mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-04 00:00:34 +00:00
Compare commits
179 Commits
jacob/curr
...
langchain=
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
842065a9cc | ||
|
|
27ad6a4bb3 | ||
|
|
dda9438e87 | ||
|
|
604dfe2d99 | ||
|
|
f101c759ed | ||
|
|
372c27f2e5 | ||
|
|
6a45bf9554 | ||
|
|
f5856680fe | ||
|
|
07715f815b | ||
|
|
020cc1cf3e | ||
|
|
9aae8ef416 | ||
|
|
06f47678ae | ||
|
|
9c3da11910 | ||
|
|
5affbada61 | ||
|
|
f9d64d22e5 | ||
|
|
3691701d58 | ||
|
|
ef049769f0 | ||
|
|
cd19ba9a07 | ||
|
|
83f3d95ffa | ||
|
|
b5acb91080 | ||
|
|
f99369a54c | ||
|
|
242b085be7 | ||
|
|
c3308f31bc | ||
|
|
c50dd79512 | ||
|
|
aade9bfde5 | ||
|
|
0ee6ed76ca | ||
|
|
62b6965d2a | ||
|
|
ef22ebe431 | ||
|
|
f62b323108 | ||
|
|
b2bc15e640 | ||
|
|
61ea7bf60b | ||
|
|
4c651ba13a | ||
|
|
334fc1ed1c | ||
|
|
ba74341eee | ||
|
|
3adf710f1d | ||
|
|
07c5c60f63 | ||
|
|
aade1550c6 | ||
|
|
63c60a31f0 | ||
|
|
242de9aa5e | ||
|
|
916b813107 | ||
|
|
1c65529fd7 | ||
|
|
6182a402f1 | ||
|
|
0dec72cab0 | ||
|
|
570566b858 | ||
|
|
f9baaae3ec | ||
|
|
4da1df568a | ||
|
|
96ccba9c27 | ||
|
|
a4c101ae97 | ||
|
|
c5a07e2dd8 | ||
|
|
80f3d48195 | ||
|
|
7d83189b19 | ||
|
|
eb26b5535a | ||
|
|
96bac8e20d | ||
|
|
034a8c7c1b | ||
|
|
a402de3dae | ||
|
|
a47f69a120 | ||
|
|
cc2cbfabfc | ||
|
|
9e4a0e76f6 | ||
|
|
81639243e2 | ||
|
|
61976a4147 | ||
|
|
b5360e2e5f | ||
|
|
4cf67084d3 | ||
|
|
bcb5f354ad | ||
|
|
24e9b48d15 | ||
|
|
cf28708e7b | ||
|
|
2a3288b15d | ||
|
|
1792684e8f | ||
|
|
e60ad12521 | ||
|
|
fc41730e28 | ||
|
|
47ed7f766a | ||
|
|
80e7cd6cff | ||
|
|
6c3e65a878 | ||
|
|
616196c620 | ||
|
|
dd7938ace8 | ||
|
|
ef07308c30 | ||
|
|
049bc37111 | ||
|
|
5ccf8ebfac | ||
|
|
1e9cc02ed8 | ||
|
|
dc42279eb5 | ||
|
|
e38bf08139 | ||
|
|
5caa381177 | ||
|
|
c59e663365 | ||
|
|
0c1889c713 | ||
|
|
5fcf2ef7ca | ||
|
|
77dd327282 | ||
|
|
f5a38772a8 | ||
|
|
5f2dea2b20 | ||
|
|
69b1603173 | ||
|
|
d83164f837 | ||
|
|
198b85334f | ||
|
|
7aeaa1974d | ||
|
|
1c753d1e81 | ||
|
|
6716379f0c | ||
|
|
58fdb070fa | ||
|
|
1d7a3ae7ce | ||
|
|
d2f671271e | ||
|
|
a3c10fc6ce | ||
|
|
5171ffc026 | ||
|
|
6c7d9f93b9 | ||
|
|
8f4620f4b8 | ||
|
|
9d97de34ae | ||
|
|
56cca23745 | ||
|
|
66bebeb76a | ||
|
|
b0aa915dea | ||
|
|
d93ae756e6 | ||
|
|
1244e66bd4 | ||
|
|
a001037319 | ||
|
|
20151384d7 | ||
|
|
d895614d19 | ||
|
|
9d0c1d2dc9 | ||
|
|
a7296bddc2 | ||
|
|
c9473367b1 | ||
|
|
f77659463a | ||
|
|
ccdaf14eff | ||
|
|
cacdf96f9c | ||
|
|
36ee083753 | ||
|
|
e8a21146d3 | ||
|
|
a0958c0607 | ||
|
|
620b118c70 | ||
|
|
888fbc07b5 | ||
|
|
ab2d7821a7 | ||
|
|
6fc7610b1c | ||
|
|
0da5078cad | ||
|
|
d0728b0ba0 | ||
|
|
9224027e45 | ||
|
|
5c3e2612da | ||
|
|
65321bf975 | ||
|
|
2b7d1cdd2f | ||
|
|
a653b209ba | ||
|
|
f071581aea | ||
|
|
f0a7581b50 | ||
|
|
474b88326f | ||
|
|
bdc03997c9 | ||
|
|
3f1cf00d97 | ||
|
|
6b47c7361e | ||
|
|
7677ceea60 | ||
|
|
aee55eda39 | ||
|
|
d09dda5a08 | ||
|
|
12950cc602 | ||
|
|
e8ee781a42 | ||
|
|
02e71cebed | ||
|
|
259d4d2029 | ||
|
|
3aed74a6fc | ||
|
|
13b0d7ec8f | ||
|
|
71cd6e6feb | ||
|
|
99054e19eb | ||
|
|
7a1321e2f9 | ||
|
|
cb5031f22f | ||
|
|
f1618ec540 | ||
|
|
8d82a0d483 | ||
|
|
0a1e475a30 | ||
|
|
6166ea67a8 | ||
|
|
d77d9bfc00 | ||
|
|
aa3e3cfa40 | ||
|
|
14ba1d4b45 | ||
|
|
18da9f5e59 | ||
|
|
d3a2b9fae0 | ||
|
|
7014d07cab | ||
|
|
35784d1c33 | ||
|
|
8858846607 | ||
|
|
ffe6ca986e | ||
|
|
7790d67f94 | ||
|
|
1132fb801b | ||
|
|
1d37aa8403 | ||
|
|
cb95198398 | ||
|
|
d002fa902f | ||
|
|
8d100c58de | ||
|
|
5fd1e67808 | ||
|
|
eeb996034b | ||
|
|
03fba07d15 | ||
|
|
c481a2715d | ||
|
|
8ee8ca7c83 | ||
|
|
4121d4151f | ||
|
|
bd18faa2a0 | ||
|
|
f1f1f75782 | ||
|
|
4ba14adec6 | ||
|
|
457677c1b7 | ||
|
|
8327925ab7 | ||
|
|
122e80e04d |
@@ -5,10 +5,10 @@ services:
|
||||
dockerfile: libs/langchain/dev.Dockerfile
|
||||
context: ..
|
||||
volumes:
|
||||
# Update this to wherever you want VS Code to mount the folder of your project
|
||||
# Update this to wherever you want VS Code to mount the folder of your project
|
||||
- ..:/workspaces/langchain:cached
|
||||
networks:
|
||||
- langchain-network
|
||||
- langchain-network
|
||||
# environment:
|
||||
# MONGO_ROOT_USERNAME: root
|
||||
# MONGO_ROOT_PASSWORD: example123
|
||||
@@ -28,5 +28,3 @@ services:
|
||||
networks:
|
||||
langchain-network:
|
||||
driver: bridge
|
||||
|
||||
|
||||
|
||||
34
.github/scripts/check_diff.py
vendored
34
.github/scripts/check_diff.py
vendored
@@ -6,6 +6,7 @@ import sys
|
||||
import tomllib
|
||||
from collections import defaultdict
|
||||
from typing import Dict, List, Set
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
LANGCHAIN_DIRS = [
|
||||
@@ -26,17 +27,48 @@ def all_package_dirs() -> Set[str]:
|
||||
|
||||
|
||||
def dependents_graph() -> dict:
|
||||
"""
|
||||
Construct a mapping of package -> dependents, such that we can
|
||||
run tests on all dependents of a package when a change is made.
|
||||
"""
|
||||
dependents = defaultdict(set)
|
||||
|
||||
for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
|
||||
if "template" in path:
|
||||
continue
|
||||
|
||||
# load regular and test deps from pyproject.toml
|
||||
with open(path, "rb") as f:
|
||||
pyproject = tomllib.load(f)["tool"]["poetry"]
|
||||
|
||||
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
|
||||
for dep in pyproject["dependencies"]:
|
||||
for dep in [
|
||||
*pyproject["dependencies"].keys(),
|
||||
*pyproject["group"]["test"]["dependencies"].keys(),
|
||||
]:
|
||||
if "langchain" in dep:
|
||||
dependents[dep].add(pkg_dir)
|
||||
continue
|
||||
|
||||
# load extended deps from extended_testing_deps.txt
|
||||
package_path = Path(path).parent
|
||||
extended_requirement_path = package_path / "extended_testing_deps.txt"
|
||||
if extended_requirement_path.exists():
|
||||
with open(extended_requirement_path, "r") as f:
|
||||
extended_deps = f.read().splitlines()
|
||||
for depline in extended_deps:
|
||||
if depline.startswith("-e "):
|
||||
# editable dependency
|
||||
assert depline.startswith(
|
||||
"-e ../partners/"
|
||||
), "Extended test deps should only editable install partner packages"
|
||||
partner = depline.split("partners/")[1]
|
||||
dep = f"langchain-{partner}"
|
||||
else:
|
||||
dep = depline.split("==")[0]
|
||||
|
||||
if "langchain" in dep:
|
||||
dependents[dep].add(pkg_dir)
|
||||
return dependents
|
||||
|
||||
|
||||
|
||||
35
.github/scripts/check_prerelease_dependencies.py
vendored
Normal file
35
.github/scripts/check_prerelease_dependencies.py
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
import sys
|
||||
import tomllib
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
|
||||
# read toml file
|
||||
with open(toml_file, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# see if we're releasing an rc
|
||||
version = toml_data["tool"]["poetry"]["version"]
|
||||
releasing_rc = "rc" in version
|
||||
|
||||
# if not, iterate through dependencies and make sure none allow prereleases
|
||||
if not releasing_rc:
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
for lib in dependencies:
|
||||
dep_version = dependencies[lib]
|
||||
dep_version_string = (
|
||||
dep_version["version"] if isinstance(dep_version, dict) else dep_version
|
||||
)
|
||||
|
||||
if "rc" in dep_version_string:
|
||||
raise ValueError(
|
||||
f"Dependency {lib} has a prerelease version. Please remove this."
|
||||
)
|
||||
|
||||
if isinstance(dep_version, dict) and dep_version.get(
|
||||
"allow-prereleases", False
|
||||
):
|
||||
raise ValueError(
|
||||
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
|
||||
)
|
||||
1
.github/scripts/get_min_versions.py
vendored
1
.github/scripts/get_min_versions.py
vendored
@@ -9,6 +9,7 @@ MIN_VERSION_LIBS = [
|
||||
"langchain-community",
|
||||
"langchain",
|
||||
"langchain-text-splitters",
|
||||
"SQLAlchemy",
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -21,14 +21,6 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
- "3.12"
|
||||
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
7
.github/workflows/_release.yml
vendored
7
.github/workflows/_release.yml
vendored
@@ -189,7 +189,7 @@ jobs:
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" || \
|
||||
( \
|
||||
sleep 5 && \
|
||||
sleep 15 && \
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" \
|
||||
@@ -221,6 +221,11 @@ jobs:
|
||||
run: make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Check for prerelease versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
|
||||
|
||||
- name: Get minimum versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
|
||||
4
.github/workflows/_test_doc_imports.yml
vendored
4
.github/workflows/_test_doc_imports.yml
vendored
@@ -14,10 +14,6 @@ env:
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.12"
|
||||
name: "check doc imports #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
@@ -57,4 +57,5 @@ Notebook | Description
|
||||
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
|
||||
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
|
||||
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
|
||||
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
|
||||
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
|
||||
[rag-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag-locally-on-intel-cpu.ipynb) | Perform Retrieval-Augmented-Generation (RAG) on locally downloaded open-source models using langchain and open source tools and execute it on Intel Xeon CPU. We showed an example of how to apply RAG on Llama 2 model and enable it to answer the queries related to Intel Q1 2024 earnings release.
|
||||
603
cookbook/img-to_img-search_CLIP_ChromaDB.ipynb
Normal file
603
cookbook/img-to_img-search_CLIP_ChromaDB.ipynb
Normal file
File diff suppressed because one or more lines are too long
756
cookbook/rag-locally-on-intel-cpu.ipynb
Normal file
756
cookbook/rag-locally-on-intel-cpu.ipynb
Normal file
@@ -0,0 +1,756 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "10f50955-be55-422f-8c62-3a32f8cf02ed",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# RAG application running locally on Intel Xeon CPU using langchain and open-source models"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "48113be6-44bb-4aac-aed3-76a1365b9561",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Author - Pratool Bharti (pratool.bharti@intel.com)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8b10b54b-1572-4ea1-9c1e-1d29fcc3dcd9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In this cookbook, we use langchain tools and open source models to execute locally on CPU. This notebook has been validated to run on Intel Xeon 8480+ CPU. Here we implement a RAG pipeline for Llama2 model to answer questions about Intel Q1 2024 earnings release."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "acadbcec-3468-4926-8ce5-03b678041c0a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Create a conda or virtualenv environment with python >=3.10 and install following libraries**\n",
|
||||
"<br>\n",
|
||||
"\n",
|
||||
"`pip install --upgrade langchain langchain-community langchainhub langchain-chroma bs4 gpt4all pypdf pysqlite3-binary` <br>\n",
|
||||
"`pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "84c392c8-700a-42ec-8e94-806597f22e43",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Load pysqlite3 in sys modules since ChromaDB requires sqlite3.**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "145cd491-b388-4ea7-bdc8-2f4995cac6fd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"__import__(\"pysqlite3\")\n",
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.modules[\"sqlite3\"] = sys.modules.pop(\"pysqlite3\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "14dde7e2-b236-49b9-b3a0-08c06410418c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Import essential components from langchain to load and split data**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "887643ba-249e-48d6-9aa7-d25087e8dfbf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "922c0eba-8736-4de5-bd2f-3d0f00b16e43",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Download Intel Q1 2024 earnings release**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "2d6a2419-5338-4188-8615-a40a65ff8019",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"--2024-07-15 15:04:43-- https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf\n",
|
||||
"Resolving proxy-dmz.intel.com (proxy-dmz.intel.com)... 10.7.211.16\n",
|
||||
"Connecting to proxy-dmz.intel.com (proxy-dmz.intel.com)|10.7.211.16|:912... connected.\n",
|
||||
"Proxy request sent, awaiting response... 200 OK\n",
|
||||
"Length: 133510 (130K) [application/pdf]\n",
|
||||
"Saving to: ‘intel_q1_2024_earnings.pdf’\n",
|
||||
"\n",
|
||||
"intel_q1_2024_earni 100%[===================>] 130.38K --.-KB/s in 0.005s \n",
|
||||
"\n",
|
||||
"2024-07-15 15:04:44 (24.6 MB/s) - ‘intel_q1_2024_earnings.pdf’ saved [133510/133510]\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!wget 'https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf' -O intel_q1_2024_earnings.pdf"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e3612627-e105-453d-8a50-bbd6e39dedb5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Loading earning release pdf document through PyPDFLoader**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "cac6278e-ebad-4224-a062-bf6daca24cb0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = PyPDFLoader(\"intel_q1_2024_earnings.pdf\")\n",
|
||||
"data = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a7dca43b-1c62-41df-90c7-6ed2904f823d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Splitting entire document in several chunks with each chunk size is 500 tokens**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "4486adbe-0d0e-4685-8c08-c1774ed6e993",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
|
||||
"all_splits = text_splitter.split_documents(data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "af142346-e793-4a52-9a56-63e3be416b3d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Looking at the first split of the document**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "e4240fd1-898e-4bfc-a377-02c9bc25b56e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Document(metadata={'source': 'intel_q1_2024_earnings.pdf', 'page': 0}, page_content='Intel Corporation\\n2200 Mission College Blvd.\\nSanta Clara, CA 95054-1549\\n \\nNews Release\\n Intel Reports First -Quarter 2024 Financial Results\\nNEWS SUMMARY\\n▪First-quarter revenue of $12.7 billion , up 9% year over year (YoY).\\n▪First-quarter GAAP earnings (loss) per share (EPS) attributable to Intel was $(0.09) ; non-GAAP EPS \\nattributable to Intel was $0.18 .')"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"all_splits[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b88d2632-7c1b-49ef-a691-c0eb67d23e6a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**One of the major step in RAG is to convert each split of document into embeddings and store in a vector database such that searching relevant documents are efficient.** <br>\n",
|
||||
"**For that, importing Chroma vector database from langchain. Also, importing open source GPT4All for embedding models**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "9ff99dd7-9d47-4239-ba0a-d775792334ba",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.embeddings import GPT4AllEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b5d1f4dd-dd8d-4a20-95d1-2dbdd204375a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**In next step, we will download one of the most popular embedding model \"all-MiniLM-L6-v2\". Find more details of the model at this link https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "05db3494-5d8e-4a13-9941-26330a86f5e5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_name = \"all-MiniLM-L6-v2.gguf2.f16.gguf\"\n",
|
||||
"gpt4all_kwargs = {\"allow_download\": \"True\"}\n",
|
||||
"embeddings = GPT4AllEmbeddings(model_name=model_name, gpt4all_kwargs=gpt4all_kwargs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4e53999e-1983-46ac-8039-2783e194c3ae",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Store all the embeddings in the Chroma database**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "0922951a-9ddf-4761-973d-8e9a86f61284",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=embeddings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "29f94fa0-6c75-4a65-a1a3-debc75422479",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Now, let's find relevant splits from the documents related to the question**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "88c8152d-ec7a-4f0b-9d86-877789407537",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"4\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"question = \"What is Intel CCG revenue in Q1 2024\"\n",
|
||||
"docs = vectorstore.similarity_search(question)\n",
|
||||
"print(len(docs))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "53330c6b-cb0f-43f9-b379-2e57ac1e5335",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Look at the first retrieved document from the vector database**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "43a6d94f-b5c4-47b0-a353-2db4c3d24d9c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Document(metadata={'page': 1, 'source': 'intel_q1_2024_earnings.pdf'}, page_content='Client Computing Group (CCG) $7.5 billion up31%\\nData Center and AI (DCAI) $3.0 billion up5%\\nNetwork and Edge (NEX) $1.4 billion down 8%\\nTotal Intel Products revenue $11.9 billion up17%\\nIntel Foundry $4.4 billion down 10%\\nAll other:\\nAltera $342 million down 58%\\nMobileye $239 million down 48%\\nOther $194 million up17%\\nTotal all other revenue $775 million down 46%\\nIntersegment eliminations $(4.4) billion\\nTotal net revenue $12.7 billion up9%\\nIntel Products Highlights')"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"docs[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "64ba074f-4b36-442e-b7e2-b26d6e2815c3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Download Lllama-2 model from Huggingface and store locally** <br>\n",
|
||||
"**You can download different quantization variant of Lllama-2 model from the link below. We are using Q8 version here (7.16GB).** <br>\n",
|
||||
"https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c8dd0811-6f43-4bc6-b854-2ab377639c9a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!huggingface-cli download TheBloke/Llama-2-7b-Chat-GGUF llama-2-7b-chat.Q8_0.gguf --local-dir . --local-dir-use-symlinks False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3895b1f5-f51d-4539-abf0-af33d7ca48ea",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Import langchain components required to load downloaded LLMs model**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "fb087088-aa62-44c0-8356-061e9b9f1186",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.callbacks.manager import CallbackManager\n",
|
||||
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
||||
"from langchain_community.llms import LlamaCpp"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5a8a111e-2614-4b70-b034-85cd3e7304cb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Loading the local Lllama-2 model using Llama-cpp library**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "fb917da2-c0d7-4995-b56d-26254276e0da",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from llama-2-7b-chat.Q8_0.gguf (version GGUF V2)\n",
|
||||
"llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n",
|
||||
"llama_model_loader: - kv 0: general.architecture str = llama\n",
|
||||
"llama_model_loader: - kv 1: general.name str = LLaMA v2\n",
|
||||
"llama_model_loader: - kv 2: llama.context_length u32 = 4096\n",
|
||||
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
|
||||
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
|
||||
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008\n",
|
||||
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
|
||||
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
|
||||
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32\n",
|
||||
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001\n",
|
||||
"llama_model_loader: - kv 10: general.file_type u32 = 7\n",
|
||||
"llama_model_loader: - kv 11: tokenizer.ggml.model str = llama\n",
|
||||
"llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
|
||||
"llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
|
||||
"llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
|
||||
"llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1\n",
|
||||
"llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2\n",
|
||||
"llama_model_loader: - kv 17: tokenizer.ggml.unknown_token_id u32 = 0\n",
|
||||
"llama_model_loader: - kv 18: general.quantization_version u32 = 2\n",
|
||||
"llama_model_loader: - type f32: 65 tensors\n",
|
||||
"llama_model_loader: - type q8_0: 226 tensors\n",
|
||||
"llm_load_vocab: special tokens cache size = 259\n",
|
||||
"llm_load_vocab: token to piece cache size = 0.1684 MB\n",
|
||||
"llm_load_print_meta: format = GGUF V2\n",
|
||||
"llm_load_print_meta: arch = llama\n",
|
||||
"llm_load_print_meta: vocab type = SPM\n",
|
||||
"llm_load_print_meta: n_vocab = 32000\n",
|
||||
"llm_load_print_meta: n_merges = 0\n",
|
||||
"llm_load_print_meta: vocab_only = 0\n",
|
||||
"llm_load_print_meta: n_ctx_train = 4096\n",
|
||||
"llm_load_print_meta: n_embd = 4096\n",
|
||||
"llm_load_print_meta: n_layer = 32\n",
|
||||
"llm_load_print_meta: n_head = 32\n",
|
||||
"llm_load_print_meta: n_head_kv = 32\n",
|
||||
"llm_load_print_meta: n_rot = 128\n",
|
||||
"llm_load_print_meta: n_swa = 0\n",
|
||||
"llm_load_print_meta: n_embd_head_k = 128\n",
|
||||
"llm_load_print_meta: n_embd_head_v = 128\n",
|
||||
"llm_load_print_meta: n_gqa = 1\n",
|
||||
"llm_load_print_meta: n_embd_k_gqa = 4096\n",
|
||||
"llm_load_print_meta: n_embd_v_gqa = 4096\n",
|
||||
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
|
||||
"llm_load_print_meta: f_norm_rms_eps = 1.0e-06\n",
|
||||
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
|
||||
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
|
||||
"llm_load_print_meta: f_logit_scale = 0.0e+00\n",
|
||||
"llm_load_print_meta: n_ff = 11008\n",
|
||||
"llm_load_print_meta: n_expert = 0\n",
|
||||
"llm_load_print_meta: n_expert_used = 0\n",
|
||||
"llm_load_print_meta: causal attn = 1\n",
|
||||
"llm_load_print_meta: pooling type = 0\n",
|
||||
"llm_load_print_meta: rope type = 0\n",
|
||||
"llm_load_print_meta: rope scaling = linear\n",
|
||||
"llm_load_print_meta: freq_base_train = 10000.0\n",
|
||||
"llm_load_print_meta: freq_scale_train = 1\n",
|
||||
"llm_load_print_meta: n_ctx_orig_yarn = 4096\n",
|
||||
"llm_load_print_meta: rope_finetuned = unknown\n",
|
||||
"llm_load_print_meta: ssm_d_conv = 0\n",
|
||||
"llm_load_print_meta: ssm_d_inner = 0\n",
|
||||
"llm_load_print_meta: ssm_d_state = 0\n",
|
||||
"llm_load_print_meta: ssm_dt_rank = 0\n",
|
||||
"llm_load_print_meta: model type = 7B\n",
|
||||
"llm_load_print_meta: model ftype = Q8_0\n",
|
||||
"llm_load_print_meta: model params = 6.74 B\n",
|
||||
"llm_load_print_meta: model size = 6.67 GiB (8.50 BPW) \n",
|
||||
"llm_load_print_meta: general.name = LLaMA v2\n",
|
||||
"llm_load_print_meta: BOS token = 1 '<s>'\n",
|
||||
"llm_load_print_meta: EOS token = 2 '</s>'\n",
|
||||
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
|
||||
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
|
||||
"llm_load_print_meta: max token length = 48\n",
|
||||
"llm_load_tensors: ggml ctx size = 0.14 MiB\n",
|
||||
"llm_load_tensors: CPU buffer size = 6828.64 MiB\n",
|
||||
"...................................................................................................\n",
|
||||
"llama_new_context_with_model: n_ctx = 2048\n",
|
||||
"llama_new_context_with_model: n_batch = 512\n",
|
||||
"llama_new_context_with_model: n_ubatch = 512\n",
|
||||
"llama_new_context_with_model: flash_attn = 0\n",
|
||||
"llama_new_context_with_model: freq_base = 10000.0\n",
|
||||
"llama_new_context_with_model: freq_scale = 1\n",
|
||||
"llama_kv_cache_init: CPU KV buffer size = 1024.00 MiB\n",
|
||||
"llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB\n",
|
||||
"llama_new_context_with_model: CPU output buffer size = 0.12 MiB\n",
|
||||
"llama_new_context_with_model: CPU compute buffer size = 164.01 MiB\n",
|
||||
"llama_new_context_with_model: graph nodes = 1030\n",
|
||||
"llama_new_context_with_model: graph splits = 1\n",
|
||||
"AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 | \n",
|
||||
"Model metadata: {'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.context_length': '4096', 'general.name': 'LLaMA v2', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '11008', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'llama.rope.dimension_count': '128', 'llama.attention.head_count': '32', 'tokenizer.ggml.bos_token_id': '1', 'llama.block_count': '32', 'llama.attention.head_count_kv': '32', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '7'}\n",
|
||||
"Using fallback chat format: llama-2\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = LlamaCpp(\n",
|
||||
" model_path=\"llama-2-7b-chat.Q8_0.gguf\",\n",
|
||||
" n_gpu_layers=-1,\n",
|
||||
" n_batch=512,\n",
|
||||
" n_ctx=2048,\n",
|
||||
" f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls\n",
|
||||
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
|
||||
" verbose=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "43e06f56-ef97-451b-87d9-8465ea442aed",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Now let's ask the same question to Llama model without showing them the earnings release.**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "1033dd82-5532-437d-a548-27695e109589",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"?\n",
|
||||
"(NASDAQ:INTC)\n",
|
||||
"Intel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year."
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"llama_print_timings: load time = 131.20 ms\n",
|
||||
"llama_print_timings: sample time = 16.05 ms / 68 runs ( 0.24 ms per token, 4236.76 tokens per second)\n",
|
||||
"llama_print_timings: prompt eval time = 131.14 ms / 16 tokens ( 8.20 ms per token, 122.01 tokens per second)\n",
|
||||
"llama_print_timings: eval time = 3225.00 ms / 67 runs ( 48.13 ms per token, 20.78 tokens per second)\n",
|
||||
"llama_print_timings: total time = 3466.40 ms / 83 tokens\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"?\\n(NASDAQ:INTC)\\nIntel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year.\""
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm.invoke(question)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "75f5cb10-746f-4e37-9386-b85a4d2b84ef",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**As you can see, model is giving wrong information. Correct asnwer is CCG revenue in Q1 2024 is $7.5B. Now let's apply RAG using the earning release document**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0f4150ec-5692-4756-b11a-22feb7ab88ff",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**in RAG, we modify the input prompt by adding relevent documents with the question. Here, we use one of the popular RAG prompt**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "226c14b0-f43e-4a1f-a1e4-04731d467ec4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], template=\"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\\nQuestion: {question} \\nContext: {context} \\nAnswer:\"))]"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"\n",
|
||||
"rag_prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
||||
"rag_prompt.messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "77deb6a0-0950-450a-916a-f2a029676c20",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Appending all retreived documents in a single document**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "2dbc3327-6ef3-4c1f-8797-0c71964b0921",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def format_docs(docs):\n",
|
||||
" return \"\\n\\n\".join(doc.page_content for doc in docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2e2d9f18-49d0-43a3-bea8-78746ffa86b7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**The last step is to create a chain using langchain tool that will create an e2e pipeline. It will take question and context as an input.**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "427379c2-51ff-4e0f-8278-a45221363299",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough, RunnablePick\n",
|
||||
"\n",
|
||||
"# Chain\n",
|
||||
"chain = (\n",
|
||||
" RunnablePassthrough.assign(context=RunnablePick(\"context\") | format_docs)\n",
|
||||
" | rag_prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "095d6280-c949-4d00-8e32-8895a82d245f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Llama.generate: prefix-match hit\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%."
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"llama_print_timings: load time = 131.20 ms\n",
|
||||
"llama_print_timings: sample time = 7.74 ms / 31 runs ( 0.25 ms per token, 4004.13 tokens per second)\n",
|
||||
"llama_print_timings: prompt eval time = 2529.41 ms / 674 tokens ( 3.75 ms per token, 266.46 tokens per second)\n",
|
||||
"llama_print_timings: eval time = 1542.94 ms / 30 runs ( 51.43 ms per token, 19.44 tokens per second)\n",
|
||||
"llama_print_timings: total time = 4123.68 ms / 704 tokens\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"' Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"context\": docs, \"question\": question})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "638364b2-6bd2-4471-9961-d3a1d1b9d4ee",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Now we see the results are correct as it is mentioned in earnings release.** <br>\n",
|
||||
"**To further automate, we will create a chain that will take input as question and retriever so that we don't need to retrieve documents seperately**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "4654e5b7-635f-4767-8b31-4c430164cdd5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = vectorstore.as_retriever()\n",
|
||||
"qa_chain = (\n",
|
||||
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
|
||||
" | rag_prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0979f393-fd0a-4e82-b844-68371c6ad68f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Now we only need to pass the question to the chain and it will fetch the contexts directly from the vector database to generate the answer**\n",
|
||||
"<br>\n",
|
||||
"**Let's try with another question**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"id": "3ea07b82-e6ec-4084-85f4-191373530172",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Llama.generate: prefix-match hit\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%."
