaming=True)\n",
|
||||
"\n",
|
||||
"# create message sequence\n",
|
||||
"system_message = SystemMessage(content=\"You are an AI assistant\")\n",
|
||||
"user_message = HumanMessage(content=\"What is the capital of Norway?\")\n",
|
||||
"messages = [\n",
|
||||
" system_message,\n",
|
||||
" user_message,\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"output = \"\"\n",
|
||||
"for chunk in chat.stream(messages):\n",
|
||||
" # print(chunk.content, end=\"\", flush=True)\n",
|
||||
" output += chunk.content\n",
|
||||
"\n",
|
||||
"print(f\"[Bot] {output}\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,85 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Wasm Chat\n",
|
||||
"\n",
|
||||
"`Wasm-chat` allows you to chat with LLMs of [GGUF](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/README.md) format both locally and via chat service.\n",
|
||||
"\n",
|
||||
"- `WasmChatService` provides developers an OpenAI API compatible service to chat with LLMs via HTTP requests.\n",
|
||||
"\n",
|
||||
"- `WasmChatLocal` enables developers to chat with LLMs locally (coming soon).\n",
|
||||
"\n",
|
||||
"Both `WasmChatService` and `WasmChatLocal` run on the infrastructure driven by [WasmEdge Runtime](https://wasmedge.org/), which provides a lightweight and portable WebAssembly container environment for LLM inference tasks.\n",
|
||||
"\n",
|
||||
"## Chat via API Service\n",
|
||||
"\n",
|
||||
"`WasmChatService` provides chat services by the `llama-api-server`. Following the steps in [llama-api-server quick-start](https://github.com/second-state/llama-utils/tree/main/api-server#readme), you can host your own API service so that you can chat with any models you like on any device you have anywhere as long as the internet is available."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_models.wasm_chat import WasmChatService\n",
|
||||
"from langchain_core.messages import AIMessage, HumanMessage, SystemMessage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Bot] Paris\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# service url\n",
|
||||
"service_url = \"https://b008-54-186-154-209.ngrok-free.app\"\n",
|
||||
"\n",
|
||||
"# create wasm-chat service instance\n",
|
||||
"chat = WasmChatService(service_url=service_url)\n",
|
||||
"\n",
|
||||
"# create message sequence\n",
|
||||
"system_message = SystemMessage(content=\"You are an AI assistant\")\n",
|
||||
"user_message = HumanMessage(content=\"What is the capital of France?\")\n",
|
||||
"messages = [system_message, user_message]\n",
|
||||
"\n",
|
||||
"# chat with wasm-chat service\n",
|
||||
"response = chat(messages)\n",
|
||||
"\n",
|
||||
"print(f\"[Bot] {response.content}\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -8,7 +8,7 @@
|
||||
"This notebook covers how to load documents from `Psychic`. See [here](/docs/integrations/providers/psychic) for more details.\n",
|
||||
"\n",
|
||||
"## Prerequisites\n",
|
||||
"1. Follow the Quick Start section in [this document](/docs/ecosystem/integrations/psychic)\n",
|
||||
"1. Follow the Quick Start section in [this document](/docs/integrations/providers/psychic)\n",
|
||||
"2. Log into the [Psychic dashboard](https://dashboard.psychic.dev/) and get your secret key\n",
|
||||
"3. Install the frontend react library into your web app and have a user authenticate a connection. The connection will be created using the connection id that you specify."
|
||||
]
|
||||
|
||||
236
docs/docs/integrations/document_loaders/surrealdb.ipynb
Normal file
236
docs/docs/integrations/document_loaders/surrealdb.ipynb
Normal file
@@ -0,0 +1,236 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5812b612-3e77-4be2-aefb-fbb16141ab79",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# SurrealDB\n",
|
||||
"\n",
|
||||
">[SurrealDB](https://surrealdb.com/) is an end-to-end cloud-native database designed for modern applications, including web, mobile, serverless, Jamstack, backend, and traditional applications. With SurrealDB, you can simplify your database and API infrastructure, reduce development time, and build secure, performant apps quickly and cost-effectively.\n",
|
||||
">\n",
|
||||
">**Key features of SurrealDB include:**\n",
|
||||
">\n",
|
||||
">* **Reduces development time:** SurrealDB simplifies your database and API stack by removing the need for most server-side components, allowing you to build secure, performant apps faster and cheaper.\n",
|
||||
">* **Real-time collaborative API backend service:** SurrealDB functions as both a database and an API backend service, enabling real-time collaboration.\n",
|
||||
">* **Support for multiple querying languages:** SurrealDB supports SQL querying from client devices, GraphQL, ACID transactions, WebSocket connections, structured and unstructured data, graph querying, full-text indexing, and geospatial querying.\n",
|
||||
">* **Granular access control:** SurrealDB provides row-level permissions-based access control, giving you the ability to manage data access with precision.\n",
|
||||
">\n",
|
||||
">View the [features](https://surrealdb.com/features), the latest [releases](https://surrealdb.com/releases), and [documentation](https://surrealdb.com/docs).\n",
|
||||
"\n",
|
||||
"This notebook shows how to use functionality related to the `SurrealDBLoader`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f56ccec5-24b3-4762-91a6-91385e041fee",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"The SurrealDB Document Loader returns a list of Langchain Documents from a SurrealDB database.\n",
|
||||
"\n",
|
||||
"The Document Loader takes the following optional parameters:\n",
|
||||
"\n",
|
||||
"* `dburl`: connection string to the websocket endpoint. default: `ws://localhost:8000/rpc`\n",
|
||||
"* `ns`: name of the namespace. default: `langchain`\n",
|
||||
"* `db`: name of the database. default: `database`\n",
|
||||
"* `table`: name of the table. default: `documents`\n",
|
||||
"* `db_user`: SurrealDB credentials if needed: db username.\n",
|
||||
"* `db_pass`: SurrealDB credentails if needed: db password.\n",
|
||||
"* `filter_criteria`: dictionary to construct the `WHERE` clause for filtering results from table.\n",
|
||||
"\n",
|
||||
"The output `Document` takes the following shape:\n",
|
||||
"```\n",
|
||||
"Document(\n",
|
||||
" page_content=<json encoded string containing the result document>,\n",
|
||||
" metadata={\n",
|
||||
" 'id': <document id>,\n",
|
||||
" 'ns': <namespace name>,\n",
|
||||
" 'db': <database_name>,\n",
|
||||
" 'table': <table name>,\n",
|
||||
" ... <additional fields from metadata property of the document>\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "77b024e0-c804-4b19-9f5e-0099eb61ba79",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"Uncomment the below cells to install surrealdb and langchain."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "508bc4f3-3aa2-45d3-8e59-cd7d0ffec379",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# %pip install --upgrade --quiet surrealdb langchain langchain-community"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "3ee3d767-b9ba-4be4-9e80-8fa6376beaba",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# add this import for running in jupyter notebook\n",
|
||||
"import nest_asyncio\n",
|
||||
"\n",
|
||||
"nest_asyncio.apply()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "1ec629f4-b99a-44f1-a938-29de7439f121",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"from langchain_community.document_loaders.surrealdb import SurrealDBLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "8deb90ac-7d4e-422c-a87a-8e6e41390a6d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"42"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"loader = SurrealDBLoader(\n",
|
||||
" dburl=\"ws://localhost:8000/rpc\",\n",
|
||||
" ns=\"langchain\",\n",
|
||||
" db=\"database\",\n",
|
||||
" table=\"documents\",\n",
|
||||
" db_user=\"root\",\n",
|
||||
" db_pass=\"root\",\n",
|
||||
" filter_criteria={},\n",
|
||||
")\n",
|
||||
"docs = loader.load()\n",
|
||||
"len(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "0aa9d3f7-56b3-464d-9d3d-1df7164122ba",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'id': 'documents:zzz434sa584xl3b4ohvk',\n",
|
||||
" 'source': '../../modules/state_of_the_union.txt',\n",
|
||||
" 'ns': 'langchain',\n",
|
||||
" 'db': 'database',\n",
|
||||
" 'table': 'documents'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"doc = docs[-1]\n",
|
||||
"doc.metadata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "0378dd34-c690-4b8e-8816-90a8acc2f227",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"18078"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"len(doc.page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "f30f1141-329b-4674-acb4-36d9d5a9ef0a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"page_content = json.loads(doc.page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "2a58496f-a831-40ec-be6b-92ce70f78133",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'When we use taxpayer dollars to rebuild America – we are going to Buy American: buy American products to support American jobs. \\n\\nThe federal government spends about $600 Billion a year to keep the country safe and secure. \\n\\nThere’s been a law on the books for almost a century \\nto make sure taxpayers’ dollars support American jobs and businesses. \\n\\nEvery Administration says they’ll do it, but we are actually doing it. \\n\\nWe will buy American to make sure everything from the deck of an aircraft carrier to the steel on highway guardrails are made in America. \\n\\nBut to compete for the best jobs of the future, we also need to level the playing field with China and other competitors. \\n\\nThat’s why it is so important to pass the Bipartisan Innovation Act sitting in Congress that will make record investments in emerging technologies and American manufacturing. \\n\\nLet me give you one example of why it’s so important to pass it.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"page_content[\"text\"]"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -14,12 +14,21 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 1,
|
||||
"id": "02be122d-04e8-4ec6-84d1-f1d8961d6828",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[33mWARNING: There was an error checking the latest version of pip.\u001b[0m\u001b[33m\n",
|
||||
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# install the package:\n",
|
||||
"%pip install --upgrade --quiet ai21"
|
||||
@@ -27,20 +36,12 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 1,
|
||||
"id": "4229227e-6ca2-41ad-a3c3-5f29e3559091",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdin",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" ········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get AI21_API_KEY. Use https://studio.ai21.com/account/account\n",
|
||||
"\n",
|
||||
@@ -51,21 +52,20 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 7,
|
||||
"id": "6fb585dd",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_community.llms import AI21"
|
||||
"from langchain_community.llms import AI21\n",
|
||||
"from langchain_core.prompts import PromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 12,
|
||||
"id": "035dea0f",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -76,12 +76,12 @@
|
||||
"\n",
|
||||
"Answer: Let's think step by step.\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
||||
"prompt = PromptTemplate.from_template(template)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 9,
|
||||
"id": "3f3458d9",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -93,19 +93,19 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 10,
|
||||
"id": "a641dbd9",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
||||
"llm_chain = prompt | llm"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 13,
|
||||
"id": "9f0b1960",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -114,10 +114,10 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'\\n1. What year was Justin Bieber born?\\nJustin Bieber was born in 1994.\\n2. What team won the Super Bowl in 1994?\\nThe Dallas Cowboys won the Super Bowl in 1994.'"
|
||||
"'\\nThe Super Bowl in the year Justin Beiber was born was in the year 1991.\\nThe Super Bowl in 1991 was won by the Washington Redskins.\\nFinal answer: Washington Redskins'"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -125,7 +125,7 @@
|
||||
"source": [
|
||||
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
||||
"\n",
|
||||
"llm_chain.run(question)"
|
||||
"llm_chain.invoke({\"question\": question})"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -153,7 +153,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -11,29 +11,30 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "xazoWTniN8Xa"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Google Cloud Vertex AI\n",
|
||||
"\n",
|
||||
"**Note:** This is separate from the `Google Generative AI` integration, it exposes [Vertex AI Generative API](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview) on `Google Cloud`.\n"
|
||||
"**Note:** This is separate from the `Google Generative AI` integration, it exposes [Vertex AI Generative API](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview) on `Google Cloud`.\n",
|
||||
"\n",
|
||||
"VertexAI exposes all foundational models available in google cloud:\n",
|
||||
"- Gemini (`gemini-pro` and `gemini-pro-vision`)\n",
|
||||
"- Palm 2 for Text (`text-bison`)\n",
|
||||
"- Codey for Code Generation (`code-bison`)\n",
|
||||
"\n",
|
||||
"For a full and updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Q_UoF2FKN8Xb"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setting up"
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "8uImJzc4N8Xb"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"By default, Google Cloud [does not use](https://cloud.google.com/vertex-ai/docs/generative-ai/data-governance#foundation_model_development) customer data to train its foundation models as part of Google Cloud's AI/ML Privacy Commitment. More details about how Google processes data can also be found in [Google's Customer Data Processing Addendum (CDPA)](https://cloud.google.com/terms/data-processing-addendum).\n",
|
||||
"\n",
|
||||
@@ -52,78 +53,29 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.3.2\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-core langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" **Pros of Python:**\n",
|
||||
"\n",
|
||||
"* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners. It also has a large and supportive community, with many resources available online.\n",
|
||||
"* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and artificial intelligence.\n",
|
||||
"* **Powerful:** Python has a rich library of built-in functions and modules, making it easy to perform complex tasks without having to write a lot of code.\n",
|
||||
"* **Cross-platform:** Python can be run on a variety of operating systems\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import VertexAI\n",
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"llm = VertexAI()\n",
|
||||
"print(llm(\"What are some of the pros and cons of Python as a programming language?\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "38S1FS3qN8Xc"
|
||||
},
|
||||
"source": [
|
||||
"You can also use Gemini model (in preview) with VertexAI:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"**Pros of Python:**\n",
|
||||
"\n",
|
||||
"* **Easy to learn and use:** Python is known for its simplicity and readability, making it a great choice for beginners and experienced programmers alike. Its syntax is straightforward and intuitive, allowing developers to quickly pick up the language and start writing code.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"* **Versatile:** Python is a general-purpose language that can be used for a wide range of applications, including web development, data science, machine learning, and scripting. Its extensive standard library and vast ecosystem of third-party modules make it suitable for a variety of tasks.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"* **Cross-platform:** Python is compatible with multiple operating systems, including\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = VertexAI(model_name=\"gemini-pro\")\n",
|
||||
"print(llm(\"What are some of the pros and cons of Python as a programming language?\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "_-9MhhN8N8Xc"
|
||||
},
|
||||
"source": [
|
||||
"## Using in a chain"
|
||||
"VertexAI supports all [LLM](/docs/modules/model_io/llms/) functionality."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -131,204 +83,199 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import VertexAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = VertexAI(model_name=\"gemini-pro\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a'"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message = \"What are some of the pros and cons of Python as a programming language?\"\n",
|
||||
"model.invoke(message)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a'"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"await model.ainvoke(message)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"**Pros:**\n",
|
||||
"\n",
|
||||
"* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\n",
|
||||
"* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\n",
|
||||
"* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\n",
|
||||
"* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\n",
|
||||
"* **Cross-platform:** Python is available for a"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for chunk in model.stream(message):\n",
|
||||
" print(chunk, end=\"\", flush=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a']"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model.batch([message])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can use the `generate` method to get back extra metadata like [safety attributes](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_confidence_scoring) and not just text completions."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[[GenerationChunk(text='**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a')]]"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"result = model.generate([message])\n",
|
||||
"result.generations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[[GenerationChunk(text='**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a')]]"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"result = await model.agenerate([message])\n",
|
||||
"result.generations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also easily combine with a prompt template for easy structuring of user input. We can do this using [LCEL](/docs/expression_language)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1. You start with 5 apples.\n",
|
||||
"2. You throw away 2 apples, so you have 5 - 2 = 3 apples left.\n",
|
||||
"3. You eat 1 apple, so you have 3 - 1 = 2 apples left.\n",
|
||||
"\n",
|
||||
"Therefore, you have 2 apples left.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"template = \"\"\"Question: {question}\n",
|
||||
"\n",
|
||||
"Answer: Let's think step by step.\"\"\"\n",
|
||||
"prompt = PromptTemplate.from_template(template)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = prompt | llm"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" Justin Bieber was born on March 1, 1994. Bill Clinton was the president of the United States from January 20, 1993, to January 20, 2001.\n",
|
||||
"The final answer is Bill Clinton\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"question = \"Who was the president in the year Justin Beiber was born?\"\n",
|
||||
"prompt = PromptTemplate.from_template(template)\n",
|
||||
"\n",
|
||||
"chain = prompt | model\n",
|
||||
"\n",
|
||||
"question = \"\"\"\n",
|
||||
"I have five apples. I throw two away. I eat one. How many apples do I have left?\n",
|
||||
"\"\"\"\n",
|
||||
"print(chain.invoke({\"question\": question}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "AV7oXXuHN8Xd"
|
||||
},
|
||||
"source": [
|
||||
"## Code generation example"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "3ZzVtF6tN8Xd"
|
||||
},
|
||||
"source": [
|
||||
"You can now leverage the `Codey API` for code generation within `Vertex AI`.\n",
|
||||
"\n",
|
||||
"The model names are:\n",
|
||||
"- `code-bison`: for code suggestion\n",
|
||||
"- `code-gecko`: for code completion"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = VertexAI(model_name=\"code-bison\", max_output_tokens=1000, temperature=0.3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"question = \"Write a python function that checks if a string is a valid email address\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"```python\n",
|
||||
"import re\n",
|
||||
"\n",
|
||||
"def is_valid_email(email):\n",
|
||||
" pattern = re.compile(r\"[^@]+@[^@]+\\.[^@]+\")\n",
|
||||
" return pattern.match(email)\n",
|
||||
"```\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(llm(question))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "0WqyaSC2N8Xd"
|
||||
},
|
||||
"source": [
|
||||
"## Full generation info\n",
|
||||
"\n",
|
||||
"We can use the `generate` method to get back extra metadata like [safety attributes](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_confidence_scoring) and not just text completions"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[[GenerationChunk(text='```python\\nimport re\\n\\ndef is_valid_email(email):\\n pattern = re.compile(r\"[^@]+@[^@]+\\\\.[^@]+\")\\n return pattern.match(email)\\n```', generation_info={'is_blocked': False, 'safety_attributes': {'Health': 0.1}})]]"
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"result = llm.generate([question])\n",
|
||||
"result.generations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Wd5M4BBUN8Xd"
|
||||
},
|
||||
"source": [
|
||||
"## Asynchronous calls\n",
|
||||
"\n",
|
||||
"With `agenerate` we can make asynchronous calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# If running in a Jupyter notebook you'll need to install nest_asyncio\n",
|
||||
"\n",
|
||||
"%pip install --upgrade --quiet nest_asyncio\n",
|
||||
"\n",
|
||||
"import nest_asyncio\n",
|
||||
"\n",
|
||||
"nest_asyncio.apply()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"LLMResult(generations=[[GenerationChunk(text='```python\\nimport re\\n\\ndef is_valid_email(email):\\n pattern = re.compile(r\"[^@]+@[^@]+\\\\.[^@]+\")\\n return pattern.match(email)\\n```', generation_info={'is_blocked': False, 'safety_attributes': {'Health': 0.1}})]], llm_output=None, run=[RunInfo(run_id=UUID('caf74e91-aefb-48ac-8031-0c505fcbbcc6'))])"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import asyncio\n",
|
||||
"\n",
|
||||
"asyncio.run(llm.agenerate([question]))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "VLsy_4bZN8Xd"
|
||||
},
|
||||
"source": [
|
||||
"## Streaming calls\n",
|
||||
"\n",
|
||||
"With `stream` we can stream results from the model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys"
|
||||
"You can use different foundational models for specialized in different tasks. \n",
|
||||
"For an updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -354,49 +301,38 @@
|
||||
" True if the string is a valid email address, False otherwise.\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" # Check for a valid email address format.\n",
|
||||
" if not re.match(r\"^[A-Za-z0-9\\.\\+_-]+@[A-Za-z0-9\\._-]+\\.[a-zA-Z]*$\", email):\n",
|
||||
" return False\n",
|
||||
" # Compile the regular expression for an email address.\n",
|
||||
" regex = re.compile(r\"[^@]+@[^@]+\\.[^@]+\")\n",
|
||||
"\n",
|
||||
" # Check if the domain name exists.\n",
|
||||
" try:\n",
|
||||
" domain = email.split(\"@\")[1]\n",
|
||||
" socket.gethostbyname(domain)\n",
|
||||
" except socket.gaierror:\n",
|
||||
" return False\n",
|
||||
"\n",
|
||||
" return True\n",
|
||||
"```"
|
||||
" # Check if the string matches the regular expression.\n",
|
||||
" return regex.match(email) is not None\n",
|
||||
"```\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for chunk in llm.stream(question):\n",
|
||||
" sys.stdout.write(chunk)\n",
|
||||
" sys.stdout.flush()"
|
||||
"llm = VertexAI(model_name=\"code-bison\", max_output_tokens=1000, temperature=0.3)\n",
|
||||
"question = \"Write a python function that checks if a string is a valid email address\"\n",
|
||||
"print(model.invoke(question))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "4VJ8GwhaN8Xd"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Multimodality"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "L7BovARaN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"With Gemini, you can use LLM in a multimodal mode:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -429,16 +365,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "3Vk3gQrrOaL9"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's double-check it's a cat :)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -448,7 +382,7 @@
|
||||
"<vertexai.generative_models._generative_models.Image at 0x791ded5f1ed0>"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -462,16 +396,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "1uEACSSm8AL2"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also pass images as bytes:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -506,18 +438,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "AuhF5WQuN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Please, note that you can also use the image stored in GCS (just point the `url` to the full GCS path, starting with `gs://` instead of a local one)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "qaC2UmxS9WtB"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And you can also pass a history of a previous chat to the LLM:"
|
||||
]
|
||||
@@ -564,18 +492,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "VEYAfdBpN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Vertex Model Garden"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "N3ptjr_LN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Vertex Model Garden [exposes](https://cloud.google.com/vertex-ai/docs/start/explore-models) open-sourced models that can be deployed and served on Vertex AI. If you have successfully deployed a model from Vertex Model Garden, you can find a corresponding Vertex AI [endpoint](https://cloud.google.com/vertex-ai/docs/general/deployment#what_happens_when_you_deploy_a_model) in the console or via API."
