Compare commits

...

146 Commits

Author SHA1 Message Date
Eugene Yurtsev
14347acbce x 2024-09-25 13:37:13 -04:00
Eugene Yurtsev
3ece5497ac qxqx 2024-09-25 13:01:26 -04:00
Eugene Yurtsev
1b053e961f x 2024-09-24 16:39:25 -04:00
Eugene Yurtsev
54d5b74b00 docs: update trim messages notebook (#26793)
Update trim messages notebook to include common use cases and explain
what the desired behavior is
2024-09-24 14:09:56 -04:00
Eugene Yurtsev
15d49d3df2 docs: update chat history in rag how-to (#26821)
Update how-to add chat history to rag
2024-09-24 13:50:11 -04:00
Vadym Barda
2b38a4ee55 docs[patch]: update chatbot tools how-to (#26816) 2024-09-24 11:39:04 -04:00
Vadym Barda
e8ce5cde99 docs[patch]: update chatbot memory how-to (#26790) 2024-09-24 10:53:39 -04:00
ccurme
a7aad27cba docs[patch]: update chatbot tutorial and migration guide (#26780) 2024-09-24 10:18:48 -04:00
Bagatur
e1e4f88b3e openai[patch]: enable Azure structured output, parallel_tool_calls=Fa… (#26599)
…lse, tool_choice=required

response_format=json_schema, tool_choice=required, parallel_tool_calls
are all supported for gpt-4o on azure.
2024-09-22 22:25:22 -07:00
Gabriel Altay
bb40a0fb32 Remove pydantic restricted namespaces from HuggingFaceInferenceAPIEmbedings (#26744)
without this `model_config` importing this package produces warnings
about "model_name" having conflicts with protected namespace "model_".

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-09-22 08:05:37 -04:00
Gor Hayrapetyan
f97ac92f00 community[patch]: Handle empty PR body in get_pull_request in Github utility (#26739)
**Description:**
When PR body is empty `get_pull_request` method fails with bellow
exception.


**Issue:**
```
TypeError('expected string or buffer')Traceback (most recent call last):


  File ".../.venv/lib/python3.9/site-packages/langchain_core/tools/base.py", line 661, in run
    response = context.run(self._run, *tool_args, **tool_kwargs)


  File ".../.venv/lib/python3.9/site-packages/langchain_community/tools/github/tool.py", line 52, in _run
    return self.api_wrapper.run(self.mode, query)


  File ".../.venv/lib/python3.9/site-packages/langchain_community/utilities/github.py", line 816, in run
    return json.dumps(self.get_pull_request(int(query)))


  File ".../.venv/lib/python3.9/site-packages/langchain_community/utilities/github.py", line 495, in get_pull_request
    add_to_dict(response_dict, "body", pull.body)


  File ".../.venv/lib/python3.9/site-packages/langchain_community/utilities/github.py", line 487, in add_to_dict
    tokens = get_tokens(value)


  File ".../.venv/lib/python3.9/site-packages/langchain_community/utilities/github.py", line 483, in get_tokens
    return len(tiktoken.get_encoding("cl100k_base").encode(text))


  File "....venv/lib/python3.9/site-packages/tiktoken/core.py", line 116, in encode
    if match := _special_token_regex(disallowed_special).search(text):


TypeError: expected string or buffer
```

**Twitter:**  __gorros__
2024-09-22 01:56:24 +00:00
Erick Friis
238a31bbd9 core: release 0.3.5 (#26737) 2024-09-21 00:26:39 +00:00
William FH
55af6fbd02 [LangChainTracer] Omit Chunk (#26602)
in events / new llm token
2024-09-20 17:10:34 -07:00
Anton Dubovik
3e2cb4e8a4 openai: embeddings: supported chunk_size when check_embedding_ctx_length is disabled (#23767)
Chunking of the input array controlled by `self.chunk_size` is being
ignored when `self.check_embedding_ctx_length` is disabled. Effectively,
the chunk size is assumed to be equal 1 in such a case. This is
suprising.

The PR takes into account `self.chunk_size` passed by the user.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-20 16:58:45 -07:00
William FH
864020e592 [Tracer] add project name to run from tracer (#26736) 2024-09-20 16:48:37 -07:00
Nithish Raghunandanan
2d21274bf6 couchbase: Add ttl support to caches & chat_message_history (#26214)
**Description:** Add support to delete documents automatically from the
caches & chat message history by adding a new optional parameter, `ttl`.


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-20 23:44:29 +00:00
Krishna Kulkarni
c6c508ee96 Refining Skip Count Calculation by Filtering Documents with session_id (#26020)
In the previous implementation, `skip_count` was counting all the
documents in the collection. Instead, we want to filter the documents by
`session_id` and calculate `skip_count` by subtracting `history_size`
from the filtered count.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-09-20 23:40:56 +00:00
Tibor Reiss
a8b24135a2 fix[experimental]: Fix text splitter with gradient (#26629)
Fixes #26221

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-20 23:35:50 +00:00
Alejandro Rodríguez
4ac9a6f52c core: fix "template" not allowed as prompt param (#26060)
- **Description:**  fix "template" not allowed as prompt param
- **Issue:** #26058
- **Dependencies:** none


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-20 23:33:06 +00:00
Christophe Bornet
58f339a67c community: Fix links in GraphVectorStore pydoc (#25959)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-20 23:17:53 +00:00
Christophe Bornet
e49c413977 core: Add docstring for GraphVectorStoreRetriever (#26224)
Co-authored-by: Erick Friis <erickfriis@gmail.com>
2024-09-20 23:16:37 +00:00
Lucain
a2023a1e96 huggingface; fix huggingface_endpoint.py (initialize clients only with supported kwargs) (#26378)
## Description

By default, `HuggingFaceEndpoint` instantiates both the
`InferenceClient` and the `AsyncInferenceClient` with the
`"server_kwargs"` passed as input. This is an issue as both clients
might not support exactly the same kwargs. This has been highlighted in
https://github.com/huggingface/huggingface_hub/issues/2522 by
@morgandiverrez with the `trust_env` parameter. In order to make
`langchain` integration future-proof, I do think it's wiser to forward
only the supported parameters to each client. Parameters that are not
supported are simply ignored with a warning to the user. From a
`huggingface_hub` maintenance perspective, this allows us much more
flexibility as we are not constrained to support the exact same kwargs
in both clients.

## Issue

https://github.com/huggingface/huggingface_hub/issues/2522

## Dependencies

None

## Twitter 

https://x.com/Wauplin

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-20 16:05:24 -07:00
ccurme
f2285376a5 community[patch]: add web loader tests (#26728) 2024-09-20 18:29:54 -04:00
Erick Friis
4a2745064a core: release 0.3.4 (#26729) 2024-09-20 14:47:15 -07:00
Nuno Campos
345edeb1f0 core: In astream_events propagate cancellation reason to inner task (#26727)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-09-20 14:42:10 -07:00
Erick Friis
465e43cd43 core: release 0.3.3 (#26713) 2024-09-20 13:54:19 -07:00
Eugene Yurtsev
4fc69d61ad core[patch]: Fix defusedxml import (#26718)
Fix defusedxml import. Haven't investigated what's actually going on
under the hood -- defusedxml probably does some weird things in __init__
2024-09-20 16:53:24 -04:00
Eugene Yurtsev
79b224f6f3 core/langchain: fix version used in deprecation (#26724)
in core deprecation should be version 0.3.3 instead of 0.3.4
in langchain deprecation should be version 0.3.1 instead of 0.3.4
2024-09-20 16:47:18 -04:00
Eugene Yurtsev
8a9f7091c0 docs: Update trim message usage in migrating_memory (#26722)
Make sure we don't end up with a ToolMessage that precedes an AIMessage
2024-09-20 20:20:27 +00:00
Eugene Yurtsev
91f4711e53 core[patch],langchain[patch]: deprecate memory and entity abstractions and implementations (#26717)
This PR deprecates the old memory, entity abstractions and implementations
2024-09-20 15:06:25 -04:00
William FH
19ce95d3c9 Avoid copying runs (#26689)
Also, re-unify run trees. Use a single shared client.
2024-09-20 10:57:41 -07:00
Eric
90031b1b3e support epsilla cloud vector database in langchain (#26065)
Description

- support epsilla cloud in langchain

---------

Co-authored-by: Leonid Ganeline <leo.gan.57@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-09-20 17:14:23 +00:00
ZhangShenao
baef7639fd Improvement[text-splitter] Fix import of ExperimentalMarkdownSyntaxTextSplitter (#26703)
#26028 

Export `ExperimentalMarkdownSyntaxTextSplitter` in __init__

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-20 17:04:31 +00:00
Eugene Yurtsev
acf8c2c13e docs: Add migration instructions for v0.0.x memory abstractions (#26668)
This PR adds a migration guide for any code that relies on old memory
abstractions.
2024-09-20 15:09:23 +00:00
ccurme
eeab6a688c docs[patch]: update PDF loader docs (#26627)
Docs preview:
https://langchain-git-cc-pdfdocs-langchain.vercel.app/docs/how_to/document_loader_pdf/
2024-09-20 11:07:06 -04:00
stein1988
91594928c5 fix:fix ChatZhipuAI tool call bug (#26693)
- [ ] **PR title**: "community:fix ChatZhipuAI tool call bug"

- [ ] **Description:** ZhipuAI api response as follows:
{'id': '20240920132549e379a9152a6a4d7c', 'created': 1726809949, 'model':
'glm-4-flash', 'choices': [{'index': 0, 'finish_reason': 'tool_calls',
'delta': {'role': 'assistant', 'tool_calls': [{'id':
'call_20240920132549e379a9152a6a4d7c', 'index': 0, 'type': 'function',
'function': {'name': 'get_datetime_offline', 'arguments': '{}'}}]}}]}
so, tool_calls = dct.get("tool_call", None) in
_convert_delta_to_message_chunk should be "tool_calls"
2024-09-20 13:06:42 +00:00
guoqiang0401
8f0c04f47e Update tool_calling.ipynb (#26699)
There is a small bug in "TypedDict class" sample source.

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-09-20 13:04:50 +00:00
Bagatur
f7bb3640f1 core[patch]: support js chat model namespaces (#26688) 2024-09-19 16:14:20 -07:00
Bagatur
c453b76579 core[patch]: Release 0.3.2 (#26686) 2024-09-19 14:58:45 -07:00
Piyush Jain
f087ab43fd core[patch]: Fix load of ChatBedrock (#26679)
Complementary PR to master for #26643.

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-09-19 21:57:20 +00:00
Bagatur
409f35363b core[patch]: support load from path for default namespaces (#26675) 2024-09-19 14:47:27 -07:00
Eugene Yurtsev
e8236e58f2 ci: restore qa template that was known to work (#26684)
Restore qa template that was working
2024-09-19 17:20:42 -04:00
ccurme
eef18dec44 unstructured[patch]: support loading URLs (#26670)
`unstructured.partition.auto.partition` supports a `url` kwarg, but
`url` in `UnstructuredLoader.__init__` is reserved for the server URL.
Here we add a `web_url` kwarg that is passed to the partition kwargs:
```python
self.unstructured_kwargs["url"] = web_url
```
2024-09-19 11:40:25 -07:00
Erick Friis
311f861547 core, community: move graph vectorstores to community (#26678)
remove beta namespace from core, add to community
2024-09-19 11:38:14 -07:00
Serena Ruan
c77c28e631 [community] Fix WorkspaceClient error with pydantic validation (#26649)
Thank you for contributing to LangChain!

Fix error like
<img width="1167" alt="image"
src="https://github.com/user-attachments/assets/2e219b26-ec7e-48ef-8111-e0ff2f5ac4c0">

After the fix:
<img width="584" alt="image"
src="https://github.com/user-attachments/assets/48f36fe7-628c-48b6-81b2-7fe741e4ca85">


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Signed-off-by: serena-ruan <serena.rxy@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-19 18:25:33 +00:00
ccurme
7d49ee9741 unstructured[patch]: add to integration tests (#26666)
- Add to tests on parsed content;
- Add tests for async + lazy loading;
- Add a test for `strategy="hi_res"`.
2024-09-19 13:43:34 -04:00
Erick Friis
28dd6564db docs: highlight styling (#26636)
MERGE ME PLEASE
2024-09-19 17:12:59 +00:00
ccurme
f91bdd12d2 community[patch]: add to pypdf tests and run in CI (#26663) 2024-09-19 14:45:49 +00:00
ice yao
4d3d62c249 docs: fix nomic link error (#26642) 2024-09-19 14:41:45 +00:00
Rajendra Kadam
60dc19da30 [community] Added PebbloTextLoader for loading text data in PebbloSafeLoader (#26582)
- **Description:** Added PebbloTextLoader for loading text in
PebbloSafeLoader.
- Since PebbloSafeLoader wraps document loaders, this new loader enables
direct loading of text into Documents using PebbloSafeLoader.
- **Issue:** NA
- **Dependencies:** NA
- [x] **Tests**: Added/Updated tests
2024-09-19 09:59:04 -04:00
Jorge Piedrahita Ortiz
55b641b761 community: fix error in sambastudio embeddings (#26260)
fix error in samba studio embeddings  result unpacking
2024-09-19 09:57:04 -04:00
Jorge Piedrahita Ortiz
37b72023fe community: remove sambaverse (#26265)
removing Sambaverse llm model and references given is not available
after Sep/10/2024

<img width="1781" alt="image"
src="https://github.com/user-attachments/assets/4dcdb5f7-5264-4a03-b8e5-95c88304e059">
2024-09-19 09:56:30 -04:00
Martin Triska
3fc0ea510e community : [bugfix] Use document ids as keys in AzureSearch vectorstore (#25486)
# Description
[Vector store base
class](4cdaca67dc/libs/core/langchain_core/vectorstores/base.py (L65))
currently expects `ids` to be passed in and that is what it passes along
to the AzureSearch vector store when attempting to `add_texts()`.
However AzureSearch expects `keys` to be passed in. When they are not
present, AzureSearch `add_embeddings()` makes up new uuids. This is a
problem when trying to run indexing. [Indexing code
expects](b297af5482/libs/core/langchain_core/indexing/api.py (L371))
the documents to be uploaded using provided ids. Currently AzureSearch
ignores `ids` passed from `indexing` and makes up new ones. Later when
`indexer` attempts to delete removed file, it uses the `id` it had
stored when uploading the document, however it was uploaded under
different `id`.

**Twitter handle: @martintriska1**
2024-09-19 09:37:18 -04:00
Tomaz Bratanic
a8561bc303 Fix async parsing for llm graph transformer (#26650) 2024-09-19 09:15:33 -04:00
Erik
4e0a6ebe7d community: Add warning when page_content is empty (#25955)
Page content sometimes is empty when PyMuPDF can not find text on pages.
For example, this can happen when the text of the PDF is not copyable
"by hand". Then an OCR solution is need - which is not integrated here.

This warning should accurately warn the user that some pages are lost
during this process.

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-19 05:22:09 +00:00
Christophe Bornet
fd21ffe293 core: Add N(naming) ruff rules (#25362)
Public classes/functions are not renamed and rule is ignored for them.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-19 05:09:39 +00:00
Daniel Cooke
7835c0651f langchain_chroma: Pass through kwargs to Chroma collection.delete (#25970)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-19 04:21:24 +00:00
Tibor Reiss
85caaa773f docs[community]: Fix raw string in docstring (#26350)
Fixes #26212: replaced the raw string with backslashes. Alternative:
raw-stringif the full docstring.

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
2024-09-19 04:18:56 +00:00
Erick Friis
8fb643a6e8 partners/box: release 0.2.1 (#26644) 2024-09-19 04:02:06 +00:00
Tomaz Bratanic
03b9aca55d community: Retry retriable errors in Neo4j (#26211)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-19 04:01:07 +00:00
Scott Hurrey
acbb4e4701 box: Add searchoptions for BoxRetriever, documentation for BoxRetriever as agent tool (#26181)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


Added search options for BoxRetriever and added documentation to
demonstrate how to use BoxRetriever as an agent tool - @BoxPlatform


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-09-18 21:00:06 -07:00
Erick Friis
e0c36afc3e docs: v0.3 link redirect (#26632) 2024-09-18 14:28:56 -07:00
Erick Friis
9909354cd0 core: use ruff.target-version instead (#26634)
tested on one of the replacement cases and seems to work! 
![ScreenShot 2024-09-18 at 02 02
43PM](https://github.com/user-attachments/assets/7170975a-2542-43ed-a203-d4126c6a2c81)
2024-09-18 21:06:14 +00:00
Erick Friis
84b831356c core: remove [project] tag from pyproject (#26633)
makes core incompatible with uv installs
2024-09-18 20:39:49 +00:00
Christophe Bornet
a47b332841 core: Put Python version as a project requirement so it is considered by ruff (#26608)
Ruff doesn't know about the python version in
`[tool.poetry.dependencies]`. It can get it from
`project.requires-python`.

Notes:
* poetry seems to have issues getting the python constraints from
`requires-python` and using `python` in per dependency constraints. So I
had to duplicate the info. I will open an issue on poetry.
* `inspect.isclass()` doesn't work correctly with `GenericAlias`
(`list[...]`, `dict[..., ...]`) on Python <3.11 so I added some `not
isinstance(type, GenericAlias)` checks:

Python 3.11
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
False
```

Python 3.9
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
True
```

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-09-18 14:37:57 +00:00
Patrick McGleenon
0f07cf61da docs: fixed typo in XML document loader (#26613)
Fixed typo `Unstrucutred`
2024-09-18 14:26:57 +00:00
Erick Friis
d158401e73 infra: master release checkout ref for release note (#26605) 2024-09-18 01:51:54 +00:00
Bagatur
de58942618 docs: consolidate dropdowns (#26600) 2024-09-18 01:24:10 +00:00
Bagatur
df38d5250f docs: cleanup nav (#26546) 2024-09-17 17:49:46 -07:00
sanjay920
b246052184 docs: fix typo in clickhouse vectorstore doc (#26598)
- **Description:** typo in clickhouse vectorstore doc
- **Issue:** #26597
- **Dependencies:** none
- **Twitter handle:** sanjay920

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 23:33:22 +00:00
Miguel Grinberg
52729ac0be docs: update hybrid search example with Elasticsearch retriever (#26328)
- **Description:** the example to perform hybrid search with the
Elasticsearch retriever is out of date
- **Issue:** N/A
- **Dependencies:** N/A

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 23:15:27 +00:00
Marco Rossi IT
f62d454f36 docs: fix typo on amazon_textract.ipynb (#26493)
- **Description:** fixed a typo on amazon textract page

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 22:27:45 +00:00
gbaian10
6fe2536c5a docs: fix the ImportError in google_speech_to_text.ipynb (#26522)
fix #26370

- #26370 

`GoogleSpeechToTextLoader` is a deprecated method in
`langchain_community.document_loaders.google_speech_to_text`.

The new recommended usage is to use `SpeechToTextLoader` from
`langchain_google_community`.

When importing from `langchain_google_community`, use the name
`SpeechToTextLoader` instead of the old `GoogleSpeechToTextLoader`.


![image](https://github.com/user-attachments/assets/3a8bd309-9858-4938-b7db-872f51b9542e)

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 22:18:57 +00:00
Zhanwei Zhang
418b170f94 docs: Fix typo in conda environment code block in rag.ipynb (#26487)
Thank you for contributing to LangChain!

- [x] **PR title**: Fix typo in conda environment code block in
rag.ipynb
  - In docs/tutorials/rag.ipynb

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 22:13:55 +00:00
ZhangShenao
c3b3f46cb8 Improvement[Community] Improve api doc of BeautifulSoupTransformer (#26423)
- Add missing args

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 22:00:07 +00:00
ogawa
e2245fac82 community[patch]: o1-preview and o1-mini costs (#26411)
updated OpenAI cost definitions according to the following:
https://openai.com/api/pricing/

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 21:59:46 +00:00
ZhangShenao
1a8e9023de Improvement[Community] Improve streamlit_callback_handler (#26373)
- add decorator for static methods

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 21:54:37 +00:00
Bagatur
1a62f9850f anthropic[patch]: Release 0.2.1 (#26592) 2024-09-17 14:44:21 -07:00
Harutaka Kawamura
6ed50e78c9 community: Rename deployments server to AI gateway (#26368)
We recently renamed `MLflow Deployments Server` to `MLflow AI Gateway`
in mlflow. This PR updates the relevant notebooks to use `MLflow AI
gateway`

---

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Signed-off-by: harupy <17039389+harupy@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 21:36:04 +00:00
Bagatur
5ced41bf50 anthropic[patch]: fix tool call and tool res image_url handling (#26587)
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-09-17 14:30:07 -07:00
Christophe Bornet
c6bdd6f482 community: Fix references in link extractors docstrings (#26314)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 21:26:25 +00:00
Christophe Bornet
3a99467ccb core[patch]: Add ruff rule UP006(use PEP585 annotations) (#26574)
* Added rules `UPD006` now that Pydantic is v2+

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-09-17 21:22:50 +00:00
wlleiiwang
2ef4c9466f community: modify document links for tencent vectordb (#26316)
- modify document links for create a tencent vectordb database instance.

Co-authored-by: wlleiiwang <wlleiiwang@tencent.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 21:11:10 +00:00
Erick Friis
194adc485c docs: pypi readme image links (#26590) 2024-09-17 20:41:34 +00:00
Bagatur
97b05d70e6 docs: anthropic api ref nit (#26591) 2024-09-17 20:39:53 +00:00
Bagatur
e1d113ea84 core,openai,grow,fw[patch]: deprecate bind_functions, update chat mod… (#26584)
…el api ref
2024-09-17 11:32:39 -07:00
ccurme
7c05f71e0f milvus[patch]: fix vectorstore integration tests (#26583)
Resolves https://github.com/langchain-ai/langchain/issues/26564
2024-09-17 14:17:05 -04:00
Bagatur
145a49cca2 core[patch]: Release 0.3.1 (#26581) 2024-09-17 17:34:09 +00:00
Nuno Campos
5fc44989bf core[patch]: Fix "argument of type 'NoneType' is not iterable" error in LangChainTracer (#26576)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-17 10:29:46 -07:00
Erick Friis
f4a65236ee infra: only force reinstall on release (#26580) 2024-09-17 17:12:17 +00:00
Isaac Francisco
06cde06a20 core[minor]: remove beta from RemoveMessage (#26579) 2024-09-17 17:09:58 +00:00
Erick Friis
3e51fdc840 infra: more skip if pull request libs (#26578) 2024-09-17 09:48:02 -07:00
RUO
0a177ec2cc community: Enhance MongoDBLoader with flexible metadata and optimized field extraction (#23376)
### Description:
This pull request significantly enhances the MongodbLoader class in the
LangChain community package by adding robust metadata customization and
improved field extraction capabilities. The updated class now allows
users to specify additional metadata fields through the metadata_names
parameter, enabling the extraction of both top-level and deeply nested
document attributes as metadata. This flexibility is crucial for users
who need to include detailed contextual information without altering the
database schema.

Moreover, the include_db_collection_in_metadata flag offers optional
inclusion of database and collection names in the metadata, allowing for
even greater customization depending on the user's needs.

The loader's field extraction logic has been refined to handle missing
or nested fields more gracefully. It now employs a safe access mechanism
that avoids the KeyError previously encountered when a specified nested
field was absent in a document. This update ensures that the loader can
handle diverse and complex data structures without failure, making it
more resilient and user-friendly.

### Issue:
This pull request addresses a critical issue where the MongodbLoader
class in the LangChain community package could throw a KeyError when
attempting to access nested fields that may not exist in some documents.
The previous implementation did not handle the absence of specified
nested fields gracefully, leading to runtime errors and interruptions in
data processing workflows.

This enhancement ensures robust error handling by safely accessing
nested document fields, using default values for missing data, thus
preventing KeyError and ensuring smoother operation across various data
structures in MongoDB. This improvement is crucial for users working
with diverse and complex data sets, ensuring the loader can adapt to
documents with varying structures without failing.

### Dependencies: 
Requires motor for asynchronous MongoDB interaction.

### Twitter handle: 
N/A

### Add tests and docs
Tests: Unit tests have been added to verify that the metadata inclusion
toggle works as expected and that the field extraction correctly handles
nested fields.
Docs: An example notebook demonstrating the use of the enhanced
MongodbLoader is included in the docs/docs/integrations directory. This
notebook includes setup instructions, example usage, and outputs.
(Here is the notebook link : [colab
link](https://colab.research.google.com/drive/1tp7nyUnzZa3dxEFF4Kc3KS7ACuNF6jzH?usp=sharing))
Lint and test
Before submitting, I ran make format, make lint, and make test as per
the contribution guidelines. All tests pass, and the code style adheres
to the LangChain standards.

```python
import unittest
from unittest.mock import patch, MagicMock
import asyncio
from langchain_community.document_loaders.mongodb import MongodbLoader

class TestMongodbLoader(unittest.TestCase):
    def setUp(self):
        """Setup the MongodbLoader test environment by mocking the motor client 
        and database collection interactions."""
        # Mocking the AsyncIOMotorClient
        self.mock_client = MagicMock()
        self.mock_db = MagicMock()
        self.mock_collection = MagicMock()

        self.mock_client.get_database.return_value = self.mock_db
        self.mock_db.get_collection.return_value = self.mock_collection

        # Initialize the MongodbLoader with test data
        self.loader = MongodbLoader(
            connection_string="mongodb://localhost:27017",
            db_name="testdb",
            collection_name="testcol"
        )

    @patch('langchain_community.document_loaders.mongodb.AsyncIOMotorClient', return_value=MagicMock())
    def test_constructor(self, mock_motor_client):
        """Test if the constructor properly initializes with the correct database and collection names."""
        loader = MongodbLoader(
            connection_string="mongodb://localhost:27017",
            db_name="testdb",
            collection_name="testcol"
        )
        self.assertEqual(loader.db_name, "testdb")
        self.assertEqual(loader.collection_name, "testcol")

    def test_aload(self):
        """Test the aload method to ensure it correctly queries and processes documents."""
        # Setup mock data and responses for the database operations
        self.mock_collection.count_documents.return_value = asyncio.Future()
        self.mock_collection.count_documents.return_value.set_result(1)
        self.mock_collection.find.return_value = [
            {"_id": "1", "content": "Test document content"}
        ]

        # Run the aload method and check responses
        loop = asyncio.get_event_loop()
        results = loop.run_until_complete(self.loader.aload())
        self.assertEqual(len(results), 1)
        self.assertEqual(results[0].page_content, "Test document content")

    def test_construct_projection(self):
        """Verify that the projection dictionary is constructed correctly based on field names."""
        self.loader.field_names = ['content', 'author']
        self.loader.metadata_names = ['timestamp']
        expected_projection = {'content': 1, 'author': 1, 'timestamp': 1}
        projection = self.loader._construct_projection()
        self.assertEqual(projection, expected_projection)

if __name__ == '__main__':
    unittest.main()
```


### Additional Example for Documentation
Sample Data:

```json
[
    {
        "_id": "1",
        "title": "Artificial Intelligence in Medicine",
        "content": "AI is transforming the medical industry by providing personalized medicine solutions.",
        "author": {
            "name": "John Doe",
            "email": "john.doe@example.com"
        },
        "tags": ["AI", "Healthcare", "Innovation"]
    },
    {
        "_id": "2",
        "title": "Data Science in Sports",
        "content": "Data science provides insights into player performance and strategic planning in sports.",
        "author": {
            "name": "Jane Smith",
            "email": "jane.smith@example.com"
        },
        "tags": ["Data Science", "Sports", "Analytics"]
    }
]
```
Example Code:

```python
loader = MongodbLoader(
    connection_string="mongodb://localhost:27017",
    db_name="example_db",
    collection_name="articles",
    filter_criteria={"tags": "AI"},
    field_names=["title", "content"],
    metadata_names=["author.name", "author.email"],
    include_db_collection_in_metadata=True
)

documents = loader.load()

for doc in documents:
    print("Page Content:", doc.page_content)
    print("Metadata:", doc.metadata)
```
Expected Output:

```
Page Content: Artificial Intelligence in Medicine AI is transforming the medical industry by providing personalized medicine solutions.
Metadata: {'author_name': 'John Doe', 'author_email': 'john.doe@example.com', 'database': 'example_db', 'collection': 'articles'}
```

Thank you.

---

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-09-17 10:23:17 -04:00
ccurme
6758894af1 docs: update v0.3 integrations table (#26571) 2024-09-17 09:56:04 -04:00
venkatram-dev
6ba3c715b7 doc_fix_chroma_integration (#26565)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
docs:integrations:vectorstores:chroma:fix_typo


- [x] **PR message**: ***Delete this entire checklist*** and replace
with


- **Description:** fix_typo in docs:integrations:vectorstores:chroma
https://python.langchain.com/docs/integrations/vectorstores/chroma/
    - **Issue:** https://github.com/langchain-ai/langchain/issues/26561

- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-09-17 08:17:54 -04:00
Bagatur
d8952b8e8c langchain[patch]: infer mistral provider in init_chat_model (#26557) 2024-09-17 00:35:54 +00:00
Bagatur
31f61d4d7d docs: v0.3 nits (#26556) 2024-09-17 00:14:47 +00:00
Bagatur
99abd254fb docs: clean up init_chat_model (#26551) 2024-09-16 22:08:22 +00:00
Tomaz Bratanic
3bcd641bc1 Add check for prompt based approach in llm graph transformer (#26519) 2024-09-16 15:01:09 -07:00
Bagatur
0bd98c99b3 docs: add sema4 to release table (#26549) 2024-09-16 14:59:13 -07:00
Eugene Yurtsev
8a2f2fc30b docs: what langchain-cli migrate can do (#26547) 2024-09-16 20:10:40 +00:00
SQpgducray
724a53711b docs: Fix missing self argument in _get_docs_with_query method of `Cust… (#26312)
…omSelfQueryRetriever`

This commit corrects an issue in the `_get_docs_with_query` method of
the `CustomSelfQueryRetriever` class. The method was incorrectly using
`self.vectorstore.similarity_search_with_score(query, **search_kwargs)`
without including the `self` argument, which is required for proper
method invocation.

The `self` argument is necessary for calling instance methods and
accessing instance attributes. By including `self` in the method call,
we ensure that the method is correctly executed in the context of the
current instance, allowing it to function as intended.

No other changes were made to the method's logic or functionality.

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-16 20:02:30 +00:00
Eugene Yurtsev
c6a78132d6 docs: show how to use langchain-cli for migration (#26535)
Update v0.3 instructions a bit

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-09-16 15:53:05 -04:00
Bagatur
a319a0ff1d docs: add redirects for tools and lcel (#26541) 2024-09-16 18:06:15 +00:00
Eugene Yurtsev
63c3cc1f1f ci: updates issue and discussion templates (#26542)
Update issue and discussion templates
2024-09-16 17:43:04 +00:00
ccurme
0154c586d3 docs: update integrations table in 0.3 guide (#26536) 2024-09-16 17:41:56 +00:00
Eugene Yurtsev
c2588b334f unstructured: release 0.1.4 (#26540)
Release to work with langchain 0.3
2024-09-16 17:38:38 +00:00
Eugene Yurtsev
8b985a42e9 milvus: 0.1.6 release (#26538)
Release to work with langchain 0.3
2024-09-16 13:33:09 -04:00
Eugene Yurtsev
5b4206acd8 box: 0.2.0 release (#26539)
Release to work with langchain 0.3
2024-09-16 13:32:59 -04:00
ccurme
0592c29e9b qdrant[patch]: release 0.1.4 (#26534)
`langchain-qdrant` imports pydantic but was importing pydantic proper
before 0.3 release:
042e84170b/libs/partners/qdrant/langchain_qdrant/sparse_embeddings.py (L5-L8)
2024-09-16 13:04:12 -04:00
Eugene Yurtsev
88891477eb langchain-cli: release 0.0.31 (#26533)
langchain-cli 0.0.31 release
2024-09-16 12:57:24 -04:00
ccurme
88bc15d69b standard-tests[patch]: add async test for structured output (#26527) 2024-09-16 11:15:23 -04:00
Erick Friis
1ab181f514 voyageai: release 0.1.2 (#26512) 2024-09-16 03:11:15 +00:00
Erick Friis
ee4e11379f nomic: release 0.1.3, core 0.3 compat but not required (#26511) 2024-09-15 20:10:25 -07:00
Yoshitaka Fujii
bd42344b0a docs: Update concepts.mdx (#26496)
- Fix comments in Python
- Fix repeated sentences
2024-09-16 01:46:15 +00:00
Erick Friis
9f5960a0aa docs: new algolia index (#26508) 2024-09-15 18:33:42 -07:00
Erick Friis
135afdf4fb docs: most 0.1 redirects too (#26494)
takes redirects from 0.1 docs and factors them into suggested redirects
in 0.3 docs
2024-09-15 18:29:58 +00:00
Erick Friis
4131be63af multiple: 0.3.0 not dev version (#26502) 2024-09-15 18:26:50 +00:00
Bhadresh Savani
f66b7ba32d Update google_search.ipynb (#26420)
Added changes for pip installation
2024-09-14 15:08:40 -07:00
jessicaou
9c6aa3f0b7 broken LangGraph docs link (#26438)
Update broken langgraph link in the README.md file

Co-authored-by: Jess Ou <jessou@jesss-mbp.local.meter>
2024-09-14 15:07:51 -07:00
Nicolas
2240ca2979 docs: Fix Firecrawl v0 version (#26452)
Firecrawl integration is currently on v0 - which is supported until
version 0.0.20.

@rafaelsideguide is working on a pr for v1 but meanwhile we should fix
the docs.
2024-09-14 15:06:15 -07:00
Eugene Yurtsev
77ccb4b1cf cli[patch]: Update the migration script message (#26490)
Update the migration script message
2024-09-14 14:40:35 -04:00
Bagatur
b47f4cfe51 mongodb[minor]: Release 0.2.0 (#26484) 2024-09-13 19:17:36 -07:00
Bagatur
779a008d4e docs: update v3 versions (#26483) 2024-09-14 02:16:54 +00:00
Bagatur
4e6620ecdd chroma[patch]: Release 0.1.4 (#26470) 2024-09-13 17:31:34 -07:00
Bagatur
543a80569c prompty[minor]: Release 0.1.0 (#26481) 2024-09-13 23:32:01 +00:00
ccurme
9c88037dbc huggingface[patch]: xfail test (#26479) 2024-09-13 23:16:06 +00:00
Bagatur
a2bfa41216 azure-dynamic-sessions[minor]: Release 0.2.0 (#26478) 2024-09-13 23:09:48 +00:00
ccurme
8abc7ff55a experimental: release 0.3 (#26477) 2024-09-13 23:07:35 +00:00
Bagatur
6abb23ca97 exa[minor]: Release 0.2.0 (#26476) 2024-09-13 23:04:10 +00:00
ccurme
900115a568 community: release 0.3 (#26472) 2024-09-13 22:55:56 +00:00
Bagatur
17b397ef93 pinecone[minor]: Release 0.2.0 (#26474) 2024-09-13 22:55:35 +00:00
Erick Friis
ca304ae046 robocorp: rm package (now langchain-sema4) (#26471) 2024-09-13 15:54:00 -07:00
Erick Friis
537f6924dc partners/ollama: release 0.2.0 (#26468) 2024-09-13 15:48:48 -07:00
Erick Friis
995dfc6b05 partners/fireworks: release 0.2.0 (#26467) 2024-09-13 22:48:16 +00:00
Erick Friis
832bc834b1 partners/anthropic: release 0.2.0 (#26469)
0.3.0 version was a mistake! not released - bumping version back to
0.2.0 here
2024-09-13 22:47:09 +00:00
Erick Friis
6997731729 partners/anthropic: release 0.3.0 (#26466) 2024-09-13 22:44:11 +00:00
Bagatur
64bfe1ff23 groq[minor]: Release 0.2.0 (#26465) 2024-09-13 22:43:11 +00:00
Erick Friis
58c7414e10 langchain: release 0.3.0 (#26462) 2024-09-13 22:40:37 +00:00
ccurme
125c9896a8 huggingface: release 0.1 (#26463) 2024-09-13 22:39:49 +00:00
Bagatur
f7ae12fa1f openai[minor]: Release 0.2.0 (#26464) 2024-09-13 15:38:10 -07:00
ccurme
d1462badaf text-splitters: release 0.3 (#26460)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-13 22:31:06 +00:00
ccurme
9b30bdceb6 mistralai: release 0.2 (#26458)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-13 18:27:51 -04:00
Bagatur
3125a89198 infra: fix min version (#26461) 2024-09-13 22:25:22 +00:00
Bagatur
44791ce131 infra: rm pydantic from min version test (#26459) 2024-09-13 15:22:28 -07:00
Bagatur
fa8e0d90de docs: update version docs (#26457) 2024-09-13 22:20:24 +00:00
424 changed files with 15942 additions and 16232 deletions

View File

@@ -96,25 +96,21 @@ body:
attributes:
label: System Info
description: |
Please share your system info with us.
Please share your system info with us. Do NOT skip this step and please don't trim
the output. Most users don't include enough information here and it makes it harder
for us to help you.
"pip freeze | grep langchain"
platform (windows / linux / mac)
python version
OR if you're on a recent version of langchain-core you can paste the output of:
Run the following command in your terminal and paste the output here:
python -m langchain_core.sys_info
or if you have an existing python interpreter running:
from langchain_core import sys_info
sys_info.print_sys_info()
alternatively, put the entire output of `pip freeze` here.
placeholder: |
"pip freeze | grep langchain"
platform
python version
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
These will only surface LangChain packages, don't forget to include any other relevant
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
validations:
required: true

View File

@@ -19,10 +19,16 @@ MIN_VERSION_LIBS = [
"langchain",
"langchain-text-splitters",
"SQLAlchemy",
"pydantic",
]
SKIP_IF_PULL_REQUEST = ["langchain-core"]
# some libs only get checked on release because of simultaneous changes in
# multiple libs
SKIP_IF_PULL_REQUEST = [
"langchain-core",
"langchain-text-splitters",
"langchain",
"langchain-community",
]
def get_min_version(version: str) -> str:
@@ -68,10 +74,10 @@ def get_min_version_from_toml(
min_versions = {}
# Iterate over the libs in MIN_VERSION_LIBS
for lib in MIN_VERSION_LIBS:
for lib in set(MIN_VERSION_LIBS + (include or [])):
if versions_for == "pull_request" and lib in SKIP_IF_PULL_REQUEST:
# some libs only get checked on release because of simultaneous
# changes
# changes in multiple libs
continue
# Check if the lib is present in the dependencies
if lib in dependencies:
@@ -89,7 +95,6 @@ def get_min_version_from_toml(
if check_python_version(python_version, vs["python"])
][0]["version"]
# Use parse_version to get the minimum supported version from version_string
min_version = get_min_version(version_string)

View File

@@ -85,7 +85,7 @@ jobs:
path: langchain
sparse-checkout: | # this only grabs files for relevant dir
${{ inputs.working-directory }}
ref: master # this scopes to just master branch
ref: ${{ github.ref }} # this scopes to just ref'd branch
fetch-depth: 0 # this fetches entire commit history
- name: Check Tags
id: check-tags

View File

@@ -58,7 +58,7 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
poetry run pip install $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -39,7 +39,7 @@ conda install langchain -c conda-forge
For these applications, LangChain simplifies the entire application lifecycle:
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
Use [LangGraph](https://langchain-ai.github.io/langgraph/) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).

View File

@@ -15,7 +15,7 @@
:member-order: groupwise
:show-inheritance: True
:special-members: __call__
:exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, astream_log, transform, atransform, get_output_schema, get_prompts, config_schema, map, pick, pipe, with_listeners, with_alisteners, with_config, with_fallbacks, with_types, with_retry, InputType, OutputType, config_specs, output_schema, get_input_schema, get_graph, get_name, input_schema, name, bind, assign, as_tool, get_config_jsonschema, get_input_jsonschema, get_output_jsonschema, model_construct, model_copy, model_dump, model_dump_json, model_parametrized_name, model_post_init, model_rebuild, model_validate, model_validate_json, model_validate_strings, to_json, model_extra, model_fields_set, model_json_schema
:exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, astream_log, transform, atransform, get_output_schema, get_prompts, config_schema, map, pick, pipe, InputType, OutputType, config_specs, output_schema, get_input_schema, get_graph, get_name, input_schema, name, assign, as_tool, get_config_jsonschema, get_input_jsonschema, get_output_jsonschema, model_construct, model_copy, model_dump, model_dump_json, model_parametrized_name, model_post_init, model_rebuild, model_validate, model_validate_json, model_validate_strings, to_json, model_extra, model_fields_set, model_json_schema, predict, apredict, predict_messages, apredict_messages, generate, generate_prompt, agenerate, agenerate_prompt, call_as_llm
.. NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃

