Compare commits

..

185 Commits

Author SHA1 Message Date
ccurme
458d6f76ad qdrant: release 0.2.0.dev1 (#26388) 2024-09-12 11:38:12 -04:00
Eugene Yurtsev
bde3dbaed2 core[major]: Add restrictions on create_model field names to match pydantic constraints (#26345)
Pydantic 2 is stricter in terms of which field names are allowed in
pydantic models.

This PR results in the following breaking changes:

These will raise ValueErrors: 

```python
ChatPromptTemplate([("system", "{_private}")]).get_input_schema()
ChatPromptTemplate([("system","{model_json_schema}")]).get_input_schema()
```

This PR should properly suppress warnings for the following cases:

```python
ChatPromptTemplate([("system", "{schema}")]).get_input_schema()
ChatPromptTemplate([("system","{model_id}")]).get_input_schema()
```
2024-09-12 11:34:16 -04:00
ccurme
6b24eeb884 fireworks[patch]: fix warnings (#26385) 2024-09-12 14:03:24 +00:00
ccurme
d82eec6aad standard-tests[patch]: add standard test for structured output with optional param (#26384) 2024-09-12 09:39:51 -04:00
Bagatur
da037f1c55 docs: fix anthropic docstrings (#26367) 2024-09-12 02:01:07 +00:00
Bagatur
21a43ee3dc docs: update query analysis tutorial (#26363) 2024-09-11 17:13:12 -07:00
Bagatur
28594567de docs: fix structured output doc (#26360) 2024-09-11 16:56:15 -07:00
Bagatur
cacd68b2a7 docs: fix migrate agent (#26353) 2024-09-11 16:08:55 -07:00
Bagatur
1ee432e904 fix api ref reqs (#26357) 2024-09-11 15:19:59 -07:00
ccurme
0bfbd4f7bd community[patch]: release 0.3.0.dev2 (#26356) 2024-09-11 17:00:21 -04:00
ccurme
7ededced7d langchain[patch]: release 0.3.0.dev2 (#26355) 2024-09-11 16:45:55 -04:00
ccurme
284e1a7e9e core[patch]: support pydantic v1 annotations in tool arguments (#26336)
If all pydantic annotations in function signature are V1, use V1
`validate_arguments`.
2024-09-11 16:31:40 -04:00
Bagatur
d67e1dfe32 docs: fix merge messages how-to (#26351) 2024-09-11 13:29:35 -07:00
ccurme
df4fc60312 core[patch]: release 0.3.0.dev5 (#26352) 2024-09-11 16:29:25 -04:00
ccurme
c074922876 core[patch]: fix regression in convert_to_openai_tool with instances of Tool (v0.3rc) (#26349)
Cherry-pick https://github.com/langchain-ai/langchain/pull/26327 from
master.
2024-09-11 16:00:16 -04:00
Eugene Yurtsev
bbb7c267e5 docs[patch]: Improve env variable handling in documentation notebooks (#26347)
Updated using gritql

```
`os.environ[$key] = getpass($msg)` as $M where {
    $M <: ! within if_statement(),
    $M => `if $key not in os.environ: $M`
}
```
2024-09-11 19:39:39 +00:00
Bagatur
20f880ac84 infra: update api ref reqs (#26341) 2024-09-11 11:54:19 -07:00
Erick Friis
9f0968f9d2 docs: v0.3rc docs (#26277)
wip / don't merge
2024-09-11 11:12:39 -07:00
Eugene Yurtsev
8b7f5e1ec0 core[patch]: Remove non relevant todos (#26332)
Clean up TODO(0.3)
2024-09-11 13:38:39 -04:00
Eugene Yurtsev
b9575d586b docs: Handle existing env variables better (#26331)
Update tutorials, how-to and remaining integrations.

Using gritql

```
grit apply --language python '
`os.environ[$key] = getpass.getpass("$msg")` as $M where {
    $M <: ! within if_statement(),
    $M => `if $key not in os.environ: $M`
}' .
```
2024-09-11 13:11:57 -04:00
Eugene Yurtsev
934bc5b030 docs: update integration notebooks handling of env variables (#26330)
Using gritql

```
grit apply --language python '
`os.environ[$key] = getpass.getpass("$msg")` as $M where {
    $M <: ! within if_statement(),
    $M => `if $key not in os.environ: $M`
}' .
```
2024-09-11 13:10:27 -04:00
Eugene Yurtsev
da48c98eaf core[patch]: Add type literal to LLMResult (#26282)
Needed for LangServe serialization/deserializastion of callback events.
2024-09-11 11:46:13 -04:00
Eugene Yurtsev
844955d6e1 community[patch]: assign missed default (#26326)
Assigning missed defaults in various classes. Most clients were being
assigned during the `model_validator(mode="before")` step, so this
change should amount to a no-op in those cases.

---

This PR was autogenerated using gritql

```shell

grit apply 'class_definition(name=$C, $body, superclasses=$S) where {    
    $C <: ! "Config", // Does not work in this scope, but works after class_definition
    $body <: block($statements),
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        or {
            $y <: `Field($z)`,
            $x <: "model_config"
        }
    },
    // And has either Any or Optional fields without a default
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        $t <: or {
            r"Optional.*",
            r"Any",
            r"Union[None, .*]",
            r"Union[.*, None, .*]",
            r"Union[.*, None]",
        },
        $y <: ., // Match empty node        
        $t => `$t = None`,
    },    
}
' --language python .

```
2024-09-11 11:13:11 -04:00
Eugene Yurtsev
c417bbc313 core[patch]: Add default None to StructuredTool func (#26324)
This PR was autogenerated using gritql, tests written manually

```shell

grit apply 'class_definition(name=$C, $body, superclasses=$S) where {    
    $C <: ! "Config", // Does not work in this scope, but works after class_definition
    $body <: block($statements),
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        or {
            $y <: `Field($z)`,
            $x <: "model_config"
        }
    },
    // And has either Any or Optional fields without a default
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        $t <: or {
            r"Optional.*",
            r"Any",
            r"Union[None, .*]",
            r"Union[.*, None, .*]",
            r"Union[.*, None]",
        },
        $y <: ., // Match empty node        
        $t => `$t = None`,
    },    
}
' --language python .

```
2024-09-11 11:12:52 -04:00
Eugene Yurtsev
edcd348ce7 huggingface,box[patch]: Add missing default None (#26323)
This PR was autogenerated using gritql

```
engine marzano(0.1)
language python

class_definition(name=$C, $body, superclasses=$S) where {    
    $C <: ! "Config", // Does not work in this scope, but works after class_definition
    $body <: block($statements),
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        or {
            $y <: `Field($z)`,
            $x <: "model_config"
        }
    },
    // And has either Any or Optional fields without a default
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        $t <: or {
            r"Optional.*",
            r"Any",
            r"Union[None, .*]",
            r"Union[.*, None, .*]",
            r"Union[.*, None]",
        },
        $y <: ., // Match empty node        
        $t => `$t = None`,
    },    
}
```


```shell

grit apply 'class_definition(name=$C, $body, superclasses=$S) where {    
    $C <: ! "Config", // Does not work in this scope, but works after class_definition
    $body <: block($statements),
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        or {
            $y <: `Field($z)`,
            $x <: "model_config"
        }
    },
    // And has either Any or Optional fields without a default
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        $t <: or {
            r"Optional.*",
            r"Any",
            r"Union[None, .*]",
            r"Union[.*, None, .*]",
            r"Union[.*, None]",
        },
        $y <: ., // Match empty node        
        $t => `$t = None`,
    },    
}
' --language python .

```
2024-09-11 11:07:31 -04:00
Eugene Yurtsev
d3499cc90b langchain[patch]: Assign appropriate default for Optional/Any types (#26325)
This PR was autogenerated using gritql

```
engine marzano(0.1)
language python

class_definition(name=$C, $body, superclasses=$S) where {    
    $C <: ! "Config", // Does not work in this scope, but works after class_definition
    $body <: block($statements),
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        or {
            $y <: `Field($z)`,
            $x <: "model_config"
        }
    },
    // And has either Any or Optional fields without a default
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        $t <: or {
            r"Optional.*",
            r"Any",
            r"Union[None, .*]",
            r"Union[.*, None, .*]",
            r"Union[.*, None]",
        },
        $y <: ., // Match empty node        
        $t => `$t = None`,
    },    
}
```


```shell

grit apply 'class_definition(name=$C, $body, superclasses=$S) where {    
    $C <: ! "Config", // Does not work in this scope, but works after class_definition
    $body <: block($statements),
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        or {
            $y <: `Field($z)`,
            $x <: "model_config"
        }
    },
    // And has either Any or Optional fields without a default
    $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where {
        $t <: or {
            r"Optional.*",
            r"Any",
            r"Union[None, .*]",
            r"Union[.*, None, .*]",
            r"Union[.*, None]",
        },
        $y <: ., // Match empty node        
        $t => `$t = None`,
    },    
}
' --language python .

```
2024-09-11 11:06:30 -04:00
Bagatur
2b15183980 docs: run tool, query analysis how tos (#26306) 2024-09-11 03:31:25 +00:00
Erick Friis
157d32b294 prompty: fix core dep for min testing (#26300) 2024-09-11 02:28:59 +00:00
Erick Friis
ec49d0d0b4 infra: codespell on all pr branches (#26299) 2024-09-10 19:21:53 -07:00
Erick Friis
19bce9aba1 community: model config cassandradatabasetool (#26296) 2024-09-10 19:17:22 -07:00
Bagatur
a56812f970 docs: replace gpt-3.5-turbo-0125 and -1106 with gpt-4o-mini (#26292) 2024-09-10 16:23:05 -07:00
ccurme
89c6cb6f8b mongo[patch]: release 0.2.0.dev1 (#26289) 2024-09-10 19:03:45 -04:00
Bagatur
aa9f247803 core[patch]: manually coerce ToolMessage args (#26283) 2024-09-10 15:57:57 -07:00
Bagatur
fce9322d2e core[patch]: use pydantic.v1 in old tracer code (#26290)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-09-10 15:48:02 -07:00
ccurme
e2c8690e7f community[patch]: fix huggingface pydantic 2 init (#26286) 2024-09-10 18:15:39 -04:00
Eugene Yurtsev
287911adbc community[patch]: Add protected_namespace=() to models that use model namespace (#26284)
Add protected_namespaces=() for existing implementations that use the
pydantic
reserved model namespace.
2024-09-10 17:32:10 -04:00
ccurme
fc08f240ee huggingface[patch]: bump deps and increment version to 0.1.0.dev1 (#26263) 2024-09-10 16:49:12 -04:00
Eugene Yurtsev
bee8994b7e langchain,core: Deprecate pydantic.v1 shims (#26280)
Deprecate shim namespace
2024-09-10 16:19:20 -04:00
Bagatur
c62772885a docs: migrate pydantic imports (#26266) 2024-09-10 13:06:58 -07:00
Eugene Yurtsev
374bb40852 community: Force opt-in for qa chains (#26278)
The underlying code is already documented as requiring appropriate RBAC
control, but adding a forced user opt-in to make sure that users
that don't read documentation are still aware of what's required
from a security perspective.

https://huntr.com/bounties/8f4ad910-7fdc-4089-8f0a-b5df5f32e7c5
2024-09-10 15:59:03 -04:00
Bagatur
c43c62b6c9 merge msater (#26275) 2024-09-10 12:57:18 -07:00
Eugene Yurtsev
bb83f1b875 community[patch]: Resolve parse_obj (#26262)
Update parse_obj
2024-09-10 15:56:34 -04:00
Eugene Yurtsev
ed412d89b4 core[patch]: Do not hard coded name for RunnableBranch (#26276)
This is no longer necessary
2024-09-10 15:49:51 -04:00
Bagatur
789f4b1c9c fmt 2024-09-10 12:48:06 -07:00
Bagatur
13ba15b2cc Merge branch 'v0.3rc' into bagatur/09-10/v0.3_merge_master 2024-09-10 12:44:49 -07:00
Bagatur
b904763115 fmt 2024-09-10 12:44:11 -07:00
Bagatur
cecdc119bf merge 2024-09-10 12:32:47 -07:00
Eugene Yurtsev
7975c1f0ca core[patch]: Propagate module name to create model (#26267)
* This allows pydantic to correctly resolve annotations necessary for
building pydantic models dynamically.
* Makes a small fix for RunnableWithMessageHistory which was fetching
the OutputType from the RunnableLambda that was yielding another
RunnableLambda. This doesn't propagate the output of the RunnableAssign
fully (i.e., with concrete type information etc.)

Resolves issue: https://github.com/langchain-ai/langchain/issues/26250
2024-09-10 15:22:56 -04:00
ccurme
622cb7d2cf huggingface[patch]: update integration tests on v0.3rc branch (#26274)
cherry-pick these from master branch
2024-09-10 15:06:48 -04:00
ccurme
3a0c7c705c ollama[patch]: bump core dep and increment version to 0.2.0.dev1 (#26271)
Confirmed no pydantic warnings in unit or integration tests.
2024-09-10 14:41:53 -04:00
Bagatur
162d3ff54b docs: fix language_models docstring (#26268) 2024-09-10 10:41:28 -07:00
Bagatur
301be2d40a core[patch]: de-beta astream_events (#26248) 2024-09-10 10:09:29 -07:00
ccurme
6df9178056 groq[patch]: bump deps (#26261)
To confirm no pydantic warnings.
2024-09-10 10:42:56 -04:00
ccurme
6208773c77 community[patch]: set protected namespaces on embeddings (#26156)
Also fix serdes test for langchain-google-genai.
2024-09-10 09:28:41 -04:00
Bagatur
e24259fee7 docs: update pydantic api ref templates (#26246) 2024-09-09 18:14:12 -07:00
Bagatur
9132516c84 core[patch]: add back ChatModel.callback_manager deprecation (#26244) 2024-09-09 17:46:48 -07:00
Bagatur
f2f9187919 community[patch]: fix community warnings 1 (#26239) 2024-09-09 17:27:00 -07:00
Bagatur
438301db90 community[patch]: update docstrings (#26243) 2024-09-09 17:16:56 -07:00
Bagatur
7842e2c460 langchain[patch]: docstring update (#26242) 2024-09-09 17:12:32 -07:00
Bagatur
949127fbc1 infra: rm check pydantic scripts (#26240) 2024-09-09 17:12:16 -07:00
Bagatur
baad44965e core[patch]: update docstrings (#26241) 2024-09-09 17:04:57 -07:00
Bagatur
d588ce1f29 community[patch]: fix extended deps (#26238) 2024-09-09 16:10:10 -07:00
ccurme
2070d659a0 mistralai: release 0.2.0.dev1 (#26236) 2024-09-09 16:09:23 -04:00
ccurme
6c8d626d70 experimental[major]: upgrade pydantic (#26228) 2024-09-09 14:27:24 -04:00
Bagatur
109ba548bd langchain[patch]: fix pydantic 2 warnings (#26188) 2024-09-09 11:19:02 -07:00
Bagatur
0f4a087186 community[patch]: fix main unit tests (#26189) 2024-09-09 10:35:41 -07:00
Bagatur
71268f7a15 standard-tests[patch]: resolve pydantic warnings (#26190) 2024-09-09 10:34:57 -07:00
Eugene Yurtsev
b8fc82b84b core[patch]: Fix _get_type in AnyMessage (#26223)
Fix _get_type to work on deserialization path as well and add a unit test.
2024-09-09 10:33:18 -04:00
Bagatur
179eeead81 anthropic[patch]: pydantic ^2.7.4 (#26191) 2024-09-08 11:46:19 -07:00
Bagatur
7a57b4fbbf core[patch]: Release 0.3.0dev4 (#26178) 2024-09-06 18:49:41 -04:00
Bagatur
d9ba65ca26 core[patch]: pydantic 2.7-compatible AnyMessage (#26177) 2024-09-06 18:44:06 -04:00
Eugene Yurtsev
0319ccd273 core[patch]: only support pydantic >= 2.9 for now (#26176)
For now we'll only support pydantic ^ 2.9. We'll relax the constraint
next week once we work around some issues with pydantic 2.7 / 2.8.
2024-09-06 18:13:17 -04:00
Eugene Yurtsev
6e2a72c218 core[patch]: Add missing cache for create_model (#26173)
It makes a big difference for performance.
2024-09-06 17:59:18 -04:00
Bagatur
9f482f4284 cherry langsmith cache fix (#26169) 2024-09-06 17:47:47 -04:00
Erick Friis
15466d89a2 infra: core remove 3.8 (#26172) 2024-09-06 14:47:16 -07:00
Eugene Yurtsev
61087b0c0d core[patch]: Fix changes to pydantic schema due to pydantic 2.8.2 -> 2.9 changes (#26166)
Minor non functional change in pydantic schema generation
2024-09-06 17:24:10 -04:00
Bagatur
b2ba4f4072 core[patch]: fix deprecated pydantic code (#26161) 2024-09-06 17:14:17 -04:00
Bagatur
b2c8f2de4c core[patch]: fix ChatPromptValueConcrete typing (#26106)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-09-06 17:13:57 -04:00
Bagatur
6df9360e32 core[patch]: remove v1_repr (#26165)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-06 17:00:52 -04:00
Erick Friis
b664b3364c multiple: merge master into v0.3rc branch (#26163)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
2024-09-06 13:42:29 -07:00
Bagatur
bccc546a25 v0.3 dev releases (#26096)
branch for cutting dev releases

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-06 13:35:19 -07:00
Erick Friis
6405e7fa07 infra: ignore docs build in v0.3rc branch (#25990) 2024-09-06 13:24:13 -07:00
Erick Friis
ae24f7364d multiple: version bumps (#26159) 2024-09-06 12:37:17 -07:00
Erick Friis
81f8c2f33d infra: add pydantic to min version testing (#26152) 2024-09-06 12:09:56 -07:00
ccurme
c27703a10f core[patch]: resolve warnings (#26157)
Resolve a batch of warnings
2024-09-06 15:00:53 -04:00
ccurme
1b77063c88 openai[patch]: set protected namespaces on embeddings (#26155) 2024-09-06 13:00:41 -04:00
ccurme
b74546a458 core[patch]: add google genai to serialization (#26154) 2024-09-06 12:54:16 -04:00
Bagatur
8a3a9c8968 core[patch]: concrete prompt value test (#26128) 2024-09-05 20:49:05 -04:00
Erick Friis
776d01db49 infra: remove fail fast in v0.3rc branch (#26127) 2024-09-05 17:32:17 -07:00
Eugene Yurtsev
40b43b0bfb core[patch]: Remove some usage of .copy() in favor of .model_copy() (#26126)
Address under place where deprecated functionality is used.
2024-09-05 18:34:43 -04:00
Eugene Yurtsev
6fd4ac4283 core[patch]: Replace @validator with @model_validator in length based example selector (#26124)
Resolves another warning from usage of deprecated functionality in
pydantic 2
2024-09-05 18:26:43 -04:00
Eugene Yurtsev
f4e7cb394f core[patch]: Ignore pydantic deprecation warnings in validate_arguments (#26122)
For now, we'll use the deprecation functionality which is present until
pydantic 3.
2024-09-05 18:23:48 -04:00
Eugene Yurtsev
1ecaffab8a core[patch]: Fix regression in core (#26121)
Limited to unit testing code -- did not cause any actual issues
2024-09-05 17:41:36 -04:00
ccurme
5bbd5364f1 core[patch]: call RunnableConfigurableFields.model_rebuild() (#26118)
To fix a test in `langchain`
2024-09-05 16:59:52 -04:00
Eugene Yurtsev
e02b093d81 community[patch]: Fix more issues (#26116)
This PR resolves more type checking issues and fixes some bugs.
2024-09-05 16:31:21 -04:00
Eugene Yurtsev
0cc6584889 community[patch]: Resolve more linting issues (#26115)
Resolve a bunch of errors caught with mypy
2024-09-05 15:59:30 -04:00
Eugene Yurtsev
6e1b0d0228 community[patch]: Skip unit test that depends on langchain-aws and fix pydantic settings (#26111)
* Skip unit test that depends on langchain-aws
* fix pydantic settings
2024-09-05 15:08:34 -04:00
Eugene Yurtsev
a111098230 community[patch]: Remove usage of deprecated pydantic config option (#26107)
Remove usage of deprecated pydantic config option
2024-09-05 15:05:00 -04:00
ccurme
9e7222618b core: reduce warnings (#26108) 2024-09-05 15:04:41 -04:00
Harrison Chase
8516a03a02 langchain-community[major]: Upgrade community to pydantic 2 (#26011)
This PR upgrades langchain-community to pydantic 2.


* Most of this PR was auto-generated using code mods with gritql
(https://github.com/eyurtsev/migrate-pydantic/tree/main)
* Subsequently, some code was fixed manually due to accommodate
differences between pydantic 1 and 2

Breaking Changes:

- Use TEXTEMBED_API_KEY and TEXTEMBEB_API_URL for env variables for text
embed integrations:
cbea780492

Other changes:

- Added pydantic_settings as a required dependency for community. This
may be removed if we have enough time to convert the dependency into an
optional one.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-05 14:07:10 -04:00
ccurme
1ad66e70dc text-splitters[major]: update core dep + drop support for python 3.8 (#26102) 2024-09-05 13:41:28 -04:00
Bagatur
76564edd3a openai[patch]: update configurable model dumps (#26101) 2024-09-05 13:26:40 -04:00
Eugene Yurtsev
1c51e1693d core[patch]: Fix issue with adapter utility for pydantic repr (#26099)
This repr will be deleted prior to release -- it's temporarily here to
make it easy to separate code changes in langchain vs. code changes
stemming from breaking changes in pydantic
2024-09-05 12:27:01 -04:00
Eugene Yurtsev
a267da6a3a core[minor]: Add type overload for secret_from_env factory (#26091)
Add type overload
2024-09-05 11:52:19 -04:00
Bagatur
8da2ace99d openai[patch]: update snapshots (#26098) 2024-09-05 11:41:14 -04:00
ccurme
e358846b39 core[patch]: add bedrock to load.mapping (#26094) 2024-09-05 10:56:46 -04:00
Eugene Yurtsev
3c598d25a6 core[minor]: Add get_input_jsonschema, get_output_jsonschema, get_config_jsonschema (#26034)
This PR adds methods to directly get the json schema for inputs,
outputs, and config.
Currently, it's delegating to the underlying pydantic implementation,
but this may be changed in the future to be independent of pydantic.
2024-09-05 10:36:42 -04:00
ccurme
e5aa0f938b mongo[major]: upgrade pydantic (#26053) 2024-09-05 09:05:41 -04:00
Bagatur
79c46319dd couchbase[patch]: rm pydantic usage (#26068) 2024-09-04 16:29:14 -07:00
ccurme
c5d4dfefc0 prompty[major]: upgrade pydantic (#26056) 2024-09-04 19:26:18 -04:00
ccurme
6e853501ec voyageai[major]: upgrade pydantic (#26070) 2024-09-04 18:59:13 -04:00
Bagatur
fd1f3ca213 exa[major]: use pydantic v2 (#26069) 2024-09-04 15:02:05 -07:00
Bagatur
567a4ce5aa box[major]: use pydantic v2 (#26067) 2024-09-04 14:51:53 -07:00
ccurme
923ce84aa7 robocorp[major]: upgrade pydantic (#26062) 2024-09-04 17:10:15 -04:00
Eugene Yurtsev
9379613132 langchain[major]: Upgrade langchain to be pydantic 2 compatible (#26050)
Upgrading the langchain package to be pydantic 2 compatible.

Had to remove some parts of unit tests in parsers that were relying on
spying on methods since that fails with pydantic 2. The unit tests don't
seem particularly good, so can be re-written at a future date.

Depends on: https://github.com/langchain-ai/langchain/pull/26057

Most of this PR was done using gritql for code mods, followed by some
fixes done manually to account for changes made by pydantic
2024-09-04 16:59:07 -04:00
Bagatur
c72a76237f cherry-pick 88e9e6b (#26063) 2024-09-04 13:50:42 -07:00
Bagatur
f9cafcbcb0 pinecone[patch]: rm pydantic lint script (#26052) 2024-09-04 13:49:09 -07:00
Bagatur
1fce5543bc poetry lock 2024-09-04 13:44:51 -07:00
Bagatur
88e9e6bf55 core,standard-tests[patch]: add Ser/Des test and update serialization mapping (#26042) 2024-09-04 13:38:03 -07:00
Bagatur
7f0dd4b182 fmt 2024-09-04 13:31:29 -07:00
Bagatur
5557b86a54 fmt 2024-09-04 13:31:29 -07:00
Bagatur
caf4ae3a45 fmt 2024-09-04 13:31:28 -07:00
Bagatur
c88b75ca6a fmt 2024-09-04 13:30:02 -07:00
Bagatur
e409a85a28 fmt 2024-09-04 13:29:24 -07:00
Bagatur
40634d441a make 2024-09-04 13:29:24 -07:00
Bagatur
1d2a503ab8 standard-tests[patch]: add Ser/Des test 2024-09-04 13:29:20 -07:00
ccurme
b924c61440 qdrant[major]: drop support for python 3.8 (#26061) 2024-09-04 16:22:54 -04:00
Eugene Yurtsev
efa10c8ef8 core[minor]: Add message chunks to AnyMessage (#26057)
Adds the chunk variant of each Message to AnyMessage.

Required for this PR:
https://github.com/langchain-ai/langchain/pull/26050/files
2024-09-04 15:36:22 -04:00
ccurme
0a6c67ce6a nomic: drop support for python 3.8 (#26055) 2024-09-04 15:30:00 -04:00
ccurme
ed771f2d2b huggingface[major]: upgrade pydantic (#26048) 2024-09-04 15:08:43 -04:00
ccurme
63ba12d8e0 milvus: drop support for python 3.8 (#26051)
to be consistent with core
2024-09-04 14:54:45 -04:00
Bagatur
f785cf029b pinecone[major]: Update to pydantic v2 (#26039) 2024-09-04 11:28:54 -07:00
ccurme
be7cd0756f ollama[major]: upgrade pydantic (#26044) 2024-09-04 13:54:52 -04:00
ccurme
51c6899850 groq[major]: upgrade pydantic (#26036) 2024-09-04 13:41:40 -04:00
ccurme
163d6fe8ef anthropic: update pydantic (#26000)
Migrated with gritql: https://github.com/eyurtsev/migrate-pydantic
2024-09-04 13:35:51 -04:00
ccurme
7cee7fbfad mistralai: update pydantic (#25995)
Migrated with gritql: https://github.com/eyurtsev/migrate-pydantic
2024-09-04 13:26:17 -04:00
ccurme
4799ad95d0 core[patch]: remove warnings from protected namespaces on RunnableSerializable (#26040) 2024-09-04 13:10:08 -04:00
Bagatur
88065d794b fmt 2024-09-04 09:52:01 -07:00
Bagatur
b27bfa6717 pinecone[major]: Update to pydantic v2 2024-09-04 09:50:39 -07:00
Bagatur
5adeaf0732 openai[major]: switch to pydantic v2 (#26001) 2024-09-04 09:18:29 -07:00
Bagatur
f9d91e19c5 fireworks[major]: switch to pydantic v2 (#26004) 2024-09-04 09:18:10 -07:00
Bagatur
4c7afb0d6c Update libs/partners/openai/langchain_openai/llms/base.py 2024-09-03 23:36:19 -07:00
Bagatur
c1ff61669d Update libs/partners/openai/langchain_openai/llms/base.py 2024-09-03 23:36:14 -07:00
Bagatur
54d6808c1e Update libs/partners/openai/langchain_openai/llms/azure.py 2024-09-03 23:36:08 -07:00
Bagatur
78468de2e5 Update libs/partners/openai/langchain_openai/llms/azure.py 2024-09-03 23:36:02 -07:00
Bagatur
76572f963b Update libs/partners/openai/langchain_openai/embeddings/base.py 2024-09-03 23:35:56 -07:00
Bagatur
c0448f27ba Update libs/partners/openai/langchain_openai/embeddings/base.py 2024-09-03 23:35:51 -07:00
Bagatur
179aaa4007 Update libs/partners/openai/langchain_openai/embeddings/azure.py 2024-09-03 23:35:43 -07:00
Bagatur
d072d592a1 Update libs/partners/openai/langchain_openai/embeddings/azure.py 2024-09-03 23:35:35 -07:00
Bagatur
78c454c130 Update libs/partners/openai/langchain_openai/chat_models/base.py 2024-09-03 23:35:30 -07:00
Bagatur
5199555c0d Update libs/partners/openai/langchain_openai/chat_models/base.py 2024-09-03 23:35:26 -07:00
Bagatur
5e31cd91a7 Update libs/partners/openai/langchain_openai/chat_models/azure.py 2024-09-03 23:35:21 -07:00
Bagatur
49a1f5dd47 Update libs/partners/openai/langchain_openai/chat_models/azure.py 2024-09-03 23:35:15 -07:00
Bagatur
d0cc9b022a Update libs/partners/fireworks/langchain_fireworks/chat_models.py 2024-09-03 23:30:56 -07:00
Bagatur
a91bd2737a Update libs/partners/fireworks/langchain_fireworks/chat_models.py 2024-09-03 23:30:49 -07:00
Bagatur
5ad2b8ce80 Merge branch 'v0.3rc' into bagatur/fireworks_0.3 2024-09-03 23:29:07 -07:00
Bagatur
b78764599b Merge branch 'v0.3rc' into bagatur/openai_attempt_2 2024-09-03 23:28:50 -07:00
Bagatur
2888e34f53 infra: remove pydantic v1 tests (#26006) 2024-09-03 23:27:52 -07:00
Bagatur
dd4418a503 rm requires 2024-09-03 23:26:13 -07:00
Bagatur
a976f2071b Merge branch 'v0.3rc' into bagatur/rm_pydantic_v1_ci 2024-09-03 19:06:22 -07:00
Eugene Yurtsev
5f98975be0 core[patch]: Fix injected args in tool signature (#25991)
- Fix injected args in tool signature
- Fix another unit test that was using the wrong namespace import in
pydantic
2024-09-03 21:53:50 -04:00
Bagatur
0529c991ce rm 2024-09-03 18:02:12 -07:00
Bagatur
954abcce59 infra: remove pydantic v1 tests 2024-09-03 18:01:34 -07:00
Bagatur
6ad515d34e Merge branch 'v0.3rc' into bagatur/fireworks_0.3 2024-09-03 17:51:46 -07:00
Bagatur
99348e1614 Merge branch 'v0.3rc' into bagatur/openai_attempt_2 2024-09-03 17:51:27 -07:00
Bagatur
2c742cc20d standard-tests[major]: use pydantic v2 (#26005) 2024-09-03 17:50:45 -07:00
Bagatur
02f87203f7 standard-tests[major]: use pydantic v2 2024-09-03 17:48:20 -07:00
Bagatur
56163481dd fmt 2024-09-03 17:46:41 -07:00
Bagatur
6aac2eeab5 fmt 2024-09-03 17:42:22 -07:00
Bagatur
559d8a4d13 fireworks[major]: switch to pydantic v2 2024-09-03 17:41:28 -07:00
Bagatur
ec9e8eb71c fmt 2024-09-03 17:24:24 -07:00
Bagatur
9399df7777 fmt 2024-09-03 16:57:42 -07:00
Bagatur
5fc1104d00 fmt 2024-09-03 16:51:14 -07:00
Bagatur
6777106fbe fmt 2024-09-03 16:50:17 -07:00
Bagatur
5f5287c3b0 fmt 2024-09-03 16:48:53 -07:00
Bagatur
615f8b0d47 openai[major]: switch to pydantic v2 2024-09-03 16:33:35 -07:00
Bagatur
9a9ab65030 merge master correctly (#25999) 2024-09-03 14:57:29 -07:00
Bagatur
241b6d2355 Revert "merge master (#25997)" (#25998) 2024-09-03 14:55:28 -07:00
Bagatur
91e09ffee5 merge master (#25997)
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-09-03 14:51:26 -07:00
Eugene Yurtsev
8e4bae351e core[major]: Drop python 3.8 support (#25996)
Drop python 3.8 support as EOL is 2024 October
2024-09-03 14:47:27 -07:00
Erick Friis
0da201c1d5 core: fix lint 0.3rc (#25993) 2024-09-03 17:13:52 -04:00
Erick Friis
29413a22e1 infra: also run lint/test on rc (#25992) 2024-09-03 14:02:49 -07:00
Eugene Yurtsev
ae5a574aa5 core[major]: Upgrade langchain-core to pydantic 2 (#25986)
This PR upgrades core to pydantic 2.

It involves a combination of manual changes together with automated code
mods using gritql.

Changes and known issues:

1. Current models override __repr__ to be consistent with pydantic 1
(this will be removed in a follow up PR)
Related:
https://github.com/langchain-ai/langchain/pull/25986/files#diff-e5bd296179b7a72fcd4ea5cfa28b145beaf787da057e6d122aa76ee0bb8132c9R74
2. Issue with decorator for BaseChatModel
(https://github.com/langchain-ai/langchain/pull/25986/files#diff-932bf3b314b268754ef640a5b8f52da96f9024fb81dd388dcd166b5713ecdf66R202)
-- cc @baskaryan
3. `name` attribute in Base Runnable does not have a default -- was
raising a pydantic warning due to override. We need to see if there's a
way to fix to avoid making a breaking change for folks with custom
runnables.
(https://github.com/langchain-ai/langchain/pull/25986/files#diff-836773d27f8565f4dd45e9d6cf828920f89991a880c098b7511e0d3bb78a8a0dR238)
4. Likely can remove hard-coded RunnableBranch name
(https://github.com/langchain-ai/langchain/pull/25986/files#diff-72894b94f70b1bfc908eb4d53f5ff90bb33bf8a4240a5e34cae48ddc62ac313aR147)
5. `model_*` namespace is reserved in pydantic. We'll need to specify
`protected_namespaces`
6. create_model does not have a cached path yet
7. get_input_schema() in many places has been updated to be explicit
about whether parameters are required or optional
8. injected tool args aren't picked up properly (losing type annotation)

For posterity the following gritql migrations were used:

```
engine marzano(0.1)
language python

or {
    `from $IMPORT import $...` where {
        $IMPORT <: contains `pydantic_v1`,
        $IMPORT => `pydantic`
    },
    `$X.update_forward_refs` => `$X.model_rebuild`,
  // This pattern still needs fixing as it fails (populate_by_name vs.
  // allow_populate_by_name)
  class_definition($name, $body) as $C where {
      $name <: `Config`,
      $body <: block($statements),
      $t = "",
      $statements <: some bubble($t) assignment(left=$x, right=$y) as $A where {    
        or {
            $x <: `allow_population_by_field_name` where {
                $t += `populate_by_name=$y,`
            },
            $t += `$x=$y,`
        }
      },
      $C => `model_config = ConfigDict($t)`,
      add_import(source="pydantic", name="ConfigDict")
  }
}

```



```
engine marzano(0.1)
language python

`@root_validator(pre=True)` as $decorator where {
    $decorator <: before function_definition($body, $return_type),
    $decorator => `@model_validator(mode="before")\n@classmethod`,
    add_import(source="pydantic", name="model_validator"),
    $return_type => `Any`
}
```

```
engine marzano(0.1)
language python

`@root_validator(pre=False, skip_on_failure=True)` as $decorator where {
    $decorator <: before function_definition($body, $parameters, $return_type) where {
        $body <: contains bubble or {
            `values["$Q"]` => `self.$Q`,
            `values.get("$Q")` => `(self.$Q or None)`,
            `values.get($Q, $...)` as $V where {
                $Q <: contains `"$QName"`,
                $V => `self.$QName`,
            },
            `return $Q` => `return self`
        }
    },
    $decorator => `@model_validator(mode="after")`,
    // Silly work around a bug in grit
    // Adding Self to pydantic and then will replace it with one from typing
    add_import(source="pydantic", name="model_validator"),
    $parameters => `self`,
    $return_type => `Self`
}

```

```
grit apply --language python '`Self` where { add_import(source="typing_extensions", name="Self")}'
```
2024-09-03 16:30:44 -04:00
Erick Friis
5a0e82c31c infra: fix 0.3rc ci check (#25988) 2024-09-03 12:20:08 -07:00
Erick Friis
8590b421c4 infra: ignore core dependents for 0.3rc (#25980) 2024-09-03 11:06:45 -07:00
1248 changed files with 89329 additions and 49788 deletions

View File

@@ -96,21 +96,25 @@ body:
attributes:
label: System Info
description: |
Please share your system info with us. Do NOT skip this step and please don't trim
the output. Most users don't include enough information here and it makes it harder
for us to help you.
Please share your system info with us.
Run the following command in your terminal and paste the output here:
"pip freeze | grep langchain"
platform (windows / linux / mac)
python version
OR if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
or if you have an existing python interpreter running:
from langchain_core import sys_info
sys_info.print_sys_info()
alternatively, put the entire output of `pip freeze` here.
placeholder: |
"pip freeze | grep langchain"
platform
python version
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
These will only surface LangChain packages, don't forget to include any other relevant
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
validations:
required: true

View File

@@ -1,7 +1,7 @@
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes.
- Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"

View File

@@ -2,12 +2,10 @@ import glob
import json
import os
import sys
import tomllib
from collections import defaultdict
from typing import Dict, List, Set
from pathlib import Path
import tomllib
from get_min_versions import get_min_version_from_toml
LANGCHAIN_DIRS = [
@@ -15,13 +13,12 @@ LANGCHAIN_DIRS = [
"libs/text-splitters",
"libs/langchain",
"libs/community",
"libs/experimental",
]
# when set to True, we are ignoring core dependents
# in order to be able to get CI to pass for each individual
# package that depends on core
# e.g. if you touch core, we don't then add textsplitters/etc to CI
IGNORE_CORE_DEPENDENTS = False
# for 0.3rc, we are ignoring core dependents
# in order to be able to get CI to pass for individual PRs.
IGNORE_CORE_DEPENDENTS = True
# ignored partners are removed from dependents
# but still run if directly edited
@@ -106,101 +103,44 @@ def add_dependents(dirs_to_eval: Set[str], dependents: dict) -> List[str]:
def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
if job == "test-pydantic":
return _get_pydantic_test_configs(dir_)
if dir_ == "libs/core":
py_versions = ["3.9", "3.10", "3.11", "3.12"]
return [
{"working-directory": dir_, "python-version": f"3.{v}"}
for v in range(9, 13)
]
min_python = "3.9"
max_python = "3.12"
# custom logic for specific directories
elif dir_ == "libs/partners/milvus":
if dir_ == "libs/partners/milvus":
# milvus poetry doesn't allow 3.12 because they
# declare deps in funny way
py_versions = ["3.9", "3.11"]
max_python = "3.11"
elif dir_ in ["libs/community", "libs/langchain"] and job == "extended-tests":
if dir_ in ["libs/community", "libs/langchain"] and job == "extended-tests":
# community extended test resolution in 3.12 is slow
# even in uv
py_versions = ["3.9", "3.11"]
max_python = "3.11"
elif dir_ == "libs/community" and job == "compile-integration-tests":
if dir_ == "libs/community" and job == "compile-integration-tests":
# community integration deps are slow in 3.12
py_versions = ["3.9", "3.11"]
else:
py_versions = ["3.9", "3.12"]
max_python = "3.11"
return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions]
def _get_pydantic_test_configs(
dir_: str, *, python_version: str = "3.11"
) -> List[Dict[str, str]]:
with open("./libs/core/poetry.lock", "rb") as f:
core_poetry_lock_data = tomllib.load(f)
for package in core_poetry_lock_data["package"]:
if package["name"] == "pydantic":
core_max_pydantic_minor = package["version"].split(".")[1]
break
with open(f"./{dir_}/poetry.lock", "rb") as f:
dir_poetry_lock_data = tomllib.load(f)
for package in dir_poetry_lock_data["package"]:
if package["name"] == "pydantic":
dir_max_pydantic_minor = package["version"].split(".")[1]
break
core_min_pydantic_version = get_min_version_from_toml(
"./libs/core/pyproject.toml", "release", python_version, include=["pydantic"]
)["pydantic"]
core_min_pydantic_minor = (
core_min_pydantic_version.split(".")[1]
if "." in core_min_pydantic_version
else "0"
)
dir_min_pydantic_version = get_min_version_from_toml(
f"./{dir_}/pyproject.toml", "release", python_version, include=["pydantic"]
).get("pydantic", "0.0.0")
dir_min_pydantic_minor = (
dir_min_pydantic_version.split(".")[1]
if "." in dir_min_pydantic_version
else "0"
)
custom_mins = {
# depends on pydantic-settings 2.4 which requires pydantic 2.7
"libs/community": 7,
}
max_pydantic_minor = min(
int(dir_max_pydantic_minor),
int(core_max_pydantic_minor),
)
min_pydantic_minor = max(
int(dir_min_pydantic_minor),
int(core_min_pydantic_minor),
custom_mins.get(dir_, 0),
)
configs = [
{
"working-directory": dir_,
"pydantic-version": f"2.{v}.0",
"python-version": python_version,
}
for v in range(min_pydantic_minor, max_pydantic_minor + 1)
return [
{"working-directory": dir_, "python-version": min_python},
{"working-directory": dir_, "python-version": max_python},
]
return configs
def _get_configs_for_multi_dirs(
job: str, dirs_to_run: Dict[str, Set[str]], dependents: dict
job: str, dirs_to_run: List[str], dependents: dict
) -> List[Dict[str, str]]:
if job == "lint":
dirs = add_dependents(
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"],
dependents,
)
elif job in ["test", "compile-integration-tests", "dependencies", "test-pydantic"]:
elif job in ["test", "compile-integration-tests", "dependencies"]:
dirs = add_dependents(
dirs_to_run["test"] | dirs_to_run["extended-test"], dependents
)
@@ -229,7 +169,6 @@ if __name__ == "__main__":
dirs_to_run["lint"] = all_package_dirs()
dirs_to_run["test"] = all_package_dirs()
dirs_to_run["extended-test"] = set(LANGCHAIN_DIRS)
for file in files:
if any(
file.startswith(dir_)
@@ -247,7 +186,6 @@ if __name__ == "__main__":
if any(file.startswith(dir_) for dir_ in LANGCHAIN_DIRS):
# add that dir and all dirs after in LANGCHAIN_DIRS
# for extended testing
found = False
for dir_ in LANGCHAIN_DIRS:
if dir_ == "libs/core" and IGNORE_CORE_DEPENDENTS:
@@ -293,6 +231,7 @@ if __name__ == "__main__":
# we now have dirs_by_job
# todo: clean this up
map_job_to_configs = {
job: _get_configs_for_multi_dirs(job, dirs_to_run, dependents)
for job in [
@@ -301,7 +240,6 @@ if __name__ == "__main__":
"extended-tests",
"compile-integration-tests",
"dependencies",
"test-pydantic",
]
}
map_job_to_configs["test-doc-imports"] = (

View File

@@ -1,5 +1,4 @@
import sys
from typing import Optional
if sys.version_info >= (3, 11):
import tomllib
@@ -8,9 +7,6 @@ else:
import tomli as tomllib
from packaging.version import parse as parse_version
from packaging.specifiers import SpecifierSet
from packaging.version import Version
import re
MIN_VERSION_LIBS = [
@@ -19,16 +15,10 @@ MIN_VERSION_LIBS = [
"langchain",
"langchain-text-splitters",
"SQLAlchemy",
"pydantic",
]
# some libs only get checked on release because of simultaneous changes in
# multiple libs
SKIP_IF_PULL_REQUEST = [
"langchain-core",
"langchain-text-splitters",
"langchain",
"langchain-community",
]
SKIP_IF_PULL_REQUEST = ["langchain-core"]
def get_min_version(version: str) -> str:
@@ -56,13 +46,7 @@ def get_min_version(version: str) -> str:
raise ValueError(f"Unrecognized version format: {version}")
def get_min_version_from_toml(
toml_path: str,
versions_for: str,
python_version: str,
*,
include: Optional[list] = None,
):
def get_min_version_from_toml(toml_path: str, versions_for: str):
# Parse the TOML file
with open(toml_path, "rb") as file:
toml_data = tomllib.load(file)
@@ -74,26 +58,18 @@ def get_min_version_from_toml(
min_versions = {}
# Iterate over the libs in MIN_VERSION_LIBS
for lib in set(MIN_VERSION_LIBS + (include or [])):
for lib in MIN_VERSION_LIBS:
if versions_for == "pull_request" and lib in SKIP_IF_PULL_REQUEST:
# some libs only get checked on release because of simultaneous
# changes in multiple libs
# changes
continue
# Check if the lib is present in the dependencies
if lib in dependencies:
if include and lib not in include:
continue
# Get the version string
version_string = dependencies[lib]
if isinstance(version_string, dict):
version_string = version_string["version"]
if isinstance(version_string, list):
version_string = [
vs
for vs in version_string
if check_python_version(python_version, vs["python"])
][0]["version"]
# Use parse_version to get the minimum supported version from version_string
min_version = get_min_version(version_string)
@@ -104,31 +80,13 @@ def get_min_version_from_toml(
return min_versions
def check_python_version(version_string, constraint_string):
"""
Check if the given Python version matches the given constraints.
:param version_string: A string representing the Python version (e.g. "3.8.5").
:param constraint_string: A string representing the package's Python version constraints (e.g. ">=3.6, <4.0").
:return: True if the version matches the constraints, False otherwise.
"""
try:
version = Version(version_string)
constraints = SpecifierSet(constraint_string)
return version in constraints
except Exception as e:
print(f"Error: {e}")
return False
if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
versions_for = sys.argv[2]
python_version = sys.argv[3]
assert versions_for in ["release", "pull_request"]
# Call the function to get the minimum versions
min_versions = get_min_version_from_toml(toml_file, versions_for, python_version)
min_versions = get_min_version_from_toml(toml_file, versions_for)
print(" ".join([f"{lib}=={version}" for lib, version in min_versions.items()]))

View File

@@ -58,7 +58,6 @@ jobs:
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}

View File

@@ -7,6 +7,10 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
python-version:
required: true
type: string
@@ -59,6 +63,14 @@ jobs:
run: |
poetry install --with lint,typing
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v4
env:

