Compare commits

...

397 Commits

Author SHA1 Message Date
ccurme
d0222964c1 groq, fireworks, text-splitters (#26104) 2024-09-05 13:51:41 -04:00
Chester Curme
b97307c8b4 Merge branch 'v0.3rc' into v0.3/dev_releases 2024-09-05 13:42:00 -04:00
ccurme
1ad66e70dc text-splitters[major]: update core dep + drop support for python 3.8 (#26102) 2024-09-05 13:41:28 -04:00
Bagatur
76564edd3a openai[patch]: update configurable model dumps (#26101) 2024-09-05 13:26:40 -04:00
Eugene Yurtsev
1c51e1693d core[patch]: Fix issue with adapter utility for pydantic repr (#26099)
This repr will be deleted prior to release -- it's temporarily here to
make it easy to separate code changes in langchain vs. code changes
stemming from breaking changes in pydantic
2024-09-05 12:27:01 -04:00
Bagatur
c0f886dc52 fix core version 2024-09-05 11:57:52 -04:00
Eugene Yurtsev
a267da6a3a core[minor]: Add type overload for secret_from_env factory (#26091)
Add type overload
2024-09-05 11:52:19 -04:00
Bagatur
0c63b18c1f ci 2024-09-05 11:47:56 -04:00
Bagatur
915c1e3dfb Merge branch 'v0.3rc' into v0.3/dev_releases 2024-09-05 11:41:32 -04:00
Bagatur
8da2ace99d openai[patch]: update snapshots (#26098) 2024-09-05 11:41:14 -04:00
Bagatur
81cd73cfca openai 0.2.0.dev0, anthropic 0.2.0.dev0 2024-09-05 11:07:47 -04:00
ccurme
e358846b39 core[patch]: add bedrock to load.mapping (#26094) 2024-09-05 10:56:46 -04:00
Eugene Yurtsev
3c598d25a6 core[minor]: Add get_input_jsonschema, get_output_jsonschema, get_config_jsonschema (#26034)
This PR adds methods to directly get the json schema for inputs,
outputs, and config.
Currently, it's delegating to the underlying pydantic implementation,
but this may be changed in the future to be independent of pydantic.
2024-09-05 10:36:42 -04:00
ccurme
e5aa0f938b mongo[major]: upgrade pydantic (#26053) 2024-09-05 09:05:41 -04:00
Bagatur
79c46319dd couchbase[patch]: rm pydantic usage (#26068) 2024-09-04 16:29:14 -07:00
ccurme
c5d4dfefc0 prompty[major]: upgrade pydantic (#26056) 2024-09-04 19:26:18 -04:00
ccurme
6e853501ec voyageai[major]: upgrade pydantic (#26070) 2024-09-04 18:59:13 -04:00
Bagatur
fd1f3ca213 exa[major]: use pydantic v2 (#26069) 2024-09-04 15:02:05 -07:00
Bagatur
567a4ce5aa box[major]: use pydantic v2 (#26067) 2024-09-04 14:51:53 -07:00
ccurme
923ce84aa7 robocorp[major]: upgrade pydantic (#26062) 2024-09-04 17:10:15 -04:00
Eugene Yurtsev
9379613132 langchain[major]: Upgrade langchain to be pydantic 2 compatible (#26050)
Upgrading the langchain package to be pydantic 2 compatible.

Had to remove some parts of unit tests in parsers that were relying on
spying on methods since that fails with pydantic 2. The unit tests don't
seem particularly good, so can be re-written at a future date.

Depends on: https://github.com/langchain-ai/langchain/pull/26057

Most of this PR was done using gritql for code mods, followed by some
fixes done manually to account for changes made by pydantic
2024-09-04 16:59:07 -04:00
Bagatur
c72a76237f cherry-pick 88e9e6b (#26063) 2024-09-04 13:50:42 -07:00
Bagatur
f9cafcbcb0 pinecone[patch]: rm pydantic lint script (#26052) 2024-09-04 13:49:09 -07:00
Bagatur
1fce5543bc poetry lock 2024-09-04 13:44:51 -07:00
Bagatur
88e9e6bf55 core,standard-tests[patch]: add Ser/Des test and update serialization mapping (#26042) 2024-09-04 13:38:03 -07:00
Bagatur
7f0dd4b182 fmt 2024-09-04 13:31:29 -07:00
Bagatur
5557b86a54 fmt 2024-09-04 13:31:29 -07:00
Bagatur
caf4ae3a45 fmt 2024-09-04 13:31:28 -07:00
Bagatur
c88b75ca6a fmt 2024-09-04 13:30:02 -07:00
Bagatur
e409a85a28 fmt 2024-09-04 13:29:24 -07:00
Bagatur
40634d441a make 2024-09-04 13:29:24 -07:00
Bagatur
1d2a503ab8 standard-tests[patch]: add Ser/Des test 2024-09-04 13:29:20 -07:00
ccurme
b924c61440 qdrant[major]: drop support for python 3.8 (#26061) 2024-09-04 16:22:54 -04:00
Eugene Yurtsev
efa10c8ef8 core[minor]: Add message chunks to AnyMessage (#26057)
Adds the chunk variant of each Message to AnyMessage.

Required for this PR:
https://github.com/langchain-ai/langchain/pull/26050/files
2024-09-04 15:36:22 -04:00
ccurme
0a6c67ce6a nomic: drop support for python 3.8 (#26055) 2024-09-04 15:30:00 -04:00
ccurme
ed771f2d2b huggingface[major]: upgrade pydantic (#26048) 2024-09-04 15:08:43 -04:00
ccurme
63ba12d8e0 milvus: drop support for python 3.8 (#26051)
to be consistent with core
2024-09-04 14:54:45 -04:00
Bagatur
f785cf029b pinecone[major]: Update to pydantic v2 (#26039) 2024-09-04 11:28:54 -07:00
ccurme
be7cd0756f ollama[major]: upgrade pydantic (#26044) 2024-09-04 13:54:52 -04:00
ccurme
51c6899850 groq[major]: upgrade pydantic (#26036) 2024-09-04 13:41:40 -04:00
ccurme
163d6fe8ef anthropic: update pydantic (#26000)
Migrated with gritql: https://github.com/eyurtsev/migrate-pydantic
2024-09-04 13:35:51 -04:00
ccurme
7cee7fbfad mistralai: update pydantic (#25995)
Migrated with gritql: https://github.com/eyurtsev/migrate-pydantic
2024-09-04 13:26:17 -04:00
ccurme
4799ad95d0 core[patch]: remove warnings from protected namespaces on RunnableSerializable (#26040) 2024-09-04 13:10:08 -04:00
Bagatur
88065d794b fmt 2024-09-04 09:52:01 -07:00
Bagatur
b27bfa6717 pinecone[major]: Update to pydantic v2 2024-09-04 09:50:39 -07:00
Bagatur
5adeaf0732 openai[major]: switch to pydantic v2 (#26001) 2024-09-04 09:18:29 -07:00
Bagatur
f9d91e19c5 fireworks[major]: switch to pydantic v2 (#26004) 2024-09-04 09:18:10 -07:00
Bagatur
4c7afb0d6c Update libs/partners/openai/langchain_openai/llms/base.py 2024-09-03 23:36:19 -07:00
Bagatur
c1ff61669d Update libs/partners/openai/langchain_openai/llms/base.py 2024-09-03 23:36:14 -07:00
Bagatur
54d6808c1e Update libs/partners/openai/langchain_openai/llms/azure.py 2024-09-03 23:36:08 -07:00
Bagatur
78468de2e5 Update libs/partners/openai/langchain_openai/llms/azure.py 2024-09-03 23:36:02 -07:00
Bagatur
76572f963b Update libs/partners/openai/langchain_openai/embeddings/base.py 2024-09-03 23:35:56 -07:00
Bagatur
c0448f27ba Update libs/partners/openai/langchain_openai/embeddings/base.py 2024-09-03 23:35:51 -07:00
Bagatur
179aaa4007 Update libs/partners/openai/langchain_openai/embeddings/azure.py 2024-09-03 23:35:43 -07:00
Bagatur
d072d592a1 Update libs/partners/openai/langchain_openai/embeddings/azure.py 2024-09-03 23:35:35 -07:00
Bagatur
78c454c130 Update libs/partners/openai/langchain_openai/chat_models/base.py 2024-09-03 23:35:30 -07:00
Bagatur
5199555c0d Update libs/partners/openai/langchain_openai/chat_models/base.py 2024-09-03 23:35:26 -07:00
Bagatur
5e31cd91a7 Update libs/partners/openai/langchain_openai/chat_models/azure.py 2024-09-03 23:35:21 -07:00
Bagatur
49a1f5dd47 Update libs/partners/openai/langchain_openai/chat_models/azure.py 2024-09-03 23:35:15 -07:00
Bagatur
d0cc9b022a Update libs/partners/fireworks/langchain_fireworks/chat_models.py 2024-09-03 23:30:56 -07:00
Bagatur
a91bd2737a Update libs/partners/fireworks/langchain_fireworks/chat_models.py 2024-09-03 23:30:49 -07:00
Bagatur
5ad2b8ce80 Merge branch 'v0.3rc' into bagatur/fireworks_0.3 2024-09-03 23:29:07 -07:00
Bagatur
b78764599b Merge branch 'v0.3rc' into bagatur/openai_attempt_2 2024-09-03 23:28:50 -07:00
Bagatur
2888e34f53 infra: remove pydantic v1 tests (#26006) 2024-09-03 23:27:52 -07:00
Bagatur
dd4418a503 rm requires 2024-09-03 23:26:13 -07:00
Bagatur
a976f2071b Merge branch 'v0.3rc' into bagatur/rm_pydantic_v1_ci 2024-09-03 19:06:22 -07:00
Eugene Yurtsev
5f98975be0 core[patch]: Fix injected args in tool signature (#25991)
- Fix injected args in tool signature
- Fix another unit test that was using the wrong namespace import in
pydantic
2024-09-03 21:53:50 -04:00
Bagatur
0529c991ce rm 2024-09-03 18:02:12 -07:00
Bagatur
954abcce59 infra: remove pydantic v1 tests 2024-09-03 18:01:34 -07:00
Bagatur
6ad515d34e Merge branch 'v0.3rc' into bagatur/fireworks_0.3 2024-09-03 17:51:46 -07:00
Bagatur
99348e1614 Merge branch 'v0.3rc' into bagatur/openai_attempt_2 2024-09-03 17:51:27 -07:00
Bagatur
2c742cc20d standard-tests[major]: use pydantic v2 (#26005) 2024-09-03 17:50:45 -07:00
Bagatur
02f87203f7 standard-tests[major]: use pydantic v2 2024-09-03 17:48:20 -07:00
Bagatur
56163481dd fmt 2024-09-03 17:46:41 -07:00
Bagatur
6aac2eeab5 fmt 2024-09-03 17:42:22 -07:00
Bagatur
559d8a4d13 fireworks[major]: switch to pydantic v2 2024-09-03 17:41:28 -07:00
Bagatur
ec9e8eb71c fmt 2024-09-03 17:24:24 -07:00
Bagatur
9399df7777 fmt 2024-09-03 16:57:42 -07:00
Bagatur
5fc1104d00 fmt 2024-09-03 16:51:14 -07:00
Bagatur
6777106fbe fmt 2024-09-03 16:50:17 -07:00
Bagatur
5f5287c3b0 fmt 2024-09-03 16:48:53 -07:00
Bagatur
615f8b0d47 openai[major]: switch to pydantic v2 2024-09-03 16:33:35 -07:00
Bagatur
9a9ab65030 merge master correctly (#25999) 2024-09-03 14:57:29 -07:00
Bagatur
241b6d2355 Revert "merge master (#25997)" (#25998) 2024-09-03 14:55:28 -07:00
Bagatur
91e09ffee5 merge master (#25997)
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-09-03 14:51:26 -07:00
Eugene Yurtsev
8e4bae351e core[major]: Drop python 3.8 support (#25996)
Drop python 3.8 support as EOL is 2024 October
2024-09-03 14:47:27 -07:00
Eugene Yurtsev
bc3b851f08 openai[patch]: Upgrade @root_validators in preparation for pydantic 2 migration (#25491)
* Upgrade @root_validator in openai pkg
* Ran notebooks for all but AzureAI embeddings

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-03 14:42:24 -07:00
Erick Friis
0da201c1d5 core: fix lint 0.3rc (#25993) 2024-09-03 17:13:52 -04:00
Erick Friis
29413a22e1 infra: also run lint/test on rc (#25992) 2024-09-03 14:02:49 -07:00
Eugene Yurtsev
ae5a574aa5 core[major]: Upgrade langchain-core to pydantic 2 (#25986)
This PR upgrades core to pydantic 2.

It involves a combination of manual changes together with automated code
mods using gritql.

Changes and known issues:

1. Current models override __repr__ to be consistent with pydantic 1
(this will be removed in a follow up PR)
Related:
https://github.com/langchain-ai/langchain/pull/25986/files#diff-e5bd296179b7a72fcd4ea5cfa28b145beaf787da057e6d122aa76ee0bb8132c9R74
2. Issue with decorator for BaseChatModel
(https://github.com/langchain-ai/langchain/pull/25986/files#diff-932bf3b314b268754ef640a5b8f52da96f9024fb81dd388dcd166b5713ecdf66R202)
-- cc @baskaryan
3. `name` attribute in Base Runnable does not have a default -- was
raising a pydantic warning due to override. We need to see if there's a
way to fix to avoid making a breaking change for folks with custom
runnables.
(https://github.com/langchain-ai/langchain/pull/25986/files#diff-836773d27f8565f4dd45e9d6cf828920f89991a880c098b7511e0d3bb78a8a0dR238)
4. Likely can remove hard-coded RunnableBranch name
(https://github.com/langchain-ai/langchain/pull/25986/files#diff-72894b94f70b1bfc908eb4d53f5ff90bb33bf8a4240a5e34cae48ddc62ac313aR147)
5. `model_*` namespace is reserved in pydantic. We'll need to specify
`protected_namespaces`
6. create_model does not have a cached path yet
7. get_input_schema() in many places has been updated to be explicit
about whether parameters are required or optional
8. injected tool args aren't picked up properly (losing type annotation)

For posterity the following gritql migrations were used:

```
engine marzano(0.1)
language python

or {
    `from $IMPORT import $...` where {
        $IMPORT <: contains `pydantic_v1`,
        $IMPORT => `pydantic`
    },
    `$X.update_forward_refs` => `$X.model_rebuild`,
  // This pattern still needs fixing as it fails (populate_by_name vs.
  // allow_populate_by_name)
  class_definition($name, $body) as $C where {
      $name <: `Config`,
      $body <: block($statements),
      $t = "",
      $statements <: some bubble($t) assignment(left=$x, right=$y) as $A where {    
        or {
            $x <: `allow_population_by_field_name` where {
                $t += `populate_by_name=$y,`
            },
            $t += `$x=$y,`
        }
      },
      $C => `model_config = ConfigDict($t)`,
      add_import(source="pydantic", name="ConfigDict")
  }
}

```



```
engine marzano(0.1)
language python

`@root_validator(pre=True)` as $decorator where {
    $decorator <: before function_definition($body, $return_type),
    $decorator => `@model_validator(mode="before")\n@classmethod`,
    add_import(source="pydantic", name="model_validator"),
    $return_type => `Any`
}
```

```
engine marzano(0.1)
language python

`@root_validator(pre=False, skip_on_failure=True)` as $decorator where {
    $decorator <: before function_definition($body, $parameters, $return_type) where {
        $body <: contains bubble or {
            `values["$Q"]` => `self.$Q`,
            `values.get("$Q")` => `(self.$Q or None)`,
            `values.get($Q, $...)` as $V where {
                $Q <: contains `"$QName"`,
                $V => `self.$QName`,
            },
            `return $Q` => `return self`
        }
    },
    $decorator => `@model_validator(mode="after")`,
    // Silly work around a bug in grit
    // Adding Self to pydantic and then will replace it with one from typing
    add_import(source="pydantic", name="model_validator"),
    $parameters => `self`,
    $return_type => `Self`
}

```

```
grit apply --language python '`Self` where { add_import(source="typing_extensions", name="Self")}'
```
2024-09-03 16:30:44 -04:00
Tom Daniel Grande
0207dc1431 community: delta in openai choice can be None, creates handler for that (#25954)
Thank you for contributing to LangChain!

- [X ] **PR title**

- [X ] **PR message**: 

     **Description:** adds a handler for when delta choice is None

     **Issue:** Fixes #25951
     **Dependencies:** Not applicable


- [ X] **Add tests and docs**: Not applicable

- [X ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-03 20:30:03 +00:00
Erick Friis
5a0e82c31c infra: fix 0.3rc ci check (#25988) 2024-09-03 12:20:08 -07:00
Bagatur
9eb9ff52c0 experimental[patch]: Release 0.0.65 (#25987) 2024-09-03 19:15:48 +00:00
Bagatur
bc3b02651c standard-tests[patch]: test init from env vars (#25983) 2024-09-03 19:05:39 +00:00
Bagatur
ac922105ad infra: rm ai21 from CI (#25984) 2024-09-03 11:47:27 -07:00
Bagatur
0af447c90b community[patch]: Release 0.2.16 (#25982) 2024-09-03 18:34:18 +00:00
Dan O'Donovan
f49da71e87 community[patch]: change default Neo4j username/password (#25226)
**Description:**

Change the default Neo4j username/password (when not supplied as
environment variable or in code) from `None` to `""`.

Neo4j has an option to [disable
auth](https://neo4j.com/docs/operations-manual/current/configuration/configuration-settings/#config_dbms.security.auth_enabled)
which is helpful when developing. When auth is disabled, the username /
password through the `neo4j` module should be `""` (ie an empty string).

Empty strings get marked as false in
`langchain_core.utils.env.get_from_dict_or_env` -- changing this code /
behaviour would have a wide impact and is undesirable.

In order to both _allow_ access to Neo4j with auth disabled and _not_
impact `langchain_core` this patch is presented. The downside would be
that if a user forgets to set NEO4J_USERNAME or NEO4J_PASSWORD they
would see an invalid credentials error rather than missing credentials
error. This could be mitigated but would result in a less elegant patch!

**Issue:**
Fix issue where langchain cannot communicate with Neo4j if Neo4j auth is
disabled.
2024-09-03 11:24:18 -07:00
Bagatur
035d8cf51b milvus[patch]: Release 0.1.5 (#25981) 2024-09-03 18:19:51 +00:00
Bagatur
1dfc8c01af langchain[patch]: Release 0.2.16 (#25977) 2024-09-03 18:10:21 +00:00
Bagatur
fb642e1e27 text-splitters[patch]: Release 0.2.4 (#25979) 2024-09-03 18:09:43 +00:00
Erick Friis
8590b421c4 infra: ignore core dependents for 0.3rc (#25980) 2024-09-03 11:06:45 -07:00
Bagatur
7457949619 mistralai[patch]: Release 0.1.13 (#25978) 2024-09-03 18:03:15 +00:00
Bagatur
0c69c9fb3f core[patch]: Release 0.2.38 (#25974) 2024-09-03 17:31:41 +00:00
Eugene Yurtsev
fa8402ea09 core[minor]: Add support for multiple env keys for secrets_from_env (#25971)
- Add support to look up secret using more than one env variable
- Add overload to help mypy

Needed for https://github.com/langchain-ai/langchain/pull/25491
2024-09-03 11:39:54 -04:00
Maximilian Schulz
fdeaff4149 langchain-mistralai - make base URL possible to set via env variable for ChatMistralAI (#25956)
Thank you for contributing to LangChain!


**Description:** 

Similar to other packages (`langchain_openai`, `langchain_anthropic`) it
would be beneficial if that `ChatMistralAI` model could fetch the API
base URL from the environment.

This PR allows this via the following order:
- provided value
- then whatever `MISTRAL_API_URL` is set to
- then whatever `MISTRAL_BASE_URL` is set to
- if `None`, then default is ` "https://api.mistral.com/v1"`


- [x] **Add tests and docs**:

Added unit tests, docs I feel are unnecessary, as this is just aligning
with other packages that do the same?


- [x] **Lint and test**: 

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-09-03 14:32:35 +00:00
Jorge Piedrahita Ortiz
c7154a4045 community: sambastudio llms api v2 support (#25063)
- **Description:** SambaStudio GenericV2 API support
2024-09-03 10:18:15 -04:00
ZhangShenao
8d784db107 docs: Add missing args in api doc of WebResearchRetriever (#25949)
Add missing args in api doc of `WebResearchRetriever`
2024-09-03 01:24:23 -07:00
Bagatur
da113f6363 docs: ChatOpenAI.with_structured_output nits (#25952) 2024-09-03 08:20:58 +00:00
Bagatur
5b99bb2437 docs: fix bullet list spacing (#25950)
Fix #25935
2024-09-03 08:12:58 +00:00
Yuki Watanabe
ef329f6819 docs: Fix databricks doc (#25941)
https://github.com/langchain-ai/langchain/pull/25929 broke the layout
because of missing `:::` for the caution clause.

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
2024-09-02 18:17:47 -07:00
Bagatur
f872c50b3f docs: installation nits (#24484) 2024-09-03 01:05:08 +00:00
Isaac Francisco
4833375200 community[patch]: added option to change how duckduckgosearchresults tool converts api outputs into string (#22580)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-02 22:42:19 +00:00
JonZeolla
78ff51ce83 community[patch]: update the default hf bge embeddings (#22627)
**Description:** This updates the langchain_community > huggingface >
default bge embeddings ([the current default recommends this
change](https://huggingface.co/BAAI/bge-large-en))
**Issue:** None
**Dependencies:** None
**Twitter handle:** @jonzeolla

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-02 22:10:21 +00:00
Leonid Ganeline
150251fd49 docs: integrations reference updates 13 (#25711)
Added missed provider pages and links. Fixed inconsistent formatting.
Added arxiv references to docstirngs.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-09-02 22:08:50 +00:00
Yuki Watanabe
64dfdaa924 docs: Add Databricks integration (#25929)
Updating the gateway pages in the documentation to name the
`langchain-databricks` integration.

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-02 22:05:40 +00:00
Bagatur
933bc0d6ff core[patch]: support additional kwargs on StructuredPrompt (#25645) 2024-09-02 14:55:26 -07:00
Yash Parmar
51dae57357 community[minor]: jina search tools integrating (jina reader) (#23339)
- **PR title**: "community: add Jina Search tool"
- **Description:** Added the Jina Search tool for querying the Jina
search API. This includes the implementation of the JinaSearchAPIWrapper
and the JinaSearch tool, along with a Jupyter notebook example
demonstrating its usage.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** [Twitter
handle](https://x.com/yashp3020?t=7wM0gQ7XjGciFoh9xaBtqA&s=09)


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-09-02 14:52:14 -07:00
Matthew DeGenaro
66828f4ecc text-splitters[patch]: Modified SpacyTextSplitter to fully keep whitespace when strip_whitespace is false (#23272)
Previously, regardless of whether or not strip_whitespace was set to
true or false, the strip text method in the SpacyTextSplitter class used
`sent.text` to get the sentence. I modified this to include a ternary
such that if strip_whitespace is false, it uses `sent.text_with_ws`
I also modified the project.toml to include the spacy pipeline package
and to lock the numpy version, as higher versions break spacy.

- **Issue:** N/a
- **Dependencies:** None
2024-09-02 21:15:56 +00:00
Qingchuan Hao
3145995ed9 community[patch]: BingSearchResults returns raw snippets as artifact(#23304)
Returns an array of results which is more specific and easier for later
use.

Tested locally:
```
resp = tool.invoke("what's the weather like in Shanghai?")
for item in resp:
    print(item)
```
returns
```
{'snippet': '<b>Shanghai</b>, <b>Shanghai</b>, China <b>Weather</b> Forecast, with current conditions, wind, air quality, and what to expect for the next 3 days.', 'title': 'Shanghai, Shanghai, China Weather Forecast | AccuWeather', 'link': 'https://www.accuweather.com/en/cn/shanghai/106577/weather-forecast/106577'}
{'snippet': '5. 99 / 87 °F. 6. 99 / 86 °F. 7. Detailed forecast for 14 days. Need some help? Current <b>weather</b> <b>in Shanghai</b> and forecast for today, tomorrow, and next 14 days.', 'title': 'Weather for Shanghai, Shanghai Municipality, China - timeanddate.com', 'link': 'https://www.timeanddate.com/weather/china/shanghai'}
{'snippet': '<b>Shanghai</b> - <b>Weather</b> warnings issued 14-day forecast. <b>Weather</b> warnings issued. Forecast - <b>Shanghai</b>. Day by day forecast. Last updated Friday at 01:05. Tonight, ... Temperature feels <b>like</b> 34 ...', 'title': 'Shanghai - BBC Weather', 'link': 'https://www.bbc.com/weather/1796236'}
{'snippet': 'Current <b>weather</b> <b>in Shanghai</b>, <b>Shanghai</b>, China. Check current conditions <b>in Shanghai</b>, <b>Shanghai</b>, China with radar, hourly, and more.', 'title': 'Shanghai, Shanghai, China Current Weather | AccuWeather', 'link': 'https://www.accuweather.com/en/cn/shanghai/106577/current-weather/106577'}
13-Day Beijing, Xi&#39;an, Chengdu, <b>Shanghai</b> Chinese Language and Culture Immersion Tour. <b>Shanghai</b> in September. Average daily temperature range: 23–29°C (73–84°F) Average rainy days: 10. Average sunny days: 20. September ushers in pleasant autumn <b>weather</b>, making it one of the best months to visit <b>Shanghai</b>. <b>Weather</b> in <b>Shanghai</b>: Climate, Seasons, and Average Monthly Temperature. <b>Shanghai</b> has a subtropical maritime monsoon climate, meaning high humidity and lots of rain. Hot muggy summers, cool falls, cold winters with little snow, and warm springs are the norm. Midsummer through early fall is the best time to visit <b>Shanghai</b>. <b>Shanghai</b>, <b>Shanghai</b>, China <b>Weather</b> Forecast, with current conditions, wind, air quality, and what to expect for the next 3 days. 1165. 45.9. 121. Winter, from December to February, is quite cold: the average January temperature is 5 °C (41 °F). There may be cold periods, with highs around 5 °C (41 °F) or below, and occasionally, even snow can fall. The temperature dropped to -10 °C (14 °F) in January 1977 and to -7 °C (19.5 °F) in January 2016. 5. 99 / 87 °F. 6. 99 / 86 °F. 7. Detailed forecast for 14 days. Need some help? Current <b>weather</b> in <b>Shanghai</b> and forecast for today, tomorrow, and next 14 days. Everything you need to know about today&#39;s <b>weather</b> in <b>Shanghai</b>, <b>Shanghai</b>, China. High/Low, Precipitation Chances, Sunrise/Sunset, and today&#39;s Temperature History. <b>Shanghai</b> - <b>Weather</b> warnings issued 14-day forecast. <b>Weather</b> warnings issued. Forecast - <b>Shanghai</b>. Day by day forecast. Last updated Friday at 01:05. Tonight, ... Temperature feels <b>like</b> 34 ... <b>Shanghai</b> 14 Day Extended Forecast. <b>Weather</b> Today <b>Weather</b> Hourly 14 Day Forecast Yesterday/Past <b>Weather</b> Climate (Averages) Currently: 84 °F. Passing clouds. (<b>Weather</b> station: <b>Shanghai</b> Hongqiao Airport, China). See more current <b>weather</b>. Current <b>weather</b> in <b>Shanghai</b>, <b>Shanghai</b>, China. Check current conditions in <b>Shanghai</b>, <b>Shanghai</b>, China with radar, hourly, and more. <b>Shanghai</b> <b>Weather</b> Forecasts. <b>Weather Underground</b> provides local &amp; long-range <b>weather</b> forecasts, weatherreports, maps &amp; tropical <b>weather</b> conditions for the <b>Shanghai</b> area.
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-02 21:11:32 +00:00
venkatram-dev
a09e2afee4 typo_summarization_tutorial (#25938)
Thank you for contributing to LangChain!

- [ ] **PR title**:
docs: fix typo in summarization_tutorial


- [ ] **PR message**: 
docs: fix couple of typos in summarization_tutorial

- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-09-02 13:44:11 -07:00
Alexander KIRILOV
6a8f8a56ac community[patch]: added content_columns option to CSVLoader (#23809)
**Description:** 
Adding a new option to the CSVLoader that allows us to implicitly
specify the columns that are used for generating the Document content.
Currently these are implicitly set as "all fields not part of the
metadata_columns".

In some cases however it is useful to have a field both as a metadata
and as part of the document content.
2024-09-02 20:25:53 +00:00
Bruno Alvisio
ab527027ac community: Resolve refs recursively when generating openai_fn from OpenAPI spec (#19002)
- **Description:** This PR is intended to improve the generation of
payloads for OpenAI functions when converting from an OpenAPI spec file.
The solution is to recursively resolve `$refs`.
Currently when converting OpenAPI specs into OpenAI functions using
`openapi_spec_to_openai_fn`, if the schemas have nested references, the
generated functions contain `$ref` that causes the LLM to generate
payloads with an incorrect schema.

For example, for the for OpenAPI spec:

```
text = """
{
  "openapi": "3.0.3",
  "info": {
    "title": "Swagger Petstore - OpenAPI 3.0",
    "termsOfService": "http://swagger.io/terms/",
    "contact": {
      "email": "apiteam@swagger.io"
    },
    "license": {
      "name": "Apache 2.0",
      "url": "http://www.apache.org/licenses/LICENSE-2.0.html"
    },
    "version": "1.0.11"
  },
  "externalDocs": {
    "description": "Find out more about Swagger",
    "url": "http://swagger.io"
  },
  "servers": [
    {
      "url": "https://petstore3.swagger.io/api/v3"
    }
  ],
  "tags": [
    {
      "name": "pet",
      "description": "Everything about your Pets",
      "externalDocs": {
        "description": "Find out more",
        "url": "http://swagger.io"
      }
    },
    {
      "name": "store",
      "description": "Access to Petstore orders",
      "externalDocs": {
        "description": "Find out more about our store",
        "url": "http://swagger.io"
      }
    },
    {
      "name": "user",
      "description": "Operations about user"
    }
  ],
  "paths": {
    "/pet": {
      "post": {
        "tags": [
          "pet"
        ],
        "summary": "Add a new pet to the store",
        "description": "Add a new pet to the store",
        "operationId": "addPet",
        "requestBody": {
          "description": "Create a new pet in the store",
          "content": {
            "application/json": {
              "schema": {
                "$ref": "#/components/schemas/Pet"
              }
            }
          },
          "required": true
        },
        "responses": {
          "200": {
            "description": "Successful operation",
            "content": {
              "application/json": {
                "schema": {
                  "$ref": "#/components/schemas/Pet"
                }
              }
            }
          }
        }
      }
    }
  },
  "components": {
    "schemas": {
      "Tag": {
        "type": "object",
        "properties": {
          "id": {
            "type": "integer",
            "format": "int64"
          },
          "model_type": {
            "type": "number"
          }
        }
      },
      "Category": {
        "type": "object",
        "required": [
          "model",
          "year",
          "age"
        ],
        "properties": {
          "year": {
            "type": "integer",
            "format": "int64",
            "example": 1
          },
          "model": {
            "type": "string",
            "example": "Ford"
          },
          "age": {
            "type": "integer",
            "example": 42
          }
        }
      },
      "Pet": {
        "required": [
          "name"
        ],
        "type": "object",
        "properties": {
          "id": {
            "type": "integer",
            "format": "int64",
            "example": 10
          },
          "name": {
            "type": "string",
            "example": "doggie"
          },
          "category": {
            "$ref": "#/components/schemas/Category"
          },
          "tags": {
            "type": "array",
            "items": {
              "$ref": "#/components/schemas/Tag"
            }
          },
          "status": {
            "type": "string",
            "description": "pet status in the store",
            "enum": [
              "available",
              "pending",
              "sold"
            ]
          }
        }
      }
    }
  }
}
"""
```

Executing:
```
spec = OpenAPISpec.from_text(text)
pet_openai_functions, pet_callables = openapi_spec_to_openai_fn(spec)
response = model.invoke("Create a pet named Scott", functions=pet_openai_functions)
```

`pet_open_functions` contains unresolved `$refs`:

```
[
  {
    "name": "addPet",
    "description": "Add a new pet to the store",
    "parameters": {
      "type": "object",
      "properties": {
        "json": {
          "properties": {
            "id": {
              "type": "integer",
              "schema_format": "int64",
              "example": 10
            },
            "name": {
              "type": "string",
              "example": "doggie"
            },
            "category": {
              "ref": "#/components/schemas/Category"
            },
            "tags": {
              "items": {
                "ref": "#/components/schemas/Tag"
              },
              "type": "array"
            },
            "status": {
              "type": "string",
              "enum": [
                "available",
                "pending",
                "sold"
              ],
              "description": "pet status in the store"
            }
          },
          "type": "object",
          "required": [
            "name",
            "photoUrls"
          ]
        }
      }
    }
  }
]
```

and the generated JSON has an incorrect schema (e.g. category is filled
with `id` and `name` instead of `model`, `year` and `age`:

```
{
  "id": 1,
  "name": "Scott",
  "category": {
    "id": 1,
    "name": "Dogs"
  },
  "tags": [
    {
      "id": 1,
      "name": "tag1"
    }
  ],
  "status": "available"
}
```

With this change, the generated JSON by the LLM becomes,
`pet_openai_functions` becomes:

```
[
  {
    "name": "addPet",
    "description": "Add a new pet to the store",
    "parameters": {
      "type": "object",
      "properties": {
        "json": {
          "properties": {
            "id": {
              "type": "integer",
              "schema_format": "int64",
              "example": 10
            },
            "name": {
              "type": "string",
              "example": "doggie"
            },
            "category": {
              "properties": {
                "year": {
                  "type": "integer",
                  "schema_format": "int64",
                  "example": 1
                },
                "model": {
                  "type": "string",
                  "example": "Ford"
                },
                "age": {
                  "type": "integer",
                  "example": 42
                }
              },
              "type": "object",
              "required": [
                "model",
                "year",
                "age"
              ]
            },
            "tags": {
              "items": {
                "properties": {
                  "id": {
                    "type": "integer",
                    "schema_format": "int64"
                  },
                  "model_type": {
                    "type": "number"
                  }
                },
                "type": "object"
              },
              "type": "array"
            },
            "status": {
              "type": "string",
              "enum": [
                "available",
                "pending",
                "sold"
              ],
              "description": "pet status in the store"
            }
          },
          "type": "object",
          "required": [
            "name"
          ]
        }
      }
    }
  }
]
```

and the JSON generated by the LLM is:
```
{
  "id": 1,
  "name": "Scott",
  "category": {
    "year": 2022,
    "model": "Dog",
    "age": 42
  },
  "tags": [
    {
      "id": 1,
      "model_type": 1
    }
  ],
  "status": "available"
}
```

which has the intended schema.

    - **Twitter handle:**: @brunoalvisio

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-09-02 13:17:39 -07:00
Nuno Campos
464dae8ac2 core: Include global variables in variables found by get_function_nonlocals (#25936)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-09-02 11:49:25 -07:00
Luiz F. G. dos Santos
36bbdc776e community: fix bug to support for file_search tool from OpenAI (#25927)
- **Description:** The function `_is_assistants_builtin_tool` didn't had
support for `file_search` from OpenAI. This was creating conflict and
blocking the usage of such. OpenAI Assistant changed from`retrieval` to
`file_search`.
  
  The following code
  
  ```
              agent = OpenAIAssistantV2Runnable.create_assistant(
                name="Data Analysis Assistant",
                instructions=prompt[0].content,
                tools={'type': 'file_search'},
                model=self.chat_config.connection.deployment_name,
                client=llm,
                as_agent=True,
                tool_resources={
                    "file_search": {
                        "vector_store_ids": vector_store_id
                        }
                    }
                )
```

Was throwing the following error

```
Traceback (most recent call last):
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/chat_decorators.py",
line 500, in get_response
    return await super().get_response(post, context)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/chat_decorators.py",
line 96, in get_response
    response = await self.inner_chat.get_response(post, context)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/chat_decorators.py",
line 96, in get_response
    response = await self.inner_chat.get_response(post, context)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/chat_decorators.py",
line 96, in get_response
    response = await self.inner_chat.get_response(post, context)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  [Previous line repeated 4 more times]
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/azure_open_ai_chat.py",
line 147, in get_response
chain = chain_factory.get_chain(prompts, post.conversation.id,
overrides, context)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/llm_connections/chains.py",
line 1324, in get_chain
    agent = OpenAIAssistantV2Runnable.create_assistant(
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_community/agents/openai_assistant/base.py",
line 256, in create_assistant
tools=[_get_assistants_tool(tool) for tool in tools], # type: ignore
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_community/agents/openai_assistant/base.py",
line 256, in <listcomp>
tools=[_get_assistants_tool(tool) for tool in tools], # type: ignore
           ^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_community/agents/openai_assistant/base.py",
line 119, in _get_assistants_tool
    return convert_to_openai_tool(tool)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_core/utils/function_calling.py",
line 255, in convert_to_openai_tool
    function = convert_to_openai_function(tool)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_core/utils/function_calling.py",
line 230, in convert_to_openai_function
    raise ValueError(
ValueError: Unsupported function

{'type': 'file_search'}

Functions must be passed in as Dict, pydantic.BaseModel, or Callable. If
they're a dict they must either be in OpenAI function format or valid
JSON schema with top-level 'title' and 'description' keys.
```

With the proposed changes, this is fixed and the function will have support for `file_search`.
  This was the only place missing the support for `file_search`.
  
  Reference doc
  https://platform.openai.com/docs/assistants/tools/file-search
  
  
  - **Twitter handle:** luizf0992

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-09-02 18:21:51 +00:00
Jacob Lee
f49cce739b 👥 Update LangChain people data (#25917)
👥 Update LangChain people data

Co-authored-by: github-actions <github-actions@github.com>
2024-09-02 11:14:35 -07:00
Leonid Ganeline
96b99a5022 docs: integrations google missed references (#25923)
Added missed integration links. Fixed inconsistent formatting.
2024-09-02 11:14:18 -07:00
Leonid Ganeline
086556d466 docs: integrations reference updates 14 (#25928)
Added missed provider pages and links. Fixed inconsistent formatting.
2024-09-02 11:07:45 -07:00
Tyler Wray
1ff8c36aa6 docs: fix pgvector link (#25930)
- **Description:** pg_vector link is 404'ing. This fixes it.
2024-09-02 18:03:19 +00:00
xander-art
6cd452d985 Feature/update hunyuan (#25779)
Description: 
    - Add system templates and user templates in integration testing
    - initialize the response id field value to request_id
    - Adjust the default model to hunyuan-pro
    - Remove the default values of Temperature and TopP
    - Add SystemMessage

all the integration tests have passed.
1、Execute integration tests for the first time
<img width="1359" alt="71ca77a2-e9be-4af6-acdc-4d665002bd9b"
src="https://github.com/user-attachments/assets/9298dc3a-aa26-4bfa-968b-c011a4e699c9">

2、Run the integration test a second time
<img width="1501" alt="image"
src="https://github.com/user-attachments/assets/61335416-4a67-4840-bb89-090ba668e237">

Issue: None
Dependencies: None
Twitter handle: None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-09-02 12:55:08 +00:00
Yuwen Hu
566e9ba164 community: add Intel GPU support to ipex-llm llm integration (#22458)
**Description:** [IPEX-LLM](https://github.com/intel-analytics/ipex-llm)
is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local
PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low
latency. This PR adds Intel GPU support to `ipex-llm` llm integration.
**Dependencies:** `ipex-llm`
**Contribution maintainer**: @ivy-lv11 @Oscilloscope98
**tests and docs**: 
- Add: langchain/docs/docs/integrations/llms/ipex_llm_gpu.ipynb
- Update: langchain/docs/docs/integrations/llms/ipex_llm_gpu.ipynb
- Update: langchain/libs/community/tests/llms/test_ipex_llm.py

---------

Co-authored-by: ivy-lv11 <zhicunlv@gmail.com>
2024-09-02 08:49:08 -04:00
Bagatur
d19e074374 core[patch]: handle serializable fields that cant be converted to bool (#25903) 2024-09-01 16:44:33 -07:00
Kirushikesh DB
7f857a02d5 docs: HuggingFace pipeline returns the prompt if return_full_text is not set (#25916)
Thank you for contributing to LangChain!

**Description:**
The current documentation of using the Huggingface with Langchain needs
to set return_full_text as False otherwise pipeline by default returns
both the prompt and response as output.


Code to reproduce:
```python
from langchain_huggingface import ChatHuggingFace, HuggingFacePipeline
from langchain_core.messages import (
    HumanMessage,
    SystemMessage,
)

llm = HuggingFacePipeline.from_model_id(
    model_id="microsoft/Phi-3.5-mini-instruct",
    task="text-generation",
    pipeline_kwargs=dict(
        max_new_tokens=512,
        do_sample=False,
        repetition_penalty=1.03,
        # return_full_text=False
    ),
    device=0
)

chat_model = ChatHuggingFace(llm=llm)

messages = [
    SystemMessage(content="You're a helpful assistant"),
    HumanMessage(
        content="What happens when an unstoppable force meets an immovable object?"
    ),
]

ai_msg = chat_model.invoke(messages)
print(ai_msg.content)
```
Output:
```
<|system|>
You're a helpful assistant<|end|>
<|user|>
What happens when an unstoppable force meets an immovable object?<|end|>
<|assistant|>
 The scenario of an "unstoppable force" meeting an "immovable object" is a classic paradox that has puzzled philosophers, scientists, and thinkers for centuries. In physics, however, there are no such things as truly unstoppable forces or immovable objects because all physical entities have mass and interact with other masses through fundamental forces (like gravity).

When we consider the laws of motion, particularly Newton's third law which states that for every action, there is an equal and opposite reaction, it becomes clear that if one were to exist, the other would necessarily be negated by the interaction. For example, if you push against a solid wall with great force, the wall exerts an equal and opposite force back on you, preventing your movement.

In theoretical discussions, this paradox often serves as a thought experiment to explore concepts like determinism versus free will, the limits of physical laws, and the nature of reality itself. However, in practical terms, any force applied to an object will result in some form of deformation, transfer of energy, or movement, depending on the properties of both the force and the object.