|
||||
]
|
||||
@@ -604,14 +528,12 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(llm(\"What is the meaning of life?\"))"
|
||||
"llm.invoke(\"What is the meaning of life?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "TDXoFZ6YN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Like all LLMs, we can then compose it with other components:"
|
||||
]
|
||||
@@ -643,8 +565,16 @@
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"version": "3.11.4"
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -59,7 +59,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Optional: Validate your Enviroment variables ```GRADIENT_ACCESS_TOKEN``` and ```GRADIENT_WORKSPACE_ID``` to get currently deployed models. Using the `gradientai` Python package."
|
||||
"Optional: Validate your Environment variables ```GRADIENT_ACCESS_TOKEN``` and ```GRADIENT_WORKSPACE_ID``` to get currently deployed models. Using the `gradientai` Python package."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -318,7 +318,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Standard Cache\n",
|
||||
"Use [Redis](/docs/integrations/partners/redis) to cache prompts and responses."
|
||||
"Use [Redis](/docs/integrations/providers/redis) to cache prompts and responses."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -404,7 +404,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Semantic Cache\n",
|
||||
"Use [Redis](/docs/integrations/partners/redis) to cache prompts and responses and evaluate hits based on semantic similarity."
|
||||
"Use [Redis](/docs/integrations/providers/redis) to cache prompts and responses and evaluate hits based on semantic similarity."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -728,7 +728,7 @@
|
||||
},
|
||||
"source": [
|
||||
"## `Momento` Cache\n",
|
||||
"Use [Momento](/docs/integrations/partners/momento) to cache prompts and responses.\n",
|
||||
"Use [Momento](/docs/integrations/providers/momento) to cache prompts and responses.\n",
|
||||
"\n",
|
||||
"Requires momento to use, uncomment below to install:"
|
||||
]
|
||||
|
||||
@@ -0,0 +1,147 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "91c6a7ef",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Google Cloud Firestore\n",
|
||||
"\n",
|
||||
"> [`Cloud Firestore`](https://cloud.google.com/firestore) is a NoSQL document database built for automatic scaling, high performance, and ease of application development.\n",
|
||||
"\n",
|
||||
"This notebook goes over how to use Firestore to store chat message history."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2d6ed3c8-b70a-498c-bc9e-41b91797d3b7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setting up"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b8eca282",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To run this notebook, you will need a Google Cloud Project, a Firestore database instance in Native Mode, and Google credentials, see [Firestore Quickstarts](https://cloud.google.com/firestore/docs/quickstarts)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5a7f3b3f-d9b8-4577-a7ef-bdd8ecaedb70",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install firebase-admin"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a8e63850-3e14-46fe-a59e-be6d6bf8fe61",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Basic Usage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "d15e3302",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_message_histories.firestore import (\n",
|
||||
" FirestoreChatMessageHistory,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"message_history = FirestoreChatMessageHistory(\n",
|
||||
" collection_name=\"langchain-chat-history\",\n",
|
||||
" session_id=\"user-session-id\",\n",
|
||||
" user_id=\"user-id\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"message_history.add_user_message(\"hi!\")\n",
|
||||
"message_history.add_ai_message(\"whats up?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "64fc465e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[HumanMessage(content='hi!'),\n",
|
||||
" HumanMessage(content='hi!'),\n",
|
||||
" AIMessage(content='whats up?')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message_history.messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4be8576e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Custom Firestore Client"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "12999273",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import firebase_admin\n",
|
||||
"from firebase_admin import credentials, firestore\n",
|
||||
"\n",
|
||||
"# Use a service account.\n",
|
||||
"cred = credentials.Certificate(\"path/to/serviceAccount.json\")\n",
|
||||
"\n",
|
||||
"app = firebase_admin.initialize_app(cred)\n",
|
||||
"client = firestore.client(app=app)\n",
|
||||
"\n",
|
||||
"message_history = FirestoreChatMessageHistory(\n",
|
||||
" collection_name=\"langchain-chat-history\",\n",
|
||||
" session_id=\"user-session-id\",\n",
|
||||
" user_id=\"user-id\",\n",
|
||||
" firestore_client=client,\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -11,7 +11,7 @@
|
||||
">\n",
|
||||
">`MongoDB` is developed by MongoDB Inc. and licensed under the Server Side Public License (SSPL). - [Wikipedia](https://en.wikipedia.org/wiki/MongoDB)\n",
|
||||
"\n",
|
||||
"This notebook goes over how to use Mongodb to store chat message history.\n"
|
||||
"This notebook goes over how to use the `MongoDBChatMessageHistory` class to store chat message history in a Mongodb database.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -19,76 +19,230 @@
|
||||
"id": "2d6ed3c8-b70a-498c-bc9e-41b91797d3b7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setting up"
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"The integration lives in the `langchain-community` package, so we need to install that. We also need to install the `pymongo` package.\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install -U --quiet langchain-community pymongo\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "09c33ad3-9ab1-48b5-bead-9a44f3d86eeb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"It's also helpful (but not needed) to set up [LangSmith](https://smith.langchain.com/) for best-in-class observability"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5a7f3b3f-d9b8-4577-a7ef-bdd8ecaedb70",
|
||||
"id": "0976204d-c681-4288-bfe5-a550e0340f35",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet pymongo"
|
||||
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "71a0a5aa-8f12-462a-bcd0-c611d76566f8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"To use the storage you need to provide only 2 things:\n",
|
||||
"\n",
|
||||
"1. Session Id - a unique identifier of the session, like user name, email, chat id etc.\n",
|
||||
"2. Connection string - a string that specifies the database connection. It will be passed to MongoDB create_engine function.\n",
|
||||
"\n",
|
||||
"If you want to customize where the chat histories go, you can also pass:\n",
|
||||
"1. *database_name* - name of the database to use\n",
|
||||
"1. *collection_name* - collection to use within that database"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "47a601d2",
|
||||
"metadata": {},
|
||||
"id": "0179847d-76b6-43bc-b15c-7fecfcb27ac7",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-08-28T10:04:38.077748Z",
|
||||
"start_time": "2023-08-28T10:04:36.105894Z"
|
||||
},
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Provide the connection string to connect to the MongoDB database\n",
|
||||
"connection_string = \"mongodb://mongo_user:password123@mongo:27017\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a8e63850-3e14-46fe-a59e-be6d6bf8fe61",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example"
|
||||
"from langchain_community.chat_message_histories import MongoDBChatMessageHistory\n",
|
||||
"\n",
|
||||
"chat_message_history = MongoDBChatMessageHistory(\n",
|
||||
" session_id=\"test_session\",\n",
|
||||
" connection_string=\"mongodb://mongo_user:password123@mongo:27017\",\n",
|
||||
" database_name=\"my_db\",\n",
|
||||
" collection_name=\"chat_histories\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chat_message_history.add_user_message(\"Hello\")\n",
|
||||
"chat_message_history.add_ai_message(\"Hi\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "d15e3302",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.memory import MongoDBChatMessageHistory\n",
|
||||
"\n",
|
||||
"message_history = MongoDBChatMessageHistory(\n",
|
||||
" connection_string=connection_string, session_id=\"test-session\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"message_history.add_user_message(\"hi!\")\n",
|
||||
"\n",
|
||||
"message_history.add_ai_message(\"whats up?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "64fc465e",
|
||||
"id": "6e7b8653-a8d2-49a7-97ba-4296f7e717e9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[HumanMessage(content='hi!', additional_kwargs={}, example=False),\n",
|
||||
" AIMessage(content='whats up?', additional_kwargs={}, example=False)]"
|
||||
"[HumanMessage(content='Hello'), AIMessage(content='Hi')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message_history.messages"
|
||||
"chat_message_history.messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e352d786-0811-48ec-832a-9f1c0b70690e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"We can easily combine this message history class with [LCEL Runnables](/docs/expression_language/how_to/message_history)\n",
|
||||
"\n",
|
||||
"To do this we will want to use OpenAI, so we need to install that. You will also need to set the OPENAI_API_KEY environment variable to your OpenAI key.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "6558418b-0ece-4d01-9661-56d562d78f7a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Optional\n",
|
||||
"\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "86ddfd3f-e8cf-477a-a7fd-91be3b8aa928",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"assert os.environ[\n",
|
||||
" \"OPENAI_API_KEY\"\n",
|
||||
"], \"Set the OPENAI_API_KEY environment variable with your OpenAI API key.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "82149122-61d3-490d-9bdb-bb98606e8ba1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", \"You are a helpful assistant.\"),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{question}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | ChatOpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "2df90853-b67c-490f-b7f8-b69d69270b9c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain_with_history = RunnableWithMessageHistory(\n",
|
||||
" chain,\n",
|
||||
" lambda session_id: MongoDBChatMessageHistory(\n",
|
||||
" session_id=\"test_session\",\n",
|
||||
" connection_string=\"mongodb://mongo_user:password123@mongo:27017\",\n",
|
||||
" database_name=\"my_db\",\n",
|
||||
" collection_name=\"chat_histories\",\n",
|
||||
" ),\n",
|
||||
" input_messages_key=\"question\",\n",
|
||||
" history_messages_key=\"history\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "0ce596b8-3b78-48fd-9f92-46dccbbfd58b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This is where we configure the session id\n",
|
||||
"config = {\"configurable\": {\"session_id\": \"<SESSION_ID>\"}}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "38e1423b-ba86-4496-9151-25932fab1a8b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Hi Bob! How can I assist you today?')"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "2ee4ee62-a216-4fb1-bf33-57476a84cf16",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Your name is Bob. Is there anything else I can help you with, Bob?')"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -12,16 +12,43 @@
|
||||
"This notebook goes over how to use `Redis` to store chat message history."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "897a4682-f9fc-488b-98f3-ae2acad84600",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"First we need to install dependencies, and start a redis instance using commands like: `redis-server`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"id": "cda8b56d-baf7-49a2-91a2-4d424a8519cb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pip install -U langchain-community redis"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "20b99474-75ea-422e-9809-fbdb9d103afc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Store and Retrieve Messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "d15e3302",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.memory import RedisChatMessageHistory\n",
|
||||
"from langchain_community.chat_message_histories import RedisChatMessageHistory\n",
|
||||
"\n",
|
||||
"history = RedisChatMessageHistory(\"foo\")\n",
|
||||
"history = RedisChatMessageHistory(\"foo\", url=\"redis://localhost:6379\")\n",
|
||||
"\n",
|
||||
"history.add_user_message(\"hi!\")\n",
|
||||
"\n",
|
||||
@@ -30,18 +57,17 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 4,
|
||||
"id": "64fc465e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[AIMessage(content='whats up?', additional_kwargs={}),\n",
|
||||
" HumanMessage(content='hi!', additional_kwargs={})]"
|
||||
"[HumanMessage(content='hi!'), AIMessage(content='whats up?')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -50,10 +76,85 @@
|
||||
"history.messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "465fdd8c-b093-4d19-a55a-30f3b646432b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Using in the Chains"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8af285f8",
|
||||
"id": "94d65d2f-e9bb-4b47-a86d-dd6b1b5e8247",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pip install -U langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "ace3e7b2-5e3e-4966-b549-04952a6a9a09",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Optional\n",
|
||||
"\n",
|
||||
"from langchain_community.chat_message_histories import RedisChatMessageHistory\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "5c1fba0d-d06a-4695-ba14-c42a3461ada1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Your name is Bob, as you mentioned earlier. Is there anything specific you would like assistance with, Bob?')"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", \"You're an assistant。\"),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{question}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | ChatOpenAI()\n",
|
||||
"\n",
|
||||
"chain_with_history = RunnableWithMessageHistory(\n",
|
||||
" chain,\n",
|
||||
" RedisChatMessageHistory,\n",
|
||||
" input_messages_key=\"question\",\n",
|
||||
" history_messages_key=\"history\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"config = {\"configurable\": {\"session_id\": \"foo\"}}\n",
|
||||
"\n",
|
||||
"chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)\n",
|
||||
"\n",
|
||||
"chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "76ce3f6b-f4c7-4d27-8031-60f7dd756695",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
@@ -75,7 +176,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
"version": "3.9.18"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -6,7 +6,7 @@ This page covers how to use the [Remembrall](https://remembrall.dev) ecosystem w
|
||||
|
||||
Remembrall gives your language model long-term memory, retrieval augmented generation, and complete observability with just a few lines of code.
|
||||
|
||||

|
||||

|
||||
|
||||
It works as a light-weight proxy on top of your OpenAI calls and simply augments the context of the chat calls at runtime with relevant facts that have been collected.
|
||||
|
||||
|
||||
@@ -16,172 +16,203 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "d0a07a30-028f-4e16-8b11-45b2416f7b0f",
|
||||
"execution_count": null,
|
||||
"id": "5c923f56-24a9-4f8f-9b91-138cc025c47e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet sqlite3"
|
||||
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "61fda020-23a2-4605-afad-58260535ec8c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"To use the storage you need to provide only 2 things:\n",
|
||||
"\n",
|
||||
"1. Session Id - a unique identifier of the session, like user name, email, chat id etc.\n",
|
||||
"2. Connection string - a string that specifies the database connection. For SQLite, that string is `slqlite:///` followed by the name of the database file. If that file doesn't exist, it will be created."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "db59b901",
|
||||
"id": "4576e914a866fb40",
|
||||
"metadata": {
|
||||
"id": "2wUMSUoF8ffn"
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-08-28T10:04:38.077748Z",
|
||||
"start_time": "2023-08-28T10:04:36.105894Z"
|
||||
},
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import ConversationChain\n",
|
||||
"from langchain.memory import ConversationEntityMemory\n",
|
||||
"from langchain.memory.entity import SQLiteEntityStore\n",
|
||||
"from langchain.memory.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
"from langchain_community.chat_message_histories import SQLChatMessageHistory\n",
|
||||
"\n",
|
||||
"chat_message_history = SQLChatMessageHistory(\n",
|
||||
" session_id=\"test_session_id\", connection_string=\"sqlite:///sqlite.db\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chat_message_history.add_user_message(\"Hello\")\n",
|
||||
"chat_message_history.add_ai_message(\"Hi\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "ca6dee29",
|
||||
"id": "b476688cbb32ba90",
|
||||
"metadata": {
|
||||
"id": "8TpJZti99gxV"
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-08-28T10:04:38.929396Z",
|
||||
"start_time": "2023-08-28T10:04:38.915727Z"
|
||||
},
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[HumanMessage(content='Hello'), AIMessage(content='Hi')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"entity_store = SQLiteEntityStore()\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"memory = ConversationEntityMemory(llm=llm, entity_store=entity_store)\n",
|
||||
"conversation = ConversationChain(\n",
|
||||
" llm=llm,\n",
|
||||
" prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE,\n",
|
||||
" memory=memory,\n",
|
||||
" verbose=True,\n",
|
||||
")"
|
||||
"chat_message_history.messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f9b4c3a0",
|
||||
"metadata": {
|
||||
"id": "HEAHG1L79ca1"
|
||||
},
|
||||
"id": "e400509a-1957-4d1d-bbd6-01e8dc3dccb3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Notice the usage of `EntitySqliteStore` as parameter to `entity_store` on the `memory` property."
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"We can easily combine this message history class with [LCEL Runnables](/docs/expression_language/how_to/message_history)\n",
|
||||
"\n",
|
||||
"To do this we will want to use OpenAI, so we need to install that. We will also need to set the OPENAI_API_KEY environment variable to your OpenAI key.\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install -U langchain-openai\n",
|
||||
"\n",
|
||||
"export OPENAI_API_KEY='sk-xxxxxxx'\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "297e78a6",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 437
|
||||
},
|
||||
"id": "BzXphJWf_TAZ",
|
||||
"outputId": "de7fc966-e0fd-4daf-a9bd-4743455ea774"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
|
||||
"Prompt after formatting:\n",
|
||||
"\u001b[32;1m\u001b[1;3mYou are an assistant to a human, powered by a large language model trained by OpenAI.\n",
|
||||
"\n",
|
||||
"You are designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, you are able to generate human-like text based on the input you receive, allowing you to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n",
|
||||
"\n",
|
||||
"You are constantly learning and improving, and your capabilities are constantly evolving. You are able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. You have access to some personalized information provided by the human in the Context section below. Additionally, you are able to generate your own text based on the input you receive, allowing you to engage in discussions and provide explanations and descriptions on a wide range of topics.\n",
|
||||
"\n",
|
||||
"Overall, you are a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether the human needs help with a specific question or just wants to have a conversation about a particular topic, you are here to assist.\n",
|
||||
"\n",
|
||||
"Context:\n",
|
||||
"{'Deven': 'Deven is working on a hackathon project with Sam.', 'Sam': 'Sam is working on a hackathon project with Deven.'}\n",
|
||||
"\n",
|
||||
"Current conversation:\n",
|
||||
"\n",
|
||||
"Last line:\n",
|
||||
"Human: Deven & Sam are working on a hackathon project\n",
|
||||
"You:\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"' That sounds like a great project! What kind of project are they working on?'"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"id": "6558418b-0ece-4d01-9661-56d562d78f7a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conversation.run(\"Deven & Sam are working on a hackathon project\")"
|
||||
"from typing import Optional\n",
|
||||
"\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "7e71f1dc",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 35
|
||||
},
|
||||
"id": "YsFE3hBjC6gl",
|
||||
"outputId": "56ab5ca9-e343-41b5-e69d-47541718a9b4"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Deven is working on a hackathon project with Sam.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"id": "82149122-61d3-490d-9bdb-bb98606e8ba1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conversation.memory.entity_store.get(\"Deven\")"
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", \"You are a helpful assistant.\"),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{question}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | ChatOpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "316f2e8d",
|
||||
"id": "2df90853-b67c-490f-b7f8-b69d69270b9c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain_with_history = RunnableWithMessageHistory(\n",
|
||||
" chain,\n",
|
||||
" lambda session_id: SQLChatMessageHistory(\n",
|
||||
" session_id=session_id, connection_string=\"sqlite:///sqlite.db\"\n",
|
||||
" ),\n",
|
||||
" input_messages_key=\"question\",\n",
|
||||
" history_messages_key=\"history\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "0ce596b8-3b78-48fd-9f92-46dccbbfd58b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This is where we configure the session id\n",
|
||||
"config = {\"configurable\": {\"session_id\": \"<SQL_SESSION_ID>\"}}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "38e1423b-ba86-4496-9151-25932fab1a8b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Sam is working on a hackathon project with Deven.'"
|
||||
"AIMessage(content='Hello Bob! How can I assist you today?')"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"conversation.memory.entity_store.get(\"Sam\")"
|
||||
"chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b85f8427",
|
||||
"execution_count": 10,
|
||||
"id": "2ee4ee62-a216-4fb1-bf33-57476a84cf16",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Your name is Bob! Is there anything specific you would like assistance with, Bob?')"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
@@ -10,7 +10,6 @@
|
||||
">[Streamlit](https://docs.streamlit.io/) is an open-source Python library that makes it easy to create and share beautiful, \n",
|
||||
"custom web apps for machine learning and data science.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"This notebook goes over how to store and use chat message history in a `Streamlit` app. `StreamlitChatMessageHistory` will store messages in\n",
|
||||
"[Streamlit session state](https://docs.streamlit.io/library/api-reference/session-state)\n",
|
||||
"at the specified `key=`. The default key is `\"langchain_messages\"`.\n",
|
||||
@@ -20,6 +19,12 @@
|
||||
"- For more on Streamlit check out their\n",
|
||||
"[getting started documentation](https://docs.streamlit.io/library/get-started).\n",
|
||||
"\n",
|
||||
"The integration lives in the `langchain-community` package, so we need to install that. We also need to install `streamlit`.\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"pip install -U langchain-community streamlit\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"You can see the [full app example running here](https://langchain-st-memory.streamlit.app/), and more examples in\n",
|
||||
"[github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent)."
|
||||
]
|
||||
@@ -31,7 +36,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.memory import StreamlitChatMessageHistory\n",
|
||||
"from langchain_community.chat_message_histories import StreamlitChatMessageHistory\n",
|
||||
"\n",
|
||||
"history = StreamlitChatMessageHistory(key=\"chat_messages\")\n",
|
||||
"\n",
|
||||
@@ -54,7 +59,9 @@
|
||||
"id": "b60dc735",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can integrate `StreamlitChatMessageHistory` into `ConversationBufferMemory` and chains or agents as usual. The history will be persisted across re-runs of the Streamlit app within a given user session. A given `StreamlitChatMessageHistory` will NOT be persisted or shared across user sessions."