View File

@@ -85,7 +85,7 @@ jobs:
path: langchain
sparse-checkout: | # this only grabs files for relevant dir
${{ inputs.working-directory }}
ref: ${{ github.ref }} # this scopes to just ref'd branch
ref: master # this scopes to just master branch
fetch-depth: 0 # this fetches entire commit history
- name: Check Tags
id: check-tags
@@ -164,7 +164,6 @@ jobs:
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
id: setup-python
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
@@ -232,8 +231,7 @@ jobs:
id: min-version
run: |
poetry run pip install packaging
python_version="$(poetry run python --version | awk '{print $2}')"
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
@@ -269,7 +267,6 @@ jobs:
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
@@ -294,6 +291,7 @@ jobs:
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
UNSTRUCTURED_API_KEY: ${{ secrets.UNSTRUCTURED_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -7,6 +7,10 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
python-version:
required: true
type: string
@@ -27,41 +31,29 @@ jobs:
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
id: setup-python
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
- name: Install dependencies
shell: bash
run: poetry install --with test
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Run core tests
shell: bash
run: |
make test
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
shell: bash
run: |
poetry run pip install packaging tomli
python_version="$(poetry run python --version | awk '{print $2}')"
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: Run unit tests with minimum dependency versions
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
poetry run pip install $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}
- name: Ensure the tests did not create any additional files
shell: bash
run: |
@@ -74,3 +66,20 @@ jobs:
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
poetry run pip install packaging tomli
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: Run unit tests with minimum dependency versions
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
make tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -31,7 +31,7 @@ jobs:
- name: Install langchain editable
run: |
poetry run pip install langchain-experimental -e libs/core libs/langchain libs/community
poetry run pip install -e libs/core libs/langchain libs/community libs/experimental
- name: Check doc imports
shell: bash

View File

@@ -1,64 +0,0 @@
name: test pydantic intermediate versions
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
python-version:
required: false
type: string
description: "Python version to use"
default: "3.11"
pydantic-version:
required: true
type: string
description: "Pydantic version to test."
env:
POETRY_VERSION: "1.7.1"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
name: "make test # pydantic: ~=${{ inputs.pydantic-version }}, python: ${{ inputs.python-version }}, "
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
- name: Install dependencies
shell: bash
run: poetry install --with test
- name: Overwrite pydantic version
shell: bash
run: poetry run pip install pydantic~=${{ inputs.pydantic-version }}
- name: Run core tests
shell: bash
run: |
make test
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,153 +0,0 @@
name: API docs build
on:
workflow_dispatch:
schedule:
- cron: '0 13 * * *'
env:
POETRY_VERSION: "1.8.1"
PYTHON_VERSION: "3.11"
jobs:
build:
runs-on: ubuntu-latest
permissions: write-all
steps:
- uses: actions/checkout@v4
with:
path: langchain
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-api-docs-html
path: langchain-api-docs-html
token: ${{ secrets.TOKEN_GITHUB_API_DOCS_HTML }}
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-google
path: langchain-google
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-datastax
path: langchain-datastax
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-nvidia
path: langchain-nvidia
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-cohere
path: langchain-cohere
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-elastic
path: langchain-elastic
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-postgres
path: langchain-postgres
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-aws
path: langchain-aws
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-weaviate
path: langchain-weaviate
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-ai21
path: langchain-ai21
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-together
path: langchain-together
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-experimental
path: langchain-experimental
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-milvus
path: langchain-milvus
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-unstructured
path: langchain-unstructured
- name: Set Git config
working-directory: langchain
run: |
git config --local user.email "actions@github.com"
git config --local user.name "Github Actions"
- name: Move libs
run: |
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai \
langchain/libs/partners/astradb \
langchain/libs/partners/nvidia-trt \
langchain/libs/partners/nvidia-ai-endpoints \
langchain/libs/partners/cohere \
langchain/libs/partners/elasticsearch \
langchain/libs/partners/upstage \
langchain/libs/partners/ai21 \
langchain/libs/partners/together \
langchain/libs/standard-tests \
langchain/libs/experimental \
langchain/libs/partners/milvus \
langchain/libs/partners/unstructured
mv langchain-google/libs/genai langchain/libs/partners/google-genai
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-google/libs/community langchain/libs/partners/google-community
mv langchain-datastax/libs/astradb langchain/libs/partners/astradb
mv langchain-nvidia/libs/ai-endpoints langchain/libs/partners/nvidia-ai-endpoints
mv langchain-cohere/libs/cohere langchain/libs/partners/cohere
mv langchain-elastic/libs/elasticsearch langchain/libs/partners/elasticsearch
mv langchain-postgres langchain/libs/partners/postgres
mv langchain-aws/libs/aws langchain/libs/partners/aws
mv langchain-weaviate/libs/weaviate langchain/libs/partners/weaviate
mv langchain-ai21/libs/ai21 langchain/libs/partners/ai21
mv langchain-together/libs/together langchain/libs/partners/together
mv langchain-experimental/libs/experimental langchain/libs/experimental
mv langchain-milvus/libs/milvus langchain/libs/partners/milvus
mv langchain-unstructured/libs/unstructured langchain/libs/partners/unstructured
- name: Rm old html
run:
rm -rf langchain-api-docs-html/api_reference_build/html
- name: Set up Python ${{ env.PYTHON_VERSION }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: api-docs
working-directory: langchain
- name: Install dependencies
working-directory: langchain
run: |
python -m pip install -U uv
python -m uv pip install --upgrade --no-cache-dir pip setuptools
# skip airbyte and ibm due to pandas dependency issue
python -m uv pip install $(ls ./libs/partners | grep -vE "airbyte|ibm" | xargs -I {} echo "./libs/partners/{}")
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental
python -m uv pip install -r docs/api_reference/requirements.txt
- name: Build docs
working-directory: langchain
run: |
python docs/api_reference/create_api_rst.py
python -m sphinx -T -E -b html -d ../langchain-api-docs-html/_build/doctrees -c docs/api_reference docs/api_reference ../langchain-api-docs-html/api_reference_build/html -j auto
python docs/api_reference/scripts/custom_formatter.py ../langchain-api-docs-html/api_reference_build/html
# Default index page is blank so we copy in the actual home page.
cp ../langchain-api-docs-html/api_reference_build/html/{reference,index}.html
rm -rf ../langchain-api-docs-html/_build/
# https://github.com/marketplace/actions/add-commit
- uses: EndBug/add-and-commit@v9
with:
cwd: langchain-api-docs-html
message: 'Update API docs build'

View File

@@ -31,7 +31,6 @@ jobs:
uses: Ana06/get-changed-files@v2.2.0
- id: set-matrix
run: |
python -m pip install packaging
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
outputs:
lint: ${{ steps.set-matrix.outputs.lint }}
@@ -40,7 +39,6 @@ jobs:
compile-integration-tests: ${{ steps.set-matrix.outputs.compile-integration-tests }}
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
test-doc-imports: ${{ steps.set-matrix.outputs.test-doc-imports }}
test-pydantic: ${{ steps.set-matrix.outputs.test-pydantic }}
lint:
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
@@ -69,20 +67,6 @@ jobs:
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
test-pydantic:
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.test-pydantic != '[]' }}
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.test-pydantic) }}
fail-fast: false
uses: ./.github/workflows/_test_pydantic.yml
with:
working-directory: ${{ matrix.job-configs.working-directory }}
pydantic-version: ${{ matrix.job-configs.pydantic-version }}
secrets: inherit
test-doc-imports:
needs: [ build ]
if: ${{ needs.build.outputs.test-doc-imports != '[]' }}
@@ -157,7 +141,7 @@ jobs:
echo "$STATUS" | grep 'nothing to commit, working tree clean'
ci_success:
name: "CI Success"
needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports, test-pydantic]
needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports]
if: |
always()
runs-on: ubuntu-latest

View File

@@ -3,7 +3,7 @@ name: CI / cd . / make spell_check
on:
push:
branches: [master, v0.1, v0.2]
branches: [master, v0.1]
pull_request:
permissions:

View File

@@ -1,63 +0,0 @@
name: Run notebooks
on:
workflow_dispatch:
inputs:
python_version:
description: 'Python version'
required: false
default: '3.11'
working-directory:
description: 'Working directory or subset (e.g., docs/docs/tutorials/llm_chain.ipynb)'
required: false
default: 'all'
schedule:
- cron: '0 13 * * *'
env:
POETRY_VERSION: "1.7.1"
jobs:
build:
runs-on: ubuntu-latest
name: "Test docs"
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ github.event.inputs.python_version || '3.11' }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: run-notebooks
- name: Install dependencies
run: |
pip install -e libs/core
pip install -e libs/langchain
pip install -e libs/community
pip install --upgrade langchain-experimental
pip install -e libs//partners/anthropic
pip install -e libs//partners/chroma
pip install -e libs//partners/openai
pip install -e libs//partners/mistralai
pip install jupyter langgraph click pypdf vcrpy
- name: Pre-download tiktoken files
run: |
python docs/scripts/download_tiktoken.py
- name: Prepare notebooks
run: |
python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells
- name: Run notebooks
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
TAVILY_API_KEY: ${{ secrets.TAVILY_API_KEY }}
run: |
./docs/scripts/execute_notebooks.sh ${{ github.event.inputs.working-directory || 'all' }}

View File

@@ -86,7 +86,6 @@ jobs:
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}

View File

@@ -1,11 +1,70 @@
# Migrating
Please see the following guides for migratin LangChain code:
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
* Migrate to [LangChain v0.3](https://python.langchain.com/docs/versions/v0_3/)
* Migrate to [LangChain v0.2](https://python.langchain.com/docs/versions/v0_2/)
* Migrating from [LangChain 0.0.x Chains](https://python.langchain.com/docs/versions/migrating_chains/)
* Upgrate to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/)
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from `langchain`.
Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043).
The [LangChain CLI](https://python.langchain.com/docs/versions/v0_3/#migrate-using-langchain-cli) can help automatically upgrade your code to use non deprecated imports.
This will be especially helpful if you're still on either version 0.0.x or 0.1.x of LangChain.
### Migrating to `langchain_experimental`
We are moving any experimental components of LangChain, or components with vulnerability issues, into `langchain_experimental`.
This guide covers how to migrate.
### Installation
Previously:
`pip install -U langchain`
Now (only if you want to access things in experimental):
`pip install -U langchain langchain_experimental`
### Things in `langchain.experimental`
Previously:
`from langchain.experimental import ...`
Now:
`from langchain_experimental import ...`
### PALChain
Previously:
`from langchain.chains import PALChain`
Now:
`from langchain_experimental.pal_chain import PALChain`
### SQLDatabaseChain
Previously:
`from langchain.chains import SQLDatabaseChain`
Now:
`from langchain_experimental.sql import SQLDatabaseChain`
Alternatively, if you are just interested in using the query generation part of the SQL chain, you can check out this [`SQL question-answering tutorial`](https://python.langchain.com/v0.2/docs/tutorials/sql_qa/#convert-question-to-sql-query)
`from langchain.chains import create_sql_query_chain`
### `load_prompt` for Python files
Note: this only applies if you want to load Python files as prompts.
If you want to load json/yaml files, no change is needed.
Previously:
`from langchain.prompts import load_prompt`
Now:
`from langchain_experimental.prompts import load_prompt`

View File

@@ -38,8 +38,8 @@ conda install langchain -c conda-forge
For these applications, LangChain simplifies the entire application lifecycle:
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel), [components](https://python.langchain.com/docs/concepts/), and [third-party integrations](https://python.langchain.com/docs/integrations/platforms/).
Use [LangGraph](https://langchain-ai.github.io/langgraph/) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
@@ -49,7 +49,7 @@ For these applications, LangChain simplifies the entire application lifecycle:
- **`langchain-community`**: Third party integrations.
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it. To learn more about LangGraph, check out our first LangChain Academy course, *Introduction to LangGraph*, available [here](https://academy.langchain.com/courses/intro-to-langgraph).
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it.
### Productionization:
@@ -65,20 +65,20 @@ For these applications, LangChain simplifies the entire application lifecycle:
**❓ Question answering with RAG**
- [Documentation](https://python.langchain.com/docs/tutorials/rag/)
- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/rag/)
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
**🧱 Extracting structured output**
- [Documentation](https://python.langchain.com/docs/tutorials/extraction/)
- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/extraction/)
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/)
**🤖 Chatbots**
- [Documentation](https://python.langchain.com/docs/tutorials/chatbot/)
- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/chatbot/)
- End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
And much more! Head to the [Tutorials](https://python.langchain.com/docs/tutorials/) section of the docs for more.
And much more! Head to the [Tutorials](https://python.langchain.com/v0.2/docs/tutorials/) section of the docs for more.
## 🚀 How does LangChain help?
@@ -93,10 +93,10 @@ Off-the-shelf chains make it easy to get started. Components make it easy to cus
LCEL is a key part of LangChain, allowing you to build and organize chains of processes in a straightforward, declarative manner. It was designed to support taking prototypes directly into production without needing to alter any code. This means you can use LCEL to set up everything from basic "prompt + LLM" setups to intricate, multi-step workflows.
- **[Overview](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits
- **[Interface](https://python.langchain.com/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects
- **[Primitives](https://python.langchain.com/docs/how_to/#langchain-expression-language-lcel)**: More on the primitives LCEL includes
- **[Cheatsheet](https://python.langchain.com/docs/how_to/lcel_cheatsheet/)**: Quick overview of the most common usage patterns
- **[Overview](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits
- **[Interface](https://python.langchain.com/v0.2/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects
- **[Primitives](https://python.langchain.com/v0.2/docs/how_to/#langchain-expression-language-lcel)**: More on the primitives LCEL includes
- **[Cheatsheet](https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/)**: Quick overview of the most common usage patterns
## Components
@@ -104,24 +104,24 @@ Components fall into the following **modules**:
**📃 Model I/O**
This includes [prompt management](https://python.langchain.com/docs/concepts/#prompt-templates), [prompt optimization](https://python.langchain.com/docs/concepts/#example-selectors), a generic interface for [chat models](https://python.langchain.com/docs/concepts/#chat-models) and [LLMs](https://python.langchain.com/docs/concepts/#llms), and common utilities for working with [model outputs](https://python.langchain.com/docs/concepts/#output-parsers).
This includes [prompt management](https://python.langchain.com/v0.2/docs/concepts/#prompt-templates), [prompt optimization](https://python.langchain.com/v0.2/docs/concepts/#example-selectors), a generic interface for [chat models](https://python.langchain.com/v0.2/docs/concepts/#chat-models) and [LLMs](https://python.langchain.com/v0.2/docs/concepts/#llms), and common utilities for working with [model outputs](https://python.langchain.com/v0.2/docs/concepts/#output-parsers).
**📚 Retrieval**
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/docs/concepts/#document-loaders) from a variety of sources, [preparing it](https://python.langchain.com/docs/concepts/#text-splitters), then [searching over (a.k.a. retrieving from)](https://python.langchain.com/docs/concepts/#retrievers) it for use in the generation step.
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/v0.2/docs/concepts/#document-loaders) from a variety of sources, [preparing it](https://python.langchain.com/v0.2/docs/concepts/#text-splitters), then [searching over (a.k.a. retrieving from)](https://python.langchain.com/v0.2/docs/concepts/#retrievers) it for use in the generation step.
**🤖 Agents**
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/docs/concepts/#agents), along with [LangGraph](https://github.com/langchain-ai/langgraph) for building custom agents.
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/v0.2/docs/concepts/#agents), along with [LangGraph](https://github.com/langchain-ai/langgraph) for building custom agents.
## 📖 Documentation
Please see [here](https://python.langchain.com) for full documentation, which includes:
- [Introduction](https://python.langchain.com/docs/introduction/): Overview of the framework and the structure of the docs.
- [Introduction](https://python.langchain.com/v0.2/docs/introduction/): Overview of the framework and the structure of the docs.
- [Tutorials](https://python.langchain.com/docs/use_cases/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started.
- [How-to guides](https://python.langchain.com/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task.
- [Conceptual guide](https://python.langchain.com/docs/concepts/): Conceptual explanations of the key parts of the framework.
- [How-to guides](https://python.langchain.com/v0.2/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task.
- [Conceptual guide](https://python.langchain.com/v0.2/docs/concepts/): Conceptual explanations of the key parts of the framework.
- [API Reference](https://api.python.langchain.com): Thorough documentation of every class and method.
## 🌐 Ecosystem
@@ -134,7 +134,7 @@ Please see [here](https://python.langchain.com) for full documentation, which in
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see [here](https://python.langchain.com/docs/contributing/).
For detailed information on how to contribute, see [here](https://python.langchain.com/v0.2/docs/contributing/).
## 🌟 Contributors

View File

@@ -46,7 +46,7 @@ generate-files:
$(PYTHON) scripts/partner_pkg_table.py $(INTERMEDIATE_DIR)
curl https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md | sed 's/<=/\&lt;=/g' > $(INTERMEDIATE_DIR)/langserve.md
wget -q https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O $(INTERMEDIATE_DIR)/langserve.md
$(PYTHON) scripts/resolve_local_links.py $(INTERMEDIATE_DIR)/langserve.md https://github.com/langchain-ai/langserve/tree/main/
copy-infra:
@@ -65,7 +65,7 @@ render:
$(PYTHON) scripts/notebook_convert.py $(INTERMEDIATE_DIR) $(OUTPUT_NEW_DOCS_DIR)
md-sync:
rsync -avmq --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --include="*/_category_.yml" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR)
rsync -avm --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --include="*/_category_.yml" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR)
append-related:
$(PYTHON) scripts/append_related_links.py $(OUTPUT_NEW_DOCS_DIR)
@@ -82,10 +82,14 @@ vercel-build: install-vercel-deps build generate-references
mv $(OUTPUT_NEW_DOCS_DIR) docs
rm -rf build
mkdir static/api_reference
git clone --depth=1 https://github.com/langchain-ai/langchain-api-docs-html.git
mv langchain-api-docs-html/api_reference_build/html/* static/api_reference/
rm -rf langchain-api-docs-html
git clone --depth=1 https://github.com/baskaryan/langchain-api-docs-build.git
mv langchain-api-docs-build/api_reference_build/html/* static/api_reference/
rm -rf langchain-api-docs-build
NODE_OPTIONS="--max-old-space-size=5000" yarn run docusaurus build
mv build v0.2
mkdir build
mv v0.2 build
mv build/v0.2/404.html build
start:
cd $(OUTPUT_NEW_DIR) && yarn && yarn start --port=$(PORT)

View File

@@ -26,6 +26,7 @@ from sphinx.util.docutils import SphinxDirective
_DIR = Path(__file__).parent.absolute()
sys.path.insert(0, os.path.abspath("."))
sys.path.insert(0, os.path.abspath("../../libs/langchain"))
sys.path.insert(0, os.path.abspath("../../libs/experimental"))
with (_DIR.parents[1] / "libs" / "langchain" / "pyproject.toml").open("r") as f:
data = toml.load(f)

File diff suppressed because one or more lines are too long

View File

@@ -15,7 +15,7 @@
:member-order: groupwise
:show-inheritance: True
:special-members: __call__
:exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, astream_log, transform, atransform, get_output_schema, get_prompts, config_schema, map, pick, pipe, InputType, OutputType, config_specs, output_schema, get_input_schema, get_graph, get_name, input_schema, name, assign, as_tool, get_config_jsonschema, get_input_jsonschema, get_output_jsonschema, model_construct, model_copy, model_dump, model_dump_json, model_parametrized_name, model_post_init, model_rebuild, model_validate, model_validate_json, model_validate_strings, to_json, model_extra, model_fields_set, model_json_schema, predict, apredict, predict_messages, apredict_messages, generate, generate_prompt, agenerate, agenerate_prompt, call_as_llm
:exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, astream_log, transform, atransform, get_output_schema, get_prompts, config_schema, map, pick, pipe, with_listeners, with_alisteners, with_config, with_fallbacks, with_types, with_retry, InputType, OutputType, config_specs, output_schema, get_input_schema, get_graph, get_name, input_schema, name, bind, assign, as_tool, get_config_jsonschema, get_input_jsonschema, get_output_jsonschema, model_construct, model_copy, model_dump, model_dump_json, model_parametrized_name, model_post_init, model_rebuild, model_validate, model_validate_json, model_validate_strings, to_json, model_extra, model_fields_set, model_json_schema
.. NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃

View File

@@ -1 +0,0 @@
eNqFVW1sU1UYBrcfhgQlEhMlRg8NEBN229vbj63DKGNzOnRu0IqAWebpuaftZbf3XM85d1u3LIQh0YREcxMTEzXRSGmxzI0JBAySaBCjBH/rMEr4YdQoGn+YqInO99y1MGTB/mhOz/u8X8/7vKeT1WHKhcWc5VOWIynHRMIP4U9WOX3eo0K+UClSWWBmub8vnTnkcWtufUFKV7RHIti1wtiRBc5ci4QJK0aGo5EiFQLnqShnmVm6tPy38VARjw5KNkQdEWpHUd2It6BQAwU3z46HOLMpnEKeoDwEVsKgFEeqq4K1NjQxoDyYSW11Q2zsmVSLaYI5DpWaARF1w0gpR8mYXY/p4GIQU+Jhyy4NCoo5KQxyKjxbisE94KwcTCoIt1zVswJ3oAUcok7ecihiYClaY9REOcYRdOhyWoBGrGHagjAhHsdSnRwTSe4JCcB6hjB6WtCcZweOI+CDSsxDDgWEZOAgRihHAcGKboSzzJMI4nHoG9Fh+IYQPY4Lt6LAPNtEWYpwozxw5KWwasBSkEFBCrSIoYPxkAvToFxaAbfjoQAZnP7T6uJIqiSbsSHkuQGLJTegTkhuOfnQxATcKTVYnJqK3HrQgUVQlt1DiQTowES1QLEJmnqlXGBC+rM3qWQGiKOu1KhDmAkJ/PfyY5bbgkyas4HOGlFzDWTo14YodTVsA9+VBS//GHZd2yJY2SNqjFN1tWiqlpvNNSUqDbTmSP9UR6OOSH8JRO0gPRyLh41jo5qQ2HJsUKVmYyip4gb2M4sNLiZDEEerL4xfWXCeXoxhwj/ci0lf+oaQimn/MObFZPz44nvuOaAv6lc7+29OVzdeTxcLR6Ph1tkbAouSQ/zDOWwLOnuN5GsuNdiNmKYnNT063WDJBmnLgn8onmo9Alp1QX10fwVCSk9MlmEi9OJn1fp6vtP3RGOa3y67q9wF0/HPdnOrBRmtKE1dpHYPRZPterRdb0OP9WamOutpMksOYzbDQfo5GMijjeFXScFzhqhZ61xy7HOh622pZbNhH6VWf5tgWOqnX47ruj634ZZIDgtiOSpjOZZKpf4nLjBDpX9C9afpKc1ozSx0mYjvnkNLeS48cPV6KqoeqGjdLZDX62mg0S3RS9ejt+2u1YvWLNP/EM6DejS9Q+R6jQQpxLaYu2h/b7JrqMtJnBzViM08U5PwylMtEMSo9OdQnEQTRipptMbNeLYtnkglcjgWTyaTuqEn4/HsoWEL+7VoOIryjOVtOtPZrXVieHK0dCAbv9q166mO3p7OqZ3adpZlwF8GA88Oc2glTTnI0a8FqWHBOa2A+/aOXf6JNpIi2QSNJUjMMHI5om2BvWkI6JpAyup1CP5N9lUWXqRPvnjg4O3Lgk/Tky9/s/Xc5lUH3jovzu6TX6/45ezOI6OREP78jrW52OrY8edWlkZ6rI+PNl3+80rLD6tv6776+tjIuvvPXKEPP3Lnr6/NnBoYO3l5+sD+gQ2XtpfXbJo811Jq2nbymYO2e8/6bd2b3yA9masb7869f+HLf/rH55tf3PHVSyuvkA/61vxtf3e0+c0H86WP/vrx7Q3pWDqDm1dVP71w8fS9Wy8fOL2+OZza9OpPM8fe/v7dncRYtXFy70Ntj8/O/3x6ei/UPT/ftOz8H/et+B3O/wLqW+ZT

View File

@@ -1 +0,0 @@
eNqFVX1sU1UU3yBREIiJX4kY4VLY0GSve6/tuo8/MKVjfIxtyAYOcJbb927Xt76++3jvvm2lzAjjDwN+PWUQoghhXWeaMjYYERE1zkxZ+HCJBDIiQqKJMRElUYMxmnle18KQBftHc3vP75x7zu/8zumO3laiGzJV89OyyoiORQY/DGtHr062mMRgO5NRwsJUSqypq2/oNnV5rCDMmGZUFBdjTXZilYV1qsmiU6TR4lahOEoMAzcTIxGkUuxK/t9xRxS3BxiNENVwVCCBd3mKkCOHgptNcYdOFQInh2kQ3QFWkUIqKrOv2sKYGSgaQyqOkuccHU22M5WIYhtFBZsS4dycQVWVMM4FwXmXq9yOwShVsuFtVxvOcKusxAIGwboYDujEMBVmBFrA2XaQiCHqsmaXb4N9aAKHiNosqwRRsETlrURCIaojKFbTSRhqkltJEcKiaOqY2SdVQkw3DQbA7AtOtM4gIVPJOLaBD4pRE6kEEIyCg9FGdJTh2mYe4SA1GYJ4OlCASCt8Q4iVqga3RpiaioSCBOFceuCox5x2AbINCRhimEQxVBB3aNAYojM5Q3PckUFmTv8pdXIkOyWF0ggytQyLMS1DncF0WW12dHTAnS0MWSeSTW42aNMkKA22EJEBtKmjN0ywBPJ6MxGmBrMG7hHMUSCOaIwjqkgleMA60rxV1oqQREIK0JkS7b5mFGmlIoRoHFaA7+SEl9WPNU2RRWzbi+02prPC4exc7jWnbH1xIDuVWR/6cnkUr4mBvlXEO90ep6u/nTMYllUFBMopGFJKahn7x5MNGhYjEIfLzo6VnHDum4yhhtVTg8W6+rtC2kxbPViPej3HJ9/rpgr6Ilavf829z2WNd55zOwXBWTpwV2AjpopWTwgrBhm4TfJtlxTMhpvjvRwv9OVYUkDaLGx1l/BlH4BWNVAf6UxCSGYaOxLQEXLuTG92Ug/XVee6+V3eI4lK6I71SZUuFyFXKaonGrJnDwneCl6o8HjQ8pqGtD/7TMOUzRho0EH6IWjIslzze8WwqUaIlPJP2fYxx52y7GFTYB4Zl11T0Cz7p5Xw8Dw/VnhfpA4DIqv2iwl3eXn5/8QFZgizBu36OL6cc5U2TFRZ4tk4hqbynNh12XySdj6Q0aL7IO/kk0Oj+6Knzsfj2ZjKJs3JknUazgFecOvrlpWuEr2Vonc58QXXR6pWY6n2RDsnKtSUOAYLn3AZQbQzawy5giVBF1/mFjwCCXqDJWUlPC9K7qDXzQtC0OPqbpWxlRKcAmqmtFkhR/1VnB/DyuHqM7Kxeis31PpqVvrTjdxaGqTAXwMGnlWqkmQ90UGOVirzNAy4TpLgvta3wRosE8vFoFfkyyTscvOuEm4pzE1OQLcFkrC3Q+aPZXtyYiMN5y+Zv3tGXuYz/cW3qqun+2Z/9dmqM8NnBy/emHXr0tKH/yh85iEH+fb1G6P7pQMjg86ea03JP4fqr+8bX/jDzr7huf4ratXlby5vad9Y+1PfhqsPvrSkL33he27uxU+7Dx/e8/Pe0c2PBV6pGSk4kQ7zK6rnRZTT57k5X3YuOpfobGmoqVpndj7wFC5Ynz5Yd81aNX9425MlS26+W3le6dpGN885crNr6MK8Ga8W0LbruxY1mkOHpsX3Lvz97YX9czw7l00729/4xdewh0+9kx59fvXQJX91y4G6zYFZvxSMR45pgx0zbzniZ55eUTRv1+fCP3t9obpnH89r2tMZmfneE4FDC94PzC7sUh8dKcRp6+TV8BuvBXZX/rr/5IJ0eZzygZc3HRzdss/sPra4tvGF4x/5Rv7aVxP68bfFQNT4+PS8g+n+7afy8/L+BTWeI00=

View File

@@ -1 +0,0 @@
eNqNVktv20YQRi75HQtdlATiU9Tzpjh2GzgvVA6KICiIDTmStloumd2lHjF8aPq46y80rl0EaZtTb7n01EN/QX5NZ5emIhvuAxBAzrczs/P4ZqjX5wuQiuXixjsmNEiaaBTU5vW5hJclKP3dWQZ6lqenTx6Pj96Ukn2YaV2ooefRgrmaLhhfu0meeQqoTGanL/J0/fHGzeMGHsdzWDeGpKEXfO3oo3ud3mj8xXwf7pYvHz/rr9LO4aGG1TjyH84f9Rot0sAbpbVYzqgmTBE9A7IEig9JmCDjA6OV0VUsQZVcK9QNEanujlMo9MyY03RBRQKp0WYi4WUKcZpnlAlj8fwrhGF1LVxrU6GWIBGdUK5g50DSZZzkWCqhrzllGZ2Cqg9OzmdAU6zvD2+fKpDOaIpWm9+LNRZUOBcFVl7otvH32yhJMH5nXyR5ysR088v0FStaJIUJpxrOquPNmzvenbd7uRBgO7V5OwcoHMrZAn7dq+JyHoCY6tnmTdgN39XY0bqAzXtaFJwl1Fh6X6tc/Ix1LLDf8O2Z0lSX6vUp3g5//XmegVKYy4+PD+skvv8PX1evPw26fng2BokM2/wkpkysTu9hJpsPB5K1SNgjYyhI6IcRCbpDP8Af+ezh0T8kZ4n1DUYpsTYfb949rsnyb1xpTHLO82VcFrGttaF2YyhKzluNusOVVDcOSdDYcuv5cUMzzQEv+XLHMRXkQCK/mEpyvKOUHBXqqVgul+5FFGZAzGSgzpYxjeMmz6uiNYfkuCloBvjSvOS02SJNCdNKp7mH+U9yKRg1eJKXQsu1OXgqmIaUjLFxoEg+IaMMJHbEqCFlUKXdc3t9I1lPThCGboTz0tSvYpYaFxcW3oNcxSMxBQ7KWmOIXLMMYijyZIaaQS/sRZ2w3/Z3j40L00DHHzjYT38w9P3miYmylBLztSlyqjR2IMUo0yv+goFv/e1oXHXZH0YdE5KGrIgTY9lxu7U8QbnruwHKTMUpNWUJbJFEyrY1xh2jbY1LIdbGF0uqynpekoqr3boQvW606kYe+vSCoO0WYlpVPzVJB77vmzSXTKRxVpiEItevgbkFum6nBlKYSjB2vWALMWki2H+0b9wWSDlVSoizF9Z7EFpvW5iZcMOB2+9XaMKKOMsQ82s9g1itCpmVGcMKmHr0TbUSnpemtOZsAsAVZ3PYLecncKemJtJkxjivNNvbFCvQaHY6Nk1cERpxWFWa4RXQakYWTGFZ5PipqRQDN9rFrF5lvMCGzk2KQddea+SMGX4OycAi5cIw3L5OSyRQ1Ye+tbZA1QcMu3tygjOIgyVxlH13MOj1/aCHg767y80eOGl9mvjPcxzsNcHJgwT5aV4uj36LfJrMFnk6HhGHmKGgIjVMNmS6djtc0dkSrlTUU1Q4k/oCb2ZDuLQ+TFTOi7VjnuTg/8fmknqDHeXI6a10kWUQkXuIbh0+w2UJ0pD/iRFr7T2Oe1IDuTXCnW4W5m2yV006XyNrQvLH+wOXjHG/oTWuJks75ZJbtQPzkcGxHF6Oltw3fz2EPaKcjJgscqlt3LfRHQDJMDBysVTqJe9e6mkfP3ZRu3NdU6uVbj9zsSl+Y9h2o8HJ3wjDCKE=

View File

@@ -1 +0,0 @@
eNrtWH+QE9UdB/lRRVBwKlKldc2ABzab7K9kkysK4ThQ8Y7DOwbRO7eb3Zdkuc1u2N0kl8NzAIXB6qDBEQeVqUq40xM5UAQ7pxbaolIY20JbBQttBZTyo8zY3ghisd+3m+RyxwE6I+0/MEzu7fd9v9/3fd9fn/feorYUMkxF1/qvVTQLGaJkwYf55KI2A81LItN6uDWOrJgu52pm1NatThrKnrExy0qY5V6vmFA8ombFDD2hSB5Jj3tTtDeOTFOMIjMX1uXM3ssGz3fFxSbB0huRZrrKCZpiODfhKnAB5b75LkNXEYxcSRMZLpiVdDBFszApHRMtk7BiiEgjEf4YhKIRZmSiq6UBq9FlpGI2SRWTMiJZ0tQ1DVkkA8tQDBPE2ixdV/MLaWLcXsgSU4qaEUwkGlJMMJCZVC1TmAvCWEBGpmQoCewIzBwiHD4CaVFFQ4QOM3GlGclERDcI2HbCQDHYnZJCbkKUpKQhWnikyYRlJE0LGPMreIhZJookVVswDTJERk8SGgIOSwcBMw37s72OY0CIYT1pEaDPAGcQKAW/oOIOLQFUM6YnVZkII0IsmAeCRsaDN6BgFsGUYiguwg7muxIQImRYiu3w+S6b0x712mqpJmySquuNRDJhezGTsF1nWoaiRV0tLUDDKaIYSMbOzSttKGHVw3ORZAFrQ0tbDIkyJNrjuZhuWtkNZ6VOBzgOJSwSaZIuwwLZV6PNSsJNyCiigjvbJRxXOzez7Y0IJUhRBX+3OlLZ9WIioSqSiOe9OIxr8ylEYlvOnm7HmUZCAmpWdnOoYIe3JgOZrhGUh+U8zPom0rRERVMhVUlVBJNaE/Z8Z+lEQpQaQQ+Zr6JsqyO8rpRHN7NrqkRpRm0PldjT2TWiEfdzr5fSjaQG+YWybRU1Zy+Xn+xejvXQtIff0EOxmdGk7JqIqJpoQ9HJRZF2qA2WpPwkRa8reEmF1LZi2dU+OvAS5GoCsg891AoqraS5KAcRQTvfb8vX7Iszpheiub/fNbkpEJ3s21MNxU0wPFGLEgSuPYL2l1N0OUMT06rq1lbkl6nrMxgb6gxI/QgEpLIQ/DYpltQakdxe0WfY97i6t4WLTYV6tMh8w4Jg4c9sjqMoas/N5+U0oEAUDa+YY4PB4AX0gmeQld2I90dSQZLh65xd+rh79xB9STpdL29PK7YHLBpzHs5uewrcxHm5+7aHoe9tzxtNKnL2LRgLFD3tnmnBKn+suoql+ZkV98TT8ebqOu2NJlJS9aRMWtD6EWknRJOV3UNwwaAYZH0yI/MsoliRpX0RnqeDFO+XIsFgYHVKEbPttIcmoroeVVFHxVSyQoSWQ9baaZNtmzKnOlR1R8Xae8i79bAO/qsTwc+arqHWWmRAOmbb7aWhwA3UCuJ3h+ZkNwakoBT2sxQt8zwTiUjkZKibQgIVEySHu4MNMQtbnY60rf8NNz56eT/734C6J/bd+etJwxcLY3d2DV4eHy+f+FnX9wbOPLZ43Gvu7R+1apGPV+358/DP/7l86fNPmx/sTF/FTvp4wcJl6U3jXjn0zgMtfzn82br7Dj+9Y8Vm4egr7LgnzizdPZLp/OGiRaO+GhP4dMW27IJFHu7w1knHG+ZSwsHRS2uMhsPoheSgIUcmLRrz0/1LhNzDf4t/8kjwupWfyo9+/vLLVz17tPPZNz/9/O+Jd44/29Xy5oLLjH0PfPbBqyfI1Y927Z968ODi4wsHVI0pv7k/u2W8eGzrlkGrjtEREh0bd3rpsiMrjj5xR6z+6gMn1y0YOzo+hb/pTNczw96tndw+YujYE9fmTo2InNz+2jW3ZUc9dv+sIZOX/3LvnY8f4MELX389oN/OT64IRvv363duOH+7FM0dXLSh3IECB8X7XznfBdNCI8rY6JlSM6RVN8XHh2rvbqxEk5PzZswJNMm+6dMheWo5qqqxmseYUcAZVyl2ixoRgYKXFFPSAWNkMYNZ8SEhj5IgwLgLWCTI0N9jWIcop0AKwMYGOEkFvBdkHdeLDe4YeFBTn+QCtwOwQLVbY8mEIaaF7jNH71klnj+p2BNFKFvSPguDSMgGkU0ONBR7hZfxsPC/I+SgWmXfqNbqTGdX3+K95Rytbl0h9e/Kt2jGz1+gn36bDr74Arp6L5+juaCvUL5r8Hmo6QII4MMIcI7N9SjgvYM+LJ5MLpgwroiuqnpaSCaE4nnJVa4lVdXtKoTZ+SpEDzLBVUwwOApaioUPna7Z3SvVwkpTCyvBGkkDzpauQn2k02lP3ixcKrhGgKeYNq75ZarueK4MTlZl+KgJg7IeSsvcRJmBog5PWQU4AU6CmiJiuqQDthsZPDFLU/CpETdSZBJ6hAjFkQFhwWyQN8DC8h4+gL9sTSTNMB4OiqbMahYUGavIS3jv0k0hpEURnAxsaTBRxScIASV0KQacNM/wnI8JsFTpNFbRjSsEFSynqLIWbKVzGrW3qIqmBRGQwUq5lz7ACVtfCUdvlYFyzodNslA8IUhY0ufxF74j8O2nPDR8K6YAIcfztpM0WSn6GEOV7eOkpmWwLkVyPOv1SrLWO1r5T6+fa/JzXtDppWnWk9CijvdlvGkaMBdvM61oshBP4A1xHqpAaLQJfo+vQJBR1EBYjqeLJMXAFlRWV2K1cDUwzaSBhHjY1k4ztrYiWcHmMkFPIOBQJSUhxONAowp8mGJzOZRYMq6AB7A/AthbNoLiWRhHEFJNVWlEpe7sJpb4FFsqxRRVdTjZ4hYdIub0+extQp+wgI6aHE6mF9Hm5GyijNIJHe6QDiPt4UppNp8jnIKANuIt0n57WfwdV3B+lhNBm5JM4Qy3h1G4P+XjELClbYITBzDb39ICNQiFZUApUx44lgT4IAOFXtrQcR9ocXdXfBVMxNQMUaj8qSAtQaLat7Ie5eomKkIEWbh54iQ6uyt0zxUTLO4s4FW9/mAYyZJf9IX9KMjzwSAbCbPIx3IcYiXKLwfCEusX6UjYz/s4iZXlSNjH0pTISn7ZLwX4Hg1mdvdSRBh3TNO+PuK7cRwuVcWrJ5Ffv3hjjpxngx6PB3dtniN+tZ7w0fiXCXgIvz3yMfgXWHo6GQ6Qforry8tOj7XBR8BtxFUO95OW7+gt4fLrL9pbgpvoFhRNUwHcBJEe0hgy8vda/KAggH7M8M1eFOwLeY+r94UQDl+vFbmwWhLO7zPl4NwplbdPNUImXT03NS0jh6braRdcrkutP3vbvQ13bOvlmvvm1+PErodx/fkQrx7k6guCDvcl3LuEe5dw73+Oe/V21+qrai8qIvXRAC4yLtUnKSpMYWzKj/L4VKAzhRGIgFMaCk++uEML36iF4lZrCsgw9OLlELrqpfflS+/Ll96Xv9P35RxD8dx3+8DMX3pg/j88MPN9PTD7xAqmZjYT5Kw5986a1synKius6unnfGD2USzFRCQZwSAghVk6GGHpCBfgGF+EE8PixX1g9nFUgAt/uwfmpu4H5vqZ+7TdNUMfvHbHbGLs2GFzPjy0bNhTV066PNk5+SXmkT+NPvSbstGna15sP7Ex+tGTL1h1zzfM+fKr/8y57cXGDe+GvugMn/rHvuN74xM7Tnf9e0PzX2ddfeOuyKlr2Y3KwZXb2jdGd1KDJw7IHfnj7UPZ0ZN3/KhRnbBmxb82/2LwiE1vuX/bPm7HDTvXXxF2L+nafGDbrpNfuG97/PoTP1ky4Mnk6NDK8O6QXLX/+89tXHeTtH7Z0Oe2rBjoz+bm7R24/ve7BnZsmnD91RMDkzOrto6+tfbVA9elOl5nm7YbQ56ZcnMgcHTBlqZRweVr3p9Ej1HEWRNu1fa7O0a+0vZe56CdVW/8PIIOrPzk9V2dLdFEYteRytmHfjzqXa2/8OC8MSe2/uDk8OZBJ5qX/IEd/8jCsgP1u6nEV7OPbnvqygktv6shH+t8PxdaP3VFKjp+yJmGcV/f5R4mkdtPD919Suoaseqx7amRzSO3fdl6CzN0+5n31nVUt03Mv15XPXO/OPyyfv3+CwLsDoI=

View File

@@ -1 +0,0 @@
eNqFVVtsFFUYLjQEHwjXJvqiHDcIATrb2QvdbuVib0CF2tpWuQXXszNnd6ednTPMOdN2aUoCKAaqwTEEgiY8yHZXNxWoLSGKoIlNNMELGqLUEEN4gBhM0BBF5AH/M7tLCzS4D5uz5//+2/f9/9ld2S5iMY0aUwY1gxMLKxx+MGdX1iLbbML4a5kk4Qmqplua29qP2pY29kyCc5NVV1RgU/NigycsamqKV6HJii5fRZIwhuOEpaNUTf0y9fteTxL3RDjtJAbzVCOf7A+WI08RBTdbej0W1QmcPDYjlgesCoVSDC6uEhrSkihKo097+srROBQzpjEO2R/AryW6TlEt4FEjX8SQoSkEcYqShHCUorYXNSKVGos4gk5trOspZBCiCghkR9hIwZHqTFxYhJnUcG0YMS1p6gTFLQikGXEvWku7EbaICAoR4QpwKk6tur/OSVrqTmDOUBIS4yQB+FbBB1WJLoyKjm2VSAGJUcMgXPIDX7LfHxYx3MLyjAlXAee4S9NTEUawpSQiULCtcxbpAGfhoBKmWJopFBXgGpTHIWLENYMgCpakth26j1ELgX6mRRIgk9ZFyoEexbYwFydBgWUzDsBCBi96iZGYrbuO3eDjslAkEhusm1jIHR8xTAhHqc0RxLOAAkS64BtCNBom3LIEtXUVRYngOF8eOFopr2hAE5AIUxIkiaGDXo8Js0YsrrmT0+txke7pgVYnRhIl6ZR2Itt0WUyZLnWMWyCapw/k8ohZ1yyiCnILQbdOgNJoB1E4QLf2ZRMEq7Ax+9MJyrgz9NAOHAfiiMklYihUhQTOR/HtmlmOVBLTgc6cInR1l8zJdRJiSlgHvjN5L+cENk1dU7CwVwgZBwuDI4laHjbnxHxJsEkGd07VFOuoaEnByhpI9gaCXv+JHgk2RTN02DlJx1BSxnTtpycaTKx0Qhyp8Bw4mbzzsYkYypyBJqw0t90XUjDtDGArWRkcnnhv2QbMF3GydS0PpysYx9MFvD6fNzR0X2CWMhRnIIZ1RobukXzPJQe7EZDkSkn2HSuypMNo84RzNOQLf5BfX0Z2ZyAkt9muNChCvvk6W3h83m9eV1Tz15K56XpQxzmz2tLKkT+E2oiJxO4hX2W17KsO+tGapvbBukKa9knFGGq3YPRjIEhDUfyskrCNTqLm6iaVfcwz3pZYNh32kUuFlxfEEj+ddFCW5bGFj0RasCCaITKmA+Fw+H/iAjOEOyOiP0kOS/5Qe77LZcHNY2gyz/zzXagnI+qBihY8AjleTxGNHomevJ6gf3OuULSkqc5ncI7Ivhcbarv4ho6e+hhes622pTbVpqnm+pM9kqJTW5U4/IcRyR2IHu6MoYAcCIZUfywmK1gNh6pilWQZVn3hUDQoV/nl0NEuDTs5n9eH4pTGdXK8brVUh+HJkdrcsXGy9ZteqGlqrBvcKLXSKAX+2jHwbFCDZNqIBePo5NzUsOAWyYB7a80mZ6RKCSvRyqgfk6pQQPYvk2phb4oDdG9A0uJ1cP8rd2byL9Lov/P7HytxP6Xr93/7/JfPlb0eIcuvf5jWpgXW1cz+4a1nh+ZmDq/zBz+Zx25c3PNj96GyaRumn71Zeu3NJy7La7c8fv3UjdPJc9l9kSM3r1ddWrWyCa/8ovaac7Bs7z8HX/UN7JjyyoJ921/eOGNxy6w3MrfC5zuG3xld/+mSfmvLATKtf+HQ3KWXvrpNW38bOXD8yh9HPp4zf/fhtiMz7uxcX3bz7b+vXpxTcWFkntMqlx5WLnz3+/mGedOHm++896Sx7fbI7CZlhXNo1EQzT17d+2fnY33kyp7LVbfONJzdYcXrnxr+6d2Zo1NPLV7Sf+CvVUt/PnRuFjR5925pyefLN6zwTykp+Q/z/kl9