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"llama_print_timings: load time = 131.20 ms\n",
|
||||
"llama_print_timings: sample time = 6.28 ms / 31 runs ( 0.20 ms per token, 4937.88 tokens per second)\n",
|
||||
"llama_print_timings: prompt eval time = 2681.93 ms / 730 tokens ( 3.67 ms per token, 272.19 tokens per second)\n",
|
||||
"llama_print_timings: eval time = 1471.07 ms / 30 runs ( 49.04 ms per token, 20.39 tokens per second)\n",
|
||||
"llama_print_timings: total time = 4206.77 ms / 760 tokens\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"' According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"qa_chain.invoke(\"what is Intel DCAI revenue in Q1 2024?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9407f2a0-4a35-4315-8e96-02fcb80f210c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "rag-on-intel",
|
||||
"language": "python",
|
||||
"name": "rag-on-intel"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -13,7 +13,7 @@ OUTPUT_NEW_DOCS_DIR = $(OUTPUT_NEW_DIR)/docs
|
||||
|
||||
PYTHON = .venv/bin/python
|
||||
|
||||
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm" | tr '\n' ' ')
|
||||
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm|couchbase" | tr '\n' ' ')
|
||||
|
||||
PORT ?= 3001
|
||||
|
||||
|
||||
@@ -178,3 +178,10 @@ autosummary_generate = True
|
||||
|
||||
html_copy_source = False
|
||||
html_show_sourcelink = False
|
||||
|
||||
# Set canonical URL from the Read the Docs Domain
|
||||
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "")
|
||||
|
||||
# Tell Jinja2 templates the build is running on Read the Docs
|
||||
if os.environ.get("READTHEDOCS", "") == "True":
|
||||
html_context["READTHEDOCS"] = True
|
||||
|
||||
@@ -78,7 +78,7 @@ def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
|
||||
continue
|
||||
|
||||
if inspect.isclass(type_):
|
||||
# The clasification of the class is used to select a template
|
||||
# The type of the class is used to select a template
|
||||
# for the object when rendering the documentation.
|
||||
# See `templates` directory for defined templates.
|
||||
# This is a hacky solution to distinguish between different
|
||||
|
||||
@@ -55,6 +55,7 @@ A developer platform that lets you debug, test, evaluate, and monitor LLM applic
|
||||
dark: useBaseUrl('/svg/langchain_stack_062024_dark.svg'),
|
||||
}}
|
||||
title="LangChain Framework Overview"
|
||||
style={{ width: "100%" }}
|
||||
/>
|
||||
|
||||
## LangChain Expression Language (LCEL)
|
||||
@@ -235,7 +236,7 @@ This is where information like log-probs and token usage may be stored.
|
||||
These represent a decision from an language model to call a tool. They are included as part of an `AIMessage` output.
|
||||
They can be accessed from there with the `.tool_calls` property.
|
||||
|
||||
This property returns a list of dictionaries. Each dictionary has the following keys:
|
||||
This property returns a list of `ToolCall`s. A `ToolCall` is a dictionary with the following arguments:
|
||||
|
||||
- `name`: The name of the tool that should be called.
|
||||
- `args`: The arguments to that tool.
|
||||
@@ -245,13 +246,18 @@ This property returns a list of dictionaries. Each dictionary has the following
|
||||
|
||||
This represents a system message, which tells the model how to behave. Not every model provider supports this.
|
||||
|
||||
#### FunctionMessage
|
||||
|
||||
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
|
||||
|
||||
#### ToolMessage
|
||||
|
||||
This represents the result of a tool call. This is distinct from a FunctionMessage in order to match OpenAI's `function` and `tool` message types. In addition to `role` and `content`, this message has a `tool_call_id` parameter which conveys the id of the call to the tool that was called to produce this result.
|
||||
This represents the result of a tool call. In addition to `role` and `content`, this message has:
|
||||
|
||||
- a `tool_call_id` field which conveys the id of the call to the tool that was called to produce this result.
|
||||
- an `artifact` field which can be used to pass along arbitrary artifacts of the tool execution which are useful to track but which should not be sent to the model.
|
||||
|
||||
#### (Legacy) FunctionMessage
|
||||
|
||||
This is a legacy message type, corresponding to OpenAI's legacy function-calling API. ToolMessage should be used instead to correspond to the updated tool-calling API.
|
||||
|
||||
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
|
||||
|
||||
|
||||
### Prompt templates
|
||||
@@ -495,35 +501,87 @@ For specifics on how to use retrievers, see the [relevant how-to guides here](/d
|
||||
### Tools
|
||||
<span data-heading-keywords="tool,tools"></span>
|
||||
|
||||
Tools are interfaces that an agent, a chain, or a chat model / LLM can use to interact with the world.
|
||||
Tools are utilities designed to be called by a model: their inputs are designed to be generated by models, and their outputs are designed to be passed back to models.
|
||||
Tools are needed whenever you want a model to control parts of your code or call out to external APIs.
|
||||
|
||||
A tool consists of the following components:
|
||||
A tool consists of:
|
||||
|
||||
1. The name of the tool
|
||||
2. A description of what the tool does
|
||||
3. JSON schema of what the inputs to the tool are
|
||||
4. The function to call
|
||||
5. Whether the result of a tool should be returned directly to the user (only relevant for agents)
|
||||
1. The name of the tool.
|
||||
2. A description of what the tool does.
|
||||
3. A JSON schema defining the inputs to the tool.
|
||||
4. A function (and, optionally, an async variant of the function).
|
||||
|
||||
The name, description and JSON schema are provided as context
|
||||
to the LLM, allowing the LLM to determine how to use the tool
|
||||
appropriately.
|
||||
When a tool is bound to a model, the name, description and JSON schema are provided as context to the model.
|
||||
Given a list of tools and a set of instructions, a model can request to call one or more tools with specific inputs.
|
||||
Typical usage may look like the following:
|
||||
|
||||
Given a list of available tools and a prompt, an LLM can request
|
||||
that one or more tools be invoked with appropriate arguments.
|
||||
```python
|
||||
tools = [...] # Define a list of tools
|
||||
llm_with_tools = llm.bind_tools(tools)
|
||||
ai_msg = llm_with_tools.invoke("do xyz...") # AIMessage(tool_calls=[ToolCall(...), ...], ...)
|
||||
```
|
||||
|
||||
Generally, when designing tools to be used by a chat model or LLM, it is important to keep in mind the following:
|
||||
The `AIMessage` returned from the model MAY have `tool_calls` associated with it.
|
||||
Read [this guide](/docs/concepts/#aimessage) for more information on what the response type may look like.
|
||||
|
||||
- Chat models that have been fine-tuned for tool calling will be better at tool calling than non-fine-tuned models.
|
||||
- Non fine-tuned models may not be able to use tools at all, especially if the tools are complex or require multiple tool calls.
|
||||
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas.
|
||||
- Simpler tools are generally easier for models to use than more complex tools.
|
||||
Once the chosen tools are invoked, the results can be passed back to the model so that it can complete whatever task
|
||||
it's performing.
|
||||
There are generally two different ways to invoke the tool and pass back the response:
|
||||
|
||||
For specifics on how to use tools, see the [relevant how-to guides here](/docs/how_to/#tools).
|
||||
#### Invoke with just the arguments
|
||||
|
||||
To use an existing pre-built tool, see [here](docs/integrations/tools/) for a list of pre-built tools.
|
||||
When you invoke a tool with just the arguments, you will get back the raw tool output (usually a string).
|
||||
This generally looks like:
|
||||
|
||||
```python
|
||||
# You will want to previously check that the LLM returned tool calls
|
||||
tool_call = ai_msg.tool_calls[0] # ToolCall(args={...}, id=..., ...)
|
||||
tool_output = tool.invoke(tool_call["args"])
|
||||
tool_message = ToolMessage(content=tool_output, tool_call_id=tool_call["id"], name=tool_call["name"])
|
||||
```
|
||||
|
||||
Note that the `content` field will generally be passed back to the model.
|
||||
If you do not want the raw tool response to be passed to the model, but you still want to keep it around,
|
||||
you can transform the tool output but also pass it as an artifact (read more about [`ToolMessage.artifact` here](/docs/concepts/#toolmessage))
|
||||
|
||||
```python
|
||||
... # Same code as above
|
||||
response_for_llm = transform(response)
|
||||
tool_message = ToolMessage(content=response_for_llm, tool_call_id=tool_call["id"], name=tool_call["name"], artifact=tool_output)
|
||||
```
|
||||
|
||||
#### Invoke with `ToolCall`
|
||||
|
||||
The other way to invoke a tool is to call it with the full `ToolCall` that was generated by the model.
|
||||
When you do this, the tool will return a ToolMessage.
|
||||
The benefits of this are that you don't have to write the logic yourself to transform the tool output into a ToolMessage.
|
||||
This generally looks like:
|
||||
|
||||
```python
|
||||
tool_call = ai_msg.tool_calls[0] # ToolCall(args={...}, id=..., ...)
|
||||
tool_message = tool.invoke(tool_call)
|
||||
# -> ToolMessage(content="tool result foobar...", tool_call_id=..., name="tool_name")
|
||||
```
|
||||
|
||||
If you are invoking the tool this way and want to include an [artifact](/docs/concepts/#toolmessage) for the ToolMessage, you will need to have the tool return two things.
|
||||
Read more about [defining tools that return artifacts here](/docs/how_to/tool_artifacts/).
|
||||
|
||||
#### Best practices
|
||||
|
||||
When designing tools to be used by a model, it is important to keep in mind that:
|
||||
|
||||
- Chat models that have explicit [tool-calling APIs](/docs/concepts/#functiontool-calling) will be better at tool calling than non-fine-tuned models.
|
||||
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This another form of prompt engineering.
|
||||
- Simple, narrowly scoped tools are easier for models to use than complex tools.
|
||||
|
||||
#### Related
|
||||
|
||||
For specifics on how to use tools, see the [tools how-to guides](/docs/how_to/#tools).
|
||||
|
||||
To use a pre-built tool, see the [tool integration docs](/docs/integrations/tools/).
|
||||
|
||||
### Toolkits
|
||||
<span data-heading-keywords="toolkit,toolkits"></span>
|
||||
|
||||
Toolkits are collections of tools that are designed to be used together for specific tasks. They have convenient loading methods.
|
||||
|
||||
@@ -821,7 +879,7 @@ We recommend this method as a starting point when working with structured output
|
||||
- If multiple underlying techniques are supported, you can supply a `method` parameter to
|
||||
[toggle which one is used](/docs/how_to/structured_output/#advanced-specifying-the-method-for-structuring-outputs).
|
||||
|
||||
You may want or need to use other techiniques if:
|
||||
You may want or need to use other techniques if:
|
||||
|
||||
- The chat model you are using does not support tool calling.
|
||||
- You are working with very complex schemas and the model is having trouble generating outputs that conform.
|
||||
|
||||
@@ -33,6 +33,8 @@ Some examples include:
|
||||
|
||||
- [Build a Simple LLM Application with LCEL](/docs/tutorials/llm_chain/)
|
||||
- [Build a Retrieval Augmented Generation (RAG) App](/docs/tutorials/rag/)
|
||||
|
||||
A good structural rule of thumb is to follow the structure of this [example from Numpy](https://numpy.org/numpy-tutorials/content/tutorial-svd.html).
|
||||
|
||||
Here are some high-level tips on writing a good tutorial:
|
||||
|
||||
|
||||
@@ -153,7 +153,7 @@
|
||||
"\n",
|
||||
" def parse(self, text: str) -> List[str]:\n",
|
||||
" lines = text.strip().split(\"\\n\")\n",
|
||||
" return lines\n",
|
||||
" return list(filter(None, lines)) # Remove empty lines\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"output_parser = LineListOutputParser()\n",
|
||||
|
||||
342
docs/docs/how_to/callbacks_custom_events.ipynb
Normal file
342
docs/docs/how_to/callbacks_custom_events.ipynb
Normal file
@@ -0,0 +1,342 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to dispatch custom callback events\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"\n",
|
||||
"- [Callbacks](/docs/concepts/#callbacks)\n",
|
||||
"- [Custom callback handlers](/docs/how_to/custom_callbacks)\n",
|
||||
"- [Astream Events API](/docs/concepts/#astream_events) the `astream_events` method will surface custom callback events.\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"In some situations, you may want to dipsatch a custom callback event from within a [Runnable](/docs/concepts/#runnable-interface) so it can be surfaced\n",
|
||||
"in a custom callback handler or via the [Astream Events API](/docs/concepts/#astream_events).\n",
|
||||
"\n",
|
||||
"For example, if you have a long running tool with multiple steps, you can dispatch custom events between the steps and use these custom events to monitor progress.\n",
|
||||
"You could also surface these custom events to an end user of your application to show them how the current task is progressing.\n",
|
||||
"\n",
|
||||
"To dispatch a custom event you need to decide on two attributes for the event: the `name` and the `data`.\n",
|
||||
"\n",
|
||||
"| Attribute | Type | Description |\n",
|
||||
"|-----------|------|----------------------------------------------------------------------------------------------------------|\n",
|
||||
"| name | str | A user defined name for the event. |\n",
|
||||
"| data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. |\n",
|
||||
"\n",
|
||||
"\n",
|
||||
":::{.callout-important}\n",
|
||||
"* Dispatching custom callback events requires `langchain-core>=0.2.15`.\n",
|
||||
"* Custom callback events can only be dispatched from within an existing `Runnable`.\n",
|
||||
"* If using `astream_events`, you must use `version='v2'` to see custom events.\n",
|
||||
"* Sending or rendering custom callbacks events in LangSmith is not yet supported.\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"\n",
|
||||
":::caution COMPATIBILITY\n",
|
||||
"LangChain cannot automatically propagate configuration, including callbacks necessary for astream_events(), to child runnables if you are running async code in python<=3.10. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
|
||||
"\n",
|
||||
"If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n",
|
||||
"\n",
|
||||
"If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in other Python versions.\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | output: false\n",
|
||||
"# | echo: false\n",
|
||||
"\n",
|
||||
"%pip install -qU langchain-core"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Astream Events API\n",
|
||||
"\n",
|
||||
"The most useful way to consume custom events is via the [Astream Events API](/docs/concepts/#astream_events).\n",
|
||||
"\n",
|
||||
"We can use the `async` `adispatch_custom_event` API to emit custom events in an async setting. \n",
|
||||
"\n",
|
||||
"\n",
|
||||
":::{.callout-important}\n",
|
||||
"\n",
|
||||
"To see custom events via the astream events API, you need to use the newer `v2` API of `astream_events`.\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'foo', 'tags': [], 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'metadata': {}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chain_stream', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.callbacks.manager import (\n",
|
||||
" adispatch_custom_event,\n",
|
||||
")\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langchain_core.runnables.config import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@RunnableLambda\n",
|
||||
"async def foo(x: str) -> str:\n",
|
||||
" await adispatch_custom_event(\"event1\", {\"x\": x})\n",
|
||||
" await adispatch_custom_event(\"event2\", 5)\n",
|
||||
" return x\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async for event in foo.astream_events(\"hello world\", version=\"v2\"):\n",
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In python <= 3.10, you must propagate the config manually!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'bar', 'tags': [], 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'metadata': {}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chain_stream', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.callbacks.manager import (\n",
|
||||
" adispatch_custom_event,\n",
|
||||
")\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langchain_core.runnables.config import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@RunnableLambda\n",
|
||||
"async def bar(x: str, config: RunnableConfig) -> str:\n",
|
||||
" \"\"\"An example that shows how to manually propagate config.\n",
|
||||
"\n",
|
||||
" You must do this if you're running python<=3.10.\n",
|
||||
" \"\"\"\n",
|
||||
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
|
||||
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
|
||||
" return x\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async for event in bar.astream_events(\"hello world\", version=\"v2\"):\n",
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Async Callback Handler\n",
|
||||
"\n",
|
||||
"You can also consume the dispatched event via an async callback handler."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n",
|
||||
"Received event event2 with data: 5, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from typing import Any, Dict, List, Optional\n",
|
||||
"from uuid import UUID\n",
|
||||
"\n",
|
||||
"from langchain_core.callbacks import AsyncCallbackHandler\n",
|
||||
"from langchain_core.callbacks.manager import (\n",
|
||||
" adispatch_custom_event,\n",
|
||||
")\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langchain_core.runnables.config import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class AsyncCustomCallbackHandler(AsyncCallbackHandler):\n",
|
||||
" async def on_custom_event(\n",
|
||||
" self,\n",
|
||||
" name: str,\n",
|
||||
" data: Any,\n",
|
||||
" *,\n",
|
||||
" run_id: UUID,\n",
|
||||
" tags: Optional[List[str]] = None,\n",
|
||||
" metadata: Optional[Dict[str, Any]] = None,\n",
|
||||
" **kwargs: Any,\n",
|
||||
" ) -> None:\n",
|
||||
" print(\n",
|
||||
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@RunnableLambda\n",
|
||||
"async def bar(x: str, config: RunnableConfig) -> str:\n",
|
||||
" \"\"\"An example that shows how to manually propagate config.\n",
|
||||
"\n",
|
||||
" You must do this if you're running python<=3.10.\n",
|
||||
" \"\"\"\n",
|
||||
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
|
||||
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
|
||||
" return x\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async_handler = AsyncCustomCallbackHandler()\n",
|
||||
"await foo.ainvoke(1, {\"callbacks\": [async_handler], \"tags\": [\"foo\", \"bar\"]})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Sync Callback Handler\n",
|
||||
"\n",
|
||||
"Let's see how to emit custom events in a sync environment using `dispatch_custom_event`.\n",
|
||||
"\n",
|
||||
"You **must** call `dispatch_custom_event` from within an existing `Runnable`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n",
|
||||
"Received event event2 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from typing import Any, Dict, List, Optional\n",
|
||||
"from uuid import UUID\n",
|
||||
"\n",
|
||||
"from langchain_core.callbacks import BaseCallbackHandler\n",
|
||||
"from langchain_core.callbacks.manager import (\n",
|
||||
" dispatch_custom_event,\n",
|
||||
")\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langchain_core.runnables.config import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class CustomHandler(BaseCallbackHandler):\n",
|
||||
" def on_custom_event(\n",
|
||||
" self,\n",
|
||||
" name: str,\n",
|
||||
" data: Any,\n",
|
||||
" *,\n",
|
||||
" run_id: UUID,\n",
|
||||
" tags: Optional[List[str]] = None,\n",
|
||||
" metadata: Optional[Dict[str, Any]] = None,\n",
|
||||
" **kwargs: Any,\n",
|
||||
" ) -> None:\n",
|
||||
" print(\n",
|
||||
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@RunnableLambda\n",
|
||||
"def foo(x: int, config: RunnableConfig) -> int:\n",
|
||||
" dispatch_custom_event(\"event1\", {\"x\": x})\n",
|
||||
" dispatch_custom_event(\"event2\", {\"x\": x})\n",
|
||||
" return x\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"handler = CustomHandler()\n",
|
||||
"foo.invoke(1, {\"callbacks\": [handler], \"tags\": [\"foo\", \"bar\"]})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"You've seen how to emit custom events, you can check out the more in depth guide for [astream events](/docs/how_to/streaming/#using-stream-events) which is the easiest way to leverage custom events."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -15,6 +15,12 @@
|
||||
"\n",
|
||||
"Make sure you have the integration packages installed for any model providers you want to support. E.g. you should have `langchain-openai` installed to init an OpenAI model.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
":::info Requires ``langchain >= 0.2.8``\n",
|
||||
"\n",
|
||||
"This functionality was added in ``langchain-core == 0.2.8``. Please make sure your package is up to date.\n",
|
||||
"\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
@@ -25,7 +31,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain langchain-openai langchain-anthropic langchain-google-vertexai"
|
||||
"%pip install -qU langchain>=0.2.8 langchain-openai langchain-anthropic langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -76,32 +82,6 @@
|
||||
"print(\"Gemini 1.5: \" + gemini_15.invoke(\"what's your name\").content + \"\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fff9a4c8-b6ee-4a1a-8d3d-0ecaa312d4ed",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Simple config example"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "75c25d39-bf47-4b51-a6c6-64d9c572bfd6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"user_config = {\n",
|
||||
" \"model\": \"...user-specified...\",\n",
|
||||
" \"model_provider\": \"...user-specified...\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"max_tokens\": 1000,\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"llm = init_chat_model(**user_config)\n",
|
||||
"llm.invoke(\"what's your name\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f811f219-5e78-4b62-b495-915d52a22532",
|
||||
@@ -125,12 +105,215 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "da07b5c0-d2e6-42e4-bfcd-2efcfaae6221",
|
||||
"cell_type": "markdown",
|
||||
"id": "476a44db-c50d-4846-951d-0f1c9ba8bbaa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"source": [
|
||||
"## Creating a configurable model\n",
|
||||
"\n",
|
||||
"You can also create a runtime-configurable model by specifying `configurable_fields`. If you don't specify a `model` value, then \"model\" and \"model_provider\" be configurable by default."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "6c037f27-12d7-4e83-811e-4245c0e3ba58",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_d576307f90', 'finish_reason': 'stop', 'logprobs': None}, id='run-5428ab5c-b5c0-46de-9946-5d4ca40dbdc8-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"configurable_model = init_chat_model(temperature=0)\n",
|
||||
"\n",
|
||||
"configurable_model.invoke(\n",
|
||||
" \"what's your name\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_012XvotUJ3kGLXJUWKBVxJUi', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-1ad1eefe-f1c6-4244-8bc6-90e2cb7ee554-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"configurable_model.invoke(\n",
|
||||
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7f3b3d4a-4066-45e4-8297-ea81ac8e70b7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Configurable model with default values\n",
|
||||
"\n",
|
||||
"We can create a configurable model with default model values, specify which parameters are configurable, and add prefixes to configurable params:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "814a2289-d0db-401e-b555-d5116112b413",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_ce0793330f', 'finish_reason': 'stop', 'logprobs': None}, id='run-3923e328-7715-4cd6-b215-98e4b6bf7c9d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"first_llm = init_chat_model(\n",
|
||||
" model=\"gpt-4o\",\n",
|
||||
" temperature=0,\n",
|
||||
" configurable_fields=(\"model\", \"model_provider\", \"temperature\", \"max_tokens\"),\n",
|
||||
" config_prefix=\"first\", # useful when you have a chain with multiple models\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"first_llm.invoke(\"what's your name\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "6c8755ba-c001-4f5a-a497-be3f1db83244",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_01RyYR64DoMPNCfHeNnroMXm', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-22446159-3723-43e6-88df-b84797e7751d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"first_llm.invoke(\n",
|
||||
" \"what's your name\",\n",
|
||||
" config={\n",
|
||||
" \"configurable\": {\n",
|
||||
" \"first_model\": \"claude-3-5-sonnet-20240620\",\n",
|
||||
" \"first_temperature\": 0.5,\n",
|
||||
" \"first_max_tokens\": 100,\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0072b1a3-7e44-4b4e-8b07-efe1ba91a689",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Using a configurable model declaratively\n",
|
||||
"\n",
|
||||
"We can call declarative operations like `bind_tools`, `with_structured_output`, `with_configurable`, etc. on a configurable model and chain a configurable model in the same way that we would a regularly instantiated chat model object."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "067dabee-1050-4110-ae24-c48eba01e13b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'GetPopulation',\n",
|
||||
" 'args': {'location': 'Los Angeles, CA'},\n",
|
||||
" 'id': 'call_sYT3PFMufHGWJD32Hi2CTNUP'},\n",
|
||||
" {'name': 'GetPopulation',\n",
|
||||
" 'args': {'location': 'New York, NY'},\n",
|
||||
" 'id': 'call_j1qjhxRnD3ffQmRyqjlI1Lnk'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GetWeather(BaseModel):\n",
|
||||
" \"\"\"Get the current weather in a given location\"\"\"\n",
|
||||
"\n",
|
||||
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GetPopulation(BaseModel):\n",
|
||||
" \"\"\"Get the current population in a given location\"\"\"\n",
|
||||
"\n",
|
||||
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"llm = init_chat_model(temperature=0)\n",
|
||||
"llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])\n",
|
||||
"\n",
|
||||
"llm_with_tools.invoke(\n",
|
||||
" \"what's bigger in 2024 LA or NYC\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
|
||||
").tool_calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "e57dfe9f-cd24-4e37-9ce9-ccf8daf78f89",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'GetPopulation',\n",
|
||||
" 'args': {'location': 'Los Angeles, CA'},\n",
|
||||
" 'id': 'toolu_01CxEHxKtVbLBrvzFS7GQ5xR'},\n",
|
||||
" {'name': 'GetPopulation',\n",
|
||||
" 'args': {'location': 'New York City, NY'},\n",
|
||||
" 'id': 'toolu_013A79qt5toWSsKunFBDZd5S'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_with_tools.invoke(\n",
|
||||
" \"what's bigger in 2024 LA or NYC\",\n",
|
||||
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}},\n",
|
||||
").tool_calls"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -149,7 +332,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -16,7 +16,7 @@
|
||||
"\n",
|
||||
"Tracking token usage to calculate cost is an important part of putting your app in production. This guide goes over how to obtain this information from your LangChain model calls.\n",
|
||||
"\n",
|
||||
"This guide requires `langchain-openai >= 0.1.8`."
|
||||
"This guide requires `langchain-openai >= 0.1.9`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -153,7 +153,7 @@
|
||||
"\n",
|
||||
"#### OpenAI\n",
|
||||
"\n",
|
||||
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.8` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
|
||||
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
|
||||
"\n",
|
||||
"```{=mdx}\n",
|
||||
":::note\n",
|
||||
|
||||
@@ -300,7 +300,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 2,
|
||||
"id": "ac9295d3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -312,10 +312,8 @@
|
||||
"\n",
|
||||
"## Quick Install\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# Hopefully this code block isn't split\n",
|
||||
"pip install langchain\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"As an open-source project in a rapidly developing field, we are extremely open to contributions.\n",
|
||||
"\"\"\""
|
||||
@@ -323,7 +321,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 3,
|
||||
"id": "3a0cb17a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -332,15 +330,14 @@
|
||||
"text/plain": [
|
||||
"[Document(page_content='# 🦜️🔗 LangChain'),\n",
|
||||
" Document(page_content='⚡ Building applications with LLMs through composability ⚡'),\n",
|
||||
" Document(page_content='## Quick Install\\n\\n```bash'),\n",
|
||||
" Document(page_content='## Quick Install'),\n",
|
||||
" Document(page_content=\"# Hopefully this code block isn't split\"),\n",
|
||||
" Document(page_content='pip install langchain'),\n",
|
||||
" Document(page_content='```'),\n",
|
||||
" Document(page_content='As an open-source project in a rapidly developing field, we'),\n",
|
||||
" Document(page_content='are extremely open to contributions.')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -742,7 +739,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
"version": "3.10.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -48,20 +48,10 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"id": "40ed76a2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n",
|
||||
"You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
|
||||
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai\n",
|
||||
"\n",
|
||||
|
||||
@@ -220,6 +220,57 @@
|
||||
"pretty_print_docs(compressed_docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "14002ec8-7ee5-4f91-9315-dd21c3808776",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### `LLMListwiseRerank`\n",
|
||||
"\n",
|
||||
"[LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n",
|
||||
"\n",
|
||||
"Note that `LLMListwiseRerank` requires a model with the [with_structured_output](/docs/integrations/chat/) method implemented."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "4ab9ee9f-917e-4d6f-9344-eb7f01533228",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Document 1:\n",
|
||||
"\n",
|
||||
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||||
"\n",
|
||||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||||
"\n",
|
||||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||||
"\n",
|
||||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.retrievers.document_compressors import LLMListwiseRerank\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
|
||||
"\n",
|
||||
"_filter = LLMListwiseRerank.from_llm(llm, top_n=1)\n",
|
||||
"compression_retriever = ContextualCompressionRetriever(\n",
|
||||
" base_compressor=_filter, base_retriever=retriever\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"compressed_docs = compression_retriever.invoke(\n",
|
||||
" \"What did the president say about Ketanji Jackson Brown\"\n",
|
||||
")\n",
|
||||
"pretty_print_docs(compressed_docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7194da42",
|
||||
@@ -295,7 +346,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"id": "617a1756",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
"id": "9a8bceb3-95bd-4496-bb9e-57655136e070",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to use Runnables as Tools\n",
|
||||
"# How to convert Runnables as Tools\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
@@ -180,7 +180,7 @@
|
||||
"id": "32b1a992-8997-4c98-8eb2-c9fe9431b799",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Alternatively, we can add typing information via [Runnable.with_types](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_types):"
|
||||
"Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -190,10 +190,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"as_tool = runnable.with_types(input_type=Args).as_tool(\n",
|
||||
" name=\"My tool\",\n",
|
||||
" description=\"Explanation of when to use tool.\",\n",
|
||||
")"
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GSchema(BaseModel):\n",
|
||||
" \"\"\"Apply a function to an integer and list of integers.\"\"\"\n",
|
||||
"\n",
|
||||
" a: int = Field(..., description=\"Integer\")\n",
|
||||
" b: List[int] = Field(..., description=\"List of ints\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"runnable = RunnableLambda(g)\n",
|
||||
"as_tool = runnable.as_tool(GSchema)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -533,7 +541,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -131,7 +131,7 @@
|
||||
"source": [
|
||||
"## Base Chat Model\n",
|
||||
"\n",
|
||||
"Let's implement a chat model that echoes back the first `n` characetrs of the last message in the prompt!\n",
|
||||
"Let's implement a chat model that echoes back the first `n` characters of the last message in the prompt!\n",
|
||||
"\n",
|
||||
"To do so, we will inherit from `BaseChatModel` and we'll need to implement the following:\n",
|
||||
"\n",
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
"id": "5436020b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to create custom tools\n",
|
||||
"# How to create tools\n",
|
||||
"\n",
|
||||
"When constructing an agent, you will need to provide it with a list of `Tool`s that it can use. Besides the actual function that is called, the Tool consists of several components:\n",
|
||||
"\n",
|
||||
@@ -16,13 +16,15 @@
|
||||
"| args_schema | Pydantic BaseModel | Optional but recommended, can be used to provide more information (e.g., few-shot examples) or validation for expected parameters |\n",
|
||||
"| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n",
|
||||
"\n",
|
||||
"LangChain provides 3 ways to create tools:\n",
|
||||
"LangChain supports the creation of tools from:\n",
|
||||
"\n",
|
||||
"1. Using [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool) -- the simplest way to define a custom tool.\n",
|
||||
"2. Using [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method -- this is similar to the `@tool` decorator, but allows more configuration and specification of both sync and async implementations.\n",
|
||||
"1. Functions;\n",
|
||||
"2. LangChain [Runnables](/docs/concepts#runnable-interface);\n",
|
||||
"3. By sub-classing from [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
|
||||
"\n",
|
||||
"The `@tool` or the `StructuredTool.from_function` class method should be sufficient for most use cases.\n",
|
||||
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
|
||||
"\n",
|
||||
"In this guide we provide an overview of these methods.\n",
|
||||
"\n",
|
||||
":::{.callout-tip}\n",
|
||||
"\n",
|
||||
@@ -35,7 +37,9 @@
|
||||
"id": "c7326b23",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## @tool decorator\n",
|
||||
"## Creating tools from functions\n",
|
||||
"\n",
|
||||
"### @tool decorator\n",
|
||||
"\n",
|
||||
"This `@tool` decorator is the simplest way to define a custom tool. The decorator uses the function name as the tool name by default, but this can be overridden by passing a string as the first argument. Additionally, the decorator will use the function's docstring as the tool's description - so a docstring MUST be provided. "
|
||||
]
|
||||
@@ -51,7 +55,7 @@
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"multiply\n",
|
||||
"multiply(a: int, b: int) -> int - Multiply two numbers.\n",
|
||||
"Multiply two numbers.\n",
|
||||
"{'a': {'title': 'A', 'type': 'integer'}, 'b': {'title': 'B', 'type': 'integer'}}\n"
|
||||
]
|
||||
}
|
||||
@@ -96,6 +100,57 @@
|
||||
" return a * b"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8f0edc51-c586-414c-8941-c8abe779943f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note that `@tool` supports parsing of annotations, nested schemas, and other features:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "5626423f-053e-4a66-adca-1d794d835397",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'multiply_by_maxSchema',\n",
|
||||
" 'description': 'Multiply a by the maximum of b.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'a': {'title': 'A',\n",
|
||||
" 'description': 'scale factor',\n",
|
||||
" 'type': 'string'},\n",
|
||||
" 'b': {'title': 'B',\n",
|
||||
" 'description': 'list of ints over which to take maximum',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'integer'}}},\n",
|
||||
" 'required': ['a', 'b']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from typing import Annotated, List\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def multiply_by_max(\n",
|
||||
" a: Annotated[str, \"scale factor\"],\n",
|
||||
" b: Annotated[List[int], \"list of ints over which to take maximum\"],\n",
|
||||
") -> int:\n",
|
||||
" \"\"\"Multiply a by the maximum of b.\"\"\"\n",
|
||||
" return a * max(b)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"multiply_by_max.args_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "98d6eee9",
|
||||
@@ -106,7 +161,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"id": "9216d03a-f6ea-4216-b7e1-0661823a4c0b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -115,7 +170,7 @@
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"multiplication-tool\n",
|
||||
"multiplication-tool(a: int, b: int) -> int - Multiply two numbers.\n",
|
||||
"Multiply two numbers.\n",
|
||||
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n",
|
||||
"True\n"
|
||||
]
|
||||
@@ -143,19 +198,84 @@
|
||||
"print(multiply.return_direct)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "33a9e94d-0b60-48f3-a4c2-247dce096e66",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Docstring parsing"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6d0cb586-93d4-4ff1-9779-71df7853cb68",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"`@tool` can optionally parse [Google Style docstrings](https://google.github.io/styleguide/pyguide.html#383-functions-and-methods) and associate the docstring components (such as arg descriptions) to the relevant parts of the tool schema. To toggle this behavior, specify `parse_docstring`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "336f5538-956e-47d5-9bde-b732559f9e61",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'fooSchema',\n",
|
||||
" 'description': 'The foo.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'bar': {'title': 'Bar',\n",
|
||||
" 'description': 'The bar.',\n",
|
||||
" 'type': 'string'},\n",
|
||||
" 'baz': {'title': 'Baz', 'description': 'The baz.', 'type': 'integer'}},\n",
|
||||
" 'required': ['bar', 'baz']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"@tool(parse_docstring=True)\n",
|
||||
"def foo(bar: str, baz: int) -> str:\n",
|
||||
" \"\"\"The foo.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" bar: The bar.\n",
|
||||
" baz: The baz.\n",
|
||||
" \"\"\"\n",
|
||||
" return bar\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"foo.args_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f18a2503-5393-421b-99fa-4a01dd824d0e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
":::{.callout-caution}\n",
|
||||
"By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html) for detail and examples.\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b63fcc3b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## StructuredTool\n",
|
||||
"### StructuredTool\n",
|
||||
"\n",
|
||||
"The `StrurcturedTool.from_function` class method provides a bit more configurability than the `@tool` decorator, without requiring much additional code."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 6,
|
||||
"id": "564fbe6f-11df-402d-b135-ef6ff25e1e63",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -198,7 +318,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 7,
|
||||
"id": "6bc055d4-1fbe-4db5-8881-9c382eba6b1b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -208,7 +328,7 @@
|
||||
"text": [
|
||||
"6\n",
|
||||
"Calculator\n",
|
||||
"Calculator(a: int, b: int) -> int - multiply numbers\n",
|
||||
"multiply numbers\n",
|
||||
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n"
|
||||
]
|
||||
}
|
||||
@@ -239,6 +359,63 @@
|
||||
"print(calculator.args)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5517995d-54e3-449b-8fdb-03561f5e4647",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating tools from Runnables\n",
|
||||
"\n",
|
||||
"LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n",
|
||||
"\n",
|
||||
"Example usage:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "8ef593c5-cf72-4c10-bfc9-7d21874a0c24",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'answer_style': {'title': 'Answer Style', 'type': 'string'}}"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.language_models import GenericFakeChatModel\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"human\", \"Hello. Please respond in the style of {answer_style}.\")]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Placeholder LLM\n",
|
||||
"llm = GenericFakeChatModel(messages=iter([\"hello matey\"]))\n",
|
||||
"\n",
|
||||
"chain = prompt | llm | StrOutputParser()\n",
|
||||
"\n",
|
||||
"as_tool = chain.as_tool(\n",
|
||||
" name=\"Style responder\", description=\"Description of when to use tool.\"\n",
|
||||
")\n",
|
||||
"as_tool.args"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0521b787-a146-45a6-8ace-ae1ac4669dd7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"See [this guide](/docs/how_to/convert_runnable_to_tool) for more detail."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b840074b-9c10-4ca0-aed8-626c52b2398f",
|
||||
@@ -251,7 +428,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"execution_count": 10,
|
||||
"id": "1dad8f8e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -300,7 +477,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 11,
|
||||
"id": "bb551c33",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -351,7 +528,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 12,
|
||||
"id": "6615cb77-fd4c-4676-8965-f92cc71d4944",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -383,7 +560,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 13,
|
||||
"id": "bb2af583-eadd-41f4-a645-bf8748bd3dcd",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -428,7 +605,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 14,
|
||||
"id": "4ad0932c-8610-4278-8c57-f9218f654c8a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -473,7 +650,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 15,
|
||||
"id": "7094c0e8-6192-4870-a942-aad5b5ae48fd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -496,7 +673,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 16,
|
||||
"id": "b4d22022-b105-4ccc-a15b-412cb9ea3097",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -506,7 +683,7 @@
|
||||
"'Error: There is no city by the name of foobar.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -530,7 +707,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 17,
|
||||
"id": "3fad1728-d367-4e1b-9b54-3172981271cf",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -540,7 +717,7 @@
|
||||
"\"There is no such city, but it's probably above 0K there!\""
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -564,7 +741,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 18,
|
||||
"id": "ebfe7c1f-318d-4e58-99e1-f31e69473c46",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -574,7 +751,7 @@
|
||||
"'The following errors occurred during tool execution: `Error: There is no city by the name of foobar.`'"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -591,13 +768,189 @@
|
||||
"\n",
|
||||
"get_weather_tool.invoke({\"city\": \"foobar\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1a8d8383-11b3-445e-956f-df4e96995e00",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Returning artifacts of Tool execution\n",
|
||||
"\n",
|
||||
"Sometimes there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns custom objects like Documents, we may want to pass some view or metadata about this output to the model without passing the raw output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
|
||||
"\n",
|
||||
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
|
||||
"\n",
|
||||
":::info Requires ``langchain-core >= 0.2.19``\n",
|
||||
"\n",
|
||||
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"If we want our tool to distinguish between message content and other artifacts, we need to specify `response_format=\"content_and_artifact\"` when defining our tool and make sure that we return a tuple of (content, artifact):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "14905425-0334-43a0-9de9-5bcf622ede0e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import random\n",
|
||||
"from typing import List, Tuple\n",
|
||||
"\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool(response_format=\"content_and_artifact\")\n",
|
||||
"def generate_random_ints(min: int, max: int, size: int) -> Tuple[str, List[int]]:\n",
|
||||
" \"\"\"Generate size random ints in the range [min, max].\"\"\"\n",
|
||||
" array = [random.randint(min, max) for _ in range(size)]\n",
|
||||
" content = f\"Successfully generated array of {size} random ints in [{min}, {max}].\"\n",
|
||||
" return content, array"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "49f057a6-8938-43ea-8faf-ae41e797ceb8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we invoke our tool directly with the tool arguments, we'll get back just the content part of the output:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "0f2e1528-404b-46e6-b87c-f0957c4b9217",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Successfully generated array of 10 random ints in [0, 9].'"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke({\"min\": 0, \"max\": 9, \"size\": 10})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1e62ebba-1737-4b97-b61a-7313ade4e8c2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we invoke our tool with a ToolCall (like the ones generated by tool-calling models), we'll get back a ToolMessage that contains both the content and artifact generated by the Tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "cc197777-26eb-46b3-a83b-c2ce116c6311",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[1, 4, 2, 5, 3, 9, 0, 4, 7, 7])"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke(\n",
|
||||
" {\n",
|
||||
" \"name\": \"generate_random_ints\",\n",
|
||||
" \"args\": {\"min\": 0, \"max\": 9, \"size\": 10},\n",
|
||||
" \"id\": \"123\", # required\n",
|
||||
" \"type\": \"tool_call\", # required\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "dfdc1040-bf25-4790-b4c3-59452db84e11",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can do the same when subclassing BaseTool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "fe1a09d1-378b-4b91-bb5e-0697c3d7eb92",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import BaseTool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GenerateRandomFloats(BaseTool):\n",
|
||||
" name: str = \"generate_random_floats\"\n",
|
||||
" description: str = \"Generate size random floats in the range [min, max].\"\n",
|
||||
" response_format: str = \"content_and_artifact\"\n",
|
||||
"\n",
|
||||
" ndigits: int = 2\n",
|
||||
"\n",
|
||||
" def _run(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
|
||||
" range_ = max - min\n",
|
||||
" array = [\n",
|
||||
" round(min + (range_ * random.random()), ndigits=self.ndigits)\n",
|
||||
" for _ in range(size)\n",
|
||||
" ]\n",
|
||||
" content = f\"Generated {size} floats in [{min}, {max}], rounded to {self.ndigits} decimals.\"\n",
|
||||
" return content, array\n",
|
||||
"\n",
|
||||
" # Optionally define an equivalent async method\n",
|
||||
"\n",
|
||||
" # async def _arun(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
|
||||
" # ..."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "8c3d16f6-1c4a-48ab-b05a-38547c592e79",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.4277, 0.7578, 2.4871])"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rand_gen = GenerateRandomFloats(ndigits=4)\n",
|
||||
"\n",
|
||||
"rand_gen.invoke(\n",
|
||||
" {\n",
|
||||
" \"name\": \"generate_random_floats\",\n",
|
||||
" \"args\": {\"min\": 0.1, \"max\": 3.3333, \"size\": 3},\n",
|
||||
" \"id\": \"123\",\n",
|
||||
" \"type\": \"tool_call\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -609,7 +962,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.9"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
||||
@@ -67,15 +67,16 @@ If you'd prefer not to set an environment variable you can pass the key in direc
|
||||
```python
|
||||
from langchain_cohere import CohereEmbeddings
|
||||
|
||||
embeddings_model = CohereEmbeddings(cohere_api_key="...")