View File

@@ -595,10 +595,10 @@ tool_call = ai_msg.tool_calls[0]
# -> ToolCall(args={...}, id=..., ...)
tool_message = tool.invoke(tool_call)
# -> ToolMessage(
content="tool result foobar...",
tool_call_id=...,
name="tool_name"
)
# content="tool result foobar...",
# tool_call_id=...,
# name="tool_name"
# )
```
If you are invoking the tool this way and want to include an [artifact](/docs/concepts/#toolmessage) for the ToolMessage, you will need to have the tool return two things.
@@ -717,8 +717,6 @@ During run-time LangChain configures an appropriate callback manager (e.g., [Cal
The `callbacks` property is available on most objects throughout the API (Models, Tools, Agents, etc.) in two different places:
The callbacks are available on most objects throughout the API (Models, Tools, Agents, etc.) in two different places:
- **Request time callbacks**: Passed at the time of the request in addition to the input data.
Available on all standard `Runnable` objects. These callbacks are INHERITED by all children
of the object they are defined on. For example, `chain.invoke({"number": 25}, {"callbacks": [handler]})`.

View File

@@ -206,7 +206,7 @@
" ) -> List[Document]:\n",
" \"\"\"Get docs, adding score information.\"\"\"\n",
" docs, scores = zip(\n",
" *vectorstore.similarity_search_with_score(query, **search_kwargs)\n",
" *self.vectorstore.similarity_search_with_score(query, **search_kwargs)\n",
" )\n",
" for doc, score in zip(docs, scores):\n",
" doc.metadata[\"score\"] = score\n",

View File

@@ -15,43 +15,15 @@
"\n",
"Make sure you have the integration packages installed for any model providers you want to support. E.g. you should have `langchain-openai` installed to init an OpenAI model.\n",
"\n",
":::\n",
"\n",
":::info Requires ``langchain >= 0.2.8``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.8``. Please make sure your package is up to date.\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "165b0de6-9ae3-4e3d-aa98-4fc8a97c4a06",
"metadata": {
"execution": {
"iopub.execute_input": "2024-09-10T20:22:32.858670Z",
"iopub.status.busy": "2024-09-10T20:22:32.858278Z",
"iopub.status.idle": "2024-09-10T20:22:33.009452Z",
"shell.execute_reply": "2024-09-10T20:22:33.007022Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"zsh:1: 0.2.8 not found\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain>=0.2.8 langchain-openai langchain-anthropic langchain-google-vertexai"
]

View File

@@ -23,6 +23,14 @@
"\n",
"We'll go into more detail on a few techniques below!\n",
"\n",
":::{.callout-note}\n",
"\n",
"This how-to guide previously built a chatbot using [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html). You can access this version of the tutorial in the [v0.2 docs](https://python.langchain.com/v0.2/docs/how_to/chatbots_memory/).\n",
"\n",
"The LangGraph implementation offers a number of advantages over `RunnableWithMessageHistory`, including the ability to persist arbitrary components of an application's state (instead of only messages).\n",
"\n",
":::\n",
"\n",
"## Setup\n",
"\n",
"You'll need to install a few packages, and have your OpenAI API key set as an environment variable named `OPENAI_API_KEY`:"
@@ -33,15 +41,6 @@
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 23.3.2 is available.\n",
"You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
]
},
{
"data": {
"text/plain": [
@@ -54,12 +53,13 @@
}
],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai\n",
"%pip install --upgrade --quiet langchain langchain-openai langgraph\n",
"\n",
"# Set env var OPENAI_API_KEY or load from a .env file:\n",
"import dotenv\n",
"import getpass\n",
"import os\n",
"\n",
"dotenv.load_dotenv()"
"if not os.environ.get(\"OPENAI_API_KEY\"):\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
@@ -71,13 +71,13 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"chat = ChatOpenAI(model=\"gpt-4o-mini\")"
"model = ChatOpenAI(model=\"gpt-4o-mini\")"
]
},
{
@@ -98,34 +98,33 @@
"name": "stdout",
"output_type": "stream",
"text": [
"I said \"J'adore la programmation,\" which means \"I love programming\" in French.\n"
"I translated the sentence \"I love programming\" into French, which is \"J'adore la programmation.\"\n"
]
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.messages import AIMessage, HumanMessage, SystemMessage\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant. Answer all questions to the best of your ability.\",\n",
" SystemMessage(\n",
" content=\"You are a helpful assistant. Answer all questions to the best of your ability.\"\n",
" ),\n",
" (\"placeholder\", \"{messages}\"),\n",
" MessagesPlaceholder(variable_name=\"messages\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | chat\n",
"chain = prompt | model\n",
"\n",
"ai_msg = chain.invoke(\n",
" {\n",
" \"messages\": [\n",
" (\n",
" \"human\",\n",
" \"Translate this sentence from English to French: I love programming.\",\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French: I love programming.\"\n",
" ),\n",
" (\"ai\", \"J'adore la programmation.\"),\n",
" (\"human\", \"What did you just say?\"),\n",
" AIMessage(content=\"J'adore la programmation.\"),\n",
" HumanMessage(content=\"What did you just say?\"),\n",
" ],\n",
" }\n",
")\n",
@@ -136,51 +135,57 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see that by passing the previous conversation into a chain, it can use it as context to answer questions. This is the basic concept underpinning chatbot memory - the rest of the guide will demonstrate convenient techniques for passing or reformatting messages.\n",
"\n",
"## Chat history\n",
"\n",
"It's perfectly fine to store and pass messages directly as an array, but we can use LangChain's built-in [message history class](https://python.langchain.com/api_reference/langchain/index.html#module-langchain.memory) to store and load messages as well. Instances of this class are responsible for storing and loading chat messages from persistent storage. LangChain integrates with many providers - you can see a [list of integrations here](/docs/integrations/memory) - but for this demo we will use an ephemeral demo class.\n",
"\n",
"Here's an example of the API:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='Translate this sentence from English to French: I love programming.'),\n",
" AIMessage(content=\"J'adore la programmation.\")]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.chat_message_histories import ChatMessageHistory\n",
"\n",
"demo_ephemeral_chat_history = ChatMessageHistory()\n",
"\n",
"demo_ephemeral_chat_history.add_user_message(\n",
" \"Translate this sentence from English to French: I love programming.\"\n",
")\n",
"\n",
"demo_ephemeral_chat_history.add_ai_message(\"J'adore la programmation.\")\n",
"\n",
"demo_ephemeral_chat_history.messages"
"We can see that by passing the previous conversation into a chain, it can use it as context to answer questions. This is the basic concept underpinning chatbot memory - the rest of the guide will demonstrate convenient techniques for passing or reformatting messages."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can use it directly to store conversation turns for our chain:"
"## Automatic history management\n",
"\n",
"The previous examples pass messages to the chain (and model) explicitly. This is a completely acceptable approach, but it does require external management of new messages. LangChain also provides a way to build applications that have memory using LangGraph's [persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/). You can [enable persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/) in LangGraph applications by providing a `checkpointer` when compiling the graph."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.graph import START, MessagesState, StateGraph\n",
"\n",
"workflow = StateGraph(state_schema=MessagesState)\n",
"\n",
"\n",
"# Define the function that calls the model\n",
"def call_model(state: MessagesState):\n",
" system_prompt = (\n",
" \"You are a helpful assistant. \"\n",
" \"Answer all questions to the best of your ability.\"\n",
" )\n",
" messages = [SystemMessage(content=system_prompt)] + state[\"messages\"]\n",
" response = model.invoke(messages)\n",
" return {\"messages\": response}\n",
"\n",
"\n",
"# Define the node and edge\n",
"workflow.add_node(\"model\", call_model)\n",
"workflow.add_edge(START, \"model\")\n",
"\n",
"# Add simple in-memory checkpointer\n",
"# highlight-start\n",
"memory = MemorySaver()\n",
"app = workflow.compile(checkpointer=memory)\n",
"# highlight-end"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" We'll pass the latest input to the conversation here and let the LangGraph keep track of the conversation history using the checkpointer:"
]
},
{
@@ -191,7 +196,8 @@
{
"data": {
"text/plain": [
"AIMessage(content='You just asked me to translate the sentence \"I love programming\" from English to French.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 61, 'total_tokens': 79}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5cbb21c2-9c30-4031-8ea8-bfc497989535-0', usage_metadata={'input_tokens': 61, 'output_tokens': 18, 'total_tokens': 79})"
"{'messages': [HumanMessage(content='Translate this sentence from English to French: I love programming.', additional_kwargs={}, response_metadata={}, id='200f88bb-936a-4877-990c-8b4112d82cfe'),\n",
" AIMessage(content='The translation of \"I love programming\" in French is \"J\\'aime programmer.\"', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 16, 'prompt_tokens': 39, 'total_tokens': 55, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-d4ebcdcf-9a60-4471-ad8d-96169f614ada-0', usage_metadata={'input_tokens': 39, 'output_tokens': 16, 'total_tokens': 55})]}"
]
},
"execution_count": 5,
@@ -200,159 +206,35 @@
}
],
"source": [
"demo_ephemeral_chat_history = ChatMessageHistory()\n",
"\n",
"input1 = \"Translate this sentence from English to French: I love programming.\"\n",
"\n",
"demo_ephemeral_chat_history.add_user_message(input1)\n",
"\n",
"response = chain.invoke(\n",
" {\n",
" \"messages\": demo_ephemeral_chat_history.messages,\n",
" }\n",
")\n",
"\n",
"demo_ephemeral_chat_history.add_ai_message(response)\n",
"\n",
"input2 = \"What did I just ask you?\"\n",
"\n",
"demo_ephemeral_chat_history.add_user_message(input2)\n",
"\n",
"chain.invoke(\n",
" {\n",
" \"messages\": demo_ephemeral_chat_history.messages,\n",
" }\n",
"app.invoke(\n",
" {\"messages\": [HumanMessage(content=\"Translate to French: I love programming.\")]},\n",
" config={\"configurable\": {\"thread_id\": \"1\"}},\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Automatic history management\n",
"\n",
"The previous examples pass messages to the chain explicitly. This is a completely acceptable approach, but it does require external management of new messages. LangChain also includes an wrapper for LCEL chains that can handle this process automatically called `RunnableWithMessageHistory`.\n",
"\n",
"To show how it works, let's slightly modify the above prompt to take a final `input` variable that populates a `HumanMessage` template after the chat history. This means that we will expect a `chat_history` parameter that contains all messages BEFORE the current messages instead of all messages:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant. Answer all questions to the best of your ability.\",\n",
" ),\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | chat"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" We'll pass the latest input to the conversation here and let the `RunnableWithMessageHistory` class wrap our chain and do the work of appending that `input` variable to the chat history.\n",
" \n",
" Next, let's declare our wrapped chain:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"\n",
"demo_ephemeral_chat_history_for_chain = ChatMessageHistory()\n",
"\n",
"chain_with_message_history = RunnableWithMessageHistory(\n",
" chain,\n",
" lambda session_id: demo_ephemeral_chat_history_for_chain,\n",
" input_messages_key=\"input\",\n",
" history_messages_key=\"chat_history\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This class takes a few parameters in addition to the chain that we want to wrap:\n",
"\n",
"- A factory function that returns a message history for a given session id. This allows your chain to handle multiple users at once by loading different messages for different conversations.\n",
"- An `input_messages_key` that specifies which part of the input should be tracked and stored in the chat history. In this example, we want to track the string passed in as `input`.\n",
"- A `history_messages_key` that specifies what the previous messages should be injected into the prompt as. Our prompt has a `MessagesPlaceholder` named `chat_history`, so we specify this property to match.\n",
"- (For chains with multiple outputs) an `output_messages_key` which specifies which output to store as history. This is the inverse of `input_messages_key`.\n",
"\n",
"We can invoke this new chain as normal, with an additional `configurable` field that specifies the particular `session_id` to pass to the factory function. This is unused for the demo, but in real-world chains, you'll want to return a chat history corresponding to the passed session:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run dc4e2f79-4bcd-4a36-9506-55ace9040588 not found for run 34b5773e-3ced-46a6-8daf-4d464c15c940. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='\"J\\'adore la programmation.\"', response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 39, 'total_tokens': 48}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-648b0822-b0bb-47a2-8e7d-7d34744be8f2-0', usage_metadata={'input_tokens': 39, 'output_tokens': 9, 'total_tokens': 48})"
"{'messages': [HumanMessage(content='Translate this sentence from English to French: I love programming.', additional_kwargs={}, response_metadata={}, id='200f88bb-936a-4877-990c-8b4112d82cfe'),\n",
" AIMessage(content='The translation of \"I love programming\" in French is \"J\\'aime programmer.\"', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 16, 'prompt_tokens': 39, 'total_tokens': 55, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-d4ebcdcf-9a60-4471-ad8d-96169f614ada-0', usage_metadata={'input_tokens': 39, 'output_tokens': 16, 'total_tokens': 55}),\n",
" HumanMessage(content='What did I just ask you?', additional_kwargs={}, response_metadata={}, id='df32f0a6-38fe-418a-98fe-7a5f17d0b812'),\n",
" AIMessage(content='You asked me to translate the sentence \"I love programming\" from English to French.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 70, 'total_tokens': 87, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-1ee8ad67-d7f0-4bb9-adff-e632be6e2825-0', usage_metadata={'input_tokens': 70, 'output_tokens': 17, 'total_tokens': 87})]}"
]
},
"execution_count": 8,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_message_history.invoke(\n",
" {\"input\": \"Translate this sentence from English to French: I love programming.\"},\n",
" {\"configurable\": {\"session_id\": \"unused\"}},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run cc14b9d8-c59e-40db-a523-d6ab3fc2fa4f not found for run 5b75e25c-131e-46ee-9982-68569db04330. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='You asked me to translate the sentence \"I love programming\" from English to French.', response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 63, 'total_tokens': 80}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5950435c-1dc2-43a6-836f-f989fd62c95e-0', usage_metadata={'input_tokens': 63, 'output_tokens': 17, 'total_tokens': 80})"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_message_history.invoke(\n",
" {\"input\": \"What did I just ask you?\"}, {\"configurable\": {\"session_id\": \"unused\"}}\n",
"app.invoke(\n",
" {\"messages\": [HumanMessage(content=\"What did I just ask you?\")]},\n",
" config={\"configurable\": {\"thread_id\": \"1\"}},\n",
")"
]
},
@@ -366,80 +248,44 @@
"\n",
"### Trimming messages\n",
"\n",
"LLMs and chat models have limited context windows, and even if you're not directly hitting limits, you may want to limit the amount of distraction the model has to deal with. One solution is trim the historic messages before passing them to the model. Let's use an example history with some preloaded messages:"
"LLMs and chat models have limited context windows, and even if you're not directly hitting limits, you may want to limit the amount of distraction the model has to deal with. One solution is trim the history messages before passing them to the model. Let's use an example history with the `app` we declared above:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content=\"Hey there! I'm Nemo.\"),\n",
" AIMessage(content='Hello!'),\n",
" HumanMessage(content='How are you today?'),\n",
" AIMessage(content='Fine thanks!')]"
"{'messages': [HumanMessage(content=\"Hey there! I'm Nemo.\", additional_kwargs={}, response_metadata={}, id='99321048-3390-4da6-919b-4ad933c4913b'),\n",
" AIMessage(content='Hello!', additional_kwargs={}, response_metadata={}, id='1c3eaf4a-b698-4bc6-a7a6-549290c3fc7e'),\n",
" HumanMessage(content='How are you today?', additional_kwargs={}, response_metadata={}, id='6f96db9d-ac30-4b4a-9ebc-bc11ae87646b'),\n",
" AIMessage(content='Fine thanks!', additional_kwargs={}, response_metadata={}, id='e783fbb6-2892-42ea-9859-ae449e4cfdf6'),\n",
" HumanMessage(content=\"What's my name?\", additional_kwargs={}, response_metadata={}, id='854065c4-09a0-4c2a-9f2c-eb7182dcc9d5'),\n",
" AIMessage(content='Your name is Nemo.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 63, 'total_tokens': 68, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-eed15b83-b215-47a3-b374-404d6a05ab94-0', usage_metadata={'input_tokens': 63, 'output_tokens': 5, 'total_tokens': 68})]}"
]
},
"execution_count": 21,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"demo_ephemeral_chat_history = ChatMessageHistory()\n",
"demo_ephemeral_chat_history = [\n",
" HumanMessage(content=\"Hey there! I'm Nemo.\"),\n",
" AIMessage(content=\"Hello!\"),\n",
" HumanMessage(content=\"How are you today?\"),\n",
" AIMessage(content=\"Fine thanks!\"),\n",
"]\n",
"\n",
"demo_ephemeral_chat_history.add_user_message(\"Hey there! I'm Nemo.\")\n",
"demo_ephemeral_chat_history.add_ai_message(\"Hello!\")\n",
"demo_ephemeral_chat_history.add_user_message(\"How are you today?\")\n",
"demo_ephemeral_chat_history.add_ai_message(\"Fine thanks!\")\n",
"\n",
"demo_ephemeral_chat_history.messages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's use this message history with the `RunnableWithMessageHistory` chain we declared above:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run 7ff2d8ec-65e2-4f67-8961-e498e2c4a591 not found for run 3881e990-6596-4326-84f6-2b76949e0657. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='Your name is Nemo.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 66, 'total_tokens': 72}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f8aabef8-631a-4238-a39b-701e881fbe47-0', usage_metadata={'input_tokens': 66, 'output_tokens': 6, 'total_tokens': 72})"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_message_history = RunnableWithMessageHistory(\n",
" chain,\n",
" lambda session_id: demo_ephemeral_chat_history,\n",
" input_messages_key=\"input\",\n",
" history_messages_key=\"chat_history\",\n",
")\n",
"\n",
"chain_with_message_history.invoke(\n",
" {\"input\": \"What's my name?\"},\n",
" {\"configurable\": {\"session_id\": \"unused\"}},\n",
"app.invoke(\n",
" {\n",
" \"messages\": demo_ephemeral_chat_history\n",
" + [HumanMessage(content=\"What's my name?\")]\n",
" },\n",
" config={\"configurable\": {\"thread_id\": \"2\"}},\n",
")"
]
},
@@ -447,35 +293,88 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see the chain remembers the preloaded name.\n",
"We can see the app remembers the preloaded name.\n",
"\n",
"But let's say we have a very small context window, and we want to trim the number of messages passed to the chain to only the 2 most recent ones. We can use the built in [trim_messages](/docs/how_to/trim_messages/) util to trim messages based on their token count before they reach our prompt. In this case we'll count each message as 1 \"token\" and keep only the last two messages:"
"But let's say we have a very small context window, and we want to trim the number of messages passed to the model to only the 2 most recent ones. We can use the built in [trim_messages](/docs/how_to/trim_messages/) util to trim messages based on their token count before they reach our prompt. In this case we'll count each message as 1 \"token\" and keep only the last two messages:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.messages import trim_messages\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.graph import START, MessagesState, StateGraph\n",
"\n",
"# Define trimmer\n",
"# highlight-start\n",
"# count each message as 1 \"token\" (token_counter=len) and keep only the last two messages\n",
"trimmer = trim_messages(strategy=\"last\", max_tokens=2, token_counter=len)\n",
"# highlight-end\n",
"\n",
"chain_with_trimming = (\n",
" RunnablePassthrough.assign(chat_history=itemgetter(\"chat_history\") | trimmer)\n",
" | prompt\n",
" | chat\n",
")\n",
"workflow = StateGraph(state_schema=MessagesState)\n",
"\n",
"chain_with_trimmed_history = RunnableWithMessageHistory(\n",
" chain_with_trimming,\n",
" lambda session_id: demo_ephemeral_chat_history,\n",
" input_messages_key=\"input\",\n",
" history_messages_key=\"chat_history\",\n",
"\n",
"# Define the function that calls the model\n",
"def call_model(state: MessagesState):\n",
" # highlight-start\n",
" trimmed_messages = trimmer.invoke(state[\"messages\"])\n",
" system_prompt = (\n",
" \"You are a helpful assistant. \"\n",
" \"Answer all questions to the best of your ability.\"\n",
" )\n",
" messages = [SystemMessage(content=system_prompt)] + trimmed_messages\n",
" # highlight-end\n",
" response = model.invoke(messages)\n",
" return {\"messages\": response}\n",
"\n",
"\n",
"# Define the node and edge\n",
"workflow.add_node(\"model\", call_model)\n",
"workflow.add_edge(START, \"model\")\n",
"\n",
"# Add simple in-memory checkpointer\n",
"memory = MemorySaver()\n",
"app = workflow.compile(checkpointer=memory)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's call this new app and check the response"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'messages': [HumanMessage(content=\"Hey there! I'm Nemo.\", additional_kwargs={}, response_metadata={}, id='99321048-3390-4da6-919b-4ad933c4913b'),\n",
" AIMessage(content='Hello!', additional_kwargs={}, response_metadata={}, id='1c3eaf4a-b698-4bc6-a7a6-549290c3fc7e'),\n",
" HumanMessage(content='How are you today?', additional_kwargs={}, response_metadata={}, id='6f96db9d-ac30-4b4a-9ebc-bc11ae87646b'),\n",
" AIMessage(content='Fine thanks!', additional_kwargs={}, response_metadata={}, id='e783fbb6-2892-42ea-9859-ae449e4cfdf6'),\n",
" HumanMessage(content='What is my name?', additional_kwargs={}, response_metadata={}, id='c8ba5e90-89cb-4b34-ad4c-11c0478422d8'),\n",
" AIMessage(content=\"I'm sorry, but I don't know your name. How can I assist you today?\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 39, 'total_tokens': 56, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-aa86d3f8-898e-4146-aa3c-2c424934b0f5-0', usage_metadata={'input_tokens': 39, 'output_tokens': 17, 'total_tokens': 56})]}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"app.invoke(\n",
" {\n",
" \"messages\": demo_ephemeral_chat_history\n",
" + [HumanMessage(content=\"What is my name?\")]\n",
" },\n",
" config={\"configurable\": {\"thread_id\": \"3\"}},\n",
")"
]
},
@@ -483,101 +382,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's call this new chain and check the messages afterwards:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run 775cde65-8d22-4c44-80bb-f0b9811c32ca not found for run 5cf71d0e-4663-41cd-8dbe-e9752689cfac. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='P. Sherman is a fictional character from the animated movie \"Finding Nemo\" who lives at 42 Wallaby Way, Sydney.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 53, 'total_tokens': 80}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5642ef3a-fdbe-43cf-a575-d1785976a1b9-0', usage_metadata={'input_tokens': 53, 'output_tokens': 27, 'total_tokens': 80})"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_trimmed_history.invoke(\n",
" {\"input\": \"Where does P. Sherman live?\"},\n",
" {\"configurable\": {\"session_id\": \"unused\"}},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content=\"Hey there! I'm Nemo.\"),\n",
" AIMessage(content='Hello!'),\n",
" HumanMessage(content='How are you today?'),\n",
" AIMessage(content='Fine thanks!'),\n",
" HumanMessage(content=\"What's my name?\"),\n",
" AIMessage(content='Your name is Nemo.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 66, 'total_tokens': 72}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f8aabef8-631a-4238-a39b-701e881fbe47-0', usage_metadata={'input_tokens': 66, 'output_tokens': 6, 'total_tokens': 72}),\n",
" HumanMessage(content='Where does P. Sherman live?'),\n",
" AIMessage(content='P. Sherman is a fictional character from the animated movie \"Finding Nemo\" who lives at 42 Wallaby Way, Sydney.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 53, 'total_tokens': 80}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5642ef3a-fdbe-43cf-a575-d1785976a1b9-0', usage_metadata={'input_tokens': 53, 'output_tokens': 27, 'total_tokens': 80})]"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"demo_ephemeral_chat_history.messages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And we can see that our history has removed the two oldest messages while still adding the most recent conversation at the end. The next time the chain is called, `trim_messages` will be called again, and only the two most recent messages will be passed to the model. In this case, this means that the model will forget the name we gave it the next time we invoke it:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run fde7123f-6fd3-421a-a3fc-2fb37dead119 not found for run 061a4563-2394-470d-a3ed-9bf1388ca431. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm sorry, but I don't have access to your personal information, so I don't know your name. How else may I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 31, 'prompt_tokens': 74, 'total_tokens': 105}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-0ab03495-1f7c-4151-9070-56d2d1c565ff-0', usage_metadata={'input_tokens': 74, 'output_tokens': 31, 'total_tokens': 105})"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_trimmed_history.invoke(\n",
" {\"input\": \"What is my name?\"},\n",
" {\"configurable\": {\"session_id\": \"unused\"}},\n",
")"
"We can see that `trim_messages` was called and only the two most recent messages will be passed to the model. In this case, this means that the model forgot the name we gave it."
]
},
{
@@ -593,114 +398,82 @@
"source": [
"### Summary memory\n",
"\n",
"We can use this same pattern in other ways too. For example, we could use an additional LLM call to generate a summary of the conversation before calling our chain. Let's recreate our chat history and chatbot chain:"
"We can use this same pattern in other ways too. For example, we could use an additional LLM call to generate a summary of the conversation before calling our app. Let's recreate our chat history:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content=\"Hey there! I'm Nemo.\"),\n",
" AIMessage(content='Hello!'),\n",
" HumanMessage(content='How are you today?'),\n",
" AIMessage(content='Fine thanks!')]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"demo_ephemeral_chat_history = ChatMessageHistory()\n",
"\n",
"demo_ephemeral_chat_history.add_user_message(\"Hey there! I'm Nemo.\")\n",
"demo_ephemeral_chat_history.add_ai_message(\"Hello!\")\n",
"demo_ephemeral_chat_history.add_user_message(\"How are you today?\")\n",
"demo_ephemeral_chat_history.add_ai_message(\"Fine thanks!\")\n",
"\n",
"demo_ephemeral_chat_history.messages"
"demo_ephemeral_chat_history = [\n",
" HumanMessage(content=\"Hey there! I'm Nemo.\"),\n",
" AIMessage(content=\"Hello!\"),\n",
" HumanMessage(content=\"How are you today?\"),\n",
" AIMessage(content=\"Fine thanks!\"),\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We'll slightly modify the prompt to make the LLM aware that will receive a condensed summary instead of a chat history:"
"And now, let's update the model-calling function to distill previous interactions into a summary:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant. Answer all questions to the best of your ability. The provided chat history includes facts about the user you are speaking with.\",\n",
" ),\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\"user\", \"{input}\"),\n",
" ]\n",
")\n",
"from langchain_core.messages import HumanMessage, RemoveMessage\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.graph import START, MessagesState, StateGraph\n",
"\n",
"chain = prompt | chat\n",
"workflow = StateGraph(state_schema=MessagesState)\n",
"\n",
"chain_with_message_history = RunnableWithMessageHistory(\n",
" chain,\n",
" lambda session_id: demo_ephemeral_chat_history,\n",
" input_messages_key=\"input\",\n",
" history_messages_key=\"chat_history\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And now, let's create a function that will distill previous interactions into a summary. We can add this one to the front of the chain too:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"def summarize_messages(chain_input):\n",
" stored_messages = demo_ephemeral_chat_history.messages\n",
" if len(stored_messages) == 0:\n",
" return False\n",
" summarization_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\n",
" \"user\",\n",
" \"Distill the above chat messages into a single summary message. Include as many specific details as you can.\",\n",
" ),\n",
" ]\n",
"\n",
"# Define the function that calls the model\n",
"def call_model(state: MessagesState):\n",
" system_prompt = (\n",
" \"You are a helpful assistant. \"\n",
" \"Answer all questions to the best of your ability. \"\n",
" \"The provided chat history includes a summary of the earlier conversation.\"\n",
" )\n",
" summarization_chain = summarization_prompt | chat\n",
" system_message = SystemMessage(content=system_prompt)\n",
" # Summarize the messages\n",
" if len(state[\"messages\"]) > 1:\n",
" *message_history, last_human_message = state[\"messages\"]\n",
" # Invoke the model to generate conversation summary\n",
" summary_prompt = (\n",
" \"Distill the above chat messages into a single summary message. \"\n",
" \"Include as many specific details as you can.\"\n",
" )\n",
" summary_message = model.invoke(\n",
" message_history + [HumanMessage(content=summary_prompt)]\n",
" )\n",
" # Delete messages that we no longer want to show up\n",
" delete_messages = [RemoveMessage(id=m.id) for m in state[\"messages\"]]\n",
" # Re-add user message\n",
" human_message = HumanMessage(content=last_human_message.content)\n",
" # Call the model with summary & response\n",
" response = model.invoke([system_message, summary_message, human_message])\n",
" message_updates = [summary_message, human_message, response] + delete_messages\n",
" else:\n",
" message_updates = model.invoke([system_message] + state[\"messages\"])\n",
"\n",
" summary_message = summarization_chain.invoke({\"chat_history\": stored_messages})\n",
"\n",
" demo_ephemeral_chat_history.clear()\n",
"\n",
" demo_ephemeral_chat_history.add_message(summary_message)\n",
"\n",
" return True\n",
" return {\"messages\": message_updates}\n",
"\n",
"\n",
"chain_with_summarization = (\n",
" RunnablePassthrough.assign(messages_summarized=summarize_messages)\n",
" | chain_with_message_history\n",
")"
"# Define the node and edge\n",
"workflow.add_node(\"model\", call_model)\n",
"workflow.add_edge(START, \"model\")\n",
"\n",
"# Add simple in-memory checkpointer\n",
"memory = MemorySaver()\n",
"app = workflow.compile(checkpointer=memory)"
]
},
{
@@ -712,54 +485,37 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='You introduced yourself as Nemo. How can I assist you today, Nemo?')"
"{'messages': [AIMessage(content='Nemo greeted me, and I responded positively, indicating that I am doing fine.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 60, 'total_tokens': 77, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-94df0e9f-6b1c-4e68-858c-5b23058b16d8-0', usage_metadata={'input_tokens': 60, 'output_tokens': 17, 'total_tokens': 77}),\n",
" HumanMessage(content='What did I say my name was?', additional_kwargs={}, response_metadata={}, id='d3f57f56-dd1a-45f9-add2-146f54c1180c'),\n",
" AIMessage(content='You mentioned that your name is Nemo.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 8, 'prompt_tokens': 68, 'total_tokens': 76, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-ea144209-5d37-4bb5-8529-be235626fc74-0', usage_metadata={'input_tokens': 68, 'output_tokens': 8, 'total_tokens': 76})]}"
]
},
"execution_count": 20,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_summarization.invoke(\n",
" {\"input\": \"What did I say my name was?\"},\n",
" {\"configurable\": {\"session_id\": \"unused\"}},\n",
"app.invoke(\n",
" {\n",
" \"messages\": demo_ephemeral_chat_history\n",
" + [HumanMessage(\"What did I say my name was?\")]\n",
" },\n",
" config={\"configurable\": {\"thread_id\": \"4\"}},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content='The conversation is between Nemo and an AI. Nemo introduces himself and the AI responds with a greeting. Nemo then asks the AI how it is doing, and the AI responds that it is fine.'),\n",
" HumanMessage(content='What did I say my name was?'),\n",
" AIMessage(content='You introduced yourself as Nemo. How can I assist you today, Nemo?')]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"demo_ephemeral_chat_history.messages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that invoking the chain again will generate another summary generated from the initial summary plus new messages and so on. You could also design a hybrid approach where a certain number of messages are retained in chat history while others are summarized."
"Note that invoking the app again will generate another summary generated from the initial summary plus new messages and so on. You could also design a hybrid approach where a certain number of messages are retained in chat history while others are summarized."
]
}
],
@@ -779,7 +535,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.12.3"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,31 @@
# How to upgrade to LangGraph persistence
As of the v0.3 release of LangChain, we recommend that LangChain users take advantage of [LangGraph persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to incorporate `memory` into their LangChain application.
## Evolution of memory in LangChain
The concept of memory has evolved significantly in LangChain since its initial release.
In LangChain 0.0.x, memory was based on the [BaseMemory](https://api.python.langchain.com/en/latest/memory/langchain_core.memory.BaseMemory.html) interface and the [BaseChatMessageHistory](https://api.python.langchain.com/en/latest/history/langchain_core.runnables.history.BaseChatMessageHistory.html) interface.
There were number of useful [memory implementations](https://python.langchain.com/api_reference/langchain/memory.html) based
on the `BaseMemory` interface (e.g.[ConversationBufferMemory](https://python.langchain.com/api_reference/langchain/memory/langchain.memory.buffer.ConversationBufferMemory.html), [ConversationBufferWindowMemory](https://python.langchain.com/api_reference/langchain/memory/langchain.memory.buffer_window.ConversationBufferWindowMemory.html)); however, these lacked built-in support for multi-user, multi-conversation scenarios, which are essential for practical conversational AI systems.
:::note
If you are relying on any deprecated memory abstractions in LangChain 0.0.x, we recommend that you follow
the given steps to upgrade to the new LangGraph persistence feature in LangChain 0.3.x.
https://python.langchain.com/docs/versions/migrating_memory/
:::
As of LangChain v0.1, we started recommending that users rely primarily on [BaseChatMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html#langchain_core.runnables.history.RunnableWithMessageHistory). `BaseChatMessageHistory` is a simple persistence layer for a chat history that can be used to store and retrieve messages in a conversation. At this time, the only option for orchestrating LangChain chains was via [LCEL](https://python.langchain.com/docs/how_to/#langchain-expression-language-lcel). When using `LCEL`, memory can be added using the [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html#langchain_core.runnables.history.RunnableWithMessageHistory) interface. While this option is sufficient for building a simple chat application, many users found the API to be unintuitive and difficult to work with.
As of LangChain v0.3, we are commending that new code rely on LangGraph for both orchestration and persistence.
Specifically, for orchestration instead of writing `LCEL` code, users can define LangGraph [graphs](https://langchain-ai.github.io/langgraph/concepts/low_level/). This allows users to keep using `LCEL` within individual nodes when `LCEL` is needed, while
making it easy to define complex orchestration logic that is more readable and maintainable.
For persistence, users can use LangGraph's [persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) feature to store and retrieve data from a graph database. LangGraph persistence is extremely flexible and can support a much wider range of use cases than the `RunnableWithMessageHistory` interface.
:::important
If you have been using `RunnableWithMessageHistory` or `BaseChatMessageHistory`, you do not need to make any changes. We do not plan on deprecating either functionality in the near future. This functionality is sufficient for simple chat applications and any code that uses `RunnableWithMessageHistory` will continue to work as expected.
:::

View File

@@ -7,6 +7,15 @@
"source": [
"# How to add chat history\n",
"\n",
"\n",
":::{.callout-note}\n",
"\n",
"This tutorial previously built a chatbot using [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html). You can access this version of the tutorial in the [v0.2 docs](https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/).\n",
"\n",
"The LangGraph implementation offers a number of advantages over `RunnableWithMessageHistory`, including the ability to persist arbitrary components of an application's state (instead of only messages).\n",
"\n",
":::\n",
"\n",
"In many Q&A applications we want to allow the user to have a back-and-forth conversation, meaning the application needs some sort of \"memory\" of past questions and answers, and some logic for incorporating those into its current thinking.\n",
"\n",
"In this guide we focus on **adding logic for incorporating historical messages.**\n",
@@ -29,7 +38,7 @@
"\n",
"### Dependencies\n",
"\n",
"We'll use OpenAI embeddings and a Chroma vector store in this walkthrough, but everything shown here works with any [Embeddings](/docs/concepts#embedding-models), and [VectorStore](/docs/concepts#vectorstores) or [Retriever](/docs/concepts#retrievers). \n",
"We'll use OpenAI embeddings and an InMemory vector store in this walkthrough, but everything shown here works with any [Embeddings](/docs/concepts#embedding-models), and [VectorStore](/docs/concepts#vectorstores) or [Retriever](/docs/concepts#retrievers). \n",
"\n",
"We'll use the following packages:"
]
@@ -42,7 +51,7 @@
"outputs": [],
"source": [
"%%capture --no-stderr\n",
"%pip install --upgrade --quiet langchain langchain-community langchain-chroma beautifulsoup4"
"%pip install --upgrade --quiet langchain langchain-community beautifulsoup4"
]
},
{
@@ -64,11 +73,7 @@
"import os\n",
"\n",
"if not os.environ.get(\"OPENAI_API_KEY\"):\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n",
"\n",
"# import dotenv\n",
"\n",
"# dotenv.load_dotenv()"
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()"
]
},
{
@@ -155,7 +160,7 @@
"id": "15f8ad59-19de-42e3-85a8-3ba95ee0bd43",
"metadata": {},
"source": [
"For the retriever, we will use [WebBaseLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load the content of a web page. Here we instantiate a `Chroma` vectorstore and then use its [.as_retriever](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever) method to build a retriever that can be incorporated into [LCEL](/docs/concepts/#langchain-expression-language) chains."
"For the retriever, we will use [WebBaseLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load the content of a web page. Here we instantiate a `InMemoryVectorStore` vectorstore and then use its [.as_retriever](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever) method to build a retriever that can be incorporated into [LCEL](/docs/concepts/#langchain-expression-language) chains."
]
},
{
@@ -163,16 +168,24 @@
"execution_count": 5,
"id": "820244ae-74b4-4593-b392-822979dd91b8",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"USER_AGENT environment variable not set, consider setting it to identify your requests.\n"
]
}
],
"source": [
"import bs4\n",
"from langchain.chains import create_retrieval_chain\n",
"from langchain.chains.combine_documents import create_stuff_documents_chain\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"\n",
@@ -188,7 +201,8 @@
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"splits = text_splitter.split_documents(docs)\n",
"vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n",
"vectorstore = InMemoryVectorStore(embedding=OpenAIEmbeddings())\n",
"vectorstore.add_documents(splits)\n",
"retriever = vectorstore.as_retriever()"
]
},
@@ -288,8 +302,8 @@
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)\n",
"\n",
"question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)\n",
"rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)"
]
},
@@ -298,20 +312,17 @@
"id": "53a662c2-f38b-45f9-95c4-66de15637614",
"metadata": {},
"source": [
"### Adding chat history\n",
"### Stateful Management of chat history\n",
"\n",
"To manage the chat history, we will need:\n",
"We have added application logic for incorporating chat history, but we are still manually plumbing it through our application. In production, the Q&A application we usually persist the chat history into a database, and be able to read and update it appropriately.\n",
"\n",
"1. An object for storing the chat history;\n",
"2. An object that wraps our chain and manages updates to the chat history.\n",
"[LangGraph](https://langchain-ai.github.io/langgraph/) implements a built-in [persistence layer](https://langchain-ai.github.io/langgraph/concepts/persistence/), making it ideal for chat applications that support multiple conversational turns.\n",
"\n",
"For these we will use [BaseChatMessageHistory](https://python.langchain.com/api_reference/core/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html) and [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html). The latter is a wrapper for an LCEL chain and a `BaseChatMessageHistory` that handles injecting chat history into inputs and updating it after each invocation.\n",
"Wrapping our chat model in a minimal LangGraph application allows us to automatically persist the message history, simplifying the development of multi-turn applications.\n",
"\n",
"For a detailed walkthrough of how to use these classes together to create a stateful conversational chain, head to the [How to add message history (memory)](/docs/how_to/message_history/) LCEL how-to guide.\n",
"LangGraph comes with a simple [in-memory checkpointer](https://langchain-ai.github.io/langgraph/reference/checkpoints/#memorysaver), which we use below. See its documentation for more detail, including how to use different persistence backends (e.g., SQLite or Postgres).\n",
"\n",
"Below, we implement a simple example of the second option, in which chat histories are stored in a simple dict. LangChain manages memory integrations with [Redis](/docs/integrations/memory/redis_chat_message_history/) and other technologies to provide for more robust persistence.\n",
"\n",
"Instances of `RunnableWithMessageHistory` manage the chat history for you. They accept a config with a key (`\"session_id\"` by default) that specifies what conversation history to fetch and prepend to the input, and append the output to the same conversation history. Below is an example:"
"For a detailed walkthrough of how to manage message history, head to the How to add message history (memory) guide."
]
},
{
@@ -321,26 +332,48 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_message_histories import ChatMessageHistory\n",
"from langchain_core.chat_history import BaseChatMessageHistory\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from typing import Sequence\n",
"\n",
"store = {}\n",
"from langchain_core.messages import AIMessage, BaseMessage, HumanMessage\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.graph import START, StateGraph\n",
"from langgraph.graph.message import add_messages\n",
"from typing_extensions import Annotated, TypedDict\n",
"\n",
"\n",
"def get_session_history(session_id: str) -> BaseChatMessageHistory:\n",
" if session_id not in store:\n",
" store[session_id] = ChatMessageHistory()\n",
" return store[session_id]\n",
"# We define a dict representing the state of the application.\n",
"# This state has the same input and output keys as `rag_chain`.\n",
"class State(TypedDict):\n",
" input: str\n",
" chat_history: Annotated[Sequence[BaseMessage], add_messages]\n",
" context: str\n",
" answer: str\n",
"\n",
"\n",
"conversational_rag_chain = RunnableWithMessageHistory(\n",
" rag_chain,\n",
" get_session_history,\n",
" input_messages_key=\"input\",\n",
" history_messages_key=\"chat_history\",\n",
" output_messages_key=\"answer\",\n",
")"
"# We then define a simple node that runs the `rag_chain`.\n",
"# The `return` values of the node update the graph state, so here we just\n",
"# update the chat history with the input message and response.\n",
"def call_model(state: State):\n",
" response = rag_chain.invoke(state)\n",
" return {\n",
" \"chat_history\": [\n",
" HumanMessage(state[\"input\"]),\n",
" AIMessage(response[\"answer\"]),\n",
" ],\n",
" \"context\": response[\"context\"],\n",
" \"answer\": response[\"answer\"],\n",
" }\n",
"\n",
"\n",
"# Our graph consists only of one node:\n",
"workflow = StateGraph(state_schema=State)\n",
"workflow.add_edge(START, \"model\")\n",
"workflow.add_node(\"model\", call_model)\n",
"\n",
"# Finally, we compile the graph with a checkpointer object.\n",
"# This persists the state, in this case in memory.\n",
"memory = MemorySaver()\n",
"app = workflow.compile(checkpointer=memory)"
]
},
{
@@ -350,23 +383,21 @@
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Task decomposition involves breaking down a complex task into smaller and simpler steps to make it more manageable and easier to accomplish. This process can be done using techniques like Chain of Thought (CoT) or Tree of Thoughts to guide the model in breaking down tasks effectively. Task decomposition can be facilitated by providing simple prompts to a language model, task-specific instructions, or human inputs.'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This process helps agents or models tackle difficult tasks by dividing them into more manageable subtasks. Task decomposition can be achieved through methods like Chain of Thought or Tree of Thoughts, which guide the model in thinking step by step or exploring multiple reasoning possibilities at each step.\n"
]
}
],
"source": [
"conversational_rag_chain.invoke(\n",
"config = {\"configurable\": {\"thread_id\": \"abc123\"}}\n",
"\n",
"result = app.invoke(\n",
" {\"input\": \"What is Task Decomposition?\"},\n",
" config={\n",
" \"configurable\": {\"session_id\": \"abc123\"}\n",
" }, # constructs a key \"abc123\" in `store`.\n",
")[\"answer\"]"
" config=config,\n",
")\n",
"print(result[\"answer\"])"
]
},
{
@@ -376,21 +407,19 @@
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Task decomposition can be achieved through various methods, including using techniques like Chain of Thought (CoT) or Tree of Thoughts to guide the model in breaking down tasks effectively. Common ways of task decomposition include providing simple prompts to a language model, task-specific instructions, or human inputs to break down complex tasks into smaller and more manageable steps. Additionally, task decomposition can involve utilizing resources like internet access for information gathering, long-term memory management, and GPT-3.5 powered agents for delegation of simple tasks.'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"One way of task decomposition is by using a Language Model (LLM) with simple prompting, such as providing instructions like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\" This method guides the LLM to break down the task into smaller components for easier processing and execution.\n"
]
}
],
"source": [
"conversational_rag_chain.invoke(\n",
" {\"input\": \"What are common ways of doing it?\"},\n",
" config={\"configurable\": {\"session_id\": \"abc123\"}},\n",
")[\"answer\"]"
"result = app.invoke(\n",
" {\"input\": \"What is one way of doing it?\"},\n",
" config=config,\n",
")\n",
"print(result[\"answer\"])"
]
},
{
@@ -398,7 +427,7 @@
"id": "3ab59258-84bc-4904-880e-2ebfebbca563",
"metadata": {},
"source": [
"The conversation history can be inspected in the `store` dict:"
"The conversation history can be inspected via the state of the application:"
]
},
{
@@ -411,27 +440,25 @@
"name": "stdout",
"output_type": "stream",
"text": [
"User: What is Task Decomposition?\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"AI: Task decomposition involves breaking down a complex task into smaller and simpler steps to make it more manageable and easier to accomplish. This process can be done using techniques like Chain of Thought (CoT) or Tree of Thoughts to guide the model in breaking down tasks effectively. Task decomposition can be facilitated by providing simple prompts to a language model, task-specific instructions, or human inputs.\n",
"What is Task Decomposition?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"User: What are common ways of doing it?\n",
"Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This process helps agents or models tackle difficult tasks by dividing them into more manageable subtasks. Task decomposition can be achieved through methods like Chain of Thought or Tree of Thoughts, which guide the model in thinking step by step or exploring multiple reasoning possibilities at each step.\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"AI: Task decomposition can be achieved through various methods, including using techniques like Chain of Thought (CoT) or Tree of Thoughts to guide the model in breaking down tasks effectively. Common ways of task decomposition include providing simple prompts to a language model, task-specific instructions, or human inputs to break down complex tasks into smaller and more manageable steps. Additionally, task decomposition can involve utilizing resources like internet access for information gathering, long-term memory management, and GPT-3.5 powered agents for delegation of simple tasks.\n",
"\n"
"What is one way of doing it?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"One way of task decomposition is by using a Language Model (LLM) with simple prompting, such as providing instructions like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\" This method guides the LLM to break down the task into smaller components for easier processing and execution.\n"
]
}
],
"source": [
"from langchain_core.messages import AIMessage\n",
"\n",
"for message in store[\"abc123\"].messages:\n",
" if isinstance(message, AIMessage):\n",
" prefix = \"AI\"\n",
" else:\n",
" prefix = \"User\"\n",
"\n",
" print(f\"{prefix}: {message.content}\\n\")"
"chat_history = app.get_state(config).values[\"chat_history\"]\n",
"for message in chat_history:\n",
" message.pretty_print()"
]
},
{
@@ -459,17 +486,24 @@
"metadata": {},
"outputs": [],
"source": [
"from typing import Sequence\n",
"\n",
"import bs4\n",
"from langchain.chains import create_history_aware_retriever, create_retrieval_chain\n",
"from langchain.chains.combine_documents import create_stuff_documents_chain\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.chat_message_histories import ChatMessageHistory\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_core.chat_history import BaseChatMessageHistory\n",
"from langchain_core.messages import AIMessage, BaseMessage, HumanMessage\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.graph import START, StateGraph\n",
"from langgraph.graph.message import add_messages\n",
"from typing_extensions import Annotated, TypedDict\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
"\n",
@@ -487,7 +521,9 @@
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"splits = text_splitter.split_documents(docs)\n",
"vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n",
"\n",
"vectorstore = InMemoryVectorStore(embedding=OpenAIEmbeddings())\n",
"vectorstore.add_documents(documents=splits)\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"\n",
@@ -534,22 +570,41 @@
"\n",
"\n",
"### Statefully manage chat history ###\n",
"store = {}\n",
"\n",
"\n",
"def get_session_history(session_id: str) -> BaseChatMessageHistory:\n",
" if session_id not in store:\n",
" store[session_id] = ChatMessageHistory()\n",
" return store[session_id]\n",
"# We define a dict representing the state of the application.\n",
"# This state has the same input and output keys as `rag_chain`.\n",
"class State(TypedDict):\n",
" input: str\n",
" chat_history: Annotated[Sequence[BaseMessage], add_messages]\n",
" context: str\n",
" answer: str\n",
"\n",
"\n",
"conversational_rag_chain = RunnableWithMessageHistory(\n",
" rag_chain,\n",
" get_session_history,\n",
" input_messages_key=\"input\",\n",
" history_messages_key=\"chat_history\",\n",
" output_messages_key=\"answer\",\n",
")"
"# We then define a simple node that runs the `rag_chain`.\n",
"# The `return` values of the node update the graph state, so here we just\n",
"# update the chat history with the input message and response.\n",
"def call_model(state: State):\n",
" response = rag_chain.invoke(state)\n",
" return {\n",
" \"chat_history\": [\n",
" HumanMessage(state[\"input\"]),\n",
" AIMessage(response[\"answer\"]),\n",
" ],\n",
" \"context\": response[\"context\"],\n",
" \"answer\": response[\"answer\"],\n",
" }\n",
"\n",
"\n",
"# Our graph consists only of one node:\n",
"workflow = StateGraph(state_schema=State)\n",
"workflow.add_edge(START, \"model\")\n",
"workflow.add_node(\"model\", call_model)\n",
"\n",
"# Finally, we compile the graph with a checkpointer object.\n",
"# This persists the state, in this case in memory.\n",
"memory = MemorySaver()\n",
"app = workflow.compile(checkpointer=memory)"
]
},
{
@@ -559,23 +614,21 @@
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Task decomposition involves breaking down a complex task into smaller and simpler steps to make it more manageable. Techniques like Chain of Thought (CoT) and Tree of Thoughts help in decomposing hard tasks into multiple manageable tasks by instructing models to think step by step and explore multiple reasoning possibilities at each step. Task decomposition can be achieved through various methods such as using prompting techniques, task-specific instructions, or human inputs.'"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This process helps agents or models tackle difficult tasks by dividing them into more manageable subtasks. Different methods like Chain of Thought and Tree of Thoughts are used to guide the decomposition process, enabling a step-by-step approach to problem-solving.\n"
]
}
],
"source": [
"conversational_rag_chain.invoke(\n",
"config = {\"configurable\": {\"thread_id\": \"abc123\"}}\n",
"\n",
"result = app.invoke(\n",
" {\"input\": \"What is Task Decomposition?\"},\n",
" config={\n",
" \"configurable\": {\"session_id\": \"abc123\"}\n",
" }, # constructs a key \"abc123\" in `store`.\n",
")[\"answer\"]"
" config=config,\n",
")\n",
"print(result[\"answer\"])"
]
},
{
@@ -585,21 +638,19 @@
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Task decomposition can be done in common ways such as using prompting techniques like Chain of Thought (CoT) or Tree of Thoughts, which instruct models to think step by step and explore multiple reasoning possibilities at each step. Another way is to provide task-specific instructions, such as asking to \"Write a story outline\" for writing a novel, to guide the decomposition process. Additionally, task decomposition can also involve human inputs to break down complex tasks into smaller and simpler steps.'"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"One way of task decomposition is by using Large Language Models (LLMs) with simple prompting, such as providing instructions like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\" This method leverages the capabilities of LLMs to break down tasks into smaller components, making them easier to manage and solve.\n"
]
}
],
"source": [
"conversational_rag_chain.invoke(\n",
" {\"input\": \"What are common ways of doing it?\"},\n",
" config={\"configurable\": {\"session_id\": \"abc123\"}},\n",
")[\"answer\"]"
"result = app.invoke(\n",
" {\"input\": \"What is one way of doing it?\"},\n",
" config=config,\n",
")\n",
"print(result[\"answer\"])"
]
},
{
@@ -672,22 +723,11 @@
"id": "52ae46d9-43f7-481b-96d5-df750be3ad65",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Error in LangChainTracer.on_tool_end callback: TracerException(\"Found chain run at ID 5cd28d13-88dd-4eac-a465-3770ac27eff6, but expected {'tool'} run.\")\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_TbhPPPN05GKi36HLeaN4QM90', 'function': {'arguments': '{\"query\":\"Task Decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 68, 'total_tokens': 87}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-2e60d910-879a-4a2a-b1e9-6a6c5c7d7ebc-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Task Decomposition'}, 'id': 'call_TbhPPPN05GKi36HLeaN4QM90'}])]}}\n",
"----\n",
"{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the models thinking process.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the models thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.', name='blog_post_retriever', tool_call_id='call_TbhPPPN05GKi36HLeaN4QM90')]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This approach helps in transforming big tasks into multiple manageable tasks, making it easier for autonomous agents to handle and interpret the thinking process. One common method for task decomposition is the Chain of Thought (CoT) technique, where models are instructed to \"think step by step\" to decompose hard tasks. Another extension of CoT is the Tree of Thoughts, which explores multiple reasoning possibilities at each step by creating a tree structure of multiple thoughts per step. Task decomposition can be facilitated through various methods such as using simple prompts, task-specific instructions, or human inputs.', response_metadata={'token_usage': {'completion_tokens': 130, 'prompt_tokens': 636, 'total_tokens': 766}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-3ef17638-65df-4030-a7fe-795e6da91c69-0')]}}\n",
"{'agent': {'messages': [AIMessage(content='Task decomposition is a problem-solving strategy that involves breaking down a complex task or problem into smaller, more manageable subtasks. By decomposing a task, individuals can better understand the components of the task, allocate resources effectively, and solve the problem more efficiently. This approach allows for a systematic and organized way of approaching complex tasks by dividing them into smaller, more achievable steps.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 75, 'prompt_tokens': 68, 'total_tokens': 143, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-01d17f40-c853-4e16-96bd-1e231e2486b5-0', usage_metadata={'input_tokens': 68, 'output_tokens': 75, 'total_tokens': 143})]}}\n",
"----\n"
]
}
@@ -748,7 +788,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='Hello Bob! How can I assist you today?', response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 67, 'total_tokens': 78}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-1cd17562-18aa-4839-b41b-403b17a0fc20-0')]}}\n",
"{'agent': {'messages': [AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 67, 'total_tokens': 78, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-e41bbdf4-da73-43e3-b980-f0d258c4713d-0', usage_metadata={'input_tokens': 67, 'output_tokens': 11, 'total_tokens': 78})]}}\n",
"----\n"
]
}
@@ -777,22 +817,15 @@
"id": "e2c570ae-dd91-402c-8693-ae746de63b16",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Error in LangChainTracer.on_tool_end callback: TracerException(\"Found chain run at ID c54381c0-c5d9-495a-91a0-aca4ae755663, but expected {'tool'} run.\")\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_rg7zKTE5e0ICxVSslJ1u9LMg', 'function': {'arguments': '{\"query\":\"Task Decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 91, 'total_tokens': 110}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-122bf097-7ff1-49aa-b430-e362b51354ad-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Task Decomposition'}, 'id': 'call_rg7zKTE5e0ICxVSslJ1u9LMg'}])]}}\n",
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_ygtIVKtuMQEsY95j31BvhzzN', 'function': {'arguments': '{\"query\":\"Task Decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 91, 'total_tokens': 110, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-61b7e948-e450-4902-b21c-66db5df816fc-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Task Decomposition'}, 'id': 'call_ygtIVKtuMQEsY95j31BvhzzN', 'type': 'tool_call'}], usage_metadata={'input_tokens': 91, 'output_tokens': 19, 'total_tokens': 110})]}}\n",
"----\n",
"{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the models thinking process.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the models thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.', name='blog_post_retriever', tool_call_id='call_rg7zKTE5e0ICxVSslJ1u9LMg')]}}\n",
"{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the models thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\n(3) Task execution: Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user\\'s request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.\\n\\nFig. 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and parses the user requests into multiple tasks. There are four attributes associated with each task: task type, ID, dependencies, and arguments. They use few-shot examples to guide LLM to do task parsing and planning.\\nInstruction:', name='blog_post_retriever', tool_call_id='call_ygtIVKtuMQEsY95j31BvhzzN')]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This approach helps in managing and solving intricate problems by dividing them into more manageable components. By decomposing tasks, agents or models can better understand the steps involved and plan their actions accordingly. Techniques like Chain of Thought (CoT) and Tree of Thoughts are examples of methods that enhance model performance on complex tasks by breaking them down into smaller steps.', response_metadata={'token_usage': {'completion_tokens': 87, 'prompt_tokens': 659, 'total_tokens': 746}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-b9166386-83e5-4b82-9a4b-590e5fa76671-0')]}}\n",
"{'agent': {'messages': [AIMessage(content='Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This approach helps autonomous agents or models to handle challenging tasks by dividing them into more manageable subtasks. One common method for task decomposition is the Chain of Thought (CoT) technique, where models are prompted to think step by step to decompose difficult tasks.\\n\\nAnother extension of CoT is the Tree of Thoughts, which explores multiple reasoning possibilities at each step by creating a tree structure of multiple thoughts per step. Task decomposition can be facilitated by providing simple prompts to language models, using task-specific instructions, or incorporating human inputs.\\n\\nOverall, task decomposition plays a crucial role in enabling autonomous agents to plan and execute complex tasks effectively by breaking them down into smaller, more manageable components.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 153, 'prompt_tokens': 611, 'total_tokens': 764, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-68aed524-fdf4-4d34-8546-dfb02f2a03cd-0', usage_metadata={'input_tokens': 611, 'output_tokens': 153, 'total_tokens': 764})]}}\n",
"----\n"
]
}
@@ -827,24 +860,11 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_6kbxTU5CDWLmF9mrvR7bWSkI', 'function': {'arguments': '{\"query\":\"Common ways of task decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 21, 'prompt_tokens': 769, 'total_tokens': 790}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-2d2c8327-35cd-484a-b8fd-52436657c2d8-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Common ways of task decomposition'}, 'id': 'call_6kbxTU5CDWLmF9mrvR7bWSkI'}])]}}\n",
"----\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Error in LangChainTracer.on_tool_end callback: TracerException(\"Found chain run at ID 29553415-e0f4-41a9-8921-ba489e377f68, but expected {'tool'} run.\")\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the models thinking process.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the models thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.', name='blog_post_retriever', tool_call_id='call_6kbxTU5CDWLmF9mrvR7bWSkI')]}}\n",
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_QOoWDqK4Bopi8P9HzGmnHAd5', 'function': {'arguments': '{\"query\":\"common ways of task decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 21, 'prompt_tokens': 787, 'total_tokens': 808, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-096ddff3-9505-4b2f-ae87-c5af6924dd00-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'common ways of task decomposition'}, 'id': 'call_QOoWDqK4Bopi8P9HzGmnHAd5', 'type': 'tool_call'}], usage_metadata={'input_tokens': 787, 'output_tokens': 21, 'total_tokens': 808})]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='Common ways of task decomposition include:\\n1. Using LLM with simple prompting like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\"\\n2. Using task-specific instructions, for example, \"Write a story outline\" for writing a novel.\\n3. Involving human inputs in the task decomposition process.', response_metadata={'token_usage': {'completion_tokens': 67, 'prompt_tokens': 1339, 'total_tokens': 1406}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9ad14cde-ca75-4238-a868-f865e0fc50dd-0')]}}\n",
"{'tools': {'messages': [ToolMessage(content='Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the models thinking process.\\n\\nResources:\\n1. Internet access for searches and information gathering.\\n2. Long Term memory management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.\\n2. Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect on past decisions and strategies to refine your approach.\\n4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.\\n\\n(3) Task execution: Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user\\'s request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.', name='blog_post_retriever', tool_call_id='call_QOoWDqK4Bopi8P9HzGmnHAd5')]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='Common ways of task decomposition include:\\n\\n1. Using Language Models (LLM) with simple prompting: Language models can be prompted with instructions like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\" to break down tasks into smaller steps.\\n\\n2. Task-specific instructions: Providing specific instructions tailored to the task at hand, such as \"Write a story outline\" for writing a novel, can help in decomposing tasks effectively.\\n\\n3. Human inputs: Involving human inputs in the task decomposition process can also be a common approach to breaking down complex tasks into manageable subtasks.\\n\\nThese methods of task decomposition play a crucial role in enabling autonomous agents to effectively plan and execute complex tasks by breaking them down into smaller, more manageable components.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 152, 'prompt_tokens': 1332, 'total_tokens': 1484, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-41868dd4-a1d9-4323-b7b0-ac52c228a2ac-0', usage_metadata={'input_tokens': 1332, 'output_tokens': 152, 'total_tokens': 1484})]}}\n",
"----\n"
]
}
@@ -879,18 +899,27 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 1,
"id": "b1d2b4d4-e604-497d-873d-d345b808578e",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"USER_AGENT environment variable not set, consider setting it to identify your requests.\n"
]
}
],
"source": [
"import bs4\n",
"from langchain.tools.retriever import create_retriever_tool\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"memory = MemorySaver()\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
@@ -909,7 +938,8 @@
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"splits = text_splitter.split_documents(docs)\n",
"vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n",
"vectorstore = InMemoryVectorStore(embedding=OpenAIEmbeddings())\n",
"vectorstore.add_documents(documents=splits)\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"\n",
@@ -961,7 +991,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@@ -179,7 +179,7 @@
" b: Annotated[int, ..., \"Second integer\"]\n",
"\n",
"\n",
"class multiply(BaseModel):\n",
"class multiply(TypedDict):\n",
" \"\"\"Multiply two integers.\"\"\"\n",
"\n",
" a: Annotated[int, ..., \"First integer\"]\n",

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
"id": "b5ee5b75-6876-4d62-9ade-5a7a808ae5a2",
"id": "eaad9a82-0592-4315-9931-0621054bdd0e",
"metadata": {},
"source": [
"# How to trim messages\n",
@@ -22,33 +22,77 @@
"\n",
"All models have finite context windows, meaning there's a limit to how many tokens they can take as input. If you have very long messages or a chain/agent that accumulates a long message is history, you'll need to manage the length of the messages you're passing in to the model.\n",
"\n",
"The `trim_messages` util provides some basic strategies for trimming a list of messages to be of a certain token length.\n",
"[trim_messages](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html) can be used to reduce the size of a chat history to a specified token count or specified message count.\n",
"\n",
"## Getting the last `max_tokens` tokens\n",
"\n",
"To get the last `max_tokens` in the list of Messages we can set `strategy=\"last\"`. Notice that for our `token_counter` we can pass in a function (more on that below) or a language model (since language models have a message token counting method). It makes sense to pass in a model when you're trimming your messages to fit into the context window of that specific model:"
"If passing the trimmed chat history back into a chat model directly, the trimmed chat history should satisfy the following properties:\n",
"\n",
"1. The resulting chat history should be **valid**. Most chat models expect that chat\n",
" history starts with either (1) a `HumanMessage` or (2) a [SystemMessage](/docs/concepts/#systemmessage) followed\n",
" by a `HumanMessage`. In addition, generally a `ToolMessage` can only appear after an `AIMessage`\n",
" that involved a tool call. This can be achieved by setting `start_on=\"human\"`.\n",
"2. It includes recent messages and drops old messages in the chat history.\n",
" This can be achieved by setting `strategy=\"last\"`.\n",
"4. Usually, the new chat history should include the `SystemMessage` if it\n",
" was present in the original chat history since the `SystemMessage` includes\n",
" special instructions to the chat model. The `SystemMessage` is almost always\n",
" the first message in the history if present. This can be achieved by setting\n",
" `include_system=True`."
]
},
{
"cell_type": "markdown",
"id": "e4bffc37-78c0-46c3-ad0c-b44de0ed3e90",
"metadata": {},
"source": [
"## Trimming based on token count\n",
"\n",
"Here, we'll trim the chat history based on token count. The trimmed chat history will produce a **valid** chat history that includes the `SystemMessage`.\n",
"\n",
"To keep the most recent messages, we set `strategy=\"last\"`. We'll also set `include_system=True` to include the `SystemMessage`, and `start_on=\"human\"` to make sure the resulting chat history is valid. \n",
"\n",
"This is a good default configuration when using `trim_messages` based on token count. Remember to adjust `token_counter` and `max_tokens` for your use case.\n",
"\n",
"Notice that for our `token_counter` we can pass in a function (more on that below) or a language model (since language models have a message token counting method). It makes sense to pass in a model when you're trimming your messages to fit into the context window of that specific model:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c974633b-3bd0-4844-8a8f-85e3e25f13fe",
"id": "c91edeb2-9978-4665-9fdb-fc96cdb51caa",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"pip install -qU langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "40ea972c-d424-4bc4-9f2e-82f01c3d7598",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\"),\n",
" HumanMessage(content='what do you call a speechless parrot')]"
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n",
" HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 1,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# pip install -U langchain-openai\n",
"from langchain_core.messages import (\n",
" AIMessage,\n",
" HumanMessage,\n",
@@ -70,36 +114,66 @@
" HumanMessage(\"what do you call a speechless parrot\"),\n",
"]\n",
"\n",
"\n",
"trim_messages(\n",
" messages,\n",
" max_tokens=45,\n",
" # Keep the last <= n_count tokens of the messages.\n",
" strategy=\"last\",\n",
" # highlight-start\n",
" # Remember to adjust based on your model\n",
" # or else pass a custom token_encoder\n",
" token_counter=ChatOpenAI(model=\"gpt-4o\"),\n",
" # highlight-end\n",
" # Most chat models expect that chat history starts with either:\n",
" # (1) a HumanMessage or\n",
" # (2) a SystemMessage followed by a HumanMessage\n",
" # highlight-start\n",
" # Remember to adjust based on the desired conversation\n",
" # length\n",
" max_tokens=45,\n",
" # highlight-end\n",
" # Most chat models expect that chat history starts with either:\n",
" # (1) a HumanMessage or\n",
" # (2) a SystemMessage followed by a HumanMessage\n",
" # start_on=\"human\" makes sure we produce a valid chat history\n",
" start_on=\"human\",\n",
" # Usually, we want to keep the SystemMessage\n",
" # if it's present in the original history.\n",
" # The SystemMessage has special instructions for the model.\n",
" include_system=True,\n",
" allow_partial=False,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d3f46654-c4b2-4136-b995-91c3febe5bf9",
"id": "28fcfc94-0d4a-415c-9506-8ae7634253a2",
"metadata": {},
"source": [
"If we want to always keep the initial system message we can specify `include_system=True`:"
"## Trimming based on message count\n",
"\n",
"Alternatively, we can trim the chat history based on **message count**, by setting `token_counter=len`. In this case, each message will count as a single token, and `max_tokens` will control\n",
"the maximum number of messages.\n",
"\n",
"This is a good default configuration when using `trim_messages` based on message count. Remember to adjust `max_tokens` for your use case."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "589b0223-3a73-44ec-8315-2dba3ee6117d",
"execution_count": 3,
"id": "c8fdedae-0e6b-4901-a222-81fc95e265c2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n",
" HumanMessage(content='what do you call a speechless parrot')]"
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n",
" HumanMessage(content='and who is harrison chasing anyways', additional_kwargs={}, response_metadata={}),\n",
" AIMessage(content=\"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\", additional_kwargs={}, response_metadata={}),\n",
" HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 2,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -107,36 +181,56 @@
"source": [
"trim_messages(\n",
" messages,\n",
" max_tokens=45,\n",
" # Keep the last <= n_count tokens of the messages.\n",
" strategy=\"last\",\n",
" token_counter=ChatOpenAI(model=\"gpt-4o\"),\n",
" # highlight-next-line\n",
" token_counter=len,\n",
" # When token_counter=len, each message\n",
" # will be counted as a single token.\n",
" # highlight-start\n",
" # Remember to adjust for your use case\n",
" max_tokens=5,\n",
" # highlight-end\n",
" # Most chat models expect that chat history starts with either:\n",
" # (1) a HumanMessage or\n",
" # (2) a SystemMessage followed by a HumanMessage\n",
" # start_on=\"human\" makes sure we produce a valid chat history\n",
" start_on=\"human\",\n",
" # Usually, we want to keep the SystemMessage\n",
" # if it's present in the original history.\n",
" # The SystemMessage has special instructions for the model.\n",
" include_system=True,\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8a8b542c-04d1-4515-8d82-b999ea4fac4f",
"id": "9367857f-7f9a-4d17-9f9c-6ffc5aae909c",
"metadata": {},
"source": [
"## Advanced Usage\n",
"\n",
"You can use `trim_message` as a building-block to create more complex processing logic.\n",
"\n",
"If we want to allow splitting up the contents of a message we can specify `allow_partial=True`:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8c46a209-dddd-4d01-81f6-f6ae55d3225c",
"execution_count": 4,
"id": "8bcca1fe-674c-4713-bacc-8e8e6d6f56c3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n",
" AIMessage(content=\"\\nWhy, he's probably chasing after the last cup of coffee in the office!\"),\n",
" HumanMessage(content='what do you call a speechless parrot')]"
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n",
" AIMessage(content=\"\\nWhy, he's probably chasing after the last cup of coffee in the office!\", additional_kwargs={}, response_metadata={}),\n",
" HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 3,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -154,26 +248,26 @@
},
{
"cell_type": "markdown",
"id": "306adf9c-41cd-495c-b4dc-e4f43dd7f8f8",
"id": "245bee9b-e515-4e89-8f2a-84bda9a25de8",
"metadata": {},
"source": [
"If we need to make sure that our first message (excluding the system message) is always of a specific type, we can specify `start_on`:"
"By default, the `SystemMessage` will not be included, so you can drop it by either setting `include_system=False` or by dropping the `include_system` argument."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "878a730b-fe44-4e9d-ab65-7b8f7b069de8",
"execution_count": 5,
"id": "94351736-28a1-44a3-aac7-82356c81d171",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n",
" HumanMessage(content='what do you call a speechless parrot')]"
"[AIMessage(content=\"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\", additional_kwargs={}, response_metadata={}),\n",
" HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -181,11 +275,9 @@
"source": [
"trim_messages(\n",
" messages,\n",
" max_tokens=60,\n",
" max_tokens=45,\n",
" strategy=\"last\",\n",
" token_counter=ChatOpenAI(model=\"gpt-4o\"),\n",
" include_system=True,\n",
" start_on=\"human\",\n",
")"
]
},
@@ -194,25 +286,23 @@
"id": "7f5d391d-235b-4091-b2de-c22866b478f3",
"metadata": {},
"source": [
"## Getting the first `max_tokens` tokens\n",
"\n",
"We can perform the flipped operation of getting the *first* `max_tokens` by specifying `strategy=\"first\"`:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"id": "5f56ae54-1a39-4019-9351-3b494c003d5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n",
" HumanMessage(content=\"i wonder why it's called langchain\")]"
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n",
" HumanMessage(content=\"i wonder why it's called langchain\", additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 5,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -238,18 +328,36 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 60,
"id": "d930c089-e8e6-4980-9d39-11d41e794772",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"pip install -qU tiktoken"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "1c1c3b1e-2ece-49e7-a3b6-e69877c1633b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\"),\n",
" HumanMessage(content='what do you call a speechless parrot')]"
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n",
" HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 6,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -257,7 +365,6 @@
"source": [
"from typing import List\n",
"\n",
"# pip install tiktoken\n",
"import tiktoken\n",
"from langchain_core.messages import BaseMessage, ToolMessage\n",
"\n",
@@ -298,9 +405,25 @@
"\n",
"trim_messages(\n",
" messages,\n",
" max_tokens=45,\n",
" strategy=\"last\",\n",
" # highlight-next-line\n",
" token_counter=tiktoken_counter,\n",
" # Keep the last <= n_count tokens of the messages.\n",
" strategy=\"last\",\n",
" # When token_counter=len, each message\n",
" # will be counted as a single token.\n",
" # highlight-start\n",
" # Remember to adjust for your use case\n",
" max_tokens=45,\n",
" # highlight-end\n",
" # Most chat models expect that chat history starts with either:\n",
" # (1) a HumanMessage or\n",
" # (2) a SystemMessage followed by a HumanMessage\n",
" # start_on=\"human\" makes sure we produce a valid chat history\n",
" start_on=\"human\",\n",
" # Usually, we want to keep the SystemMessage\n",
" # if it's present in the original history.\n",
" # The SystemMessage has special instructions for the model.\n",
" include_system=True,\n",
")"
]
},
@@ -311,22 +434,22 @@
"source": [
"## Chaining\n",
"\n",
"`trim_messages` can be used in an imperatively (like above) or declaratively, making it easy to compose with other components in a chain"
"`trim_messages` can be used imperatively (like above) or declaratively, making it easy to compose with other components in a chain"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 62,
"id": "96aa29b2-01e0-437c-a1ab-02fb0141cb57",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='A: A \"Polly-gone\"!', response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 32, 'total_tokens': 41}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_66b29dffce', 'finish_reason': 'stop', 'logprobs': None}, id='run-83e96ddf-bcaa-4f63-824c-98b0f8a0d474-0', usage_metadata={'input_tokens': 32, 'output_tokens': 9, 'total_tokens': 41})"
"AIMessage(content='A \"polygon!\"', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 4, 'prompt_tokens': 32, 'total_tokens': 36, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3537616b13', 'finish_reason': 'stop', 'logprobs': None}, id='run-995342be-0443-4e33-9b54-153f5c8771d3-0', usage_metadata={'input_tokens': 32, 'output_tokens': 4, 'total_tokens': 36})"
]
},
"execution_count": 7,
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
@@ -340,7 +463,15 @@
" max_tokens=45,\n",
" strategy=\"last\",\n",
" token_counter=llm,\n",
" # Usually, we want to keep the SystemMessage\n",
" # if it's present in the original history.\n",
" # The SystemMessage has special instructions for the model.\n",
" include_system=True,\n",
" # Most chat models expect that chat history starts with either:\n",
" # (1) a HumanMessage or\n",
" # (2) a SystemMessage followed by a HumanMessage\n",
" # start_on=\"human\" makes sure we produce a valid chat history\n",
" start_on=\"human\",\n",
")\n",
"\n",
"chain = trimmer | llm\n",
@@ -359,18 +490,18 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 63,
"id": "1ff02d0a-353d-4fac-a77c-7c2c5262abd9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n",
" HumanMessage(content='what do you call a speechless parrot')]"
"[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n",
" HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]"
]
},
"execution_count": 8,
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
@@ -391,17 +522,17 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 6,
"id": "a9517858-fc2f-4dc3-898d-bf98a0e905a0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='A \"polly-no-wanna-cracker\"!', response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 32, 'total_tokens': 42}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_5bf7397cd3', 'finish_reason': 'stop', 'logprobs': None}, id='run-054dd309-3497-4e7b-b22a-c1859f11d32e-0', usage_metadata={'input_tokens': 32, 'output_tokens': 10, 'total_tokens': 42})"
"AIMessage(content='A polygon! (Because it\\'s a \"poly-gone\" quiet!)', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 32, 'total_tokens': 46, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_e375328146', 'finish_reason': 'stop', 'logprobs': None}, id='run-8569a119-ca02-4232-bee1-20caea61cd6d-0', usage_metadata={'input_tokens': 32, 'output_tokens': 14, 'total_tokens': 46})"
]
},
"execution_count": 9,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -425,7 +556,15 @@
" max_tokens=45,\n",
" strategy=\"last\",\n",
" token_counter=llm,\n",
" # Usually, we want to keep the SystemMessage\n",
" # if it's present in the original history.\n",
" # The SystemMessage has special instructions for the model.\n",
" include_system=True,\n",
" # Most chat models expect that chat history starts with either:\n",
" # (1) a HumanMessage or\n",
" # (2) a SystemMessage followed by a HumanMessage\n",
" # start_on=\"human\" makes sure we produce a valid chat history\n",
" start_on=\"human\",\n",
")\n",
"\n",
"chain = trimmer | llm\n",
@@ -471,7 +610,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@@ -13,7 +13,7 @@
"\n",
"This sample demonstrates the use of `Amazon Textract` in combination with LangChain as a DocumentLoader.\n",
"\n",
"`Textract` supports`PDF`, `TIF`F, `PNG` and `JPEG` format.\n",
"`Textract` supports`PDF`, `TIFF`, `PNG` and `JPEG` format.\n",
"\n",
"`Textract` supports these [document sizes, languages and characters](https://docs.aws.amazon.com/textract/latest/dg/limits-document.html)."
]

View File

@@ -61,7 +61,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU firecrawl-py langchain_community"
"%pip install -qU firecrawl-py==0.0.20 langchain_community"
]
},
{

View File

@@ -6,7 +6,7 @@
"source": [
"# Google Speech-to-Text Audio Transcripts\n",
"\n",
"The `GoogleSpeechToTextLoader` allows to transcribe audio files with the [Google Cloud Speech-to-Text API](https://cloud.google.com/speech-to-text) and loads the transcribed text into documents.\n",
"The `SpeechToTextLoader` allows to transcribe audio files with the [Google Cloud Speech-to-Text API](https://cloud.google.com/speech-to-text) and loads the transcribed text into documents.\n",
"\n",
"To use it, you should have the `google-cloud-speech` python package installed, and a Google Cloud project with the [Speech-to-Text API enabled](https://cloud.google.com/speech-to-text/v2/docs/transcribe-client-libraries#before_you_begin).\n",
"\n",
@@ -41,7 +41,7 @@
"source": [
"## Example\n",
"\n",
"The `GoogleSpeechToTextLoader` must include the `project_id` and `file_path` arguments. Audio files can be specified as a Google Cloud Storage URI (`gs://...`) or a local file path.\n",
"The `SpeechToTextLoader` must include the `project_id` and `file_path` arguments. Audio files can be specified as a Google Cloud Storage URI (`gs://...`) or a local file path.\n",
"\n",
"Only synchronous requests are supported by the loader, which has a [limit of 60 seconds or 10MB](https://cloud.google.com/speech-to-text/v2/docs/sync-recognize#:~:text=60%20seconds%20and/or%2010%20MB) per audio file."
]
@@ -52,13 +52,13 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_google_community import GoogleSpeechToTextLoader\n",
"from langchain_google_community import SpeechToTextLoader\n",
"\n",
"project_id = \"<PROJECT_ID>\"\n",
"file_path = \"gs://cloud-samples-data/speech/audio.flac\"\n",
"# or a local file path: file_path = \"./audio.wav\"\n",
"\n",
"loader = GoogleSpeechToTextLoader(project_id=project_id, file_path=file_path)\n",
"loader = SpeechToTextLoader(project_id=project_id, file_path=file_path)\n",
"\n",
"docs = loader.load()"
]
@@ -152,7 +152,7 @@
" RecognitionConfig,\n",
" RecognitionFeatures,\n",
")\n",
"from langchain_google_community import GoogleSpeechToTextLoader\n",
"from langchain_google_community import SpeechToTextLoader\n",
"\n",
"project_id = \"<PROJECT_ID>\"\n",
"location = \"global\"\n",
@@ -171,7 +171,7 @@
" ),\n",
")\n",
"\n",
"loader = GoogleSpeechToTextLoader(\n",
"loader = SpeechToTextLoader(\n",
" project_id=project_id,\n",
" location=location,\n",
" recognizer_id=recognizer_id,\n",

View File

@@ -31,6 +31,8 @@ The below document loaders allow you to load webpages.
The below document loaders allow you to load PDF documents.
See this guide for a starting point: [How to: load PDF files](/docs/how_to/document_loader_pdf).
<CategoryTable category="pdf_loaders" />
## Cloud Providers

View File

@@ -16,7 +16,7 @@
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/file_loaders/unstructured/)|\n",
"| :--- | :--- | :---: | :---: | :---: |\n",
"| [UnstructuredLoader](https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html) | [langchain_community](https://python.langchain.com/api_reference/unstructured/index.html) | ✅ | ❌ | ✅ | \n",
"| [UnstructuredLoader](https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html) | [langchain_unstructured](https://python.langchain.com/api_reference/unstructured/index.html) | ✅ | ❌ | ✅ | \n",
"### Loader features\n",
"| Source | Document Lazy Loading | Native Async Support\n",
"| :---: | :---: | :---: | \n",
@@ -519,6 +519,47 @@
"print(\"Length of text in the document:\", len(docs[0].page_content))"
]
},
{
"cell_type": "markdown",
"id": "3ec3c22d-02cd-498b-921f-b839d1404f32",
"metadata": {},
"source": [
"## Loading web pages\n",
"\n",
"`UnstructuredLoader` accepts a `web_url` kwarg when run locally that populates the `url` parameter of the underlying Unstructured [partition](https://docs.unstructured.io/open-source/core-functionality/partitioning). This allows for the parsing of remotely hosted documents, such as HTML web pages.\n",
"\n",
"Example usage:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "bf9a8546-659d-4861-bff2-fdf1ad93ac65",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='Example Domain' metadata={'category_depth': 0, 'languages': ['eng'], 'filetype': 'text/html', 'url': 'https://www.example.com', 'category': 'Title', 'element_id': 'fdaa78d856f9d143aeeed85bf23f58f8'}\n",
"\n",
"page_content='This domain is for use in illustrative examples in documents. You may use this domain in literature without prior coordination or asking for permission.' metadata={'languages': ['eng'], 'parent_id': 'fdaa78d856f9d143aeeed85bf23f58f8', 'filetype': 'text/html', 'url': 'https://www.example.com', 'category': 'NarrativeText', 'element_id': '3652b8458b0688639f973fe36253c992'}\n",
"\n",
"page_content='More information...' metadata={'category_depth': 0, 'link_texts': ['More information...'], 'link_urls': ['https://www.iana.org/domains/example'], 'languages': ['eng'], 'filetype': 'text/html', 'url': 'https://www.example.com', 'category': 'Title', 'element_id': '793ab98565d6f6d6f3a6d614e3ace2a9'}\n",
"\n"
]
}
],
"source": [
"from langchain_unstructured import UnstructuredLoader\n",
"\n",
"loader = UnstructuredLoader(web_url=\"https://www.example.com\")\n",
"docs = loader.load()\n",
"\n",
"for doc in docs:\n",
" print(f\"{doc}\\n\")"
]
},
{
"cell_type": "markdown",
"id": "ce01aa40",
@@ -546,7 +587,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
"version": "3.10.4"
}
},
"nbformat": 4,

View File

@@ -14,7 +14,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "88486f6f",
"metadata": {},
"outputs": [],
@@ -30,7 +30,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "10ad9224",
"metadata": {
"ExecuteTime": {
@@ -2400,7 +2400,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"id": "9b4764e4-c75f-4185-b326-524287a826be",
"metadata": {},
"outputs": [],
@@ -2430,7 +2430,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 5,
"id": "4b5e73c5-92c1-4eab-84e2-77924ea9c123",
"metadata": {},
"outputs": [],
@@ -2452,7 +2452,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 6,
"id": "db8d28cc-8d93-47b4-8326-57a29a06fb3c",
"metadata": {},
"outputs": [
@@ -2483,7 +2483,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"id": "b470dc81-2e7f-4743-9435-ce9071394eea",
"metadata": {},
"outputs": [
@@ -2491,17 +2491,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 53 ms, sys: 29 ms, total: 82 ms\n",
"Wall time: 84.2 ms\n"
"CPU times: user 25.9 ms, sys: 15.3 ms, total: 41.3 ms\n",
"Wall time: 144 ms\n"
]
},
{
"data": {
"text/plain": [
"\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was two-tired!\""
"\"\\n\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything.\""
]
},
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -2512,6 +2512,35 @@
"llm.invoke(\"Tell me a joke\")"
]
},
{
"cell_type": "markdown",
"id": "1dca39d8-233a-45ba-ad7d-0920dfbc4a50",
"metadata": {},
"source": [
"### Specifying a Time to Live (TTL) for the Cached entries\n",
"The Cached documents can be deleted after a specified time automatically by specifying a `ttl` parameter along with the initialization of the Cache."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a3edcc6f-2ccd-45ba-8ca4-f65b5e51b461",
"metadata": {},
"outputs": [],
"source": [
"from datetime import timedelta\n",
"\n",
"set_llm_cache(\n",
" CouchbaseCache(\n",
" cluster=cluster,\n",
" bucket_name=BUCKET_NAME,\n",
" scope_name=SCOPE_NAME,\n",
" collection_name=COLLECTION_NAME,\n",
" ttl=timedelta(minutes=5),\n",
" )\n",
")"
]
},
{
"cell_type": "markdown",
"id": "43626f33-d184-4260-b641-c9341cef5842",
@@ -2523,7 +2552,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"id": "6b470c03-d7fe-4270-89e1-638251619a53",
"metadata": {},
"outputs": [],
@@ -2653,7 +2682,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 10,
"id": "ae0766c8-ea34-4604-b0dc-cf2bbe8077f4",
"metadata": {},
"outputs": [],
@@ -2679,7 +2708,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 11,
"id": "a2e82743-10ea-4319-b43e-193475ae5449",
"metadata": {},
"outputs": [
@@ -2703,7 +2732,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 12,
"id": "c36f4e29-d872-4334-a1f1-0e6d10c5d9f2",
"metadata": {},
"outputs": [
@@ -2725,6 +2754,38 @@
"print(llm.invoke(\"What is the expected lifespan of a dog?\"))"
]
},
{
"cell_type": "markdown",
"id": "f6f674fa-70b5-4cf9-a208-992aad2c3c89",
"metadata": {},
"source": [
"### Specifying a Time to Live (TTL) for the Cached entries\n",
"The Cached documents can be deleted after a specified time automatically by specifying a `ttl` parameter along with the initialization of the Cache."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "7e127d0a-5049-47e0-abf4-6424ad7d9fec",
"metadata": {},
"outputs": [],
"source": [
"from datetime import timedelta\n",
"\n",
"set_llm_cache(\n",
" CouchbaseSemanticCache(\n",
" cluster=cluster,\n",
" embedding=embeddings,\n",
" bucket_name=BUCKET_NAME,\n",
" scope_name=SCOPE_NAME,\n",
" collection_name=COLLECTION_NAME,\n",
" index_name=INDEX_NAME,\n",
" score_threshold=0.8,\n",
" ttl=timedelta(minutes=5),\n",
" )\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ae1f5e1c-085e-4998-9f2d-b5867d2c3d5b",
@@ -2802,7 +2863,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
"version": "3.10.13"
}
},
"nbformat": 4,

View File

@@ -6,129 +6,11 @@
"source": [
"# SambaNova\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [Sambaverse](https://sambaverse.sambanova.ai/) and [Sambastudio](https://sambanova.ai/technology/full-stack-ai-platform) are platforms for running your own open-source models\n",
"**[SambaNova](https://sambanova.ai/)'s** [Sambastudio](https://sambanova.ai/technology/full-stack-ai-platform) is a platform for running your own open-source models\n",
"\n",
"This example goes over how to use LangChain to interact with SambaNova models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sambaverse"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Sambaverse** allows you to interact with multiple open-source models. You can view the list of available models and interact with them in the [playground](https://sambaverse.sambanova.ai/playground).\n",
" **Please note that Sambaverse's free offering is performance-limited.** Companies that are ready to evaluate the production tokens-per-second performance, volume throughput, and 10x lower total cost of ownership (TCO) of SambaNova should [contact us](https://sambaverse.sambanova.ai/contact-us) for a non-limited evaluation instance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An API key is required to access Sambaverse models. To get a key, create an account at [sambaverse.sambanova.ai](https://sambaverse.sambanova.ai/)\n",
"\n",
"The [sseclient-py](https://pypi.org/project/sseclient-py/) package is required to run streaming predictions "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --quiet sseclient-py==1.8.0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Register your API key as an environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"sambaverse_api_key = \"<Your sambaverse API key>\"\n",
"\n",
"# Set the environment variables\n",
"os.environ[\"SAMBAVERSE_API_KEY\"] = sambaverse_api_key"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call Sambaverse models directly from LangChain!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms.sambanova import Sambaverse\n",
"\n",
"llm = Sambaverse(\n",
" sambaverse_model_name=\"Meta/llama-2-7b-chat-hf\",\n",
" streaming=False,\n",
" model_kwargs={\n",
" \"do_sample\": True,\n",
" \"max_tokens_to_generate\": 1000,\n",
" \"temperature\": 0.01,\n",
" \"select_expert\": \"llama-2-7b-chat-hf\",\n",
" \"process_prompt\": False,\n",
" # \"stop_sequences\": '\\\"sequence1\\\",\\\"sequence2\\\"',\n",
" # \"repetition_penalty\": 1.0,\n",
" # \"top_k\": 50,\n",
" # \"top_p\": 1.0\n",
" },\n",
")\n",
"\n",
"print(llm.invoke(\"Why should I use open source models?\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Streaming response\n",
"\n",
"from langchain_community.llms.sambanova import Sambaverse\n",
"\n",
"llm = Sambaverse(\n",
" sambaverse_model_name=\"Meta/llama-2-7b-chat-hf\",\n",
" streaming=True,\n",
" model_kwargs={\n",
" \"do_sample\": True,\n",
" \"max_tokens_to_generate\": 1000,\n",
" \"temperature\": 0.01,\n",
" \"select_expert\": \"llama-2-7b-chat-hf\",\n",
" \"process_prompt\": False,\n",
" # \"stop_sequences\": '\\\"sequence1\\\",\\\"sequence2\\\"',\n",
" # \"repetition_penalty\": 1.0,\n",
" # \"top_k\": 50,\n",
" # \"top_p\": 1.0\n",
" },\n",
")\n",
"\n",
"for chunk in llm.stream(\"Why should I use open source models?\"):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -1,325 +1,354 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a283d2fd-e26e-4811-a486-d3cf0ecf6749",
"metadata": {},
"source": [
"# Couchbase\n",
"> Couchbase is an award-winning distributed NoSQL cloud database that delivers unmatched versatility, performance, scalability, and financial value for all of your cloud, mobile, AI, and edge computing applications. Couchbase embraces AI with coding assistance for developers and vector search for their applications.\n",
"\n",
"This notebook goes over how to use the `CouchbaseChatMessageHistory` class to store the chat message history in a Couchbase cluster\n"
]
},
{
"cell_type": "markdown",
"id": "ff868a6c-3e17-4c3d-8d32-67b01f4d7bcc",
"metadata": {},
"source": [
"## Set Up Couchbase Cluster\n",
"To run this demo, you need a Couchbase Cluster. \n",
"\n",
"You can work with both [Couchbase Capella](https://www.couchbase.com/products/capella/) and your self-managed Couchbase Server."
]
},
{
"cell_type": "markdown",
"id": "41fa85e7-6968-45e4-a445-de305d80f332",
"metadata": {},
"source": [
"## Install Dependencies\n",
"`CouchbaseChatMessageHistory` lives inside the `langchain-couchbase` package. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b744ca05-b8c6-458c-91df-f50ca2c20b3c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --upgrade --quiet langchain-couchbase"
]
},
{
"cell_type": "markdown",
"id": "41f29205-6452-493b-ba18-8a3b006bcca4",
"metadata": {},
"source": [
"## Create Couchbase Connection Object\n",
"We create a connection to the Couchbase cluster initially and then pass the cluster object to the Vector Store. \n",
"\n",
"Here, we are connecting using the username and password. You can also connect using any other supported way to your cluster. \n",
"\n",
"For more information on connecting to the Couchbase cluster, please check the [Python SDK documentation](https://docs.couchbase.com/python-sdk/current/hello-world/start-using-sdk.html#connect)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f394908e-f5fe-408a-84d7-b97fdebcfa26",
"metadata": {},
"outputs": [],
"source": [
"COUCHBASE_CONNECTION_STRING = (\n",
" \"couchbase://localhost\" # or \"couchbases://localhost\" if using TLS\n",
")\n",
"DB_USERNAME = \"Administrator\"\n",
"DB_PASSWORD = \"Password\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ad4dce21-d80c-465a-b709-fd366ba5ce35",
"metadata": {},
"outputs": [],
"source": [
"from datetime import timedelta\n",
"\n",
"from couchbase.auth import PasswordAuthenticator\n",
"from couchbase.cluster import Cluster\n",
"from couchbase.options import ClusterOptions\n",
"\n",
"auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)\n",
"options = ClusterOptions(auth)\n",
"cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)\n",
"\n",
"# Wait until the cluster is ready for use.\n",
"cluster.wait_until_ready(timedelta(seconds=5))"
]
},
{
"cell_type": "markdown",
"id": "e3d0210c-e2e6-437a-86f3-7397a1899fef",
"metadata": {},
"source": [
"We will now set the bucket, scope, and collection names in the Couchbase cluster that we want to use for storing the message history.\n",
"\n",
"Note that the bucket, scope, and collection need to exist before using them to store the message history."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e8c7f846-a5c4-4465-a40e-4a9a23ac71bd",
"metadata": {},
"outputs": [],
"source": [
"BUCKET_NAME = \"langchain-testing\"\n",
"SCOPE_NAME = \"_default\"\n",
"COLLECTION_NAME = \"conversational_cache\""
]
},
{
"cell_type": "markdown",
"id": "283959e1-6af7-4768-9211-5b0facc6ef65",
"metadata": {},
"source": [
"## Usage\n",
"In order to store the messages, you need the following:\n",
"- Couchbase Cluster object: Valid connection to the Couchbase cluster\n",
"- bucket_name: Bucket in cluster to store the chat message history\n",
"- scope_name: Scope in bucket to store the message history\n",
"- collection_name: Collection in scope to store the message history\n",
"- session_id: Unique identifier for the session\n",
"\n",
"Optionally you can configure the following:\n",
"- session_id_key: Field in the chat message documents to store the `session_id`\n",
"- message_key: Field in the chat message documents to store the message content\n",
"- create_index: Used to specify if the index needs to be created on the collection. By default, an index is created on the `message_key` and the `session_id_key` of the documents"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "43c3b2d5-aae2-44a9-9e9f-f10adf054cfa",
"metadata": {},
"outputs": [],
"source": [
"from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory\n",
"\n",
"message_history = CouchbaseChatMessageHistory(\n",
" cluster=cluster,\n",
" bucket_name=BUCKET_NAME,\n",
" scope_name=SCOPE_NAME,\n",
" collection_name=COLLECTION_NAME,\n",
" session_id=\"test-session\",\n",
")\n",
"\n",
"message_history.add_user_message(\"hi!\")\n",
"\n",
"message_history.add_ai_message(\"how are you doing?\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e7e348ef-79e9-481c-aeef-969ae03dea6a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='hi!'), AIMessage(content='how are you doing?')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"message_history.messages"
]
},
{
"cell_type": "markdown",
"id": "c8b942a7-93fa-4cd9-8414-d047135c2733",
"metadata": {},
"source": [
"## Chaining\n",
"The chat message history class can be used with [LCEL Runnables](https://python.langchain.com/docs/how_to/message_history/)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8a9f0d91-d1d6-481d-8137-ea11229f485a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "946d45aa-5a61-49ae-816b-1c3949c56d9a",
"metadata": {},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a helpful assistant.\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
")\n",
"\n",
"# Create the LCEL runnable\n",
"chain = prompt | ChatOpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "20dfd838-b549-42ed-b3ba-ac005f7e024c",
"metadata": {},
"outputs": [],
"source": [
"chain_with_history = RunnableWithMessageHistory(\n",
" chain,\n",
" lambda session_id: CouchbaseChatMessageHistory(\n",
" cluster=cluster,\n",
" bucket_name=BUCKET_NAME,\n",
" scope_name=SCOPE_NAME,\n",
" collection_name=COLLECTION_NAME,\n",
" session_id=session_id,\n",
" ),\n",
" input_messages_key=\"question\",\n",
" history_messages_key=\"history\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "17bd09f4-896d-433d-bb9a-369a06e7aa8a",
"metadata": {},
"outputs": [],
"source": [
"# This is where we configure the session id\n",
"config = {\"configurable\": {\"session_id\": \"testing\"}}"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "4bda1096-2fc2-40d7-a046-0d5d8e3a8f75",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello Bob! How can I assist you today?', response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 22, 'total_tokens': 32}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-a0f8a29e-ddf4-4e06-a1fe-cf8c325a2b72-0', usage_metadata={'input_tokens': 22, 'output_tokens': 10, 'total_tokens': 32})"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "1cfb31da-51bb-4c5f-909a-b7118b0ae08d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Your name is Bob.', response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 43, 'total_tokens': 48}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f764a9eb-999e-4042-96b6-fe47b7ae4779-0', usage_metadata={'input_tokens': 43, 'output_tokens': 5, 'total_tokens': 48})"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