View File

@@ -1 +0,0 @@
eNqFVX1sE2UY3wTE8I8wM4mJH6+XTWKy6/qxdusSldExRDI3tiIwstS3d2/bW6/3Hve+t62bSxRQo0TxAtEYNU7oOlMHbDhCdBA1CiJgAokai4gfKPCHGgU/QgLB524tDFmwf7R37/N7vn7P73m7bribGEyhWumIonFiYInDC7PWDRtkrUkY35BNEZ6gcqa1pT28zTSUfGWCc53VV1djXXFhjScMqiuSS6Kp6m5PdYowhuOEZaJUTh+/aXa/kMK9EU6TRGNCPfK4vTVVSCii4GRNv2BQlcCTYDJiCGCVKJSicftoZQLzBQzxBEE9BMOPgRQNtTc9JAx02nGoTFQbJ6nYlInoExnVNMJFL+Rxe71BOxynVC1k0nDKycRxt6KmI4xgQ0pEDMJMlbNIFzjbDjJhkqHoNhM2uAFN4hDR4opGEAVLSukjMopRA0HfukES0J7STaoQliTTwNx+0mTEDZNxABYyuNAKRmKm6jj2gA9KUxNpBBCcggPrgf4c2u0hIBylJkcQzwA2EOmGbwixVNPhlCWoqcooShAulgeORtplN6DYkAiTEiSFoYN+QYcZEYMrDuP9goN0nv7T6tRIdkkqpUlk6g6Lad2hjnFD0eLCwACc2RpRDCLb5BaCdk6B0mgXkThAOweGEwTLoLRNmQRl3Bq7Tjs7gTiic5FoEpUhgbU93qfoVUgmMRXozEn2XB1xWrkkIbqIVeA7O+lljWJdVxUJ2/Zqe4wjBQ2Jdi3Xm3O21ERQoMatPQ3FOqpb0yB1DbldvhqXd7RXZBwrmgpaFVUMJWV1xz4x1aBjKQlxxMIaWdlJ5x1TMZRZQ81Yamm/JqTNtDWEjVSg5t2p54apgb6INRxqvT5dwXg1nc/l8bhqx64JzNKaZA3FsMrI2BWSr7jkYDd8ojsguj07iiypIG2esLb5PcG3Qas6qI+sz0JIbrJ1GZgIOXJwuLC0W1uWFad5sqQs0wjTsfY1GUoV8taidqIje/eQJ1Dv9tS7A2hJc3gkVEgTnnYYY2EDpB+DgSwuDn9YSphaksi50LRjzwtX27KXTYV95GLhxoJh2a9WpsbtdufvuyHSgAVRNDtjxhcMBv8nLjBDuDVu9ye6g6K3NjzZpb+mI4+m85y89gr1ZO16oKKKGyCv1lNEoxuip6/HHejIFYoWFdnaC88Rt+fh0PLuhse6Fre2xVem+jzJjh5fI2vc3StKKjVlkcPdT0RHEL3cyqO6On8s6CXRqOQP+GpxjEheH/H7PCQgByQpSrZ1K9jKeVweFKc0rpKdoSYxhOHKEdsd2VjDjasfbWheGhpZJbbRKAX+whh41qhGsu3EADlaOSc1LLhBsuDe1rDaGq+TglLULwf8xIu9sZgkLoK9KQroikAy9u3g/Mc8lZ28kfaXlt+z8ZYS5zMj/FLLso8Xzt3/wSOvnr/93JLn86+93Dfa1nqrIBzedcc3X/yq7vIlX7j3u86yeX/W0dOXTv9xc6LrqP7jvs/OdV3a/cCeJ1Y8+N6Xv43mT0zcxWbMydC17y+KTSxpnbv+zZmHT4yuKmvV5/j7jn6/t9nvOlw5W9hCrPL5q5eHBz+cVVZResl7UaicSctajgQP1izY/PP+82e2b/n0r1PNrm/fmDh5KDT+yuCTvyh/5zcd+OeZY0097nnBNGY/LbztueMVg7PPlh24u+b1Y4dKT219a9aajr2Ll+3A8x+/M1I+uuGrxvHNFyJb0x99XVnx7OD96Z3o8/KzP5zZaP3+4ieDG1cMoYoL72w/t/bizSUlly/PKDm+/Ok6XFpS8i/VnBjV

View File

@@ -1 +0,0 @@
eNrtWXlwFFUaD4cILIqFIIpbbGc4gpie6Z4rM+O6kAuQkMMcCBgYO91vZpr0dDfdPZMMMbvCAopHwQjIKrAuJplACkiiEGsXTygpKBWvcgvQYlFwhXU5BI8VBPZ73TOTSQigVeruH1Ap0u973/e9733X772Xhc1hpKi8JPbaxIsaUhhWg4G6YmGzguaFkKotigWRFpC4xpLisvKGkMLvHxPQNFn1WCyMzJsZUQsoksyzZlYKWsK0JYhUlfEjtbFK4iIHeverMwWZWq8mVSNRNXkImrLaMwlTggso99eZFElA8GUKqUgxwSwrgSmihkk1AUZTCS2AiBrEwC+F4EVC9U0w1c/GaiQOCZiNFZgQh0gbqUqiiDTSCstQVqsba9MkSYgvJDJBfSGNCfNCxKsiRmEDXgWpIUFTvXNBGAtwSGUVXsaOwMzZhMFHINHPi4iQYCbIz0cc4ZMUArYtKygAu+PDKJNgWDakMBr+EjlCU0KqBozxFcxEhYp8IUEXrAEZIiKFCBEBhyaBgFoD+9O9jmNAMFVSSCNAnwLOIFAY/gcV94gyUNWAFBI4ogoRTMI8EFQiZrwBHrN4VTaAggzsoM4kQ4iQovG6w+tMOqf+1W2rqZqwSYIkVRMhWfdiRNZdp2oKL/pN9fVAwynCK4jDzo0rnZ3CKlXNRawGrLPrmwOI4SDRljUGJFWLtl+SOq3gOCRrJBJZiYMFopv983k5k+CQTwB3trA4rnpuRluqEZJJRgB/xwypaBsjywLPMnjegsO4KZ5CJLbl0ukWnGkkJKCoRV/MTthhKYlAposEZbbZzda2WlLVGF4UIFVJgQGTYrI+vz11QmbYatBDxqsoGjOEt6TySGq0qZBhi8u6qMSejjYxStBpfyGVroREyC8Ubc4tuXS5+GTncjYzTZuz2rsoViMiG23yMYKK2pNOToq0QG3YSMpJUvSWhJcESG0tEG1w0K4NkKsyZB/6YwxUaiF1YSNEBL21uzles88VFySieTBtSGMeRCf68iSFzySsWUQZkglcewTt9FC0h6aIyYXlm3Ljy5T3GIz2cgVS3wcByU8Ev5kNhMRqxLXk9hj2/abObeFiE6AeNTLesCBYeBhttFMUtX/sFTkVKBBexCs22txu91X0gmeQFt2K90dSbtKaVW7s0mGftZ/oSdLoenF7YtgesGj0FTg77UlwE1fk7tkemprVEjea5LnoS/Dtpegc7V6RnqnOiIRLa5Qp9qn3zq2RCpRttSQrSCGO1KD1I1JPiFotup9gs5wOm8NGMQ4f8rmRFTk5q5PzuVm70+ekkL0hzDPRFtpME35J8guoNXcSmctAyyHL9LSJNufNLMouvCd30wyyVKqSwH/lDPhZlEQUK0MKpGO0RV8aClxBMRAvzZ4Z3epi3WyVA7FuZGetPh9L5kDdJBIomSCNuDvoELMgZnSkN3oN+81j/dP0f33KlxcX7Jx40xuvTn36zC3vf7XMdzJncGne8ez8p9Kf7li6Zr/m7yjNfWX7aNPReQffOvf24a9L7ntg/aqGN2/59u0PTsf4kScOzP72+7On902/62Pp9Yfm3DWidUrfZX37VZ1qeMi0bdzzCxc4y4+8nnOMrrB7946hVuw9k+lFkTkPLbC2Dblz34sXhm9Mr13NcUXZu9x/FdoveoYyZZu/DNcN2Pqv/t7Hdo4YRHWsGGzZ9qon/fHP9uQ/eaSictSCyUNq7nn9G7loaOsDn6woKR7qd7zTNxJ+ZDci0UNMbRYxwjN8wOQzr+Z9kHN07SMFvd/cU9eHb3ntmwnetUsGV/VaIw3sk37MG3zh1iUS7P/ixT5pw84tX8f0Sku7PJC/nIrjBiLqIG6AgIHfva6rM8G0txpFdNwMCxFSK89zZGWXlVbno5zQvOKZrlrOUVAAaVNmpwqri7IwWiQQxpSK2oxI+KDUWV5lJcyEDwZxZARWa2YCf7wc9PQAlma4MPADwOigxgqA8V5OwjWiAzoGG1TbIznBbYAqUPV2mDKhMDXeznNG91k+GD+d6BNJ+FrSUoGBI1sHjg4DDpL9wWI12+CnNdtAsvyekSxmTEcbxlvGX6a9bUmk+7R4W7Y66av00B/TtRdfRVf35RtpJ0UnSrYJn4Fqr9L17bjrX2ZzXYr2QL/s5GnkCqli8kmCINV4Q7I3eToyecSQIGSaEgE2Rom4QQ6YkqkFBz+N1/AR03Rf5xplsMaklDVCCpwkTYmaqKmpMccNwuWB6wJ4kgljqssQJMNnGXCOysAHS/jI6KI0I5PIUJDf4MnIhe3DuU/kGUxnJUByJYInKkQenxFx20QqIfmI7CBSICCYDTIGWGxZ5iwXHumaSNpqNduhXDK0+V6ewyriEpZpkurNFv0IzgG6NJgo4POCF8kSGwBOOsuaZXdYXTYqdRqr6EQRgnJ7KCqjHltpnD31LQqMqkEEOLCS66aPdlO6vhSO7ipdHrsDm6ShoOxlsaTD7EyMfTB2UmYaxrzq5RjsFlp3ksjxSR9jYNJ9HBLFCNbFs4ZnLRaWE7tHKz60OO21TrsFdFpo2maWRb/hfQ5vmgaExdus4UXOG5TxhuxmKkGo1glOsyNB4JBfQVgui06SeAVbkF+Uj9XCRUBVQwryBqt07bRV15Yk89hcq9vschlUlpe9wSDQqAQfpuhcBiUQCvLgAewPF/aWjpd4Fr59CAmqwFejVHd2ElN8ii1lA7wgGJy25BYNIuZ0OPRtQofQgI5qDU5rN6LOadeJHKqRJbgxGoy02Z5K0/kM4TAEtBpvkXbqy+JxkMf56SHcOiUUxhmuf/rhthSPg0uX1glGHMBsZ3091CAUlgKlTJndLjihuGko9NRWjvtAfWZnxU+RoLAj+MaFWMhP/erVpUozic7KzCQqyrIJksBFAfc3nMk4mXrsDt14kgkXUhkL9C8y2b8sAd2ELu0DW0VWRUj8m5j0w20zE4kOVi5BTidH8V1C580DalLhTGiWSMHJX4KHCe5cOEaC2cS4bGjpuGHeQeQalS5EIGusxI62SWaiDPobSENr0tMOrp7jEgowxkBZerpaC1dT4Bf1KUYgsnlFlhRNt/sOUIcQEQTDkhfauMPMXWNqdVrtNkdPQTVauo5yXux8kweyxl3/E71U9Jd+tpeKTKJTkFFVHrwHIl2kMUTFb834ucIL+jHDD3uv0K/7XS72l8dSfG3nucQ6IbgXVMz3uSUn52BcU8ISssuImeX2OUxwaU+1+9INdzfZsKqbU+6vq8SlUwnflVfC1kqQq0wIGtzXEPYawl5D2F8cYSv1fnWZqv2xmNdDWf+fI19liKKqqF8Q/cDfsxOv1Ljte39Qd8ZdXPUiRZGSd1to2NeexK89iV97Ev9Jn8QbrbTD/dO+ibuvvYn/D97E3T29iedPd0tu2R8qv28GN7miBKmlkxVauuybOLIxXBVThSjKxVqtVZTPyVH2LJp1ZNmdPmT7ed/EnTRkos31o97EexekvImXvVd0O33T96tWNU3N+9ui0RMDJzbnl4zfVloxcMPK8QfWZq0dVlf/9QmHO/3CUunQm+O9Exdn3P/Cn7888Xi9tNbRNEB58dbiolZpx57Vrc9uKRZ/P2fkO8Vfbz8e+zxGHXCsLI72Pxi9Y9qjv+sz7tO86IdDx+YVHFwZO71v1oiRg8ZYV9zYfPjYJ7WedWt2lEdXzSj87osL+aX8mj3nS59ZNo5LtwYKiUUbW9KjW+c0HW1vKVw6g8nd4BgjDxq+W35q+Z0ZFX0zCFK9/vZmBzFu8ZIhc9f0/3Qg9cZT5Fu7ipf527Lc8+f/9rbHD00ubHt06fih1208POkvpxcN4I5PGXjqxJbp+1wdpWnPLx6/pGLaowXFrdJN726ZN+zspn4jVx1aOKKp7eNtz2TUfmQeu+M98h+n8wf1DWwuG37b3TNKtTkPrKo6GrHc/If/fPPd/ietZ5bIx/cttOd1LNr5iaD1Xb+RkZyeEUW7GkbNePj8/FPeh0u03TS/rmbmoZdu2Os5PrV2Qt31y9ffmSEee3Dw3nRXce+6Fbdt2kmstrS+1t4UHHB922q1eIN93xO9vrSM+eqVtPCwux+O3v2rvR+ty3h/yUT+Weq7G6cfPf+F69zKdeG2f589P+SudwPtdbevOHJj5arPTm/cdfPA53OGRT5fz0kLOm6omHqL/Z9PesSNJ9v8dNDWEHzwosuZV91r6L7l3446c2o79Vz7zNE5S4WpucLwA2Od71y3fgI5Lz925O/ndmw9f3LcyScOxz5cvMvR/ifld+uGje04O2LNr4tHjrzQy/hLwpHS6aPq+6Sl/Rf6+rIJ

View File

@@ -1 +0,0 @@
eNqFVWtsFFUUbnkkqFEUjIQfhMvK409nO/vuFh+UbbEIpbUPeYVu7s7c7U47O3c6987SpTbGAqlEfIwv0BoSZdkla4E2gJoIKlHUgIkVjbEgkEhC1KAhKgHxB56Z7kKRBvfH5u4933l95zt3e3MpYjCFaqUDisaJgSUOP5jVmzNIp0kY35RNEp6gcqahvql5p2koI/MSnOussrwc64obazxhUF2R3BJNlqc85UnCGG4jLBOjcvpk6ZVuVxJ3RTntIBpzVSKP6PWXIVcRBTdru10GVQmcXCYjhgusEoVSNG5fJRSkJFGMxua4etbZjlQmqm2QVGzKRPAJjGoa4YIXAoteb9j255SqhdAaTjqhOU4pajrKCDakRNQgzFQ5i7aDs+0gEyYZim63boOr0CgOEa1N0QiiYEkqG4iM4tRA0KhukAT0o6RIGcKSZBqY2ydNRtwwGQdgIYMbtTASN1XHcT34oDQ1kUYAwSk4sPXEQA7PNusIx6jJEcQzoH1EUvANIZZqOtyyBDVVGcUIwsXywNFIu+0GFBsSZVKCJDF00O3SYSjE4IpDcbfLQTqn/7Q6NpJdkkppBzJ1h8W07lDHuKFoba6eHrizRaEYRLbJLQRdNwZKY+1E4gBd15NLECyDtF7MJCjj1tAtYtkHxBGdC0STqAwJrD1tGxS9DMkkrgKdecmeq6NGK99BiC5gFfjOjnpZg1jXVUXCtr3cHuNAQTSCXcut5rytLQEkp3Hr/apiHeUNadC2hkS3z+/2DnYJjGNFU0GcgoqhpKzu2D8ca9Cx1AFxhMLeWNlR571jMZRZu+qwVN90U0ibaWsXNpJB//6x94apgb6IlYs03JquYLyRzuf2eNyhoZsCs7QmWbviWGVk6DrJ113ysBs+QQwKomdvkSUVpM0T1s6A6N8NWtVBfWRjFkJyk/VmYCLkqy9zhS19p35ZcZpnSqZlqmE61uElhlKGvCHURHRk7x7yBCtFT6VfRI/VNQ9ECmmaxx3GULMB0o/DQGqKw89JCVPrIHI+Mu7YR1w32rKXTYV95ELhiYJh2T+tjF8UxZH5t0UasCCKZmfM+MLh8P/EBWYItw7Y/QliWPCGmke7DPjXjKDxPEffuUI9WbseqGjubZA36imi0W3R49fjC6/JF4oWFNk6BOeo6KmuTnR0tixuaazgy6TGmvjy9TWNCjvYJUgqNWWBw2NPBEcQXdwaQRX+gOz1xn1BjyRVhCpiPtGPpbg/RPxB2eP1xXamFGzlPW4PaqO0TSX7IkuECIYnR2hyZGPlqlevqKpbGhlYJTTSGAX+mjHwrFGNZJuIAXK08k5qWHCDZMG9sWq1daBCCkuxIA544uGgT/QGhMWwN0UBXRdIxn4dnD+VZ7KjL9LRUjT7uSklzmfi8pfql3266N6jHx+r2NZ6orFp7c+tmzaIm3d81l/7Q7zP/8EbWxbu/77h6ul5NUe+3Xj2H9Y148KEygsH92y7vG/LPad+O37RbG3JXfrz7dMPz2raPPlkxfCrrpaz0x7YPnfFJ++m2nfcfdeFeQ3VfXV/hYefCqzE8/u3Hf8Dr359bdngfcFY5HLq737/1R3HQp2rntg6YWH4zJEz8Tt/DEyaPzx95taXZwz2oYd8F58ns89NWX5/tvbJCV8/uL32uzvmnqi6cj49vHe2q6r/2YFzqdLX3jqy4M0lc2q/ELZPevSRny4dXhSY+Wt16+Zv5nTuFhZ8Ho384pse2vQC2zr5/KkFv/fOmjrS/srUWM1KLTj58feuqQc/an0aqLh2bWJJ36HzQaO0pORfBzAQdg==

View File

@@ -1 +0,0 @@
eNrtW81v28gVb3soir310vNU6Na7gEiJ+rLkRVE4Ttwkmy/E3ibZOBBG5EicNclhOEPLiiGg3ba3AoXQ/6DrdRZG9iPo3roLFD310H8gPfRv6XtDUl+WnewiEX1wDjE58+bNb968zxnq46d7LJJcBD98xgPFImoreJF//fhpxB7HTKo/HvlMucI5vHN7a/uTOOIv3naVCuVaqURDbtJAuZEIuW3awi/tWSWfSUl7TB52hDP4749+dlDw6X5biV0WyMIascqVWpEUMipoeXhQiITH4KkQSxYVoNcWACVQ2NR3qZJEuYz0GYU/EeEBkd1fF4aPkI1wmIdktkdjhxlVQ4ogYMqowDTlSqWF3KSKGPWBSkUxg3clhJdOHFBfT6zoHvcGbcloZLvtiMnYU7L9ETBDBg6TdsRDFAwSr5OEjrCgxwNGBPT4/AlzSFdEBMQQRsyF1fI9mI3adhxRhU+BgwikAsJ0BpN8IFk39vTAPowhAxGTgAGFEjBA9mG9ehdwTwjtiFgR4BeBcAjbg/+BxbUghFbpithzSIcRmsGDgdHAxAVwJGlL22U+hRUcFELYMhYprjfgoKAp9dPcUqc5ISRPiF0Sh8hTDUItOpAuD3qF4RDaUGV4xBwUbsr00RSp6HzEbAWkj4ZPXUYdULy/HLpCqtHzE6r0JQiOhcpggS0cmGD0ee8JD4vEYV0PxHls4z5rXR0d7zIWGtQDeR8lo0Zf0TD0uE2xv4Tb+CxVKQOxnOw+Rs0zQCEDNfpmXQ4Cez0DU7ozAPUPSNms1szKV/uGVJQHHuiv4VHAdRTq/n9Md4TU3gVmRmpao6Nk8BfTNEKOPr1J7dtbMyxR3KNPaeQ3an+fbo/iAJSMjZ5u3Dk5Xdo5ma5qWpa5+nyGMS5q9Ln+s6b/5+L5WOLjocdgOFWj3DDK1heZyDzQc+WOPqlXa5+B4oagiuwPR8BaxfLjQ9ge9p9/P00N+m+338+29n8/+OnhZdiq0bebES+SyirZYiFBwyRWY61srVVa5Dc3t59tpNNs4868IIrtq5LWbSMx3PeI7dJIMvWrWHWN5vPtCAyjC9t1JVONp7YbB7vMOd5YqBSfb1DQfAPnAUcz+iwQho0tLwqT9aOJemDFykjdHuwuvo4Oa+Vy+cUvz6SMwKx4gEgOq61W6yV8QYRMjb5GQRjlllFZ3U7EUa99+IIsGpn4zhTPEeIBRL84g3KC5wjwIDU5k3oxnkrzw+MUtMGd0Tfw3C5b11cvXaG9u5fu3Kv1Nv3+rnh85frj7U/2OB0dW6ZFekL0PPblxqaRSH1Lq8no6eUHt9ZvXtt4dt+4KzoCxLBNQVyBCNjRFotA/UbHtidiB6w7Ykcw/O76g9HXTbtldxqN+qrTYs1uwzEu3d7SgeX3R4nf+e+PB1pX1kiqgG3Qy0i95VBF0Z8lrqcw01koZu+FtYMCd7Bf9mBtN1XNYvKyq27K65eu1K9X1MbVVh3IZ7lAQxKwClRKDiwDzTIJRWdEoklYe/ioCH5ThBBpKMaYtSD2vLRJosgDm2WN8RioduJZIK00WsUChIPpNms4JPBv+NZbqUzSCdsdT9i7iyWzgASQ8sBh+4W1cnG2H2Gk4zCItsFrIrGTvscgw/u0FYXgXvf3ex8+uPq+s76/yq5uA1USas+MtMkSYZJkHWR2MSFs9xx6Ugh17DllwbAhip69YE0ys+CkZbLQROwIcEwcgpA49RLUa4XCBO3pwl8SloMdhJMzCB35d2B7dgqSBudJPKQLwcOeQZQ7Ji5tkSW3c8hyx7ZTGE4gne5XRPgytyLCKSRz3DLnvHBNM52FqTXM+M9pd7TAiw6n3Oicz2yUhwugLFrSdF8Bx5xeIn07XSElHk+XR4nX0wHsn1ma9LvvklP96eyMqlo9mVGdyHW/yLpvJHndodWo1E9JnbLY/ClWOvtzkffBuHBAM09Ma0aZi4Wu8DzRb8dhe1zFZHEtqW6yN+4n1SBGxjQowAvInisdae9Nir8tmGszm6tINgAolE8BR+2IIwzBmfT7/b6ZYsGNwB2YjsKFgxXQTi2YFdjnFYxQ8LAyM8FKkaxErJfQrEwmw3ZbQOIdDbDjg4BjXYfZDpNEdMm6zyKQOpJBvQIk1VVztYlvmpNhVSpmrQLv6kmbO8giHVG6IWR7PegxSNv1aIDoYXrfZqGwXaC0ViurtXqliYX0pBtZTHI4Um6tlcsrQ0SZ1It6iR6VCnYDNJs5c/wsSBQ12AnFPMvmWq2OkBTzw7aNI+umlb134b3eMnFJXLYdimKxtJACh49ljNm9lnEcBAPkxe1EsqWS7QTzu5W+lhq1/UatBDxLllU1w6CXSN/BRVuQ3+Iy++Bd2n6IC6qZ5axhVzc0zHrW4LBexHDcqjVu4hEiuHLrCrKF4l3KOGJtv6O5WxXNbdzMEW6lZTZbSavNw7bvQ1s5o8MWTZW0uLHPQQIojxa+6zQXe+G5y5gnPb7LpsU5aZySKSK1Xe55CWV1vMSkUVPW9TLBVSjtaRPKylyjpqzpRof1Q8HBS2tCy6xNt2m6ZPAebOguLtFq6Gnx3eeon7Ak3RLvoYbrx14MCpTsQ1OP1g3JPgDsxnCIPtoWEZh12Wy1arVmuQ5GT/vtsWUmPnti/aeaPDpA0L4OeAbtBjM3sQnsbdBkYhCHgvc9yzUo2tHKxoKSU2KlcqsUa2PG4hmMuWSPZyuBmzPGbm7Wl2yCVpEbIuiRuxSM9yQSPOJ51XWYMMyGaOaQy4g+Y1Yk22BpYB4KFLFIwIYiLpMHKOGSE6abQgShSyUbzyxNYprmJFScQHaVeZhGkwciJut7gjvkEnUyMpNUyyDDgdTcO2wA5mymsMYc9Ot7uB4WODTC+eY2udKqLNrjxNvr6NdGJ1ZYq5rV+vA1HT7+5M9v7PCxSCYDp6rA6dEPJ1XKJDshr3jkmFZCU2dzp8RYPHbDAoy8rAIbPpoBfXK183gTSHMSeQgFBlhSktyfEWd3YNxONjChvoi2F9H2ItouPdruaGd1ttV+7xC4wMwvAuFsIAT5PyoUJzGg/UreGr26bLMoElAikS71JAMHfnHldXHldXHltbwrr8OK1Wy+1juvav3izuvN33k1v++dV7W26M7Lqt9i7oZ/69L2vc3HrcuD7fcbruW/2TuvZqvTsTqL77zedl7fndfWB5v3bm1uNfx7Yu/J3eb97qBm3++ezzuvVnX1xJ1XZfiqR+av9/oLLBaFhH/mboDOwZ0VwhqTpRh3gp3gEqRDGdalA3AIhBSspdMImx3zDnNBA6W08Mm2ToJefsXxxmAUCaSWbLnXPgvFwSHXGsNY/vQy9n0KCRfU8qgiacJ3DuSSHfyMC2uZ3kFobMvHM66a1tCgjWkJLR/MtqtVd/kTq0n5l6PSos1EIg5y3QSH1FvLvNBehOFfX22Sd6x6CiOH6TfeNfOWAbmm8gploIcST/hInyuX2B7E17y2gshdqLBhM3LJbwz0SCCFaYvMwSC5fNPf4CwUvcd7rirO2sHyUZzwiLlsQc3I2x80iB+65J35FGb5OAyrnGOM3A3dd/O0xiTPx5wSyk6Vu1YEIgIseFTs8Cg5tjFJXs46cZlX0xuTfFNJiGEu+K/c4hZVpFV+28xVCHMZ/fKF8FsueYd7oAy4Hz0hHJDLOSjCzkOW3cqn0tE3f5BcN/JKLnf9E7l1PpaRFps5q2JyeJV3kpWenZEwEnvcYbnvD6HEYYqCrua/Rc7k9Ci/46KIhRDp8zzbzDHnS2/M1+9cI1TmXpf3mecBDuIJPHbPAYER6Q8hMtXoph8L5BnoeQAofH0ZnCcMAJG/65r5FmViOrmZzTbt5H6YZWshLH1ak9zeYxH1vNy1ojj91WcegWT+hw5ZUPMG5yDYhyFkQXJ5P+xafAcg8NOf0INqmuYU7PG4NTl51cee56FSChwsGfI9/5y6nZHFvHIg5Yq455Iu5dGUzSwfB36QmocvdfK/EbnBFPEZ2Q1En/BuvudL468MKViryMurJ0VSzp7z5y/7BOT7/aDzdf+kkwVOG1xI8J1/0mmt1oanAXr5DzvHI/8P7fUwPw==

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNqFVV9sU1UY39wD+KKMqKghcqzgg+62t+3d2i4+MDoQso0NNkRmluX03NP10tt7ruee260sC5Fh4p8IuZoYNegD61otExhiJMH/+oBBgolRM2I0IAaNYmKiSEIIfueuhSEL9qE5Pd/v+/f7ft/pjnKecsdgVv2UYQnKMRHww/F2lDl90qWO2FnKUZFherGnu7dvwuXGzIqMELbTGgph2whiS2Q4sw0SJCwXyodDOeo4eIg6xRTTC6fq/xwN5PDIoGBZajmBVhRWI1oTCtRQcPPEaIAzk8Ip4DqUB8BKGJRiCXm11rg/MDYgPZhOTXlDTOzqVIkqDrMsKpQIRFQjkYR0FIyZ1ZgWzvkxBc4bZmHQoZiTzCCnjmsKZ3ArOEsHnTqEG7bsWYLb0CwOUWvIsChiYMkZ26iO0owj6NDmNAONGHnahDAhLsdCniwdCe46AoDVDEG0yaFp1/Qdh8EHFZiLLAoIwcDBGaYc+QRLuhFOMVcgiMehb0Tz8A0h1lk23DoZ5po6SlGEa+WBIy8EZQOGhAw6JENzGDoYDdgwDcqF4XM7GvCR/uk/rc6NJEsyGcsi1/ZZLNg+dY7ghjUUGBuDO6kGg1NdklsNOjAHylJbKREAHRgrZyjWQVO7ixnmCG/6BpUcAOKoLRRqEaZDAu/toW2G3YR0mjaBzgqRc/Vl6FWylNoKNoHv0qyXdxDbtmkQLO0hOcapqloUWcuN5ooUlQJas4T3XlutjlBPAURtITUY1YKRgyOKI7BhmaBKxcRQUsn27UfnGmxMshBHqS6MV5p13j8XwxxvsguT7t7rQkqmvUnMcy3aO3PvuWuBvqhXTvbcmK5qvJYuGgyHg7Hp6wI7BYt4k2lsOnT6KslXXSqwG1FFbVHU8P4aSyZIW2S8CS0RexO0aoP66HgJQgrX2VGEidAvj5Wr67m3u6M2zR/qFhfbYTreB2u40YQiMdRLbSR3D4VbWtVwq6qhR7v6ppLVNH3zDmO6j4P00zCQ1bXhl0nGtbJUryTnHftM4FpbctlM2EehVN8mGJb86RU1VVVnHrwpksOCGJbMWIwmEon/iQvMUOEdlv0pakKJxPpmu2zW+mfQfJ6zD1y1npKsBypafhPktXpqaHRT9Pz1qFp/pVq0Yuje+3AeVMPrmb15deeax7ra9GQ7zXQazdqWtcl3RxRiMldXBLzyVPEFMSK8GaThqB6JtUTj8ZYEiUS1uE5xOE5icaKSdBxrE3kDe5VwMIyGGBsy6YHkGiWJ4clRen3ZeOX2LevbutYlpx5XNrIUA/76MPBsMYuWeikHOXoVPzUsOKclcN/YtsU7HCcJkmomJJzCNJJOE2UV7E1NQFcFUpSvg/9v8lRp9kX6/OSy5xfW+Z+Gzl0d2c/URTu3d5xrGt9X3P3L90nj2Iqzdz3X+O3iPQ8d3TW86cW7r/xz5qtV3Q0/PvJK48Cqj9fd3nX5yGh297J953Ov5ztDBzafPnF+tH7B0QtaeW3zfQtvGz97T/s365VDn5xe/mzkllNLO/Zu3fCW+tKmDy8cP3XpzqX9+IGWnZcvxgzx6vHhW0fKe36u/7o8/tpfJ1ZueLpx5Z57H2746bue1iVnXl505OzvPX989Okzuy6lXvhiyXTg4rnJ8TsunXyj9OuCurorVxrqflt9aPvf0MW/54vuGA==

View File

@@ -1 +0,0 @@
eNqFVE9oHFUYj7RYWy/qIdBi7XSJipK3O7N/kt1ACem2SUtNN82upV3R8vbNtzuTnZ2ZzrxdktYSTBpEFONDyMGDUjPZrWvMJrZasLUQ04rF9mBPXQJV8OBBUDFeCkJ9s9lNUhLinN58f3/f7/e9N1IqgGWrhv7YtKpTsDCh/MdmIyULTufBpueLOaCKITt9sXhiMm+p1ecVSk27w+fDpurFOlUsw1SJlxg5X0Hy5cC2cQZsJ2XIQ9XsWU8OD56iRhZ029MhSKI/2Cp4GkHc8tpZj2VowE+evA2Wh3uJwZHo1DUp6l7PudfdDEMGzbUQDedlQAFkG7oOFPl5RdHvj3jOlRTAMh9m3FEMm7K5dfAqmBAwKQKdGLKqZ9gXmTOq2SrIkNYwhTJxK9bmZ+UsgImwphaguJzFZrFpairBrt83wLtP13EiOmTCenfZHQfxKXXKrnQ1cPj6hjibuiB6A0Gvf3YQ2RSrusb5QBrmkIpmzX91rcPEJMvroLpSrLicPLM2xrDZVC8msfgjJbFFFDaFrVxb8NJau5XXqZoDVor2rW9Xd662C3glyds+90hhe0gnbCqNNRvmVkheSSlzVQJIbEOiNNNgSQM9QxU2KYntFy2wTb5lMFrkJWneHnG4InD7h1J9MT6NHWmoeb/pGecAV4d9222prYK/XYiDKbiqC1Jbhyh1iAGhpzcxHa23SWwoxlzCwrqd5oIcbIhfIkpez4Jcjm4oe9WzOpbF+2tqTqWofim4WO4vc4KiKFZf2DTSghxnze3oBCKRyP/U5cwAZZfd+ZAYQf72xPKUoWCyKmyUuXy16niKLh6OqGWTyFU8jWhh0+iN8YiBZLkOGqkyu8bPp0TJX+g5FMoETbNPhTMnjukZ6UjyWPdXg4hoRl5GlD8vgGoLMUhZVQhJaWhvC4fTYdkfScvBFIhhWQqmAnIklArKZLKgYlaWvJKQMYyMBpVoN4piogCK19aGlQ6cPNrVezg6fQL1GymD85fAnGfd0KEYB4uvIyvXWvMLbkGRp/d3nWSXwyRCUiESDJBwyp9OE7Sf35vGAq0siOO+DrVn7C2+phY33biz590nmmrfllfevzOwID51/pMpe2L+9N3m37fvf3N7y5X+92bb5hP389c+/yD17x83L4x9/Pj1Bzj9z9PPjb6xaC3NzA0v/vnRr2Yltm3AW+q5tG9h/npPMu7smtn69uG7O0YGKs33fhEPOVvHvWPPfnav+eXb8sFXj1/9sjwQpt91a3/tWfrZ+Ymgzpsk9tKtJydi20I7F98Z2bEwGv564sXvKxfojzd2z9tHb+3tHH6wc994NfmhLzVW2d2yOPz3N62dHPfDh1ua8G8wusTP/wHDg2Hi

View File

@@ -1 +0,0 @@
eNptVQtsE3UYL4+oiUpIRAGNoQzEV+9613dBhK5rWTe2butgDwP1evdve/Tu/rd79DHCECRBMRGOh4+YkLCVlizb2ITAQIeCEdAIaHTiUDSCgkFQgxLAGPF/XSdb4JI+/t/3/X/f6/d9tzafBJLMQmFcFysoQKJoBR1kbW1eAi0qkJV1OR4occhka4Kh+g5VYoeeiSuKKM81mymRxaEIBIrFacibk6SZjlOKGf0XOVCAyUYgkxl6aWUJD2SZigG5ZK7xhZUlNESuBAUdSsrZmcbAk7yxFEbwEpOxRIIc0OWqDKSSVcuQhIcM4HRRTFQwG8R4VmB1SwHJSPQrKxKgeHSIUpwMkEABvIgSUVRJRyJw56p8HFAMSvN7w+RsHMqK1jM29N0UTQOEDgQaMqwQ07pjraxoMjIgylEK6ETxCqBQGK0zAYCIURybBLnhW1ovJYocS1O63rxChkJXMT9MyYjgTnWnnhuGqiEo2t4gCsITMNdkUI0FI4nbXDjRm8ZkhWIFDhUN4ygUT04s6N8brRApOoFAsGL/tNzw5Z7RNlDWdlZRdDA0BpKS6Li2k5J4h23PaLmkCgrLAy3vrbnTXVF5250VJ0nc2TcGWM4ItLaz0Ij9Yy4DRcpgNEQY2g4iR0OYYIE2dDUcpqPhCD+/MhX3NvjcvkQgE/Evaom6oKXBllGVQBR4EklHxJKmrZ5YY8a7JIGRTovT5nDYSBdG4gRO4iRWQTjgoromni+TGKLG77QmZWFpNFjqaFWZtAf3lkb9ajAN1DIcOJsbY4FUucXS0lRaugJvttaHV0hKeUuSteLVcqiijqpM+SvCjb5kap4RRacmWWZ+uZ3ylfPxeHiJB/IysaQqmai2OJx1lYnWJGyx2JdCAvf5M77mitio8AirFSOKEToIm4vQn54RbnBAiClxrYO0uHZJQBbRtICXc6hkiiqvzSIegs+O54tj0x6svE3hh7NliJPagF9iTUaL0xgCotFCWGxG0j3X5pxLEMZFVfVd3qKb+rtSsK9eogQ5imjoG6F8no6rQgIwnd67kn1AJzvqpB4+mlEMpEUoA6wYldbViNUN7wssULZneLIwKMUogW0tuNUGCqxPtaZTDK0yTDyZ4gl3q83KRoBKR/cWr4gS1N2ggDBe1jqsbqKnqBnhXSfKlcBIAiPIA2j0WRqNmZ6MCCUFkwGNNpSS0YZMPJXWZ2y+lbRbHajw84ysQHMqA0JqpAzyiJnyPKMoAQ5SzME0hvYF4FieRY0pfBe3n6xl7ehy/50GCkwAtCfztkJbiUOjLSSg4+tJ3Iaxud3u9+9uNAJlRSZup/vgWCsZjI6GtPBy/50GRYh2Qu5Kj1hjLKMNzUaHsJ2hKYsjQtppB0m5iQjDRJy0Gx1pO2F1MfRurx/zUnQcYKEC/7R8WVO1pyrg3deIjSYSFhSH3w55AcoCG43mQkBCjdE6aQ6qDFqWEsghrDpPk7bXRbsBQdAWwk1H3ITDjpWiNTSC9j/tsvqmLbwm1uT0dgqxj8cJM167z1B4JqDPrVvKphPCt8Tkdb+3briyvfvII+t2DT7RG5l9cubCoG9N++SnNrzh3NH/wAH/pXvarpduviUd962f3tYxlAkaNjWbxl1b+upvA1VvpgYvnb7adzC/xO/7ZkH3jOXPdv4b8CxoO8cZ+zOO5uqvGk4M7Pe/cpb59cWtb81Uaxlfm7zFfGij/1R334SvMwG5eqW0NfqnKXjRd/BGMrt/8Zky04+p8YY/nm9bv73Hvrpv3c3L2b/m+Aenm05tNBC9j0+pJ+um/DwxNjW056HzRy8l1m54x9x7wfn5p4dnLZ54OXPvke4zPyzfcphL1j545ezJMx1troa+725+WPXc37FV3tfP7Zvk9yU/gh29x76YP9uw+uiW1IyehTP6r9fd/8E050T83acnmb3ht4+5axq3DvwylK85+2gtc36Qc12bdXrZ+AsXN5/fNu167eIwPK7OubHwyw2PhadmOq62f7Lt6E+b/rlXL+oEQ2xNDRkabzD8B46XMHk=

View File

@@ -1 +0,0 @@
eNptVQlsFGUULiURa5RgIgJBw1A5EuhMZ3ans91y1O0e7baWrW2BFpA6nfl3d9id+afzz+wFCHKoAa8BTYzhCLTdNbW2HBUQBUWDJ55RoAkxUWNUqhGRgGAI/rPdSkuZZI//Hd97/3vfe7MhEwMakqAypltSdKDxgo4PyNyQ0UCbAZC+KS0DPQzFjrpAQ2O7oUn9c8K6rqKy4mJelSioAoWXKAHKxTGmWAjzejH+r0ZBFqajFYrJ/qurC2WAEB8CqLCMWL66UIA4lKLjQ2GVNJ3wz5aJCthKFRYRhRqMAktuIKAVri0ibjG27KYTVTBOCLxC+AkeIQnpRBIahA5FPlk+HGNQyWPfW4GW4jxnI0JOEgovg/LRgR/DEhmKIGqJQqpOspCUJUWyLBUsY/Av0jXAy/gQ5KMIYIEOZBVXUDc0C4mmHGszYcCLuL7f503oCEOkmz0ja9bLCwLA6EARoCgpIfONUEpSiwgRBKO8DrpwygrIdsTsigCgknxUioH0oJe5j1fVqCTwlr54FYJKd+6KpJ5UwWh1l3U3ErdB0c2+AE7C5S+uS+LmKgRDsaUUvS9B4npJShR3i4zyOJ+0mtW/PVyh8kIEg5A54pjpQeee4TYQmZ21vBBoGAHJa0LY7OQ1mWMPDpdrhqJLMjAz7rrR4XLKm+HsFMNQjv0jgFFSEczObCMOj3AGupYkBYgxzD10WoAwIgGz/2JLixBsaZUX1MTD7qVepzfiT7b6KtuCpdC2lE0auj8IXJEY12pLCHZXqCnpXhwhGYfNwXIcy5SSDEVTDMWQ1TQHK+ubZdmjiXSdz2GPIWVJMFDBpQwx4aLcFUGfEUgAw0MBx7KmkD9eZbO1NVdUrKKW2RtbVml6VVtMslOLUEN1PV8T91W3NHlj8XkEzs6ISeKCqhLeWyWHwy2LXVBG9OLaWGSRjXPU10RSMdhmK1kCacrrS3qXVYeGpUfb7SSdy5Cj2VLaenqGuBEFSkgPm+021vmaBpCKxxRsTOOS6Qba0IF5CE59nMnN695AzU0KT+zwYE6ax3yaVETYHEQDUAkbbWMJxlnGOspomqisbex258I03paC+xs1XkFBTEPvEOUzQthQIkDsct+W7McssuNOWunjGSVBQoUIkLmszO4msn5wUZF+z8HBySKhFuIVKZUNax7Lsj6eSsRFwRDFcCwu084Ua5dagSEE+3IuqgatMDghUkZmO+uw9+Q0Q7zrwnelSYYmaeYtPPqSgMfMuowKNZ1EQMCrUU+a/UUyn7BmbIGdKbFzuPDzCEkRooYIGoxWD5QxM9E8QtVAFPLi0QSJ9wWISrKEG5P9zq1dZHaUYOcjow10GAF4QWfYbFvp48MtNGDhW5e4CcM6nc53bm80BGXHJk6OPTrSCoHh2TA2GR0ZbZCD2Euj7sSQNSmJZv8MfGhhgw5At5ZwzmApzTEcC4CDc7I4I04oLWEFsdftI928EAZkQ5Z/ZsbTvMhV63cfaiKHE4kMqIOvpYwCkSIFg+kGoOHGmF1CFBoiXpYaSGOselez2VcqOAFNC5wNE99JcyVkBV5DQ2j/067D2rTZ99OTaaudSujkmNi0rXfmZZ+x+HPjhv7iiUUf0BM8f17dcvKXO96c3rdnkmdMwaZv53ZN2LJD3H7k7MrPYuu7zr/7UEbOH0ctPPX3s8HYtDH0o/tn7jvw8/FG34fxK68//VwisWLdF+Urfy9b++lKePzwC5uPLR2YxBWMn3Oo6drBgQMzwIyU69ozNVvPCVU7yW3est2ZT/rGbZnz0onTk6dl7pu7x7vjke3sLurH5ph2eEa1Hi2A9+a9d3ydO/DYD47lFbu/m3vXzp/uOfDzhYL1zdtc/DnnD/PP7Kr1NW27/Nq/56eeLwr3TNi0ceLESRc8LXXaPV9+tZfd1z5+/uI1joJ/LsefPXkUzX/k650vzb5OX9r27eSazfP+cvVuvr/nc1KrLNPVXXcP/DY9P/Hnlfi6WYzgn7J79bWHH8zv/UZ4YGrvwvf7p6Qurng+9er10KdzL62oujLw1O9nA78G735l/Mx/Xz71x47Kl89UOMLPTfxo++lZvQcH8q+uMTuLyjzl2eKOzfM9UR57PD8v7z9er1OE

View File

@@ -1 +0,0 @@
eNptVXlsFFUYLxCOYBHkUIiJrhuUKLztzO7sWRC225YeltYe9DBQpjNvd4fdmTedY7tbCpEifwgBmQhBYjRQll1TF2ihICCXoAHDVYIJFIKAAQNiCHIJSsE32620gUn2eO/7vt93/b5vmuMhKMkcEgYkOEGBEs0o+CBrzXEJ1qtQVj6J8VDxIzZaUlxWvlGVuK73/Ioiyq6MDFrkTEiEAs2ZGMRnhMgMxk8rGfi/GIRJmGgdYiNdSxYYeSjLtA/KRpfhowVGBmFXgoIPxkpsMUk28BGDQPNwunGKwSihINRFqgwl48I5+IZHLAzqVz5RARQCPCdwuqaA70j8KysSpHl88NJBGeILBfIizkVRJR2JMNkXxv2QZnGmv6aNivqRrGhb+ke/lWYYiNGhwCCWE3zaZl8jJ04xsNAbpBXYikMWYLI2WmsAQhHQQS4EYz1WWhstikGOoXV5xnwZCYlUikCJiPB5caueG8AFERStoxgH4c7PKIngMgsG0kQ5TERbGMgKzQlBXDcQpHE8MTEp/76vQKSZAAYBqRZqsR7jLX11kKxtKqKZ4rJ+kLTE+LVNtMTbqO197yVVUDgeanFPyfPuUsJn7iwmkjTZ2/sByxGB0TYlG/FdP2OoSBHAIIyhbSBiDEIBDmpdd2prGW9tHT+tsMHvqcxx5gTyI3W5M+u9DmSupCKqku+F7kDIVmcOMxa3ryriqQgA0m62UzYbRToAaSJMpIkEBYQNzSyt5vlsiSVKcu2WkCzM9hZn2RpVNuw2ebK8uWpxGKrZJmivqfLlN+SZzfXVWVnzTTWW8tr5kpJXH+IspllyWUEpXdiQW1BblRNqyDTg6NQQx07Ls9I5ebzfX1vhRrxMVBSFArPMNntpYaAxhOrN1tmIMOXkRnJqCnx9wiMsFkCkIrQRlIPQny293AhCwaf4tY2khfxGgrKIBwYuieGSKarcHMU8hMePxlOT01Jc+IzC46LZmJPavlyJm2Iw2w1lUDSYCTNlIJ0uyu4iSMPMovKEJ+Wm/IUUbC+XaEH2Yhrm9FI+zvhVIQDZVs8Lyb5PJzvupB4+nlEAwyKSIUhFpSWqQGnPygD52dt7JgsgyUcLXGPSrbYvyfqGxnADy6gs6w818ISzkbJwdVBlvB0pE1FCuhscEOBlbSNFObekJL28a8W5EoAkAEHuxqPPMXjM9GREJClAhgxeUkpE65rC02F9xqZZSKvFhgufaeAEJqiysEyty0Y8ZqacaRAlGEQ0uycM8L6AQY7ncGOS36kFKGtRKzbe9byCggIQr8o4lWwrsb+vhgR1fD2JZzCU0+nc+2KlXigLVnHanXv6a8mwbzSkmZd3Pa+Qgmgh5ES4VxtwrNY1ER9qIYRmliZYr9dKOhmWctTZdXYyBGFlocPr2OrJBR6a8UNQluSfFs+unuUuyvfsrAJ9iQSKxZ4XRFxAssB5vbEyKOHGaK1MEKksXpYSjGGsUne11uFgnJAgGNrBWu1OwmYFWXgN9aL9T7uovmmTb4rFMb2dgu+nAdvfXD4sLfkMwp+nT5UP24ULM9Ivdo/7EcxNHJTKj90v7ThRsnFY58Abv60nTk4q2PNAGbty9Zy3bh94bZJztku5cvuNS4cXXD2WPqMri3evq1nO1axtevz4Bo22PXn8sPvI2cftU39+kv9g5MVHTU/vFYGW5pUHOo9++8fJkjOusYWLokUzwPg5Z5rW+G6qOwuGtmwYOGd1xeaJE95ecd9WDSqrtx3/XJErzrIjtp0/dDc97TL8goxn3P7s/CHpr2XU0cTk8gsXRn88/KqxhdoOT8/9pc44IuKenn3pxOvzhm+oPdg+5pzbvchUcnNMs23IOvewmvQP5ma27Y92Xj83+p7mWvy16/re5cunqXfHDDzrmjdg9sHGVefN4+9MSp969Nbll776wT8yc/zhEa9mLb01fe+ICW1/Vh3xPDq5e/Ki3TtC5TsWr2y6hsLcvmv/jCqxPDq3ammNtW3thIOnruy5OH1oGb8+tmZJJ7p3miiamWntVoyVX05+d+L5oofd/z799OXBy3auvNSUt+JRYus7S66Bq52l9aeaT2zo2H+oc0jm+4ngyGu/X3zlvusSOz+0rnuw3plBaX9faJq3f2Ba2n8fyFxp