|
||||
embeddings_model = CohereEmbeddings(cohere_api_key="...", model='embed-english-v3.0')
|
||||
```
|
||||
|
||||
Otherwise you can initialize without any params:
|
||||
Otherwise you can initialize simply as shown below:
|
||||
```python
|
||||
from langchain_cohere import CohereEmbeddings
|
||||
|
||||
embeddings_model = CohereEmbeddings()
|
||||
embeddings_model = CohereEmbeddings(model='embed-english-v3.0')
|
||||
```
|
||||
Do note that it is mandatory to pass the model parameter while initializing the CohereEmbeddings class.
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="huggingface" label="Hugging Face">
|
||||
|
||||
@@ -9,11 +9,13 @@
|
||||
"source": [
|
||||
"# Hybrid Search\n",
|
||||
"\n",
|
||||
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, ...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
|
||||
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, Qdrant...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
|
||||
"\n",
|
||||
"**Step 1: Make sure the vectorstore you are using supports hybrid search**\n",
|
||||
"\n",
|
||||
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`. By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
|
||||
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`.\n",
|
||||
"\n",
|
||||
"By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
|
||||
"\n",
|
||||
"**Step 2: Add that parameter as a configurable field for the chain**\n",
|
||||
"\n",
|
||||
|
||||
@@ -44,6 +44,7 @@ This highlights functionality that is core to using LangChain.
|
||||
- [How to: inspect runnables](/docs/how_to/inspect)
|
||||
- [How to: add fallbacks to a runnable](/docs/how_to/fallbacks)
|
||||
- [How to: migrate chains to LCEL](/docs/how_to/migrate_chains)
|
||||
- [How to: pass runtime secrets to a runnable](/docs/how_to/runnable_runtime_secrets)
|
||||
|
||||
## Components
|
||||
|
||||
@@ -84,7 +85,7 @@ These are the core building blocks you can use when building applications.
|
||||
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
|
||||
- [How to: stream tool calls](/docs/how_to/tool_streaming)
|
||||
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
|
||||
- [How to: bind model-specific formated tools](/docs/how_to/tools_model_specific)
|
||||
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
|
||||
- [How to: force a specific tool call](/docs/how_to/tool_choice)
|
||||
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
|
||||
|
||||
@@ -185,17 +186,21 @@ Indexing is the process of keeping your vectorstore in-sync with the underlying
|
||||
|
||||
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call. Refer [here](/docs/integrations/tools/) for a list of pre-buit tools.
|
||||
|
||||
- [How to: create custom tools](/docs/how_to/custom_tools)
|
||||
- [How to: use built-in tools and built-in toolkits](/docs/how_to/tools_builtin)
|
||||
- [How to: convert Runnables to tools](/docs/how_to/convert_runnable_to_tool)
|
||||
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
|
||||
- [How to: pass tool results back to model](/docs/how_to/tool_results_pass_to_model)
|
||||
- [How to: add ad-hoc tool calling capability to LLMs and chat models](/docs/how_to/tools_prompting)
|
||||
- [How to: create tools](/docs/how_to/custom_tools)
|
||||
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)
|
||||
- [How to: use chat models to call tools](/docs/how_to/tool_calling)
|
||||
- [How to: pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model)
|
||||
- [How to: pass run time values to tools](/docs/how_to/tool_runtime)
|
||||
- [How to: add a human in the loop to tool usage](/docs/how_to/tools_human)
|
||||
- [How to: handle errors when calling tools](/docs/how_to/tools_error)
|
||||
- [How to: disable parallel tool calling](/docs/how_to/tool_choice)
|
||||
- [How to: stream events from within a tool](/docs/how_to/tool_stream_events)
|
||||
- [How to: add a human-in-the-loop for tools](/docs/how_to/tools_human)
|
||||
- [How to: handle tool errors](/docs/how_to/tools_error)
|
||||
- [How to: force models to call a tool](/docs/how_to/tool_choice)
|
||||
- [How to: disable parallel tool calling](/docs/how_to/tool_calling_parallel)
|
||||
- [How to: access the `RunnableConfig` from a tool](/docs/how_to/tool_configure)
|
||||
- [How to: stream events from a tool](/docs/how_to/tool_stream_events)
|
||||
- [How to: return artifacts from a tool](/docs/how_to/tool_artifacts/)
|
||||
- [How to: convert Runnables to tools](/docs/how_to/convert_runnable_to_tool)
|
||||
- [How to: add ad-hoc tool calling capability to models](/docs/how_to/tools_prompting)
|
||||
- [How to: pass in runtime secrets](/docs/how_to/runnable_runtime_secrets)
|
||||
|
||||
### Multimodal
|
||||
|
||||
@@ -223,6 +228,7 @@ For in depth how-to guides for agents, please check out [LangGraph](https://lang
|
||||
- [How to: pass callbacks into a module constructor](/docs/how_to/callbacks_constructor)
|
||||
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
|
||||
- [How to: use callbacks in async environments](/docs/how_to/callbacks_async)
|
||||
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
|
||||
|
||||
### Custom
|
||||
|
||||
@@ -235,6 +241,7 @@ All of LangChain components can easily be extended to support your own versions.
|
||||
- [How to: write a custom output parser class](/docs/how_to/output_parser_custom)
|
||||
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
|
||||
- [How to: define a custom tool](/docs/how_to/custom_tools)
|
||||
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
|
||||
|
||||
### Serialization
|
||||
- [How to: save and load LangChain objects](/docs/how_to/serialization)
|
||||
|
||||
@@ -60,7 +60,7 @@
|
||||
" * document addition by id (`add_documents` method with `ids` argument)\n",
|
||||
" * delete by id (`delete` method with `ids` argument)\n",
|
||||
"\n",
|
||||
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SingleStoreDB`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
|
||||
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MongoDBAtlasVectorSearch`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SingleStoreDB`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
|
||||
" \n",
|
||||
"## Caution\n",
|
||||
"\n",
|
||||
|
||||
@@ -63,6 +63,38 @@
|
||||
"Notice that if the contents of one of the messages to merge is a list of content blocks then the merged message will have a list of content blocks. And if both messages to merge have string contents then those are concatenated with a newline character."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "11f7e8d3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The `merge_message_runs` utility also works with messages composed together using the overloaded `+` operation:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b51855c5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"messages = (\n",
|
||||
" SystemMessage(\"you're a good assistant.\")\n",
|
||||
" + SystemMessage(\"you always respond with a joke.\")\n",
|
||||
" + HumanMessage([{\"type\": \"text\", \"text\": \"i wonder why it's called langchain\"}])\n",
|
||||
" + HumanMessage(\"and who is harrison chasing anyways\")\n",
|
||||
" + AIMessage(\n",
|
||||
" 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n",
|
||||
" )\n",
|
||||
" + AIMessage(\n",
|
||||
" \"Why, he's probably chasing after the last cup of coffee in the office!\"\n",
|
||||
" )\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"merged = merge_message_runs(messages)\n",
|
||||
"print(\"\\n\\n\".join([repr(x) for x in merged]))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1b2eee74-71c8-4168-b968-bca580c25d18",
|
||||
|
||||
78
docs/docs/how_to/runnable_runtime_secrets.ipynb
Normal file
78
docs/docs/how_to/runnable_runtime_secrets.ipynb
Normal file
@@ -0,0 +1,78 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6fcd2994-0092-4fa3-9bb1-c9c84babadc5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to pass runtime secrets to runnables\n",
|
||||
"\n",
|
||||
":::info Requires `langchain-core >= 0.2.22`\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"We can pass in secrets to our runnables at runtime using the `RunnableConfig`. Specifically we can pass in secrets with a `__` prefix to the `configurable` field. This will ensure that these secrets aren't traced as part of the invocation:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "92e42e91-c277-49de-aa7a-dfb5c993c817",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"7"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnableConfig\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def foo(x: int, config: RunnableConfig) -> int:\n",
|
||||
" \"\"\"Sum x and a secret int\"\"\"\n",
|
||||
" return x + config[\"configurable\"][\"__top_secret_int\"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"foo.invoke({\"x\": 5}, {\"configurable\": {\"__top_secret_int\": 2, \"traced_key\": \"bar\"}})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ae3a4fb9-2ce7-46b2-b654-35dff0ae7197",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Looking at the LangSmith trace for this run, we can see that \"traced_key\" was recorded (as part of Metadata) while our secret int was not: https://smith.langchain.com/public/aa7e3289-49ca-422d-a408-f6b927210170/r"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
396
docs/docs/how_to/tool_artifacts.ipynb
Normal file
396
docs/docs/how_to/tool_artifacts.ipynb
Normal file
@@ -0,0 +1,396 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "503e36ae-ca62-4f8a-880c-4fe78ff5df93",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to return artifacts from a tool\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"\n",
|
||||
"- [ToolMessage](/docs/concepts/#toolmessage)\n",
|
||||
"- [Tools](/docs/concepts/#tools)\n",
|
||||
"- [Function/tool calling](/docs/concepts/#functiontool-calling)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"Tools are utilities that can be called by a model, and whose outputs are designed to be fed back to a model. Sometimes, however, there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns a custom object, a dataframe or an image, we may want to pass some metadata about this output to the model without passing the actual output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
|
||||
"\n",
|
||||
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
|
||||
"\n",
|
||||
":::info Requires ``langchain-core >= 0.2.19``\n",
|
||||
"\n",
|
||||
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"## Defining the tool\n",
|
||||
"\n",
|
||||
"If we want our tool to distinguish between message content and other artifacts, we need to specify `response_format=\"content_and_artifact\"` when defining our tool and make sure that we return a tuple of (content, artifact):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "762b9199-885f-4946-9c98-cc54d72b0d76",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU \"langchain-core>=0.2.19\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "b9eb179d-1f41-4748-9866-b3d3e8c73cd0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import random\n",
|
||||
"from typing import List, Tuple\n",
|
||||
"\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool(response_format=\"content_and_artifact\")\n",
|
||||
"def generate_random_ints(min: int, max: int, size: int) -> Tuple[str, List[int]]:\n",
|
||||
" \"\"\"Generate size random ints in the range [min, max].\"\"\"\n",
|
||||
" array = [random.randint(min, max) for _ in range(size)]\n",
|
||||
" content = f\"Successfully generated array of {size} random ints in [{min}, {max}].\"\n",
|
||||
" return content, array"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0ab05d25-af4a-4e5a-afe2-f090416d7ee7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invoking the tool with ToolCall\n",
|
||||
"\n",
|
||||
"If we directly invoke our tool with just the tool arguments, you'll notice that we only get back the content part of the Tool output:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "5e7d5e77-3102-4a59-8ade-e4e699dd1817",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Successfully generated array of 10 random ints in [0, 9].'"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Failed to batch ingest runs: LangSmithRateLimitError('Rate limit exceeded for https://api.smith.langchain.com/runs/batch. HTTPError(\\'429 Client Error: Too Many Requests for url: https://api.smith.langchain.com/runs/batch\\', \\'{\"detail\":\"Monthly unique traces usage limit exceeded\"}\\')')\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke({\"min\": 0, \"max\": 9, \"size\": 10})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "30db7228-f04c-489e-afda-9a572eaa90a1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In order to get back both the content and the artifact, we need to invoke our model with a ToolCall (which is just a dictionary with \"name\", \"args\", \"id\" and \"type\" keys), which has additional info needed to generate a ToolMessage like the tool call ID:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "da1d939d-a900-4b01-92aa-d19011a6b034",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[2, 8, 0, 6, 0, 0, 1, 5, 0, 0])"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke(\n",
|
||||
" {\n",
|
||||
" \"name\": \"generate_random_ints\",\n",
|
||||
" \"args\": {\"min\": 0, \"max\": 9, \"size\": 10},\n",
|
||||
" \"id\": \"123\", # required\n",
|
||||
" \"type\": \"tool_call\", # required\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a3cfc03d-020b-42c7-b0f8-c824af19e45e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Using with a model\n",
|
||||
"\n",
|
||||
"With a [tool-calling model](/docs/how_to/tool_calling/), we can easily use a model to call our Tool and generate ToolMessages:\n",
|
||||
"\n",
|
||||
"```{=mdx}\n",
|
||||
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
|
||||
"\n",
|
||||
"<ChatModelTabs\n",
|
||||
" customVarName=\"llm\"\n",
|
||||
"/>\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "74de0286-b003-4b48-9cdd-ecab435515ca",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | echo: false\n",
|
||||
"# | output: false\n",
|
||||
"\n",
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"\n",
|
||||
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "8a67424b-d19c-43df-ac7b-690bca42146c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'generate_random_ints',\n",
|
||||
" 'args': {'min': 1, 'max': 24, 'size': 6},\n",
|
||||
" 'id': 'toolu_01EtALY3Wz1DVYhv1TLvZGvE',\n",
|
||||
" 'type': 'tool_call'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_with_tools = llm.bind_tools([generate_random_ints])\n",
|
||||
"\n",
|
||||
"ai_msg = llm_with_tools.invoke(\"generate 6 positive ints less than 25\")\n",
|
||||
"ai_msg.tool_calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "00c4e906-3ca8-41e8-a0be-65cb0db7d574",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Successfully generated array of 6 random ints in [1, 24].', name='generate_random_ints', tool_call_id='toolu_01EtALY3Wz1DVYhv1TLvZGvE', artifact=[2, 20, 23, 8, 1, 15])"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke(ai_msg.tool_calls[0])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ddef2690-70de-4542-ab20-2337f77f3e46",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we just pass in the tool call args, we'll only get back the content:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "f4a6c9a6-0ffc-4b0e-a59f-f3c3d69d824d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Successfully generated array of 6 random ints in [1, 24].'"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke(ai_msg.tool_calls[0][\"args\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "98d6443b-ff41-4d91-8523-b6274fc74ee5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we wanted to declaratively create a chain, we could do this:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "eb55ec23-95a4-464e-b886-d9679bf3aaa2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[ToolMessage(content='Successfully generated array of 1 random ints in [1, 5].', name='generate_random_ints', tool_call_id='toolu_01FwYhnkwDPJPbKdGq4ng6uD', artifact=[5])]"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from operator import attrgetter\n",
|
||||
"\n",
|
||||
"chain = llm_with_tools | attrgetter(\"tool_calls\") | generate_random_ints.map()\n",
|
||||
"\n",
|
||||
"chain.invoke(\"give me a random number between 1 and 5\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4df46be2-babb-4bfe-a641-91cd3d03ffaf",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating from BaseTool class\n",
|
||||
"\n",
|
||||
"If you want to create a BaseTool object directly, instead of decorating a function with `@tool`, you can do so like this:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "9a9129e1-6aee-4a10-ad57-62ef3bf0276c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import BaseTool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GenerateRandomFloats(BaseTool):\n",
|
||||
" name: str = \"generate_random_floats\"\n",
|
||||
" description: str = \"Generate size random floats in the range [min, max].\"\n",
|
||||
" response_format: str = \"content_and_artifact\"\n",
|
||||
"\n",
|
||||
" ndigits: int = 2\n",
|
||||
"\n",
|
||||
" def _run(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
|
||||
" range_ = max - min\n",
|
||||
" array = [\n",
|
||||
" round(min + (range_ * random.random()), ndigits=self.ndigits)\n",
|
||||
" for _ in range(size)\n",
|
||||
" ]\n",
|
||||
" content = f\"Generated {size} floats in [{min}, {max}], rounded to {self.ndigits} decimals.\"\n",
|
||||
" return content, array\n",
|
||||
"\n",
|
||||
" # Optionally define an equivalent async method\n",
|
||||
"\n",
|
||||
" # async def _arun(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
|
||||
" # ..."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "d7322619-f420-4b29-8ee5-023e693d0179",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rand_gen = GenerateRandomFloats(ndigits=4)\n",
|
||||
"rand_gen.invoke({\"min\": 0.1, \"max\": 3.3333, \"size\": 3})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "0892f277-23a6-4bb8-a0e9-59f533ac9750",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.5789, 2.464, 2.2719])"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rand_gen.invoke(\n",
|
||||
" {\n",
|
||||
" \"name\": \"generate_random_floats\",\n",
|
||||
" \"args\": {\"min\": 0.1, \"max\": 3.3333, \"size\": 3},\n",
|
||||
" \"id\": \"123\",\n",
|
||||
" \"type\": \"tool_call\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -17,7 +17,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to use a model to call tools\n",
|
||||
"# How to use chat models to call tools\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
@@ -82,30 +82,24 @@
|
||||
"## Passing tools to chat models\n",
|
||||
"\n",
|
||||
"Chat models that support tool calling features implement a `.bind_tools` method, which \n",
|
||||
"receives a list of LangChain [tool objects](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n",
|
||||
"receives a list of functions, Pydantic models, or LangChain [tool objects](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n",
|
||||
"and binds them to the chat model in its expected format. Subsequent invocations of the \n",
|
||||
"chat model will include tool schemas in its calls to the LLM.\n",
|
||||
"\n",
|
||||
"For example, we can define the schema for custom tools using the `@tool` decorator \n",
|
||||
"on Python functions:"
|
||||
"For example, below we implement simple tools for arithmetic:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def add(a: int, b: int) -> int:\n",
|
||||
" \"\"\"Adds a and b.\"\"\"\n",
|
||||
" return a + b\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def multiply(a: int, b: int) -> int:\n",
|
||||
" \"\"\"Multiplies a and b.\"\"\"\n",
|
||||
" return a * b\n",
|
||||
@@ -118,12 +112,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Or below, we define the schema using [Pydantic](https://docs.pydantic.dev):"
|
||||
"LangChain also implements a `@tool` decorator that allows for further control of the tool schema, such as tool names and argument descriptions. See the how-to guide [here](/docs/how_to/custom_tools/#creating-tools-from-functions) for detail.\n",
|
||||
"\n",
|
||||
"We can also define the schema using [Pydantic](https://docs.pydantic.dev):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -343,7 +339,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
"version": "3.10.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -4,7 +4,13 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Disabling parallel tool calling (OpenAI only)\n",
|
||||
"# How to disable parallel tool calling\n",
|
||||
"\n",
|
||||
":::info OpenAI-specific\n",
|
||||
"\n",
|
||||
"This API is currently only supported by OpenAI.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"OpenAI tool calling performs tool calling in parallel by default. That means that if we ask a question like \"What is the weather in Tokyo, New York, and Chicago?\" and we have a tool for getting the weather, it will call the tool 3 times in parallel. We can force it to call only a single tool once by using the ``parallel_tool_call`` parameter."
|
||||
]
|
||||
@@ -99,10 +105,24 @@
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to force tool calling behavior\n",
|
||||
"# How to force models to call a tool\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
@@ -125,10 +125,24 @@
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
||||
132
docs/docs/how_to/tool_configure.ipynb
Normal file
132
docs/docs/how_to/tool_configure.ipynb
Normal file
@@ -0,0 +1,132 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to access the RunnableConfig from a tool\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"\n",
|
||||
"- [LangChain Tools](/docs/concepts/#tools)\n",
|
||||
"- [Custom tools](/docs/how_to/custom_tools)\n",
|
||||
"- [LangChain Expression Language (LCEL)](/docs/concepts/#langchain-expression-language-lcel)\n",
|
||||
"- [Configuring runnable behavior](/docs/how_to/configure/)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"If you have a tool that call chat models, retrievers, or other runnables, you may want to access internal events from those runnables or configure them with additional properties. This guide shows you how to manually pass parameters properly so that you can do this using the `astream_events()` method.\n",
|
||||
"\n",
|
||||
"Tools are runnables, and you can treat them the same way as any other runnable at the interface level - you can call `invoke()`, `batch()`, and `stream()` on them as normal. However, when writing custom tools, you may want to invoke other runnables like chat models or retrievers. In order to properly trace and configure those sub-invocations, you'll need to manually access and pass in the tool's current [`RunnableConfig`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.config.RunnableConfig.html) object. This guide show you some examples of how to do that.\n",
|
||||
"\n",
|
||||
":::caution Compatibility\n",
|
||||
"\n",
|
||||
"This guide requires `langchain-core>=0.2.16`.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"## Inferring by parameter type\n",
|
||||
"\n",
|
||||
"To access reference the active config object from your custom tool, you'll need to add a parameter to your tool's signature typed as `RunnableConfig`. When you invoke your tool, LangChain will inspect your tool's signature, look for a parameter typed as `RunnableConfig`, and if it exists, populate that parameter with the correct value.\n",
|
||||
"\n",
|
||||
"**Note:** The actual name of the parameter doesn't matter, only the typing.\n",
|
||||
"\n",
|
||||
"To illustrate this, define a custom tool that takes a two parameters - one typed as a string, the other typed as `RunnableConfig`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_core"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnableConfig\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"async def reverse_tool(text: str, special_config_param: RunnableConfig) -> str:\n",
|
||||
" \"\"\"A test tool that combines input text with a configurable parameter.\"\"\"\n",
|
||||
" return (text + special_config_param[\"configurable\"][\"additional_field\"])[::-1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Then, if we invoke the tool with a `config` containing a `configurable` field, we can see that `additional_field` is passed through correctly:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'321cba'"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"await reverse_tool.ainvoke(\n",
|
||||
" {\"text\": \"abc\"}, config={\"configurable\": {\"additional_field\": \"123\"}}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"You've now seen how to configure and stream events from within a tool. Next, check out the following guides for more on using tools:\n",
|
||||
"\n",
|
||||
"- [Stream events from child runs within a custom tool](/docs/how_to/tool_stream_events/)\n",
|
||||
"- Pass [tool results back to a model](/docs/how_to/tool_results_pass_to_model)\n",
|
||||
"\n",
|
||||
"You can also check out some more specific uses of tool calling:\n",
|
||||
"\n",
|
||||
"- Building [tool-using chains and agents](/docs/how_to#tools)\n",
|
||||
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -4,14 +4,22 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to pass tool outputs to the model\n",
|
||||
"# How to pass tool outputs to chat models\n",
|
||||
"\n",
|
||||
"If we're using the model-generated tool invocations to actually call tools and want to pass the tool results back to the model, we can do so using `ToolMessage`s. First, let's define our tools and our model."
|
||||
":::info Prerequisites\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"\n",
|
||||
"- [Tools](/docs/concepts/#tools)\n",
|
||||
"- [Function/tool calling](/docs/concepts/#functiontool-calling)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"If we're using the model-generated tool invocations to actually call tools and want to pass the tool results back to the model, we can do so using `ToolMessage`s and `ToolCall`s. First, let's define our tools and our model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -35,7 +43,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -54,25 +62,32 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now we can use ``ToolMessage`` to pass back the output of the tool calls to the model."
|
||||
"The nice thing about Tools is that if we invoke them with a ToolCall, we'll automatically get back a ToolMessage that can be fed back to the model: \n",
|
||||
"\n",
|
||||
":::info Requires ``langchain-core >= 0.2.19``\n",
|
||||
"\n",
|
||||
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
|
||||
"\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?'),\n",
|
||||
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_svc2GLSxNFALbaCAbSjMI9J8', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'Multiply'}, 'type': 'function'}, {'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 105, 'total_tokens': 155}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-a79ad1dd-95f1-4a46-b688-4c83f327a7b3-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_svc2GLSxNFALbaCAbSjMI9J8'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh'}]),\n",
|
||||
" ToolMessage(content='36', tool_call_id='call_svc2GLSxNFALbaCAbSjMI9J8'),\n",
|
||||
" ToolMessage(content='60', tool_call_id='call_r8jxte3zW6h3MEGV3zH2qzFh')]"
|
||||
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Smg3NHJNxrKfAmd4f9GkaYn3', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'multiply'}, 'type': 'function'}, {'id': 'call_55K1C0DmH6U5qh810gW34xZ0', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 49, 'prompt_tokens': 88, 'total_tokens': 137}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-56657feb-96dd-456c-ab8e-1857eab2ade0-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_Smg3NHJNxrKfAmd4f9GkaYn3', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_55K1C0DmH6U5qh810gW34xZ0', 'type': 'tool_call'}], usage_metadata={'input_tokens': 88, 'output_tokens': 49, 'total_tokens': 137}),\n",
|
||||
" ToolMessage(content='36', name='multiply', tool_call_id='call_Smg3NHJNxrKfAmd4f9GkaYn3'),\n",
|
||||
" ToolMessage(content='60', name='add', tool_call_id='call_55K1C0DmH6U5qh810gW34xZ0')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -85,24 +100,25 @@
|
||||
"messages.append(ai_msg)\n",
|
||||
"for tool_call in ai_msg.tool_calls:\n",
|
||||
" selected_tool = {\"add\": add, \"multiply\": multiply}[tool_call[\"name\"].lower()]\n",
|
||||
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
|
||||
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))\n",
|
||||
" tool_msg = selected_tool.invoke(tool_call)\n",
|
||||
" messages.append(tool_msg)\n",
|
||||
"messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 171, 'total_tokens': 189}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'stop', 'logprobs': None}, id='run-20b52149-e00d-48ea-97cf-f8de7a255f8c-0')"
|
||||
"AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 153, 'total_tokens': 171}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-ba5032f0-f773-406d-a408-8314e66511d0-0', usage_metadata={'input_tokens': 153, 'output_tokens': 18, 'total_tokens': 171})"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -118,10 +134,24 @@
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to pass run time values to a tool\n",
|
||||
"# How to pass run time values to tools\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
@@ -15,26 +15,25 @@
|
||||
"- [How to use a model to call tools](/docs/how_to/tool_calling)\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
":::{.callout-info} Supported models\n",
|
||||
"\n",
|
||||
"This how-to guide uses models with native tool calling capability.\n",
|
||||
"You can find a [list of all models that support tool calling](/docs/integrations/chat/).\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
":::{.callout-info} Using with LangGraph\n",
|
||||
":::info Using with LangGraph\n",
|
||||
"\n",
|
||||
"If you're using LangGraph, please refer to [this how-to guide](https://langchain-ai.github.io/langgraph/how-tos/pass-run-time-values-to-tools/)\n",
|
||||
"which shows how to create an agent that keeps track of a given user's favorite pets.\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
":::caution Added in `langchain-core==0.2.21`\n",
|
||||
"\n",
|
||||
"Must have `langchain-core>=0.2.21` to use this functionality.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"You may need to bind values to a tool that are only known at runtime. For example, the tool logic may require using the ID of the user who made the request.\n",
|
||||
"\n",
|
||||
"Most of the time, such values should not be controlled by the LLM. In fact, allowing the LLM to control the user ID may lead to a security risk.\n",
|
||||
"\n",
|
||||
"Instead, the LLM should only control the parameters of the tool that are meant to be controlled by the LLM, while other parameters (such as user ID) should be fixed by the application logic.\n",
|
||||
"\n",
|
||||
"This how-to guide shows a simple design pattern that creates the tool dynamically at run time and binds to them appropriate values."