"cells": [
{
"cell_type": "markdown",
"id": "a283d2fd-e26e-4811-a486-d3cf0ecf6749",
"metadata": {},
"source": [
"# Couchbase\n",
"> Couchbase is an award-winning distributed NoSQL cloud database that delivers unmatched versatility, performance, scalability, and financial value for all of your cloud, mobile, AI, and edge computing applications. Couchbase embraces AI with coding assistance for developers and vector search for their applications.\n",
"\n",
"This notebook goes over how to use the `CouchbaseChatMessageHistory` class to store the chat message history in a Couchbase cluster\n"
]
},
{
"cell_type": "markdown",
"id": "ff868a6c-3e17-4c3d-8d32-67b01f4d7bcc",
"metadata": {},
"source": [
"## Set Up Couchbase Cluster\n",
"To run this demo, you need a Couchbase Cluster. \n",
"\n",
"You can work with both [Couchbase Capella](https://www.couchbase.com/products/capella/) and your self-managed Couchbase Server."
]
},
{
"cell_type": "markdown",
"id": "41fa85e7-6968-45e4-a445-de305d80f332",
"metadata": {},
"source": [
"## Install Dependencies\n",
"`CouchbaseChatMessageHistory` lives inside the `langchain-couchbase` package. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b744ca05-b8c6-458c-91df-f50ca2c20b3c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --upgrade --quiet langchain-couchbase"
]
},
{
"cell_type": "markdown",
"id": "41f29205-6452-493b-ba18-8a3b006bcca4",
"metadata": {},
"source": [
"## Create Couchbase Connection Object\n",
"We create a connection to the Couchbase cluster initially and then pass the cluster object to the Vector Store. \n",
"\n",
"Here, we are connecting using the username and password. You can also connect using any other supported way to your cluster. \n",
"\n",
"For more information on connecting to the Couchbase cluster, please check the [Python SDK documentation](https://docs.couchbase.com/python-sdk/current/hello-world/start-using-sdk.html#connect)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f394908e-f5fe-408a-84d7-b97fdebcfa26",
"metadata": {},
"outputs": [],
"source": [
"COUCHBASE_CONNECTION_STRING = (\n",
" \"couchbase://localhost\" # or \"couchbases://localhost\" if using TLS\n",
")\n",
"DB_USERNAME = \"Administrator\"\n",
"DB_PASSWORD = \"Password\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ad4dce21-d80c-465a-b709-fd366ba5ce35",
"metadata": {},
"outputs": [],
"source": [
"from datetime import timedelta\n",
"\n",
"from couchbase.auth import PasswordAuthenticator\n",
"from couchbase.cluster import Cluster\n",
"from couchbase.options import ClusterOptions\n",
"\n",
"auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)\n",
"options = ClusterOptions(auth)\n",
"cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)\n",
"\n",
"# Wait until the cluster is ready for use.\n",
"cluster.wait_until_ready(timedelta(seconds=5))"
]
},
{
"cell_type": "markdown",
"id": "e3d0210c-e2e6-437a-86f3-7397a1899fef",
"metadata": {},
"source": [
"We will now set the bucket, scope, and collection names in the Couchbase cluster that we want to use for storing the message history.\n",
"\n",
"Note that the bucket, scope, and collection need to exist before using them to store the message history."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e8c7f846-a5c4-4465-a40e-4a9a23ac71bd",
"metadata": {},
"outputs": [],
"source": [
"BUCKET_NAME = \"langchain-testing\"\n",
"SCOPE_NAME = \"_default\"\n",
"COLLECTION_NAME = \"conversational_cache\""
]
},
{
"cell_type": "markdown",
"id": "283959e1-6af7-4768-9211-5b0facc6ef65",
"metadata": {},
"source": [
"## Usage\n",
"In order to store the messages, you need the following:\n",
"- Couchbase Cluster object: Valid connection to the Couchbase cluster\n",
"- bucket_name: Bucket in cluster to store the chat message history\n",
"- scope_name: Scope in bucket to store the message history\n",
"- collection_name: Collection in scope to store the message history\n",
"- session_id: Unique identifier for the session\n",
"\n",
"Optionally you can configure the following:\n",
"- session_id_key: Field in the chat message documents to store the `session_id`\n",
"- message_key: Field in the chat message documents to store the message content\n",
"- create_index: Used to specify if the index needs to be created on the collection. By default, an index is created on the `message_key` and the `session_id_key` of the documents\n",
"- ttl: Used to specify a time in `timedelta` to live for the documents after which they will get deleted automatically from the storage."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "43c3b2d5-aae2-44a9-9e9f-f10adf054cfa",
"metadata": {},
"outputs": [],
"source": [
"from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory\n",
"\n",
"message_history = CouchbaseChatMessageHistory(\n",
" cluster=cluster,\n",
" bucket_name=BUCKET_NAME,\n",
" scope_name=SCOPE_NAME,\n",
" collection_name=COLLECTION_NAME,\n",
" session_id=\"test-session\",\n",
")\n",
"\n",
"message_history.add_user_message(\"hi!\")\n",
"\n",
"message_history.add_ai_message(\"how are you doing?\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e7e348ef-79e9-481c-aeef-969ae03dea6a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='hi!'), AIMessage(content='how are you doing?')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"message_history.messages"
]
},
{
"cell_type": "markdown",
"id": "b993fe69-4462-4cb4-ad0a-eb31a1a4d7d9",
"metadata": {},
"source": [
"## Specifying a Time to Live (TTL) for the Chat Messages\n",
"The stored messages can be deleted after a specified time automatically by specifying a `ttl` parameter along with the initialization of the chat message history store."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d32d9302-de97-4319-a484-c83530bab508",
"metadata": {},
"outputs": [],
"source": [
"from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory\n",
"\n",
"message_history = CouchbaseChatMessageHistory(\n",
" cluster=cluster,\n",
" bucket_name=BUCKET_NAME,\n",
" scope_name=SCOPE_NAME,\n",
" collection_name=COLLECTION_NAME,\n",
" session_id=\"test-session\",\n",
" ttl=timedelta(hours=24),\n",
")"
]
},
{
"cell_type": "markdown",
"id": "c8b942a7-93fa-4cd9-8414-d047135c2733",
"metadata": {},
"source": [
"## Chaining\n",
"The chat message history class can be used with [LCEL Runnables](https://python.langchain.com/docs/how_to/message_history/)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8a9f0d91-d1d6-481d-8137-ea11229f485a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "946d45aa-5a61-49ae-816b-1c3949c56d9a",
"metadata": {},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a helpful assistant.\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
")\n",
"\n",
"# Create the LCEL runnable\n",
"chain = prompt | ChatOpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "20dfd838-b549-42ed-b3ba-ac005f7e024c",
"metadata": {},
"outputs": [],
"source": [
"chain_with_history = RunnableWithMessageHistory(\n",
" chain,\n",
" lambda session_id: CouchbaseChatMessageHistory(\n",
" cluster=cluster,\n",
" bucket_name=BUCKET_NAME,\n",
" scope_name=SCOPE_NAME,\n",
" collection_name=COLLECTION_NAME,\n",
" session_id=session_id,\n",
" ),\n",
" input_messages_key=\"question\",\n",
" history_messages_key=\"history\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "17bd09f4-896d-433d-bb9a-369a06e7aa8a",
"metadata": {},
"outputs": [],
"source": [
"# This is where we configure the session id\n",
"config = {\"configurable\": {\"session_id\": \"testing\"}}"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "4bda1096-2fc2-40d7-a046-0d5d8e3a8f75",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello, Bob! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 22, 'total_tokens': 33}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-62e54e3d-db70-429d-9ee0-e5e8eb2489a1-0', usage_metadata={'input_tokens': 22, 'output_tokens': 11, 'total_tokens': 33})"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "1cfb31da-51bb-4c5f-909a-b7118b0ae08d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Your name is Bob.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 44, 'total_tokens': 49}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-d84a570a-45f3-4931-814a-078761170bca-0', usage_metadata={'input_tokens': 44, 'output_tokens': 5, 'total_tokens': 49})"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -10,7 +10,7 @@
Install the python SDK:
```bash
pip install firecrawl-py
pip install firecrawl-py==0.0.20
```
## Document loader

View File

@@ -1,12 +1,12 @@
# MLflow Deployments for LLMs
# MLflow AI Gateway for LLMs
>[The MLflow Deployments for LLMs](https://www.mlflow.org/docs/latest/llms/deployments/index.html) is a powerful tool designed to streamline the usage and management of various large
>[The MLflow AI Gateway for LLMs](https://www.mlflow.org/docs/latest/llms/deployments/index.html) is a powerful tool designed to streamline the usage and management of various large
> language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface
> that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests.
## Installation and Setup
Install `mlflow` with MLflow Deployments dependencies:
Install `mlflow` with MLflow GenAI dependencies:
```sh
pip install 'mlflow[genai]'
@@ -39,10 +39,10 @@ endpoints:
openai_api_key: $OPENAI_API_KEY
```
Start the deployments server:
Start the gateway server:
```sh
mlflow deployments start-server --config-path /path/to/config.yaml
mlflow gateway start --config-path /path/to/config.yaml
```
## Example provided by `MLflow`

View File

@@ -1,160 +0,0 @@
# MLflow AI Gateway
:::warning
MLflow AI Gateway has been deprecated. Please use [MLflow Deployments for LLMs](/docs/integrations/providers/mlflow/) instead.
:::
>[The MLflow AI Gateway](https://www.mlflow.org/docs/latest/index.html) service is a powerful tool designed to streamline the usage and management of various large
> language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface
> that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests.
## Installation and Setup
Install `mlflow` with MLflow AI Gateway dependencies:
```sh
pip install 'mlflow[gateway]'
```
Set the OpenAI API key as an environment variable:
```sh
export OPENAI_API_KEY=...
```
Create a configuration file:
```yaml
routes:
- name: completions
route_type: llm/v1/completions
model:
provider: openai
name: text-davinci-003
config:
openai_api_key: $OPENAI_API_KEY
- name: embeddings
route_type: llm/v1/embeddings
model:
provider: openai
name: text-embedding-ada-002
config:
openai_api_key: $OPENAI_API_KEY
```
Start the Gateway server:
```sh
mlflow gateway start --config-path /path/to/config.yaml
```
## Example provided by `MLflow`
>The `mlflow.langchain` module provides an API for logging and loading `LangChain` models.
> This module exports multivariate LangChain models in the langchain flavor and univariate LangChain
> models in the pyfunc flavor.
See the [API documentation and examples](https://www.mlflow.org/docs/latest/python_api/mlflow.langchain.html?highlight=langchain#module-mlflow.langchain).
## Completions Example
```python
import mlflow
from langchain.chains import LLMChain, PromptTemplate
from langchain_community.llms import MlflowAIGateway
gateway = MlflowAIGateway(
gateway_uri="http://127.0.0.1:5000",
route="completions",
params={
"temperature": 0.0,
"top_p": 0.1,
},
)
llm_chain = LLMChain(
llm=gateway,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
result = llm_chain.run(adjective="funny")
print(result)
with mlflow.start_run():
model_info = mlflow.langchain.log_model(chain, "model")
model = mlflow.pyfunc.load_model(model_info.model_uri)
print(model.predict([{"adjective": "funny"}]))
```
## Embeddings Example
```python
from langchain_community.embeddings import MlflowAIGatewayEmbeddings
embeddings = MlflowAIGatewayEmbeddings(
gateway_uri="http://127.0.0.1:5000",
route="embeddings",
)
print(embeddings.embed_query("hello"))
print(embeddings.embed_documents(["hello"]))
```
## Chat Example
```python
from langchain_community.chat_models import ChatMLflowAIGateway
from langchain_core.messages import HumanMessage, SystemMessage
chat = ChatMLflowAIGateway(
gateway_uri="http://127.0.0.1:5000",
route="chat",
params={
"temperature": 0.1
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Translate this sentence from English to French: I love programming."
),
]
print(chat(messages))
```
## Databricks MLflow AI Gateway
Databricks MLflow AI Gateway is in private preview.
Please contact a Databricks representative to enroll in the preview.
```python
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_community.llms import MlflowAIGateway
gateway = MlflowAIGateway(
gateway_uri="databricks",
route="completions",
)
llm_chain = LLMChain(
llm=gateway,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
result = llm_chain.run(adjective="funny")
print(result)
```

File diff suppressed because one or more lines are too long

View File

@@ -400,18 +400,29 @@
"def hybrid_query(search_query: str) -> Dict:\n",
" vector = embeddings.embed_query(search_query) # same embeddings as for indexing\n",
" return {\n",
" \"query\": {\n",
" \"match\": {\n",
" text_field: search_query,\n",
" },\n",
" },\n",
" \"knn\": {\n",
" \"field\": dense_vector_field,\n",
" \"query_vector\": vector,\n",
" \"k\": 5,\n",
" \"num_candidates\": 10,\n",
" },\n",
" \"rank\": {\"rrf\": {}},\n",
" \"retriever\": {\n",
" \"rrf\": {\n",
" \"retrievers\": [\n",
" {\n",
" \"standard\": {\n",
" \"query\": {\n",
" \"match\": {\n",
" text_field: search_query,\n",
" }\n",
" }\n",
" }\n",
" },\n",
" {\n",
" \"knn\": {\n",
" \"field\": dense_vector_field,\n",
" \"query_vector\": vector,\n",
" \"k\": 5,\n",
" \"num_candidates\": 10,\n",
" }\n",
" },\n",
" ]\n",
" }\n",
" }\n",
" }\n",
"\n",
"\n",

View File

@@ -21,7 +21,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain_google_community"
"%pip install --upgrade --quiet langchain-google-community"
]
},
{

View File

@@ -99,7 +99,7 @@
"vector_store = Chroma(\n",
" collection_name=\"example_collection\",\n",
" embedding_function=embeddings,\n",
" persist_directory=\"./chroma_langchain_db\", # Where to save data locally, remove if not neccesary\n",
" persist_directory=\"./chroma_langchain_db\", # Where to save data locally, remove if not necessary\n",
")"
]
},
@@ -179,7 +179,7 @@
"from langchain_core.documents import Document\n",
"\n",
"document_1 = Document(\n",
" page_content=\"I had chocalate chip pancakes and scrambled eggs for breakfast this morning.\",\n",
" page_content=\"I had chocolate chip pancakes and scrambled eggs for breakfast this morning.\",\n",
" metadata={\"source\": \"tweet\"},\n",
" id=1,\n",
")\n",
@@ -273,7 +273,7 @@
"outputs": [],
"source": [
"updated_document_1 = Document(\n",
" page_content=\"I had chocalate chip pancakes and fried eggs for breakfast this morning.\",\n",
" page_content=\"I had chocolate chip pancakes and fried eggs for breakfast this morning.\",\n",
" metadata={\"source\": \"tweet\"},\n",
" id=1,\n",
")\n",
@@ -287,7 +287,7 @@
"vector_store.update_document(document_id=uuids[0], document=updated_document_1)\n",
"# You can also update multiple documents at once\n",
"vector_store.update_documents(\n",
" ids=uuids[:2], documents=[updated_document_1, updated_document_1]\n",
" ids=uuids[:2], documents=[updated_document_1, updated_document_2]\n",
")"
]
},

View File

@@ -380,7 +380,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `AstraDBVectorStore` features and configurations head to the API reference:https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.clickhouse.Clickhouse.html"
"For detailed documentation of all `Clickhouse` features and configurations head to the API reference:https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.clickhouse.Clickhouse.html"
]
}
],

View File

@@ -85,8 +85,8 @@ Build stateful, multi-actor applications with LLMs. Integrates smoothly with Lan
## Additional resources
### [Versions](/docs/versions/overview/)
See what changed in v0.2, learn how to migrate legacy code, and read up on our release/versioning policies, and more.
### [Versions](/docs/versions/v0_3/)
See what changed in v0.3, learn how to migrate legacy code, read up on our versioning policies, and more.
### [Security](/docs/security)
Read up on [security](/docs/security) best practices to make sure you're developing safely with LangChain.

File diff suppressed because it is too large Load Diff

View File

@@ -90,7 +90,7 @@
"source": [
" </TabItem>\n",
" <TabItem value=\"conda\" label=\"Conda\">\n",
" <CodeBlock language=\"bash\">conda install langchain langchain_community langchain_chroma -c conda-forge</CodeBlock>\n",
" <CodeBlock language=\"bash\">conda install langchain langchain-community langchain-chroma -c conda-forge</CodeBlock>\n",
" </TabItem>\n",
"</Tabs>\n",
"\n",

View File

@@ -9,13 +9,13 @@
"\n",
"[`ConversationChain`](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.conversation.base.ConversationChain.html) incorporated a memory of previous messages to sustain a stateful conversation.\n",
"\n",
"Some advantages of switching to the LCEL implementation are:\n",
"Some advantages of switching to the Langgraph implementation are:\n",
"\n",
"- Innate support for threads/separate sessions. To make this work with `ConversationChain`, you'd need to instantiate a separate memory class outside the chain.\n",
"- More explicit parameters. `ConversationChain` contains a hidden default prompt, which can cause confusion.\n",
"- Streaming support. `ConversationChain` only supports streaming via callbacks.\n",
"\n",
"`RunnableWithMessageHistory` implements sessions via configuration parameters. It should be instantiated with a callable that returns a [chat message history](https://python.langchain.com/api_reference/core/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html). By default, it expects this function to take a single argument `session_id`."
"Langgraph's [checkpointing](https://langchain-ai.github.io/langgraph/how-tos/persistence/) system supports multiple threads or sessions, which can be specified via the `\"thread_id\"` key in its configuration parameters."
]
},
{
@@ -61,9 +61,9 @@
{
"data": {
"text/plain": [
"{'input': 'how are you?',\n",
"{'input': \"I'm Bob, how are you?\",\n",
" 'history': '',\n",
" 'response': \"Arr matey, I be doin' well on the high seas, plunderin' and pillagin' as usual. How be ye?\"}"
" 'response': \"Arrr matey, I be a pirate sailin' the high seas. What be yer business with me?\"}"
]
},
"execution_count": 2,
@@ -93,7 +93,30 @@
" prompt=prompt,\n",
")\n",
"\n",
"chain({\"input\": \"how are you?\"})"
"chain({\"input\": \"I'm Bob, how are you?\"})"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "53f2c723-178f-470a-8147-54e7cb982211",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input': 'What is my name?',\n",
" 'history': \"Human: I'm Bob, how are you?\\nAI: Arrr matey, I be a pirate sailin' the high seas. What be yer business with me?\",\n",
" 'response': 'Your name be Bob, matey.'}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain({\"input\": \"What is my name?\"})"
]
},
{
@@ -103,111 +126,110 @@
"source": [
"</details>\n",
"\n",
"## LCEL\n",
"## Langgraph\n",
"\n",
"<details open>"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "666c92a0-b555-4418-a465-6490c1b92570",
"execution_count": 4,
"id": "a59b910c-0d02-41aa-bc99-441f11989cf8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Arr, me matey! I be doin' well, sailin' the high seas and searchin' for treasure. How be ye?\""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"from langchain_core.chat_history import InMemoryChatMessageHistory\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"import uuid\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.graph import START, MessagesState, StateGraph\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a pirate. Answer the following questions as best you can.\"),\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"model = ChatOpenAI(model=\"gpt-4o-mini\")\n",
"\n",
"history = InMemoryChatMessageHistory()\n",
"# Define a new graph\n",
"workflow = StateGraph(state_schema=MessagesState)\n",
"\n",
"\n",
"def get_history():\n",
" return history\n",
"# Define the function that calls the model\n",
"def call_model(state: MessagesState):\n",
" response = model.invoke(state[\"messages\"])\n",
" return {\"messages\": response}\n",
"\n",
"\n",
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
"# Define the two nodes we will cycle between\n",
"workflow.add_edge(START, \"model\")\n",
"workflow.add_node(\"model\", call_model)\n",
"\n",
"wrapped_chain = RunnableWithMessageHistory(\n",
" chain,\n",
" get_history,\n",
" history_messages_key=\"chat_history\",\n",
")\n",
"# Add memory\n",
"memory = MemorySaver()\n",
"app = workflow.compile(checkpointer=memory)\n",
"\n",
"wrapped_chain.invoke({\"input\": \"how are you?\"})"
]
},
{
"cell_type": "markdown",
"id": "6b386ce6-895e-442c-88f3-7bec0ab9f401",
"metadata": {},
"source": [
"The above example uses the same `history` for all sessions. The example below shows how to use a different chat history for each session."
"\n",
"# The thread id is a unique key that identifies\n",
"# this particular conversation.\n",
"# We'll just generate a random uuid here.\n",
"thread_id = uuid.uuid4()\n",
"config = {\"configurable\": {\"thread_id\": thread_id}}"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "96152263-98d7-4e06-8c73-d0c0abf3e8e9",
"execution_count": 5,
"id": "3a9df4bb-e804-4373-9a15-a29dc0371595",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Ahoy there, me hearty! What can this old pirate do for ye today?'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"I'm Bob, how are you?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Ahoy, Bob! I be feelin' as lively as a ship in full sail! How be ye on this fine day?\n"
]
}
],
"source": [
"from langchain_core.chat_history import BaseChatMessageHistory\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"query = \"I'm Bob, how are you?\"\n",
"\n",
"store = {}\n",
"input_messages = [\n",
" {\n",
" \"role\": \"system\",\n",
" \"content\": \"You are a pirate. Answer the following questions as best you can.\",\n",
" },\n",
" {\"role\": \"user\", \"content\": query},\n",
"]\n",
"for event in app.stream({\"messages\": input_messages}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d3f77e69-fa3d-496c-968c-86371e1e8cf1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"What is my name?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Ye be callin' yerself Bob, I reckon! A fine name for a swashbuckler like yerself!\n"
]
}
],
"source": [
"query = \"What is my name?\"\n",
"\n",
"\n",
"def get_session_history(session_id: str) -> BaseChatMessageHistory:\n",
" if session_id not in store:\n",
" store[session_id] = InMemoryChatMessageHistory()\n",
" return store[session_id]\n",
"\n",
"\n",
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
"\n",
"wrapped_chain = RunnableWithMessageHistory(\n",
" chain,\n",
" get_session_history,\n",
" history_messages_key=\"chat_history\",\n",
")\n",
"\n",
"wrapped_chain.invoke(\n",
" {\"input\": \"Hello!\"},\n",
" config={\"configurable\": {\"session_id\": \"abc123\"}},\n",
")"
"input_messages = [{\"role\": \"user\", \"content\": query}]\n",
"for event in app.stream({\"messages\": input_messages}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()"
]
},
{

View File

@@ -0,0 +1,554 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ce8457ed-c0b1-4a74-abbd-9d3d2211270f",
"metadata": {},
"source": [
"# Migrating off ConversationBufferMemory or ConversationStringBufferMemory\n",
"\n",
"[ConversationBufferMemory](https://python.langchain.com/api_reference/langchain/memory/langchain.memory.buffer.ConversationBufferMemory.html)\n",
"and [ConversationStringBufferMemory](https://python.langchain.com/api_reference/langchain/memory/langchain.memory.buffer.ConversationStringBufferMemory.html)\n",
" were used to keep track of a conversation between a human and an ai asstistant without any additional processing. \n",
"\n",
"\n",
":::note\n",
"The `ConversationStringBufferMemory` is equivalent to `ConversationBufferMemory` but was targeting LLMs that were not chat models.\n",
":::\n",
"\n",
"The methods for handling conversation history using existing modern primitives are:\n",
"\n",
"1. Using [LangGraph persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/) along with appropriate processing of the message history\n",
"2. Using LCEL with [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html#) combined with appropriate processing of the message history.\n",
"\n",
"Most users will find [LangGraph persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/) both easier to use and configure than the equivalent LCEL, especially for more complex use cases."
]
},
{
"cell_type": "markdown",
"id": "d07f9459-9fb6-4942-99c9-64558aedd7d4",
"metadata": {},
"source": [
"## Set up"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b99b47ec",
"metadata": {},
"outputs": [],
"source": [
"%%capture --no-stderr\n",
"%pip install --upgrade --quiet langchain-openai langchain"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "717c8673",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"if \"OPENAI_API_KEY\" not in os.environ:\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass()"
]
},
{
"cell_type": "markdown",
"id": "e3621b62-a037-42b8-8faa-59575608bb8b",
"metadata": {},
"source": [
"## Usage with LLMChain / ConversationChain\n",
"\n",
"This section shows how to migrate off `ConversationBufferMemory` or `ConversationStringBufferMemory` that's used together with either an `LLMChain` or a `ConversationChain`.\n",
"\n",
"### Legacy\n",
"\n",
"Below is example usage of `ConversationBufferMemory` with an `LLMChain` or an equivalent `ConversationChain`.\n",
"\n",
"<details open>"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8b6e1063-cf3a-456a-bf7d-830e5c1d2864",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'text': 'Hello Bob! How can I assist you today?', 'chat_history': [HumanMessage(content='my name is bob', additional_kwargs={}, response_metadata={}), AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={}, response_metadata={})]}\n"
]
}
],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.messages import SystemMessage\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.prompts.chat import (\n",
" ChatPromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
" MessagesPlaceholder,\n",
")\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" MessagesPlaceholder(variable_name=\"chat_history\"),\n",
" HumanMessagePromptTemplate.from_template(\"{text}\"),\n",
" ]\n",
")\n",
"\n",
"# highlight-start\n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)\n",
"# highlight-end\n",
"\n",
"legacy_chain = LLMChain(\n",
" llm=ChatOpenAI(),\n",
" prompt=prompt,\n",
" # highlight-next-line\n",
" memory=memory,\n",
")\n",
"\n",
"legacy_result = legacy_chain.invoke({\"text\": \"my name is bob\"})\n",
"print(legacy_result)\n",
"\n",
"legacy_result = legacy_chain.invoke({\"text\": \"what was my name\"})"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c7fa1618",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Your name is Bob. How can I assist you today, Bob?'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"legacy_result[\"text\"]"
]
},
{
"cell_type": "markdown",
"id": "3599774f-b56e-4ba3-876c-624f0270b8ac",
"metadata": {},
"source": [
":::note\n",
"Note that there is no support for separating conversation threads in a single memory object\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "cdc3b527-c09e-4c77-9711-c3cc4506cd95",
"metadata": {},
"source": [
"</details>\n",
"\n",
"### LangGraph\n",
"\n",
"The example below shows how to use LangGraph to implement a `ConversationChain` or `LLMChain` with `ConversationBufferMemory`.\n",
"\n",
"This example assumes that you're already somewhat familiar with `LangGraph`. If you're not, then please see the [LangGraph Quickstart Guide](https://langchain-ai.github.io/langgraph/tutorials/introduction/) for more details.\n",
"\n",
"`LangGraph` offers a lot of additional functionality (e.g., time-travel and interrupts) and will work well for other more complex (and realistic) architectures.\n",
"\n",
"<details open>"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e591965c-c4d7-4df7-966d-4d14bd46e157",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"hi! I'm bob\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Hello Bob! How can I assist you today?\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"what was my name?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Your name is Bob. How can I help you today, Bob?\n"
]
}
],
"source": [
"import uuid\n",
"\n",
"from IPython.display import Image, display\n",
"from langchain_core.messages import HumanMessage\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.graph import START, MessagesState, StateGraph\n",
"\n",
"# Define a new graph\n",
"workflow = StateGraph(state_schema=MessagesState)\n",
"\n",
"# Define a chat model\n",
"model = ChatOpenAI()\n",
"\n",
"\n",
"# Define the function that calls the model\n",
"def call_model(state: MessagesState):\n",
" response = model.invoke(state[\"messages\"])\n",
" # We return a list, because this will get added to the existing list\n",
" return {\"messages\": response}\n",
"\n",
"\n",
"# Define the two nodes we will cycle between\n",
"workflow.add_edge(START, \"model\")\n",
"workflow.add_node(\"model\", call_model)\n",
"\n",
"\n",
"# Adding memory is straight forward in langgraph!\n",
"# highlight-next-line\n",
"memory = MemorySaver()\n",
"\n",
"app = workflow.compile(\n",
" # highlight-next-line\n",
" checkpointer=memory\n",
")\n",
"\n",
"\n",
"# The thread id is a unique key that identifies\n",
"# this particular conversation.\n",
"# We'll just generate a random uuid here.\n",
"# This enables a single application to manage conversations among multiple users.\n",
"thread_id = uuid.uuid4()\n",
"# highlight-next-line\n",
"config = {\"configurable\": {\"thread_id\": thread_id}}\n",
"\n",
"\n",
"input_message = HumanMessage(content=\"hi! I'm bob\")\n",
"for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()\n",
"\n",
"# Here, let's confirm that the AI remembers our name!\n",
"input_message = HumanMessage(content=\"what was my name?\")\n",
"for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9893029f-43f3-4703-89bf-e0e8fa18aff3",
"metadata": {},
"source": [
"</details>\n",
"\n",
"### LCEL RunnableWithMessageHistory\n",
"\n",
"Alternatively, if you have a simple chain, you can wrap the chat model of the chain within a [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html).\n",
"\n",
"Please refer to the following [migration guide](/docs/versions/migrating_chains/conversation_chain/) for more information.\n",
"\n",
"\n",
"## Usasge with a pre-built agent\n",
"\n",
"This example shows usage of an Agent Executor with a pre-built agent constructed using the [create_tool_calling_agent](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.tool_calling_agent.base.create_tool_calling_agent.html) function.\n",
"\n",
"If you are using one of the [old LangChain pre-built agents](https://python.langchain.com/v0.1/docs/modules/agents/agent_types/), you should be able\n",
"to replace that code with the new [langgraph pre-built agent](https://langchain-ai.github.io/langgraph/how-tos/create-react-agent/) which leverages\n",
"native tool calling capabilities of chat models and will likely work better out of the box.\n",
"\n",
"### Legacy Usage\n",
"\n",
"<details open>"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "dc2928de-d7a4-4f87-ab96-59bde9a3829f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'input': 'hi! my name is bob what is my age?', 'chat_history': [HumanMessage(content='hi! my name is bob what is my age?', additional_kwargs={}, response_metadata={}), AIMessage(content='Bob, you are 42 years old.', additional_kwargs={}, response_metadata={})], 'output': 'Bob, you are 42 years old.'}\n",
"\n",
"{'input': 'do you remember my name?', 'chat_history': [HumanMessage(content='hi! my name is bob what is my age?', additional_kwargs={}, response_metadata={}), AIMessage(content='Bob, you are 42 years old.', additional_kwargs={}, response_metadata={}), HumanMessage(content='do you remember my name?', additional_kwargs={}, response_metadata={}), AIMessage(content='Yes, your name is Bob.', additional_kwargs={}, response_metadata={})], 'output': 'Yes, your name is Bob.'}\n"
]
}
],
"source": [
"from langchain import hub\n",
"from langchain.agents import AgentExecutor, create_tool_calling_agent\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.tools import tool\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(temperature=0)\n",
"\n",
"\n",
"@tool\n",
"def get_user_age(name: str) -> str:\n",
" \"\"\"Use this tool to find the user's age.\"\"\"\n",
" # This is a placeholder for the actual implementation\n",
" if \"bob\" in name.lower():\n",
" return \"42 years old\"\n",
" return \"41 years old\"\n",
"\n",
"\n",
"tools = [get_user_age]\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\"human\", \"{input}\"),\n",
" (\"placeholder\", \"{agent_scratchpad}\"),\n",
" ]\n",
")\n",
"\n",
"# Construct the Tools agent\n",
"agent = create_tool_calling_agent(model, tools, prompt)\n",
"# Instantiate memory\n",
"# highlight-start\n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)\n",
"# highlight-end\n",
"\n",
"# Create an agent\n",
"agent = create_tool_calling_agent(model, tools, prompt)\n",
"agent_executor = AgentExecutor(\n",
" agent=agent,\n",
" tools=tools,\n",
" # highlight-next-line\n",
" memory=memory, # Pass the memory to the executor\n",
")\n",
"\n",
"# Verify that the agent can use tools\n",
"print(agent_executor.invoke({\"input\": \"hi! my name is bob what is my age?\"}))\n",
"print()\n",
"# Verify that the agent has access to conversation history.\n",
"# The agent should be able to answer that the user's name is bob.\n",
"print(agent_executor.invoke({\"input\": \"do you remember my name?\"}))"
]
},
{
"cell_type": "markdown",
"id": "a4866ae9-e683-44dc-a77b-da1737d3a645",
"metadata": {},
"source": [
"</details>\n",
"\n",
"### LangGraph\n",
"\n",
"You can follow the standard LangChain tutorial for [building an agent](/docs/tutorials/agents/) an in depth explanation of how this works.\n",
"\n",
"This example is shown here explicitly to make it easier for users to compare the legacy implementation vs. the corresponding langgraph implementation.\n",
"\n",
"This example shows how to add memory to the [pre-built react agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) in langgraph.\n",
"\n",
"For more details, please see the [how to add memory to the prebuilt ReAct agent](https://langchain-ai.github.io/langgraph/how-tos/create-react-agent-memory/) guide in langgraph.\n",
"\n",
"<details open>"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "bdb29c9b-bc57-4512-9430-c5d5e3f91e3c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"hi! I'm bob. What is my age?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" get_user_age (call_oEDwEbIDNdokwqhAV6Azn47c)\n",
" Call ID: call_oEDwEbIDNdokwqhAV6Azn47c\n",
" Args:\n",
" name: bob\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: get_user_age\n",
"\n",
"42 years old\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Bob, you are 42 years old! If you need any more assistance or information, feel free to ask.\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"do you remember my name?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Yes, your name is Bob. If you have any other questions or need assistance, feel free to ask!\n"
]
}
],
"source": [
"import uuid\n",
"\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.tools import tool\n",
"from langchain_openai import ChatOpenAI\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"\n",
"@tool\n",
"def get_user_age(name: str) -> str:\n",
" \"\"\"Use this tool to find the user's age.\"\"\"\n",
" # This is a placeholder for the actual implementation\n",
" if \"bob\" in name.lower():\n",
" return \"42 years old\"\n",
" return \"41 years old\"\n",
"\n",
"\n",
"# highlight-next-line\n",
"memory = MemorySaver()\n",
"model = ChatOpenAI()\n",
"app = create_react_agent(\n",
" model,\n",
" tools=[get_user_age],\n",
" # highlight-next-line\n",
" checkpointer=memory,\n",
")\n",
"\n",
"# highlight-start\n",
"# The thread id is a unique key that identifies\n",
"# this particular conversation.\n",
"# We'll just generate a random uuid here.\n",
"# This enables a single application to manage conversations among multiple users.\n",
"thread_id = uuid.uuid4()\n",
"config = {\"configurable\": {\"thread_id\": thread_id}}\n",
"# highlight-end\n",
"\n",
"# Tell the AI that our name is Bob, and ask it to use a tool to confirm\n",
"# that it's capable of working like an agent.\n",
"input_message = HumanMessage(content=\"hi! I'm bob. What is my age?\")\n",
"\n",
"for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()\n",
"\n",
"# Confirm that the chat bot has access to previous conversation\n",
"# and can respond to the user saying that the user's name is Bob.\n",
"input_message = HumanMessage(content=\"do you remember my name?\")\n",
"\n",
"for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "87d14cef-a51e-44be-b376-f31b723caaf8",
"metadata": {},
"source": [
"If we use a different thread ID, it'll start a new conversation and the bot will not know our name!"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "fe63e424-1111-4f6a-a9c9-0887eb150ab0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"hi! do you remember my name?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Hello! Yes, I remember your name. It's great to see you again! How can I assist you today?\n"
]
}
],
"source": [
"config = {\"configurable\": {\"thread_id\": \"123456789\"}}\n",
"\n",
"input_message = HumanMessage(content=\"hi! do you remember my name?\")\n",
"\n",
"for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "b2717810",
"metadata": {},
"source": [
"</details>\n",
"\n",
"## Next steps\n",
"\n",
"Explore persistence with LangGraph:\n",
"\n",
"* [LangGraph quickstart tutorial](https://langchain-ai.github.io/langgraph/tutorials/introduction/)\n",
"* [How to add persistence (\"memory\") to your graph](https://langchain-ai.github.io/langgraph/how-tos/persistence/)\n",
"* [How to manage conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/manage-conversation-history/)\n",
"* [How to add summary of the conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/)\n",
"\n",
"Add persistence with simple LCEL (favor langgraph for more complex use cases):\n",
"\n",
"* [How to add message history](/docs/how_to/message_history/)\n",
"\n",
"Working with message history:\n",
"\n",
"* [How to trim messages](/docs/how_to/trim_messages)\n",
"* [How to filter messages](/docs/how_to/filter_messages/)\n",
"* [How to merge message runs](/docs/how_to/merge_message_runs/)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce4c48e1-b613-4aab-bc2b-617c811fad1d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,728 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ce8457ed-c0b1-4a74-abbd-9d3d2211270f",
"metadata": {},
"source": [
"# Migrating off ConversationBufferWindowMemory or ConversationTokenBufferMemory\n",
"\n",
"Follow this guide if you're trying to migrate off one of the old memory classes listed below:\n",
"\n",
"\n",
"| Memory Type | Description |\n",
"|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n",
"| `ConversationBufferWindowMemory` | Keeps the last `n` messages of the conversation. Drops the oldest messages when there are more than `n` messages. |\n",
"| `ConversationTokenBufferMemory` | Keeps only the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. |\n",
"\n",
"`ConversationBufferWindowMemory` and `ConversationTokenBufferMemory` apply additional processing on top of the raw conversation history to trim the conversation history to a size that fits inside the context window of a chat model. \n",
"\n",
"This processing functionality can be accomplished using LangChain's built-in [trim_messages](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html) function."
]
},
{
"cell_type": "markdown",
"id": "79935247-acc7-4a05-a387-5d72c9c8c8cb",
"metadata": {},
"source": [
":::important\n",
"\n",
"Well begin by exploring a straightforward method that involves applying processing logic to the entire conversation history.\n",
"\n",
"While this approach is easy to implement, it has a downside: as the conversation grows, so does the latency, since the logic is re-applied to all previous exchanges in the conversation at each turn.\n",
"\n",
"More advanced strategies focus on incrementally updating the conversation history to avoid redundant processing.\n",
"\n",
"For instance, the langgraph [how-to guide on summarization](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/) demonstrates\n",
"how to maintain a running summary of the conversation while discarding older messages, ensuring they aren't re-processed during later turns.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "d07f9459-9fb6-4942-99c9-64558aedd7d4",
"metadata": {},
"source": [
"## Set up"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b99b47ec",
"metadata": {},
"outputs": [],
"source": [
"%%capture --no-stderr\n",
"%pip install --upgrade --quiet langchain-openai langchain"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7127478f-4413-48be-bfec-d0cd91b8cf70",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"if \"OPENAI_API_KEY\" not in os.environ:\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass()"
]
},
{
"cell_type": "markdown",
"id": "d6a7bc93-21a9-44c8-842e-9cc82f1ada7c",
"metadata": {},
"source": [
"## Legacy usage with LLMChain / Conversation Chain\n",
"\n",
"<details open>"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "371616e1-ca41-4a57-99e0-5fbf7d63f2ad",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'text': 'Nice to meet you, Bob! How can I assist you today?', 'chat_history': []}\n",
"{'text': 'Your name is Bob. How can I assist you further, Bob?', 'chat_history': [HumanMessage(content='my name is bob', additional_kwargs={}, response_metadata={}), AIMessage(content='Nice to meet you, Bob! How can I assist you today?', additional_kwargs={}, response_metadata={})]}\n"
]
}
],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.memory import ConversationBufferWindowMemory\n",
"from langchain_core.messages import SystemMessage\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.prompts.chat import (\n",
" ChatPromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
" MessagesPlaceholder,\n",
")\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" SystemMessage(content=\"You are a helpful assistant.\"),\n",
" MessagesPlaceholder(variable_name=\"chat_history\"),\n",
" HumanMessagePromptTemplate.from_template(\"{text}\"),\n",
" ]\n",
")\n",
"\n",
"# highlight-start\n",
"memory = ConversationBufferWindowMemory(memory_key=\"chat_history\", return_messages=True)\n",
"# highlight-end\n",
"\n",
"legacy_chain = LLMChain(\n",
" llm=ChatOpenAI(),\n",
" prompt=prompt,\n",
" # highlight-next-line\n",
" memory=memory,\n",
")\n",
"\n",
"legacy_result = legacy_chain.invoke({\"text\": \"my name is bob\"})\n",
"print(legacy_result)\n",
"\n",
"legacy_result = legacy_chain.invoke({\"text\": \"what was my name\"})\n",
"print(legacy_result)"
]
},
{
"cell_type": "markdown",
"id": "f48cac47-c8b6-444c-8e1b-f7115c0b2d8d",
"metadata": {},
"source": [
"</details>\n",
"\n",
"## Reimplementing ConversationBufferWindowMemory logic\n",
"\n",
"Let's first create appropriate logic to process the conversation history, and then we'll see how to integrate it into an application. You can later replace this basic setup with more advanced logic tailored to your specific needs.\n",
"\n",
"We'll use `trim_messages` to implement logic that keeps the last `n` messages of the conversation. It will drop the oldest messages when the number of messages exceeds `n`.\n",
"\n",
"In addition, we will also keep the system message if it's present -- when present, it's the first message in a conversation that includes instructions for the chat model."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "0a92b3f3-0315-46ac-bb28-d07398dd23ea",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import (\n",
" AIMessage,\n",
" BaseMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" trim_messages,\n",
")\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"messages = [\n",
" SystemMessage(\"you're a good assistant, you always respond with a joke.\"),\n",
" HumanMessage(\"i wonder why it's called langchain\"),\n",
" AIMessage(\n",
" 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n",
" ),\n",
" HumanMessage(\"and who is harrison chasing anyways\"),\n",
" AIMessage(\n",
" \"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\"\n",
" ),\n",
" HumanMessage(\"why is 42 always the answer?\"),\n",
" AIMessage(\n",
" \"Because its the only number thats constantly right, even when it doesnt add up!\"\n",
" ),\n",
" HumanMessage(\"What did the cow say?\"),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e7ddf8dc-ea27-43e2-8800-9f7c1d4abdc1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m System Message \u001b[0m================================\n",
"\n",
"you're a good assistant, you always respond with a joke.\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Hmmm let me think.\n",
"\n",
"Why, he's probably chasing after the last cup of coffee in the office!\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"why is 42 always the answer?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Because its the only number thats constantly right, even when it doesnt add up!\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"What did the cow say?\n"
]
}
],
"source": [
"from langchain_core.messages import trim_messages\n",
"\n",
"selected_messages = trim_messages(\n",
" messages,\n",
" token_counter=len, # <-- len will simply count the number of messages rather than tokens\n",
" max_tokens=5, # <-- allow up to 5 messages.\n",
" strategy=\"last\",\n",
" # The start_on is specified\n",
" # to make sure we do not generate a sequence where\n",
" # a ToolMessage that contains the result of a tool invocation\n",
" # appears before the AIMessage that requested a tool invocation\n",
" # as this will cause some chat models to raise an error.\n",
" start_on=(\"human\", \"ai\"),\n",
" include_system=True, # <-- Keep the system message\n",
" allow_partial=False,\n",
")\n",
"\n",
"for msg in selected_messages:\n",
" msg.pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "18f73819-05e0-41f3-a0e7-a5fd6701d9ef",
"metadata": {},
"source": [
"## Reimplementing ConversationTokenBufferMemory logic\n",
"\n",
"Here, we'll use `trim_messages` to keeps the system message and the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. \n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6442f74b-2c36-48fd-a3d1-c7c5d18c050f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m System Message \u001b[0m================================\n",
"\n",
"you're a good assistant, you always respond with a joke.\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"why is 42 always the answer?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Because its the only number thats constantly right, even when it doesnt add up!\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"What did the cow say?\n"
]
}
],
"source": [
"from langchain_core.messages import trim_messages\n",
"\n",
"selected_messages = trim_messages(\n",
" messages,\n",
" # Please see API reference for trim_messages for other ways to specify a token counter.\n",
" token_counter=ChatOpenAI(model=\"gpt-4o\"),\n",
" max_tokens=80, # <-- token limit\n",
" # The start_on is specified\n",
" # to make sure we do not generate a sequence where\n",
" # a ToolMessage that contains the result of a tool invocation\n",
" # appears before the AIMessage that requested a tool invocation\n",
" # as this will cause some chat models to raise an error.\n",
" start_on=(\"human\", \"ai\"),\n",
" strategy=\"last\",\n",
" include_system=True, # <-- Keep the system message\n",
")\n",
"\n",
"for msg in selected_messages:\n",
" msg.pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "0f05d272-2d22-44b7-9fa6-e617a48584b4",
"metadata": {},
"source": [
"## Modern usage with LangGraph\n",
"\n",
"The example below shows how to use LangGraph to add simple conversation pre-processing logic.\n",
"\n",
":::note\n",
"\n",
"If you want to avoid running the computation on the entire conversation history each time, you can follow\n",
"the [how-to guide on summarization](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/) that demonstrates\n",
"how to discard older messages, ensuring they aren't re-processed during later turns.\n",
"\n",
":::\n",
"\n",
"<details open>"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7d6f79a3-fda7-48fd-9128-bbe4aad84199",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"hi! I'm bob\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Hello Bob! How can I assist you today?\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"what was my name?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Your name is Bob. How can I help you, Bob?\n"
]
}
],
"source": [
"import uuid\n",
"\n",
"from IPython.display import Image, display\n",
"from langchain_core.messages import HumanMessage\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.graph import START, MessagesState, StateGraph\n",
"\n",
"# Define a new graph\n",
"workflow = StateGraph(state_schema=MessagesState)\n",
"\n",
"# Define a chat model\n",
"model = ChatOpenAI()\n",
"\n",
"\n",
"# Define the function that calls the model\n",
"def call_model(state: MessagesState):\n",
" # highlight-start\n",
" selected_messages = trim_messages(\n",
" state[\"messages\"],\n",
" token_counter=len, # <-- len will simply count the number of messages rather than tokens\n",
" max_tokens=5, # <-- allow up to 5 messages.\n",
" strategy=\"last\",\n",
" # The start_on is specified\n",
" # to make sure we do not generate a sequence where\n",
" # a ToolMessage that contains the result of a tool invocation\n",
" # appears before the AIMessage that requested a tool invocation\n",
" # as this will cause some chat models to raise an error.\n",
" start_on=(\"human\", \"ai\"),\n",
" include_system=True, # <-- Keep the system message\n",
" allow_partial=False,\n",
" )\n",
"\n",
" # highlight-end\n",
" response = model.invoke(selected_messages)\n",
" # We return a list, because this will get added to the existing list\n",
" return {\"messages\": response}\n",
"\n",
"\n",
"# Define the two nodes we will cycle between\n",
"workflow.add_edge(START, \"model\")\n",
"workflow.add_node(\"model\", call_model)\n",
"\n",
"\n",
"# Adding memory is straight forward in langgraph!\n",
"# highlight-next-line\n",
"memory = MemorySaver()\n",
"\n",
"app = workflow.compile(\n",
" # highlight-next-line\n",
" checkpointer=memory\n",
")\n",
"\n",
"\n",
"# The thread id is a unique key that identifies\n",
"# this particular conversation.\n",
"# We'll just generate a random uuid here.\n",
"thread_id = uuid.uuid4()\n",
"# highlight-next-line\n",
"config = {\"configurable\": {\"thread_id\": thread_id}}\n",
"\n",
"input_message = HumanMessage(content=\"hi! I'm bob\")\n",
"for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()\n",
"\n",
"# Here, let's confirm that the AI remembers our name!\n",
"config = {\"configurable\": {\"thread_id\": thread_id}}\n",
"input_message = HumanMessage(content=\"what was my name?\")\n",
"for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "84229e2e-a578-4b21-840a-814223406402",
"metadata": {},
"source": [
"</details>\n",
"\n",
"## Usage with a pre-built langgraph agent\n",
"\n",
"This example shows usage of an Agent Executor with a pre-built agent constructed using the [create_tool_calling_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.tool_calling_agent.base.create_tool_calling_agent.html) function.\n",
"\n",
"If you are using one of the [old LangChain pre-built agents](https://python.langchain.com/v0.1/docs/modules/agents/agent_types/), you should be able\n",
"to replace that code with the new [langgraph pre-built agent](https://langchain-ai.github.io/langgraph/how-tos/create-react-agent/) which leverages\n",
"native tool calling capabilities of chat models and will likely work better out of the box.\n",
"\n",
"<details open>"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f671db87-8f01-453e-81fd-4e603140a512",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"hi! I'm bob. What is my age?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" get_user_age (call_jsMvoIFv970DhqqLCJDzPKsp)\n",
" Call ID: call_jsMvoIFv970DhqqLCJDzPKsp\n",
" Args:\n",
" name: bob\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: get_user_age\n",
"\n",
"42 years old\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Bob, you are 42 years old.\n",
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"do you remember my name?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Yes, your name is Bob.\n"