View File

@@ -1 +0,0 @@
eNqtVWtsHFcVtuOSoraogRIaXmViQEaRZzyzM7vjdRKi9Xq93liJHT8SOyFs787c3Z3dmbnjuTO7Ow7BqQsqNAE6FfwhQNrY2S2WYzet1QanjtJWfVhqi0QMqus2lD6UIiigkKC0RAp31mtiJ5H4w0j7uOfxne/e890zw6UcNLGC9OpxRbegCSSLLLA7XDLhgA2x9b2iBq00kkc7O7p7RmxTmd+QtiwDNzU0AENhkAF1oDAS0hpyXIOUBlYD+W+osAwzmkCy80b10L5aDWIMUhDXNlF79tVKiNTSLbKobVPWU7E6jWpGCaa2nqo1kQo9u42hWbu/nrou2ItbT7WhPCUBnYpRAGMFW5SDbMpCMnC2LMdYdAKSez3QLkK0DlOaQ+lAg1v+Z+F+ZJvlUErB11NIQ9W4RqDec/+/WOwlFg3JUPVMKcOiBURriq54kTqxceQXWyYEGlkkgYohMVhQM0gjLdv0kFhG3F9KQyCTNp+rWjOaRthyJ1a2bhJIEiToUJeQrOgp93hqUDHqKRkmVWDBMUJZh2VhuGNZCA0aqEoOFhez3MeBYaiKBDx/QwYjfbyyRdpyDHije8zbG03EoFvuVAchEYo1dDpEYzrFMUIjwz5eoMl5KbpKNEOrgPApGmX/qeUOA0hZAkJX9OsWF5Mnlscg7B7bBqSO7hWQwJTS7jFgagHhyeV209YtRYNuKdx5Y7mK81o5nuE4RjyxAhg7uuQeKzfi6RXJ0DIdWkIEw32ULUoIZRXozl+Ix6VkPKFtbs+nw7siwUg25iRaowPJRuTbJTi2FUvCUDYXSPgKEh9K9Tnh3izNiT5RCAQErpHmGJbhGI7eygZQtKtf01pMme1sFfkc1ncmO5oDg7ZcCDHh5mSr3VGAdgsDxd19qVi+zecb6G9uzjC7+Z54xrTaBnIKz2zH3Vu7QHu+dWu8L5LLb6QIOzunyJvb/CDSpqXT8d4Q0jDbuy2X3e4LiF3t2cEcGvD5dyKWibQ6kd1bU8vosTxPsxWGAVZoZL1nYkkbKtRTVtod4Rv5x0yIDTIt4P1FcmSWjYdHiQ7hKy+XKlPjaEf7NQmvHW0hmnRnWk2lnvKJVDc0KB/rEygu2CSITayPim7rGQ9XyvTcVIInekyg4ySRYWRJ8iUpbetZKI+Fbyr2GU/spJMefXJHaVgwEIZ0hZU73kd3Lc5LOtby5OLNopGZAroyWC7rzpRVnx8s5GXJluV0Lq+xwUGBVxLQlpJTlRTDRF4ZQojWsDsiCvxExbOkuzGyV5bmWJrlfkOuviKRa+ZtxkCmRWMokQltOe58vQYK3h3bzHN+PkAOfiOl6JJqy7DbTrQgjSgTb6QME6oIyNMFmswLqCqaQhpT/q5Mf+yO+knyyRsDLJSF5D1REsptZU8vjzChh+9t4hqMEAwGn7l50BIUT0KCgji9MgrD5Ww4n4ZP3hhQgTjK4vHCUjStyO7818giDllWhEno5/2JhD8pczKAAAQkISFLjaLo4ybDrXQYSGlId5f155Za+reHtsXCT/XRy4VEdxiLb8eSjrCuJJPFbmiSxrhjkopsmQxLExYJVleo351qlIKkrpRkE4IvyAb8dDMZQ0to/5XdqDdpy6/J+4peO/XUC9WHvnLwk1Xlp4Z8rl613BCaY9d8/+8frf3qEfH3ybWfef32zO1tP6hp+1b60w9+KfXwHX8pPPOvFqv3w6HobPGw+fY7z//7yovoV0fuqor86I37fTOf4wuHz5374/7CptPOlYsDh+I/iX/3TfEl9PTF906fmnY6D88+ewkJF96Z5jYVDjb/lXn9lrnhs3Pjb/7M2fHeKXV1jZiu23P+668Gv/zyjumFv12w9hTnF154i//8ocydW+6qOnD+o1+Y06uPzN3z1OG74Zl19gOZoZlbHlm1ENvR1Prg0V8+9uptn9oYEqNDb3MHztasipx89+PV34w+dE/NcK7uz7P2ms1fyMye+WH08vMj2pnfVYfWtSzUfPDzqHP14/sOfLju0tToF4/vvfhP/4n3X7t14t3nJgfbf5yIf2LOfeunzG37/Gfxqn9k9eSVVP/7NXd+e8OfaqaVe098duQPV/vAzvrOvqm9l564fOTXmU5h/vLYXns2OrHnVnVy/Xm6d1Pk2Uczs/a67zzSPn988onp1w6Of2MhvyFYN1TtHTk5+Ma1vx1cVVX1Hzp3kQM=

View File

@@ -1 +0,0 @@
eNptVQ1sFGUaLhI8E0MEcxygEqbFCGJndmb/t00Tt9td+kMpdgu2Ndj7dubb3Y+dmW86P9vdIpdYNKAYdRQRA2IPtrtYSqmCxQNr/EVzhUu86F0KKJCeJ8JxdyoceBxw32y30gYm2Z/ve9/3ef+e952uXBKqGsLylD4k61AFvE4OmtmVU2G7ATX9qawE9TgWMssbwk07DRWNLI7ruqKV2WxAQQxWoAwQw2PJluRsfBzoNvJfEWEeJhPBQnrkH2tKJKhpIAa1kjLqsTUlPCauZJ0cSlqwQelATFAiSkAKUApSgQ4Zyi9rHVClgChS+TAsNErHlB6HVIScKRyl0tggGhEkIj3NlJRSJSoWoQWqpTUdSiVrS6lJvqpRMVWzUKJqkTRJ3dCgWrJ2FbmRsABF6yqm6LQT0xKSkaUpkzuO/Gq6CoFEDlEgapBcEDcKKZpuqBYSy3jW5uIQCKSk3xTNyMSxppv9k8u0F/A8JOhQ5rGA5Ji5J9aJlFJKgFGRZN5L4pVhvglmbwJChQYiSsLsmJU5ABRFRDyw5LbVGpb7CvnRelqBN4t7rdxoUnlZN/c3kCD8NbbladJPmeIYp5dhB1K0pgMki6RBtAhIPFklLz80UaAAPkFA6AJXzOyYcf9EHayZPfWAbwhPggQqHzd7gCq5nfsm3quGrCMJmrnA8pvdFYQ33DkYjmM8b00C1tIyb/bkG3FgkjHU1TTNY4Jh/p7N8hgnEDRHfmxr46NtEamiriMeeDToCyZq0pHQkvaoF9sfdaYNvSYK/YmkO2JP8Q5/rDkdWJGgOY/d43S7nZyX5hiW4RiOrmXdeEljiyRVqQK7PORxJDV5ZbSh0t1pCCk/E6iMhoyGFDSqGOhpbY7VdFTb7e0tlZWrmVZHU9tqVa9uTyIHs0wL1zaCuo5QbVtzMNlRTpHojCQSKqpdIFgtxeNtK/xY0tgV9cnEMrvb01iX6EzidrtrJWaZYCgdbK2NTQiPdThothChm3V6WevpH+eGCOWYHjd32h3uXSrUFDJLcF2WlEw3tK4M4SE88nmuMKI7GupuUHhWpopw0hwKqaiUsnuoMFQoO2t3UpyvzOkpYx3UkvqmvkDBTdMtKfhWkwpkLUpoGBynfI6PG3ICCr2BW5J9yCI76aQVPplRGqYUrEG6EJXZ10w3ju0muqZq39hk0ViNARl15t2aQ3nWd3SmOgTeEIR4skNifZ1OB4pAg4/uL5goKrbckIBoSTN3etyO/oJknHe9JFeW5lia5f5ARh/xZMysZBSs6rQGebIN9bQ5UiqBlDVjFQ7O5XCTwpdTSOZFQ4BhI1KFJcJMrZxSVChiIBxM0daGE5GESGPy34VNq5kZFzF+92YFHScg2ck5Z76t7PsTNVRo4VtJ3IBx+ny+926tNA7lICo+l+/gZC0NToyGs0vauzcrFCB2sFpfalybRoI5cj85tEE3x3EwwgHgYV3QaxeAxytE7IKd9fp8wOvdGwjRAcDHIR3O88/MVbUs89fXBAab6YlEohuUsTdRTsaajKLRbBiqpDFmLy9iQyDLUoVZgtXobzH3e3kfZFnB5Y0Ar491u+hKsobG0X6hXcbatPlX0pNZq51y7NMpB+ZvvKMo/0wln+vXdfOofJyd8dS/Op+dbhtqfprevfl03anMoj/vWN897b8bP+rueeWTLX+7+8SK1gX/PjR707zyigsfffxE+bqRb8O3dy/dubL77ON157uO/vWAB1/MzTd+On969NCVw1+vfe3ksYuXzl79+upoa/1L6wbvah7ed86oZ5p/Hbi24dyGVrbnT707Fs/e+Pai0Kld/q3iqhffy5yYi3+MtG76ef8fY8MvH1oYXrB71v+OFBVtP+y5eGH6tUce2rJs+6z1Rw4G3im7a8quaveDtY57f3M+WM8MPGA789nZc9v/Q1WEtn3wq9H+U4m90wa/uPw8eIHatGhBddWqS3PQby/vmbag7ePp2ZmhE3Ovr952qnjaM4OfP0yf+fvMoefuCd4xZ828OVvuq32jND5372nt4aF1xUs/QB9e/Wq4d+bxJ42yV+f3VXy//qd/bj44Aw0v/N1fHhudfmnrlxueOPby0133fF889bLrm9Tl78TFVarfXVl+4UHl8ftGv/w2ZhvY9nr3i/E1X+z++frSrbcH7x22XauZd2XuyVW3Zb97aXTzs5dKz7j3/DDv8IyjPxw/NoBexYO7Zn/1dtNI8ZU7re5MLUqffObNT24rKvo/8WSElQ==

View File

@@ -1 +0,0 @@
eNptVW1sHEcZtmMiDFQlrWgoQZDJFclV8a539873kchY5/M5/mhs43MS2xTM3O7c3eR2d9Y7u+e7C1HapAVUq4qXtkgkLVWwfZecTNIPK23quBESbhtSmhaIKicFEkT5UKlStWkDKqXMns/Exrkfdzczz/u8zzvzzDv7ihlkUkz06mmsW8iEssUG1NlXNNGIjah1f0FDVoook709sf4J28QLd6Usy6CbGxqggXliIB1iXiZaQ0ZskFPQamD/DRWVaSbjRMldqH5jt0dDlMIkop7N4Fu7PTJhuXSLDTyDxAYWVNNAxWkEIDCwCS3Eg7BOR5EJoKqCsg6XDlgEWCkE4mwMSALkiM0QcaxiK8d76oHHJCpySWmOWkjz7KkHK3K1402go04DnVhbAbcpMleBwymSc7OZqN4N2AR2suJA3MR6koIcqmih7I+JoMxwxKZglGk3aTNoQS6EIpTGel0ZQW2XiFWKqCsdKhmWpzxHTGAgMwUNCihxN9sNQSpFzSBmIJgGtlEPNEac27RcNKQUUwsysf+vvCwUU6DlgA411Ly61G+zGY0oSHWnkobF+QinYR27SJ3NieyXuqo1NkhApoVNsB1lOqErms0KfGBPMYWgwur9Q9W6yRShlnNspSWOQ1lGjB3pMlHYvjk/T+YxK0ZBCZXVU2KadVQ2nFNKI2RwUMUZVFiMcp6EhqFiGbrrDbso0acrNXJWzkCrl0tubRwzmW45Mz1MRLijoTfHvKsDkfcFeeHJLMc2DOvsCCinQqanYJTXZ5cvGFBOMxKuci+cwmLwseUYQp2pbVDuia2ghKaccqagqfl9zyyfN23dwhpyipHe1ekqi9fTeXlR5ANPrSCmOV12psoH8eyKYGSZOU4mjMM5LBRkQtIYOQvvDQ/LieG41tQ1morsjIai6Y5cvG3rSCJIpJ2+nG11JFA4nfHHpazsDScHcpHtaU4MSAGf3+8Tg5zIC7zIi1yn4Cdb+wY1rdVUhN62gDdD9R2JnhZ/3layYT7Skmize7LIbuVRYGgg2THaLkkjgy0tu/ghb//wLtNqH8lgL99NY519sGu0rXN4IJoZ3QKYOjuDlab2Rhht11Kp4e1holFh+7ZMulvyB/q60vkMGZEadxCBj7blokOdyWXyBK+XEyoK/YIvKLifY0veUJGetFLOhC8gHjERNVjbQPsLbMssm+6bZD5Er7xcrHSjn/V0XbfwbZOtzJPOXJuJ64EUADFkAEmQfEAMbfYFNgs+sHVb/3Skkqb/hhZ8qt+EOk0wG0aXLF+UU7aeRkopckOzz7lmZyfpymd3lENZg1DEVVQ50wNc32If5jpan1m8WRwxk1DH+XJaZ67s+tF8dlSRbUVJZUY1IZT3eXEc2XJiphJimMRNwwRxGmWbE5SOVVaWfFditQqcKHCCeJJdfSyza+YWYxDT4iiSWee3cs5CvQaz7h1r8oqNXj/b+C0A67JqKyhmx1uJxpxJtwDDRCqByvNZzm3mKtYwO5jyd+VVoc5kIwt+bjXAImnE3p+ir3yswgvLESZy+d0irtP4QqHQqRuDlqi8DBIS/c+vRFG0XI0oafS51YAKxYSo0ensEpzDirPwNTYYhnIoJKFGJDYKSAxKolcKeYNS0OdvjAfjfkE6HmnjIu7jwMXKBnSKrYPd4W0dkRMD3HIncT3G4rNb1AnVcSJRiCGTnYxTklViK6xbmqjAuPrCg85MUA4hQVDi8XgQhQR/I9fC+tAS2/98N+m22vL7e1/BPU89OV+9d+NYbVX5U2M5zT1/FtbNf/S9B523P4Ui7R+eCH/OB6y1v76tNtotddx04qX3siHPzB8/fqT5H+bah8auHbp2NfHvL1XXnn/wKz9MjB8Wu+s+unho9uDQhg/vujj7nw+uHb96yxP9v9h79gD405nwB1/3Xz5rvz4+smG/Z/bSixM3Baf0X02/MuY5xye/eyTatJD/4o8eu3ViuvNp39mHZ+72XzzfNL5rfP7mn95Rde+5fz2ev7C++Zc3/+afXeLL9bu/MPvbdfe+O1kXbU/Mhy9Mvf/ZLz9d/c49e67MHYCtn9+x4f4Nl8M/uX3ghdMH3ng3OV7d6225g3sz0vXa4R/cIgu1NZ0bX3z7ypmvztacxVt2v5Y/f6BYOpj/69G/PPrE1e7B+chb35QWjq7/tBkvvFR7CX3jzOXT3APvK/ccWTN3+PE1z87fWvfqxpHvLyQeuG/f75J7Hv5x88nS+v39B0//fnv92kffOfeZvx9961ThklNzsBQ7sfXKqaFX3zxZuvid83eOmYfG/nb7xzVVVZ98UlO112x73VpTVfVfuvWw0Q==

View File

@@ -1 +0,0 @@
eNptVWtsFFUUXh4qGt8immB03NQo2JnOzM7OdtrwY7t9bWu72C3SYkydnbm7O+zM3OncmX0UMAhIIkZ0UKL4AvrYJU2tGApFXlYJ8YVRiBL7Q40xPoIiBuMjVNE72620gfmxO/ee737n3HO+c2ZdIQ1MpEB91pCiW8AUJQsvkLOuYIJuGyBrQ14DVhLK/Usj0fY+21TGFycty0BVFRWioVDQALqoUBLUKtJMhZQUrQr8bqigSNMfg3Ju/O9VXg0gJCYA8lYRD6/yShC70i288HZCmxBNQIhEEqhG3FYJESEFWaJuUURQRxlgEqKqEsVYXErCgoSVBEQMrwkYJ3LQxoiYoipWjlB0ImqIuoKSlLec8JpQBa4TlEMW0LxryokZvhuVu4nwvRpRA2Mz4DYCpnfNI3hHgzJQ3a2EYZEcJDVFV1ykjvcY/I8sE4gaXsRFFQG8gd0YOImWbbpMNBVYU0gCUcYp/spzY38SIssZnpm2N0RJApgd6BKUFT3hvJ7oUYxyQgZxVbTAII5XB8WiOIMpAAxSVJU0yE+ecnaLhqEqkujaK1YiqA+V7kdaOQNcah5070biSuiWMxLBQQTDFUtzuL46wVBcJUXvzpI4+Yqu4oKRqojjyRtF+8HpBkOUUpiELGnHyU8eHp6OgcgZaBGlSHQGpWhKSWdANDWe2zN937R1S9GAUwgtvdRdyXjRnY9iGCrw5gxilNMlZ6BYiNEZh4Fl5kgJYg5nJ52XIEwpwBk/19Ulxbti2pLmTDK0vE6oS4VzsfqG7nglZJdzOdsKx0EwleZjbFbyBRMdudCyFMkE2ADH8xxTSTIUTTEUQzbRPGxo69S0WlOml9YHfGmkPxSP1PA9tpwNUqGaeL0dyQK7lgKBFR2JcKaRZbs7a2pWUit87V0rTauxO634qFYUbWoTmzP1TV0ddelMNYGjs9OKvKTRL9Y1aslk17Ig1BC9rCWdamX5QFtzqicNu1n/Q5Cm6upzdSuaEtPCo30+ki5FyNNcJe0+w1PaUIGesJJOH+tnd5kAGbitwPo8Tpllo3X9WIfg+PuFUsv2RpovSvjW/lqsSedwvamUE2yAiAKDYGmWIxihigtU0RzR0NI+FCq5ab+sBN9sN0UdxbEM66YkX5CStp4C8mDosmI/7IodV9INH/coCbIGRIAsReUMdZBtk7OKDNfumewsEpoJPAd6im6dw0XVZ3qyGVmyZTmZzmi00MP5lBiwpfhI6YhhQtcNDojUkJscfrhkmdLdIL4rTTI0STNv4dZXJNxm7mUMaFokAhKejlbOGS/XxKzbY0t8jN/H48RX48EkqbYMonasFmpYmaiaMEygQlE+kCXxvACqoim4MMXf0uRFTr8fH95/KcCCKYBndIErlpU+Mh1hApffvcRFGk4QhEOXB01R+TBE8PsPzEQhMD0ahtXQ/ksBJYpeGg1lp9CkIjvjZXjRxYHKSpblBF6SfBwdkCV/wBcXBA6wYkBgZfGNUD0ZEqUkIKNF/TmF2s7WYEs4tK+DnC4kMmJMfpkKOkS6Eo/no8DEhXEGJRXaMh6WJshjrrZgpzNSKQmApgHNCTFaoHk/WYPH0BTb/7Lrdydt8RP1eN4tp544Nitz11PzPMVnjvVsS+tRev6GP4VjR3+6cu+xf3YurP2od2z2k7feXOMsfLssv3k7qG5r/vyoceX1a9upjVsu9Jd/ITPbE+xv/E2e6JaWtQNPzFMUe3X1y18NpBYtP7Z+ouNcSnjspch24b0XJhreqdq7fsHZFzf2/cQOnFx57abjdxaurxur2hs4/cxfxvsTh2bdE/5sLzl69/fzX/hw1/6vz/y2v3rTqm/XHyS29iZuyT7t8fAfj/6ilA1/MffAq31tvX96G3hhyexHN1uv098cPhd8cayKfOCDuVzL71/+8MrIj2PPL7ht98Rr/6zeOndfTZg4tXU+RcwfOSKMVh9fXHH66vzJ8ztgZA333akT7971V/iT5x880njHNZH8hdEb5M7Q6E1jD+85eN73RGfDwHXhHfe8VPXrprPfdqw6s+CPnqtuv2/el6dX/7p9kXP7hpMXfk6rX0e2Hbrux9ea+Pu3dU2sBVsWPde3p/VMZNt42cIbFty3sY9JnODPX+Hx/PvvHE/Pp9wjHbM9nv8AoSZdwQ==

View File

@@ -1 +0,0 @@
eNptVX1sHMUVt2uhlLamVmkkJKRkYlVtFN3u7d7eh8/BpOc7n7+wz/FHYqc4x9zu7O3mdnfWO7v3laZqkqKgJkXZPwCJIgXiy13lGoeQiEKIKRVUFERLPyCRGxSpRUSE0oCaFlWt1HT2fCa2nJXudmfee7/33rzfe3OolkcWUbHRPK8aNrKgaNMFcQ/VLDTjIGL/qKojW8FSZSQ1Nj7rWOrSNsW2TdLp90NTZbGJDKiyItb9ed4vKtD2029TQ3WYSgZLpT83H9nfriNCYBaR9k7wvf3tIqa+DJsu2qewA6CFAAQK0kzZ0QAkRCU2NGwWxAxSQBaAmgbqwXiYwMbAVhDI0DXAMihhh2pkVE21S0A1wJgJDZUobLsPtFtYQ54TUiI20tsP+MAa333qFtD/HR1048wadYcga53ygw7HQb4Pa9DnGWwB3kZGjnsvWdAxMB0kYQBLjgQtGwEFl3asBv0irXXIu+mpAZUAvQQMqKMd60OZpjs6lpDmbWVNmwliRlcN1dM06B5P38S2ENTpQoYaQXSDZmzSgtqO5SFxbORATUFQouW+0tRWUTCx3YW1JTwNRRFRdGSIWFKNrPtstqyaPiAhWYM2mqMxG6hOEHcuh5DJQE3No+qylfscNE1NFaEn9+8j2Jhv5MjYJROtF895uTGUFIbtnkvRIGL9/pES5ZoBeDbYwXLPFRl6YKqhUe4wGqTxVM26/OXVAhOKOQrCNHjsVpeNF1brYOKeGoJiamwNJLRExT0FLT0cPLt633IMW9WRW4uPrHfXEN5yJ7A8z0bOrAEmJUN0T9UL8Ys1xsi2SoyIKYb7DFcVMc6pyF36RzotyumM3jVYUOK7e6I9uf5SJtk7I3fgwO5gybH7ZRTL5cOZQFEUYtnJUnwix/CRQCQYDgf5DoZnOZZneWaAC+Pe0SldT1gSN5KMCHli7JJT3eGyIxVjbLxbTjqpInISLIrsmcz2F/oCgZmp7u597B5hPL3Psvtm8qrADpOxgVE4WEgOpCd78oXtgEbn5FWpqy8Ee/p0RUlPxLBOuImhfG44EI6MDubKeTwTCO3CHNuTLPXsGciuCo8TBIZrRBjmgh2c9yyscENDRtZW3Fkhyv/MQsSkHY4OV+mR2Q45VKE8RG//ptaYHidTg7covLGSoJx0F5OW6gOBCBhDJghwgSDgo53BSCcXAr1D4/Pxhpvx21LwzLgFDSJTGvasUL4mKo6RQ9Jc/LZkX/TITivphU97lEFFExPENKJy5yeZ0eW5yfQnzi53FoOtLB1J5bpbd7HO+kK5WJBER5KUfEHnouWgoGaQI8rnGiamhT03NCBGJ+4sz0cXGpIV3s3RXDmG5xiOf4m2virSNvOSMbFlMwSJdFLbJXfJp8Oi12NdAh8SwvTgt9MZKWqOhMacTALrlJlkOzAtpGEonS8ydF4gTdVVWpj6f+MWIG4lRI1fXK9g4xyi90UtWC8r98pqDQt5+F4St2CC0Wj0wu2VVqAEqhIVoufXahG0Oho+oJMX1ys0IE5yZL64os2okrv0LbpIiyiARFEKR7hQJixBIQzlEBeBfFgKyx1cSDwdTzJxKCqIGavzz60lpoZjQ/3xFyaZ1URiUubyLVkzMDFUWa6OIYsWxp0TNexIdFhaqEqxRmNT7rkOMYo4DglhKSNEuXCI6aZjaAXtC9pVvElbvy4PVr1yGtlfN+/dfPTLTfWnhf5u3rSP8/gw1/Zw4QcPfxhNHPzG00tP7nrr4qnHOsc3Bq6CYf3Eh6SS3Pm//XdsOX7X9H0XPr1y4+Xtvcdm3vus9QPLfyg4/EbqnctPfPva8Obf/vz9Qf/QK3eHf/Xa9Z985PrLGy5uOP6Xq3sGgsPxEeX0ZLmt+T/vVvqO+t45a3c1HW796MrFl9qy99yLJp5a+KNv78aZ0Uevd2278/XIJ0Lm2Jkbn33epbfs+P5ru47+NPPDPvvVyJ/axPdnr29kH/nmHbAl/fbIydaHjnz8aa/8h3c33dN2ObN44cSN32/q/+f033f+becvH9ic++SpN55M3n/t2ed//PljG2LKf1Nbn/6gZTFx7EDrVzfdtK/+bnbmma/8u/WFrz/4xKWO+0/8665HfQ+1lR+/ceTmfRMtsa1DhchfL5XfypNX933c4XvzWqL5gfe2XT5Y2Dudunh+jrkUeuTCVmHT9Ml0/RBbmh5//muvf/dLTU3/B/U9eXg=

View File

@@ -1 +0,0 @@
eNqNVQ1sG9Udd9sxdbRDlRBsAgE3b1ABucudzz7HrbrOcZw0zVKXfDRJW5Y+3z37Lr67d773zh/pso6mWjSIEKeyTEMMVJLYNEsDoVFhlBa2roWxCTQ0TYRKaNpQ+VgntI7SbdLG3jnO4iyVqCU7ee/9/r//x/v9/+9gOQdtrCFz1bRmEmgDmdAFdg+WbZh1ICaHSgYkKlImdiY6u8YdW5u/RyXEwpvq64GlcciCJtA4GRn1OaFeVgGpp/9bOqzQTCSRUnxn9eb9fgNiDNIQ+zcxe/b7ZUR9mYQu/H3IYYANGcCoULdSjs4AjDVMgEk4JmriPLQZoOtMJRiPkyGIISpkknTNoBRTRA5FJDVdI0VGM5m4mdY1rHL+OsZvIx16TnARE2j4h+qYZb6p6caK6zRCypLfa7DM00QxE2DuZQK1aAdDewU2WItYcvL/MKICM4M/l81EjGWjpA6Nr10brwpymplmUo659XPJixBfI2sPLQCjYcYoMiYw4FWo76c7BlKg7m2lLcIGEWtopuYhTbon0L+Y2BAYdJECOoZ0g9baoiIkju0x8Vx4qKxCoFCJvuvbMKEiTNyZ5bJ7BsgypOzQlJFCE3WPpQc1q45RYEoHBE7RmE1YEbU7lYHQYoGu5WBpwcp9FliWrsnAO68fwMicrubIkqIFVx5PebmxVMgmcecSNIhoa/3OIu0PkxG4YAPHP1tgacE0U6d6Z3VA4ylZlfOTtQcWkDOUhK32nltaMJ6pxSDsTrYDOdG5jBLYsupOAtuQgsdr923HJJoB3XJs50p31cMldyInCFx4dhkxLpqyO1m5iOeXGUNiF1kZUQ73CF+SEcpo0J2/1N8vp/qTxpa2vBrriUfimdZisrklm2pAgZ5g0SGtKRjN5KRkoCCL0XRvMdadYYVwIByUpKDQwAoczwmcwG7nJdTS0WcYTbbC72wOizls7kolGqVBRylEuVhjqtlJFKDTxMHw7t50a35bIJDta2wc4HaLXf0DNtmWzWkitwN3bu8Abfnm7f298Vx+M0Ojc3KasmVbCMS3Gara3x1FBua723OZHQEp3NGWGcyhbCC0C/FcvLkY3709XRMeL4osX41Q4oMNvPeZWdSGDs00Ud3xUFh42obYolMJDpdoyYiDD05QHcLfvlauTrynEm1LEr5poolq0j3VbGt1TCDMdEKLCfCBICNENgXDm3iJaWnvmo5V3XRdVYKzXTYwcYrKML4o+bKsOmYGKlOxq4r9lCd2epNe+LRHWViwEIZsNSp3upftWJj1bGvT8YXOYpGdBqY2WHHrnqqoPj9YyCuyoyhqLm/wkcGgqCWhI6fmqiZ0LHluaECsgd1xMczPVE8WdTdFc+VZgWd54ee09TWZtpmXjIVswmIo09eFFN35OgMUvB7bIgohUaKF30znuqw7Cux0kk3IoMrEm+kUhDoCyosFls4LqGuGRi+m8lt9ubA7EaLGL6wEEJSB9I0rByvXyp+uRdjQ4/eSWKIJRiKRl64OWqQSKSQiCi8uR2FYG40QMPALKwFVinHBwNOFRTirKe78N+iiXwlGBF6MJMOCICmiBIOhgCgCmaelkQJiSHom1szGgKxCtrMiQLfc1Lcj2t4aO9HL1iqJTVgLT3vZRNjUUqlSJ7TpzbhTso4chU5LG5YoV0e0z51rkCOQ52E4nKSueSnENtI5tMj2P91NeKO28sY/UPLu00yfXZW746G1vspnDf1+9hl5ZGviDL/h7JXvPnhmXdvwO49Ic7ceuPnQ21/91tq4abd/+cSbb/947PrLJ79e1taseWjkyt/3D358+kbfkYFZ333H7uw59+En//r0wswN+ZeKBwYuPLnrjY3n//r+n88cP7/3B98efWp47OPev/3Ouc/N3tLnbvnj6+PK6NHD/nsvzde9WbqN7xp/+MS57GOdA492a9Ibl8jeicM/e/fUXd1gw7pCu893+mT407nQ93543WhLy9l9a5+LzjYMrd7wBOk6tD563djYWfX7N/U1n+9+eeSxi5EzI5Psxacv75v8xbrCkZv/YA+7woe3rP/lDf+8mB99tftW5fHknmP7hw58NHk0+8TYkfc3Dk1OX/+Xt8bXK/LIK+81tVz50it7nn/532JrQ+Jc9tefPCB98Tv33/6nX1mXV+147vbA7O+Hv/nkf9L3ZJSj5B9OLPtBWRe/MJq48+SP/BdXj9/d87r0wU97Rg7P7O17r+0nX/nN3l3++Y1bK8Vd44tfqEvtW+3z/RfE1cHo

View File

@@ -1 +0,0 @@
eNqNVXtsHEcZvzQEkCrRIhQ1VEk7dRqQGu9692699whWsc938Z3lR/yIH1BZ+5i73dzuznpn9h42hpI0BAlVsGkFKkqLiM93wRinqQ2EJI6QmqqpqFTxkJAdqFqoqESrtjSo/aeizJ7P+IwjNffH3c3M7/t9j/l93xyv5qGDdWTtWNAtAh1JIXSBveNVB066EJPHKiYkGlLL/X2DQ7Ouo68+pBFi41hLi2TrLLKhJemsgsyWPN+iaBJpof9tA9ZoyjJSS2t3HJ5uMiHGUhbiphj42nSTgqgvi9BF0xhygeRAIAENGnbGNYCEsY6JZBEWtFu4AB0gGQaoBeNzAoIA0SCQ6RqgDCghlyJk3dBJCegWSFhZQ8ca29QMmhxkQN8JLmECzaaZZrDFNzX9cs11FiF10+9tWBZoohgEwUEQbES7GDrbsEIjYtPJ/8OIJlk5/IlsFgK2g2QDmg/cHq8m5XUrCzKu9fAnkpcgvk3WEVoAYEpE24gGqLoKUrSIuVu4eYTumEiFhr+VtQkjIMbULd1HWnSPp7+YOFAy6SIjGRjSDVp3mwqSuI7PxLHhmaoGJZXK9dXA3WUNYeItbpXgeUlRIGWHloJUmrT3i+yUbjcDFWYMicB5Gr8FawL35nMQ2oxk6HlYWbfynpVs29AVyT9vOYaRtVDPlyElG24/nvdzY6ioLeIt99Eg2lMt/SXaKxbgWSHCcs8WGVo83TKo9hlDovFU7Nr55cYDW1JylISp96FXWTdebMQg7M31SErf4BZKyVE0b05yTFFYatx3XIvoJvSq8f7t7uqHm+5CLM+z4QtbiHHJUry52kX8eosxJE6JURDl8H7KVRSEcjr0Vt+fmFAyE7LZ1l3Q4iOJaCKXKsnJw5OZCAqOCCWXpDKwPZcX5WBRCbVnR0vx4RzDh4NhQRQFPsLwLMfyLM+kOREdHhgzzU5H5fqT4VAeW0czfR3ilKsW29l4Rybp9hWh28nC8PhoNlXoCgYnxzo6jrHjoaGJYw7pmszrIbYXD6YHpO5CMj0xmsgXDgEanZvX1bauVinRZWraxHA7MjE33JPP9QbF8EB3biqPJoOtRxHHJpKlxHg62xAeFwoxXD1CkRMinP9Z3NCGAa0s0bzZ1kjonAOxTScUPFGhJSMuPl6mOoQvX6/Wp9/Zvu5NCe8ud1JNeitJR28GwTAYhDYIckEB8NGYEI5xIjjcM7QQr7sZuqUELww5koUzVIaJDclXFc21clCdj99S7Cu+2OlN+uHTHmVg0UYYMvWovIVRZmB97jOpzqX1zmKQk5Usfarm1lupqb4wVSyoiquqWr5gctEpIaTL0FUyy3UTOhR8NzQgxsTeLB8JL9ZPNnQ3T3PlGJ5jOP43tPV1hbaZn4yNHMJgqNCXhpS81WZTKvo91hbiW0MiLfwhOuMVw1XhoCt3IpMqEx+iMwgaSFIvFRk6L6Chmzq9mNp3/RXDXrmVGl/cDiAoB+l7VxVq18pdbUQ40Of3k9ikEaLR6JVbgzaoQhQSDUYvbUVh2BgNHzTxxe2AOsUsb+KF4gac0VVv9UG6mBCjIZUTQ4KsKLR6giLKES6qwIgSlqMyL4jn40kmLikaZAZrAvSqnWO97T2p+K9GmUYlMX32+jNftRC29EymMggdejPevGIgV6XT0oEVyjXQPuYtR5Qo5DgoRyO8GOXEVqaDzqENtv/pruyP2tp7/+2Kf59W9oUd8v3f+2yg9tlJ+n9nneDuvnJz989XxM4dR96/OJe60T2XXkkMn9w7+tvHLzA3ln929qNp2AXa/v3cqaeeXl2N7gpcv/PrO/7RikuziYuvfsVIlZ3pb5x+682/xh4K33jx/IMzM6FT95wpnlz71sA7i/P64r3M9ckD07Hwtb2lP2v3vfKE0PO35f33Dv/gvefSl7kj0vMH7vr72JnHlkp7GPaf4/8607z4WlsgEHH/+OaTu/ZN7lp6abd+ffzo5xe/cyAgpIufeuqXf4l9aV9vMjjyB+/ts+8O3fnyfecefffH0e++/jn5tfzUZeucwdz04MFrux6+68OT88tHpqdf/8yVN07fiIWuLZz+zw/dtPLiMzsf/f47r3zQR/6UbF2Dvfu6pp5/YQadUi7v/+Ijsa9W935h/9WPRp7c/caeez6oHHz75uTY459eekD98MDa/W+deynNHgyuvXf10kD299/8SflIrOVHe86cmKDF/PjjnQG5s5DquiMQ+C8J5Ld8

View File

@@ -1 +0,0 @@
eNrtWVtv20YW3r7mqSj2dQGWKFBgIdLU/RIEC1mS40sdBbaT2GkCYTQ8FMciOTRnqIsDPzTtH+BPaOpIheGmLRrs9rLZ533YP+A+7I/YX7CHIhXLSIG+F9SD5Zk558w53zlnviH1fD6CQDDuvXfJPAkBoRIHIno+D+AkBCG/mLkgbW6e3+/uH3wVBuzqr7aUvmisrRGf6dwHjzCdcndtlF+jNpFr+L/vwMLMeZ+b01/f++CZ6oIQZABCbSifPlMpx708iQP1iIcKCUAhig2Ob4WOQoRgQhJP6krTE2MIFOI4ysKZ2KYiuSJtUPo4VrilTHmIEn3mMDlVmKd0vIHDhK2rOUUNuAPxJmIqJLjqWU65sfcmU7Y+dpUDbpo5BX0mAhQJuJkb+3PMh3DDSiggUM+e4ozLTXDiqYEvtRLXXOaxWNLDuTx+CxkAcXEggxBwjJv7iK0Mg9iQoVfP5jYQE5H/75/eP7e5kNGrm2h+SygFNA4e5SbzBtE3g1Pm5xQTLIdIuMAoPFjkKroYAvgacdgIZolW9B3xfYdREq+vHQvuXaZRa3Lqw7vLF3FoGubHk9HrLjrR3Fq7P8W0e0peL9V047uJhilhnoNp1ByC/sz8xfovqws+oUM0oqUlFc0S5VerMlxEL3cJ7e7fMEkCakcvSeBWSj+szgehJ5kL0bx1/93t0sXr7Yp6Pq9Xv79hWEw9Gr20iCPgHzeUQQZTjXK0EX1pzCjnQwbR1f96PWr1+u6dnbHdetSpd4Zb0/7G3ROrxguPStNQblnQHI4q/cKEFpuDw2nrwVDLVwvVUqVSyte0vG7oeT2vbRsVfnfvyHXbgWnc36gWR8J7aHXXK6ehOWnqrXVrI+xOIGzrUH18ONgabxYKJ0fr68f64+JB7ziQmycjVtTvif3tPbIz3tjuHXZG49sKeheOmHlns0w6m65t9x40uSuMB7uj4b1Cpbq3Mzwd8ZNC+SE39M7GtPN4e7DinlEsakbqYcUo1Yz482pZGw54A2lHX6H01wEIH5sNPp8hZDIUz8+xDuE//56njfyiu3Ndwn8+b2NNRm82ApZTClVlH3ylYBRKSr7eKFUbRlW5u3tw2Uq3OYhL8AobbSLXYBTPJO1yW8HjIxAg74TS0mrfHwTEExbWZWfZA3Nqh94QzIvWb1b/m7j6MbVxPNizGkx8LkBL3YwuD7W95EzTtto/JK2m8WBAPHa6aIXozaINxqeTsUlD07RHY9eon5aKrA8htV6nKn7A423QIc0V0Yta/VW6sKzDC4zd0PKGZuR/wtAYxbaLY/F5gLECxUNUTqOrnEsmcc/dKebLxQom4jYeX9QJTdgP+23uYqWK24ofgMOJ+fNEw/MDHOYyTNTib3pAi+i8jMo/visg8QDDo3xeWqTZ+NeqRACx/TiGazOler3+z98WWpoqoki9bPx8UwpztmImX3DFj+8KpCZeGOJyspTWmBldfYSDXqlarZQL/T5AzQBSM0rlAjVNbLNqoU/KtPZta0NrEWqDtr+ox2jePrrX3N1q/f1QWy0sresnBDb3uPCYZc32IcDERBfU4aGJh2cAM7S11zyKXtdoHQwDwKS1Wt2olLX17v6Csj6bxXnzBr/+5YlJJGkgbTBTbagxv1FkN63ZWm/Dw73u0Wh3x2zv8MoDUaiufzKg4+1HyAQq7x9jfaYa+jUj6osKRgGKFS8BbS6bs1DJLWlllVW0uI80o6rla6iV8FjPQtcg8NHDeAvL71m1ch9IpVorxaZtzmjMtEi0zDNhojaMnIqWJVEbz1I2U9+ybKyxpEQVBwFYoSDohhc6zllOdfgAK74vkomcipsjvfbQfySOVOrp2a1bfzigrlHZZGoGRKy4uCplWCwUP8xwSGpiEwL4WGRoJGiQDIgEiPjxKcMiwcLiQQZFAgU+rmdQLBQbT7wnXobFQvGRPc2QSBrEZNkNK4VC2hmDpFAIig+uGRgLRRrwcQZFUhdjllHI8uadIbFEYkyCjEQSMP6W3bLeYrEOlIQio5G0TbLbxVsWIdn7mxQKHsr4tXj8e1MGSQJJdsV4e2KwrE+Wr7QYONkdI/sp4Nnvh64KyX11JfhP2917nae3bv0fs0k9Cw==

View File

@@ -1 +0,0 @@
eNqdVWtsFFUU3ooajCBqIiQKOlQFA72zM/uY3W1dsd1u6RbbxW5b2qI0szN3d6e7M3c6d2YfrcZQBCNqdHyExDey3TWlFBBEXkWEoPiIrxqlKiTGgI/EaJRgFAze3W6lDfxykt2Ze86533l859zbn09CDUtIKRuSFB1qvKCTBTb78xrsMSDWH87JUI8hMbs8GGrZZGjS2KKYrqu40mrlVYlGKlR4iRaQbE2yViHG61byrSZgESYbRmJm7KG+chlizEchLq+kVvaVC4i4UnSyKK+X5lOBhTJVg8LlFVS5hhKwIDYw1MofvJ9IZCTCREEUVXXgQECWFKlgqRAZS95Y1yAvk0WET2BIBDqUVZKHbmgFJIZ2PZiPQV4kWT6ZjSGsm8NT497KCwIk2FARkCgpUXNLtFdSKygRRhK8DgdJsAosVsUcjEOoAj4hJWFufJe5jVfVhCTwBb21GyNlqJQc0DMqvFg9WMgMkFIourkzSIKoDliXZ0iBFYqlHW6a2ZYGWOclJUEqBhI8iSenFvX7JitUXogTEFAiz8yNbx6ebIOwOdDIC8HQFEheE2LmAK/JnGPHZLlmKLokQzPvW36xu5Lygjs7zbK0a/sUYJxRBHOgSMNbUzZDXcsAAREMcyMzPFGfBFSieszcxNpcr2sQq6Rd4Joc2aYbuD9LuIAfHc2X+ua14LIJEk9YZmdrCS/mSJ0mVVA2FxWCKmVjbA6K9VQ6uEqnm1ra2DLkK7lpuSQN21s0XsERQoV/gva8EDOUOBQHfZckfKRAOMmmED7pUgDTKsIQlKIyh9pB8/jAgEDtjvHuAkiL8orUW3RrjhSZT/WmU6JgiGIsmZIZT6/DLoWhIUR2lraoGiq4IQEBGZPieNzDJc1E7QdJrgxgGcCwe0jzSwJptUIyKtJ0gKFARlTPmGMVMp8u9JnXzjrtHMMwVZSkCAlDhCEjXItkwg6uolQNJhAv7k0DMjEwIckSIab4Xxp/bGadZPPuiw10FIfkoMg7mOJzYLKFBgv4hSQuwDg8Hs/+SxtNQNmJicfl2TvVCsPJ0bA2Ge++2KAE8RqDh9IT1kASzbHbyKJL5MWI4PY4BUZw2p0ujol4nC43B+2RiOjkbexWXx3w8UIMglCx/8x8bUdTdWPANxgi2D6E4hJ8+uuyaV1dQqQrLHuXpWK+FX6PPx7IhOuW9kTcyLbCkTH0QARWx5Nc2JYW7NXR9oyvNQ5Yl83l4DgH6wYszdAszYIGhkNLmztkuVYTmeV1LnsSK22RYA3Xa4jpatpXE6kzgmlo1NLQ1dkeDaTqbbaejpqabrrT3tLVren1PUnJTjfhUEMzvyxV19DV7k+mCJu8HvNaqyjSmxIpi7c0IYBMCCDzYWMq2Yn5qKLEYg946amnYRVVT073oJLIVJHBIs0EyZuXYUjSobcJKXDsWVIDIymJ3non76+XY7Gu1mokY6a1MRlvsnGu5mXx3iTqsTnbEEP76zL+zobopCIwdjtgSnXgGIe72DwXQv+fUe1qB5MHHgTV8WssryCsSJFILgQ1MkDmoJBAhkgOdg3mCOfN1R3mTrfggQwT5hxh6PAwnBPUkCNzAu2/4yFbuBWK99nqXGHslOiRsu5bHptuKT7TyO/8ef2patR/97Vrfz23/qcXB8rW3L3f0Trr+TOJZ7iZHfxBecNLYF/W+e75E5ZFZz69+pE/z/TtzyydZYGr8cEHrPetuunkEnrOZjBy54bmga7uD7cu9q6c/cKux0+Ozl447519sz44vnbvJ3u49S+K3mMZ36F7N9y4YPS29d/fcU/vplP9LY+0vvvXdWff/OLzV64cPTrr+iX3fHL6Zdg0+4ffTpVZ5p5FX4XmnF6Dpy+YM7Ag7ve7377rsoPrWvOvbmvrXLjz8PuxU0Pzfjrwd+eh/lRq2yl0dO26mTMun7v7ivfWuu/89umZz2254f6+44uML4NfLVq/ePS3j1/+Z/OqBvDLXfH69i+Poy3CmpG+3y0nzj7zzZIVr0q7ORqfC+y9esbh+de8txF99MfcH49d5fx59KGNQ9TC7BuuHd99Gvy5e8b04dvPLv7s5qFNlYsHhl9nn5jbVtHYltsx71F34NbTTSesxYJOs3xwpN8Tusxi+RdCumK8