|
||||
"This how-to guide shows you how to prevent the model from generating certain tool arguments and injecting them in directly at runtime."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -57,23 +56,12 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | output: false\n",
|
||||
"# | echo: false\n",
|
||||
"\n",
|
||||
"%pip install -qU langchain langchain_openai\n",
|
||||
"# %pip install -qU langchain langchain_openai\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from getpass import getpass\n",
|
||||
@@ -90,10 +78,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Passing request time information\n",
|
||||
"## Hiding arguments from the model\n",
|
||||
"\n",
|
||||
"The idea is to create the tool dynamically at request time, and bind to it the appropriate information. For example,\n",
|
||||
"this information may be the user ID as resolved from the request itself."
|
||||
"We can use the InjectedToolArg annotation to mark certain parameters of our Tool, like `user_id` as being injected at runtime, meaning they shouldn't be generated by the model"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -104,46 +91,88 @@
|
||||
"source": [
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain_core.output_parsers import JsonOutputParser\n",
|
||||
"from langchain_core.tools import BaseTool, tool"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import InjectedToolArg, tool\n",
|
||||
"from typing_extensions import Annotated\n",
|
||||
"\n",
|
||||
"user_to_pets = {}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def generate_tools_for_user(user_id: str) -> List[BaseTool]:\n",
|
||||
" \"\"\"Generate a set of tools that have a user id associated with them.\"\"\"\n",
|
||||
"@tool(parse_docstring=True)\n",
|
||||
"def update_favorite_pets(\n",
|
||||
" pets: List[str], user_id: Annotated[str, InjectedToolArg]\n",
|
||||
") -> None:\n",
|
||||
" \"\"\"Add the list of favorite pets.\n",
|
||||
"\n",
|
||||
" @tool\n",
|
||||
" def update_favorite_pets(pets: List[str]) -> None:\n",
|
||||
" \"\"\"Add the list of favorite pets.\"\"\"\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
" Args:\n",
|
||||
" pets: List of favorite pets to set.\n",
|
||||
" user_id: User's ID.\n",
|
||||
" \"\"\"\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
"\n",
|
||||
" @tool\n",
|
||||
" def delete_favorite_pets() -> None:\n",
|
||||
" \"\"\"Delete the list of favorite pets.\"\"\"\n",
|
||||
" if user_id in user_to_pets:\n",
|
||||
" del user_to_pets[user_id]\n",
|
||||
"\n",
|
||||
" @tool\n",
|
||||
" def list_favorite_pets() -> None:\n",
|
||||
" \"\"\"List favorite pets if any.\"\"\"\n",
|
||||
" return user_to_pets.get(user_id, [])\n",
|
||||
"@tool(parse_docstring=True)\n",
|
||||
"def delete_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:\n",
|
||||
" \"\"\"Delete the list of favorite pets.\n",
|
||||
"\n",
|
||||
" return [update_favorite_pets, delete_favorite_pets, list_favorite_pets]"
|
||||
" Args:\n",
|
||||
" user_id: User's ID.\n",
|
||||
" \"\"\"\n",
|
||||
" if user_id in user_to_pets:\n",
|
||||
" del user_to_pets[user_id]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool(parse_docstring=True)\n",
|
||||
"def list_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:\n",
|
||||
" \"\"\"List favorite pets if any.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" user_id: User's ID.\n",
|
||||
" \"\"\"\n",
|
||||
" return user_to_pets.get(user_id, [])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Verify that the tools work correctly"
|
||||
"If we look at the input schemas for these tools, we'll see that user_id is still listed:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_petsSchema',\n",
|
||||
" 'description': 'Add the list of favorite pets.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}},\n",
|
||||
" 'user_id': {'title': 'User Id',\n",
|
||||
" 'description': \"User's ID.\",\n",
|
||||
" 'type': 'string'}},\n",
|
||||
" 'required': ['pets', 'user_id']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"update_favorite_pets.get_input_schema().schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"But if we look at the tool call schema, which is what is passed to the model for tool-calling, user_id has been removed:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -152,46 +181,60 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'eugene': ['cat', 'dog']}\n",
|
||||
"['cat', 'dog']\n"
|
||||
]
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_pets',\n",
|
||||
" 'description': 'Add the list of favorite pets.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}}},\n",
|
||||
" 'required': ['pets']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"update_pets, delete_pets, list_pets = generate_tools_for_user(\"eugene\")\n",
|
||||
"update_pets.invoke({\"pets\": [\"cat\", \"dog\"]})\n",
|
||||
"print(user_to_pets)\n",
|
||||
"print(list_pets.invoke({}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def handle_run_time_request(user_id: str, query: str):\n",
|
||||
" \"\"\"Handle run time request.\"\"\"\n",
|
||||
" tools = generate_tools_for_user(user_id)\n",
|
||||
" llm_with_tools = llm.bind_tools(tools)\n",
|
||||
" prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"system\", \"You are a helpful assistant.\")],\n",
|
||||
" )\n",
|
||||
" chain = prompt | llm_with_tools\n",
|
||||
" return llm_with_tools.invoke(query)"
|
||||
"update_favorite_pets.tool_call_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This code will allow the LLM to invoke the tools, but the LLM is **unaware** of the fact that a **user ID** even exists!"
|
||||
"So when we invoke our tool, we need to pass in user_id:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'123': ['lizard', 'dog']}\n",
|
||||
"['lizard', 'dog']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"user_id = \"123\"\n",
|
||||
"update_favorite_pets.invoke({\"pets\": [\"lizard\", \"dog\"], \"user_id\": user_id})\n",
|
||||
"print(user_to_pets)\n",
|
||||
"print(list_favorite_pets.invoke({\"user_id\": user_id}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"But when the model calls the tool, no user_id argument will be generated:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -204,7 +247,8 @@
|
||||
"text/plain": [
|
||||
"[{'name': 'update_favorite_pets',\n",
|
||||
" 'args': {'pets': ['cats', 'parrots']},\n",
|
||||
" 'id': 'call_jJvjPXsNbFO5MMgW0q84iqCN'}]"
|
||||
" 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n",
|
||||
" 'type': 'tool_call'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
@@ -213,30 +257,349 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ai_message = handle_run_time_request(\n",
|
||||
" \"eugene\", \"my favorite animals are cats and parrots.\"\n",
|
||||
")\n",
|
||||
"ai_message.tool_calls"
|
||||
"tools = [\n",
|
||||
" update_favorite_pets,\n",
|
||||
" delete_favorite_pets,\n",
|
||||
" list_favorite_pets,\n",
|
||||
"]\n",
|
||||
"llm_with_tools = llm.bind_tools(tools)\n",
|
||||
"ai_msg = llm_with_tools.invoke(\"my favorite animals are cats and parrots\")\n",
|
||||
"ai_msg.tool_calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
":::{.callout-important}\n",
|
||||
"## Injecting arguments at runtime"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we want to actually execute our tools using the model-generated tool call, we'll need to inject the user_id ourselves:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'update_favorite_pets',\n",
|
||||
" 'args': {'pets': ['cats', 'parrots'], 'user_id': '123'},\n",
|
||||
" 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n",
|
||||
" 'type': 'tool_call'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from copy import deepcopy\n",
|
||||
"\n",
|
||||
"Chat models only output requests to invoke tools, they don't actually invoke the underlying tools.\n",
|
||||
"from langchain_core.runnables import chain\n",
|
||||
"\n",
|
||||
"To see how to invoke the tools, please refer to [how to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling).\n",
|
||||
":::"
|
||||
"\n",
|
||||
"@chain\n",
|
||||
"def inject_user_id(ai_msg):\n",
|
||||
" tool_calls = []\n",
|
||||
" for tool_call in ai_msg.tool_calls:\n",
|
||||
" tool_call_copy = deepcopy(tool_call)\n",
|
||||
" tool_call_copy[\"args\"][\"user_id\"] = user_id\n",
|
||||
" tool_calls.append(tool_call_copy)\n",
|
||||
" return tool_calls\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"inject_user_id.invoke(ai_msg)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And now we can chain together our model, injection code, and the actual tools to create a tool-executing chain:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[ToolMessage(content='null', name='update_favorite_pets', tool_call_id='call_HUyF6AihqANzEYxQnTUKxkXj')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tool_map = {tool.name: tool for tool in tools}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@chain\n",
|
||||
"def tool_router(tool_call):\n",
|
||||
" return tool_map[tool_call[\"name\"]]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chain = llm_with_tools | inject_user_id | tool_router.map()\n",
|
||||
"chain.invoke(\"my favorite animals are cats and parrots\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Looking at the user_to_pets dict, we can see that it's been updated to include cats and parrots:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'123': ['cats', 'parrots']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"user_to_pets"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Other ways of annotating args\n",
|
||||
"\n",
|
||||
"Here are a few other ways of annotating our tool args:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'UpdateFavoritePetsSchema',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}},\n",
|
||||
" 'user_id': {'title': 'User Id',\n",
|
||||
" 'description': \"User's ID.\",\n",
|
||||
" 'type': 'string'}},\n",
|
||||
" 'required': ['pets', 'user_id']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"from langchain_core.tools import BaseTool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class UpdateFavoritePetsSchema(BaseModel):\n",
|
||||
" \"\"\"Update list of favorite pets\"\"\"\n",
|
||||
"\n",
|
||||
" pets: List[str] = Field(..., description=\"List of favorite pets to set.\")\n",
|
||||
" user_id: Annotated[str, InjectedToolArg] = Field(..., description=\"User's ID.\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool(args_schema=UpdateFavoritePetsSchema)\n",
|
||||
"def update_favorite_pets(pets, user_id):\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"update_favorite_pets.get_input_schema().schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_pets',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}}},\n",
|
||||
" 'required': ['pets']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"update_favorite_pets.tool_call_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'UpdateFavoritePetsSchema',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}},\n",
|
||||
" 'user_id': {'title': 'User Id',\n",
|
||||
" 'description': \"User's ID.\",\n",
|
||||
" 'type': 'string'}},\n",
|
||||
" 'required': ['pets', 'user_id']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from typing import Optional, Type\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class UpdateFavoritePets(BaseTool):\n",
|
||||
" name: str = \"update_favorite_pets\"\n",
|
||||
" description: str = \"Update list of favorite pets\"\n",
|
||||
" args_schema: Optional[Type[BaseModel]] = UpdateFavoritePetsSchema\n",
|
||||
"\n",
|
||||
" def _run(self, pets, user_id):\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"UpdateFavoritePets().get_input_schema().schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_pets',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}}},\n",
|
||||
" 'required': ['pets']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"UpdateFavoritePets().tool_call_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_petsSchema',\n",
|
||||
" 'description': 'Use the tool.\\n\\nAdd run_manager: Optional[CallbackManagerForToolRun] = None\\nto child implementations to enable tracing.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}},\n",
|
||||
" 'user_id': {'title': 'User Id', 'type': 'string'}},\n",
|
||||
" 'required': ['pets', 'user_id']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"class UpdateFavoritePets2(BaseTool):\n",
|
||||
" name: str = \"update_favorite_pets\"\n",
|
||||
" description: str = \"Update list of favorite pets\"\n",
|
||||
"\n",
|
||||
" def _run(self, pets: List[str], user_id: Annotated[str, InjectedToolArg]) -> None:\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"UpdateFavoritePets2().get_input_schema().schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_pets',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}}},\n",
|
||||
" 'required': ['pets']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"UpdateFavoritePets2().tool_call_schema.schema()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -248,7 +611,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -4,25 +4,32 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to stream events from within a tool\n",
|
||||
"# How to stream events from a tool\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"- [LangChain Tools](/docs/concepts/#tools)\n",
|
||||
"- [Custom tools](/docs/how_to/custom_tools)\n",
|
||||
"- [Using stream events](/docs/how_to/streaming/#using-stream-events)\n",
|
||||
"- [Accessing RunnableConfig within a custom tool](/docs/how_to/tool_configure/)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"If you have tools that call LLMs, retrievers, or other runnables, you may want to access internal events from those runnables. This guide shows you a few ways you can do this using the `astream_events()` method.\n",
|
||||
"If you have tools that call chat models, retrievers, or other runnables, you may want to access internal events from those runnables or configure them with additional properties. This guide shows you how to manually pass parameters properly so that you can do this using the `astream_events()` method.\n",
|
||||
"\n",
|
||||
":::caution\n",
|
||||
"LangChain cannot automatically propagate callbacks to child runnables if you are running async code in python<=3.10.\n",
|
||||
" \n",
|
||||
"This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
|
||||
":::caution Compatibility\n",
|
||||
"\n",
|
||||
"LangChain cannot automatically propagate configuration, including callbacks necessary for `astream_events()`, to child runnables if you are running `async` code in `python<=3.10`. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
|
||||
"\n",
|
||||
"If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n",
|
||||
"\n",
|
||||
"If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in older Python versions.\n",
|
||||
"\n",
|
||||
"This guide also requires `langchain-core>=0.2.16`.\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"We'll define a custom tool below that calls a chain that summarizes its input in a special way by prompting an LLM to return only 10 words, then reversing the output:\n",
|
||||
"Say you have a custom tool that calls a chain that condenses its input by prompting a chat model to return only 10 words, then reversing the output. First, define it in a naive way:\n",
|
||||
"\n",
|
||||
"```{=mdx}\n",
|
||||
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
|
||||
@@ -40,7 +47,7 @@
|
||||
"# | output: false\n",
|
||||
"# | echo: false\n",
|
||||
"\n",
|
||||
"%pip install -qU langchain langchain_anthropic\n",
|
||||
"%pip install -qU langchain langchain_anthropic langchain_core\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from getpass import getpass\n",
|
||||
@@ -65,7 +72,7 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def special_summarization_tool(long_text: str) -> str:\n",
|
||||
"async def special_summarization_tool(long_text: str) -> str:\n",
|
||||
" \"\"\"A tool that summarizes input text using advanced techniques.\"\"\"\n",
|
||||
" prompt = ChatPromptTemplate.from_template(\n",
|
||||
" \"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n{long_text}\"\n",
|
||||
@@ -75,7 +82,7 @@
|
||||
" return x[::-1]\n",
|
||||
"\n",
|
||||
" chain = prompt | model | StrOutputParser() | reverse\n",
|
||||
" summary = chain.invoke({\"long_text\": long_text})\n",
|
||||
" summary = await chain.ainvoke({\"long_text\": long_text})\n",
|
||||
" return summary"
|
||||
]
|
||||
},
|
||||
@@ -83,7 +90,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you just invoke the tool directly, you can see that you only get the final response:"
|
||||
"Invoking the tool directly works just fine:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -116,31 +123,90 @@
|
||||
"Coming! Hang on a second.\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"special_summarization_tool.invoke({\"long_text\": LONG_TEXT})"
|
||||
"await special_summarization_tool.ainvoke({\"long_text\": LONG_TEXT})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you wanted to access the raw output from the chat model, you could use the [`astream_events()`](/docs/how_to/streaming/#using-stream-events) method and look for `on_chat_model_end` events:"
|
||||
"But if you wanted to access the raw output from the chat model rather than the full tool, you might try to use the [`astream_events()`](/docs/how_to/streaming/#using-stream-events) method and look for an `on_chat_model_end` event. Here's what happens:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"stream = special_summarization_tool.astream_events(\n",
|
||||
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"async for event in stream:\n",
|
||||
" if event[\"event\"] == \"on_chat_model_end\":\n",
|
||||
" # Never triggers in python<=3.10!\n",
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You'll notice (unless you're running through this guide in `python>=3.11`) that there are no chat model events emitted from the child run!\n",
|
||||
"\n",
|
||||
"This is because the example above does not pass the tool's config object into the internal chain. To fix this, redefine your tool to take a special parameter typed as `RunnableConfig` (see [this guide](/docs/how_to/tool_configure) for more details). You'll also need to pass that parameter through into the internal chain when executing it:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"async def special_summarization_tool_with_config(\n",
|
||||
" long_text: str, config: RunnableConfig\n",
|
||||
") -> str:\n",
|
||||
" \"\"\"A tool that summarizes input text using advanced techniques.\"\"\"\n",
|
||||
" prompt = ChatPromptTemplate.from_template(\n",
|
||||
" \"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n{long_text}\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" def reverse(x: str):\n",
|
||||
" return x[::-1]\n",
|
||||
"\n",
|
||||
" chain = prompt | model | StrOutputParser() | reverse\n",
|
||||
" # Pass the \"config\" object as an argument to any executed runnables\n",
|
||||
" summary = await chain.ainvoke({\"long_text\": long_text}, config=config)\n",
|
||||
" return summary"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And now try the same `astream_events()` call as before with your new tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chat_model_end', 'data': {'output': AIMessage(content='Bee defies physics; Barry chooses outfit for graduation day.', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-195c0986-2ffa-43a3-9366-f2f96c42fe57', usage_metadata={'input_tokens': 182, 'output_tokens': 16, 'total_tokens': 198}), 'input': {'messages': [[HumanMessage(content=\"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n\\nNARRATOR:\\n(Black screen with text; The sound of buzzing bees can be heard)\\nAccording to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\\nBARRY BENSON:\\n(Barry is picking out a shirt)\\nYellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\\nJANET BENSON:\\nBarry! Breakfast is ready!\\nBARRY:\\nComing! Hang on a second.\\n\")]]}}, 'run_id': '195c0986-2ffa-43a3-9366-f2f96c42fe57', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['370919df-1bc3-43ae-aab2-8e112a4ddf47', 'de535624-278b-4927-9393-6d0cac3248df']}\n"
|
||||
"{'event': 'on_chat_model_end', 'data': {'output': AIMessage(content='Bee defies physics; Barry chooses outfit for graduation day.', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-d23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', usage_metadata={'input_tokens': 182, 'output_tokens': 16, 'total_tokens': 198}), 'input': {'messages': [[HumanMessage(content=\"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n\\nNARRATOR:\\n(Black screen with text; The sound of buzzing bees can be heard)\\nAccording to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\\nBARRY BENSON:\\n(Barry is picking out a shirt)\\nYellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\\nJANET BENSON:\\nBarry! Breakfast is ready!\\nBARRY:\\nComing! Hang on a second.\\n\")]]}}, 'run_id': 'd23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['f25c41fe-8972-4893-bc40-cecf3922c1fa']}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"stream = special_summarization_tool.astream_events(\n",
|
||||
"stream = special_summarization_tool_with_config.astream_events(\n",
|
||||
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -153,38 +219,38 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And you can see that you get the raw response from the chat model.\n",
|
||||
"Awesome! This time there's an event emitted.\n",
|
||||
"\n",
|
||||
"`astream_events()` will automatically call internal runnables in a chain with streaming enabled if possible, so if you wanted to a stream of tokens as they are generated from the chat model, you could simply filter our calls to look for `on_chat_model_stream` events with no other changes:"
|
||||
"For streaming, `astream_events()` automatically calls internal runnables in a chain with streaming enabled if possible, so if you wanted to a stream of tokens as they are generated from the chat model, you could simply filter to look for `on_chat_model_stream` events with no other changes:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', usage_metadata={'input_tokens': 182, 'output_tokens': 0, 'total_tokens': 182})}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' def', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='ies physics', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=';', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' cho', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='oses outfit', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' for', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' day', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='.', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', usage_metadata={'input_tokens': 0, 'output_tokens': 16, 'total_tokens': 16})}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n"
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 182, 'output_tokens': 0, 'total_tokens': 182})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' def', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='ies physics', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=';', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' cho', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='oses outfit', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' for', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' day', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='.', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 0, 'output_tokens': 16, 'total_tokens': 16})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"stream = special_summarization_tool.astream_events(\n",
|
||||
"stream = special_summarization_tool_with_config.astream_events(\n",
|
||||
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -193,67 +259,17 @@
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note that you still have access to the final tool response as well. You can access it by looking for an `on_tool_end` event.\n",
|
||||
"\n",
|
||||
"To make events your tool emits easier to identify, you can also add identifiers to runnables using the `with_config()` method. `run_name` will apply to only to the runnable you attach it to, while `tags` will be inherited by runnables called within your initial runnable.\n",
|
||||
"\n",
|
||||
"Let's redeclare the tool with a tag, then run it with `astream_events()` with some filters. You should only see streamed events from the chat model and the final tool output:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630', usage_metadata={'input_tokens': 182, 'output_tokens': 0, 'total_tokens': 182})}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' def', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='ies physics', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=';', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' cho', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='oses outfit', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' for', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' day', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='.', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630', usage_metadata={'input_tokens': 0, 'output_tokens': 16, 'total_tokens': 16})}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
|
||||
"{'event': 'on_tool_end', 'data': {'output': '.yad noitaudarg rof tiftuo sesoohc yrraB ;scisyhp seifed eeB'}, 'run_id': '49d9d7d3-2b02-4964-a6c5-12f57a063146', 'name': 'special_summarization_tool', 'tags': ['bee_movie'], 'metadata': {}, 'parent_ids': []}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tagged_tool = special_summarization_tool.with_config({\"tags\": [\"bee_movie\"]})\n",
|
||||
"\n",
|
||||
"stream = tagged_tool.astream_events(\n",
|
||||
" {\"long_text\": LONG_TEXT}, version=\"v2\", include_tags=[\"bee_movie\"]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"async for event in stream:\n",
|
||||
" event_type = event[\"event\"]\n",
|
||||
" if event_type == \"on_chat_model_stream\" or event_type == \"on_tool_end\":\n",
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"Now you've learned how to stream events from within a tool. Next, you can learn more about how to use tools:\n",
|
||||
"You've now seen how to stream events from within a tool. Next, check out the following guides for more on using tools:\n",
|
||||
"\n",
|
||||
"- Bind [model-specific tools](/docs/how_to/tools_model_specific/)\n",
|
||||
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)\n",
|
||||
"- Pass [tool results back to a model](/docs/how_to/tool_results_pass_to_model)\n",
|
||||
"- [Dispatch custom callback events](/docs/how_to/callbacks_custom_events)\n",
|
||||
"\n",
|
||||
"You can also check out some more specific uses of tool calling:\n",
|
||||
"\n",
|
||||
@@ -264,7 +280,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -278,9 +294,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
||||
@@ -228,7 +228,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -419,13 +419,13 @@
|
||||
"Invoking: `exponentiate` with `{'base': 405, 'exponent': 2}`\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[0m\u001b[38;5;200m\u001b[1;3m164025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of taking 3 to the fifth power is 243. \n",
|
||||
"\u001b[0m\u001b[38;5;200m\u001b[1;3m13286025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of taking 3 to the fifth power is 243. \n",
|
||||
"\n",
|
||||
"The sum of twelve and three is 15. \n",
|
||||
"\n",
|
||||
"Multiplying 243 by 15 gives 3645. \n",
|
||||
"\n",
|
||||
"Finally, squaring 3645 gives 164025.\u001b[0m\n",
|
||||
"Finally, squaring 3645 gives 13286025.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
@@ -434,7 +434,7 @@
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input': 'Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result',\n",
|
||||
" 'output': 'The result of taking 3 to the fifth power is 243. \\n\\nThe sum of twelve and three is 15. \\n\\nMultiplying 243 by 15 gives 3645. \\n\\nFinally, squaring 3645 gives 164025.'}"
|
||||
" 'output': 'The result of taking 3 to the fifth power is 243. \\n\\nThe sum of twelve and three is 15. \\n\\nMultiplying 243 by 15 gives 3645. \\n\\nFinally, squaring 3645 gives 13286025.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
|
||||
@@ -540,7 +540,7 @@
|
||||
"id": "137662a6"
|
||||
},
|
||||
"source": [
|
||||
"## Example usage within a Conversation Chains"
|
||||
"## Example usage within RunnableWithMessageHistory "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -550,7 +550,7 @@
|
||||
"id": "79efa62d"
|
||||
},
|
||||
"source": [
|
||||
"Like any other integration, ChatNVIDIA is fine to support chat utilities like conversation buffers by default. Below, we show the [LangChain ConversationBufferMemory](https://python.langchain.com/docs/modules/memory/types/buffer) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model."