]
}
],
"source": [
"import uuid\n",
"\n",
"from langchain_core.messages import (\n",
" AIMessage,\n",
" BaseMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" trim_messages,\n",
")\n",
"from langchain_core.tools import tool\n",
"from langchain_openai import ChatOpenAI\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"\n",
"@tool\n",
"def get_user_age(name: str) -> str:\n",
" \"\"\"Use this tool to find the user's age.\"\"\"\n",
" # This is a placeholder for the actual implementation\n",
" if \"bob\" in name.lower():\n",
" return \"42 years old\"\n",
" return \"41 years old\"\n",
"\n",
"\n",
"memory = MemorySaver()\n",
"model = ChatOpenAI()\n",
"\n",
"\n",
"# highlight-start\n",
"def state_modifier(state) -> list[BaseMessage]:\n",
" \"\"\"Given the agent state, return a list of messages for the chat model.\"\"\"\n",
" # We're using the message processor defined above.\n",
" return trim_messages(\n",
" state[\"messages\"],\n",
" token_counter=len, # <-- len will simply count the number of messages rather than tokens\n",
" max_tokens=5, # <-- allow up to 5 messages.\n",
" strategy=\"last\",\n",
" # The start_on is specified\n",
" # to make sure we do not generate a sequence where\n",
" # a ToolMessage that contains the result of a tool invocation\n",
" # appears before the AIMessage that requested a tool invocation\n",
" # as this will cause some chat models to raise an error.\n",
" start_on=(\"human\", \"ai\"),\n",
" include_system=True, # <-- Keep the system message\n",
" allow_partial=False,\n",
" )\n",
"\n",
"\n",
"# highlight-end\n",
"\n",
"app = create_react_agent(\n",
" model,\n",
" tools=[get_user_age],\n",
" checkpointer=memory,\n",
" # highlight-next-line\n",
" state_modifier=state_modifier,\n",
")\n",
"\n",
"# The thread id is a unique key that identifies\n",
"# this particular conversation.\n",
"# We'll just generate a random uuid here.\n",
"thread_id = uuid.uuid4()\n",
"config = {\"configurable\": {\"thread_id\": thread_id}}\n",
"\n",
"# Tell the AI that our name is Bob, and ask it to use a tool to confirm\n",
"# that it's capable of working like an agent.\n",
"input_message = HumanMessage(content=\"hi! I'm bob. What is my age?\")\n",
"\n",
"for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()\n",
"\n",
"# Confirm that the chat bot has access to previous conversation\n",
"# and can respond to the user saying that the user's name is Bob.\n",
"input_message = HumanMessage(content=\"do you remember my name?\")\n",
"\n",
"for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
" event[\"messages\"][-1].pretty_print()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f4d16e09-1d90-4153-8576-6d3996cb5a6c",
"metadata": {},
"source": [
"</details>\n",
"\n",
"## LCEL: Add a preprocessing step\n",
"\n",
"The simplest way to add complex conversation management is by introducing a pre-processing step in front of the chat model and pass the full conversation history to the pre-processing step.\n",
"\n",
"This approach is conceptually simple and will work in many situations; for example, if using a [RunnableWithMessageHistory](/docs/how_to/message_history/) instead of wrapping the chat model, wrap the chat model with the pre-processor.\n",
"\n",
"The obvious downside of this approach is that latency starts to increase as the conversation history grows because of two reasons:\n",
"\n",
"1. As the conversation gets longer, more data may need to be fetched from whatever store your'e using to store the conversation history (if not storing it in memory).\n",
"2. The pre-processing logic will end up doing a lot of redundant computation, repeating computation from previous steps of the conversation.\n",
"\n",
":::caution\n",
"\n",
"If you want to use a chat model's tool calling capabilities, remember to bind the tools to the model before adding the history pre-processing step to it!\n",
"\n",
":::\n",
"\n",
"<details open>"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "072046bb-3892-4206-8ae5-025e93110dcc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" what_did_the_cow_say (call_urHTB5CShhcKz37QiVzNBlIS)\n",
" Call ID: call_urHTB5CShhcKz37QiVzNBlIS\n",
" Args:\n"
]
}
],
"source": [
"from langchain_core.messages import (\n",
" AIMessage,\n",
" BaseMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" trim_messages,\n",
")\n",
"from langchain_core.tools import tool\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"\n",
"\n",
"@tool\n",
"def what_did_the_cow_say() -> str:\n",
" \"\"\"Check to see what the cow said.\"\"\"\n",
" return \"foo\"\n",
"\n",
"\n",
"# highlight-start\n",
"message_processor = trim_messages( # Returns a Runnable if no messages are provided\n",
" token_counter=len, # <-- len will simply count the number of messages rather than tokens\n",
" max_tokens=5, # <-- allow up to 5 messages.\n",
" strategy=\"last\",\n",
" # The start_on is specified\n",
" # to make sure we do not generate a sequence where\n",
" # a ToolMessage that contains the result of a tool invocation\n",
" # appears before the AIMessage that requested a tool invocation\n",
" # as this will cause some chat models to raise an error.\n",
" start_on=(\"human\", \"ai\"),\n",
" include_system=True, # <-- Keep the system message\n",
" allow_partial=False,\n",
")\n",
"# highlight-end\n",
"\n",
"# Note that we bind tools to the model first!\n",
"model_with_tools = model.bind_tools([what_did_the_cow_say])\n",
"\n",
"# highlight-next-line\n",
"model_with_preprocessor = message_processor | model_with_tools\n",
"\n",
"full_history = [\n",
" SystemMessage(\"you're a good assistant, you always respond with a joke.\"),\n",
" HumanMessage(\"i wonder why it's called langchain\"),\n",
" AIMessage(\n",
" 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n",
" ),\n",
" HumanMessage(\"and who is harrison chasing anyways\"),\n",
" AIMessage(\n",
" \"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\"\n",
" ),\n",
" HumanMessage(\"why is 42 always the answer?\"),\n",
" AIMessage(\n",
" \"Because its the only number thats constantly right, even when it doesnt add up!\"\n",
" ),\n",
" HumanMessage(\"What did the cow say?\"),\n",
"]\n",
"\n",
"\n",
"# We pass it explicity to the model_with_preprocesor for illustrative purposes.\n",
"# If you're using `RunnableWithMessageHistory` the history will be automatically\n",
"# read from the source the you configure.\n",
"model_with_preprocessor.invoke(full_history).pretty_print()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5da7225a-5e94-4f53-bb0d-86b6b528d150",
"metadata": {},
"source": [
"</details>\n",
"\n",
"If you need to implement more efficient logic and want to use `RunnableWithMessageHistory` for now the way to achieve this\n",
"is to subclass from [BaseChatMessageHistory](https://api.python.langchain.com/en/latest/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html) and\n",
"define appropriate logic for `add_messages` (that doesn't simply append the history, but instead re-writes it).\n",
"\n",
"Unless you have a good reason to implement this solution, you should instead use LangGraph."
]
},
{
"cell_type": "markdown",
"id": "b2717810",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"Explore persistence with LangGraph:\n",
"\n",
"* [LangGraph quickstart tutorial](https://langchain-ai.github.io/langgraph/tutorials/introduction/)\n",
"* [How to add persistence (\"memory\") to your graph](https://langchain-ai.github.io/langgraph/how-tos/persistence/)\n",
"* [How to manage conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/manage-conversation-history/)\n",
"* [How to add summary of the conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/)\n",
"\n",
"Add persistence with simple LCEL (favor langgraph for more complex use cases):\n",
"\n",
"* [How to add message history](/docs/how_to/message_history/)\n",
"\n",
"Working with message history:\n",
"\n",
"* [How to trim messages](/docs/how_to/trim_messages)\n",
"* [How to filter messages](/docs/how_to/filter_messages/)\n",
"* [How to merge message runs](/docs/how_to/merge_message_runs/)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4adad0b-3e25-47d9-a8e6-6a9c6c616f14",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,45 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ce8457ed-c0b1-4a74-abbd-9d3d2211270f",
"metadata": {},
"source": [
"# Migrating off ConversationSummaryMemory or ConversationSummaryBufferMemory\n",
"\n",
"Follow this guide if you're trying to migrate off one of the old memory classes listed below:\n",
"\n",
"\n",
"| Memory Type | Description |\n",
"|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|\n",
"| `ConversationSummaryMemory` | Continually summarizes the conversation history. The summary is updated after each conversation turn. The abstraction returns the summary of the conversation history. |\n",
"| `ConversationSummaryBufferMemory` | Provides a running summary of the conversation together with the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. |\n",
"\n",
"Please follow the following [how-to guide on summarization](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/) in LangGraph. \n",
"\n",
"This guide shows how to maintain a running summary of the conversation while discarding older messages, ensuring they aren't re-processed during later turns."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,118 @@
---
sidebar_position: 1
---
# How to migrate from v0.0 memory
The concept of memory has evolved significantly in LangChain since its initial release.
Broadly speaking, LangChain 0.0.x memory was used to handle three main use cases:
| Use Case | Example |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Managing conversation history | Keep only the last `n` turns of the conversation between the user and the AI. |
| Extraction of structured information | Extract structured information from the conversation history, such as a list of facts learned about the user. |
| Composite memory implementations | Combine multiple memory sources, e.g., a list of known facts about the user along with facts learned during a given conversation. |
While the LangChain 0.0.x memory abstractions were useful, they were limited in their capabilities and not well suited for real-world conversational AI applications. These memory abstractions lacked built-in support for multi-user, multi-conversation scenarios, which are essential for practical conversational AI systems.
This guide will help you migrate your usage of memory implementations from LangChain v0.0.x to the persistence implementations of LangGraph.
## Why use LangGraph for memory?
The main advantages of persistence implementation in LangGraph are:
- Built-in support for multi-user, multi-conversation scenarios which is often a requirement for real-world conversational AI applications.
- Ability to save and resume complex state at any time for error recovery, human-in-the-loop workflows, time travel interactions, and more.
- Full support for both [LLM](/docs/concepts/#llms) and [chat models](/docs/concepts/#chat-models). In contrast, the v0.0.x memory abstractions were created prior to the existence and widespread adoption of chat model APIs, and so it does not work well with chat models (e.g., fails with tool calling chat models).
- Offers a high degree of customization and control over the memory implementation, including the ability to use different backends.
## Migrations
:::info Prerequisites
These guides assume some familiarity with the following concepts:
- [LangGraph](https://langchain-ai.github.io/langgraph/)
- [v0.0.x Memory](https://python.langchain.com/v0.1/docs/modules/memory/)
- [How to add persistence ("memory") to your graph](https://langchain-ai.github.io/langgraph/how-tos/persistence/)
:::
### 1. Managing conversation history
The goal of managing conversation history is to store and retrieve the history in a way that is optimal for a chat model to use.
Often this involves trimming and / or summarizing the conversation history to keep the most relevant parts of the conversation while having the conversation fit inside the context window of the chat model.
Memory classes that fall into this category include:
| Memory Type | How to Migrate | Description |
|-----------------------------------|:-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `ConversationBufferMemory` | [Link to Migration Guide](conversation_buffer_memory) | A basic memory implementation that simply stores the conversation history. |
| `ConversationStringBufferMemory` | [Link to Migration Guide](conversation_buffer_memory) | A special case of `ConversationBufferMemory` designed for LLMs and no longer relevant. |
| `ConversationBufferWindowMemory` | [Link to Migration Guide](conversation_buffer_window_memory) | Keeps the last `n` turns of the conversation. Drops the oldest turn when the buffer is full. |
| `ConversationTokenBufferMemory` | [Link to Migration Guide](conversation_buffer_window_memory) | Keeps only the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. |
| `ConversationSummaryMemory` | [Link to Migration Guide](conversation_summary_memory) | Continually summarizes the conversation history. The summary is updated after each conversation turn. The abstraction returns the summary of the conversation history. |
| `ConversationSummaryBufferMemory` | [Link to Migration Guide](conversation_summary_memory) | Provides a running summary of the conversation together with the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. |
| `VectorStoreRetrieverMemory` | No migration guide yet | Stores the conversation history in a vector store and retrieves the most relevant parts of past conversation based on the input. |
### 2. Extraction of structured information from the conversation history
Memory classes that fall into this category include:
| Memory Type | Description |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `BaseEntityStore` | An abstract interface that resembles a key-value store. It was used for storing structured information learned during the conversation. The information had to be represented as a dictionary of key-value pairs. |
| `ConversationEntityMemory` | Combines the ability to summarize the conversation while extracting structured information from the conversation history. |
And specific backend implementations of abstractions:
| Memory Type | Description |
|---------------------------|----------------------------------------------------------------------------------------------------------|
| `InMemoryEntityStore` | An implementation of `BaseEntityStore` that stores the information in the literal computer memory (RAM). |
| `RedisEntityStore` | A specific implementation of `BaseEntityStore` that uses Redis as the backend. |
| `SQLiteEntityStore` | A specific implementation of `BaseEntityStore` that uses SQLite as the backend. |
| `UpstashRedisEntityStore` | A specific implementation of `BaseEntityStore` that uses Upstash as the backend. |
These abstractions have not received much development since their initial release. The reason
is that for these abstractions to be useful they typically require a lot of specialization for a particular application, so these
abstractions are not as widely used as the conversation history management abstractions.
For this reason, there are no migration guides for these abstractions. If you're struggling to migrate an applications
that relies on these abstractions, please open an issue on the LangChain GitHub repository and we'll try to prioritize providing
more guidance on how to migrate these abstractions.
The general strategy for extracting structured information from the conversation history is to use a chat model with tool calling capabilities to extract structured information from the conversation history.
The extracted information can then be saved into an appropriate data structure (e.g., a dictionary), and information from it can be retrieved and added into the prompt as needed.
### 3. Implementations that provide composite logic on top of one or more memory implementations
Memory classes that fall into this category include:
| Memory Type | Description |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| `CombinedMemory` | This abstraction accepted a list of `BaseMemory` and fetched relevant memory information from each of them based on the input. |
| `SimpleMemory` | Used to add read-only hard-coded context. Users can simply write this information into the prompt. |
| `ReadOnlySharedMemory` | Provided a read-only view of an existing `BaseMemory` implementation. |
These implementations did not seem to be used widely or provide significant value. Users should be able
to re-implement these without too much difficulty in custom code.
## Related Resources
Explore persistence with LangGraph:
* [LangGraph quickstart tutorial](https://langchain-ai.github.io/langgraph/tutorials/introduction/)
* [How to add persistence ("memory") to your graph](https://langchain-ai.github.io/langgraph/how-tos/persistence/)
* [How to manage conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/manage-conversation-history/)
* [How to add summary of the conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/)
Add persistence with simple LCEL (favor langgraph for more complex use cases):
* [How to add message history](https://python.langchain.com/docs/how_to/message_history/)
Working with message history:
* [How to trim messages](https://python.langchain.com/docs/how_to/trim_messages)
* [How to filter messages](https://python.langchain.com/docs/how_to/filter_messages/)
* [How to merge message runs](https://python.langchain.com/docs/how_to/merge_message_runs/)

View File

@@ -8,7 +8,7 @@ keywords: [retrievalqa, llmchain, conversationalretrievalchain]
This code contains a list of deprecations and removals in the `langchain` and `langchain-core` packages.
New features and improvements are not listed here. See the [overview](/docs/versions/overview/) for a summary of what's new in this release.
New features and improvements are not listed here. See the [overview](/docs/versions/v0_2/overview/) for a summary of what's new in this release.
## Breaking changes

View File

@@ -2,7 +2,7 @@
sidebar_position: 1
---
# Migrating to LangChain v0.2
# Migration

View File

@@ -3,7 +3,7 @@ sidebar_position: 2
sidebar_label: astream_events v2
---
# Migrating to Astream Events v2
# Migrating to astream_events(..., version="v2")
We've added a `v2` of the astream_events API with the release of `0.2.x`. You can see this [PR](https://github.com/langchain-ai/langchain/pull/21638) for more details.

View File

@@ -1,9 +1,8 @@
---
sidebar_position: 0
sidebar_label: Overview of v0.2
---
# Overview of LangChain v0.2
# Overview
## Whats new in LangChain?

View File

@@ -0,0 +1,271 @@
# LangChain v0.3
*Last updated: 09.16.24*
## What's changed
* All packages have been upgraded from Pydantic 1 to Pydantic 2 internally. Use of Pydantic 2 in user code is fully supported with all packages without the need for bridges like `langchain_core.pydantic_v1` or `pydantic.v1`.
* Pydantic 1 will no longer be supported as it reached its end-of-life in June 2024.
* Python 3.8 will no longer be supported as its end-of-life is October 2024.
**These are the only breaking changes.**
## Whats new
The following features have been added during the development of 0.2.x:
- Moved more integrations from `langchain-community` to their own `langchain-x` packages. This is a non-breaking change, as the legacy implementations are left in `langchain-community` and marked as deprecated. This allows us to better manage the dependencies of, test, and version these integrations. You can see all the latest integration packages in the [API reference](https://python.langchain.com/v0.2/api_reference/reference.html#integrations).
- Simplified tool definition and usage. Read more [here](https://blog.langchain.dev/improving-core-tool-interfaces-and-docs-in-langchain/).
- Added utilities for interacting with chat models: [universal model constructor](https://python.langchain.com/v0.2/docs/how_to/chat_models_universal_init/), [rate limiter](https://python.langchain.com/v0.2/docs/how_to/chat_model_rate_limiting/), [message utilities](https://python.langchain.com/v0.2/docs/how_to/#messages),
- Added the ability to [dispatch custom events](https://python.langchain.com/v0.2/docs/how_to/callbacks_custom_events/).
- Revamped integration docs and API reference. Read more [here](https://blog.langchain.dev/langchain-integration-docs-revamped/).
- Marked as deprecated a number of legacy chains and added migration guides for all of them. These are slated for removal in `langchain` 1.0.0. See the deprecated chains and associated [migration guides here](https://python.langchain.com/v0.2/docs/versions/migrating_chains/).
## How to update your code
If you're using `langchain` / `langchain-community` / `langchain-core` 0.0 or 0.1, we recommend that you first [upgrade to 0.2](https://python.langchain.com/v0.2/docs/versions/v0_2/).
If you're using `langgraph`, upgrade to `langgraph>=0.2.20,<0.3`. This will work with either 0.2 or 0.3 versions of all the base packages.
Here is a complete list of all packages that have been released and what we recommend upgrading your version constraints to.
Any package that now requires `langchain-core` 0.3 had a minor version bump.
Any package that is now compatible with both `langchain-core` 0.2 and 0.3 had a patch version bump.
You can use the `langchain-cli` to update deprecated imports automatically.
The CLI will handle updating deprecated imports that were introduced in LangChain 0.0.x and LangChain 0.1, as
well as updating the `langchain_core.pydantic_v1` and `langchain.pydantic_v1` imports.
### Base packages
| Package | Latest | Recommended constraint |
|--------------------------|--------|------------------------|
| langchain | 0.3.0 | >=0.3,<0.4 |
| langchain-community | 0.3.0 | >=0.3,<0.4 |
| langchain-text-splitters | 0.3.0 | >=0.3,<0.4 |
| langchain-core | 0.3.0 | >=0.3,<0.4 |
| langchain-experimental | 0.3.0 | >=0.3,<0.4 |
### Downstream packages
| Package | Latest | Recommended constraint |
|-----------|--------|------------------------|
| langgraph | 0.2.20 | >=0.2.20,<0.3 |
| langserve | 0.3.0 | >=0.3,<0.4 |
### Integration packages
| Package | Latest | Recommended constraint |
| -------------------------------------- | ------- | -------------------------- |
| langchain-ai21 | 0.2.0 | >=0.2,<0.3 |
| langchain-aws | 0.2.0 | >=0.2,<0.3 |
| langchain-anthropic | 0.2.0 | >=0.2,<0.3 |
| langchain-astradb | 0.4.1 | >=0.4.1,<0.5 |
| langchain-azure-dynamic-sessions | 0.2.0 | >=0.2,<0.3 |
| langchain-box | 0.2.0 | >=0.2,<0.3 |
| langchain-chroma | 0.1.4 | >=0.1.4,<0.2 |
| langchain-cohere | 0.3.0 | >=0.3,<0.4 |
| langchain-elasticsearch | 0.3.0 | >=0.3,<0.4 |
| langchain-exa | 0.2.0 | >=0.2,<0.3 |
| langchain-fireworks | 0.2.0 | >=0.2,<0.3 |
| langchain-groq | 0.2.0 | >=0.2,<0.3 |
| langchain-google-community | 2.0.0 | >=2,<3 |
| langchain-google-genai | 2.0.0 | >=2,<3 |
| langchain-google-vertexai | 2.0.0 | >=2,<3 |
| langchain-huggingface | 0.1.0 | >=0.1,<0.2 |
| langchain-ibm | 0.2.0 | >=0.2,<0.3 |
| langchain-milvus | 0.1.6 | >=0.1.6,<0.2 |
| langchain-mistralai | 0.2.0 | >=0.2,<0.3 |
| langchain-mongodb | 0.2.0 | >=0.2,<0.3 |
| langchain-nomic | 0.1.3 | >=0.1.3,<0.2 |
| langchain-ollama | 0.2.0 | >=0.2,<0.3 |
| langchain-openai | 0.2.0 | >=0.2,<0.3 |
| langchain-pinecone | 0.2.0 | >=0.2,<0.3 |
| langchain-postgres | 0.0.13 | >=0.0.13,<0.1 |
| langchain-prompty | 0.1.0 | >=0.1,<0.2 |
| langchain-qdrant | 0.1.4 | >=0.1.4,<0.2 |
| langchain-redis | 0.1.0 | >=0.1,<0.2 |
| langchain-sema4 | 0.2.0 | >=0.2,<0.3 |
| langchain-together | 0.2.0 | >=0.2,<0.3 |
| langchain-unstructured | 0.1.4 | >=0.1.4,<0.2 |
| langchain-upstage | 0.3.0 | >=0.3,<0.4 |
| langchain-voyageai | 0.2.0 | >=0.2,<0.3 |
| langchain-weaviate | 0.0.3 | >=0.0.3,<0.1 |
Once you've updated to recent versions of the packages, you may need to address the following issues stemming from the internal switch from Pydantic v1 to Pydantic v2:
- If your code depends on Pydantic aside from LangChain, you will need to upgrade your pydantic version constraints to be `pydantic>=2,<3`. See [Pydantics migration guide](https://docs.pydantic.dev/latest/migration/) for help migrating your non-LangChain code to Pydantic v2 if you use pydantic v1.
- There are a number of side effects to LangChain components caused by the internal switch from Pydantic v1 to v2. We have listed some of the common cases below together with the recommended solutions.
## Common issues when transitioning to Pydantic 2
### 1. Do not use the `langchain_core.pydantic_v1` namespace
Replace any usage of `langchain_core.pydantic_v1` or `langchain.pydantic_v1` with
direct imports from `pydantic`.
For example,
```python
from langchain_core.pydantic_v1 import BaseModel
```
to:
```python
from pydantic import BaseModel
```
This may require you to make additional updates to your Pydantic code given that there are a number of breaking changes in Pydantic 2. See the [Pydantic Migration](https://docs.pydantic.dev/latest/migration/) for how to upgrade your code from Pydantic 1 to 2.
### 2. Passing Pydantic objects to LangChain APIs
Users using the following APIs:
* `BaseChatModel.bind_tools`
* `BaseChatModel.with_structured_output`
* `Tool.from_function`
* `StructuredTool.from_function`
should ensure that they are passing Pydantic 2 objects to these APIs rather than
Pydantic 1 objects (created via the `pydantic.v1` namespace of pydantic 2).
:::caution
While `v1` objets may be accepted by some of these APIs, users are advised to
use Pydantic 2 objects to avoid future issues.
:::
### 3. Sub-classing LangChain models
Any sub-classing from existing LangChain models (e.g., `BaseTool`, `BaseChatModel`, `LLM`)
should upgrade to use Pydantic 2 features.
For example, any user code that's relying on Pydantic 1 features (e.g., `validator`) should
be updated to the Pydantic 2 equivalent (e.g., `field_validator`), and any references to
`pydantic.v1`, `langchain_core.pydantic_v1`, `langchain.pydantic_v1` should be replaced
with imports from `pydantic`.
```python
from pydantic.v1 import validator, Field # if pydantic 2 is installed
# from pydantic import validator, Field # if pydantic 1 is installed
# from langchain_core.pydantic_v1 import validator, Field
# from langchain.pydantic_v1 import validator, Field
class CustomTool(BaseTool): # BaseTool is v1 code
x: int = Field(default=1)
def _run(*args, **kwargs):
return "hello"
@validator('x') # v1 code
@classmethod
def validate_x(cls, x: int) -> int:
return 1
```
Should change to:
```python
from pydantic import Field, field_validator # pydantic v2
from langchain_core.pydantic_v1 import BaseTool
class CustomTool(BaseTool): # BaseTool is v1 code
x: int = Field(default=1)
def _run(*args, **kwargs):
return "hello"
@field_validator('x') # v2 code
@classmethod
def validate_x(cls, x: int) -> int:
return 1
CustomTool(
name='custom_tool',
description="hello",
x=1,
)
```
### 4. model_rebuild()
When sub-classing from LangChain models, users may need to add relevant imports
to the file and rebuild the model.
You can read more about `model_rebuild` [here](https://docs.pydantic.dev/latest/concepts/models/#rebuilding-model-schema).
```python
from langchain_core.output_parsers import BaseOutputParser
class FooParser(BaseOutputParser):
...
```
New code:
```python
from typing import Optional as Optional
from langchain_core.output_parsers import BaseOutputParser
class FooParser(BaseOutputParser):
...
FooParser.model_rebuild()
```
## Migrate using langchain-cli
The `langchain-cli` can help update deprecated LangChain imports in your code automatically.
Please note that the `langchain-cli` only handles deprecated LangChain imports and cannot
help to upgrade your code from pydantic 1 to pydantic 2.
For help with the Pydantic 1 to 2 migration itself please refer to the [Pydantic Migration Guidelines](https://docs.pydantic.dev/latest/migration/).
As of 0.0.31, the `langchain-cli` relies on [gritql](https://about.grit.io/) for applying code mods.
### Installation
```bash
pip install -U langchain-cli
langchain-cli --version # <-- Make sure the version is at least 0.0.31
```
### Usage
Given that the migration script is not perfect, you should make sure you have a backup of your code first (e.g., using version control like `git`).
The `langchain-cli` will handle the `langchain_core.pydantic_v1` deprecation introduced in LangChain 0.3 as well
as older deprecations (e.g.,`from langchain.chat_models import ChatOpenAI` which should be `from langchain_openai import ChatOpenAI`),
You will need to run the migration script **twice** as it only applies one import replacement per run.
For example, say that your code is still using the old import `from langchain.chat_models import ChatOpenAI`:
After the first run, youll get: `from langchain_community.chat_models import ChatOpenAI`
After the second run, youll get: `from langchain_openai import ChatOpenAI`
```bash
# Run a first time
# Will replace from langchain.chat_models import ChatOpenAI
langchain-cli migrate --help [path to code] # Help
langchain-cli migrate [path to code] # Apply
# Run a second time to apply more import replacements
langchain-cli migrate --diff [path to code] # Preview
langchain-cli migrate [path to code] # Apply
```
### Other options
```bash
# See help menu
langchain-cli migrate --help
# Preview Changes without applying
langchain-cli migrate --diff [path to code]
# Approve changes interactively
langchain-cli migrate --interactive [path to code]
```

View File

@@ -1,187 +0,0 @@
---
sidebar_label: Overview of v0.3
---
# Overview of LangChain v0.3
## Whats new in LangChain?
The following features have been added during the development of 0.2.x:
- Weve recently revamped our integration docs and API reference. Read more [here](https://blog.langchain.dev/langchain-integration-docs-revamped/).
- Weve continued to migrate key integrations to their own `langchain-x` packages outside of `langchain-community`. This allows us to better manage the dependencies of, test, and version these integrations. You can see all the latest integration packages in the [API reference](https://python.langchain.com/v0.2/api_reference/reference.html#integrations).
- Weve simplified how to define and use tools. Read more [here](https://blog.langchain.dev/improving-core-tool-interfaces-and-docs-in-langchain/).
- Weve added a number of key utilities for interacting with chat models: [universal model constructor](https://python.langchain.com/v0.2/docs/how_to/chat_models_universal_init/), [rate limiter](https://python.langchain.com/v0.2/docs/how_to/chat_model_rate_limiting/), [message utilities](https://python.langchain.com/v0.2/docs/how_to/#messages),
- We've added the ability to [dispatch custom events](https://python.langchain.com/v0.2/docs/how_to/callbacks_custom_events/).
- We have marked as deprecated a number of legacy chains and added migration guides for all of them. These are slated for removal in langchain 1.0. See the deprecated chains and associated [migration guides here](https://python.langchain.com/v0.2/docs/versions/migrating_chains/).
## What's changed
* As of the 0.3 release, LangChain has been upgraded to use Pydantic 2 internally. Pydantic v2 will be fully supported across new packages without the need for any bridges like `langchain_core.pydantic_v1`.
* Pydantic 1 will no longer be supported as it reached its end-of-life in June 2024.
* Python 3.8 will no longer be supported as its end-of-life is October 2024.
## How to update your code
If you're using LangChain 0.0, or 0.1, we recommend that you first [upgrade to 0.2](https://python.langchain.com/v0.2/docs/versions/v0_2/). The langchain-cli will help you to migrate many imports automatically.
If you're using LangChain 0.2, update your packages to use `langchain-core>=0.3`. We've released 0.3 versions of langchain-core, langchain, langchain-community and langserve. `langgraph>=0.2.20` will work with either langchain-core 0.2 or 0.3.
The breaking changes in this release were:
1. The internal switch from Pydantic v1 to Pydantic v2.
2. The removal of the automatic addition of the suffix `Schema` to the names of tools.
Once you've updated to recent versions of the packages, you may need to address the following issues stemming from the internal switch from Pydantic v1 to Pydantic v2:
- If your code depends on Pydantic aside from LangChain, you will need to use `pydantic>=2,<3`. See [Pydantics migration guide](https://docs.pydantic.dev/latest/migration/) for help migrating your non-LangChain code to Pydantic v2 if you use pydantic v1.
- There are a number of side effects to LangChain components caused by the internal switch from Pydantic v1 to v2. We have listed some of the common cases below together with the recommended solutions.
If you're still using deprecated LangChain please follow the [migration guides here](https://python.langchain.com/v0.2/docs/versions/migrating_chains/).
## Common issues when transitioning to Pydantic 2
### 1. Do not use the langchain_core.pydantic_v1 namespace
Replace any usage of `langchain_core.pydantic_v1` or `langchain.pydantic_v1` with
direct imports from `pydantic`.
For example,
```python
from langchain_core.pydantic_v1 import BaseModel
```
to:
```python
from pydantic import BaseModel
```
### 2. Passing Pydantic objects to LangChain APIs
Users using the following APIs:
* `BaseChatModel.bind_tools`
* `BaseChatModel.with_structured_output`
* `Tool.from_function`
* `StructuredTool.from_function`
should ensure that they are passing Pydantic 2 objects to these APIs rather than
Pydantic 1 objects (created via the `pydantic.v1` namespace of pydantic 2).
:::caution
While `v1` objets may be accepted by some of these APIs, users are advised to
use Pydantic 2 objects to avoid future issues.
:::
### 3. Sub-classing LangChain models
Any sub-classing from existing LangChain models (e.g., `BaseTool`, `BaseChatModel`, `LLM`)
should upgrade to use Pydantic 2 features.
For example, any user code that's relying on Pydantic 1 features (e.g., `validator`) should
be updated to the Pydantic 2 equivalent (e.g., `field_validator`), and any references to
`pydantic.v1`, `langchain_core.pydantic_v1`, `langchain.pydantic_v1` should be replaced
with imports from `pydantic`.
```python
from pydantic.v1 import validator, Field # if pydantic 2 is installed
# from pydantic import validator, Field # if pydantic 1 is installed
# from langchain_core.pydantic_v1 import validator, Field
# from langchain.pydantic_v1 import validator, Field
class CustomTool(BaseTool): # BaseTool is v1 code
x: int = Field(default=1)
def _run(*args, **kwargs):
return "hello"
@validator('x') # v1 code
@classmethod
def validate_x(cls, x: int) -> int:
return 1
```
Should change to:
```python
from pydantic import Field, field_validator # pydantic v2
from langchain_core.pydantic_v1 import BaseTool
class CustomTool(BaseTool): # BaseTool is v1 code
x: int = Field(default=1)
def _run(*args, **kwargs):
return "hello"
@field_validator('x') # v2 code
@classmethod
def validate_x(cls, x: int) -> int:
return 1
CustomTool(
name='custom_tool',
description="hello",
x=1,
)
```
### 4. model_rebuild()
When sub-classing from LangChain models, users may need to add relevant imports
to the file and rebuild the model.
```python
from langchain_core.output_parsers import BaseOutputParser
class FooParser(BaseOutputParser):
...
```
New code:
```python
from typing import Optional as Optional
from langchain_core.output_parsers import BaseOutputParser
class FooParser(BaseOutputParser):
...
FooParser.model_rebuild()
```
## `Schema` suffix removal
In previous versions of LangChain, the suffix `Schema` was automatically added to the names of tools if a tool name was not
specified. This name was used to generate the schema for the tool which was sent to chat models as the JSON Schema for the tool.
We do not expect most users to be affected by this change.
For example, the tool
```python
from langchain_core.tools import tool
@tool
def add(x: int, y: int) -> int:
"""Add x and y."""
return x + y
```
would have been named `addSchema` in previous versions of LangChain. In 0.3, the name of the tool will be `add`.
```python
add.args_schema.model_json_schema()
```
```
{'description': 'Add x and y.',
'properties': {'x': {'title': 'X', 'type': 'integer'},
'y': {'title': 'Y', 'type': 'integer'}},
'required': ['x', 'y'],
'title': 'add',
'type': 'object'}
```

View File

@@ -168,52 +168,43 @@ const config = {
label: "Integrations",
},
{
type: "dropdown",
label: "API reference",
position: "left",
items: [
{
label: "Latest",
to: "https://python.langchain.com/api_reference/reference.html",
},
{
label: "Legacy",
href: "https://api.python.langchain.com/"
}
]
label: "API Reference",
to: "https://python.langchain.com/api_reference/",
},
{
type: "dropdown",
label: "More",
position: "left",
items: [
{
type: "doc",
docId: "people",
label: "People",
},
{
type: "doc",
docId: "contributing/index",
label: "Contributing",
},
{
label: "Cookbooks",
href: "https://github.com/langchain-ai/langchain/blob/master/cookbook/README.md"
},
{
type: "doc",
docId: "additional_resources/tutorials",
label: "3rd party tutorials"
docId: "people",
label: "People",
},
{
type: "doc",
docId: "additional_resources/youtube",
label: "YouTube"
type: 'html',
value: '<hr class="dropdown-separator" style="margin-top: 0.5rem; margin-bottom: 0.5rem">',
},
{
to: "/docs/additional_resources/arxiv_references",
label: "arXiv"
href: "https://docs.smith.langchain.com",
label: "LangSmith",
},
{
href: "https://langchain-ai.github.io/langgraph/",
label: "LangGraph",
},
{
href: "https://smith.langchain.com/hub",
label: "LangChain Hub",
},
{
href: "https://js.langchain.com",
label: "LangChain JS/TS",
},
]
},
@@ -237,30 +228,7 @@ const config = {
]
},
{
type: "dropdown",
label: "🦜️🔗",
position: "right",
items: [
{
href: "https://smith.langchain.com",
label: "LangSmith",
},
{
href: "https://docs.smith.langchain.com/",
label: "LangSmith Docs",
},
{
href: "https://smith.langchain.com/hub",
label: "LangChain Hub",
},
{
href: "https://js.langchain.com",
label: "JS/TS Docs",
},
]
},
{
href: "https://chat.langchain.com",
to: "https://chat.langchain.com",
label: "💬",
position: "right",
},
@@ -330,7 +298,7 @@ const config = {
// this is linked to erick@langchain.dev currently
apiKey: "6c01842d6a88772ed2236b9c85806441",
indexName: "python-langchain-0.2",
indexName: "python-langchain-latest",
contextualSearch: false,
},

View File

@@ -72,25 +72,24 @@ module.exports = {
collapsed: false,
collapsible: false,
items: [
"versions/v0_3/overview",
"versions/overview",
{
type: 'doc',
id: 'versions/v0_3/index',
label: "v0.3",
},
{
type: "category",
label: "v0.2",
items: [{
type: 'autogenerated',
dirName: 'versions/v0_2',
}],
},
{
type: 'doc',
id: "how_to/pydantic_compatibility",
label: "Pydantic compatibility",
},
{
type: "category",
label: "Migrating to v0.2",
link: {type: 'doc', id: 'versions/v0_2/index'},
collapsible: false,
collapsed: false,
items: [{
type: 'autogenerated',
dirName: 'versions/v0_2',
className: 'hidden',
}],
},
{
type: "category",
label: "Migrating from v0.0 chains",

View File

@@ -38,6 +38,9 @@
--ifm-menu-link-padding-horizontal: 0.5rem;
--ifm-menu-link-padding-vertical: 0.5rem;
--doc-sidebar-width: 275px !important;
/* Code block syntax highlighting */
--docusaurus-highlighted-code-line-bg: rgb(176, 227, 199);
}
/* For readability concerns, you should choose a lighter palette in dark mode. */
@@ -49,6 +52,9 @@
--ifm-color-primary-light: #29d5b0;
--ifm-color-primary-lighter: #32d8b4;
--ifm-color-primary-lightest: #4fddbf;
/* Code block syntax highlighting */
--docusaurus-highlighted-code-line-bg: rgb(14, 73, 60);
}
nav, h1, h2, h3, h4 {

View File

@@ -354,7 +354,7 @@ const FEATURE_TABLES = {
},
{
name: "Nomic",
link: "cohere",
link: "nomic",
package: "langchain-nomic",
apiLink: "https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html"
},
@@ -886,7 +886,7 @@ const FEATURE_TABLES = {
apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html"
},
{
name: "UnstrucutredXMLLoader",
name: "UnstructuredXMLLoader",
link: "xml",
source: "XML files",
apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.xml.UnstructuredXMLLoader.html"

View File

@@ -2538,5 +2538,389 @@ const suggestedLinks = {
"alternative": [
"/v0.1/docs/use_cases/web_scraping/"
]
},
// below are new
"/docs/modules/data_connection/document_transformers/text_splitters/": {"canonical": "/docs/how_to/#text-splitters", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/"]},
"/docs/modules/data_connection/document_transformers/text_splitters/character_text_splitter/": {"canonical": "/docs/how_to/character_text_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/character_text_splitter/"]},
"/docs/modules/data_connection/document_transformers/text_splitters/code_splitter/": {"canonical": "/docs/how_to/code_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/code_splitter/"]},
"/docs/modules/data_connection/document_transformers/text_splitters/HTML_header_metadata/": {"canonical": "/docs/how_to/HTML_header_metadata_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/HTML_header_metadata/"]},
"/docs/modules/data_connection/document_transformers/text_splitters/HTML_section_aware_splitter/": {"canonical": "/docs/how_to/HTML_section_aware_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/HTML_section_aware_splitter/"]},
"/docs/modules/data_connection/document_transformers/text_splitters/markdown_header_metadata/": {"canonical": "/docs/how_to/markdown_header_metadata_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/markdown_header_metadata/"]},
"/docs/modules/data_connection/document_transformers/text_splitters/recursive_json_splitter/": {"canonical": "/docs/how_to/recursive_json_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/recursive_json_splitter/"]},
"/docs/modules/data_connection/document_transformers/text_splitters/recursive_text_splitter/": {"canonical": "/docs/how_to/recursive_text_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/"]},
"/docs/modules/data_connection/document_transformers/text_splitters/semantic-chunker/": {"canonical": "/docs/how_to/semantic-chunker/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/semantic-chunker/"]},
"/docs/modules/data_connection/document_transformers/text_splitters/split_by_token/": {"canonical": "/docs/how_to/split_by_token/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/split_by_token/"]},
"/docs/modules/model_io/prompts/prompt_templates/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/"]},
"/docs/modules/model_io/prompts/prompt_templates/composition/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]},
"/docs/modules/model_io/prompts/prompt_templates/example_selectors/": {"canonical": "/docs/how_to/example_selectors/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/"]},
"/docs/modules/model_io/prompts/prompt_templates/example_selectors/length_based/": {"canonical": "/docs/how_to/example_selectors_length_based/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/length_based/"]},
"/docs/modules/model_io/prompts/prompt_templates/example_selectors/mmr/": {"canonical": "/docs/how_to/example_selectors_mmr/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/"]},
"/docs/modules/model_io/prompts/prompt_templates/example_selectors/ngram_overlap/": {"canonical": "/docs/how_to/example_selectors_ngram/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/ngram_overlap/"]},
"/docs/modules/model_io/prompts/prompt_templates/example_selectors/similarity/": {"canonical": "/docs/how_to/example_selectors_similarity/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/similarity/"]},
"/docs/modules/model_io/prompts/prompt_templates/few_shot_examples_chat/": {"canonical": "/docs/how_to/few_shot_examples_chat/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples_chat/"]},
"/docs/modules/model_io/prompts/prompt_templates/few_shot_examples/": {"canonical": "/docs/how_to/few_shot_examples/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples/"]},
"/docs/modules/model_io/prompts/prompt_templates/partial/": {"canonical": "/docs/how_to/prompts_partial/", "alternative": ["/v0.1/docs/modules/model_io/prompts/partial/"]},
"/docs/modules/model_io/prompts/prompt_templates/quick_start/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/quick_start/"]},
"/docs/modules/model_io/models/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/"]},
"/docs/modules/model_io/models/chat/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/chat/"]},
"/docs/modules/model_io/models/chat/chat_model_caching/": {"canonical": "/docs/how_to/chat_model_caching/", "alternative": ["/v0.1/docs/modules/model_io/chat/chat_model_caching/"]},
"/docs/modules/model_io/models/chat/custom_chat_model/": {"canonical": "/docs/how_to/custom_chat_model/", "alternative": ["/v0.1/docs/modules/model_io/chat/custom_chat_model/"]},
"/docs/modules/model_io/models/chat/function_calling/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/chat/function_calling/"]},
"/docs/modules/model_io/models/chat/logprobs/": {"canonical": "/docs/how_to/logprobs/", "alternative": ["/v0.1/docs/modules/model_io/chat/logprobs/"]},
"/docs/modules/model_io/models/chat/message_types/": {"canonical": "/docs/concepts/#messages", "alternative": ["/v0.1/docs/modules/model_io/chat/message_types/"]},
"/docs/modules/model_io/models/chat/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/chat/quick_start/"]},
"/docs/modules/model_io/models/chat/response_metadata/": {"canonical": "/docs/how_to/response_metadata/", "alternative": ["/v0.1/docs/modules/model_io/chat/response_metadata/"]},
"/docs/modules/model_io/models/chat/streaming/": {"canonical": "/docs/how_to/streaming/", "alternative": ["/v0.1/docs/modules/model_io/chat/streaming/"]},
"/docs/modules/model_io/models/chat/structured_output/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/chat/structured_output/"]},
"/docs/modules/model_io/models/chat/token_usage_tracking/": {"canonical": "/docs/how_to/chat_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/chat/token_usage_tracking/"]},
"/docs/modules/model_io/models/concepts/": {"canonical": "/docs/concepts/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/concepts/"]},
"/docs/modules/model_io/models/llms/": {"canonical": "/docs/concepts/#llms", "alternative": ["/v0.1/docs/modules/model_io/llms/"]},
"/docs/modules/model_io/models/llms/custom_llm/": {"canonical": "/docs/how_to/custom_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/custom_llm/"]},
"/docs/modules/model_io/models/llms/llm_caching/": {"canonical": "/docs/how_to/llm_caching/", "alternative": ["/v0.1/docs/modules/model_io/llms/llm_caching/"]},
"/docs/modules/model_io/models/llms/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/llms/quick_start/"]},
"/docs/modules/model_io/models/llms/streaming_llm/": {"canonical": "/docs/how_to/streaming_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/streaming_llm/"]},
"/docs/modules/model_io/models/llms/token_usage_tracking/": {"canonical": "/docs/how_to/llm_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/llms/token_usage_tracking/"]},
"/docs/modules/model_io/models/output_parsers/": {"canonical": "/docs/how_to/#output-parsers", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/"]},
"/docs/modules/model_io/models/output_parsers/custom/": {"canonical": "/docs/how_to/output_parser_custom/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/custom/"]},
"/docs/modules/model_io/models/output_parsers/quick_start/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/quick_start/"]},
"/docs/modules/model_io/models/output_parsers/types/csv/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/csv/"]},
"/docs/modules/model_io/models/output_parsers/types/datetime/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/datetime/"]},
"/docs/modules/model_io/models/output_parsers/types/enum/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/enum/"]},
"/docs/modules/model_io/models/output_parsers/types/json/": {"canonical": "/docs/how_to/output_parser_json/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/json/"]},
"/docs/modules/model_io/models/output_parsers/types/openai_functions/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/openai_functions/"]},
"/docs/modules/model_io/models/output_parsers/types/openai_tools/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/openai_tools/"]},
"/docs/modules/model_io/models/output_parsers/types/output_fixing/": {"canonical": "/docs/how_to/output_parser_fixing/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/output_fixing/"]},
"/docs/modules/model_io/models/output_parsers/types/pandas_dataframe/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pandas_dataframe/"]},
"/docs/modules/model_io/models/output_parsers/types/pydantic/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pydantic/"]},
"/docs/modules/model_io/models/output_parsers/types/retry/": {"canonical": "/docs/how_to/output_parser_retry/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/retry/"]},
"/docs/modules/model_io/models/output_parsers/types/structured/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/structured/"]},
"/docs/modules/model_io/models/output_parsers/types/xml/": {"canonical": "/docs/how_to/output_parser_xml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/xml/"]},
"/docs/modules/model_io/models/output_parsers/types/yaml/": {"canonical": "/docs/how_to/output_parser_yaml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/yaml/"]},
"/docs/modules/model_io/models/prompts/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/"]},
"/docs/modules/model_io/models/prompts/composition/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]},
"/docs/modules/model_io/models/prompts/example_selectors/": {"canonical": "/docs/how_to/example_selectors/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/"]},
"/docs/modules/model_io/models/prompts/example_selectors/length_based/": {"canonical": "/docs/how_to/example_selectors_length_based/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/length_based/"]},
"/docs/modules/model_io/models/prompts/example_selectors/mmr/": {"canonical": "/docs/how_to/example_selectors_mmr/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/"]},
"/docs/modules/model_io/models/prompts/example_selectors/ngram_overlap/": {"canonical": "/docs/how_to/example_selectors_ngram/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/ngram_overlap/"]},
"/docs/modules/model_io/models/prompts/example_selectors/similarity/": {"canonical": "/docs/how_to/example_selectors_similarity/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/similarity/"]},
"/docs/modules/model_io/models/prompts/few_shot_examples_chat/": {"canonical": "/docs/how_to/few_shot_examples_chat/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples_chat/"]},
"/docs/modules/model_io/models/prompts/few_shot_examples/": {"canonical": "/docs/how_to/few_shot_examples/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples/"]},
"/docs/modules/model_io/models/prompts/partial/": {"canonical": "/docs/how_to/prompts_partial/", "alternative": ["/v0.1/docs/modules/model_io/prompts/partial/"]},
"/docs/modules/model_io/models/prompts/quick_start/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/quick_start/"]},
"/docs/modules/model_io/models/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/quick_start/"]},
"/docs/use_cases/more/graph/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/"]},
"/docs/use_cases/more/graph/constructing/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/constructing/"]},
"/docs/use_cases/more/graph/mapping/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/mapping/"]},
"/docs/use_cases/more/graph/prompting/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/prompting/"]},
"/docs/use_cases/more/graph/quickstart/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/quickstart/"]},
"/docs/use_cases/more/graph/semantic/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/semantic/"]},
"/docs/modules/model_io/chat/how_to/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/chat/"]},
"/docs/modules/model_io/chat/how_to/chat_model_caching/": {"canonical": "/docs/how_to/chat_model_caching/", "alternative": ["/v0.1/docs/modules/model_io/chat/chat_model_caching/"]},
"/docs/modules/model_io/chat/how_to/custom_chat_model/": {"canonical": "/docs/how_to/custom_chat_model/", "alternative": ["/v0.1/docs/modules/model_io/chat/custom_chat_model/"]},
"/docs/modules/model_io/chat/how_to/function_calling/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/chat/function_calling/"]},
"/docs/modules/model_io/chat/how_to/logprobs/": {"canonical": "/docs/how_to/logprobs/", "alternative": ["/v0.1/docs/modules/model_io/chat/logprobs/"]},
"/docs/modules/model_io/chat/how_to/message_types/": {"canonical": "/docs/concepts/#messages", "alternative": ["/v0.1/docs/modules/model_io/chat/message_types/"]},
"/docs/modules/model_io/chat/how_to/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/chat/quick_start/"]},
"/docs/modules/model_io/chat/how_to/response_metadata/": {"canonical": "/docs/how_to/response_metadata/", "alternative": ["/v0.1/docs/modules/model_io/chat/response_metadata/"]},