View File

@@ -1 +0,0 @@
eNptVXtsE3Uc7yQKKosKIjFiqEPFwO56116v7eaCXdfSbtmDbsA2GOV692t7a++xe/QxnERmBAUlF42PGBW3roUyXopzzG2AgqgsSkBMhnEhSmKMgJH4h4MR/bXrZAtc0sfv9/1+P9/X5/u9LekokGRW4At6WV4BEkUr8CBrW9ISaFOBrLyU4oASEphkXW19Q7cqsaPLQooiyiUGAyWyqCACnmJRWuAMUdxAhyjFAP+LEZCDSfoFJjHauamIA7JMBYFcVKJft6mIFqArXoGHorXQYqms5xJ6nuLAiqJifZEkREBWpMpAKupogTecwIBI9iooKgghIBzLs1lNHt7h8FdWJEBx8BCgIjKAFwrgRJiLokpZJAy1dKRDgGJgpmO6B5MhQVa0/TOjP0DRNIDogKcFhuWD2r5gOysW6xkQiFAKyMCQeZCrjZYJAyAiVISNgtSklXaQEsUIS1NZuaFVFvjefIqIkhDB7eJMNjcEFoRXtMO1MAi7x1CXgGXm9ThKWFHsYByRFYrlI7BuSISC8aTEnPzz6QKRosMQBMm3UEtNGu+friPIWk81RdfWz4CkJDqk9VASRxKfTL+XVF5hOaClHXW3u8sLb7kzoTiOWg7NAJYTPK315Brx2QxjoEgJhBYghvYRlqIFIcwCbfSaz0cHfH6urCoWcqx12pxhT8LvWtkWsArGtURCVTwBYA9HSb8xTpvswcaEY3UYwS1GC0GSBG5FcBRDcRRHKjFSWOlt4rgKicHqXBZTVObXBGrLyXaVidtRR3nApdbGgVqBAktzY9ATcxuNbU3l5a1os6nB1yop7rYoa0Jr5PpKL1UVc1X6Gp3RWKkeRqdGWabMbaacbi4U8q22C5yMra6OhmuMpMVbFW6PCm1G8xoBQ52uhLO5MjgtPMxkQrB8hCRGWLHss3+KGxHAB5WQ1o2b8N0SkEU4MKAzBUumqPKWJOQhGPk6nZ+crtqqWxRekKyAnNSGXBJbrDda9PVA1BsxI6HHbSUEWWK26ldWN/Q68m4a7kjBQw0SxcsBSEPnFOXTdEjlw4DJOO5I9qEs2WEns+HDGUVAXBRkgOSj0nobEe/kykA8FZ9MThYiSEGKZ9tzbrWhHOtj7fEYQ6sME4rGOMzWTphYP1DpwOG8iSgJWTcwIISTtW7SSOzPS6Z4l4G5YgiOIRh+BI4+S8MxyyYjCpKCyICGS0pJaKPFHBXPzliZCTebSFj4Uj3L0xGVAfWqv0LgIDPlUr0ogYhAMQNxBO4LEGE5FjYm951fgLKWNEPj/tsVFCEM4KpME7m2YsPTNSSQxc8mcQuGsNlsg3dWmoIyQRWbxTYwU0sG06PBjZzcf7tCHqILk3vjU9oIy2ijT8KDjyCsFquNYBjMb7bBA24GVgBII7ARJspCBw44XIiDokMAqc/xT0tXNNXYqz2OvkZkOpGQWnHyBZHmBZlnA4FUPZBgY7QMHRFUBi5LCaQgltfepB220jaAYX5rIICZbBhpRsrhGppC+592yeymzb0pXkxl28kHTxacXrx9ji73zIKff/9VvKf5n7AHB28sf2Twkv/Rvr0XMgbnhS43WrZgzqtF2DOt4NATsXtRcGrOxJ93P7XirMPw7MjluYHoOFlQ17fqsbrUuW/+ufjqjQO+4bLH97xw3/nY/M3PLlqz4ya+SLzq27yHXSPenF09sDvwcof4TvE593vbSqhoS+/bf0ifLlt4/rk4fwaMosmuS1+s+/ikNFy8fXygsSGonvpx1+7CiQ90usFC4TtP4XCmcCS98ET3trGPLqzfqmtg3n6ox9n7ZLWnWkhSlW7H3ytD71ydp7Tv3PWa/SH33IJujJ39VvPrG35r3hW+Or+x9fIYORS9q+xI8cEmQ92See70ElI8uGfWzo33erdu7N+55RgiLj6OXcG/vVjS+eHjrojtl4dRdsO2B8SR7mTZdxdffGAjcXzJjg7j7Fce65iYGF57om/h+7GqITk4obS8+WvLtvWn3z36y76nlv9Mdj2SGnzYs+iHYx88rfv+S/v1zdHecmbxWfKv+73k+mJXqXrjHss1h/r0/KVX+Pj475u7uE7PuqV/vp756vm3opbOcfOlM95vVs27zoXZrXhF6Vh/4U991xu7N+zb662ueeNormOzdJ9bCub+dZdO9x9fx1Kh

View File

@@ -1 +0,0 @@
eNptVX1sE2UYH/AHxiAQFI0m6lnBJbDr7vq5DhG7rl3LZJ3rYB9Ex9u7t+3Ru3tv9951bRGQDzFEiV4wfgTECFsLzRggBBWY8ROmSIgfUTeJCajx2zm/IvED3+s62RxN2t77fPye532e3/PcxnwKqlhA8pReQdagCjiNHLCxMa/CTh1ibXNOgloC8d2N4UjzHl0VBhckNE3B1ZWVQBGsSIEyEKwckipTbCWXAFoleVZEWITpjiI+M/jnGosEMQZxiC3V1Mo1Fg6RULJGDpagcBsVKpeoGhS1VFAWFYnQFOsYqpa1FdREWyiKyLS8jQqiLooDMhWiAMYC1qgM0ikN8SCzZDzMqBIQ9/9jtZBMyzElZSgZSHDJ5Nj3EYmEeCiaorii0Q5ES4IsmJYykbHkH2sqBBI5xICIIRFoUFJIDTVdNZEYq3ttPgEBTyr8Wdns7gTCmtE3sWoHAMdBgg5lDvGCHDf2x7OCUkHxMCYCDRZIyjIs9sQoJCFUaCAKKZgb9TIOAkURBQ6Y+srVGMm9pSvSWkaBk9UF8240aYSsGUfCJAlvqLIxQ9orU6zVUWVlDqZpUi9BFkm/aBGQfHJKUX98vEIBXJKA0CXqGLlR577xNggbPcsAF45MgAQqlzB6gCq5HIfHy1Vd1gQJGnlf4+RwJeXlcHYry1rdhyYA44zMGT3FRrw4wRlqaobmEMEwnmdyHEJJARqDP3d0cLGOqLS4vivha/F7/MlQJhqo64xVIVuLI6NroRj0JlOuqC3N2b3x1oxveZJm3Ta3w+VysFU0a2WsrJWllzIuVNfUJkm1Ks80Btz2FJZXxMI1rqzOp71WX00soIfTUK+1Qnd7azzUFbTZOttqalZb2+3NHatVLdiZEuzWBhxZ2gTquwJLO1r9qa5FFMlOTwn84qAT+INSItGx3IskzCxflko22FzupvpkNoU6bc4ViLH6Axl/+9L4uPQYu51mShm6GEcVY376xrghQjmuJYw9Nie7V4VYIYMKN+VIyTQdb+wmPITvDuRLE7s7XH+ZwnO7awknjf6AKlRQNjcVgQplY2wOivVUO1zVTg9Vt6y511cK03xFCh5qVoGMY4SG/jHK57mELichX/Bdkez9JtlJJ830yYzSMK0gDOlSVkZvK900uqroUO3h0cmikRoHspAthjX6i6zvyqa7eE7n+USqS2I8WYddiEKdix0puSgqMsOQhGgJk+K4mb6SZox3BXJXhmYZmmFfJqMvcGTMzMsoSNVoDDmyHLWMMVghgbQ5Y4vtrNPuIoVfRAkyJ+o8jOjRWiQRZuJFlKJCEQH+WJom+wKKgiSQxhR/S4sXG91O4vzSZAMNJSFZ0XlHsa3MK+MtVGjim5e4DOPweDwnrmw0BmUnJh6X89hEKwzHZ8PaJPzSZIMSxG4G96bHrGmBNwbnkUMH5N3uqJ2zR4GTYWOQhy6eAx4mVuWORnkbX3XAF6B9gEtAOlLkn5GvbWvwLgv5jrbS44lEh5XRF1NeRlgWYrFcBKqkMUaBE5HOk2WpwhzBavK2GUeqOA9kmCh08G6nh3E56RqyhsbQ/qNdt7lpi2+oDTmznXL8rSnZWx+5qqz4mUa+ly5pj3vDnzOzHxq+OHfT2WtW1weP9fcOWaZMl4PHF262uJ+Zlzt66oXyu71/Dy/M94BZa0bOr10XHj4Tn0o1009ShQYV7mxo2fHbmeHvR1xfFE6vHzn5wIlX0I+oZdbx41H6jve8n97Q+8dpvc3ovKnNWHzhnT38o/sOR+/nM7vOrJvxauO26qH2U0Jg370ren755s76vL965c5zN++7elPr65GpZT95ThzK7x+5rwJUX2yasYVaed3pX8rLzofq/AOzm1cJbfcEWg14xPfbkg/XHHyf2luWHLr/1Zv7vfPpc76Hh17blV1V+HLdnJGzw+wtO+4aqHrr9/bnfn3j5adyH2WGtly75LttLyzQeupuHDg5c8PbWzfcMufBr8D6S2fnnb/zxlPzP5gpzThxrPrk1pFvb98JywfebHosu+Kvs80fDTR989MPWy58Eh5MzXh6V/3Mhf5PpgcirneOfv1sy6ntrj7x+o9XPpE5NFCrBv+ZahZ4Wtn2S3vqVpHnfwH0sWF4

View File

@@ -1 +0,0 @@
eNqdVmtsFNcVhqIKqBCQtBTaRGRYVSRxdtYz+15bkCxrtizED2wTPwhy787c3R3vzNxhHvuwSyLIgySkUaZtHk1aU2BZO8YYHFDKy0WpWmqVSAmBNnIikyaqWpqQSC0tVWNSemZ2jdeFXx1pd+7j3O9895zv3Ds7+jNY1QQizx4SZB2riNOho5k7+lW81cCa/nhRwnqK8IWmxpbWfYYqjFeldF3RaqqrkSK4iIJlJLg4IlVn2GouhfRqaCsitmEKccLn359zqdchYU1DSaw5aqjNvQ6OgC9Zh47jYZmCZ21Ot1xTegpTPNYEFfOUICeIKiELiEqoRLInE0QUSVaQk5SCbERXCaD03yiLeQpXYCkqEFR1AWuUBA4Byga25+6OiAAhJATO9nE3lTBke/czIJtKbmpKvTaMYKlKCRpF0hS0sJOKURySqSShiKFrAo+prAABM3RKMrgUJREVgzuwQBRHkF7CcTgph0pEbEXA0LDq2LYFRiTCY9EaSio67SW0JMiCZSnDGAtvBalIFLHYpRMidnHQtuKZQKIGNByarmIkVQzoWILNI91QLT+Mi7HG7JUpInDWWK9Dzys2iam9W+5utC0DGUm2wcxgObZtK4OVM/r/4oAZ5JtTBaVs6XCUNwqyA2Xaa6ezaHc1K5NSST+9Diwb1qY3O1JIUfJ2uLABChCtpoZ4hxXZKXoQI9COwyKPkkkVRClksAwvG+p/mJS6cdBOimSpaXtbPZqOIL5AArTgtEdSQtKShtUESvFy087/9FqL1BRjSKnbSXmclNdJ+SpZWpWYtEQBYyKSkwYIcOZeNQXJgpYqoSXFcjOhYpmzW7BaQnZ0BR2JAjRvFQUL3ypzq9xKsDcie3OAKrlUgpF4N+Z0ANu2ZVt/CiMesnZx1uJCimi6OTzzjDiEOA6DtoEm4YGCeTDZIyhOKPmECOEchHNBxrZmzME0xgoN3DO4WFplHoYEi2XhVHdrRB4qnyO0xeXm6UGrsmjgK+vm0UYgEY5VN+WhNmWKdXmDLuZwjoY0CrII+6OtzZlFxZ4/WTmhIC4NIHT5oDSLpcXDlTZEM/fXI66xZQYkUrmUuR+pkt97pHJcNewwm/2RppvdlSen3XlcLOsKjMwA1vIyZ+63C/0XMxZjXc3THAEMcw9T5AhJC9gc/3tXF5foikurBBfKcp6osj7d4G/oTEaiHiGnhdc8uD5AupCYr+8Ii2vT9fGmZCdHswF3wOvzMKybZl2Mi3WxdOc6LtGNW8KNm4RUMNusIUMw/FtFb6vsyrR5G92bvKmN3Q3tDIoq/iifViLt9WGdxDdopC7ToMfiET7R2BLcEGXWCkKrL5BLRKLxjeFaCtgZGYFf5dvYvNYIxcV4ptHbytT5U/n1zclQe+tD4a2cHEn0xPPB+qzwoHuTEqygF/AHaKbM0M94g4z1DE9pQ4QC0VNmgYXBARC0AvcSfqxo1a+h7SiAEPFbY/3l+2lv44ZpDS8p1IEozdGoKkClBqgWrFBuxu2lWH8N46nxeKjv1rcORcp+Wm+pwZFWFclaAnS4dkrz/VzKkNOYH4zcUu2jltohlRZ/uCJonFOIhukyK3OonW4u3cx0rO5IqbRooibhPOix3ZqjtuyzPbkszxk8n8pkJSbU4/XASWZwiaPlJXCmWm6AEC1p5j4PGxouz0wJbxD2ytAsQzPscevE4KDOrM0oRNVpDXPwLaDnzXGnhHJWka3ysD6PH4JcCxcsJxo8bjHidUQCaWq1cBFjkSD+RI6GCwmLgiRAZuz/8neGZhZ8sPjYzQY6SWP4Iun32nllfllpoWIL39rENIw3FAqdurXRFJQHTEJu94mZVhquZMO6Je3YzQZliH2spA3lpsxpgTfHvwOdLh4zft4XCnkDQbePifMs70dMIs6y2B8IBRLoUCRKRxCXwnSLLUCzv66jIVwfi7zRTlcqiW5USh9i/TLRZCGRKLZgFTJjDnIiMXg4LlVcBKzmcId5NMiFuHgo4AshhvHyTJBeAwfRFNoN3RWss9b+ItteLN0Av5n98V275s2ynznwu35dbw7LHzCLT00u+XXfwTWv/2zs3EFW3Xpu+Y6j6zYv+Qp96J6V34gpr/mHPzo998d3xubfvnxefGet587Pt55ZNraKX/C7VyZfH6n64lTsrjd0+svPJl7YMPCf4xOPPHrigw/fuf+OR5/IX2JOznV+ueG9/ne9D+15Kfov5a/P9y4Yip1Y17b0bLAj8wB3dWDNq4dXd/5kwOyM7sqNPPOxd/0f/vL5+2O3z3df7T2zjPutvGj1P5fvpri/Xdv/LnXb0nnjytOsEn3ia4oj1pdedOU25w+uDjxmTFT5Zp9iB+853rxPOf3cj64s+2bb4LrhR651fv9A29nq6/eN5h+++OHFlyfX+74+2vfF92ojmw6cXVGYv/rCkUD82e1/rn/v5MaPQi84/1274NnZ2b1S0+Qflz8XWtxdHVmx07nzlc29Y6hvztJfrTCv7fr20+rYD/MLn0mfU7dPbLmwJjaoBd+8zzx/efTK7tjjCw+8eKwm2Tu8+8m3m6Ptycw/VvYOFF5sXbowZHxrVp7r/ezn5+99YPKT3W/WnG/vyl15qmbxypd29S060/HTvcl37nj794W+4fs/qbp66fjlJ9HLpy/uuRDnn5r76kTt9oV/Grm36rWv1nzKB4Sm8b2dXZef7yp+uuSthiNJO5FzZsVGjCNZyOp/ARcvjAU=

View File

@@ -1 +0,0 @@
eNqdVn1wE8cVh5JQWtKE0DJt0kk51BYG8Ml3kqwPHDIRsg0GbNmWCB+BmNXdnu7su9vj9k62bD5DJlMmkz8uaVpamjCpjUVdY/NVSKF0hqFpISHJNJCZGhLoDCkNk9bNQFo3bTP03UkGufBXNSNpb/ft7/3ee7+3e08XctikCtEnDii6hU0kWPBAnacLJt5gY2o906dhSyZib1Myle6xTWV4nmxZBl1QWYkMxU8MrCPFLxCtMsdXCjKyKmFsqNiD6c0QMX9h0oVun4YpRVlMfQuYJ7t9AgFfugUPvrU6A5/aTst1zVgyZkRMFROLjKJLxNSQC8RIJtG8RYmoKulQ9CxjIA/RXwQo/iZ1Nc/gMizDBIKmpWDKaOAQoDxgb21OQgUIRVIEz8ccRrJ1L/pxkE1FNwtKPKlF8oxmgxedtCGRMBAKkyN0FpPG8J9nECMik7Fs8GdiQRHJrOJOXwXjM4mK3Zhtik3fpnUwoxERq+5U1rDYEGE1RVdcSx3mePg3kIlUFautFiFqqwBjN4MSUimGVWqZGGllExbWIFxk2abrh/Nz7py3UyaK4M51+6y84ZEYi9Z1d2vsGuhI8wzGp8e3aVMJrFTD/xcHzKDCgqkYJUufrxQoCA206O29XTfvkbq104qK6fZh3XaDftInI8PIe+nCNtRcdYcUiT43s2P0IEegFp9LHmWzJshQyWEd/jyo/2FSfMyAWmTSwdy29/RCLQT5BRKMQiu8GVnJytj0hkApUxpqxMRle11SY4yhpIEKJljBhCqYqnKWbu9lXVHAnIr0rA2SGx8rNZCuULmIllVLQ8nEuuCNYLeGvOwqFlIVGN4tCy6+29hugxVhb2X2zgSVcykHI5k2LFgAtmndpoKMkQhVuzRhWq9MqOUMjj8VhpAgYNA20CQiUHD2ZbsUowKaXFIhnf3QPjr2NOP0t2NssMA9h/uKu5z9UGC1JJzKNkr0gdLJwbpc7lzudzuLBb665RxOAol4fWVTHo4vneH9oaif29/JQhkVXYX4WDc4p8/w1o+XLxhIaAcQtnQ0On3FzYPlNoQ6exqQkEyNg0SmIDt7kKmFQ4fK503bS7NTSDTd6a60eNtd0M/z/siBccA0rwvOHq/Rj47bjC0zzwoEMJxXuT6BkHYFO8PXW1sFqTWjLVT8qEMI1hlL2xvDjWuyibqg0knji5YvjZBWpOYbVsfV2vaGTFN2jcDykUAkVBXk+ADL+zk/7+fZNUsEqQ2n4skVihztaKHIVuzwBjWU1v25laFkYEVIbm5rXMWhOiNcJ7YbiVUNcYtkllFSk2u06jMJUUqmosvquFpFSVdFOqVEXaY5Xs0AOzuniAurmltq7VhGzeSSoTRXE5bzS1uysVXpJ+IbBD0hdWXy0YYOZXlghREtoxcJR1iuxDDMhaKc+xkc04YKDWLJTk8sGt4LejbgIsLb+9z2tenTvaBDfPZ0oXQh/TS57LaEZ/TWgCadE3WmAo0aYVLYYAJcIMTw4QVccEEwyCxuSA8kSm7Sd5XggbSJdCqBDGvHJF8QZFtvx2J/4q5iP+GKHSrp0ocbgsWdBqGYLbFyBlaxLcWrmK2vOVTsLJaYWTgOujy3zglP9R1dnR2iYIuinOvQuFhXKAgHmS1Ih0tb4Eh13QAhVqNOTyAWHSytjOmuH2LlWJ5jOf6X7oEhQJu5wRjEtFiKBbj8rbwzXKGhTrfHFgb5qmAYEl8NN6qg2iJO2ZkaooEyaTXcvFglSDzWycJ9hFVFU6Aw3m/pxYI6vVWw+bU7DSzSjuEVpBDyysr9utzCxC6+G8RtmFAsFvvV3Y3GoIJgEguEj423oricDR/Q6Gt3GpQgeniNDnSOmbOK6Ax/Bx5aA2GEcawKRaUARsFIFeJxIIaCoSCPMlFRDA8l6tgEEmTMpjwBOoWa1Y3xhvrEkVVsuZLYpFF88yrohOqKJPWlsAmVcfoFldginJYm7gOslvhq53BUiAmZWCTAC5FoSOSi7CI4h8bQbumu1z1qvVewbX3FC+D1iZdnPjdlgveZBN+bN60W1H6Rm/b5K62zRuijL4R+Ftwyf+432Yvr73niD4+eXR2b/4ZYf+PMB0tPb5l5MPU79uXHpmxIjl46d+6ROYu2XorPfnyEP31h14fSi98aGfxk9KgWG9Lf3HVq9K3d16+NoDc3LkEPV6/NMw+9cvxS/cruRLz64qmDs+772uo/X/OtGxyUbtR+8by+ePaRuTNf2LOsTbMP7mR/cKai4erHdPSSUn/fj/7JP7joe8LRxbtzi7fM+uqha3TPbCl9z7BRP0X+yY4Zj0tvTdS2Xrv3+29PPvj7Y9rzD008GUstCV31vT905aONX5r6/Nwj7105tfLTP/3wnac2D7z7gNVNzn9+9dySocLm6y+/2v8Lc4ryzAN//8tLO6etPzDSFZn9WOHd6ZfXT/vC/matIVwzapzddmbyI1NjYowbMXde3bq06jcDM89Mp/cPt/14e/zna9LnL38qV/2NRk9O3XHuw3033mne+pUVbE9sTvfg7meHAo2f/fal/8zL77XOz3940cj0Cfe/PXqhuZDa+o/XK7eTtX9NPPh+5UHH2Hzio8/+GNjx7dDC7SfvDV35179v2jOqv7z3ePM3+oY69u47xp2dvOuD6m27o03r0hfmtW3sOR7b/sbX3+taMf2pwsffXd744havipMmZDKfPGdDSf8L0feGaA==

View File

@@ -1 +0,0 @@
eNqdVmtsFNcVBuG2aVXRKiEEJSgMSyEqMOuZfXh3bW0DXtvY8WMdr8E2hGzuztzdHXtm7nhm1vswprzcVpAEBhHUCBIabO9Sy+ERXCCkJFIrCGnaPKCJaqKkTSgllZO0aqRSmirumdldWBf6JyPtzp17z/3O4zvn3Lsl14dVTSDyzDFB1rGKOB0+NGNLTsW9Cazp27IS1uOEH24NhtqHEqowsTSu64pWWV6OFMFOFCwjwc4RqbyPLefiSC+HsSJiC2Y4Qvj0pVmv9NskrGkohjVbJbWu38YR0CXr8GF7RKbgqU3ppmpKj2OKx5qgYp4S5ChRJWQCUVGVSNZilIgiSQpyjFKQhWjPA+T/g7KYpnAJlqKCgaouYI2SQCFAWcDW2gMBESCEqMBZOh6gognZ8n4aZGteTWXBTk0naQDgVCxERGxiYqrgDQHLqTiKgD5rjnACTxZSARUTCkJJaVjFEgFDEmkqksAyDJEkxIi2MI9tW07ZVCJiMyoJELYNrIcZifBYNKdiik67CC0JsmBKyjDHwltBKhJFLIZ1QsQwB2MzxlEkahhWNV3FSCqZ0LEEAUF6QjX1MHbGnLN2xonAmXP9Nj2tWEYU42GquzE2BWQkWQLTA2gbGCiAFVj+qjggBjnAqYJSkLTZCo5CKkK2WntvMmt9aia7Uj6n+v93e3vcjH5BgCJRi34d8sTELVoJoYK0spk+oFhMhXwV+rAMr9sh1pMkdVPqBh4laBRkK6I0IALns5alIDNYplSVWWkxk2CYE5EcS0CC/T+7i+vTdCRVQYeUg0S8nQcmrFm9ZhWZTJQE51bnSk1YXwJGIt2Y0wFsYP1ALo4RD4HfORwnmm4cnl74RxDHYUhOLHOEBwOM52MZQVkO1RAVkY5HoRRkbJFujPZgrNBIBOXZ/C7jKFIUscB8ebdG5LFCOdGmJbcuj5qlQYO1sm6MB8GIlQ3lrWnoUDLF2l1eO3M0RWs6EmQRvKNN14ysYq2/VLqgIK4HQOhC9zOy+c2HS2WIZow0Iy4YmgaJVC5ujCBVqnAdL51XE1aQjVyg9VZ1hcWb6px2lrV7jk0D1tIyZ4xYlXpy2masq2maI4BhPMccLsZHxHJMjxtDPrfvEDCqQL/FW7OwTU9oW4aBC/zb87lC3z0YbCyS+MGMucM1wItxpk4VllMODxXCCuVgHC6KrahknJVOllrV3D4WKKhpvy0Nx9pVJGtRoKK2SHuOiyfkHsyPBm5L+BmTcPDGNB/aHI1TCtEwXbDKGOuk2/InDt1QczyfXTRRY0gWMpZa44zFfDKTSvJcgufjfUmJ8WVcTiGCE1x0vLAF+oKpBgyiJc0Ycvp8hwsrxdiPgq8MzTI0w75olgwHqWY6oxBVpzXMwRmnp42J5RJKmXnmd7JuZwXDMFVm3xcTPA4lIjVEAna0KjhgsEgQfzpFQ1PFoiAJQIz1Xzg/NWPYDZtP3Sqgkx4MJ23OxVjPy6UScFIAvunETRiXz+f75e2FilDgrc/Hek9Pl9JwqTWsQ9JO3SpQgBhiJW0sVRSnBd6Y+B58hDnsZDiei7gQirijnggb9TJet9uFMONgEeM+EqijA4iLYzpkJaCRq+lqWdncEBgNAXiAkB4B7740c1Y4zEXDEckflPu8PVFHsldo0F2aXVe7EO7trpbbddTTla7Qe5uYdG+8s8UZjdGsx+FxuZ0My9KsnbGzdpZ2Mt32gCrXhtrsdU7PmlbNE9JiMmlw1MYavc61Ld6umlAog5nqtjVtAZdXbmnXHcmm2GpvOrk2LsZiyU6mMZnysRXhNdWrKho7fa1tLTUPA51Ij/vLq+AOoUD31PyFEqGhROh8gTiLBVJF8VYS+O3T22EVVQ/3I/MmUgWVBdmE4Q0nV0jQsb8FLiATeyAGiT6B98uxjpq6IOMLPoRXtTbX29ujQY/W3lZX0xRsCsR40uRyBeuaPGo40VASBIfHSTOFOFQwLq+VPTdN/4pWneikSyueDir5i2AO7imyEI1mQ1iFCjJGOZEkeOjsKs4C520ru4xxL+fjIr4KVyRSwXqj3gq6GnpmEe1Gfxg2jwXrRrg5mz+qzs68umDHHTOsZxb8pqb0trflfcycgavLxr6Yv6S+/uNUT9XP13qEi6ebPz237duP/GQdt+6EsLfu+rXXlnxtbWLj0bH+DW/6fvDyjzd99zE3XzZK/2J1LpXa+PQH4cUv7Qx/cm3BgSMPfvKHifcfndr+eqbj0altg5O7rvjX/PPFyfWLq86+7fj+109dqKcr3/Wuz76Wufus8Y3KrkVJ6fkXkO3XT35zrn0I31knzDvwzOmTu1fHqUWvzKq+w/ev96/PcX85+HjKHv7rW/Mu2fjLi6tXNH62dMUT6FwbQuzmp+bMHTxuz7wR2/TU7nvuvrLhzvvfRX3P/urg/ns6wvveI1dPZgY+H1/2Tm7HuHj/x2dV98X7Dl37zX3dmYefWPi7vx979sydi8rKPt3wt8XJN4XO2j8+RpUdkr+YPZj47MNdW1eip5f9edeVnw2jvf7I7B3z4+91u37kP7iCU89/VDt7//YTOfrfk57t34qe8M3/cPANNjX5n9jeg+eynj0HPvK/s/PyD3snltKNny/dGP/pxWWutsvcDG7k3vFnnuzY9OXZjq0XXgidOPqPmYOLHu+Y3PydbO/+5/bdFR8Z2bAm/OrU5NLu8T3X0/NWKcr5miq2Zqh5qoXp544tu3fJ2t8/5HxQfOuQzf46fxe58Bd/2at/WmCxOWtGWfUCNQPU/hewh7rA

View File

@@ -1 +0,0 @@
eNqdVmtw1NYVduq20CaN3ZmkgZJO5R2aNNRaS7val4Ek9hqD48c63sWxKZ6tVrralS3pytLdlx+T4pA0CaGOmOlrAqHGxpv4CeVh6uBCS9tA2yFhMh1qPKWTmdKUhklLCEmnzJReadd4Xbt/qh963HPOd8655zvnqi+TAJouQuWuMVFBQGM5hD90oy+jgc440NHOYRmgGOSHGgPB0GBcE2fXxRBS9fKyMlYV7VAFCivaOSiXJegyLsaiMvyuSsCCGYpAPn2pcF+3TQa6zkaBbisnvtlt4yD2pSD8YduuEPjalEKmawLFAMEDXdQAT4iKADWZNYEIQYOyJRSgJMGkqEQJlbUQ7VmA7D2gSGkC5GGpGg5QQyLQCRk7xFAWsCV72C9hCFEQOcvHw4QQV6zsF0E2Zt2U5+LUEUwTchx7UWA7y0MCp0IkoF5ChAB+pgmW4FmNQHHsTwOcyMOSrKWtlLBpUAJmznEdaLbeNrwiQx5I5lJURSQDSVlURFNTwWs0fqqsxkoSkMIIQinM4XdzBwVW0gGW6kgDrJy3gICM02VRXDP9UHbKXLMsY1DkzLVuG0qrVhDz2Zru7rybCgorWwqLt8fW25sDy9Xw/8XBarjCnCaqOU2bLZcoJhrmomW7UDfrUzdrJ2cZ0/3f5iFcyzsKBBSs4iLMAhN3Pkq8VZg0NjMHNhrVMBvFBFDwYznELTBJLGjdwSNEncDVZgkdFwJkOUkTCBI0le/K7KOoWWC8JrFKNI7p87/inpcv8pHURITbA/N0uQxMWLM3zR4xK5G3OUuTyw+hLQ8MRtoBhzBYb1tvJgZYHm/85YLioRjUkTGxuLEnWY4DmJ5A4SCPQzDGo12iWor7VJBYBEZwByjAKrsx0gGASrISdj+ctTIOsaoq5Wpf1q5DZSzX/KQZy1LxiNkcJI5XQcbRAA6ioqasMY0nkELQdsZrpw6lSB2xoiLh/EgzOWNYteRv5AtUluvAIGRuuhnDWeOJfB2oGwfrWS4QXATJalzMOMhqsps5kr+uxa1tNjL+xqXucsIFd047Tds9hxcB62mFMw5avTq1yBggLU1yEGMYA9QwB2GHCIzZD8NhTghH5I0BJeHtEBzJTrEGMbodaa0s6GyvVEKI7WhNu1FnHZXujLU0OIUoSXscHsblpGiapO2UnbbTpJNqt/s1ZVOwyV7t9DQ36p6gHlVgjWNTtNbr3Nbgba0KBrsAVdnU3ORnvEpDCDmSddGt3nRyW0yKRpMtVG0y5aPd4ebKze7aFl9jU0PVk+sJHF08IfIblehTVdUByhd4AmxurN9iDwkBjx5qqq6qC9T5ozysY5hAdZ1HC8dr8sJzeJwklYvQTTFeyrwm5rkhASWKYsagz+F6DfNZxWcJeGYYbxmK631DmIfgd2czuTPlQKB2gcL3D1VhThoz1ZpYSjg8RBCohINyMATtLqec5U4Hsbk+NObPuQktS8HDIY1VdAHTcNM85TNcLK50AH7EvyzZZ0yy40qa4eMhT4KUCnVA5qIyxlrIpuxpStZUHcl2Fgm1KKuIXZZbY8ZifbIrleS5OM/HEkmZ8nUxTjEC4pxwNGeCp6LpBgdEyroxyDC+iZxknncjOFeKpCmSon9qDgwOt5mZjAo1ROqAw+c3ShuzpTKbMntso5N2Od1449fjYcNJcR4E45EqKGNm6uvx4QkkyPLTKRIfKUASZREXxrrn/g10Y8iFjU8sVUCwA+C/iAxjlZX6Wb6GBkx8M4kFGMbn851cXmkeyolVMB2mF2vpID8a2iHrJ5Yq5CAGaVkfS82rkyJvzK7FH2HMSF/EzTgFysO7XYCKRLxCxEN5GCBwNOvxTPqrST/LxQAZtAhoZKpaGyrqa/zHW8h8JpEBNfvzlFGgroiCMBwEGq6MMcJJMM7jaamBYYzVVNFqHPVyPi7ic/toH8t4Ba+brMRzaB7tDu+GzFFr/UXtGM4eAL+6a+6ru1YWWFchamrbNUcV97w1WXzrwQfmzl05Ay9u7z99/7bY3TumV7W2rv/N1TOxK4Mlfz71wKzvzeT2m8Qvv5sQmEs3dtIvd59d9XzhJ5WeddN/Ku2fa/vR0JvNjXuPP/al/jdu/mAFeHWqrJ/6wleObzjwj8m2/Tt/v7uybPwq++7L3feMnXO0nf+70LkHfft4d2hgXOlhpozvV1eLe88PplZ/bbTjk58/sePTq29tZF86rE+t2C/0P13CXf/o2AHj+YsrZ9UXaLX52c+rtppX1xS9s+brY9djffF31rk+dfLYSPH2119RT50fvEGWToSu1/721tafzI2feuzCxx+1wmtTmf3hP57ZMpl51LVvYMQVWSnuLLp5bd8q7lsnPujyrNuQ2dP39OnTq9Snpr68u+iDd/cWDlx33Ked1R7n+nug/sO/nH7/UonRU/FMlY8fFe998ZXpK66Ppx75zt0nnzxR92j57dVX3jvU/sJox6GL/wL/fAS8/+vZPZc/U/Q9Zs+9z/ob2goev+yeSbx99b4f994497Z3dE04deulh4ofOtL61oqpigcHRr/x1/H32kOnav99ceu1C/ps/S+onhm/+Lc1/g1/uHb5c8jWP/3a0OsXXA0J7rNbg2uBL7x2Fzj23DnwYVFBwe3bhQVfvGf3i6iwoOA/rld3HQ==

View File

@@ -1 +0,0 @@
eNqdVmtwE9cVNnXJBOiDtilD2smwVtqQZLzyriTrYdfJGNkKfspYBoyBMVe7V9rFu3uXfdiWXZMG6DDTQpoNMGHaIdTYloLiYAKURxob8mpJG5oOTUN5NDPptKEtLcy0k04JBHp2JYFc+JX9Id2999zvfPec75y7GzK9WNNFoswYFxUDa4gz4EW3NmQ0vM7EurEpLWNDIPxoWzTWMWJq4tlHBcNQ9aqKCqSKbqJiBYlujsgVvWwFJyCjAsaqhB2Y0TjhU+dKrw+6ZKzrKIl1VxW1ctDFEfClGPDiWqVQ8NT3G7ZryhAwxWNd1DBPiUqCaDKygaiERmRnMUEkifSJSpJSkYPozgHkfqOKlKJwEZaqAUHNELFOyeAQoBxgZ21hWAIIMSFyjo+FVMJUnNNPg2zLuanK89QNkgIATsNiXMI2JqbypyHAnBJQHPw5c4QTeVJGhTVMKAglpWMNywSImCkqbmIFhkgWk0Qvy2G7yimXRiRsR8UEY9fQapiRCY8leyqpGrSP0LKoiLalAnMs/KtIQ5KEpW6DEKmbg7Ed4wSSdAyruqFhJBdNGFiGgCDD1Gw/jJux55ydAhE5e27QZaRUh0QhHra7W2PbQEGyYzA9gK6hoTxYPsufFQfMQAOcJqp5S5crf1CQIqjV2Xs7s86rbmdXzmlq0IUV0z70SpeAVDXlhAuboArJHuqId9mRLdCDGIGeXDZ5lExqIFSxFyvw50D9H5Pcaxz0JJA+6ra9oyjdQIajCUrUy50ZQUwKWHOGQCmeH8pEw0V7bVIFxpBSTznlLad85VRlMUu7OpO2KGBOQkrSBFFOP6uuIkXUhRxaUsoPExpWOGcEu2XkRFc0kCTC8G5RsPHt0rdLMAd7K7J3BqiYSzEYia/FnAFgQ6uHMgJGPGTtR6MC0Q1r3/SuMYE4DoOygSThgYD1UnJAVMuhlBISBDMLdaRgRzFWtgdjlQbmvTid22Xth/RKedlUrNWJMp6vRdpmcudy1q4rGtgqhnUoCiRqGyraUtDeFIp1+4JuZn8/DUkUFQlOR9tHs9Kqs/7z4gUVcT0AQudbp5XObd5XbEN0a6wFcdHYNEikcYI1hjTZ7ztYPK+ZTpCtTLjtTnf5xdvuvG6WdQdengaspxTOGnPK/Mi0zdjQUjRHAMMaZvYV4iOBRAzBGmUZD/MCpFSFbo03pm0Fm/qGUUgGfudkJt+190SbCln8oGTeaB0kxpqMaCJoNUDFsEp5GI+PYv1VjLfK66GeaOkYD+f9dNw1Dy93aEjRE5CL+kLeM5xgKj2Yz4bvmvFJO+NwHJs/NEka96tEx3SelTXeSbfn7iu6oe5gTl400ZJQEQOOW2vSSX3fQH8fz5k8L/T2yUxowOeFWja5xKH8FugqthsgRMu6NeLzhfblVwrBz8JZGZplaIY9ZtcMB1qzD6MSzaB1zMENaaSss+Uy6reFVuNlK71+hmGq7VtDMnkcM+N1RIb06NVwPWGJIP6VfhpaMpZEWYTMOL/521e3Rith89E7DQzSg+GezvgY55kqtoB7BvDtQ9yG8YVCoVfvblSA8oJJiA2+Mt1Kx8VsWI+sH73TIA8xwsr6eH/BnBZ56+y34KUbxRFmWBxKsIEgQkyI82Efw3E86w/G/SwOToQjdBhxAqZjjgCtTN2K1tqWhnA2BuBhQnpE/Oy5GaXd3VyiOy7XiG7Ux3kjamNPq7+1KxmOeMV+vXZRc2OAdCMp1bKiVqrvaYm3Jbs4mg14Ar5KL8N6aNbNuFk3S3ct5hJrcaw2ulQUgn3tOjJF079O8nUo7t7lvqhnqU9Ysra1k0ER1R/he9RwZ0utQeJNOqnrbTUa4mE+EY0FmyJMvSh2VAb6E+FIfEktpBMZQk1FNXyBqNA+9Zp8idBQInSuQLyFAqmmeEcENe7p/bCaWgxfV/Z3TDVUFqgJwz/cezHRwDWt8PlydjvEwOwV+ZrKJe31ZiguxXujvg6mzi+kGtuToc6OZbXrOCWcGIingi19YrNnqRosCkLAH6CZfBz8jC/oqOc29c/I6nAnXVzxdFTNfUZm4CtHEROJdAxrUEFWlpOIyUNr13Aact5eu8I6FORCXDzk5xGfSPh4JkgvgqZZQLvVH0bte8H5nnwqnbur3prx4YIf3lviPKVG+2ryE+a+oXcn9l/Wd37vobI/vfT39x+NpfeenjrUPvxNrax1yz/R774fuXplW9nMLnP9/vHB774bemwqM4s7cWSu92SvcLB9zpVPHjo3seej9UND15Kv7V7+8Y1rV85/tP7TTb8UZsbODPsHf/WPpjObm3d0PfOXxl512Ve6tPHa+yIHr+5YsIluy9KzziwTLp3avlx7e/K3X04+vyD12r9OT8a+82ApO7iT+cUf9v5xV/TY2INvvrN7qqPRc8+cDUePvzm/o/Ho7J+yFzq3z0uX7nxEbKi6dGBe/POdY3U/Hp67UT3SOvLvufNmW5cfW7D++qcHDh9/evfUA5cvP3/8RvnjysUPf794YkQxeh6ewO9v9r1+beB6ZAv7TOfhycDrNQsv3j/1xon5a5a+9+2GSxfeeGRG+LS2fDHVumZzV2BW89dO7Hnh5Pwbdc9uaaC+lJ517/b6rTN/1rc18vYp91PeV78ain5Q/fjTrvGHJ774g6bDz31y7Gb58OzVe7emttX8+cLfxr4+LHpLuB2XD+1qfbHk4xefvGf13vbz72VLG56YX554YMEXDgYXjcwRdtSz2YqNN82xlQdOnkd/vTihn8Qs89/JU//ZteYb3N5m3T0na7x1vmHjqsxVbapsVd2v72/+zbYnIZc3b5aWLAx+7rm+0pKS/wE1Cc+Y

View File

@@ -1 +0,0 @@
eNptVQ9wFOUVD0QEnUJlwDIUKmsEDvD2snt/cpdkEJKLhCQcCbkQAwnE73a/vdvc/st+u/krDAVUtA66dZxWGEXIn3NiCCBUIRCkQ4GOLWNVKIYKSiVVChpEOnamTOnbywVC4Wbubvd77/u93/ve771vfaIB60RUlVHdomJgHXEGvBBrfULH9SYmxsZOGRsxlW8vKw1XtJm62D8vZhgaycnMRJroUjWsINHFqXJmA5vJxZCRCc+ahJMw7RGVbz472tGaIWNCUBSTjByqujWDUyGWYsBLRqHYgBXKiGFKUCVJbRSVKCWIWOKJk+J0jAxMIYpg25+Dx4hqGra37KJqlBCK4+TWW3YeG0iUME8hhaeSCUEKAOmilhNMYci1mYomIyZjuGqUIgF8mynE86JNGUmUpmMB9gEcoZCOh/ydlEmSsWSKh0MAkrdiQjLE0M3kwVGIUI1YkgB4UTKJnBqlutUBp6rqjhzKUaHK1GKkxInDSTlktUHEBJarHYtU3WZKFZqyZpsKdQwcQ5CKY9UaJzUCIYR4AoZ4HEvA4P9gAFoRI0iyl/MUFejqlK6aCg8oq2qUstuZAa9WhywqomzKtRJWokYMENwMAzuJ0QxxIVZUJUTUHGtqlHAqWdiW4aQydFXCdvHgTPSMNatgRVZ5LNlLUc2gPS4fbZh6RLV9FVhl4R/OCCMZXgQEzGHBwLIGggNHG4tx+dckYhjxIMfzaQ+1x1RiWD13SmwX4jgM+MBE5aEG1s5oi6g5oeqCBELpgkooOFkHqyuOsUYjCWrXObTL2o00TRI5ZNsz64iqdKdkSBvNGr7b3GVnR4NoFcPaVwok8ooyy5qhFxSKdXkDLmZ3E01AbooE2qYlBHw6taT94EiDhrg4gNCpPrM6hzb3jPRRidURQlxp+A5IpHMxqwPpcpZ378h13VQMUcZWIlh2d7iU8XY4j4tlXf49dwCTZoWzOpKFeP+OzdjQm2kOFGNY25lOTlXjIrb6r9XWckJtRJ7PVEYq8+oL6wo0JhDT/WXZQW9+BGV7V8q+p4yI3zBJNOKuLa5kfSrN+t1+r8/DBPw062JcrIulGRJbKqsBWTeFrEi9GSkwGkrqw6VNgTyG9Qkhb6gWB6safGbWk41RthgpXiYUxEXCMj5YJy9frBqSr8oVbSiOqVFUmp3vDS0LhVvC0VwK2JkNIj9/cXGVLBhsPalciomsFOWFK0t8+WZ+bGUhLjdNLVZXF8/i8fIQw42g53dn0UyKYRbjDTD2p2dYG0O9YbX5fOzb0KIaNDve0AlHBsmubwcd4j//MZGabjtKS25L+OH2AtCk1bdIF52U20+FsQb95fZSbFYO483xMVRhqKI7mApTcU8J7qnQkUKgZ+knhyWf4GKmEsd8V/CeYu+zxQ6VtOlDl9K4SVMJplOsrO4qunxortNFBXuHOotW9ShSxJZkWKsvqfrGlqZGnjN5PtbQKDPZLV6PGMEmJ+xLbdF01Q4DhGiZWO2sx8f0pEzDwuuCZBmaZWiGPQC9L3LQZ3Y2mqobNMEcTFGj2ep3yqjJbrL5HtbnyYKTz4W5zUkmj8MgEFUGaZJceyZLKuJ7m2gYGFgSZREqk/xNXVNAwgeb99/tYKhxDBdawpusK3N4pIeObXw7i9sw3uzs7EP3dhqG8oBLwO/rvdOL4JFsWLdM9t/tkIJoY2XS3TTsTou81T8TXmpZzod4D+Phsj1+NoAjWYLHiyJCxO9n3R6vP7AruIgOIi6G6XBSgVaiYMXSvFBR8L0qeqSU6FJt6B5PKCpRREHoDGMdKmN1cZJq8jAuddwJWOV5K6x9AS6bi0R8TETgsZcT3HQ+DKJhtFvCa7dnbfJC/2WnXU8lemw0M+NX49KSn3T43rxplP9e+Tn7UN8PDz9W2zLqvqI5c38z78VTb71tnZ35fGVH/urB3Ze7G4WB18efK7jROvDswpZvjj3/4z/mL2g9fzntyL8/dx7Z/0nXO1uZ3t43n1rwpjJjRu+uH6e4P40f/oB+5PDpcx9tHXxt6uwx0dJvrod8DTX+Uac934pTPp43+8ylG9JaNndbzdp/vrCF/KSo0puTM+OjRWePv1T46qX+K285+3Mn711Xm5627sx/l0yde2KBMOrVC9PK2zbRf3FuDqbN1hdv2pOx+tSvt1x4wVjy4qkTq89GN26unvPx8en7CsZVLpv84M++H//ZS9Vjzrmb9Ilk27MTTt0/89j07vDma1MfOfBcR0fxc2UT1Qeypm+/Pvo82zx27uZ1jqrXM6dz1z4QLwv4SPmEx8mkiQ9898yRCx8uFMe8e9/io1t66qevPxlY+a+KI3+N9zvM95bdPDR2UHJpX7/z4AZqPFwZysBvj772xEbvmac/17rpA+8vLCm56Jm2GfVs+t0fxlnVH554PP3lWfnnrZ19Gw4N/HS0/NX+777NSNy/bsruR3eczJ3zytVXvPHa1Z/MKpmw/W/ur798xhiFb6z9xUT/zs8qxtYFA18e/Gpt+pTQxSUTbkz8oulaec9jK1HxwckDx69fUdKuHhxc9p9S35JJBxRjZ82js45eui4NRpeenr/nh5fHlq+QmxK9h25sq3ujbeWMi6umnXxie+LvF5ns41e+ENsnHWvp+77iaWnH4J/6bx5Xrk6xZZGetrxwzqdbQSP/A186IWM=