So while the idea of an unstoppable force and an immovable object remains a fascinating philosophical conundrum, it does not hold up under the scrutiny of physical laws as we understand them.
```

---------

Co-authored-by: Kirushikesh D B kirushi@ibm.com <kirushi@cccxl012.pok.ibm.com>
2024-09-01 13:52:20 -07:00
Yuxi Zheng
38dfde6946 docs: fix typo in Cassandra for ./cookbook/cql_agent.ipynb (#25922)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: “syd” <“zheng.yuxi@outlook.com>
2024-09-01 20:51:47 +00:00
Borahm Lee
9cdb99bd60 docs: remove unused imports in Tutorials Basics (#25919)
## Description

- `List` is not explicitly used, so the unnecessary imports will be
removed.
2024-09-01 20:51:00 +00:00
Erick Friis
8732cfc6ef docs: review process gh discussion (#25921) 2024-09-01 17:20:46 +00:00
Erick Friis
08b9715845 docs: pr review process (#25899)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-09-01 16:51:12 +00:00
ccurme
60054db1c4 infra[patch]: remove together from scheduled tests (#25909)
These now run in https://github.com/langchain-ai/langchain-together
2024-08-31 18:43:16 +00:00
Emmanuel Leroy
654da27255 improve llamacpp embeddings (#12972)
- **Description:**
Improve llamacpp embedding class by adding the `device` parameter so it
can be passed to the model and used with `gpu`, `cpu` or Apple metal
(`mps`).
Improve performance by making use of the bulk client api to compute
embeddings in batches.
  
  - **Dependencies:** none
  - **Tag maintainer:** 
@hwchase17

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-31 18:27:59 +00:00
Sandeep Bhandari
f882824eac Update tool_choice.ipynb spelling mistake of select (#25907)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-08-31 12:36:32 +00:00
ℍ𝕠𝕝𝕝𝕠𝕨 𝕄𝕒𝕟
64b62f6ae4 community[neo4j_vector]: make embedding dimension check optional (#25737)
**Description:**

Starting from Neo4j 5.23 (22 August 2024), with vector-2.0 indexes,
`vector.dimensions` is not required to be set, which will cause it the
key not exist error in index config if it's not set.

Since the existence of vector.dimensions will only ensure additional
checks, this commit turns embedding dimension check optional, and only
do checks when it exists (not None).

https://neo4j.com/release-notes/database/neo4j-5/

**Twitter handle:** @HollowM186

Signed-off-by: Hollow Man <hollowman@opensuse.org>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-31 12:36:20 +00:00
Christophe Bornet
0a752a74cc community[patch], docs: Add API reference doc for GraphVectorStore (#25751) 2024-08-30 17:42:00 -07:00
Bagatur
28e2ec7603 ollama[patch]: Release 0.1.3 (#25902) 2024-08-31 00:11:45 +00:00
Bagatur
ca1c3bd9c0 community[patch]: bump + fix core dep (#25901) 2024-08-30 15:54:07 -07:00
Bagatur
fabe32c06d core[patch]: Release 0.2.37 (#25900) 2024-08-30 22:29:12 +00:00
Richmond Alake
9992a1db43 cookbook: AI Agent Built With LangChain and FireWorksAI (#22609)
Thank you for contributing to LangChain!

- **AI Agent Built With LangChain and FireWorksAI**: "community
notebook"
- **Description:** Added a new AI agent in the cookbook folder that
integrates prompt compression using LLMLingua and arXiv retrieval tools.
The agent is designed to optimize the efficiency and performance of
research tasks by compressing lengthy prompts and retrieving relevant
academic papers. The agent also makes uses of MongoDB to store
conversational history and as it's knowledge base using MongoDB vector
store
    - **Twitter handle:** https://x.com/richmondalake

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-30 22:19:17 +00:00
mehdiosa
c6f00e6bdc community: Fix branch not being considered when using GithubFileLoader (#20075)
- **Description:** Added `ref` query parameter so data is not loaded
only from the default branch but any branch passed

---------

Co-authored-by: Osama Mehdi <mehdi@hm.edu>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-30 21:47:11 +00:00
Leonid Ganeline
54d2b861f6 docs: integrations reference updates 12 (#25676)
Added missed provider pages and links. Fixed inconsistent formatting.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-30 21:25:42 +00:00
Aditya
c8b1c3a7e7 docs: update documentation for Vertex Embeddings Models (#25745)
- **Description:update documentation for Vertex Embeddings Models
    - **Issue:NA
    - **Dependencies:NA
    - **Twitter handle:NA

---------

Co-authored-by: adityarane@google.com <adityarane@google.com>
2024-08-30 13:58:21 -07:00
Alex Sherstinsky
617a4e617b community: Fix a bug in handling kwargs overwrites in Predibase integration, and update the documentation. (#25893)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-08-30 12:41:42 -07:00
Erick Friis
28f6ff6fcd docs: remove incorrect vectorstore local column (#25895) 2024-08-30 18:54:51 +00:00
Anush
ade4bfdff1 qdrant: Updated class check in Self-Query Retriever factory (#25877)
## Description

- Updates the self-query retriever factory to check for the new Qdrant
vector store class. i.e. `langchain_qdrant.QdrantVectorstore`.
- Deprecates `QdrantSparseVectorRetriever`, since the vector store
implementation natively supports it now.

Resolves #25798
2024-08-30 12:11:55 -04:00
Djordje
862ef32fdc community: Fixed infinity embeddings async request (#25882)
**Description:** Fix async infinity embeddings
**Issue:** #24942  

@baskaryan, @ccurme
2024-08-30 12:10:34 -04:00
rainsubtime
f75d5621e2 community:Fix a bug of LLM in moonshot (#25878)
- **Description:** When useing LLM integration moonshot,it's occurring
error "'Moonshot' object has no attribute '_client'",it's because of the
"_client" that is private in pydantic v1.0 so that we can't use it.I
turn "_client" into "client" , the error to be resolved!
- **Issue:** the issue #24390 
- **Dependencies:** none
- **Twitter handle:** @Rainsubtime




- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Co-authored-by: Cyue <Cyue_work2001@163.com>
2024-08-30 16:09:39 +00:00
ZhangShenao
fd0f147df3 Improvement[Community] Add tool-calling test case for ChatZhipuAI (#25884)
- Add tool-calling test case for `ChatZhipuAI`
2024-08-30 12:05:43 -04:00
k.muto
5bb810c5c6 docs: updated args_schema to be required when using callback handlers in custom tools. (#25887)
- **Description:** if you use callback handlers when using tool,
run_manager will be added to input, so you need to explicitly specify
args_schema, but i was confused because it was not listed, so i added
it. Also, it seems that the type does not work with pydantic.BaseModel.
- **Issue:** None
- **Dependencies:** None
2024-08-30 12:04:40 -04:00
默奕
6377185291 add neo4j query constructor for self query (#25288)
- [x] **PR title - community: add neo4j query constructor for self
query**

- [x] **PR message**
- **Description:** adding a Neo4jTranslator so that the Neo4j vector
database can use SelfQueryRetriever
    - **Issue:** this issue had been raised before in #19748
    - **Dependencies:** none. 
    - **Twitter handle:** @moyi_dang
- p.s. I have not added the query constructor in BUILTIN_TRANSLATORS in
this PR, I want to make changes to only one package at a time.

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-30 14:54:33 +00:00
Ohad Eytan
b5d670498f partners/milvus: allow creating a vectorstore with sparse embeddings (#25284)
# Description
Milvus (and `pymilvus`) recently added the option to use [sparse
vectors](https://milvus.io/docs/sparse_vector.md#Sparse-Vector) with
appropriate search methods (e.g., `SPARSE_INVERTED_INDEX`) and
embeddings (e.g., `BM25`, `SPLADE`).

This PR allow creating a vector store using langchain's `Milvus` class,
setting the matching vector field type to `DataType.SPARSE_FLOAT_VECTOR`
and the default index type to `SPARSE_INVERTED_INDEX`.

It is only extending functionality, and backward compatible. 

## Note
I also interested in extending the Milvus class further to support multi
vector search (aka hybrid search). Will be happy to discuss that. See
[here](https://github.com/langchain-ai/langchain/discussions/19955),
[here](https://github.com/langchain-ai/langchain/pull/20375), and
[here](https://github.com/langchain-ai/langchain/discussions/22886)
similar needs.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-30 02:30:23 +00:00
Erick Friis
09b04c7e3b "community: release 0.2.15" (#25867) 2024-08-30 02:18:48 +00:00
Erick Friis
f7e62754a1 community: undo azure_ad_access_token breaking change (#25818) 2024-08-30 02:06:14 +00:00
Leonid Ganeline
6047138379 docs: arxiv reference updates (#24949)
Added: arxiv references to the concepts page.
Regenerated: arxiv references page.
Improved: formatting of the concepts page (moved the Partner packages
section after langchain_community)
2024-08-29 18:51:18 -07:00
Bagatur
1759ff5836 infra: rm together lagnchain test dp (#25866) 2024-08-30 00:59:53 +00:00
Erick Friis
24f0c232fe docs: elastic feature (#25865) 2024-08-30 00:55:16 +00:00
Erick Friis
1640872059 together: mv to external repo (#25863) 2024-08-29 16:42:59 -07:00
Michael Paciullo
e7c856c298 langchain_openai: Add "strict" parameter to OpenAIFunctionsAgent (#25862)
- **Description:** OpenAI recently introduced a "strict" parameter for
[structured outputs in their
API](https://openai.com/index/introducing-structured-outputs-in-the-api/).
An optional `strict` parameter has been added to
`create_openai_functions_agent()` and `create_openai_tools_agent()` so
developers can use this feature in those agents.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-29 22:27:07 +00:00
Bagatur
fabd3295fa core[patch]: dont mutate merged lists/dicts (#25858)
Update merging utils to
- not mutate objects
- have special handling to 'type' keys in dicts
2024-08-29 20:34:54 +00:00
Kyle Winkelman
09c2d8faca langchain_openai: Cleanup OpenAIEmbeddings validate_environment. (#25855)
**Description:** [This portion of
code](https://github.com/langchain-ai/langchain/blob/v0.1.16/libs/partners/openai/langchain_openai/embeddings/base.py#L189-L196)
has no use as a couple lines later a [`ValueError` is
thrown](https://github.com/langchain-ai/langchain/blob/v0.1.16/libs/partners/openai/langchain_openai/embeddings/base.py#L209-L213).
**Issue:** A follow up to #25852.
2024-08-29 13:54:43 -04:00
Kyle Winkelman
201bdf7148 community: Cap AzureOpenAIEmbeddings chunk_size at 2048 instead of 16. (#25852)
**Description:** Within AzureOpenAIEmbeddings there is a validation to
cap `chunk_size` at 16. The value of 16 is either an old limitation or
was erroneously chosen. I have checked all of the `preview` and `stable`
releases to ensure that the `embeddings` endpoint can handle 2048
entries
[Azure/azure-rest-api-specs](https://github.com/Azure/azure-rest-api-specs/tree/main/specification/cognitiveservices/data-plane/AzureOpenAI/inference).
I have also found many locations that confirm this limit should be 2048:
-
https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
-
https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits

**Issue:** fixes #25462
2024-08-29 16:48:04 +00:00
Leonid Ganeline
08c9c683a7 docs: integrations reference updates 6 (#25188)
Added missed provider pages. Added missed references to the integration
components.
2024-08-29 09:17:41 -07:00
Allan Ascencio
a8af396a82 added octoai test (#21793)
- [ ] **PR title**: community: add tests for ChatOctoAI

- [ ] **PR message**: 
Description: Added unit tests for the ChatOctoAI class in the community
package to ensure proper validation and default values. These tests
verify the correct initialization of fields, the handling of missing
required parameters, and the proper setting of aliases.
Issue: N/A
Dependencies: None

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-08-29 15:07:27 +00:00
Param Singh
69f9acb60f premai[patch]: Standardize premai params (#21513)
Thank you for contributing to LangChain!

community:premai[patch]: standardize init args

- updated `temperature` with Pydantic Field, updated the unit test.
- updated `max_tokens` with Pydantic Field, updated the unit test.
- updated `max_retries` with Pydantic Field, updated the unit test.

Related to #20085

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-08-29 11:01:28 -04:00
Guangdong Liu
fcf9230257 community(sparkllm): Add function call support in Sparkllm chat model. (#20607)
- **Description:** Add function call support in Sparkllm chat model.
Related documents
https://www.xfyun.cn/doc/spark/Web.html#_2-function-call%E8%AF%B4%E6%98%8E
- @baskaryan

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-08-29 14:38:39 +00:00
ChengZi
37f5ba416e partners[milvus]: fix issue when metadata_schema is None (#25836)
fix issue when metadata_schema is None

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
2024-08-29 10:11:09 -04:00
ccurme
426333ff6f infra[patch]: remove AI21 from scheduled tests (#25847)
These now run in https://github.com/langchain-ai/langchain-ai21
2024-08-29 14:03:20 +00:00
Jorge Piedrahita Ortiz
9ac953a948 Community: sambastudio embeddings GenericV2 API support (#25064)
- **Description:** 
        SambaStudio GenericV2 API support 
        Minor changes for requests error handling
2024-08-29 09:52:49 -04:00
Sam Jove
bdce9a47d0 community[patch]: callback before yield for _astream (gigachat) (#25834)
Description: Moves yield to after callback for _astream for gigachat in
the community package
Issue: #16913

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-29 13:29:28 +00:00
Jinoos Lee
703af9ffe3 Patch enable to use Amazon OpenSearch Serverless(aoss) for Semantic Cache store (#25833)
- [x] **PR title**: "community: Patch enable to use Amazon OpenSearch
Serverless for Semantic Cache store"

- [x] **PR message**: 
- **Description:** OpenSearchSemanticCache class support Amazon
OpenSearch Serverless for Semantic Cache store, it's only required to
pass auth(http_auth) parameter to initializer
    - **Dependencies:** none

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Jinoos Lee <jinoos@amazon.com>
2024-08-29 13:28:22 +00:00
William FH
1ad621120d docs: Update langgraph 0.2.0 checkpointer import path (#25205)
And fix the description for timeout
2024-08-28 19:32:08 -07:00
Andrew Benton
c410545075 docs: add self-hosting row to code interpreter tools table (#25303)
**Description:** Add information about self-hosting support to the code
interpreter tools table.
**Issue:** N/A
**Dependencies:** N/A
2024-08-28 19:30:12 -07:00
Eugene Yurtsev
83327ac43a docs: Fix typo in openai llm integration notebook (#25492)
Fix typo in openai LLM integration notebook.
2024-08-28 19:22:57 -07:00
Leonid Ganeline
31f55781b3 docs: added ColBERT reference (#25452)
Added references to the source papers.
Fixed URL verification code.
Improved arXive page formatting.
Regenerated arXiv page.
2024-08-28 19:05:44 -07:00
Mikhail Khludnev
a017f49fd3 comminity[patch]: fix #25575 YandexGPTs for _grpc_metadata (#25617)
it fixes two issues:

### YGPTs are broken #25575

```
File ....conda/lib/python3.11/site-packages/langchain_community/embeddings/yandex.py:211, in _make_request(self, texts, **kwargs)
..
--> 211 res = stub.TextEmbedding(request, metadata=self._grpc_metadata)  # type: ignore[attr-defined]

AttributeError: 'YandexGPTEmbeddings' object has no attribute '_grpc_metadata'
```
My gut feeling that #23841 is the cause.

I have to drop leading underscore from `_grpc_metadata` for quickfix,
but I just don't know how to do it _pydantic_ enough.

### minor issue:

if we use `api_key`, which is not the best practice the code fails with 

```
File ~/git/...../python3.11/site-packages/langchain_community/embeddings/yandex.py:119, in YandexGPTEmbeddings.validate_environment(cls, values)
...

AttributeError: 'tuple' object has no attribute 'append'
```

- Added new integration test. But it requires YGPT env available and
active account. I don't know how int tests dis\enabled in CI.
 - added small unit tests with mocks. Should be fine.

---------

Co-authored-by: mikhail-khludnev <mikhail_khludnev@rntgroup.com>
2024-08-28 18:48:10 -07:00
Serena Ruan
850bf89e48 community[patch]: Support passing extra params for executing functions in UCFunctionToolkit (#25652)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


Support passing extra params when executing UC functions:
The params should be a dictionary with key EXECUTE_FUNCTION_ARG_NAME,
the assumption is that the function itself doesn't use such variable
name (starting and ending with double underscores), and if it does we
raise Exception.
If invalid params passing to the execute_statement, we raise Exception
as well.


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-28 18:47:32 -07:00
崔浩
3555882a0d community[patch]: optimize xinference llm import (#25809)
Thank you for contributing to LangChain!

- [ ] **PR title**: "community: optimize xinference llm import"

- [ ] **PR message**: 
- **Description:** from xinferece_client import RESTfulClient when there
is no importing xinference.
    - **Dependencies:** xinferece_client
- **Why do so:** the total xinference(pip install xinference[all]) is
too heavy for installing, let alone it is useless for langchain user
except RESTfulClient. The modification has maintained consistency with
the xinference embeddings
[embeddings/xinference](../blob/master/libs/community/langchain_community/embeddings/xinference.py#L89).
2024-08-29 01:41:43 +00:00
Michael Rubél
9decd0b243 langchain[patch]: fix moderation chain init (#25778)
[This
commit](d3ca2cc8c3)
has broken the moderation chain so we've faced a crash when migrating
the LangChain from v0.1 to v0.2.

The issue appears that the class attribute the code refers to doesn't
hold the value processed in the `validate_environment` method. We had
`extras={}` in this attribute, and it was casted to `True` when it
should've been `False`. Adding a simple assignment seems to resolve the
issue, though I'm not sure it's the right way.

---

---------

Co-authored-by: Michael Rubél <mrubel@oroinc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-28 18:41:31 -07:00
Madhu Shantan
63a1569d5f docs: fixed syntax error in ChatAnthropic Example - rag app tutorial notebook (#25824)
Thank you for contributing to LangChain!

- [ ] **PR title**: docs: fixed syntax error in ChatAnthropic Example -
rag app tutorial notebook - generation


- [ ] **PR message**: 
- **Description:** Fixed a syntax error in the ChatAnthropic
initialization example in the RAG tutorial notebook. The original code
had an extra set of quotation marks around the model parameter, which
would cause a Python syntax error. The corrected version removes these
unnecessary quotes.
 
- **Dependencies:** No new dependencies required for this documentation
fix.
I've verified that the corrected code is syntactically valid and matches
the expected format for initializing a ChatAnthropic instance in
LangChain.
    - **Twitter handle:** madhu_shantan


- [ ] **Add tests and docs**: the error in Jupyter notebook: 
<img width="1189" alt="Screenshot 2024-08-29 at 12 43 47 AM"
src="https://github.com/user-attachments/assets/07148a93-300f-40e2-ad4a-ac219cbb56a4">

the corrected cell: 
<img width="983" alt="Screenshot 2024-08-29 at 12 44 18 AM"
src="https://github.com/user-attachments/assets/75b1455a-3671-454e-ac16-8ca77c049dbd">



- [ ] **Lint and test**: As this is a documentation-only change, I have
not run the full test suite. However, I have verified that the corrected
code example is syntactically valid and matches the expected usage of
the ChatAnthropic class.
 
the error in the docs is here -  
<img width="1020" alt="Screenshot 2024-08-29 at 12 48 36 AM"
src="https://github.com/user-attachments/assets/812ccb20-b411-4a5b-afc1-41742efb32a7">
2024-08-29 01:31:01 +00:00
Erick Friis
e5ae988505 prompty: bump core version (#25831) 2024-08-28 23:06:13 +00:00
Erick Friis
c8b8335b82 core: prompt variable error msg (#25787) 2024-08-28 22:54:00 +00:00
ccurme
ff168aaec0 prompty: release 0.0.3 (#25830) 2024-08-28 15:52:17 -07:00
Matthieu
783397eacb community: avoid double templating in langchain_prompty (#25777)
## Description

In `langchain_prompty`, messages are templated by Prompty. However, a
call to `ChatPromptTemplate` was initiating a second templating. We now
convert parsed messages to `Message` objects before calling
`ChatPromptTemplate`, signifying clearly that they are already
templated.

We also revert #25739 , which applied to this second templating, which
we now avoid, and did not fix the original issue.

## Issue

Closes #25703
2024-08-28 18:18:18 -04:00
ccurme
afe8ccaaa6 community[patch]: Add ID field back to Azure AI Search results (#25828)
Commandeering https://github.com/langchain-ai/langchain/pull/23243 as
maintainers don't have ability to modify that PR.

Fixes https://github.com/langchain-ai/langchain/issues/22827

---------

Co-authored-by: Ming Quah <fleetadmiralbutter@icloud.com>
2024-08-28 17:56:50 -04:00
rbrugaro
9fa172bc26 add links in example nb with tei/tgi references (#25821)
I have validated langchain interface with tei/tgi works as expected when
TEI and TGI running on Intel Gaudi2. Adding some references to notebooks
to help users find relevant info.

---------

Co-authored-by: Rita Brugarolas <rbrugaro@idc708053.jf.intel.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-28 21:33:25 +00:00
Erick Friis
8fb594fd2a ai21: migrate to external repo (#25827) 2024-08-28 14:24:07 -07:00
Erick Friis
095b712a26 ollama: bump core version (#25826) 2024-08-28 12:31:16 -07:00
Erick Friis
5db6c6d96d community: release 0.2.14 (#25822) 2024-08-28 19:05:53 +00:00
Erick Friis
d6c4803ab0 core: release 0.2.36 (#25819) 2024-08-28 18:04:51 +00:00
Erick Friis
5186325bc7 partners/ollama: release 0.1.2 (#25817)
release for #25697
2024-08-28 17:47:32 +00:00
Rohit Gupta
aff50a1e6f milvus: add array data type for collection create (#23219)
Add array data type for milvus vector store collection create


Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Rohit Gupta <rohit.gupta2@walmart.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-28 16:55:57 +00:00
Cillian Berragan
754f3c41f9 community: add score to PineconeHybridSearchRetriever (#25781)
**Description:**

Adds the 'score' returned by Pinecone to the
`PineconeHybridSearchRetriever` list of returned Documents.

There is currently no way to return the score when using Pinecone hybrid
search, so in this PR I include it by default.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-28 13:11:06 +00:00
ZhangShenao
3f1d652f15 Improvement[Community] Improve api doc for PineconeHybridSearchRetriever (#25803)
- Complete missing args in api doc
2024-08-28 08:38:56 -04:00
Moritz Schlager
555f97becb community[patch]: fix model initialization bug for deepinfra (#25727)
### Description
adds an init method to ChatDeepInfra to set the model_name attribute
accordings to the argument
### Issue
currently, the model_name specified by the user during initialization of
the ChatDeepInfra class is never set. Therefore, it always chooses the
default model (meta-llama/Llama-2-70b-chat-hf, however probably since
this is deprecated it always uses meta-llama/Llama-3-70b-Instruct). We
stumbled across this issue and fixed it as proposed in this pull
request. Feel free to change the fix according to your coding guidelines
and style, this is just a proposal and we want to draw attention to this
problem.
### Dependencies
no additional dependencies required

Feel free to contact me or @timo282 and @finitearth if you have any
questions.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-08-28 02:02:35 -07:00
Bagatur
a052173b55 together[patch]: Release 0.1.6 (#25805) 2024-08-28 02:01:49 -07:00
Bagatur
b0ac6fe8d3 community[patch]: Release 0.2.13 (#25806) 2024-08-28 08:57:49 +00:00
Bagatur
85aef7641c openai[patch]: Release 0.1.23 (#25804) 2024-08-28 08:52:08 +00:00
Bagatur
0d3fd0aeb9 langchain[patch]: Release 0.2.15 (#25802) 2024-08-28 08:35:00 +00:00
zysoong
25a6790e1a community[patch]: Minor Improvement of extract hyperlinks tool output (#25728)
**Description:** Make the hyperlink only appear once in the
extract_hyperlinks tool output. (for some websites output contains
meaningless '#' hyperlinks multiple times which will extend the tokens
of context window without any advantage)
**Issue:** None
**Dependencies:** None
2024-08-28 08:02:40 +00:00
Christophe Bornet
ff0df5ea15 core[patch]: Add B(bugbear) ruff rules (#25520)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-28 07:09:29 +00:00
Isaac Francisco
d5ddaac1fc docs minor fix (#25794) 2024-08-28 04:14:36 +00:00
ccurme
3c784e10a8 docs: improve docs for InMemoryVectorStore (#25786)
Closes https://github.com/langchain-ai/langchain/issues/25775
2024-08-27 21:12:32 -07:00
Erick Friis
1023fbc98a databricks: mv to partner repo (#25788) 2024-08-27 18:51:17 -07:00
ccurme
2e5c379632 openai[patch]: fix get_num_tokens for function calls (#25785)
Closes https://github.com/langchain-ai/langchain/issues/25784

See additional discussion
[here](0a4ee864e9 (r145147380)).
2024-08-27 20:18:19 +00:00
Erick Friis
2aa35d80a0 docs, infra: cerebras docs, update docs template linting with better error (#25782) 2024-08-27 17:19:59 +00:00
venkatram-dev
48b579f6b5 date_time_parser (#25763)
Thank you for contributing to LangChain!

- [x] **PR title**: "langchain: Chains: query_constructor: add date time
parser"

- [x] **PR message**: 
- **Description:** add date time parser to langchain Chains
query_constructor
    - **Issue: https://github.com/langchain-ai/langchain/issues/25526


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-08-27 13:18:52 -04:00
Tomaz Bratanic
f359e6b0a5 Add mmr to neo4j vector (#25765) 2024-08-27 08:55:19 -04:00
pazshalev
995305fdd5 test: fix tool calling integration tests for AI21 Jamba models (#25771)
Ignore specific integration tests that handles specific tool calling
cases that will soon be fixed.
2024-08-27 08:54:51 -04:00
Luis Valencia
99f9a664a5 community: Azure Search Vector Store is missing Access Token Authentication (#24330)
Added Azure Search Access Token Authentication instead of API KEY auth.
Fixes Issue: https://github.com/langchain-ai/langchain/issues/24263
Dependencies: None
Twitter: @levalencia

@baskaryan

Could you please review? First time creating a PR that fixes some code.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-26 15:41:50 -07:00
Leonid Ganeline
49b0bc7b5a docs: integrations reference updates 5 (#25151)
Added missed references. Added missed provider pages.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-26 15:12:39 -04:00
ZhangShenao
44e3e2391c Improvement[Community] Improve methods in IMessageChatLoader (#25746)
- Add @staticmethod to static methods in `IMessageChatLoader`.
- Format args name.
2024-08-26 14:20:22 -04:00
Erick Friis
815f59dba5 partners/ai21: release 0.1.8 (#25759) 2024-08-26 18:02:43 +00:00
amirai21
17dffd9741 AI21: tools calling support in Langchain (#25635)
This pull request introduces support for the AI21 tools calling feature,
available by the Jamba-1.5 models. When Jamba-1.5 detects the necessity
to invoke a provided tool, as indicated by the 'tools' parameter passed
to the model:

```
class ToolDefinition(TypedDict, total=False):
    type: Required[Literal["function"]]
    function: Required[FunctionToolDefinition]

class FunctionToolDefinition(TypedDict, total=False):
    name: Required[str]
    description: str
    parameters: ToolParameters

class ToolParameters(TypedDict, total=False):
    type: Literal["object"]
    properties: Required[Dict[str, Any]]
    required: List[str]
```

It will respond with a list of tool calls structured as follows:

```
class ToolCall(AI21BaseModel):
    id: str
    function: ToolFunction
    type: Literal["function"] = "function"

class ToolFunction(AI21BaseModel):
    name: str
    arguments: str
```

This pull request incorporates the necessary modifications to integrate
this functionality into the ai21-langchain library.

---------

Co-authored-by: asafg <asafg@ai21.com>
Co-authored-by: pazshalev <111360591+pazshalev@users.noreply.github.com>
Co-authored-by: Paz Shalev <pazs@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-26 10:50:30 -07:00
maang-h
a566a15930 Fix MoonshotChat instantiate with alias (#25755)
- **Description:**
   -  Fix `MoonshotChat` instantiate with alias
   - Add `MoonshotChat` to `__init__.py`

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-26 17:33:22 +00:00
venkatram-dev
ec99f0d193 milvus: add_db_milvus_connection (#25627)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"
  - "libs: langchain_milvus: add db name to milvus connection check"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:**  add db name to milvus connection check
    - **Issue:** https://github.com/langchain-ai/langchain/issues/25277



- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-26 17:29:12 +00:00
Ashvin
af3b3a4474 Update endpoint for AzureMLEndpointApiType class. (#25725)
This addresses the issue mentioned in #25702

I have updated the endpoint used in validating the endpoint API type in
the AzureMLBaseEndpoint class from `/v1/completions` to `/completions`
and `/v1/chat/completions` to `/chat/completions`.

Co-authored-by: = <=>
2024-08-26 08:50:02 -04:00
Mohammad Mohtashim
dcf2278a05 [Community]: Added Template Format Parameter in create_chat_prompt for Langchain Prompty (#25739)
- **Description:** Added a `template_format` parameter to
`create_chat_prompt` to allow `.prompty` files to handle variables in
different template formats.
- **Issue:** #25703

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-26 12:48:21 +00:00
Dristy Srivastava
7205057c3e [Community][minor]: Added langchain_version while calling discover API (#24428)
- **Description:** Added langchain version while calling discover API
during both ingestion and retrieval
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** NA
- **Docs** NA

---------

Co-authored-by: dristy.cd <dristy@clouddefense.io>
2024-08-26 08:47:48 -04:00
Dristy Srivastava
fbb4761199 [Community][minor]: Updating source path, and file path for SharePoint loader in PebbloSafeLoader (#25592)
- **Description:** Updating source path and file path in Pebblo safe
loader for SharePoint apps during loading
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** NA
- **Docs** NA

---------

Co-authored-by: dristy.cd <dristy@clouddefense.io>
2024-08-26 08:38:40 -04:00
Rajendra Kadam
745d1c2b8d community[minor]: [Pebblo] Fix URL construction in newer Python versions (#25747)
- **PR message**: **Fix URL construction in newer Python versions**
- **Description:** 
- Update the URL construction logic to use the .value attribute for
Routes enum members.
- This adjustment resolves an issue where the code worked correctly in
Python 3.9 but failed in Python 3.11.
  - Clean up unused routes.
- **Issue:** NA
- **Dependencies:** NA
2024-08-26 07:27:30 -04:00
Rajendra Kadam
58a98c7d8a community: [PebbloRetrievalQA] Implemented Async support for prompt APIs (#25748)
- **Description:** PebbloRetrievalQA: Implemented Async support for
prompt APIs (classification and governance)
- **Issue:** NA
- **Dependencies:** NA
2024-08-26 07:27:05 -04:00
Tomaz Bratanic
6703d795c5 Handle Ollama tool raw schema in llmgraphtransformer (#25752) 2024-08-26 07:26:26 -04:00
Bagatur
30f1bf24ac core[patch]: Release 0.2.35 (#25729) 2024-08-25 16:49:27 -07:00
Christophe Bornet
038c287b3a all: Improve make lint command (#25344)
* Removed `ruff check --select I` as `I` is already selected and checked
in the main `ruff check` command
* Added checks for non-empty `PYTHON_FILES`
* Run `ruff check` only on `PYTHON_FILES`

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-23 18:23:52 -07:00
Mohammad Mohtashim
9a29398fe6 huggingface: fix model param population (#24743)
- **Description:** Fix the validation error for `endpoint_url` for
HuggingFaceEndpoint. I have given a descriptive detail of the isse in
the issue that I have created.
- **Issue:** #24742

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-24 00:45:28 +00:00
Yuki Watanabe
c7a8af2e75 databricks: add vector search and embeddings (#25648)
### Summary

Add `DatabricksVectorSearch` and `DatabricksEmbeddings` classes to the
`langchain-databricks` partner packages. Core functionality is
unchanged, but the vector search class is largely refactored for
readability and maintainability.

This PR does not add integration tests yet. This will be added once the
Databricks test workspace is ready.

Tagging @efriis as POC


### Tracker
[] Create a package and imgrate ChatDatabricks
[✍️] Migrate DatabricksVectorSearch, DatabricksEmbeddings, and their
docs
~[ ] Migrate UCFunctionToolkit and its doc~
[ ] Add provider document and update README.md
[ ] Add integration tests and set up secrets (after moved to an external
package)
[ ] Add deprecation note to the community implementations.

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-24 00:40:21 +00:00
Erick Friis
71c039571a docs: remove deprecated nemo embed docs (#25720) 2024-08-24 00:36:33 +00:00
Hyman
58e72febeb openai:compatible with other llm usage meta data (#24500)
- [ ] **PR message**:
- **Description:** Compatible with other llm (eg: deepseek-chat, glm-4)
usage meta data
    - **Issue:** N/A
    - **Dependencies:** no new dependencies added


- [ ] **Add tests and docs**: 
libs/partners/openai/tests/unit_tests/chat_models/test_base.py
```shell
cd libs/partners/openai
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_openai_astream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_openai_stream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_deepseek_astream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_deepseek_stream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_glm4_astream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_glm4_stream
```

---------

Co-authored-by: hyman <hyman@xiaozancloud.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-23 16:59:14 -07:00
Erick Friis
3dc7d447aa infra: reenable min version testing 2, ci ignore ai21 (#25709) 2024-08-23 23:28:42 +00:00
Erick Friis
f6491ceb7d community: remove integration test deps (#24460)
they arent used
2024-08-23 23:25:17 +00:00
Erick Friis
0022ae1b31 docs: remove templates (#25717)
- [x] check redirect works at template root
- [x] check redirect works within individual template page
2024-08-23 15:51:12 -07:00
Sharmistha S. Gupta
90439b12f6 Added support for Nebula Chat model (#21925)
Description: Added support for Nebula Chat model in addition to Nebula
Instruct
Dependencies: N/A
Twitter handle: @Symbldotai

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-23 22:34:32 +00:00
James Espichan Vilca
080741d336 core[patch]: Fix type for inner input in base prompts (#25713)
Thank you for contributing to LangChain!

- [ ] **PR title**: "langchain-core: Fix type"
- The file to modify is located in
/libs/core/langchain_core/prompts/base.py


- [ ] **PR message**: 
- **Description:** The change is a type for the inner input variable,
the type go from dict to Any. This change is required since the method
_validate input expects a type that is not only a dictionary.
    - **Dependencies:** There are no dependencies for this change


- [ ] **Add tests and docs**: 
1. A test is not needed. This error occurs because I overrode a portion
of the _validate_input method, which is causing a 'beartype' to raise an
error.
2024-08-23 14:06:39 -07:00
John
5ce9a716a7 docs, langchain-unstructured: update langchain-unstructured docs and update ustructured-client dependency (#25451)
Be more explicit in the docs about creating an instance of the
UnstructuredClient if you want to customize it versus using sdk
parameters with the UnstructuredLoader.

Bump the unstructured-client dependency as discussed
[here](https://github.com/langchain-ai/langchain/discussions/25328#discussioncomment-10350949)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-23 20:36:41 +00:00
Scott Hurrey
92abf62292 box[patch]: fix bugs in docs (#25699) 2024-08-23 19:36:23 +00:00
Ian
64ace25eb8 <Community>: tidb vector support vector index (#19984)
This PR introduces adjustments to ensure compatibility with the recently
released preview version of [TiDB Serverless Vector
Search](https://tidb.cloud/ai), aiming to prevent user confusion.

- TiDB Vector now supports vector indexing with cosine and l2 distance
strategies, although inner_product remains unsupported.
- Changing the distance strategy is currently not supported, so the test
cased should be adjusted.
2024-08-23 13:59:23 -04:00
Austin Burdette
f355a98bb6 community:yuan2[patch]: standardize init args (#21462)
updated stop and request_timeout so they aliased to stop_sequences, and
timeout respectively. Added test that both continue to set the same
underlying attributes.

Related to
[20085](https://github.com/langchain-ai/langchain/issues/20085)

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-08-23 17:56:19 +00:00
ccurme
bc557a5663 text-splitters[patch]: fix typing for keep_separator (#25706) 2024-08-23 17:22:02 +00:00
Erick Friis
8170bd636f Revert "infra: reenable min version testing" (#25708)
Reverts langchain-ai/langchain#24640
2024-08-23 10:20:23 -07:00
Erick Friis
3d5808ef27 infra: reenable min version testing (#24640)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-08-23 10:17:41 -07:00
Erick Friis
b365ee996b community: remove unused verify_ssl kwarg from aiohttp request (#25707)
it's not a valid kwarg in aiohttp request
2024-08-23 17:14:04 +00:00
Erick Friis
580fbd9ada docs: api ref to new site somewheres (#25679)
```
https://api\.python\.langchain\.com/en/latest/([^/]*)/langchain_([^.]*)\.(.*)\.html([^"]*)
https://python.langchain.com/v0.2/api_reference/$2/$1/langchain_$2.$3.html$4
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-23 10:01:16 -07:00
Bagatur
6a60a2a435 infra: gitignore api_ref mds (#25705) 2024-08-23 09:50:30 -07:00
Ashvin
2cd77a53a3 docs: Add docstrings for CassandraChatMessageHistory class and package namespace function. (#24222)
- Modified docstring for CassandraChatMessageHistory in
libs/community/langchain_community/chat_message_history/cassandra.py.

- Added docstring for _package_namespace function in
docs/api_reference/create_api_rst.py

---------

Co-authored-by: ashvin <ashvin.anilkumar@qburst.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-08-23 15:49:41 +00:00
Leonid Ganeline
8788a34bfa community: NeptuneGraph fix (#23281)
Issue: the `service` optional parameter was mentioned but not used.
Fix: added this parameter.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-23 15:34:26 +00:00
Djordje
22f9ae489f community: Opensearch - added score function for similarity_score_threshold (#23928)
This PR resolves the NotImplemented error for the
similarity_score_threshold search type for OpenSearch.
2024-08-23 11:30:04 -04:00
ZhangShenao
b38c83ff93 patch[Community] Optimize methods in several ChatLoaders (#24806)
There are some static methods in ChatLoaders, try to add @staticmethod
decorator for them.
2024-08-23 11:00:41 -04:00
James Espichan Vilca
644e0d3463 Use extend method for embeddings concatenation in mlflow_gateway (#14358)
## Description
There is a bug in the concatenation of embeddings obtained from MLflow
that does not conform to the type hint requested by the function.
``` python  
def _query(self, texts: List[str]) -> List[List[float]]:
```
It is logical to expect a **List[List[float]]** for a **List[str]**.
However, the append method encapsulates the response in a global List.
To avoid this, the extend method should be used, which will add the
embeddings of all strings at the same list level.

## Testing
I have tried using OpenAI-ADA to obtain the embeddings, and the result
of executing this snippet is as follows:

``` python  
embeds = await MlflowAIGatewayEmbeddings().aembed_documents(texts=["hi", "how are you?"])
print(embeds)
```  

``` python  
[[[-0.03512698, -0.020624293, -0.015343423, ...], [-0.021260535, -0.011461929, -0.00033121882, ...]]]
```
When in reality, the expected result should be:

``` python  
[[-0.03512698, -0.020624293, -0.015343423, ...], [-0.021260535, -0.011461929, -0.00033121882, ...]]
```
The above result complies with the expected type hint:
**List[List[float]]** . As I mentioned, we can achieve that by using the
extend method instead of the append method.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-08-23 14:43:43 +00:00
Christophe Bornet
7f1e444efa partners: Use simsimd types (#25299)
The simsimd package [now has
types](https://github.com/ashvardanian/SimSIMD/releases/tag/v5.0.0)
2024-08-23 10:41:39 -04:00
clement.l
642f9530cd community: add supported blockchains to Blockchain Document Loader (#25428)
- Remove deprecated chains.
- Add more supported chains.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-23 14:39:42 +00:00
conjuncts
818267bbc3 community: allow chroma DB delete() to use "where" argument (#19826)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"

Description: Simply pass kwargs to allow arguments like "where" to be
propagated
Issue: Previously, db.delete(where={}) wouldn't work for chroma
vectorstores
Dependencies: N/A
Twitter handle: N/A

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-08-23 10:10:57 -04:00
Kevin Engelke
3c7f12cbf5 community[minor]: Fix missing 'keep_newlines' parameter forward-pass to 'process_pages' function in confluence loader (#20086) (#20087)
- **Description:** Fixed missing `keep_newlines` parameter forward-pass
in confluence-loader
- **Issue:** #20086 
- **Dependencies:** None

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-08-23 12:59:38 +00:00
Erik Lindgren
583b0449eb community[patch]: Fix Hybrid Search for non-Databricks managed embeddings (#25590)
Description: Send both the query and query_embedding to the Databricks
index for hybrid search.

Issue: When using hybrid search with non-Databricks managed embedding we
currently don't pass both the embedding and query_text to the index.
Hybrid search requires both of these. This change fixes this issue for
both `similarity_search` and `similarity_search_by_vector`.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-23 08:57:13 +00:00
Alejandro Companioni
bcd5842b5d community[patch]: Updating default PPLX model to supported llama-3.1 model. (#25643)
# Issue

As of late July, Perplexity [no longer supports Llama 3
models](https://docs.perplexity.ai/changelog/introducing-new-and-improved-sonar-models).

# Description

This PR updates the default model and doc examples to reflect their
latest supported model. (Mostly updating the same places changed by
#23723.)

# Twitter handle

`@acompa_` on behalf of the team at Not Diamond. Check us out
[here](https://notdiamond.ai).