|
||||
"Like any other integration, ChatNVIDIA is fine to support chat utilities like RunnableWithMessageHistory which is analogous to using `ConversationChain`. Below, we show the [LangChain RunnableWithMessageHistory](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -572,8 +572,19 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import ConversationChain\n",
|
||||
"from langchain.memory import ConversationBufferMemory\n",
|
||||
"from langchain_core.chat_history import InMemoryChatMessageHistory\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"\n",
|
||||
"# store is a dictionary that maps session IDs to their corresponding chat histories.\n",
|
||||
"store = {} # memory is maintained outside the chain\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# A function that returns the chat history for a given session ID.\n",
|
||||
"def get_session_history(session_id: str) -> InMemoryChatMessageHistory:\n",
|
||||
" if session_id not in store:\n",
|
||||
" store[session_id] = InMemoryChatMessageHistory()\n",
|
||||
" return store[session_id]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chat = ChatNVIDIA(\n",
|
||||
" model=\"mistralai/mixtral-8x22b-instruct-v0.1\",\n",
|
||||
@@ -582,24 +593,18 @@
|
||||
" top_p=1.0,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"conversation = ConversationChain(llm=chat, memory=ConversationBufferMemory())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f644ff28",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 268
|
||||
},
|
||||
"id": "f644ff28",
|
||||
"outputId": "bae354cc-2118-4e01-ce20-a717ac94d27d"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conversation.invoke(\"Hi there!\")[\"response\"]"
|
||||
"# Define a RunnableConfig object, with a `configurable` key. session_id determines thread\n",
|
||||
"config = {\"configurable\": {\"session_id\": \"1\"}}\n",
|
||||
"\n",
|
||||
"conversation = RunnableWithMessageHistory(\n",
|
||||
" chat,\n",
|
||||
" get_session_history,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"conversation.invoke(\n",
|
||||
" \"Hi I'm Srijan Dubey.\", # input or query\n",
|
||||
" config=config,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -616,26 +621,30 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conversation.invoke(\"I'm doing well! Just having a conversation with an AI.\")[\n",
|
||||
" \"response\"\n",
|
||||
"]"
|
||||
"conversation.invoke(\n",
|
||||
" \"I'm doing well! Just having a conversation with an AI.\",\n",
|
||||
" config=config,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "LyD1xVKmVSs4",
|
||||
"id": "uHIMZxVSVNBC",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 350
|
||||
"height": 284
|
||||
},
|
||||
"id": "LyD1xVKmVSs4",
|
||||
"outputId": "a1714513-a8fd-4d14-f974-233e39d5c4f5"
|
||||
"id": "uHIMZxVSVNBC",
|
||||
"outputId": "79acc89d-a820-4f2c-bac2-afe99da95580"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conversation.invoke(\"Tell me about yourself.\")[\"response\"]"
|
||||
"conversation.invoke(\n",
|
||||
" \"Tell me about yourself.\",\n",
|
||||
" config=config,\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -37,7 +37,7 @@
|
||||
"scrapfly_loader = ScrapflyLoader(\n",
|
||||
" [\"https://web-scraping.dev/products\"],\n",
|
||||
" api_key=\"Your ScrapFly API key\", # Get your API key from https://www.scrapfly.io/\n",
|
||||
" ignore_scrape_failures=True, # Ignore unprocessable web pages and log their exceptions\n",
|
||||
" continue_on_failure=True, # Ignore unprocessable web pages and log their exceptions\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Load documents from URLs as markdown\n",
|
||||
@@ -72,7 +72,7 @@
|
||||
"scrapfly_loader = ScrapflyLoader(\n",
|
||||
" [\"https://web-scraping.dev/products\"],\n",
|
||||
" api_key=\"Your ScrapFly API key\", # Get your API key from https://www.scrapfly.io/\n",
|
||||
" ignore_scrape_failures=True, # Ignore unprocessable web pages and log their exceptions\n",
|
||||
" continue_on_failure=True, # Ignore unprocessable web pages and log their exceptions\n",
|
||||
" scrape_config=scrapfly_scrape_config, # Pass the scrape_config object\n",
|
||||
" scrape_format=\"markdown\", # The scrape result format, either `markdown`(default) or `text`\n",
|
||||
")\n",
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 1,
|
||||
"id": "10ad9224",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
@@ -1809,7 +1809,6 @@
|
||||
"cell_type": "markdown",
|
||||
"id": "0c69d84d",
|
||||
"metadata": {
|
||||
"jp-MarkdownHeadingCollapsed": true,
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
@@ -1891,7 +1890,6 @@
|
||||
"cell_type": "markdown",
|
||||
"id": "5da41b77",
|
||||
"metadata": {
|
||||
"jp-MarkdownHeadingCollapsed": true,
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
@@ -2149,6 +2147,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2ac1a8c7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## SingleStoreDB Semantic Cache\n",
|
||||
@@ -2173,6 +2172,353 @@
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7019c991-0101-4f9c-b212-5729a5471293",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Couchbase Caches\n",
|
||||
"\n",
|
||||
"Use [Couchbase](https://couchbase.com/) as a cache for prompts and responses."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d6aac680-ba32-4c19-8864-6471cf0e7d5a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Couchbase Cache\n",
|
||||
"\n",
|
||||
"The standard cache that looks for an exact match of the user prompt."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "9b4764e4-c75f-4185-b326-524287a826be",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create couchbase connection object\n",
|
||||
"from datetime import timedelta\n",
|
||||
"\n",
|
||||
"from couchbase.auth import PasswordAuthenticator\n",
|
||||
"from couchbase.cluster import Cluster\n",
|
||||
"from couchbase.options import ClusterOptions\n",
|
||||
"from langchain_couchbase.cache import CouchbaseCache\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"COUCHBASE_CONNECTION_STRING = (\n",
|
||||
" \"couchbase://localhost\" # or \"couchbases://localhost\" if using TLS\n",
|
||||
")\n",
|
||||
"DB_USERNAME = \"Administrator\"\n",
|
||||
"DB_PASSWORD = \"Password\"\n",
|
||||
"\n",
|
||||
"auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)\n",
|
||||
"options = ClusterOptions(auth)\n",
|
||||
"cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)\n",
|
||||
"\n",
|
||||
"# Wait until the cluster is ready for use.\n",
|
||||
"cluster.wait_until_ready(timedelta(seconds=5))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "4b5e73c5-92c1-4eab-84e2-77924ea9c123",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Specify the bucket, scope and collection to store the cached documents\n",
|
||||
"BUCKET_NAME = \"langchain-testing\"\n",
|
||||
"SCOPE_NAME = \"_default\"\n",
|
||||
"COLLECTION_NAME = \"_default\"\n",
|
||||
"\n",
|
||||
"set_llm_cache(\n",
|
||||
" CouchbaseCache(\n",
|
||||
" cluster=cluster,\n",
|
||||
" bucket_name=BUCKET_NAME,\n",
|
||||
" scope_name=SCOPE_NAME,\n",
|
||||
" collection_name=COLLECTION_NAME,\n",
|
||||
" )\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "db8d28cc-8d93-47b4-8326-57a29a06fb3c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 22.2 ms, sys: 14 ms, total: 36.2 ms\n",
|
||||
"Wall time: 938 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was two-tired!\""
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# The first time, it is not yet in the cache, so it should take longer\n",
|
||||
"llm.invoke(\"Tell me a joke\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "b470dc81-2e7f-4743-9435-ce9071394eea",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 53 ms, sys: 29 ms, total: 82 ms\n",
|
||||
"Wall time: 84.2 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was two-tired!\""
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# The second time, it is in the cache, so it should be much faster\n",
|
||||
"llm.invoke(\"Tell me a joke\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "43626f33-d184-4260-b641-c9341cef5842",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Couchbase Semantic Cache\n",
|
||||
"Semantic caching allows users to retrieve cached prompts based on semantic similarity between the user input and previously cached inputs. Under the hood it uses Couchbase as both a cache and a vectorstore. This needs an appropriate Vector Search Index defined to work. Please look at the usage example on how to set up the index."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "6b470c03-d7fe-4270-89e1-638251619a53",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create Couchbase connection object\n",
|
||||
"from datetime import timedelta\n",
|
||||
"\n",
|
||||
"from couchbase.auth import PasswordAuthenticator\n",
|
||||
"from couchbase.cluster import Cluster\n",
|
||||
"from couchbase.options import ClusterOptions\n",
|
||||
"from langchain_couchbase.cache import CouchbaseSemanticCache\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"COUCHBASE_CONNECTION_STRING = (\n",
|
||||
" \"couchbase://localhost\" # or \"couchbases://localhost\" if using TLS\n",
|
||||
")\n",
|
||||
"DB_USERNAME = \"Administrator\"\n",
|
||||
"DB_PASSWORD = \"Password\"\n",
|
||||
"\n",
|
||||
"auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)\n",
|
||||
"options = ClusterOptions(auth)\n",
|
||||
"cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)\n",
|
||||
"\n",
|
||||
"# Wait until the cluster is ready for use.\n",
|
||||
"cluster.wait_until_ready(timedelta(seconds=5))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f831bc4c-f330-4bd7-9b80-76771d91827e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Notes:\n",
|
||||
"- The search index for the semantic cache needs to be defined before using the semantic cache. \n",
|
||||
"- The optional parameter, `score_threshold` in the Semantic Cache that you can use to tune the results of the semantic search.\n",
|
||||
"\n",
|
||||
"### How to Import an Index to the Full Text Search service?\n",
|
||||
" - [Couchbase Server](https://docs.couchbase.com/server/current/search/import-search-index.html)\n",
|
||||
" - Click on Search -> Add Index -> Import\n",
|
||||
" - Copy the following Index definition in the Import screen\n",
|
||||
" - Click on Create Index to create the index.\n",
|
||||
" - [Couchbase Capella](https://docs.couchbase.com/cloud/search/import-search-index.html)\n",
|
||||
" - Copy the index definition to a new file `index.json`\n",
|
||||
" - Import the file in Capella using the instructions in the documentation.\n",
|
||||
" - Click on Create Index to create the index.\n",
|
||||
"\n",
|
||||
"#### Example index for the vector search. \n",
|
||||
" ```\n",
|
||||
" {\n",
|
||||
" \"type\": \"fulltext-index\",\n",
|
||||
" \"name\": \"langchain-testing._default.semantic-cache-index\",\n",
|
||||
" \"sourceType\": \"gocbcore\",\n",
|
||||
" \"sourceName\": \"langchain-testing\",\n",
|
||||
" \"planParams\": {\n",
|
||||
" \"maxPartitionsPerPIndex\": 1024,\n",
|
||||
" \"indexPartitions\": 16\n",
|
||||
" },\n",
|
||||
" \"params\": {\n",
|
||||
" \"doc_config\": {\n",
|
||||
" \"docid_prefix_delim\": \"\",\n",
|
||||
" \"docid_regexp\": \"\",\n",
|
||||
" \"mode\": \"scope.collection.type_field\",\n",
|
||||
" \"type_field\": \"type\"\n",
|
||||
" },\n",
|
||||
" \"mapping\": {\n",
|
||||
" \"analysis\": {},\n",
|
||||
" \"default_analyzer\": \"standard\",\n",
|
||||
" \"default_datetime_parser\": \"dateTimeOptional\",\n",
|
||||
" \"default_field\": \"_all\",\n",
|
||||
" \"default_mapping\": {\n",
|
||||
" \"dynamic\": true,\n",
|
||||
" \"enabled\": false\n",
|
||||
" },\n",
|
||||
" \"default_type\": \"_default\",\n",
|
||||
" \"docvalues_dynamic\": false,\n",
|
||||
" \"index_dynamic\": true,\n",
|
||||
" \"store_dynamic\": true,\n",
|
||||
" \"type_field\": \"_type\",\n",
|
||||
" \"types\": {\n",
|
||||
" \"_default.semantic-cache\": {\n",
|
||||
" \"dynamic\": false,\n",
|
||||
" \"enabled\": true,\n",
|
||||
" \"properties\": {\n",
|
||||
" \"embedding\": {\n",
|
||||
" \"dynamic\": false,\n",
|
||||
" \"enabled\": true,\n",
|
||||
" \"fields\": [\n",
|
||||
" {\n",
|
||||
" \"dims\": 1536,\n",
|
||||
" \"index\": true,\n",
|
||||
" \"name\": \"embedding\",\n",
|
||||
" \"similarity\": \"dot_product\",\n",
|
||||
" \"type\": \"vector\",\n",
|
||||
" \"vector_index_optimized_for\": \"recall\"\n",
|
||||
" }\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" \"metadata\": {\n",
|
||||
" \"dynamic\": true,\n",
|
||||
" \"enabled\": true\n",
|
||||
" },\n",
|
||||
" \"text\": {\n",
|
||||
" \"dynamic\": false,\n",
|
||||
" \"enabled\": true,\n",
|
||||
" \"fields\": [\n",
|
||||
" {\n",
|
||||
" \"index\": true,\n",
|
||||
" \"name\": \"text\",\n",
|
||||
" \"store\": true,\n",
|
||||
" \"type\": \"text\"\n",
|
||||
" }\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"store\": {\n",
|
||||
" \"indexType\": \"scorch\",\n",
|
||||
" \"segmentVersion\": 16\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"sourceParams\": {}\n",
|
||||
" }\n",
|
||||
" ```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "ae0766c8-ea34-4604-b0dc-cf2bbe8077f4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"BUCKET_NAME = \"langchain-testing\"\n",
|
||||
"SCOPE_NAME = \"_default\"\n",
|
||||
"COLLECTION_NAME = \"semantic-cache\"\n",
|
||||
"INDEX_NAME = \"semantic-cache-index\"\n",
|
||||
"embeddings = OpenAIEmbeddings()\n",
|
||||
"\n",
|
||||
"cache = CouchbaseSemanticCache(\n",
|
||||
" cluster=cluster,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" bucket_name=BUCKET_NAME,\n",
|
||||
" scope_name=SCOPE_NAME,\n",
|
||||
" collection_name=COLLECTION_NAME,\n",
|
||||
" index_name=INDEX_NAME,\n",
|
||||
" score_threshold=0.8,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"set_llm_cache(cache)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "a2e82743-10ea-4319-b43e-193475ae5449",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"The average lifespan of a dog is around 12 years, but this can vary depending on the breed, size, and overall health of the individual dog. Some smaller breeds may live longer, while larger breeds may have shorter lifespans. Proper care, diet, and exercise can also play a role in extending a dog's lifespan.\n",
|
||||
"CPU times: user 826 ms, sys: 2.46 s, total: 3.28 s\n",
|
||||
"Wall time: 2.87 s\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# The first time, it is not yet in the cache, so it should take longer\n",
|
||||
"print(llm.invoke(\"How long do dogs live?\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "c36f4e29-d872-4334-a1f1-0e6d10c5d9f2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"The average lifespan of a dog is around 12 years, but this can vary depending on the breed, size, and overall health of the individual dog. Some smaller breeds may live longer, while larger breeds may have shorter lifespans. Proper care, diet, and exercise can also play a role in extending a dog's lifespan.\n",
|
||||
"CPU times: user 9.82 ms, sys: 2.61 ms, total: 12.4 ms\n",
|
||||
"Wall time: 311 ms\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# The second time, it is in the cache, so it should be much faster\n",
|
||||
"print(llm.invoke(\"What is the expected lifespan of a dog?\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ae1f5e1c-085e-4998-9f2d-b5867d2c3d5b",
|
||||
@@ -2228,7 +2574,9 @@
|
||||
"| langchain_core.caches | [InMemoryCache](https://api.python.langchain.com/en/latest/caches/langchain_core.caches.InMemoryCache.html) |\n",
|
||||
"| langchain_elasticsearch.cache | [ElasticsearchCache](https://api.python.langchain.com/en/latest/cache/langchain_elasticsearch.cache.ElasticsearchCache.html) |\n",
|
||||
"| langchain_mongodb.cache | [MongoDBAtlasSemanticCache](https://api.python.langchain.com/en/latest/cache/langchain_mongodb.cache.MongoDBAtlasSemanticCache.html) |\n",
|
||||
"| langchain_mongodb.cache | [MongoDBCache](https://api.python.langchain.com/en/latest/cache/langchain_mongodb.cache.MongoDBCache.html) |\n"
|
||||
"| langchain_mongodb.cache | [MongoDBCache](https://api.python.langchain.com/en/latest/cache/langchain_mongodb.cache.MongoDBCache.html) |\n",
|
||||
"| langchain_couchbase.cache | [CouchbaseCache](https://api.python.langchain.com/en/latest/cache/langchain_couchbase.cache.CouchbaseCache.html) |\n",
|
||||
"| langchain_couchbase.cache | [CouchbaseSemanticCache](https://api.python.langchain.com/en/latest/cache/langchain_couchbase.cache.CouchbaseSemanticCache.html) |\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -2256,7 +2604,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -33,7 +33,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet transformers --quiet"
|
||||
"%pip install --upgrade --quiet transformers"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -50,8 +50,8 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain_community.llms import PipelineAI\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import PromptTemplate"
|
||||
]
|
||||
},
|
||||
@@ -123,7 +123,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
||||
"llm_chain = prompt | llm | StrOutputParser()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -142,7 +142,7 @@
|
||||
"source": [
|
||||
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
||||
"\n",
|
||||
"llm_chain.run(question)"
|
||||
"llm_chain.invoke(question)"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -27,7 +27,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Install the package\n",
|
||||
"%pip install --upgrade --quiet dashscope"
|
||||
"%pip install --upgrade --quiet langchain-community dashscope"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -0,0 +1,325 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a283d2fd-e26e-4811-a486-d3cf0ecf6749",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Couchbase\n",
|
||||
"> Couchbase is an award-winning distributed NoSQL cloud database that delivers unmatched versatility, performance, scalability, and financial value for all of your cloud, mobile, AI, and edge computing applications. Couchbase embraces AI with coding assistance for developers and vector search for their applications.\n",
|
||||
"\n",
|
||||
"This notebook goes over how to use the `CouchbaseChatMessageHistory` class to store the chat message history in a Couchbase cluster\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ff868a6c-3e17-4c3d-8d32-67b01f4d7bcc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set Up Couchbase Cluster\n",
|
||||
"To run this demo, you need a Couchbase Cluster. \n",
|
||||
"\n",
|
||||
"You can work with both [Couchbase Capella](https://www.couchbase.com/products/capella/) and your self-managed Couchbase Server."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "41fa85e7-6968-45e4-a445-de305d80f332",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Install Dependencies\n",
|
||||
"`CouchbaseChatMessageHistory` lives inside the `langchain-couchbase` package. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "b744ca05-b8c6-458c-91df-f50ca2c20b3c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-couchbase"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "41f29205-6452-493b-ba18-8a3b006bcca4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Couchbase Connection Object\n",
|
||||
"We create a connection to the Couchbase cluster initially and then pass the cluster object to the Vector Store. \n",
|
||||
"\n",
|
||||
"Here, we are connecting using the username and password. You can also connect using any other supported way to your cluster. \n",
|
||||
"\n",
|
||||
"For more information on connecting to the Couchbase cluster, please check the [Python SDK documentation](https://docs.couchbase.com/python-sdk/current/hello-world/start-using-sdk.html#connect)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "f394908e-f5fe-408a-84d7-b97fdebcfa26",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"COUCHBASE_CONNECTION_STRING = (\n",
|
||||
" \"couchbase://localhost\" # or \"couchbases://localhost\" if using TLS\n",
|
||||
")\n",
|
||||
"DB_USERNAME = \"Administrator\"\n",
|
||||
"DB_PASSWORD = \"Password\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "ad4dce21-d80c-465a-b709-fd366ba5ce35",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from datetime import timedelta\n",
|
||||
"\n",
|
||||
"from couchbase.auth import PasswordAuthenticator\n",
|
||||
"from couchbase.cluster import Cluster\n",
|
||||
"from couchbase.options import ClusterOptions\n",
|
||||
"\n",
|
||||
"auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)\n",
|
||||
"options = ClusterOptions(auth)\n",
|
||||
"cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)\n",
|
||||
"\n",
|
||||
"# Wait until the cluster is ready for use.\n",
|
||||
"cluster.wait_until_ready(timedelta(seconds=5))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e3d0210c-e2e6-437a-86f3-7397a1899fef",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We will now set the bucket, scope, and collection names in the Couchbase cluster that we want to use for storing the message history.\n",
|
||||
"\n",
|
||||
"Note that the bucket, scope, and collection need to exist before using them to store the message history."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "e8c7f846-a5c4-4465-a40e-4a9a23ac71bd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"BUCKET_NAME = \"langchain-testing\"\n",
|
||||
"SCOPE_NAME = \"_default\"\n",
|
||||
"COLLECTION_NAME = \"conversational_cache\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "283959e1-6af7-4768-9211-5b0facc6ef65",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage\n",
|
||||
"In order to store the messages, you need the following:\n",
|
||||
"- Couchbase Cluster object: Valid connection to the Couchbase cluster\n",
|
||||
"- bucket_name: Bucket in cluster to store the chat message history\n",
|
||||
"- scope_name: Scope in bucket to store the message history\n",
|
||||
"- collection_name: Collection in scope to store the message history\n",
|
||||
"- session_id: Unique identifier for the session\n",
|
||||
"\n",
|
||||
"Optionally you can configure the following:\n",
|
||||
"- session_id_key: Field in the chat message documents to store the `session_id`\n",
|
||||
"- message_key: Field in the chat message documents to store the message content\n",
|
||||
"- create_index: Used to specify if the index needs to be created on the collection. By default, an index is created on the `message_key` and the `session_id_key` of the documents"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "43c3b2d5-aae2-44a9-9e9f-f10adf054cfa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory\n",
|
||||
"\n",
|
||||
"message_history = CouchbaseChatMessageHistory(\n",
|
||||
" cluster=cluster,\n",
|
||||
" bucket_name=BUCKET_NAME,\n",
|
||||
" scope_name=SCOPE_NAME,\n",
|
||||
" collection_name=COLLECTION_NAME,\n",
|
||||
" session_id=\"test-session\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"message_history.add_user_message(\"hi!\")\n",
|
||||
"\n",
|
||||
"message_history.add_ai_message(\"how are you doing?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "e7e348ef-79e9-481c-aeef-969ae03dea6a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[HumanMessage(content='hi!'), AIMessage(content='how are you doing?')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message_history.messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c8b942a7-93fa-4cd9-8414-d047135c2733",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"The chat message history class can be used with [LCEL Runnables](https://python.langchain.com/v0.2/docs/how_to/message_history/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8a9f0d91-d1d6-481d-8137-ea11229f485a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "946d45aa-5a61-49ae-816b-1c3949c56d9a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", \"You are a helpful assistant.\"),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{question}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Create the LCEL runnable\n",
|
||||
"chain = prompt | ChatOpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "20dfd838-b549-42ed-b3ba-ac005f7e024c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain_with_history = RunnableWithMessageHistory(\n",
|
||||
" chain,\n",
|
||||
" lambda session_id: CouchbaseChatMessageHistory(\n",
|
||||
" cluster=cluster,\n",
|
||||
" bucket_name=BUCKET_NAME,\n",
|
||||
" scope_name=SCOPE_NAME,\n",
|
||||
" collection_name=COLLECTION_NAME,\n",
|
||||
" session_id=session_id,\n",
|
||||
" ),\n",
|
||||
" input_messages_key=\"question\",\n",
|
||||
" history_messages_key=\"history\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "17bd09f4-896d-433d-bb9a-369a06e7aa8a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This is where we configure the session id\n",
|
||||
"config = {\"configurable\": {\"session_id\": \"testing\"}}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "4bda1096-2fc2-40d7-a046-0d5d8e3a8f75",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Hello Bob! How can I assist you today?', response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 22, 'total_tokens': 32}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-a0f8a29e-ddf4-4e06-a1fe-cf8c325a2b72-0', usage_metadata={'input_tokens': 22, 'output_tokens': 10, 'total_tokens': 32})"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "1cfb31da-51bb-4c5f-909a-b7118b0ae08d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Your name is Bob.', response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 43, 'total_tokens': 48}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f764a9eb-999e-4042-96b6-fe47b7ae4779-0', usage_metadata={'input_tokens': 43, 'output_tokens': 5, 'total_tokens': 48})"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -27,3 +27,85 @@ See a [usage example](/docs/integrations/document_loaders/couchbase).
|
||||
```python
|
||||
from langchain_community.document_loaders.couchbase import CouchbaseLoader
|
||||
```
|
||||
|
||||
## LLM Caches
|
||||
|
||||
### CouchbaseCache
|
||||
Use Couchbase as a cache for prompts and responses.
|
||||
|
||||
See a [usage example](/docs/integrations/llm_caching/#couchbase-cache).
|
||||
|
||||
To import this cache:
|
||||
```python
|
||||
from langchain_couchbase.cache import CouchbaseCache
|
||||
```
|
||||
|
||||
To use this cache with your LLMs:
|
||||
```python
|
||||
from langchain_core.globals import set_llm_cache
|
||||
|
||||
cluster = couchbase_cluster_connection_object
|
||||
|
||||
set_llm_cache(
|
||||
CouchbaseCache(
|
||||
cluster=cluster,
|
||||
bucket_name=BUCKET_NAME,
|
||||
scope_name=SCOPE_NAME,
|
||||
collection_name=COLLECTION_NAME,
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
### CouchbaseSemanticCache
|
||||
Semantic caching allows users to retrieve cached prompts based on the semantic similarity between the user input and previously cached inputs. Under the hood it uses Couchbase as both a cache and a vectorstore.
|
||||
The CouchbaseSemanticCache needs a Search Index defined to work. Please look at the [usage example](/docs/integrations/vectorstores/couchbase) on how to set up the index.
|
||||
|
||||
See a [usage example](/docs/integrations/llm_caching/#couchbase-semantic-cache).
|
||||
|
||||
To import this cache:
|
||||
```python
|
||||
from langchain_couchbase.cache import CouchbaseSemanticCache
|
||||
```
|
||||
|
||||
To use this cache with your LLMs:
|
||||
```python
|
||||
from langchain_core.globals import set_llm_cache
|
||||
|
||||
# use any embedding provider...
|
||||
from langchain_openai.Embeddings import OpenAIEmbeddings
|
||||
|
||||
embeddings = OpenAIEmbeddings()
|
||||
cluster = couchbase_cluster_connection_object
|
||||
|
||||
set_llm_cache(
|
||||
CouchbaseSemanticCache(
|
||||
cluster=cluster,
|
||||
embedding = embeddings,
|
||||
bucket_name=BUCKET_NAME,
|
||||
scope_name=SCOPE_NAME,
|
||||
collection_name=COLLECTION_NAME,
|
||||
index_name=INDEX_NAME,
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
## Chat Message History
|
||||
Use Couchbase as the storage for your chat messages.
|
||||
|
||||
See a [usage example](/docs/integrations/memory/couchbase_chat_message_history).
|
||||
|
||||
To use the chat message history in your applications:
|
||||
```python
|
||||
from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory
|
||||
|
||||
message_history = CouchbaseChatMessageHistory(
|
||||
cluster=cluster,
|
||||
bucket_name=BUCKET_NAME,
|
||||
scope_name=SCOPE_NAME,
|
||||
collection_name=COLLECTION_NAME,
|
||||
session_id="test-session",
|
||||
)
|
||||
|
||||
message_history.add_user_message("hi!")
|
||||
```
|
||||
@@ -61,7 +61,7 @@ When ready to deploy, you can self-host models with NVIDIA NIM—which is includ
|
||||
```python
|
||||
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings, NVIDIARerank
|
||||
|
||||
# connect to an chat NIM running at localhost:8000, specifyig a specific model
|
||||
# connect to a chat NIM running at localhost:8000, specifying a model
|
||||
llm = ChatNVIDIA(base_url="http://localhost:8000/v1", model="meta/llama3-8b-instruct")
|
||||
|
||||
# connect to an embedding NIM running at localhost:8080
|
||||
|
||||
@@ -202,7 +202,7 @@ Prem Templates are also available for Streaming too.
|
||||
|
||||
## Prem Embeddings
|
||||
|
||||
In this section we are going to dicuss how we can get access to different embedding model using `PremEmbeddings` with LangChain. Lets start by importing our modules and setting our API Key.
|
||||
In this section we cover how we can get access to different embedding models using `PremEmbeddings` with LangChain. Let's start by importing our modules and setting our API Key.
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
@@ -21,7 +21,7 @@ whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain_qdrant import Qdrant
|
||||
from langchain_qdrant import QdrantVectorStore
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the Qdrant wrapper, see [this notebook](/docs/integrations/vectorstores/qdrant)
|
||||
|
||||
@@ -21,7 +21,7 @@ For example
|
||||
```python
|
||||
from langchain_openai import OpenAI
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
from langchain.chains import LLMChain
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
|
||||
import os
|
||||
os.environ['OPENAI_API_BASE'] = "https://shale.live/v1"
|
||||
@@ -35,10 +35,11 @@ template = """Question: {question}
|
||||
|
||||
prompt = PromptTemplate.from_template(template)
|
||||
|
||||
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
||||
|
||||
llm_chain = prompt | llm | StrOutputParser()
|
||||
|
||||
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
|
||||
|
||||
llm_chain.run(question)
|
||||
llm_chain.invoke(question)
|
||||
|
||||
```
|
||||
|
||||
@@ -309,9 +309,9 @@
|
||||
"documents = TextLoader(\"../../how_to/state_of_the_union.txt\").load()\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)\n",
|
||||
"texts = text_splitter.split_documents(documents)\n",
|
||||
"retriever = FAISS.from_documents(texts, CohereEmbeddings()).as_retriever(\n",
|
||||
" search_kwargs={\"k\": 20}\n",
|
||||
")\n",
|
||||
"retriever = FAISS.from_documents(\n",
|
||||
" texts, CohereEmbeddings(model=\"embed-english-v3.0\")\n",
|
||||
").as_retriever(search_kwargs={\"k\": 20})\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs = retriever.invoke(query)\n",
|
||||
@@ -324,7 +324,8 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Doing reranking with CohereRerank\n",
|
||||
"Now let's wrap our base retriever with a `ContextualCompressionRetriever`. We'll add an `CohereRerank`, uses the Cohere rerank endpoint to rerank the returned results."
|
||||
"Now let's wrap our base retriever with a `ContextualCompressionRetriever`. We'll add an `CohereRerank`, uses the Cohere rerank endpoint to rerank the returned results.\n",
|
||||
"Do note that it is mandatory to specify the model name in CohereRerank!"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -339,7 +340,7 @@
|
||||
"from langchain_community.llms import Cohere\n",
|
||||
"\n",
|
||||
"llm = Cohere(temperature=0)\n",
|
||||
"compressor = CohereRerank()\n",
|
||||
"compressor = CohereRerank(model=\"rerank-english-v3.0\")\n",
|
||||
"compression_retriever = ContextualCompressionRetriever(\n",
|
||||
" base_compressor=compressor, base_retriever=retriever\n",
|
||||
")\n",
|
||||
|
||||
@@ -40,7 +40,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = CohereEmbeddings(model=\"embed-english-light-v3.0\")"
|
||||
"embeddings = CohereEmbeddings(\n",
|
||||
" model=\"embed-english-light-v3.0\"\n",
|
||||
") # It is mandatory to pass a model parameter to initialize the CohereEmbeddings object"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
174
docs/docs/integrations/text_embedding/textembed.ipynb
Normal file
174
docs/docs/integrations/text_embedding/textembed.ipynb
Normal file
@@ -0,0 +1,174 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# TextEmbed - Embedding Inference Server\n",
|
||||
"\n",
|
||||
"TextEmbed is a high-throughput, low-latency REST API designed for serving vector embeddings. It supports a wide range of sentence-transformer models and frameworks, making it suitable for various applications in natural language processing.\n",
|
||||
"\n",
|
||||
"## Features\n",
|
||||
"\n",
|
||||
"- **High Throughput & Low Latency:** Designed to handle a large number of requests efficiently.\n",
|
||||
"- **Flexible Model Support:** Works with various sentence-transformer models.\n",
|
||||
"- **Scalable:** Easily integrates into larger systems and scales with demand.\n",
|
||||
"- **Batch Processing:** Supports batch processing for better and faster inference.\n",
|
||||
"- **OpenAI Compatible REST API Endpoint:** Provides an OpenAI compatible REST API endpoint.\n",
|
||||
"- **Single Line Command Deployment:** Deploy multiple models via a single command for efficient deployment.\n",
|
||||
"- **Support for Embedding Formats:** Supports binary, float16, and float32 embeddings formats for faster retrieval.\n",
|
||||
"\n",
|
||||
"## Getting Started\n",
|
||||
"\n",
|
||||
"### Prerequisites\n",
|
||||
"\n",
|
||||
"Ensure you have Python 3.10 or higher installed. You will also need to install the required dependencies."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Installation via PyPI\n",
|
||||
"\n",
|
||||
"1. **Install the required dependencies:**\n",
|
||||
"\n",
|
||||
" ```bash\n",
|
||||
" pip install -U textembed\n",
|
||||
" ```\n",
|
||||
"\n",
|
||||
"2. **Start the TextEmbed server with your desired models:**\n",
|
||||
"\n",
|
||||
" ```bash\n",
|
||||
" python -m textembed.server --models sentence-transformers/all-MiniLM-L12-v2 --workers 4 --api-key TextEmbed \n",
|
||||
" ```\n",
|
||||
"\n",
|
||||
"For more information, please read the [documentation](https://github.com/kevaldekivadiya2415/textembed/blob/main/docs/setup.md)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Import"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings import TextEmbedEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = TextEmbedEmbeddings(\n",
|
||||
" model=\"sentence-transformers/all-MiniLM-L12-v2\",\n",
|
||||
" api_url=\"http://0.0.0.0:8000/v1\",\n",
|
||||
" api_key=\"TextEmbed\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Embed your documents"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define a list of documents\n",
|
||||
"documents = [\n",
|
||||
" \"Data science involves extracting insights from data.\",\n",
|
||||
" \"Artificial intelligence is transforming various industries.\",\n",
|
||||
" \"Cloud computing provides scalable computing resources over the internet.\",\n",
|
||||
" \"Big data analytics helps in understanding large datasets.\",\n",
|
||||
" \"India has a diverse cultural heritage.\",\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"# Define a query\n",
|
||||
"query = \"What is the cultural heritage of India?\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Embed all documents\n",
|
||||
"document_embeddings = embeddings.embed_documents(documents)\n",
|
||||
"\n",
|
||||
"# Embed the query\n",
|
||||
"query_embedding = embeddings.embed_query(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'Data science involves extracting insights from data.': 0.05121298956322118,\n",
|
||||
" 'Artificial intelligence is transforming various industries.': -0.0060612142358469345,\n",
|
||||
" 'Cloud computing provides scalable computing resources over the internet.': -0.04877402795301714,\n",
|
||||
" 'Big data analytics helps in understanding large datasets.': 0.016582168576929422,\n",
|
||||
" 'India has a diverse cultural heritage.': 0.7408992963028144}"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Compute Similarity\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"scores = np.array(document_embeddings) @ np.array(query_embedding).T\n",
|
||||
"dict(zip(documents, scores))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "check10",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.14"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -22,7 +22,7 @@
|
||||
"`InfobipAPIWrapper` uses name parameters where you can provide credentials:\n",
|
||||
"\n",
|
||||
"- `infobip_api_key` - [API Key](https://www.infobip.com/docs/essentials/api-authentication#api-key-header) that you can find in your [developer tools](https://portal.infobip.com/dev/api-keys)\n",
|
||||
"- `infobip_base_url` - [Base url](https://www.infobip.com/docs/essentials/base-url) for Infobip API. You can use default value `https://api.infobip.com/`.\n",
|
||||
"- `infobip_base_url` - [Base url](https://www.infobip.com/docs/essentials/base-url) for Infobip API. You can use the default value `https://api.infobip.com/`.\n",
|
||||
"\n",
|
||||
"You can also provide `infobip_api_key` and `infobip_base_url` as environment variables `INFOBIP_API_KEY` and `INFOBIP_BASE_URL`."
|
||||
]
|
||||
@@ -60,7 +60,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Sending a Email"
|
||||
"## Sending an Email"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
183
docs/docs/integrations/tools/riza.ipynb
Normal file
183
docs/docs/integrations/tools/riza.ipynb
Normal file
@@ -0,0 +1,183 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7d143c73",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Riza Code Interpreter\n",
|
||||
"\n",
|
||||
"> The Riza Code Interpreter is a WASM-based isolated environment for running Python or JavaScript generated by AI agents.\n",
|
||||
"\n",
|
||||
"In this notebook we'll create an example of an agent that uses Python to solve a problem that an LLM can't solve on its own:\n",
|
||||
"counting the number of 'r's in the word \"strawberry.\"\n",
|
||||
"\n",
|
||||
"Before you get started grab an API key from the [Riza dashboard](https://dashboard.riza.io). For more guides and a full API reference\n",
|
||||
"head over to the [Riza Code Interpreter API documentation](https://docs.riza.io)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "894aa87a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Make sure you have the necessary dependencies installed."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8265cf7f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-community rizaio"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e085eb51",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Set up your API keys as an environment variable."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "45ba8936",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%env ANTHROPIC_API_KEY=<your_anthropic_api_key_here>\n",
|
||||
"%env RIZA_API_KEY=<your_riza_api_key_here>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "efe26fd9-6e33-4f5f-b49b-ea74fa6c4915",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.tools.riza.command import ExecPython"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "cd5b952e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentExecutor, create_tool_calling_agent\n",
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7bd0b610",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Initialize the `ExecPython` tool."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "32f1543f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tools = [ExecPython()]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "24f952d5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Initialize an agent using Anthropic's Claude Haiku model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "71831ea8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = ChatAnthropic(model=\"claude-3-haiku-20240307\", temperature=0)\n",
|
||||
"\n",
|
||||
"prompt_template = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant. Make sure to use a tool if you need to solve a problem.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" (\"placeholder\", \"{agent_scratchpad}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"agent = create_tool_calling_agent(llm, tools, prompt_template)\n",
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"id": "36b24036",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3m\n",
|
||||
"Invoking: `riza_exec_python` with `{'code': 'word = \"strawberry\"\\nprint(word.count(\"r\"))'}`\n",
|
||||
"responded: [{'id': 'toolu_01JwPLAAqqCNCjVuEnK8Fgut', 'input': {}, 'name': 'riza_exec_python', 'type': 'tool_use', 'index': 0, 'partial_json': '{\"code\": \"word = \\\\\"strawberry\\\\\"\\\\nprint(word.count(\\\\\"r\\\\\"))\"}'}]\n",
|
||||
"\n",
|
||||
"\u001b[0m\u001b[36;1m\u001b[1;3m3\n",
|
||||
"\u001b[0m\u001b[32;1m\u001b[1;3m[{'text': '\\n\\nThe word \"strawberry\" contains 3 \"r\" characters.', 'type': 'text', 'index': 0}]\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"The word \"strawberry\" contains 3 \"r\" characters.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Ask a tough question\n",
|
||||
"result = agent_executor.invoke({\"input\": \"how many rs are in strawberry?\"})\n",
|
||||
"print(result[\"output\"][0][\"text\"])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
310
docs/docs/integrations/vectorstores/aperturedb.ipynb
Normal file
310
docs/docs/integrations/vectorstores/aperturedb.ipynb
Normal file
@@ -0,0 +1,310 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "683953b3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ApertureDB\n",
|
||||
"\n",
|
||||
"[ApertureDB](https://docs.aperturedata.io) is a database that stores, indexes, and manages multi-modal data like text, images, videos, bounding boxes, and embeddings, together with their associated metadata.\n",
|
||||
"\n",
|
||||
"This notebook explains how to use the embeddings functionality of ApertureDB."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e7393beb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Install ApertureDB Python SDK\n",
|
||||
"\n",
|
||||
"This installs the [Python SDK](https://docs.aperturedata.io/category/aperturedb-python-sdk) used to write client code for ApertureDB."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "a62cff8a-bcf7-4e33-bbbc-76999c2e3e20",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet aperturedb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4fe12f77",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Run an ApertureDB instance\n",
|
||||
"\n",
|
||||
"To continue, you should have an [ApertureDB instance up and running](https://docs.aperturedata.io/HowToGuides/start/Setup) and configure your environment to use it. \n",
|
||||
"There are various ways to do that, for example:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"docker run --publish 55555:55555 aperturedata/aperturedb-standalone\n",
|
||||
"adb config create local --active --no-interactive\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "667eabca",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Download some web documents\n",
|
||||
"We're going to do a mini-crawl here of one web page."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "0798dfdb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"USER_AGENT environment variable not set, consider setting it to identify your requests.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# For loading documents from web\n",
|
||||
"from langchain_community.document_loaders import WebBaseLoader\n",
|
||||
"\n",
|
||||
"loader = WebBaseLoader(\"https://docs.aperturedata.io\")\n",
|
||||
"docs = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5f077d11",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Select embeddings model\n",
|
||||
"\n",
|
||||
"We want to use OllamaEmbeddings so we have to import the necessary modules.\n",
|
||||
"\n",
|
||||
"Ollama can be set up as a docker container as described in the [documentation](https://hub.docker.com/r/ollama/ollama), for example:\n",
|
||||
"```bash\n",
|
||||
"# Run server\n",
|
||||
"docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama\n",
|
||||
"# Tell server to load a specific model\n",
|
||||
"docker exec ollama ollama run llama2\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "8b6ed9cd-81b9-46e5-9c20-5aafca2844d0",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings import OllamaEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = OllamaEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b7b313e6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Split documents into segments\n",
|
||||
"\n",
|
||||
"We want to turn our single document into multiple segments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "3c4b7b31",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter()\n",
|
||||
"documents = text_splitter.split_documents(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "46339d32",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create vectorstore from documents and embeddings\n",
|
||||
"\n",
|
||||
"This code creates a vectorstore in the ApertureDB instance.\n",
|
||||
"Within the instance, this vectorstore is represented as a \"[descriptor set](https://docs.aperturedata.io/category/descriptorset-commands)\".\n",
|
||||
"By default, the descriptor set is named `langchain`. The following code will generate embeddings for each document and store them in ApertureDB as descriptors. This will take a few seconds as the embeddings are bring generated."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "dcf88bdf",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import ApertureDB\n",
|
||||
"\n",
|
||||
"vector_db = ApertureDB.from_documents(documents, embeddings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7672877b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Select a large language model\n",
|
||||
"\n",
|
||||
"Again, we use the Ollama server we set up for local processing."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "9a005e4b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.llms import Ollama\n",
|
||||
"\n",
|
||||
"llm = Ollama(model=\"llama2\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cd54f2ad",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Build a RAG chain\n",
|
||||
"\n",
|
||||
"Now we have all the components we need to create a RAG (Retrieval-Augmented Generation) chain. This chain does the following:\n",
|
||||
"1. Generate embedding descriptor for user query\n",
|
||||
"2. Find text segments that are similar to the user query using the vector store\n",
|
||||
"3. Pass user query and context documents to the LLM using a prompt template\n",
|
||||
"4. Return the LLM's answer"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "a8c513ab",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Based on the provided context, ApertureDB can store images. In fact, it is specifically designed to manage multimodal data such as images, videos, documents, embeddings, and associated metadata including annotations. So, ApertureDB has the capability to store and manage images.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Create prompt\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(\"\"\"Answer the following question based only on the provided context:\n",
|
||||
"\n",
|
||||
"<context>\n",
|
||||
"{context}\n",
|
||||
"</context>\n",
|
||||
"\n",
|
||||
"Question: {input}\"\"\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Create a chain that passes documents to an LLM\n",
|
||||
"from langchain.chains.combine_documents import create_stuff_documents_chain\n",
|
||||
"\n",
|
||||
"document_chain = create_stuff_documents_chain(llm, prompt)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Treat the vectorstore as a document retriever\n",
|
||||
"retriever = vector_db.as_retriever()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Create a RAG chain that connects the retriever to the LLM\n",
|
||||
"from langchain.chains import create_retrieval_chain\n",
|
||||
"\n",
|
||||
"retrieval_chain = create_retrieval_chain(retriever, document_chain)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3bc6a882",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Run the RAG chain\n",
|
||||
"\n",
|
||||
"Finally we pass a question to the chain and get our answer. This will take a few seconds to run as the LLM generates an answer from the query and context documents."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "020f29f1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Based on the provided context, ApertureDB can store images in several ways:\n",
|
||||
"\n",
|
||||
"1. Multimodal data management: ApertureDB offers a unified interface to manage multimodal data such as images, videos, documents, embeddings, and associated metadata including annotations. This means that images can be stored along with other types of data in a single database instance.\n",
|
||||
"2. Image storage: ApertureDB provides image storage capabilities through its integration with the public cloud providers or on-premise installations. This allows customers to host their own ApertureDB instances and store images on their preferred cloud provider or on-premise infrastructure.\n",
|
||||
"3. Vector database: ApertureDB also offers a vector database that enables efficient similarity search and classification of images based on their semantic meaning. This can be useful for applications where image search and classification are important, such as in computer vision or machine learning workflows.\n",
|
||||
"\n",
|
||||
"Overall, ApertureDB provides flexible and scalable storage options for images, allowing customers to choose the deployment model that best suits their needs.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"user_query = \"How can ApertureDB store images?\"\n",
|
||||
"response = retrieval_chain.invoke({\"input\": user_query})\n",
|
||||
"print(response[\"answer\"])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -169,6 +169,23 @@
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Specify additional properties for the Azure client such as the following https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#configurations\n",
|
||||
"vector_store: AzureSearch = AzureSearch(\n",
|
||||
" azure_search_endpoint=vector_store_address,\n",
|
||||
" azure_search_key=vector_store_password,\n",
|
||||
" index_name=index_name,\n",
|
||||
" embedding_function=embeddings.embed_query,\n",
|
||||
" # Configure max retries for the Azure client\n",
|
||||
" additional_search_client_options={\"retry_total\": 4},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -174,7 +174,10 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Similarity search"
|
||||
"## Similarity search\n",
|
||||
"Optional keyword arguments to similarity_search include specifying k number of documents to retrive, \n",
|
||||
"a filters dictionary for metadata filtering based on [this syntax](https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#use-filters-on-queries),\n",
|
||||
"as well as the [query_type](https://api-docs.databricks.com/python/vector-search/databricks.vector_search.html#databricks.vector_search.index.VectorSearchIndex.similarity_search) which can be ANN or HYBRID "
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -78,7 +78,7 @@
|
||||
"# See docker command above to launch a postgres instance with pgvector enabled.\n",
|
||||
"connection = \"postgresql+psycopg://langchain:langchain@localhost:6024/langchain\" # Uses psycopg3!\n",
|
||||
"collection_name = \"my_docs\"\n",
|
||||
"embeddings = CohereEmbeddings()\n",
|
||||
"embeddings = CohereEmbeddings(model=\"embed-english-v3.0\")\n",
|
||||
"\n",
|
||||
"vectorstore = PGVector(\n",
|
||||
" embeddings=embeddings,\n",
|
||||
|
||||
@@ -8,14 +8,15 @@
|
||||
"source": [
|
||||
"# Qdrant\n",
|
||||
"\n",
|
||||
">[Qdrant](https://qdrant.tech/documentation/) (read: quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload. `Qdrant` is tailored to extended filtering support. It makes it useful for all sorts of neural network or semantic-based matching, faceted search, and other applications.\n",
|
||||
">[Qdrant](https://qdrant.tech/documentation/) (read: quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage vectors with additional payload and extended filtering support. It makes it useful for all sorts of neural network or semantic-based matching, faceted search, and other applications.\n",
|
||||
"\n",
|
||||
"This documentation demonstrates how to use Qdrant with Langchain for dense/sparse and hybrid retrieval.\n",
|
||||
"\n",
|
||||
"This notebook shows how to use functionality related to the `Qdrant` vector database. \n",
|
||||
"> This page documents the `QdrantVectorStore` class that supports multiple retrieval modes via Qdrant's new [Query API](https://qdrant.tech/blog/qdrant-1.10.x/). It requires you to run Qdrant v1.10.0 or above.\n",
|
||||
"\n",
|
||||
"There are various modes of how to run `Qdrant`, and depending on the chosen one, there will be some subtle differences. The options include:\n",
|
||||
"- Local mode, no server required\n",
|
||||
"- On-premise server deployment\n",
|
||||
"- Docker deployments\n",
|
||||
"- Qdrant Cloud\n",
|
||||
"\n",
|
||||
"See the [installation instructions](https://qdrant.tech/documentation/install/)."