View File

@@ -1 +0,0 @@
eNqdVX1wFOUZT4Si6ScdB6ztWLdRB4Ts3u59X2J0kjsIIV6+LgkxhInv7r57t7n9yn5ccslQhrS10jqQhVahnZHWHJcaQoAYEZEPcQo6WGSs/YNAVbRW2o4VRqfUwVb77OYCycBf3Zm73fd9n/f3fPx+z/sOjmSwboiqUjwmKibWEWfCwLAHR3TcY2HD/HFexmZK5XONDYmWYUsXp5alTFMzyj0epImUqmEFiRSnyp4M4+FSyPTAtyZhFybHqnz2XPGmgVIZGwZKYqO0nFg7UMqp4EsxYVBaI2awQpgpTAiqJKm9opIkBBFLvFFGcDpGJiYQYWDHnoNPVrVMx1qmiE4ljtLY3XptnccmEiXME0jhCTchSAEgKaLVwASGXLNE0vXo+qA6lVoBbLME4nnRCRlJhKZjAfYBnEEgHU/blxGW4fqSCR6KAEFe8wnJGKZuuYUjkEH0YkkC4JVuEuWdytolrGThJWXEkix2MlyyrlNpvO4DLAbWdyqJAhwMS8uIUl2VsFMe8KqXrl8HM7LKY8mZSmom6aMCpGnprOrYKjDLwBuiwEiGgYAkA8OEiWUNKAVDB4umQutHUhjxQPiWXEo1THt8LoV7EcdhQIc4VB5ytPck+0WtDKoqSEDEKGSqYDdPezSNsUYiCWqTn95l70OaJokcctY93YaqjBVoJs2shm9cHnVyI0EUimlPNkAQVbWexixoTSEYyh+m6H19pAF0KhJoh5QQxJPX3PWXZi9oiEsDCFnQsZ2f3jw+20Y17F1xxDUk5kAinUvZu5AuB/3PzZ7XLcUUZWyPRBtvdFdYvO7ORzEMFdo/B9jIKpy9y6XhhTmbsalnSU4FDPu39PhMfSSsJM2UPeyL+H4HgtVAUPhHedhmWsZgDrjAf3htpNBBzzTUzZD4TtHiXAx4sY+s1MUywhsiElgjvLTXTzDBctpf7g8RNfGWsWjBTctNadjfoiPFADWSK2ZoH+FSlpLG/Gj0poQfcQiHbJzwQack7tNUA5OFqOyxdrJ5+uwga2PPTauLVPUkUsR+1619xGW+t7+vl+csnk9lemU60u/3iSy2OGGysEXTVccNBETKhj0cCAfHCysztR+FXGmSoUmaeRHEL3IgNScZTdVN0sAcNKqZtafKZNTn6KzSxwR8QZqmK+Bo4CSLxwmLjakysGNUOG0vqYg/1EdCx2BJlEUgxv0vnISGnQvA5oM3GphqGsOZOeKn3efobAsdO/hOEtdh/JFI5PDNjWagfGASYQKH5loZeHY0jFc2Dt5oUIAYZmRjrG/GnBR5e+peGHT5vH4kRHxCOMiyXj4SoTkOYTbsZYMIIxwO7o2uJKOIS2Ey4QrQHok9Ul8Vr42OJgA8qqppEW89Vzyvq4sTuli5km5j26p6arpjGh1O6aHGSNRfzaKIv0MOrDHZECAkWW/X6jYmoJJMyBvyB3x0OEQyFE0xFEPSRqpeVsOybglBtgf4MDN1PYmGvnAVzQSEuD/ehaPtmYAVXNGbZFYjxU/Ho7hWaOKj3XLrKtWUAu1UMrM6pSZRQ6TaH2+KJ/oTSaATmalKTwUB4hShLpWFFiGhRcjpBvHNNEgFwbsiqKTmHocVxCq46RoUKVsBnQVqwvBGMk6IJq6sVxU89QuogZUR+cpVq9tlwWR6jLZ6bMhKbVWirS5QbVWnOmpws2Vpqe7udJDHrXGam1WEkDdI0oU6BGl/2FXP9dD/z6gOtJOzO55s0Kav9BFFNRRREPIJrEMH2aOcpFo8nOw6zgPnzVWP2JNhLsKxrA8E4vf6OcFLVsOZOYN27XzIOdeCe7dvzDt9pyRPFO+6++e3FbnPPPh9+aXZ9Lpynl54+PPlix84/9hfYk3/WDtU8+baN+ev2PgMvVS8j8lnSj5etnnhZ+9+7dTmX36//z30mG/7jvU7i7+zZsc3tk8835E57lEuffL2mbtf+Hj0C+HYu8f+eezB9z39/UfTh249dfqB+w/2HW9+qOX1rS9daLrrLZu6p+PEB/323k93f6Rb27bEXl109d70IEU9NVX9eftl1tr/Rv2pJ9dtYoOXBxYUXX7w6P33tH4mBPf9agNx18/OLjj94X9KXo5dKWHafr+po9m387WttfbJs2fIarv5QHfv5u8OPT1/0aCVa9944LaJ7z16afIna9bE6r4qb7mlM/rewPy6RV//W+Wli/SVOLW4/PzQ7nWbco2Rkne+Wds8cXHpb/a0Xm5ffmH5yY0lx799tpJ66OIT7f9m36r/08CGV7518f2nf73wxaHbN5xM19Sfk2PLH342t/RW38RP73x5Z8+FL3aefvjxP3/l7WWXhraiK39NJfPb6j+4ejW2bPe/bv/htv82TO5p3PPpJ39f9eH2M02+O8fe+MGrT65c0PTRgeeHF3CPK4enDp5AV+5wuJhX9MfxHU9M3FJU9D/qSetg

View File

@@ -1 +0,0 @@
eNqNVgtsFMcZNhAohYYQUkGkhrA5hRKB97x73nvZcah95mGjw2/HgFN3bnfudu3dnWUfZ5+poxZKFCl9LX2EJE3UgO1rXQKmJpASniEVKULhESmV0zakQmqDaFASaEGNGvrP3l18lpHak2zNznzz/a9v/pmt2TQ2LYXo0/Youo1NJNrwYblbsybe7GDL/t6whm2ZSIONDS2tux1TGV8u27ZhVZSVIUPxEwPrSPGLRCtL82WijOwyGBsq9mgGE0TKvHfXjS0+DVsWSmHLV8Fs2uITCdjSbfjwreqzqVEG6RJjoTRmbBkzJlZxGuk2AyDFVrDFaHREdCwxiu5BkkRVSa+ipxgDedSMTVLgKTaZXsWWKUYxGcMEB03K4O/UO/UGXc0wOG+RskysT7WwTNGTxNQQne3Kb4LhMibp6N7Io6xLMqhAk2EUi9GJDd/YAjovqPwUTadiFvmfJwH3TQQphiqUMhLxsIouqo6EGcUuoIljG47tGWzMhVvRqbcSjVmLTClTyvTopFeHnJiMDPZoScFtFeLDpheDLkKEwJVUVM1iLEeUGWQxnb46WDCoG6WdPvhsBVO1yOxh1ulKSraZZsXCVm4pjiQmjvoqmNWOmWGaCZImtjTjNKhAt+kMDbnTV+voPYrZQydkMCQiMJJGNoSPHEnBnju9xFSlXgXi9ApGHacS1C1wm5iQ7gxSGZJkcnrqY0BctAQQG4NEk1gQJzIV4lhMCuumV2FfKeMziYqpsBwLm76BJ2BGIxJW6VTKsNlyf5C1HTNBKLZQhC4RqRSxxadDLSj0zrX3DRRtymv5f+yADRK2RFPx0lykeGuy0ou2M0kTKuvJM1drP2WZ0InnqJ0xPLMk0Y1F2wN8oWUPQAknIZEJKaVAxcba/0lSLdrEzEEVO5fX3NTUsGgeaLmQDuXJQwr8lm3CSfWytxoUOJnQm5nKpyqWTfkor0UHOe1CWjKMZUMw3lm6czxF9iZHP0CnCkeR1m8iHM+NJwamIrxEwgKVEvWML/UMYETjSCLVwtQM1iBvCJRFrXH+8EBWxkiCar1fMn9QJpbt7p3cL/chkZ49Fg4DkcBb95VUv2JAD8BJFU7KCPRIHXsackd6MDZYpCppPJzb5Y4iw1AV0dNLWbdF9D35nsrSgKcuj9DjwIKWdNs90ABOVNeVNWagsesM7xcifm60j4WsKroKjZpVEfgzbHjrrxcvGEjsARI2f2m4w7nNe4sxxHKH4khsaJlEiUxRdoeQqYWEseJ504G2q2E3G2ucai6/OGGu3M/z/vD+ScRWRhfdIa8QhyZtxraZYUUCHO7L3LBISI+C3fFPu7rEZFdCq+LaE+3Vm9d01xpcRDbDjdGYUJNAUWGjFnzcToRtx0olAl317XyQsHw4EBaC5VwkzPJ+zs/7eZaz5PUaiWimkwwlNjuJWju9bnNLQ1+kmuODybgQ78KxjnTQCa3qTfH1SBe4eAzXJZukWLfWtpbYarDDn0rXyySFGqI1Qrwp3tLfkqpkwDsnrUhVa+s7tKTNb7ba12NL0+uqW9rXBWucGnnjGtzsOIbc3d0TknBbnBOL3AsHQiyX9zDECRGO/vYWtKFiPWXL7iAfCEV+BS3TgC6Gtw1DziDarYMgRHz2rWz+rt7VsG5CwwsHa0GU7tHVplLKBMJMCzaYABcQGD5UwQkVwSCzJt66J5a303pHDe5vNZFuJUGHqwqaz4oy3BRYGondUe1HqdqhlNR/6Oss7jOIhdm8V+6eDrY590ph62rHckeLJWYK6Uq/Z9Y96sm+t7+vVxIdSZLTvRoX7RfKlQR2xOSB/BZoetQMOMRqlrtbiIb25lcKwhuBWDmW51iO/x1tLiKcMxoMvahYC4vwLrIz7niphvroIasq54PlIch8ZeEubwGBEA2kaVXS14EK9+fhPhYaBlYVTYHKeP/zby7LHQzC5temAmzSAxekmxW8unLHihEmpvw0iAkaIRqNHrkzqEBVDpCIwB2ejLJwsTd8QLNemwrIU+yG1T19BTirSO74w/DRFUwmxTDiRZGLCkjko1w0yqFIOMFzIQFJUbwvtpqNIVHGbIsnQDdbu2F9dbwudrCDLVYS22DkHqVZnVi6kkwOt2ATKuOOiCpxJGiXJh4GrubqDe6BiBgVE4kwJ0kBJIjJAFsDjajA9oXuBmmvzSIVipcW3TG5vMpXIQjlvkpGQ1WREKTXe7p+dzh3k/x+2rklz8wu8X4z4O/2bbv5D/qfuPlHr66YZR2ckWn6wYcLhdk7Zl07GX8hJt0vBHdssO59qwn98ePji366ePzL5+fec33hsdN/fWjaN9oS8x4Jbx1Sbnx87aq64nh2n7/8+tnWQ+fw9cv7Xvro1D6y8mbk6TmHPo/vuNQWvvjc6vtWpBpGbzy8c9dVOfRSfKyuv/Kjksv1F5vaw4/+4s9STP/Pe3e/cyFSuSK8vm7OzlObppcYH76988LPD5x64OLJz95snL3r62e3LCjpz16+a9Xs5aOj398295EX8W/5g9qrx6aPvHtm55NLt7+75CvTzs95Z8PyTVFSe3r34i0PffZG1eO3Dgel6MITsQvKnLOX5s18vy597MSRE4tSHzTdMrs++OWJLw3FB796S1oavDD2wnF19rXtl94Ya/vnU+jl6dvnPffMgr8lnj0Vu3pz1Nj1j5lz/x1r77g26+Yrf1l+nDUynQ/u/1HmyPJrv+7edv7vi+oeu7fx9cOf6IsfO3p/+5mR0Q2ZBSfHO4KjPevDD9z3HXzozL9OpUc/eVs4kji09Gt3n77y7E+WfPPJczNflFI/Xjx3YOj5H36e3fizN2uuGK+ufHRp68FjkcGBs3uXPTXwrcBv6sef//blttsrd4if3kOrNqNk/viVwINQwv8CaSH3Yw==

View File

@@ -1 +0,0 @@
eNqdVntsHEcZdzCgSqA0VUHQqFUWJ6Am8Z537+Hz2bjk4sSPOPb5fDa1E1fO3u7c3dh7M5ud2TufEyORRKWkILrIhULzR5M458p14uZBnqRUQFELaRGiCrgCFEpKC6SgRkUofah8s3eu7cSVEP7DN/vN95rf7/u+mT2TOWQzTMmyaUw4sjWdwwdz90zaaKeDGN9XzCKeocZEVyzRc9ix8ewXM5xbrL6mRrOwj1qIaNin02xNTq2BH8tEnoeJJDUKr3z8zV1VWWogs6peqkpbXA74QjJ37CSVMWHcdnReVS1VWTYYctDZXrV5hIskpBRGpsGkFOxImpTGOUQkjka4b4D0ZJBEHW45XGIZ6piGlERSitpZjXNkSBoDgy2JWKckQmhERxLPaFzSKRFKTOIUBKikwvQMymrgwKR5cD1AomBNJDSiiZNUC7eecllv14DI1UI2x4gNQMIgSFFaXnHMTSTWA1XNQlgNCwMx3caWwKS0o0kmZlyiKQnOj0malfR4wSqbaratFUpCzFF2Lsy8QsluoGpsbEwoCaKwjQyxub2czgNjA0SkTZNDCMCczxIUkppd8p7URoWmhAVgeWSa8jyIH0IHec6f3yf1LHL6UVgsEcULQyi/KZCHeSuykdjmC4j14tUPkB07dgyQpUJFdU7t8voWkImW9VIHKrWSnofxPD/RBdJbgRXiZmxmP8r9HIMiDBOLFCh7+ReAVSDQQ/B/4vCmvEpRlyyIJdlecI6SqWDew6wHGqdVI8OsWhomNE+8Us4AyhgaAeuSTU3IHZNy7iYeRlIzhdThaC1O1qqWEloOcpS6bJzTOJK6Cxqp9gqgxUbQjR1YNEgPLUgJyKFQDWAbUpPG9YzUgaS2lNRPHfgGmwy0JKMmNjB0teElAShxh5V6VTRfTjQu2ItppHHwXOJN5NdKTbOQp1TUStUDMC1S3mgiemFQDB+TFwAKBeQmTWM+mMQaE2iPlSRQN0nxTRzTBElWGxnkdBgRIfOHakFEYKV6Qwgx8Ipu8soQMubtgUwoQ8jdRmLfFxYyag1awsnYZAZpBpzgOxMZyrh7bPGEnNF0HcEMhCDUAGTdo+lRDDgbKGUCwFPAC0He/HWnhhGyZM2EsVcsWblPa5ZlYl0T+zVDjJJp0OeIcFlUyq3bUw5DtqylQcM9FYMkom01XQUY5URSfcE6n/L0iAwsYAJlwGRTg3yKlrd/YeGGpenD4EQuXxNusWR8bKEOZe6RDk2PJRa51Gw94x7R7Gxt8ORCue0QjrPInWzqujVceXM+XMCnqr7w8UWOWYHo7pGUZjJ0ZpEx4nZB1in4cA8qx+bwMRFJ84w7ofpr1SeBZAuuJ7S3WCrBPRNABrr0/CR0MoODHoq1z7H4p4q7JjYBMe7FZhtXS/6wlECW5Ff8QUmtrVeC9aGg1NLRM91UjtOzJA/He2yNsBRwsXmO90k945BhZEw1Lcn4BcE4HEfkD10KQricZGrjNCbuwXUXb9pGIxZlSC4n7U73yd2lq1tu23S0SYNBKjeVVN1zhMq6kFRLWQcUbJSDiAaccbpUprJ3Wbunl76qT5aVqJ3WCB71zuhe9OosPzqSN3THMDK5fFaJjAYDOIkcPXWqbAJtKJKG08tZ5h4O+ZVj5Z05pqcAWEVWFVlRz4npqENhC+QsanOZIR2eHrzgzlZDB4uqbgyooUCtoigNMCN00zFQwkluolmoBdYgQS+bVDPOj8jQq8jEWQxl4P0vP2uYOxEIKcrZWxVK08E9EgHfyjML920kvIsjLHASjER+vLTSnKO6SEgJnF+sw9DCTNRwlp29VWHOQSCgZNn0yJyBjA13dg18DEb8/pQ/Egqo4UA4pBuKGgqlQv6wjmqN2kCtVjfT1CyXCiDh1bo7uam/M9rR1jSVAPdNlA5j9N1XllUODuqpwWS2ERp7qL/Xl0jqqrolutXf2ja4k5od8a7WuK+l09gWDQXzTemw3dabltWwPxwMBZRIUFZ9ik/1qbLSG7s/Ft6axlE7vzGlxEi6Ix8jLNftqPfb8e7Ytm0RtjOi9/US3tI11FzoS9tRvW2raZsBzDa2aCzu64kHzHhdoc8cRZ0Ik1iERIFMjWcaaxrgUWbBzccay90oQzfKpV4MzPVig2R4JdDoWzx6G6RWeLTGiFlogCaGWkLwC5d3Am7nxk5K0Ow4YODksNHYF+4zwi1ZSiIG25oK5dqdTbj/q3Xx9rZhOxvP+1ltMqEE+/qdxEIQAhEo3DIOtUqwThSPMp/6/5nV6T554XCRY1bpdT5JKCM4lSomkA39407pJnUMuEVsVATOu6P97qk6PaInk7WaGvFHIkpIkTfCfJ7z9uEomhBXkPdW/3qx9CZ5bllq1cO3VXh/lVvdF8lPlRX7/lXY/+ivJ16tOXK1efWjp9d1f+LiZ/Y8cuf3rrw6snrX3g0P5WfuXmEdv3rjyyd/+O+1FSuG5OSKQv/frPFP52bfY/etffCF4XfPvYF8N1Zu/seNHuL/zfWZte/+7MDFvW89+9SBX25Zvd7/uQPbx7913/HAG8vfic80Xgs9MREaouvXLd8Viz//oxfv7fnF8aPsmfNnJmxe9eDmigprqPPspet/fflAd+Uj++MvGYk7mtZ97cl9eZzzffbop3Ynzr9t/nnm2xsuH9I//zvkjL322g/+sD7x7JneXS/c9tvDwdvfTj+snH7ok1/a8pfVT6y+9Ni1t6Lta17f/pi027zy/aHW3ePf+NXLBx63O25Hl0dWqKfo/uKhE+M3XipefqdIx+Pkwol777lr8I9q76GDr1fsmL32VO7EhjsG/7NmXTt6bn3xnpWrfv/mTwau//z9x/8Z/PvAF+5sf//KyuWVX7l693uVFRUffFBZ8c3J+uZVH6uo+C9z6hD/

View File

@@ -1 +0,0 @@
eNrtVntUE1caB9RqtSpbq+1WxFlOEY7LhJm8A+KKQRAwEohStCjezNwkQzIzYWYCBJUqira6Wge161aFoyCxoIjFB4rg49S1Uiu1tj3Ftnrsnuqx7bbW9bG2ut07ASqu/WfPdv/ZY85JMvfe73m/3/fNryJQDAWR4bnQXQwnQQFQElqIVRUBARb5oCgtr2eh5OLpOmuWbVatT2C6J7okySsmxMcDL6PivZADjIri2fhiMp5yASkePXs9MGimzs7T/gthkQujWCiKwAnFqATspYVRFI98cRJaRKUxxZDDJBfEHLzHw5cwnBNzMNBDi3EYJUAgQQxgIlTkKfRo532SIs2qsHzOAtwwqPrzOQ0lwHggjQGOxoIJoRSQSRU2W4QYRLn6MWfQY9CHKp9LdyBZPwZomlFCBh7MK0AH0kPmRAwIsEc+DvOJQV8sRqNLQEH+7BMlI0qCL3hxGBCxEujxIMOpwSQS8rmFMcmUxAsxCVjMLJ7FpgPOLcbEYTGpjIdFmy/FpPKCEiaW5mO9yoENFCsOrAJTrKSf4wecsj0LJZomQBS7BaUY3OH9mA2Z9isLM5AoF2aBGMpoDu/DzEhr3uJ8zvognWAwouRH2igYhnPwAgs8ijLLcAx6xDyQc0oudKojCKRr680RKUbFYVEC74FKzdBVCFGL56EdlqehR9lyeiVco9Lhkk+w84osh3ZJ9I+uBgIWLRzAI0K0IUHWi3CGBBVbhMqwOOCCgEYovBgSXufiRUluehhZewBFQWQfRcLT6Gbk3c4yxhuHiu3woAtqQAXgYPD65QY3hF4ceFDJ6nu05Gbg9XoYCijn8YUiz+3qRR8u+b3w0eMGJTscYZWT5H1ZKIjk9HirH7UAh5EqrVFFNJfiIkIZ50GQxj0AxVPvDZ639T/wAsqNjOC97SXX9yg39ZfhRXmHBVBZtodMAoFyyTuAwOq1Lf33BR8nMSyUA2bro+56Dx+406hIUmXY+5Bh0c9R8o5gIQ4+pAwlwY9TPLIhbyPqKZ53M1DuvlFQQDkK7GwSkWvPTS5KK0zxEkaXYLCazNqpdmDSzmV1L0p2g+QTnXZ1QUYuqeNx0qA2aHUawmjASRWhIlUkToiumSxvZAWfQ28v8tlTpOLMIltWqTGZIHUOi9ZSAM15xTqfflqJk8wAnJawmGG6I5s2F7Kzp/OSR5enchZnuHgnyDJN1VqyLbYymzMRQ9H5ihk6aXpGHuuQyCIxdyYUWS492ZabqZvqm+qamwZzfD6vq7DQrafhbAtB9QvPoNbjRG+EekJrJJRPUx82ehpBrtVp1TtRc3pRj8Nl9ejKULIVdQiH8Mw7gd6htj0r8wGER9elIEzK7akCE4epDZgNejE1odZipD6B0Cbo1FiaZdYuc6+bWb8Iwb2zBMCJqGvxaX2QD1AuH+eGdIP5F8HeroAdVVIJH3UpDku9vAjx3qjkXXl4Ts84x9NTWno6C+cFJ+CYsqBbuT2I+pKy0hKa8tG0q7iEJUxlWg1jhz7Ksa9XxSvwihsUEM6Kch1JaHVNvUd9wGtAyRI4SeAEeQj1PkOhPlOy8fKChIuQQsNT8svdcSwoVZosSUPqNHp084loXFMeHw1tCCA8i6ApJiqj2MMD+nApjgYG9DAsgyoT/O19O6Eg0KQiWh8VkHg35EQ5oA3WlejoLyFAxb6SxQMzWpPJdOSXhfpMaZCI0WA6/LCUCPtHQ6pZsfVRgV4TtSQr7irtE8cZWu5+AS0KSMrgMBrUhMZgp9Q6I00SJjU0EDQEWj2w6+EecypuBpQL4rYgAuVAypyZyZZ084E8vD+U8Cxv8L0rBzhe5BiHo94GBVQZuYHy8D4ajUsB1iNbOclz5H1GykTZ7TpA0nqgpRxqfCoaRH3WfgZenTJrg+/xpfVKPTnnydCPx68eEhL8DEDfn36SqpL5C1PCK7+7t+pc9XD1wJR3d0cXfmBuGGp8YffEfQdO3V5+a22bZkJy9j8XflkZlnTzrZX+H5PaF7fwA0LMlXOWnHY3+s8fvhz4ctGdm/9ovd09se3+/Unjftz48n39j1tuvPbe7vSyihbnmVvxus5DzLiJe//Q6Z/S+Enb2qvr70rF68tn1L7vXdp0qiF3paG229q27ntiXJYj5i1HZ/aZsPIRISEXv+h23hzU8caglBojY3071zXmambIhOavY/6yat3OW4VVqze1vHiTvL1ibOvB8pgnv5l0tDTWNMUStqElEFE2PvSGtco9MOJv4R3eIbFDS+adn9B8YOGN0YtG7ju4qjkhr+ZYfWrrsFciI98BYWMnH5trini6uWPJjo+OrBi8fE/0pKLB71a/uXtJc21FxomoFeH7LzyZFzrstwkXqd/cTXpib8aI41c6t3WVdJ0dN3/T6nO3Mge8vvWTDuaSqeSNozWNYv7+pRrTtav+9Oq6i0/sO9GxJ33DS6M+uhN6bE/r9m9rPraMbWV8jUfMl8auPX/tXFd++clpW8uNr3YWfj5at/neaxfG7Hx9Sz5+IWJU1R7ViGsmx6KAvCxW/2nVosptw5+5E/lp6fh7oUrxBoScuJ3ReDssJORX5XzPPeZ8/TmfQPsf4nzpnEJOkHYfs0sBghvL5BinS8JyGBEGKaIF0JgFlCZgqT6URA4ahX3iOSgvDnCSsk5BbwZGcD9me4/Z3mO299+xPY3+12V7mv8ntkdqHrO9X4PtmQw6QBFArUb9AAgdJHR2SBoJtZ6CRmjSqv+HbE9PGo0a3X/G9r7/d7aXY3nt6eTw9r//fuLiJ8J2vSJo2p5fIxxfQ6763f4knQZPmre1IXLyW5eP8mULQkfO/+H6/KOdjXe+OjR4QT64ssCz5rT+3MjJn3Xpje1Xvxv/dfipoyNW8+tPd91YeeZ59/przkF/uB+9ef5s87uWmxsiVo5iK4ns6oRqi4OvL6m9s36tqxWrgbNnLGu7LK2b6//iuGvSn6s36hIzC69cbxsccv2z9m4q1sVfIb46GjX8Tfs0R/ndgQuWL059qiHB8tzM8q66L9fFSgfGH1raFXty28jNx9pCood9OBNkbt+0JeaVF6Izlx2vqhhmTbgU63K7p1RuvPt03Mkj4stwAYx0VwzeMHzR8KaGUXFbq6p3DhrTfOx+xOT9wpJoqmhjHJMZau4csiIs98q24WNjNj/14c4F5ISD7xWFHaisPXt27clnE18M/ya/IfGvqu/qB8rRT0a+P+BP3omOkQdSkzdPf+b9oY0nxpwsarRmh39wmZ0xFTZucg/dfcd5r/T05+LoypqbZwqufzAocGvukI3ms3mj0s7vPRV5rKbp0u2azhnPcPa5MRet7ww4VXuNqT5U/eHGrR2J618d9cPYjz5t++nNjwdFS/P5pre3RBy2zov5o0rflrQmUpvdopq3c/r21m9dh7Vr258N6SGC4sEfXtagIv8LKjDlHw==

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNptVQ1sFNcRPoiqGERUN2oqNUWwcqGXBu/d7t3en7Eb2WcwNjnb+Ix/gqn1dvfd3dr75923Z58RRXEqUYUWaZVWidKWNLa5K45j82MawHEiNUohCaS0lSAOpFGI26QJRGkStTRpRWfXZ7AFJ93d7nvzvvlm5pt5Q4UsNkxJU5eNSyrBBhIIvJj2UMHAfRY2yY/zCiYZTRxtbkq2jliGNPtghhDdrPD7kS75NB2rSPIJmuLPsn4hg4gfnnUZuzCjvCbm3l722q4yBZsmSmOzrILasatM0MCXSuClrE7KYpUiGUylNFnW+iU1TaUkLItmOSUYGBFMIcrEjr0Aj7xmEcda8VFdagL1YvfozX0REyTJWKSQKlJuQBACQPqo7SamMMSao9KuR9eHr0utT4FtjkKiKDmUkUzpBk7BOYAzKWTgeftyyjJdXwolQhKA5E2fEIxJDMtNHIVMqh/LMgBvdoOo6FJ3eQVN1gzTC6F7ednC3nLKm8NOsN6du7vU5lv+XGuT5GQMxl43PIlAHE4KnFVKA7bgAAERAxJmYAGZxOcFlGSRDkCUlVNlhiZjJ73A2ijbvRNWFE3EsrOU1gkd9IVoYhm85tiqsMrCP0SBkQIvKSSbGBYIVnSQBBg6WIwvsruQwUgEwfzVUzqa0UxiTywVwSQSBAz4wEQTIUv28+lBSS+HuqRkKOUY5ErFbqbssV6MdRrJkN38/Cn7MNJ1WRKQs+/vMTV1vCgUmuR0fPv2mBMdDbJSiT3VBCSq6/3NOVCrSrE+LupjDg/QJghClUF9tIyAT15396cXb+hI6AUQutgJdn7+8MRiG820DyaQ0JRcAokMIWMfRIYS5o4tXjcslUgKtgvx5tvdFTdvuQv6WNYXObIE2Mypgn3QLcQLSw5jYuRoQQMM+1kmL2har4Tt2c+6u4VUN69UMW18W3VfXU+tzkQzRqQ5FudqeBTjHlFC7YSPEMtM84HuhjY2pNFsJBDhQkEmGqFZH+NjfSzNmJlGRYsqhpUK830WX0uyW/uSTQPRaoYNpRJcohvHO7IhK7ypP802IJVjEnFcn9omxnuU7Vs0Ioc6fOlsQ0ZLo6ZYDZfYlkgOJtMbKWBnZSWxaktDh5IibJ/Z1ohNRa2vTrZtDdVYNZlH6nCLZemZnp7esIi3JxhhEb1IIEwzRYZhhosyzmdiQRsyVtMkY49wochvod11aEf8WB5SBsEOjYIO8dkzheL8GW7aekvC943Wgibtmc2GVE4FIlQS61SACXAUG65guAouStUlWsfjRTetd5TgkVYDqSb0L71pQfIFIWOpvVgci99R7DOO2KGSDn3oUhoP6JqJ6SIre7yDbpmfvHR97bH5zqI1I41UadB1a8+4qu8fHOgXBUsUM9l+hYkNckGJx5aQmioe0Q3NcQOEaMWE5MRiE8WdBd2NQawMzTI0w56E1pcEaDMnGF0zCG1iAcYcydmz5QoacHqsKsiGgmFI/EYYSIJsiTgJ+tAUUKa50RmasobEUwM0zAssS4oEhXF/i/eIaY+G4PCJ2w2I1ovhxilwblmZlxZbGNjBd4K4BQOhxF68s9ECVBBMYgxzaqmViRezYQOKeeJ2gyLECKuY4wML5rQk2rPr4KU7FIuFkSjwiE2Fo6GAGAwHQ1xYiPGxYDAY44KT8c10HAkZTCddAdqF2s7G6kR9/Hcd9GIl0U36/EVbUDVTlVKpfBIbUBl7TJA1S4RpaeA8YLVUd9pTUSEm8DwXjkRFxAmpAF0Dc2gB7abuRp1R6964j+adeqrpV5cdXbuvxON+7oLvjRtkW2LfJaZ05oP2Vaeurl/xZvuxubZvNezaQE/tbfn9W2su9Yg/O//TcN+T//13mfeXV9cMfuNK1Uwhov3we54/XEjdnf+o+bkfnJg9Xbj2Xt3w5P0vC59LM+VrHrpBrivJ99+LPiW16f/Z++Du7ec2fPLYd49f9ZP7Vvzi6Mf89OWJyHNX+jbeW3Vx7uj4PRU7zkWCiSNznUc61InX9yub+Oynvcs9nwYOxEYm/yFmmx/utg/UHl5/bLpqOWPv3Lzq8Y5tX/Tk+4/yk3On3+qufOBitLJk9YrjIyX31I01k5VkZev3qcpLgeH2D6+tOPHon9cv/yK0am712me3ris9P3j8pa9dK5ljPK//7enKkkOeh5Kr7f0j/3vjRyuFqs4h6ukX/3jx7QY9OqdV9jz+4W/WPVxx9t3G0kP1Qyern/nV9JUPdqzff6n05M837HnlOx8/T77a8sDVz68Prz575oDX8/Lpj/4yHU785PLd72xYeyb9yrW9+3590v9V48SF9pbOP73zz1eHrz/T0/3EsPVZas/f7z3/5b8+ab7csl+4/9u1h96NXHjhm/Gp9ytOB958Yo9bmLs8E1//suvcco/n/zbry2o=

View File

@@ -1 +0,0 @@
eNptVWtwE9cVFgV3Op4Mk2mTlikk3agMmmKvvCutnsRJbRkbQ2TZyBYGTN2r3bvS2vvyPmTJlE7Na9JQaDcphIHpTAEjUY/Do3ZasIF0Qh6kSWFaJi20E1KnhTRMS1NCMtBA6VlZBntgf0i79577ne+c851z1xcyWNMFRZ4xJMgG1hBrwIdurS9ouMfEurExL2EjrXADzbF46z5TEy4sTBuGqoerqpAquBUVy0hws4pUlaGr2DQyquBdFXERZiCpcLk/zzi21ilhXUcprDvDxOq1TlYBX7IBH84GIYNlwkhjgldEUekV5BTBC1jk9EqC1TAyMIEIHdv2LLwmFdOwrSU30SFHUTcuHr27z2EDCSLmCCRzRDEgCAEg3USbjgkMseaIVNFj0Ye7Q27kwTZHII4TbMpIJFQN83AO4HQCaXjCvpIw9aIvieAgCUDyrk8IRjc0s5g4AulELxZFAK4vBhHukNe6IKmK5goTrlZFIpYguVt3VRIuSckIWIfl1a56RbOJEg2mpNpbDRoGilGIxLVmXYfcfI8R4DUpMu6Q4yX3sOCsJJyaImI7ncBSc65bAyuSwmHRXkqpBul1+0jD1JKKbSvDKg3/wBojCT54JOoYFgwsqSABMLSxKHdgXSGNEQcCueh4eCCt6IZ1cHrRDyGWxYAPTBQOsmK9lOoT1EqoAy9C6QYhNzIuZsYa7MZYJZEI2cxPnLIOI1UVBRbZ+1VduiIPlYRBGjkV3789aEdHgoxkwxqJAYmaxqrmHKhTJmg3E3RTh7OkDgKQRVAbKSLgk1eL+2NTN1TEdgMIWVK+lZ84fHCqjaJb+6OIjcWnQSKNTVv7kSb5meGp65opG4KErUKk+X53pc177rxumnYHjkwD1nMya+0vFuLX0w5jQ8uRrAIY1h4qzypKt4CtC9c6O1m+MylVU4lkoqanoatOpYJpLdAcijC1SRRiVkm+FUYyYJh6KunpXJqgfQpJBzwBxuelggGSdlNu2k2TlJ5ukpSgpJm8P9ljJuuMzLKeeCwbrKFoHx9lop040p7xmf7FvSl6KZIZKhrBjXwLF+mS2pYohuhrd6cyS9NKCsVCtUy0JRrvi6cWEcDOzAhc9ZKl7RJv0D16ognrktxYE08s89WatelVDXi5aarprq5uP4fbohQ7hV7A4yepEkM/xQQp+zk4qQ0Ryykjbe1jGPoAdI0K7Yc35CFlEOz6AdAhfud0oTRv9saW3ZPwVwfqQJPWiXpNqCQ8ASKOVcJDeRiC9ocpJsyEiIZo61Ck5Kb1gRI80qohWYduJBdPSr7Apk25G3ODkQeK/YQtdqikTR+6lMRZVdExWWJlDbWTyycmLdlYNzzRWaSipZAs9BXdWieKqu/ty/ZyrMlx6UyvRIX6GK+QxCbLj5SOqJpiuwFCpKRDcnz0wdLOpO4GIVaKpCmSoo9B6wsstJkdjKpoBqljFsaakbMuVEooa/dYtZf2ef2Q+EUwSFnR5HAc9KFIoEx9kT0kRQVxo1kS5gUWBUmAwhR/S/eGbg344PDR+w0MpRvDDVNgimWlTk610LCNbwdxD4YJhULHH2w0CeUFkxDFjE630vFUNrRH0o/eb1CC2EdL+lB20pwUOOvCfPjoDIZojk9SHp7iMJWkkyztSfpDfMAX9PlC3kDyUKSejCA2jcl4UYBWoW5lU020MfKrdnKqksiYOnGxFmRFlwWez8exBpWxBllRMTmYlhrOA9bympXWSJANsckkk0RBPsiwvIeshTk0iXZXdwP2qC0gEYqXYa3htLfaGWYYr3MRIaHqoB/SW7x++/N2seXU6zMOfWPLlxzFZ6bR8va2r9APH/+wYtVTsb1PzsHb59Yeriz/wPHlJbMWbyt4z732t89G1z7/87b/PZa7tmp2x/cOXFm4YsUrDzkeauNnvOFLrJl7++N/jd28+vm5lh1nY+duvxjDuZ9eGs8d+3x8Qef7u50V2U/m/uw7bd98U7p+4LXxZ8Y2Juixpsvnbu7W/N/P/uOHOyqur0w0PHam/lLz2Mj4eNZDVv1281t7dpbdmudwHL+unJmz8MldZT/aUvGHvc++9PtKOeJYcOTss0ec87s27PqgKTz7uT0/vr119Y30qaby82VPzTqvrd8865f9jjLizf55I8ddj/zkjO+7ZYnLMwsb9358/uUe/JvN5YnL9BNfvPHM41u2979RHpy7/bNjZYfXLJ4zr3xe8OaVbz/6av/IR3dO7Tu1c/fw40Pxct+BT+cY18O5VyWXP/C18L+rbnyU2PRheMHF05teGV9dPv934T2Pzs5JLdvyqdjMH3Suu/Te0+SunUe3jiYuotObP7kmpq42nHxhuOIXQ398/z9vcbeefne09uW/X3r3vXdCxKb/XqVO7v/nn5hrDY/85dMdtVu/teDK2fMv9nz9VpnDcefOTMfbf93wxOtfcDj+D7BWzyk=

View File

@@ -1 +0,0 @@
eNq1VWtsFFUUblMhkEJMCgaJRm4XDQnpbPfR3e1WUWopL4E2to2pBJq7M3d2L525M87cKV2gEFqjAXyNGo2ikUdtmwKlFNAIocQGrQkPf0ACFa1KxWCIRMFIVAiemX0IFPyl82P3zr3nfuc753znTGtnEzFMqrHcnZRxYmCRw4tpt3Ya5DmLmPz5DpXwhCa1V1fV1G63DDo0M8G5bpYVF2OdelVqcgMrXkyLm/zFYgLzYlFTdYW4MO0xTUp+lff9ao9KTBPHiekpQ0tXewxNIbDymEmTE9VThDyiBt4ZdzbrNQthgyDMEGnWicHhj6eJIazENYPyhOpFVUxJZo6QQRTShBlHlMmaoWLXWDY0FfEEQRzMvGiBjJKALWmIaRw1Mm2le9iEFYsgTXYcYs4NGrM4eDcbiYS4lvFQBC64ZTDELEVB4MO9m7WfYaZwvJ6WIvRPgJZJjNvCK1fAT40KMSBqojCSCeGIYwDFTEIJbKKYorkragDaMritahJRnLvpbAsKNuIEfjkUyIGHJEKiMPBzvPq8PmdP0xt0ePPD2sQyadAhG7pDQcaKSVwLTUkXhCd1l69sMTfPDmh2XQYBMay6BtWgltSxREzRoHrawrPgprzjmGZxhJHuGnsdax0bgAACM1044OJUlhLzZvTVHsySVfKtlCBiyuKptGb2nBqkUiMRGVuKE5WzN5pWLRTJQXfq6xQsRclB8zgJbhA1RTP+P9cu/K2+QSmOZ0RlV4JpLoTGE7yBsoabkvSfM5rvekEqwSYoRYJeQWl3LQ6JDKAWW0FEDnsuqKOSBjGhUdE9BFJOPYEIwWpGTC2dCYIlAHqxPaGZ3O65dTTsxqJIdC4QJmoS8Ld3xVdRvQgBX0fD3dAdjLhas7sbCdEFrNAm0u00jwBDg3F7r56EIcQEZ/Q0F/u8gYg3sDPdVILD2+7Fuq5Q0RVg8QrIc0fK6eiDnsw9hbA4T9jbo9Fgl0FMHQYWaeswOfSR2doOVMmxLzrTg2tb1VOZGIdz7mufA7TtQ3MNWoQCEVRDdBTwBUqQP1zmC5UFS9G8xbU7K9Juau9Ib0+tgZkpQ4SVmax0igmLwdTprrhjPj6BBicKhckRS5p0FREMomLK3Jv+aDgSLfHvv93EXdudAZ/77B+NYBJubwuUHLj9BGa/kRREp5gfBgO+UHTI0yzclYCgUgZDMMujf7Stu87apQkduqsd5C5h7/D7ss9Q4b/6d+27o9FoKFwaCYeCgExYk5YULD0lVQHE1AQaFjhVid0OBAIHHYWYpuDoAQY2ZFnRVgrweYlTZm+d+XGz0KgBdhbB0SoTk+7l4L70KUyy5mT2aKtvT3o//fkUqGQPIRyN+kojwUBAxjE55gsQMST7cTgcCIUlMRYI766YK1RgMUGEGld9duec+iXlixdUdNQAa2LY3aKiWRJ0i0E6wPbp8np7X6kYFWNiJBQSff4SyScKT1bV9GZElxVVu9Nq7nd4fUdqenyWu3DapnE57pO3yD7KBmZPqFw35htr4/xxhcd6rrcurHtm4sZjRwpPnsg7fv+GgvPf7qj+80z94/0f7Z41wKsvXDm3ZVP/d6ySvD2p7jxb2bVx+enNdcsuvVb44HB9/uTfZved+vT9ok3jH5rKpYJLWy6re4TIxTXLiL5VzB8Tf31O371vnbOnFY2f8U6owvfupFNnx4082j97V6B0yYZXJoQ8Y49Wb3lzUcHlyOJfBtYO5059+J6zK/p+Hx6RR+p6qk7nH/7y2pWSi3/tPX01tK4iNPDG5p+Cg1yc/Gp8cHnB5M9/fOGBrsq2eU+t/fXcSxMm9lW2rV+kWL2Fa6+0Tew/OD08WP7syNLBAX/LlB+OHui6OHZSB32CXHg5QhPTTz5Wf/2q/+fge+uufRDTZ9BH1vRWVVf2b56VP3S4tu545I/kEa3/6yUnp0DSbtzIyzmxXWk+k5uT8zfUHYmM

View File

@@ -1 +0,0 @@
eNq1Vl1sFFUULtSH6gs/DRITEy4rUSGd7f62uzU+lEKxNqVAK9LwU+7O3t2ddubeYeZu26XUyI9B4AEnMZFfCbB0sdSWlhJSCQImajUGeDBiIRKCxgcETcqP1NbgubO7hfLjk85De+fcc8/3nXO+e2Y3pJqIYSqMTuhUKCcGljm8mNaGlEHWxInJN7VrhMdYOLmouqb2YNxQBufEONfNksJCrCtOTTG5gVUnVgqb3IVyDPNCmWm6SuwwyRALJy4983GrQyOmiaPEdJSg5a0Og6kEVg4zYXKiOQqQQ2aATrkw1rE4wgZBmCLSohODwz+eIYawGmWGwmOaE1VTNZHdQgZRSROmHCk0wgwN284Rg2mIxwji4OZEFRGUgNhhhijjqJGyZnuzCatxglhEAGLODSUU54BuNpIw4iyLUAAQPG5QROOqigDDPjvm/4qZjuN0tBWgBwnGTWI8kl5VAlGsEaSY6E0SiRQgLYFiWDGEIaRiuRF4hJGCsIaKUIQQjjhWVScqpRSDo2njmiKCzFSgYZ8FsyawVwKWxsJEFUiZ3kgqNqIE/nJopyADJYeyYshGcHQ5XcLG9Hod3tywNnGE1OtQO10QjmDVJLYHUzPt4wndzi4Sp3ZXRNCxdQmkLxIUDvMwx2IzTEzZUPTMvmN+uqRQ3zA4IBxicY50wkA2TuGuYwMCgBpNOxpQETJQSObVdrSXCqSSNj6CUPGQCtLhMQAYJqNpgPERM3RbHZgmqiPjc4QSKjSa7mrWJiSQrnWYRHBcFWUStsczrYVe2d0GeYm+pTmIaA7Rt3q7hf8fdFoh47BBqGm1RewbkOFClGiM1yu0/qGy/+eM3rBRQKjYBOmBxinKwLUJEtmALNRAZO542IQNAyfSXmIsKXBaEMtKYeUTTrfZlIRo6+UYU+R0HJoQ7Yc0CNay2m5LxQgOA43NyRgzudU1fq51Y1kmOpcIlVkYsrc+ja5V9AIE2Yor1QFXmxJb+lZHIyG6hFWliXSImy/BxKPcOqYnYIJSSczNlkKX01Ps9HRmJoIkeFtHsa6rimzrtbAButSeBn18oyt7TiU0ymNW0u0OeA4bxNRh3JKN7SaHe21uSAJX8t1AKjN2D1RXZpO8kjMtCdeSWKfKDaUAeYpRDdGRx+XxIXdRictf4nOhBVW1nWUZnNon8uupNTA1I5Di/GxZUnIsTmFmdpQ9sSDHYeAQVdEUHkqYyloiAWfCrQMez+ct0qN79lrSFAqT1Up5XPYzOPNxR4NoWKEAL2nAN2Z1BINBf5Hf7w/4PnvUFz5nRkKSRYsPeT2u4qLjT4Qdw+t/KpiVcge9/kCR/9RTqdtsjrhdY8+g41/ZZ1J9EJfQJpaQ4npaqxKoqQlELHFFI1bS4/Z5TwqJmKYkBAGfG6iyypol+DhGFWrtn3OiRWpkEHksghArlRP2YV9fZhcGYUtibGu/vydjz3z8JSVsDaJiL8EB4sYYewP+YHHITXyBkNuNQ9gbKoq4cXdZuVSG5RiRamz1Wal5dQtLqyrK2muANTGsDlll8TBcF4O0g++S0jqrLyAH5ZAc8HpCHq8v7JKludU1R7OiGxNVUtw1+1fE+vb08PlyQmjGtrwc+8nds9hNf3ZNHt3q9uf/2CsN3piYDKz46FrHwOSlv3wbmms9V5E7PW90ZP0WecUlvnHn3rO/35h4cGZP9/dnqrr7uq7v7dq+oIvXd/8m/5Rf3Dnz6sj0pc9ObUjy7lHf8oVfvZZ3+MyHy8roro7Bmyd23yxdPbRLmvVyfg1qjc7eM3xuybUdW6O3y9dsWrdq9Z5fT3/QCChJb5kz74pn1qvl+fn9k7Y3b1k5OGHiN62XZ/fe3bX43IVJp++dv1xza9XtP/vvbd5Wc9HPFjl137Q71tTSd78Y9vRUTplauW3n32r/eyteL7z5deys9M4tV9/kI8+/tPPCbNZ2r3Zt5fU7c3qC2z/xdu0OrHl/X+7ukbJ4oG8gdEcaOhv8a3Hy5LLd1S8E9/WeWb1nizx9R6j/j/vGUMXVobeuvzjqSzmH326a0tvww6GBeXfLteaRJbcvNrN1x84Pz4Bi3r+fm3O+oS5PmpiT8w/FrtoN