|
||||
"We can easily combine this message history class with [LCEL Runnables](https://python.langchain.com/docs/expression_language/how_to/message_history).\n",
|
||||
"\n",
|
||||
"The history will be persisted across re-runs of the Streamlit app within a given user session. A given `StreamlitChatMessageHistory` will NOT be persisted or shared across user sessions."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -64,13 +71,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.memory import ConversationBufferMemory\n",
|
||||
"from langchain_community.chat_message_histories import StreamlitChatMessageHistory\n",
|
||||
"\n",
|
||||
"# Optionally, specify your own session_state key for storing messages\n",
|
||||
"msgs = StreamlitChatMessageHistory(key=\"special_app_key\")\n",
|
||||
"\n",
|
||||
"memory = ConversationBufferMemory(memory_key=\"history\", chat_memory=msgs)\n",
|
||||
"if len(msgs.messages) == 0:\n",
|
||||
" msgs.add_ai_message(\"How can I help you?\")"
|
||||
]
|
||||
@@ -82,19 +87,34 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"template = \"\"\"You are an AI chatbot having a conversation with a human.\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", \"You are an AI chatbot having a conversation with a human.\"),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{question}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"{history}\n",
|
||||
"Human: {human_input}\n",
|
||||
"AI: \"\"\"\n",
|
||||
"prompt = PromptTemplate(input_variables=[\"history\", \"human_input\"], template=template)\n",
|
||||
"\n",
|
||||
"# Add the memory to an LLMChain as usual\n",
|
||||
"llm_chain = LLMChain(llm=OpenAI(), prompt=prompt, memory=memory)"
|
||||
"chain = prompt | ChatOpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "dac3d94f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain_with_history = RunnableWithMessageHistory(\n",
|
||||
" chain,\n",
|
||||
" lambda session_id: msgs, # Always return the instance created earlier\n",
|
||||
" input_messages_key=\"question\",\n",
|
||||
" history_messages_key=\"history\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -121,8 +141,9 @@
|
||||
" st.chat_message(\"human\").write(prompt)\n",
|
||||
"\n",
|
||||
" # As usual, new messages are added to StreamlitChatMessageHistory when the Chain is called.\n",
|
||||
" response = llm_chain.run(prompt)\n",
|
||||
" st.chat_message(\"ai\").write(response)"
|
||||
" config = {\"configurable\": {\"session_id\": \"any\"}}\n",
|
||||
" response = chain_with_history.invoke({\"question\": prompt}, config)\n",
|
||||
" st.chat_message(\"ai\").write(response.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -186,7 +186,7 @@ from langchain_community.document_loaders import GoogleSpeechToTextLoader
|
||||
### Google Vertex AI Vector Search
|
||||
|
||||
> [Google Vertex AI Vector Search](https://cloud.google.com/vertex-ai/docs/matching-engine/overview),
|
||||
> formerly known as `Vertex AI Matching Engine`, provides the industry's leading high-scale
|
||||
> formerly known as `Vertex AI Matching Engine`, provides the industry's leading high-scale
|
||||
> low latency vector database. These vector databases are commonly
|
||||
> referred to as vector similarity-matching or an approximate nearest neighbor (ANN) service.
|
||||
|
||||
@@ -207,10 +207,14 @@ from langchain_community.vectorstores import MatchingEngine
|
||||
> [Google BigQuery](https://cloud.google.com/bigquery),
|
||||
> BigQuery is a serverless and cost-effective enterprise data warehouse in Google Cloud.
|
||||
>
|
||||
> Google BigQuery Vector Search
|
||||
> Google BigQuery Vector Search
|
||||
> BigQuery vector search lets you use GoogleSQL to do semantic search, using vector indexes for fast but approximate results, or using brute force for exact results.
|
||||
|
||||
> It can calculate Euclidean or Cosine distance. With LangChain, we default to use Euclidean distance.
|
||||
> It can calculate Euclidean or Cosine distance. With LangChain, we default to use Euclidean distance.
|
||||
|
||||
> This is a private preview (experimental) feature. Please submit this
|
||||
> [enrollment form](https://docs.google.com/forms/d/18yndSb4dTf2H0orqA9N7NAchQEDQekwWiD5jYfEkGWk/viewform?edit_requested=true)
|
||||
> if you want to enroll BigQuery Vector Search Experimental.
|
||||
|
||||
We need to install several python packages.
|
||||
|
||||
@@ -228,7 +232,7 @@ from langchain.vectorstores import BigQueryVectorSearch
|
||||
|
||||
>[Google ScaNN](https://github.com/google-research/google-research/tree/master/scann)
|
||||
> (Scalable Nearest Neighbors) is a python package.
|
||||
>
|
||||
>
|
||||
>`ScaNN` is a method for efficient vector similarity search at scale.
|
||||
|
||||
>`ScaNN` includes search space pruning and quantization for Maximum Inner
|
||||
@@ -285,9 +289,9 @@ from langchain.retrievers import GoogleVertexAISearchRetriever
|
||||
|
||||
### Document AI Warehouse
|
||||
> [Google Cloud Document AI Warehouse](https://cloud.google.com/document-ai-warehouse)
|
||||
> allows enterprises to search, store, govern, and manage documents and their AI-extracted
|
||||
> allows enterprises to search, store, govern, and manage documents and their AI-extracted
|
||||
> data and metadata in a single platform.
|
||||
>
|
||||
>
|
||||
|
||||
```python
|
||||
from langchain.retrievers import GoogleDocumentAIWarehouseRetriever
|
||||
@@ -304,9 +308,9 @@ documents = docai_wh_retriever.get_relevant_documents(
|
||||
|
||||
### Google Cloud Text-to-Speech
|
||||
|
||||
>[Google Cloud Text-to-Speech](https://cloud.google.com/text-to-speech) enables developers to
|
||||
> synthesize natural-sounding speech with 100+ voices, available in multiple languages and variants.
|
||||
> It applies DeepMind’s groundbreaking research in WaveNet and Google’s powerful neural networks
|
||||
>[Google Cloud Text-to-Speech](https://cloud.google.com/text-to-speech) enables developers to
|
||||
> synthesize natural-sounding speech with 100+ voices, available in multiple languages and variants.
|
||||
> It applies DeepMind’s groundbreaking research in WaveNet and Google’s powerful neural networks
|
||||
> to deliver the highest fidelity possible.
|
||||
|
||||
We need to install a python package.
|
||||
@@ -354,7 +358,7 @@ from langchain.tools import GooglePlacesTool
|
||||
### Google Search
|
||||
|
||||
- Set up a Custom Search Engine, following [these instructions](https://stackoverflow.com/questions/37083058/programmatically-searching-google-in-python-using-custom-search)
|
||||
- Get an API Key and Custom Search Engine ID from the previous step, and set them as environment variables
|
||||
- Get an API Key and Custom Search Engine ID from the previous step, and set them as environment variables
|
||||
`GOOGLE_API_KEY` and `GOOGLE_CSE_ID` respectively.
|
||||
|
||||
```python
|
||||
@@ -444,12 +448,12 @@ from langchain_community.utilities.google_trends import GoogleTrendsAPIWrapper
|
||||
|
||||
### Google Document AI
|
||||
|
||||
>[Document AI](https://cloud.google.com/document-ai/docs/overview) is a `Google Cloud Platform`
|
||||
> service that transforms unstructured data from documents into structured data, making it easier
|
||||
>[Document AI](https://cloud.google.com/document-ai/docs/overview) is a `Google Cloud Platform`
|
||||
> service that transforms unstructured data from documents into structured data, making it easier
|
||||
> to understand, analyze, and consume.
|
||||
|
||||
We need to set up a [`GCS` bucket and create your own OCR processor](https://cloud.google.com/document-ai/docs/create-processor)
|
||||
The `GCS_OUTPUT_PATH` should be a path to a folder on GCS (starting with `gs://`)
|
||||
We need to set up a [`GCS` bucket and create your own OCR processor](https://cloud.google.com/document-ai/docs/create-processor)
|
||||
The `GCS_OUTPUT_PATH` should be a path to a folder on GCS (starting with `gs://`)
|
||||
and a processor name should look like `projects/PROJECT_NUMBER/locations/LOCATION/processors/PROCESSOR_ID`.
|
||||
We can get it either programmatically or copy from the `Prediction endpoint` section of the `Processor details`
|
||||
tab in the Google Cloud Console.
|
||||
@@ -507,6 +511,23 @@ See a [usage example and authorization instructions](/docs/integrations/toolkits
|
||||
from langchain_community.agent_toolkits import GmailToolkit
|
||||
```
|
||||
|
||||
## Memory
|
||||
|
||||
### Cloud Firestore
|
||||
|
||||
> [`Cloud Firestore`](https://cloud.google.com/firestore) is a NoSQL document database built for automatic scaling, high performance, and ease of application development.
|
||||
|
||||
First, we need to install the python package.
|
||||
|
||||
```bash
|
||||
pip install firebase-admin
|
||||
```
|
||||
|
||||
See a [usage example and authorization instructions](/docs/integrations/memory/firestore_chat_message_history).
|
||||
|
||||
```python
|
||||
from langchain_community.chat_message_histories.firestore import FirestoreChatMessageHistory
|
||||
```
|
||||
|
||||
## Chat Loaders
|
||||
|
||||
@@ -560,7 +581,7 @@ from langchain_community.utilities import GoogleSerperAPIWrapper
|
||||
### YouTube
|
||||
|
||||
>[YouTube Search](https://github.com/joetats/youtube_search) package searches `YouTube` videos avoiding using their heavily rate-limited API.
|
||||
>
|
||||
>
|
||||
>It uses the form on the YouTube homepage and scrapes the resulting page.
|
||||
|
||||
We need to install a python package.
|
||||
|
||||
@@ -10,7 +10,7 @@ All functionality related to `Microsoft Azure` and other `Microsoft` products.
|
||||
>[Azure OpenAI](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) is an `Azure` service with powerful language models from `OpenAI` including the `GPT-3`, `Codex` and `Embeddings model` series for content generation, summarization, semantic search, and natural language to code translation.
|
||||
|
||||
```bash
|
||||
pip install openai tiktoken
|
||||
pip install langchain-openai
|
||||
```
|
||||
|
||||
Set the environment variables to get access to the `Azure OpenAI` service.
|
||||
|
||||
@@ -14,11 +14,12 @@ All functionality related to OpenAI
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
- Install the LangChain partner package
|
||||
Install the integration package with
|
||||
```bash
|
||||
pip install langchain-openai
|
||||
```
|
||||
- Get an OpenAI api key and set it as an environment variable (`OPENAI_API_KEY`)
|
||||
|
||||
Get an OpenAI api key and set it as an environment variable (`OPENAI_API_KEY`)
|
||||
|
||||
|
||||
## LLM
|
||||
|
||||
@@ -13,7 +13,7 @@ Activeloop Deep Lake supports SelfQuery Retrieval:
|
||||
|
||||
## More Resources
|
||||
1. [Ultimate Guide to LangChain & Deep Lake: Build ChatGPT to Answer Questions on Your Financial Data](https://www.activeloop.ai/resources/ultimate-guide-to-lang-chain-deep-lake-build-chat-gpt-to-answer-questions-on-your-financial-data/)
|
||||
2. [Twitter the-algorithm codebase analysis with Deep Lake](/docs/use_cases/question_answering/code/twitter-the-algorithm-analysis-deeplake)
|
||||
2. [Twitter the-algorithm codebase analysis with Deep Lake](https://github.com/langchain-ai/langchain/blob/master/cookbook/twitter-the-algorithm-analysis-deeplake.ipynb)
|
||||
3. Here is [whitepaper](https://www.deeplake.ai/whitepaper) and [academic paper](https://arxiv.org/pdf/2209.10785.pdf) for Deep Lake
|
||||
4. Here is a set of additional resources available for review: [Deep Lake](https://github.com/activeloopai/deeplake), [Get started](https://docs.activeloop.ai/getting-started) and [Tutorials](https://docs.activeloop.ai/hub-tutorials)
|
||||
|
||||
|
||||
@@ -1,17 +1,34 @@
|
||||
# Anyscale
|
||||
|
||||
This page covers how to use the Anyscale ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Anyscale wrappers.
|
||||
>[Anyscale](https://www.anyscale.com) is a platform to run, fine tune and scale LLMs via production-ready APIs.
|
||||
> [Anyscale Endpoints](https://docs.anyscale.com/endpoints/overview) serve many open-source models in a cost-effective way.
|
||||
|
||||
`Anyscale` also provides [an example](https://docs.anyscale.com/endpoints/model-serving/examples/langchain-integration)
|
||||
how to setup `LangChain` with `Anyscale` for advanced chat agents.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
- Get an Anyscale Service URL, route and API key and set them as environment variables (`ANYSCALE_SERVICE_URL`,`ANYSCALE_SERVICE_ROUTE`, `ANYSCALE_SERVICE_TOKEN`).
|
||||
- Please see [the Anyscale docs](https://docs.anyscale.com/productionize/services-v2/get-started) for more details.
|
||||
- Please see [the Anyscale docs](https://www.anyscale.com/get-started) for more details.
|
||||
|
||||
## Wrappers
|
||||
We have to install the `openai` package:
|
||||
|
||||
### LLM
|
||||
|
||||
There exists an Anyscale LLM wrapper, which you can access with
|
||||
```python
|
||||
from langchain_community.llms import Anyscale
|
||||
```bash
|
||||
pip install openai
|
||||
```
|
||||
|
||||
## LLM
|
||||
|
||||
See a [usage example](/docs/integrations/llms/anyscale).
|
||||
|
||||
```python
|
||||
from langchain_community.llms.anyscale import Anyscale
|
||||
```
|
||||
|
||||
## Chat Models
|
||||
|
||||
See a [usage example](/docs/integrations/chat/anyscale).
|
||||
|
||||
```python
|
||||
from langchain_community.chat_models.anyscale import ChatAnyscale
|
||||
```
|
||||
|
||||
@@ -18,11 +18,11 @@ whether for semantic search or example selection.
|
||||
from langchain_community.vectorstores import Chroma
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the Chroma wrapper, see [this notebook](/docs/integrations/vectorstores/chroma_self_query)
|
||||
For a more detailed walkthrough of the Chroma wrapper, see [this notebook](/docs/integrations/vectorstores/chroma)
|
||||
|
||||
## Retriever
|
||||
|
||||
See a [usage example](/docs/integrations/retrievers/self_query/chroma).
|
||||
See a [usage example](/docs/integrations/retrievers/self_query/chroma_self_query).
|
||||
|
||||
```python
|
||||
from langchain.retrievers import SelfQueryRetriever
|
||||
|
||||
@@ -150,4 +150,4 @@ This command will initiate the execution of the `langchain_llm` task on the Flyt
|
||||
|
||||
The metrics will be displayed on the Flyte UI as follows:
|
||||
|
||||

|
||||

|
||||
|
||||
@@ -6,7 +6,7 @@ This page covers how to use the [Helicone](https://helicone.ai) ecosystem within
|
||||
|
||||
Helicone is an [open-source](https://github.com/Helicone/helicone) observability platform that proxies your OpenAI traffic and provides you key insights into your spend, latency and usage.
|
||||
|
||||

|
||||

|
||||
|
||||
## Quick start
|
||||
|
||||
@@ -18,7 +18,7 @@ export OPENAI_API_BASE="https://oai.hconeai.com/v1"
|
||||
|
||||
Now head over to [helicone.ai](https://helicone.ai/onboarding?step=2) to create your account, and add your OpenAI API key within our dashboard to view your logs.
|
||||
|
||||

|
||||

|
||||
|
||||
## How to enable Helicone caching
|
||||
|
||||
|
||||
25
docs/docs/integrations/providers/lantern.mdx
Normal file
25
docs/docs/integrations/providers/lantern.mdx
Normal file
@@ -0,0 +1,25 @@
|
||||
# Lantern
|
||||
|
||||
This page covers how to use the [Lantern](https://github.com/lanterndata/lantern) within LangChain
|
||||
It is broken into two parts: setup, and then references to specific Lantern wrappers.
|
||||
|
||||
## Setup
|
||||
1. The first step is to create a database with the `lantern` extension installed.
|
||||
|
||||
Follow the steps at [Lantern Installation Guide](https://github.com/lanterndata/lantern#-quick-install) to install the database and the extension. The docker image is the easiest way to get started.
|
||||
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around Postgres vector databases, allowing you to use it as a vectorstore,
|
||||
whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain_community.vectorstores import Lantern
|
||||
```
|
||||
|
||||
### Usage
|
||||
|
||||
For a more detailed walkthrough of the Lantern Wrapper, see [this notebook](/docs/integrations/vectorstores/lantern)
|
||||
@@ -6,7 +6,7 @@ This page covers how to use [Metal](https://getmetal.io) within LangChain.
|
||||
|
||||
Metal is a managed retrieval & memory platform built for production. Easily index your data into `Metal` and run semantic search and retrieval on it.
|
||||
|
||||

|
||||

|
||||
|
||||
## Quick start
|
||||
|
||||
|
||||
@@ -9,9 +9,7 @@
|
||||
We need to install several python packages.
|
||||
|
||||
```bash
|
||||
pip install openai
|
||||
pip install psycopg2-binary
|
||||
pip install tiktoken
|
||||
```
|
||||
|
||||
## Vector Store
|
||||
|
||||
@@ -66,7 +66,7 @@
|
||||
"source": [
|
||||
"## Document Compressor\n",
|
||||
"\n",
|
||||
"We can also use RAGatouille off-the-shelf as a reranker. This will allow us to use ColBERT to rerank retrieved results from any generic retriever. The benefits of this are that we can do this on top of any existing index, so that we don't need to create a new idex. We can do this by using the [document compressor](/docs/modules/data_connections/retrievers/contextual_compression) abstraction in LangChain."
|
||||
"We can also use RAGatouille off-the-shelf as a reranker. This will allow us to use ColBERT to rerank retrieved results from any generic retriever. The benefits of this are that we can do this on top of any existing index, so that we don't need to create a new idex. We can do this by using the [document compressor](/docs/modules/data_connection/retrievers/contextual_compression) abstraction in LangChain."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -5,13 +5,15 @@
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
You need to install `langchain-robocorp` python package, as well as the `robocorp-action-server` package to run the action server locally.
|
||||
You need to install `langchain-robocorp` python package:
|
||||
|
||||
```bash
|
||||
pip install langchain-robocorp robocorp-action-server
|
||||
pip install langchain-robocorp
|
||||
```
|
||||
|
||||
You will need a running instance of Action Server to communicate with from your agent application. You can bootstrap a new project using Action Server `new` command.
|
||||
You will need a running instance of Action Server to communicate with from your agent application. See the [Robocorp Quickstart](https://github.com/robocorp/robocorp#quickstart) on how to setup Action Server and create your Actions.
|
||||
|
||||
You can bootstrap a new project using Action Server `new` command.
|
||||
|
||||
```bash
|
||||
action-server new
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
|
||||
|
||||
```bash
|
||||
pip install tigrisdb openapi-schema-pydantic openai tiktoken
|
||||
pip install tigrisdb openapi-schema-pydantic
|
||||
```
|
||||
|
||||
## Vector Store
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
|
||||
|
||||
```bash
|
||||
pip install typesense openapi-schema-pydantic openai tiktoken
|
||||
pip install typesense openapi-schema-pydantic
|
||||
```
|
||||
|
||||
## Vector Store
|
||||
|
||||
@@ -51,7 +51,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Also you'll need to create a [Activeloop]((https://activeloop.ai/)) account."