|
||||
@@ -30,7 +31,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-qdrant langchain-openai langchain langchain-community"
|
||||
"%pip install langchain-qdrant langchain-openai langchain"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -39,30 +40,7 @@
|
||||
"id": "7b2f111b-357a-4f42-9730-ef0603bdc1b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "082e7e8b-ac52-430c-98d6-8f0924457642",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"OpenAI API Key: ········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
||||
"We will use `OpenAIEmbeddings` for demonstration."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -80,7 +58,7 @@
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain_qdrant import Qdrant\n",
|
||||
"from langchain_qdrant import QdrantVectorStore\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter"
|
||||
]
|
||||
},
|
||||
@@ -97,7 +75,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = TextLoader(\"../../how_to/state_of_the_union.txt\")\n",
|
||||
"loader = TextLoader(\"some-file.txt\")\n",
|
||||
"documents = loader.load()\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"docs = text_splitter.split_documents(documents)\n",
|
||||
@@ -115,7 +93,7 @@
|
||||
"\n",
|
||||
"### Local mode\n",
|
||||
"\n",
|
||||
"Python client allows you to run the same code in local mode without running the Qdrant server. That's great for testing things out and debugging or if you plan to store just a small amount of vectors. The embeddings might be fully kepy in memory or persisted on disk.\n",
|
||||
"Python client allows you to run the same code in local mode without running the Qdrant server. That's great for testing things out and debugging or storing just a small amount of vectors. The embeddings might be fully kept in memory or persisted on disk.\n",
|
||||
"\n",
|
||||
"#### In-memory\n",
|
||||
"\n",
|
||||
@@ -135,7 +113,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"qdrant = Qdrant.from_documents(\n",
|
||||
"qdrant = QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" location=\":memory:\", # Local mode with in-memory storage only\n",
|
||||
@@ -151,7 +129,7 @@
|
||||
"source": [
|
||||
"#### On-disk storage\n",
|
||||
"\n",
|
||||
"Local mode, without using the Qdrant server, may also store your vectors on disk so they're persisted between runs."
|
||||
"Local mode, without using the Qdrant server, may also store your vectors on disk so they persist between runs."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -167,7 +145,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"qdrant = Qdrant.from_documents(\n",
|
||||
"qdrant = QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" path=\"/tmp/local_qdrant\",\n",
|
||||
@@ -199,7 +177,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"url = \"<---qdrant url here --->\"\n",
|
||||
"qdrant = Qdrant.from_documents(\n",
|
||||
"qdrant = QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" url=url,\n",
|
||||
@@ -233,7 +211,7 @@
|
||||
"source": [
|
||||
"url = \"<---qdrant cloud cluster url here --->\"\n",
|
||||
"api_key = \"<---api key here--->\"\n",
|
||||
"qdrant = Qdrant.from_documents(\n",
|
||||
"qdrant = QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" url=url,\n",
|
||||
@@ -266,7 +244,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"qdrant = Qdrant.from_existing_collection(\n",
|
||||
"qdrant = QdrantVectorStore.from_existing_collection(\n",
|
||||
" embeddings=embeddings,\n",
|
||||
" collection_name=\"my_documents\",\n",
|
||||
" url=\"http://localhost:6333\",\n",
|
||||
@@ -297,7 +275,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"url = \"<---qdrant url here --->\"\n",
|
||||
"qdrant = Qdrant.from_documents(\n",
|
||||
"qdrant = QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" url=url,\n",
|
||||
@@ -320,12 +298,31 @@
|
||||
"source": [
|
||||
"## Similarity search\n",
|
||||
"\n",
|
||||
"The simplest scenario for using Qdrant vector store is to perform a similarity search. Under the hood, our query will be encoded with the `embedding_function` and used to find similar documents in Qdrant collection."
|
||||
"The simplest scenario for using Qdrant vector store is to perform a similarity search. Under the hood, our query will be encoded into vector embeddings and used to find similar documents in Qdrant collection.\n",
|
||||
"\n",
|
||||
"`QdrantVectorStore` supports 3 modes for similarity searches. They can be configured using the `retrieval_mode` parameter when setting up the class.\n",
|
||||
"\n",
|
||||
"- Dense Vector Search(Default)\n",
|
||||
"- Sparse Vector Search\n",
|
||||
"- Hybrid Search"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b3a78d46",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Dense Vector Search\n",
|
||||
"\n",
|
||||
"To search with only dense vectors,\n",
|
||||
"\n",
|
||||
"- The `retrieval_mode` parameter should be set to `RetrievalMode.DENSE`(default).\n",
|
||||
"- A [dense embeddings](https://python.langchain.com/v0.2/docs/integrations/text_embedding/) value should be provided for the `embedding` parameter."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": null,
|
||||
"id": "a8c513ab",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
@@ -336,38 +333,108 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_qdrant import RetrievalMode\n",
|
||||
"\n",
|
||||
"qdrant = QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" location=\":memory:\",\n",
|
||||
" collection_name=\"my_documents\",\n",
|
||||
" retrieval_mode=RetrievalMode.DENSE,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"found_docs = qdrant.similarity_search(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "fc516993",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-04-04T10:51:25.220984Z",
|
||||
"start_time": "2023-04-04T10:51:25.213943Z"
|
||||
},
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||||
"\n",
|
||||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||||
"\n",
|
||||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||||
"\n",
|
||||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"id": "dbd93d85",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"print(found_docs[0].page_content)"
|
||||
"### Sparse Vector Search\n",
|
||||
"\n",
|
||||
"To search with only sparse vectors,\n",
|
||||
"\n",
|
||||
"- The `retrieval_mode` parameter should be set to `RetrievalMode.SPARSE`.\n",
|
||||
"- An implementation of the [`SparseEmbeddings`](https://github.com/langchain-ai/langchain/blob/master/libs/partners/qdrant/langchain_qdrant/sparse_embeddings.py) interface using any sparse embeddings provider has to be provided as value to the `sparse_embedding` parameter.\n",
|
||||
"\n",
|
||||
"The `langchain-qdrant` package provides a [FastEmbed](https://github.com/qdrant/fastembed) based implementation out of the box.\n",
|
||||
"\n",
|
||||
"To use it, install the FastEmbed package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ceb493a3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install fastembed"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "052e3412",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_qdrant import FastEmbedSparse, RetrievalMode\n",
|
||||
"\n",
|
||||
"sparse_embeddings = FastEmbedSparse(model_name=\"Qdrant/BM25\")\n",
|
||||
"\n",
|
||||
"qdrant = QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" sparse_embedding=sparse_embeddings,\n",
|
||||
" location=\":memory:\",\n",
|
||||
" collection_name=\"my_documents\",\n",
|
||||
" retrieval_mode=RetrievalMode.SPARSE,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"found_docs = qdrant.similarity_search(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f4b6c456",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Hybrid Vector Search\n",
|
||||
"\n",
|
||||
"To perform a hybrid search using dense and sparse vectors with score fusion,\n",
|
||||
"\n",
|
||||
"- The `retrieval_mode` parameter should be set to `RetrievalMode.HYBRID`.\n",
|
||||
"- A [dense embeddings](https://python.langchain.com/v0.2/docs/integrations/text_embedding/) value should be provided for the `embedding` parameter.\n",
|
||||
"- An implementation of the [`SparseEmbeddings`](https://github.com/langchain-ai/langchain/blob/master/libs/partners/qdrant/langchain_qdrant/sparse_embeddings.py) interface using any sparse embeddings provider has to be provided as value to the `sparse_embedding` parameter.\n",
|
||||
"\n",
|
||||
"Note that if you've added documents with the `HYBRID` mode, you can switch to any retrieval mode when searching. Since both the dense and sparse vectors are available in the collection."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ce56f6e9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_qdrant import FastEmbedSparse, RetrievalMode\n",
|
||||
"\n",
|
||||
"sparse_embeddings = FastEmbedSparse(model_name=\"Qdrant/BM25\")\n",
|
||||
"\n",
|
||||
"qdrant = QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" sparse_embedding=sparse_embeddings,\n",
|
||||
" location=\":memory:\",\n",
|
||||
" collection_name=\"my_documents\",\n",
|
||||
" retrieval_mode=RetrievalMode.HYBRID,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"found_docs = qdrant.similarity_search(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -400,7 +467,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": null,
|
||||
"id": "756a6887",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
@@ -408,23 +475,7 @@
|
||||
"start_time": "2023-04-04T10:51:25.635947Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||||
"\n",
|
||||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||||
"\n",
|
||||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||||
"\n",
|
||||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n",
|
||||
"\n",
|
||||
"Score: 0.8153784913324512\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"document, score = found_docs[0]\n",
|
||||
"print(document.page_content)\n",
|
||||
@@ -449,10 +500,10 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"```python\n",
|
||||
"from qdrant_client.http import models as rest\n",
|
||||
"from qdrant_client.http import models\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"found_docs = qdrant.similarity_search_with_score(query, filter=rest.Filter(...))\n",
|
||||
"found_docs = qdrant.similarity_search_with_score(query, filter=models.Filter(...))\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
@@ -469,7 +520,9 @@
|
||||
"source": [
|
||||
"## Maximum marginal relevance search (MMR)\n",
|
||||
"\n",
|
||||
"If you'd like to look up for some similar documents, but you'd also like to receive diverse results, MMR is method you should consider. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents."
|
||||
"If you'd like to look up some similar documents, but you'd also like to receive diverse results, MMR is the method you should consider. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.\n",
|
||||
"\n",
|
||||
"Note that MMR search is only available if you've added documents with `DENSE` or `HYBRID` modes. Since it requires dense vectors."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -490,7 +543,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": null,
|
||||
"id": "80c6db11",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
@@ -498,40 +551,7 @@
|
||||
"start_time": "2023-04-04T10:51:26.013329Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1. Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||||
"\n",
|
||||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||||
"\n",
|
||||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||||
"\n",
|
||||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. \n",
|
||||
"\n",
|
||||
"2. We can’t change how divided we’ve been. But we can change how we move forward—on COVID-19 and other issues we must face together. \n",
|
||||
"\n",
|
||||
"I recently visited the New York City Police Department days after the funerals of Officer Wilbert Mora and his partner, Officer Jason Rivera. \n",
|
||||
"\n",
|
||||
"They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. \n",
|
||||
"\n",
|
||||
"Officer Mora was 27 years old. \n",
|
||||
"\n",
|
||||
"Officer Rivera was 22. \n",
|
||||
"\n",
|
||||
"Both Dominican Americans who’d grown up on the same streets they later chose to patrol as police officers. \n",
|
||||
"\n",
|
||||
"I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
|
||||
"\n",
|
||||
"I’ve worked on these issues a long time. \n",
|
||||
"\n",
|
||||
"I know what works: Investing in crime prevention and community police officers who’ll walk the beat, who’ll know the neighborhood, and who can restore trust and safety. \n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for i, doc in enumerate(found_docs):\n",
|
||||
" print(f\"{i + 1}.\", doc.page_content, \"\\n\")"
|
||||
@@ -545,7 +565,7 @@
|
||||
"source": [
|
||||
"## Qdrant as a Retriever\n",
|
||||
"\n",
|
||||
"Qdrant, as all the other vector stores, is a LangChain Retriever, by using cosine similarity. "
|
||||
"Qdrant, as all the other vector stores, is a LangChain Retriever. "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -589,7 +609,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": null,
|
||||
"id": "f3c70c31",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
@@ -597,18 +617,7 @@
|
||||
"start_time": "2023-04-04T10:51:26.046407Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"retriever.invoke(query)[0]"
|
||||
@@ -622,11 +631,11 @@
|
||||
"source": [
|
||||
"## Customizing Qdrant\n",
|
||||
"\n",
|
||||
"There are some options to use an existing Qdrant collection within your Langchain application. In such cases you may need to define how to map Qdrant point into the Langchain `Document`.\n",
|
||||
"There are options to use an existing Qdrant collection within your Langchain application. In such cases, you may need to define how to map Qdrant point into the Langchain `Document`.\n",
|
||||
"\n",
|
||||
"### Named vectors\n",
|
||||
"\n",
|
||||
"Qdrant supports [multiple vectors per point](https://qdrant.tech/documentation/concepts/collections/#collection-with-multiple-vectors) by named vectors. Langchain requires just a single embedding per document and, by default, uses a single vector. However, if you work with a collection created externally or want to have the named vector used, you can configure it by providing its name.\n"
|
||||
"Qdrant supports [multiple vectors per point](https://qdrant.tech/documentation/concepts/collections/#collection-with-multiple-vectors) by named vectors. If you work with a collection created externally or want to have the differently named vector used, you can configure it by providing its name.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -638,25 +647,18 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Qdrant.from_documents(\n",
|
||||
"QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" sparse_embedding=sparse_embeddings,\n",
|
||||
" location=\":memory:\",\n",
|
||||
" collection_name=\"my_documents_2\",\n",
|
||||
" retrieval_mode=RetrievalMode.HYBRID,\n",
|
||||
" vector_name=\"custom_vector\",\n",
|
||||
" sparse_vector_name=\"custom_sparse_vector\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b34f5230",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"As a Langchain user, you won't see any difference whether you use named vectors or not. Qdrant integration will handle the conversion under the hood."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b2350093",
|
||||
@@ -694,7 +696,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Qdrant.from_documents(\n",
|
||||
"QdrantVectorStore.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embeddings,\n",
|
||||
" location=\":memory:\",\n",
|
||||
@@ -729,7 +731,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
"version": "3.11.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -22,6 +22,7 @@ import useBaseUrl from '@docusaurus/useBaseUrl';
|
||||
light: useBaseUrl('/svg/langchain_stack_062024.svg'),
|
||||
dark: useBaseUrl('/svg/langchain_stack_062024_dark.svg'),
|
||||
}}
|
||||
style={{ width: "100%" }}
|
||||
title="LangChain Framework Overview"
|
||||
/>
|
||||
|
||||
|
||||
@@ -107,7 +107,7 @@
|
||||
"```\n",
|
||||
"## Preview\n",
|
||||
"\n",
|
||||
"In this guide we’ll build a QA app over as website. The specific website we will use is the [LLM Powered Autonomous\n",
|
||||
"In this guide we’ll build an app that answers questions about the content of a website. The specific website we will use is the [LLM Powered Autonomous\n",
|
||||
"Agents](https://lilianweng.github.io/posts/2023-06-23-agent/) blog post\n",
|
||||
"by Lilian Weng, which allows us to ask questions about the contents of\n",
|
||||
"the post.\n",
|
||||
|
||||
@@ -269,7 +269,7 @@
|
||||
"id": "b4991642-7275-40a9-b11a-e3beccbf2614",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Return documents based on similarity to a embedded query:"
|
||||
"Return documents based on similarity to an embedded query:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
78
docs/static/svg/langchain_stack_062024.svg
vendored
78
docs/static/svg/langchain_stack_062024.svg
vendored
File diff suppressed because one or more lines are too long
|
Before Width: | Height: | Size: 165 KiB After Width: | Height: | Size: 158 KiB |
85
docs/static/svg/langchain_stack_062024_dark.svg
vendored
85
docs/static/svg/langchain_stack_062024_dark.svg
vendored
File diff suppressed because one or more lines are too long
|
Before Width: | Height: | Size: 165 KiB After Width: | Height: | Size: 158 KiB |
@@ -25,6 +25,7 @@ fireworks-ai>=0.9.0,<0.10
|
||||
friendli-client>=1.2.4,<2
|
||||
geopandas>=0.13.1
|
||||
gitpython>=3.1.32,<4
|
||||
gliner>=0.2.7
|
||||
google-cloud-documentai>=2.20.1,<3
|
||||
gql>=3.4.1,<4
|
||||
gradientai>=1.4.0,<2
|
||||
@@ -37,6 +38,7 @@ javelin-sdk>=0.1.8,<0.2
|
||||
jinja2>=3,<4
|
||||
jq>=1.4.1,<2
|
||||
jsonschema>1
|
||||
keybert>=0.8.5
|
||||
lxml>=4.9.3,<6.0
|
||||
markdownify>=0.11.6,<0.12
|
||||
motor>=3.3.1,<4
|
||||
@@ -60,7 +62,7 @@ psychicapi>=0.8.0,<0.9
|
||||
py-trello>=0.19.0,<0.20
|
||||
pyjwt>=2.8.0,<3
|
||||
pymupdf>=1.22.3,<2
|
||||
pypdf>=3.4.0,<4
|
||||
pypdf>=3.4.0,<5
|
||||
pypdfium2>=4.10.0,<5
|
||||
pyspark>=3.4.0,<4
|
||||
rank-bm25>=0.2.2,<0.3
|
||||
@@ -72,6 +74,7 @@ rspace_client>=2.5.0,<3
|
||||
scikit-learn>=1.2.2,<2
|
||||
simsimd>=4.3.1,<5
|
||||
sqlite-vss>=0.1.2,<0.2
|
||||
sseclient-py>=1.8.0,<2
|
||||
streamlit>=1.18.0,<2
|
||||
sympy>=1.12,<2
|
||||
telethon>=1.28.5,<2
|
||||
|
||||
@@ -292,17 +292,21 @@ def _create_api_controller_agent(
|
||||
)
|
||||
if "DELETE" in allowed_operations:
|
||||
delete_llm_chain = LLMChain(llm=llm, prompt=PARSING_DELETE_PROMPT)
|
||||
RequestsDeleteToolWithParsing( # type: ignore[call-arg]
|
||||
requests_wrapper=requests_wrapper,
|
||||
llm_chain=delete_llm_chain,
|
||||
allow_dangerous_requests=allow_dangerous_requests,
|
||||
tools.append(
|
||||
RequestsDeleteToolWithParsing( # type: ignore[call-arg]
|
||||
requests_wrapper=requests_wrapper,
|
||||
llm_chain=delete_llm_chain,
|
||||
allow_dangerous_requests=allow_dangerous_requests,
|
||||
)
|
||||
)
|
||||
if "PATCH" in allowed_operations:
|
||||
patch_llm_chain = LLMChain(llm=llm, prompt=PARSING_PATCH_PROMPT)
|
||||
RequestsPatchToolWithParsing( # type: ignore[call-arg]
|
||||
requests_wrapper=requests_wrapper,
|
||||
llm_chain=patch_llm_chain,
|
||||
allow_dangerous_requests=allow_dangerous_requests,
|
||||
tools.append(
|
||||
RequestsPatchToolWithParsing( # type: ignore[call-arg]
|
||||
requests_wrapper=requests_wrapper,
|
||||
llm_chain=patch_llm_chain,
|
||||
allow_dangerous_requests=allow_dangerous_requests,
|
||||
)
|
||||
)
|
||||
if not tools:
|
||||
raise ValueError("Tools not found")
|
||||
|
||||
@@ -8,6 +8,12 @@ from langchain_core.messages import AIMessage
|
||||
from langchain_core.outputs import ChatGeneration, LLMResult
|
||||
|
||||
MODEL_COST_PER_1K_TOKENS = {
|
||||
# GPT-4o-mini input
|
||||
"gpt-4o-mini": 0.00015,
|
||||
"gpt-4o-mini-2024-07-18": 0.00015,
|
||||
# GPT-4o-mini output
|
||||
"gpt-4o-mini-completion": 0.0006,
|
||||
"gpt-4o-mini-2024-07-18-completion": 0.0006,
|
||||
# GPT-4o input
|
||||
"gpt-4o": 0.005,
|
||||
"gpt-4o-2024-05-13": 0.005,
|
||||
|
||||
@@ -311,12 +311,15 @@ class GraphCypherQAChain(Chain):
|
||||
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||||
callbacks = _run_manager.get_child()
|
||||
question = inputs[self.input_key]
|
||||
args = {
|
||||
"question": question,
|
||||
"schema": self.graph_schema,
|
||||
}
|
||||
args.update(inputs)
|
||||
|
||||
intermediate_steps: List = []
|
||||
|
||||
generated_cypher = self.cypher_generation_chain.run(
|
||||
{"question": question, "schema": self.graph_schema}, callbacks=callbacks
|
||||
)
|
||||
generated_cypher = self.cypher_generation_chain.run(args, callbacks=callbacks)
|
||||
|
||||
# Extract Cypher code if it is wrapped in backticks
|
||||
generated_cypher = extract_cypher(generated_cypher)
|
||||
|
||||
@@ -124,6 +124,11 @@ class PebbloRetrievalQA(Chain):
|
||||
),
|
||||
"doc": doc.page_content,
|
||||
"vector_db": self.retriever.vectorstore.__class__.__name__,
|
||||
**(
|
||||
{"pb_checksum": doc.metadata.get("pb_checksum")}
|
||||
if doc.metadata.get("pb_checksum")
|
||||
else {}
|
||||
),
|
||||
}
|
||||
for doc in docs
|
||||
if isinstance(doc, Document)
|
||||
@@ -457,25 +462,24 @@ class PebbloRetrievalQA(Chain):
|
||||
if self.api_key:
|
||||
if self.classifier_location == "local":
|
||||
if pebblo_resp:
|
||||
payload["response"] = (
|
||||
json.loads(pebblo_resp.text)
|
||||
.get("retrieval_data", {})
|
||||
.get("response", {})
|
||||
)
|
||||
payload["context"] = (
|
||||
json.loads(pebblo_resp.text)
|
||||
.get("retrieval_data", {})
|
||||
.get("context", [])
|
||||
)
|
||||
payload["prompt"] = (
|
||||
json.loads(pebblo_resp.text)
|
||||
.get("retrieval_data", {})
|
||||
.get("prompt", {})
|
||||
)
|
||||
resp = json.loads(pebblo_resp.text)
|
||||
if resp:
|
||||
payload["response"].update(
|
||||
resp.get("retrieval_data", {}).get("response", {})
|
||||
)
|
||||
payload["response"].pop("data")
|
||||
payload["prompt"].update(
|
||||
resp.get("retrieval_data", {}).get("prompt", {})
|
||||
)
|
||||
payload["prompt"].pop("data")
|
||||
context = payload["context"]
|
||||
for context_data in context:
|
||||
context_data.pop("doc")
|
||||
payload["context"] = context
|
||||
else:
|
||||
payload["response"] = None
|
||||
payload["context"] = None
|
||||
payload["prompt"] = None
|
||||
payload["response"] = {}
|
||||
payload["prompt"] = {}
|
||||
payload["context"] = []
|
||||
headers.update({"x-api-key": self.api_key})
|
||||
pebblo_cloud_url = f"{PEBBLO_CLOUD_URL}{PROMPT_URL}"
|
||||
try:
|
||||
|
||||
@@ -129,6 +129,7 @@ class Context(BaseModel):
|
||||
retrieved_from: Optional[str]
|
||||
doc: Optional[str]
|
||||
vector_db: str
|
||||
pb_checksum: Optional[str]
|
||||
|
||||
|
||||
class Prompt(BaseModel):
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain_core.chat_history import (
|
||||
BaseChatMessageHistory,
|
||||
@@ -11,21 +11,33 @@ from langchain_core.messages import BaseMessage, messages_from_dict, messages_to
|
||||
class FileChatMessageHistory(BaseChatMessageHistory):
|
||||
"""Chat message history that stores history in a local file."""
|
||||
|
||||
def __init__(self, file_path: str) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
file_path: str,
|
||||
*,
|
||||
encoding: Optional[str] = None,
|
||||
ensure_ascii: bool = True,
|
||||
) -> None:
|
||||
"""Initialize the file path for the chat history.
|
||||
|
||||
Args:
|
||||
file_path: The path to the local file to store the chat history.
|
||||
encoding: The encoding to use for file operations. Defaults to None.
|
||||
ensure_ascii: If True, escape non-ASCII in JSON. Defaults to True.
|
||||
"""
|
||||
self.file_path = Path(file_path)
|
||||
self.encoding = encoding
|
||||
self.ensure_ascii = ensure_ascii
|
||||
|
||||
if not self.file_path.exists():
|
||||
self.file_path.touch()
|
||||
self.file_path.write_text(json.dumps([]))
|
||||
self.file_path.write_text(
|
||||
json.dumps([], ensure_ascii=self.ensure_ascii), encoding=self.encoding
|
||||
)
|
||||
|
||||
@property
|
||||
def messages(self) -> List[BaseMessage]: # type: ignore
|
||||
"""Retrieve the messages from the local file"""
|
||||
items = json.loads(self.file_path.read_text())
|
||||
items = json.loads(self.file_path.read_text(encoding=self.encoding))
|
||||
messages = messages_from_dict(items)
|
||||
return messages
|
||||
|
||||
@@ -33,8 +45,12 @@ class FileChatMessageHistory(BaseChatMessageHistory):
|
||||
"""Append the message to the record in the local file"""
|
||||
messages = messages_to_dict(self.messages)
|
||||
messages.append(messages_to_dict([message])[0])
|
||||
self.file_path.write_text(json.dumps(messages))
|
||||
self.file_path.write_text(
|
||||
json.dumps(messages, ensure_ascii=self.ensure_ascii), encoding=self.encoding
|
||||
)
|
||||
|
||||
def clear(self) -> None:
|
||||
"""Clear session memory from the local file"""
|
||||
self.file_path.write_text(json.dumps([]))
|
||||
self.file_path.write_text(
|
||||
json.dumps([], ensure_ascii=self.ensure_ascii), encoding=self.encoding
|
||||
)
|
||||
|
||||
@@ -25,7 +25,7 @@ if TYPE_CHECKING:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DEFAULT_API_BASE = "https://api.endpoints.anyscale.com/v1"
|
||||
DEFAULT_MODEL = "meta-llama/Llama-2-7b-chat-hf"
|
||||
DEFAULT_MODEL = "meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
|
||||
|
||||
class ChatAnyscale(ChatOpenAI):
|
||||
|
||||
@@ -141,9 +141,8 @@ class CustomOpenAIChatContentFormatter(ContentFormatterBase):
|
||||
except (KeyError, IndexError, TypeError) as e:
|
||||
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
|
||||
return ChatGeneration(
|
||||
message=BaseMessage(
|
||||
message=AIMessage(
|
||||
content=choice.strip(),
|
||||
type="assistant",
|
||||
),
|
||||
generation_info=None,
|
||||
)
|
||||
@@ -158,7 +157,9 @@ class CustomOpenAIChatContentFormatter(ContentFormatterBase):
|
||||
except (KeyError, IndexError, TypeError) as e:
|
||||
raise ValueError(self.format_error_msg.format(api_type=api_type)) from e
|
||||
return ChatGeneration(
|
||||
message=BaseMessage(
|
||||
message=AIMessage(content=choice["message"]["content"].strip())
|
||||
if choice["message"]["role"] == "assistant"
|
||||
else BaseMessage(
|
||||
content=choice["message"]["content"].strip(),
|
||||
type=choice["message"]["role"],
|
||||
),
|
||||
|
||||
@@ -22,6 +22,8 @@ from langchain_core.messages import (
|
||||
ChatMessageChunk,
|
||||
HumanMessage,
|
||||
HumanMessageChunk,
|
||||
SystemMessage,
|
||||
SystemMessageChunk,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
||||
@@ -44,6 +46,8 @@ def _convert_message_to_dict(message: BaseMessage) -> dict:
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
elif isinstance(message, AIMessage):
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
else:
|
||||
raise TypeError(f"Got unknown type {message}")
|
||||
|
||||
@@ -56,6 +60,8 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
||||
return HumanMessage(content=_dict["content"])
|
||||
elif role == "assistant":
|
||||
return AIMessage(content=_dict.get("content", "") or "")
|
||||
elif role == "system":
|
||||
return SystemMessage(content=_dict.get("content", ""))
|
||||
else:
|
||||
return ChatMessage(content=_dict["content"], role=role)
|
||||
|
||||
@@ -70,6 +76,8 @@ def _convert_delta_to_message_chunk(
|
||||
return HumanMessageChunk(content=content)
|
||||
elif role == "assistant" or default_class == AIMessageChunk:
|
||||
return AIMessageChunk(content=content)
|
||||
elif role == "system" or default_class == SystemMessageChunk:
|
||||
return SystemMessageChunk(content=content)
|
||||
elif role or default_class == ChatMessageChunk:
|
||||
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
|
||||
else:
|
||||
@@ -98,10 +106,145 @@ async def aconnect_httpx_sse(
|
||||
|
||||
|
||||
class ChatBaichuan(BaseChatModel):
|
||||
"""Baichuan chat models API by Baichuan Intelligent Technology.