"/docs/modules/model_io/chat/how_to/streaming/": {"canonical": "/docs/how_to/streaming/", "alternative": ["/v0.1/docs/modules/model_io/chat/streaming/"]},
"/docs/modules/model_io/chat/how_to/structured_output/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/chat/structured_output/"]},
"/docs/modules/model_io/chat/how_to/token_usage_tracking/": {"canonical": "/docs/how_to/chat_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/chat/token_usage_tracking/"]},
"/docs/modules/model_io/llms/how_to/": {"canonical": "/docs/concepts/#llms", "alternative": ["/v0.1/docs/modules/model_io/llms/"]},
"/docs/modules/model_io/llms/how_to/custom_llm/": {"canonical": "/docs/how_to/custom_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/custom_llm/"]},
"/docs/modules/model_io/llms/how_to/llm_caching/": {"canonical": "/docs/how_to/llm_caching/", "alternative": ["/v0.1/docs/modules/model_io/llms/llm_caching/"]},
"/docs/modules/model_io/llms/how_to/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/llms/quick_start/"]},
"/docs/modules/model_io/llms/how_to/streaming_llm/": {"canonical": "/docs/how_to/streaming_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/streaming_llm/"]},
"/docs/modules/model_io/llms/how_to/token_usage_tracking/": {"canonical": "/docs/how_to/llm_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/llms/token_usage_tracking/"]},
"/docs/modules/model_io/llms/integrations/llm_caching/": {"canonical": "/docs/how_to/llm_caching/", "alternative": ["/v0.1/docs/integrations/llms/llm_caching/"]},
"/docs/modules/model_io/chat/integrations/ollama_functions/": {"canonical": "/docs/integrations/chat/ollama/", "alternative": ["/v0.1/docs/integrations/chat/ollama_functions/"]},
"/en/latest/modules/models/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/"]},
"/en/latest/modules/models/chat/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/chat/"]},
"/en/latest/modules/models/chat/chat_model_caching/": {"canonical": "/docs/how_to/chat_model_caching/", "alternative": ["/v0.1/docs/modules/model_io/chat/chat_model_caching/"]},
"/en/latest/modules/models/chat/custom_chat_model/": {"canonical": "/docs/how_to/custom_chat_model/", "alternative": ["/v0.1/docs/modules/model_io/chat/custom_chat_model/"]},
"/en/latest/modules/models/chat/function_calling/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/chat/function_calling/"]},
"/en/latest/modules/models/chat/logprobs/": {"canonical": "/docs/how_to/logprobs/", "alternative": ["/v0.1/docs/modules/model_io/chat/logprobs/"]},
"/en/latest/modules/models/chat/message_types/": {"canonical": "/docs/concepts/#messages", "alternative": ["/v0.1/docs/modules/model_io/chat/message_types/"]},
"/en/latest/modules/models/chat/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/chat/quick_start/"]},
"/en/latest/modules/models/chat/response_metadata/": {"canonical": "/docs/how_to/response_metadata/", "alternative": ["/v0.1/docs/modules/model_io/chat/response_metadata/"]},
"/en/latest/modules/models/chat/streaming/": {"canonical": "/docs/how_to/streaming/", "alternative": ["/v0.1/docs/modules/model_io/chat/streaming/"]},
"/en/latest/modules/models/chat/structured_output/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/chat/structured_output/"]},
"/en/latest/modules/models/chat/token_usage_tracking/": {"canonical": "/docs/how_to/chat_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/chat/token_usage_tracking/"]},
"/en/latest/modules/models/concepts/": {"canonical": "/docs/concepts/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/concepts/"]},
"/en/latest/modules/models/llms/": {"canonical": "/docs/concepts/#llms", "alternative": ["/v0.1/docs/modules/model_io/llms/"]},
"/en/latest/modules/models/llms/custom_llm/": {"canonical": "/docs/how_to/custom_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/custom_llm/"]},
"/en/latest/modules/models/llms/llm_caching/": {"canonical": "/docs/how_to/llm_caching/", "alternative": ["/v0.1/docs/modules/model_io/llms/llm_caching/"]},
"/en/latest/modules/models/llms/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/llms/quick_start/"]},
"/en/latest/modules/models/llms/streaming_llm/": {"canonical": "/docs/how_to/streaming_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/streaming_llm/"]},
"/en/latest/modules/models/llms/token_usage_tracking/": {"canonical": "/docs/how_to/llm_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/llms/token_usage_tracking/"]},
"/en/latest/modules/models/output_parsers/": {"canonical": "/docs/how_to/#output-parsers", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/"]},
"/en/latest/modules/models/output_parsers/custom/": {"canonical": "/docs/how_to/output_parser_custom/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/custom/"]},
"/en/latest/modules/models/output_parsers/quick_start/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/quick_start/"]},
"/en/latest/modules/models/output_parsers/types/csv/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/csv/"]},
"/en/latest/modules/models/output_parsers/types/datetime/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/datetime/"]},
"/en/latest/modules/models/output_parsers/types/enum/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/enum/"]},
"/en/latest/modules/models/output_parsers/types/json/": {"canonical": "/docs/how_to/output_parser_json/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/json/"]},
"/en/latest/modules/models/output_parsers/types/openai_functions/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/openai_functions/"]},
"/en/latest/modules/models/output_parsers/types/openai_tools/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/openai_tools/"]},
"/en/latest/modules/models/output_parsers/types/output_fixing/": {"canonical": "/docs/how_to/output_parser_fixing/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/output_fixing/"]},
"/en/latest/modules/models/output_parsers/types/pandas_dataframe/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pandas_dataframe/"]},
"/en/latest/modules/models/output_parsers/types/pydantic/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pydantic/"]},
"/en/latest/modules/models/output_parsers/types/retry/": {"canonical": "/docs/how_to/output_parser_retry/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/retry/"]},
"/en/latest/modules/models/output_parsers/types/structured/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/structured/"]},
"/en/latest/modules/models/output_parsers/types/xml/": {"canonical": "/docs/how_to/output_parser_xml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/xml/"]},
"/en/latest/modules/models/output_parsers/types/yaml/": {"canonical": "/docs/how_to/output_parser_yaml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/yaml/"]},
"/en/latest/modules/models/prompts/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/"]},
"/en/latest/modules/models/prompts/composition/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]},
"/en/latest/modules/models/prompts/example_selectors/": {"canonical": "/docs/how_to/example_selectors/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/"]},
"/en/latest/modules/models/prompts/example_selectors/length_based/": {"canonical": "/docs/how_to/example_selectors_length_based/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/length_based/"]},
"/en/latest/modules/models/prompts/example_selectors/mmr/": {"canonical": "/docs/how_to/example_selectors_mmr/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/"]},
"/en/latest/modules/models/prompts/example_selectors/ngram_overlap/": {"canonical": "/docs/how_to/example_selectors_ngram/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/ngram_overlap/"]},
"/en/latest/modules/models/prompts/example_selectors/similarity/": {"canonical": "/docs/how_to/example_selectors_similarity/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/similarity/"]},
"/en/latest/modules/models/prompts/few_shot_examples_chat/": {"canonical": "/docs/how_to/few_shot_examples_chat/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples_chat/"]},
"/en/latest/modules/models/prompts/few_shot_examples/": {"canonical": "/docs/how_to/few_shot_examples/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples/"]},
"/en/latest/modules/models/prompts/partial/": {"canonical": "/docs/how_to/prompts_partial/", "alternative": ["/v0.1/docs/modules/model_io/prompts/partial/"]},
"/en/latest/modules/models/prompts/quick_start/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/quick_start/"]},
"/en/latest/modules/models/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/quick_start/"]},
"/docs/modules/model_io/prompts/example_selector_types/": {"canonical": "/docs/how_to/example_selectors/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/"]},
"/docs/modules/model_io/prompts/example_selector_types/length_based/": {"canonical": "/docs/how_to/example_selectors_length_based/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/length_based/"]},
"/docs/modules/model_io/prompts/example_selector_types/mmr/": {"canonical": "/docs/how_to/example_selectors_mmr/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/"]},
"/docs/modules/model_io/prompts/example_selector_types/ngram_overlap/": {"canonical": "/docs/how_to/example_selectors_ngram/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/ngram_overlap/"]},
"/docs/modules/model_io/prompts/example_selector_types/similarity/": {"canonical": "/docs/how_to/example_selectors_similarity/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/similarity/"]},
"/docs/modules/agents/tools/": {"canonical": "/docs/how_to/#tools", "alternative": ["/v0.1/docs/modules/tools/"]},
"/docs/modules/agents/tools/custom_tools/": {"canonical": "/docs/how_to/custom_tools/", "alternative": ["/v0.1/docs/modules/tools/custom_tools/"]},
"/docs/modules/agents/tools/toolkits/": {"canonical": "/docs/how_to/#tools", "alternative": ["/v0.1/docs/modules/tools/toolkits/"]},
"/docs/modules/agents/tools/tools_as_openai_functions/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/tools/tools_as_openai_functions/"]},
"/docs/guides/deployments/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/deployments/"]},
"/docs/guides/deployments/template_repos/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/deployments/template_repos/"]},
"/docs/guides/evaluation/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/"]},
"/docs/guides/evaluation/comparison/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/comparison/"]},
"/docs/guides/evaluation/comparison/custom/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/comparison/custom/"]},
"/docs/guides/evaluation/comparison/pairwise_embedding_distance/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/comparison/pairwise_embedding_distance/"]},
"/docs/guides/evaluation/comparison/pairwise_string/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/comparison/pairwise_string/"]},
"/docs/guides/evaluation/examples/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/examples/"]},
"/docs/guides/evaluation/examples/comparisons/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/examples/comparisons/"]},
"/docs/guides/evaluation/string/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/"]},
"/docs/guides/evaluation/string/criteria_eval_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/criteria_eval_chain/"]},
"/docs/guides/evaluation/string/custom/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/custom/"]},
"/docs/guides/evaluation/string/embedding_distance/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/embedding_distance/"]},
"/docs/guides/evaluation/string/exact_match/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/exact_match/"]},
"/docs/guides/evaluation/string/json/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/json/"]},
"/docs/guides/evaluation/string/regex_match/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/regex_match/"]},
"/docs/guides/evaluation/string/scoring_eval_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/scoring_eval_chain/"]},
"/docs/guides/evaluation/string/string_distance/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/string_distance/"]},
"/docs/guides/evaluation/trajectory/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/trajectory/"]},
"/docs/guides/evaluation/trajectory/custom/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/trajectory/custom/"]},
"/docs/guides/evaluation/trajectory/trajectory_eval/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/trajectory/trajectory_eval/"]},
"/docs/guides/privacy/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/"]},
"/docs/guides/privacy/amazon_comprehend_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/amazon_comprehend_chain/"]},
"/docs/guides/privacy/constitutional_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/constitutional_chain/"]},
"/docs/guides/privacy/hugging_face_prompt_injection/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/hugging_face_prompt_injection/"]},
"/docs/guides/privacy/layerup_security/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/layerup_security/"]},
"/docs/guides/privacy/logical_fallacy_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/logical_fallacy_chain/"]},
"/docs/guides/privacy/moderation/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/moderation/"]},
"/docs/guides/privacy/presidio_data_anonymization/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/"]},
"/docs/guides/privacy/presidio_data_anonymization/multi_language/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/multi_language/"]},
"/docs/guides/privacy/presidio_data_anonymization/qa_privacy_protection/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/qa_privacy_protection/"]},
"/docs/guides/privacy/presidio_data_anonymization/reversible/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/reversible/"]},
"/docs/guides/safety/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/"]},
"/docs/guides/safety/amazon_comprehend_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/amazon_comprehend_chain/"]},
"/docs/guides/safety/constitutional_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/constitutional_chain/"]},
"/docs/guides/safety/hugging_face_prompt_injection/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/hugging_face_prompt_injection/"]},
"/docs/guides/safety/layerup_security/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/layerup_security/"]},
"/docs/guides/safety/logical_fallacy_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/logical_fallacy_chain/"]},
"/docs/guides/safety/moderation/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/moderation/"]},
"/docs/guides/safety/presidio_data_anonymization/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/"]},
"/docs/guides/safety/presidio_data_anonymization/multi_language/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/multi_language/"]},
"/docs/guides/safety/presidio_data_anonymization/qa_privacy_protection/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/qa_privacy_protection/"]},
"/docs/guides/safety/presidio_data_anonymization/reversible/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/reversible/"]},
"/docs/integrations/llms/titan_takeoff_pro/": {"canonical": "/docs/integrations/llms/titan_takeoff/"},
"/docs/integrations/providers/optimum_intel/": {"canonical": "/docs/integrations/providers/intel/"},
"/docs/use_cases/graph/integrations/diffbot_graphtransformer/": {"canonical": "/docs/integrations/graphs/diffbot/"},
"/docs/use_cases/graph/integrations/graph_arangodb_qa/": {"canonical": "/docs/integrations/graphs/arangodb/"},
"/docs/use_cases/graph/integrations/graph_cypher_qa/": {"canonical": "/docs/integrations/graphs/neo4j_cypher/"},
"/docs/use_cases/graph/integrations/graph_falkordb_qa/": {"canonical": "/docs/integrations/graphs/falkordb/"},
"/docs/use_cases/graph/integrations/graph_gremlin_cosmosdb_qa/": {"canonical": "/docs/integrations/graphs/azure_cosmosdb_gremlin/"},
"/docs/use_cases/graph/integrations/graph_hugegraph_qa/": {"canonical": "/docs/integrations/graphs/hugegraph/"},
"/docs/use_cases/graph/integrations/graph_kuzu_qa/": {"canonical": "/docs/integrations/graphs/kuzu_db/"},
"/docs/use_cases/graph/integrations/graph_memgraph_qa/": {"canonical": "/docs/integrations/graphs/memgraph/"},
"/docs/use_cases/graph/integrations/graph_nebula_qa/": {"canonical": "/docs/integrations/graphs/nebula_graph/"},
"/docs/use_cases/graph/integrations/graph_networkx_qa/": {"canonical": "/docs/integrations/graphs/networkx/"},
"/docs/use_cases/graph/integrations/graph_ontotext_graphdb_qa/": {"canonical": "/docs/integrations/graphs/ontotext/"},
"/docs/use_cases/graph/integrations/graph_sparql_qa/": {"canonical": "/docs/integrations/graphs/rdflib_sparql/"},
"/docs/use_cases/graph/integrations/neptune_cypher_qa/": {"canonical": "/docs/integrations/graphs/amazon_neptune_open_cypher/"},
"/docs/use_cases/graph/integrations/neptune_sparql_qa/": {"canonical": "/docs/integrations/graphs/amazon_neptune_sparql/"},
"/docs/integrations/providers/facebook_chat/": {"canonical": "/docs/integrations/providers/facebook/"},
"/docs/integrations/providers/facebook_faiss/": {"canonical": "/docs/integrations/providers/facebook/"},
"/docs/integrations/memory/google_cloud_sql_mssql/": {"canonical": "/docs/integrations/memory/google_sql_mssql/"},
"/docs/integrations/memory/google_cloud_sql_mysql/": {"canonical": "/docs/integrations/memory/google_sql_mysql/"},
"/docs/integrations/memory/google_cloud_sql_pg/": {"canonical": "/docs/integrations/memory/google_sql_pg/"},
"/docs/integrations/memory/google_datastore/": {"canonical": "/docs/integrations/memory/google_firestore_datastore/"},
"/docs/integrations/llms/huggingface_textgen_inference/": {"canonical": "/docs/integrations/llms/huggingface_endpoint/"},
"/docs/integrations/llms/huggingface_hub/": {"canonical": "/docs/integrations/llms/huggingface_endpoint/"},
"/docs/integrations/llms/bigdl/": {"canonical": "/docs/integrations/llms/ipex_llm/"},
"/docs/integrations/llms/watsonxllm/": {"canonical": "/docs/integrations/llms/ibm_watsonx/"},
"/docs/integrations/llms/pai_eas_endpoint/": {"canonical": "/docs/integrations/llms/alibabacloud_pai_eas_endpoint/"},
"/docs/integrations/vectorstores/hanavector/": {"canonical": "/docs/integrations/vectorstores/sap_hanavector/"},
"/docs/use_cases/qa_structured/sql/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/"]},
"/docs/contributing/packages/": {"canonical": "/docs/versions/release_policy/", "alternative": ["/v0.1/docs/packages/"]},
"/docs/community/": {"canonical": "/docs/contributing/"},
"/docs/modules/chains/(.+)/": {"canonical": "/docs/versions/migrating_chains/", "alternative": ["/v0.1/docs/modules/chains/"]},
"/docs/modules/agents/how_to/custom_llm_agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/custom_agent/"]},
"/docs/modules/agents/how_to/custom-functions-with-openai-functions-agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/custom_agent/"]},
"/docs/modules/agents/how_to/custom_llm_chat_agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/custom_agent/"]},
"/docs/modules/agents/how_to/custom_mrkl_agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/custom_agent/"]},
"/docs/modules/agents/how_to/streaming_stdout_final_only/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/streaming/"]},
"/docs/modules/model_io/prompts/prompts_pipelining/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]},
"/docs/modules/model_io/output_parsers/enum/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/enum/"]},
"/docs/modules/model_io/output_parsers/pandas_dataframe/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pandas_dataframe/"]},
"/docs/modules/model_io/output_parsers/structured/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/structured/"]},
"/docs/modules/model_io/output_parsers/xml/": {"canonical": "/docs/how_to/output_parser_xml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/xml/"]},
"/docs/use_cases/question_answering/code_understanding/": {"canonical": "https://langchain-ai.github.io/langgraph/tutorials/code_assistant/langgraph_code_assistant/", "alternative": ["/v0.1/docs/use_cases/code_understanding/"]},
"/docs/use_cases/question_answering/document-context-aware-QA/": {"canonical": "/docs/how_to/#text-splitters", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/"]},
"/docs/integrations/providers/alibabacloud_opensearch/": {"canonical": "/docs/integrations/providers/alibaba_cloud/"},
"/docs/integrations/chat/pai_eas_chat_endpoint/": {"canonical": "/docs/integrations/chat/alibaba_cloud_pai_eas/"},
"/docs/integrations/providers/tencentvectordb/": {"canonical": "/docs/integrations/providers/tencent/"},
"/docs/integrations/chat/hunyuan/": {"canonical": "/docs/integrations/chat/tencent_hunyuan/"},
"/docs/integrations/document_loaders/excel/": {"canonical": "/docs/integrations/document_loaders/microsoft_excel/"},
"/docs/integrations/document_loaders/onenote/": {"canonical": "/docs/integrations/document_loaders/microsoft_onenote/"},
"/docs/integrations/providers/aws_dynamodb/": {"canonical": "/docs/integrations/platforms/aws/"},
"/docs/integrations/providers/scann/": {"canonical": "/docs/integrations/platforms/google/"},
"/docs/integrations/toolkits/google_drive/": {"canonical": "/docs/integrations/tools/google_drive/"},
"/docs/use_cases/question_answering/chat_vector_db/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/use_cases/question_answering/in_memory_question_answering/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/use_cases/question_answering/multi_retrieval_qa_router/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/use_cases/question_answering/multiple_retrieval/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/use_cases/question_answering/vector_db_qa/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/use_cases/question_answering/vector_db_text_generation/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/guides/langsmith/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/langsmith/"]},
"/docs/guides/langsmith/walkthrough/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/langsmith/walkthrough/"]},
"/docs/use_cases/qa_structured/integrations/sqlite/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/"]},
"/docs/use_cases/more/data_generation/": {"canonical": "/docs/tutorials/data_generation/", "alternative": ["/v0.1/docs/use_cases/data_generation/"]},
"/docs/use_cases/question_answering/how_to/chat_vector_db/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/use_cases/question_answering/how_to/conversational_retrieval_agents/": {"canonical": "/docs/tutorials/qa_chat_history/", "alternative": ["/v0.1/docs/use_cases/question_answering/conversational_retrieval_agents/"]},
"/docs/use_cases/question_answering/question_answering/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/use_cases/question_answering/how_to/local_retrieval_qa/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/local_retrieval_qa/"]},
"/docs/use_cases/question_answering/how_to/question_answering/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/modules/agents/agents/examples/mrkl_chat(.html?)/": {"canonical": "/docs/how_to/#agents", "alternative": ["/v0.1/docs/modules/agents/"]},
"/docs/integrations/": {"canonical": "/docs/integrations/providers/"},
"/docs/expression_language/cookbook/routing/": {"canonical": "/docs/how_to/routing/", "alternative": ["/v0.1/docs/expression_language/how_to/routing/"]},
"/docs/guides/expression_language/": {"canonical": "/docs/how_to/#langchain-expression-language-lcel", "alternative": ["/v0.1/docs/expression_language/"]},
"/docs/integrations/providers/amazon_api_gateway/": {"canonical": "/docs/integrations/platforms/aws/"},
"/docs/integrations/providers/huggingface/": {"canonical": "/docs/integrations/platforms/huggingface/"},
"/docs/integrations/providers/azure_blob_storage/": {"canonical": "/docs/integrations/platforms/microsoft/"},
"/docs/integrations/providers/google_vertexai_matchingengine/": {"canonical": "/docs/integrations/platforms/google/"},
"/docs/integrations/providers/aws_s3/": {"canonical": "/docs/integrations/platforms/aws/"},
"/docs/integrations/providers/azure_openai/": {"canonical": "/docs/integrations/platforms/microsoft/"},
"/docs/integrations/providers/azure_cognitive_search_/": {"canonical": "/docs/integrations/platforms/microsoft/"},
"/docs/integrations/providers/bedrock/": {"canonical": "/docs/integrations/platforms/aws/"},
"/docs/integrations/providers/google_bigquery/": {"canonical": "/docs/integrations/platforms/google/"},
"/docs/integrations/providers/google_cloud_storage/": {"canonical": "/docs/integrations/platforms/google/"},
"/docs/integrations/providers/google_drive/": {"canonical": "/docs/integrations/platforms/google/"},
"/docs/integrations/providers/google_search/": {"canonical": "/docs/integrations/platforms/google/"},
"/docs/integrations/providers/microsoft_onedrive/": {"canonical": "/docs/integrations/platforms/microsoft/"},
"/docs/integrations/providers/microsoft_powerpoint/": {"canonical": "/docs/integrations/platforms/microsoft/"},
"/docs/integrations/providers/microsoft_word/": {"canonical": "/docs/integrations/platforms/microsoft/"},
"/docs/integrations/providers/sagemaker_endpoint/": {"canonical": "/docs/integrations/platforms/aws/"},
"/docs/integrations/providers/sagemaker_tracking/": {"canonical": "/docs/integrations/callbacks/sagemaker_tracking/"},
"/docs/integrations/providers/openai/": {"canonical": "/docs/integrations/platforms/openai/"},
"/docs/integrations/cassandra/": {"canonical": "/docs/integrations/providers/cassandra/"},
"/docs/integrations/providers/providers/semadb/": {"canonical": "/docs/integrations/providers/semadb/"},
"/docs/integrations/vectorstores/vectorstores/semadb/": {"canonical": "/docs/integrations/vectorstores/semadb/"},
"/docs/integrations/vectorstores/async_faiss/": {"canonical": "/docs/integrations/vectorstores/faiss_async/"},
"/docs/integrations/vectorstores/matchingengine/": {"canonical": "/docs/integrations/vectorstores/google_vertex_ai_vector_search/"},
"/docs/integrations/tools/sqlite/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/"]},
"/docs/integrations/document_loaders/pdf-amazonTextractPDFLoader/": {"canonical": "/docs/integrations/document_loaders/amazon_textract/"},
"/docs/integrations/document_loaders/Etherscan/": {"canonical": "/docs/integrations/document_loaders/etherscan/"},
"/docs/integrations/document_loaders/merge_doc_loader/": {"canonical": "/docs/integrations/document_loaders/merge_doc/"},
"/docs/integrations/document_loaders/recursive_url_loader/": {"canonical": "/docs/integrations/document_loaders/recursive_url/"},
"/docs/integrations/providers/google_document_ai/": {"canonical": "/docs/integrations/platforms/google/"},
"/docs/integrations/memory/motorhead_memory_managed/": {"canonical": "/docs/integrations/memory/motorhead_memory/"},
"/docs/integrations/memory/dynamodb_chat_message_history/": {"canonical": "/docs/integrations/memory/aws_dynamodb/"},
"/docs/integrations/memory/entity_memory_with_sqlite/": {"canonical": "/docs/integrations/memory/sqlite/"},
"/docs/modules/model_io/chat/integrations/anthropic/": {"canonical": "/docs/integrations/chat/anthropic/"},
"/docs/modules/model_io/chat/integrations/azure_chat_openai/": {"canonical": "/docs/integrations/chat/azure_chat_openai/"},
"/docs/modules/model_io/chat/integrations/google_vertex_ai_palm/": {"canonical": "/docs/integrations/chat/google_vertex_ai_palm/"},
"/docs/modules/model_io/chat/integrations/openai/": {"canonical": "/docs/integrations/chat/openai/"},
"/docs/modules/model_io/chat/integrations/promptlayer_chatopenai/": {"canonical": "/docs/integrations/chat/promptlayer_chatopenai/"},
"/docs/modules/model_io/llms/integrations/ai21/": {"canonical": "/docs/integrations/llms/ai21/"},
"/docs/modules/model_io/llms/integrations/aleph_alpha/": {"canonical": "/docs/integrations/llms/aleph_alpha/"},
"/docs/modules/model_io/llms/integrations/anyscale/": {"canonical": "/docs/integrations/llms/anyscale/"},
"/docs/modules/model_io/llms/integrations/banana/": {"canonical": "/docs/integrations/llms/banana/"},
"/docs/modules/model_io/llms/integrations/baseten/": {"canonical": "/docs/integrations/llms/baseten/"},
"/docs/modules/model_io/llms/integrations/beam/": {"canonical": "/docs/integrations/llms/beam/"},
"/docs/modules/model_io/llms/integrations/bedrock/": {"canonical": "/docs/integrations/llms/bedrock/"},
"/docs/modules/model_io/llms/integrations/cohere/": {"canonical": "/docs/integrations/llms/cohere/"},
"/docs/modules/model_io/llms/integrations/ctransformers/": {"canonical": "/docs/integrations/llms/ctransformers/"},
"/docs/modules/model_io/llms/integrations/databricks/": {"canonical": "/docs/integrations/llms/databricks/"},
"/docs/modules/model_io/llms/integrations/google_vertex_ai_palm/": {"canonical": "/docs/integrations/llms/google_vertex_ai_palm/"},
"/docs/modules/model_io/llms/integrations/huggingface_pipelines/": {"canonical": "/docs/integrations/llms/huggingface_pipelines/"},
"/docs/modules/model_io/llms/integrations/jsonformer_experimental/": {"canonical": "/docs/integrations/llms/jsonformer_experimental/"},
"/docs/modules/model_io/llms/integrations/llamacpp/": {"canonical": "/docs/integrations/llms/llamacpp/"},
"/docs/modules/model_io/llms/integrations/manifest/": {"canonical": "/docs/integrations/llms/manifest/"},
"/docs/modules/model_io/llms/integrations/modal/": {"canonical": "/docs/integrations/llms/modal/"},
"/docs/modules/model_io/llms/integrations/mosaicml/": {"canonical": "/docs/integrations/llms/mosaicml/"},
"/docs/modules/model_io/llms/integrations/nlpcloud/": {"canonical": "/docs/integrations/llms/nlpcloud/"},
"/docs/modules/model_io/llms/integrations/openai/": {"canonical": "/docs/integrations/llms/openai/"},
"/docs/modules/model_io/llms/integrations/openlm/": {"canonical": "/docs/integrations/llms/openlm/"},
"/docs/modules/model_io/llms/integrations/predictionguard/": {"canonical": "/docs/integrations/llms/predictionguard/"},
"/docs/modules/model_io/llms/integrations/promptlayer_openai/": {"canonical": "/docs/integrations/llms/promptlayer_openai/"},
"/docs/modules/model_io/llms/integrations/rellm_experimental/": {"canonical": "/docs/integrations/llms/rellm_experimental/"},
"/docs/modules/model_io/llms/integrations/replicate/": {"canonical": "/docs/integrations/llms/replicate/"},
"/docs/modules/model_io/llms/integrations/runhouse/": {"canonical": "/docs/integrations/llms/runhouse/"},
"/docs/modules/model_io/llms/integrations/sagemaker/": {"canonical": "/docs/integrations/llms/sagemaker/"},
"/docs/modules/model_io/llms/integrations/stochasticai/": {"canonical": "/docs/integrations/llms/stochasticai/"},
"/docs/modules/model_io/llms/integrations/writer/": {"canonical": "/docs/integrations/llms/writer/"},
"/en/latest/use_cases/apis.html/": {"canonical": null, "alternative": ["/v0.1/docs/use_cases/apis/"]},
"/en/latest/use_cases/extraction.html/": {"canonical": "/docs/tutorials/extraction/", "alternative": ["/v0.1/docs/use_cases/extraction/"]},
"/en/latest/use_cases/summarization.html/": {"canonical": "/docs/tutorials/summarization/", "alternative": ["/v0.1/docs/use_cases/summarization/"]},
"/en/latest/use_cases/tabular.html/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/"]},
"/en/latest/youtube.html/": {"canonical": "/docs/additional_resources/youtube/"},
"/docs/": {"canonical": "/"},
"/en/latest/": {"canonical": "/"},
"/en/latest/index.html/": {"canonical": "/"},
"/en/latest/modules/models.html/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/"]},
"/docs/integrations/retrievers/google_cloud_enterprise_search/": {"canonical": "/docs/integrations/retrievers/google_vertex_ai_search/"},
"/docs/integrations/tools/metaphor_search/": {"canonical": "/docs/integrations/tools/exa_search/"},
"/docs/expression_language/how_to/fallbacks/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/fallbacks/"]},
"/docs/expression_language/cookbook/retrieval/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]},
"/docs/expression_language/cookbook/agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/agent_types/xml_agent/"]},
"/docs/modules/model_io/prompts/message_prompts/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/quick_start/"]},
"/docs/modules/model_io/prompts/pipeline/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]},
"/docs/expression_language/cookbook/memory/": {"canonical": "/docs/how_to/chatbots_memory/", "alternative": ["/v0.1/docs/modules/memory/"]},
"/docs/expression_language/cookbook/tools/": {"canonical": "/docs/tutorials/agents/", "alternative": ["/v0.1/docs/use_cases/tool_use/quickstart/"]},
"/docs/expression_language/cookbook/sql_db/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/quickstart/"]},
"/docs/expression_language/cookbook/moderation/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/moderation/"]},
"/docs/expression_language/cookbook/embedding_router/": {"canonical": "/docs/how_to/routing/", "alternative": ["/v0.1/docs/expression_language/how_to/routing/"]},
"/docs/guides/structured_output/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/chat/structured_output/"]},
"/docs/modules/agents/how_to/structured_tools/": {"canonical": "/docs/how_to/#tools", "alternative": ["/v0.1/docs/modules/tools/"]},
"/docs/use_cases/csv/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/csv/"]},
"/docs/guides/debugging/": {"canonical": "/docs/how_to/debugging/", "alternative": ["/v0.1/docs/guides/development/debugging/"]},
"/docs/guides/extending_langchain/": {"canonical": "/docs/how_to/#custom", "alternative": ["/v0.1/docs/guides/development/extending_langchain/"]},
"/docs/guides/fallbacks/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/fallbacks/"]},
"/docs/guides/model_laboratory/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/"]},
"/docs/guides/pydantic_compatibility/": {"canonical": "/docs/how_to/pydantic_compatibility/", "alternative": ["/v0.1/docs/guides/development/pydantic_compatibility/"]},
"/docs/guides/local_llms/": {"canonical": "/docs/how_to/local_llms/", "alternative": ["/v0.1/docs/guides/development/local_llms/"]},
"/docs/modules/model_io/quick_start/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/"]},
"/docs/expression_language/how_to/generators/": {"canonical": "/docs/how_to/functions/", "alternative": ["/v0.1/docs/expression_language/primitives/functions/"]},
"/docs/expression_language/how_to/functions/": {"canonical": "/docs/how_to/functions/", "alternative": ["/v0.1/docs/expression_language/primitives/functions/"]},
"/docs/expression_language/how_to/passthrough/": {"canonical": "/docs/how_to/passthrough/", "alternative": ["/v0.1/docs/expression_language/primitives/passthrough/"]},
"/docs/expression_language/how_to/map/": {"canonical": "/docs/how_to/parallel/", "alternative": ["/v0.1/docs/expression_language/primitives/parallel/"]},
"/docs/expression_language/how_to/binding/": {"canonical": "/docs/how_to/binding/", "alternative": ["/v0.1/docs/expression_language/primitives/binding/"]},
"/docs/expression_language/how_to/configure/": {"canonical": "/docs/how_to/configure/", "alternative": ["/v0.1/docs/expression_language/primitives/configure/"]},
"/docs/expression_language/cookbook/prompt_llm_parser/": {"canonical": "/docs/how_to/sequence/", "alternative": ["/v0.1/docs/expression_language/get_started/"]},
"/docs/contributing/documentation/": {"canonical": "/docs/contributing/documentation/", "alternative": ["/v0.1/docs/contributing/documentation/technical_logistics/"]},
"/docs/expression_language/cookbook/": {"canonical": "/docs/how_to/#langchain-expression-language-lcel", "alternative": ["/v0.1/docs/expression_language/"]},
"/docs/integrations/text_embedding/solar/": {"canonical": "/docs/integrations/text_embedding/upstage/"},
"/docs/integrations/chat/solar/": {"canonical": "/docs/integrations/chat/upstage/"},
// custom ones
"/docs/modules/model_io/chat/llm_chain/": {
"canonical": "/docs/tutorials/llm_chain/"
},
"/docs/modules/agents/toolkits/": {
"canonical": "/docs/integrations/tools/",
"alternative": [
"/v0.1/docs/integrations/toolkits/"
]
}
}

View File

@@ -26,6 +26,26 @@
}
],
"redirects": [
{
"source": "/v0.3/docs/:path(.*/?)*",
"destination": "/docs/:path*"
},
{
"source": "/docs/modules/agents/tools/custom_tools(/?)",
"destination": "/docs/how_to/custom_tools/"
},
{
"source": "/docs/expression_language(/?)",
"destination": "/docs/concepts/#langchain-expression-language-lcel"
},
{
"source": "/docs/expression_language/interface(/?)",
"destination": "/docs/concepts/#runnable-interface"
},
{
"source": "/docs/versions/overview(/?)",
"destination": "/docs/versions/v0_2/overview/"
},
{
"source": "/docs/how_to/tool_calls_multi_modal(/?)",
"destination": "/docs/how_to/multimodal_inputs/"
@@ -57,6 +77,10 @@
{
"source": "/v0.2/docs/templates/:path(.*/?)*",
"destination": "https://github.com/langchain-ai/langchain/tree/master/templates/:path*"
},
{
"source": "/docs/integrations/providers/mlflow_ai_gateway(/?)",
"destination": "/docs/integrations/providers/mlflow/"
}
]
}

View File

@@ -13,7 +13,7 @@ license = "MIT"
[tool.poetry.dependencies]
python = ">=3.9,<4.0"
langchain-core = "^0.3.0.dev"
langchain-core = "^0.3.0"
[tool.poetry.group.test]
optional = true

View File

@@ -5,6 +5,7 @@ from pathlib import Path
import rich
import typer
from gritql import run
from typer import Option
def get_gritdir_path() -> Path:
@@ -15,15 +16,28 @@ def get_gritdir_path() -> Path:
def migrate(
ctx: typer.Context,
# Using diff instead of dry-run for backwards compatibility with the old CLI
diff: bool = Option(
False,
"--diff",
help="Show the changes that would be made without applying them.",
),
interactive: bool = Option(
False,
"--interactive",
help="Prompt for confirmation before making each change",
),
) -> None:
"""Migrate langchain to the most recent version.
Any undocumented arguments will be passed to the Grit CLI.
"""
rich.print(
"✈️ This script will help you migrate to a recent version LangChain. "
"✈️ This script will help you migrate to a LangChain 0.3. "
"This migration script will attempt to replace old imports in the code "
"with new ones.\n\n"
"with new ones. "
"If you need to migrate to LangChain 0.2, please downgrade to version 0.0.29 "
"of the langchain-cli.\n\n"
"🔄 You will need to run the migration script TWICE to migrate (e.g., "
"to update llms import from langchain, the script will first move them to "
"corresponding imports from the community package, and on the second "
@@ -45,9 +59,15 @@ def migrate(
rich.print("-" * 10)
rich.print()
args = list(ctx.args)
if interactive:
args.append("--interactive")
if diff:
args.append("--dry-run")
final_code = run.apply_pattern(
"langchain_all_migrations()",
ctx.args,
args,
grit_dir=get_gritdir_path(),
)

View File

@@ -7,7 +7,7 @@ readme = "README.md"
[tool.poetry.dependencies]
python = ">=3.9,<4.0"
langchain-core = "^0.3.0.dev"
langchain-core = "^0.3.0"
langchain-openai = ">=0.0.1"

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "langchain-cli"
version = "0.0.30"
version = "0.0.31"
description = "CLI for interacting with LangChain"
authors = ["Erick Friis <erick@langchain.dev>"]
readme = "README.md"

View File

@@ -15,7 +15,7 @@ LangChain Community contains third-party integrations that implement the base in
For full documentation see the [API reference](https://api.python.langchain.com/en/stable/community_api_reference.html).
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](../../docs/static/svg/langchain_stack_062024.svg "LangChain Framework Overview")
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](https://raw.githubusercontent.com/langchain-ai/langchain/e1d113ea84a2edcf4a7709fc5be0e972ea74a5d9/docs/static/svg/langchain_stack_062024.svg "LangChain Framework Overview")
## 📕 Releases & Versioning

View File

@@ -301,7 +301,7 @@ class OpenAIAssistantV2Runnable(OpenAIAssistantRunnable):
inheritable_metadata=config.get("metadata"),
)
run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name")
dumpd(self), input, name=config.get("run_name") or self.get_name()
)
files = _convert_file_ids_into_attachments(kwargs.get("file_ids", []))
@@ -437,7 +437,7 @@ class OpenAIAssistantV2Runnable(OpenAIAssistantRunnable):
inheritable_metadata=config.get("metadata"),
)
run_manager = callback_manager.on_chain_start(
dumpd(self), input, name=config.get("run_name")
dumpd(self), input, name=config.get("run_name") or self.get_name()
)
files = _convert_file_ids_into_attachments(kwargs.get("file_ids", []))

View File

@@ -8,6 +8,18 @@ from langchain_core.messages import AIMessage
from langchain_core.outputs import ChatGeneration, LLMResult
MODEL_COST_PER_1K_TOKENS = {
# OpenAI o1-preview input
"o1-preview": 0.015,
"o1-preview-2024-09-12": 0.015,
# OpenAI o1-preview output
"o1-preview-completion": 0.06,
"o1-preview-2024-09-12-completion": 0.06,
# OpenAI o1-mini input
"o1-mini": 0.003,
"o1-mini-2024-09-12": 0.003,
# OpenAI o1-mini output
"o1-mini-completion": 0.012,
"o1-mini-2024-09-12-completion": 0.012,
# GPT-4o-mini input
"gpt-4o-mini": 0.00015,
"gpt-4o-mini-2024-07-18": 0.00015,
@@ -153,6 +165,7 @@ def standardize_model_name(
model_name.startswith("gpt-4")
or model_name.startswith("gpt-3.5")
or model_name.startswith("gpt-35")
or model_name.startswith("o1-")
or ("finetuned" in model_name and "legacy" not in model_name)
):
return model_name + "-completion"

View File

@@ -53,13 +53,15 @@ class LLMThoughtLabeler:
labeling logic.
"""
def get_initial_label(self) -> str:
@staticmethod
def get_initial_label() -> str:
"""Return the markdown label for a new LLMThought that doesn't have
an associated tool yet.
"""
return f"{THINKING_EMOJI} **Thinking...**"
def get_tool_label(self, tool: ToolRecord, is_complete: bool) -> str:
@staticmethod
def get_tool_label(tool: ToolRecord, is_complete: bool) -> str:
"""Return the label for an LLMThought that has an associated
tool.
@@ -91,13 +93,15 @@ class LLMThoughtLabeler:
label = f"{emoji} **{name}:** {input}"
return label
def get_history_label(self) -> str:
@staticmethod
def get_history_label() -> str:
"""Return a markdown label for the special 'history' container
that contains overflow thoughts.
"""
return f"{HISTORY_EMOJI} **History**"
def get_final_agent_thought_label(self) -> str:
@staticmethod
def get_final_agent_thought_label() -> str:
"""Return the markdown label for the agent's final thought -
the "Now I have the answer" thought, that doesn't involve
a tool.

View File

@@ -204,7 +204,7 @@ def _convert_delta_to_message_chunk(
role = dct.get("role")
content = dct.get("content", "")
additional_kwargs = {}
tool_calls = dct.get("tool_call", None)
tool_calls = dct.get("tool_calls", None)
if tool_calls is not None:
additional_kwargs["tool_calls"] = tool_calls

View File

@@ -359,6 +359,7 @@ if TYPE_CHECKING:
)
from langchain_community.document_loaders.pebblo import (
PebbloSafeLoader,
PebbloTextLoader,
)
from langchain_community.document_loaders.polars_dataframe import (
PolarsDataFrameLoader,
@@ -650,6 +651,7 @@ _module_lookup = {
"PDFPlumberLoader": "langchain_community.document_loaders.pdf",
"PagedPDFSplitter": "langchain_community.document_loaders.pdf",
"PebbloSafeLoader": "langchain_community.document_loaders.pebblo",
"PebbloTextLoader": "langchain_community.document_loaders.pebblo",
"PlaywrightURLLoader": "langchain_community.document_loaders.url_playwright",
"PolarsDataFrameLoader": "langchain_community.document_loaders.polars_dataframe",
"PsychicLoader": "langchain_community.document_loaders.psychic",
@@ -855,6 +857,7 @@ __all__ = [
"PDFPlumberLoader",
"PagedPDFSplitter",
"PebbloSafeLoader",
"PebbloTextLoader",
"PlaywrightURLLoader",
"PolarsDataFrameLoader",
"PsychicLoader",

View File

@@ -20,13 +20,37 @@ class MongodbLoader(BaseLoader):
*,
filter_criteria: Optional[Dict] = None,
field_names: Optional[Sequence[str]] = None,
metadata_names: Optional[Sequence[str]] = None,
include_db_collection_in_metadata: bool = True,
) -> None:
"""
Initializes the MongoDB loader with necessary database connection
details and configurations.
Args:
connection_string (str): MongoDB connection URI.
db_name (str):Name of the database to connect to.
collection_name (str): Name of the collection to fetch documents from.
filter_criteria (Optional[Dict]): MongoDB filter criteria for querying
documents.
field_names (Optional[Sequence[str]]): List of field names to retrieve
from documents.
metadata_names (Optional[Sequence[str]]): Additional metadata fields to
extract from documents.
include_db_collection_in_metadata (bool): Flag to include database and
collection names in metadata.
Raises:
ImportError: If the motor library is not installed.
ValueError: If any necessary argument is missing.
"""
try:
from motor.motor_asyncio import AsyncIOMotorClient
except ImportError as e:
raise ImportError(
"Cannot import from motor, please install with `pip install motor`."
) from e
if not connection_string:
raise ValueError("connection_string must be provided.")
@@ -39,8 +63,10 @@ class MongodbLoader(BaseLoader):
self.client = AsyncIOMotorClient(connection_string)
self.db_name = db_name
self.collection_name = collection_name
self.field_names = field_names
self.field_names = field_names or []
self.filter_criteria = filter_criteria or {}
self.metadata_names = metadata_names or []
self.include_db_collection_in_metadata = include_db_collection_in_metadata
self.db = self.client.get_database(db_name)
self.collection = self.db.get_collection(collection_name)
@@ -60,36 +86,24 @@ class MongodbLoader(BaseLoader):
return asyncio.run(self.aload())
async def aload(self) -> List[Document]:
"""Load data into Document objects."""
"""Asynchronously loads data into Document objects."""
result = []
total_docs = await self.collection.count_documents(self.filter_criteria)
# Construct the projection dictionary if field_names are specified
projection = (
{field: 1 for field in self.field_names} if self.field_names else None
)
projection = self._construct_projection()
async for doc in self.collection.find(self.filter_criteria, projection):
metadata = {
"database": self.db_name,
"collection": self.collection_name,
}
metadata = self._extract_fields(doc, self.metadata_names, default="")
# Optionally add database and collection names to metadata
if self.include_db_collection_in_metadata:
metadata.update(
{"database": self.db_name, "collection": self.collection_name}
)
# Extract text content from filtered fields or use the entire document
if self.field_names is not None:
fields = {}
for name in self.field_names:
# Split the field names to handle nested fields
keys = name.split(".")
value = doc
for key in keys:
if key in value:
value = value[key]
else:
value = ""
break
fields[name] = value
fields = self._extract_fields(doc, self.field_names, default="")
texts = [str(value) for value in fields.values()]
text = " ".join(texts)
else:
@@ -104,3 +118,29 @@ class MongodbLoader(BaseLoader):
)
return result
def _construct_projection(self) -> Optional[Dict]:
"""Constructs the projection dictionary for MongoDB query based
on the specified field names and metadata names."""
field_names = list(self.field_names) or []
metadata_names = list(self.metadata_names) or []
all_fields = field_names + metadata_names
return {field: 1 for field in all_fields} if all_fields else None
def _extract_fields(
self,
document: Dict,
fields: Sequence[str],
default: str = "",
) -> Dict:
"""Extracts and returns values for specified fields from a document."""
extracted = {}
for field in fields or []:
value = document
for key in field.split("."):
value = value.get(key, default)
if value == default:
break
new_field_name = field.replace(".", "_")
extracted[new_field_name] = value
return extracted

View File

@@ -267,6 +267,7 @@ class PyMuPDFParser(BaseBlobParser):
def lazy_parse(self, blob: Blob) -> Iterator[Document]: # type: ignore[valid-type]
"""Lazily parse the blob."""
import fitz
with blob.as_bytes_io() as file_path: # type: ignore[attr-defined]
@@ -277,25 +278,49 @@ class PyMuPDFParser(BaseBlobParser):
yield from [
Document(
page_content=page.get_text(**self.text_kwargs)
+ self._extract_images_from_page(doc, page),
metadata=dict(
{
"source": blob.source, # type: ignore[attr-defined]
"file_path": blob.source, # type: ignore[attr-defined]
"page": page.number,
"total_pages": len(doc),
},
**{
k: doc.metadata[k]
for k in doc.metadata
if type(doc.metadata[k]) in [str, int]
},
),
page_content=self._get_page_content(doc, page, blob),
metadata=self._extract_metadata(doc, page, blob),
)
for page in doc
]
def _get_page_content(
self, doc: fitz.fitz.Document, page: fitz.fitz.Page, blob: Blob
) -> str:
"""
Get the text of the page using PyMuPDF and RapidOCR and issue a warning
if it is empty.
"""
content = page.get_text(**self.text_kwargs) + self._extract_images_from_page(
doc, page
)
if not content:
warnings.warn(
f"Warning: Empty content on page "
f"{page.number} of document {blob.source}"
)
return content
def _extract_metadata(
self, doc: fitz.fitz.Document, page: fitz.fitz.Page, blob: Blob
) -> dict:
"""Extract metadata from the document and page."""
return dict(
{
"source": blob.source, # type: ignore[attr-defined]
"file_path": blob.source, # type: ignore[attr-defined]
"page": page.number,
"total_pages": len(doc),
},
**{
k: doc.metadata[k]
for k in doc.metadata
if isinstance(doc.metadata[k], (str, int))
},
)
def _extract_images_from_page(
self, doc: fitz.fitz.Document, page: fitz.fitz.Page
) -> str:

View File

@@ -4,7 +4,7 @@ import logging
import os
import uuid
from importlib.metadata import version
from typing import Dict, Iterator, List, Optional
from typing import Any, Dict, Iterable, Iterator, List, Optional
from langchain_core.documents import Document
@@ -271,3 +271,67 @@ class PebbloSafeLoader(BaseLoader):
doc_metadata["pb_checksum"] = classified_docs.get(doc.pb_id, {}).get(
"pb_checksum", None
)
class PebbloTextLoader(BaseLoader):
"""
Loader for text data.
Since PebbloSafeLoader is a wrapper around document loaders, this loader is
used to load text data directly into Documents.
"""
def __init__(
self,
texts: Iterable[str],
*,
source: Optional[str] = None,
ids: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
metadatas: Optional[List[Dict[str, Any]]] = None,
) -> None:
"""
Args:
texts: Iterable of text data.
source: Source of the text data.
Optional. Defaults to None.
ids: List of unique identifiers for each text.
Optional. Defaults to None.
metadata: Metadata for all texts.
Optional. Defaults to None.
metadatas: List of metadata for each text.
Optional. Defaults to None.
"""
self.texts = texts
self.source = source
self.ids = ids
self.metadata = metadata
self.metadatas = metadatas
def lazy_load(self) -> Iterator[Document]:
"""
Lazy load text data into Documents.
Returns:
Iterator of Documents
"""
for i, text in enumerate(self.texts):
_id = None
metadata = self.metadata or {}
if self.metadatas and i < len(self.metadatas) and self.metadatas[i]:
metadata.update(self.metadatas[i])
if self.ids and i < len(self.ids):
_id = self.ids[i]
yield Document(id=_id, page_content=text, metadata=metadata)
def load(self) -> List[Document]:
"""
Load text data into Documents.
Returns:
List of Documents
"""
documents = []
for doc in self.lazy_load():
documents.append(doc)
return documents

View File

@@ -227,7 +227,7 @@ class RecursiveUrlLoader(BaseLoader):
"https://docs.python.org/3.9/",
prevent_outside=True,
base_url="https://docs.python.org",
link_regex=r'<a\s+(?:[^>]*?\s+)?href="([^"]*(?=index)[^"]*)"',
link_regex=r'<a\\s+(?:[^>]*?\\s+)?href="([^"]*(?=index)[^"]*)"',
exclude_dirs=['https://docs.python.org/3.9/faq']
)
docs = loader.load()

View File

@@ -132,6 +132,7 @@ class BeautifulSoupTransformer(BaseDocumentTransformer):
Args:
html_content: The original HTML content string.
tags: A list of tags to be extracted from the HTML.
remove_comments: If set to True, the comments will be removed.
Returns:
A string combining the content of the extracted tags.
@@ -184,6 +185,7 @@ def get_navigable_strings(
Args:
element: A BeautifulSoup element.
remove_comments: If set to True, the comments will be removed.
Returns:
A generator of strings.

View File

@@ -396,6 +396,8 @@ class HuggingFaceInferenceAPIEmbeddings(BaseModel, Embeddings):
additional_headers: Dict[str, str] = {}
"""Pass additional headers to the requests library if needed."""
model_config = ConfigDict(extra="forbid", protected_namespaces=())
@property
def _api_url(self) -> str:
return self.api_url or self._default_api_url

View File

@@ -213,7 +213,7 @@ class SambaStudioEmbeddings(BaseModel, Embeddings):
)
try:
if params.get("select_expert"):
embedding = response.json()["predictions"][0]
embedding = response.json()["predictions"]
else:
embedding = response.json()["predictions"]
embeddings.extend(embedding)
@@ -299,7 +299,7 @@ class SambaStudioEmbeddings(BaseModel, Embeddings):
)
try:
if params.get("select_expert"):
embedding = response.json()["predictions"][0][0]
embedding = response.json()["predictions"][0]
else:
embedding = response.json()["predictions"][0]
except KeyError:

View File

@@ -1,6 +1,9 @@
"""**Graph Vector Store**
""".. title:: Graph Vector Store
Sometimes embedding models dont capture all the important relationships between
Graph Vector Store
==================
Sometimes embedding models don't capture all the important relationships between
documents.
Graph Vector Stores are an extension to both vector stores and retrievers that allow
documents to be explicitly connected to each other.
@@ -13,11 +16,10 @@ Each document identifies tags that link to and from it.