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-08-23 08:33:30 +00:00
Leonid Ganeline
163ef35dd1 docs: templates updated titles (#25646)
Updated titles into a consistent format. 
Fixed links to the diagrams.
Fixed typos.
Note: The Templates menu in the navbar is now sorted by the file names.
I'll try sorting the navbar menus by the page titles, not the page file
names.
2024-08-23 01:19:38 -07:00
Parsa Abbasi
1b2ae40d45 docs: Updated WikipediaLoader documentation (#25647)
- Output of the cells was not included in the documentation. I have
added them.
- There is another parameter in the `WikipediaLoader` class called
`doc_content_chars_max` (Based on
[this](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.wikipedia.WikipediaLoader.html)).
I have included this in the list of parameters.
- I put the list of parameters under a new section called "Parameters"
in the documentation.
- I also included the `langchain_community` package in the installation
command.
- Some minor formatting/spelling issues were fixed.
2024-08-23 01:19:03 -07:00
Jakub W.
b865ee49a0 community[patch]: Dynamodb history messages key (#25658)
- **Description:** adding the history_messages_key so you don't have to
use "History" as a key in langchain
2024-08-23 08:05:28 +00:00
Erick Friis
b28bc252c4 core[patch]: mmr util (#25689) 2024-08-22 21:31:17 -07:00
ZhangShenao
ba89933c2c Doc[Embeddings] Add docs for ZhipuAIEmbeddings (#25662)
- Add docs for `ZhipuAIEmbeddings`.
- Using integration doc template.
- Source api reference: https://bigmodel.cn/dev/api#vector

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-23 01:33:43 +00:00
Erick Friis
6096c80b71 core: pydantic output parser streaming fix (#24415)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-22 18:00:09 -07:00
Eugene Yurtsev
c316361115 core[patch]: Add _api.rename_parameter to support renaming of parameters in functions (#25101)
Add ability to rename paramerters in function signatures

```python

    @rename_parameter(since="2.0.0", removal="3.0.0", old="old_name", new="new_name")
    def foo(new_name: str) -> str:
        """original doc"""
        return new_name
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-08-22 17:16:31 -07:00
Yusuke Fukasawa
0258cb96fa core[patch]: add additionalProperties recursively to oai function if strict (#25169)
Hello. 
First of all, thank you for maintaining such a great project.

## Description
In https://github.com/langchain-ai/langchain/pull/25123, support for
structured_output is added. However, `"additionalProperties": false`
needs to be included at all levels when a nested object is generated.

error from current code:
https://gist.github.com/fufufukakaka/e9b475300e6934853d119428e390f204
```
BadRequestError: Error code: 400 - {'error': {'message': "Invalid schema for response_format 'JokeWithEvaluation': In context=('properties', 'self_evaluation'), 'additionalProperties' is required to be supplied and to be false", 'type': 'invalid_request_error', 'param': 'response_format', 'code': None}}
```

Reference: [Introducing Structured Outputs in the
API](https://openai.com/index/introducing-structured-outputs-in-the-api/)

```json
{
  "model": "gpt-4o-2024-08-06",
  "messages": [
    {
      "role": "system",
      "content": "You are a helpful math tutor."
    },
    {
      "role": "user",
      "content": "solve 8x + 31 = 2"
    }
  ],
  "response_format": {
    "type": "json_schema",
    "json_schema": {
      "name": "math_response",
      "strict": true,
      "schema": {
        "type": "object",
        "properties": {
          "steps": {
            "type": "array",
            "items": {
              "type": "object",
              "properties": {
                "explanation": {
                  "type": "string"
                },
                "output": {
                  "type": "string"
                }
              },
              "required": ["explanation", "output"],
              "additionalProperties": false
            }
          },
          "final_answer": {
            "type": "string"
          }
        },
        "required": ["steps", "final_answer"],
        "additionalProperties": false
      }
    }
  }
}
```

In the current code, `"additionalProperties": false` is only added at
the last level.
This PR introduces the `_add_additional_properties_key` function, which
recursively adds `"additionalProperties": false` to the entire JSON
schema for the request.

Twitter handle: `@fukkaa1225`

Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-23 00:08:58 +00:00
Bagatur
b35ee09b3f infra: xfail pydantic v2 arg to py function (#25686)
Issue to track: #25687
2024-08-22 23:52:57 +00:00
Christophe Bornet
ee98da4f4e core[patch]: Add UP(upgrade) ruff rules (#25358) 2024-08-22 16:29:22 -07:00
William FH
294f7fcb38 core[patch]: Remove different parent run id warning (#25683) 2024-08-22 16:10:35 -07:00
Vadym Barda
46d344c33d core[patch]: support drawing nested subgraphs in draw_mermaid (#25581)
Previously the code was able to only handle a single level of nesting
for subgraphs in mermaid. This change adds support for arbitrary nesting
of subgraphs.
2024-08-22 16:08:49 -07:00
Manuel Jaiczay
1c31234eed community: fix HuggingFacePipeline pipeline_kwargs (#19920)
Fix handling of pipeline_kwargs to prioritize class attribute defaults.

#19770

Co-authored-by: jaizo <manuel.jaiczay@polygons.at>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
2024-08-22 18:29:46 -04:00
Nobuhiko Otoba
4b63a217c2 "community: Fix GithubFileLoader source code", "docs: Fix GithubFileLoader code sample" (#19943)
This PR adds tiny improvements to the `GithubFileLoader` document loader
and its code sample, addressing the following issues:

1. Currently, the `file_extension` argument of `GithubFileLoader` does
not change its behavior at all.
1. The `GithubFileLoader` sample code in
`docs/docs/integrations/document_loaders/github.ipynb` does not work as
it stands.

The respective solutions I propose are the following:

1. Remove `file_extension` argument from `GithubFileLoader`.
1. Specify the branch as `master` (not the default `main`) and rename
`documents` as `document`.

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
2024-08-22 18:24:57 -04:00
Leonid Ganeline
e7abee034e docs: integrations reference updates 4 (#25118)
Added missed references; missed provider pages.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 22:16:45 +00:00
Erick Friis
5fb8aa82b9 docs: api ref to new site links in featuretable (#25678) 2024-08-22 21:52:50 +00:00
Bagatur
cf9c484715 standard-tests[patch]: test Message.name (#25677)
Tests:
https://github.com/langchain-ai/langchain/actions/runs/10516092584
2024-08-22 14:47:31 -07:00
Nada Amin
ac7b71e0d7 langchain_community.graphs: Neo4JGraph: prop min_size might be None (#23944)
When I used the Neo4JGraph enhanced_schema=True option, I ran into an
error because a prop min_size of None was compared numerically with an
int.

The fix I applied is similar to the pattern of skipping embeddings
elsewhere in the file.

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-08-22 20:29:52 +00:00
CastaChick
7d13a2f958 core[patch]: add option to specify the chunk separator in merge_message_runs (#24783)
**Description:**
LLM will stop generating text even in the middle of a sentence if
`finish_reason` is `length` (for OpenAI) or `stop_reason` is
`max_tokens` (for Anthropic).
To obtain longer outputs from LLM, we should call the message generation
API multiple times and merge the results into the text to circumvent the
API's output token limit.
The extra line breaks forced by the `merge_message_runs` function when
seamlessly merging messages can be annoying, so I added the option to
specify the chunk separator.

**Issue:**
No corresponding issues.

**Dependencies:**
No dependencies required.

**Twitter handle:**
@hanama_chem
https://x.com/hanama_chem

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-22 19:46:25 +00:00
basirsedighi
0f3fe44e44 parsed_json is expected to be a list of dictionaries, but it seems to… (#24018)
parsed_json is expected to be a list of dictionaries, but it seems to…
be a single dictionary instead.
This is at
libs/experimental/langchain_experimental/graph_transformers/llm.py
process process_response

Thank you for contributing to LangChain!

- [ ] **Bugfix**: "experimental: bugfix"

---------

Co-authored-by: based <basir.sedighi@nris.no>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 19:09:43 +00:00
ZhangShenao
8bde04079b patch[experimental] Fix start_index in SemanticChunker (#24761)
- Cause chunks are joined by space, so they can't be found in text, and
the final `start_index` is very possibility to be -1.
- The simplest way is to use the natural index of the chunk as
`start_index`.
2024-08-22 14:59:40 -04:00
Sanjay Parajuli
6fbd53bc60 docs: Update tool_calling.ipynb (#25434)
**Description:** This part of the documentation didn't explain about the
`required` property of function calling. I added additional line as a
note.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 18:55:24 +00:00
William FH
fad6fc866a Rm DeepInfra Breakpoint Comment (#25206)
tbh should rm the print staement too
2024-08-22 14:43:44 -04:00
yahya-mouman
e5bb4cb646 lagchain-pinecone: add id to similarity documents results (#25630)
- **Description:** This change adds the ID field that's required in
Pinecone to the result documents of the similarity search method.
- **Issue:** Lack of document metadata namely the ID field

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 18:33:26 +00:00
Eric Pinzur
01ded5e2f9 community: add metadata filter to CassandraGraphVectorStore (#25663)
- **Description:** 
- Added metadata filtering support to
`langchain_community.graph_vectorstores.cassandra.CassandraGraphVectorStore`
  - Also fixed type conversion issues highlighted by mypy.
- **Dependencies:** 
  - `ragstack-ai-knowledge-store 0.2.0` (released July 23, 2024)

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 14:27:16 -04:00
Ivan
5b9290a449 Fix UnionType type var replacement (#25566)
[langchain_core] Fix UnionType type var replacement

- Added types.UnionType to typing.Union mapping

Type replacement cause `TypeError: 'type' object is not subscriptable`
if any of union type comes as function `_py_38_safe_origin` return
`types.UnionType` instead of `typing.Union`

```python
>>> from types import UnionType
>>> from typing import Union, get_origin
>>> type_ = get_origin(str | None)
>>> type_
<class 'types.UnionType'>
>>> UnionType[(str, None)]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'type' object is not subscriptable
>>> Union[(str, None)]
typing.Optional[str]
```

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 14:22:09 -04:00
William FH
8230ba47f3 core[patch]: Improve some error messages and add another test for checking RunnableWithMessageHistory (#25209)
Also add more useful error messages.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-08-22 18:14:27 +00:00
Hasan Kumar
b4fcda7657 langchain: Fix type warnings when passing Runnable as agent to AgentExecutor (#24750)
Fix for https://github.com/langchain-ai/langchain/issues/13075

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 14:02:02 -04:00
sslee
61228da1c4 fix typo (#25673) 2024-08-22 17:33:53 +00:00
Leonid Ganeline
d886f4e107 docs: integrations reference update 9 (#25511)
Added missed provider pages. Added missed references and descriptions.
2024-08-22 10:25:41 -07:00
Maurits Bos
3da752c7bb Update pyproject.toml of packageopenai-functions-agent-gmail to prevent ModuleOrPackageNotFound error (#25597)
I was trying to add this package using langchain-cli: `langchain app add
openai-functions-agent-gmail`, but when then try to build the whole
project using poetry or pip, it fails with the following
error:`poetry.core.masonry.utils.module.ModuleOrPackageNotFound: No
file/folder found for package openai-functions-agent-gmail`

This was fixed by modifying the pyproject.toml as in this commit

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-08-22 17:22:50 +00:00
Leonid Ganeline
624e0747b9 docs: integrations reference updates 10 (#25556)
Added missed provider pages. Added descriptions, links.
2024-08-22 10:21:54 -07:00
Erick Friis
9447925d94 cli: release 0.0.30 (#25672) 2024-08-22 10:21:19 -07:00
Leonid Ganeline
47adc7f32b docs: integrations reference updates 11 (#25598)
Added missed provider pages and links.
2024-08-22 10:19:17 -07:00
Dylan
16fc0a866e docs: Change Pull Request to Merge Request in GitLab notebook (#25649)
- **Description:** In GitLab we call these "merge requests" rather than
"pull requests" so I thought I'd go ahead and update the notebook.
- **Issue:** N/A
- **Dependencies:** none
- **Twitter handle:** N/A

Thanks for creating the tools and notebook to help people work with
GitLab. I thought I'd contribute some minor docs updates here.
2024-08-22 17:15:45 +00:00
mschoenb97IL
e499caa9cd community: Give more context on DeepInfra 500 errors (#25671)
Description: DeepInfra 500 errors have useful information in the text
field that isn't being exposed to the user. I updated the error message
to fix this.

As an example, this code

```
from langchain_community.chat_models import ChatDeepInfra
from langchain_core.messages import HumanMessage

model = "meta-llama/Meta-Llama-3-70B-Instruct"
deepinfra_api_token = "..."

model = ChatDeepInfra(model=model, deepinfra_api_token=deepinfra_api_token)

messages = [HumanMessage("All work and no play makes Jack a dull boy\n" * 9000)]
response = model.invoke(messages)
```

Currently gives this error:
```
langchain_community.chat_models.deepinfra.ChatDeepInfraException: DeepInfra Server: Error 500
```

This change would give the following error:
```
langchain_community.chat_models.deepinfra.ChatDeepInfraException: DeepInfra Server error status 500: {"error":{"message":"Requested input length 99009 exceeds maximum input length 8192"}}
```
2024-08-22 10:10:51 -07:00
Brian Sam-Bodden
29c873dd69 [docs]: update Redis (langchain-redis) documentation notebooks (vectorstore, llm caching, chat message history) (#25113)
- **Description:** Adds notebooks for Redis Partner Package
(langchain-redis)
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** `@bsbodden` and `@redis`

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 11:53:02 -04:00
Rajendra Kadam
4ff2f4499e community: Refactor PebbloRetrievalQA (#25583)
**Refactor PebbloRetrievalQA**
  - Created `APIWrapper` and moved API logic into it.
  - Created smaller functions/methods for better readability.
  - Properly read environment variables.
  - Removed unused code.
  - Updated models

**Issue:** NA
**Dependencies:** NA
**tests**:  NA
2024-08-22 11:51:21 -04:00
Rajendra Kadam
1f1679e960 community: Refactor PebbloSafeLoader (#25582)
**Refactor PebbloSafeLoader**
  - Created `APIWrapper` and moved API logic into it.
  - Moved helper functions to the utility file.
  - Created smaller functions and methods for better readability.
  - Properly read environment variables.
  - Removed unused code.

**Issue:** NA
**Dependencies:** NA
**tests**:  Updated
2024-08-22 11:46:52 -04:00
maang-h
5e3a321f71 docs: Add ChatZhipuAI tool calling and structured output docstring (#25669)
- **Description:** Add `ChatZhipuAI` tool calling and structured output
docstring.
2024-08-22 10:34:41 -04:00
Krishna Kulkarni
820da64983 limit the most recent documents to fetch from MongoDB database. (#25435)
limit the most recent documents to fetch from MongoDB database.

Thank you for contributing to LangChain!

- [ ] **limit the most recent documents to fetch from MongoDB
database.**: "langchain_mongodb: limit the most recent documents to
fetch from MongoDB database."


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Added a doc_limit parameter which enables the limit
for the documents to fetch from MongoDB database
    - **Issue:** 
    - **Dependencies:** None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 10:33:45 -04:00
ccurme
67b6e6c2e3 docs[patch]: update AWS integration docs (#25631)
De-beta ChatBedrockConverse.
2024-08-22 09:22:03 -04:00
Swastik-Swarup-Dash
6247259438 update_readme (#25665)
Updated LangChain Expression Language (LCEL). for Easier Understanding
2024-08-22 13:18:32 +00:00
Noah Mayerhofer
0091947efd community: add retry for session expired exception in neo4j (#25660)
Description: The neo4j driver can raise a SessionExpired error, which is
considered a retriable error. If a query fails with a SessionExpired
error, this change retries every query once. This change will make the
neo4j integration less flaky.
Twitter handle: noahmay_
2024-08-22 13:07:36 +00:00
Erick Friis
e958f76160 docs: migration guide nits (#25600) 2024-08-22 04:24:34 +00:00
Yuki Watanabe
3981d736df databricks: Add partner package directory and ChatDatabricks implementation (#25430)
### Summary

Create `langchain-databricks` as a new partner packages. This PR does
not migrate all existing Databricks integration, but the package will
eventually contain:

* `ChatDatabricks` (implemented in this PR)
* `DatabricksVectorSearch`
* `DatabricksEmbeddings`
* ~`UCFunctionToolkit`~ (will be done after UC SDK work which
drastically simplify implementation)

Also, this PR does not add integration tests yet. This will be added
once the Databricks test workspace is ready.

Tagging @efriis as POC


### Tracker
[✍️] Create a package and imgrate ChatDatabricks
[ ] Migrate DatabricksVectorSearch, DatabricksEmbeddings, and their docs
~[ ] Migrate UCFunctionToolkit and its doc~
[ ] Add provider document and update README.md
[ ] Add integration tests and set up secrets (after moved to an external
package)
[ ] Add deprecation note to the community implementations.

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-21 17:19:28 -07:00
Scott Hurrey
fb1d67edf6 box: add retrievers and fix docs (#25633)
Thank you for contributing to LangChain!


**Description:** Adding `BoxRetriever` for langchain_box. This retriever
handles two use cases:
* Retrieve all documents that match a full-text search
* Retrieve the answer to a Box AI prompt as a Document

**Twitter handle:** @BoxPlatform


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-21 22:40:40 +00:00
Bagatur
4f347cbcb9 docs: link Versions in intro (#25640) 2024-08-21 21:02:25 +00:00
jakerachleff
4591bc0b01 Use 1.101 instead of 1.100 bc 1.100 was yanked (#25638) 2024-08-21 21:02:01 +00:00
Bagatur
f535e8a99e docs: ls similar examples header (#25642) 2024-08-21 20:50:24 +00:00
Erick Friis
766b650fdc chroma: add back fastapi optional dep (#25641) 2024-08-21 20:00:47 +00:00
Bagatur
9daff60698 docs: fix openai api ref (#25639) 2024-08-21 12:55:17 -07:00
Erick Friis
c8be0a9f70 partners/unstructured: release 0.1.2 (#25637) 2024-08-21 12:53:55 -07:00
Bagatur
f4b3c90886 docs: add prereq commas (#25626) 2024-08-21 12:38:53 -07:00
Christophe Bornet
b71ae52e65 [unstructured][security] Bump unstructured version (#25364)
This ensures version 0.15.7+ is pulled. 
This version of unstructured uses a version of NLTK >= 3.8.2 that has a
fix for a critical CVE:
https://github.com/advisories/GHSA-cgvx-9447-vcch
2024-08-21 12:25:24 -07:00
Bagatur
39c44817ae infra: test convert_message (#25632) 2024-08-21 18:24:06 +00:00
Bagatur
4feda41ab6 docs: ls how to link (#25624) 2024-08-21 10:18:08 -07:00
Bagatur
71c2ec6782 docs: langsmith few shot prereq (#25623) 2024-08-21 16:44:25 +00:00
Bagatur
628574b9c2 core[patch]: Release 0.2.34 (#25622) 2024-08-21 16:26:51 +00:00
Bagatur
0bc3845e1e core[patch]: support oai dicts as messages (#25621)
and update langsmtih example selector docs
2024-08-21 16:13:15 +00:00
Bagatur
a78843bb77 docs: how to use langsmith few shot (#25601)
Requires langsmith 0.1.101 release
2024-08-21 08:12:42 -07:00
ccurme
10a2ce2a26 together[patch]: use mixtral in standard integration tests (#25619)
Mistral 7B occasionally fails tool-calling tests. Updating to Mixtral
appears to improve this.
2024-08-21 14:26:25 +00:00
Mikhail Khludnev
d457d7d121 docs: Update qdrant.ipynb "BM25".lower() (#25616)
Otherwise I've got KeyError from `fastembeds`
2024-08-21 09:45:00 -04:00
Dristy Srivastava
b002702af6 [Community][minor]: Updating metadata with full_path in SharePoint loader (#25593)
- **Description:** Updating metadata for sharepoint loader with full
path i.e., webUrl
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** NA
- **Docs** NA

Co-authored-by: dristy.cd <dristy@clouddefense.io>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-08-21 13:10:14 +00:00
ZhangShenao
34d0417eb5 Improvement[Doc] Improve api doc in of PineconeVectorStore (#25605)
Complete missing arguments in api doc of `PineconeVectorStore`.
2024-08-21 08:58:00 -04:00
wangda
e7d6b25653 docs:Correcting spelling mistakes (#25612) 2024-08-21 08:49:12 -04:00
Scott Hurrey
55fd2e2158 box: add langchain box package and DocumentLoader (#25506)
Thank you for contributing to LangChain!

-Description: Adding new package: `langchain-box`:

* `langchain_box.document_loaders.BoxLoader` — DocumentLoader
functionality
* `langchain_box.utilities.BoxAPIWrapper` — Box-specific code
* `langchain_box.utilities.BoxAuth` — Helper class for Box
authentication
* `langchain_box.utilities.BoxAuthType` — enum used by BoxAuth class

- Twitter handle: @boxplatform


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-21 02:23:43 +00:00
Bagatur
be27e1787f docs: few-shot conceptual guide (#25596)
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: jakerachleff <jake@langchain.dev>
2024-08-21 00:39:50 +00:00
Erick Friis
f878df404f partners/chroma: release 0.1.3 (#25599) 2024-08-20 23:24:32 +00:00
Erick Friis
60cf49a618 chroma: ban chromadb sdk versions 0.5.4 and 0.5.5 due to pydantic bug (#25586)
also remove some unused dependencies (fastapi) and unused test/lint/dev
dependencies (community, openai, textsplitters)

chromadb 0.5.4 introduced usage of `model_fields` which is pydantic v2
specific. also released in 0.5.5
2024-08-20 23:21:38 +00:00
Erick Friis
e37caa9b9a core: fix fallback context overwriting (#25550)
fixes #25337
2024-08-20 16:07:12 -07:00
Bagatur
3e296e39c8 docs: update examples in api ref (#25589) 2024-08-20 11:08:24 -07:00
Isaac Francisco
d40bdd6257 docs: more indexing of document loaders (#25500)
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-08-20 17:54:42 +00:00
Bagatur
8a71f1b41b core[minor]: add langsmith document loader (#25493)
needs tests
2024-08-20 10:22:14 -07:00
Bob Merkus
8e3e532e7d docs: ollama doc update (toolcalling, install, notebook examples) (#25549)
The new `langchain-ollama` package seems pretty well implemented, but I
noticed the docs were still outdated so I decided to fix em up a bit.

- Llama3.1 was release on 23rd of July;
https://ai.meta.com/blog/meta-llama-3-1/
- Ollama supports tool calling since 25th of July;
https://ollama.com/blog/tool-support
- LangChain Ollama partner package was released 1st of august;
https://pypi.org/project/langchain-ollama/

**Problem**: Docs note langchain-community instead of langchain-ollama

**Solution**: Update docs to
https://python.langchain.com/v0.2/docs/integrations/chat/ollama/


**Problem**: OllamaFunctions is deprecated, as noted on
[Integrations](https://python.langchain.com/v0.2/docs/integrations/chat/ollama_functions/):
This was an experimental wrapper that attempts to bolt-on tool calling
support to models that do not natively support it. The [primary Ollama
integration](https://python.langchain.com/v0.2/docs/integrations/chat/ollama/) now
supports tool calling, and should be used instead.

**Solution**: Delete old notebook from repo, update the existing one
with @tool decorator + pydantic examples to the notebook


**Problem**: Llama3.1 was released while llama3-groq-tool-call fine-tune
Is noted in notebooks.

**Solution**: update docs + notebooks to llama3.1 (which has improved
tool calling support)


**Problem**: Install instructions are incomplete, there is no
information to download a model and/or run the Ollama server

**Solution**: Add simple instructions to start the ollama service and
pull model (for toolcalling)

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-20 09:20:59 -04:00
Jabir
12e490ea56 Update azuresearch.py (#25577)
This will allow complextype metadata to be returned. the current
implementation throws error when dealing with nested metadata

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-20 12:53:30 +00:00
Abraham Omorogbe
498a482e76 docs: Adding Azure Database for PostgreSQL docs (#25560)
This PR to show support for the Azure Database for PostgreSQL Vector
Store and Memory

[Azure Database for PostgreSQL - Flexible
Server](https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/service-overview)
[Azure Database for PostgreSQL pgvector
extension](https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/how-to-use-pgvector)

**Description:** Added vector store and memory usage documentation for
Azure Database for PostgreSQL
 **Twitter handle:** [@_aiabe](https://x.com/_aiabe)

---------

Co-authored-by: Abeomor <{ID}+{username}@users.noreply.github.com>
2024-08-20 12:01:32 +00:00
Leonid Ganeline
d324fd1821 docs: added Constitutional AI references (#25553)
Added reference to the source paper.
2024-08-20 08:00:58 -04:00
Bagatur
4bd005adb6 core[patch]: Allow bound models as token_counter in trim_messages (#25563) 2024-08-20 00:21:22 -07:00
Erick Friis
e01c6789c4 core,community: add beta decorator to missed GraphVectorStore extensions (#25562) 2024-08-19 17:29:09 -07:00
Erick Friis
dd2d094adc infra: remove huggingface from ci tree (#25559) 2024-08-19 22:48:26 +00:00
Bagatur
6b98207eda infra: test chat prompt ser/des (#25557) 2024-08-19 15:27:36 -07:00
ccurme
c5bf114c0f together, standard-tests: specify tool_choice in standard tests (#25548)
Here we allow standard tests to specify a value for `tool_choice` via a
`tool_choice_value` property, which defaults to None.

Chat models [available in
Together](https://docs.together.ai/docs/chat-models) have issues passing
standard tool calling tests:
- llama 3.1 models currently [appear to rely on user-side
parsing](https://docs.together.ai/docs/llama-3-function-calling) in
Together;
- Mixtral-8x7B and Mistral-7B (currently tested) consistently do not
call tools in some tests.

Specifying tool_choice also lets us remove an existing `xfail` and use a
smaller model in Groq tests.
2024-08-19 16:37:36 -04:00
maang-h
015ab91b83 community[patch]: Add ToolMessage for ChatZhipuAI (#25547)
- **Description:** Add ToolMessage for `ChatZhipuAI` to solve the issue
#25490
2024-08-19 11:26:38 -04:00
ccurme
5a3aaae6dc groq[patch]: update model used for llama tests (#25542)
`llama-3.1-8b-instant` often fails some of the tool calling standard
tests. Here we update to `llama-3.1-70b-versatile`.
2024-08-19 13:58:06 +00:00
Mohammad Mohtashim
75c3c81b8c [Community]: Fix - Open AI Whisper client.audio.transcriptions returning Text Object which raises error (#25271)
- **Description:** The following
[line](fd546196ef/libs/community/langchain_community/document_loaders/parsers/audio.py (L117))
in `OpenAIWhisperParser` returns a text object for some odd reason
despite the official documentation saying it should return `Transcript`
Instance which should have the text attribute. But for the example given
in the issue and even when I tried running on my own, I was directly
getting the text. The small PR accounts for that.
 - **Issue:** : #25218
 

I was able to replicate the error even without the GenericLoader as
shown below and the issue was with `OpenAIWhisperParser`

```python
parser = OpenAIWhisperParser(api_key="sk-fxxxxxxxxx",
                                            response_format="srt",
                                            temperature=0)

list(parser.lazy_parse(Blob.from_path('path_to_file.m4a')))
```
2024-08-19 09:36:42 -04:00
Thin red line 未来产品经理
0f7b8adddf fix issue: cannot use document_variable_name to override context in create_stuff_documents_chain (#25531)
…he prompt in the create_stuff_documents_chain

Thank you for contributing to LangChain!

- [ ] **PR title**: "langchain:add document_variable_name in the
function _validate_prompt in create_stuff_documents_chain"
 

- [ ] **PR message**: 
- **Description:** add document_variable_name in the function
_validate_prompt in create_stuff_documents_chain
- **Issue:** according to the description of
create_stuff_documents_chain function, the parameter
document_variable_name can be used to override the "context" in the
prompt, but in the function, _validate_prompt it still use DOCUMENTS_KEY
to check if it is a valid prompt, the value of DOCUMENTS_KEY is always
"context", so even through the user use document_variable_name to
override it, the code still tries to check if "context" is in the
prompt, and finally it reports error. so I use document_variable_name to
replace DOCUMENTS_KEY, the default value of document_variable_name is
"context" which is same as DOCUMENTS_KEY, but it can be override by
users.
    - **Dependencies:** none
    - **Twitter handle:** https://x.com/xjr199703


- [ ] **Add tests and docs**: none

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-19 13:33:19 +00:00
ccurme
09c0823c3a docs: update summarization guides (#25408) 2024-08-19 13:29:25 +00:00
maang-h
32f5147523 docs: Fix QianfanLLMEndpoint and Tongyi input text (#25529)
- **Description:** Fix `QianfanLLMEndpoint` and `Tongyi` input text.
2024-08-19 09:23:09 -04:00
ZhangShenao
4255a30f20 Improvement[Community] Improve api doc for SingleFileFacebookMessengerChatLoader (#25536)
Delete redundant args in api doc
2024-08-19 09:00:21 -04:00
Bagatur
49dea06af1 docs: fix Agent deprecation msg (#25464) 2024-08-18 19:15:52 +00:00
Hassan El Mghari
937b3904eb together[patch]: update base url (#25524)
Updated the Together base URL from `.ai` to `.xyz` since some customers
have reported problems with `.ai`.
2024-08-18 10:48:30 -07:00
gbaian10
bda3becbe7 docs: add prompt to install beautifulsoup4. (#25518)
fix: #25482

- **Description:**
Add a prompt to install beautifulsoup4 in places where `from
langchain_community.document_loaders import WebBaseLoader` is used.
- **Issue:** #25482
2024-08-17 23:23:24 -07:00
gbaian10
f6e6a17878 docs: add prompt to install nltk (#25519)
fix: #25473 

- **Description:** add prompt to install nltk
- **Issue:** #25473
2024-08-17 23:22:49 -07:00
Chengzu Ou
c1bd4e05bc docs: fix Databricks Vector Search demo notebook (#25504)
**Description:** This PR fixes an issue in the demo notebook of
Databricks Vector Search in "Work with Delta Sync Index" section.

**Issue:** N/A

**Dependencies:** N/A

---------

Co-authored-by: Chengzu Ou <chengzu.ou@databrick.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-16 20:24:30 +00:00
Isaac Francisco
a2e90a5a43 add embeddings integration tests (#25508) 2024-08-16 13:20:37 -07:00
Bagatur
a06818a654 openai[patch]: update core dep (#25502) 2024-08-16 18:30:17 +00:00
Bagatur
df98552b6f core[patch]: Release 0.2.33 (#25498) 2024-08-16 11:18:54 -07:00
ccurme
b83f1eb0d5 core, partners: implement standard tracing params for LLMs (#25410) 2024-08-16 13:18:09 -04:00
Bagatur
9f0c76bf89 openai[patch]: Release 0.1.22 (#25496) 2024-08-16 16:53:04 +00:00
ccurme
01ecd0acba openai[patch]: fix json mode for Azure (#25488)
https://github.com/langchain-ai/langchain/issues/25479
https://github.com/langchain-ai/langchain/issues/25485

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-16 09:50:50 -07:00
Eugene Yurtsev
1fd1c1dca5 docs: use .invoke rather than __call__ in openai integration notebook (#25494)
Documentation should be using .invoke()
2024-08-16 15:59:18 +00:00
Bagatur
253ceca76a docs: fix mimetype parser docstring (#25463) 2024-08-15 16:16:52 -07:00
Eugene Yurtsev
e18511bb22 core[minor], anthropic[patch]: Upgrade @root_validator usage to be consistent with pydantic 2 (#25457)
anthropic: Upgrade `@root_validator` usage to be consistent with
pydantic 2
core: support looking up multiple keys from env in from_env factory
2024-08-15 20:09:34 +00:00
Eugene Yurtsev
34da8be60b pinecone[patch]: Upgrade @root_validators to be consistent with pydantic 2 (#25453)
Upgrade root validators for pydantic 2 migration
2024-08-15 19:45:14 +00:00
Eugene Yurtsev
b297af5482 voyageai[patch]: Upgrade root validators for pydantic 2 (#25455)
Update @root_validators to be consistent with pydantic 2 semantics
2024-08-15 15:30:41 -04:00
Eugene Yurtsev
4cdaca67dc ai21[patch]: Upgrade @root_validators for pydantic 2 migration (#25454)
Upgrade @root_validators usage to match pydantic 2 semantics
2024-08-15 14:54:08 -04:00
Eugene Yurtsev
d72a08a60d groq[patch]: Update root validators for pydantic 2 migration (#25402) 2024-08-15 18:46:52 +00:00
Leonid Ganeline
8eb63a609e docs: arxiv page update (#25450)
Added `arxive` papers that use `LangGraph` or `LangSmith`. Improved the
page formatting.
2024-08-15 14:30:35 -04:00
Isaac Francisco
5150ec3a04 [experimental]: minor fix to open assistants code (#24682) 2024-08-15 17:50:57 +00:00
Bagatur
2b4fbcb4b4 docs: format oai embeddings docstring (#25448) 2024-08-15 16:57:54 +00:00
Eugene Yurtsev
eb3870e9d8 fireworks[patch]: Upgrade @root_validators to be pydantic 2 compliant (#25443)
Update @root_validators to be pydantic 2 compliant
2024-08-15 16:56:48 +00:00
William FH
75ae585deb Merge support for group manager (#25360) 2024-08-15 09:56:31 -07:00
Eugene Yurtsev
b7c070d437 docs[patch]: Update code that checks API keys (#25444)
Check whether the API key is already in the environment

Update:

```python
import getpass
import os

os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
os.environ["DATABRICKS_TOKEN"] = getpass.getpass("Enter your Databricks access token: ")
```

To:

```python
import getpass
import os

os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
if "DATABRICKS_TOKEN" not in os.environ:
    os.environ["DATABRICKS_TOKEN"] = getpass.getpass(
        "Enter your Databricks access token: "
    )
```

grit migration:

```
engine marzano(0.1)
language python

`os.environ[$Q] = getpass.getpass("$X")` as $CHECK where {
    $CHECK <: ! within if_statement(),
    $CHECK => `if $Q not in os.environ:\n    $CHECK`
}
```
2024-08-15 12:52:37 -04:00
Bagatur
60b65528c5 docs: fix api ref mod links in pkg page (#25447) 2024-08-15 16:52:12 +00:00
Eugene Yurtsev
2ef9d12372 mistralai[patch]: Update more @root_validators for pydantic 2 compatibility (#25446)
Update @root_validators in mistralai integration for pydantic 2 compatibility
2024-08-15 12:44:42 -04:00
Eugene Yurtsev
6910b0b3aa docs[patch]: Fix integration notebook for Fireworks llm (#25442)
Fix integration notebook
2024-08-15 12:42:33 -04:00
Eugene Yurtsev
831708beb7 together[patch]: Update @root_validator for pydantic 2 compatibility (#25423)
This PR updates usage of @root_validator to be compatible with pydantic 2.
2024-08-15 11:27:42 -04:00
Eugene Yurtsev
a114255b82 ai21[patch]: Update @root_validators for pydantic2 migration (#25401)
Update @root_validators for pydantic 2 migration.
2024-08-15 11:26:44 -04:00
Eugene Yurtsev
6f68c8d6ab mistralai[patch]: Update root validator for compatibility with pydantic 2 (#25403) 2024-08-15 11:26:24 -04:00
ccurme
8afbab4cf6 langchain[patch]: deprecate various chains (#25310)
- [x] NatbotChain: move to community, deprecate langchain version.
Update to use `prompt | llm | output_parser` instead of LLMChain.
- [x] LLMMathChain: deprecate + add langgraph replacement example to API
ref
- [x] HypotheticalDocumentEmbedder (retriever): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] FlareChain: update to use `prompt | llm | output_parser` instead
of LLMChain
- [x] ConstitutionalChain: deprecate + add langgraph replacement example
to API ref
- [x] LLMChainExtractor (document compressor): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] LLMChainFilter (document compressor): update to use `prompt | llm
| output_parser` instead of LLMChain
- [x] RePhraseQueryRetriever (retriever): update to use `prompt | llm |
output_parser` instead of LLMChain
2024-08-15 10:49:26 -04:00
Luke
66e30efa61 experimental: Fix divide by 0 error (#25439)
Within the semantic chunker, when calling `_threshold_from_clusters`
there is the possibility for a divide by 0 error if the
`number_of_chunks` is equal to the length of `distances`.

Fix simply implements a check if these values match to prevent the error
and enable chunking to continue.
2024-08-15 14:46:30 +00:00
ccurme
ba167dc158 community[patch]: update connection string in azure cosmos integration test (#25438) 2024-08-15 14:07:54 +00:00
Eugene Yurtsev
44f69063b1 docs[patch]: Fix a few typos in the chat integration docs for TogetherAI (#25424)
Fix a few minor typos
2024-08-15 09:48:36 -04:00
Isaac Francisco
f18b77fd59 [docs]: pdf loaders (#25425) 2024-08-14 21:44:57 -07:00
Isaac Francisco
966b408634 [docs]: doc loader changes (#25417) 2024-08-14 19:46:33 -07:00
ccurme
bd261456f6 langchain: bump core to 0.2.32 (#25421) 2024-08-15 00:00:42 +00:00
Bagatur
ec8ffc8f40 core[patch]: Release 0.2.32 (#25420) 2024-08-14 15:56:56 -07:00
Bagatur
2494cecabf core[patch]: tool import fix (#25419) 2024-08-14 22:54:13 +00:00
ccurme
df632b8cde langchain: bump min core version (#25418) 2024-08-14 22:51:35 +00:00
ccurme
1050e890c6 langchain: release 0.2.14 (#25416)
Fixes https://github.com/langchain-ai/langchain/issues/25413
2024-08-14 22:29:39 +00:00
Isaac Francisco
c4779f5b9c [docs]: sitemaploader update (#25363) 2024-08-14 15:27:40 -07:00
gbaian10
0a99935794 docs: remove the extra period in docstring (#25414)
Remove the period after the hyperlink in the docstring of
BaseChatOpenAI.with_structured_output.

I have repeatedly copied the extra period at the end of the hyperlink,
which results in a "Page not found" page when pasted into the browser.
2024-08-14 18:07:15 -04:00
Isaac Francisco
63aba3fe5b [docs]: link fix directory loader (#25411) 2024-08-14 20:58:54 +00:00
Bagatur
dc80be5efe docs: fix deprecated functions table (#25409) 2024-08-14 12:25:39 -07:00
Erick Friis
ab29ee79a3 docs: fix tool index (#25404) 2024-08-14 18:36:41 +00:00
Werner van der Merwe
1d3f7231b8 fix: typo where github should be gitlab (#25397)
**PR title**: "GitLabToolkit: fix typo"
    - **Description:** fix typo where GitHub should have been GitLab
    - **Dependencies:** None
2024-08-14 18:36:25 +00:00
1137 changed files with 54524 additions and 32679 deletions

View File

@@ -16,6 +16,19 @@ LANGCHAIN_DIRS = [
"libs/experimental",
]
# for 0.3rc, we are ignoring core dependents
# in order to be able to get CI to pass for individual PRs.
IGNORE_CORE_DEPENDENTS = True
# ignored partners are removed from dependents
# but still run if directly edited
IGNORED_PARTNERS = [
# remove huggingface from dependents because of CI instability
# specifically in huggingface jobs
# https://github.com/langchain-ai/langchain/issues/25558
"huggingface",
]
def all_package_dirs() -> Set[str]:
return {
@@ -68,6 +81,11 @@ def dependents_graph() -> dict:
if "langchain" in dep:
dependents[dep].add(pkg_dir)
for k in dependents:
for partner in IGNORED_PARTNERS:
if f"libs/partners/{partner}" in dependents[k]:
dependents[k].remove(f"libs/partners/{partner}")
return dependents
@@ -90,7 +108,7 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
{"working-directory": dir_, "python-version": f"3.{v}"}
for v in range(8, 13)
]
min_python = "3.8"
min_python = "3.9"
max_python = "3.12"
# custom logic for specific directories
@@ -170,6 +188,9 @@ if __name__ == "__main__":
# for extended testing
found = False
for dir_ in LANGCHAIN_DIRS:
if dir_ == "libs/core" and IGNORE_CORE_DEPENDENTS:
dirs_to_run["extended-test"].add(dir_)
continue
if file.startswith(dir_):
found = True
if found:
@@ -181,7 +202,6 @@ if __name__ == "__main__":
dirs_to_run["test"].add("libs/partners/mistralai")
dirs_to_run["test"].add("libs/partners/openai")
dirs_to_run["test"].add("libs/partners/anthropic")
dirs_to_run["test"].add("libs/partners/ai21")
dirs_to_run["test"].add("libs/partners/fireworks")
dirs_to_run["test"].add("libs/partners/groq")

View File

@@ -11,7 +11,7 @@ if __name__ == "__main__":
# see if we're releasing an rc
version = toml_data["tool"]["poetry"]["version"]
releasing_rc = "rc" in version
releasing_rc = "rc" in version or "dev" in version
# if not, iterate through dependencies and make sure none allow prereleases
if not releasing_rc:

View File

@@ -1,114 +0,0 @@
name: dependencies
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
name: dependency checks ${{ inputs.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: pydantic-cross-compat
- name: Install dependencies
shell: bash
run: poetry install
- name: Check imports with base dependencies
shell: bash
run: poetry run make check_imports
- name: Install test dependencies
shell: bash
run: poetry install --with test
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Install the opposite major version of pydantic
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
shell: bash
# airbyte currently doesn't support pydantic v2
if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }}
run: |
# Determine the major part of pydantic version
REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
if [[ "$REGULAR_VERSION" == "1" ]]; then
PYDANTIC_DEP=">=2.1,<3"
TEST_WITH_VERSION="2"
elif [[ "$REGULAR_VERSION" == "2" ]]; then
PYDANTIC_DEP="<2"
TEST_WITH_VERSION="1"
else
echo "Unexpected pydantic major version '$REGULAR_VERSION', cannot determine which version to use for cross-compatibility test."
exit 1
fi
# Install via `pip` instead of `poetry add` to avoid changing lockfile,
# which would prevent caching from working: the cache would get saved
# to a different key than where it gets loaded from.
poetry run pip install "pydantic${PYDANTIC_DEP}"
# Ensure that the correct pydantic is installed now.
echo "Checking pydantic version... Expecting ${TEST_WITH_VERSION}"
# Determine the major part of pydantic version
CURRENT_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
# Check that the major part of pydantic version is as expected, if not
# raise an error
if [[ "$CURRENT_VERSION" != "$TEST_WITH_VERSION" ]]; then
echo "Error: expected pydantic version ${CURRENT_VERSION} to have been installed, but found: ${TEST_WITH_VERSION}"
exit 1
fi
echo "Found pydantic version ${CURRENT_VERSION}, as expected"
- name: Run pydantic compatibility tests
# airbyte currently doesn't support pydantic v2
if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }}
shell: bash
run: make test
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -75,12 +75,11 @@ jobs:
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
# Temporarily disabled until we can get the minimum versions working
# - name: Run unit tests with minimum dependency versions
# if: ${{ steps.min-version.outputs.min-versions != '' }}
# env:
# MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
# run: |
# poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
# make tests
# working-directory: ${{ inputs.working-directory }}
- name: Run unit tests with minimum dependency versions
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
make tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -89,19 +89,6 @@ jobs:
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
dependencies:
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.dependencies != '[]' }}
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.dependencies) }}
uses: ./.github/workflows/_dependencies.yml
with:
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
extended-tests:
name: "cd ${{ matrix.job-configs.working-directory }} / make extended_tests #${{ matrix.job-configs.python-version }}"
needs: [ build ]
@@ -149,7 +136,7 @@ jobs:
echo "$STATUS" | grep 'nothing to commit, working tree clean'
ci_success:
name: "CI Success"
needs: [build, lint, test, compile-integration-tests, dependencies, extended-tests, test-doc-imports]
needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports]
if: |
always()
runs-on: ubuntu-latest

View File

@@ -17,16 +17,14 @@ jobs:
fail-fast: false
matrix:
python-version:
- "3.8"
- "3.9"
- "3.11"
working-directory:
- "libs/partners/openai"
- "libs/partners/anthropic"
- "libs/partners/ai21"
- "libs/partners/fireworks"
- "libs/partners/groq"
- "libs/partners/mistralai"
- "libs/partners/together"
- "libs/partners/google-vertexai"
- "libs/partners/google-genai"
- "libs/partners/aws"
@@ -90,11 +88,9 @@ jobs:
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}

1
.gitignore vendored
View File

@@ -167,6 +167,7 @@ docs/.docusaurus/
docs/.cache-loader/
docs/_dist
docs/api_reference/*api_reference.rst
docs/api_reference/*.md
docs/api_reference/_build
docs/api_reference/*/
!docs/api_reference/_static/

View File

@@ -14,18 +14,20 @@
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team.
## Quick Install
With pip:
```bash
pip install langchain
```
With conda:
```bash
conda install langchain -c conda-forge
```
@@ -36,12 +38,13 @@ conda install langchain -c conda-forge
For these applications, LangChain simplifies the entire application lifecycle:
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
### Open-source libraries
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
- **`langchain-community`**: Third party integrations.
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
@@ -49,9 +52,11 @@ Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-c
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it.
### Productionization:
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
### Deployment:
- **[LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/)**: Turn your LangGraph applications into production-ready APIs and Assistants.
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](docs/static/svg/langchain_stack_062024.svg "LangChain Architecture Overview")
@@ -76,15 +81,17 @@ Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-c
And much more! Head to the [Tutorials](https://python.langchain.com/v0.2/docs/tutorials/) section of the docs for more.
## 🚀 How does LangChain help?
The main value props of the LangChain libraries are:
1. **Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
## LangChain Expression Language (LCEL)
LCEL is the foundation of many of LangChain's components, and is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
LCEL is a key part of LangChain, allowing you to build and organize chains of processes in a straightforward, declarative manner. It was designed to support taking prototypes directly into production without needing to alter any code. This means you can use LCEL to set up everything from basic "prompt + LLM" setups to intricate, multi-step workflows.
- **[Overview](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits
- **[Interface](https://python.langchain.com/v0.2/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects
@@ -123,7 +130,6 @@ Please see [here](https://python.langchain.com) for full documentation, which in
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Create stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it.
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploy LangChain runnables and chains as REST APIs.
## 💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

View File

@@ -445,7 +445,7 @@
"\n",
"\n",
"def plt_img_base64(img_base64):\n",
" \"\"\"Disply base64 encoded string as image\"\"\"\n",
" \"\"\"Display base64 encoded string as image\"\"\"\n",
" # Create an HTML img tag with the base64 string as the source\n",
" image_html = f'<img src=\"data:image/jpeg;base64,{img_base64}\" />'\n",
" # Display the image by rendering the HTML\n",

View File

@@ -4,6 +4,8 @@ Example code for building applications with LangChain, with an emphasis on more
Notebook | Description
:- | :-
[agent_fireworks_ai_langchain_mongodb.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/agent_fireworks_ai_langchain_mongodb.ipynb) | Build an AI Agent With Memory Using MongoDB, LangChain and FireWorksAI.
[mongodb-langchain-cache-memory.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/mongodb-langchain-cache-memory.ipynb) | Build a RAG Application with Semantic Cache Using MongoDB and LangChain.
[LLaMA2_sql_chat.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/LLaMA2_sql_chat.ipynb) | Build a chat application that interacts with a SQL database using an open source llm (llama2), specifically demonstrated on an SQLite database containing rosters.
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.

File diff suppressed because one or more lines are too long

View File

@@ -135,7 +135,7 @@
"source": [
"## Instantiate model, DB, code interpreter\n",
"\n",
"We'll use the LangChain [SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase) interface to connect to our DB and query it. This works with any SQL database supported by [SQLAlchemy](https://www.sqlalchemy.org/)."
"We'll use the LangChain [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase) interface to connect to our DB and query it. This works with any SQL database supported by [SQLAlchemy](https://www.sqlalchemy.org/)."
]
},
{

View File

@@ -38,7 +38,7 @@
"source": [
"Connection is via `cassio` using `auto=True` parameter, and the notebook uses OpenAI. You should create a `.env` file accordingly.\n",
"\n",
"For Casssandra, set:\n",
"For Cassandra, set:\n",
"```bash\n",
"CASSANDRA_CONTACT_POINTS\n",
"CASSANDRA_USERNAME\n",

View File

@@ -336,7 +336,7 @@
" # Create a prompt template with format instructions and the query\n",
" prompt = PromptTemplate(\n",
" template=\"\"\"You are generating questions that is well optimized for retrieval. \\n \n",
" Look at the input and try to reason about the underlying sematic intent / meaning. \\n \n",
" Look at the input and try to reason about the underlying semantic intent / meaning. \\n \n",
" Here is the initial question:\n",
" \\n ------- \\n\n",
" {question} \n",
@@ -643,7 +643,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python 3.11.1 64-bit",
"language": "python",
"name": "python3"
},
@@ -657,7 +657,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.11.1"
},
"vscode": {
"interpreter": {
"hash": "1a1af0ee75eeea9e2e1ee996c87e7a2b11a0bebd85af04bb136d915cefc0abce"
}
}
},
"nbformat": 4,

View File

@@ -647,7 +647,7 @@
"metadata": {},
"source": [
"**Now we see the results are correct as it is mentioned in earnings release.** <br>\n",
"**To further automate, we will create a chain that will take input as question and retriever so that we don't need to retrieve documents seperately**"
"**To further automate, we will create a chain that will take input as question and retriever so that we don't need to retrieve documents separately**"
]
},
{
@@ -734,9 +734,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "rag-on-intel",
"display_name": "Python 3.11.1 64-bit",
"language": "python",
"name": "rag-on-intel"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -748,7 +748,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.11.1"
},
"vscode": {
"interpreter": {
"hash": "1a1af0ee75eeea9e2e1ee996c87e7a2b11a0bebd85af04bb136d915cefc0abce"
}
}
},
"nbformat": 4,

View File

@@ -18,7 +18,7 @@ for dir; do \
if find "$$dir" -maxdepth 1 -type f \( -name "pyproject.toml" -o -name "setup.py" \) | grep -q .; then \
echo "$$dir"; \
fi \
done' sh {} + | grep -vE "airbyte|ibm|couchbase" | tr '\n' ' ')
done' sh {} + | grep -vE "airbyte|ibm|couchbase|databricks" | tr '\n' ' ')
PORT ?= 3001
@@ -39,7 +39,6 @@ install-py-deps:
generate-files:
mkdir -p $(INTERMEDIATE_DIR)
cp -r $(SOURCE_DIR)/* $(INTERMEDIATE_DIR)
mkdir -p $(INTERMEDIATE_DIR)/templates
$(PYTHON) scripts/tool_feat_table.py $(INTERMEDIATE_DIR)
@@ -47,8 +46,6 @@ generate-files:
$(PYTHON) scripts/partner_pkg_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/copy_templates.py $(INTERMEDIATE_DIR)
wget -q https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O $(INTERMEDIATE_DIR)/langserve.md
$(PYTHON) scripts/resolve_local_links.py $(INTERMEDIATE_DIR)/langserve.md https://github.com/langchain-ai/langserve/tree/main/
@@ -76,6 +73,8 @@ append-related:
generate-references:
$(PYTHON) scripts/generate_api_reference_links.py --docs_dir $(OUTPUT_NEW_DOCS_DIR)
update-md: generate-files md-sync
build: install-py-deps generate-files copy-infra render md-sync append-related
vercel-build: install-vercel-deps build generate-references

View File

@@ -281,7 +281,7 @@ def _construct_doc(
module_doc = f"""\
.. currentmodule:: {package_namespace}
.. _{module}:
.. _{package_namespace}_{module}:
"""
_members = members_by_namespace[module]
classes = [
@@ -317,8 +317,8 @@ def _construct_doc(
"""
index_autosummary += f"""
:ref:`{module}`
{'^' * (len(module) + 5)}
:ref:`{package_namespace}_{module}`
{'^' * (len(package_namespace) + len(module) + 8)}
"""
if classes:
@@ -394,7 +394,7 @@ def _construct_doc(
"""
index_autosummary += """
**Deprecated classes*
**Deprecated classes**
.. autosummary::
"""
@@ -438,7 +438,7 @@ def _construct_doc(
{fstring}
"""
index_autosummary += """
index_autosummary += f"""
**Deprecated functions**
.. autosummary::
@@ -448,7 +448,6 @@ def _construct_doc(
"""
docs.append((f"{module}.rst", module_doc))
docs.append(("index.rst", index_doc + index_autosummary))
return docs
@@ -472,6 +471,14 @@ def _build_rst_file(package_name: str = "langchain") -> None:
def _package_namespace(package_name: str) -> str:
"""Returns the package name used.
Args:
package_name: Can be either "langchain" or "core" or "experimental".
Returns:
modified package_name: Can be either "langchain" or "langchain_{package_name}"
"""
return (
package_name
if package_name == "langchain"
@@ -530,47 +537,7 @@ def _build_index(dirs: List[str]) -> None:
ordered = ["core", "langchain", "text-splitters", "community", "experimental"]
main_ = [dir_ for dir_ in ordered if dir_ in dirs]
integrations = sorted(dir_ for dir_ in dirs if dir_ not in main_)
main_headers = [
" ".join(custom_names.get(x, x.title()) for x in dir_.split("-"))
for dir_ in main_
]
integration_headers = [
" ".join(
custom_names.get(x, x.title().replace("ai", "AI").replace("db", "DB"))
for x in dir_.split("-")
)
for dir_ in integrations
]
main_tree = "\n".join(
f"{header_name}<{dir_.replace('-', '_')}/index>"
for header_name, dir_ in zip(main_headers, main_)
)
main_grid = "\n".join(
f'- header: "**{header_name}**"\n content: "{_package_namespace(dir_).replace("_", "-")}: {_get_package_version(_package_dir(dir_))}"\n link: {dir_.replace("-", "_")}/index.html'
for header_name, dir_ in zip(main_headers, main_)
)
integration_tree = "\n".join(
f"{header_name}<{dir_.replace('-', '_')}/index>"
for header_name, dir_ in zip(integration_headers, integrations)
)
integration_grid = ""
integrations_to_show = [
"openai",
"anthropic",
"google-vertexai",
"aws",
"huggingface",
"mistralai",
]
for header_name, dir_ in sorted(
zip(integration_headers, integrations),
key=lambda h_d: integrations_to_show.index(h_d[1])
if h_d[1] in integrations_to_show
else len(integrations_to_show),
)[: len(integrations_to_show)]:
integration_grid += f'\n- header: "**{header_name}**"\n content: {_package_namespace(dir_).replace("_", "-")} {_get_package_version(_package_dir(dir_))}\n link: {dir_.replace("-", "_")}/index.html'
doc = f"""# LangChain Python API Reference
doc = """# LangChain Python API Reference
Welcome to the LangChain Python API reference. This is a reference for all
`langchain-x` packages.
@@ -578,8 +545,22 @@ Welcome to the LangChain Python API reference. This is a reference for all
For user guides see [https://python.langchain.com](https://python.langchain.com).
For the legacy API reference hosted on ReadTheDocs see [https://api.python.langchain.com/](https://api.python.langchain.com/).
"""
## Base packages
if main_:
main_headers = [
" ".join(custom_names.get(x, x.title()) for x in dir_.split("-"))
for dir_ in main_
]
main_tree = "\n".join(
f"{header_name}<{dir_.replace('-', '_')}/index>"
for header_name, dir_ in zip(main_headers, main_)
)
main_grid = "\n".join(
f'- header: "**{header_name}**"\n content: "{_package_namespace(dir_).replace("_", "-")}: {_get_package_version(_package_dir(dir_))}"\n link: {dir_.replace("-", "_")}/index.html'
for header_name, dir_ in zip(main_headers, main_)
)
doc += f"""## Base packages
```{{gallery-grid}}
:grid-columns: "1 2 2 3"
@@ -594,8 +575,37 @@ For the legacy API reference hosted on ReadTheDocs see [https://api.python.langc
{main_tree}
```
"""
if integrations:
integration_headers = [
" ".join(
custom_names.get(x, x.title().replace("ai", "AI").replace("db", "DB"))
for x in dir_.split("-")
)
for dir_ in integrations
]
integration_tree = "\n".join(
f"{header_name}<{dir_.replace('-', '_')}/index>"
for header_name, dir_ in zip(integration_headers, integrations)
)
## Integrations
integration_grid = ""
integrations_to_show = [
"openai",
"anthropic",
"google-vertexai",
"aws",
"huggingface",
"mistralai",
]
for header_name, dir_ in sorted(
zip(integration_headers, integrations),
key=lambda h_d: integrations_to_show.index(h_d[1])
if h_d[1] in integrations_to_show
else len(integrations_to_show),
)[: len(integrations_to_show)]:
integration_grid += f'\n- header: "**{header_name}**"\n content: {_package_namespace(dir_).replace("_", "-")} {_get_package_version(_package_dir(dir_))}\n link: {dir_.replace("-", "_")}/index.html'
doc += f"""## Integrations
```{{gallery-grid}}
:grid-columns: "1 2 2 3"
@@ -612,7 +622,6 @@ See the full list of integrations in the Section Navigation.
{integration_tree}
```
"""
with open(HERE / "reference.md", "w") as f:
f.write(doc)

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@@ -4,51 +4,90 @@ LangChain implements the latest research in the field of Natural Language Proces
This page contains `arXiv` papers referenced in the LangChain Documentation, API Reference,
Templates, and Cookbooks.
From the opposite direction, scientists use LangChain in research and reference LangChain in the research papers.
Here you find [such papers](https://arxiv.org/search/?query=langchain&searchtype=all&source=header).
From the opposite direction, scientists use `LangChain` in research and reference it in the research papers.
`arXiv` papers with references to:
[LangChain](https://arxiv.org/search/?query=langchain&searchtype=all&source=header) | [LangGraph](https://arxiv.org/search/?query=langgraph&searchtype=all&source=header) | [LangSmith](https://arxiv.org/search/?query=langsmith&searchtype=all&source=header)
## Summary
| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation|
|------------------|---------|-------------------|------------------------|
| `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024-02-06 | `Cookbook:` [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
| `2401.18059v1` [RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval](http://arxiv.org/abs/2401.18059v1) | Parth Sarthi, Salman Abdullah, Aditi Tuli, et al. | 2024-01-31 | `Cookbook:` [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
| `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024-01-29 | `Cookbook:` [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
| `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024-01-08 | `Cookbook:` [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023-12-11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023-11-15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023-10-17 | `Cookbook:` [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023-10-09 | `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
| `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023-07-18 | `Cookbook:` [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023-05-23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023-05-15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot), `Cookbook:` [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
| `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023-05-06 | `Cookbook:` [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
| `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023-04-17 | `Cookbook:` [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
| `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023-04-07 | `Cookbook:` [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
| `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023-03-31 | `Cookbook:` [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023-03-30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
| `2303.08774v6` [GPT-4 Technical Report](http://arxiv.org/abs/2303.08774v6) | OpenAI, Josh Achiam, Steven Adler, et al. | 2023-03-15 | `Docs:` [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `API:` [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022-12-12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022-11-25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022-11-18 | `API:` [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain), `Cookbook:` [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022-10-06 | `Docs:` [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/chat/huggingface](https://python.langchain.com/docs/integrations/chat/huggingface), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), `API:` [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022-09-22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022-05-25 | `API:` [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `API:` [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL), [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase)
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022-02-01 | `API:` [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021-02-26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019-09-11 | `API:` [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
| `1908.10084v1` [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](http://arxiv.org/abs/1908.10084v1) | Nils Reimers, Iryna Gurevych | 2019-08-27 | `Docs:` [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers)
| `2403.14403v2` [Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity](http://arxiv.org/abs/2403.14403v2) | Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al. | 2024&#8209;03&#8209;21 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024&#8209;02&#8209;06 | `Cookbook:` [Self-Discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
| `2402.03367v2` [RAG-Fusion: a New Take on Retrieval-Augmented Generation](http://arxiv.org/abs/2402.03367v2) | Zackary Rackauckas | 2024&#8209;01&#8209;31 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2401.18059v1` [RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval](http://arxiv.org/abs/2401.18059v1) | Parth Sarthi, Salman Abdullah, Aditi Tuli, et al. | 2024&#8209;01&#8209;31 | `Cookbook:` [Raptor](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
| `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024&#8209;01&#8209;29 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Cookbook:` [Langgraph Crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
| `2401.08500v1` [Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering](http://arxiv.org/abs/2401.08500v1) | Tal Ridnik, Dedy Kredo, Itamar Friedman | 2024&#8209;01&#8209;16 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024&#8209;01&#8209;08 | `Cookbook:` [Together Ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023&#8209;12&#8209;11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023&#8209;11&#8209;15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023&#8209;10&#8209;17 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Cookbook:` [Langgraph Self Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023&#8209;10&#8209;09 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [Stepback-Qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
| `2307.15337v3` [Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation](http://arxiv.org/abs/2307.15337v3) | Xuefei Ning, Zinan Lin, Zixuan Zhou, et al. | 2023&#8209;07&#8209;28 | `Template:` [skeleton-of-thought](https://python.langchain.com/docs/templates/skeleton-of-thought)
| `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023&#8209;07&#8209;18 | `Cookbook:` [Semi Structured Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023&#8209;07&#8209;06 | `Docs:` [docs/how_to/long_context_reorder](https://python.langchain.com/v0.2/docs/how_to/long_context_reorder)
| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023&#8209;05&#8209;23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [Rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023&#8209;05&#8209;15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot), `Cookbook:` [Tree Of Thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
| `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023&#8209;05&#8209;06 | `Cookbook:` [Plan And Execute Agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
| `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023&#8209;05&#8209;03 | `Docs:` [docs/how_to/contextual_compression](https://python.langchain.com/v0.2/docs/how_to/contextual_compression), `API:` [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
| `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023&#8209;04&#8209;17 | `Cookbook:` [Semi Structured Multi Modal Rag Llama2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb), [Semi Structured And Multi Modal Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb)
| `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023&#8209;04&#8209;07 | `Cookbook:` [Generative Agents Interactive Simulacra Of Human Behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb), [Multiagent Bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb)
| `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023&#8209;03&#8209;31 | `Cookbook:` [Camel Role Playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023&#8209;03&#8209;30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [Hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023&#8209;01&#8209;24 | `API:` [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022&#8209;12&#8209;20 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `API:` [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [Hypothetical Document Embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022&#8209;12&#8209;15 | `Docs:` [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain)
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022&#8209;12&#8209;12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022&#8209;11&#8209;25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022&#8209;11&#8209;18 | `API:` [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), `Cookbook:` [Program Aided Language Model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
| `2210.11934v2` [An Analysis of Fusion Functions for Hybrid Retrieval](http://arxiv.org/abs/2210.11934v2) | Sebastian Bruch, Siyu Gai, Amir Ingber | 2022&#8209;10&#8209;21 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022&#8209;10&#8209;06 | `Docs:` [docs/integrations/tools/ionic_shopping](https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/v0.2/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `API:` [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022&#8209;09&#8209;22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/v0.2/docs/integrations/providers/activeloop_deeplake)
| `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022&#8209;05&#8209;26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/v0.2/docs/integrations/providers/snowflake)
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022&#8209;05&#8209;25 | `API:` [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022&#8209;03&#8209;15 | `Docs:` [docs/tutorials/sql_qa](https://python.langchain.com/v0.2/docs/tutorials/sql_qa), `API:` [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022&#8209;02&#8209;01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021&#8209;12&#8209;02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/v0.2/docs/integrations/providers/dspy)
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021&#8209;02&#8209;26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
| `2005.14165v4` [Language Models are Few-Shot Learners](http://arxiv.org/abs/2005.14165v4) | Tom B. Brown, Benjamin Mann, Nick Ryder, et al. | 2020&#8209;05&#8209;28 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2005.11401v4` [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](http://arxiv.org/abs/2005.11401v4) | Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. | 2020&#8209;05&#8209;22 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019&#8209;09&#8209;11 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
## Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity
- **Authors:** Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al.
- **arXiv id:** [2403.14403v2](http://arxiv.org/abs/2403.14403v2) **Published Date:** 2024-03-21
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Retrieval-Augmented Large Language Models (LLMs), which incorporate the
non-parametric knowledge from external knowledge bases into LLMs, have emerged
as a promising approach to enhancing response accuracy in several tasks, such
as Question-Answering (QA). However, even though there are various approaches
dealing with queries of different complexities, they either handle simple
queries with unnecessary computational overhead or fail to adequately address
complex multi-step queries; yet, not all user requests fall into only one of
the simple or complex categories. In this work, we propose a novel adaptive QA
framework, that can dynamically select the most suitable strategy for
(retrieval-augmented) LLMs from the simplest to the most sophisticated ones
based on the query complexity. Also, this selection process is operationalized
with a classifier, which is a smaller LM trained to predict the complexity
level of incoming queries with automatically collected labels, obtained from
actual predicted outcomes of models and inherent inductive biases in datasets.
This approach offers a balanced strategy, seamlessly adapting between the
iterative and single-step retrieval-augmented LLMs, as well as the no-retrieval
methods, in response to a range of query complexities. We validate our model on
a set of open-domain QA datasets, covering multiple query complexities, and
show that ours enhances the overall efficiency and accuracy of QA systems,
compared to relevant baselines including the adaptive retrieval approaches.
Code is available at: https://github.com/starsuzi/Adaptive-RAG.
## Self-Discover: Large Language Models Self-Compose Reasoning Structures
- **arXiv id:** 2402.03620v1
- **Title:** Self-Discover: Large Language Models Self-Compose Reasoning Structures
- **Authors:** Pei Zhou, Jay Pujara, Xiang Ren, et al.
- **Published Date:** 2024-02-06
- **URL:** http://arxiv.org/abs/2402.03620v1
- **arXiv id:** [2402.03620v1](http://arxiv.org/abs/2402.03620v1) **Published Date:** 2024-02-06
- **LangChain:**
- **Cookbook:** [self-discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
@@ -68,13 +107,33 @@ the self-discovered reasoning structures are universally applicable across
model families: from PaLM 2-L to GPT-4, and from GPT-4 to Llama2, and share
commonalities with human reasoning patterns.
## RAG-Fusion: a New Take on Retrieval-Augmented Generation
- **Authors:** Zackary Rackauckas
- **arXiv id:** [2402.03367v2](http://arxiv.org/abs/2402.03367v2) **Published Date:** 2024-01-31
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Infineon has identified a need for engineers, account managers, and customers
to rapidly obtain product information. This problem is traditionally addressed
with retrieval-augmented generation (RAG) chatbots, but in this study, I
evaluated the use of the newly popularized RAG-Fusion method. RAG-Fusion
combines RAG and reciprocal rank fusion (RRF) by generating multiple queries,
reranking them with reciprocal scores and fusing the documents and scores.
Through manually evaluating answers on accuracy, relevance, and
comprehensiveness, I found that RAG-Fusion was able to provide accurate and
comprehensive answers due to the generated queries contextualizing the original
query from various perspectives. However, some answers strayed off topic when
the generated queries' relevance to the original query is insufficient. This
research marks significant progress in artificial intelligence (AI) and natural
language processing (NLP) applications and demonstrates transformations in a
global and multi-industry context.
## RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
- **arXiv id:** 2401.18059v1
- **Title:** RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
- **Authors:** Parth Sarthi, Salman Abdullah, Aditi Tuli, et al.
- **Published Date:** 2024-01-31
- **URL:** http://arxiv.org/abs/2401.18059v1
- **arXiv id:** [2401.18059v1](http://arxiv.org/abs/2401.18059v1) **Published Date:** 2024-01-31
- **LangChain:**
- **Cookbook:** [RAPTOR](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb)
@@ -96,13 +155,11 @@ benchmark by 20% in absolute accuracy.
## Corrective Retrieval Augmented Generation
- **arXiv id:** 2401.15884v2
- **Title:** Corrective Retrieval Augmented Generation
- **Authors:** Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al.
- **Published Date:** 2024-01-29
- **URL:** http://arxiv.org/abs/2401.15884v2
- **arXiv id:** [2401.15884v2](http://arxiv.org/abs/2401.15884v2) **Published Date:** 2024-01-29
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **Cookbook:** [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb)
**Abstract:** Large language models (LLMs) inevitably exhibit hallucinations since the
@@ -124,13 +181,36 @@ RAG-based approaches. Experiments on four datasets covering short- and
long-form generation tasks show that CRAG can significantly improve the
performance of RAG-based approaches.
## Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering
- **Authors:** Tal Ridnik, Dedy Kredo, Itamar Friedman
- **arXiv id:** [2401.08500v1](http://arxiv.org/abs/2401.08500v1) **Published Date:** 2024-01-16
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Code generation problems differ from common natural language problems - they
require matching the exact syntax of the target language, identifying happy
paths and edge cases, paying attention to numerous small details in the problem
spec, and addressing other code-specific issues and requirements. Hence, many
of the optimizations and tricks that have been successful in natural language
generation may not be effective for code tasks. In this work, we propose a new
approach to code generation by LLMs, which we call AlphaCodium - a test-based,
multi-stage, code-oriented iterative flow, that improves the performances of
LLMs on code problems. We tested AlphaCodium on a challenging code generation
dataset called CodeContests, which includes competitive programming problems
from platforms such as Codeforces. The proposed flow consistently and
significantly improves results. On the validation set, for example, GPT-4
accuracy (pass@5) increased from 19% with a single well-designed direct prompt
to 44% with the AlphaCodium flow. Many of the principles and best practices
acquired in this work, we believe, are broadly applicable to general code
generation tasks. Full implementation is available at:
https://github.com/Codium-ai/AlphaCodium
## Mixtral of Experts
- **arXiv id:** 2401.04088v1
- **Title:** Mixtral of Experts
- **Authors:** Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al.
- **Published Date:** 2024-01-08
- **URL:** http://arxiv.org/abs/2401.04088v1
- **arXiv id:** [2401.04088v1](http://arxiv.org/abs/2401.04088v1) **Published Date:** 2024-01-08
- **LangChain:**
- **Cookbook:** [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
@@ -152,11 +232,8 @@ the base and instruct models are released under the Apache 2.0 license.
## Dense X Retrieval: What Retrieval Granularity Should We Use?
- **arXiv id:** 2312.06648v2
- **Title:** Dense X Retrieval: What Retrieval Granularity Should We Use?
- **Authors:** Tong Chen, Hongwei Wang, Sihao Chen, et al.
- **Published Date:** 2023-12-11
- **URL:** http://arxiv.org/abs/2312.06648v2
- **arXiv id:** [2312.06648v2](http://arxiv.org/abs/2312.06648v2) **Published Date:** 2023-12-11
- **LangChain:**
- **Template:** [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
@@ -181,11 +258,8 @@ information.
## Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
- **arXiv id:** 2311.09210v1
- **Title:** Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
- **Authors:** Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al.
- **Published Date:** 2023-11-15
- **URL:** http://arxiv.org/abs/2311.09210v1
- **arXiv id:** [2311.09210v1](http://arxiv.org/abs/2311.09210v1) **Published Date:** 2023-11-15
- **LangChain:**
- **Template:** [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
@@ -215,13 +289,11 @@ outside the pre-training knowledge scope.
## Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
- **arXiv id:** 2310.11511v1
- **Title:** Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
- **Authors:** Akari Asai, Zeqiu Wu, Yizhong Wang, et al.
- **Published Date:** 2023-10-17
- **URL:** http://arxiv.org/abs/2310.11511v1
- **arXiv id:** [2310.11511v1](http://arxiv.org/abs/2310.11511v1) **Published Date:** 2023-10-17
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **Cookbook:** [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
**Abstract:** Despite their remarkable capabilities, large language models (LLMs) often
@@ -248,13 +320,11 @@ to these models.
## Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
- **arXiv id:** 2310.06117v2
- **Title:** Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
- **Authors:** Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al.
- **Published Date:** 2023-10-09
- **URL:** http://arxiv.org/abs/2310.06117v2
- **arXiv id:** [2310.06117v2](http://arxiv.org/abs/2310.06117v2) **Published Date:** 2023-10-09
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **Template:** [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting)
- **Cookbook:** [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
@@ -269,13 +339,31 @@ including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back
Prompting improves PaLM-2L performance on MMLU (Physics and Chemistry) by 7%
and 11% respectively, TimeQA by 27%, and MuSiQue by 7%.
## Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation
- **Authors:** Xuefei Ning, Zinan Lin, Zixuan Zhou, et al.
- **arXiv id:** [2307.15337v3](http://arxiv.org/abs/2307.15337v3) **Published Date:** 2023-07-28
- **LangChain:**
- **Template:** [skeleton-of-thought](https://python.langchain.com/docs/templates/skeleton-of-thought)
**Abstract:** This work aims at decreasing the end-to-end generation latency of large
language models (LLMs). One of the major causes of the high generation latency
is the sequential decoding approach adopted by almost all state-of-the-art
LLMs. In this work, motivated by the thinking and writing process of humans, we
propose Skeleton-of-Thought (SoT), which first guides LLMs to generate the
skeleton of the answer, and then conducts parallel API calls or batched
decoding to complete the contents of each skeleton point in parallel. Not only
does SoT provide considerable speed-ups across 12 LLMs, but it can also
potentially improve the answer quality on several question categories. SoT is
an initial attempt at data-centric optimization for inference efficiency, and
showcases the potential of eliciting high-quality answers by explicitly
planning the answer structure in language.
## Llama 2: Open Foundation and Fine-Tuned Chat Models
- **arXiv id:** 2307.09288v2
- **Title:** Llama 2: Open Foundation and Fine-Tuned Chat Models
- **Authors:** Hugo Touvron, Louis Martin, Kevin Stone, et al.
- **Published Date:** 2023-07-18
- **URL:** http://arxiv.org/abs/2307.09288v2
- **arXiv id:** [2307.09288v2](http://arxiv.org/abs/2307.09288v2) **Published Date:** 2023-07-18
- **LangChain:**
- **Cookbook:** [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
@@ -290,13 +378,32 @@ detailed description of our approach to fine-tuning and safety improvements of
Llama 2-Chat in order to enable the community to build on our work and
contribute to the responsible development of LLMs.
## Lost in the Middle: How Language Models Use Long Contexts
- **Authors:** Nelson F. Liu, Kevin Lin, John Hewitt, et al.
- **arXiv id:** [2307.03172v3](http://arxiv.org/abs/2307.03172v3) **Published Date:** 2023-07-06
- **LangChain:**
- **Documentation:** [docs/how_to/long_context_reorder](https://python.langchain.com/v0.2/docs/how_to/long_context_reorder)
**Abstract:** While recent language models have the ability to take long contexts as input,
relatively little is known about how well they use longer context. We analyze
the performance of language models on two tasks that require identifying
relevant information in their input contexts: multi-document question answering
and key-value retrieval. We find that performance can degrade significantly
when changing the position of relevant information, indicating that current
language models do not robustly make use of information in long input contexts.
In particular, we observe that performance is often highest when relevant
information occurs at the beginning or end of the input context, and
significantly degrades when models must access relevant information in the
middle of long contexts, even for explicitly long-context models. Our analysis
provides a better understanding of how language models use their input context
and provides new evaluation protocols for future long-context language models.
## Query Rewriting for Retrieval-Augmented Large Language Models
- **arXiv id:** 2305.14283v3
- **Title:** Query Rewriting for Retrieval-Augmented Large Language Models
- **Authors:** Xinbei Ma, Yeyun Gong, Pengcheng He, et al.
- **Published Date:** 2023-05-23
- **URL:** http://arxiv.org/abs/2305.14283v3
- **arXiv id:** [2305.14283v3](http://arxiv.org/abs/2305.14283v3) **Published Date:** 2023-05-23
- **LangChain:**
- **Template:** [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read)
@@ -322,11 +429,8 @@ for retrieval-augmented LLM.
## Large Language Model Guided Tree-of-Thought
- **arXiv id:** 2305.08291v1
- **Title:** Large Language Model Guided Tree-of-Thought
- **Authors:** Jieyi Long
- **Published Date:** 2023-05-15
- **URL:** http://arxiv.org/abs/2305.08291v1
- **arXiv id:** [2305.08291v1](http://arxiv.org/abs/2305.08291v1) **Published Date:** 2023-05-15
- **LangChain:**
- **API Reference:** [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot)
@@ -352,11 +456,8 @@ implementation of the ToT-based Sudoku solver is available on GitHub:
## Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
- **arXiv id:** 2305.04091v3
- **Title:** Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
- **Authors:** Lei Wang, Wanyu Xu, Yihuai Lan, et al.
- **Published Date:** 2023-05-06
- **URL:** http://arxiv.org/abs/2305.04091v3
- **arXiv id:** [2305.04091v3](http://arxiv.org/abs/2305.04091v3) **Published Date:** 2023-05-06
- **LangChain:**
- **Cookbook:** [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
@@ -383,16 +484,37 @@ Prompting, and has comparable performance with 8-shot CoT prompting on the math
reasoning problem. The code can be found at
https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
## Visual Instruction Tuning
## Zero-Shot Listwise Document Reranking with a Large Language Model
- **arXiv id:** 2304.08485v2
- **Title:** Visual Instruction Tuning
- **Authors:** Haotian Liu, Chunyuan Li, Qingyang Wu, et al.
- **Published Date:** 2023-04-17
- **URL:** http://arxiv.org/abs/2304.08485v2
- **Authors:** Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al.
- **arXiv id:** [2305.02156v1](http://arxiv.org/abs/2305.02156v1) **Published Date:** 2023-05-03
- **LangChain:**
- **Cookbook:** [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb), [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb)
- **Documentation:** [docs/how_to/contextual_compression](https://python.langchain.com/v0.2/docs/how_to/contextual_compression)
- **API Reference:** [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
**Abstract:** Supervised ranking methods based on bi-encoder or cross-encoder architectures
have shown success in multi-stage text ranking tasks, but they require large
amounts of relevance judgments as training data. In this work, we propose
Listwise Reranker with a Large Language Model (LRL), which achieves strong
reranking effectiveness without using any task-specific training data.
Different from the existing pointwise ranking methods, where documents are
scored independently and ranked according to the scores, LRL directly generates
a reordered list of document identifiers given the candidate documents.
Experiments on three TREC web search datasets demonstrate that LRL not only
outperforms zero-shot pointwise methods when reranking first-stage retrieval
results, but can also act as a final-stage reranker to improve the top-ranked
results of a pointwise method for improved efficiency. Additionally, we apply
our approach to subsets of MIRACL, a recent multilingual retrieval dataset,
with results showing its potential to generalize across different languages.
## Visual Instruction Tuning
- **Authors:** Haotian Liu, Chunyuan Li, Qingyang Wu, et al.
- **arXiv id:** [2304.08485v2](http://arxiv.org/abs/2304.08485v2) **Published Date:** 2023-04-17
- **LangChain:**
- **Cookbook:** [Semi_structured_multi_modal_RAG_LLaMA2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb), [Semi_structured_and_multi_modal_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb)
**Abstract:** Instruction tuning large language models (LLMs) using machine-generated
instruction-following data has improved zero-shot capabilities on new tasks,
@@ -412,14 +534,11 @@ publicly available.
## Generative Agents: Interactive Simulacra of Human Behavior
- **arXiv id:** 2304.03442v2
- **Title:** Generative Agents: Interactive Simulacra of Human Behavior
- **Authors:** Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al.
- **Published Date:** 2023-04-07
- **URL:** http://arxiv.org/abs/2304.03442v2
- **arXiv id:** [2304.03442v2](http://arxiv.org/abs/2304.03442v2) **Published Date:** 2023-04-07
- **LangChain:**
- **Cookbook:** [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
- **Cookbook:** [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb), [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb)
**Abstract:** Believable proxies of human behavior can empower interactive applications
ranging from immersive environments to rehearsal spaces for interpersonal
@@ -448,11 +567,8 @@ interaction patterns for enabling believable simulations of human behavior.
## CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
- **arXiv id:** 2303.17760v2
- **Title:** CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society
- **Authors:** Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al.
- **Published Date:** 2023-03-31
- **URL:** http://arxiv.org/abs/2303.17760v2
- **arXiv id:** [2303.17760v2](http://arxiv.org/abs/2303.17760v2) **Published Date:** 2023-03-31
- **LangChain:**
- **Cookbook:** [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
@@ -478,11 +594,8 @@ agents and beyond: https://github.com/camel-ai/camel.
## HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
- **arXiv id:** 2303.17580v4
- **Title:** HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
- **Authors:** Yongliang Shen, Kaitao Song, Xu Tan, et al.
- **Published Date:** 2023-03-30
- **URL:** http://arxiv.org/abs/2303.17580v4
- **arXiv id:** [2303.17580v4](http://arxiv.org/abs/2303.17580v4) **Published Date:** 2023-03-30
- **LangChain:**
- **API Reference:** [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents)
@@ -508,40 +621,13 @@ modalities and domains and achieve impressive results in language, vision,
speech, and other challenging tasks, which paves a new way towards the
realization of artificial general intelligence.
## GPT-4 Technical Report
- **arXiv id:** 2303.08774v6
- **Title:** GPT-4 Technical Report
- **Authors:** OpenAI, Josh Achiam, Steven Adler, et al.
- **Published Date:** 2023-03-15
- **URL:** http://arxiv.org/abs/2303.08774v6
- **LangChain:**
- **Documentation:** [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
**Abstract:** We report the development of GPT-4, a large-scale, multimodal model which can
accept image and text inputs and produce text outputs. While less capable than
humans in many real-world scenarios, GPT-4 exhibits human-level performance on
various professional and academic benchmarks, including passing a simulated bar
exam with a score around the top 10% of test takers. GPT-4 is a
Transformer-based model pre-trained to predict the next token in a document.
The post-training alignment process results in improved performance on measures
of factuality and adherence to desired behavior. A core component of this
project was developing infrastructure and optimization methods that behave
predictably across a wide range of scales. This allowed us to accurately
predict some aspects of GPT-4's performance based on models trained with no
more than 1/1,000th the compute of GPT-4.
## A Watermark for Large Language Models
- **arXiv id:** 2301.10226v4
- **Title:** A Watermark for Large Language Models
- **Authors:** John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al.
- **Published Date:** 2023-01-24
- **URL:** http://arxiv.org/abs/2301.10226v4
- **arXiv id:** [2301.10226v4](http://arxiv.org/abs/2301.10226v4) **Published Date:** 2023-01-24
- **LangChain:**
- **API Reference:** [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
- **API Reference:** [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
**Abstract:** Potential harms of large language models can be mitigated by watermarking
model output, i.e., embedding signals into generated text that are invisible to
@@ -559,13 +645,11 @@ family, and discuss robustness and security.
## Precise Zero-Shot Dense Retrieval without Relevance Labels
- **arXiv id:** 2212.10496v1
- **Title:** Precise Zero-Shot Dense Retrieval without Relevance Labels
- **Authors:** Luyu Gao, Xueguang Ma, Jimmy Lin, et al.
- **Published Date:** 2022-12-20
- **URL:** http://arxiv.org/abs/2212.10496v1
- **arXiv id:** [2212.10496v1](http://arxiv.org/abs/2212.10496v1) **Published Date:** 2022-12-20
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **API Reference:** [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
- **Template:** [hyde](https://python.langchain.com/docs/templates/hyde)
- **Cookbook:** [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
@@ -588,13 +672,37 @@ state-of-the-art unsupervised dense retriever Contriever and shows strong
performance comparable to fine-tuned retrievers, across various tasks (e.g. web
search, QA, fact verification) and languages~(e.g. sw, ko, ja).
## Constitutional AI: Harmlessness from AI Feedback
- **Authors:** Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al.
- **arXiv id:** [2212.08073v1](http://arxiv.org/abs/2212.08073v1) **Published Date:** 2022-12-15
- **LangChain:**
- **Documentation:** [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain)
**Abstract:** As AI systems become more capable, we would like to enlist their help to
supervise other AIs. We experiment with methods for training a harmless AI
assistant through self-improvement, without any human labels identifying
harmful outputs. The only human oversight is provided through a list of rules
or principles, and so we refer to the method as 'Constitutional AI'. The
process involves both a supervised learning and a reinforcement learning phase.
In the supervised phase we sample from an initial model, then generate
self-critiques and revisions, and then finetune the original model on revised
responses. In the RL phase, we sample from the finetuned model, use a model to
evaluate which of the two samples is better, and then train a preference model
from this dataset of AI preferences. We then train with RL using the preference
model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a
result we are able to train a harmless but non-evasive AI assistant that
engages with harmful queries by explaining its objections to them. Both the SL
and RL methods can leverage chain-of-thought style reasoning to improve the
human-judged performance and transparency of AI decision making. These methods
make it possible to control AI behavior more precisely and with far fewer human
labels.
## Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
- **arXiv id:** 2212.07425v3
- **Title:** Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
- **Authors:** Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al.
- **Published Date:** 2022-12-12
- **URL:** http://arxiv.org/abs/2212.07425v3
- **arXiv id:** [2212.07425v3](http://arxiv.org/abs/2212.07425v3) **Published Date:** 2022-12-12
- **LangChain:**
- **API Reference:** [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
@@ -623,11 +731,8 @@ further work on logical fallacy identification.
## Complementary Explanations for Effective In-Context Learning
- **arXiv id:** 2211.13892v2
- **Title:** Complementary Explanations for Effective In-Context Learning
- **Authors:** Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al.
- **Published Date:** 2022-11-25
- **URL:** http://arxiv.org/abs/2211.13892v2
- **arXiv id:** [2211.13892v2](http://arxiv.org/abs/2211.13892v2) **Published Date:** 2022-11-25
- **LangChain:**
- **API Reference:** [langchain_core...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
@@ -651,14 +756,11 @@ performance across three real-world tasks on multiple LLMs.
## PAL: Program-aided Language Models
- **arXiv id:** 2211.10435v2
- **Title:** PAL: Program-aided Language Models
- **Authors:** Luyu Gao, Aman Madaan, Shuyan Zhou, et al.
- **Published Date:** 2022-11-18
- **URL:** http://arxiv.org/abs/2211.10435v2
- **arXiv id:** [2211.10435v2](http://arxiv.org/abs/2211.10435v2) **Published Date:** 2022-11-18
- **LangChain:**
- **API Reference:** [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain)
- **API Reference:** [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain)
- **Cookbook:** [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
**Abstract:** Large language models (LLMs) have recently demonstrated an impressive ability
@@ -684,16 +786,32 @@ accuracy on the GSM8K benchmark of math word problems, surpassing PaLM-540B
which uses chain-of-thought by absolute 15% top-1. Our code and data are
publicly available at http://reasonwithpal.com/ .
## ReAct: Synergizing Reasoning and Acting in Language Models
## An Analysis of Fusion Functions for Hybrid Retrieval
- **arXiv id:** 2210.03629v3
- **Title:** ReAct: Synergizing Reasoning and Acting in Language Models
- **Authors:** Shunyu Yao, Jeffrey Zhao, Dian Yu, et al.
- **Published Date:** 2022-10-06
- **URL:** http://arxiv.org/abs/2210.03629v3
- **Authors:** Sebastian Bruch, Siyu Gai, Amir Ingber
- **arXiv id:** [2210.11934v2](http://arxiv.org/abs/2210.11934v2) **Published Date:** 2022-10-21
- **LangChain:**
- **Documentation:** [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/chat/huggingface](https://python.langchain.com/docs/integrations/chat/huggingface), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** We study hybrid search in text retrieval where lexical and semantic search
are fused together with the intuition that the two are complementary in how
they model relevance. In particular, we examine fusion by a convex combination
(CC) of lexical and semantic scores, as well as the Reciprocal Rank Fusion
(RRF) method, and identify their advantages and potential pitfalls. Contrary to
existing studies, we find RRF to be sensitive to its parameters; that the
learning of a CC fusion is generally agnostic to the choice of score
normalization; that CC outperforms RRF in in-domain and out-of-domain settings;
and finally, that CC is sample efficient, requiring only a small set of
training examples to tune its only parameter to a target domain.
## ReAct: Synergizing Reasoning and Acting in Language Models
- **Authors:** Shunyu Yao, Jeffrey Zhao, Dian Yu, et al.
- **arXiv id:** [2210.03629v3](http://arxiv.org/abs/2210.03629v3) **Published Date:** 2022-10-06
- **LangChain:**
- **Documentation:** [docs/integrations/tools/ionic_shopping](https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/v0.2/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
- **API Reference:** [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
**Abstract:** While large language models (LLMs) have demonstrated impressive capabilities
@@ -721,14 +839,11 @@ Project site with code: https://react-lm.github.io
## Deep Lake: a Lakehouse for Deep Learning
- **arXiv id:** 2209.10785v2
- **Title:** Deep Lake: a Lakehouse for Deep Learning
- **Authors:** Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al.
- **Published Date:** 2022-09-22
- **URL:** http://arxiv.org/abs/2209.10785v2
- **arXiv id:** [2209.10785v2](http://arxiv.org/abs/2209.10785v2) **Published Date:** 2022-09-22
- **LangChain:**
- **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
- **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/v0.2/docs/integrations/providers/activeloop_deeplake)
**Abstract:** Traditional data lakes provide critical data infrastructure for analytical
workloads by enabling time travel, running SQL queries, ingesting data with
@@ -747,13 +862,41 @@ visualization engine, or (c) deep learning frameworks without sacrificing GPU
utilization. Datasets stored in Deep Lake can be accessed from PyTorch,
TensorFlow, JAX, and integrate with numerous MLOps tools.
## Matryoshka Representation Learning
- **Authors:** Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al.
- **arXiv id:** [2205.13147v4](http://arxiv.org/abs/2205.13147v4) **Published Date:** 2022-05-26
- **LangChain:**
- **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/v0.2/docs/integrations/providers/snowflake)
**Abstract:** Learned representations are a central component in modern ML systems, serving
a multitude of downstream tasks. When training such representations, it is
often the case that computational and statistical constraints for each
downstream task are unknown. In this context rigid, fixed capacity
representations can be either over or under-accommodating to the task at hand.
This leads us to ask: can we design a flexible representation that can adapt to
multiple downstream tasks with varying computational resources? Our main
contribution is Matryoshka Representation Learning (MRL) which encodes
information at different granularities and allows a single embedding to adapt
to the computational constraints of downstream tasks. MRL minimally modifies
existing representation learning pipelines and imposes no additional cost
during inference and deployment. MRL learns coarse-to-fine representations that
are at least as accurate and rich as independently trained low-dimensional
representations. The flexibility within the learned Matryoshka Representations
offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at
the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale
retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for
long-tail few-shot classification, all while being as robust as the original
representations. Finally, we show that MRL extends seamlessly to web-scale
datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet),
vision + language (ALIGN) and language (BERT). MRL code and pretrained models
are open-sourced at https://github.com/RAIVNLab/MRL.
## Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
- **arXiv id:** 2205.12654v1
- **Title:** Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
- **Authors:** Kevin Heffernan, Onur Çelebi, Holger Schwenk
- **Published Date:** 2022-05-25
- **URL:** http://arxiv.org/abs/2205.12654v1
- **arXiv id:** [2205.12654v1](http://arxiv.org/abs/2205.12654v1) **Published Date:** 2022-05-25
- **LangChain:**
- **API Reference:** [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
@@ -778,14 +921,12 @@ encoders, mine bitexts, and validate the bitexts by training NMT systems.
## Evaluating the Text-to-SQL Capabilities of Large Language Models
- **arXiv id:** 2204.00498v1
- **Title:** Evaluating the Text-to-SQL Capabilities of Large Language Models
- **Authors:** Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau
- **Published Date:** 2022-03-15
- **URL:** http://arxiv.org/abs/2204.00498v1
- **arXiv id:** [2204.00498v1](http://arxiv.org/abs/2204.00498v1) **Published Date:** 2022-03-15
- **LangChain:**
- **API Reference:** [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL), [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase)
- **Documentation:** [docs/tutorials/sql_qa](https://python.langchain.com/v0.2/docs/tutorials/sql_qa)
- **API Reference:** [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
**Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex
language model. We find that, without any finetuning, Codex is a strong
@@ -797,14 +938,11 @@ few-shot examples.
## Locally Typical Sampling
- **arXiv id:** 2202.00666v5
- **Title:** Locally Typical Sampling
- **Authors:** Clara Meister, Tiago Pimentel, Gian Wiher, et al.
- **Published Date:** 2022-02-01
- **URL:** http://arxiv.org/abs/2202.00666v5
- **arXiv id:** [2202.00666v5](http://arxiv.org/abs/2202.00666v5) **Published Date:** 2022-02-01
- **LangChain:**
- **API Reference:** [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
- **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
**Abstract:** Today's probabilistic language generators fall short when it comes to
producing coherent and fluent text despite the fact that the underlying models
@@ -827,13 +965,32 @@ locally typical sampling offers competitive performance (in both abstractive
summarization and story generation) in terms of quality while consistently
reducing degenerate repetitions.
## ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction
- **Authors:** Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al.
- **arXiv id:** [2112.01488v3](http://arxiv.org/abs/2112.01488v3) **Published Date:** 2021-12-02
- **LangChain:**
- **Documentation:** [docs/integrations/retrievers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/v0.2/docs/integrations/providers/dspy)
**Abstract:** Neural information retrieval (IR) has greatly advanced search and other
knowledge-intensive language tasks. While many neural IR methods encode queries
and documents into single-vector representations, late interaction models
produce multi-vector representations at the granularity of each token and
decompose relevance modeling into scalable token-level computations. This
decomposition has been shown to make late interaction more effective, but it
inflates the space footprint of these models by an order of magnitude. In this
work, we introduce ColBERTv2, a retriever that couples an aggressive residual
compression mechanism with a denoised supervision strategy to simultaneously
improve the quality and space footprint of late interaction. We evaluate
ColBERTv2 across a wide range of benchmarks, establishing state-of-the-art
quality within and outside the training domain while reducing the space
footprint of late interaction models by 6--10$\times$.
## Learning Transferable Visual Models From Natural Language Supervision
- **arXiv id:** 2103.00020v1
- **Title:** Learning Transferable Visual Models From Natural Language Supervision
- **Authors:** Alec Radford, Jong Wook Kim, Chris Hallacy, et al.
- **Published Date:** 2021-02-26
- **URL:** http://arxiv.org/abs/2103.00020v1
- **arXiv id:** [2103.00020v1](http://arxiv.org/abs/2103.00020v1) **Published Date:** 2021-02-26
- **LangChain:**
- **API Reference:** [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
@@ -859,16 +1016,77 @@ zero-shot without needing to use any of the 1.28 million training examples it
was trained on. We release our code and pre-trained model weights at
https://github.com/OpenAI/CLIP.
## CTRL: A Conditional Transformer Language Model for Controllable Generation
## Language Models are Few-Shot Learners
- **arXiv id:** 1909.05858v2
- **Title:** CTRL: A Conditional Transformer Language Model for Controllable Generation
- **Authors:** Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al.
- **Published Date:** 2019-09-11
- **URL:** http://arxiv.org/abs/1909.05858v2
- **Authors:** Tom B. Brown, Benjamin Mann, Nick Ryder, et al.
- **arXiv id:** [2005.14165v4](http://arxiv.org/abs/2005.14165v4) **Published Date:** 2020-05-28
- **LangChain:**
- **API Reference:** [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Recent work has demonstrated substantial gains on many NLP tasks and
benchmarks by pre-training on a large corpus of text followed by fine-tuning on
a specific task. While typically task-agnostic in architecture, this method
still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language
task from only a few examples or from simple instructions - something which
current NLP systems still largely struggle to do. Here we show that scaling up
language models greatly improves task-agnostic, few-shot performance, sometimes
even reaching competitiveness with prior state-of-the-art fine-tuning
approaches. Specifically, we train GPT-3, an autoregressive language model with
175 billion parameters, 10x more than any previous non-sparse language model,
and test its performance in the few-shot setting. For all tasks, GPT-3 is
applied without any gradient updates or fine-tuning, with tasks and few-shot
demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation,
question-answering, and cloze tasks, as well as several tasks that require
on-the-fly reasoning or domain adaptation, such as unscrambling words, using a
novel word in a sentence, or performing 3-digit arithmetic. At the same time,
we also identify some datasets where GPT-3's few-shot learning still struggles,
as well as some datasets where GPT-3 faces methodological issues related to
training on large web corpora. Finally, we find that GPT-3 can generate samples
of news articles which human evaluators have difficulty distinguishing from
articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.
## Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
- **Authors:** Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al.
- **arXiv id:** [2005.11401v4](http://arxiv.org/abs/2005.11401v4) **Published Date:** 2020-05-22
- **LangChain:**
- **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
**Abstract:** Large pre-trained language models have been shown to store factual knowledge
in their parameters, and achieve state-of-the-art results when fine-tuned on
downstream NLP tasks. However, their ability to access and precisely manipulate
knowledge is still limited, and hence on knowledge-intensive tasks, their
performance lags behind task-specific architectures. Additionally, providing
provenance for their decisions and updating their world knowledge remain open
research problems. Pre-trained models with a differentiable access mechanism to
explicit non-parametric memory can overcome this issue, but have so far been
only investigated for extractive downstream tasks. We explore a general-purpose
fine-tuning recipe for retrieval-augmented generation (RAG) -- models which
combine pre-trained parametric and non-parametric memory for language
generation. We introduce RAG models where the parametric memory is a
pre-trained seq2seq model and the non-parametric memory is a dense vector index
of Wikipedia, accessed with a pre-trained neural retriever. We compare two RAG
formulations, one which conditions on the same retrieved passages across the
whole generated sequence, the other can use different passages per token. We
fine-tune and evaluate our models on a wide range of knowledge-intensive NLP
tasks and set the state-of-the-art on three open domain QA tasks, outperforming
parametric seq2seq models and task-specific retrieve-and-extract architectures.
For language generation tasks, we find that RAG models generate more specific,
diverse and factual language than a state-of-the-art parametric-only seq2seq
baseline.
## CTRL: A Conditional Transformer Language Model for Controllable Generation
- **Authors:** Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al.
- **arXiv id:** [1909.05858v2](http://arxiv.org/abs/1909.05858v2) **Published Date:** 2019-09-11
- **LangChain:**
- **API Reference:** [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
**Abstract:** Large-scale language models show promising text generation capabilities, but
users cannot easily control particular aspects of the generated text. We
@@ -881,32 +1099,4 @@ codes also allow CTRL to predict which parts of the training data are most
likely given a sequence. This provides a potential method for analyzing large
amounts of data via model-based source attribution. We have released multiple
full-sized, pretrained versions of CTRL at https://github.com/salesforce/ctrl.
## Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
- **arXiv id:** 1908.10084v1
- **Title:** Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
- **Authors:** Nils Reimers, Iryna Gurevych
- **Published Date:** 2019-08-27
- **URL:** http://arxiv.org/abs/1908.10084v1
- **LangChain:**
- **Documentation:** [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers)
**Abstract:** BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new
state-of-the-art performance on sentence-pair regression tasks like semantic
textual similarity (STS). However, it requires that both sentences are fed into
the network, which causes a massive computational overhead: Finding the most
similar pair in a collection of 10,000 sentences requires about 50 million
inference computations (~65 hours) with BERT. The construction of BERT makes it
unsuitable for semantic similarity search as well as for unsupervised tasks
like clustering.
In this publication, we present Sentence-BERT (SBERT), a modification of the
pretrained BERT network that use siamese and triplet network structures to
derive semantically meaningful sentence embeddings that can be compared using
cosine-similarity. This reduces the effort for finding the most similar pair
from 65 hours with BERT / RoBERTa to about 5 seconds with SBERT, while
maintaining the accuracy from BERT.
We evaluate SBERT and SRoBERTa on common STS tasks and transfer learning
tasks, where it outperforms other state-of-the-art sentence embeddings methods.

View File

@@ -15,11 +15,6 @@ The interfaces for core components like LLMs, vector stores, retrievers and more
No third party integrations are defined here.
The dependencies are kept purposefully very lightweight.
### Partner packages
While the long tail of integrations are in `langchain-community`, we split popular integrations into their own packages (e.g. `langchain-openai`, `langchain-anthropic`, etc).