|
||||
"""Baichuan chat model integration.
|
||||
|
||||
For more information, see https://platform.baichuan-ai.com/docs/api
|
||||
"""
|
||||
Setup:
|
||||
To use, you should have the environment variable``BAICHUAN_API_KEY`` set with
|
||||
your API KEY.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
export BAICHUAN_API_KEY="your-api-key"
|
||||
|
||||
Key init args — completion params:
|
||||
model: Optional[str]
|
||||
Name of Baichuan model to use.
|
||||
max_tokens: Optional[int]
|
||||
Max number of tokens to generate.
|
||||
streaming: Optional[bool]
|
||||
Whether to stream the results or not.
|
||||
temperature: Optional[float]
|
||||
Sampling temperature.
|
||||
top_p: Optional[float]
|
||||
What probability mass to use.
|
||||
top_k: Optional[int]
|
||||
What search sampling control to use.
|
||||
|
||||
Key init args — client params:
|
||||
api_key: Optional[str]
|
||||
MiniMax API key. If not passed in will be read from env var BAICHUAN_API_KEY.
|
||||
base_url: Optional[str]
|
||||
Base URL for API requests.
|
||||
|
||||
See full list of supported init args and their descriptions in the params section.
|
||||
|
||||
Instantiate:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.chat_models import ChatBaichuan
|
||||
|
||||
chat = ChatBaichuan(
|
||||
api_key=api_key,
|
||||
model='Baichuan4',
|
||||
# temperature=...,
|
||||
# other params...
|
||||
)
|
||||
|
||||
Invoke:
|
||||
.. code-block:: python
|
||||
|
||||
messages = [
|
||||
("system", "你是一名专业的翻译家,可以将用户的中文翻译为英文。"),
|
||||
("human", "我喜欢编程。"),
|
||||
]
|
||||
chat.invoke(messages)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
AIMessage(
|
||||
content='I enjoy programming.',
|
||||
response_metadata={
|
||||
'token_usage': {
|
||||
'prompt_tokens': 93,
|
||||
'completion_tokens': 5,
|
||||
'total_tokens': 98
|
||||
},
|
||||
'model': 'Baichuan4'
|
||||
},
|
||||
id='run-944ff552-6a93-44cf-a861-4e4d849746f9-0'
|
||||
)
|
||||
|
||||
Stream:
|
||||
.. code-block:: python
|
||||
|
||||
for chunk in chat.stream(messages):
|
||||
print(chunk)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
content='I' id='run-f99fcd6f-dd31-46d5-be8f-0b6a22bf77d8'
|
||||
content=' enjoy programming.' id='run-f99fcd6f-dd31-46d5-be8f-0b6a22bf77d8
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
stream = chat.stream(messages)
|
||||
full = next(stream)
|
||||
for chunk in stream:
|
||||
full += chunk
|
||||
full
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
AIMessageChunk(
|
||||
content='I like programming.',
|
||||
id='run-74689970-dc31-461d-b729-3b6aa93508d2'
|
||||
)
|
||||
|
||||
Async:
|
||||
.. code-block:: python
|
||||
|
||||
await chat.ainvoke(messages)
|
||||
|
||||
# stream
|
||||
# async for chunk in chat.astream(messages):
|
||||
# print(chunk)
|
||||
|
||||
# batch
|
||||
# await chat.abatch([messages])
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
AIMessage(
|
||||
content='I enjoy programming.',
|
||||
response_metadata={
|
||||
'token_usage': {
|
||||
'prompt_tokens': 93,
|
||||
'completion_tokens': 5,
|
||||
'total_tokens': 98
|
||||
},
|
||||
'model': 'Baichuan4'
|
||||
},
|
||||
id='run-952509ed-9154-4ff9-b187-e616d7ddfbba-0'
|
||||
)
|
||||
|
||||
Response metadata
|
||||
.. code-block:: python
|
||||
|
||||
ai_msg = chat.invoke(messages)
|
||||
ai_msg.response_metadata
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{
|
||||
'token_usage': {
|
||||
'prompt_tokens': 93,
|
||||
'completion_tokens': 5,
|
||||
'total_tokens': 98
|
||||
},
|
||||
'model': 'Baichuan4'
|
||||
}
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
@property
|
||||
def lc_secrets(self) -> Dict[str, str]:
|
||||
@@ -113,7 +256,7 @@ class ChatBaichuan(BaseChatModel):
|
||||
def lc_serializable(self) -> bool:
|
||||
return True
|
||||
|
||||
baichuan_api_base: str = Field(default=DEFAULT_API_BASE)
|
||||
baichuan_api_base: str = Field(default=DEFAULT_API_BASE, alias="base_url")
|
||||
"""Baichuan custom endpoints"""
|
||||
baichuan_api_key: SecretStr = Field(alias="api_key")
|
||||
"""Baichuan API Key"""
|
||||
@@ -121,6 +264,8 @@ class ChatBaichuan(BaseChatModel):
|
||||
"""[DEPRECATED, keeping it for for backward compatibility] Baichuan Secret Key"""
|
||||
streaming: bool = False
|
||||
"""Whether to stream the results or not."""
|
||||
max_tokens: Optional[int] = None
|
||||
"""Maximum number of tokens to generate."""
|
||||
request_timeout: int = Field(default=60, alias="timeout")
|
||||
"""request timeout for chat http requests"""
|
||||
model: str = "Baichuan2-Turbo-192K"
|
||||
@@ -133,7 +278,8 @@ class ChatBaichuan(BaseChatModel):
|
||||
top_p: float = 0.85
|
||||
"""What probability mass to use."""
|
||||
with_search_enhance: bool = False
|
||||
"""Whether to use search enhance, default is False."""
|
||||
"""[DEPRECATED, keeping it for for backward compatibility],
|
||||
Whether to use search enhance, default is False."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for API call not explicitly specified."""
|
||||
|
||||
@@ -193,8 +339,8 @@ class ChatBaichuan(BaseChatModel):
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
"top_k": self.top_k,
|
||||
"with_search_enhance": self.with_search_enhance,
|
||||
"stream": self.streaming,
|
||||
"max_tokens": self.max_tokens,
|
||||
}
|
||||
|
||||
return {**normal_params, **self.model_kwargs}
|
||||
|
||||
@@ -32,6 +32,7 @@ from langchain_core.messages import (
|
||||
SystemMessage,
|
||||
ToolMessage,
|
||||
)
|
||||
from langchain_core.messages.ai import UsageMetadata
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
@@ -88,6 +89,7 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> AIMessage:
|
||||
request_id=additional_kwargs["id"],
|
||||
object=additional_kwargs.get("object", ""),
|
||||
search_info=additional_kwargs.get("search_info", []),
|
||||
usage=additional_kwargs.get("usage", None),
|
||||
)
|
||||
|
||||
if additional_kwargs.get("function_call", {}):
|
||||
@@ -102,6 +104,17 @@ def _convert_dict_to_message(_dict: Mapping[str, Any]) -> AIMessage:
|
||||
}
|
||||
]
|
||||
|
||||
if usage := additional_kwargs.get("usage", None):
|
||||
return AIMessage(
|
||||
content=content,
|
||||
additional_kwargs=msg_additional_kwargs,
|
||||
usage_metadata=UsageMetadata(
|
||||
input_tokens=usage.get("prompt_tokens", 0),
|
||||
output_tokens=usage.get("completion_tokens", 0),
|
||||
total_tokens=usage.get("total_tokens", 0),
|
||||
),
|
||||
)
|
||||
|
||||
return AIMessage(
|
||||
content=content,
|
||||
additional_kwargs=msg_additional_kwargs,
|
||||
@@ -578,6 +591,7 @@ class QianfanChatEndpoint(BaseChatModel):
|
||||
content=msg.content,
|
||||
role="assistant",
|
||||
additional_kwargs=additional_kwargs,
|
||||
usage_metadata=msg.usage_metadata,
|
||||
),
|
||||
generation_info=msg.additional_kwargs,
|
||||
)
|
||||
@@ -605,6 +619,7 @@ class QianfanChatEndpoint(BaseChatModel):
|
||||
content=msg.content,
|
||||
role="assistant",
|
||||
additional_kwargs=additional_kwargs,
|
||||
usage_metadata=msg.usage_metadata,
|
||||
),
|
||||
generation_info=msg.additional_kwargs,
|
||||
)
|
||||
|
||||
@@ -48,6 +48,7 @@ from langchain_core.messages import (
|
||||
ToolMessage,
|
||||
)
|
||||
from langchain_core.messages.tool import ToolCall
|
||||
from langchain_core.messages.tool import tool_call as create_tool_call
|
||||
from langchain_core.outputs import (
|
||||
ChatGeneration,
|
||||
ChatGenerationChunk,
|
||||
@@ -96,7 +97,7 @@ def _parse_tool_calling(tool_call: dict) -> ToolCall:
|
||||
name = tool_call["function"].get("name", "")
|
||||
args = json.loads(tool_call["function"]["arguments"])
|
||||
id = tool_call.get("id")
|
||||
return ToolCall(name=name, args=args, id=id)
|
||||
return create_tool_call(name=name, args=args, id=id)
|
||||
|
||||
|
||||
def _convert_to_tool_calling(tool_call: ToolCall) -> Dict[str, Any]:
|
||||
|
||||
@@ -36,9 +36,11 @@ from langchain_core.messages import (
|
||||
InvalidToolCall,
|
||||
SystemMessage,
|
||||
ToolCall,
|
||||
ToolCallChunk,
|
||||
ToolMessage,
|
||||
)
|
||||
from langchain_core.messages.tool import invalid_tool_call as create_invalid_tool_call
|
||||
from langchain_core.messages.tool import tool_call as create_tool_call
|
||||
from langchain_core.messages.tool import tool_call_chunk as create_tool_call_chunk
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
@@ -63,7 +65,7 @@ def _result_to_chunked_message(generated_result: ChatResult) -> ChatGenerationCh
|
||||
message = generated_result.generations[0].message
|
||||
if isinstance(message, AIMessage) and message.tool_calls is not None:
|
||||
tool_call_chunks = [
|
||||
ToolCallChunk(
|
||||
create_tool_call_chunk(
|
||||
name=tool_call["name"],
|
||||
args=json.dumps(tool_call["args"]),
|
||||
id=tool_call["id"],
|
||||
@@ -189,7 +191,7 @@ def _extract_tool_calls_from_edenai_response(
|
||||
for raw_tool_call in raw_tool_calls:
|
||||
try:
|
||||
tool_calls.append(
|
||||
ToolCall(
|
||||
create_tool_call(
|
||||
name=raw_tool_call["name"],
|
||||
args=json.loads(raw_tool_call["arguments"]),
|
||||
id=raw_tool_call["id"],
|
||||
@@ -197,7 +199,7 @@ def _extract_tool_calls_from_edenai_response(
|
||||
)
|
||||
except json.JSONDecodeError as exc:
|
||||
invalid_tool_calls.append(
|
||||
InvalidToolCall(
|
||||
create_invalid_tool_call(
|
||||
name=raw_tool_call.get("name"),
|
||||
args=raw_tool_call.get("arguments"),
|
||||
id=raw_tool_call.get("id"),
|
||||
|
||||
@@ -8,7 +8,7 @@ from typing import TYPE_CHECKING, Dict, Optional, Set
|
||||
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.pydantic_v1 import Field, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||||
|
||||
from langchain_community.adapters.openai import convert_message_to_dict
|
||||
from langchain_community.chat_models.openai import (
|
||||
@@ -79,10 +79,12 @@ class ChatEverlyAI(ChatOpenAI):
|
||||
@root_validator(pre=True)
|
||||
def validate_environment_override(cls, values: dict) -> dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["openai_api_key"] = get_from_dict_or_env(
|
||||
values,
|
||||
"everlyai_api_key",
|
||||
"EVERLYAI_API_KEY",
|
||||
values["openai_api_key"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(
|
||||
values,
|
||||
"everlyai_api_key",
|
||||
"EVERLYAI_API_KEY",
|
||||
)
|
||||
)
|
||||
values["openai_api_base"] = DEFAULT_API_BASE
|
||||
|
||||
|
||||
@@ -144,7 +144,7 @@ class ChatOllama(BaseChatModel, _OllamaCommon):
|
||||
elif (
|
||||
isinstance(temp_image_url, dict) and "url" in temp_image_url
|
||||
):
|
||||
image_url = temp_image_url
|
||||
image_url = temp_image_url["url"]
|
||||
else:
|
||||
raise ValueError(
|
||||
"Only string image_url or dict with string 'url' "
|
||||
|
||||
@@ -4,6 +4,7 @@ import asyncio
|
||||
import functools
|
||||
import json
|
||||
import logging
|
||||
from operator import itemgetter
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
@@ -40,7 +41,10 @@ from langchain_core.messages import (
|
||||
ToolMessage,
|
||||
ToolMessageChunk,
|
||||
)
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
PydanticToolsParser,
|
||||
make_invalid_tool_call,
|
||||
parse_tool_call,
|
||||
)
|
||||
@@ -50,7 +54,7 @@ from langchain_core.outputs import (
|
||||
ChatResult,
|
||||
)
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr
|
||||
from langchain_core.runnables import Runnable
|
||||
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
@@ -372,6 +376,33 @@ class ChatTongyi(BaseChatModel):
|
||||
}
|
||||
]
|
||||
|
||||
Structured output:
|
||||
.. code-block:: python
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
|
||||
|
||||
class Joke(BaseModel):
|
||||
'''Joke to tell user.'''
|
||||
|
||||
setup: str = Field(description="The setup of the joke")
|
||||
punchline: str = Field(description="The punchline to the joke")
|
||||
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
||||
|
||||
|
||||
structured_chat = tongyi_chat.with_structured_output(Joke)
|
||||
structured_chat.invoke("Tell me a joke about cats")
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Joke(
|
||||
setup='Why did the cat join the band?',
|
||||
punchline='Because it wanted to be a solo purr-sonality!',
|
||||
rating=None
|
||||
)
|
||||
|
||||
Response metadata
|
||||
.. code-block:: python
|
||||
|
||||
@@ -791,3 +822,70 @@ class ChatTongyi(BaseChatModel):
|
||||
|
||||
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||
return super().bind(tools=formatted_tools, **kwargs)
|
||||
|
||||
def with_structured_output(
|
||||
self,
|
||||
schema: Union[Dict, Type[BaseModel]],
|
||||
*,
|
||||
include_raw: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
||||
"""Model wrapper that returns outputs formatted to match the given schema.
|
||||
|
||||
Args:
|
||||
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
||||
then the model output will be an object of that class. If a dict then
|
||||
the model output will be a dict. With a Pydantic class the returned
|
||||
attributes will be validated, whereas with a dict they will not be. If
|
||||
`method` is "function_calling" and `schema` is a dict, then the dict
|
||||
must match the OpenAI function-calling spec.
|
||||
include_raw: If False then only the parsed structured output is returned. If
|
||||
an error occurs during model output parsing it will be raised. If True
|
||||
then both the raw model response (a BaseMessage) and the parsed model
|
||||
response will be returned. If an error occurs during output parsing it
|
||||
will be caught and returned as well. The final output is always a dict
|
||||
with keys "raw", "parsed", and "parsing_error".
|
||||
|
||||
Returns:
|
||||
A Runnable that takes any ChatModel input and returns as output:
|
||||
|
||||
If include_raw is True then a dict with keys:
|
||||
raw: BaseMessage
|
||||
parsed: Optional[_DictOrPydantic]
|
||||
parsing_error: Optional[BaseException]
|
||||
|
||||
If include_raw is False then just _DictOrPydantic is returned,
|
||||
where _DictOrPydantic depends on the schema:
|
||||
|
||||
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
||||
class.
|
||||
|
||||
If schema is a dict then _DictOrPydantic is a dict.
|
||||
|
||||
"""
|
||||
if kwargs:
|
||||
raise ValueError(f"Received unsupported arguments {kwargs}")
|
||||
is_pydantic_schema = isinstance(schema, type) and issubclass(schema, BaseModel)
|
||||
llm = self.bind_tools([schema])
|
||||
if is_pydantic_schema:
|
||||
output_parser: OutputParserLike = PydanticToolsParser(
|
||||
tools=[schema], # type: ignore[list-item]
|
||||
first_tool_only=True, # type: ignore[list-item]
|
||||
)
|
||||
else:
|
||||
key_name = convert_to_openai_tool(schema)["function"]["name"]
|
||||
output_parser = JsonOutputKeyToolsParser(
|
||||
key_name=key_name, first_tool_only=True
|
||||
)
|
||||
|
||||
if include_raw:
|
||||
parser_assign = RunnablePassthrough.assign(
|
||||
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
||||
)
|
||||
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
||||
parser_with_fallback = parser_assign.with_fallbacks(
|
||||
[parser_none], exception_key="parsing_error"
|
||||
)
|
||||
return RunnableMap(raw=llm) | parser_with_fallback
|
||||
else:
|
||||
return llm | output_parser
|
||||
|
||||
@@ -60,7 +60,7 @@ class HuggingFaceCrossEncoder(BaseModel, BaseCrossEncoder):
|
||||
List of scores, one for each pair.
|
||||
"""
|
||||
scores = self.client.predict(text_pairs)
|
||||
# Somes models e.g bert-multilingual-passage-reranking-msmarco
|
||||
# Some models e.g bert-multilingual-passage-reranking-msmarco
|
||||
# gives two score not_relevant and relevant as compare with the query.
|
||||
if len(scores.shape) > 1: # we are going to get the relevant scores
|
||||
scores = map(lambda x: x[1], scores)
|
||||
|
||||
@@ -6,6 +6,7 @@ import warnings
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Dict,
|
||||
Iterable,
|
||||
Iterator,
|
||||
Mapping,
|
||||
@@ -27,6 +28,7 @@ if TYPE_CHECKING:
|
||||
import pdfplumber.page
|
||||
import pypdf._page
|
||||
import pypdfium2._helpers.page
|
||||
from pypdf import PageObject
|
||||
from textractor.data.text_linearization_config import TextLinearizationConfig
|
||||
|
||||
|
||||
@@ -83,10 +85,17 @@ class PyPDFParser(BaseBlobParser):
|
||||
"""Load `PDF` using `pypdf`"""
|
||||
|
||||
def __init__(
|
||||
self, password: Optional[Union[str, bytes]] = None, extract_images: bool = False
|
||||
self,
|
||||
password: Optional[Union[str, bytes]] = None,
|
||||
extract_images: bool = False,
|
||||
*,
|
||||
extraction_mode: str = "plain",
|
||||
extraction_kwargs: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
self.password = password
|
||||
self.extract_images = extract_images
|
||||
self.extraction_mode = extraction_mode
|
||||
self.extraction_kwargs = extraction_kwargs or {}
|
||||
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]: # type: ignore[valid-type]
|
||||
"""Lazily parse the blob."""
|
||||
@@ -98,11 +107,23 @@ class PyPDFParser(BaseBlobParser):
|
||||
"`pip install pypdf`"
|
||||
)
|
||||
|
||||
def _extract_text_from_page(page: "PageObject") -> str:
|
||||
"""
|
||||
Extract text from image given the version of pypdf.
|
||||
"""
|
||||
if pypdf.__version__.startswith("3"):
|
||||
return page.extract_text()
|
||||
else:
|
||||
return page.extract_text(
|
||||
extraction_mode=self.extraction_mode, **self.extraction_kwargs
|
||||
)
|
||||
|
||||
with blob.as_bytes_io() as pdf_file_obj: # type: ignore[attr-defined]
|
||||
pdf_reader = pypdf.PdfReader(pdf_file_obj, password=self.password)
|
||||
|
||||
yield from [
|
||||
Document(
|
||||
page_content=page.extract_text()
|
||||
page_content=_extract_text_from_page(page=page)
|
||||
+ self._extract_images_from_page(page),
|
||||
metadata={"source": blob.source, "page": page_number}, # type: ignore[attr-defined]
|
||||
)
|
||||
|
||||
@@ -171,6 +171,9 @@ class PyPDFLoader(BasePDFLoader):
|
||||
password: Optional[Union[str, bytes]] = None,
|
||||
headers: Optional[Dict] = None,
|
||||
extract_images: bool = False,
|
||||
*,
|
||||
extraction_mode: str = "plain",
|
||||
extraction_kwargs: Optional[Dict] = None,
|
||||
) -> None:
|
||||
"""Initialize with a file path."""
|
||||
try:
|
||||
@@ -180,7 +183,12 @@ class PyPDFLoader(BasePDFLoader):
|
||||
"pypdf package not found, please install it with " "`pip install pypdf`"
|
||||
)
|
||||
super().__init__(file_path, headers=headers)
|
||||
self.parser = PyPDFParser(password=password, extract_images=extract_images)
|
||||
self.parser = PyPDFParser(
|
||||
password=password,
|
||||
extract_images=extract_images,
|
||||
extraction_mode=extraction_mode,
|
||||
extraction_kwargs=extraction_kwargs,
|
||||
)
|
||||
|
||||
def lazy_load(
|
||||
self,
|
||||
|
||||
@@ -5,7 +5,7 @@ import logging
|
||||
import os
|
||||
import uuid
|
||||
from http import HTTPStatus
|
||||
from typing import Any, Dict, Iterator, List, Optional, Union
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
import requests # type: ignore
|
||||
from langchain_core.documents import Document
|
||||
@@ -61,7 +61,7 @@ class PebbloSafeLoader(BaseLoader):
|
||||
self.source_path = get_loader_full_path(self.loader)
|
||||
self.source_owner = PebbloSafeLoader.get_file_owner_from_path(self.source_path)
|
||||
self.docs: List[Document] = []
|
||||
self.docs_with_id: Union[List[IndexedDocument], List[Document], List] = []
|
||||
self.docs_with_id: List[IndexedDocument] = []
|
||||
loader_name = str(type(self.loader)).split(".")[-1].split("'")[0]
|
||||
self.source_type = get_loader_type(loader_name)
|
||||
self.source_path_size = self.get_source_size(self.source_path)
|
||||
@@ -89,17 +89,13 @@ class PebbloSafeLoader(BaseLoader):
|
||||
list: Documents fetched from load method of the wrapped `loader`.
|
||||
"""
|
||||
self.docs = self.loader.load()
|
||||
# Add pebblo-specific metadata to docs
|
||||
self._add_pebblo_specific_metadata()
|
||||
if not self.load_semantic:
|
||||
self._classify_doc(self.docs, loading_end=True)
|
||||
return self.docs
|
||||
self.docs_with_id = self._index_docs()
|
||||
classified_docs = self._classify_doc(self.docs_with_id, loading_end=True)
|
||||
self.docs_with_id = self._add_semantic_to_docs(
|
||||
self.docs_with_id, classified_docs
|
||||
)
|
||||
self.docs = self._unindex_docs(self.docs_with_id) # type: ignore
|
||||
classified_docs = self._classify_doc(loading_end=True)
|
||||
self._add_pebblo_specific_metadata(classified_docs)
|
||||
if self.load_semantic:
|
||||
self.docs = self._add_semantic_to_docs(classified_docs)
|
||||
else:
|
||||
self.docs = self._unindex_docs() # type: ignore
|
||||
return self.docs
|
||||
|
||||
def lazy_load(self) -> Iterator[Document]:
|
||||
@@ -125,19 +121,14 @@ class PebbloSafeLoader(BaseLoader):
|
||||
self.docs = []
|
||||
break
|
||||
self.docs = list((doc,))
|
||||
# Add pebblo-specific metadata to docs
|
||||
self._add_pebblo_specific_metadata()
|
||||
if not self.load_semantic:
|
||||
self._classify_doc(self.docs, loading_end=True)
|
||||
yield self.docs[0]
|
||||
self.docs_with_id = self._index_docs()
|
||||
classified_doc = self._classify_doc()
|
||||
self._add_pebblo_specific_metadata(classified_doc)
|
||||
if self.load_semantic:
|
||||
self.docs = self._add_semantic_to_docs(classified_doc)
|
||||
else:
|
||||
self.docs_with_id = self._index_docs()
|
||||
classified_doc = self._classify_doc(self.docs)
|
||||
self.docs_with_id = self._add_semantic_to_docs(
|
||||
self.docs_with_id, classified_doc
|
||||
)
|
||||
self.docs = self._unindex_docs(self.docs_with_id) # type: ignore
|
||||
yield self.docs[0]
|
||||
self.docs = self._unindex_docs()
|
||||
yield self.docs[0]
|
||||
|
||||
@classmethod
|
||||
def set_discover_sent(cls) -> None:
|
||||
@@ -147,13 +138,12 @@ class PebbloSafeLoader(BaseLoader):
|
||||
def set_loader_sent(cls) -> None:
|
||||
cls._loader_sent = True
|
||||
|
||||
def _classify_doc(self, loaded_docs: list, loading_end: bool = False) -> list:
|
||||
def _classify_doc(self, loading_end: bool = False) -> dict:
|
||||
"""Send documents fetched from loader to pebblo-server. Then send
|
||||
classified documents to Daxa cloud(If api_key is present). Internal method.
|
||||
|
||||
Args:
|
||||
|
||||
loaded_docs (list): List of documents fetched from loader's load operation.
|
||||
loading_end (bool, optional): Flag indicating the halt of data
|
||||
loading by loader. Defaults to False.
|
||||
"""
|
||||
@@ -163,9 +153,8 @@ class PebbloSafeLoader(BaseLoader):
|
||||
}
|
||||
if loading_end is True:
|
||||
PebbloSafeLoader.set_loader_sent()
|
||||
doc_content = [doc.dict() for doc in loaded_docs]
|
||||
doc_content = [doc.dict() for doc in self.docs_with_id]
|
||||
docs = []
|
||||
classified_docs = []
|
||||
for doc in doc_content:
|
||||
doc_metadata = doc.get("metadata", {})
|
||||
doc_authorized_identities = doc_metadata.get("authorized_identities", [])
|
||||
@@ -183,12 +172,12 @@ class PebbloSafeLoader(BaseLoader):
|
||||
page_content = str(doc.get("page_content"))
|
||||
page_content_size = self.calculate_content_size(page_content)
|
||||
self.source_aggregate_size += page_content_size
|
||||
doc_id = doc.get("id", None) or 0
|
||||
doc_id = doc.get("pb_id", None) or 0
|
||||
docs.append(
|
||||
{
|
||||
"doc": page_content,
|
||||
"source_path": doc_source_path,
|
||||
"id": doc_id,
|
||||
"pb_id": doc_id,
|
||||
"last_modified": doc.get("metadata", {}).get("last_modified"),
|
||||
"file_owner": doc_source_owner,
|
||||
**(
|
||||
@@ -221,6 +210,7 @@ class PebbloSafeLoader(BaseLoader):
|
||||
self.source_aggregate_size
|
||||
)
|
||||
payload = Doc(**payload).dict(exclude_unset=True)
|
||||
classified_docs = {}
|
||||
# Raw payload to be sent to classifier
|
||||
if self.classifier_location == "local":
|
||||
load_doc_url = f"{self.classifier_url}{LOADER_DOC_URL}"
|
||||
@@ -228,7 +218,10 @@ class PebbloSafeLoader(BaseLoader):
|
||||
pebblo_resp = requests.post(
|
||||
load_doc_url, headers=headers, json=payload, timeout=300
|
||||
)
|
||||
classified_docs = json.loads(pebblo_resp.text).get("docs", None)
|
||||
|
||||
# Updating the structure of pebblo response docs for efficient searching
|
||||
for classified_doc in json.loads(pebblo_resp.text).get("docs", []):
|
||||
classified_docs.update({classified_doc["pb_id"]: classified_doc})
|
||||
if pebblo_resp.status_code not in [
|
||||
HTTPStatus.OK,
|
||||
HTTPStatus.BAD_GATEWAY,
|
||||
@@ -257,7 +250,21 @@ class PebbloSafeLoader(BaseLoader):
|
||||
|
||||
if self.api_key:
|
||||
if self.classifier_location == "local":
|
||||
payload["docs"] = classified_docs
|
||||
docs = payload["docs"]
|
||||
for doc_data in docs:
|
||||
classified_data = classified_docs.get(doc_data["pb_id"], {})
|
||||
doc_data.update(
|
||||
{
|
||||
"pb_checksum": classified_data.get("pb_checksum", None),
|
||||
"loader_source_path": classified_data.get(
|
||||
"loader_source_path", None
|
||||
),
|
||||
"entities": classified_data.get("entities", {}),
|
||||
"topics": classified_data.get("topics", {}),
|
||||
}
|
||||
)
|
||||
doc_data.pop("doc")
|
||||
|
||||
headers.update({"x-api-key": self.api_key})
|
||||
pebblo_cloud_url = f"{PEBBLO_CLOUD_URL}{LOADER_DOC_URL}"
|
||||
try:
|
||||
@@ -453,33 +460,29 @@ class PebbloSafeLoader(BaseLoader):
|
||||
List[IndexedDocument]: A list of IndexedDocument objects with unique IDs.
|
||||
"""
|
||||
docs_with_id = [
|
||||
IndexedDocument(id=hex(i)[2:], **doc.dict())
|
||||
IndexedDocument(pb_id=str(i), **doc.dict())
|
||||
for i, doc in enumerate(self.docs)
|
||||
]
|
||||
return docs_with_id
|
||||
|
||||
def _add_semantic_to_docs(
|
||||
self, docs_with_id: List[IndexedDocument], classified_docs: List[dict]
|
||||
) -> List[Document]:
|
||||
def _add_semantic_to_docs(self, classified_docs: Dict) -> List[Document]:
|
||||
"""
|
||||
Adds semantic metadata to the given list of documents.
|
||||
|
||||
Args:
|
||||
docs_with_id (List[IndexedDocument]): A list of IndexedDocument objects
|
||||
containing the documents with their IDs.
|
||||
classified_docs (List[dict]): A list of dictionaries containing the
|
||||
classified documents.
|
||||
classified_docs (Dict): A dictionary of dictionaries containing the
|
||||
classified documents with pb_id as key.
|
||||
|
||||
Returns:
|
||||
List[Document]: A list of Document objects with added semantic metadata.
|
||||
"""
|
||||
indexed_docs = {
|
||||
doc.id: Document(page_content=doc.page_content, metadata=doc.metadata)
|
||||
for doc in docs_with_id
|
||||
doc.pb_id: Document(page_content=doc.page_content, metadata=doc.metadata)
|
||||
for doc in self.docs_with_id
|
||||
}
|
||||
|
||||
for classified_doc in classified_docs:
|
||||
doc_id = classified_doc.get("id")
|
||||
for classified_doc in classified_docs.values():
|
||||
doc_id = classified_doc.get("pb_id")
|
||||
if doc_id in indexed_docs:
|
||||
self._add_semantic_to_doc(indexed_docs[doc_id], classified_doc)
|
||||
|
||||
@@ -487,19 +490,16 @@ class PebbloSafeLoader(BaseLoader):
|
||||
|
||||
return semantic_metadata_docs
|
||||
|
||||
def _unindex_docs(self, docs_with_id: List[IndexedDocument]) -> List[Document]:
|
||||
def _unindex_docs(self) -> List[Document]:
|
||||
"""
|
||||
Converts a list of IndexedDocument objects to a list of Document objects.
|
||||
|
||||
Args:
|
||||
docs_with_id (List[IndexedDocument]): A list of IndexedDocument objects.
|
||||
|
||||
Returns:
|
||||
List[Document]: A list of Document objects.
|
||||
"""
|
||||
docs = [
|
||||
Document(page_content=doc.page_content, metadata=doc.metadata)
|
||||
for i, doc in enumerate(docs_with_id)
|
||||
for i, doc in enumerate(self.docs_with_id)
|
||||
]
|
||||
return docs
|
||||
|
||||
@@ -522,12 +522,16 @@ class PebbloSafeLoader(BaseLoader):
|
||||
)
|
||||
return doc
|
||||
|
||||
def _add_pebblo_specific_metadata(self) -> None:
|
||||
def _add_pebblo_specific_metadata(self, classified_docs: dict) -> None:
|
||||
"""Add Pebblo specific metadata to documents."""