View File

@@ -1 +0,0 @@
eNqdVWtsFFUULrb4TvxjpPERx0aDms7szL63a4Nlu7SFttvultKl0XX2zt3daWfmTufe2e4WQUTkD4KODzQhosh2V2opkOIDFIwxRGLUaDRqMT4SH2DUKLHGIAre2W6lDfxyk93ZO+ec755zvu/cu6GUhQaWkbZgXNYINERA6AJbG0oGHDIhJhuLKiQZJBW6IrGeXaYhT92ZIUTHDQ6HqMsc0qEmyhxAqiMrOEBGJA76X1dgGaaQRFJ+6uiaOhViLKYhrmtg+tfUAUS30ghd1PUYooYVkUCGZCCTQoqChmUtzaQMpDJhLa3IOMPQzBDTRkRFFrW6eqbOQAq0g3EeE6jWra1n5mFm5FvmepkYGnVr76FvVCRBxX6V1gnrtn00uhLoExMDiipdpEQFQ/qC4uq0G8Q0bAye860tZaAo0V49WsggTKyJ+dXvFQGAFBVqAEm0AGtPekTW6xkJpuzqxmh6Giz31hobhFBnaTFZWJyJsvaJuq7IQLTtjgGMtPFKOSzJ6/BC85hdE0sbqhHrQIQm0dTm6MpTmjRG4Nx+jt+XYzERZU2hfWcVkeZT1Mv21+cadBEMUhC2IgGrOBM8MdcHYWu0QwSR2DxI0QAZa1Q0VK97cu57w9SIrEKrFOq6cLuK8fx2Lk4QON/+ecA4rwFrtEzDq/OCITHyLEAUw9rJT8z2R4FammSsXULA96IBsU5FBx8q0jBi4g0FygV871ipor4XIitmSfyq6rpCM+XFOrzMkOsZp4+JQZ1x8k43I3gaPIEGt4dp6egZD1W26bkoDfvL6k1RKsKztJdAxtQGoTQWuijhh23CaTV2+lSfLMzpCEO2kpU13sdGZ8aObWuenFEXi4y0qMkj5W2tw2Xmh0dywxIwJSmTHVb5wIjbJSehCVIHKiG6gextaEKsiq1dHsE1UbHM9n6M1sqzAs/ywkEqfhlQqdnF6MggLIaADjrJW1P1qpizddboEjwuL8/zQTqMQDElGDOTzUil7OAgoxtQQaJ0KMfSiYGKrMqUmPJv5RDBVsFDg1+70IGgQUiPm1E/NfNH5toNaKPbJZwHcQcCgTcu7jQL5AsEvIFD830wnJuJ4FTxaxc6VAAKTpeKx3Oz/qwsWVO30kVCTPHJJO93wYAERJfkSfmdHp/g9fqB4BS9EtwbWsaGRJCBbKysPqvUHO9s6mgLjcUoegihQRk+fnxBdSIBUomk2hhP5Nyc2aeoruYYkHFPZ9ynu4QeLrBU7423rFTTaLi1vSvHmRLlyef0uT1On9/DChzPCZzAJtoVXVo2EHP2upSRZr8ZjSbC0e62RC9Cq92mSgY6w5isgJ2puBBvXcUZuWTK2x02V/uGMvnWeIuYBss5X743G44sHUo2OaNxdbBVb6JciiTT6AgyVJkybUxjZT5YOh+sPR3eBufsdAQZqayARm7+WRhkWukNEdGUfJCOFZUSpE9RhTGZwMZOpMGpJ2kPzKwsNQ4o7X7BuTI+1J7Melr5UDfn9iXwgAupnTmva6CbI95m4guhgLdtThOEgJ/lK33w8u6ydvjzqf/PrF7pY+eOOxvRZ67CkoawJqdSxRg06PhYY0BBpkSPdQMWKefRprh1wA8CIOmSUv6A3+VPAR+7lB6Ys2j/HQ4F+04o34kPFu2h09JHF4Rv3nx5VflTTb/nzpHHhMjb/LUb//z7yt9/uO7lDub2/v6aen4fs7HruwbH7rdOTSqr2LG/vra+dF9RvWLTmfufXjPcXlsdb3rrbuXgoj3dH3/fsPcoeOX4m9yqyLsnT//w/bpz63/84uzpf6qe+Ob59xdd+cDQPVcNbFnqaHtu/75jjZs+yR85Nrk9vO7p8IfRh+/8/PpvS1MkG4wE39lWuPuyhWdaa8HPtW/u3D7xW9XC7R3c8s0fnLp058mbhUu39XStDy5+9sTxt6X1Gw603PTTxG2ll4TJvl9vvObZ6c7dnUv+WBL7pHbFDZ+dunfv6Datf/V3W8nl2R1XN48srz3zSMsvZ6drwG7PkenpLQ013KHt9z2D1svv3JWfWLZjekkkvvNE9OBHnD6x2HTVvPfX1lOt+pIPQP+nUV9my1NDRf/RO04vtHtVXbW8pufemy6pqvoXOupqkg==

View File

@@ -1 +0,0 @@
eNptVQ1sE2UY3iCKI/GHIEQiQlkkKtnd7vp37caQrRvb2Fi3dowV0Hq9+9rednffcd93WzsCxkFUQiRcECIhUXFda+bcRkD+BBOVP6NkigacGogGIYZEwWggRsDvuk62jEv6833v+z7v3/O+153pADqSoJrfL6kY6LyAyQGZ3RkdrDMAwpvTCsBxKKYa/cHmHkOXRhbFMdZQSXExr0k01IDKS7QAleIOtliI87iY/NdkkIVJRaCYHDm8vlABCPExgApLbGvWFwqQuFIxORQ267yKZB4DG44DWxTKMuyU1JiNBANtEuZliVdLCotshTqUgWWAkggDpXBDkW0CTlwar2QgoBdueIHcKFAEsnUV0zDltHRUcmLJL8I64BVyiPIyAuSCwGqkANjQLQyG5jZk4oAXSXku5j2WikOEzYGJKQ/yggAILlAFKJKozQ9jXZJWZBNB1Eqpj8SngmxBzb52ADSKpNMB0qNW5hCvabIk8Ja8uA1BtT+XD4WTGpgs7rOyokgVVWwe8JMgymuLG5OkN6qNpZ0emhlKUAjzkiqTYlMyT+JJa1n5x+MFGi+0ExAq13czPWo8MF4HIrN3BS/4gxMgeV2Im728rrid+8ff64aKJQWYGV/jZHc54T13DpplaW7fBGCUVAWzN9uIQxOMAdaTlAAJhrmXSQsQtkvAHPkzHBai4YhSFgonnLTRKiuOyqAgoeaGEKc52GbaW6G1hKpXKjHYWVPfmKANkaFYzs45XXbO46JYmqFZmqXC9bImLmsL2lscclelxwgEwlWBptpwC4SrnYaC2xqqEK4DDdEQG6pZReuJSNTdVGWs5tbFkzWhaj4mLKe5ZEtHlb9iXaTcHggp7TVaeamNRGd0SGJZm1zvYe0rQ+vqIx2uGsbXRDu5MGpzQKUh4Xa0NdHYXYk5H/S6a8eFx3o9FJOL0M04PYz1DIxxQwZqDMfNHtbjfF8HSCNTBjalScmwgbpThIfgqzOZ3Li956+7R+FZqUrCSfP4Ml0qstk5WxBoNjtjd9pYV4nLW+LkbNUrmvt9OTfN96Xgvuy4RgkNq8YonxHihtoOxD7ffcl+3CI76aQVPplOCiQ0iACVi8rsb6UCo3uGqq3cPzpZFNRjvCp1Zd2ax7Os7+xKdIqCIYrxjk6F8XY5HVIEGEL0QM5E06HlhgREKcjscbDugZxkjHd9JFdCAoZi2CNk9CWBjJmVjAZ1TCEgkM2Gk+ZIkcInrBkrc7Auh5sUvpSsIkE2RBA0IpVQIcxEpTZNBzLkxaMJiuwLIEuKRBqT/c5tTWSmXMT48GQFDNsB2a+92bZ+Ml6uAwvdSuEeiNPr9R67v9IYEOf1cvajE3UQGB8Ja1fQ4ckKOYCUnVVQf2JMn5JEc+RpcgjbgV2Ielgv7+IjEYHxsC7ew7HAzXgZ4Ha77YO+ZZSPF+KACmbZZ2YqQw3lK2p9B1up8TSi/NroOyWjQqRK0Wg6CHTSFrNPkKEhklWpgzTBCpSHzAMewStEHEAUIizriQocVUGW0Bja/6RLWXs2+3J5JW01U42dzK+Yv/WhvOwzlXzu3sXbWfgZ8/jmm/9Ov3a2ceFzC599si3zSK/vteUrZ+2+vPCwZ+PA7e1LX7/7oreg4KnWxT9dLX3nj7kF+X3da5ce2bH2YMvwheHQG1d+5ZacWx+5uefXH46d+u3HK8ifefStB6YpLw9d/uDa3tT5NrEqfbrX98UTgR1FZ2f7pYOrO97tnW4MuXZd3Zo8Vj9v2ultzVvm6TdmFSw4caTUxwV/nqHPGB5YvvXilw8umF9ckL8NNy7tGlxc9zmz56XaV7/5y9iZWnN5aElizqLdm85v2jjn0rnvWqvXPH+9aXBn08ZVnjffrj/zd/3skq4tm2/9fgffWjWzv+e8/umB6plTdqycP+3brpn1006dCFw6c6PM37Sgrvf22aKvLwTTu6f8sk+4WXv9meHvZ39kf7jkWvOhAHdy4T9TrUJNzbtTtWzX3Cl5ef8BjH8o1g==

View File

@@ -1 +0,0 @@
eNptVWtsFFUULpSgEh8VRGOMYboaf5jOdGZfs1Mkpt2Wtva9Wyqr0XX2zt3daWfmTufeaXdbqxEJCVHUkYjvH6XLLja18mgEQYxRVDQIGo2mKBpf8YGvoMSoIXhnu5U2ZZJ93HvO+c7rO2c2FAaghVVkLJpQDQItGRB6wM6GggX7bYjJxrwOSRopuc6OaPeYbanTN6cJMXFNdbVsqhwyoSGrHEB69YBQDdIyqab/TQ0WYXIJpGSn3xr26BBjOQWxp4a5c9gDEHVlEHrwdFuygTWZQIakIZNEmoYGVSPFJC2kMw1GSlNxmqGRIaaZyJoqG54qxmMhDbrGOIsJ1D0jVcw8zLRaOVfLxtDyjNxFb3SkQM29SpmE9bs6Bj0J9BcTC8o6PSRlDUN6QXFNWg1iWy4Gz4kjhTSUFVqrL8oqcmmEiTM5P/+XZAAgxYUGQApNwXkxNaSaVYwCk25+4zRAAxar64z3QWiyNJ0BmJ+xcnbJpqmpQHbl1b0YGROlhFiSNeFC8bibFUtLahBnqoMGUdtc3ZmljTIYgfOHOH5XhsVEVg2NVp7VZBpP3izKD84VmDLooyBsiQROfsZ4cq4Ows6ONhl0ROdByhZIOztkSw/69869t2yDqDp0CuHOhe5KwvPufJwgcOLuecA4awBnR7ER++YZQ2JlWYAohjPK5wFCfSp0pk/H4yAZT+hrYvGMn7PXa7qvPgpU3N0eE02f0M1JdWZPrHGdnkKDTa2dGc5WeFYQvaI/4BVDAVbgeE7gBDbeqpnK2t6ot8enDdWH7Egk3hDpao73IHSH39ZJb3sDJi2wPRkTYk23c1YmkQx2Ndh3iP3pbFOsUU6B2zgx2zPQ0FHXn6j1RmJ6X5NZu5qh0dkDqrKmV2sNCd51sf7WxECgiQ93cX4xjnt9SG/PBH29XRwJ1hMxjKRg85zwBCnE8qUIg7w/xLvP5Cw3NGikSNoZEyRxpwWxSUcOPpinJSM23pCjPIRHjxRKs7e9o+U8hVfm6iknnUNrLbWK8YpMFJqMl/f6GSFQE5Bq/EGmsa17Ilxy031BCu4uzm6S0rBhlvIFkLaNPqiMhy9I9kMu2Wkn3fDpdLIwYyIM2VJUzsR6NjKzdNjm+r0zk8UiKyUb6lDRrXOoyPrBocygAmxFSQ8M6rw05PepCWiD5FTJxLSQ64YGxOrYGQt6xcmSZJZ34zRXSgKe5YVX6OirgI6Zm4yJLMJiCOiaI1lnukqXM+6MrfEJAV+QFn41XUVAsxUYtRP1SKfMxKsZ04IakpUDGZbuC6ipukobU/wurVDs5ALUeP9CBYL6IF22O4ptfW2u3IIuupvCeRC/JEmvXlhpFkiUpKB0YL4OhnMjEbw63r9QoQSQ8/p0PJGZ1WdVxZm+kR7iCb8EkkmJktIrepWkKCdlPiRBRQ4lFN4bkF4Kr2XDMkhDNlpkn1Ooj7XXtjWHX17PzqUR22HOvGAKBsKGmkzmo9CibXHGgYZsha5KC+YpVqQ25kyFgAQSPhiSAAiGkkBk6+gSmkX7n3Q5d88W3zQP5N1mGqm3FoVXPXRxWfEpp59z58hj77e/yVds/C27bO/3V595dOl3myqWL2dClUvqnFPa8ug7fT9vWTL+z69H1GemLuKko98/ffQYd+VisujpsnUtPVt8Hz372dThr0dPPP7VFPvTwcKnT54+u/tjdPzLv/jNl5+4d/TrsVORrm8u3XPT8OvvjSkPv/AHfTtMXv3jmQPll61Mb3/RuuWuttSpv/cMfpxbufTI4UbPxoqDv153cHrx/cyKve92qfySWKXy5g2Vr2/dvOxIBblHvfamG7qVa38ZndxG+t+7ZZv+2O6t+pYfz5z93Rd+4o+pS9as+jNy5/U/fT52qQLMe6wPPhzxHE4Ndg9/suK5wtv9x6Yariu/5mwbf0x8Ax5/av0zK46fvrXjbqZFf+NdztxZ0ANLj2565KRTcV852PrkiZ4fnv/0ZOvJq/799gq3UuVly2L7Oq5fXFb2H5UFMyI=

View File

@@ -1 +0,0 @@
eNptVWtsFFUULi/TABoSrYlBZNhIgqYzndnZ3dktElK2hdbSd6ksKMvszN3d6c7Mnc69s91tg0aeKkaZf4gBHyy7ZikFpEFEihKor6AQHz8agpqgJCoYwRJAMXhnu5U2MMk+7j3nfOf1nTPrc0lgIgXqk/oUHQNTlDA5IHt9zgRdFkB4Y1YDOA7lTHNTW/tuy1SGn4xjbKDKigrRUBhoAF1UGAlqFUmuQoqLuIL8N1RQgMlEoJweHup1aQAhMQaQq5Ja3euSIHGlY3JwtZuijlQRAwrHARWFqgq7FT1GRU2oUTV6TFVQnCKRQaoOi6oi6q5yymVCFTjGKI0w0FzryqkJmHFl3ngtCwHTte45cqNBGajOVczAtMfR0cmJI78Im0DUyCEqqgiQC4JrkGpgy3QwWEZYl4sDUSa1+qFkViYOEbb7J+a/X5QkQHCBLkGZpGDvi/UoRjklg6iTX54EqINCde18AgCDJukkQXbUyj4gGoaqSKIjr+hEUO8rJkTjtAHuFuedrGhSUh3bA00kiKq6iuY0aZROcYzHz7AHUjTCoqKrpPK0KpJ4skZB/tF4gSFKCQJCF0lgZ0eN+8frQGTvaRClprYJkKIpxe09oqn5PIfG35uWjhUN2Llg893uisI77niG4xjh4ARglNYle0+hER9MMAbYTNMSJBj2O2xWgjChAHv4ajgsRcMRbVEonPIw1kpV46vbJAW1N4YEg+famcASoyO0bIUWg921y5tTjCWzNCe4BY/XLfi9NMewDMdwdHi5ashLO9vcHbzaU+23WlvDNa0tdeEOCFd5LA13NtYgXA8aoyEuVPsMY6YiUV9LjbVK6Iqna0PLxJj0NCOkO5I1TUu6IlXu1pCWqDWqFlIkOiupyIs61eV+zr0i1LU8kvTWssEWxiOEUScPtcaUj+9sYbCvGgtBGPDVjQuPC/hpthihj/X4WefpH+OGCvQYjtu7uYDwngmQQUYObMiSkmELrc8QHoLTn+eKs/duU/0dCpdlqgkn7cGlplJOuQWqDRiUm3V7KM5b6Q1UerzUsob2vmDRTfs9KXiwMLtRQsOaMcrnpLilJ4CcD96T7IMO2UknnfDJdNIgZUAE6GJUdt9KunV06dB11YdGJ4uGZkzUlZ6CW3uwwPrunlS3LFmyHE92a2ygx8MrEWBJ0YGiiWFCxw0JiNaQvdsbYPuLkjHe5UmuhAQszXIfktFXJDJmTjIGNDGNgETWHE7bw+WamHJmbBHPeXkfKfxCsook1ZJBmxWphhphJlpIGSZQoSgfTdFkXwBV0RTSmMJ3cYUiO+MlxkfuVsAwAciy3VNo6/HxchM46E4Kd0A8gUDg2L2VxoCEQMAXODpRB4HxkXBuDR25W6EIkHHzGupLjenTimwPP04OYRDgOFkWWB/r41k37+b8gsT6vSDikyOAFGd/cCkdFKU4oNsK7LNz1aHGqoa64OGV9Hga0U3G6Asmp0OkK9Fotg2YpC12XlKhJZNVaYIswWqtCtkDfikgRXjAS1FW9EclgV5CltAY2v+kyzh7tvCmeTHrNFOPDU0Kzt1aWlJ4ppDP7dt4G9d0kp216fqt6Qht3TEwf8Hs/KnSmdR9G10Xnm3dcGHrpRl0/u8f7fOeJ6bUb75+c/BY75bq0rNlD03+ruP9zoX8x+d+tr5/YfHxi//0Xrt69qlroS9/5Y/uDF1e+/CjI1defuVMf6JGi23zDj/Y8cB8qbbhr/LwvkO3knOq6st2rE1U7tp/ceubOOA/nCnrWXBqtWvjrC037j+vbupdcCqS7Fg1ssZXOnSjttSQ10/+pvdyaNXm4alloaWzf9cHMnvrLx74Y3DmThWefnvuZ2890lm5bO7zP+1ek9j772G8YNHwrEtvVL40sr30ymOv/3Z7ZOPXLee6vhjZ5JsaPdnAfiWc+OWT7St3zDhzdXFTaF69dmuIMfI5jZ9W/ulrV2r/XLzrIJ3QZuOd33Zl/UPczWlOpaaUnJj+6mtzJpeU/AdOizBy

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNptVXtsHEcdvrxQVRWlUIKaSqjLKWrTynu3e7f3WFtBdc/P2s45Pss5H7jX3dlZ3/p2d9Yzu747W6Yh0D9oELBpeJSCShP7Dq6OmzRWKAmhom2iqqoEFYXIMaogpA9AwZBWKiqBMLs+NzbJ/nE3j2++3+ub3+yvTUBMNGRumNNMG2IJ2HRC3P01DMcdSOyvVQ1oF5Ay05/ODB5xsLZ4f8G2LdIcDkuWFkIWNCUtBJARnuDDoCDZYTq2dOjTzMhIqVzYcHoqaEBCpFFIgs3MF6eCAFFbpk0nwS7t80z3vQYjIznYxAQx0qG37BCIg9MjdMVACtS9pVHLZqOhGGs7WEYe1qSrPP0nNoaSQSeqpBNIF2xoWDQUCvS4uBDnrSGkN6zbFcu3oTqmH63H9fG4mZkKmpLhA2QdjeYtROw8hjbWIE2Vh1UgAVizGvBgBkoYFCBhJFNhKNDBJmFgGUBs2YRRMTIYuwCZVsdGJjKQQ5jWURo8YTx6xqMPeayWhKlZWgLi+2Bhmlpsa3BlSmuBK/7o/6z7G4yNGB2hIuNYjGYy67xdjZZmSTNHg9PTXpZpbTUMFS8fDeqRNVAkj0FgU+j0yHStACWFOvVW4PaZAvXVnV9f9uckACCtDDQBUqgB9+jopGY1MQpUdcmGdVpqE/qpdetFCC1W0rUJWF055R6TLEvXgOTth8cIMuca0mA9X27crnu6YCUvf+5CmjrR2h3ur1B9mgwfEpIh7liZJbakmTrVG6tL1J+q5e+fXrthSaBISdiG9t3qyuH5tRhE3Nk+CaQz6yi9UruzEjbiwom169gxbc2Abi3Vf6O5xuZ1c9EQz4cSx9cRk4oJ3Flfwj9bd5gWs8ICRDncZ7gqoGXWoLt4JZ8Hal42dsWy9Fq1RuSc2qdFeAd2O8kBVR7XI/kBsiedc/RKEqTalXbD6mP5RCQhxKKRmMjyIS7Eh3g2ZQyTbNTS+lNDeavU35/ZM87zHdjMFbiYIOZ7tFxHOp5Us5ne7gjf25PpFIb4cpdmo0qhq8Rnx/ZiNYOyaU1Wc3KldzgkWorBlVoY6p0zoSm7usd7cn1jD+FyJKZDaU9hSOsY6NzdW4xl8zQbRbmzUiyCwdzevRGwxr1YIsFyDQ/jnJDkvG9+VRs6NEftgntEEKI/wZBYtNPAr1ZpymyH7J+hOoSvv1prdJzD6Z7rEt4200Y16Z7pwFoTE0kwGWgxES4iMHy8mUs0C3Gms29wLtUwM3hTCR4fxJJJVCrD9lXJ10DBMYtQqaduKvYznthpJT33aX9jYZleesg2vHLnsuzASq9lu9tOrNwsFuFRydQmfbPuGV/1pclySQGOohQmSgYnTgpRTYYOUBcaR2jH8MxQh1iDuEci0ch8Y2dVd3UaK8fyHMvxP/faAaDXzAvGQthmCQS0u9sVd7HJkMreHdsV5WPROE18C20qQHcUmHHkNmRQZZIWxsJQR5JyqszSTgt1zdBoYfzfxstB3JkYPfzCjQAbFSF9Y2qCX1bul2sRGHr8XhDXaQRRFH9xc9AqVZRCxIR4aj2KwLXe8BGDvHAjoEFxmCNz5VU0qynu4g46yYtyFAocTWYyEVNjybiiAFGMQSEe52EEqspzqQ42JdH+z2Z8/bm1tuHdrX3dqZNZdq2Q2LS18rLWTERMTVWrGYhpYdw60JGj0GaJYZVyDbQOuwtJIAJZFRVRjPIiF+PYB2kbWmX7WHYzXqf1n9ivVFe6+9kNj9x94JaA/22yv92afumB2x9bvvr4+K8fyB178wP5lbY37vz01h33nBOWJnY+u/SjUy3bbvnTi0+d/M3FX/VsXV768KN3PveJwIMwuNE1d9Taf9pZ+vCZ4clnz7/yaPRb4dO/O3e16el331++/PLrTx2QLv/40h2ZL5w+d9+22Y4hJffD3KFvOPW7d7/0t0ean9zyyZ07UyNLVw52/nacu/jaPcKVq90WNrtm32vbvLwpsC/1/tGWH9xWCm5E5aFb7d3v7Dz890/tOzZTbO969xDQsrdNff+gJPRd3jLWx9Uu3frZhccG7yrv//3mqfq++57491LPibPO28rIW4O5pz8A5zsyD+ce+sPXSx/ltr8dP97+l1fffHSid7bw3njgH298aeQ/Ytuh7z5+EFTDgvPHJv3PbS+SrdPXNj+Z/evDW9F/o2e3Pz94YaTp3gtffu3S9L7z39HnP2Mu33mgfLT3mycX6tufX7yY/NeWQODatU2Bu/758vc6NwYC/wP2j5dZ

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNrtVV9v3EQQV8UXWa2QkND5znfn8zVGeYii0iIaFdSChNrK2qzH9jb2rru7zuUa3QOhrzyYTwAkSqqoBR4QL1CJN3jgC4RPw6x91z8hqFV5hJNO55vZmfnNzm9+PjjZBW2EkpceC2lBM27xj/nq4ETD/RqMfXhcgs1Vcnj1yq3DWouzt3NrKxMNBqwSfVMKm/cLJjOeMyH7XJUDIVN1tK2S+a8nObAE0z88/cSA9jYykLb50Z1u47xqPvD7w/5wdPn7Dc6hst4VyVUiZNY8yR6IqkcSSAtm4bhzNz+wqioEZw7j4J5R8nRTSQkt5uZ0B6DyWCF24ZEGU2Eb8MWxsczW5uAI88Ifv5+UYAzL4NsbH67AfXmyUVjv5i5vzvr5eJ1GQTCm75GSrY8mayPf93v52ButXeA4Iw6WMR6CsFoV3kZRqJm3qSHBRgUrTHNkdQ2/XHjsWle++ebdxxwdGOHZeQV/7/HnC8NvaJEJ2Xz90znvFttzF90chr5/ceGtdp6u8NNz/it7lTLwArJjHBvyozmpdwVXWh4lOIzm6fta9MhoSm5CRUb+KCDDMBqOo0lIrm7dOvxUsOYUp0oypbICnnDGc/B4V6N5JJXXWr7bXHZ9HWRm8+YwmExa2nyOM9PIgT8v/bZPl+ykEfX70/54jfYoXg7gaGPYq4Rurym2ogQaybooenSbWZ7HGI/kjbFqKjIa7VPDWQFxXcX3jXgAMVbIMtA0GroJP/dKm2ts38SFQIqiO1w5EzWTsYSysvPn0QF6XbrV6TbXM0O8PbdgaDTy16bDychf9KiQSEjJIUZeZ8YBw6XAtbMQMxHjxul5DJJtF5DQyJGnR5XOYo6g2k4TYZbOFPmFXpOrWWxtEddiFWBxi7FDATpO6uUNJWzeViuUzNyGYIKgBZsrbZeGYYAADTCN93cOw0zpHVO5tIarCmKHSchd0ba3QjKOjVUat+vl6MXin8Vk/VVigl+0moEuygGm9iqtcAIDJwrG/q8y/0WVmf4rlbkcBC+rzFvX92nHsjhnJkelmfhBMGLpcDyGcDiZhjANJuOQh5NJyCGFYcr4MJhylvjjURqMp9Pt0OfBOISQJ3w7BNSokkmRIkPdygncg9v0Ga3R25HY4BNaLP5s4s9HrfEWCozjIr2LQsdxJ3GdcV6ICltDxDXHFcOInRnTnX4suYbPt1+r1rUawW11QW9as0v6quaWp3r0TcvYVUREP1M1YRoIk4QZI5yIWpIqTVpdQRJ7TJoZuIkSy8yO6RNUA2JzwFOOkM5RCUAmEpUSDTh8QNUj7VbsWWIV6TK0MausffJBSuZYO1HyHUt2pJq1/u5oj9yrjSWGzdHI7LmDKwQagBhwLHTFS7YnyrrEDAlxUvJCOoeFCwP9O/LjZf2I7K+gLMgdudmBResStjNutMERdS+XqrbxLtPCya9jBF1Fu/l3Ie76Vxcb4w2WyIqIpl63DnSBn7uvnWqBbwzYY5itPXN38RcRsNwq

View File

@@ -13,45 +13,45 @@ From the opposite direction, scientists use `LangChain` in research and referenc
| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation|
|------------------|---------|-------------------|------------------------|
| `2403.14403v2` [Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity](http://arxiv.org/abs/2403.14403v2) | Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al. | 2024&#8209;03&#8209;21 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
| `2403.14403v2` [Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity](http://arxiv.org/abs/2403.14403v2) | Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al. | 2024&#8209;03&#8209;21 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024&#8209;02&#8209;06 | `Cookbook:` [Self-Discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
| `2402.03367v2` [RAG-Fusion: a New Take on Retrieval-Augmented Generation](http://arxiv.org/abs/2402.03367v2) | Zackary Rackauckas | 2024&#8209;01&#8209;31 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
| `2402.03367v2` [RAG-Fusion: a New Take on Retrieval-Augmented Generation](http://arxiv.org/abs/2402.03367v2) | Zackary Rackauckas | 2024&#8209;01&#8209;31 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2401.18059v1` [RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval](http://arxiv.org/abs/2401.18059v1) | Parth Sarthi, Salman Abdullah, Aditi Tuli, et al. | 2024&#8209;01&#8209;31 | `Cookbook:` [Raptor](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
| `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024&#8209;01&#8209;29 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts), `Cookbook:` [Langgraph Crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
| `2401.08500v1` [Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering](http://arxiv.org/abs/2401.08500v1) | Tal Ridnik, Dedy Kredo, Itamar Friedman | 2024&#8209;01&#8209;16 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
| `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024&#8209;01&#8209;29 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Cookbook:` [Langgraph Crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
| `2401.08500v1` [Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering](http://arxiv.org/abs/2401.08500v1) | Tal Ridnik, Dedy Kredo, Itamar Friedman | 2024&#8209;01&#8209;16 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024&#8209;01&#8209;08 | `Cookbook:` [Together Ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023&#8209;12&#8209;11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023&#8209;11&#8209;15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023&#8209;10&#8209;17 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts), `Cookbook:` [Langgraph Self Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023&#8209;10&#8209;09 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts), `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [Stepback-Qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023&#8209;10&#8209;17 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Cookbook:` [Langgraph Self Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023&#8209;10&#8209;09 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [Stepback-Qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
| `2307.15337v3` [Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation](http://arxiv.org/abs/2307.15337v3) | Xuefei Ning, Zinan Lin, Zixuan Zhou, et al. | 2023&#8209;07&#8209;28 | `Template:` [skeleton-of-thought](https://python.langchain.com/docs/templates/skeleton-of-thought)
| `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023&#8209;07&#8209;18 | `Cookbook:` [Semi Structured Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023&#8209;07&#8209;06 | `Docs:` [docs/how_to/long_context_reorder](https://python.langchain.com/docs/how_to/long_context_reorder)
| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023&#8209;07&#8209;06 | `Docs:` [docs/how_to/long_context_reorder](https://python.langchain.com/v0.2/docs/how_to/long_context_reorder)
| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023&#8209;05&#8209;23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [Rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023&#8209;05&#8209;15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot), `Cookbook:` [Tree Of Thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
| `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023&#8209;05&#8209;06 | `Cookbook:` [Plan And Execute Agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
| `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023&#8209;05&#8209;03 | `Docs:` [docs/how_to/contextual_compression](https://python.langchain.com/docs/how_to/contextual_compression), `API:` [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
| `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023&#8209;05&#8209;03 | `Docs:` [docs/how_to/contextual_compression](https://python.langchain.com/v0.2/docs/how_to/contextual_compression), `API:` [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
| `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023&#8209;04&#8209;17 | `Cookbook:` [Semi Structured Multi Modal Rag Llama2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb), [Semi Structured And Multi Modal Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb)
| `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023&#8209;04&#8209;07 | `Cookbook:` [Generative Agents Interactive Simulacra Of Human Behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb), [Multiagent Bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb)
| `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023&#8209;03&#8209;31 | `Cookbook:` [Camel Role Playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023&#8209;03&#8209;30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [Hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023&#8209;01&#8209;24 | `API:` [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022&#8209;12&#8209;20 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts), `API:` [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [Hypothetical Document Embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022&#8209;12&#8209;15 | `Docs:` [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/docs/versions/migrating_chains/constitutional_chain)
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022&#8209;12&#8209;20 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `API:` [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [Hypothetical Document Embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022&#8209;12&#8209;15 | `Docs:` [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain)
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022&#8209;12&#8209;12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022&#8209;11&#8209;25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022&#8209;11&#8209;18 | `API:` [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), `Cookbook:` [Program Aided Language Model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
| `2210.11934v2` [An Analysis of Fusion Functions for Hybrid Retrieval](http://arxiv.org/abs/2210.11934v2) | Sebastian Bruch, Siyu Gai, Amir Ingber | 2022&#8209;10&#8209;21 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022&#8209;10&#8209;06 | `Docs:` [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/docs/concepts), `API:` [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022&#8209;09&#8209;22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
| `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022&#8209;05&#8209;26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
| `2210.11934v2` [An Analysis of Fusion Functions for Hybrid Retrieval](http://arxiv.org/abs/2210.11934v2) | Sebastian Bruch, Siyu Gai, Amir Ingber | 2022&#8209;10&#8209;21 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022&#8209;10&#8209;06 | `Docs:` [docs/integrations/tools/ionic_shopping](https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/v0.2/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `API:` [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022&#8209;09&#8209;22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/v0.2/docs/integrations/providers/activeloop_deeplake)
| `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022&#8209;05&#8209;26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/v0.2/docs/integrations/providers/snowflake)
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022&#8209;05&#8209;25 | `API:` [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022&#8209;03&#8209;15 | `Docs:` [docs/tutorials/sql_qa](https://python.langchain.com/docs/tutorials/sql_qa), `API:` [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022&#8209;03&#8209;15 | `Docs:` [docs/tutorials/sql_qa](https://python.langchain.com/v0.2/docs/tutorials/sql_qa), `API:` [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022&#8209;02&#8209;01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021&#8209;12&#8209;02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/docs/integrations/providers/dspy)
| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021&#8209;12&#8209;02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/v0.2/docs/integrations/providers/dspy)
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021&#8209;02&#8209;26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
| `2005.14165v4` [Language Models are Few-Shot Learners](http://arxiv.org/abs/2005.14165v4) | Tom B. Brown, Benjamin Mann, Nick Ryder, et al. | 2020&#8209;05&#8209;28 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
| `2005.11401v4` [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](http://arxiv.org/abs/2005.11401v4) | Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. | 2020&#8209;05&#8209;22 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
| `2005.14165v4` [Language Models are Few-Shot Learners](http://arxiv.org/abs/2005.14165v4) | Tom B. Brown, Benjamin Mann, Nick Ryder, et al. | 2020&#8209;05&#8209;28 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2005.11401v4` [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](http://arxiv.org/abs/2005.11401v4) | Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. | 2020&#8209;05&#8209;22 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019&#8209;09&#8209;11 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
## Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity
@@ -60,7 +60,7 @@ From the opposite direction, scientists use `LangChain` in research and referenc
- **arXiv id:** [2403.14403v2](http://arxiv.org/abs/2403.14403v2) **Published Date:** 2024-03-21
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Retrieval-Augmented Large Language Models (LLMs), which incorporate the
non-parametric knowledge from external knowledge bases into LLMs, have emerged
@@ -113,7 +113,7 @@ commonalities with human reasoning patterns.
- **arXiv id:** [2402.03367v2](http://arxiv.org/abs/2402.03367v2) **Published Date:** 2024-01-31
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Infineon has identified a need for engineers, account managers, and customers
to rapidly obtain product information. This problem is traditionally addressed
@@ -159,7 +159,7 @@ benchmark by 20% in absolute accuracy.
- **arXiv id:** [2401.15884v2](http://arxiv.org/abs/2401.15884v2) **Published Date:** 2024-01-29
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **Cookbook:** [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
**Abstract:** Large language models (LLMs) inevitably exhibit hallucinations since the
@@ -187,7 +187,7 @@ performance of RAG-based approaches.
- **arXiv id:** [2401.08500v1](http://arxiv.org/abs/2401.08500v1) **Published Date:** 2024-01-16
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Code generation problems differ from common natural language problems - they
require matching the exact syntax of the target language, identifying happy
@@ -293,7 +293,7 @@ outside the pre-training knowledge scope.
- **arXiv id:** [2310.11511v1](http://arxiv.org/abs/2310.11511v1) **Published Date:** 2023-10-17
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **Cookbook:** [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
**Abstract:** Despite their remarkable capabilities, large language models (LLMs) often
@@ -324,7 +324,7 @@ to these models.
- **arXiv id:** [2310.06117v2](http://arxiv.org/abs/2310.06117v2) **Published Date:** 2023-10-09
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **Template:** [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting)
- **Cookbook:** [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
@@ -384,7 +384,7 @@ contribute to the responsible development of LLMs.
- **arXiv id:** [2307.03172v3](http://arxiv.org/abs/2307.03172v3) **Published Date:** 2023-07-06
- **LangChain:**
- **Documentation:** [docs/how_to/long_context_reorder](https://python.langchain.com/docs/how_to/long_context_reorder)
- **Documentation:** [docs/how_to/long_context_reorder](https://python.langchain.com/v0.2/docs/how_to/long_context_reorder)
**Abstract:** While recent language models have the ability to take long contexts as input,
relatively little is known about how well they use longer context. We analyze
@@ -451,7 +451,8 @@ steps of the thought-process and explore other directions from there. To verify
the effectiveness of the proposed technique, we implemented a ToT-based solver
for the Sudoku Puzzle. Experimental results show that the ToT framework can
significantly increase the success rate of Sudoku puzzle solving. Our
implementation of the ToT-based Sudoku solver is available on [GitHub](https://github.com/jieyilong/tree-of-thought-puzzle-solver).
implementation of the ToT-based Sudoku solver is available on GitHub:
\url{https://github.com/jieyilong/tree-of-thought-puzzle-solver}.
## Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
@@ -489,7 +490,7 @@ https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
- **arXiv id:** [2305.02156v1](http://arxiv.org/abs/2305.02156v1) **Published Date:** 2023-05-03
- **LangChain:**
- **Documentation:** [docs/how_to/contextual_compression](https://python.langchain.com/docs/how_to/contextual_compression)
- **Documentation:** [docs/how_to/contextual_compression](https://python.langchain.com/v0.2/docs/how_to/contextual_compression)
- **API Reference:** [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
**Abstract:** Supervised ranking methods based on bi-encoder or cross-encoder architectures
@@ -648,7 +649,7 @@ family, and discuss robustness and security.
- **arXiv id:** [2212.10496v1](http://arxiv.org/abs/2212.10496v1) **Published Date:** 2022-12-20
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **API Reference:** [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
- **Template:** [hyde](https://python.langchain.com/docs/templates/hyde)
- **Cookbook:** [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
@@ -677,7 +678,7 @@ search, QA, fact verification) and languages~(e.g. sw, ko, ja).
- **arXiv id:** [2212.08073v1](http://arxiv.org/abs/2212.08073v1) **Published Date:** 2022-12-15
- **LangChain:**
- **Documentation:** [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/docs/versions/migrating_chains/constitutional_chain)
- **Documentation:** [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain)
**Abstract:** As AI systems become more capable, we would like to enlist their help to
supervise other AIs. We experiment with methods for training a harmless AI
@@ -791,7 +792,7 @@ publicly available at http://reasonwithpal.com/ .
- **arXiv id:** [2210.11934v2](http://arxiv.org/abs/2210.11934v2) **Published Date:** 2022-10-21
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** We study hybrid search in text retrieval where lexical and semantic search
are fused together with the intuition that the two are complementary in how
@@ -810,7 +811,7 @@ training examples to tune its only parameter to a target domain.
- **arXiv id:** [2210.03629v3](http://arxiv.org/abs/2210.03629v3) **Published Date:** 2022-10-06
- **LangChain:**
- **Documentation:** [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/integrations/tools/ionic_shopping](https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/v0.2/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **API Reference:** [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
**Abstract:** While large language models (LLMs) have demonstrated impressive capabilities
@@ -842,7 +843,7 @@ Project site with code: https://react-lm.github.io
- **arXiv id:** [2209.10785v2](http://arxiv.org/abs/2209.10785v2) **Published Date:** 2022-09-22
- **LangChain:**
- **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
- **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/v0.2/docs/integrations/providers/activeloop_deeplake)
**Abstract:** Traditional data lakes provide critical data infrastructure for analytical
workloads by enabling time travel, running SQL queries, ingesting data with
@@ -867,7 +868,7 @@ TensorFlow, JAX, and integrate with numerous MLOps tools.
- **arXiv id:** [2205.13147v4](http://arxiv.org/abs/2205.13147v4) **Published Date:** 2022-05-26
- **LangChain:**
- **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake)
- **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/v0.2/docs/integrations/providers/snowflake)
**Abstract:** Learned representations are a central component in modern ML systems, serving
a multitude of downstream tasks. When training such representations, it is
@@ -924,7 +925,7 @@ encoders, mine bitexts, and validate the bitexts by training NMT systems.
- **arXiv id:** [2204.00498v1](http://arxiv.org/abs/2204.00498v1) **Published Date:** 2022-03-15
- **LangChain:**
- **Documentation:** [docs/tutorials/sql_qa](https://python.langchain.com/docs/tutorials/sql_qa)
- **Documentation:** [docs/tutorials/sql_qa](https://python.langchain.com/v0.2/docs/tutorials/sql_qa)
- **API Reference:** [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
**Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex
@@ -970,7 +971,7 @@ reducing degenerate repetitions.
- **arXiv id:** [2112.01488v3](http://arxiv.org/abs/2112.01488v3) **Published Date:** 2021-12-02
- **LangChain:**
- **Documentation:** [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/docs/integrations/providers/dspy)
- **Documentation:** [docs/integrations/retrievers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/v0.2/docs/integrations/providers/dspy)
**Abstract:** Neural information retrieval (IR) has greatly advanced search and other
knowledge-intensive language tasks. While many neural IR methods encode queries
@@ -1021,7 +1022,7 @@ https://github.com/OpenAI/CLIP.
- **arXiv id:** [2005.14165v4](http://arxiv.org/abs/2005.14165v4) **Published Date:** 2020-05-28
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Recent work has demonstrated substantial gains on many NLP tasks and
benchmarks by pre-training on a large corpus of text followed by fine-tuning on
@@ -1054,7 +1055,7 @@ and of GPT-3 in general.
- **arXiv id:** [2005.11401v4](http://arxiv.org/abs/2005.11401v4) **Published Date:** 2020-05-22
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Large pre-trained language models have been shown to store factual knowledge
in their parameters, and achieve state-of-the-art results when fine-tuned on