This was done in order to improve support for these important integrations.
### `langchain`
The main `langchain` package contains chains, agents, and retrieval strategies that make up an application's cognitive architecture.
@@ -33,6 +28,11 @@ Key partner packages are separated out (see below).
This contains all integrations for various components (LLMs, vector stores, retrievers).
All dependencies in this package are optional to keep the package as lightweight as possible.
### Partner packages
While the long tail of integrations is in `langchain-community`, we split popular integrations into their own packages (e.g. `langchain-openai`, `langchain-anthropic`, etc).
This was done in order to improve support for these important integrations.
### [`langgraph`](https://langchain-ai.github.io/langgraph)
`langgraph` is an extension of `langchain` aimed at
@@ -61,28 +61,28 @@ A developer platform that lets you debug, test, evaluate, and monitor LLM applic
## LangChain Expression Language (LCEL)
<span data-heading-keywords="lcel"></span>
LangChain Expression Language, or LCEL, is a declarative way to chain LangChain components.
`LangChain Expression Language`, or `LCEL`, is a declarative way to chain LangChain components.
LCEL was designed from day 1 to **support putting prototypes in production, with no code changes**, from the simplest “prompt + LLM” chain to the most complex chains (weve seen folks successfully run LCEL chains with 100s of steps in production). To highlight a few of the reasons you might want to use LCEL:
**First-class streaming support**
- **First-class streaming support:**
When you build your chains with LCEL you get the best possible time-to-first-token (time elapsed until the first chunk of output comes out). For some chains this means eg. we stream tokens straight from an LLM to a streaming output parser, and you get back parsed, incremental chunks of output at the same rate as the LLM provider outputs the raw tokens.
**Async support**
- **Async support:**
Any chain built with LCEL can be called both with the synchronous API (eg. in your Jupyter notebook while prototyping) as well as with the asynchronous API (eg. in a [LangServe](/docs/langserve/) server). This enables using the same code for prototypes and in production, with great performance, and the ability to handle many concurrent requests in the same server.
**Optimized parallel execution**
- **Optimized parallel execution:**
Whenever your LCEL chains have steps that can be executed in parallel (eg if you fetch documents from multiple retrievers) we automatically do it, both in the sync and the async interfaces, for the smallest possible latency.
**Retries and fallbacks**
- **Retries and fallbacks:**
Configure retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. Were currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
**Access intermediate results**
- **Access intermediate results:**
For more complex chains its often very useful to access the results of intermediate steps even before the final output is produced. This can be used to let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and its available on every [LangServe](/docs/langserve) server.
**Input and output schemas**
- **Input and output schemas**
Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
[**Seamless LangSmith tracing**](https://docs.smith.langchain.com)
- [**Seamless LangSmith tracing**](https://docs.smith.langchain.com)
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
With LCEL, **all** steps are automatically logged to [LangSmith](https://docs.smith.langchain.com/) for maximum observability and debuggability.
@@ -97,7 +97,7 @@ For guides on how to do specific tasks with LCEL, check out [the relevant how-to
### Runnable interface
<span data-heading-keywords="invoke,runnable"></span>
To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://api.python.langchain.com/en/stable/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below.
To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below.
This is a standard interface, which makes it easy to define custom chains as well as invoke them in a standard way.
The standard interface includes:
@@ -186,7 +186,7 @@ For a full list of LangChain model providers with multimodal models, [check out
<span data-heading-keywords="llm,llms"></span>
:::caution
Pure text-in/text-out LLMs tend to be older or lower-level. Many popular models are best used as [chat completion models](/docs/concepts/#chat-models),
Pure text-in/text-out LLMs tend to be older or lower-level. Many new popular models are best used as [chat completion models](/docs/concepts/#chat-models),
even for non-chat use cases.
You are probably looking for [the section above instead](/docs/concepts/#chat-models).
@@ -201,7 +201,7 @@ When messages are passed in as input, they will be formatted into a string under
LangChain does not host any LLMs, rather we rely on third party integrations.
For specifics on how to use LLMs, see the [relevant how-to guides here](/docs/how_to/#llms).
For specifics on how to use LLMs, see the [how-to guides](/docs/how_to/#llms).
### Messages
@@ -209,22 +209,25 @@ Some language models take a list of messages as input and return a message.
There are a few different types of messages.
All messages have a `role`, `content`, and `response_metadata` property.
The `role` describes WHO is saying the message.
The `role` describes WHO is saying the message. The standard roles are "user", "assistant", "system", and "tool".
LangChain has different message classes for different roles.
The `content` property describes the content of the message.
This can be a few different things:
- A string (most models deal this type of content)
- A string (most models deal with this type of content)
- A List of dictionaries (this is used for multimodal input, where the dictionary contains information about that input type and that input location)
Optionally, messages can have a `name` property which allows for differentiating between multiple speakers with the same role.
For example, if there are two users in the chat history it can be useful to differentiate between them. Not all models support this.
#### HumanMessage
This represents a message from the user.
This represents a message with role "user".
#### AIMessage
This represents a message from the model. In addition to the `content` property, these messages also have:
This represents a message with role "assistant". In addition to the `content` property, these messages also have:
**`response_metadata`**
@@ -244,11 +247,11 @@ This property returns a list of `ToolCall`s. A `ToolCall` is a dictionary with t
#### SystemMessage
This represents a system message, which tells the model how to behave. Not every model provider supports this.
This represents a message with role "system", which tells the model how to behave. Not every model provider supports this.
#### ToolMessage
This represents the result of a tool call. In addition to `role` and `content`, this message has:
This represents a message with role "tool", which contains the result of calling a tool. In addition to `role` and `content`, this message has:
- a `tool_call_id` field which conveys the id of the call to the tool that was called to produce this result.
- an `artifact` field which can be used to pass along arbitrary artifacts of the tool execution which are useful to track but which should not be sent to the model.
@@ -343,6 +346,7 @@ For specifics on how to use prompt templates, see the [relevant how-to guides he
### Example selectors
One common prompting technique for achieving better performance is to include examples as part of the prompt.
This is known as [few-shot prompting](/docs/concepts/#few-shot-prompting).
This gives the language model concrete examples of how it should behave.
Sometimes these examples are hardcoded into the prompt, but for more advanced situations it may be nice to dynamically select them.
Example Selectors are classes responsible for selecting and then formatting examples into prompts.
@@ -361,38 +365,32 @@ See documentation for that [here](/docs/concepts/#function-tool-calling).
:::
Responsible for taking the output of a model and transforming it to a more suitable format for downstream tasks.
`Output parser` is responsible for taking the output of a model and transforming it to a more suitable format for downstream tasks.
Useful when you are using LLMs to generate structured data, or to normalize output from chat models and LLMs.
LangChain has lots of different types of output parsers. This is a list of output parsers LangChain supports. The table below has various pieces of information:
**Name**: The name of the output parser
**Supports Streaming**: Whether the output parser supports streaming.
**Has Format Instructions**: Whether the output parser has format instructions. This is generally available except when (a) the desired schema is not specified in the prompt but rather in other parameters (like OpenAI function calling), or (b) when the OutputParser wraps another OutputParser.
**Calls LLM**: Whether this output parser itself calls an LLM. This is usually only done by output parsers that attempt to correct misformatted output.
**Input Type**: Expected input type. Most output parsers work on both strings and messages, but some (like OpenAI Functions) need a message with specific kwargs.
**Output Type**: The output type of the object returned by the parser.
**Description**: Our commentary on this output parser and when to use it.
- **Name**: The name of the output parser
- **Supports Streaming**: Whether the output parser supports streaming.
- **Has Format Instructions**: Whether the output parser has format instructions. This is generally available except when (a) the desired schema is not specified in the prompt but rather in other parameters (like OpenAI function calling), or (b) when the OutputParser wraps another OutputParser.
- **Calls LLM**: Whether this output parser itself calls an LLM. This is usually only done by output parsers that attempt to correct misformatted output.
- **Input Type**: Expected input type. Most output parsers work on both strings and messages, but some (like OpenAI Functions) need a message with specific kwargs.
- **Output Type**: The output type of the object returned by the parser.
- **Description**: Our commentary on this output parser and when to use it.
| Name | Supports Streaming | Has Format Instructions | Calls LLM | Input Type | Output Type | Description |
|-----------------|--------------------|-------------------------------|-----------|----------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [JSON](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html#langchain_core.output_parsers.json.JsonOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
| [XML](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). |
| [CSV](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. |
| [OutputFixing](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. |
| [RetryWithError](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html#langchain.output_parsers.retry.RetryWithErrorOutputParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the original inputs, the bad output, and the error message to an LLM and ask it to fix it. Compared to OutputFixingParser, this one also sends the original instructions. |
| [Pydantic](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html#langchain_core.output_parsers.pydantic.PydanticOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. |
| [YAML](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. Uses YAML to encode it. |
| [PandasDataFrame](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser.html#langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser) | | ✅ | | `str` \| `Message` | `dict` | Useful for doing operations with pandas DataFrames. |
| [Enum](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.enum.EnumOutputParser.html#langchain.output_parsers.enum.EnumOutputParser) | | ✅ | | `str` \| `Message` | `Enum` | Parses response into one of the provided enum values. |
| [Datetime](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.datetime.DatetimeOutputParser.html#langchain.output_parsers.datetime.DatetimeOutputParser) | | ✅ | | `str` \| `Message` | `datetime.datetime` | Parses response into a datetime string. |
| [Structured](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.structured.StructuredOutputParser.html#langchain.output_parsers.structured.StructuredOutputParser) | | ✅ | | `str` \| `Message` | `Dict[str, str]` | An output parser that returns structured information. It is less powerful than other output parsers since it only allows for fields to be strings. This can be useful when you are working with smaller LLMs. |
| [JSON](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html#langchain_core.output_parsers.json.JsonOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
| [XML](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). |
| [CSV](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. |
| [OutputFixing](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. |
| [RetryWithError](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html#langchain.output_parsers.retry.RetryWithErrorOutputParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the original inputs, the bad output, and the error message to an LLM and ask it to fix it. Compared to OutputFixingParser, this one also sends the original instructions. |
| [Pydantic](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html#langchain_core.output_parsers.pydantic.PydanticOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. |
| [YAML](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. Uses YAML to encode it. |
| [PandasDataFrame](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser.html#langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser) | | ✅ | | `str` \| `Message` | `dict` | Useful for doing operations with pandas DataFrames. |
| [Enum](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.enum.EnumOutputParser.html#langchain.output_parsers.enum.EnumOutputParser) | | ✅ | | `str` \| `Message` | `Enum` | Parses response into one of the provided enum values. |
| [Datetime](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.datetime.DatetimeOutputParser.html#langchain.output_parsers.datetime.DatetimeOutputParser) | | ✅ | | `str` \| `Message` | `datetime.datetime` | Parses response into a datetime string. |
| [Structured](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.structured.StructuredOutputParser.html#langchain.output_parsers.structured.StructuredOutputParser) | | ✅ | | `str` \| `Message` | `Dict[str, str]` | An output parser that returns structured information. It is less powerful than other output parsers since it only allows for fields to be strings. This can be useful when you are working with smaller LLMs. |
For specifics on how to use output parsers, see the [relevant how-to guides here](/docs/how_to/#output-parsers).
@@ -503,7 +501,7 @@ For specifics on how to use retrievers, see the [relevant how-to guides here](/d
For some techniques, such as [indexing and retrieval with multiple vectors per document](/docs/how_to/multi_vector/) or
[caching embeddings](/docs/how_to/caching_embeddings/), having a form of key-value (KV) storage is helpful.
LangChain includes a [`BaseStore`](https://api.python.langchain.com/en/latest/stores/langchain_core.stores.BaseStore.html) interface,
LangChain includes a [`BaseStore`](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.BaseStore.html) interface,
which allows for storage of arbitrary data. However, LangChain components that require KV-storage accept a
more specific `BaseStore[str, bytes]` instance that stores binary data (referred to as a `ByteStore`), and internally take care of
encoding and decoding data for their specific needs.
@@ -512,7 +510,7 @@ This means that as a user, you only need to think about one type of store rather
#### Interface
All [`BaseStores`](https://api.python.langchain.com/en/latest/stores/langchain_core.stores.BaseStore.html) support the following interface. Note that the interface allows
All [`BaseStores`](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.BaseStore.html) support the following interface. Note that the interface allows
for modifying **multiple** key-value pairs at once:
- `mget(key: Sequence[str]) -> List[Optional[bytes]]`: get the contents of multiple keys, returning `None` if the key does not exist
@@ -530,10 +528,10 @@ Tools are needed whenever you want a model to control parts of your code or call
A tool consists of:
1. The name of the tool.
2. A description of what the tool does.
3. A JSON schema defining the inputs to the tool.
4. A function (and, optionally, an async variant of the function).
1. The `name` of the tool.
2. A `description` of what the tool does.
3. A `JSON schema` defining the inputs to the tool.
4. A `function` (and, optionally, an async variant of the function).
When a tool is bound to a model, the name, description and JSON schema are provided as context to the model.
Given a list of tools and a set of instructions, a model can request to call one or more tools with specific inputs.
@@ -646,14 +644,14 @@ The results of those actions can then be fed back into the agent and it determin
[LangGraph](https://github.com/langchain-ai/langgraph) is an extension of LangChain specifically aimed at creating highly controllable and customizable agents.
Please check out that documentation for a more in depth overview of agent concepts.
There is a legacy agent concept in LangChain that we are moving towards deprecating: `AgentExecutor`.
There is a legacy `agent` concept in LangChain that we are moving towards deprecating: `AgentExecutor`.
AgentExecutor was essentially a runtime for agents.
It was a great place to get started, however, it was not flexible enough as you started to have more customized agents.
In order to solve that we built LangGraph to be this flexible, highly-controllable runtime.
If you are still using AgentExecutor, do not fear: we still have a guide on [how to use AgentExecutor](/docs/how_to/agent_executor).
It is recommended, however, that you start to transition to LangGraph.
In order to assist in this we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent).
In order to assist in this, we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent).
#### ReAct agents
<span data-heading-keywords="react,react agent"></span>
@@ -710,10 +708,10 @@ You can subscribe to these events by using the `callbacks` argument available th
Callback handlers can either be `sync` or `async`:
* Sync callback handlers implement the [BaseCallbackHandler](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html) interface.
* Async callback handlers implement the [AsyncCallbackHandler](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) interface.
* Sync callback handlers implement the [BaseCallbackHandler](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html) interface.
* Async callback handlers implement the [AsyncCallbackHandler](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) interface.
During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered.
During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered.
#### Passing callbacks
@@ -739,7 +737,7 @@ callbacks to any child objects.
:::important Async in Python<=3.10
Any `RunnableLambda`, a `RunnableGenerator`, or `Tool` that invokes other runnables
and is running async in python<=3.10, will have to propagate callbacks to child
and is running `async` in python<=3.10, will have to propagate callbacks to child
objects manually. This is because LangChain cannot automatically propagate
callbacks to child objects in this case.
@@ -781,7 +779,7 @@ For models (or other components) that don't support streaming natively, this ite
you could still use the same general pattern when calling them. Using `.stream()` will also automatically call the model in streaming mode
without the need to provide additional config.
The type of each outputted chunk depends on the type of component - for example, chat models yield [`AIMessageChunks`](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html).
The type of each outputted chunk depends on the type of component - for example, chat models yield [`AIMessageChunks`](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html).
Because this method is part of [LangChain Expression Language](/docs/concepts/#langchain-expression-language-lcel),
you can handle formatting differences from different outputs using an [output parser](/docs/concepts/#output-parsers) to transform
each yielded chunk.
@@ -829,10 +827,10 @@ including a table listing available events.
#### Callbacks
The lowest level way to stream outputs from LLMs in LangChain is via the [callbacks](/docs/concepts/#callbacks) system. You can pass a
callback handler that handles the [`on_llm_new_token`](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any
callback handler that handles the [`on_llm_new_token`](https://python.langchain.com/v0.2/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any
[LLM](/docs/concepts/#llms) or [chat model](/docs/concepts/#chat-models) contained in the component calls
the callback with the generated token. Within the callback, you could pipe the tokens into some other destination, e.g. a HTTP response.
You can also handle the [`on_llm_end`](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup.
You can also handle the [`on_llm_end`](https://python.langchain.com/v0.2/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup.
You can see [this how-to section](/docs/how_to/#callbacks) for more specifics on using callbacks.
@@ -869,7 +867,7 @@ Furthermore, using tokens can also improve efficiency, since the model processes
### Function/tool calling
:::info
We use the term tool calling interchangeably with function calling. Although
We use the term `tool calling` interchangeably with `function calling`. Although
function calling is sometimes meant to refer to invocations of a single function,
we treat all models as though they can return multiple tool or function calls in
each message.
@@ -964,7 +962,6 @@ structured_llm.invoke("Tell me a joke about cats")
```
Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)
```
We recommend this method as a starting point when working with structured output:
@@ -1101,10 +1098,91 @@ The following how-to guides are good practical resources for using function/tool
For a full list of model providers that support tool calling, [see this table](/docs/integrations/chat/#advanced-features).
### Few-shot prompting
One of the most effective ways to improve model performance is to give a model examples of
what you want it to do. The technique of adding example inputs and expected outputs
to a model prompt is known as "few-shot prompting". The technique is based on the
[Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165) paper.
There are a few things to think about when doing few-shot prompting:
1. How are examples generated?
2. How many examples are in each prompt?
3. How are examples selected at runtime?
4. How are examples formatted in the prompt?
Here are the considerations for each.
#### 1. Generating examples
The first and most important step of few-shot prompting is coming up with a good dataset of examples. Good examples should be relevant at runtime, clear, informative, and provide information that was not already known to the model.
At a high-level, the basic ways to generate examples are:
- Manual: a person/people generates examples they think are useful.
- Better model: a better (presumably more expensive/slower) model's responses are used as examples for a worse (presumably cheaper/faster) model.
- User feedback: users (or labelers) leave feedback on interactions with the application and examples are generated based on that feedback (for example, all interactions with positive feedback could be turned into examples).
- LLM feedback: same as user feedback but the process is automated by having models evaluate themselves.
Which approach is best depends on your task. For tasks where a small number core principles need to be understood really well, it can be valuable hand-craft a few really good examples.
For tasks where the space of correct behaviors is broader and more nuanced, it can be useful to generate many examples in a more automated fashion so that there's a higher likelihood of there being some highly relevant examples for any runtime input.
**Single-turn v.s. multi-turn examples**
Another dimension to think about when generating examples is what the example is actually showing.
The simplest types of examples just have a user input and an expected model output. These are single-turn examples.
One more complex type if example is where the example is an entire conversation, usually in which a model initially responds incorrectly and a user then tells the model how to correct its answer.
This is called a multi-turn example. Multi-turn examples can be useful for more nuanced tasks where its useful to show common errors and spell out exactly why they're wrong and what should be done instead.
#### 2. Number of examples
Once we have a dataset of examples, we need to think about how many examples should be in each prompt.
The key tradeoff is that more examples generally improve performance, but larger prompts increase costs and latency.
And beyond some threshold having too many examples can start to confuse the model.
Finding the right number of examples is highly dependent on the model, the task, the quality of the examples, and your cost and latency constraints.
Anecdotally, the better the model is the fewer examples it needs to perform well and the more quickly you hit steeply diminishing returns on adding more examples.
But, the best/only way to reliably answer this question is to run some experiments with different numbers of examples.
#### 3. Selecting examples
Assuming we are not adding our entire example dataset into each prompt, we need to have a way of selecting examples from our dataset based on a given input. We can do this:
- Randomly
- By (semantic or keyword-based) similarity of the inputs
- Based on some other constraints, like token size
LangChain has a number of [`ExampleSelectors`](/docs/concepts/#example-selectors) which make it easy to use any of these techniques.
Generally, selecting by semantic similarity leads to the best model performance. But how important this is is again model and task specific, and is something worth experimenting with.
#### 4. Formatting examples
Most state-of-the-art models these days are chat models, so we'll focus on formatting examples for those. Our basic options are to insert the examples:
- In the system prompt as a string
- As their own messages
If we insert our examples into the system prompt as a string, we'll need to make sure it's clear to the model where each example begins and which parts are the input versus output. Different models respond better to different syntaxes, like [ChatML](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chat-markup-language), XML, TypeScript, etc.
If we insert our examples as messages, where each example is represented as a sequence of Human, AI messages, we might want to also assign [names](/docs/concepts/#messages) to our messages like `"example_user"` and `"example_assistant"` to make it clear that these messages correspond to different actors than the latest input message.
**Formatting tool call examples**
One area where formatting examples as messages can be tricky is when our example outputs have tool calls. This is because different models have different constraints on what types of message sequences are allowed when any tool calls are generated.
- Some models require that any AIMessage with tool calls be immediately followed by ToolMessages for every tool call,
- Some models additionally require that any ToolMessages be immediately followed by an AIMessage before the next HumanMessage,
- Some models require that tools are passed in to the model if there are any tool calls / ToolMessages in the chat history.
These requirements are model-specific and should be checked for the model you are using. If your model requires ToolMessages after tool calls and/or AIMessages after ToolMessages and your examples only include expected tool calls and not the actual tool outputs, you can try adding dummy ToolMessages / AIMessages to the end of each example with generic contents to satisfy the API constraints.
In these cases it's especially worth experimenting with inserting your examples as strings versus messages, as having dummy messages can adversely affect certain models.
You can see a case study of how Anthropic and OpenAI respond to different few-shot prompting techniques on two different tool calling benchmarks [here](https://blog.langchain.dev/few-shot-prompting-to-improve-tool-calling-performance/).
### Retrieval
LLMs are trained on a large but fixed dataset, limiting their ability to reason over private or recent information. Fine-tuning an LLM with specific facts is one way to mitigate this, but is often [poorly suited for factual recall](https://www.anyscale.com/blog/fine-tuning-is-for-form-not-facts) and [can be costly](https://www.glean.com/blog/how-to-build-an-ai-assistant-for-the-enterprise).
Retrieval is the process of providing relevant information to an LLM to improve its response for a given input. Retrieval augmented generation (RAG) is the process of grounding the LLM generation (output) using the retrieved information.
LLMs are trained on a large but fixed dataset, limiting their ability to reason over private or recent information.
Fine-tuning an LLM with specific facts is one way to mitigate this, but is often [poorly suited for factual recall](https://www.anyscale.com/blog/fine-tuning-is-for-form-not-facts) and [can be costly](https://www.glean.com/blog/how-to-build-an-ai-assistant-for-the-enterprise).
`Retrieval` is the process of providing relevant information to an LLM to improve its response for a given input.
`Retrieval augmented generation` (`RAG`) [paper](https://arxiv.org/abs/2005.11401) is the process of grounding the LLM generation (output) using the retrieved information.
:::tip
@@ -1124,12 +1202,12 @@ First, consider the user input(s) to your RAG system. Ideally, a RAG system can
**Using an LLM to review and optionally modify the input is the central idea behind query translation.** This serves as a general buffer, optimizing raw user inputs for your retrieval system.
For example, this can be as simple as extracting keywords or as complex as generating multiple sub-questions for a complex query.
| Name | When to use | Description |
|---------------|-------------|-------------|
| Name | When to use | Description |
|---------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Multi-query](/docs/how_to/MultiQueryRetriever/) | When you need to cover multiple perspectives of a question. | Rewrite the user question from multiple perspectives, retrieve documents for each rewritten question, return the unique documents for all queries. |
| [Decomposition](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a question can be broken down into smaller subproblems. | Decompose a question into a set of subproblems / questions, which can either be solved sequentially (use the answer from first + retrieval to answer the second) or in parallel (consolidate each answer into final answer). |
| [Step-back](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a higher-level conceptual understanding is required. | First prompt the LLM to ask a generic step-back question about higher-level concepts or principles, and retrieve relevant facts about them. Use this grounding to help answer the user question. |
| [HyDE](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | If you have challenges retrieving relevant documents using the raw user inputs. | Use an LLM to convert questions into hypothetical documents that answer the question. Use the embedded hypothetical documents to retrieve real documents with the premise that doc-doc similarity search can produce more relevant matches. |
| [Decomposition](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a question can be broken down into smaller subproblems. | Decompose a question into a set of subproblems / questions, which can either be solved sequentially (use the answer from first + retrieval to answer the second) or in parallel (consolidate each answer into final answer). |
| [Step-back](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a higher-level conceptual understanding is required. | First prompt the LLM to ask a generic step-back question about higher-level concepts or principles, and retrieve relevant facts about them. Use this grounding to help answer the user question. [Paper](https://arxiv.org/pdf/2310.06117). |
| [HyDE](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | If you have challenges retrieving relevant documents using the raw user inputs. | Use an LLM to convert questions into hypothetical documents that answer the question. Use the embedded hypothetical documents to retrieve real documents with the premise that doc-doc similarity search can produce more relevant matches. [Paper](https://arxiv.org/abs/2212.10496). |
:::tip
@@ -1203,11 +1281,11 @@ Fifth, consider ways to improve the quality of your similarity search itself. Em
There are some additional tricks to improve the quality of your retrieval. Embeddings excel at capturing semantic information, but may struggle with keyword-based queries. Many [vector stores](/docs/integrations/retrievers/pinecone_hybrid_search/) offer built-in [hybrid-search](https://docs.pinecone.io/guides/data/understanding-hybrid-search) to combine keyword and semantic similarity, which marries the benefits of both approaches. Furthermore, many vector stores have [maximal marginal relevance](https://python.langchain.com/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/), which attempts to diversify the results of a search to avoid returning similar and redundant documents.
| Name | When to use | Description |
|-------------------|----------------------------------------------------------|-------------|
| [ColBERT](/docs/integrations/providers/ragatouille/#using-colbert-as-a-reranker) | When higher granularity embeddings are needed. | ColBERT uses contextually influenced embeddings for each token in the document and query to get a granular query-document similarity score. |
| [Hybrid search](/docs/integrations/retrievers/pinecone_hybrid_search/) | When combining keyword-based and semantic similarity. | Hybrid search combines keyword and semantic similarity, marrying the benefits of both approaches. |
| [Maximal Marginal Relevance (MMR)](/docs/integrations/vectorstores/pinecone/#maximal-marginal-relevance-searches) | When needing to diversify search results. | MMR attempts to diversify the results of a search to avoid returning similar and redundant documents. |
| Name | When to use | Description |
|-------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [ColBERT](/docs/integrations/providers/ragatouille/#using-colbert-as-a-reranker) | When higher granularity embeddings are needed. | ColBERT uses contextually influenced embeddings for each token in the document and query to get a granular query-document similarity score. [Paper](https://arxiv.org/abs/2112.01488). |
| [Hybrid search](/docs/integrations/retrievers/pinecone_hybrid_search/) | When combining keyword-based and semantic similarity. | Hybrid search combines keyword and semantic similarity, marrying the benefits of both approaches. [Paper](https://arxiv.org/abs/2210.11934). |
| [Maximal Marginal Relevance (MMR)](/docs/integrations/vectorstores/pinecone/#maximal-marginal-relevance-searches) | When needing to diversify search results. | MMR attempts to diversify the results of a search to avoid returning similar and redundant documents. |
:::tip
@@ -1227,7 +1305,7 @@ Sixth, consider ways to filter or rank retrieved documents. This is very useful
:::tip
See our RAG from Scratch video on [RAG-Fusion](https://youtu.be/77qELPbNgxA?feature=shared), on approach for post-processing across multiple queries: Rewrite the user question from multiple perspectives, retrieve documents for each rewritten question, and combine the ranks of multiple search result lists to produce a single, unified ranking with [Reciprocal Rank Fusion (RRF)](https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1).
See our RAG from Scratch video on [RAG-Fusion](https://youtu.be/77qELPbNgxA?feature=shared) ([paper](https://arxiv.org/abs/2402.03367)), on approach for post-processing across multiple queries: Rewrite the user question from multiple perspectives, retrieve documents for each rewritten question, and combine the ranks of multiple search result lists to produce a single, unified ranking with [Reciprocal Rank Fusion (RRF)](https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1).
:::

View File

@@ -12,7 +12,7 @@ It covers a wide array of topics, including tutorials, use cases, integrations,
and more, offering extensive guidance on building with LangChain.
The content for this documentation lives in the `/docs` directory of the monorepo.
2. In-code Documentation: This is documentation of the codebase itself, which is also
used to generate the externally facing [API Reference](https://api.python.langchain.com/en/latest/langchain_api_reference.html).
used to generate the externally facing [API Reference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).
The content for the API reference is autogenerated by scanning the docstrings in the codebase. For this reason we ask that
developers document their code well.

View File

@@ -24,3 +24,16 @@ for more information.
Notably, Github doesn't allow this setting to be enabled for forks in **organizations** ([issue](https://github.com/orgs/community/discussions/5634)).
If you are working in an organization, we recommend submitting your PR from a personal
fork in order to enable this setting.
### Why hasn't my PR been reviewed?
Please reference our [Review Process](/docs/contributing/review_process/).
### Why was my PR closed?
Please reference our [Review Process](/docs/contributing/review_process/).
### I think my PR was closed in a way that didn't follow the review process. What should I do?
Tag `@efriis` in the PR comments referencing the portion of the review
process that you believe was not followed. We'll take a look!

View File

@@ -50,7 +50,7 @@ There are other files in the root directory level, but their presence should be
## Documentation
The `/docs` directory contains the content for the documentation that is shown
at https://python.langchain.com/ and the associated API Reference https://api.python.langchain.com/en/latest/langchain_api_reference.html.
at https://python.langchain.com/ and the associated API Reference https://python.langchain.com/v0.2/api_reference/langchain/index.html.
See the [documentation](/docs/contributing/documentation/) guidelines to learn how to contribute to the documentation.

View File

@@ -0,0 +1,95 @@
# Review Process
## Overview
This document outlines the process used by the LangChain maintainers for reviewing pull requests (PRs). The primary objective of this process is to enhance the LangChain developer experience.
## Review Statuses
We categorize PRs using three main statuses, which are marked as project item statuses in the right sidebar and can be viewed in detail [here](https://github.com/orgs/langchain-ai/projects/12/views/1).
- **Triage**:
- Initial status for all newly submitted PRs.
- Requires a maintainer to categorize it into one of the other statuses.
- **Needs Support**:
- PRs that require community feedback or additional input before moving forward.
- Automatically promoted to the backlog if it receives 5 upvotes.
- An auto-comment is generated when this status is applied, explaining the flow and the upvote requirement.
- If the PR remains in this status for 25 days, it will be marked as “stale” via auto-comment.
- PRs will be auto-closed after 30 days if no further action is taken.
- **In Review**:
- PRs that are actively under review by our team.
- These are regularly reviewed and monitored.
**Note:** A PR may only have one status at a time.
**Note:** You may notice 3 additional statuses of Done, Closed, and Internal that
are external to this lifecycle. Done and Closed PRs have been merged or closed,
respectively. Internal is for PRs submitted by core maintainers, and these PRs are owned
by the submitter.
## Review Guidelines
1. **PRs that touch /libs/core**:
- PRs that directly impact core code and are likely to affect end users.
- **Triage Guideline**: most PRs should either go straight to `In Review` or closed.
- These PRs are given top priority and are reviewed the fastest.
- PRs that don't have a **concise** descriptions of their motivation (either in PR summary of in a linked issue) are likely to be closed without an in-depth review. Please do not generate verbose PR descriptions with an LLM.
- PRs that don't have unit tests are likely to be closed.
- Feature requests should first be opened as a GitHub issue and discussed with the LangChain maintainers. Large PRs submitted without prior discussion are likely to be closed.
2. **PRs that touch /libs/langchain**:
- High-impact PRs that are closely related to core PRs but slightly lower in priority.
- **Triage Guideline**: most PRs should either go straight to `In Review` or closed.
- These are reviewed and closed aggressively, similar to core PRs.
- New feature requests should be discussed with the core maintainer team beforehand in an issue.
3. **PRs that touch /libs/partners/****:
- PRs involving integration packages.
- **Triage Guideline**: most PRs should either go straight to `In Review` or closed.
- The review may be conducted by our team or handed off to the partner's development team, depending on the PR's content.
- We maintain communication lines with most partner dev teams to facilitate this process.
4. **Community PRs**:
- Most community PRs will get an initial status of "needs support".
- **Triage Guideline**: most PRs should go to `Needs support`. Bugfixes on high-traffic integrations should go straight to `In review`.
- **Triage Guideline**: all new features and integrations should go to `Needs support` and will be closed if they do not get enough support (measured by upvotes or comments).
- PRs in the `Needs Support` status for 20 days are marked as “stale” and will be closed after 30 days if no action is taken.
5. **Documentation PRs**:
- PRs that touch the documentation content in docs/docs.
- **Triage Guideline**:
- PRs that fix typos or small errors in a single file and pass CI should go straight to `In Review`.
- PRs that make changes that have been discussed and agreed upon in an issue should go straight to `In Review`.
- PRs that add new pages or change the structure of the documentation should go to `Needs Support`.
- We strive to standardize documentation formats to streamline the review process.
- CI jobs run against documentation to ensure adherence to standards, automating much of the review.
6. **PRs must be in English**:
- PRs that are not in English will be closed without review.
- This is to ensure that all maintainers can review the PRs effectively.
## How to see a PR's status
See screenshot:
![PR Status](/img/review_process_status.png)
*To see the status of all open PRs, please visit the [LangChain Project Board](https://github.com/orgs/langchain-ai/projects/12/views/2).*
## Review Prioritization
Our goal is to provide the best possible development experience by focusing on making software that:
- Works: Works as intended (is bug-free).
- Is useful: Improves LLM app development with components that work off-the-shelf and runtimes that simplify app building.
- Is easy: Is intuitive to use and well-documented.
We believe this process reflects our priorities and are open to feedback if you feel it does not.
## Github Discussion
We welcome your feedback on this process. Please feel free to add a comment in
[this GitHub Discussion](https://github.com/langchain-ai/langchain/discussions/25920).

View File

@@ -13,7 +13,7 @@
"# How to split by HTML header \n",
"## Description and motivation\n",
"\n",
"[HTMLHeaderTextSplitter](https://api.python.langchain.com/en/latest/html/langchain_text_splitters.html.HTMLHeaderTextSplitter.html) is a \"structure-aware\" chunker that splits text at the HTML element level and adds metadata for each header \"relevant\" to any given chunk. It can return chunks element by element or combine elements with the same metadata, with the objectives of (a) keeping related text grouped (more or less) semantically and (b) preserving context-rich information encoded in document structures. It can be used with other text splitters as part of a chunking pipeline.\n",
"[HTMLHeaderTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/html/langchain_text_splitters.html.HTMLHeaderTextSplitter.html) is a \"structure-aware\" chunker that splits text at the HTML element level and adds metadata for each header \"relevant\" to any given chunk. It can return chunks element by element or combine elements with the same metadata, with the objectives of (a) keeping related text grouped (more or less) semantically and (b) preserving context-rich information encoded in document structures. It can be used with other text splitters as part of a chunking pipeline.\n",
"\n",
"It is analogous to the [MarkdownHeaderTextSplitter](/docs/how_to/markdown_header_metadata_splitter) for markdown files.\n",
"\n",

View File

@@ -9,7 +9,7 @@
"\n",
"Distance-based vector database retrieval embeds (represents) queries in high-dimensional space and finds similar embedded documents based on a distance metric. But, retrieval may produce different results with subtle changes in query wording, or if the embeddings do not capture the semantics of the data well. Prompt engineering / tuning is sometimes done to manually address these problems, but can be tedious.\n",
"\n",
"The [MultiQueryRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html) automates the process of prompt tuning by using an LLM to generate multiple queries from different perspectives for a given user input query. For each query, it retrieves a set of relevant documents and takes the unique union across all queries to get a larger set of potentially relevant documents. By generating multiple perspectives on the same question, the `MultiQueryRetriever` can mitigate some of the limitations of the distance-based retrieval and get a richer set of results.\n",
"The [MultiQueryRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html) automates the process of prompt tuning by using an LLM to generate multiple queries from different perspectives for a given user input query. For each query, it retrieves a set of relevant documents and takes the unique union across all queries to get a larger set of potentially relevant documents. By generating multiple perspectives on the same question, the `MultiQueryRetriever` can mitigate some of the limitations of the distance-based retrieval and get a richer set of results.\n",
"\n",
"Let's build a vectorstore using the [LLM Powered Autonomous Agents](https://lilianweng.github.io/posts/2023-06-23-agent/) blog post by Lilian Weng from the [RAG tutorial](/docs/tutorials/rag):"
]
@@ -125,9 +125,9 @@
"source": [
"#### Supplying your own prompt\n",
"\n",
"Under the hood, `MultiQueryRetriever` generates queries using a specific [prompt](https://api.python.langchain.com/en/latest/_modules/langchain/retrievers/multi_query.html#MultiQueryRetriever). To customize this prompt:\n",
"Under the hood, `MultiQueryRetriever` generates queries using a specific [prompt](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html). To customize this prompt:\n",
"\n",
"1. Make a [PromptTemplate](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html) with an input variable for the question;\n",
"1. Make a [PromptTemplate](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.prompt.PromptTemplate.html) with an input variable for the question;\n",
"2. Implement an [output parser](/docs/concepts#output-parsers) like the one below to split the result into a list of queries.\n",
"\n",
"The prompt and output parser together must support the generation of a list of queries."

View File

@@ -7,7 +7,7 @@
"source": [
"# How to add scores to retriever results\n",
"\n",
"Retrievers will return sequences of [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) objects, which by default include no information about the process that retrieved them (e.g., a similarity score against a query). Here we demonstrate how to add retrieval scores to the `.metadata` of documents:\n",
"Retrievers will return sequences of [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, which by default include no information about the process that retrieved them (e.g., a similarity score against a query). Here we demonstrate how to add retrieval scores to the `.metadata` of documents:\n",
"1. From [vectorstore retrievers](/docs/how_to/vectorstore_retriever);\n",
"2. From higher-order LangChain retrievers, such as [SelfQueryRetriever](/docs/how_to/self_query) or [MultiVectorRetriever](/docs/how_to/multi_vector).\n",
"\n",
@@ -15,7 +15,7 @@
"\n",
"## Create vector store\n",
"\n",
"First we populate a vector store with some data. We will use a [PineconeVectorStore](https://api.python.langchain.com/en/latest/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html), but this guide is compatible with any LangChain vector store that implements a `.similarity_search_with_score` method."
"First we populate a vector store with some data. We will use a [PineconeVectorStore](https://python.langchain.com/v0.2/api_reference/pinecone/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html), but this guide is compatible with any LangChain vector store that implements a `.similarity_search_with_score` method."
]
},
{
@@ -263,7 +263,7 @@
"\n",
"To propagate similarity scores through this retriever, we can again subclass `MultiVectorRetriever` and override a method. This time we will override `_get_relevant_documents`.\n",
"\n",
"First, we prepare some fake data. We generate fake \"whole documents\" and store them in a document store; here we will use a simple [InMemoryStore](https://api.python.langchain.com/en/latest/stores/langchain_core.stores.InMemoryBaseStore.html)."
"First, we prepare some fake data. We generate fake \"whole documents\" and store them in a document store; here we will use a simple [InMemoryStore](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.InMemoryBaseStore.html)."
]
},
{

View File

@@ -27,7 +27,7 @@
"\n",
":::\n",
"\n",
"An alternate way of [passing data through](/docs/how_to/passthrough) steps of a chain is to leave the current values of the chain state unchanged while assigning a new value under a given key. The [`RunnablePassthrough.assign()`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html#langchain_core.runnables.passthrough.RunnablePassthrough.assign) static method takes an input value and adds the extra arguments passed to the assign function.\n",
"An alternate way of [passing data through](/docs/how_to/passthrough) steps of a chain is to leave the current values of the chain state unchanged while assigning a new value under a given key. The [`RunnablePassthrough.assign()`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html#langchain_core.runnables.passthrough.RunnablePassthrough.assign) static method takes an input value and adds the extra arguments passed to the assign function.\n",
"\n",
"This is useful in the common [LangChain Expression Language](/docs/concepts/#langchain-expression-language) pattern of additively creating a dictionary to use as input to a later step.\n",
"\n",

View File

@@ -27,7 +27,7 @@
"\n",
":::\n",
"\n",
"Sometimes we want to invoke a [`Runnable`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html) within a [RunnableSequence](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableSequence.html) with constant arguments that are not part of the output of the preceding Runnable in the sequence, and which are not part of the user input. We can use the [`Runnable.bind()`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind) method to set these arguments ahead of time.\n",
"Sometimes we want to invoke a [`Runnable`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) within a [RunnableSequence](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSequence.html) with constant arguments that are not part of the output of the preceding Runnable in the sequence, and which are not part of the user input. We can use the [`Runnable.bind()`](https://python.langchain.com/v0.2/api_reference/langchain_core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind) method to set these arguments ahead of time.\n",
"\n",
"## Binding stop sequences\n",
"\n",

View File

@@ -14,7 +14,7 @@
"- [Custom callback handlers](/docs/how_to/custom_callbacks)\n",
":::\n",
"\n",
"If you are planning to use the async APIs, it is recommended to use and extend [`AsyncCallbackHandler`](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) to avoid blocking the event.\n",
"If you are planning to use the async APIs, it is recommended to use and extend [`AsyncCallbackHandler`](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) to avoid blocking the event.\n",
"\n",
"\n",
":::{.callout-warning}\n",

View File

@@ -17,7 +17,7 @@
"\n",
":::\n",
"\n",
"If you are composing a chain of runnables and want to reuse callbacks across multiple executions, you can attach callbacks with the [`.with_config()`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method. This saves you the need to pass callbacks in each time you invoke the chain.\n",
"If you are composing a chain of runnables and want to reuse callbacks across multiple executions, you can attach callbacks with the [`.with_config()`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method. This saves you the need to pass callbacks in each time you invoke the chain.\n",
"\n",
":::{.callout-important}\n",
"\n",

View File

@@ -15,7 +15,7 @@
"\n",
":::\n",
"\n",
"In many cases, it is advantageous to pass in handlers instead when running the object. When we pass through [`CallbackHandlers`](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) using the `callbacks` keyword arg when executing an run, those callbacks will be issued by all nested objects involved in the execution. For example, when a handler is passed through to an Agent, it will be used for all callbacks related to the agent and all the objects involved in the agent's execution, in this case, the Tools and LLM.\n",
"In many cases, it is advantageous to pass in handlers instead when running the object. When we pass through [`CallbackHandlers`](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) using the `callbacks` keyword arg when executing an run, those callbacks will be issued by all nested objects involved in the execution. For example, when a handler is passed through to an Agent, it will be used for all callbacks related to the agent and all the objects involved in the agent's execution, in this case, the Tools and LLM.\n",
"\n",
"This prevents us from having to manually attach the handlers to each individual nested object. Here's an example:"
]

View File

@@ -28,7 +28,7 @@
"\n",
"To obtain the string content directly, use `.split_text`.\n",
"\n",
"To create LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`."
"To create LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`."
]
},
{

View File

@@ -11,7 +11,7 @@
"\n",
":::tip Supported models\n",
"\n",
"See the [init_chat_model()](https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.base.init_chat_model.html) API reference for a full list of supported integrations.\n",
"See the [init_chat_model()](https://python.langchain.com/v0.2/api_reference/langchain/chat_models/langchain.chat_models.base.init_chat_model.html) API reference for a full list of supported integrations.\n",
"\n",
"Make sure you have the integration packages installed for any model providers you want to support. E.g. you should have `langchain-openai` installed to init an OpenAI model.\n",
"\n",
@@ -89,7 +89,7 @@
"source": [
"## Inferring model provider\n",
"\n",
"For common and distinct model names `init_chat_model()` will attempt to infer the model provider. See the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.base.init_chat_model.html) for a full list of inference behavior. E.g. any model that starts with `gpt-3...` or `gpt-4...` will be inferred as using model provider `openai`."
"For common and distinct model names `init_chat_model()` will attempt to infer the model provider. See the [API reference](https://python.langchain.com/v0.2/api_reference/langchain/chat_models/langchain.chat_models.base.init_chat_model.html) for a full list of inference behavior. E.g. any model that starts with `gpt-3...` or `gpt-4...` will be inferred as using model provider `openai`."
]
},
{

View File

@@ -18,7 +18,7 @@
"# How to stream chat model responses\n",
"\n",
"\n",
"All [chat models](https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) implement the [Runnable interface](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable), which comes with a **default** implementations of standard runnable methods (i.e. `ainvoke`, `batch`, `abatch`, `stream`, `astream`, `astream_events`).\n",
"All [chat models](https://python.langchain.com/v0.2/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) implement the [Runnable interface](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable), which comes with a **default** implementations of standard runnable methods (i.e. `ainvoke`, `batch`, `abatch`, `stream`, `astream`, `astream_events`).\n",
"\n",
"The **default** streaming implementation provides an`Iterator` (or `AsyncIterator` for asynchronous streaming) that yields a single value: the final output from the underlying chat model provider.\n",
"\n",
@@ -120,7 +120,7 @@
"source": [
"## Astream events\n",
"\n",
"Chat models also support the standard [astream events](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) method.\n",
"Chat models also support the standard [astream events](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) method.\n",
"\n",
"This method is useful if you're streaming output from a larger LLM application that contains multiple steps (e.g., an LLM chain composed of a prompt, llm and parser)."
]

View File

@@ -42,7 +42,7 @@
"\n",
"A number of model providers return token usage information as part of the chat generation response. When available, this information will be included on the `AIMessage` objects produced by the corresponding model.\n",
"\n",
"LangChain `AIMessage` objects include a [usage_metadata](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.usage_metadata) attribute. When populated, this attribute will be a [UsageMetadata](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.UsageMetadata.html) dictionary with standard keys (e.g., `\"input_tokens\"` and `\"output_tokens\"`).\n",
"LangChain `AIMessage` objects include a [usage_metadata](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.usage_metadata) attribute. When populated, this attribute will be a [UsageMetadata](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html) dictionary with standard keys (e.g., `\"input_tokens\"` and `\"output_tokens\"`).\n",
"\n",
"Examples:\n",
"\n",
@@ -118,7 +118,7 @@
"source": [
"### Using AIMessage.response_metadata\n",
"\n",
"Metadata from the model response is also included in the AIMessage [response_metadata](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.response_metadata) attribute. These data are typically not standardized. Note that different providers adopt different conventions for representing token counts:"
"Metadata from the model response is also included in the AIMessage [response_metadata](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.response_metadata) attribute. These data are typically not standardized. Note that different providers adopt different conventions for representing token counts:"
]
},
{
@@ -153,7 +153,7 @@
"\n",
"#### OpenAI\n",
"\n",
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
"For example, OpenAI will return a message [chunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
"\n",
"```{=mdx}\n",
":::note\n",

View File

@@ -140,7 +140,7 @@
"\n",
"## Chat history\n",
"\n",
"It's perfectly fine to store and pass messages directly as an array, but we can use LangChain's built-in [message history class](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.memory) to store and load messages as well. Instances of this class are responsible for storing and loading chat messages from persistent storage. LangChain integrates with many providers - you can see a [list of integrations here](/docs/integrations/memory) - but for this demo we will use an ephemeral demo class.\n",
"It's perfectly fine to store and pass messages directly as an array, but we can use LangChain's built-in [message history class](https://python.langchain.com/v0.2/api_reference/langchain/index.html#module-langchain.memory) to store and load messages as well. Instances of this class are responsible for storing and loading chat messages from persistent storage. LangChain integrates with many providers - you can see a [list of integrations here](/docs/integrations/memory) - but for this demo we will use an ephemeral demo class.\n",
"\n",
"Here's an example of the API:"
]

View File

@@ -7,7 +7,7 @@
"source": [
"# How to split code\n",
"\n",
"[RecursiveCharacterTextSplitter](https://api.python.langchain.com/en/latest/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html) includes pre-built lists of separators that are useful for splitting text in a specific programming language.\n",
"[RecursiveCharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html) includes pre-built lists of separators that are useful for splitting text in a specific programming language.\n",
"\n",
"Supported languages are stored in the `langchain_text_splitters.Language` enum. They include:\n",
"\n",

View File

@@ -99,7 +99,7 @@
"id": "b0f74589",
"metadata": {},
"source": [
"Above, we defined `temperature` as a [`ConfigurableField`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.utils.ConfigurableField.html#langchain_core.runnables.utils.ConfigurableField) that we can set at runtime. To do so, we use the [`with_config`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method like this:"
"Above, we defined `temperature` as a [`ConfigurableField`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.utils.ConfigurableField.html#langchain_core.runnables.utils.ConfigurableField) that we can set at runtime. To do so, we use the [`with_config`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method like this:"
]
},
{

View File

@@ -227,7 +227,7 @@
"source": [
"### `LLMListwiseRerank`\n",
"\n",
"[LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n",
"[LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n",
"\n",
"Note that `LLMListwiseRerank` requires a model with the [with_structured_output](/docs/integrations/chat/) method implemented."
]

View File

@@ -42,13 +42,13 @@
"source": [
"LangChain [tools](/docs/concepts#tools) are interfaces that an agent, chain, or chat model can use to interact with the world. See [here](/docs/how_to/#tools) for how-to guides covering tool-calling, built-in tools, custom tools, and more information.\n",
"\n",
"LangChain tools-- instances of [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n",
"LangChain tools-- instances of [BaseTool](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n",
"\n",
"- Their inputs are constrained to be serializable, specifically strings and Python `dict` objects;\n",
"- They contain names and descriptions indicating how and when they should be used;\n",
"- They may contain a detailed [args_schema](https://python.langchain.com/v0.2/docs/how_to/custom_tools/) for their arguments. That is, while a tool (as a `Runnable`) might accept a single `dict` input, the specific keys and type information needed to populate a dict should be specified in the `args_schema`.\n",
"\n",
"Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments."
"Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments."
]
},
{
@@ -180,7 +180,7 @@
"id": "32b1a992-8997-4c98-8eb2-c9fe9431b799",
"metadata": {},
"source": [
"Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:"
"Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:"
]
},
{

View File

@@ -16,7 +16,7 @@
"\n",
"LangChain has some built-in callback handlers, but you will often want to create your own handlers with custom logic.\n",
"\n",
"To create a custom callback handler, we need to determine the [event(s)](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) we want our callback handler to handle as well as what we want our callback handler to do when the event is triggered. Then all we need to do is attach the callback handler to the object, for example via [the constructor](/docs/how_to/callbacks_constructor) or [at runtime](/docs/how_to/callbacks_runtime).\n",
"To create a custom callback handler, we need to determine the [event(s)](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) we want our callback handler to handle as well as what we want our callback handler to do when the event is triggered. Then all we need to do is attach the callback handler to the object, for example via [the constructor](/docs/how_to/callbacks_constructor) or [at runtime](/docs/how_to/callbacks_runtime).\n",
"\n",
"In the example below, we'll implement streaming with a custom handler.\n",
"\n",
@@ -107,7 +107,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"You can see [this reference page](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) for a list of events you can handle. Note that the `handle_chain_*` events run for most LCEL runnables.\n",
"You can see [this reference page](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) for a list of events you can handle. Note that the `handle_chain_*` events run for most LCEL runnables.\n",
"\n",
"## Next steps\n",
"\n",

View File

@@ -16,7 +16,7 @@
"\n",
"In this guide, we'll learn how to create a custom chat model using LangChain abstractions.\n",
"\n",
"Wrapping your LLM with the standard [`BaseChatModel`](https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) interface allow you to use your LLM in existing LangChain programs with minimal code modifications!\n",
"Wrapping your LLM with the standard [`BaseChatModel`](https://python.langchain.com/v0.2/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) interface allow you to use your LLM in existing LangChain programs with minimal code modifications!\n",
"\n",
"As an bonus, your LLM will automatically become a LangChain `Runnable` and will benefit from some optimizations out of the box (e.g., batch via a threadpool), async support, the `astream_events` API, etc.\n",
"\n",
@@ -503,7 +503,7 @@
"\n",
"Documentation:\n",
"\n",
"* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://api.python.langchain.com/en/stable/langchain_api_reference.html).\n",
"* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n",
"* The class doc-string for the model contains a link to the model API if the model is powered by a service.\n",
"\n",
"Tests:\n",

View File

@@ -402,7 +402,7 @@
"\n",
"Documentation:\n",
"\n",
"* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://api.python.langchain.com/en/stable/langchain_api_reference.html).\n",
"* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n",
"* The class doc-string for the model contains a link to the model API if the model is powered by a service.\n",
"\n",
"Tests:\n",

View File

@@ -270,7 +270,7 @@
"\n",
"Documentation:\n",
"\n",
"* The retriever contains doc-strings for all initialization arguments, as these will be surfaced in the [API Reference](https://api.python.langchain.com/en/stable/langchain_api_reference.html).\n",
"* The retriever contains doc-strings for all initialization arguments, as these will be surfaced in the [API Reference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n",
"* The class doc-string for the model contains a link to any relevant APIs used for the retriever (e.g., if the retriever is retrieving from wikipedia, it'll be good to link to the wikipedia API!)\n",
"\n",
"Tests:\n",

View File

@@ -9,20 +9,20 @@
"\n",
"When constructing an agent, you will need to provide it with a list of `Tool`s that it can use. Besides the actual function that is called, the Tool consists of several components:\n",
"\n",
"| Attribute | Type | Description |\n",
"|-----------------|---------------------------|------------------------------------------------------------------------------------------------------------------|\n",
"| name | str | Must be unique within a set of tools provided to an LLM or agent. |\n",
"| description | str | Describes what the tool does. Used as context by the LLM or agent. |\n",
"| args_schema | Pydantic BaseModel | Optional but recommended, can be used to provide more information (e.g., few-shot examples) or validation for expected parameters |\n",
"| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n",
"| Attribute | Type | Description |\n",
"|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n",
"| name | str | Must be unique within a set of tools provided to an LLM or agent. |\n",
"| description | str | Describes what the tool does. Used as context by the LLM or agent. |\n",
"| args_schema | langchain.pydantic_v1.BaseModel | Optional but recommended, and required if using callback handlers. It can be used to provide more information (e.g., few-shot examples) or validation for expected parameters. |\n",
"| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n",
"\n",
"LangChain supports the creation of tools from:\n",
"\n",
"1. Functions;\n",
"2. LangChain [Runnables](/docs/concepts#runnable-interface);\n",
"3. By sub-classing from [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
"3. By sub-classing from [BaseTool](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
"\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
"\n",
"In this guide we provide an overview of these methods.\n",
"\n",
@@ -259,7 +259,7 @@
"metadata": {},
"source": [
":::{.callout-caution}\n",
"By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html) for detail and examples.\n",
"By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.tool.html) for detail and examples.\n",
":::"
]
},
@@ -366,7 +366,7 @@
"source": [
"## Creating tools from Runnables\n",
"\n",
"LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n",
"LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n",
"\n",
"Example usage:"
]
@@ -512,7 +512,7 @@
"source": [
"## How to create async tools\n",
"\n",
"LangChain Tools implement the [Runnable interface 🏃](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html).\n",
"LangChain Tools implement the [Runnable interface 🏃](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html).\n",
"\n",
"All Runnables expose the `invoke` and `ainvoke` methods (as well as other methods like `batch`, `abatch`, `astream` etc).\n",
"\n",
@@ -778,7 +778,7 @@
"\n",
"Sometimes there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns custom objects like Documents, we may want to pass some view or metadata about this output to the model without passing the raw output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
"\n",
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
"The Tool and [ToolMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
"\n",
":::info Requires ``langchain-core >= 0.2.19``\n",
"\n",

View File

@@ -9,7 +9,7 @@
"\n",
"A [comma-separated values (CSV)](https://en.wikipedia.org/wiki/Comma-separated_values) file is a delimited text file that uses a comma to separate values. Each line of the file is a data record. Each record consists of one or more fields, separated by commas.\n",
"\n",
"LangChain implements a [CSV Loader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.csv_loader.CSVLoader.html) that will load CSV files into a sequence of [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Each row of the CSV file is translated to one document."
"LangChain implements a [CSV Loader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.csv_loader.CSVLoader.html) that will load CSV files into a sequence of [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Each row of the CSV file is translated to one document."
]
},
{
@@ -88,7 +88,7 @@
"source": [
"## Specify a column to identify the document source\n",
"\n",
"The `\"source\"` key on [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) metadata can be set using a column of the CSV. Use the `source_column` argument to specify a source for the document created from each row. Otherwise `file_path` will be used as the source for all documents created from the CSV file.\n",
"The `\"source\"` key on [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) metadata can be set using a column of the CSV. Use the `source_column` argument to specify a source for the document created from each row. Otherwise `file_path` will be used as the source for all documents created from the CSV file.\n",
"\n",
"This is useful when using documents loaded from CSV files for chains that answer questions using sources."
]

View File

@@ -7,7 +7,7 @@
"source": [
"# How to load documents from a directory\n",
"\n",
"LangChain's [DirectoryLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.directory.DirectoryLoader.html) implements functionality for reading files from disk into LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Here we demonstrate:\n",
"LangChain's [DirectoryLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.directory.DirectoryLoader.html) implements functionality for reading files from disk into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Here we demonstrate:\n",
"\n",
"- How to load from a filesystem, including use of wildcard patterns;\n",
"- How to use multithreading for file I/O;\n",
@@ -134,7 +134,7 @@
"metadata": {},
"source": [
"## Change loader class\n",
"By default this uses the `UnstructuredLoader` class. To customize the loader, specify the loader class in the `loader_cls` kwarg. Below we show an example using [TextLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.text.TextLoader.html):"
"By default this uses the `UnstructuredLoader` class. To customize the loader, specify the loader class in the `loader_cls` kwarg. Below we show an example using [TextLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.text.TextLoader.html):"
]
},
{

View File

@@ -9,7 +9,7 @@
"\n",
"The HyperText Markup Language or [HTML](https://en.wikipedia.org/wiki/HTML) is the standard markup language for documents designed to be displayed in a web browser.\n",
"\n",
"This covers how to load `HTML` documents into a LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n",
"This covers how to load `HTML` documents into a LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n",
"\n",
"Parsing HTML files often requires specialized tools. Here we demonstrate parsing via [Unstructured](https://unstructured-io.github.io/unstructured/) and [BeautifulSoup4](https://beautiful-soup-4.readthedocs.io/en/latest/), which can be installed via pip. Head over to the integrations page to find integrations with additional services, such as [Azure AI Document Intelligence](/docs/integrations/document_loaders/azure_document_intelligence) or [FireCrawl](/docs/integrations/document_loaders/firecrawl).\n",
"\n",

View File

@@ -4,8 +4,8 @@
[JSON Lines](https://jsonlines.org/) is a file format where each line is a valid JSON value.
LangChain implements a [JSONLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html)
to convert JSON and JSONL data into LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document)
LangChain implements a [JSONLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html)
to convert JSON and JSONL data into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document)
objects. It uses a specified [jq schema](https://en.wikipedia.org/wiki/Jq_(programming_language)) to parse the JSON files, allowing for the extraction of specific fields into the content
and metadata of the LangChain Document.
@@ -182,7 +182,7 @@ pprint(data)
</CodeOutputBlock>
Another option is set `jq_schema='.'` and provide `content_key`:
Another option is to set `jq_schema='.'` and provide `content_key`:
```python
loader = JSONLoader(