For example, a paragraph of text may be linked to URLs based on the anchor tags in
it's content and linked from the URL(s) it is published at.
Link extractors can be used to extract links from documents.
`Link extractors <langchain_community.graph_vectorstores.extractors.link_extractor.LinkExtractor>`
can be used to extract links from documents.
Example:
.. code-block:: python
Example::
graph_vector_store = CassandraGraphVectorStore()
link_extractor = HtmlLinkExtractor()
@@ -25,13 +27,18 @@ Example:
add_links(document, links)
graph_vector_store.add_document(document)
***********
.. seealso::
- :class:`How to use a graph vector store as a retriever <langchain_community.graph_vectorstores.base.GraphVectorStoreRetriever>`
- :class:`How to create links between documents <langchain_community.graph_vectorstores.links.Link>`
- :class:`How to link Documents on hyperlinks in HTML <langchain_community.graph_vectorstores.extractors.html_link_extractor.HtmlLinkExtractor>`
- :class:`How to link Documents on common keywords (using KeyBERT) <langchain_community.graph_vectorstores.extractors.keybert_link_extractor.KeybertLinkExtractor>`
- :class:`How to link Documents on common named entities (using GliNER) <langchain_community.graph_vectorstores.extractors.gliner_link_extractor.GLiNERLinkExtractor>`
Get started
***********
-----------
We chunk the State of the Union text and split it into documents.
.. code-block:: python
We chunk the State of the Union text and split it into documents::
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
@@ -41,14 +48,12 @@ We chunk the State of the Union text and split it into documents.
documents = text_splitter.split_documents(raw_documents)
Links can be added to documents manually but it's easier to use a
:class:`~langchain_community.graph_vectorstores.extractors.LinkExtractor`.
:class:`~langchain_community.graph_vectorstores.extractors.link_extractor.LinkExtractor`.
Several common link extractors are available and you can build your own.
For this guide, we'll use the
:class:`~langchain_community.graph_vectorstores.extractors.KeybertLinkExtractor`
:class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.KeybertLinkExtractor`
which uses the KeyBERT model to tag documents with keywords and uses these keywords to
create links between documents.
.. code-block:: python
create links between documents::
from langchain_community.graph_vectorstores.extractors import KeybertLinkExtractor
from langchain_community.graph_vectorstores.links import add_links
@@ -58,15 +63,14 @@ create links between documents.
for doc in documents:
add_links(doc, extractor.extract_one(doc))
***********************************************
Create the graph vector store and add documents
***********************************************
-----------------------------------------------
We'll use an Apache Cassandra or Astra DB database as an example.
We create a :class:`~langchain_community.graph_vectorstores.CassandraGraphVectorStore`
from the documents and an :class:`~langchain_openai.OpenAIEmbeddings` model.
.. code-block:: python
We create a
:class:`~langchain_community.graph_vectorstores.cassandra.CassandraGraphVectorStore`
from the documents and an :class:`~langchain_openai.embeddings.base.OpenAIEmbeddings`
model::
import cassio
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
@@ -80,45 +84,37 @@ from the documents and an :class:`~langchain_openai.OpenAIEmbeddings` model.
documents=documents,
)
*****************
Similarity search
*****************
-----------------
If we don't traverse the graph, a graph vector store behaves like a regular vector
store.
So all methods available in a vector store are also available in a graph vector store.
The :meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.similarity_search`
method returns documents similar to a query without considering
the links between documents.
.. code-block:: python
the links between documents::
docs = store.similarity_search(
"What did the president say about Ketanji Brown Jackson?"
)
****************
Traversal search
****************
----------------
The :meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.traversal_search`
method returns documents similar to a query considering the links
between documents. It first does a similarity search and then traverses the graph to
find linked documents.
.. code-block:: python
find linked documents::
docs = list(
store.traversal_search("What did the president say about Ketanji Brown Jackson?")
)
*************
Async methods
*************
-------------
The graph vector store has async versions of the methods prefixed with ``a``.
.. code-block:: python
The graph vector store has async versions of the methods prefixed with ``a``::
docs = [
doc
@@ -127,15 +123,12 @@ The graph vector store has async versions of the methods prefixed with ``a``.
)
]
****************************
Graph vector store retriever
****************************
----------------------------
The graph vector store can be converted to a retriever.
It is similar to the vector store retriever but it also has traversal search methods
such as ``traversal`` and ``mmr_traversal``.
.. code-block:: python
such as ``traversal`` and ``mmr_traversal``::
retriever = store.as_retriever(search_type="mmr_traversal")
docs = retriever.invoke("What did the president say about Ketanji Brown Jackson?")

View File

@@ -1,7 +1,840 @@
from langchain_core.graph_vectorstores.base import (
GraphVectorStore,
GraphVectorStoreRetriever,
Node,
from __future__ import annotations
from abc import abstractmethod
from collections.abc import AsyncIterable, Collection, Iterable, Iterator
from typing import (
Any,
ClassVar,
Optional,
)
__all__ = ["GraphVectorStore", "GraphVectorStoreRetriever", "Node"]
from langchain_core._api import beta
from langchain_core.callbacks import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.load import Serializable
from langchain_core.runnables import run_in_executor
from langchain_core.vectorstores import VectorStore, VectorStoreRetriever
from pydantic import Field
from langchain_community.graph_vectorstores.links import METADATA_LINKS_KEY, Link
def _has_next(iterator: Iterator) -> bool:
"""Checks if the iterator has more elements.
Warning: consumes an element from the iterator"""
sentinel = object()
return next(iterator, sentinel) is not sentinel
@beta()
class Node(Serializable):
"""Node in the GraphVectorStore.
Edges exist from nodes with an outgoing link to nodes with a matching incoming link.
For instance two nodes `a` and `b` connected over a hyperlink ``https://some-url``
would look like:
.. code-block:: python
[
Node(
id="a",
text="some text a",
links= [
Link(kind="hyperlink", tag="https://some-url", direction="incoming")
],
),
Node(
id="b",
text="some text b",
links= [
Link(kind="hyperlink", tag="https://some-url", direction="outgoing")
],
)
]
"""
id: Optional[str] = None
"""Unique ID for the node. Will be generated by the GraphVectorStore if not set."""
text: str
"""Text contained by the node."""
metadata: dict = Field(default_factory=dict)
"""Metadata for the node."""
links: list[Link] = Field(default_factory=list)
"""Links associated with the node."""
def _texts_to_nodes(
texts: Iterable[str],
metadatas: Optional[Iterable[dict]],
ids: Optional[Iterable[str]],
) -> Iterator[Node]:
metadatas_it = iter(metadatas) if metadatas else None
ids_it = iter(ids) if ids else None
for text in texts:
try:
_metadata = next(metadatas_it).copy() if metadatas_it else {}
except StopIteration as e:
raise ValueError("texts iterable longer than metadatas") from e
try:
_id = next(ids_it) if ids_it else None
except StopIteration as e:
raise ValueError("texts iterable longer than ids") from e
links = _metadata.pop(METADATA_LINKS_KEY, [])
if not isinstance(links, list):
links = list(links)
yield Node(
id=_id,
metadata=_metadata,
text=text,
links=links,
)
if ids_it and _has_next(ids_it):
raise ValueError("ids iterable longer than texts")
if metadatas_it and _has_next(metadatas_it):
raise ValueError("metadatas iterable longer than texts")
def _documents_to_nodes(documents: Iterable[Document]) -> Iterator[Node]:
for doc in documents:
metadata = doc.metadata.copy()
links = metadata.pop(METADATA_LINKS_KEY, [])
if not isinstance(links, list):
links = list(links)
yield Node(
id=doc.id,
metadata=metadata,
text=doc.page_content,
links=links,
)
@beta()
def nodes_to_documents(nodes: Iterable[Node]) -> Iterator[Document]:
"""Convert nodes to documents.
Args:
nodes: The nodes to convert to documents.
Returns:
The documents generated from the nodes.
"""
for node in nodes:
metadata = node.metadata.copy()
metadata[METADATA_LINKS_KEY] = [
# Convert the core `Link` (from the node) back to the local `Link`.
Link(kind=link.kind, direction=link.direction, tag=link.tag)
for link in node.links
]
yield Document(
id=node.id,
page_content=node.text,
metadata=metadata,
)
@beta(message="Added in version 0.3.1 of langchain_community. API subject to change.")
class GraphVectorStore(VectorStore):
"""A hybrid vector-and-graph graph store.
Document chunks support vector-similarity search as well as edges linking
chunks based on structural and semantic properties.
.. versionadded:: 0.3.1
"""
@abstractmethod
def add_nodes(
self,
nodes: Iterable[Node],
**kwargs: Any,
) -> Iterable[str]:
"""Add nodes to the graph store.
Args:
nodes: the nodes to add.
"""
async def aadd_nodes(
self,
nodes: Iterable[Node],
**kwargs: Any,
) -> AsyncIterable[str]:
"""Add nodes to the graph store.
Args:
nodes: the nodes to add.
"""
iterator = iter(await run_in_executor(None, self.add_nodes, nodes, **kwargs))
done = object()
while True:
doc = await run_in_executor(None, next, iterator, done)
if doc is done:
break
yield doc # type: ignore[misc]
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[Iterable[dict]] = None,
*,
ids: Optional[Iterable[str]] = None,
**kwargs: Any,
) -> list[str]:
"""Run more texts through the embeddings and add to the vectorstore.
The Links present in the metadata field `links` will be extracted to create
the `Node` links.
Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the
function call would look like:
.. code-block:: python
store.add_texts(
ids=["a", "b"],
texts=["some text a", "some text b"],
metadatas=[
{
"links": [
Link.incoming(kind="hyperlink", tag="https://some-url")
]
},
{
"links": [
Link.outgoing(kind="hyperlink", tag="https://some-url")
]
},
],
)
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
The metadata key `links` shall be an iterable of
:py:class:`~langchain_community.graph_vectorstores.links.Link`.
ids: Optional list of IDs associated with the texts.
**kwargs: vectorstore specific parameters.
Returns:
List of ids from adding the texts into the vectorstore.
"""
nodes = _texts_to_nodes(texts, metadatas, ids)
return list(self.add_nodes(nodes, **kwargs))
async def aadd_texts(
self,
texts: Iterable[str],
metadatas: Optional[Iterable[dict]] = None,
*,
ids: Optional[Iterable[str]] = None,
**kwargs: Any,
) -> list[str]:
"""Run more texts through the embeddings and add to the vectorstore.
The Links present in the metadata field `links` will be extracted to create
the `Node` links.
Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the
function call would look like:
.. code-block:: python
await store.aadd_texts(
ids=["a", "b"],
texts=["some text a", "some text b"],
metadatas=[
{
"links": [
Link.incoming(kind="hyperlink", tag="https://some-url")
]
},
{
"links": [
Link.outgoing(kind="hyperlink", tag="https://some-url")
]
},
],
)
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
The metadata key `links` shall be an iterable of
:py:class:`~langchain_community.graph_vectorstores.links.Link`.
ids: Optional list of IDs associated with the texts.
**kwargs: vectorstore specific parameters.
Returns:
List of ids from adding the texts into the vectorstore.
"""
nodes = _texts_to_nodes(texts, metadatas, ids)
return [_id async for _id in self.aadd_nodes(nodes, **kwargs)]
def add_documents(
self,
documents: Iterable[Document],
**kwargs: Any,
) -> list[str]:
"""Run more documents through the embeddings and add to the vectorstore.
The Links present in the document metadata field `links` will be extracted to
create the `Node` links.
Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the
function call would look like:
.. code-block:: python
store.add_documents(
[
Document(
id="a",
page_content="some text a",
metadata={
"links": [
Link.incoming(kind="hyperlink", tag="http://some-url")
]
}
),
Document(
id="b",
page_content="some text b",
metadata={
"links": [
Link.outgoing(kind="hyperlink", tag="http://some-url")
]
}
),
]
)
Args:
documents: Documents to add to the vectorstore.
The document's metadata key `links` shall be an iterable of
:py:class:`~langchain_community.graph_vectorstores.links.Link`.
Returns:
List of IDs of the added texts.
"""
nodes = _documents_to_nodes(documents)
return list(self.add_nodes(nodes, **kwargs))
async def aadd_documents(
self,
documents: Iterable[Document],
**kwargs: Any,
) -> list[str]:
"""Run more documents through the embeddings and add to the vectorstore.
The Links present in the document metadata field `links` will be extracted to
create the `Node` links.
Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the
function call would look like:
.. code-block:: python
store.add_documents(
[
Document(
id="a",
page_content="some text a",
metadata={
"links": [
Link.incoming(kind="hyperlink", tag="http://some-url")
]
}
),
Document(
id="b",
page_content="some text b",
metadata={
"links": [
Link.outgoing(kind="hyperlink", tag="http://some-url")
]
}
),
]
)
Args:
documents: Documents to add to the vectorstore.
The document's metadata key `links` shall be an iterable of
:py:class:`~langchain_community.graph_vectorstores.links.Link`.
Returns:
List of IDs of the added texts.
"""
nodes = _documents_to_nodes(documents)
return [_id async for _id in self.aadd_nodes(nodes, **kwargs)]
@abstractmethod
def traversal_search(
self,
query: str,
*,
k: int = 4,
depth: int = 1,
**kwargs: Any,
) -> Iterable[Document]:
"""Retrieve documents from traversing this graph store.
First, `k` nodes are retrieved using a search for each `query` string.
Then, additional nodes are discovered up to the given `depth` from those
starting nodes.
Args:
query: The query string.
k: The number of Documents to return from the initial search.
Defaults to 4. Applies to each of the query strings.
depth: The maximum depth of edges to traverse. Defaults to 1.
Returns:
Retrieved documents.
"""
async def atraversal_search(
self,
query: str,
*,
k: int = 4,
depth: int = 1,
**kwargs: Any,
) -> AsyncIterable[Document]:
"""Retrieve documents from traversing this graph store.
First, `k` nodes are retrieved using a search for each `query` string.
Then, additional nodes are discovered up to the given `depth` from those
starting nodes.
Args:
query: The query string.
k: The number of Documents to return from the initial search.
Defaults to 4. Applies to each of the query strings.
depth: The maximum depth of edges to traverse. Defaults to 1.
Returns:
Retrieved documents.
"""
iterator = iter(
await run_in_executor(
None, self.traversal_search, query, k=k, depth=depth, **kwargs
)
)
done = object()
while True:
doc = await run_in_executor(None, next, iterator, done)
if doc is done:
break
yield doc # type: ignore[misc]
@abstractmethod
def mmr_traversal_search(
self,
query: str,
*,
k: int = 4,
depth: int = 2,
fetch_k: int = 100,
adjacent_k: int = 10,
lambda_mult: float = 0.5,
score_threshold: float = float("-inf"),
**kwargs: Any,
) -> Iterable[Document]:
"""Retrieve documents from this graph store using MMR-traversal.
This strategy first retrieves the top `fetch_k` results by similarity to
the question. It then selects the top `k` results based on
maximum-marginal relevance using the given `lambda_mult`.
At each step, it considers the (remaining) documents from `fetch_k` as
well as any documents connected by edges to a selected document
retrieved based on similarity (a "root").
Args:
query: The query string to search for.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch via similarity.
Defaults to 100.
adjacent_k: Number of adjacent Documents to fetch.
Defaults to 10.
depth: Maximum depth of a node (number of edges) from a node
retrieved via similarity. Defaults to 2.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding to maximum
diversity and 1 to minimum diversity. Defaults to 0.5.
score_threshold: Only documents with a score greater than or equal
this threshold will be chosen. Defaults to negative infinity.
"""
async def ammr_traversal_search(
self,
query: str,
*,
k: int = 4,
depth: int = 2,
fetch_k: int = 100,
adjacent_k: int = 10,
lambda_mult: float = 0.5,
score_threshold: float = float("-inf"),
**kwargs: Any,
) -> AsyncIterable[Document]:
"""Retrieve documents from this graph store using MMR-traversal.
This strategy first retrieves the top `fetch_k` results by similarity to
the question. It then selects the top `k` results based on
maximum-marginal relevance using the given `lambda_mult`.
At each step, it considers the (remaining) documents from `fetch_k` as
well as any documents connected by edges to a selected document
retrieved based on similarity (a "root").
Args:
query: The query string to search for.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch via similarity.
Defaults to 100.
adjacent_k: Number of adjacent Documents to fetch.
Defaults to 10.
depth: Maximum depth of a node (number of edges) from a node
retrieved via similarity. Defaults to 2.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding to maximum
diversity and 1 to minimum diversity. Defaults to 0.5.
score_threshold: Only documents with a score greater than or equal
this threshold will be chosen. Defaults to negative infinity.
"""
iterator = iter(
await run_in_executor(
None,
self.mmr_traversal_search,
query,
k=k,
fetch_k=fetch_k,
adjacent_k=adjacent_k,
depth=depth,
lambda_mult=lambda_mult,
score_threshold=score_threshold,
**kwargs,
)
)
done = object()
while True:
doc = await run_in_executor(None, next, iterator, done)
if doc is done:
break
yield doc # type: ignore[misc]
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> list[Document]:
return list(self.traversal_search(query, k=k, depth=0))
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> list[Document]:
return list(
self.mmr_traversal_search(
query, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, depth=0
)
)
async def asimilarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> list[Document]:
return [doc async for doc in self.atraversal_search(query, k=k, depth=0)]
def search(self, query: str, search_type: str, **kwargs: Any) -> list[Document]:
if search_type == "similarity":
return self.similarity_search(query, **kwargs)
elif search_type == "similarity_score_threshold":
docs_and_similarities = self.similarity_search_with_relevance_scores(
query, **kwargs
)
return [doc for doc, _ in docs_and_similarities]
elif search_type == "mmr":
return self.max_marginal_relevance_search(query, **kwargs)
elif search_type == "traversal":
return list(self.traversal_search(query, **kwargs))
elif search_type == "mmr_traversal":
return list(self.mmr_traversal_search(query, **kwargs))
else:
raise ValueError(
f"search_type of {search_type} not allowed. Expected "
"search_type to be 'similarity', 'similarity_score_threshold', "
"'mmr' or 'traversal'."
)
async def asearch(
self, query: str, search_type: str, **kwargs: Any
) -> list[Document]:
if search_type == "similarity":
return await self.asimilarity_search(query, **kwargs)
elif search_type == "similarity_score_threshold":
docs_and_similarities = await self.asimilarity_search_with_relevance_scores(
query, **kwargs
)
return [doc for doc, _ in docs_and_similarities]
elif search_type == "mmr":
return await self.amax_marginal_relevance_search(query, **kwargs)
elif search_type == "traversal":
return [doc async for doc in self.atraversal_search(query, **kwargs)]
else:
raise ValueError(
f"search_type of {search_type} not allowed. Expected "
"search_type to be 'similarity', 'similarity_score_threshold', "
"'mmr' or 'traversal'."
)
def as_retriever(self, **kwargs: Any) -> GraphVectorStoreRetriever:
"""Return GraphVectorStoreRetriever initialized from this GraphVectorStore.
Args:
**kwargs: Keyword arguments to pass to the search function.
Can include:
- search_type (Optional[str]): Defines the type of search that
the Retriever should perform.
Can be ``traversal`` (default), ``similarity``, ``mmr``, or
``similarity_score_threshold``.
- search_kwargs (Optional[Dict]): Keyword arguments to pass to the
search function. Can include things like:
- k(int): Amount of documents to return (Default: 4).
- depth(int): The maximum depth of edges to traverse (Default: 1).
- score_threshold(float): Minimum relevance threshold
for similarity_score_threshold.
- fetch_k(int): Amount of documents to pass to MMR algorithm
(Default: 20).
- lambda_mult(float): Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5).
Returns:
Retriever for this GraphVectorStore.
Examples:
.. code-block:: python
# Retrieve documents traversing edges
docsearch.as_retriever(
search_type="traversal",
search_kwargs={'k': 6, 'depth': 3}
)
# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
search_type="mmr",
search_kwargs={'k': 6, 'lambda_mult': 0.25}
)
# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
search_type="mmr",
search_kwargs={'k': 5, 'fetch_k': 50}
)
# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={'score_threshold': 0.8}
)
# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})
"""
return GraphVectorStoreRetriever(vectorstore=self, **kwargs)
@beta(message="Added in version 0.3.1 of langchain_community. API subject to change.")
class GraphVectorStoreRetriever(VectorStoreRetriever):
"""Retriever for GraphVectorStore.
A graph vector store retriever is a retriever that uses a graph vector store to
retrieve documents.
It is similar to a vector store retriever, except that it uses both vector
similarity and graph connections to retrieve documents.
It uses the search methods implemented by a graph vector store, like traversal
search and MMR traversal search, to query the texts in the graph vector store.
Example::
store = CassandraGraphVectorStore(...)
retriever = store.as_retriever()
retriever.invoke("What is ...")
.. seealso::
:mod:`How to use a graph vector store <langchain_community.graph_vectorstores>`
How to use a graph vector store as a retriever
==============================================
Creating a retriever from a graph vector store
----------------------------------------------
You can build a retriever from a graph vector store using its
:meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.as_retriever`
method.
First we instantiate a graph vector store.
We will use a store backed by Cassandra
:class:`~langchain_community.graph_vectorstores.cassandra.CassandraGraphVectorStore`
graph vector store::
from langchain_community.document_loaders import TextLoader
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
from langchain_community.graph_vectorstores.extractors import (
KeybertLinkExtractor,
LinkExtractorTransformer,
)
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
pipeline = LinkExtractorTransformer([KeybertLinkExtractor()])
pipeline.transform_documents(texts)
embeddings = OpenAIEmbeddings()
graph_vectorstore = CassandraGraphVectorStore.from_documents(texts, embeddings)
We can then instantiate a retriever::
retriever = graph_vectorstore.as_retriever()
This creates a retriever (specifically a ``GraphVectorStoreRetriever``), which we
can use in the usual way::
docs = retriever.invoke("what did the president say about ketanji brown jackson?")
Maximum marginal relevance traversal retrieval
----------------------------------------------
By default, the graph vector store retriever uses similarity search, then expands
the retrieved set by following a fixed number of graph edges.
If the underlying graph vector store supports maximum marginal relevance traversal,
you can specify that as the search type.
MMR-traversal is a retrieval method combining MMR and graph traversal.
The strategy first retrieves the top fetch_k results by similarity to the question.
It then iteratively expands the set of fetched documents by following adjacent_k
graph edges and selects the top k results based on maximum-marginal relevance using
the given ``lambda_mult``::
retriever = graph_vectorstore.as_retriever(search_type="mmr_traversal")
Passing search parameters
-------------------------
We can pass parameters to the underlying graph vectorstore's search methods using
``search_kwargs``.
Specifying graph traversal depth
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For example, we can set the graph traversal depth to only return documents
reachable through a given number of graph edges::
retriever = graph_vectorstore.as_retriever(search_kwargs={"depth": 3})
Specifying MMR parameters
^^^^^^^^^^^^^^^^^^^^^^^^^
When using search type ``mmr_traversal``, several parameters of the MMR algorithm
can be configured.
The ``fetch_k`` parameter determines how many documents are fetched using vector
similarity and ``adjacent_k`` parameter determines how many documents are fetched
using graph edges.
The ``lambda_mult`` parameter controls how the MMR re-ranking weights similarity to
the query string vs diversity among the retrieved documents as fetched documents
are selected for the set of ``k`` final results::
retriever = graph_vectorstore.as_retriever(
search_type="mmr",
search_kwargs={"fetch_k": 20, "adjacent_k": 20, "lambda_mult": 0.25},
)
Specifying top k
^^^^^^^^^^^^^^^^
We can also limit the number of documents ``k`` returned by the retriever.
Note that if ``depth`` is greater than zero, the retriever may return more documents
than is specified by ``k``, since both the original ``k`` documents retrieved using
vector similarity and any documents connected via graph edges will be returned::
retriever = graph_vectorstore.as_retriever(search_kwargs={"k": 1})
Similarity score threshold retrieval
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For example, we can set a similarity score threshold and only return documents with
a score above that threshold::
retriever = graph_vectorstore.as_retriever(search_kwargs={"score_threshold": 0.5})
""" # noqa: E501
vectorstore: GraphVectorStore
"""GraphVectorStore to use for retrieval."""
search_type: str = "traversal"
"""Type of search to perform. Defaults to "traversal"."""
allowed_search_types: ClassVar[Collection[str]] = (
"similarity",
"similarity_score_threshold",
"mmr",
"traversal",
"mmr_traversal",
)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> list[Document]:
if self.search_type == "traversal":
return list(self.vectorstore.traversal_search(query, **self.search_kwargs))
elif self.search_type == "mmr_traversal":
return list(
self.vectorstore.mmr_traversal_search(query, **self.search_kwargs)
)
else:
return super()._get_relevant_documents(query, run_manager=run_manager)
async def _aget_relevant_documents(
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
) -> list[Document]:
if self.search_type == "traversal":
return [
doc
async for doc in self.vectorstore.atraversal_search(
query, **self.search_kwargs
)
]
elif self.search_type == "mmr_traversal":
return [
doc
async for doc in self.vectorstore.ammr_traversal_search(
query, **self.search_kwargs
)
]
else:
return await super()._aget_relevant_documents(
query, run_manager=run_manager
)

View File

@@ -12,12 +12,12 @@ from typing import (
from langchain_core._api import beta
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.graph_vectorstores.base import (
from langchain_community.graph_vectorstores.base import (
GraphVectorStore,
Node,
nodes_to_documents,
)
from langchain_community.utilities.cassandra import SetupMode
if TYPE_CHECKING:

View File

@@ -2,11 +2,11 @@ from typing import Any, Dict, Iterable, List, Optional, Set, Union
from langchain_core._api import beta
from langchain_core.documents import Document
from langchain_core.graph_vectorstores.links import Link
from langchain_community.graph_vectorstores.extractors.link_extractor import (
LinkExtractor,
)
from langchain_community.graph_vectorstores.links import Link
# TypeAlias is not available in Python 3.9, we can't use that or the newer `type`.
GLiNERInput = Union[str, Document]
@@ -34,7 +34,7 @@ class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]):
.. seealso::
- :mod:`How to use a graph vector store <langchain_community.graph_vectorstores>`
- :class:`How to create links between documents <langchain_core.graph_vectorstores.links.Link>`
- :class:`How to create links between documents <langchain_community.graph_vectorstores.links.Link>`
How to link Documents on common named entities
==============================================
@@ -59,12 +59,12 @@ class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]):
We can use :meth:`extract_one` on a document to get the links and add the links
to the document metadata with
:meth:`~langchain_core.graph_vectorstores.links.add_links`::
:meth:`~langchain_community.graph_vectorstores.links.add_links`::
from langchain_community.document_loaders import TextLoader
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
from langchain_community.graph_vectorstores.extractors import GLiNERLinkExtractor
from langchain_core.graph_vectorstores.links import add_links
from langchain_community.graph_vectorstores.links import add_links
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("state_of_the_union.txt")
@@ -87,7 +87,7 @@ class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]):
Using LinkExtractorTransformer
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using the :class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.LinkExtractorTransformer`,
Using the :class:`~langchain_community.graph_vectorstores.extractors.link_extractor_transformer.LinkExtractorTransformer`,
we can simplify the link extraction::
from langchain_community.document_loaders import TextLoader
@@ -113,7 +113,7 @@ class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]):
{'source': 'state_of_the_union.txt', 'links': [Link(kind='entity:Person', direction='bidir', tag='President Zelenskyy'), Link(kind='entity:Person', direction='bidir', tag='Vladimir Putin')]}
The documents with named entity links can then be added to a :class:`~langchain_core.graph_vectorstores.base.GraphVectorStore`::
The documents with named entity links can then be added to a :class:`~langchain_community.graph_vectorstores.base.GraphVectorStore`::
from langchain_community.graph_vectorstores import CassandraGraphVectorStore

View File

@@ -2,7 +2,6 @@ from typing import Callable, List, Set
from langchain_core._api import beta
from langchain_core.documents import Document
from langchain_core.graph_vectorstores.links import Link
from langchain_community.graph_vectorstores.extractors.link_extractor import (
LinkExtractor,
@@ -10,6 +9,7 @@ from langchain_community.graph_vectorstores.extractors.link_extractor import (
from langchain_community.graph_vectorstores.extractors.link_extractor_adapter import (
LinkExtractorAdapter,
)
from langchain_community.graph_vectorstores.links import Link
# TypeAlias is not available in Python 3.9, we can't use that or the newer `type`.
HierarchyInput = List[str]

View File

@@ -6,8 +6,8 @@ from urllib.parse import urldefrag, urljoin, urlparse
from langchain_core._api import beta
from langchain_core.documents import Document
from langchain_core.graph_vectorstores import Link
from langchain_community.graph_vectorstores import Link
from langchain_community.graph_vectorstores.extractors.link_extractor import (
LinkExtractor,
)
@@ -77,7 +77,7 @@ class HtmlLinkExtractor(LinkExtractor[HtmlInput]):
.. seealso::
- :mod:`How to use a graph vector store <langchain_community.graph_vectorstores>`
- :class:`How to create links between documents <langchain_core.graph_vectorstores.links.Link>`
- :class:`How to create links between documents <langchain_community.graph_vectorstores.links.Link>`
How to link Documents on hyperlinks in HTML
===========================================
@@ -103,7 +103,7 @@ class HtmlLinkExtractor(LinkExtractor[HtmlInput]):
We can use :meth:`extract_one` on a document to get the links and add the links
to the document metadata with
:meth:`~langchain_core.graph_vectorstores.links.add_links`::
:meth:`~langchain_community.graph_vectorstores.links.add_links`::
from langchain_community.document_loaders import AsyncHtmlLoader
from langchain_community.graph_vectorstores.extractors import (
@@ -148,7 +148,7 @@ class HtmlLinkExtractor(LinkExtractor[HtmlInput]):
from langchain_community.document_loaders import AsyncHtmlLoader
from langchain_community.graph_vectorstores.extractors import HtmlLinkExtractor
from langchain_core.graph_vectorstores.links import add_links
from langchain_community.graph_vectorstores.links import add_links
loader = AsyncHtmlLoader(
[
@@ -176,7 +176,7 @@ class HtmlLinkExtractor(LinkExtractor[HtmlInput]):
Using LinkExtractorTransformer
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using the :class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.LinkExtractorTransformer`,
Using the :class:`~langchain_community.graph_vectorstores.extractors.link_extractor_transformer.LinkExtractorTransformer`,
we can simplify the link extraction::
from langchain_community.document_loaders import AsyncHtmlLoader
@@ -227,7 +227,7 @@ class HtmlLinkExtractor(LinkExtractor[HtmlInput]):
Found link from https://python.langchain.com/v0.2/docs/integrations/providers/astradb/ to https://docs.datastax.com/en/astra/home/astra.html.
The documents with URL links can then be added to a :class:`~langchain_core.graph_vectorstores.base.GraphVectorStore`::
The documents with URL links can then be added to a :class:`~langchain_community.graph_vectorstores.base.GraphVectorStore`::
from langchain_community.graph_vectorstores import CassandraGraphVectorStore

View File

@@ -2,11 +2,11 @@ from typing import Any, Dict, Iterable, Optional, Set, Union
from langchain_core._api import beta
from langchain_core.documents import Document
from langchain_core.graph_vectorstores.links import Link
from langchain_community.graph_vectorstores.extractors.link_extractor import (
LinkExtractor,
)
from langchain_community.graph_vectorstores.links import Link
KeybertInput = Union[str, Document]
@@ -37,7 +37,7 @@ class KeybertLinkExtractor(LinkExtractor[KeybertInput]):
.. seealso::
- :mod:`How to use a graph vector store <langchain_community.graph_vectorstores>`
- :class:`How to create links between documents <langchain_core.graph_vectorstores.links.Link>`
- :class:`How to create links between documents <langchain_community.graph_vectorstores.links.Link>`
How to link Documents on common keywords using Keybert
======================================================
@@ -62,12 +62,12 @@ class KeybertLinkExtractor(LinkExtractor[KeybertInput]):
We can use :meth:`extract_one` on a document to get the links and add the links
to the document metadata with
:meth:`~langchain_core.graph_vectorstores.links.add_links`::
:meth:`~langchain_community.graph_vectorstores.links.add_links`::
from langchain_community.document_loaders import TextLoader
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
from langchain_community.graph_vectorstores.extractors import KeybertLinkExtractor
from langchain_core.graph_vectorstores.links import add_links
from langchain_community.graph_vectorstores.links import add_links
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("state_of_the_union.txt")
@@ -91,7 +91,7 @@ class KeybertLinkExtractor(LinkExtractor[KeybertInput]):
Using LinkExtractorTransformer
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using the :class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.LinkExtractorTransformer`,
Using the :class:`~langchain_community.graph_vectorstores.extractors.link_extractor_transformer.LinkExtractorTransformer`,
we can simplify the link extraction::
from langchain_community.document_loaders import TextLoader
@@ -116,7 +116,7 @@ class KeybertLinkExtractor(LinkExtractor[KeybertInput]):
{'source': 'state_of_the_union.txt', 'links': [Link(kind='kw', direction='bidir', tag='ukraine'), Link(kind='kw', direction='bidir', tag='ukrainian'), Link(kind='kw', direction='bidir', tag='putin'), Link(kind='kw', direction='bidir', tag='vladimir'), Link(kind='kw', direction='bidir', tag='russia')]}
The documents with keyword links can then be added to a :class:`~langchain_core.graph_vectorstores.base.GraphVectorStore`::
The documents with keyword links can then be added to a :class:`~langchain_community.graph_vectorstores.base.GraphVectorStore`::
from langchain_community.graph_vectorstores import CassandraGraphVectorStore

View File

@@ -4,7 +4,8 @@ from abc import ABC, abstractmethod
from typing import Generic, Iterable, Set, TypeVar
from langchain_core._api import beta
from langchain_core.graph_vectorstores import Link
from langchain_community.graph_vectorstores import Link
InputT = TypeVar("InputT")

View File

@@ -1,8 +1,8 @@
from typing import Callable, Iterable, Set, TypeVar
from langchain_core._api import beta
from langchain_core.graph_vectorstores import Link
from langchain_community.graph_vectorstores import Link
from langchain_community.graph_vectorstores.extractors.link_extractor import (
LinkExtractor,
)

View File

@@ -3,11 +3,11 @@ from typing import Any, Sequence
from langchain_core._api import beta
from langchain_core.documents import Document
from langchain_core.documents.transformers import BaseDocumentTransformer
from langchain_core.graph_vectorstores.links import copy_with_links
from langchain_community.graph_vectorstores.extractors.link_extractor import (
LinkExtractor,
)
from langchain_community.graph_vectorstores.links import copy_with_links
@beta()

View File

@@ -1,8 +1,102 @@
from langchain_core.graph_vectorstores.links import (
Link,
add_links,
copy_with_links,
get_links,
)
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Literal, Union
__all__ = ["Link", "add_links", "get_links", "copy_with_links"]
from langchain_core._api import beta
from langchain_core.documents import Document
@beta()
@dataclass(frozen=True)
class Link:
"""A link to/from a tag of a given tag.
Edges exist from nodes with an outgoing link to nodes with a matching incoming link.
"""
kind: str
"""The kind of link. Allows different extractors to use the same tag name without
creating collisions between extractors. For example “keyword” vs “url”."""
direction: Literal["in", "out", "bidir"]
"""The direction of the link."""
tag: str
"""The tag of the link."""
@staticmethod
def incoming(kind: str, tag: str) -> "Link":
"""Create an incoming link."""
return Link(kind=kind, direction="in", tag=tag)
@staticmethod
def outgoing(kind: str, tag: str) -> "Link":
"""Create an outgoing link."""
return Link(kind=kind, direction="out", tag=tag)
@staticmethod
def bidir(kind: str, tag: str) -> "Link":
"""Create a bidirectional link."""
return Link(kind=kind, direction="bidir", tag=tag)
METADATA_LINKS_KEY = "links"
@beta()
def get_links(doc: Document) -> list[Link]:
"""Get the links from a document.
Args:
doc: The document to get the link tags from.
Returns:
The set of link tags from the document.
"""
links = doc.metadata.setdefault(METADATA_LINKS_KEY, [])
if not isinstance(links, list):
# Convert to a list and remember that.
links = list(links)
doc.metadata[METADATA_LINKS_KEY] = links
return links
@beta()
def add_links(doc: Document, *links: Union[Link, Iterable[Link]]) -> None:
"""Add links to the given metadata.
Args:
doc: The document to add the links to.
*links: The links to add to the document.
"""
links_in_metadata = get_links(doc)
for link in links:
if isinstance(link, Iterable):
links_in_metadata.extend(link)
else:
links_in_metadata.append(link)
@beta()
def copy_with_links(doc: Document, *links: Union[Link, Iterable[Link]]) -> Document:
"""Return a document with the given links added.
Args:
doc: The document to add the links to.
*links: The links to add to the document.
Returns:
A document with a shallow-copy of the metadata with the links added.
"""
new_links = set(get_links(doc))
for link in links:
if isinstance(link, Iterable):
new_links.update(link)
else:
new_links.add(link)
return Document(
page_content=doc.page_content,
metadata={
**doc.metadata,
METADATA_LINKS_KEY: list(new_links),
},
)

View File

@@ -411,7 +411,9 @@ class Neo4jGraph(GraphStore):
return self.structured_schema
def query(
self, query: str, params: dict = {}, retry_on_session_expired: bool = True
self,
query: str,
params: dict = {},
) -> List[Dict[str, Any]]:
"""Query Neo4j database.
@@ -423,26 +425,44 @@ class Neo4jGraph(GraphStore):
List[Dict[str, Any]]: The list of dictionaries containing the query results.
"""
from neo4j import Query
from neo4j.exceptions import CypherSyntaxError, SessionExpired
from neo4j.exceptions import Neo4jError
with self._driver.session(database=self._database) as session:
try:
data = session.run(Query(text=query, timeout=self.timeout), params)
json_data = [r.data() for r in data]
if self.sanitize:
json_data = [value_sanitize(el) for el in json_data]
return json_data
except CypherSyntaxError as e:
raise ValueError(f"Generated Cypher Statement is not valid\n{e}")
except (
SessionExpired
) as e: # Session expired is a transient error that can be retried
if retry_on_session_expired:
return self.query(
query, params=params, retry_on_session_expired=False
try:
data, _, _ = self._driver.execute_query(
Query(text=query, timeout=self.timeout),
database=self._database,
parameters_=params,
)
json_data = [r.data() for r in data]
if self.sanitize:
json_data = [value_sanitize(el) for el in json_data]
return json_data
except Neo4jError as e:
if not (
(
( # isCallInTransactionError
e.code == "Neo.DatabaseError.Statement.ExecutionFailed"
or e.code
== "Neo.DatabaseError.Transaction.TransactionStartFailed"
)
else:
raise e
and "in an implicit transaction" in e.message
)
or ( # isPeriodicCommitError
e.code == "Neo.ClientError.Statement.SemanticError"
and (
"in an open transaction is not possible" in e.message
or "tried to execute in an explicit transaction" in e.message
)
)
):
raise
# fallback to allow implicit transactions
with self._driver.session() as session:
data = session.run(Query(text=query, timeout=self.timeout), params)
json_data = [r.data() for r in data]
if self.sanitize:
json_data = [value_sanitize(el) for el in json_data]
return json_data
def refresh_schema(self) -> None:
"""

View File

@@ -510,12 +510,6 @@ def _import_sagemaker_endpoint() -> Type[BaseLLM]:
return SagemakerEndpoint
def _import_sambaverse() -> Type[BaseLLM]:
from langchain_community.llms.sambanova import Sambaverse
return Sambaverse
def _import_sambastudio() -> Type[BaseLLM]:
from langchain_community.llms.sambanova import SambaStudio
@@ -817,8 +811,6 @@ def __getattr__(name: str) -> Any:
return _import_rwkv()
elif name == "SagemakerEndpoint":
return _import_sagemaker_endpoint()
elif name == "Sambaverse":
return _import_sambaverse()
elif name == "SambaStudio":
return _import_sambastudio()
elif name == "SelfHostedPipeline":
@@ -954,7 +946,6 @@ __all__ = [
"RWKV",
"Replicate",
"SagemakerEndpoint",
"Sambaverse",
"SambaStudio",
"SelfHostedHuggingFaceLLM",
"SelfHostedPipeline",
@@ -1051,7 +1042,6 @@ def get_type_to_cls_dict() -> Dict[str, Callable[[], Type[BaseLLM]]]:
"replicate": _import_replicate,
"rwkv": _import_rwkv,
"sagemaker_endpoint": _import_sagemaker_endpoint,
"sambaverse": _import_sambaverse,
"sambastudio": _import_sambastudio,
"self_hosted": _import_self_hosted,
"self_hosted_hugging_face": _import_self_hosted_hugging_face,

View File

@@ -9,464 +9,6 @@ from langchain_core.utils import get_from_dict_or_env, pre_init
from pydantic import ConfigDict
class SVEndpointHandler:
"""
SambaNova Systems Interface for Sambaverse endpoint.
:param str host_url: Base URL of the DaaS API service
"""
API_BASE_PATH: str = "/api/predict"
def __init__(self, host_url: str):
"""
Initialize the SVEndpointHandler.
:param str host_url: Base URL of the DaaS API service
"""
self.host_url = host_url
self.http_session = requests.Session()
@staticmethod
def _process_response(response: requests.Response) -> Dict:
"""
Processes the API response and returns the resulting dict.
All resulting dicts, regardless of success or failure, will contain the
`status_code` key with the API response status code.
If the API returned an error, the resulting dict will contain the key
`detail` with the error message.
If the API call was successful, the resulting dict will contain the key
`data` with the response data.
:param requests.Response response: the response object to process
:return: the response dict
:type: dict
"""
result: Dict[str, Any] = {}
try:
lines_result = response.text.strip().split("\n")
text_result = lines_result[-1]
if response.status_code == 200 and json.loads(text_result).get("error"):
completion = ""
for line in lines_result[:-1]:
completion += json.loads(line)["result"]["responses"][0][
"stream_token"
]
text_result = lines_result[-2]
result = json.loads(text_result)
result["result"]["responses"][0]["completion"] = completion
else:
result = json.loads(text_result)
except Exception as e:
result["detail"] = str(e)
if "status_code" not in result:
result["status_code"] = response.status_code
return result
@staticmethod
def _process_streaming_response(
response: requests.Response,
) -> Generator[Dict, None, None]:
"""Process the streaming response"""
try:
for line in response.iter_lines():
chunk = json.loads(line)
if "status_code" not in chunk:
chunk["status_code"] = response.status_code
if chunk["status_code"] == 200 and chunk.get("error"):
chunk["result"] = {"responses": [{"stream_token": ""}]}
return chunk
yield chunk
except Exception as e:
raise RuntimeError(f"Error processing streaming response: {e}")
def _get_full_url(self) -> str:
"""
Return the full API URL for a given path.
:returns: the full API URL for the sub-path
:type: str
"""
return f"{self.host_url}{self.API_BASE_PATH}"
def nlp_predict(
self,
key: str,
sambaverse_model_name: Optional[str],
input: Union[List[str], str],
params: Optional[str] = "",
stream: bool = False,
) -> Dict:
"""
NLP predict using inline input string.
:param str project: Project ID in which the endpoint exists
:param str endpoint: Endpoint ID
:param str key: API Key
:param str input_str: Input string
:param str params: Input params string
:returns: Prediction results
:type: dict
"""
if params:
data = {"instance": input, "params": json.loads(params)}
else:
data = {"instance": input}
response = self.http_session.post(
self._get_full_url(),
headers={
"key": key,
"Content-Type": "application/json",
"modelName": sambaverse_model_name,
},
json=data,
)
return SVEndpointHandler._process_response(response)
def nlp_predict_stream(
self,
key: str,
sambaverse_model_name: Optional[str],
input: Union[List[str], str],
params: Optional[str] = "",
) -> Iterator[Dict]:
"""
NLP predict using inline input string.
:param str project: Project ID in which the endpoint exists
:param str endpoint: Endpoint ID
:param str key: API Key
:param str input_str: Input string
:param str params: Input params string
:returns: Prediction results
:type: dict
"""
if params:
data = {"instance": input, "params": json.loads(params)}
else:
data = {"instance": input}
# Streaming output
response = self.http_session.post(
self._get_full_url(),
headers={
"key": key,
"Content-Type": "application/json",
"modelName": sambaverse_model_name,
},
json=data,
stream=True,
)
for chunk in SVEndpointHandler._process_streaming_response(response):
yield chunk
class Sambaverse(LLM):
"""
Sambaverse large language models.
To use, you should have the environment variable ``SAMBAVERSE_API_KEY``
set with your API key.
get one in https://sambaverse.sambanova.ai
read extra documentation in https://docs.sambanova.ai/sambaverse/latest/index.html
Example:
.. code-block:: python
from langchain_community.llms.sambanova import Sambaverse
Sambaverse(
sambaverse_url="https://sambaverse.sambanova.ai",
sambaverse_api_key="your-sambaverse-api-key",
sambaverse_model_name="Meta/llama-2-7b-chat-hf",
streaming: = False
model_kwargs={
"select_expert": "llama-2-7b-chat-hf",
"do_sample": False,
"max_tokens_to_generate": 100,
"temperature": 0.7,
"top_p": 1.0,
"repetition_penalty": 1.0,
"top_k": 50,
"process_prompt": False
},
)
"""
sambaverse_url: str = ""
"""Sambaverse url to use"""
sambaverse_api_key: str = ""
"""sambaverse api key"""
sambaverse_model_name: Optional[str] = None
"""sambaverse expert model to use"""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
streaming: Optional[bool] = False
"""Streaming flag to get streamed response."""
model_config = ConfigDict(
extra="forbid",
)
@classmethod
def is_lc_serializable(cls) -> bool:
return True
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
values["sambaverse_url"] = get_from_dict_or_env(
values,
"sambaverse_url",
"SAMBAVERSE_URL",
default="https://sambaverse.sambanova.ai",
)
values["sambaverse_api_key"] = get_from_dict_or_env(
values, "sambaverse_api_key", "SAMBAVERSE_API_KEY"
)
values["sambaverse_model_name"] = get_from_dict_or_env(
values, "sambaverse_model_name", "SAMBAVERSE_MODEL_NAME"
)
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_kwargs": self.model_kwargs}}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "Sambaverse LLM"
def _get_tuning_params(self, stop: Optional[List[str]]) -> str:
"""
Get the tuning parameters to use when calling the LLM.
Args:
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
Returns:
The tuning parameters as a JSON string.
"""
_model_kwargs = self.model_kwargs or {}
_kwarg_stop_sequences = _model_kwargs.get("stop_sequences", [])
_stop_sequences = stop or _kwarg_stop_sequences
if not _kwarg_stop_sequences:
_model_kwargs["stop_sequences"] = ",".join(
f'"{x}"' for x in _stop_sequences
)
tuning_params_dict = {
k: {"type": type(v).__name__, "value": str(v)}
for k, v in (_model_kwargs.items())
}
_model_kwargs["stop_sequences"] = _kwarg_stop_sequences
tuning_params = json.dumps(tuning_params_dict)
return tuning_params
def _handle_nlp_predict(
self,
sdk: SVEndpointHandler,
prompt: Union[List[str], str],
tuning_params: str,
) -> str:
"""
Perform an NLP prediction using the Sambaverse endpoint handler.
Args:
sdk: The SVEndpointHandler to use for the prediction.
prompt: The prompt to use for the prediction.
tuning_params: The tuning parameters to use for the prediction.
Returns:
The prediction result.
Raises:
ValueError: If the prediction fails.
"""
response = sdk.nlp_predict(
self.sambaverse_api_key, self.sambaverse_model_name, prompt, tuning_params
)
if response["status_code"] != 200:
error = response.get("error")
if error:
optional_code = error.get("code")
optional_details = error.get("details")
optional_message = error.get("message")
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response['status_code']}.\n"
f"Message: {optional_message}\n"
f"Details: {optional_details}\n"
f"Code: {optional_code}\n"
)
else:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response['status_code']}."
f"{response}."
)
return response["result"]["responses"][0]["completion"]
def _handle_completion_requests(
self, prompt: Union[List[str], str], stop: Optional[List[str]]
) -> str:
"""
Perform a prediction using the Sambaverse endpoint handler.
Args:
prompt: The prompt to use for the prediction.
stop: stop sequences.
Returns:
The prediction result.
Raises:
ValueError: If the prediction fails.
"""
ss_endpoint = SVEndpointHandler(self.sambaverse_url)
tuning_params = self._get_tuning_params(stop)
return self._handle_nlp_predict(ss_endpoint, prompt, tuning_params)
def _handle_nlp_predict_stream(
self, sdk: SVEndpointHandler, prompt: Union[List[str], str], tuning_params: str
) -> Iterator[GenerationChunk]:
"""
Perform a streaming request to the LLM.
Args:
sdk: The SVEndpointHandler to use for the prediction.
prompt: The prompt to use for the prediction.
tuning_params: The tuning parameters to use for the prediction.
Returns:
An iterator of GenerationChunks.
"""
for chunk in sdk.nlp_predict_stream(
self.sambaverse_api_key, self.sambaverse_model_name, prompt, tuning_params
):
if chunk["status_code"] != 200:
error = chunk.get("error")
if error:
optional_code = error.get("code")
optional_details = error.get("details")
optional_message = error.get("message")
raise ValueError(
f"Sambanova /complete call failed with status code "
f"{chunk['status_code']}.\n"
f"Message: {optional_message}\n"
f"Details: {optional_details}\n"
f"Code: {optional_code}\n"
)
else:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{chunk['status_code']}."
f"{chunk}."
)
text = chunk["result"]["responses"][0]["stream_token"]
generated_chunk = GenerationChunk(text=text)
yield generated_chunk
def _stream(
self,
prompt: Union[List[str], str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Stream the Sambaverse's LLM on the given prompt.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager: Callback manager for the run.
kwargs: Additional keyword arguments. directly passed
to the sambaverse model in API call.
Returns:
An iterator of GenerationChunks.
"""
ss_endpoint = SVEndpointHandler(self.sambaverse_url)
tuning_params = self._get_tuning_params(stop)
try:
if self.streaming:
for chunk in self._handle_nlp_predict_stream(
ss_endpoint, prompt, tuning_params
):
if run_manager:
run_manager.on_llm_new_token(chunk.text)
yield chunk
else:
return