|
||||
"Also you'll need to create a [Activeloop](https://activeloop.ai) account."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -18,6 +18,15 @@
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
322
docs/docs/integrations/retrievers/self_query/astradb.ipynb
Normal file
322
docs/docs/integrations/retrievers/self_query/astradb.ipynb
Normal file
@@ -0,0 +1,322 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Astra DB\n",
|
||||
"\n",
|
||||
"DataStax [Astra DB](https://docs.datastax.com/en/astra/home/astra.html) is a serverless vector-capable database built on Cassandra and made conveniently available through an easy-to-use JSON API.\n",
|
||||
"\n",
|
||||
"In the walkthrough, we'll demo the `SelfQueryRetriever` with an `Astra DB` vector store."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating an Astra DB vector store\n",
|
||||
"First we'll want to create an Astra DB VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
|
||||
"\n",
|
||||
"NOTE: The self-query retriever requires you to have `lark` installed (`pip install lark`). We also need the `astrapy` package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet lark astrapy langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"from langchain_openai.embeddings import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass(\"OpenAI API Key:\")\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Create the Astra DB VectorStore:\n",
|
||||
"\n",
|
||||
"- the API Endpoint looks like `https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com`\n",
|
||||
"- the Token looks like `AstraCS:6gBhNmsk135....`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ASTRA_DB_API_ENDPOINT = input(\"ASTRA_DB_API_ENDPOINT = \")\n",
|
||||
"ASTRA_DB_APPLICATION_TOKEN = getpass(\"ASTRA_DB_APPLICATION_TOKEN = \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.vectorstores import AstraDB\n",
|
||||
"\n",
|
||||
"docs = [\n",
|
||||
" Document(\n",
|
||||
" page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",\n",
|
||||
" metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\",\n",
|
||||
" metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n",
|
||||
" metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n",
|
||||
" metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Toys come alive and have a blast doing so\",\n",
|
||||
" metadata={\"year\": 1995, \"genre\": \"animated\"},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Three men walk into the Zone, three men walk out of the Zone\",\n",
|
||||
" metadata={\n",
|
||||
" \"year\": 1979,\n",
|
||||
" \"director\": \"Andrei Tarkovsky\",\n",
|
||||
" \"genre\": \"science fiction\",\n",
|
||||
" \"rating\": 9.9,\n",
|
||||
" },\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"vectorstore = AstraDB.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" collection_name=\"astra_self_query_demo\",\n",
|
||||
" api_endpoint=ASTRA_DB_API_ENDPOINT,\n",
|
||||
" token=ASTRA_DB_APPLICATION_TOKEN,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating our self-querying retriever\n",
|
||||
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
||||
"\n",
|
||||
"metadata_field_info = [\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"genre\",\n",
|
||||
" description=\"The genre of the movie\",\n",
|
||||
" type=\"string or list[string]\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"year\",\n",
|
||||
" description=\"The year the movie was released\",\n",
|
||||
" type=\"integer\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"director\",\n",
|
||||
" description=\"The name of the movie director\",\n",
|
||||
" type=\"string\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"document_content_description = \"Brief summary of a movie\"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"\n",
|
||||
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Testing it out\n",
|
||||
"And now we can try actually using our retriever!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This example only specifies a relevant query\n",
|
||||
"retriever.get_relevant_documents(\"What are some movies about dinosaurs?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This example specifies a filter\n",
|
||||
"retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This example only specifies a query and a filter\n",
|
||||
"retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This example specifies a composite filter\n",
|
||||
"retriever.get_relevant_documents(\n",
|
||||
" \"What's a highly rated (above 8.5), science fiction movie ?\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This example specifies a query and composite filter\n",
|
||||
"retriever.get_relevant_documents(\n",
|
||||
" \"What's a movie about toys after 1990 but before 2005, and is animated\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Filter k\n",
|
||||
"\n",
|
||||
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
||||
"\n",
|
||||
"We can do this by passing `enable_limit=True` to the constructor."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||
" llm,\n",
|
||||
" vectorstore,\n",
|
||||
" document_content_description,\n",
|
||||
" metadata_field_info,\n",
|
||||
" verbose=True,\n",
|
||||
" enable_limit=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This example only specifies a relevant query\n",
|
||||
"retriever.get_relevant_documents(\"What are two movies about dinosaurs?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"## Cleanup\n",
|
||||
"\n",
|
||||
"If you want to completely delete the collection from your Astra DB instance, run this.\n",
|
||||
"\n",
|
||||
"_(You will lose the data you stored in it.)_"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorstore.delete_collection()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
240
docs/docs/integrations/stores/astradb.ipynb
Normal file
240
docs/docs/integrations/stores/astradb.ipynb
Normal file
@@ -0,0 +1,240 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: Astra DB\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Astra DB\n",
|
||||
"\n",
|
||||
"DataStax [Astra DB](https://docs.datastax.com/en/astra/home/astra.html) is a serverless vector-capable database built on Cassandra and made conveniently available through an easy-to-use JSON API.\n",
|
||||
"\n",
|
||||
"`AstraDBStore` and `AstraDBByteStore` need the `astrapy` package to be installed:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "plaintext"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet astrapy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The Store takes the following parameters:\n",
|
||||
"\n",
|
||||
"* `api_endpoint`: Astra DB API endpoint. Looks like `https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com`\n",
|
||||
"* `token`: Astra DB token. Looks like `AstraCS:6gBhNmsk135....`\n",
|
||||
"* `collection_name` : Astra DB collection name\n",
|
||||
"* `namespace`: (Optional) Astra DB namespace"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## AstraDBStore\n",
|
||||
"\n",
|
||||
"The `AstraDBStore` is an implementation of `BaseStore` that stores everything in your DataStax Astra DB instance.\n",
|
||||
"The store keys must be strings and will be mapped to the `_id` field of the Astra DB document.\n",
|
||||
"The store values can be any object that can be serialized by `json.dumps`.\n",
|
||||
"In the database, entries will have the form:\n",
|
||||
"\n",
|
||||
"```json\n",
|
||||
"{\n",
|
||||
" \"_id\": \"<key>\",\n",
|
||||
" \"value\": <value>\n",
|
||||
"}\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.storage import AstraDBStore"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"ASTRA_DB_API_ENDPOINT = input(\"ASTRA_DB_API_ENDPOINT = \")\n",
|
||||
"ASTRA_DB_APPLICATION_TOKEN = getpass(\"ASTRA_DB_APPLICATION_TOKEN = \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"store = AstraDBStore(\n",
|
||||
" api_endpoint=ASTRA_DB_API_ENDPOINT,\n",
|
||||
" token=ASTRA_DB_APPLICATION_TOKEN,\n",
|
||||
" collection_name=\"my_store\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['v1', [0.1, 0.2, 0.3]]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"store.mset([(\"k1\", \"v1\"), (\"k2\", [0.1, 0.2, 0.3])])\n",
|
||||
"print(store.mget([\"k1\", \"k2\"]))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Usage with CacheBackedEmbeddings\n",
|
||||
"\n",
|
||||
"You may use the `AstraDBStore` in conjunction with a [`CacheBackedEmbeddings`](/docs/modules/data_connection/text_embedding/caching_embeddings) to cache the result of embeddings computations.\n",
|
||||
"Note that `AstraDBStore` stores the embeddings as a list of floats without converting them first to bytes so we don't use `fromByteStore` there."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import CacheBackedEmbeddings, OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = CacheBackedEmbeddings(\n",
|
||||
" underlying_embeddings=OpenAIEmbeddings(), document_embedding_store=store\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## AstraDBByteStore\n",
|
||||
"\n",
|
||||
"The `AstraDBByteStore` is an implementation of `ByteStore` that stores everything in your DataStax Astra DB instance.\n",
|
||||
"The store keys must be strings and will be mapped to the `_id` field of the Astra DB document.\n",
|
||||
"The store `bytes` values are converted to base64 strings for storage into Astra DB.\n",
|
||||
"In the database, entries will have the form:\n",
|
||||
"\n",
|
||||
"```json\n",
|
||||
"{\n",
|
||||
" \"_id\": \"<key>\",\n",
|
||||
" \"value\": \"bytes encoded in base 64\"\n",
|
||||
"}\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.storage import AstraDBByteStore"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"ASTRA_DB_API_ENDPOINT = input(\"ASTRA_DB_API_ENDPOINT = \")\n",
|
||||
"ASTRA_DB_APPLICATION_TOKEN = getpass(\"ASTRA_DB_APPLICATION_TOKEN = \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"store = AstraDBByteStore(\n",
|
||||
" api_endpoint=ASTRA_DB_API_ENDPOINT,\n",
|
||||
" token=ASTRA_DB_APPLICATION_TOKEN,\n",
|
||||
" collection_name=\"my_store\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[b'v1', b'v2']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"store.mset([(\"k1\", b\"v1\"), (\"k2\", b\"v2\")])\n",
|
||||
"print(store.mget([\"k1\", \"k2\"]))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -10,6 +10,51 @@
|
||||
"which converts text into a vector form represented by numerical values, and is used in text retrieval, information recommendation, knowledge mining and other scenarios."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Deprecated Warning**\n",
|
||||
"\n",
|
||||
"We recommend users using `langchain_community.embeddings.ErnieEmbeddings` \n",
|
||||
"to use `langchain_community.embeddings.QianfanEmbeddingsEndpoint` instead.\n",
|
||||
"\n",
|
||||
"documentation for `QianfanEmbeddingsEndpoint` is [here](./baidu_qianfan_endpoint).\n",
|
||||
"\n",
|
||||
"they are 2 why we recommend users to use `QianfanEmbeddingsEndpoint`:\n",
|
||||
"\n",
|
||||
"1. `QianfanEmbeddingsEndpoint` support more embedding model in the Qianfan platform.\n",
|
||||
"2. `ErnieEmbeddings` is lack of maintenance and deprecated."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Some tips for migration:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings import QianfanEmbeddingsEndpoint\n",
|
||||
"\n",
|
||||
"embeddings = QianfanEmbeddingsEndpoint(\n",
|
||||
" qianfan_ak=\"your qianfan ak\",\n",
|
||||
" qianfan_sk=\"your qianfan sk\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
||||
@@ -194,6 +194,19 @@
|
||||
"source": [
|
||||
"In retrieval, relative distance matters. In the image above, you can see the difference in similarity scores between the \"relevant doc\" and \"simil stronger delta between the similar query and relevant doc on the latter case."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2e7857e5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Additional Configuraation\n",
|
||||
"\n",
|
||||
"You can pass the following parameters to ChatGoogleGenerativeAI in order to customize the SDK's behavior:\n",
|
||||
"\n",
|
||||
"- `client_options`: [Client Options](https://googleapis.dev/python/google-api-core/latest/client_options.html#module-google.api_core.client_options) to pass to the Google API Client, such as a custom `client_options[\"api_endpoint\"]`\n",
|
||||
"- `transport`: The transport method to use, such as `rest`, `grpc`, or `grpc_asyncio`."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
@@ -106,7 +106,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdin",
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Enter your HF Inference API Key:\n",
|
||||
@@ -148,6 +148,75 @@
|
||||
"query_result = embeddings.embed_query(text)\n",
|
||||
"query_result[:3]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "19ef2d31",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Hugging Face Hub\n",
|
||||
"We can also generate embeddings locally via the Hugging Face Hub package, which requires us to install ``huggingface_hub ``"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "39e85945",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install huggingface_hub"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c78a2779",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings import HuggingFaceHubEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "116f3ce7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = HuggingFaceHubEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d6f97ee9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"text = \"This is a test document.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fb6adc67",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_result = embeddings.embed_query(text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1f42c311",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_result[:3]"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
103
docs/docs/integrations/text_embedding/mistralai.ipynb
Normal file
103
docs/docs/integrations/text_embedding/mistralai.ipynb
Normal file
@@ -0,0 +1,103 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b14a24db",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# MistralAI\n",
|
||||
"\n",
|
||||
"This notebook explains how to use MistralAIEmbeddings, which is included in the langchain_mistralai package, to embed texts in langchain."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "0ab948fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# pip install -U langchain-mistralai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "67c637ca",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## import the library"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "5709b030",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_mistralai import MistralAIEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "1756b1ba",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embedding = MistralAIEmbeddings(mistral_api_key=\"your-api-key\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4a2a098d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Using the Embedding Model\n",
|
||||
"With `MistralAIEmbeddings`, you can directly use the default model 'mistral-embed', or set a different one if available."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "584b9af5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embedding.model = \"mistral-embed\" # or your preferred model if available"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "be18b873",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"res_query = embedding.embed_query(\"The test information\")\n",
|
||||
"res_document = embedding.embed_documents([\"test1\", \"another test\"])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -17,7 +17,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -30,13 +30,18 @@
|
||||
"source": [
|
||||
"## Assign Environmental Variables\n",
|
||||
"\n",
|
||||
"The toolkit will read the AMADEUS_CLIENT_ID and AMADEUS_CLIENT_SECRET environmental variables to authenticate the user so you need to set them here. You will also need to set your OPENAI_API_KEY to use the agent later."
|
||||
"The toolkit will read the AMADEUS_CLIENT_ID and AMADEUS_CLIENT_SECRET environmental variables to authenticate the user, so you need to set them here. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-01-13T17:45:56.531388579Z",
|
||||
"start_time": "2024-01-13T17:45:56.523533018Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Set environmental variables here\n",
|
||||
@@ -44,7 +49,6 @@
|
||||
"\n",
|
||||
"os.environ[\"AMADEUS_CLIENT_ID\"] = \"CLIENT_ID\"\n",
|
||||
"os.environ[\"AMADEUS_CLIENT_SECRET\"] = \"CLIENT_SECRET\"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"API_KEY\"\n",
|
||||
"# os.environ[\"AMADEUS_HOSTNAME\"] = \"production\" or \"test\""
|
||||
]
|
||||
},
|
||||
@@ -57,11 +61,39 @@
|
||||
"To start, you need to create the toolkit, so you can access its tools later."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"By default, `AmadeusToolkit` uses `ChatOpenAI` to identify airports closest to a given location. To use it, just set `OPENAI_API_KEY`.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-01-13T17:45:56.557041160Z",
|
||||
"start_time": "2024-01-13T17:45:56.530682481Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"YOUR_OPENAI_KEY\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"tags": [],
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-01-13T17:45:58.431168124Z",
|
||||
"start_time": "2024-01-13T17:45:56.536269739Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -71,6 +103,35 @@
|
||||
"tools = toolkit.get_tools()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"Alternatively, you can use any LLM supported by langchain, e.g. `HuggingFaceHub`. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.llms import HuggingFaceHub\n",
|
||||
"\n",
|
||||
"os.environ[\"HUGGINGFACEHUB_API_TOKEN\"] = \"YOUR_HF_API_TOKEN\"\n",
|
||||
"\n",
|
||||
"llm = HuggingFaceHub(\n",
|
||||
" repo_id=\"tiiuae/falcon-7b-instruct\",\n",
|
||||
" model_kwargs={\"temperature\": 0.5, \"max_length\": 64},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"toolkit_hf = AmadeusToolkit(llm=llm)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -78,91 +139,76 @@
|
||||
"## Use Amadeus Toolkit within an Agent"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentType, initialize_agent\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"agent = initialize_agent(\n",
|
||||
" tools=tools,\n",
|
||||
" llm=llm,\n",
|
||||
" verbose=False,\n",
|
||||
" agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The closest airport to Cali, Colombia is Alfonso Bonilla Aragón International Airport (CLO).'"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
"tags": [],
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-01-13T17:46:00.148691365Z",
|
||||
"start_time": "2024-01-13T17:45:59.317173243Z"
|
||||
}
|
||||
],
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent.run(\"What is the name of the airport in Cali, Colombia?\")"
|
||||
"from langchain import hub\n",
|
||||
"from langchain.agents import AgentExecutor, create_react_agent\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The cheapest flight on August 23, 2023 leaving Dallas, Texas before noon to Lincoln, Nebraska has a departure time of 16:42 and a total price of 276.08 EURO.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
"tags": [],
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-01-13T17:46:01.270044101Z",
|
||||
"start_time": "2024-01-13T17:46:00.148988945Z"
|
||||
}
|
||||
],
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent.run(\n",
|
||||
" \"What is the departure time of the cheapest flight on August 23, 2023 leaving Dallas, Texas before noon to Lincoln, Nebraska?\"\n",
|
||||
"llm = ChatOpenAI(temperature=0)\n",
|
||||
"\n",
|
||||
"prompt = hub.pull(\"hwchase17/react\")\n",
|
||||
"agent = create_react_agent(llm, tools, prompt)\n",
|
||||
"\n",
|
||||
"agent_executor = AgentExecutor(\n",
|
||||
" agent=agent,\n",
|
||||
" tools=tools,\n",
|
||||
" verbose=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-01-13T17:46:06.176227412Z",
|
||||
"start_time": "2024-01-13T17:46:01.272468682Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mI should use the closest_airport tool to find the airport in Cali, Colombia.\n",
|
||||
"Action: closest_airport\n",
|
||||
"Action Input: location= \"Cali, Colombia\"\u001B[0m\u001B[36;1m\u001B[1;3mcontent='{\\n \"iataCode\": \"CLO\"\\n}'\u001B[0m\u001B[32;1m\u001B[1;3mThe airport in Cali, Colombia is called CLO.\n",
|
||||
"Final Answer: CLO\u001B[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The earliest flight on August 23, 2023 leaving Dallas, Texas to Lincoln, Nebraska lands in Lincoln, Nebraska at 16:07.'"
|
||||
]
|
||||
"text/plain": "{'input': 'What is the name of the airport in Cali, Colombia?',\n 'output': 'CLO'}"
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
@@ -170,52 +216,67 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent.run(\n",
|
||||
" \"At what time does earliest flight on August 23, 2023 leaving Dallas, Texas to Lincoln, Nebraska land in Nebraska?\"\n",
|
||||
"agent_executor.invoke({\"input\": \"What is the name of the airport in Cali, Colombia?\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor.invoke(\n",
|
||||
" {\n",
|
||||
" \"input\": \"What is the departure time of the cheapest flight on August 23, 2023 leaving Dallas, Texas before noon to Lincoln, Nebraska?\"\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The cheapest flight between Portland, Oregon to Dallas, TX on October 3, 2023 is a Spirit Airlines flight with a total price of 84.02 EURO and a total travel time of 8 hours and 43 minutes.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent.run(\n",
|
||||
" \"What is the full travel time for the cheapest flight between Portland, Oregon to Dallas, TX on October 3, 2023?\"\n",
|
||||
"agent_executor.invoke(\n",
|
||||
" {\n",
|
||||
" \"input\": \"At what time does earliest flight on August 23, 2023 leaving Dallas, Texas to Lincoln, Nebraska land in Nebraska?\"\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Dear Paul,\\n\\nI am writing to request that you book the earliest flight from DFW to DCA on Aug 28, 2023. The flight details are as follows:\\n\\nFlight 1: DFW to ATL, departing at 7:15 AM, arriving at 10:25 AM, flight number 983, carrier Delta Air Lines\\nFlight 2: ATL to DCA, departing at 12:15 PM, arriving at 2:02 PM, flight number 759, carrier Delta Air Lines\\n\\nThank you for your help.\\n\\nSincerely,\\nSantiago'"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent.run(\n",
|
||||
" \"Please draft a concise email from Santiago to Paul, Santiago's travel agent, asking him to book the earliest flight from DFW to DCA on Aug 28, 2023. Include all flight details in the email.\"\n",
|
||||
"agent_executor.invoke(\n",
|
||||
" {\n",
|
||||
" \"input\": \"What is the full travel time for the cheapest flight between Portland, Oregon to Dallas, TX on October 3, 2023?\"\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor.invoke(\n",
|
||||
" {\n",
|
||||
" \"input\": \"Please draft a concise email from Santiago to Paul, Santiago's travel agent, asking him to book the earliest flight from DFW to DCA on Aug 28, 2023. Include all flight details in the email.\"\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
|
||||
@@ -5,16 +5,25 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# MultiOn\n",
|
||||
" \n",
|
||||
"[MultiON](https://www.multion.ai/blog/multion-building-a-brighter-future-for-humanity-with-ai-agents) has built an AI Agent that can interact with a broad array of web services and applications. \n",
|
||||
"\n",
|
||||
"This notebook walks you through connecting LangChain to the `MultiOn` Client in your browser\n",
|
||||
"This notebook walks you through connecting LangChain to the `MultiOn` Client in your browser. \n",
|
||||
"\n",
|
||||
"To use this toolkit, you will need to add `MultiOn Extension` to your browser as explained in the [MultiOn for Chrome](https://multion.notion.site/Download-MultiOn-ddddcfe719f94ab182107ca2612c07a5)."