View File

@@ -9,14 +9,14 @@
"\n",
"[Markdown](https://en.wikipedia.org/wiki/Markdown) is a lightweight markup language for creating formatted text using a plain-text editor.\n",
"\n",
"Here we cover how to load `Markdown` documents into LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n",
"Here we cover how to load `Markdown` documents into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n",
"\n",
"We will cover:\n",
"\n",
"- Basic usage;\n",
"- Parsing of Markdown into elements such as titles, list items, and text.\n",
"\n",
"LangChain implements an [UnstructuredMarkdownLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html) object which requires the [Unstructured](https://unstructured-io.github.io/unstructured/) package. First we install it:"
"LangChain implements an [UnstructuredMarkdownLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html) object which requires the [Unstructured](https://unstructured-io.github.io/unstructured/) package. First we install it:"
]
},
{
@@ -26,7 +26,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install \"unstructured[md]\""
"%pip install \"unstructured[md]\" nltk"
]
},
{

View File

@@ -3,7 +3,7 @@
The [Microsoft Office](https://www.office.com/) suite of productivity software includes Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Outlook, and Microsoft OneNote. It is available for Microsoft Windows and macOS operating systems. It is also available on Android and iOS.
This covers how to load commonly used file formats including `DOCX`, `XLSX` and `PPTX` documents into a LangChain
[Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document)
[Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document)
object that we can use downstream.