except Exception as e:
# Handle any errors raised by the inference endpoint
raise ValueError(f"Error raised by the inference endpoint: {e}") from e
def _handle_stream_request(
self,
prompt: Union[List[str], str],
stop: Optional[List[str]],
run_manager: Optional[CallbackManagerForLLMRun],
kwargs: Dict[str, Any],
) -> str:
"""
Perform a streaming request to the LLM.
Args:
prompt: The prompt to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
run_manager: Callback manager for the run.
kwargs: Additional keyword arguments. directly passed
to the sambaverse model in API call.
Returns:
The model output as a string.
"""
completion = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
def _call(
self,
prompt: Union[List[str], str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Run the LLM on the given input.
Args:
prompt: The prompt to generate from.
stop: Stop words to use when generating. Model output is cut off at the
first occurrence of any of the stop substrings.
run_manager: Callback manager for the run.
kwargs: Additional keyword arguments. directly passed
to the sambaverse model in API call.
Returns:
The model output as a string.
"""
try:
if self.streaming:
return self._handle_stream_request(prompt, stop, run_manager, kwargs)
return self._handle_completion_requests(prompt, stop)
except Exception as e:
# Handle any errors raised by the inference endpoint
raise ValueError(f"Error raised by the inference endpoint: {e}") from e
class SSEndpointHandler:
"""
SambaNova Systems Interface for SambaStudio model endpoints.
@@ -975,7 +517,7 @@ class SambaStudio(LLM):
first occurrence of any of the stop substrings.
run_manager: Callback manager for the run.
kwargs: Additional keyword arguments. directly passed
to the sambaverse model in API call.
to the sambastudio model in API call.
Returns:
The model output as a string.

View File

@@ -10,7 +10,6 @@ from pydantic import BaseModel, Field, create_model
from typing_extensions import Self
if TYPE_CHECKING:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.catalog import FunctionInfo
from pydantic import ConfigDict
@@ -121,7 +120,7 @@ def _get_tool_name(function: "FunctionInfo") -> str:
return tool_name
def _get_default_workspace_client() -> "WorkspaceClient":
def _get_default_workspace_client() -> Any:
try:
from databricks.sdk import WorkspaceClient
except ImportError as e:
@@ -137,7 +136,7 @@ class UCFunctionToolkit(BaseToolkit):
description="The ID of a Databricks SQL Warehouse to execute functions."
)
workspace_client: "WorkspaceClient" = Field(
workspace_client: Any = Field(
default_factory=_get_default_workspace_client,
description="Databricks workspace client.",
)

View File

@@ -69,6 +69,19 @@ class ZenGuardTool(BaseTool):
)
return v
@property
def _api_key(self) -> str:
if self.zenguard_api_key is None:
raise ValueError(
"API key is required for the ZenGuardTool. "
"Please provide the API key by either:\n"
"1. Manually specifying it when initializing the tool: "
"ZenGuardTool(zenguard_api_key='your_api_key')\n"
"2. Setting it as an environment variable:"
f" {self._ZENGUARD_API_KEY_ENV_NAME}"
)
return self.zenguard_api_key
def _run(
self,
prompts: List[str],
@@ -91,7 +104,7 @@ class ZenGuardTool(BaseTool):
response = requests.post(
self._ZENGUARD_API_URL_ROOT + postfix,
json=json,
headers={"x-api-key": self.zenguard_api_key},
headers={"x-api-key": self._api_key},
timeout=5,
)
response.raise_for_status()

View File

@@ -24,6 +24,18 @@ class FinancialDatasetsAPIWrapper(BaseModel):
data, "financial_datasets_api_key", "FINANCIAL_DATASETS_API_KEY"
)
@property
def _api_key(self) -> str:
if self.financial_datasets_api_key is None:
raise ValueError(
"API key is required for the FinancialDatasetsAPIWrapper. "
"Please provide the API key by either:\n"
"1. Manually specifying it when initializing the wrapper: "
"FinancialDatasetsAPIWrapper(financial_datasets_api_key='your_api_key')\n"
"2. Setting it as an environment variable: FINANCIAL_DATASETS_API_KEY"
)
return self.financial_datasets_api_key
def get_income_statements(
self,
ticker: str,
@@ -47,7 +59,7 @@ class FinancialDatasetsAPIWrapper(BaseModel):
)
# Add the api key to the headers
headers = {"X-API-KEY": self.financial_datasets_api_key}
headers = {"X-API-KEY": self._api_key}
# Execute the request
response = requests.get(url, headers=headers)
@@ -78,7 +90,7 @@ class FinancialDatasetsAPIWrapper(BaseModel):
)
# Add the api key to the headers
headers = {"X-API-KEY": self.financial_datasets_api_key}
headers = {"X-API-KEY": self._api_key}
# Execute the request
response = requests.get(url, headers=headers)
@@ -110,7 +122,7 @@ class FinancialDatasetsAPIWrapper(BaseModel):
)
# Add the api key to the headers
headers = {"X-API-KEY": self.financial_datasets_api_key}
headers = {"X-API-KEY": self._api_key}
# Execute the request
response = requests.get(url, headers=headers)

View File

@@ -492,7 +492,7 @@ class GitHubAPIWrapper(BaseModel):
response_dict: Dict[str, str] = {}
add_to_dict(response_dict, "title", pull.title)
add_to_dict(response_dict, "number", str(pr_number))
add_to_dict(response_dict, "body", pull.body)
add_to_dict(response_dict, "body", pull.body if pull.body else "")
comments: List[str] = []
page = 0

View File

@@ -443,6 +443,12 @@ class AzureSearch(VectorStore):
logger.debug("Nothing to insert, skipping.")
return []
# when `keys` are not passed in and there is `ids` in kwargs, use those instead
# base class expects `ids` passed in rather than `keys`
# https://github.com/langchain-ai/langchain/blob/4cdaca67dc51dba887289f56c6fead3c1a52f97d/libs/core/langchain_core/vectorstores/base.py#L65
if (not keys) and ("ids" in kwargs) and (len(kwargs["ids"]) == len(embeddings)):
keys = kwargs["ids"]
return self.add_embeddings(zip(texts, embeddings), metadatas, keys=keys)
async def aadd_texts(
@@ -467,6 +473,12 @@ class AzureSearch(VectorStore):
logger.debug("Nothing to insert, skipping.")
return []
# when `keys` are not passed in and there is `ids` in kwargs, use those instead
# base class expects `ids` passed in rather than `keys`
# https://github.com/langchain-ai/langchain/blob/4cdaca67dc51dba887289f56c6fead3c1a52f97d/libs/core/langchain_core/vectorstores/base.py#L65
if (not keys) and ("ids" in kwargs) and (len(kwargs["ids"]) == len(embeddings)):
keys = kwargs["ids"]
return await self.aadd_embeddings(zip(texts, embeddings), metadatas, keys=keys)
def add_embeddings(
@@ -483,9 +495,13 @@ class AzureSearch(VectorStore):
data = []
for i, (text, embedding) in enumerate(text_embeddings):
# Use provided key otherwise use default key
key = keys[i] if keys else str(uuid.uuid4())
# Encoding key for Azure Search valid characters
key = base64.urlsafe_b64encode(bytes(key, "utf-8")).decode("ascii")
if keys:
key = keys[i]
else:
key = str(uuid.uuid4())
# Encoding key for Azure Search valid characters
key = base64.urlsafe_b64encode(bytes(key, "utf-8")).decode("ascii")
metadata = metadatas[i] if metadatas else {}
# Add data to index
# Additional metadata to fields mapping

View File

@@ -65,10 +65,12 @@ class Epsilla(VectorStore):
"Please install pyepsilla package with `pip install pyepsilla`."
) from e
if not isinstance(client, pyepsilla.vectordb.Client):
if not isinstance(
client, (pyepsilla.vectordb.Client, pyepsilla.cloud.client.Vectordb)
):
raise TypeError(
f"client should be an instance of pyepsilla.vectordb.Client, "
f"got {type(client)}"
"client should be an instance of pyepsilla.vectordb.Client or "
f"pyepsilla.cloud.client.Vectordb, got {type(client)}"
)
self._client: vectordb.Client = client

View File

@@ -595,11 +595,8 @@ class Neo4jVector(VectorStore):
query: str,
*,
params: Optional[dict] = None,
retry_on_session_expired: bool = True,
) -> List[Dict[str, Any]]:
"""
This method sends a Cypher query to the connected Neo4j database
and returns the results as a list of dictionaries.
"""Query Neo4j database with retries and exponential backoff.
Args:
query (str): The Cypher query to execute.
@@ -608,24 +605,38 @@ class Neo4jVector(VectorStore):
Returns:
List[Dict[str, Any]]: List of dictionaries containing the query results.
"""
from neo4j.exceptions import CypherSyntaxError, SessionExpired
from neo4j import Query
from neo4j.exceptions import Neo4jError
params = params or {}
with self._driver.session(database=self._database) as session:
try:
data = session.run(query, params)
return [r.data() for r in data]
except CypherSyntaxError as e:
raise ValueError(f"Cypher Statement is not valid\n{e}")
except (
SessionExpired
) as e: # Session expired is a transient error that can be retried
if retry_on_session_expired:
return self.query(
query, params=params, retry_on_session_expired=False
try:
data, _, _ = self._driver.execute_query(
query, database=self._database, parameters_=params
)
return [r.data() for r in data]
except Neo4jError as e:
if not (
(
( # isCallInTransactionError
e.code == "Neo.DatabaseError.Statement.ExecutionFailed"
or e.code
== "Neo.DatabaseError.Transaction.TransactionStartFailed"
)
else:
raise e
and "in an implicit transaction" in e.message
)
or ( # isPeriodicCommitError
e.code == "Neo.ClientError.Statement.SemanticError"
and (
"in an open transaction is not possible" in e.message
or "tried to execute in an explicit transaction" in e.message
)
)
):
raise
# Fallback to allow implicit transactions
with self._driver.session() as session:
data = session.run(Query(text=query), params)
return [r.data() for r in data]
def verify_version(self) -> None:
"""

View File

@@ -144,7 +144,7 @@ class TencentVectorDB(VectorStore):
In order to use this you need to have a database instance.
See the following documentation for details:
https://cloud.tencent.com/document/product/1709/94951
https://cloud.tencent.com/document/product/1709/104489
"""
field_id: str = "id"

View File

@@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand.
[[package]]
name = "aiohappyeyeballs"
@@ -150,13 +150,13 @@ files = [
[[package]]
name = "anyio"
version = "4.4.0"
version = "4.5.0"
description = "High level compatibility layer for multiple asynchronous event loop implementations"
optional = false
python-versions = ">=3.8"
files = [
{file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"},
{file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"},
{file = "anyio-4.5.0-py3-none-any.whl", hash = "sha256:fdeb095b7cc5a5563175eedd926ec4ae55413bb4be5770c424af0ba46ccb4a78"},
{file = "anyio-4.5.0.tar.gz", hash = "sha256:c5a275fe5ca0afd788001f58fca1e69e29ce706d746e317d660e21f70c530ef9"},
]
[package.dependencies]
@@ -166,9 +166,9 @@ sniffio = ">=1.1"
typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""}
[package.extras]
doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"]
test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"]
trio = ["trio (>=0.23)"]
doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"]
test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"]
trio = ["trio (>=0.26.1)"]
[[package]]
name = "appnope"
@@ -1251,15 +1251,18 @@ zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "idna"
version = "3.8"
version = "3.10"
description = "Internationalized Domain Names in Applications (IDNA)"
optional = false
python-versions = ">=3.6"
files = [
{file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"},
{file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"},
{file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"},
{file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"},
]
[package.extras]
all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"]
[[package]]
name = "importlib-metadata"
version = "8.5.0"
@@ -1535,13 +1538,13 @@ notebook = "*"
[[package]]
name = "jupyter-client"
version = "8.6.2"
version = "8.6.3"
description = "Jupyter protocol implementation and client libraries"
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"},
{file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"},
{file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"},
{file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"},
]
[package.dependencies]
@@ -1780,7 +1783,7 @@ files = [
[[package]]
name = "langchain"
version = "0.3.0.dev2"
version = "0.3.0"
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.9,<4.0"
@@ -1790,12 +1793,12 @@ develop = true
[package.dependencies]
aiohttp = "^3.8.3"
async-timeout = {version = "^4.0.0", markers = "python_version < \"3.11\""}
langchain-core = "^0.3.0.dev5"
langchain-text-splitters = "^0.3.0.dev1"
langchain-core = "^0.3.0"
langchain-text-splitters = "^0.3.0"
langsmith = "^0.1.17"
numpy = [
{version = ">=1,<2", markers = "python_version < \"3.12\""},
{version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""},
{version = "^1", markers = "python_version < \"3.12\""},
{version = "^1.26.0", markers = "python_version >= \"3.12\""},
]
pydantic = "^2.7.4"
PyYAML = ">=5.3"
@@ -1809,7 +1812,7 @@ url = "../langchain"
[[package]]
name = "langchain-core"
version = "0.3.0.dev5"
version = "0.3.2"
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.9,<4.0"
@@ -1818,11 +1821,11 @@ develop = true
[package.dependencies]
jsonpatch = "^1.33"
langsmith = "^0.1.117"
langsmith = "^0.1.125"
packaging = ">=23.2,<25"
pydantic = [
{version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""},
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
{version = "^2.5.2", markers = "python_full_version < \"3.12.4\""},
{version = "^2.7.4", markers = "python_full_version >= \"3.12.4\""},
]
PyYAML = ">=5.3"
tenacity = "^8.1.0,!=8.4.0"
@@ -1843,7 +1846,7 @@ develop = true
[package.dependencies]
httpx = "^0.27.0"
langchain-core = ">=0.3.0.dev1"
langchain-core = "^0.3.0"
pytest = ">=7,<9"
syrupy = "^4"
@@ -1853,7 +1856,7 @@ url = "../standard-tests"
[[package]]
name = "langchain-text-splitters"
version = "0.3.0.dev1"
version = "0.3.0"
description = "LangChain text splitting utilities"
optional = false
python-versions = ">=3.9,<4.0"
@@ -1861,7 +1864,7 @@ files = []
develop = true
[package.dependencies]
langchain-core = "^0.3.0.dev1"
langchain-core = "^0.3.0"
[package.source]
type = "directory"
@@ -1869,13 +1872,13 @@ url = "../text-splitters"
[[package]]
name = "langsmith"
version = "0.1.120"
version = "0.1.125"
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = "<4.0,>=3.8.1"
files = [
{file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"},
{file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"},
{file = "langsmith-0.1.125-py3-none-any.whl", hash = "sha256:74ce8eb2663e1ed20bfcfc88d41e0712879306956c9938d1cdbab7d60458bdca"},
{file = "langsmith-0.1.125.tar.gz", hash = "sha256:2c0eb0c3cbf22cff55bf519b8e889041f9a591bcf97af5152c8e130333c5940e"},
]
[package.dependencies]
@@ -2574,13 +2577,13 @@ ptyprocess = ">=0.5"
[[package]]
name = "platformdirs"
version = "4.3.2"
version = "4.3.6"
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`."
optional = false
python-versions = ">=3.8"
files = [
{file = "platformdirs-4.3.2-py3-none-any.whl", hash = "sha256:eb1c8582560b34ed4ba105009a4badf7f6f85768b30126f351328507b2beb617"},
{file = "platformdirs-4.3.2.tar.gz", hash = "sha256:9e5e27a08aa095dd127b9f2e764d74254f482fef22b0970773bfba79d091ab8c"},
{file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"},
{file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"},
]
[package.extras]
@@ -2633,22 +2636,22 @@ wcwidth = "*"
[[package]]
name = "protobuf"
version = "5.28.1"
version = "5.28.2"
description = ""
optional = false
python-versions = ">=3.8"
files = [
{file = "protobuf-5.28.1-cp310-abi3-win32.whl", hash = "sha256:fc063acaf7a3d9ca13146fefb5b42ac94ab943ec6e978f543cd5637da2d57957"},
{file = "protobuf-5.28.1-cp310-abi3-win_amd64.whl", hash = "sha256:4c7f5cb38c640919791c9f74ea80c5b82314c69a8409ea36f2599617d03989af"},
{file = "protobuf-5.28.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:4304e4fceb823d91699e924a1fdf95cde0e066f3b1c28edb665bda762ecde10f"},
{file = "protobuf-5.28.1-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:0dfd86d2b5edf03d91ec2a7c15b4e950258150f14f9af5f51c17fa224ee1931f"},
{file = "protobuf-5.28.1-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:51f09caab818707ab91cf09cc5c156026599cf05a4520779ccbf53c1b352fb25"},
{file = "protobuf-5.28.1-cp38-cp38-win32.whl", hash = "sha256:1b04bde117a10ff9d906841a89ec326686c48ececeb65690f15b8cabe7149495"},
{file = "protobuf-5.28.1-cp38-cp38-win_amd64.whl", hash = "sha256:cabfe43044ee319ad6832b2fda332646f9ef1636b0130186a3ae0a52fc264bb4"},
{file = "protobuf-5.28.1-cp39-cp39-win32.whl", hash = "sha256:4b4b9a0562a35773ff47a3df823177ab71a1f5eb1ff56d8f842b7432ecfd7fd2"},
{file = "protobuf-5.28.1-cp39-cp39-win_amd64.whl", hash = "sha256:f24e5d70e6af8ee9672ff605d5503491635f63d5db2fffb6472be78ba62efd8f"},
{file = "protobuf-5.28.1-py3-none-any.whl", hash = "sha256:c529535e5c0effcf417682563719e5d8ac8d2b93de07a56108b4c2d436d7a29a"},
{file = "protobuf-5.28.1.tar.gz", hash = "sha256:42597e938f83bb7f3e4b35f03aa45208d49ae8d5bcb4bc10b9fc825e0ab5e423"},
{file = "protobuf-5.28.2-cp310-abi3-win32.whl", hash = "sha256:eeea10f3dc0ac7e6b4933d32db20662902b4ab81bf28df12218aa389e9c2102d"},
{file = "protobuf-5.28.2-cp310-abi3-win_amd64.whl", hash = "sha256:2c69461a7fcc8e24be697624c09a839976d82ae75062b11a0972e41fd2cd9132"},
{file = "protobuf-5.28.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:a8b9403fc70764b08d2f593ce44f1d2920c5077bf7d311fefec999f8c40f78b7"},
{file = "protobuf-5.28.2-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:35cfcb15f213449af7ff6198d6eb5f739c37d7e4f1c09b5d0641babf2cc0c68f"},
{file = "protobuf-5.28.2-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:5e8a95246d581eef20471b5d5ba010d55f66740942b95ba9b872d918c459452f"},
{file = "protobuf-5.28.2-cp38-cp38-win32.whl", hash = "sha256:87317e9bcda04a32f2ee82089a204d3a2f0d3c8aeed16568c7daf4756e4f1fe0"},
{file = "protobuf-5.28.2-cp38-cp38-win_amd64.whl", hash = "sha256:c0ea0123dac3399a2eeb1a1443d82b7afc9ff40241433296769f7da42d142ec3"},
{file = "protobuf-5.28.2-cp39-cp39-win32.whl", hash = "sha256:ca53faf29896c526863366a52a8f4d88e69cd04ec9571ed6082fa117fac3ab36"},
{file = "protobuf-5.28.2-cp39-cp39-win_amd64.whl", hash = "sha256:8ddc60bf374785fb7cb12510b267f59067fa10087325b8e1855b898a0d81d276"},
{file = "protobuf-5.28.2-py3-none-any.whl", hash = "sha256:52235802093bd8a2811abbe8bf0ab9c5f54cca0a751fdd3f6ac2a21438bffece"},
{file = "protobuf-5.28.2.tar.gz", hash = "sha256:59379674ff119717404f7454647913787034f03fe7049cbef1d74a97bb4593f0"},
]
[[package]]
@@ -2718,18 +2721,18 @@ files = [
[[package]]
name = "pydantic"
version = "2.9.1"
version = "2.9.2"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.8"
files = [
{file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"},
{file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"},
{file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"},
{file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"},
]
[package.dependencies]
annotated-types = ">=0.6.0"
pydantic-core = "2.23.3"
pydantic-core = "2.23.4"
typing-extensions = [
{version = ">=4.6.1", markers = "python_version < \"3.13\""},
{version = ">=4.12.2", markers = "python_version >= \"3.13\""},
@@ -2741,100 +2744,100 @@ timezone = ["tzdata"]
[[package]]
name = "pydantic-core"
version = "2.23.3"
version = "2.23.4"
description = "Core functionality for Pydantic validation and serialization"
optional = false
python-versions = ">=3.8"
files = [
{file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"},
{file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"},
{file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"},
{file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"},
{file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"},
{file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"},
{file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"},
{file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"},
{file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"},
{file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"},
{file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"},
{file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"},
{file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"},
{file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"},
{file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"},
{file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"},
{file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"},
{file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"},
{file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"},
{file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"},
{file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"},
{file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"},
{file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"},
{file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"},
{file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"},
{file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"},
{file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"},
{file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"},
{file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"},
{file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"},
{file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"},
{file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"},
{file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"},
{file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"},
{file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"},
{file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"},
{file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"},
{file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"},
{file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"},
{file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"},
{file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"},
{file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"},
{file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"},
{file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"},
{file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"},
{file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"},
{file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"},
{file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"},
{file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"},
{file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"},
{file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"},
{file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"},
{file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"},
{file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"},
{file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"},
{file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"},
{file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"},
{file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"},
{file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"},
{file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"},
{file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"},
{file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"},
{file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"},
{file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"},
{file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"},
{file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"},
{file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"},
{file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"},
{file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"},
{file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"},
{file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"},
{file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"},
{file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"},
{file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"},
{file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"},
{file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"},
{file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"},
{file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"},
{file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"},
{file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"},
{file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"},
{file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"},
{file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"},
{file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"},
{file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"},
{file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"},
{file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"},
{file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"},
{file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"},
{file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"},
{file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"},
{file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"},
{file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"},
{file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"},
{file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"},
{file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"},
{file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"},
{file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"},
{file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"},
{file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"},
{file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"},
{file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"},
{file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"},
{file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"},
{file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"},
{file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"},
{file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"},
{file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"},
{file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"},
{file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"},
{file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"},
{file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"},
{file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"},
{file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"},
{file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"},
{file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"},
{file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"},
{file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"},
{file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"},
{file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"},
{file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"},
{file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"},
{file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"},
{file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"},
{file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"},
{file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"},
{file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"},
{file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"},
{file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"},
{file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"},
{file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"},
{file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"},
{file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"},
{file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"},
{file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"},
{file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"},
{file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"},
{file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"},
{file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"},
{file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"},
{file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"},
{file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"},
{file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"},
{file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"},
{file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"},
{file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"},
{file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"},
{file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"},
{file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"},
{file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"},
{file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"},
{file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"},
{file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"},
{file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"},
{file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"},
{file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"},
{file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"},
{file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"},
{file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"},
{file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"},
{file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"},
{file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"},
{file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"},
{file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"},
{file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"},
{file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"},
{file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"},
{file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"},
{file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"},
{file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"},
{file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"},
{file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"},
{file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"},
{file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"},
{file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"},
{file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"},
{file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"},
{file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"},
]
[package.dependencies]
@@ -3582,64 +3585,64 @@ files = [
[[package]]
name = "sqlalchemy"
version = "2.0.34"
version = "2.0.35"
description = "Database Abstraction Library"
optional = false
python-versions = ">=3.7"
files = [
{file = "SQLAlchemy-2.0.34-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:95d0b2cf8791ab5fb9e3aa3d9a79a0d5d51f55b6357eecf532a120ba3b5524db"},
{file = "SQLAlchemy-2.0.34-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:243f92596f4fd4c8bd30ab8e8dd5965afe226363d75cab2468f2c707f64cd83b"},
{file = "SQLAlchemy-2.0.34-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ea54f7300553af0a2a7235e9b85f4204e1fc21848f917a3213b0e0818de9a24"},
{file = "SQLAlchemy-2.0.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:173f5f122d2e1bff8fbd9f7811b7942bead1f5e9f371cdf9e670b327e6703ebd"},
{file = "SQLAlchemy-2.0.34-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:196958cde924a00488e3e83ff917be3b73cd4ed8352bbc0f2989333176d1c54d"},
{file = "SQLAlchemy-2.0.34-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bd90c221ed4e60ac9d476db967f436cfcecbd4ef744537c0f2d5291439848768"},
{file = "SQLAlchemy-2.0.34-cp310-cp310-win32.whl", hash = "sha256:3166dfff2d16fe9be3241ee60ece6fcb01cf8e74dd7c5e0b64f8e19fab44911b"},
{file = "SQLAlchemy-2.0.34-cp310-cp310-win_amd64.whl", hash = "sha256:6831a78bbd3c40f909b3e5233f87341f12d0b34a58f14115c9e94b4cdaf726d3"},
{file = "SQLAlchemy-2.0.34-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7db3db284a0edaebe87f8f6642c2b2c27ed85c3e70064b84d1c9e4ec06d5d84"},
{file = "SQLAlchemy-2.0.34-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:430093fce0efc7941d911d34f75a70084f12f6ca5c15d19595c18753edb7c33b"},
{file = "SQLAlchemy-2.0.34-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79cb400c360c7c210097b147c16a9e4c14688a6402445ac848f296ade6283bbc"},
{file = "SQLAlchemy-2.0.34-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fb1b30f31a36c7f3fee848391ff77eebdd3af5750bf95fbf9b8b5323edfdb4ec"},
{file = "SQLAlchemy-2.0.34-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8fddde2368e777ea2a4891a3fb4341e910a056be0bb15303bf1b92f073b80c02"},
{file = "SQLAlchemy-2.0.34-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:80bd73ea335203b125cf1d8e50fef06be709619eb6ab9e7b891ea34b5baa2287"},
{file = "SQLAlchemy-2.0.34-cp311-cp311-win32.whl", hash = "sha256:6daeb8382d0df526372abd9cb795c992e18eed25ef2c43afe518c73f8cccb721"},
{file = "SQLAlchemy-2.0.34-cp311-cp311-win_amd64.whl", hash = "sha256:5bc08e75ed11693ecb648b7a0a4ed80da6d10845e44be0c98c03f2f880b68ff4"},
{file = "SQLAlchemy-2.0.34-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:53e68b091492c8ed2bd0141e00ad3089bcc6bf0e6ec4142ad6505b4afe64163e"},
{file = "SQLAlchemy-2.0.34-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:bcd18441a49499bf5528deaa9dee1f5c01ca491fc2791b13604e8f972877f812"},
{file = "SQLAlchemy-2.0.34-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:165bbe0b376541092bf49542bd9827b048357f4623486096fc9aaa6d4e7c59a2"},
{file = "SQLAlchemy-2.0.34-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3330415cd387d2b88600e8e26b510d0370db9b7eaf984354a43e19c40df2e2b"},
{file = "SQLAlchemy-2.0.34-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:97b850f73f8abbffb66ccbab6e55a195a0eb655e5dc74624d15cff4bfb35bd74"},
{file = "SQLAlchemy-2.0.34-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:7cee4c6917857fd6121ed84f56d1dc78eb1d0e87f845ab5a568aba73e78adf83"},
{file = "SQLAlchemy-2.0.34-cp312-cp312-win32.whl", hash = "sha256:fbb034f565ecbe6c530dff948239377ba859420d146d5f62f0271407ffb8c580"},
{file = "SQLAlchemy-2.0.34-cp312-cp312-win_amd64.whl", hash = "sha256:707c8f44931a4facd4149b52b75b80544a8d824162602b8cd2fe788207307f9a"},
{file = "SQLAlchemy-2.0.34-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:24af3dc43568f3780b7e1e57c49b41d98b2d940c1fd2e62d65d3928b6f95f021"},
{file = "SQLAlchemy-2.0.34-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e60ed6ef0a35c6b76b7640fe452d0e47acc832ccbb8475de549a5cc5f90c2c06"},
{file = "SQLAlchemy-2.0.34-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:413c85cd0177c23e32dee6898c67a5f49296640041d98fddb2c40888fe4daa2e"},
{file = "SQLAlchemy-2.0.34-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:25691f4adfb9d5e796fd48bf1432272f95f4bbe5f89c475a788f31232ea6afba"},
{file = "SQLAlchemy-2.0.34-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:526ce723265643dbc4c7efb54f56648cc30e7abe20f387d763364b3ce7506c82"},
{file = "SQLAlchemy-2.0.34-cp37-cp37m-win32.whl", hash = "sha256:13be2cc683b76977a700948411a94c67ad8faf542fa7da2a4b167f2244781cf3"},
{file = "SQLAlchemy-2.0.34-cp37-cp37m-win_amd64.whl", hash = "sha256:e54ef33ea80d464c3dcfe881eb00ad5921b60f8115ea1a30d781653edc2fd6a2"},
{file = "SQLAlchemy-2.0.34-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:43f28005141165edd11fbbf1541c920bd29e167b8bbc1fb410d4fe2269c1667a"},
{file = "SQLAlchemy-2.0.34-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b68094b165a9e930aedef90725a8fcfafe9ef95370cbb54abc0464062dbf808f"},
{file = "SQLAlchemy-2.0.34-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1e03db964e9d32f112bae36f0cc1dcd1988d096cfd75d6a588a3c3def9ab2b"},
{file = "SQLAlchemy-2.0.34-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:203d46bddeaa7982f9c3cc693e5bc93db476ab5de9d4b4640d5c99ff219bee8c"},
{file = "SQLAlchemy-2.0.34-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ae92bebca3b1e6bd203494e5ef919a60fb6dfe4d9a47ed2453211d3bd451b9f5"},
{file = "SQLAlchemy-2.0.34-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9661268415f450c95f72f0ac1217cc6f10256f860eed85c2ae32e75b60278ad8"},
{file = "SQLAlchemy-2.0.34-cp38-cp38-win32.whl", hash = "sha256:895184dfef8708e15f7516bd930bda7e50ead069280d2ce09ba11781b630a434"},
{file = "SQLAlchemy-2.0.34-cp38-cp38-win_amd64.whl", hash = "sha256:6e7cde3a2221aa89247944cafb1b26616380e30c63e37ed19ff0bba5e968688d"},
{file = "SQLAlchemy-2.0.34-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dbcdf987f3aceef9763b6d7b1fd3e4ee210ddd26cac421d78b3c206d07b2700b"},
{file = "SQLAlchemy-2.0.34-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ce119fc4ce0d64124d37f66a6f2a584fddc3c5001755f8a49f1ca0a177ef9796"},
{file = "SQLAlchemy-2.0.34-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a17d8fac6df9835d8e2b4c5523666e7051d0897a93756518a1fe101c7f47f2f0"},
{file = "SQLAlchemy-2.0.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ebc11c54c6ecdd07bb4efbfa1554538982f5432dfb8456958b6d46b9f834bb7"},
{file = "SQLAlchemy-2.0.34-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2e6965346fc1491a566e019a4a1d3dfc081ce7ac1a736536367ca305da6472a8"},
{file = "SQLAlchemy-2.0.34-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:220574e78ad986aea8e81ac68821e47ea9202b7e44f251b7ed8c66d9ae3f4278"},
{file = "SQLAlchemy-2.0.34-cp39-cp39-win32.whl", hash = "sha256:b75b00083e7fe6621ce13cfce9d4469c4774e55e8e9d38c305b37f13cf1e874c"},
{file = "SQLAlchemy-2.0.34-cp39-cp39-win_amd64.whl", hash = "sha256:c29d03e0adf3cc1a8c3ec62d176824972ae29b67a66cbb18daff3062acc6faa8"},
{file = "SQLAlchemy-2.0.34-py3-none-any.whl", hash = "sha256:7286c353ee6475613d8beff83167374006c6b3e3f0e6491bfe8ca610eb1dec0f"},
{file = "sqlalchemy-2.0.34.tar.gz", hash = "sha256:10d8f36990dd929690666679b0f42235c159a7051534adb135728ee52828dd22"},
{file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:67219632be22f14750f0d1c70e62f204ba69d28f62fd6432ba05ab295853de9b"},
{file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4668bd8faf7e5b71c0319407b608f278f279668f358857dbfd10ef1954ac9f90"},
{file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb8bea573863762bbf45d1e13f87c2d2fd32cee2dbd50d050f83f87429c9e1ea"},
{file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f552023710d4b93d8fb29a91fadf97de89c5926c6bd758897875435f2a939f33"},
{file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:016b2e665f778f13d3c438651dd4de244214b527a275e0acf1d44c05bc6026a9"},
{file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7befc148de64b6060937231cbff8d01ccf0bfd75aa26383ffdf8d82b12ec04ff"},
{file = "SQLAlchemy-2.0.35-cp310-cp310-win32.whl", hash = "sha256:22b83aed390e3099584b839b93f80a0f4a95ee7f48270c97c90acd40ee646f0b"},
{file = "SQLAlchemy-2.0.35-cp310-cp310-win_amd64.whl", hash = "sha256:a29762cd3d116585278ffb2e5b8cc311fb095ea278b96feef28d0b423154858e"},
{file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e21f66748ab725ade40fa7af8ec8b5019c68ab00b929f6643e1b1af461eddb60"},
{file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8a6219108a15fc6d24de499d0d515c7235c617b2540d97116b663dade1a54d62"},
{file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:042622a5306c23b972192283f4e22372da3b8ddf5f7aac1cc5d9c9b222ab3ff6"},
{file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:627dee0c280eea91aed87b20a1f849e9ae2fe719d52cbf847c0e0ea34464b3f7"},
{file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4fdcd72a789c1c31ed242fd8c1bcd9ea186a98ee8e5408a50e610edfef980d71"},
{file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:89b64cd8898a3a6f642db4eb7b26d1b28a497d4022eccd7717ca066823e9fb01"},
{file = "SQLAlchemy-2.0.35-cp311-cp311-win32.whl", hash = "sha256:6a93c5a0dfe8d34951e8a6f499a9479ffb9258123551fa007fc708ae2ac2bc5e"},
{file = "SQLAlchemy-2.0.35-cp311-cp311-win_amd64.whl", hash = "sha256:c68fe3fcde03920c46697585620135b4ecfdfc1ed23e75cc2c2ae9f8502c10b8"},
{file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:eb60b026d8ad0c97917cb81d3662d0b39b8ff1335e3fabb24984c6acd0c900a2"},
{file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6921ee01caf375363be5e9ae70d08ce7ca9d7e0e8983183080211a062d299468"},
{file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8cdf1a0dbe5ced887a9b127da4ffd7354e9c1a3b9bb330dce84df6b70ccb3a8d"},
{file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93a71c8601e823236ac0e5d087e4f397874a421017b3318fd92c0b14acf2b6db"},
{file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e04b622bb8a88f10e439084486f2f6349bf4d50605ac3e445869c7ea5cf0fa8c"},
{file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1b56961e2d31389aaadf4906d453859f35302b4eb818d34a26fab72596076bb8"},
{file = "SQLAlchemy-2.0.35-cp312-cp312-win32.whl", hash = "sha256:0f9f3f9a3763b9c4deb8c5d09c4cc52ffe49f9876af41cc1b2ad0138878453cf"},
{file = "SQLAlchemy-2.0.35-cp312-cp312-win_amd64.whl", hash = "sha256:25b0f63e7fcc2a6290cb5f7f5b4fc4047843504983a28856ce9b35d8f7de03cc"},
{file = "SQLAlchemy-2.0.35-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f021d334f2ca692523aaf7bbf7592ceff70c8594fad853416a81d66b35e3abf9"},
{file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05c3f58cf91683102f2f0265c0db3bd3892e9eedabe059720492dbaa4f922da1"},
{file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:032d979ce77a6c2432653322ba4cbeabf5a6837f704d16fa38b5a05d8e21fa00"},
{file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:2e795c2f7d7249b75bb5f479b432a51b59041580d20599d4e112b5f2046437a3"},
{file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:cc32b2990fc34380ec2f6195f33a76b6cdaa9eecf09f0c9404b74fc120aef36f"},
{file = "SQLAlchemy-2.0.35-cp37-cp37m-win32.whl", hash = "sha256:9509c4123491d0e63fb5e16199e09f8e262066e58903e84615c301dde8fa2e87"},
{file = "SQLAlchemy-2.0.35-cp37-cp37m-win_amd64.whl", hash = "sha256:3655af10ebcc0f1e4e06c5900bb33e080d6a1fa4228f502121f28a3b1753cde5"},
{file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4c31943b61ed8fdd63dfd12ccc919f2bf95eefca133767db6fbbd15da62078ec"},
{file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a62dd5d7cc8626a3634208df458c5fe4f21200d96a74d122c83bc2015b333bc1"},
{file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0630774b0977804fba4b6bbea6852ab56c14965a2b0c7fc7282c5f7d90a1ae72"},
{file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d625eddf7efeba2abfd9c014a22c0f6b3796e0ffb48f5d5ab106568ef01ff5a"},
{file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ada603db10bb865bbe591939de854faf2c60f43c9b763e90f653224138f910d9"},
{file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c41411e192f8d3ea39ea70e0fae48762cd11a2244e03751a98bd3c0ca9a4e936"},
{file = "SQLAlchemy-2.0.35-cp38-cp38-win32.whl", hash = "sha256:d299797d75cd747e7797b1b41817111406b8b10a4f88b6e8fe5b5e59598b43b0"},
{file = "SQLAlchemy-2.0.35-cp38-cp38-win_amd64.whl", hash = "sha256:0375a141e1c0878103eb3d719eb6d5aa444b490c96f3fedab8471c7f6ffe70ee"},
{file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ccae5de2a0140d8be6838c331604f91d6fafd0735dbdcee1ac78fc8fbaba76b4"},
{file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2a275a806f73e849e1c309ac11108ea1a14cd7058577aba962cd7190e27c9e3c"},
{file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:732e026240cdd1c1b2e3ac515c7a23820430ed94292ce33806a95869c46bd139"},
{file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:890da8cd1941fa3dab28c5bac3b9da8502e7e366f895b3b8e500896f12f94d11"},
{file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c0d8326269dbf944b9201911b0d9f3dc524d64779a07518199a58384c3d37a44"},
{file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b76d63495b0508ab9fc23f8152bac63205d2a704cd009a2b0722f4c8e0cba8e0"},
{file = "SQLAlchemy-2.0.35-cp39-cp39-win32.whl", hash = "sha256:69683e02e8a9de37f17985905a5eca18ad651bf592314b4d3d799029797d0eb3"},
{file = "SQLAlchemy-2.0.35-cp39-cp39-win_amd64.whl", hash = "sha256:aee110e4ef3c528f3abbc3c2018c121e708938adeeff9006428dd7c8555e9b3f"},
{file = "SQLAlchemy-2.0.35-py3-none-any.whl", hash = "sha256:2ab3f0336c0387662ce6221ad30ab3a5e6499aab01b9790879b6578fd9b8faa1"},
{file = "sqlalchemy-2.0.35.tar.gz", hash = "sha256:e11d7ea4d24f0a262bccf9a7cd6284c976c5369dac21db237cff59586045ab9f"},
]
[package.dependencies]
greenlet = {version = "!=0.4.17", markers = "python_version < \"3.13\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"}
greenlet = {version = "!=0.4.17", markers = "python_version < \"3.13\" and (platform_machine == \"win32\" or platform_machine == \"WIN32\" or platform_machine == \"AMD64\" or platform_machine == \"amd64\" or platform_machine == \"x86_64\" or platform_machine == \"ppc64le\" or platform_machine == \"aarch64\")"}
typing-extensions = ">=4.6.0"
[package.extras]
@@ -3838,13 +3841,13 @@ files = [
[[package]]
name = "types-protobuf"
version = "5.27.0.20240907"
version = "5.27.0.20240920"
description = "Typing stubs for protobuf"
optional = false
python-versions = ">=3.8"
files = [
{file = "types-protobuf-5.27.0.20240907.tar.gz", hash = "sha256:bb6f90f66b18d4d1c75667b6586334b0573a6fcee5eb0142a7348a765a7cbadc"},
{file = "types_protobuf-5.27.0.20240907-py3-none-any.whl", hash = "sha256:5443270534cc8072909ef7ad9e1421ccff924ca658749a6396c0c43d64c32676"},
{file = "types-protobuf-5.27.0.20240920.tar.gz", hash = "sha256:992d695315d11eb2d25e806122c9e1fd9fec282e96104f0a0cb9226cd5d90293"},
{file = "types_protobuf-5.27.0.20240920-py3-none-any.whl", hash = "sha256:c04140bd3c761a55f4e661372b24a6f508169e0815f2b73da33f34b447ed7a8d"},
]
[[package]]
@@ -3886,13 +3889,13 @@ files = [
[[package]]
name = "types-pyyaml"
version = "6.0.12.20240808"
version = "6.0.12.20240917"
description = "Typing stubs for PyYAML"
optional = false
python-versions = ">=3.8"
files = [
{file = "types-PyYAML-6.0.12.20240808.tar.gz", hash = "sha256:b8f76ddbd7f65440a8bda5526a9607e4c7a322dc2f8e1a8c405644f9a6f4b9af"},
{file = "types_PyYAML-6.0.12.20240808-py3-none-any.whl", hash = "sha256:deda34c5c655265fc517b546c902aa6eed2ef8d3e921e4765fe606fe2afe8d35"},
{file = "types-PyYAML-6.0.12.20240917.tar.gz", hash = "sha256:d1405a86f9576682234ef83bcb4e6fff7c9305c8b1fbad5e0bcd4f7dbdc9c587"},
{file = "types_PyYAML-6.0.12.20240917-py3-none-any.whl", hash = "sha256:392b267f1c0fe6022952462bf5d6523f31e37f6cea49b14cee7ad634b6301570"},
]
[[package]]
@@ -3924,29 +3927,15 @@ files = [
[package.dependencies]
types-urllib3 = "*"
[[package]]
name = "types-requests"
version = "2.32.0.20240907"
description = "Typing stubs for requests"
optional = false
python-versions = ">=3.8"
files = [
{file = "types-requests-2.32.0.20240907.tar.gz", hash = "sha256:ff33935f061b5e81ec87997e91050f7b4af4f82027a7a7a9d9aaea04a963fdf8"},
{file = "types_requests-2.32.0.20240907-py3-none-any.whl", hash = "sha256:1d1e79faeaf9d42def77f3c304893dea17a97cae98168ac69f3cb465516ee8da"},
]
[package.dependencies]
urllib3 = ">=2"
[[package]]
name = "types-setuptools"
version = "74.1.0.20240907"
version = "75.1.0.20240917"
description = "Typing stubs for setuptools"
optional = false
python-versions = ">=3.8"
files = [
{file = "types-setuptools-74.1.0.20240907.tar.gz", hash = "sha256:0abdb082552ca966c1e5fc244e4853adc62971f6cd724fb1d8a3713b580e5a65"},
{file = "types_setuptools-74.1.0.20240907-py3-none-any.whl", hash = "sha256:15b38c8e63ca34f42f6063ff4b1dd662ea20086166d5ad6a102e670a52574120"},
{file = "types-setuptools-75.1.0.20240917.tar.gz", hash = "sha256:12f12a165e7ed383f31def705e5c0fa1c26215dd466b0af34bd042f7d5331f55"},
{file = "types_setuptools-75.1.0.20240917-py3-none-any.whl", hash = "sha256:06f78307e68d1bbde6938072c57b81cf8a99bc84bd6dc7e4c5014730b097dc0c"},
]
[[package]]
@@ -4038,23 +4027,6 @@ brotli = ["brotli (==1.0.9)", "brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotl
secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"]
socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"]
[[package]]
name = "urllib3"
version = "2.2.3"
description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false
python-versions = ">=3.8"
files = [
{file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"},
{file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"},
]
[package.extras]
brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"]
h2 = ["h2 (>=4,<5)"]
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "vcrpy"
version = "6.0.1"
@@ -4386,4 +4358,4 @@ type = ["pytest-mypy"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.9,<4.0"
content-hash = "1a81994350c65c891f5f592a522975bc6688cfad016f2af5fe8ad93a76209066"
content-hash = "d4ddaa606dc1af15b47b534482210ad687c8b96c816cb7ab13fa77d184514435"

View File

@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "langchain-community"
version = "0.3.0.dev2"
version = "0.3.0"
description = "Community contributed LangChain integrations."
authors = []
license = "MIT"
@@ -33,8 +33,8 @@ ignore-words-list = "momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogy
[tool.poetry.dependencies]
python = ">=3.9,<4.0"
langchain-core = { version = "^0.3.0.dev5", allow-prereleases = true }
langchain = { version = "^0.3.0.dev2", allow-prereleases = true }
langchain-core = "^0.3.0"
langchain = "^0.3.0"
SQLAlchemy = ">=1.4,<3"
requests = "^2"
PyYAML = ">=5.3"
@@ -42,7 +42,7 @@ aiohttp = "^3.8.3"
tenacity = "^8.1.0,!=8.4.0"
dataclasses-json = ">= 0.5.7, < 0.7"
pydantic-settings = "^2.4.0"
langsmith = "^0.1.112"
langsmith = "^0.1.125"
[[tool.poetry.dependencies.numpy]]
version = "^1"

View File

@@ -20,7 +20,7 @@ count=$(git grep -E '(@root_validator)|(@validator)|(@field_validator)|(@pre_ini
# PRs that increase the current count will not be accepted.
# PRs that decrease update the code in the repository
# and allow decreasing the count of are welcome!
current_count=129
current_count=128
if [ "$count" -gt "$current_count" ]; then
echo "The PR seems to be introducing new usage of @root_validator and/or @field_validator."

View File

@@ -1,4 +1,3 @@
import re
from pathlib import Path
from typing import Sequence, Union
@@ -11,7 +10,6 @@ from langchain_community.document_loaders import (
PDFMinerPDFasHTMLLoader,
PyMuPDFLoader,
PyPDFium2Loader,
PyPDFLoader,
UnstructuredPDFLoader,
)
@@ -86,37 +84,6 @@ def test_pdfminer_pdf_as_html_loader() -> None:
assert len(docs) == 1
def test_pypdf_loader() -> None:
"""Test PyPDFLoader."""
file_path = Path(__file__).parent.parent / "examples/hello.pdf"
loader = PyPDFLoader(str(file_path))
docs = loader.load()
assert len(docs) == 1
file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf"
loader = PyPDFLoader(str(file_path))
docs = loader.load()
assert len(docs) == 16
def test_pypdf_loader_with_layout() -> None:
"""Test PyPDFLoader with layout mode."""
file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf"
loader = PyPDFLoader(str(file_path), extraction_mode="layout")
docs = loader.load()
first_page = docs[0].page_content
expected = (
Path(__file__).parent.parent / "examples/layout-parser-paper-page-1.txt"
).read_text(encoding="utf-8")
cleaned_first_page = re.sub(r"\x00", "", first_page)
cleaned_expected = re.sub(r"\x00", "", expected)
assert cleaned_first_page == cleaned_expected
def test_pypdfium2_loader() -> None:
"""Test PyPDFium2Loader."""
file_path = Path(__file__).parent.parent / "examples/hello.pdf"

View File

@@ -1,7 +1,7 @@
import pytest
from langchain_core.graph_vectorstores.links import Link
from langchain_community.graph_vectorstores.extractors import GLiNERLinkExtractor
from langchain_community.graph_vectorstores.links import Link
PAGE_1 = """
Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃ'tjɐnu

View File

@@ -1,7 +1,7 @@
import pytest
from langchain_core.graph_vectorstores.links import Link
from langchain_community.graph_vectorstores.extractors import KeybertLinkExtractor
from langchain_community.graph_vectorstores.links import Link
PAGE_1 = """
Supervised learning is the machine learning task of learning a function that

View File

@@ -4,9 +4,9 @@ from typing import Iterable, List, Optional, Type
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.graph_vectorstores.links import METADATA_LINKS_KEY, Link
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
from langchain_community.graph_vectorstores.links import METADATA_LINKS_KEY, Link
CASSANDRA_DEFAULT_KEYSPACE = "graph_test_keyspace"

View File

@@ -1,28 +1,17 @@
"""Test sambanova API wrapper.
In order to run this test, you need to have an sambaverse api key,
and a sambaverse base url, project id, endpoint id, and api key.
You'll then need to set SAMBAVERSE_API_KEY, SAMBASTUDIO_BASE_URL,
In order to run this test, you need to have a sambastudio base url,
project id, endpoint id, and api key.
You'll then need to set SAMBASTUDIO_BASE_URL, SAMBASTUDIO_BASE_URI
SAMBASTUDIO_PROJECT_ID, SAMBASTUDIO_ENDPOINT_ID, and SAMBASTUDIO_API_KEY
environment variables.
"""
from langchain_community.llms.sambanova import SambaStudio, Sambaverse
def test_sambaverse_call() -> None:
"""Test simple non-streaming call to sambaverse."""
llm = Sambaverse(
sambaverse_model_name="Meta/llama-2-7b-chat-hf",
model_kwargs={"select_expert": "llama-2-7b-chat-hf"},
)
output = llm.invoke("What is LangChain")
assert output
assert isinstance(output, str)
from langchain_community.llms.sambanova import SambaStudio
def test_sambastudio_call() -> None:
"""Test simple non-streaming call to sambaverse."""
"""Test simple non-streaming call to sambastudio."""
llm = SambaStudio()
output = llm.invoke("What is LangChain")
assert output

View File

@@ -121,4 +121,4 @@ def test_callback_manager_configure_context_vars(
assert cb.completion_tokens == 1
assert cb.total_cost > 0
wait_for_all_tracers()
assert LangChainTracer._persist_run_single.call_count == 1 # type: ignore
assert LangChainTracer._persist_run_single.call_count == 4 # type: ignore

Some files were not shown because too many files have changed in this diff Show More