|
||||
"This enables custom agentic workflow that utilize the power of MultiON agents.\n",
|
||||
" \n",
|
||||
"To use this toolkit, you will need to add `MultiOn Extension` to your browser: \n",
|
||||
"\n",
|
||||
"* Create a [MultiON account](https://app.multion.ai/login?callbackUrl=%2Fprofile). \n",
|
||||
"* Add [MultiOn extension for Chrome](https://multion.notion.site/Download-MultiOn-ddddcfe719f94ab182107ca2612c07a5)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet multion langchain -q"
|
||||
@@ -22,22 +31,43 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"MultionToolkit()"
|
||||
]
|
||||
},
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.agent_toolkits import MultionToolkit\n",
|
||||
"\n",
|
||||
"toolkit = MultionToolkit()\n",
|
||||
"\n",
|
||||
"toolkit"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 38,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[MultionCreateSession(), MultionUpdateSession(), MultionCloseSession()]"
|
||||
]
|
||||
},
|
||||
"execution_count": 38,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tools = toolkit.get_tools()\n",
|
||||
"tools"
|
||||
@@ -49,14 +79,24 @@
|
||||
"source": [
|
||||
"## MultiOn Setup\n",
|
||||
"\n",
|
||||
"Once you have created an account, create an API key at https://app.multion.ai/. \n",
|
||||
"\n",
|
||||
"Login to establish connection with your extension."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Logged in.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Authorize connection to your Browser extention\n",
|
||||
"import multion\n",
|
||||
@@ -68,42 +108,98 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use Multion Toolkit within an Agent"
|
||||
"## Use Multion Toolkit within an Agent\n",
|
||||
"\n",
|
||||
"This will use MultiON chrome extension to perform the desired actions.\n",
|
||||
"\n",
|
||||
"We can run the below, and view the [trace](https://smith.langchain.com/public/34aaf36d-204a-4ce3-a54e-4a0976f09670/r) to see:\n",
|
||||
"\n",
|
||||
"* The agent uses the `create_multion_session` tool\n",
|
||||
"* It then uses MultiON to execute the query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"execution_count": 40,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentType, initialize_agent\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"from langchain_community.agent_toolkits import MultionToolkit\n",
|
||||
"\n",
|
||||
"toolkit = MultionToolkit()\n",
|
||||
"tools = toolkit.get_tools()\n",
|
||||
"agent = initialize_agent(\n",
|
||||
"from langchain import hub\n",
|
||||
"from langchain.agents import AgentExecutor, create_openai_functions_agent\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Prompt\n",
|
||||
"instructions = \"\"\"You are an assistant.\"\"\"\n",
|
||||
"base_prompt = hub.pull(\"langchain-ai/openai-functions-template\")\n",
|
||||
"prompt = base_prompt.partial(instructions=instructions)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# LLM\n",
|
||||
"llm = ChatOpenAI(temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Agent\n",
|
||||
"agent = create_openai_functions_agent(llm, toolkit.get_tools(), prompt)\n",
|
||||
"agent_executor = AgentExecutor(\n",
|
||||
" agent=agent,\n",
|
||||
" tools=toolkit.get_tools(),\n",
|
||||
" llm=llm,\n",
|
||||
" agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,\n",
|
||||
" verbose=True,\n",
|
||||
" verbose=False,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"WARNING: 'new_session' is deprecated and will be removed in a future version. Use 'create_session' instead.\n",
|
||||
"WARNING: 'update_session' is deprecated and will be removed in a future version. Use 'step_session' instead.\n",
|
||||
"WARNING: 'update_session' is deprecated and will be removed in a future version. Use 'step_session' instead.\n",
|
||||
"WARNING: 'update_session' is deprecated and will be removed in a future version. Use 'step_session' instead.\n",
|
||||
"WARNING: 'update_session' is deprecated and will be removed in a future version. Use 'step_session' instead.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input': 'Use multion to how AlphaCodium works, a recently released code language model.',\n",
|
||||
" 'output': 'AlphaCodium is a recently released code language model that is designed to assist developers in writing code more efficiently. It is based on advanced machine learning techniques and natural language processing. AlphaCodium can understand and generate code in multiple programming languages, making it a versatile tool for developers.\\n\\nThe model is trained on a large dataset of code snippets and programming examples, allowing it to learn patterns and best practices in coding. It can provide suggestions and auto-complete code based on the context and the desired outcome.\\n\\nAlphaCodium also has the ability to analyze code and identify potential errors or bugs. It can offer recommendations for improving code quality and performance.\\n\\nOverall, AlphaCodium aims to enhance the coding experience by providing intelligent assistance and reducing the time and effort required to write high-quality code.\\n\\nFor more detailed information, you can visit the official AlphaCodium website or refer to the documentation and resources available online.\\n\\nI hope this helps! Let me know if you have any other questions.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent.run(\"Tweet 'Hi from MultiOn'\")"
|
||||
"agent_executor.invoke(\n",
|
||||
" {\n",
|
||||
" \"input\": \"Use multion to explain how AlphaCodium works, a recently released code language model.\"\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -123,7 +219,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
"version": "3.9.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -7,9 +7,13 @@
|
||||
"source": [
|
||||
"# Robocorp\n",
|
||||
"\n",
|
||||
"This notebook covers how to get started with [Robocorp Action Server](https://github.com/robocorp/robo/tree/master/action_server/docs) action toolkit and LangChain.\n",
|
||||
"This notebook covers how to get started with [Robocorp Action Server](https://github.com/robocorp/robocorp) action toolkit and LangChain.\n",
|
||||
"\n",
|
||||
"## Installation"
|
||||
"## Installation\n",
|
||||
"\n",
|
||||
"First, see the [Robocorp Quickstart](https://github.com/robocorp/robocorp#quickstart) on how to setup Action Server and create your Actions.\n",
|
||||
"\n",
|
||||
"In your LangChain application, install the `langchain-robocorp` package: "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -19,24 +23,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Install package and Action Server\n",
|
||||
"%pip install --upgrade --quiet langchain-robocorp robocorp-action-server"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8e2ca5c5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Action Server setup\n",
|
||||
"\n",
|
||||
"You will need a running instance of Action Server to communicate with from your agent application. You can bootstrap a new project using Action Server `new` command.\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"!action-server new\n",
|
||||
"cd ./your-project-name\n",
|
||||
"action-server start\n",
|
||||
"```\n"
|
||||
"# Install package\n",
|
||||
"%pip install --upgrade --quiet langchain-robocorp"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
112
docs/docs/integrations/tools/polygon.ipynb
Normal file
112
docs/docs/integrations/tools/polygon.ipynb
Normal file
@@ -0,0 +1,112 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "245a954a",
|
||||
"metadata": {
|
||||
"id": "245a954a"
|
||||
},
|
||||
"source": [
|
||||
"# Polygon Stock Market API\n",
|
||||
"\n",
|
||||
">[Polygon](https://polygon.io/) The Polygon.io Stocks API provides REST endpoints that let you query the latest market data from all US stock exchanges.\n",
|
||||
"\n",
|
||||
"Use the ``PolygonAPIWrapper`` to get stock market data like the latest quote for a ticker."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "34bb5968",
|
||||
"metadata": {
|
||||
"id": "34bb5968",
|
||||
"is_executing": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"POLYGON_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ac4910f8",
|
||||
"metadata": {
|
||||
"id": "ac4910f8",
|
||||
"is_executing": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities.polygon import PolygonAPIWrapper"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "84b8f773",
|
||||
"metadata": {
|
||||
"id": "84b8f773"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"polygon = PolygonAPIWrapper()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "068991a6",
|
||||
"metadata": {
|
||||
"id": "068991a6",
|
||||
"outputId": "c5cdc6ec-03cf-4084-cc6f-6ae792d91d39"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'results': {'P': 185.86, 'S': 1, 'T': 'AAPL', 'X': 11, 'i': [604], 'p': 185.81, 'q': 106551669, 's': 2, 't': 1705098436014023700, 'x': 12, 'y': 1705098436014009300, 'z': 3}}"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"polygon.run(\"get_last_quote\", \"AAPL\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"name": "venv",
|
||||
"language": "python",
|
||||
"display_name": "venv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "53f3bc57609c7a84333bb558594977aa5b4026b1d6070b93987956689e367341"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -113,10 +113,63 @@
|
||||
"requests.get(\"https://www.google.com\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4b0bf1d0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you need the output to be decoded from JSON, you can use the ``JsonRequestsWrapper``."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "3f27ee3d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Type - <class 'dict'>\n",
|
||||
"\n",
|
||||
"Content: \n",
|
||||
"```\n",
|
||||
"{'count': 5707, 'name': 'jackson', 'age': 38}\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.utilities.requests import JsonRequestsWrapper\n",
|
||||
"\n",
|
||||
"requests = JsonRequestsWrapper()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"rval = requests.get(\"https://api.agify.io/?name=jackson\")\n",
|
||||
"\n",
|
||||
"print(\n",
|
||||
" f\"\"\"\n",
|
||||
"\n",
|
||||
"Type - {type(rval)}\n",
|
||||
"\n",
|
||||
"Content: \n",
|
||||
"```\n",
|
||||
"{rval}\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"\"\"\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3f27ee3d",
|
||||
"id": "52a1aa15",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
@@ -138,7 +191,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -132,7 +132,7 @@
|
||||
"source": [
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain_community.vectorstores.azure_cosmos_db_vector_search import (\n",
|
||||
"from langchain_community.vectorstores.azure_cosmos_db import (\n",
|
||||
" AzureCosmosDBVectorSearch,\n",
|
||||
" CosmosDBSimilarityType,\n",
|
||||
")\n",
|
||||
|
||||
@@ -14,6 +14,15 @@
|
||||
"This tutorial illustrates how to work with an end-to-end data and embedding management system in LangChain, and provide scalable semantic search in BigQuery."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This is a **private preview (experimental)** feature. Please submit this\n",
|
||||
"[enrollment form](https://docs.google.com/forms/d/18yndSb4dTf2H0orqA9N7NAchQEDQekwWiD5jYfEkGWk/viewform?edit_requested=true)\n",
|
||||
"if you want to enroll BigQuery Vector Search Experimental."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
@@ -324,6 +333,24 @@
|
||||
"docs = store.similarity_search_by_vector(query_vector, filter={\"len\": 6})\n",
|
||||
"print(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Explore job satistics with BigQuery Job Id"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"job_id = \"\" # @param {type:\"string\"}\n",
|
||||
"# Debug and explore the job statistics with a BigQuery Job id.\n",
|
||||
"store.explore_job_stats(job_id)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
@@ -75,7 +75,7 @@
|
||||
" )\n",
|
||||
"```\n",
|
||||
"### Authentication\n",
|
||||
"For production, we recommend you run with security enabled. To connect with login credentials, you can use the parameters `api_key` or `es_user` and `es_password`.\n",
|
||||
"For production, we recommend you run with security enabled. To connect with login credentials, you can use the parameters `es_api_key` or `es_user` and `es_password`.\n",
|
||||
"\n",
|
||||
"Example:\n",
|
||||
"```python\n",
|
||||
|
||||
659
docs/docs/integrations/vectorstores/lantern.ipynb
Normal file
659
docs/docs/integrations/vectorstores/lantern.ipynb
Normal file
@@ -0,0 +1,659 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Lantern\n",
|
||||
"\n",
|
||||
">[Lantern](https://github.com/lanterndata/lantern) is an open-source vector similarity search for `Postgres`\n",
|
||||
"\n",
|
||||
"It supports:\n",
|
||||
"- Exact and approximate nearest neighbor search\n",
|
||||
"- L2 squared distance, hamming distance, and cosine distance\n",
|
||||
"\n",
|
||||
"This notebook shows how to use the Postgres vector database (`Lantern`)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"See the [installation instruction](https://github.com/lanterndata/lantern#-quick-install)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Pip install necessary package\n",
|
||||
"!pip install openai\n",
|
||||
"!pip install psycopg2-binary\n",
|
||||
"!pip install tiktoken"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:02:16.802456Z",
|
||||
"start_time": "2023-09-09T08:02:07.065604Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdin",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"OpenAI API Key: ········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:02:19.742896Z",
|
||||
"start_time": "2023-09-09T08:02:19.732527Z"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"False"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"## Loading Environment Variables\n",
|
||||
"from typing import List, Tuple\n",
|
||||
"\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"load_dotenv()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:02:23.144824Z",
|
||||
"start_time": "2023-09-09T08:02:22.047801Z"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Lantern\n",
|
||||
"from langchain_core.documents import Document"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:02:25.452472Z",
|
||||
"start_time": "2023-09-09T08:02:25.441563Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")\n",
|
||||
"documents = loader.load()\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"docs = text_splitter.split_documents(documents)\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:02:28.174088Z",
|
||||
"start_time": "2023-09-09T08:02:28.162698Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdin",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"DB Connection String: ········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Lantern needs the connection string to the database.\n",
|
||||
"# Example postgresql://postgres:postgres@localhost:5432/postgres\n",
|
||||
"CONNECTION_STRING = getpass.getpass(\"DB Connection String:\")\n",
|
||||
"\n",
|
||||
"# # Alternatively, you can create it from environment variables.\n",
|
||||
"# import os\n",
|
||||
"\n",
|
||||
"# CONNECTION_STRING = Lantern.connection_string_from_db_params(\n",
|
||||
"# driver=os.environ.get(\"LANTERN_DRIVER\", \"psycopg2\"),\n",
|
||||
"# host=os.environ.get(\"LANTERN_HOST\", \"localhost\"),\n",
|
||||
"# port=int(os.environ.get(\"LANTERN_PORT\", \"5432\")),\n",
|
||||
"# database=os.environ.get(\"LANTERN_DATABASE\", \"postgres\"),\n",
|
||||
"# user=os.environ.get(\"LANTERN_USER\", \"postgres\"),\n",
|
||||
"# password=os.environ.get(\"LANTERN_PASSWORD\", \"postgres\"),\n",
|
||||
"# )\n",
|
||||
"\n",
|
||||
"# or you can pass it via `LANTERN_CONNECTION_STRING` env variable"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Similarity Search with Cosine Distance (Default)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:04:16.696625Z",
|
||||
"start_time": "2023-09-09T08:02:31.817790Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# The Lantern Module will try to create a table with the name of the collection.\n",
|
||||
"# So, make sure that the collection name is unique and the user has the permission to create a table.\n",
|
||||
"\n",
|
||||
"COLLECTION_NAME = \"state_of_the_union_test\"\n",
|
||||
"\n",
|
||||
"db = Lantern.from_documents(\n",
|
||||
" embedding=embeddings,\n",
|
||||
" documents=docs,\n",
|
||||
" collection_name=COLLECTION_NAME,\n",
|
||||
" connection_string=CONNECTION_STRING,\n",
|
||||
" pre_delete_collection=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:05:11.104135Z",
|
||||
"start_time": "2023-09-09T08:05:10.548998Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs_with_score = db.similarity_search_with_score(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:05:13.532334Z",
|
||||
"start_time": "2023-09-09T08:05:13.523191Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"Score: 0.18440479\n",
|
||||
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||||
"\n",
|
||||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||||
"\n",
|
||||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||||
"\n",
|
||||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"Score: 0.21727282\n",
|
||||
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
|
||||
"\n",
|
||||
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n",
|
||||
"\n",
|
||||
"We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n",
|
||||
"\n",
|
||||
"We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n",
|
||||
"\n",
|
||||
"We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n",
|
||||
"\n",
|
||||
"We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"Score: 0.22621095\n",
|
||||
"And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n",
|
||||
"\n",
|
||||
"As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n",
|
||||
"\n",
|
||||
"While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n",
|
||||
"\n",
|
||||
"And soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n",
|
||||
"\n",
|
||||
"So tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. \n",
|
||||
"\n",
|
||||
"First, beat the opioid epidemic.\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"Score: 0.22654456\n",
|
||||
"Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. \n",
|
||||
"\n",
|
||||
"And as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. \n",
|
||||
"\n",
|
||||
"That ends on my watch. \n",
|
||||
"\n",
|
||||
"Medicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. \n",
|
||||
"\n",
|
||||
"We’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. \n",
|
||||
"\n",
|
||||
"Let’s pass the Paycheck Fairness Act and paid leave. \n",
|
||||
"\n",
|
||||
"Raise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \n",
|
||||
"\n",
|
||||
"Let’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.\n",
|
||||
"--------------------------------------------------------------------------------\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for doc, score in docs_with_score:\n",
|
||||
" print(\"-\" * 80)\n",
|
||||
" print(\"Score: \", score)\n",
|
||||
" print(doc.page_content)\n",
|
||||
" print(\"-\" * 80)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Maximal Marginal Relevance Search (MMR)\n",
|
||||
"Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:05:23.276819Z",
|
||||
"start_time": "2023-09-09T08:05:21.972256Z"
|
||||
},
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docs_with_score = db.max_marginal_relevance_search_with_score(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-09-09T08:05:27.478580Z",
|
||||
"start_time": "2023-09-09T08:05:27.470138Z"
|
||||
},
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"Score: 0.18440479\n",
|
||||
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||||
"\n",
|
||||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||||
"\n",
|
||||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||||
"\n",
|
||||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"Score: 0.23515457\n",
|
||||
"We can’t change how divided we’ve been. But we can change how we move forward—on COVID-19 and other issues we must face together. \n",
|
||||
"\n",
|
||||
"I recently visited the New York City Police Department days after the funerals of Officer Wilbert Mora and his partner, Officer Jason Rivera. \n",
|
||||
"\n",
|
||||
"They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. \n",
|
||||
"\n",
|
||||
"Officer Mora was 27 years old. \n",
|
||||
"\n",
|
||||
"Officer Rivera was 22. \n",
|
||||
"\n",
|
||||
"Both Dominican Americans who’d grown up on the same streets they later chose to patrol as police officers. \n",
|
||||
"\n",
|
||||
"I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
|
||||
"\n",
|
||||
"I’ve worked on these issues a long time. \n",
|
||||
"\n",
|
||||
"I know what works: Investing in crime prevention and community police officers who’ll walk the beat, who’ll know the neighborhood, and who can restore trust and safety.\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"Score: 0.24478757\n",
|
||||
"One was stationed at bases and breathing in toxic smoke from “burn pits” that incinerated wastes of war—medical and hazard material, jet fuel, and more. \n",
|
||||
"\n",
|
||||
"When they came home, many of the world’s fittest and best trained warriors were never the same. \n",
|
||||
"\n",
|
||||
"Headaches. Numbness. Dizziness. \n",
|
||||
"\n",
|
||||
"A cancer that would put them in a flag-draped coffin. \n",
|
||||
"\n",
|
||||
"I know. \n",
|
||||
"\n",
|
||||
"One of those soldiers was my son Major Beau Biden. \n",
|
||||
"\n",
|
||||
"We don’t know for sure if a burn pit was the cause of his brain cancer, or the diseases of so many of our troops. \n",
|
||||
"\n",
|
||||
"But I’m committed to finding out everything we can. \n",
|
||||
"\n",
|
||||
"Committed to military families like Danielle Robinson from Ohio. \n",
|
||||
"\n",
|
||||
"The widow of Sergeant First Class Heath Robinson. \n",
|
||||
"\n",
|
||||
"He was born a soldier. Army National Guard. Combat medic in Kosovo and Iraq. \n",
|
||||
"\n",
|
||||
"Stationed near Baghdad, just yards from burn pits the size of football fields. \n",
|
||||
"\n",
|
||||
"Heath’s widow Danielle is here with us tonight. They loved going to Ohio State football games. He loved building Legos with their daughter.\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"--------------------------------------------------------------------------------\n",
|
||||
"Score: 0.25137997\n",
|
||||
"And I’m taking robust action to make sure the pain of our sanctions is targeted at Russia’s economy. And I will use every tool at our disposal to protect American businesses and consumers. \n",
|
||||
"\n",
|
||||
"Tonight, I can announce that the United States has worked with 30 other countries to release 60 Million barrels of oil from reserves around the world. \n",
|
||||
"\n",
|
||||
"America will lead that effort, releasing 30 Million barrels from our own Strategic Petroleum Reserve. And we stand ready to do more if necessary, unified with our allies. \n",
|
||||
"\n",
|
||||
"These steps will help blunt gas prices here at home. And I know the news about what’s happening can seem alarming. \n",
|
||||
"\n",
|
||||
"But I want you to know that we are going to be okay. \n",
|
||||
"\n",
|
||||
"When the history of this era is written Putin’s war on Ukraine will have left Russia weaker and the rest of the world stronger. \n",
|
||||
"\n",
|
||||
"While it shouldn’t have taken something so terrible for people around the world to see what’s at stake now everyone sees it clearly.\n",
|
||||
"--------------------------------------------------------------------------------\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for doc, score in docs_with_score:\n",
|
||||
" print(\"-\" * 80)\n",
|
||||
" print(\"Score: \", score)\n",
|
||||
" print(doc.page_content)\n",
|
||||
" print(\"-\" * 80)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Working with vectorstore\n",
|
||||
"\n",
|
||||
"Above, we created a vectorstore from scratch. However, often times we want to work with an existing vectorstore.\n",
|
||||
"In order to do that, we can initialize it directly."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"store = Lantern(\n",
|
||||
" collection_name=COLLECTION_NAME,\n",
|
||||
" connection_string=CONNECTION_STRING,\n",
|
||||
" embedding_function=embeddings,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Add documents\n",
|
||||
"We can add documents to the existing vectorstore."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['f8164598-aa28-11ee-a037-acde48001122']"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"store.add_documents([Document(page_content=\"foo\")])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docs_with_score = db.similarity_search_with_score(\"foo\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(Document(page_content='foo'), -1.1920929e-07)"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"docs_with_score[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(Document(page_content='And let’s pass the PRO Act when a majority of workers want to form a union—they shouldn’t be stopped. \\n\\nWhen we invest in our workers, when we build the economy from the bottom up and the middle out together, we can do something we haven’t done in a long time: build a better America. \\n\\nFor more than two years, COVID-19 has impacted every decision in our lives and the life of the nation. \\n\\nAnd I know you’re tired, frustrated, and exhausted. \\n\\nBut I also know this. \\n\\nBecause of the progress we’ve made, because of your resilience and the tools we have, tonight I can say \\nwe are moving forward safely, back to more normal routines. \\n\\nWe’ve reached a new moment in the fight against COVID-19, with severe cases down to a level not seen since last July. \\n\\nJust a few days ago, the Centers for Disease Control and Prevention—the CDC—issued new mask guidelines. \\n\\nUnder these new guidelines, most Americans in most of the country can now be mask free.', metadata={'source': '../../modules/state_of_the_union.txt'}),\n",
|
||||
" 0.24038416)"
|
||||
]
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"docs_with_score[1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Overriding a vectorstore\n",
|
||||
"\n",
|
||||
"If you have an existing collection, you override it by doing `from_documents` and setting `pre_delete_collection` = True \n",
|
||||
"This will delete the collection before re-populating it"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"db = Lantern.from_documents(\n",
|
||||
" documents=docs,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" collection_name=COLLECTION_NAME,\n",
|
||||
" connection_string=CONNECTION_STRING,\n",
|
||||
" pre_delete_collection=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docs_with_score = db.similarity_search_with_score(\"foo\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(Document(page_content='And let’s pass the PRO Act when a majority of workers want to form a union—they shouldn’t be stopped. \\n\\nWhen we invest in our workers, when we build the economy from the bottom up and the middle out together, we can do something we haven’t done in a long time: build a better America. \\n\\nFor more than two years, COVID-19 has impacted every decision in our lives and the life of the nation. \\n\\nAnd I know you’re tired, frustrated, and exhausted. \\n\\nBut I also know this. \\n\\nBecause of the progress we’ve made, because of your resilience and the tools we have, tonight I can say \\nwe are moving forward safely, back to more normal routines. \\n\\nWe’ve reached a new moment in the fight against COVID-19, with severe cases down to a level not seen since last July. \\n\\nJust a few days ago, the Centers for Disease Control and Prevention—the CDC—issued new mask guidelines. \\n\\nUnder these new guidelines, most Americans in most of the country can now be mask free.', metadata={'source': '../../modules/state_of_the_union.txt'}),\n",
|
||||
" 0.2403456)"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"docs_with_score[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Using a VectorStore as a Retriever"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = store.as_retriever()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"tags=['Lantern', 'OpenAIEmbeddings'] vectorstore=<langchain_community.vectorstores.lantern.Lantern object at 0x11d02f9d0>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(retriever)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -6,7 +6,7 @@
|
||||
"source": [
|
||||
"# PGVecto.rs\n",
|
||||
"\n",
|
||||
"This notebook shows how to use functionality related to the Postgres vector database ([pgvecto.rs](https://github.com/tensorchord/pgvecto.rs)). You need to install SQLAlchemy >= 2 manually."