|
||||
for doc in self.docs:
|
||||
for doc in self.docs_with_id:
|
||||
doc_metadata = doc.metadata
|
||||
doc_metadata["full_path"] = get_full_path(
|
||||
doc_metadata.get(
|
||||
"full_path", doc_metadata.get("source", self.source_path)
|
||||
)
|
||||
)
|
||||
doc_metadata["pb_id"] = doc.pb_id
|
||||
doc_metadata["pb_checksum"] = classified_docs.get(doc.pb_id, {}).get(
|
||||
"pb_checksum", None
|
||||
)
|
||||
|
||||
@@ -7,6 +7,7 @@ from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Generator, List, Optional, Sequence, Union
|
||||
from urllib.parse import parse_qs, urlparse
|
||||
from xml.etree.ElementTree import ParseError # OK: trusted-source
|
||||
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.pydantic_v1 import root_validator
|
||||
@@ -28,6 +29,8 @@ class GoogleApiClient:
|
||||
As the google api expects credentials you need to set up a google account and
|
||||
register your Service. "https://developers.google.com/docs/api/quickstart/python"
|
||||
|
||||
*Security Note*: Note that parsing of the transcripts relies on the standard
|
||||
xml library but the input is viewed as trusted in this case.
|
||||
|
||||
|
||||
Example:
|
||||
@@ -437,6 +440,14 @@ class GoogleApiYoutubeLoader(BaseLoader):
|
||||
channel_id = response["items"][0]["id"]["channelId"]
|
||||
return channel_id
|
||||
|
||||
def _get_uploads_playlist_id(self, channel_id: str) -> str:
|
||||
request = self.youtube_client.channels().list(
|
||||
part="contentDetails",
|
||||
id=channel_id,
|
||||
)
|
||||
response = request.execute()
|
||||
return response["items"][0]["contentDetails"]["relatedPlaylists"]["uploads"]
|
||||
|
||||
def _get_document_for_channel(self, channel: str, **kwargs: Any) -> List[Document]:
|
||||
try:
|
||||
from youtube_transcript_api import (
|
||||
@@ -452,10 +463,11 @@ class GoogleApiYoutubeLoader(BaseLoader):
|
||||
)
|
||||
|
||||
channel_id = self._get_channel_id(channel)
|
||||
request = self.youtube_client.search().list(
|
||||
uploads_playlist_id = self._get_uploads_playlist_id(channel_id)
|
||||
request = self.youtube_client.playlistItems().list(
|
||||
part="id,snippet",
|
||||
channelId=channel_id,
|
||||
maxResults=50, # adjust this value to retrieve more or fewer videos
|
||||
playlistId=uploads_playlist_id,
|
||||
maxResults=50,
|
||||
)
|
||||
video_ids = []
|
||||
while request is not None:
|
||||
@@ -463,23 +475,20 @@ class GoogleApiYoutubeLoader(BaseLoader):
|
||||
|
||||
# Add each video ID to the list
|
||||
for item in response["items"]:
|
||||
if not item["id"].get("videoId"):
|
||||
continue
|
||||
meta_data = {"videoId": item["id"]["videoId"]}
|
||||
video_id = item["snippet"]["resourceId"]["videoId"]
|
||||
meta_data = {"videoId": video_id}
|
||||
if self.add_video_info:
|
||||
item["snippet"].pop("thumbnails")
|
||||
meta_data.update(item["snippet"])
|
||||
try:
|
||||
page_content = self._get_transcripe_for_video_id(
|
||||
item["id"]["videoId"]
|
||||
)
|
||||
page_content = self._get_transcripe_for_video_id(video_id)
|
||||
video_ids.append(
|
||||
Document(
|
||||
page_content=page_content,
|
||||
metadata=meta_data,
|
||||
)
|
||||
)
|
||||
except (TranscriptsDisabled, NoTranscriptFound) as e:
|
||||
except (TranscriptsDisabled, NoTranscriptFound, ParseError) as e:
|
||||
if self.continue_on_failure:
|
||||
logger.error(
|
||||
"Error fetching transscript "
|
||||
|
||||
@@ -213,6 +213,9 @@ if TYPE_CHECKING:
|
||||
from langchain_community.embeddings.tensorflow_hub import (
|
||||
TensorflowHubEmbeddings,
|
||||
)
|
||||
from langchain_community.embeddings.textembed import (
|
||||
TextEmbedEmbeddings,
|
||||
)
|
||||
from langchain_community.embeddings.titan_takeoff import (
|
||||
TitanTakeoffEmbed,
|
||||
)
|
||||
@@ -308,6 +311,7 @@ __all__ = [
|
||||
"SpacyEmbeddings",
|
||||
"SparkLLMTextEmbeddings",
|
||||
"TensorflowHubEmbeddings",
|
||||
"TextEmbedEmbeddings",
|
||||
"TitanTakeoffEmbed",
|
||||
"VertexAIEmbeddings",
|
||||
"VolcanoEmbeddings",
|
||||
@@ -392,6 +396,7 @@ _module_lookup = {
|
||||
"VolcanoEmbeddings": "langchain_community.embeddings.volcengine",
|
||||
"VoyageEmbeddings": "langchain_community.embeddings.voyageai",
|
||||
"XinferenceEmbeddings": "langchain_community.embeddings.xinference",
|
||||
"TextEmbedEmbeddings": "langchain_community.embeddings.textembed",
|
||||
"TitanTakeoffEmbed": "langchain_community.embeddings.titan_takeoff",
|
||||
"PremAIEmbeddings": "langchain_community.embeddings.premai",
|
||||
"YandexGPTEmbeddings": "langchain_community.embeddings.yandex",
|
||||
|
||||
@@ -60,7 +60,7 @@ class AscendEmbeddings(Embeddings, BaseModel):
|
||||
raise ValueError("model_path is required")
|
||||
if not os.access(values["model_path"], os.F_OK):
|
||||
raise FileNotFoundError(
|
||||
f"Unabled to find valid model path in [{values['model_path']}]"
|
||||
f"Unable to find valid model path in [{values['model_path']}]"
|
||||
)
|
||||
try:
|
||||
import torch_npu
|
||||
|
||||
@@ -61,7 +61,7 @@ class AzureOpenAIEmbeddings(OpenAIEmbeddings):
|
||||
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
|
||||
# other forms of azure credentials.
|
||||
values["openai_api_key"] = (
|
||||
values["openai_api_key"]
|
||||
values.get("openai_api_key")
|
||||
or os.getenv("AZURE_OPENAI_API_KEY")
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
@@ -75,7 +75,7 @@ class AzureOpenAIEmbeddings(OpenAIEmbeddings):
|
||||
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
|
||||
)
|
||||
values["openai_organization"] = (
|
||||
values["openai_organization"]
|
||||
values.get("openai_organization")
|
||||
or os.getenv("OPENAI_ORG_ID")
|
||||
or os.getenv("OPENAI_ORGANIZATION")
|
||||
)
|
||||
@@ -85,10 +85,10 @@ class AzureOpenAIEmbeddings(OpenAIEmbeddings):
|
||||
"OPENAI_PROXY",
|
||||
default="",
|
||||
)
|
||||
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
|
||||
values["azure_endpoint"] = values.get("azure_endpoint") or os.getenv(
|
||||
"AZURE_OPENAI_ENDPOINT"
|
||||
)
|
||||
values["azure_ad_token"] = values["azure_ad_token"] or os.getenv(
|
||||
values["azure_ad_token"] = values.get("azure_ad_token") or os.getenv(
|
||||
"AZURE_OPENAI_AD_TOKEN"
|
||||
)
|
||||
# Azure OpenAI embedding models allow a maximum of 16 texts
|
||||
|
||||
@@ -4,7 +4,7 @@ import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr
|
||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -13,10 +13,10 @@ logger = logging.getLogger(__name__)
|
||||
class QianfanEmbeddingsEndpoint(BaseModel, Embeddings):
|
||||
"""`Baidu Qianfan Embeddings` embedding models."""
|
||||
|
||||
qianfan_ak: Optional[str] = None
|
||||
qianfan_ak: Optional[SecretStr] = None
|
||||
"""Qianfan application apikey"""
|
||||
|
||||
qianfan_sk: Optional[str] = None
|
||||
qianfan_sk: Optional[SecretStr] = None
|
||||
"""Qianfan application secretkey"""
|
||||
|
||||
chunk_size: int = 16
|
||||
|
||||
356
libs/community/langchain_community/embeddings/textembed.py
Normal file
356
libs/community/langchain_community/embeddings/textembed.py
Normal file
@@ -0,0 +1,356 @@
|
||||
"""
|
||||
TextEmbed: Embedding Inference Server
|
||||
|
||||
TextEmbed provides a high-throughput, low-latency solution for serving embeddings.
|
||||
It supports various sentence-transformer models.
|
||||
Now, it includes the ability to deploy image embedding models.
|
||||
TextEmbed offers flexibility and scalability for diverse applications.
|
||||
|
||||
TextEmbed is maintained by Keval Dekivadiya and is licensed under the Apache-2.0 license.
|
||||
""" # noqa: E501
|
||||
|
||||
import asyncio
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import aiohttp
|
||||
import numpy as np
|
||||
import requests
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
__all__ = ["TextEmbedEmbeddings"]
|
||||
|
||||
|
||||
class TextEmbedEmbeddings(BaseModel, Embeddings):
|
||||
"""
|
||||
A class to handle embedding requests to the TextEmbed API.
|
||||
|
||||
Attributes:
|
||||
model : The TextEmbed model ID to use for embeddings.
|
||||
api_url : The base URL for the TextEmbed API.
|
||||
api_key : The API key for authenticating with the TextEmbed API.
|
||||
client : The TextEmbed client instance.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import TextEmbedEmbeddings
|
||||
|
||||
embeddings = TextEmbedEmbeddings(
|
||||
model="sentence-transformers/clip-ViT-B-32",
|
||||
api_url="http://localhost:8000/v1",
|
||||
api_key="<API_KEY>"
|
||||
)
|
||||
|
||||
For more information: https://github.com/kevaldekivadiya2415/textembed/blob/main/docs/setup.md
|
||||
""" # noqa: E501
|
||||
|
||||
model: str
|
||||
"""Underlying TextEmbed model id."""
|
||||
|
||||
api_url: str = "http://localhost:8000/v1"
|
||||
"""Endpoint URL to use."""
|
||||
|
||||
api_key: str = "None"
|
||||
"""API Key for authentication"""
|
||||
|
||||
client: Any = None
|
||||
"""TextEmbed client."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator(pre=False, skip_on_failure=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and URL exist in the environment.
|
||||
|
||||
Args:
|
||||
values (Dict): Dictionary of values to validate.
|
||||
|
||||
Returns:
|
||||
Dict: Validated values.
|
||||
"""
|
||||
values["api_url"] = get_from_dict_or_env(values, "api_url", "API_URL")
|
||||
values["api_key"] = get_from_dict_or_env(values, "api_key", "API_KEY")
|
||||
|
||||
values["client"] = AsyncOpenAITextEmbedEmbeddingClient(
|
||||
host=values["api_url"], api_key=values["api_key"]
|
||||
)
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to TextEmbed's embedding endpoint.
|
||||
|
||||
Args:
|
||||
texts (List[str]): The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List[List[float]]: List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = self.client.embed(
|
||||
model=self.model,
|
||||
texts=texts,
|
||||
)
|
||||
return embeddings
|
||||
|
||||
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Async call out to TextEmbed's embedding endpoint.
|
||||
|
||||
Args:
|
||||
texts (List[str]): The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List[List[float]]: List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = await self.client.aembed(
|
||||
model=self.model,
|
||||
texts=texts,
|
||||
)
|
||||
return embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to TextEmbed's embedding endpoint for a single query.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
|
||||
Returns:
|
||||
List[float]: Embeddings for the text.
|
||||
"""
|
||||
return self.embed_documents([text])[0]
|
||||
|
||||
async def aembed_query(self, text: str) -> List[float]:
|
||||
"""Async call out to TextEmbed's embedding endpoint for a single query.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
|
||||
Returns:
|
||||
List[float]: Embeddings for the text.
|
||||
"""
|
||||
embeddings = await self.aembed_documents([text])
|
||||
return embeddings[0]
|
||||
|
||||
|
||||
class AsyncOpenAITextEmbedEmbeddingClient:
|
||||
"""
|
||||
A client to handle synchronous and asynchronous requests to the TextEmbed API.
|
||||
|
||||
Attributes:
|
||||
host (str): The base URL for the TextEmbed API.
|
||||
api_key (str): The API key for authenticating with the TextEmbed API.
|
||||
aiosession (Optional[aiohttp.ClientSession]): The aiohttp session for async requests.
|
||||
_batch_size (int): Maximum batch size for a single request.
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
host: str = "http://localhost:8000/v1",
|
||||
api_key: Union[str, None] = None,
|
||||
aiosession: Optional[aiohttp.ClientSession] = None,
|
||||
) -> None:
|
||||
self.host = host
|
||||
self.api_key = api_key
|
||||
self.aiosession = aiosession
|
||||
|
||||
if self.host is None or len(self.host) < 3:
|
||||
raise ValueError("Parameter `host` must be set to a valid URL")
|
||||
self._batch_size = 256
|
||||
|
||||
@staticmethod
|
||||
def _permute(
|
||||
texts: List[str], sorter: Callable = len
|
||||
) -> Tuple[List[str], Callable]:
|
||||
"""
|
||||
Sorts texts in ascending order and provides a function to restore the original order.
|
||||
|
||||
Args:
|
||||
texts (List[str]): List of texts to sort.
|
||||
sorter (Callable, optional): Sorting function, defaults to length.
|
||||
|
||||
Returns:
|
||||
Tuple[List[str], Callable]: Sorted texts and a function to restore original order.
|
||||
""" # noqa: E501
|
||||
if len(texts) == 1:
|
||||
return texts, lambda t: t
|
||||
length_sorted_idx = np.argsort([-sorter(sen) for sen in texts])
|
||||
texts_sorted = [texts[idx] for idx in length_sorted_idx]
|
||||
|
||||
return texts_sorted, lambda unsorted_embeddings: [
|
||||
unsorted_embeddings[idx] for idx in np.argsort(length_sorted_idx)
|
||||
]
|
||||
|
||||
def _batch(self, texts: List[str]) -> List[List[str]]:
|
||||
"""
|
||||
Splits a list of texts into batches of size max `self._batch_size`.
|
||||
|
||||
Args:
|
||||
texts (List[str]): List of texts to split.
|
||||
|
||||
Returns:
|
||||
List[List[str]]: List of batches of texts.
|
||||
"""
|
||||
if len(texts) == 1:
|
||||
return [texts]
|
||||
batches = []
|
||||
for start_index in range(0, len(texts), self._batch_size):
|
||||
batches.append(texts[start_index : start_index + self._batch_size])
|
||||
return batches
|
||||
|
||||
@staticmethod
|
||||
def _unbatch(batch_of_texts: List[List[Any]]) -> List[Any]:
|
||||
"""
|
||||
Merges batches of texts into a single list.
|
||||
|
||||
Args:
|
||||
batch_of_texts (List[List[Any]]): List of batches of texts.
|
||||
|
||||
Returns:
|
||||
List[Any]: Merged list of texts.
|
||||
"""
|
||||
if len(batch_of_texts) == 1 and len(batch_of_texts[0]) == 1:
|
||||
return batch_of_texts[0]
|
||||
texts = []
|
||||
for sublist in batch_of_texts:
|
||||
texts.extend(sublist)
|
||||
return texts
|
||||
|
||||
def _kwargs_post_request(self, model: str, texts: List[str]) -> Dict[str, Any]:
|
||||
"""
|
||||
Builds the kwargs for the POST request, used by sync method.
|
||||
|
||||
Args:
|
||||
model (str): The model to use for embedding.
|
||||
texts (List[str]): List of texts to embed.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: Dictionary of POST request parameters.
|
||||
"""
|
||||
return dict(
|
||||
url=f"{self.host}/embedding",
|
||||
headers={
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
},
|
||||
json=dict(
|
||||
input=texts,
|
||||
model=model,
|
||||
),
|
||||
)
|
||||
|
||||
def _sync_request_embed(
|
||||
self, model: str, batch_texts: List[str]
|
||||
) -> List[List[float]]:
|
||||
"""
|
||||
Sends a synchronous request to the embedding endpoint.
|
||||
|
||||
Args:
|
||||
model (str): The model to use for embedding.
|
||||
batch_texts (List[str]): Batch of texts to embed.
|
||||
|
||||
Returns:
|
||||
List[List[float]]: List of embeddings for the batch.
|
||||
|
||||
Raises:
|
||||
Exception: If the response status is not 200.
|
||||
"""
|
||||
response = requests.post(
|
||||
**self._kwargs_post_request(model=model, texts=batch_texts)
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise Exception(
|
||||
f"TextEmbed responded with an unexpected status message "
|
||||
f"{response.status_code}: {response.text}"
|
||||
)
|
||||
return [e["embedding"] for e in response.json()["data"]]
|
||||
|
||||
def embed(self, model: str, texts: List[str]) -> List[List[float]]:
|
||||
"""
|
||||
Embeds a list of texts synchronously.
|
||||
|
||||
Args:
|
||||
model (str): The model to use for embedding.
|
||||
texts (List[str]): List of texts to embed.
|
||||
|
||||
Returns:
|
||||
List[List[float]]: List of embeddings for the texts.
|
||||
"""
|
||||
perm_texts, unpermute_func = self._permute(texts)
|
||||
perm_texts_batched = self._batch(perm_texts)
|
||||
|
||||
# Request
|
||||
map_args = (
|
||||
self._sync_request_embed,
|
||||
[model] * len(perm_texts_batched),
|
||||
perm_texts_batched,
|
||||
)
|
||||
if len(perm_texts_batched) == 1:
|
||||
embeddings_batch_perm = list(map(*map_args))
|
||||
else:
|
||||
with ThreadPoolExecutor(32) as p:
|
||||
embeddings_batch_perm = list(p.map(*map_args))
|
||||
|
||||
embeddings_perm = self._unbatch(embeddings_batch_perm)
|
||||
embeddings = unpermute_func(embeddings_perm)
|
||||
return embeddings
|
||||
|
||||
async def _async_request(
|
||||
self, session: aiohttp.ClientSession, **kwargs: Dict[str, Any]
|
||||
) -> List[List[float]]:
|
||||
"""
|
||||
Sends an asynchronous request to the embedding endpoint.
|
||||
|
||||
Args:
|
||||
session (aiohttp.ClientSession): The aiohttp session for the request.
|
||||
kwargs (Dict[str, Any]): Dictionary of POST request parameters.
|
||||
|
||||
Returns:
|
||||
List[List[float]]: List of embeddings for the request.
|
||||
|
||||
Raises:
|
||||
Exception: If the response status is not 200.
|
||||
"""
|
||||
async with session.post(**kwargs) as response: # type: ignore
|
||||
if response.status != 200:
|
||||
raise Exception(
|
||||
f"TextEmbed responded with an unexpected status message "
|
||||
f"{response.status}: {response.text}"
|
||||
)
|
||||
embedding = (await response.json())["data"]
|
||||
return [e["embedding"] for e in embedding]
|
||||
|
||||
async def aembed(self, model: str, texts: List[str]) -> List[List[float]]:
|
||||
"""
|
||||
Embeds a list of texts asynchronously.
|
||||
|
||||
Args:
|
||||
model (str): The model to use for embedding.
|
||||
texts (List[str]): List of texts to embed.
|
||||
|
||||
Returns:
|
||||
List[List[float]]: List of embeddings for the texts.
|
||||
"""
|
||||
perm_texts, unpermute_func = self._permute(texts)
|
||||
perm_texts_batched = self._batch(perm_texts)
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=32)
|
||||
) as session:
|
||||
embeddings_batch_perm = await asyncio.gather(
|
||||
*[
|
||||
self._async_request(
|
||||
session=session,
|
||||
**self._kwargs_post_request(model=model, texts=t),
|
||||
)
|
||||
for t in perm_texts_batched
|
||||
]
|
||||
)
|
||||
|
||||
embeddings_perm = self._unbatch(embeddings_batch_perm)
|
||||
embeddings = unpermute_func(embeddings_perm)
|
||||
return embeddings
|
||||
@@ -1,7 +1,19 @@
|
||||
from langchain_community.graph_vectorstores.extractors.gliner_link_extractor import (
|
||||
GLiNERInput,
|
||||
GLiNERLinkExtractor,
|
||||
)
|
||||
from langchain_community.graph_vectorstores.extractors.hierarchy_link_extractor import (
|
||||
HierarchyInput,
|
||||
HierarchyLinkExtractor,
|
||||
)
|
||||
from langchain_community.graph_vectorstores.extractors.html_link_extractor import (
|
||||
HtmlInput,
|
||||
HtmlLinkExtractor,
|
||||
)
|
||||
from langchain_community.graph_vectorstores.extractors.keybert_link_extractor import (
|
||||
KeybertInput,
|
||||
KeybertLinkExtractor,
|
||||
)
|
||||
from langchain_community.graph_vectorstores.extractors.link_extractor import (
|
||||
LinkExtractor,
|
||||
)
|
||||
@@ -10,8 +22,16 @@ from langchain_community.graph_vectorstores.extractors.link_extractor_adapter im
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"LinkExtractor",
|
||||
"LinkExtractorAdapter",
|
||||
"GLiNERInput",
|
||||
"GLiNERLinkExtractor",
|
||||
"HierarchyInput",
|
||||
"HierarchyLinkExtractor",
|
||||
"HtmlInput",
|
||||
"HtmlLinkExtractor",
|
||||
"KeybertInput",
|
||||
"KeybertLinkExtractor",
|
||||
"LinkExtractor",
|
||||
"LinkExtractor",
|
||||
"LinkExtractorAdapter",
|
||||
"LinkExtractorAdapter",
|
||||
]
|
||||
|
||||
@@ -0,0 +1,71 @@
|
||||
from typing import Any, Dict, Iterable, List, Optional, Set, Union
|
||||
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.graph_vectorstores.links import Link
|
||||
|
||||
from langchain_community.graph_vectorstores.extractors.link_extractor import (
|
||||
LinkExtractor,
|
||||
)
|
||||
|
||||
# TypeAlias is not available in Python 3.9, we can't use that or the newer `type`.
|
||||
GLiNERInput = Union[str, Document]
|
||||
|
||||
|
||||
class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]):
|
||||
"""Link documents with common named entities using GLiNER <https://github.com/urchade/GLiNER>."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
labels: List[str],
|
||||
*,
|
||||
kind: str = "entity",
|
||||
model: str = "urchade/gliner_mediumv2.1",
|
||||
extract_kwargs: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
"""Extract keywords using GLiNER.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
extractor = GLiNERLinkExtractor(
|
||||
labels=["Person", "Award", "Date", "Competitions", "Teams"]
|
||||
)
|
||||
results = extractor.extract_one("some long text...")
|
||||
|
||||
Args:
|
||||
labels: List of kinds of entities to extract.
|
||||
kind: Kind of links to produce with this extractor.
|
||||
model: GLiNER model to use.
|
||||
extract_kwargs: Keyword arguments to pass to GLiNER.
|
||||
"""
|
||||
try:
|
||||
from gliner import GLiNER
|
||||
|
||||
self._model = GLiNER.from_pretrained(model)
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"gliner is required for GLiNERLinkExtractor. "
|
||||
"Please install it with `pip install gliner`."
|
||||
) from None
|
||||
|
||||
self._labels = labels
|
||||
self._kind = kind
|
||||
self._extract_kwargs = extract_kwargs or {}
|
||||
|
||||
def extract_one(self, input: GLiNERInput) -> Set[Link]: # noqa: A002
|
||||
return next(iter(self.extract_many([input])))
|
||||
|
||||
def extract_many(
|
||||
self,
|
||||
inputs: Iterable[GLiNERInput],
|
||||
) -> Iterable[Set[Link]]:
|
||||
strs = [i if isinstance(i, str) else i.page_content for i in inputs]
|
||||
for entities in self._model.batch_predict_entities(
|
||||
strs, self._labels, **self._extract_kwargs
|
||||
):
|
||||
yield {
|
||||
Link.bidir(kind=f"{self._kind}:{e['label']}", tag=e["text"])
|
||||
for e in entities
|
||||
}
|
||||
@@ -0,0 +1,108 @@
|
||||
from typing import Callable, List, Set
|
||||
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.graph_vectorstores.links import Link
|
||||
|
||||
from langchain_community.graph_vectorstores.extractors.link_extractor import (
|
||||
LinkExtractor,
|
||||
)
|
||||
from langchain_community.graph_vectorstores.extractors.link_extractor_adapter import (
|
||||
LinkExtractorAdapter,
|
||||
)
|
||||
|
||||
# TypeAlias is not available in Python 3.9, we can't use that or the newer `type`.
|
||||
HierarchyInput = List[str]
|
||||
|
||||
_PARENT: str = "p:"
|
||||
_CHILD: str = "c:"
|
||||
_SIBLING: str = "s:"
|
||||
|
||||
|
||||
class HierarchyLinkExtractor(LinkExtractor[HierarchyInput]):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
kind: str = "hierarchy",
|
||||
parent_links: bool = True,
|
||||
child_links: bool = False,
|
||||
sibling_links: bool = False,
|
||||
):
|
||||
"""Extract links from a document hierarchy.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# Given three paths (in this case, within the "Root" document):
|
||||
h1 = ["Root", "H1"]
|
||||
h1a = ["Root", "H1", "a"]
|
||||
h1b = ["Root", "H1", "b"]
|
||||
|
||||
# Parent links `h1a` and `h1b` to `h1`.
|
||||
# Child links `h1` to `h1a` and `h1b`.
|
||||
# Sibling links `h1a` and `h1b` together (both directions).
|
||||
|
||||
Example use with documents:
|
||||
.. code_block: python
|
||||
transformer = LinkExtractorTransformer([
|
||||
HierarchyLinkExtractor().as_document_extractor(
|
||||
# Assumes the "path" to each document is in the metadata.
|
||||
# Could split strings, etc.
|
||||
lambda doc: doc.metadata.get("path", [])
|
||||
)
|
||||
])
|
||||
linked = transformer.transform_documents(docs)
|
||||
|
||||
Args:
|
||||
kind: Kind of links to produce with this extractor.
|
||||
parent_links: Link from a section to its parent.
|
||||
child_links: Link from a section to its children.
|
||||
sibling_links: Link from a section to other sections with the same parent.
|
||||
"""
|
||||
self._kind = kind
|
||||
self._parent_links = parent_links
|
||||
self._child_links = child_links
|
||||
self._sibling_links = sibling_links
|
||||
|
||||
def as_document_extractor(
|
||||
self, hierarchy: Callable[[Document], HierarchyInput]
|
||||
) -> LinkExtractor[Document]:
|
||||
"""Create a LinkExtractor from `Document`.
|
||||
|
||||
Args:
|
||||
hierarchy: Function that returns the path for the given document.
|
||||
|
||||
Returns:
|
||||
A `LinkExtractor[Document]` suitable for application to `Documents` directly
|
||||
or with `LinkExtractorTransformer`.
|
||||
"""
|
||||
return LinkExtractorAdapter(underlying=self, transform=hierarchy)
|
||||
|
||||
def extract_one(
|
||||
self,
|
||||
input: HierarchyInput,
|
||||
) -> Set[Link]:
|
||||
this_path = "/".join(input)
|
||||
parent_path = None
|
||||
|
||||
links = set()
|
||||
if self._parent_links:
|
||||
# This is linked from everything with this parent path.
|
||||
links.add(Link.incoming(kind=self._kind, tag=_PARENT + this_path))
|
||||
if self._child_links:
|
||||
# This is linked to every child with this as it's "parent" path.
|
||||
links.add(Link.outgoing(kind=self._kind, tag=_CHILD + this_path))
|
||||
|
||||
if len(input) >= 1:
|
||||
parent_path = "/".join(input[0:-1])
|
||||
if self._parent_links and len(input) > 1:
|
||||
# This is linked to the nodes with the given parent path.
|
||||
links.add(Link.outgoing(kind=self._kind, tag=_PARENT + parent_path))
|
||||
if self._child_links and len(input) > 1:
|
||||
# This is linked from every node with the given parent path.
|
||||
links.add(Link.incoming(kind=self._kind, tag=_CHILD + parent_path))
|
||||
if self._sibling_links:
|
||||
# This is a sibling of everything with the same parent.
|
||||
links.add(Link.bidir(kind=self._kind, tag=_SIBLING + parent_path))
|
||||
|
||||
return links
|
||||
@@ -0,0 +1,73 @@
|
||||
from typing import Any, Dict, Iterable, Optional, Set, Union
|
||||
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.graph_vectorstores.links import Link
|
||||
|
||||
from langchain_community.graph_vectorstores.extractors.link_extractor import (
|
||||
LinkExtractor,
|
||||
)
|
||||
|
||||
KeybertInput = Union[str, Document]
|
||||
|
||||
|
||||
class KeybertLinkExtractor(LinkExtractor[KeybertInput]):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
kind: str = "kw",
|
||||
embedding_model: str = "all-MiniLM-L6-v2",
|
||||
extract_keywords_kwargs: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
"""Extract keywords using KeyBERT <https://maartengr.github.io/KeyBERT/>.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
extractor = KeybertLinkExtractor()
|
||||
|
||||
results = extractor.extract_one(PAGE_1)
|
||||
|
||||
Args:
|
||||
kind: Kind of links to produce with this extractor.
|
||||
embedding_model: Name of the embedding model to use with KeyBERT.
|
||||
extract_keywords_kwargs: Keyword arguments to pass to KeyBERT's
|
||||
`extract_keywords` method.
|
||||
"""
|
||||
try:
|
||||
import keybert
|
||||
|
||||
self._kw_model = keybert.KeyBERT(model=embedding_model)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"keybert is required for KeybertLinkExtractor. "
|
||||
"Please install it with `pip install keybert`."
|
||||
) from None
|
||||
|
||||
self._kind = kind
|
||||
self._extract_keywords_kwargs = extract_keywords_kwargs or {}
|
||||
|
||||
def extract_one(self, input: KeybertInput) -> Set[Link]: # noqa: A002
|
||||
keywords = self._kw_model.extract_keywords(
|
||||
input if isinstance(input, str) else input.page_content,
|
||||
**self._extract_keywords_kwargs,
|
||||
)
|
||||
return {Link.bidir(kind=self._kind, tag=kw[0]) for kw in keywords}
|
||||
|
||||
def extract_many(
|
||||
self,
|
||||
inputs: Iterable[KeybertInput],
|
||||
) -> Iterable[Set[Link]]:
|
||||
inputs = list(inputs)
|
||||
if len(inputs) == 1:
|
||||
# Even though we pass a list, if it contains one item, keybert will
|
||||
# flatten it. This means it's easier to just call the special case
|
||||
# for one item.
|
||||
yield self.extract_one(inputs[0])
|
||||
elif len(inputs) > 1:
|
||||
strs = [i if isinstance(i, str) else i.page_content for i in inputs]
|
||||
extracted = self._kw_model.extract_keywords(
|
||||
strs, **self._extract_keywords_kwargs
|
||||
)
|
||||
for keywords in extracted:
|
||||
yield {Link.bidir(kind=self._kind, tag=kw[0]) for kw in keywords}
|
||||
@@ -555,10 +555,11 @@ class Neo4jGraph(GraphStore):
|
||||
el["labelsOrTypes"] == [BASE_ENTITY_LABEL]
|
||||
and el["properties"] == ["id"]
|
||||
for el in self.structured_schema.get("metadata", {}).get(
|
||||
"constraint"
|
||||
"constraint", []
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
if not constraint_exists:
|
||||
# Create constraint
|
||||
self.query(
|
||||
|
||||
@@ -640,6 +640,12 @@ def _import_yuan2() -> Type[BaseLLM]:
|
||||
return Yuan2
|
||||
|
||||
|
||||
def _import_you() -> Type[BaseLLM]:
|
||||
from langchain_community.llms.you import You
|
||||
|
||||
return You
|
||||
|
||||
|
||||
def _import_volcengine_maas() -> Type[BaseLLM]:
|
||||
from langchain_community.llms.volcengine_maas import VolcEngineMaasLLM
|
||||
|
||||
@@ -847,6 +853,8 @@ def __getattr__(name: str) -> Any:
|
||||
return _import_yandex_gpt()
|
||||
elif name == "Yuan2":
|
||||
return _import_yuan2()
|
||||
elif name == "You":
|
||||
return _import_you()
|
||||
elif name == "VolcEngineMaasLLM":
|
||||
return _import_volcengine_maas()
|
||||
elif name == "type_to_cls_dict":
|
||||
@@ -959,6 +967,7 @@ __all__ = [
|
||||
"Writer",
|
||||
"Xinference",
|
||||
"YandexGPT",
|
||||
"You",
|
||||
"Yuan2",
|
||||
]
|
||||
|
||||
@@ -1056,6 +1065,7 @@ def get_type_to_cls_dict() -> Dict[str, Callable[[], Type[BaseLLM]]]:
|
||||
"qianfan_endpoint": _import_baidu_qianfan_endpoint,
|
||||
"yandex_gpt": _import_yandex_gpt,
|
||||
"yuan2": _import_yuan2,
|
||||
"you": _import_you,
|
||||
"VolcEngineMaasLLM": _import_volcengine_maas,
|
||||
"SparkLLM": _import_sparkllm,
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user