View File

@@ -1,32 +1,134 @@
---
sidebar_position: 0
sidebar_class_name: hidden
---
# Conceptual guide
In this section, you'll find explanations of the key concepts, providing a deeper understanding of core principles.
import ThemedImage from '@theme/ThemedImage';
import useBaseUrl from '@docusaurus/useBaseUrl';
The conceptual guide will not cover step-by-step instructions or specific implementation details — those are found in the [How-To Guides](/docs/how_to/) and [Tutorials](/docs/tutorials) sections. For detailed reference material, please visit the [API Reference](https://python.langchain.com/api_reference/).
This section contains introductions to key parts of LangChain.
## Architecture
* Conceptual Guide: [LangChain Architecture](/docs/concepts/architecture)
LangChain as a framework consists of a number of packages.
## Runnable interface
<span data-heading-keywords="invoke,runnable"></span>
### `langchain-core`
This package contains base abstractions of different components and ways to compose them together.
The interfaces for core components like LLMs, vector stores, retrievers and more are defined here.
No third party integrations are defined here.
The dependencies are kept purposefully very lightweight.
* Conceptual Guide: [About the Runnable interface](/docs/concepts/runnables)
* How-to Guides: [How to use the Runnable interface](/docs/how_to/#langchain-expression-language-lcel)
### `langchain`
The Runnable interface is a standard interface for defining and invoking LangChain components.
The main `langchain` package contains chains, agents, and retrieval strategies that make up an application's cognitive architecture.
These are NOT third party integrations.
All chains, agents, and retrieval strategies here are NOT specific to any one integration, but rather generic across all integrations.
### `langchain-community`
This package contains third party integrations that are maintained by the LangChain community.
Key partner packages are separated out (see below).
This contains all integrations for various components (LLMs, vector stores, retrievers).
All dependencies in this package are optional to keep the package as lightweight as possible.
### Partner packages
While the long tail of integrations is in `langchain-community`, we split popular integrations into their own packages (e.g. `langchain-openai`, `langchain-anthropic`, etc).
This was done in order to improve support for these important integrations.
### [`langgraph`](https://langchain-ai.github.io/langgraph)
`langgraph` is an extension of `langchain` aimed at
building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
LangGraph exposes high level interfaces for creating common types of agents, as well as a low-level API for composing custom flows.
### [`langserve`](/docs/langserve)
A package to deploy LangChain chains as REST APIs. Makes it easy to get a production ready API up and running.
### [LangSmith](https://docs.smith.langchain.com)
A developer platform that lets you debug, test, evaluate, and monitor LLM applications.
<ThemedImage
alt="Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers."
sources={{
light: useBaseUrl('/svg/langchain_stack_062024.svg'),
dark: useBaseUrl('/svg/langchain_stack_062024_dark.svg'),
}}
title="LangChain Framework Overview"
style={{ width: "100%" }}
/>
## LangChain Expression Language (LCEL)
<span data-heading-keywords="lcel"></span>
* Conceptual Guide: [About the Runnable interface](/docs/concepts/lcel)
* How-to Guides: [How to use the Runnable interface](/docs/how_to/#langchain-expression-language-lcel)
`LangChain Expression Language`, or `LCEL`, is a declarative way to chain LangChain components.
LCEL was designed from day 1 to **support putting prototypes in production, with no code changes**, from the simplest “prompt + LLM” chain to the most complex chains (weve seen folks successfully run LCEL chains with 100s of steps in production). To highlight a few of the reasons you might want to use LCEL:
- **First-class streaming support:**
When you build your chains with LCEL you get the best possible time-to-first-token (time elapsed until the first chunk of output comes out). For some chains this means eg. we stream tokens straight from an LLM to a streaming output parser, and you get back parsed, incremental chunks of output at the same rate as the LLM provider outputs the raw tokens.
- **Async support:**
Any chain built with LCEL can be called both with the synchronous API (eg. in your Jupyter notebook while prototyping) as well as with the asynchronous API (eg. in a [LangServe](/docs/langserve/) server). This enables using the same code for prototypes and in production, with great performance, and the ability to handle many concurrent requests in the same server.
- **Optimized parallel execution:**
Whenever your LCEL chains have steps that can be executed in parallel (eg if you fetch documents from multiple retrievers) we automatically do it, both in the sync and the async interfaces, for the smallest possible latency.
- **Retries and fallbacks:**
Configure retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. Were currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
- **Access intermediate results:**
For more complex chains its often very useful to access the results of intermediate steps even before the final output is produced. This can be used to let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and its available on every [LangServe](/docs/langserve) server.
- **Input and output schemas**
Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
- [**Seamless LangSmith tracing**](https://docs.smith.langchain.com)
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
With LCEL, **all** steps are automatically logged to [LangSmith](https://docs.smith.langchain.com/) for maximum observability and debuggability.
LCEL aims to provide consistency around behavior and customization over legacy subclassed chains such as `LLMChain` and
`ConversationalRetrievalChain`. Many of these legacy chains hide important details like prompts, and as a wider variety
of viable models emerge, customization has become more and more important.
If you are currently using one of these legacy chains, please see [this guide for guidance on how to migrate](/docs/versions/migrating_chains).
For guides on how to do specific tasks with LCEL, check out [the relevant how-to guides](/docs/how_to/#langchain-expression-language-lcel).
### Runnable interface
<span data-heading-keywords="invoke,runnable"></span>
To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below.
This is a standard interface, which makes it easy to define custom chains as well as invoke them in a standard way.
The standard interface includes:
- `stream`: stream back chunks of the response
- `invoke`: call the chain on an input
- `batch`: call the chain on a list of inputs
These also have corresponding async methods that should be used with [asyncio](https://docs.python.org/3/library/asyncio.html) `await` syntax for concurrency:
- `astream`: stream back chunks of the response async
- `ainvoke`: call the chain on an input async
- `abatch`: call the chain on a list of inputs async
- `astream_log`: stream back intermediate steps as they happen, in addition to the final response
- `astream_events`: **beta** stream events as they happen in the chain (introduced in `langchain-core` 0.1.14)
The **input type** and **output type** varies by component:
| Component | Input Type | Output Type |
| --- | --- | --- |
| Prompt | Dictionary | PromptValue |
| ChatModel | Single string, list of chat messages or a PromptValue | ChatMessage |
| LLM | Single string, list of chat messages or a PromptValue | String |
| OutputParser | The output of an LLM or ChatModel | Depends on the parser |
| Retriever | Single string | List of Documents |
| Tool | Single string or dictionary, depending on the tool | Depends on the tool |
All runnables expose input and output **schemas** to inspect the inputs and outputs:
- `input_schema`: an input Pydantic model auto-generated from the structure of the Runnable
- `output_schema`: an output Pydantic model auto-generated from the structure of the Runnable
## Components
@@ -34,16 +136,51 @@ LangChain provides standard, extendable interfaces and external integrations for
Some components LangChain implements, some components we rely on third-party integrations for, and others are a mix.
### Chat models
<span data-heading-keywords="chat model,chat models"></span>
* Conceptual Guide: [About Chat Models](/docs/concepts/chat_models)
* Integrations: [LangChain Chat Model Integrations](/docs/integrations/chat/)
* How-to Guides: [How to use Chat Models](/docs/how_to/#chat-models)
Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text).
These are traditionally newer models (older models are generally `LLMs`, see below).
Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages.
Although the underlying models are messages in, message out, the LangChain wrappers also allow these models to take a string as input. This means you can easily use chat models in place of LLMs.
When a string is passed in as input, it is converted to a `HumanMessage` and then passed to the underlying model.
LangChain does not host any Chat Models, rather we rely on third party integrations.
We have some standardized parameters when constructing ChatModels:
- `model`: the name of the model
- `temperature`: the sampling temperature
- `timeout`: request timeout
- `max_tokens`: max tokens to generate
- `stop`: default stop sequences
- `max_retries`: max number of times to retry requests
- `api_key`: API key for the model provider
- `base_url`: endpoint to send requests to
Some important things to note:
- standard params only apply to model providers that expose parameters with the intended functionality. For example, some providers do not expose a configuration for maximum output tokens, so max_tokens can't be supported on these.
- standard params are currently only enforced on integrations that have their own integration packages (e.g. `langchain-openai`, `langchain-anthropic`, etc.), they're not enforced on models in ``langchain-community``.
ChatModels also accept other parameters that are specific to that integration. To find all the parameters supported by a ChatModel head to the API reference for that model.
:::important
Some chat models have been fine-tuned for **tool calling** and provide a dedicated API for it.
Generally, such models are better at tool calling than non-fine-tuned models, and are recommended for use cases that require tool calling.
Please see the [tool calling section](/docs/concepts/#functiontool-calling) for more information.
:::
For specifics on how to use chat models, see the [relevant how-to guides here](/docs/how_to/#chat-models).
#### Multimodality
* Conceptual Guide: [About Multimodal Chat Models](/docs/concepts/multimodality)
Some chat models are multimodal, accepting images, audio and even video as inputs. These are still less common, meaning model providers haven't standardized on the "best" way to define the API. Multimodal **outputs** are even less common. As such, we've kept our multimodal abstractions fairly light weight and plan to further solidify the multimodal APIs and interaction patterns as the field matures.
In LangChain, most chat models that support multimodal inputs also accept those values in OpenAI's content blocks format. So far this is restricted to image inputs. For models like Gemini which support video and other bytes input, the APIs also support the native, model-specific representations.
For specifics on how to use multimodal models, see the [relevant how-to guides here](/docs/how_to/#multimodal).
For a full list of LangChain model providers with multimodal models, [check out this table](/docs/integrations/chat/#advanced-features).
### LLMs
<span data-heading-keywords="llm,llms"></span>
@@ -55,33 +192,157 @@ even for non-chat use cases.
You are probably looking for [the section above instead](/docs/concepts/#chat-models).
:::
* Conceptual Guide: [About Language Models](/docs/concepts/llms)
* Integrations: [LangChain LLM Integrations](/docs/integrations/llms/)
* How-to Guides: [How to use LLMs](/docs/how_to/#llms)
Language models that takes a string as input and returns a string.
These are traditionally older models (newer models generally are [Chat Models](/docs/concepts/#chat-models), see above).
Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input.
This gives them the same interface as [Chat Models](/docs/concepts/#chat-models).
When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model.
LangChain does not host any LLMs, rather we rely on third party integrations.
For specifics on how to use LLMs, see the [how-to guides](/docs/how_to/#llms).
<a id="aimessage"></a>
<a id="systemmessage"></a>
<a id="humanmessage"></a>
<a id="toolmessage"></a>
<a id="legacy-functionmessage"></a>
### Messages
* Conceptual Guide: [About Messages](/docs/concepts/messages)
* How-to Guides: [How to use Messages](/docs/how_to/#messages)
Some language models take a list of messages as input and return a message.
There are a few different types of messages.
All messages have a `role`, `content`, and `response_metadata` property.
The `role` describes WHO is saying the message. The standard roles are "user", "assistant", "system", and "tool".
LangChain has different message classes for different roles.
The `content` property describes the content of the message.
This can be a few different things:
- A string (most models deal with this type of content)
- A List of dictionaries (this is used for multimodal input, where the dictionary contains information about that input type and that input location)
Optionally, messages can have a `name` property which allows for differentiating between multiple speakers with the same role.
For example, if there are two users in the chat history it can be useful to differentiate between them. Not all models support this.
#### HumanMessage
This represents a message with role "user".
#### AIMessage
This represents a message with role "assistant". In addition to the `content` property, these messages also have:
**`response_metadata`**
The `response_metadata` property contains additional metadata about the response. The data here is often specific to each model provider.
This is where information like log-probs and token usage may be stored.
**`tool_calls`**
These represent a decision from an language model to call a tool. They are included as part of an `AIMessage` output.
They can be accessed from there with the `.tool_calls` property.
This property returns a list of `ToolCall`s. A `ToolCall` is a dictionary with the following arguments:
- `name`: The name of the tool that should be called.
- `args`: The arguments to that tool.
- `id`: The id of that tool call.
#### SystemMessage
This represents a message with role "system", which tells the model how to behave. Not every model provider supports this.
#### ToolMessage
This represents a message with role "tool", which contains the result of calling a tool. In addition to `role` and `content`, this message has:
- a `tool_call_id` field which conveys the id of the call to the tool that was called to produce this result.
- an `artifact` field which can be used to pass along arbitrary artifacts of the tool execution which are useful to track but which should not be sent to the model.
#### (Legacy) FunctionMessage
This is a legacy message type, corresponding to OpenAI's legacy function-calling API. `ToolMessage` should be used instead to correspond to the updated tool-calling API.
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
### Prompt templates
<span data-heading-keywords="prompt,prompttemplate,chatprompttemplate"></span>
Conceptual Guide: [About Prompt Templates](/docs/concepts/prompts)
How-to Guides: [How to use Prompt Templates](/docs/how_to/#prompt-templates)
Prompt templates help to translate user input and parameters into instructions for a language model.
This can be used to guide a model's response, helping it understand the context and generate relevant and coherent language-based output.
Prompt Templates take as input a dictionary, where each key represents a variable in the prompt template to fill in.
Prompt Templates output a PromptValue. This PromptValue can be passed to an LLM or a ChatModel, and can also be cast to a string or a list of messages.
The reason this PromptValue exists is to make it easy to switch between strings and messages.
There are a few different types of prompt templates:
#### String PromptTemplates
These prompt templates are used to format a single string, and generally are used for simpler inputs.
For example, a common way to construct and use a PromptTemplate is as follows:
```python
from langchain_core.prompts import PromptTemplate
prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")
prompt_template.invoke({"topic": "cats"})
```
#### ChatPromptTemplates
These prompt templates are used to format a list of messages. These "templates" consist of a list of templates themselves.
For example, a common way to construct and use a ChatPromptTemplate is as follows:
```python
from langchain_core.prompts import ChatPromptTemplate
prompt_template = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant"),
("user", "Tell me a joke about {topic}")
])
prompt_template.invoke({"topic": "cats"})
```
In the above example, this ChatPromptTemplate will construct two messages when called.
The first is a system message, that has no variables to format.
The second is a HumanMessage, and will be formatted by the `topic` variable the user passes in.
#### MessagesPlaceholder
<span data-heading-keywords="messagesplaceholder"></span>
This prompt template is responsible for adding a list of messages in a particular place.
In the above ChatPromptTemplate, we saw how we could format two messages, each one a string.
But what if we wanted the user to pass in a list of messages that we would slot into a particular spot?
This is how you use MessagesPlaceholder.
```python
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage
prompt_template = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant"),
MessagesPlaceholder("msgs")
])
prompt_template.invoke({"msgs": [HumanMessage(content="hi!")]})
```
This will produce a list of two messages, the first one being a system message, and the second one being the HumanMessage we passed in.
If we had passed in 5 messages, then it would have produced 6 messages in total (the system message plus the 5 passed in).
This is useful for letting a list of messages be slotted into a particular spot.
An alternative way to accomplish the same thing without using the `MessagesPlaceholder` class explicitly is:
```python
prompt_template = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant"),
("placeholder", "{msgs}") # <-- This is the changed part
])
```
For specifics on how to use prompt templates, see the [relevant how-to guides here](/docs/how_to/#prompt-templates).
### Example selectors
One common prompting technique for achieving better performance is to include examples as part of the prompt.
@@ -97,15 +358,41 @@ For specifics on how to use example selectors, see the [relevant how-to guides h
:::note
Output parsers precede chat models that were capable of calling tools. These days, it is recommended to use function/tool calling
as it's simpler while providing better quality results.
The information here refers to parsers that take a text output from a model try to parse it into a more structured representation.
More and more models are supporting function (or tool) calling, which handles this automatically.
It is recommended to use function/tool calling rather than output parsing.
See documentation for that [here](/docs/concepts/#function-tool-calling).
:::
Conceptual Guide: [About Output Parsers](/docs/concepts/output_parsers)
How-to Guides: [How to use Output Parsers](/docs/how_to/#output-parsers)
`Output parser` is responsible for taking the output of a model and transforming it to a more suitable format for downstream tasks.
Useful when you are using LLMs to generate structured data, or to normalize output from chat models and LLMs.
LangChain has lots of different types of output parsers. This is a list of output parsers LangChain supports. The table below has various pieces of information:
- **Name**: The name of the output parser
- **Supports Streaming**: Whether the output parser supports streaming.
- **Has Format Instructions**: Whether the output parser has format instructions. This is generally available except when (a) the desired schema is not specified in the prompt but rather in other parameters (like OpenAI function calling), or (b) when the OutputParser wraps another OutputParser.
- **Calls LLM**: Whether this output parser itself calls an LLM. This is usually only done by output parsers that attempt to correct misformatted output.
- **Input Type**: Expected input type. Most output parsers work on both strings and messages, but some (like OpenAI Functions) need a message with specific kwargs.
- **Output Type**: The output type of the object returned by the parser.
- **Description**: Our commentary on this output parser and when to use it.
| Name | Supports Streaming | Has Format Instructions | Calls LLM | Input Type | Output Type | Description |
|-----------------|--------------------|-------------------------------|-----------|----------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [JSON](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html#langchain_core.output_parsers.json.JsonOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
| [XML](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). |
| [CSV](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. |
| [OutputFixing](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. |
| [RetryWithError](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html#langchain.output_parsers.retry.RetryWithErrorOutputParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the original inputs, the bad output, and the error message to an LLM and ask it to fix it. Compared to OutputFixingParser, this one also sends the original instructions. |
| [Pydantic](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html#langchain_core.output_parsers.pydantic.PydanticOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. |
| [YAML](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. Uses YAML to encode it. |
| [PandasDataFrame](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser.html#langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser) | | ✅ | | `str` \| `Message` | `dict` | Useful for doing operations with pandas DataFrames. |
| [Enum](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.enum.EnumOutputParser.html#langchain.output_parsers.enum.EnumOutputParser) | | ✅ | | `str` \| `Message` | `Enum` | Parses response into one of the provided enum values. |
| [Datetime](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.datetime.DatetimeOutputParser.html#langchain.output_parsers.datetime.DatetimeOutputParser) | | ✅ | | `str` \| `Message` | `datetime.datetime` | Parses response into a datetime string. |
| [Structured](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.structured.StructuredOutputParser.html#langchain.output_parsers.structured.StructuredOutputParser) | | ✅ | | `str` \| `Message` | `Dict[str, str]` | An output parser that returns structured information. It is less powerful than other output parsers since it only allows for fields to be strings. This can be useful when you are working with smaller LLMs. |
For specifics on how to use output parsers, see the [relevant how-to guides here](/docs/how_to/#output-parsers).
### Chat history
Most LLM applications have a conversational interface.
@@ -132,47 +419,89 @@ These classes load Document objects. LangChain has hundreds of integrations with
Each DocumentLoader has its own specific parameters, but they can all be invoked in the same way with the `.load` method.
An example use case is as follows:
### Output parsers
<span data-heading-keywords="output parser"></span>
```python
from langchain_community.document_loaders.csv_loader import CSVLoader
:::note
The information here refers to parsers that take a text output from a model try to parse it into a more structured representation.
More and more models are supporting function (or tool) calling, which handles this automatically.
It is recommended to use function/tool calling rather than output parsing.
See documentation for that [here](/docs/concepts/#function-tool-calling).
:::
loader = CSVLoader(
... # <-- Integration specific parameters here
)
data = loader.load()
```
* Conceptual Guide: [About Output Parsers](/docs/concepts/output_parsers)
* How-to Guides: [How to use Output Parsers](/docs/how_to/#output-parsers)
For specifics on how to use document loaders, see the [relevant how-to guides here](/docs/how_to/#document-loaders).
### Text splitters
* Conceptual Guide: [About Text Splitters](/docs/concepts/text_splitters)
Once you've loaded documents, you'll often want to transform them to better suit your application. The simplest example is you may want to split a long document into smaller chunks that can fit into your model's context window. LangChain has a number of built-in document transformers that make it easy to split, combine, filter, and otherwise manipulate documents.
When you want to deal with long pieces of text, it is necessary to split up that text into chunks. As simple as this sounds, there is a lot of potential complexity here. Ideally, you want to keep the semantically related pieces of text together. What "semantically related" means could depend on the type of text. This notebook showcases several ways to do that.
At a high level, text splitters work as following:
1. Split the text up into small, semantically meaningful chunks (often sentences).
2. Start combining these small chunks into a larger chunk until you reach a certain size (as measured by some function).
3. Once you reach that size, make that chunk its own piece of text and then start creating a new chunk of text with some overlap (to keep context between chunks).
That means there are two different axes along which you can customize your text splitter:
1. How the text is split
2. How the chunk size is measured
For specifics on how to use text splitters, see the [relevant how-to guides here](/docs/how_to/#text-splitters).
### Embedding models
<span data-heading-keywords="embedding,embeddings"></span>
* Conceptual Guide: [About Embedding Models](/docs/concepts/embedding_models)
* How-to Guides: [How to use Embedding Models](/docs/how_to/#embedding-models)
Embedding models create a vector representation of a piece of text. You can think of a vector as an array of numbers that captures the semantic meaning of the text.
By representing the text in this way, you can perform mathematical operations that allow you to do things like search for other pieces of text that are most similar in meaning.
These natural language search capabilities underpin many types of [context retrieval](/docs/concepts/#retrieval),
where we provide an LLM with the relevant data it needs to effectively respond to a query.
### Retrievers
<span data-heading-keywords="retriever,retrievers"></span>
![](/img/embeddings.png)
* Conceptual Guide: [About Retrievers](/docs/concepts/retrievers)
* How-to Guides: [How to use Retrievers](/docs/how_to/#retrievers)
The `Embeddings` class is a class designed for interfacing with text embedding models. There are many different embedding model providers (OpenAI, Cohere, Hugging Face, etc) and local models, and this class is designed to provide a standard interface for all of them.
The base Embeddings class in LangChain provides two methods: one for embedding documents and one for embedding a query. The former takes as input multiple texts, while the latter takes a single text. The reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself).
For specifics on how to use embedding models, see the [relevant how-to guides here](/docs/how_to/#embedding-models).
### Vector stores
<span data-heading-keywords="vector,vectorstore,vectorstores,vector store,vector stores"></span>
* Conceptual Guide: [About Vector Stores](/docs/concepts/vectorstores)
* How-to Guides: [How to use Vector Stores](/docs/how_to/#vector-stores)
One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding vectors,
and then at query time to embed the unstructured query and retrieve the embedding vectors that are 'most similar' to the embedded query.
A vector store takes care of storing embedded data and performing vector search for you.
Most vector stores can also store metadata about embedded vectors and support filtering on that metadata before
similarity search, allowing you more control over returned documents.
Vector stores can be converted to the retriever interface by doing:
```python
vectorstore = MyVectorStore()
retriever = vectorstore.as_retriever()
```
For specifics on how to use vector stores, see the [relevant how-to guides here](/docs/how_to/#vector-stores).
### Retrievers
<span data-heading-keywords="retriever,retrievers"></span>
A retriever is an interface that returns documents given an unstructured query.
It is more general than a vector store.
A retriever does not need to be able to store documents, only to return (or retrieve) them.
Retrievers can be created from vector stores, but are also broad enough to include [Wikipedia search](/docs/integrations/retrievers/wikipedia/) and [Amazon Kendra](/docs/integrations/retrievers/amazon_kendra_retriever/).
Retrievers accept a string query as input and return a list of Document's as output.
For specifics on how to use retrievers, see the [relevant how-to guides here](/docs/how_to/#retrievers).
### Key-value stores
For some techniques, such as [indexing and retrieval with multiple vectors per document](/docs/how_to/multi_vector/) or
[caching embeddings](/docs/how_to/caching_embeddings/), having a form of key-value (KV) storage is helpful.
LangChain includes a [`BaseStore`](https://python.langchain.com/api_reference/core/stores/langchain_core.stores.BaseStore.html) interface,
LangChain includes a [`BaseStore`](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.BaseStore.html) interface,
which allows for storage of arbitrary data. However, LangChain components that require KV-storage accept a
more specific `BaseStore[str, bytes]` instance that stores binary data (referred to as a `ByteStore`), and internally take care of
encoding and decoding data for their specific needs.
@@ -181,7 +510,7 @@ This means that as a user, you only need to think about one type of store rather
#### Interface
All [`BaseStores`](https://python.langchain.com/api_reference/core/stores/langchain_core.stores.BaseStore.html) support the following interface. Note that the interface allows
All [`BaseStores`](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.BaseStore.html) support the following interface. Note that the interface allows
for modifying **multiple** key-value pairs at once:
- `mget(key: Sequence[str]) -> List[Optional[bytes]]`: get the contents of multiple keys, returning `None` if the key does not exist
@@ -194,7 +523,100 @@ For key-value store implementations, see [this section](/docs/integrations/store
### Tools
<span data-heading-keywords="tool,tools"></span>
[Tools](/docs/concepts/tools) are utilities designed to be called by a model: their inputs are designed to be generated by models, and their outputs are designed to be passed back to models.
Tools are utilities designed to be called by a model: their inputs are designed to be generated by models, and their outputs are designed to be passed back to models.
Tools are needed whenever you want a model to control parts of your code or call out to external APIs.
A tool consists of:
1. The `name` of the tool.
2. A `description` of what the tool does.
3. A `JSON schema` defining the inputs to the tool.
4. A `function` (and, optionally, an async variant of the function).
When a tool is bound to a model, the name, description and JSON schema are provided as context to the model.
Given a list of tools and a set of instructions, a model can request to call one or more tools with specific inputs.
Typical usage may look like the following:
```python
tools = [...] # Define a list of tools
llm_with_tools = llm.bind_tools(tools)
ai_msg = llm_with_tools.invoke("do xyz...")
# -> AIMessage(tool_calls=[ToolCall(...), ...], ...)
```
The `AIMessage` returned from the model MAY have `tool_calls` associated with it.
Read [this guide](/docs/concepts/#aimessage) for more information on what the response type may look like.
Once the chosen tools are invoked, the results can be passed back to the model so that it can complete whatever task
it's performing.
There are generally two different ways to invoke the tool and pass back the response:
#### Invoke with just the arguments
When you invoke a tool with just the arguments, you will get back the raw tool output (usually a string).
This generally looks like:
```python
# You will want to previously check that the LLM returned tool calls
tool_call = ai_msg.tool_calls[0]
# ToolCall(args={...}, id=..., ...)
tool_output = tool.invoke(tool_call["args"])
tool_message = ToolMessage(
content=tool_output,
tool_call_id=tool_call["id"],
name=tool_call["name"]
)
```
Note that the `content` field will generally be passed back to the model.
If you do not want the raw tool response to be passed to the model, but you still want to keep it around,
you can transform the tool output but also pass it as an artifact (read more about [`ToolMessage.artifact` here](/docs/concepts/#toolmessage))
```python
... # Same code as above
response_for_llm = transform(response)
tool_message = ToolMessage(
content=response_for_llm,
tool_call_id=tool_call["id"],
name=tool_call["name"],
artifact=tool_output
)
```
#### Invoke with `ToolCall`
The other way to invoke a tool is to call it with the full `ToolCall` that was generated by the model.
When you do this, the tool will return a ToolMessage.
The benefits of this are that you don't have to write the logic yourself to transform the tool output into a ToolMessage.
This generally looks like:
```python
tool_call = ai_msg.tool_calls[0]
# -> ToolCall(args={...}, id=..., ...)
tool_message = tool.invoke(tool_call)
# -> ToolMessage(
content="tool result foobar...",
tool_call_id=...,
name="tool_name"
)
```
If you are invoking the tool this way and want to include an [artifact](/docs/concepts/#toolmessage) for the ToolMessage, you will need to have the tool return two things.
Read more about [defining tools that return artifacts here](/docs/how_to/tool_artifacts/).
#### Best practices
When designing tools to be used by a model, it is important to keep in mind that:
- Chat models that have explicit [tool-calling APIs](/docs/concepts/#functiontool-calling) will be better at tool calling than non-fine-tuned models.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This another form of prompt engineering.
- Simple, narrowly scoped tools are easier for models to use than complex tools.
#### Related
For specifics on how to use tools, see the [tools how-to guides](/docs/how_to/#tools).
To use a pre-built tool, see the [tool integration docs](/docs/integrations/tools/).
### Toolkits
<span data-heading-keywords="toolkit,toolkits"></span>
@@ -214,6 +636,44 @@ tools = toolkit.get_tools()
### Agents
By themselves, language models can't take actions - they just output text.
A big use case for LangChain is creating **agents**.
Agents are systems that use an LLM as a reasoning engine to determine which actions to take and what the inputs to those actions should be.
The results of those actions can then be fed back into the agent and it determine whether more actions are needed, or whether it is okay to finish.
[LangGraph](https://github.com/langchain-ai/langgraph) is an extension of LangChain specifically aimed at creating highly controllable and customizable agents.
Please check out that documentation for a more in depth overview of agent concepts.
There is a legacy `agent` concept in LangChain that we are moving towards deprecating: `AgentExecutor`.
AgentExecutor was essentially a runtime for agents.
It was a great place to get started, however, it was not flexible enough as you started to have more customized agents.
In order to solve that we built LangGraph to be this flexible, highly-controllable runtime.
If you are still using AgentExecutor, do not fear: we still have a guide on [how to use AgentExecutor](/docs/how_to/agent_executor).
It is recommended, however, that you start to transition to LangGraph.
In order to assist in this, we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent).
#### ReAct agents
<span data-heading-keywords="react,react agent"></span>
One popular architecture for building agents is [**ReAct**](https://arxiv.org/abs/2210.03629).
ReAct combines reasoning and acting in an iterative process - in fact the name "ReAct" stands for "Reason" and "Act".
The general flow looks like this:
- The model will "think" about what step to take in response to an input and any previous observations.
- The model will then choose an action from available tools (or choose to respond to the user).
- The model will generate arguments to that tool.
- The agent runtime (executor) will parse out the chosen tool and call it with the generated arguments.
- The executor will return the results of the tool call back to the model as an observation.
- This process repeats until the agent chooses to respond.
There are general prompting based implementations that do not require any model-specific features, but the most
reliable implementations use features like [tool calling](/docs/how_to/tool_calling/) to reliably format outputs
and reduce variance.
Please see the [LangGraph documentation](https://langchain-ai.github.io/langgraph/) for more information,
or [this how-to guide](/docs/how_to/migrate_agent/) for specific information on migrating to LangGraph.
### Callbacks
@@ -248,15 +708,17 @@ You can subscribe to these events by using the `callbacks` argument available th
Callback handlers can either be `sync` or `async`:
* Sync callback handlers implement the [BaseCallbackHandler](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html) interface.
* Async callback handlers implement the [AsyncCallbackHandler](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) interface.
* Sync callback handlers implement the [BaseCallbackHandler](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html) interface.
* Async callback handlers implement the [AsyncCallbackHandler](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) interface.
During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered.
During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered.
#### Passing callbacks
The `callbacks` property is available on most objects throughout the API (Models, Tools, Agents, etc.) in two different places:
The callbacks are available on most objects throughout the API (Models, Tools, Agents, etc.) in two different places:
- **Request time callbacks**: Passed at the time of the request in addition to the input data.
Available on all standard `Runnable` objects. These callbacks are INHERITED by all children
of the object they are defined on. For example, `chain.invoke({"number": 25}, {"callbacks": [handler]})`.
@@ -272,10 +734,10 @@ of the object.
If you're creating a custom chain or runnable, you need to remember to propagate request time
callbacks to any child objects.
:::important Async in Python&lt;=3.10
:::important Async in Python<=3.10
Any `RunnableLambda`, a `RunnableGenerator`, or `Tool` that invokes other runnables
and is running `async` in python&lt;=3.10, will have to propagate callbacks to child
and is running `async` in python<=3.10, will have to propagate callbacks to child
objects manually. This is because LangChain cannot automatically propagate
callbacks to child objects in this case.
@@ -290,23 +752,117 @@ For specifics on how to use callbacks, see the [relevant how-to guides here](/do
### Streaming
<span data-heading-keywords="stream,streaming"></span>
Conceptual Guide: [Streaming](/docs/concepts/streaming)
Individual LLM calls often run for much longer than traditional resource requests.
This compounds when you build more complex chains or agents that require multiple reasoning steps.
Fortunately, LLMs generate output iteratively, which means it's possible to show sensible intermediate results
before the final response is ready. Consuming output as soon as it becomes available has therefore become a vital part of the UX
around building apps with LLMs to help alleviate latency issues, and LangChain aims to have first-class support for streaming.
Below, we'll discuss some concepts and considerations around streaming in LangChain.
#### `.stream()` and `.astream()`
TODO(concepts): Add URL fragment
Most modules in LangChain include the `.stream()` method (and the equivalent `.astream()` method for [async](https://docs.python.org/3/library/asyncio.html) environments) as an ergonomic streaming interface.
`.stream()` returns an iterator, which you can consume with a simple `for` loop. Here's an example with a chat model:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(model="claude-3-sonnet-20240229")
for chunk in model.stream("what color is the sky?"):
print(chunk.content, end="|", flush=True)
```
For models (or other components) that don't support streaming natively, this iterator would just yield a single chunk, but
you could still use the same general pattern when calling them. Using `.stream()` will also automatically call the model in streaming mode
without the need to provide additional config.
The type of each outputted chunk depends on the type of component - for example, chat models yield [`AIMessageChunks`](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html).
Because this method is part of [LangChain Expression Language](/docs/concepts/#langchain-expression-language-lcel),
you can handle formatting differences from different outputs using an [output parser](/docs/concepts/#output-parsers) to transform
each yielded chunk.
You can check out [this guide](/docs/how_to/streaming/#using-stream) for more detail on how to use `.stream()`.
#### `.astream_events()`
<span data-heading-keywords="astream_events,stream_events,stream events"></span>
TODO(concepts): Add URL fragment
While the `.stream()` method is intuitive, it can only return the final generated value of your chain. This is fine for single LLM calls,
but as you build more complex chains of several LLM calls together, you may want to use the intermediate values of
the chain alongside the final output - for example, returning sources alongside the final generation when building a chat
over documents app.
There are ways to do this [using callbacks](/docs/concepts/#callbacks-1), or by constructing your chain in such a way that it passes intermediate
values to the end with something like chained [`.assign()`](/docs/how_to/passthrough/) calls, but LangChain also includes an
`.astream_events()` method that combines the flexibility of callbacks with the ergonomics of `.stream()`. When called, it returns an iterator
which yields [various types of events](/docs/how_to/streaming/#event-reference) that you can filter and process according
to the needs of your project.
Here's one small example that prints just events containing streamed chat model output:
```python
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(model="claude-3-sonnet-20240229")
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
parser = StrOutputParser()
chain = prompt | model | parser
async for event in chain.astream_events({"topic": "parrot"}, version="v2"):
kind = event["event"]
if kind == "on_chat_model_stream":
print(event, end="|", flush=True)
```
You can roughly think of it as an iterator over callback events (though the format differs) - and you can use it on almost all LangChain components!
See [this guide](/docs/how_to/streaming/#using-stream-events) for more detailed information on how to use `.astream_events()`,
including a table listing available events.
#### Callbacks
* Conceptual Guide: [Callbacks](/docs/concepts/callbacks)
* How-to Guides: [How to use Callbacks](/docs/how_to/#callbacks)
The lowest level way to stream outputs from LLMs in LangChain is via the [callbacks](/docs/concepts/#callbacks) system. You can pass a
callback handler that handles the [`on_llm_new_token`](https://python.langchain.com/v0.2/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any
[LLM](/docs/concepts/#llms) or [chat model](/docs/concepts/#chat-models) contained in the component calls
the callback with the generated token. Within the callback, you could pipe the tokens into some other destination, e.g. a HTTP response.
You can also handle the [`on_llm_end`](https://python.langchain.com/v0.2/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup.
You can see [this how-to section](/docs/how_to/#callbacks) for more specifics on using callbacks.
Callbacks were the first technique for streaming introduced in LangChain. While powerful and generalizable,
they can be unwieldy for developers. For example:
- You need to explicitly initialize and manage some aggregator or other stream to collect results.
- The execution order isn't explicitly guaranteed, and you could theoretically have a callback run after the `.invoke()` method finishes.
- Providers would often make you pass an additional parameter to stream outputs instead of returning them all at once.
- You would often ignore the result of the actual model call in favor of callback results.
#### Tokens
* Conceptual Guide: [Tokens](/docs/concepts/tokens)
The unit that most model providers use to measure input and output is via a unit called a **token**.
Tokens are the basic units that language models read and generate when processing or producing text.
The exact definition of a token can vary depending on the specific way the model was trained -
for instance, in English, a token could be a single word like "apple", or a part of a word like "app".
When you send a model a prompt, the words and characters in the prompt are encoded into tokens using a **tokenizer**.
The model then streams back generated output tokens, which the tokenizer decodes into human-readable text.
The below example shows how OpenAI models tokenize `LangChain is cool!`:
![](/img/tokenization.png)
You can see that it gets split into 5 different tokens, and that the boundaries between tokens are not exactly the same as word boundaries.
The reason language models use tokens rather than something more immediately intuitive like "characters"
has to do with how they process and understand text. At a high-level, language models iteratively predict their next generated output based on
the initial input and their previous generations. Training the model using tokens language models to handle linguistic
units (like words or subwords) that carry meaning, rather than individual characters, which makes it easier for the model
to learn and understand the structure of the language, including grammar and context.
Furthermore, using tokens can also improve efficiency, since the model processes fewer units of text compared to character-level processing.
### Function/tool calling

View File

@@ -1,40 +0,0 @@
# Agents
By themselves, language models can't take actions - they just output text.
A big use case for LangChain is creating **agents**.
Agents are systems that use an LLM as a reasoning engine to determine which actions to take and what the inputs to those actions should be.
The results of those actions can then be fed back into the agent and it determine whether more actions are needed, or whether it is okay to finish.
[LangGraph](https://github.com/langchain-ai/langgraph) is an extension of LangChain specifically aimed at creating highly controllable and customizable agents.
Please check out that documentation for a more in depth overview of agent concepts.
There is a legacy `agent` concept in LangChain that we are moving towards deprecating: `AgentExecutor`.
AgentExecutor was essentially a runtime for agents.
It was a great place to get started, however, it was not flexible enough as you started to have more customized agents.
In order to solve that we built LangGraph to be this flexible, highly-controllable runtime.
If you are still using AgentExecutor, do not fear: we still have a guide on [how to use AgentExecutor](/docs/how_to/agent_executor).
It is recommended, however, that you start to transition to LangGraph.
In order to assist in this, we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent).
## ReAct agents
<span data-heading-keywords="react,react agent"></span>
One popular architecture for building agents is [**ReAct**](https://arxiv.org/abs/2210.03629).
ReAct combines reasoning and acting in an iterative process - in fact the name "ReAct" stands for "Reason" and "Act".
The general flow looks like this:
- The model will "think" about what step to take in response to an input and any previous observations.
- The model will then choose an action from available tools (or choose to respond to the user).
- The model will generate arguments to that tool.
- The agent runtime (executor) will parse out the chosen tool and call it with the generated arguments.
- The executor will return the results of the tool call back to the model as an observation.
- This process repeats until the agent chooses to respond.
There are general prompting based implementations that do not require any model-specific features, but the most
reliable implementations use features like [tool calling](/docs/how_to/tool_calling/) to reliably format outputs
and reduce variance.
Please see the [LangGraph documentation](https://langchain-ai.github.io/langgraph/) for more information,
or [this how-to guide](/docs/how_to/migrate_agent/) for specific information on migrating to LangGraph.

View File

@@ -1,59 +0,0 @@
import ThemedImage from '@theme/ThemedImage';
import useBaseUrl from '@docusaurus/useBaseUrl';
In this section, you'll find explanations of the key concepts, providing a deeper understanding of core principles.
The conceptual guide will not cover step-by-step instructions or specific implementation details — those are found in the [How-To Guides](/docs/how_to/) and [Tutorials](/docs/tutorials) sections. For detailed reference material, please visit the [API Reference](https://python.langchain.com/api_reference/).
## Architecture
LangChain as a framework consists of a number of packages.
### `langchain-core`
This package contains base abstractions of different components and ways to compose them together.
The interfaces for core components like LLMs, vector stores, retrievers and more are defined here.
No third party integrations are defined here.
The dependencies are kept purposefully very lightweight.
### `langchain`
The main `langchain` package contains chains, agents, and retrieval strategies that make up an application's cognitive architecture.
These are NOT third party integrations.
All chains, agents, and retrieval strategies here are NOT specific to any one integration, but rather generic across all integrations.
### `langchain-community`
This package contains third party integrations that are maintained by the LangChain community.
Key partner packages are separated out (see below).
This contains all integrations for various components (LLMs, vector stores, retrievers).
All dependencies in this package are optional to keep the package as lightweight as possible.
### Partner packages
While the long tail of integrations is in `langchain-community`, we split popular integrations into their own packages (e.g. `langchain-openai`, `langchain-anthropic`, etc).
This was done in order to improve support for these important integrations.
### [`langgraph`](https://langchain-ai.github.io/langgraph)
`langgraph` is an extension of `langchain` aimed at
building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
LangGraph exposes high level interfaces for creating common types of agents, as well as a low-level API for composing custom flows.
### [`langserve`](/docs/langserve)
A package to deploy LangChain chains as REST APIs. Makes it easy to get a production ready API up and running.
### [LangSmith](https://docs.smith.langchain.com)
A developer platform that lets you debug, test, evaluate, and monitor LLM applications.
<ThemedImage
alt="Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers."
sources={{
light: useBaseUrl('/svg/langchain_stack_062024.svg'),
dark: useBaseUrl('/svg/langchain_stack_062024_dark.svg'),
}}
title="LangChain Framework Overview"
style={{ width: "100%" }}
/>

View File

@@ -1,83 +0,0 @@
# Async Programming with LangChain
:::info Prerequisites
* [Runnable Interface](/docs/concepts/runnables)
* [asyncio documentation](https://docs.python.org/3/library/asyncio.html)
:::
## Overview
LLM based applications often involve a lot of I/O-bound operations, such as making API calls to language models, databases, or other services. Asynchronous programming (or async programming) is a paradigm that allows a program to perform multiple tasks concurrently without blocking the execution of other tasks, improving efficiency and responsiveness, particularly in I/O-bound operations.
:::note
You are expected to be familiar with asynchronous programming in Python before reading this guide. If you are not, please find appropriate resources online to learn how to program asynchronously in Python.
This guide specifically focuses on what you need to know to work with LangChain in an asynchronous context, assuming that you are already familiar with asynch
:::
## LangChain Asynchronous APIs
Many LangChain APIs are designed to be asynchronous, allowing you to build efficient and responsive applications.
Typically, any method that may perform I/O operations (e.g., making API calls, reading files) will have an asynchronous counterpart.
In LangChain, async implementations are located in the same classes as their synchronous counterparts, with the asynchronous methods having an "a" prefix. For example, the synchronous `invoke` method has an asynchronous counterpart called `ainvoke`.
Many components of LangChain implement the [Runnable Interface](/docs/concepts/runnables), which includes support for asynchronous execution. This means that you can run Runnables asynchronously using the `await` keyword in Python.
```python
await some_runnable.ainvoke(some_input)
```
Other components like [Embedding Models](/docs/concepts/embedding_models) and [VectorStore](/docs/concepts/vectorstores) that do not implement the [Runnable Interface](/docs/concepts/runnables) usually still follow the same rule and include the asynchronous version of method in the same class with an "a" prefix.
For example,
```python
await some_vectorstore.aadd_documents(documents)
```
Runnables created using the [LangChain Expression Language (LCEL)](/docs/concepts/lcel) can also be run asynchronously as they implement
the full [Runnable Interface](/docs/concepts/runnables).
Fore more information, please review the [API reference](https://python.langchain.com/api_reference/) for the specific component you are using.
## Delegation to Sync Methods
Most popular LangChain integrations implement asynchronous support of their APIs. For example, the `ainvoke` method of many ChatModel implementations uses the `httpx.AsyncClient` to make asynchronous HTTP requests to the model provider's API.
When an asynchronous implementation is not available, LangChain tries to provide a default implementation, even if it incurs
a **slight** overhead.
By default, LangChain will delegate the execution of a unimplemented asynchronous methods to the synchronous counterparts. LangChain almost always assumes that the synchronous method should be treated as a blocking operation and should be run in a separate thread.
This is done using [asyncio.loop.run_in_executor](https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor) functionality provided by the `asyncio` library. LangChain uses the default executor provided by the `asyncio` library, which lazily initializes a thread pool executor with a default number of threads that is reused in the given event loop. While this strategy incurs a slight overhead due to context switching between threads, it guarantees that every asynchronous method has a default implementation that works out of the box.
## Performance
Async code in LangChain should generally perform relatively well with minimal overhead out of the box, and is unlikely
to be a bottleneck in most applications.
The two main sources of overhead are:
1. Cost of context switching between threads when [delegating to synchronous methods](#delegation-to-sync-methods). This can be addressed by providing a native asynchronous implementation.
2. In [LCEL](/docs/concepts/lcel) any "cheap functions" that appear as part of the chain will be either scheduled as tasks on the event loop (if they are async) or run in a separate thread (if they are sync), rather than just be run inline.
The latency overhead you should expect from these is between tens of microseconds to a few milliseconds.
A more common source of performance issues arises from users accidentally blocking the event loop by calling synchronous code in an async context (e.g., calling `invoke` rather than `ainvoke`).
## Compatibility
LangChain is only compatible with the `asyncio` library, which is distributed as part of the Python standard library. It will not work with other async libraries like `trio` or `curio`.
In Python 3.9 and 3.10, [asyncio's tasks](https://docs.python.org/3/library/asyncio-task.html#asyncio.create_task) did not
accept a `context` parameter. Due to this limitation, LangChain cannot automatically propagate the `RunnableConfig` down the call chain
in certain scenarios.
If you are experiencing issues with streaming, callbacks or tracing in async code and are using Python 3.9 or 3.10, this is a likely cause.
Please read [Propagation RunnableConfig](/docs/concepts/runnables#propagation-runnableconfig) for more details to learn how to propagate the `RunnableConfig` down the call chain manually (or upgrade to Python 3.11 where this is no longer an issue).
## How to use in IPython and Jupyter Notebooks
As of IPython 7.0, IPython supports asynchronous REPLs. This means that you can use the `await` keyword in the IPython REPL and Jupyter Notebooks without any additional setup. For more information, see the [IPython blog post](https://blog.jupyter.org/ipython-7-0-async-repl-a35ce050f7f7).

View File

@@ -1,21 +0,0 @@
# Callbacks
:::note Pre-requisites
- [Runnable interface](/docs/concepts/#runnable-interface)
:::
The lowest level way to stream outputs from LLMs in LangChain is via the [callbacks](/docs/concepts/#callbacks) system. You can pass a
callback handler that handles the [`on_llm_new_token`](https://python.langchain.com/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any
[LLM](/docs/concepts/#llms) or [chat model](/docs/concepts/#chat-models) contained in the component calls
the callback with the generated token. Within the callback, you could pipe the tokens into some other destination, e.g. a HTTP response.
You can also handle the [`on_llm_end`](https://python.langchain.com/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup.
You can see [this how-to section](/docs/how_to/#callbacks) for more specifics on using callbacks.
Callbacks were the first technique for streaming introduced in LangChain. While powerful and generalizable,
they can be unwieldy for developers. For example:
- You need to explicitly initialize and manage some aggregator or other stream to collect results.
- The execution order isn't explicitly guaranteed, and you could theoretically have a callback run after the `.invoke()` method finishes.
- Providers would often make you pass an additional parameter to stream outputs instead of returning them all at once.
- You would often ignore the result of the actual model call in favor of callback results.

View File

@@ -1,46 +0,0 @@
# Chat History
:::info Prerequisites
- [Messages](/docs/concepts/messages)
- [Chat Models](/docs/concepts/chat_models)
- [Tool Calling](/docs/concepts/tool_calling)
:::
## Overview
Chat history is a record of the conversation between the user and the chat model. It is used to maintain context and state throughout the conversation. The chat history is sequence of [messages](/docs/concepts/messages), each of which is associated with a specific [role](/docs/concepts/messages#role), such as "user", "assistant", "system", or "tool".
## Conversation Patterns
Most conversations start with a **system message** that sets the context for the conversation. This is followed by a **user message** containing the user's input, and then an **assistant message** containing the model's response.
The **assistant** may respond directly to the user or if configured with tools request that a [tool](/docs/concepts/tool_calling) be invoked to perform a specific task.
So a full conversation often involves a combination of two patterns of alternating messages:
1. The **user** and the **assistant** representing a back-and-forth conversation.
2. The **assistant** and **tool messages** representing an ["agentic" workflow](/docs/concepts/agents) where the assistant is invoking tools to perform specific tasks.
## Managing Chat History
Since chat models have a maximum limit on input size, it's important to manage chat history and trim it as needed to avoid exceeding the [context window](/docs/concepts/chat_models#context_window).
While processing chat history, it's essential to preserve a correct conversation structure.
Key guidelines for managing chat history:
- The conversation should follow one of these structures:
- The first message is either a "user" message or a "system" message, followed by a "user" and then an "assistant" message.
- The last message should be either a "user" message or a "tool" message containing the result of a tool call.
- When using [tool calling](/docs/concepts/tool_calling), a "tool" message should only follow an "assistant" message that requested the tool invocation.
:::tip
Understanding correct conversation structure is essential for being able to properly implement
[memory](https://langchain-ai.github.io/langgraph/concepts/memory/) in chat models.
:::
## Related Resources
- [How to Trim Messages](https://python.langchain.com/docs/how_to/trim_messages/)
- [Memory Guide](https://langchain-ai.github.io/langgraph/concepts/memory/) for information on implementing short-term and long-term memory in chat models using [LangGraph](https://langchain-ai.github.io/langgraph/).

Some files were not shown because too many files have changed in this diff Show More