|
||||
"This notebook shows how to use functionality related to the Postgres vector database ([pgvecto.rs](https://github.com/tensorchord/pgvecto.rs))."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -15,10 +15,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"## Loading Environment Variables\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"load_dotenv()"
|
||||
"%pip install \"pgvecto_rs[sdk]\""
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -32,8 +29,8 @@
|
||||
"from langchain.docstore.document import Document\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain_community.vectorstores.pgvecto_rs import PGVecto_rs\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
"from langchain_community.embeddings.fake import FakeEmbeddings\n",
|
||||
"from langchain_community.vectorstores.pgvecto_rs import PGVecto_rs"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -42,12 +39,12 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
|
||||
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")\n",
|
||||
"documents = loader.load()\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"docs = text_splitter.split_documents(documents)\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
"embeddings = FakeEmbeddings(size=3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -176,7 +173,17 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs: List[Document] = db1.similarity_search(query, k=4)"
|
||||
"docs: List[Document] = db1.similarity_search(query, k=4)\n",
|
||||
"for doc in docs:\n",
|
||||
" print(doc.page_content)\n",
|
||||
" print(\"======================\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Similarity Search with Filter"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -185,6 +192,36 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from pgvecto_rs.sdk.filters import meta_contains\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs: List[Document] = db1.similarity_search(\n",
|
||||
" query, k=4, filter=meta_contains({\"source\": \"../../modules/state_of_the_union.txt\"})\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"for doc in docs:\n",
|
||||
" print(doc.page_content)\n",
|
||||
" print(\"======================\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Or:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs: List[Document] = db1.similarity_search(\n",
|
||||
" query, k=4, filter={\"source\": \"../../modules/state_of_the_union.txt\"}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"for doc in docs:\n",
|
||||
" print(doc.page_content)\n",
|
||||
" print(\"======================\")"
|
||||
@@ -207,7 +244,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -40,7 +40,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet surrealdb langchain langchain-community"
|
||||
"# %pip install --upgrade --quiet surrealdb langchain langchain-community"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -54,6 +54,19 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "1c2d942d-5d90-4f9f-af96-dff976e4510f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# add this import for running in jupyter notebook\n",
|
||||
"import nest_asyncio\n",
|
||||
"\n",
|
||||
"nest_asyncio.apply()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "e49be085-ddf1-4028-8c0c-97836ce4a873",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -68,7 +81,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 3,
|
||||
"id": "38222aee-adc5-44c2-913c-97977b394cf5",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -92,28 +105,28 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"id": "ff9d0304-1e11-4db2-9454-1350db7907e6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['documents:th7j29cjsx6495wluo7e',\n",
|
||||
" 'documents:qkqhhjnl7ahbhr07euky',\n",
|
||||
" 'documents:8kd6xw8o7y0l171iqry0',\n",
|
||||
" 'documents:33ejf42dlkmavol9si74',\n",
|
||||
" 'documents:f7y4dbs7eitqz58xt1p5']"
|
||||
"['documents:38hz49bv1p58f5lrvrdc',\n",
|
||||
" 'documents:niayw63vzwm2vcbh6w2s',\n",
|
||||
" 'documents:it1fa3ktplbuye43n0ch',\n",
|
||||
" 'documents:il8f7vgbbp9tywmsn98c',\n",
|
||||
" 'documents:vza4c6cqje0avqd58gal']"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"db = SurrealDBStore(\n",
|
||||
" dburl=\"http://localhost:8000/rpc\", # url for the hosted SurrealDB database\n",
|
||||
" dburl=\"ws://localhost:8000/rpc\", # url for the hosted SurrealDB database\n",
|
||||
" embedding_function=embeddings,\n",
|
||||
" db_user=\"root\", # SurrealDB credentials if needed: db username\n",
|
||||
" db_pass=\"root\", # SurrealDB credentials if needed: db password\n",
|
||||
@@ -145,7 +158,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"id": "73d66563-4e1f-4edf-9e95-5fc9adcfa2cb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -153,7 +166,7 @@
|
||||
"await db.adelete()\n",
|
||||
"\n",
|
||||
"db = await SurrealDBStore.afrom_documents(\n",
|
||||
" dburl=\"http://localhost:8000/rpc\", # url for the hosted SurrealDB database\n",
|
||||
" dburl=\"ws://localhost:8000/rpc\", # url for the hosted SurrealDB database\n",
|
||||
" embedding=embeddings,\n",
|
||||
" documents=docs,\n",
|
||||
" db_user=\"root\", # SurrealDB credentials if needed: db username\n",
|
||||
@@ -174,7 +187,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 6,
|
||||
"id": "aa28a7f8-41d0-4299-84eb-91d1576e8a63",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -187,7 +200,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 7,
|
||||
"id": "1eb16d2a-b466-456a-b412-5e74bb8523dd",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -229,7 +242,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"id": "8e9eef05-1516-469a-ad36-880c69aef7a9",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -241,7 +254,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 9,
|
||||
"id": "bd5fb0e4-2a94-4bb4-af8a-27327ecb1a7f",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -250,11 +263,11 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'id': 'documents:639m99rzwqlm9imcwg13'}),\n",
|
||||
" 0.39839545290036454)"
|
||||
"(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'id': 'documents:slgdlhjkfknhqo15xz0w', 'source': '../../modules/state_of_the_union.txt'}),\n",
|
||||
" 0.39839531721941895)"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -280,7 +293,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
248
docs/docs/integrations/vectorstores/vikingdb.ipynb
Normal file
248
docs/docs/integrations/vectorstores/vikingdb.ipynb
Normal file
@@ -0,0 +1,248 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "96ff9e912bfe9d8",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"# viking DB\n",
|
||||
"\n",
|
||||
">[viking DB](https://www.volcengine.com/docs/6459/1163946) is a database that stores, indexes, and manages massive embedding vectors generated by deep neural networks and other machine learning (ML) models.\n",
|
||||
"\n",
|
||||
"This notebook shows how to use functionality related to the VikingDB vector database.\n",
|
||||
"\n",
|
||||
"To run, you should have a [viking DB instance up and running](https://www.volcengine.com/docs/6459/1165058).\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "dd771e02d8a93a0",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install --upgrade volcengine"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "12719205caed0d18",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"We want to use VikingDBEmbeddings so we have to get the VikingDB API Key."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "fbfb32665b4a3640",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-12-21T09:53:24.186916Z",
|
||||
"start_time": "2023-12-21T09:53:24.179524Z"
|
||||
},
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d8c983d329237fa4",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain.vectorstores.vikingdb import VikingDB, VikingDBConfig\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1a4aea2eaeb2261",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = TextLoader(\"./test.txt\")\n",
|
||||
"documents = loader.load()\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=10, chunk_overlap=0)\n",
|
||||
"docs = text_splitter.split_documents(documents)\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bfd593f3deabfaf8",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"db = VikingDB.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" connection_args=VikingDBConfig(\n",
|
||||
" host=\"host\", region=\"region\", ak=\"ak\", sk=\"sk\", scheme=\"http\"\n",
|
||||
" ),\n",
|
||||
" drop_old=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "50e6ee12ca7eec39",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-12-21T10:01:47.355894Z",
|
||||
"start_time": "2023-12-21T10:01:47.334789Z"
|
||||
},
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs = db.similarity_search(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "b6b81f5995c79ef0",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-12-21T10:01:47.771478Z",
|
||||
"start_time": "2023-12-21T10:01:47.731485Z"
|
||||
},
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docs[0].page_content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a2d932c1290478ee",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"### Compartmentalize the data with viking DB Collections\n",
|
||||
"\n",
|
||||
"You can store different unrelated documents in different collections within same viking DB instance to maintain the context"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "907de4eb10626d2a",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"Here's how you can create a new collection"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4f5a59ba40f7985f",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"db = VikingDB.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" connection_args=VikingDBConfig(\n",
|
||||
" host=\"host\", region=\"region\", ak=\"ak\", sk=\"sk\", scheme=\"http\"\n",
|
||||
" ),\n",
|
||||
" collection_name=\"collection_1\",\n",
|
||||
" drop_old=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7c8eada37b17d992",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"And here is how you retrieve that stored collection"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "883ec678d47c9adc",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"db = VikingDB.from_documents(\n",
|
||||
" embeddings,\n",
|
||||
" connection_args=VikingDBConfig(\n",
|
||||
" host=\"host\", region=\"region\", ak=\"ak\", sk=\"sk\", scheme=\"http\"\n",
|
||||
" ),\n",
|
||||
" collection_name=\"collection_1\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2f0be30cfe70083d",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"After retreival you can go on querying it as usual."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -30,12 +30,12 @@ Whether this agent requires the model to support any additional parameters. Some
|
||||
|
||||
Our commentary on when you should consider using this agent type.
|
||||
|
||||
| Agent Type | Intended Model Type | Supports Chat History | Supports Multi-Input Tools | Supports Parallel Function Calling | Required Model Params | When to Use |
|
||||
|--------------------------------------------|---------------------|-----------------------|----------------------------|-------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [OpenAI Tools](./openai_tools) | Chat | ✅ | ✅ | ✅ | `tools` | If you are using a recent OpenAI model (`1106` onwards) |
|
||||
| [OpenAI Functions](./openai_functions_agent)| Chat | ✅ | ✅ | | `functions` | If you are using an OpenAI model, or an open-source model that has been finetuned for function calling and exposes the same `functions` parameters as OpenAI |
|
||||
| [XML](./xml_agent) | LLM | ✅ | | | | If you are using Anthropic models, or other models good at XML |
|
||||
| [Structured Chat](./structured_chat) | Chat | ✅ | ✅ | | | If you need to support tools with multiple inputs |
|
||||
| [JSON Chat](./json_agent) | Chat | ✅ | | | | If you are using a model good at JSON |
|
||||
| [ReAct](./react) | LLM | ✅ | | | | If you are using a simple model |
|
||||
| [Self Ask With Search](./self_ask_with_search)| LLM | | | | | If you are using a simple model and only have one search tool |
|
||||
| Agent Type | Intended Model Type | Supports Chat History | Supports Multi-Input Tools | Supports Parallel Function Calling | Required Model Params | When to Use | API |
|
||||
|--------------------------------------------|---------------------|-----------------------|----------------------------|-------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|
||||
| [OpenAI Tools](./openai_tools) | Chat | ✅ | ✅ | ✅ | `tools` | If you are using a recent OpenAI model (`1106` onwards) | [Ref](https://api.python.langchain.com/en/latest/agents/langchain.agents.openai_tools.base.create_openai_tools_agent.html) |
|
||||
| [OpenAI Functions](./openai_functions_agent)| Chat | ✅ | ✅ | | `functions` | If you are using an OpenAI model, or an open-source model that has been finetuned for function calling and exposes the same `functions` parameters as OpenAI | [Ref](https://api.python.langchain.com/en/latest/agents/langchain.agents.openai_functions_agent.base.create_openai_functions_agent.html) |
|
||||
| [XML](./xml_agent) | LLM | ✅ | | | | If you are using Anthropic models, or other models good at XML | [Ref](https://api.python.langchain.com/en/latest/agents/langchain.agents.xml.base.create_xml_agent.html) |
|
||||
| [Structured Chat](./structured_chat) | Chat | ✅ | ✅ | | | If you need to support tools with multiple inputs | [Ref](https://api.python.langchain.com/en/latest/agents/langchain.agents.structured_chat.base.create_structured_chat_agent.html) |
|
||||
| [JSON Chat](./json_agent) | Chat | ✅ | | | | If you are using a model good at JSON | [Ref](https://api.python.langchain.com/en/latest/agents/langchain.agents.json_chat.base.create_json_chat_agent.html) |
|
||||
| [ReAct](./react) | LLM | ✅ | | | | If you are using a simple model | [Ref](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html) |
|
||||
| [Self Ask With Search](./self_ask_with_search)| LLM | | | | | If you are using a simple model and only have one search tool | [Ref](https://api.python.langchain.com/en/latest/agents/langchain.agents.self_ask_with_search.base.create_self_ask_with_search_agent.html) |
|
||||
@@ -19,9 +19,27 @@
|
||||
"\n",
|
||||
"Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should be called and respond with the inputs that should be passed to the function. In an API call, you can describe functions and have the model intelligently choose to output a JSON object containing arguments to call those functions. The goal of the OpenAI Function APIs is to more reliably return valid and useful function calls than a generic text completion or chat API.\n",
|
||||
"\n",
|
||||
"A number of open source models have adopted the same format for function calls and have also fine-tuned the model to detect when a function should be called.\n",
|
||||
"\n",
|
||||
"The OpenAI Functions Agent is designed to work with these models.\n",
|
||||
"\n",
|
||||
"Install `openai`, `tavily-python` packages which are required as the LangChain packages call them internally."
|
||||
"Install `openai`, `tavily-python` packages which are required as the LangChain packages call them internally.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
":::info\n",
|
||||
"\n",
|
||||
"OpenAI API has deprecated `functions` in favor of `tools`. The difference between the two is that the `tools` API allows the model to request that multiple functions be invoked at once, which can reduce response times in some architectures. It's recommended to use the tools agent for OpenAI models.\n",
|
||||
"\n",
|
||||
"See the following links for more information:\n",
|
||||
"\n",
|
||||
"[OpenAI chat create](https://platform.openai.com/docs/api-reference/chat/create)\n",
|
||||
"\n",
|
||||
"[OpenAI function calling](https://platform.openai.com/docs/guides/function-calling)\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
":::tip\n",
|
||||
"The `functions` format remains relevant for open source models and providers that have adopted it, and this agent is expected to work for such models.\n",
|
||||
":::\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -260,7 +278,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
"source": [
|
||||
"# Structured chat\n",
|
||||
"\n",
|
||||
"The structured chat agent is capable of using multi-input tools.\n"
|
||||
"The structured chat agent is capable of using multi-input tools."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -237,7 +237,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -17,7 +17,14 @@
|
||||
"source": [
|
||||
"# XML Agent\n",
|
||||
"\n",
|
||||
"Some language models (like Anthropic's Claude) are particularly good at reasoning/writing XML. This goes over how to use an agent that uses XML when prompting. "
|
||||
"Some language models (like Anthropic's Claude) are particularly good at reasoning/writing XML. This goes over how to use an agent that uses XML when prompting. \n",
|
||||
"\n",
|
||||
":::tip\n",
|
||||
"\n",
|
||||
"* Use with regular LLMs, not with chat models.\n",
|
||||
"* Use only with unstructured tools; i.e., tools that accept a single string input.\n",
|
||||
"* See [AgentTypes](/docs/moduels/agents/agent_types/) documentation for more agent types.\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -217,7 +224,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -233,12 +233,7 @@
|
||||
"\n",
|
||||
"In addition to streaming the final result, you can also stream tokens. This will require slightly more complicated parsing of the logs\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"::: {.callout-warning}\n",
|
||||
"For versions of langchain prior to and include 0.1.0, please set `streaming=True`, on the LLM.\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0, streaming=True)\n",
|
||||
":::"
|
||||
"You will also need to make sure you set the LLM to be streaming"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -1104,7 +1099,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.10.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
350
docs/docs/modules/agents/how_to/streaming_events.ipynb
Normal file
350
docs/docs/modules/agents/how_to/streaming_events.ipynb
Normal file
@@ -0,0 +1,350 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b69e747b-4e79-4caf-8f8b-c6e70275a31d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Event Streaming\n",
|
||||
"\n",
|
||||
"**NEW** This is a new API only works with recent versions of langchain-core!\n",
|
||||
"\n",
|
||||
"In this notebook, we'll see how to use `astream_events` to stream **token by token** from LLM calls used within the tools invoked by the agent. \n",
|
||||
"\n",
|
||||
"We will **only** stream tokens from LLMs used within tools and from no other LLMs (just to show that we can)! \n",
|
||||
"\n",
|
||||
"Feel free to adapt this example to the needs of your application.\n",
|
||||
"\n",
|
||||
"Our agent will use the OpenAI tools API for tool invocation, and we'll provide the agent with two tools:\n",
|
||||
"\n",
|
||||
"1. `where_cat_is_hiding`: A tool that uses an LLM to tell us where the cat is hiding\n",
|
||||
"2. `tell_me_a_joke_about`: A tool that can use an LLM to tell a joke about the given topic\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## ⚠️ Beta API ⚠️ ##\n",
|
||||
"\n",
|
||||
"Event Streaming is a **beta** API, and may change a bit based on feedback.\n",
|
||||
"\n",
|
||||
"Keep in mind the following constraints (repeated in tools section):\n",
|
||||
"\n",
|
||||
"* streaming only works properly if using `async`\n",
|
||||
"* propagate callbacks if definning custom functions / runnables\n",
|
||||
"* If creating a tool that uses an LLM, make sure to use `.astream()` on the LLM rather than `.ainvoke` to ask the LLM to stream tokens.\n",
|
||||
"\n",
|
||||
"## Event Hooks Reference\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Here is a reference table that shows some events that might be emitted by the various Runnable objects.\n",
|
||||
"Definitions for some of the Runnable are included after the table.\n",
|
||||
"\n",
|
||||
"⚠️ When streaming the inputs for the runnable will not be available until the input stream has been entirely consumed This means that the inputs will be available at for the corresponding `end` hook rather than `start` event.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"| event | name | chunk | input | output |\n",
|
||||
"|----------------------|------------------|---------------------------------|-----------------------------------------------|-------------------------------------------------|\n",
|
||||
"| on_chat_model_start | [model name] | | {\"messages\": [[SystemMessage, HumanMessage]]} | |\n",
|
||||
"| on_chat_model_stream | [model name] | AIMessageChunk(content=\"hello\") | | |\n",
|
||||
"| on_chat_model_end | [model name] | | {\"messages\": [[SystemMessage, HumanMessage]]} | {\"generations\": [...], \"llm_output\": None, ...} |\n",
|
||||
"| on_llm_start | [model name] | | {'input': 'hello'} | |\n",
|
||||
"| on_llm_stream | [model name] | 'Hello' | | |\n",
|
||||
"| on_llm_end | [model name] | | 'Hello human!' |\n",
|
||||
"| on_chain_start | format_docs | | | |\n",
|
||||
"| on_chain_stream | format_docs | \"hello world!, goodbye world!\" | | |\n",
|
||||
"| on_chain_end | format_docs | | [Document(...)] | \"hello world!, goodbye world!\" |\n",
|
||||
"| on_tool_start | some_tool | | {\"x\": 1, \"y\": \"2\"} | |\n",
|
||||
"| on_tool_stream | some_tool | {\"x\": 1, \"y\": \"2\"} | | |\n",
|
||||
"| on_tool_end | some_tool | | | {\"x\": 1, \"y\": \"2\"} |\n",
|
||||
"| on_retriever_start | [retriever name] | | {\"query\": \"hello\"} | |\n",
|
||||
"| on_retriever_chunk | [retriever name] | {documents: [...]} | | |\n",
|
||||
"| on_retriever_end | [retriever name] | | {\"query\": \"hello\"} | {documents: [...]} |\n",
|
||||
"| on_prompt_start | [template_name] | | {\"question\": \"hello\"} | |\n",
|
||||