File diff suppressed because one or more lines are too long

View File

@@ -8,7 +8,7 @@ The Embeddings class is a class designed for interfacing with text embedding mod
Embeddings create a vector representation of a piece of text. This is useful because it means we can think about text in the vector space, and do things like semantic search where we look for pieces of text that are most similar in the vector space.
The base Embeddings class in LangChain provides two methods: one for embedding documents and one for embedding a query. The former, `.embed_documents`, takes as input multiple texts, while the latter, `.embed_query`, takes a single text. The reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself).
The base Embeddings class in LangChain provides two methods: one for embedding documents and one for embedding a query. The former, `.embed_documents`, takes as input multiple texts, while the latter, `.embed_query`, takes a single text. The reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself).
`.embed_query` will return a list of floats, whereas `.embed_documents` returns a list of lists of floats.
## Get started
@@ -94,15 +94,6 @@ from langchain_huggingface import HuggingFaceEmbeddings
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
```
You can also leave the `model_name` blank to use the default [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) model.
```python
from langchain_huggingface import HuggingFaceEmbeddings
embeddings_model = HuggingFaceEmbeddings()
```
</TabItem>
</Tabs>

View File

@@ -6,7 +6,7 @@
"source": [
"# How to combine results from multiple retrievers\n",
"\n",
"The [EnsembleRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html) supports ensembling of results from multiple retrievers. It is initialized with a list of [BaseRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain_core.retrievers.BaseRetriever.html) objects. EnsembleRetrievers rerank the results of the constituent retrievers based on the [Reciprocal Rank Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) algorithm.\n",
"The [EnsembleRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html) supports ensembling of results from multiple retrievers. It is initialized with a list of [BaseRetriever](https://python.langchain.com/v0.2/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html) objects. EnsembleRetrievers rerank the results of the constituent retrievers based on the [Reciprocal Rank Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) algorithm.\n",
"\n",
"By leveraging the strengths of different algorithms, the `EnsembleRetriever` can achieve better performance than any single algorithm. \n",
"\n",
@@ -14,7 +14,7 @@
"\n",
"## Basic usage\n",
"\n",
"Below we demonstrate ensembling of a [BM25Retriever](https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html) with a retriever derived from the [FAISS vector store](https://api.python.langchain.com/en/latest/vectorstores/langchain_community.vectorstores.faiss.FAISS.html)."
"Below we demonstrate ensembling of a [BM25Retriever](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html) with a retriever derived from the [FAISS vector store](https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html)."
]
},
{

View File

@@ -0,0 +1,353 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "4f7e423b",
"metadata": {},
"source": [
"# How to select examples from a LangSmith dataset\n",
"\n",
"import Prerequisites from \"@theme/Prerequisites\";\n",
"import Compatibility from \"@theme/Compatibility\";\n",
"\n",
"<Prerequisites titlesAndLinks={[\n",
" [\"Chat models\", \"/docs/concepts/#chat-models\"],\n",
" [\"Few-shot-prompting\", \"/docs/concepts/#few-shot-prompting\"],\n",
" [\"LangSmith\", \"/docs/concepts/#langsmith\"],\n",
"]} />\n",
"\n",
"\n",
"<Compatibility packagesAndVersions={[\n",
" [\"langsmith\", \"0.1.101\"],\n",
" [\"langchain-core\", \"0.2.34\"],\n",
"]} />\n",
"\n",
"\n",
"LangSmith datasets have built-in support for similarity search, making them a great tool for building and querying few-shot examples.\n",
"\n",
"In this guide we'll see how to use an indexed LangSmith dataset as a few-shot example selector.\n",
"\n",
"## Setup\n",
"\n",
"Before getting started make sure you've [created a LangSmith account](https://smith.langchain.com/) and set your credentials:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "85445e0e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Set LangSmith API key:\n",
"\n",
"········\n"
]
}
],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.environ.get(\"LANGSMITH_API_KEY\"):\n",
" os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Set LangSmith API key:\\n\\n\")\n",
"\n",
"os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "ca899e29",
"metadata": {},
"source": [
"We'll need to install the `langsmith` SDK. In this example we'll also make use of `langchain`, `langchain-openai`, and `langchain-benchmarks`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b4fa7810",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU \"langsmith>=0.1.101\" \"langchain-core>=0.2.34\" langchain langchain-openai langchain-benchmarks"
]
},
{
"cell_type": "markdown",
"id": "fc716e12",
"metadata": {},
"source": [
"Now we'll clone a public dataset and turn on indexing for the dataset. We can also turn on indexing via the [LangSmith UI](https://docs.smith.langchain.com/how_to_guides/datasets/index_datasets_for_dynamic_few_shot_example_selection).\n",
"\n",
"We'll clone the [Multiverse math few shot example dataset](https://blog.langchain.dev/few-shot-prompting-to-improve-tool-calling-performance/).\n",
"\n",
"This enables searching over the dataset and will make sure that anytime we update/add examples they are also indexed."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf53d280",
"metadata": {},
"outputs": [],
"source": [
"from langsmith import Client as LangSmith\n",
"\n",
"ls_client = LangSmith()\n",
"\n",
"dataset_name = \"multiverse-math-few-shot-examples-v2\"\n",
"dataset_public_url = (\n",
" \"https://smith.langchain.com/public/620596ee-570b-4d2b-8c8f-f828adbe5242/d\"\n",
")\n",
"\n",
"ls_client.clone_public_dataset(dataset_public_url)\n",
"\n",
"dataset_id = ls_client.read_dataset(dataset_name=dataset_name).id\n",
"\n",
"ls_client.index_dataset(dataset_id=dataset_id)"
]
},
{
"cell_type": "markdown",
"id": "5767d171",
"metadata": {},
"source": [
"## Querying dataset\n",
"\n",
"Indexing can take a few seconds. Once the dataset is indexed, we can search for similar examples. Note that the input to the `similar_examples` method must have the same schema as the examples inputs. In this case our example inputs are a dictionary with a \"question\" key:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "5013a56f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"examples = ls_client.similar_examples(\n",
" {\"question\": \"whats the negation of the negation of the negation of 3\"},\n",
" limit=3,\n",
" dataset_id=dataset_id,\n",
")\n",
"len(examples)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a142db06",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'evaluate the negation of -100'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"examples[0].inputs[\"question\"]"
]
},
{
"cell_type": "markdown",
"id": "d2627125",
"metadata": {},
"source": [
"For this dataset, the outputs are the conversation that followed the question in OpenAI message format:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "af5b9191",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'role': 'assistant',\n",
" 'content': None,\n",
" 'tool_calls': [{'id': 'toolu_01HTpq4cYNUac6F7omUc2Wz3',\n",
" 'type': 'function',\n",
" 'function': {'name': 'negate', 'arguments': '{\"a\": -100}'}}]},\n",
" {'role': 'tool',\n",
" 'content': '-100.0',\n",
" 'tool_call_id': 'toolu_01HTpq4cYNUac6F7omUc2Wz3'},\n",
" {'role': 'assistant', 'content': 'So the answer is 100.'},\n",
" {'role': 'user',\n",
" 'content': '100 is incorrect. Please refer to the output of your tool call.'},\n",
" {'role': 'assistant',\n",
" 'content': [{'text': \"You're right, my previous answer was incorrect. Let me re-evaluate using the tool output:\",\n",
" 'type': 'text'}],\n",
" 'tool_calls': [{'id': 'toolu_01XsJQboYghGDygQpPjJkeRq',\n",
" 'type': 'function',\n",
" 'function': {'name': 'negate', 'arguments': '{\"a\": -100}'}}]},\n",
" {'role': 'tool',\n",
" 'content': '-100.0',\n",
" 'tool_call_id': 'toolu_01XsJQboYghGDygQpPjJkeRq'},\n",
" {'role': 'assistant', 'content': 'The answer is -100.0'},\n",
" {'role': 'user',\n",
" 'content': 'You have the correct numerical answer but are returning additional text. Please only respond with the numerical answer.'},\n",
" {'role': 'assistant', 'content': '-100.0'}]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"examples[0].outputs[\"conversation\"]"
]
},
{
"cell_type": "markdown",
"id": "e852c8ef",
"metadata": {},
"source": [
"## Creating dynamic few-shot prompts\n",
"\n",
"The search returns the examples whose inputs are most similar to the query input. We can use this for few-shot prompting a model like so:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "12cba1e1",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import init_chat_model\n",
"from langchain_benchmarks.tool_usage.tasks.multiverse_math import (\n",
" add,\n",
" cos,\n",
" divide,\n",
" log,\n",
" multiply,\n",
" negate,\n",
" pi,\n",
" power,\n",
" sin,\n",
" subtract,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langsmith import AsyncClient as AsyncLangSmith\n",
"\n",
"async_ls_client = AsyncLangSmith()\n",
"\n",
"\n",
"def similar_examples(input_: dict) -> dict:\n",
" examples = ls_client.similar_examples(input_, limit=5, dataset_id=dataset_id)\n",
" return {**input_, \"examples\": examples}\n",
"\n",
"\n",
"async def asimilar_examples(input_: dict) -> dict:\n",
" examples = await async_ls_client.similar_examples(\n",
" input_, limit=5, dataset_id=dataset_id\n",
" )\n",
" return {**input_, \"examples\": examples}\n",
"\n",
"\n",
"def construct_prompt(input_: dict) -> list:\n",
" instructions = \"\"\"You are great at using mathematical tools.\"\"\"\n",
" examples = []\n",
" for ex in input_[\"examples\"]:\n",
" examples.append({\"role\": \"user\", \"content\": ex.inputs[\"question\"]})\n",
" for msg in ex.outputs[\"conversation\"]:\n",
" if msg[\"role\"] == \"assistant\":\n",
" msg[\"name\"] = \"example_assistant\"\n",
" if msg[\"role\"] == \"user\":\n",
" msg[\"name\"] = \"example_user\"\n",
" examples.append(msg)\n",
" return [\n",
" {\"role\": \"system\", \"content\": instructions},\n",
" *examples,\n",
" {\"role\": \"user\", \"content\": input_[\"question\"]},\n",
" ]\n",
"\n",
"\n",
"tools = [add, cos, divide, log, multiply, negate, pi, power, sin, subtract]\n",
"llm = init_chat_model(\"gpt-4o-2024-08-06\")\n",
"llm_with_tools = llm.bind_tools(tools)\n",
"\n",
"example_selector = RunnableLambda(func=similar_examples, afunc=asimilar_examples)\n",
"\n",
"chain = example_selector | construct_prompt | llm_with_tools"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "c423b367",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'negate',\n",
" 'args': {'a': 3},\n",
" 'id': 'call_uMSdoTl6ehfHh5a6JQUb2NoZ',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ai_msg = await chain.ainvoke({\"question\": \"whats the negation of the negation of 3\"})\n",
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
"id": "94489b4a",
"metadata": {},
"source": [
"Looking at the LangSmith trace, we can see that relevant examples were pulled in in the `similar_examples` step and passed as messages to ChatOpenAI: https://smith.langchain.com/public/9585e30f-765a-4ed9-b964-2211420cd2f8/r/fdea98d6-e90f-49d4-ac22-dfd012e9e0d9."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-311",
"language": "python",
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -16,11 +16,11 @@
"also with JSON more or prompt based techniques.\n",
":::\n",
"\n",
"LangChain implements a [tool-call attribute](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.tool_calls) on messages from LLMs that include tool calls. See our [how-to guide on tool calling](/docs/how_to/tool_calling) for more detail. To build reference examples for data extraction, we build a chat history containing a sequence of: \n",
"LangChain implements a [tool-call attribute](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.tool_calls) on messages from LLMs that include tool calls. See our [how-to guide on tool calling](/docs/how_to/tool_calling) for more detail. To build reference examples for data extraction, we build a chat history containing a sequence of: \n",
"\n",
"- [HumanMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.human.HumanMessage.html) containing example inputs;\n",
"- [AIMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html) containing example tool calls;\n",
"- [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) containing example tool outputs.\n",
"- [HumanMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.human.HumanMessage.html) containing example inputs;\n",
"- [AIMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html) containing example tool calls;\n",
"- [ToolMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) containing example tool outputs.\n",
"\n",
"LangChain adopts this convention for structuring tool calls into conversation across LLM model providers.\n",
"\n",

View File

@@ -25,7 +25,7 @@
"source": [
"## Set up\n",
"\n",
"We need some example data! Let's download an article about [cars from wikipedia](https://en.wikipedia.org/wiki/Car) and load it as a LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html)."
"We need some example data! Let's download an article about [cars from wikipedia](https://en.wikipedia.org/wiki/Car) and load it as a LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html)."
]
},
{
@@ -214,7 +214,7 @@
"id": "5b43d7e0-3c85-4d97-86c7-e8c984b60b0a",
"metadata": {},
"source": [
"Use [batch](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html) functionality to run the extraction in **parallel** across each chunk! \n",
"Use [batch](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) functionality to run the extraction in **parallel** across each chunk! \n",
"\n",
":::{.callout-tip}\n",
"You can often use .batch() to parallelize the extractions! `.batch` uses a threadpool under the hood to help you parallelize workloads.\n",

View File

@@ -202,7 +202,7 @@
"\n",
"If desired, it's easy to create a custom prompt and parser with `LangChain` and `LCEL`.\n",
"\n",
"To create a custom parser, define a function to parse the output from the model (typically an [AIMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html)) into an object of your choice.\n",
"To create a custom parser, define a function to parse the output from the model (typically an [AIMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html)) into an object of your choice.\n",
"\n",
"See below for a simple implementation of a JSON parser."
]

View File

@@ -29,7 +29,7 @@
"\n",
"In this guide, we'll learn how to create a simple prompt template that provides the model with example inputs and outputs when generating. Providing the LLM with a few such examples is called few-shotting, and is a simple yet powerful way to guide generation and in some cases drastically improve model performance.\n",
"\n",
"A few-shot prompt template can be constructed from either a set of examples, or from an [Example Selector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html) class responsible for choosing a subset of examples from the defined set.\n",
"A few-shot prompt template can be constructed from either a set of examples, or from an [Example Selector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html) class responsible for choosing a subset of examples from the defined set.\n",
"\n",
"This guide will cover few-shotting with string prompt templates. For a guide on few-shotting with chat messages for chat models, see [here](/docs/how_to/few_shot_examples_chat/).\n",
"\n",
@@ -160,7 +160,7 @@
"source": [
"### Pass the examples and formatter to `FewShotPromptTemplate`\n",
"\n",
"Finally, create a [`FewShotPromptTemplate`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotPromptTemplate.html) object. This object takes in the few-shot examples and the formatter for the few-shot examples. When this `FewShotPromptTemplate` is formatted, it formats the passed examples using the `example_prompt`, then and adds them to the final prompt before `suffix`:"
"Finally, create a [`FewShotPromptTemplate`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.few_shot.FewShotPromptTemplate.html) object. This object takes in the few-shot examples and the formatter for the few-shot examples. When this `FewShotPromptTemplate` is formatted, it formats the passed examples using the `example_prompt`, then and adds them to the final prompt before `suffix`:"
]
},
{
@@ -251,7 +251,7 @@
"source": [
"## Using an example selector\n",
"\n",
"We will reuse the example set and the formatter from the previous section. However, instead of feeding the examples directly into the `FewShotPromptTemplate` object, we will feed them into an implementation of `ExampleSelector` called [`SemanticSimilarityExampleSelector`](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html) instance. This class selects few-shot examples from the initial set based on their similarity to the input. It uses an embedding model to compute the similarity between the input and the few-shot examples, as well as a vector store to perform the nearest neighbor search.\n",
"We will reuse the example set and the formatter from the previous section. However, instead of feeding the examples directly into the `FewShotPromptTemplate` object, we will feed them into an implementation of `ExampleSelector` called [`SemanticSimilarityExampleSelector`](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html) instance. This class selects few-shot examples from the initial set based on their similarity to the input. It uses an embedding model to compute the similarity between the input and the few-shot examples, as well as a vector store to perform the nearest neighbor search.\n",
"\n",
"To show what it looks like, let's initialize an instance and call it in isolation:"
]

View File

@@ -29,7 +29,7 @@
"\n",
"This guide covers how to prompt a chat model with example inputs and outputs. Providing the model with a few such examples is called few-shotting, and is a simple yet powerful way to guide generation and in some cases drastically improve model performance.\n",
"\n",
"There does not appear to be solid consensus on how best to do few-shot prompting, and the optimal prompt compilation will likely vary by model. Because of this, we provide few-shot prompt templates like the [FewShotChatMessagePromptTemplate](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html?highlight=fewshot#langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate) as a flexible starting point, and you can modify or replace them as you see fit.\n",
"There does not appear to be solid consensus on how best to do few-shot prompting, and the optimal prompt compilation will likely vary by model. Because of this, we provide few-shot prompt templates like the [FewShotChatMessagePromptTemplate](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html?highlight=fewshot#langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate) as a flexible starting point, and you can modify or replace them as you see fit.\n",
"\n",
"The goal of few-shot prompt templates are to dynamically select examples based on an input, and then format the examples in a final prompt to provide for the model.\n",
"\n",
@@ -49,7 +49,7 @@
"\n",
"The basic components of the template are:\n",
"- `examples`: A list of dictionary examples to include in the final prompt.\n",
"- `example_prompt`: converts each example into 1 or more messages through its [`format_messages`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=format_messages#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"- `example_prompt`: converts each example into 1 or more messages through its [`format_messages`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=format_messages#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"\n",
"Below is a simple demonstration. First, define the examples you'd like to include. Let's give the LLM an unfamiliar mathematical operator, denoted by the \"🦜\" emoji:"
]
@@ -239,8 +239,8 @@
"\n",
"Sometimes you may want to select only a few examples from your overall set to show based on the input. For this, you can replace the `examples` passed into `FewShotChatMessagePromptTemplate` with an `example_selector`. The other components remain the same as above! Our dynamic few-shot prompt template would look like:\n",
"\n",
"- `example_selector`: responsible for selecting few-shot examples (and the order in which they are returned) for a given input. These implement the [BaseExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html?highlight=baseexampleselector#langchain_core.example_selectors.base.BaseExampleSelector) interface. A common example is the vectorstore-backed [SemanticSimilarityExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html?highlight=semanticsimilarityexampleselector#langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector)\n",
"- `example_prompt`: convert each example into 1 or more messages through its [`format_messages`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=chatprompttemplate#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"- `example_selector`: responsible for selecting few-shot examples (and the order in which they are returned) for a given input. These implement the [BaseExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html?highlight=baseexampleselector#langchain_core.example_selectors.base.BaseExampleSelector) interface. A common example is the vectorstore-backed [SemanticSimilarityExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html?highlight=semanticsimilarityexampleselector#langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector)\n",
"- `example_prompt`: convert each example into 1 or more messages through its [`format_messages`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=chatprompttemplate#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"\n",
"These once again can be composed with other messages and chat templates to assemble your final prompt.\n",
"\n",

View File

@@ -175,7 +175,7 @@
"source": [
"## API reference\n",
"\n",
"For a complete description of all arguments head to the API reference: https://api.python.langchain.com/en/latest/messages/langchain_core.messages.utils.filter_messages.html"
"For a complete description of all arguments head to the API reference: https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.utils.filter_messages.html"
]
}
],

View File

@@ -88,7 +88,7 @@
"## Passing tools to LLMs\n",
"\n",
"Chat models supporting tool calling features implement a `.bind_tools` method, which \n",
"receives a list of LangChain [tool objects](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n",
"receives a list of LangChain [tool objects](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n",
"and binds them to the chat model in its expected format. Subsequent invocations of the \n",
"chat model will include tool schemas in its calls to the LLM.\n",
"\n",
@@ -212,9 +212,9 @@
"## Tool calls\n",
"\n",
"If tool calls are included in a LLM response, they are attached to the corresponding \n",
"[message](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage) \n",
"or [message chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"as a list of [tool call](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolCall.html#langchain_core.messages.tool.ToolCall) \n",
"[message](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage) \n",
"or [message chunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"as a list of [tool call](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolCall.html#langchain_core.messages.tool.ToolCall) \n",
"objects in the `.tool_calls` attribute. A `ToolCall` is a typed dict that includes a \n",
"tool name, dict of argument values, and (optionally) an identifier. Messages with no \n",
"tool calls default to an empty list for this attribute.\n",
@@ -258,7 +258,7 @@
"The `.tool_calls` attribute should contain valid tool calls. Note that on occasion, \n",
"model providers may output malformed tool calls (e.g., arguments that are not \n",
"valid JSON). When parsing fails in these cases, instances \n",
"of [InvalidToolCall](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.InvalidToolCall.html#langchain_core.messages.tool.InvalidToolCall) \n",
"of [InvalidToolCall](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.InvalidToolCall.html#langchain_core.messages.tool.InvalidToolCall) \n",
"are populated in the `.invalid_tool_calls` attribute. An `InvalidToolCall` can have \n",
"a name, string arguments, identifier, and error message.\n",
"\n",
@@ -298,8 +298,8 @@
"### Streaming\n",
"\n",
"When tools are called in a streaming context, \n",
"[message chunks](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"will be populated with [tool call chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolCallChunk.html#langchain_core.messages.tool.ToolCallChunk) \n",
"[message chunks](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"will be populated with [tool call chunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolCallChunk.html#langchain_core.messages.tool.ToolCallChunk) \n",
"objects in a list via the `.tool_call_chunks` attribute. A `ToolCallChunk` includes \n",
"optional string fields for the tool `name`, `args`, and `id`, and includes an optional \n",
"integer field `index` that can be used to join chunks together. Fields are optional \n",
@@ -307,7 +307,7 @@
"that includes a substring of the arguments may have null values for the tool name and id).\n",
"\n",
"Because message chunks inherit from their parent message class, an \n",
"[AIMessageChunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"[AIMessageChunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n",
"with tool call chunks will also include `.tool_calls` and `.invalid_tool_calls` fields. \n",
"These fields are parsed best-effort from the message's tool call chunks.\n",
"\n",

View File

@@ -26,7 +26,7 @@
"\n",
":::\n",
"\n",
"You can use arbitrary functions as [Runnables](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable). This is useful for formatting or when you need functionality not provided by other LangChain components, and custom functions used as Runnables are called [`RunnableLambdas`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableLambda.html).\n",
"You can use arbitrary functions as [Runnables](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable). This is useful for formatting or when you need functionality not provided by other LangChain components, and custom functions used as Runnables are called [`RunnableLambdas`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html).\n",
"\n",
"Note that all inputs to these functions need to be a SINGLE argument. If you have a function that accepts multiple arguments, you should write a wrapper that accepts a single dict input and unpacks it into multiple arguments.\n",
"\n",
@@ -210,7 +210,7 @@
"\n",
"## Passing run metadata\n",
"\n",
"Runnable lambdas can optionally accept a [RunnableConfig](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.config.RunnableConfig.html#langchain_core.runnables.config.RunnableConfig) parameter, which they can use to pass callbacks, tags, and other configuration information to nested runs."
"Runnable lambdas can optionally accept a [RunnableConfig](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html#langchain_core.runnables.config.RunnableConfig) parameter, which they can use to pass callbacks, tags, and other configuration information to nested runs."
]
},
{
@@ -303,7 +303,7 @@
"## Streaming\n",
"\n",
":::{.callout-note}\n",
"[RunnableLambda](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableLambda.html) is best suited for code that does not need to support streaming. If you need to support streaming (i.e., be able to operate on chunks of inputs and yield chunks of outputs), use [RunnableGenerator](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableGenerator.html) instead as in the example below.\n",
"[RunnableLambda](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html) is best suited for code that does not need to support streaming. If you need to support streaming (i.e., be able to operate on chunks of inputs and yield chunks of outputs), use [RunnableGenerator](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableGenerator.html) instead as in the example below.\n",
":::\n",
"\n",
"You can use generator functions (ie. functions that use the `yield` keyword, and behave like iterators) in a chain.\n",

View File

@@ -347,7 +347,7 @@
"\n",
"If we have enough examples, we may want to only include the most relevant ones in the prompt, either because they don't fit in the model's context window or because the long tail of examples distracts the model. And specifically, given any input we want to include the examples most relevant to that input.\n",
"\n",
"We can do just this using an ExampleSelector. In this case we'll use a [SemanticSimilarityExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html), which will store the examples in the vector database of our choosing. At runtime it will perform a similarity search between the input and our examples, and return the most semantically similar ones: "
"We can do just this using an ExampleSelector. In this case we'll use a [SemanticSimilarityExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html), which will store the examples in the vector database of our choosing. At runtime it will perform a similarity search between the input and our examples, and return the most semantically similar ones: "
]
},
{

View File

@@ -9,7 +9,7 @@ Here youll find answers to “How do I….?” types of questions.
These guides are *goal-oriented* and *concrete*; they're meant to help you complete a specific task.
For conceptual explanations see the [Conceptual guide](/docs/concepts/).
For end-to-end walkthroughs see [Tutorials](/docs/tutorials).
For comprehensive descriptions of every class and function see the [API Reference](https://api.python.langchain.com/en/latest/).
For comprehensive descriptions of every class and function see the [API Reference](https://python.langchain.com/v0.2/api_reference/).
## Installation
@@ -27,7 +27,7 @@ This highlights functionality that is core to using LangChain.
## LangChain Expression Language (LCEL)
[LangChain Expression Language](/docs/concepts/#langchain-expression-language-lcel) is a way to create arbitrary custom chains. It is built on the [Runnable](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html) protocol.
[LangChain Expression Language](/docs/concepts/#langchain-expression-language-lcel) is a way to create arbitrary custom chains. It is built on the [Runnable](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) protocol.
[**LCEL cheatsheet**](/docs/how_to/lcel_cheatsheet/): For a quick overview of how to use the main LCEL primitives.
@@ -69,6 +69,7 @@ These are the core building blocks you can use when building applications.
- [How to: select examples by semantic similarity](/docs/how_to/example_selectors_similarity)
- [How to: select examples by semantic ngram overlap](/docs/how_to/example_selectors_ngram)
- [How to: select examples by maximal marginal relevance](/docs/how_to/example_selectors_mmr)
- [How to: select examples from LangSmith few-shot datasets](/docs/how_to/example_selectors_langsmith/)
### Chat models
@@ -315,6 +316,15 @@ For a high-level tutorial, check out [this guide](/docs/tutorials/graph/).
- [How to: improve results with prompting](/docs/how_to/graph_prompting)
- [How to: construct knowledge graphs](/docs/how_to/graph_constructing)
### Summarization
LLMs can summarize and otherwise distill desired information from text, including
large volumes of text. For a high-level tutorial, check out [this guide](/docs/tutorials/summarization).
- [How to: summarize text in a single LLM call](/docs/how_to/summarize_stuff)
- [How to: summarize text through parallelization](/docs/how_to/summarize_map_reduce)
- [How to: summarize text through iterative refinement](/docs/how_to/summarize_refine)
## [LangGraph](https://langchain-ai.github.io/langgraph)
LangGraph is an extension of LangChain aimed at

View File

@@ -9,7 +9,7 @@ functionality to install.
## Official release
To install the main LangChain package, run:
To install the main `langchain` package, run:
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
@@ -26,8 +26,7 @@ import CodeBlock from "@theme/CodeBlock";
While this package acts as a sane starting point to using LangChain,
much of the value of LangChain comes when integrating it with various model providers, datastores, etc.
By default, the dependencies needed to do that are NOT installed. You will need to install the dependencies for specific integrations separately.
We'll show how to do that in the next sections of this guide.
By default, the dependencies needed to do that are NOT installed. You will need to install the dependencies for specific integrations separately, which we show below.
## Ecosystem packages
@@ -41,14 +40,6 @@ When installing a package, you do not need to explicitly install that package's
However, you may choose to if you are using a feature only available in a certain version of that dependency.
If you do, you should make sure that the installed or pinned version is compatible with any other integration packages you use.
### From source
If you want to install from source, you can do so by cloning the repo and be sure that the directory is `PATH/TO/REPO/langchain/libs/langchain` running:
```bash
pip install -e .
```
### LangChain core
The `langchain-core` package contains base abstractions that the rest of the LangChain ecosystem uses, along with the LangChain Expression Language. It is automatically installed by `langchain`, but can also be used separately. Install with:
@@ -56,8 +47,18 @@ The `langchain-core` package contains base abstractions that the rest of the Lan
pip install langchain-core
```
### LangChain community
The `langchain-community` package contains third-party integrations. Install with:
### Integration packages
Certain integrations like OpenAI and Anthropic have their own packages.
Any integrations that require their own package will be documented as such in the [Integration docs](/docs/integrations/platforms/).
You can see a list of all integration packages in the [API reference](https://api.python.langchain.com) under the "Partner libs" dropdown.
To install one of these run:
```bash
pip install langchain-openai
```
Any integrations that haven't been split out into their own packages will live in the `langchain-community` package. Install with:
```bash
pip install langchain-community
@@ -89,7 +90,7 @@ pip install "langserve[all]"
```
for both client and server dependencies. Or `pip install "langserve[client]"` for client code, and `pip install "langserve[server]"` for server code.
## LangChain CLI
### LangChain CLI
The LangChain CLI is useful for working with LangChain templates and other LangServe projects.
Install with:
@@ -105,3 +106,13 @@ If you are not using LangChain, you can install it with:
```bash
pip install langsmith
```
### From source
If you want to install a package from source, you can do so by cloning the [main LangChain repo](https://github.com/langchain-ai/langchain), enter the directory of the package you want to install `PATH/TO/REPO/langchain/libs/{package}`, and run:
```bash
pip install -e .
```
LangGraph, LangSmith SDK, and certain integration packages live outside the main LangChain repo. You can see [all repos here](https://github.com/langchain-ai).

View File

@@ -7,10 +7,10 @@
"source": [
"# LangChain Expression Language Cheatsheet\n",
"\n",
"This is a quick reference for all the most important LCEL primitives. For more advanced usage see the [LCEL how-to guides](/docs/how_to/#langchain-expression-language-lcel) and the [full API reference](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html).\n",
"This is a quick reference for all the most important LCEL primitives. For more advanced usage see the [LCEL how-to guides](/docs/how_to/#langchain-expression-language-lcel) and the [full API reference](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html).\n",
"\n",
"### Invoke a runnable\n",
"#### [Runnable.invoke()](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.invoke) / [Runnable.ainvoke()](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.ainvoke)"
"#### [Runnable.invoke()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.invoke) / [Runnable.ainvoke()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.ainvoke)"
]
},
{
@@ -46,7 +46,7 @@
"metadata": {},
"source": [
"### Batch a runnable\n",
"#### [Runnable.batch()](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.batch) / [Runnable.abatch()](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.abatch)"
"#### [Runnable.batch()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.batch) / [Runnable.abatch()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.abatch)"
]
},
{
@@ -82,7 +82,7 @@
"metadata": {},
"source": [
"### Stream a runnable\n",
"#### [Runnable.stream()](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) / [Runnable.astream()](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream)"
"#### [Runnable.stream()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) / [Runnable.astream()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream)"
]
},
{
@@ -165,7 +165,7 @@
"metadata": {},
"source": [
"### Invoke runnables in parallel\n",
"#### [RunnableParallel](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableParallel.html)"
"#### [RunnableParallel](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableParallel.html)"
]
},
{
@@ -202,7 +202,7 @@
"metadata": {},
"source": [
"### Turn any function into a runnable\n",
"#### [RunnableLambda](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableLambda.html)"
"#### [RunnableLambda](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html)"
]
},
{
@@ -240,7 +240,7 @@
"metadata": {},
"source": [
"### Merge input and output dicts\n",
"#### [RunnablePassthrough.assign](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html)"
"#### [RunnablePassthrough.assign](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html)"
]
},
{
@@ -276,7 +276,7 @@
"metadata": {},
"source": [
"### Include input dict in output dict\n",
"#### [RunnablePassthrough](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html)"
"#### [RunnablePassthrough](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html)"
]
},
{
@@ -316,7 +316,7 @@
"metadata": {},
"source": [
"### Add default invocation args\n",
"#### [Runnable.bind](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind)"
"#### [Runnable.bind](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind)"
]
},
{
@@ -360,7 +360,7 @@
"metadata": {},
"source": [
"### Add fallbacks\n",
"#### [Runnable.with_fallbacks](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_fallbacks)"
"#### [Runnable.with_fallbacks](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_fallbacks)"
]
},
{
@@ -397,7 +397,7 @@
"metadata": {},
"source": [
"### Add retries\n",
"#### [Runnable.with_retry](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_retry)"
"#### [Runnable.with_retry](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_retry)"
]
},
{
@@ -449,7 +449,7 @@
"metadata": {},
"source": [
"### Configure runnable execution\n",
"#### [RunnableConfig](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.config.RunnableConfig.html)"
"#### [RunnableConfig](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html)"
]
},
{
@@ -487,7 +487,7 @@
"metadata": {},
"source": [
"### Add default config to runnable\n",
"#### [Runnable.with_config](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config)"
"#### [Runnable.with_config](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config)"
]
},
{
@@ -526,7 +526,7 @@
"metadata": {},
"source": [
"### Make runnable attributes configurable\n",
"#### [Runnable.with_configurable_fields](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableSerializable.html#langchain_core.runnables.base.RunnableSerializable.configurable_fields)"
"#### [Runnable.with_configurable_fields](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSerializable.html#langchain_core.runnables.base.RunnableSerializable.configurable_fields)"
]
},
{
@@ -605,7 +605,7 @@
"metadata": {},
"source": [
"### Make chain components configurable\n",
"#### [Runnable.with_configurable_alternatives](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableSerializable.html#langchain_core.runnables.base.RunnableSerializable.configurable_alternatives)"
"#### [Runnable.with_configurable_alternatives](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSerializable.html#langchain_core.runnables.base.RunnableSerializable.configurable_alternatives)"
]
},
{
@@ -745,7 +745,7 @@
"metadata": {},
"source": [
"### Generate a stream of events\n",
"#### [Runnable.astream_events](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events)"
"#### [Runnable.astream_events](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events)"
]
},
{
@@ -817,7 +817,7 @@
"metadata": {},
"source": [
"### Yield batched outputs as they complete\n",
"#### [Runnable.batch_as_completed](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.batch_as_completed) / [Runnable.abatch_as_completed](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.abatch_as_completed)"
"#### [Runnable.batch_as_completed](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.batch_as_completed) / [Runnable.abatch_as_completed](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.abatch_as_completed)"
]
},
{
@@ -858,7 +858,7 @@
"metadata": {},
"source": [
"### Return subset of output dict\n",
"#### [Runnable.pick](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.pick)"
"#### [Runnable.pick](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.pick)"
]
},
{
@@ -893,7 +893,7 @@
"metadata": {},
"source": [
"### Declaratively make a batched version of a runnable\n",
"#### [Runnable.map](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.map)"
"#### [Runnable.map](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.map)"
]
},
{
@@ -930,7 +930,7 @@
"metadata": {},
"source": [
"### Get a graph representation of a runnable\n",
"#### [Runnable.get_graph](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.get_graph)"
"#### [Runnable.get_graph](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.get_graph)"
]
},
{
@@ -991,7 +991,7 @@
"metadata": {},
"source": [
"### Get all prompts in a chain\n",
"#### [Runnable.get_prompts](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.get_prompts)"
"#### [Runnable.get_prompts](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.get_prompts)"
]
},
{
@@ -1071,7 +1071,7 @@
"metadata": {},
"source": [
"### Add lifecycle listeners\n",
"#### [Runnable.with_listeners](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_listeners)"
"#### [Runnable.with_listeners](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_listeners)"
]
},
{

View File

@@ -24,7 +24,7 @@
"\n",
"There are some API-specific callback context managers that allow you to track token usage across multiple calls. You'll need to check whether such an integration is available for your particular model.\n",
"\n",
"If such an integration is not available for your model, you can create a custom callback manager by adapting the implementation of the [OpenAI callback manager](https://api.python.langchain.com/en/latest/_modules/langchain_community/callbacks/openai_info.html#OpenAICallbackHandler).\n",
"If such an integration is not available for your model, you can create a custom callback manager by adapting the implementation of the [OpenAI callback manager](https://python.langchain.com/v0.2/api_reference/community/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html).\n",
"\n",
"### OpenAI\n",
"\n",

View File

@@ -244,7 +244,7 @@
"\n",
"* E.g., for Llama 2 7b: `ollama pull llama2` will download the most basic version of the model (e.g., smallest # parameters and 4 bit quantization)\n",
"* We can also specify a particular version from the [model list](https://github.com/jmorganca/ollama?tab=readme-ov-file#model-library), e.g., `ollama pull llama2:13b`\n",
"* See the full set of parameters on the [API reference page](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.ollama.Ollama.html)"
"* See the full set of parameters on the [API reference page](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.ollama.Ollama.html)"
]
},
{
@@ -280,9 +280,9 @@
"\n",
"For example, below we run inference on `llama2-13b` with 4 bit quantization downloaded from [HuggingFace](https://huggingface.co/TheBloke/Llama-2-13B-GGML/tree/main).\n",
"\n",
"As noted above, see the [API reference](https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html?highlight=llamacpp#langchain.llms.llamacpp.LlamaCpp) for the full set of parameters. \n",
"As noted above, see the [API reference](https://python.langchain.com/v0.2/api_reference/langchain/llms/langchain.llms.llamacpp.LlamaCpp.html?highlight=llamacpp#langchain.llms.llamacpp.LlamaCpp) for the full set of parameters. \n",
"\n",
"From the [llama.cpp API reference docs](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.llamacpp.LlamaCpp.htm), a few are worth commenting on:\n",
"From the [llama.cpp API reference docs](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.llamacpp.LlamaCpp.html), a few are worth commenting on:\n",
"\n",
"`n_gpu_layers`: number of layers to be loaded into GPU memory\n",
"\n",
@@ -416,7 +416,7 @@
"\n",
"We can use model weights downloaded from [GPT4All](/docs/integrations/llms/gpt4all) model explorer.\n",
"\n",
"Similar to what is shown above, we can run inference and use [the API reference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.gpt4all.GPT4All.html) to set parameters of interest."
"Similar to what is shown above, we can run inference and use [the API reference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.gpt4all.GPT4All.html) to set parameters of interest."
]
},
{

View File

@@ -55,7 +55,7 @@
"id": "f88ffa0d-f4a7-482c-88de-cbec501a79b1",
"metadata": {},
"source": [
"For the OpenAI API to return log probabilities we need to configure the `logprobs=True` param. Then, the logprobs are included on each output [`AIMessage`](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html) as part of the `response_metadata`:"
"For the OpenAI API to return log probabilities we need to configure the `logprobs=True` param. Then, the logprobs are included on each output [`AIMessage`](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html) as part of the `response_metadata`:"
]
},
{

View File

@@ -13,7 +13,7 @@
"\n",
"To mitigate the [\"lost in the middle\"](https://arxiv.org/abs/2307.03172) effect, you can re-order documents after retrieval such that the most relevant documents are positioned at extrema (e.g., the first and last pieces of context), and the least relevant documents are positioned in the middle. In some cases this can help surface the most relevant information to LLMs.\n",
"\n",
"The [LongContextReorder](https://api.python.langchain.com/en/latest/document_transformers/langchain_community.document_transformers.long_context_reorder.LongContextReorder.html) document transformer implements this re-ordering procedure. Below we demonstrate an example."
"The [LongContextReorder](https://python.langchain.com/v0.2/api_reference/community/document_transformers/langchain_community.document_transformers.long_context_reorder.LongContextReorder.html) document transformer implements this re-ordering procedure. Below we demonstrate an example."
]
},
{

View File

@@ -17,7 +17,7 @@
"When a full paragraph or document is embedded, the embedding process considers both the overall context and the relationships between the sentences and phrases within the text. This can result in a more comprehensive vector representation that captures the broader meaning and themes of the text.\n",
"```\n",
" \n",
"As mentioned, chunking often aims to keep text with common context together. With this in mind, we might want to specifically honor the structure of the document itself. For example, a markdown file is organized by headers. Creating chunks within specific header groups is an intuitive idea. To address this challenge, we can use [MarkdownHeaderTextSplitter](https://api.python.langchain.com/en/latest/markdown/langchain_text_splitters.markdown.MarkdownHeaderTextSplitter.html). This will split a markdown file by a specified set of headers. \n",
"As mentioned, chunking often aims to keep text with common context together. With this in mind, we might want to specifically honor the structure of the document itself. For example, a markdown file is organized by headers. Creating chunks within specific header groups is an intuitive idea. To address this challenge, we can use [MarkdownHeaderTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/markdown/langchain_text_splitters.markdown.MarkdownHeaderTextSplitter.html). This will split a markdown file by a specified set of headers. \n",
"\n",
"For example, if we want to split this markdown:\n",
"```\n",

View File

@@ -174,7 +174,7 @@
"source": [
"## API reference\n",
"\n",
"For a complete description of all arguments head to the API reference: https://api.python.langchain.com/en/latest/messages/langchain_core.messages.utils.merge_message_runs.html"
"For a complete description of all arguments head to the API reference: https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.utils.merge_message_runs.html"
]
}
],

View File

@@ -32,7 +32,7 @@
"\n",
":::\n",
"\n",
"Passing conversation state into and out a chain is vital when building a chatbot. The [`RunnableWithMessageHistory`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html#langchain_core.runnables.history.RunnableWithMessageHistory) class lets us add message history to certain types of chains. It wraps another Runnable and manages the chat message history for it. Specifically, it loads previous messages in the conversation BEFORE passing it to the Runnable, and it saves the generated response as a message AFTER calling the runnable. This class also enables multiple conversations by saving each conversation with a `session_id` - it then expects a `session_id` to be passed in the config when calling the runnable, and uses that to look up the relevant conversation history.\n",
"Passing conversation state into and out a chain is vital when building a chatbot. The [`RunnableWithMessageHistory`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html#langchain_core.runnables.history.RunnableWithMessageHistory) class lets us add message history to certain types of chains. It wraps another Runnable and manages the chat message history for it. Specifically, it loads previous messages in the conversation BEFORE passing it to the Runnable, and it saves the generated response as a message AFTER calling the runnable. This class also enables multiple conversations by saving each conversation with a `session_id` - it then expects a `session_id` to be passed in the config when calling the runnable, and uses that to look up the relevant conversation history.\n",
"\n",
"![index_diagram](../../static/img/message_history.png)\n",
"\n",

View File

@@ -31,7 +31,7 @@
":::\n",
"\n",
"Here we focus on how to move from legacy LangChain agents to more flexible [LangGraph](https://langchain-ai.github.io/langgraph/) agents.\n",
"LangChain agents (the [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor) in particular) have multiple configuration parameters.\n",
"LangChain agents (the [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor) in particular) have multiple configuration parameters.\n",
"In this notebook we will show how those parameters map to the LangGraph react agent executor using the [create_react_agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) prebuilt helper method.\n",
"\n",
"#### Prerequisites\n",
@@ -82,7 +82,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "1e425fea-2796-4b99-bee6-9a6ffe73f756",
"metadata": {},
"outputs": [],
@@ -110,12 +110,12 @@
"id": "af002033-fe51-4d14-b47c-3e9b483c8395",
"metadata": {},
"source": [
"For the LangChain [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), we define a prompt with a placeholder for the agent's scratchpad. The agent can be invoked as follows:"
"For the LangChain [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), we define a prompt with a placeholder for the agent's scratchpad. The agent can be invoked as follows:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"id": "03ea357c-9c36-4464-b2cc-27bd150e1554",
"metadata": {},
"outputs": [
@@ -126,7 +126,7 @@
" 'output': 'The value of `magic_function(3)` is 5.'}"
]
},
"execution_count": 3,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -162,7 +162,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"id": "53a3737a-d167-4255-89bf-20ac37f89a3e",
"metadata": {},
"outputs": [
@@ -173,7 +173,7 @@
" 'output': 'The value of `magic_function(3)` is 5.'}"
]
},
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -193,7 +193,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"id": "74ecebe3-512e-409c-a661-bdd5b0a2b782",
"metadata": {},
"outputs": [
@@ -201,10 +201,10 @@
"data": {
"text/plain": [
"{'input': 'Pardon?',\n",
" 'output': 'The value you get when you apply `magic_function` to the input 3 is 5.'}"
" 'output': 'The value returned by `magic_function` when the input is 3 is 5.'}"
]
},
"execution_count": 5,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -243,7 +243,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"id": "a9a11ccd-75e2-4c11-844d-a34870b0ff91",
"metadata": {},
"outputs": [
@@ -254,7 +254,7 @@
" 'output': 'El valor de `magic_function(3)` es 5.'}"
]
},
"execution_count": 6,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -295,7 +295,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"id": "a9486805-676a-4d19-a5c4-08b41b172989",
"metadata": {},
"outputs": [],
@@ -324,7 +324,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 9,
"id": "d369ab45-0c82-45f4-9d3e-8efb8dd47e2c",
"metadata": {},
"outputs": [
@@ -332,7 +332,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'input': 'what is the value of magic_function(3)?', 'output': 'El valor de magic_function(3) es 5. ¡Pandamonium!'}\n"
"{'input': 'what is the value of magic_function(3)?', 'output': 'The value of magic_function(3) is 5. ¡Pandamonium!'}\n"
]
}
],
@@ -381,12 +381,12 @@
"source": [
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could add chat [Memory](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.memory) so it can engage in a multi-turn conversation."
"With LangChain's [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could add chat [Memory](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.memory) so it can engage in a multi-turn conversation."
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 10,
"id": "b97beba5-8f74-430c-9399-91b77c8fa15c",
"metadata": {},
"outputs": [
@@ -394,11 +394,11 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Hi Polly! The output of the magic function for the input 3 is 5.\n",
"Hi Polly! The output of applying the magic function to the input 3 is 5.\n",
"---\n",
"Yes, your name is Polly!\n",
"Yes, you mentioned your name is Polly.\n",
"---\n",
"The output of the magic function for the input 3 is 5.\n"
"The output of applying the magic function to the input 3 is 5.\n"
]
}
],
@@ -476,7 +476,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 11,
"id": "baca3dc6-678b-4509-9275-2fd653102898",
"metadata": {},
"outputs": [
@@ -484,16 +484,16 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Hi Polly! The output of the magic_function for the input of 3 is 5.\n",
"Hi Polly! The output of applying the magic function to the input 3 is 5.\n",
"---\n",
"Yes, your name is Polly!\n",
"---\n",
"The output of the magic_function for the input of 3 was 5.\n"
"The output of applying the magic function to the input 3 was 5.\n"
]
}
],
"source": [
"from langgraph.checkpoint import MemorySaver # an in-memory checkpointer\n",
"from langgraph.checkpoint.memory import MemorySaver # an in-memory checkpointer\n",
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"system_message = \"You are a helpful assistant.\"\n",
@@ -539,12 +539,12 @@
"\n",
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could iterate over the steps using the [stream](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) (or async `astream`) methods or the [iter](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter) method. LangGraph supports stepwise iteration using [stream](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) "
"With LangChain's [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could iterate over the steps using the [stream](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) (or async `astream`) methods or the [iter](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter) method. LangGraph supports stepwise iteration using [stream](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) "
]
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 12,
"id": "e62843c4-1107-41f0-a50b-aea256e28053",
"metadata": {},
"outputs": [
@@ -552,8 +552,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'actions': [ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518'}, id='run-5664e138-7085-4da7-a49e-5656a87b8d78', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'index': 0, 'type': 'tool_call_chunk'}])], tool_call_id='call_1exy0rScfPmo4fy27FbQ5qJ2')], 'messages': [AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518'}, id='run-5664e138-7085-4da7-a49e-5656a87b8d78', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'index': 0, 'type': 'tool_call_chunk'}])]}\n",
"{'steps': [AgentStep(action=ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518'}, id='run-5664e138-7085-4da7-a49e-5656a87b8d78', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'index': 0, 'type': 'tool_call_chunk'}])], tool_call_id='call_1exy0rScfPmo4fy27FbQ5qJ2'), observation=5)], 'messages': [FunctionMessage(content='5', name='magic_function')]}\n",
"{'actions': [ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_gNzQT96XWoyZqVl1jI1yMnjy', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_c9aa9c0491'}, id='run-dc7ce17d-02fd-4fdb-be82-7c902410b6b7', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_gNzQT96XWoyZqVl1jI1yMnjy', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_gNzQT96XWoyZqVl1jI1yMnjy', 'index': 0, 'type': 'tool_call_chunk'}])], tool_call_id='call_gNzQT96XWoyZqVl1jI1yMnjy')], 'messages': [AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_gNzQT96XWoyZqVl1jI1yMnjy', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_c9aa9c0491'}, id='run-dc7ce17d-02fd-4fdb-be82-7c902410b6b7', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_gNzQT96XWoyZqVl1jI1yMnjy', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_gNzQT96XWoyZqVl1jI1yMnjy', 'index': 0, 'type': 'tool_call_chunk'}])]}\n",
"{'steps': [AgentStep(action=ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_gNzQT96XWoyZqVl1jI1yMnjy', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_c9aa9c0491'}, id='run-dc7ce17d-02fd-4fdb-be82-7c902410b6b7', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_gNzQT96XWoyZqVl1jI1yMnjy', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_gNzQT96XWoyZqVl1jI1yMnjy', 'index': 0, 'type': 'tool_call_chunk'}])], tool_call_id='call_gNzQT96XWoyZqVl1jI1yMnjy'), observation=5)], 'messages': [FunctionMessage(content='5', name='magic_function')]}\n",
"{'output': 'The value of `magic_function(3)` is 5.', 'messages': [AIMessage(content='The value of `magic_function(3)` is 5.')]}\n"
]
}
@@ -604,7 +604,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 13,
"id": "076ebc85-f804-4093-a25a-a16334c9898e",
"metadata": {},
"outputs": [
@@ -612,9 +612,9 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_my9rzFSKR4T1yYKwCsfbZB8A', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 61, 'total_tokens': 75}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_bc2a86f5f5', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-dd705555-8fae-4fb1-a033-5d99a23e3c22-0', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_my9rzFSKR4T1yYKwCsfbZB8A', 'type': 'tool_call'}], usage_metadata={'input_tokens': 61, 'output_tokens': 14, 'total_tokens': 75})]}}\n",
"{'tools': {'messages': [ToolMessage(content='5', name='magic_function', tool_call_id='call_my9rzFSKR4T1yYKwCsfbZB8A')]}}\n",
"{'agent': {'messages': [AIMessage(content='The value of `magic_function(3)` is 5.', response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 84, 'total_tokens': 98}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'stop', 'logprobs': None}, id='run-698cad05-8cb2-4d08-8c2a-881e354f6cc7-0', usage_metadata={'input_tokens': 84, 'output_tokens': 14, 'total_tokens': 98})]}}\n"
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_I0nztlIcc0e9ry5dn53YLZUM', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 61, 'total_tokens': 75}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-5f9bd87d-3692-4d13-8d27-1859e13e2156-0', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_I0nztlIcc0e9ry5dn53YLZUM', 'type': 'tool_call'}], usage_metadata={'input_tokens': 61, 'output_tokens': 14, 'total_tokens': 75})]}}\n",
"{'tools': {'messages': [ToolMessage(content='5', name='magic_function', tool_call_id='call_I0nztlIcc0e9ry5dn53YLZUM')]}}\n",
"{'agent': {'messages': [AIMessage(content='The value of `magic_function(3)` is 5.', response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 84, 'total_tokens': 98}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'stop', 'logprobs': None}, id='run-f6015ca6-93e5-45e8-8b28-b3f0a8d203dc-0', usage_metadata={'input_tokens': 84, 'output_tokens': 14, 'total_tokens': 98})]}}\n"
]
}
],
@@ -654,7 +654,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 14,
"id": "a2f720f3-c121-4be2-b498-92c16bb44b0a",
"metadata": {},
"outputs": [
@@ -662,7 +662,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[(ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_uPZ2D1Bo5mdED3gwgaeWURrf', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518'}, id='run-a792db4a-278d-4090-82ae-904a30eada93', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_uPZ2D1Bo5mdED3gwgaeWURrf', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_uPZ2D1Bo5mdED3gwgaeWURrf', 'index': 0, 'type': 'tool_call_chunk'}])], tool_call_id='call_uPZ2D1Bo5mdED3gwgaeWURrf'), 5)]\n"
"[(ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_wjaAyTjI2LSYOq7C8QZYSxEs', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_c9aa9c0491'}, id='run-99e06b70-1ef6-4761-834b-87b6c5252e20', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_wjaAyTjI2LSYOq7C8QZYSxEs', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_wjaAyTjI2LSYOq7C8QZYSxEs', 'index': 0, 'type': 'tool_call_chunk'}])], tool_call_id='call_wjaAyTjI2LSYOq7C8QZYSxEs'), 5)]\n"
]
}
],
@@ -684,20 +684,20 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 15,
"id": "ef23117a-5ccb-42ce-80c3-ea49a9d3a942",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'messages': [HumanMessage(content='what is the value of magic_function(3)?', id='cd7d0f49-a0e0-425a-b2b0-603a716058ed'),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_VfZ9287DuybOSrBsQH5X12xf', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-a1e965cd-bf61-44f9-aec1-8aaecb80955f-0', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_VfZ9287DuybOSrBsQH5X12xf', 'type': 'tool_call'}], usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69}),\n",
" ToolMessage(content='5', name='magic_function', id='20d5c2fe-a5d8-47fa-9e04-5282642e2039', tool_call_id='call_VfZ9287DuybOSrBsQH5X12xf'),\n",
" AIMessage(content='The value of `magic_function(3)` is 5.', response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 78, 'total_tokens': 92}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'stop', 'logprobs': None}, id='run-abf9341c-ef41-4157-935d-a3be5dfa2f41-0', usage_metadata={'input_tokens': 78, 'output_tokens': 14, 'total_tokens': 92})]}"
"{'messages': [HumanMessage(content='what is the value of magic_function(3)?', id='2d369331-8052-4167-bd85-9f6d8ad021ae'),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_oXiSQSe6WeWj7XIKXxZrO2IC', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-297e7fc9-726f-46a0-8c67-dc28ed1724d0-0', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_oXiSQSe6WeWj7XIKXxZrO2IC', 'type': 'tool_call'}], usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69}),\n",
" ToolMessage(content='5', name='magic_function', id='46370faf-9598-423c-b94b-aca8cb4f035d', tool_call_id='call_oXiSQSe6WeWj7XIKXxZrO2IC'),\n",
" AIMessage(content='The value of `magic_function(3)` is 5.', response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 78, 'total_tokens': 92}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'stop', 'logprobs': None}, id='run-f48efaff-0c2c-4632-bbf9-7ee626f73d02-0', usage_metadata={'input_tokens': 78, 'output_tokens': 14, 'total_tokens': 92})]}"
]
},
"execution_count": 13,
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -757,7 +757,7 @@
"Invoking: `magic_function` with `{'input': '3'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3mSorry, there was an error. Please try again.\u001b[0m\u001b[32;1m\u001b[1;3mParece que hubo un error al intentar calcular el valor de la función mágica. ¿Te gustaría que lo intente de nuevo?\u001b[0m\n",
"\u001b[0m\u001b[36;1m\u001b[1;3mSorry, there was an error. Please try again.\u001b[0m\u001b[32;1m\u001b[1;3mHubo un error al intentar obtener el valor de `magic_function(3)`. ¿Podrías intentarlo de nuevo o proporcionar más detalles?\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
@@ -766,7 +766,7 @@
"data": {
"text/plain": [
"{'input': 'what is the value of magic_function(3)?',\n",
" 'output': 'Parece que hubo un error al intentar calcular el valor de la función mágica. ¿Te gustaría que lo intente de nuevo?'}"
" 'output': 'Hubo un error al intentar obtener el valor de `magic_function(3)`. ¿Podrías intentarlo de nuevo o proporcionar más detalles?'}"
]
},
"execution_count": 17,
@@ -819,12 +819,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
"content='what is the value of magic_function(3)?' id='74e2d5e8-2b59-4820-979c-8d11ecfc14c2'\n",
"content='' additional_kwargs={'tool_calls': [{'id': 'call_ihtrH6IG95pDXpKluIwAgi3J', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-5a35e465-8a08-43dd-ac8b-4a76dcace305-0' tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_ihtrH6IG95pDXpKluIwAgi3J', 'type': 'tool_call'}] usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69}\n",
"content='Sorry, there was an error. Please try again.' name='magic_function' id='8c37c19b-3586-46b1-aab9-a045786801a2' tool_call_id='call_ihtrH6IG95pDXpKluIwAgi3J'\n",
"content='It seems there was an error in processing the request. Let me try again.' additional_kwargs={'tool_calls': [{'id': 'call_iF0vYWAd6rfely0cXSqdMOnF', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 31, 'prompt_tokens': 88, 'total_tokens': 119}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-eb88ec77-d492-43a5-a5dd-4cefef9a6920-0' tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_iF0vYWAd6rfely0cXSqdMOnF', 'type': 'tool_call'}] usage_metadata={'input_tokens': 88, 'output_tokens': 31, 'total_tokens': 119}\n",
"content='Sorry, there was an error. Please try again.' name='magic_function' id='c9ff261f-a0f1-4c92-a9f2-cd749f62d911' tool_call_id='call_iF0vYWAd6rfely0cXSqdMOnF'\n",
"content='I am currently unable to process the request with the input \"3\" for the `magic_function`. If you have any other questions or need assistance with something else, please let me know!' response_metadata={'token_usage': {'completion_tokens': 39, 'prompt_tokens': 141, 'total_tokens': 180}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'stop', 'logprobs': None} id='run-d42508aa-f286-4b57-80fb-f8a76736d470-0' usage_metadata={'input_tokens': 141, 'output_tokens': 39, 'total_tokens': 180}\n"
"content='what is the value of magic_function(3)?' id='fe74bb30-45b8-4a40-a5ed-fd6678da5428'\n",
"content='' additional_kwargs={'tool_calls': [{'id': 'call_TNKfNy6fgZNdJAvHUMXwtp8f', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-dad8bfc1-477c-40d2-9016-243d25c0dd13-0' tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_TNKfNy6fgZNdJAvHUMXwtp8f', 'type': 'tool_call'}] usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69}\n",
"content='Sorry, there was an error. Please try again.' name='magic_function' id='653226e0-3187-40be-a774-4c7c2612239e' tool_call_id='call_TNKfNy6fgZNdJAvHUMXwtp8f'\n",
"content='It looks like there was an issue with processing the request. Let me try that again.' additional_kwargs={'tool_calls': [{'id': 'call_K0wJ8fQLYGv8fYXY1Uo5U5sG', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 33, 'prompt_tokens': 88, 'total_tokens': 121}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-d4c85437-6625-4e57-81f9-86de6842be7b-0' tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_K0wJ8fQLYGv8fYXY1Uo5U5sG', 'type': 'tool_call'}] usage_metadata={'input_tokens': 88, 'output_tokens': 33, 'total_tokens': 121}\n",
"content='Sorry, there was an error. Please try again.' name='magic_function' id='9b530d03-95df-401e-bb4f-5cada1195033' tool_call_id='call_K0wJ8fQLYGv8fYXY1Uo5U5sG'\n",
"content='It seems that there is a persistent issue with processing the request. Let me attempt it one more time.' additional_kwargs={'tool_calls': [{'id': 'call_7ECwwNBDo4SH56oczErZJVRT', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 143, 'total_tokens': 179}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-9f3f651e-a641-4112-99ed-d1ac11169582-0' tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_7ECwwNBDo4SH56oczErZJVRT', 'type': 'tool_call'}] usage_metadata={'input_tokens': 143, 'output_tokens': 36, 'total_tokens': 179}\n",
"content='Sorry, there was an error. Please try again.' name='magic_function' id='e4cd152b-4eb1-47df-ac76-f88e79adbe19' tool_call_id='call_7ECwwNBDo4SH56oczErZJVRT'\n",
"content=\"It seems there is a consistent issue with processing the request for the magic function. Let's try using a different approach to resolve this.\" additional_kwargs={'tool_calls': [{'id': 'call_DMAL0UwBRijzuPjCTSwR2r17', 'function': {'arguments': '{\"input\":\"three\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 41, 'prompt_tokens': 201, 'total_tokens': 242}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_c9aa9c0491', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-cd9f4e5c-f881-462c-abe3-890e73f46a01-0' tool_calls=[{'name': 'magic_function', 'args': {'input': 'three'}, 'id': 'call_DMAL0UwBRijzuPjCTSwR2r17', 'type': 'tool_call'}] usage_metadata={'input_tokens': 201, 'output_tokens': 41, 'total_tokens': 242}\n",
"{'input': 'what is the value of magic_function(3)?', 'output': 'Agent stopped due to max iterations.'}\n"
]
}
],
@@ -939,9 +942,9 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_FKiTkTd0Ffd4rkYSzERprf1M', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-b842f7b6-ec10-40f8-8c0e-baa220b77e91-0', tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_FKiTkTd0Ffd4rkYSzERprf1M', 'type': 'tool_call'}], usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69})]}}\n",
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_o8Ym0u9UfzArhIm1lV7O0CXF', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d9faf125-1ff8-4de2-a75b-97e07d28dc4d-0', tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_o8Ym0u9UfzArhIm1lV7O0CXF', 'type': 'tool_call'}], usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69})]}}\n",
"------\n",
"{'input': 'what is the value of magic_function(3)?', 'output': 'Agent stopped due to max iterations.'}\n"
"{'input': 'what is the value of magic_function(3)?', 'output': 'Agent stopped due to a step timeout.'}\n"
]
}
],
@@ -957,7 +960,7 @@
" print(chunk)\n",
" print(\"------\")\n",
"except TimeoutError:\n",
" print({\"input\": query, \"output\": \"Agent stopped due to max iterations.\"})"
" print({\"input\": query, \"output\": \"Agent stopped due to a step timeout.\"})"
]
},
{
@@ -978,7 +981,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_WoOB8juagB08xrP38twYlYKR', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-73dee47e-30ab-42c9-bb0c-6f227cac96cd-0', tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_WoOB8juagB08xrP38twYlYKR', 'type': 'tool_call'}], usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69})]}}\n",
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_gsGzyhyvR25iNV6W9VR2TIdQ', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-9ad8f834-06c5-41cf-9eec-6b7e0f5e777e-0', tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_gsGzyhyvR25iNV6W9VR2TIdQ', 'type': 'tool_call'}], usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69})]}}\n",
"------\n",
"Task Cancelled.\n"
]
@@ -1014,7 +1017,7 @@
"\n",
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could configure an [early_stopping_method](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.early_stopping_method) to either return a string saying \"Agent stopped due to iteration limit or time limit.\" (`\"force\"`) or prompt the LLM a final time to respond (`\"generate\"`)."
"With LangChain's [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could configure an [early_stopping_method](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.early_stopping_method) to either return a string saying \"Agent stopped due to iteration limit or time limit.\" (`\"force\"`) or prompt the LLM a final time to respond (`\"generate\"`)."
]
},
{
@@ -1089,10 +1092,10 @@
"name": "stdout",
"output_type": "stream",
"text": [
"content='what is the value of magic_function(3)?' id='4fa7fbe5-758c-47a3-9268-717665d10680'\n",
"content='' additional_kwargs={'tool_calls': [{'id': 'call_ujE0IQBbIQnxcF9gsZXQfdhF', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-65d689aa-baee-4342-a5d2-048feefab418-0' tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_ujE0IQBbIQnxcF9gsZXQfdhF', 'type': 'tool_call'}] usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69}\n",
"content='Sorry there was an error, please try again.' name='magic_function' id='ef8ddf1d-9ad7-4ac0-b784-b673c4d94bbd' tool_call_id='call_ujE0IQBbIQnxcF9gsZXQfdhF'\n",
"content='It seems there was an issue with the previous attempt. Let me try that again.' additional_kwargs={'tool_calls': [{'id': 'call_GcsAfCFUHJ50BN2IOWnwTbQ7', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 32, 'prompt_tokens': 87, 'total_tokens': 119}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-54527c4b-8ff0-4ee8-8abf-224886bd222e-0' tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_GcsAfCFUHJ50BN2IOWnwTbQ7', 'type': 'tool_call'}] usage_metadata={'input_tokens': 87, 'output_tokens': 32, 'total_tokens': 119}\n",
"content='what is the value of magic_function(3)?' id='6487a942-0a9a-4e8a-9556-553a45fa9c5a'\n",
"content='' additional_kwargs={'tool_calls': [{'id': 'call_pe5KVY5No9iT4JWqrm5MwL1D', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-04147325-fb72-462a-a1d9-6aa4e86e3d8a-0' tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_pe5KVY5No9iT4JWqrm5MwL1D', 'type': 'tool_call'}] usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69}\n",
"content='Sorry there was an error, please try again.' name='magic_function' id='bc0bf58f-7c6c-42ed-a96d-a2afa79f16a9' tool_call_id='call_pe5KVY5No9iT4JWqrm5MwL1D'\n",
"content=\"It seems there was an issue with processing the request. I'll try again.\" additional_kwargs={'tool_calls': [{'id': 'call_5rV7k3g7oW38bD9KUTsSxK8l', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 30, 'prompt_tokens': 87, 'total_tokens': 117}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-6e43ffd4-fb6f-4222-8503-a50ae268c0be-0' tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_5rV7k3g7oW38bD9KUTsSxK8l', 'type': 'tool_call'}] usage_metadata={'input_tokens': 87, 'output_tokens': 30, 'total_tokens': 117}\n",
"{'input': 'what is the value of magic_function(3)?', 'output': 'Agent stopped due to max iterations.'}\n"
]
}
@@ -1125,7 +1128,7 @@
"\n",
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), you could trim the intermediate steps of long-running agents using [trim_intermediate_steps](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.trim_intermediate_steps), which is either an integer (indicating the agent should keep the last N steps) or a custom function.\n",
"With LangChain's [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), you could trim the intermediate steps of long-running agents using [trim_intermediate_steps](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.trim_intermediate_steps), which is either an integer (indicating the agent should keep the last N steps) or a custom function.\n",
"\n",
"For instance, we could trim the value so the agent only sees the most recent intermediate step."
]
@@ -1322,7 +1325,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.11.2"
}
},
"nbformat": 4,