"| on_prompt_end | [template_name] | | {\"question\": \"hello\"} | ChatPromptValue(messages: [SystemMessage, ...]) |\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Here are declarations associated with the events shown above:\n",
|
||||
"\n",
|
||||
"`format_docs`:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"def format_docs(docs: List[Document]) -> str:\n",
|
||||
" '''Format the docs.'''\n",
|
||||
" return \", \".join([doc.page_content for doc in docs])\n",
|
||||
"\n",
|
||||
"format_docs = RunnableLambda(format_docs)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"`some_tool`:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"@tool\n",
|
||||
"def some_tool(x: int, y: str) -> dict:\n",
|
||||
" '''Some_tool.'''\n",
|
||||
" return {\"x\": x, \"y\": y}\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"`prompt`:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"template = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"system\", \"You are Cat Agent 007\"), (\"human\", \"{question}\")]\n",
|
||||
").with_config({\"run_name\": \"my_template\", \"tags\": [\"my_template\"]})\n",
|
||||
"```\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "29205bef-2288-48e9-9067-f19072277a97",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain.agents import AgentExecutor, create_openai_tools_agent\n",
|
||||
"from langchain.tools import tool\n",
|
||||
"from langchain_core.callbacks import Callbacks\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d6b0fafa-ce3b-489b-bf1d-d37b87f4819e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create the model\n",
|
||||
"\n",
|
||||
"**Attention** For older versions of langchain, we must set `streaming=True`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "fa3c3761-a1cd-4118-8559-ea4d8857d394",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = ChatOpenAI(temperature=0, streaming=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b76e1a3b-2983-42d9-ac12-4a0f32cd4a24",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tools\n",
|
||||
"\n",
|
||||
"We define two tools that rely on a chat model to generate output!\n",
|
||||
"\n",
|
||||
"Please note a few different things:\n",
|
||||
"\n",
|
||||
"1. The tools are **async**\n",
|
||||
"1. The model is invoked using **.astream()** to force the output to stream\n",
|
||||
"1. For older langchain versions you should set `streaming=True` on the model!\n",
|
||||
"1. We attach tags to the model so that we can filter on said tags in our callback handler\n",
|
||||
"1. The tools accept callbacks and propagate them to the model as a runtime argument"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "c767f760-fe52-47e5-9c2a-622f03507aaf",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"@tool\n",
|
||||
"async def where_cat_is_hiding(callbacks: Callbacks) -> str: # <--- Accept callbacks\n",
|
||||
" \"\"\"Where is the cat hiding right now?\"\"\"\n",
|
||||
" chunks = [\n",
|
||||
" chunk\n",
|
||||
" async for chunk in model.astream(\n",
|
||||
" \"Give one up to three word answer about where the cat might be hiding in the house right now.\",\n",
|
||||
" {\n",
|
||||
" \"tags\": [\"tool_llm\"],\n",
|
||||
" \"callbacks\": callbacks,\n",
|
||||
" }, # <--- Propagate callbacks and assign a tag to this model\n",
|
||||
" )\n",
|
||||
" ]\n",
|
||||
" return \"\".join(chunk.content for chunk in chunks)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"async def tell_me_a_joke_about(\n",
|
||||
" topic: str, callbacks: Callbacks\n",
|
||||
") -> str: # <--- Accept callbacks\n",
|
||||
" \"\"\"Tell a joke about a given topic.\"\"\"\n",
|
||||
" template = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", \"You are Cat Agent 007. You are funny and know many jokes.\"),\n",
|
||||
" (\"human\", \"Tell me a long joke about {topic}\"),\n",
|
||||
" ]\n",
|
||||
" )\n",
|
||||
" chain = template | model.with_config({\"tags\": [\"tool_llm\"]})\n",
|
||||
" chunks = [\n",
|
||||
" chunk\n",
|
||||
" async for chunk in chain.astream({\"topic\": topic}, {\"callbacks\": callbacks})\n",
|
||||
" ]\n",
|
||||
" return \"\".join(chunk.content for chunk in chunks)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cba476f8-29da-4c2c-9134-186871caf7ae",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize the Agent"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "0bab4488-bf4c-461f-b41e-5e60310fe0f2",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"input_variables=['agent_scratchpad', 'input'] input_types={'chat_history': typing.List[typing.Union[langchain_core.messages.ai.AIMessage, langchain_core.messages.human.HumanMessage, langchain_core.messages.chat.ChatMessage, langchain_core.messages.system.SystemMessage, langchain_core.messages.function.FunctionMessage, langchain_core.messages.tool.ToolMessage]], 'agent_scratchpad': typing.List[typing.Union[langchain_core.messages.ai.AIMessage, langchain_core.messages.human.HumanMessage, langchain_core.messages.chat.ChatMessage, langchain_core.messages.system.SystemMessage, langchain_core.messages.function.FunctionMessage, langchain_core.messages.tool.ToolMessage]]} messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a helpful assistant')), MessagesPlaceholder(variable_name='chat_history', optional=True), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input'], template='{input}')), MessagesPlaceholder(variable_name='agent_scratchpad')]\n",
|
||||
"[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a helpful assistant')), MessagesPlaceholder(variable_name='chat_history', optional=True), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input'], template='{input}')), MessagesPlaceholder(variable_name='agent_scratchpad')]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Get the prompt to use - you can modify this!\n",
|
||||
"prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n",
|
||||
"print(prompt)\n",
|
||||
"print(prompt.messages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "1762f4e1-402a-4bfb-af26-eb5b7b8f56bd",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tools = [tell_me_a_joke_about, where_cat_is_hiding]\n",
|
||||
"agent = create_openai_tools_agent(model.with_config({\"tags\": [\"agent\"]}), tools, prompt)\n",
|
||||
"executor = AgentExecutor(agent=agent, tools=tools)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "841271d7-1de1-41a9-9387-bb04368537f1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Stream the output\n",
|
||||
"\n",
|
||||
"The streamed output is shown with a `|` as the delimiter between tokens. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "a5d94bd8-4a55-4527-b21a-4245a38c7c26",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/eugene/src/langchain/libs/core/langchain_core/_api/beta_decorator.py:86: LangChainBetaWarning: This API is in beta and may change in the future.\n",
|
||||
" warn_beta(\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"--\n",
|
||||
"Starting tool: where_cat_is_hiding with inputs: {}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"|Under| the| bed|.||\n",
|
||||
"\n",
|
||||
"Ended tool: where_cat_is_hiding\n",
|
||||
"--\n",
|
||||
"Starting tool: tell_me_a_joke_about with inputs: {'topic': 'under the bed'}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"|Sure|,| here|'s| a| long| joke| about| what|'s| hiding| under| the| bed|:\n",
|
||||
"\n",
|
||||
"|Once| upon| a| time|,| there| was| a| mis|chie|vous| little| boy| named| Tim|my|.| Tim|my| had| always| been| afraid| of| what| might| be| lurking| under| his| bed| at| night|.| Every| evening|,| he| would| ti|pt|oe| into| his| room|,| turn| off| the| lights|,| and| then| make| a| daring| leap| onto| his| bed|,| ensuring| that| nothing| could| grab| his| ankles|.\n",
|
||||
"\n",
|
||||
"|One| night|,| Tim|my|'s| parents| decided| to| play| a| prank| on| him|.| They| hid| a| remote|-controlled| toy| monster| under| his| bed|,| complete| with| glowing| eyes| and| a| grow|ling| sound| effect|.| As| Tim|my| settled| into| bed|,| his| parents| quietly| sn|uck| into| his| room|,| ready| to| give| him| the| scare| of| a| lifetime|.\n",
|
||||
"\n",
|
||||
"|Just| as| Tim|my| was| about| to| drift| off| to| sleep|,| he| heard| a| faint| grow|l| coming| from| under| his| bed|.| His| eyes| widened| with| fear|,| and| his| heart| started| racing|.| He| must|ered| up| the| courage| to| peek| under| the| bed|,| and| to| his| surprise|,| he| saw| a| pair| of| glowing| eyes| staring| back| at| him|.\n",
|
||||
"\n",
|
||||
"|Terr|ified|,| Tim|my| jumped| out| of| bed| and| ran| to| his| parents|,| screaming|,| \"|There|'s| a| monster| under| my| bed|!| Help|!\"\n",
|
||||
"\n",
|
||||
"|His| parents|,| trying| to| st|ifle| their| laughter|,| rushed| into| his| room|.| They| pretended| to| be| just| as| scared| as| Tim|my|,| and| together|,| they| brav|ely| approached| the| bed|.| Tim|my|'s| dad| grabbed| a| bro|om|stick|,| ready| to| defend| his| family| against| the| imaginary| monster|.\n",
|
||||
"\n",
|
||||
"|As| they| got| closer|,| the| \"|monster|\"| under| the| bed| started| to| move|.| Tim|my|'s| mom|,| unable| to| contain| her| laughter| any| longer|,| pressed| a| button| on| the| remote| control|,| causing| the| toy| monster| to| sc|urry| out| from| under| the| bed|.| Tim|my|'s| fear| quickly| turned| into| confusion|,| and| then| into| laughter| as| he| realized| it| was| all| just| a| prank|.\n",
|
||||
"\n",
|
||||
"|From| that| day| forward|,| Tim|my| learned| that| sometimes| the| things| we| fear| the| most| are| just| fig|ments| of| our| imagination|.| And| as| for| what|'s| hiding| under| his| bed|?| Well|,| it|'s| just| dust| b|unn|ies| and| the| occasional| missing| sock|.| Nothing| to| be| afraid| of|!\n",
|
||||
"\n",
|
||||
"|Remember|,| laughter| is| the| best| monster| repell|ent|!||\n",
|
||||
"\n",
|
||||
"Ended tool: tell_me_a_joke_about\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"async for event in executor.astream_events(\n",
|
||||
" {\"input\": \"where is the cat hiding? Tell me a joke about that location?\"},\n",
|
||||
" include_tags=[\"tool_llm\"],\n",
|
||||
" include_types=[\"tool\"],\n",
|
||||
"):\n",
|
||||
" hook = event[\"event\"]\n",
|
||||
" if hook == \"on_chat_model_stream\":\n",
|
||||
" print(event[\"data\"][\"chunk\"].content, end=\"|\")\n",
|
||||
" elif hook in {\"on_chat_model_start\", \"on_chat_model_end\"}:\n",
|
||||
" print()\n",
|
||||
" print()\n",
|
||||
" elif hook == \"on_tool_start\":\n",
|
||||
" print(\"--\")\n",
|
||||
" print(\n",
|
||||
" f\"Starting tool: {event['name']} with inputs: {event['data'].get('input')}\"\n",
|
||||
" )\n",
|
||||
" elif hook == \"on_tool_end\":\n",
|
||||
" print(f\"Ended tool: {event['name']}\")\n",
|
||||
" else:\n",
|
||||
" pass"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -1,6 +0,0 @@
|
||||
# Callbacks for custom chains
|
||||
|
||||
When you create a custom chain you can easily set it up to use the same callback system as all the built-in chains.
|
||||
`_call`, `_generate`, `_run`, and equivalent async methods on Chains / LLMs / Chat Models / Agents / Tools now receive a 2nd argument called `run_manager` which is bound to that run, and contains the logging methods that can be used by that object (i.e. `on_llm_new_token`). This is useful when constructing a custom chain. See this guide for more information on how to [create custom chains and use callbacks inside them](/docs/modules/chains/how_to/custom_chain).
|
||||
|
||||
|
||||
@@ -419,6 +419,105 @@
|
||||
"print(texts[0])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "98a3f975",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## KoNLPY\n",
|
||||
"> [KoNLPy: Korean NLP in Python](https://konlpy.org/en/latest/) is is a Python package for natural language processing (NLP) of the Korean language.\n",
|
||||
"\n",
|
||||
"Token splitting involves the segmentation of text into smaller, more manageable units called tokens. These tokens are often words, phrases, symbols, or other meaningful elements crucial for further processing and analysis. In languages like English, token splitting typically involves separating words by spaces and punctuation marks. The effectiveness of token splitting largely depends on the tokenizer's understanding of the language structure, ensuring the generation of meaningful tokens. Since tokenizers designed for the English language are not equipped to understand the unique semantic structures of other languages, such as Korean, they cannot be effectively used for Korean language processing.\n",
|
||||
"\n",
|
||||
"### Token splitting for Korean with KoNLPy's Kkma Analyzer\n",
|
||||
"In case of Korean text, KoNLPY includes at morphological analyzer called `Kkma` (Korean Knowledge Morpheme Analyzer). `Kkma` provides detailed morphological analysis of Korean text. It breaks down sentences into words and words into their respective morphemes, identifying parts of speech for each token. It can segment a block of text into individual sentences, which is particularly useful for processing long texts.\n",
|
||||
"\n",
|
||||
"### Usage Considerations\n",
|
||||
"While `Kkma` is renowned for its detailed analysis, it is important to note that this precision may impact processing speed. Thus, `Kkma` is best suited for applications where analytical depth is prioritized over rapid text processing."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"id": "88ec8f2f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# pip install konlpy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "ddfba6cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This is a long Korean document that we want to split up into its component sentences.\n",
|
||||
"with open(\"./your_korean_doc.txt\") as f:\n",
|
||||
" korean_document = f.read()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"id": "225dfc5c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import KonlpyTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = KonlpyTextSplitter()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"id": "cf156711",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"춘향전 옛날에 남원에 이 도령이라는 벼슬아치 아들이 있었다.\n",
|
||||
"\n",
|
||||
"그의 외모는 빛나는 달처럼 잘생겼고, 그의 학식과 기예는 남보다 뛰어났다.\n",
|
||||
"\n",
|
||||
"한편, 이 마을에는 춘향이라는 절세 가인이 살고 있었다.\n",
|
||||
"\n",
|
||||
"춘 향의 아름다움은 꽃과 같아 마을 사람들 로부터 많은 사랑을 받았다.\n",
|
||||
"\n",
|
||||
"어느 봄날, 도령은 친구들과 놀러 나갔다가 춘 향을 만 나 첫 눈에 반하고 말았다.\n",
|
||||
"\n",
|
||||
"두 사람은 서로 사랑하게 되었고, 이내 비밀스러운 사랑의 맹세를 나누었다.\n",
|
||||
"\n",
|
||||
"하지만 좋은 날들은 오래가지 않았다.\n",
|
||||
"\n",
|
||||
"도령의 아버지가 다른 곳으로 전근을 가게 되어 도령도 떠나 야만 했다.\n",
|
||||
"\n",
|
||||
"이별의 아픔 속에서도, 두 사람은 재회를 기약하며 서로를 믿고 기다리기로 했다.\n",
|
||||
"\n",
|
||||
"그러나 새로 부임한 관아의 사또가 춘 향의 아름다움에 욕심을 내 어 그녀에게 강요를 시작했다.\n",
|
||||
"\n",
|
||||
"춘 향 은 도령에 대한 자신의 사랑을 지키기 위해, 사또의 요구를 단호히 거절했다.\n",
|
||||
"\n",
|
||||
"이에 분노한 사또는 춘 향을 감옥에 가두고 혹독한 형벌을 내렸다.\n",
|
||||
"\n",
|
||||
"이야기는 이 도령이 고위 관직에 오른 후, 춘 향을 구해 내는 것으로 끝난다.\n",
|
||||
"\n",
|
||||
"두 사람은 오랜 시련 끝에 다시 만나게 되고, 그들의 사랑은 온 세상에 전해 지며 후세에까지 이어진다.\n",
|
||||
"\n",
|
||||
"- 춘향전 (The Tale of Chunhyang)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"texts = text_splitter.split_text(korean_document)\n",
|
||||
"# The sentences are split with \"\\n\\n\" characters.\n",
|
||||
"print(texts[0])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "13dc0983",
|
||||
@@ -521,7 +620,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
"version": "3.10.12"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
||||
@@ -14,7 +14,7 @@ This section of the documentation covers everything related to the *retrieval* s
|
||||
Although this sounds simple, it can be subtly complex.
|
||||
This encompasses several key modules.
|
||||
|
||||

|
||||

|
||||
|
||||
**[Document loaders](/docs/modules/data_connection/document_loaders/)**
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -35,22 +35,31 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"doc_list = [\n",
|
||||
"doc_list_1 = [\n",
|
||||
" \"I like apples\",\n",
|
||||
" \"I like oranges\",\n",
|
||||
" \"Apples and oranges are fruits\",\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"# initialize the bm25 retriever and faiss retriever\n",
|
||||
"bm25_retriever = BM25Retriever.from_texts(doc_list)\n",
|
||||
"bm25_retriever = BM25Retriever.from_texts(\n",
|
||||
" doc_list_1, metadatas=[{\"source\": 1}] * len(doc_list_1)\n",
|
||||
")\n",
|
||||
"bm25_retriever.k = 2\n",
|
||||
"\n",
|
||||
"doc_list_2 = [\n",
|
||||
" \"You like apples\",\n",
|
||||
" \"You like oranges\",\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"embedding = OpenAIEmbeddings()\n",
|
||||
"faiss_vectorstore = FAISS.from_texts(doc_list, embedding)\n",
|
||||
"faiss_vectorstore = FAISS.from_texts(\n",
|
||||
" doc_list_2, embedding, metadatas=[{\"source\": 2}] * len(doc_list_2)\n",
|
||||
")\n",
|
||||
"faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={\"k\": 2})\n",
|
||||
"\n",
|
||||
"# initialize the ensemble retriever\n",
|
||||
@@ -61,26 +70,92 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='I like apples'),\n",
|
||||
" Document(page_content='Apples and oranges are fruits')]"
|
||||
"[Document(page_content='You like apples', metadata={'source': 2}),\n",
|
||||
" Document(page_content='I like apples', metadata={'source': 1}),\n",
|
||||
" Document(page_content='You like oranges', metadata={'source': 2}),\n",
|
||||
" Document(page_content='Apples and oranges are fruits', metadata={'source': 1})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"docs = ensemble_retriever.get_relevant_documents(\"apples\")\n",
|
||||
"docs = ensemble_retriever.invoke(\"apples\")\n",
|
||||
"docs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Runtime Configuration\n",
|
||||
"\n",
|
||||
"We can also configure the retrievers at runtime. In order to do this, we need to mark the fields as configurable"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import ConfigurableField"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"faiss_retriever = faiss_vectorstore.as_retriever(\n",
|
||||
" search_kwargs={\"k\": 2}\n",
|
||||
").configurable_fields(\n",
|
||||
" search_kwargs=ConfigurableField(\n",
|
||||
" id=\"search_kwargs_faiss\",\n",
|
||||
" name=\"Search Kwargs\",\n",
|
||||
" description=\"The search kwargs to use\",\n",
|
||||
" )\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ensemble_retriever = EnsembleRetriever(\n",
|
||||
" retrievers=[bm25_retriever, faiss_retriever], weights=[0.5, 0.5]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"config = {\"configurable\": {\"search_kwargs_faiss\": {\"k\": 1}}}\n",
|
||||
"docs = ensemble_retriever.invoke(\"apples\", config=config)\n",
|
||||
"docs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Notice that this only returns one source from the FAISS retriever, because we pass in the relevant configuration at run time"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"\n",
|
||||
"A self-querying retriever is one that, as the name suggests, has the ability to query itself. Specifically, given any natural language query, the retriever uses a query-constructing LLM chain to write a structured query and then applies that structured query to its underlying VectorStore. This allows the retriever to not only use the user-input query for semantic similarity comparison with the contents of stored documents but to also extract filters from the user query on the metadata of stored documents and to execute those filters.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## Get started\n",
|
||||
"For demonstration purposes we'll use a `Chroma` vector store. We've created a small demo set of documents that contain summaries of movies.\n",
|
||||
@@ -561,7 +561,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -17,10 +17,10 @@ The base Embeddings class in LangChain provides two methods: one for embedding d
|
||||
|
||||
### Setup
|
||||
|
||||
To start we'll need to install the OpenAI Python package:
|
||||
To start we'll need to install the OpenAI partner package:
|
||||
|
||||
```bash
|
||||
pip install openai
|
||||
pip install langchain-openai
|
||||
```
|
||||
|
||||
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://platform.openai.com/account/api-keys). Once we have a key we'll want to set it as an environment variable by running:
|
||||
|
||||
@@ -12,7 +12,7 @@ vectors, and then at query time to embed the unstructured query and retrieve the
|
||||
'most similar' to the embedded query. A vector store takes care of storing embedded data and performing vector search
|
||||
for you.
|
||||
|
||||

|
||||

|
||||
|
||||
## Get started
|
||||
|
||||
|
||||
@@ -36,7 +36,7 @@ A chain will interact with its memory system twice in a given run.
|
||||
1. AFTER receiving the initial user inputs but BEFORE executing the core logic, a chain will READ from its memory system and augment the user inputs.
|
||||
2. AFTER executing the core logic but BEFORE returning the answer, a chain will WRITE the inputs and outputs of the current run to memory, so that they can be referred to in future runs.
|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
## Building memory into a system
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 2
|
||||
sidebar_position: 3
|
||||
---
|
||||
|
||||
# Chat Models
|
||||
|
||||
@@ -24,10 +24,10 @@
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"For this example we'll need to install the OpenAI Python package:\n",
|
||||
"For this example we'll need to install the OpenAI partner package:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install openai\n",
|
||||
"pip install langchain-openai\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Accessing the API requires an API key, which you can get by creating an account and heading [here](https://platform.openai.com/account/api-keys). Once we have a key we'll want to set it as an environment variable by running:\n",
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 0
|
||||
sidebar_position: 1
|
||||
---
|
||||
|
||||
# Concepts
|
||||
|
||||
@@ -9,7 +9,7 @@ sidebar_class_name: hidden
|
||||
|
||||
The core element of any language model application is...the model. LangChain gives you the building blocks to interface with any language model.
|
||||
|
||||

|
||||

|
||||
|
||||
## [Conceptual Guide](/docs/modules/model_io/concepts)
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 1
|
||||
sidebar_position: 4
|
||||
---
|
||||
|
||||
# LLMs
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 4
|
||||
sidebar_position: 5
|
||||
hide_table_of_contents: true
|
||||
---
|
||||
# Output Parsers
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
sidebar_position: 0
|
||||
sidebar_position: 2
|
||||
---
|
||||
# Prompts
|
||||
|
||||
|
||||
@@ -16,10 +16,10 @@ import CodeBlock from "@theme/CodeBlock";
|
||||
<Tabs>
|
||||
<TabItem value="openai" label="OpenAI" default>
|
||||
|
||||
First we'll need to install their Python package:
|
||||
First we'll need to install their partner package:
|
||||
|
||||
```shell
|
||||
pip install openai
|
||||
pip install langchain-openai
|
||||
```
|
||||
|
||||
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://platform.openai.com/account/api-keys). Once we have a key we'll want to set it as an environment variable by running:
|
||||
|
||||
151
docs/docs/use_cases/classification.ipynb
Normal file
151
docs/docs/use_cases/classification.ipynb
Normal file
@@ -0,0 +1,151 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5fbab4e7-2c5e-4682-8c97-bfada89d206f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Classification"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0e135e18-f9b5-41d9-971d-f1c57a76add4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Direct prompting"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cf9d74f6-f18c-4ceb-a21b-ef101a758816",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Function-calling"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "81b3dd6a-c648-4930-98f3-733f0f0e5af7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Logprobs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "edd66c98-1146-4f34-8828-433553f55ab0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "2e9f633e-5d2c-41dd-a1d1-f4b0230facca",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains.classification import create_openai_logprobs_classification_chain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "107020bc-fadd-49ad-aa30-c5bee19d8f63",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'classification': 'D', 'confidence': 0.9996887772698445}"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
||||
"classes = {\"C\": \"The input is about cats\", \"D\": \"The input is about dogs\"}\n",
|
||||
"chain = create_openai_logprobs_classification_chain(llm, classes)\n",
|
||||
"chain.invoke({\"input\": \"I really love my golden retriever\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "c829152c-e113-4ae4-a628-10fc235c5bba",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'classification': 'C', 'confidence': 0.9997948118239739}"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"input\": \"Aren't siamese just the best\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "88bd9984-a050-4a1b-9707-b8f0994bd5b7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'classification': 'C', 'confidence': 0.677221622476509}"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"input\": \"They scratched up everything\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "246e36e0-3ca7-47e7-a46d-de9f1ea33c87",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv",
|
||||
"language": "python",
|
||||
"name": "poetry-venv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
289
docs/docs/use_cases/tool_use/agents.ipynb
Normal file
289
docs/docs/use_cases/tool_use/agents.ipynb
Normal file
@@ -0,0 +1,289 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "7b68af90-bfab-4407-93b6-d084cf948b4b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_position: 1\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1925a807-fa01-44bc-8a03-d9907311c7f9",
|
||||
"metadata": {
|
||||
"jp-MarkdownHeadingCollapsed": true
|
||||
},
|
||||
"source": [
|
||||
"## Agents\n",
|
||||
"\n",
|
||||
"Chains are great when we know the specific sequence of tool usage needed for any user input. But for certain use cases, how many times we use tools depends on the input. In these cases, we want to let the model itself decide how many times to use tools and in what order. [Agents](/docs/modules/agents/) let us do just this.\n",
|
||||
"\n",
|
||||
"LangChain comes with a number of built-in agents that are optimized for different use cases. Read about all the [agent types here](/docs/modules/agents/agent_types/).\n",
|
||||
"\n",
|
||||
"As an example, let's try out the OpenAI tools agent, which makes use of the new OpenAI tool-calling API (this is only available in the latest OpenAI models, and differs from function-calling in that the model can return multiple function invocations at once).\n",
|
||||
"\n",
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c224a321-2f5a-410c-b466-a10d0199bad8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"We'll need to install the following packages:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f6303995-a8f7-4504-8b29-e227683f375e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a33915ce-00c5-4379-8a83-c0053e471cdb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And set these environment variables:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "54667a49-c226-486d-a887-33120c90cc91",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n",
|
||||
"\n",
|
||||
"# If you'd like to use LangSmith, uncomment the below\n",
|
||||
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "aaaad3ad-085b-494e-84aa-9cb3e983c80b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create tools\n",
|
||||
"\n",
|
||||
"First, we need to create some tool to call. For this example, we will create custom tools from functions. For more information on creating custom tools, please see [this guide](/docs/modules/agents/tools/)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "1c44ba79-6ab2-4d55-8247-82fca4d9b70c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def multiply(first_int: int, second_int: int) -> int:\n",
|
||||
" \"\"\"Multiply two integers together.\"\"\"\n",
|
||||
" return first_int * second_int\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def add(first_int: int, second_int: int) -> int:\n",
|
||||
" \"Add two integers.\"\n",
|
||||
" return first_int + second_int\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def exponentiate(base: int, exponent: int) -> int:\n",
|
||||
" \"Exponentiate the base to the exponent power.\"\n",
|
||||
" return base**exponent\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tools = [multiply, add, exponentiate]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a3d0c8ca-72bd-4187-b1e6-f5eef92eeb52",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create prompt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "e27a4e1a-938b-4b60-8e32-25e4ee530274",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain.agents import AgentExecutor, create_openai_tools_agent\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "bcc9536e-0328-4e29-9d3d-133f3e63e589",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"================================\u001b[1m System Message \u001b[0m================================\n",
|
||||
"\n",
|
||||
"You are a helpful assistant\n",
|
||||
"\n",
|
||||
"=============================\u001b[1m Messages Placeholder \u001b[0m=============================\n",
|
||||
"\n",
|
||||
"\u001b[33;1m\u001b[1;3m{chat_history}\u001b[0m\n",
|
||||
"\n",
|
||||
"================================\u001b[1m Human Message \u001b[0m=================================\n",
|
||||
"\n",
|
||||
"\u001b[33;1m\u001b[1;3m{input}\u001b[0m\n",
|
||||
"\n",
|
||||
"=============================\u001b[1m Messages Placeholder \u001b[0m=============================\n",
|
||||
"\n",
|
||||
"\u001b[33;1m\u001b[1;3m{agent_scratchpad}\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Get the prompt to use - you can modify this!\n",
|
||||
"prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n",
|
||||
"prompt.pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "85e9875a-d8d4-4712-b3f0-b513c684451b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create agent"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "a1c5319d-6609-449d-8dd0-127e9a600656",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Choose the LLM that will drive the agent\n",
|
||||
"# Only certain models support this\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0)\n",
|
||||
"\n",
|
||||
"# Construct the OpenAI Tools agent\n",
|
||||
"agent = create_openai_tools_agent(model, tools, prompt)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "c86bfe50-c5b3-49ed-86c8-1fe8dcd0c83a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create an agent executor by passing in the agent and tools\n",
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "448d5ef2-9820-44d0-96d3-ff1d648e4b01",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invoke agent"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "c098f8df-fd7f-4c13-963a-8e34194d3f84",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3m\n",
|
||||
"Invoking: `exponentiate` with `{'base': 3, 'exponent': 5}`\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[0m\u001b[38;5;200m\u001b[1;3m243\u001b[0m\u001b[32;1m\u001b[1;3m\n",
|
||||
"Invoking: `add` with `{'first_int': 12, 'second_int': 3}`\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[0m\u001b[33;1m\u001b[1;3m15\u001b[0m\u001b[32;1m\u001b[1;3m\n",
|
||||
"Invoking: `multiply` with `{'first_int': 243, 'second_int': 15}`\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[0m\u001b[36;1m\u001b[1;3m3645\u001b[0m\u001b[32;1m\u001b[1;3m\n",
|
||||
"Invoking: `exponentiate` with `{'base': 3645, 'exponent': 2}`\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[0m\u001b[38;5;200m\u001b[1;3m13286025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of raising 3 to the fifth power and multiplying that by the sum of twelve and three, then squaring the whole result is 13,286,025.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input': 'Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result',\n",
|
||||
" 'output': 'The result of raising 3 to the fifth power and multiplying that by the sum of twelve and three, then squaring the whole result is 13,286,025.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke(\n",
|
||||
" {\n",
|
||||
" \"input\": \"Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result\"\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv",
|
||||
"language": "python",
|
||||
"name": "poetry-venv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
274
docs/docs/use_cases/tool_use/human_in_the_loop.ipynb
Normal file
274
docs/docs/use_cases/tool_use/human_in_the_loop.ipynb
Normal file
@@ -0,0 +1,274 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b09b745d-f006-4ecc-8772-afa266c43605",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Human-in-the-loop\n",
|
||||
"\n",
|
||||
"There are certain tools that we don't trust a model to execute on its own. One thing we can do in such situations is require human approval before the tool is invoked."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "09178c30-a633-4d7b-88ea-092316f14b6f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"We'll need to install the following packages:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e44bec05-9aa4-47b1-a660-c0a183533598",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f09629b6-7f62-4879-a791-464739ca6b6b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And set these environment variables:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2bed0ccf-20cc-4fd3-9947-55471dd8c4da",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n",
|
||||
"\n",
|
||||
"# If you'd like to use LangSmith, uncomment the below:\n",
|
||||
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "43721981-4595-4721-bea0-5c67696426d3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chain\n",
|
||||
"\n",
|
||||
"Suppose we have the following (dummy) tools and tool-calling chain:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "0221fdfd-2a18-4449-a123-e6b0b15bb3d9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'type': 'count_emails', 'args': {'last_n_days': 5}, 'output': 10}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain.output_parsers import JsonOutputToolsParser\n",
|
||||
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_tool\n",
|
||||
"from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def count_emails(last_n_days: int) -> int:\n",
|
||||
" \"\"\"Multiply two integers together.\"\"\"\n",
|
||||
" return last_n_days * 2\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def send_email(message: str, recipient: str) -> str:\n",
|
||||
" \"Add two integers.\"\n",
|
||||
" return f\"Successfully sent email to {recipient}.\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tools = [count_emails, send_email]\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0).bind(\n",
|
||||
" tools=[format_tool_to_openai_tool(t) for t in tools]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def call_tool(tool_invocation: dict) -> Runnable:\n",
|
||||
" \"\"\"Function for dynamically constructing the end of the chain based on the model-selected tool.\"\"\"\n",
|
||||
" tool_map = {tool.name: tool for tool in tools}\n",
|
||||
" tool = tool_map[tool_invocation[\"type\"]]\n",
|
||||
" return RunnablePassthrough.assign(output=itemgetter(\"args\") | tool)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# .map() allows us to apply a function to a list of inputs.\n",
|
||||
"call_tool_list = RunnableLambda(call_tool).map()\n",
|
||||
"chain = model | JsonOutputToolsParser() | call_tool_list\n",
|
||||
"chain.invoke(\"how many emails did i get in the last 5 days?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "258c1c7b-a765-4558-93fe-d0defbc29223",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Adding human approval\n",
|
||||
"\n",
|
||||
"We can add a simple human approval step to our tool_chain function:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"id": "341fb055-0315-47bc-8f72-ed6103d2981f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def human_approval(tool_invocations: list) -> Runnable:\n",
|
||||
" tool_strs = \"\\n\\n\".join(\n",
|
||||
" json.dumps(tool_call, indent=2) for tool_call in tool_invocations\n",
|
||||
" )\n",
|
||||
" msg = (\n",
|
||||
" f\"Do you approve of the following tool invocations\\n\\n{tool_strs}\\n\\n\"\n",
|
||||
" \"Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no.\"\n",
|
||||
" )\n",
|
||||
" resp = input(msg)\n",
|
||||
" if resp.lower() not in (\"yes\", \"y\"):\n",
|
||||
" raise ValueError(f\"Tool invocations not approved:\\n\\n{tool_strs}\")\n",
|
||||
" return tool_invocations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"id": "25dca07b-56ca-4b94-9955-d4f3e9895e03",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdin",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Do you approve of the following tool invocations\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"type\": \"count_emails\",\n",
|
||||
" \"args\": {\n",
|
||||
" \"last_n_days\": 5\n",
|
||||
" }\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no. y\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'type': 'count_emails', 'args': {'last_n_days': 5}, 'output': 10}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain = model | JsonOutputToolsParser() | human_approval | call_tool_list\n",
|
||||
"chain.invoke(\"how many emails did i get in the last 5 days?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"id": "f558f2cd-847b-4ef9-a770-3961082b540c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdin",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Do you approve of the following tool invocations\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"type\": \"send_email\",\n",
|
||||
" \"args\": {\n",
|
||||
" \"message\": \"What's up homie\",\n",
|
||||
" \"recipient\": \"sally@gmail.com\"\n",
|
||||
" }\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no. no\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "ValueError",
|
||||
"evalue": "Tool invocations not approved:\n\n{\n \"type\": \"send_email\",\n \"args\": {\n \"message\": \"What's up homie\",\n \"recipient\": \"sally@gmail.com\"\n }\n}",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[32], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mSend sally@gmail.com an email saying \u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mWhat\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43ms up homie\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:1774\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m 1772\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1773\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msteps):\n\u001b[0;32m-> 1774\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1775\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1776\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# mark each step as a child run\u001b[39;49;00m\n\u001b[1;32m 1777\u001b[0m \u001b[43m \u001b[49m\u001b[43mpatch_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1778\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseq:step:\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mi\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1779\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1780\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1781\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 1782\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:3074\u001b[0m, in \u001b[0;36mRunnableLambda.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 3072\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Invoke this runnable synchronously.\"\"\"\u001b[39;00m\n\u001b[1;32m 3073\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfunc\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m-> 3074\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_with_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3075\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_invoke\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3076\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3077\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_config\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3078\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3079\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3080\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 3081\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\n\u001b[1;32m 3082\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot invoke a coroutine function synchronously.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 3083\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUse `ainvoke` instead.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 3084\u001b[0m )\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:975\u001b[0m, in \u001b[0;36mRunnable._call_with_config\u001b[0;34m(self, func, input, config, run_type, **kwargs)\u001b[0m\n\u001b[1;32m 971\u001b[0m context \u001b[38;5;241m=\u001b[39m copy_context()\n\u001b[1;32m 972\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(var_child_runnable_config\u001b[38;5;241m.\u001b[39mset, child_config)\n\u001b[1;32m 973\u001b[0m output \u001b[38;5;241m=\u001b[39m cast(\n\u001b[1;32m 974\u001b[0m Output,\n\u001b[0;32m--> 975\u001b[0m \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 976\u001b[0m \u001b[43m \u001b[49m\u001b[43mcall_func_with_variable_args\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 977\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 978\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 979\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 980\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 981\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 982\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 983\u001b[0m )\n\u001b[1;32m 984\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 985\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/config.py:323\u001b[0m, in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, config, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m accepts_run_manager(func):\n\u001b[1;32m 322\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m run_manager\n\u001b[0;32m--> 323\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:2950\u001b[0m, in \u001b[0;36mRunnableLambda._invoke\u001b[0;34m(self, input, run_manager, config, **kwargs)\u001b[0m\n\u001b[1;32m 2948\u001b[0m output \u001b[38;5;241m=\u001b[39m chunk\n\u001b[1;32m 2949\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2950\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43mcall_func_with_variable_args\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2951\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 2952\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2953\u001b[0m \u001b[38;5;66;03m# If the output is a runnable, invoke it\u001b[39;00m\n\u001b[1;32m 2954\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(output, Runnable):\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/config.py:323\u001b[0m, in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, config, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m accepts_run_manager(func):\n\u001b[1;32m 322\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m run_manager\n\u001b[0;32m--> 323\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"Cell \u001b[0;32mIn[30], line 11\u001b[0m, in \u001b[0;36mhuman_approval\u001b[0;34m(tool_invocations)\u001b[0m\n\u001b[1;32m 9\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28minput\u001b[39m(msg)\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m resp\u001b[38;5;241m.\u001b[39mlower() \u001b[38;5;129;01min\u001b[39;00m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124myes\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124my\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m---> 11\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTool invocations not approved:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mtool_strs\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tool_invocations\n",
|
||||
"\u001b[0;31mValueError\u001b[0m: Tool invocations not approved:\n\n{\n \"type\": \"send_email\",\n \"args\": {\n \"message\": \"What's up homie\",\n \"recipient\": \"sally@gmail.com\"\n }\n}"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"Send sally@gmail.com an email saying 'What's up homie'\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e938d8f1-df93-4726-a465-78e596312246",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv",
|
||||
"language": "python",
|
||||
"name": "poetry-venv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
61
docs/docs/use_cases/tool_use/index.ipynb
Normal file
61
docs/docs/use_cases/tool_use/index.ipynb
Normal file
@@ -0,0 +1,61 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "451cda29-bed0-4558-9ed7-099bdd12ad60",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_position: 0.9\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "14b94240",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Tool use\n",
|
||||
"\n",
|
||||
"An exciting use case for LLMs is building natural language interfaces for other \"tools\", whether those are APIs, functions, databases, etc. LangChain is great for building such interfaces because it has:\n",
|
||||
"\n",
|
||||
"- Good model output parsing, which makes it easy to extract JSON, XML, OpenAI function-calls, etc. from model outputs.\n",
|
||||
"- A large collection of built-in [Tools](/docs/integrations/tools).\n",
|
||||
"- Provides a lot of flexibility in how you call these tools.\n",
|
||||
"\n",
|
||||
"There are two main ways to use tools: [chains](/docs/modules/chains) and [agents](/docs/modules/agents/). \n",
|
||||
"\n",
|
||||
"Chains lets you create a pre-defined sequence of tool usage(s). \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Agents let the model use tools in a loop, so that it can decide how many times to use tools.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"To get started with both approaches, head to the [Quickstart](/docs/use_cases/tool_use/quickstart) page."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv",
|
||||
"language": "python",
|
||||
"name": "poetry-venv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
259
docs/docs/use_cases/tool_use/multiple_tools.ipynb
Normal file
259
docs/docs/use_cases/tool_use/multiple_tools.ipynb
Normal file
@@ -0,0 +1,259 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "1ea1fe24-fe1e-463b-a52c-79f0ef02328e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_position: 2\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "95982bf1-7d9d-4dd6-a4ad-9de0719fe17f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Choosing between multiple tools\n",
|
||||
"\n",
|
||||
"In our [Quickstart](/docs/use_cases/tool_use/quickstart) we went over how to build a Chain that calls a single `multiply` tool. Now let's take a look at how we might augment this chain so that it can pick from a number of tools to call. We'll focus on Chains since [Agents](/docs/use_cases/tool_use/agents) can route between multiple tools by default."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3fafec38-443a-42ad-a913-5be7667e3734",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"We'll need to install the following packages for this guide:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "78411bf1-0117-4f33-a3d7-f3d77a97bb78",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "59d08fd0-ddd9-4c74-bcea-a5ca3a86e542",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And set these environment variables:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4185e74b-0500-4cad-ace0-bac37de466ac",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n",
|
||||
"\n",
|
||||
"# If you'd like to use LangSmith, uncomment the below\n",
|
||||
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d28159f5-b7d0-4385-aa44-4cd1b64507bb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tools\n",
|
||||
"\n",
|
||||
"Recall we already had a `multiply` tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "e13ec98c-8521-4d63-b521-caf92da87b70",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def multiply(first_int: int, second_int: int) -> int:\n",
|
||||
" \"\"\"Multiply two integers together.\"\"\"\n",
|
||||
" return first_int * second_int"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3de233af-b3bd-4f0c-8b1a-83527143a8db",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And now we can add to it a `exponentiate` and `add` tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "e93661cd-a2ba-4ada-91ad-baf1b60879ec",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"@tool\n",
|
||||
"def add(first_int: int, second_int: int) -> int:\n",
|
||||
" \"Add two integers.\"\n",
|
||||
" return first_int + second_int\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def exponentiate(base: int, exponent: int) -> int:\n",
|
||||
" \"Exponentiate the base to the exponent power.\"\n",
|
||||
" return base**exponent"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bbea4555-ed10-4a18-b802-e9a3071f132b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The main difference between using one Tool and many, is that in the case of many we can't be sure which Tool the model will invoke. So we cannot hardcode, like we did in the [Quickstart](/docs/use_cases/tool_use/quickstart), a specific tool into our chain. Instead we'll add `call_tool_list`, a `RunnableLambda` that takes the `JsonOutputToolsParser` output and actually builds the end of the chain based on it, meaning it appends the Tools that were envoked to the end of the chain at runtime. We can do this because LCEL has the cool property that in any Runnable (the core building block of LCEL) sequence, if one component returns more Runnables, those are run as part of the chain."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "c35359ae-a740-48c5-b5e7-1a377fb25aa2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"from typing import Union\n",
|
||||
"\n",
|
||||
"from langchain.output_parsers import JsonOutputToolsParser\n",
|
||||
"from langchain_community.tools.convert_to_openai import (\n",
|
||||
" format_tool_to_openai_tool,\n",
|
||||
")\n",
|
||||
"from langchain_core.runnables import (\n",
|
||||
" Runnable,\n",
|
||||
" RunnableLambda,\n",
|
||||
" RunnableMap,\n",
|
||||
" RunnablePassthrough,\n",
|
||||
")\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
|
||||
"tools = [multiply, exponentiate, add]\n",
|
||||
"model_with_tools = model.bind(tools=[format_tool_to_openai_tool(t) for t in tools])\n",
|
||||
"tool_map = {tool.name: tool for tool in tools}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def call_tool(tool_invocation: dict) -> Union[str, Runnable]:\n",
|
||||
" \"\"\"Function for dynamically constructing the end of the chain based on the model-selected tool.\"\"\"\n",
|
||||
" tool = tool_map[tool_invocation[\"type\"]]\n",
|
||||
" return RunnablePassthrough.assign(output=itemgetter(\"args\") | tool)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# .map() allows us to apply a function to a list of inputs.\n",
|
||||
"call_tool_list = RunnableLambda(call_tool).map()\n",
|
||||
"chain = model_with_tools | JsonOutputToolsParser() | call_tool_list"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "ea6dbb32-ec9b-4c70-a90f-a2db93978cf1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'type': 'multiply',\n",
|
||||
" 'args': {'first_int': 23, 'second_int': 7},\n",
|
||||
" 'output': 161}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"What's 23 times 7\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "b1c6c0f8-6d04-40d4-a40e-8719ca7b27c2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'type': 'add',\n",
|
||||
" 'args': {'first_int': 1000000, 'second_int': 1000000000},\n",
|
||||
" 'output': 1001000000}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"add a million plus a billion\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "ce76f299-1a4d-421c-afa4-a6346e34285c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'type': 'exponentiate',\n",
|
||||
" 'args': {'base': 37, 'exponent': 3},\n",
|
||||
" 'output': 50653}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"cube thirty-seven\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv",
|
||||
"language": "python",
|
||||
"name": "poetry-venv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user