View File

@@ -9,11 +9,11 @@
"\n",
"It can often be useful to store multiple vectors per document. There are multiple use cases where this is beneficial. For example, we can embed multiple chunks of a document and associate those embeddings with the parent document, allowing retriever hits on the chunks to return the larger document.\n",
"\n",
"LangChain implements a base [MultiVectorRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.multi_vector.MultiVectorRetriever.html), which simplifies this process. Much of the complexity lies in how to create the multiple vectors per document. This notebook covers some of the common ways to create those vectors and use the `MultiVectorRetriever`.\n",
"LangChain implements a base [MultiVectorRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.multi_vector.MultiVectorRetriever.html), which simplifies this process. Much of the complexity lies in how to create the multiple vectors per document. This notebook covers some of the common ways to create those vectors and use the `MultiVectorRetriever`.\n",
"\n",
"The methods to create multiple vectors per document include:\n",
"\n",
"- Smaller chunks: split a document into smaller chunks, and embed those (this is [ParentDocumentRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.parent_document_retriever.ParentDocumentRetriever.html)).\n",
"- Smaller chunks: split a document into smaller chunks, and embed those (this is [ParentDocumentRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.parent_document_retriever.ParentDocumentRetriever.html)).\n",
"- Summary: create a summary for each document, embed that along with (or instead of) the document.\n",
"- Hypothetical questions: create hypothetical questions that each document would be appropriate to answer, embed those along with (or instead of) the document.\n",
"\n",
@@ -68,7 +68,7 @@
"source": [
"## Smaller chunks\n",
"\n",
"Often times it can be useful to retrieve larger chunks of information, but embed smaller chunks. This allows for embeddings to capture the semantic meaning as closely as possible, but for as much context as possible to be passed downstream. Note that this is what the [ParentDocumentRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.parent_document_retriever.ParentDocumentRetriever.html) does. Here we show what is going on under the hood.\n",
"Often times it can be useful to retrieve larger chunks of information, but embed smaller chunks. This allows for embeddings to capture the semantic meaning as closely as possible, but for as much context as possible to be passed downstream. Note that this is what the [ParentDocumentRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.parent_document_retriever.ParentDocumentRetriever.html) does. Here we show what is going on under the hood.\n",
"\n",
"We will make a distinction between the vector store, which indexes embeddings of the (sub) documents, and the document store, which houses the \"parent\" documents and associates them with an identifier."
]
@@ -103,7 +103,7 @@
"id": "d4feded4-856a-4282-91c3-53aabc62e6ff",
"metadata": {},
"source": [
"We next generate the \"sub\" documents by splitting the original documents. Note that we store the document identifier in the `metadata` of the corresponding [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) object."
"We next generate the \"sub\" documents by splitting the original documents. Note that we store the document identifier in the `metadata` of the corresponding [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) object."
]
},
{
@@ -207,7 +207,7 @@
"id": "cdef8339-f9fa-4b3b-955f-ad9dbdf2734f",
"metadata": {},
"source": [
"The default search type the retriever performs on the vector database is a similarity search. LangChain vector stores also support searching via [Max Marginal Relevance](https://api.python.langchain.com/en/latest/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.max_marginal_relevance_search). This can be controlled via the `search_type` parameter of the retriever:"
"The default search type the retriever performs on the vector database is a similarity search. LangChain vector stores also support searching via [Max Marginal Relevance](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.max_marginal_relevance_search). This can be controlled via the `search_type` parameter of the retriever:"
]
},
{
@@ -244,7 +244,7 @@
"\n",
"A summary may be able to distill more accurately what a chunk is about, leading to better retrieval. Here we show how to create summaries, and then embed those.\n",
"\n",
"We construct a simple [chain](/docs/how_to/sequence) that will receive an input [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) object and generate a summary using a LLM.\n",
"We construct a simple [chain](/docs/how_to/sequence) that will receive an input [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) object and generate a summary using a LLM.\n",
"\n",
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
@@ -294,7 +294,7 @@
"id": "3faa9fde-1b09-4849-a815-8b2e89c30a02",
"metadata": {},
"source": [
"Note that we can [batch](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) the chain accross documents:"
"Note that we can [batch](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) the chain accross documents:"
]
},
{

View File

@@ -131,7 +131,7 @@
"id": "84498e02",
"metadata": {},
"source": [
"Find out api documentation for [OutputFixingParser](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser)."
"Find out api documentation for [OutputFixingParser](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser)."
]
},
{

View File

@@ -30,7 +30,7 @@
"id": "ae909b7a",
"metadata": {},
"source": [
"The [`JsonOutputParser`](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html) is one built-in option for prompting for and then parsing JSON output. While it is similar in functionality to the [`PydanticOutputParser`](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html), it also supports streaming back partial JSON objects.\n",
"The [`JsonOutputParser`](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html) is one built-in option for prompting for and then parsing JSON output. While it is similar in functionality to the [`PydanticOutputParser`](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html), it also supports streaming back partial JSON objects.\n",
"\n",
"Here's an example of how it can be used alongside [Pydantic](https://docs.pydantic.dev/) to conveniently declare the expected schema:"
]

View File

@@ -244,7 +244,7 @@
"id": "e3a2513a",
"metadata": {},
"source": [
"Find out api documentation for [RetryOutputParser](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.retry.RetryOutputParser.html#langchain.output_parsers.retry.RetryOutputParser)."
"Find out api documentation for [RetryOutputParser](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.retry.RetryOutputParser.html#langchain.output_parsers.retry.RetryOutputParser)."
]
},
{

View File

@@ -20,7 +20,7 @@
"\n",
"LLMs from different providers often have different strengths depending on the specific data they are trianed on. This also means that some may be \"better\" and more reliable at generating output in formats other than JSON.\n",
"\n",
"This guide shows you how to use the [`XMLOutputParser`](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html) to prompt models for XML output, then and parse that output into a usable format.\n",
"This guide shows you how to use the [`XMLOutputParser`](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html) to prompt models for XML output, then and parse that output into a usable format.\n",
"\n",
":::{.callout-note}\n",
"Keep in mind that large language models are leaky abstractions! You'll have to use an LLM with sufficient capacity to generate well-formed XML.\n",

View File

@@ -47,7 +47,7 @@
"id": "cc479f3a",
"metadata": {},
"source": [
"We use [Pydantic](https://docs.pydantic.dev) with the [`YamlOutputParser`](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) to declare our data model and give the model more context as to what type of YAML it should generate:"
"We use [Pydantic](https://docs.pydantic.dev) with the [`YamlOutputParser`](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) to declare our data model and give the model more context as to what type of YAML it should generate:"
]
},
{

View File

@@ -26,7 +26,7 @@
"\n",
":::\n",
"\n",
"The [`RunnableParallel`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableParallel.html) primitive is essentially a dict whose values are runnables (or things that can be coerced to runnables, like functions). It runs all of its values in parallel, and each value is called with the overall input of the `RunnableParallel`. The final return value is a dict with the results of each value under its appropriate key.\n",
"The [`RunnableParallel`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableParallel.html) primitive is essentially a dict whose values are runnables (or things that can be coerced to runnables, like functions). It runs all of its values in parallel, and each value is called with the overall input of the `RunnableParallel`. The final return value is a dict with the results of each value under its appropriate key.\n",
"\n",
"## Formatting with `RunnableParallels`\n",
"\n",

View File

@@ -29,7 +29,7 @@
":::\n",
"\n",
"\n",
"When composing chains with several steps, sometimes you will want to pass data from previous steps unchanged for use as input to a later step. The [`RunnablePassthrough`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html) class allows you to do just this, and is typically is used in conjuction with a [RunnableParallel](/docs/how_to/parallel/) to pass data through to a later step in your constructed chains.\n",
"When composing chains with several steps, sometimes you will want to pass data from previous steps unchanged for use as input to a later step. The [`RunnablePassthrough`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html) class allows you to do just this, and is typically is used in conjuction with a [RunnableParallel](/docs/how_to/parallel/) to pass data through to a later step in your constructed chains.\n",
"\n",
"See the example below:"
]

View File

@@ -102,7 +102,7 @@
"source": [
"A chat prompt is made up a of a list of messages. Similarly to the above example, we can concatenate chat prompt templates. Each new element is a new message in the final prompt.\n",
"\n",
"First, let's initialize the a [`ChatPromptTemplate`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html) with a [`SystemMessage`](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.system.SystemMessage.html)."
"First, let's initialize the a [`ChatPromptTemplate`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html) with a [`SystemMessage`](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.system.SystemMessage.html)."
]
},
{
@@ -123,7 +123,7 @@
"metadata": {},
"source": [
"You can then easily create a pipeline combining it with other messages *or* message templates.\n",
"Use a `Message` when there is no variables to be formatted, use a `MessageTemplate` when there are variables to be formatted. You can also use just a string (note: this will automatically get inferred as a [`HumanMessagePromptTemplate`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.HumanMessagePromptTemplate.html).)"
"Use a `Message` when there is no variables to be formatted, use a `MessageTemplate` when there are variables to be formatted. You can also use just a string (note: this will automatically get inferred as a [`HumanMessagePromptTemplate`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.HumanMessagePromptTemplate.html).)"
]
},
{
@@ -183,7 +183,7 @@
"id": "0a5892f9-e4d8-4b7c-b6a5-4651539b9734",
"metadata": {},
"source": [
"LangChain includes a class called [`PipelinePromptTemplate`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.pipeline.PipelinePromptTemplate.html), which can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts:\n",
"LangChain includes a class called [`PipelinePromptTemplate`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.pipeline.PipelinePromptTemplate.html), which can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts:\n",
"\n",
"- Final prompt: The final prompt that is returned\n",
"- Pipeline prompts: A list of tuples, consisting of a string name and a prompt template. Each prompt template will be formatted and then passed to future prompt templates as a variable with the same name."

View File

@@ -42,7 +42,7 @@
"outputs": [],
"source": [
"%%capture --no-stderr\n",
"%pip install --upgrade --quiet langchain langchain-community langchain-chroma bs4"
"%pip install --upgrade --quiet langchain langchain-community langchain-chroma beautifulsoup4"
]
},
{
@@ -102,7 +102,7 @@
"source": [
"## Chains {#chains}\n",
"\n",
"In a conversational RAG application, queries issued to the retriever should be informed by the context of the conversation. LangChain provides a [create_history_aware_retriever](https://api.python.langchain.com/en/latest/chains/langchain.chains.history_aware_retriever.create_history_aware_retriever.html) constructor to simplify this. It constructs a chain that accepts keys `input` and `chat_history` as input, and has the same output schema as a retriever. `create_history_aware_retriever` requires as inputs: \n",
"In a conversational RAG application, queries issued to the retriever should be informed by the context of the conversation. LangChain provides a [create_history_aware_retriever](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.history_aware_retriever.create_history_aware_retriever.html) constructor to simplify this. It constructs a chain that accepts keys `input` and `chat_history` as input, and has the same output schema as a retriever. `create_history_aware_retriever` requires as inputs: \n",
"\n",
"1. LLM;\n",
"2. Retriever;\n",
@@ -155,7 +155,7 @@
"id": "15f8ad59-19de-42e3-85a8-3ba95ee0bd43",
"metadata": {},
"source": [
"For the retriever, we will use [WebBaseLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load the content of a web page. Here we instantiate a `Chroma` vectorstore and then use its [.as_retriever](https://api.python.langchain.com/en/latest/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever) method to build a retriever that can be incorporated into [LCEL](/docs/concepts/#langchain-expression-language) chains."
"For the retriever, we will use [WebBaseLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load the content of a web page. Here we instantiate a `Chroma` vectorstore and then use its [.as_retriever](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever) method to build a retriever that can be incorporated into [LCEL](/docs/concepts/#langchain-expression-language) chains."
]
},
{
@@ -260,9 +260,9 @@
"\n",
"Now we can build our full QA chain.\n",
"\n",
"As in the [RAG tutorial](/docs/tutorials/rag), we will use [create_stuff_documents_chain](https://api.python.langchain.com/en/latest/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) to generate a `question_answer_chain`, with input keys `context`, `chat_history`, and `input`-- it accepts the retrieved context alongside the conversation history and query to generate an answer.\n",
"As in the [RAG tutorial](/docs/tutorials/rag), we will use [create_stuff_documents_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) to generate a `question_answer_chain`, with input keys `context`, `chat_history`, and `input`-- it accepts the retrieved context alongside the conversation history and query to generate an answer.\n",
"\n",
"We build our final `rag_chain` with [create_retrieval_chain](https://api.python.langchain.com/en/latest/chains/langchain.chains.retrieval.create_retrieval_chain.html). This chain applies the `history_aware_retriever` and `question_answer_chain` in sequence, retaining intermediate outputs such as the retrieved context for convenience. It has input keys `input` and `chat_history`, and includes `input`, `chat_history`, `context`, and `answer` in its output."
"We build our final `rag_chain` with [create_retrieval_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html). This chain applies the `history_aware_retriever` and `question_answer_chain` in sequence, retaining intermediate outputs such as the retrieved context for convenience. It has input keys `input` and `chat_history`, and includes `input`, `chat_history`, `context`, and `answer` in its output."
]
},
{
@@ -305,7 +305,7 @@
"1. An object for storing the chat history;\n",
"2. An object that wraps our chain and manages updates to the chat history.\n",
"\n",
"For these we will use [BaseChatMessageHistory](https://api.python.langchain.com/en/latest/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html) and [RunnableWithMessageHistory](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html). The latter is a wrapper for an LCEL chain and a `BaseChatMessageHistory` that handles injecting chat history into inputs and updating it after each invocation.\n",
"For these we will use [BaseChatMessageHistory](https://python.langchain.com/v0.2/api_reference/core/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html) and [RunnableWithMessageHistory](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html). The latter is a wrapper for an LCEL chain and a `BaseChatMessageHistory` that handles injecting chat history into inputs and updating it after each invocation.\n",
"\n",
"For a detailed walkthrough of how to use these classes together to create a stateful conversational chain, head to the [How to add message history (memory)](/docs/how_to/message_history/) LCEL how-to guide.\n",
"\n",

View File

@@ -19,7 +19,7 @@
"\n",
"We generally suggest using the first item of the list that works for your use-case. That is, if your model supports tool-calling, try methods 1 or 2; otherwise, or if those fail, advance down the list.\n",
"\n",
"Let's first create a simple RAG chain. To start we'll just retrieve from Wikipedia using the [WikipediaRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html)."
"Let's first create a simple RAG chain. To start we'll just retrieve from Wikipedia using the [WikipediaRetriever](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html)."
]
},
{
@@ -253,7 +253,7 @@
"source": [
"## Function-calling\n",
"\n",
"If your LLM of choice implements a [tool-calling](/docs/concepts#functiontool-calling) feature, you can use it to make the model specify which of the provided documents it's referencing when generating its answer. LangChain tool-calling models implement a `.with_structured_output` method which will force generation adhering to a desired schema (see for example [here](https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html#langchain_openai.chat_models.base.ChatOpenAI.with_structured_output)).\n",
"If your LLM of choice implements a [tool-calling](/docs/concepts#functiontool-calling) feature, you can use it to make the model specify which of the provided documents it's referencing when generating its answer. LangChain tool-calling models implement a `.with_structured_output` method which will force generation adhering to a desired schema (see for example [here](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html#langchain_openai.chat_models.base.ChatOpenAI.with_structured_output)).\n",
"\n",
"### Cite documents\n",
"\n",
@@ -616,7 +616,7 @@
"\n",
"1. We update the formatting function to wrap the retrieved context in XML tags;\n",
"2. We do not use `.with_structured_output` (e.g., because it does not exist for a model);\n",
"3. We use [XMLOutputParser](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html) in place of `StrOutputParser` to parse the answer into a dict."
"3. We use [XMLOutputParser](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html) in place of `StrOutputParser` to parse the answer into a dict."
]
},
{
@@ -711,7 +711,7 @@
"source": [
"## Retrieval post-processing\n",
"\n",
"Another approach is to post-process our retrieved documents to compress the content, so that the source content is already minimal enough that we don't need the model to cite specific sources or spans. For example, we could break up each document into a sentence or two, embed those and keep only the most relevant ones. LangChain has some built-in components for this. Here we'll use a [RecursiveCharacterTextSplitter](https://api.python.langchain.com/en/latest/text_splitter/langchain_text_splitters.RecursiveCharacterTextSplitter.html#langchain_text_splitters.RecursiveCharacterTextSplitter), which creates chunks of a sepacified size by splitting on separator substrings, and an [EmbeddingsFilter](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.embeddings_filter.EmbeddingsFilter.html#langchain.retrievers.document_compressors.embeddings_filter.EmbeddingsFilter), which keeps only the texts with the most relevant embeddings.\n",
"Another approach is to post-process our retrieved documents to compress the content, so that the source content is already minimal enough that we don't need the model to cite specific sources or spans. For example, we could break up each document into a sentence or two, embed those and keep only the most relevant ones. LangChain has some built-in components for this. Here we'll use a [RecursiveCharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/text_splitter/langchain_text_splitters.RecursiveCharacterTextSplitter.html#langchain_text_splitters.RecursiveCharacterTextSplitter), which creates chunks of a sepacified size by splitting on separator substrings, and an [EmbeddingsFilter](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.embeddings_filter.EmbeddingsFilter.html#langchain.retrievers.document_compressors.embeddings_filter.EmbeddingsFilter), which keeps only the texts with the most relevant embeddings.\n",
"\n",
"This approach effectively swaps our original retriever with an updated one that compresses the documents. To start, we build the retriever:"
]

View File

@@ -13,7 +13,7 @@
"\n",
"We will cover two approaches:\n",
"\n",
"1. Using the built-in [create_retrieval_chain](https://api.python.langchain.com/en/latest/chains/langchain.chains.retrieval.create_retrieval_chain.html), which returns sources by default;\n",
"1. Using the built-in [create_retrieval_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html), which returns sources by default;\n",
"2. Using a simple [LCEL](/docs/concepts#langchain-expression-language-lcel) implementation, to show the operating principle.\n",
"\n",
"We will also show how to structure sources into the model response, such that a model can report what specific sources it used in generating its answer."
@@ -40,7 +40,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-openai langchain-chroma bs4"
"%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-openai langchain-chroma beautifulsoup4"
]
},
{

View File

@@ -33,7 +33,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-openai langchain-chroma bs4"
"%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-openai langchain-chroma beautifulsoup4"
]
},
{
@@ -328,7 +328,7 @@
"id": "8b2d224d-2a82-418b-b562-01ea210b86ef",
"metadata": {},
"source": [
"More simply, we can use the [.pick](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.pick) method to select only the desired key:"
"More simply, we can use the [.pick](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.pick) method to select only the desired key:"
]
},
{
@@ -432,7 +432,7 @@
"\n",
"To stream intermediate output, we recommend use of the async `.astream_events` method. This method will stream output from all \"events\" in the chain, and can be quite verbose. We can filter using tags, event types, and other criteria, as we do here.\n",
"\n",
"Below we show a typical `.astream_events` loop, where we pass in the chain input and emit desired results. See the [API reference](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) and [streaming guide](/docs/how_to/streaming) for more detail."
"Below we show a typical `.astream_events` loop, where we pass in the chain input and emit desired results. See the [API reference](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) and [streaming guide](/docs/how_to/streaming) for more detail."
]
},
{

View File

@@ -107,7 +107,7 @@
"id": "3f05bc21-227e-4d2c-af51-16d69ad3cd7b",
"metadata": {},
"source": [
"To obtain LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) objects, use the `.create_documents` method:"
"To obtain LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, use the `.create_documents` method:"
]
},
{

View File

@@ -30,7 +30,7 @@
"\n",
"To obtain the string content directly, use `.split_text`.\n",
"\n",
"To create LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`."
"To create LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`."
]
},
{

View File

@@ -69,7 +69,7 @@
"id": "774a5199-c2ff-43bc-bf07-87573e0b8db4",
"metadata": {},
"source": [
"To instantiate a [SemanticChunker](https://api.python.langchain.com/en/latest/text_splitter/langchain_experimental.text_splitter.SemanticChunker.html), we must specify an embedding model. Below we will use [OpenAIEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html). "
"To instantiate a [SemanticChunker](https://python.langchain.com/v0.2/api_reference/experimental/text_splitter/langchain_experimental.text_splitter.SemanticChunker.html), we must specify an embedding model. Below we will use [OpenAIEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html). "
]
},
{
@@ -92,7 +92,7 @@
"source": [
"## Split Text\n",
"\n",
"We split text in the usual way, e.g., by invoking `.create_documents` to create LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) objects:"
"We split text in the usual way, e.g., by invoking `.create_documents` to create LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects:"
]
},
{

View File

@@ -31,7 +31,7 @@
"\n",
"One point about [LangChain Expression Language](/docs/concepts/#langchain-expression-language) is that any two runnables can be \"chained\" together into sequences. The output of the previous runnable's `.invoke()` call is passed as input to the next runnable. This can be done using the pipe operator (`|`), or the more explicit `.pipe()` method, which does the same thing.\n",
"\n",
"The resulting [`RunnableSequence`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableSequence.html) is itself a runnable, which means it can be invoked, streamed, or further chained just like any other runnable. Advantages of chaining runnables in this way are efficient streaming (the sequence will stream output as soon as it is available), and debugging and tracing with tools like [LangSmith](/docs/how_to/debugging).\n",
"The resulting [`RunnableSequence`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSequence.html) is itself a runnable, which means it can be invoked, streamed, or further chained just like any other runnable. Advantages of chaining runnables in this way are efficient streaming (the sequence will stream output as soon as it is available), and debugging and tracing with tools like [LangSmith](/docs/how_to/debugging).\n",
"\n",
"## The pipe operator: `|`\n",
"\n",

View File

@@ -12,9 +12,9 @@
"- Secrets, such as API keys, are separated from other parameters and can be loaded back to the object on de-serialization;\n",
"- De-serialization is kept compatible across package versions, so objects that were serialized with one version of LangChain can be properly de-serialized with another.\n",
"\n",
"To save and load LangChain objects using this system, use the `dumpd`, `dumps`, `load`, and `loads` functions in the [load module](https://api.python.langchain.com/en/latest/core_api_reference.html#module-langchain_core.load) of `langchain-core`. These functions support JSON and JSON-serializable objects.\n",
"To save and load LangChain objects using this system, use the `dumpd`, `dumps`, `load`, and `loads` functions in the [load module](https://python.langchain.com/v0.2/api_reference/core/load.html) of `langchain-core`. These functions support JSON and JSON-serializable objects.\n",
"\n",
"All LangChain objects that inherit from [Serializable](https://api.python.langchain.com/en/latest/load/langchain_core.load.serializable.Serializable.html) are JSON-serializable. Examples include [messages](https://api.python.langchain.com/en/latest/core_api_reference.html#module-langchain_core.messages), [document objects](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) (e.g., as returned from [retrievers](/docs/concepts/#retrievers)), and most [Runnables](/docs/concepts/#langchain-expression-language-lcel), such as chat models, retrievers, and [chains](/docs/how_to/sequence) implemented with the LangChain Expression Language.\n",
"All LangChain objects that inherit from [Serializable](https://python.langchain.com/v0.2/api_reference/core/load/langchain_core.load.serializable.Serializable.html) are JSON-serializable. Examples include [messages](https://python.langchain.com/v0.2/api_reference//python/core_api_reference.html#module-langchain_core.messages), [document objects](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) (e.g., as returned from [retrievers](/docs/concepts/#retrievers)), and most [Runnables](/docs/concepts/#langchain-expression-language-lcel), such as chat models, retrievers, and [chains](/docs/how_to/sequence) implemented with the LangChain Expression Language.\n",
"\n",
"Below we walk through an example with a simple [LLM chain](/docs/tutorials/llm_chain).\n",
"\n",

View File

@@ -27,7 +27,7 @@
"1. How the text is split: by character passed in.\n",
"2. How the chunk size is measured: by `tiktoken` tokenizer.\n",
"\n",
"[CharacterTextSplitter](https://api.python.langchain.com/en/latest/character/langchain_text_splitters.character.CharacterTextSplitter.html), [RecursiveCharacterTextSplitter](https://api.python.langchain.com/en/latest/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html), and [TokenTextSplitter](https://api.python.langchain.com/en/latest/base/langchain_text_splitters.base.TokenTextSplitter.html) can be used with `tiktoken` directly."
"[CharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html), [RecursiveCharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html), and [TokenTextSplitter](https://python.langchain.com/v0.2/api_reference/langchain_text_splitters/base/langchain_text_splitters.base.TokenTextSplitter.html) can be used with `tiktoken` directly."
]
},
{
@@ -59,7 +59,7 @@
"id": "a3ba1d8a",
"metadata": {},
"source": [
"To split with a [CharacterTextSplitter](https://api.python.langchain.com/en/latest/character/langchain_text_splitters.character.CharacterTextSplitter.html) and then merge chunks with `tiktoken`, use its `.from_tiktoken_encoder()` method. Note that splits from this method can be larger than the chunk size measured by the `tiktoken` tokenizer.\n",
"To split with a [CharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html) and then merge chunks with `tiktoken`, use its `.from_tiktoken_encoder()` method. Note that splits from this method can be larger than the chunk size measured by the `tiktoken` tokenizer.\n",
"\n",
"The `.from_tiktoken_encoder()` method takes either `encoding_name` as an argument (e.g. `cl100k_base`), or the `model_name` (e.g. `gpt-4`). All additional arguments like `chunk_size`, `chunk_overlap`, and `separators` are used to instantiate `CharacterTextSplitter`:"
]
@@ -279,7 +279,7 @@
"source": [
"## SentenceTransformers\n",
"\n",
"The [SentenceTransformersTokenTextSplitter](https://api.python.langchain.com/en/latest/sentence_transformers/langchain_text_splitters.sentence_transformers.SentenceTransformersTokenTextSplitter.html) is a specialized text splitter for use with the sentence-transformer models. The default behaviour is to split the text into chunks that fit the token window of the sentence transformer model that you would like to use.\n",
"The [SentenceTransformersTokenTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/sentence_transformers/langchain_text_splitters.sentence_transformers.SentenceTransformersTokenTextSplitter.html) is a specialized text splitter for use with the sentence-transformer models. The default behaviour is to split the text into chunks that fit the token window of the sentence transformer model that you would like to use.\n",
"\n",
"To split text and constrain token counts according to the sentence-transformers tokenizer, instantiate a `SentenceTransformersTokenTextSplitter`. You can optionally specify:\n",
"\n",

View File

@@ -609,7 +609,7 @@
"source": [
"### Agent\n",
"\n",
"For complex questions it can be helpful for an LLM to be able to iteratively execute code while maintaining the inputs and outputs of its previous executions. This is where Agents come into play. They allow an LLM to decide how many times a tool needs to be invoked and keep track of the executions it's made so far. The [create_pandas_dataframe_agent](https://api.python.langchain.com/en/latest/agents/langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent.html) is a built-in agent that makes it easy to work with dataframes:"
"For complex questions it can be helpful for an LLM to be able to iteratively execute code while maintaining the inputs and outputs of its previous executions. This is where Agents come into play. They allow an LLM to decide how many times a tool needs to be invoked and keep track of the executions it's made so far. The [create_pandas_dataframe_agent](https://python.langchain.com/v0.2/api_reference/experimental/agents/langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent.html) is a built-in agent that makes it easy to work with dataframes:"
]
},
{
@@ -761,7 +761,7 @@
"* [SQL tutorial](/docs/tutorials/sql_qa): Many of the challenges of working with SQL db's and CSV's are generic to any structured data type, so it's useful to read the SQL techniques even if you're using Pandas for CSV data analysis.\n",
"* [Tool use](/docs/how_to/tool_calling): Guides on general best practices when working with chains and agents that invoke tools\n",
"* [Agents](/docs/tutorials/agents): Understand the fundamentals of building LLM agents.\n",
"* Integrations: Sandboxed envs like [E2B](/docs/integrations/tools/e2b_data_analysis) and [Bearly](/docs/integrations/tools/bearly), utilities like [SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), related agents like [Spark DataFrame agent](/docs/integrations/tools/spark_sql)."
"* Integrations: Sandboxed envs like [E2B](/docs/integrations/tools/e2b_data_analysis) and [Bearly](/docs/integrations/tools/bearly), utilities like [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), related agents like [Spark DataFrame agent](/docs/integrations/tools/spark_sql)."
]
}
],

View File

@@ -55,7 +55,7 @@
"* Run `.read Chinook_Sqlite.sql`\n",
"* Test `SELECT * FROM Artist LIMIT 10;`\n",
"\n",
"Now, `Chinhook.db` is in our directory and we can interface with it using the SQLAlchemy-driven [SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) class:"
"Now, `Chinhook.db` is in our directory and we can interface with it using the SQLAlchemy-driven [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) class:"
]
},
{
@@ -271,7 +271,7 @@
"id": "04d52d01-1ccf-4753-b34a-0dcbc4921f78",
"metadata": {},
"source": [
"Now that we've got a chain that can output the relevant tables for any query we can combine this with our [create_sql_query_chain](https://api.python.langchain.com/en/latest/chains/langchain.chains.sql_database.query.create_sql_query_chain.html), which can accept a list of `table_names_to_use` to determine which table schemas are included in the prompt:"
"Now that we've got a chain that can output the relevant tables for any query we can combine this with our [create_sql_query_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html), which can accept a list of `table_names_to_use` to determine which table schemas are included in the prompt:"
]
},
{

View File

@@ -6,11 +6,11 @@
"source": [
"# How to better prompt when doing SQL question-answering\n",
"\n",
"In this guide we'll go over prompting strategies to improve SQL query generation using [create_sql_query_chain](https://api.python.langchain.com/en/latest/chains/langchain.chains.sql_database.query.create_sql_query_chain.html). We'll largely focus on methods for getting relevant database-specific information in your prompt.\n",
"In this guide we'll go over prompting strategies to improve SQL query generation using [create_sql_query_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html). We'll largely focus on methods for getting relevant database-specific information in your prompt.\n",
"\n",
"We will cover: \n",
"\n",
"- How the dialect of the LangChain [SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) impacts the prompt of the chain;\n",
"- How the dialect of the LangChain [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) impacts the prompt of the chain;\n",
"- How to format schema information into the prompt using `SQLDatabase.get_context`;\n",
"- How to build and select few-shot examples to assist the model.\n",
"\n",
@@ -84,7 +84,7 @@
"source": [
"## Dialect-specific prompting\n",
"\n",
"One of the simplest things we can do is make our prompt specific to the SQL dialect we're using. When using the built-in [create_sql_query_chain](https://api.python.langchain.com/en/latest/chains/langchain.chains.sql_database.query.create_sql_query_chain.html) and [SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html), this is handled for you for any of the following dialects:"
"One of the simplest things we can do is make our prompt specific to the SQL dialect we're using. When using the built-in [create_sql_query_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html) and [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html), this is handled for you for any of the following dialects:"
]
},
{
@@ -629,7 +629,7 @@
"\n",
"If we have enough examples, we may want to only include the most relevant ones in the prompt, either because they don't fit in the model's context window or because the long tail of examples distracts the model. And specifically, given any input we want to include the examples most relevant to that input.\n",
"\n",
"We can do just this using an ExampleSelector. In this case we'll use a [SemanticSimilarityExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html), which will store the examples in the vector database of our choosing. At runtime it will perform a similarity search between the input and our examples, and return the most semantically similar ones.\n",
"We can do just this using an ExampleSelector. In this case we'll use a [SemanticSimilarityExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html), which will store the examples in the vector database of our choosing. At runtime it will perform a similarity search between the input and our examples, and return the most semantically similar ones.\n",
"\n",
"We default to OpenAI embeddings here, but you can swap them out for the model provider of your choice."
]

View File

@@ -246,7 +246,7 @@
"\n",
"Let's build a simple chain using `LangChain Expression Language` (`LCEL`) that combines a prompt, model and a parser and verify that streaming works.\n",
"\n",
"We will use [`StrOutputParser`](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.string.StrOutputParser.html) to parse the output from the model. This is a simple parser that extracts the `content` field from an `AIMessageChunk`, giving us the `token` returned by the model.\n",
"We will use [`StrOutputParser`](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.string.StrOutputParser.html) to parse the output from the model. This is a simple parser that extracts the `content` field from an `AIMessageChunk`, giving us the `token` returned by the model.\n",
"\n",
":::{.callout-tip}\n",
"LCEL is a *declarative* way to specify a \"program\" by chainining together different LangChain primitives. Chains created using LCEL benefit from an automatic implementation of `stream` and `astream` allowing streaming of the final output. In fact, chains created with LCEL implement the entire standard Runnable interface.\n",

Some files were not shown because too many files have changed in this diff Show More