Compare commits

..

149 Commits

Author SHA1 Message Date
Sydney Runkle
0814bfe5ed ci: use partial runs w/ codspeed (#32920)
Taking advantage of [partial
runs](https://codspeed.io/docs/features/partial-runs)!

This should save us minutes on every CI job, we only run codspeed for
libs w/ changes and this doesn't affect benchmarking drops
2025-09-12 09:46:01 -04:00
Christophe Bornet
cbaf97ada4 chore: bump mypy version to 1.18 (#32914) 2025-09-12 09:19:23 -04:00
Sydney Runkle
dc2da95ac0 release(langchain): v1.0.0a5 (#32917) 2025-09-12 08:36:44 -04:00
Sydney Runkle
9e78ff19ab fix(langchain): use messages from model request (#32908)
Oversight when moving back to basic function call for
`modify_model_request` rather than implementation as its own node.

Basic test right now failing on main, passing on this branch

Revealed a gap in testing. Will write up a more robust test suite for
basic middleware features.
2025-09-12 08:18:02 -04:00
Mason Daugherty
649d8a8223 test(anthropic): enable VCR for web fetch test (#32913)
The API issues have been resolved; no longer xfailing
2025-09-12 03:19:55 +00:00
Mason Daugherty
338d3d2795 chore: remove infra tag from task issue template (#32912) 2025-09-11 22:02:14 -04:00
Mason Daugherty
31f641a11f chore(infra): issue template updates (#32911) 2025-09-11 22:00:44 -04:00
open-swe[bot]
91286b0b27 chore(infra): issue template updates (#32910)
Fixes: #32909

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-11 21:53:35 -04:00
dishaprakash
bea72bac3e docs: add hybrid search documentation to PGVectorStore (#32549)
Adding documentation for Hybrid Search in the PGVectorStore Notebook

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-11 21:12:58 -04:00
Caspar Broekhuizen
15d558ff16 fix(core): resolve mermaid node id collisions when special chars are used (#32857)
### Description

* Replace the Mermaid graph node label escaping logic
(`_escape_node_label`) with `_to_safe_id`, which converts a string into
a unique, Mermaid-compatible node id. Ensures nodes with special
characters always render correctly.

**Before**
* Invalid characters (e.g. `开`) replaced with `_`. Causes collisions
between nodes with names that are the same length and contain all
non-safe characters:
```python
_escape_node_label("开") # '_'
_escape_node_label("始") # '_'  same as above, but different character passed in. not a unique mapping.
```

**After**
```python
_to_safe_id("开") # \5f00
_to_safe_id("始") # \59cb  unique!
```

### Tests
* Rename `test_graph_mermaid_escape_node_label()` to
`test_graph_mermaid_to_safe_id()` and update function logic to use
`_to_safe_id`
* Add `test_graph_mermaid_special_chars()`

### Issue

Fixes langchain-ai/langgraph#6036
2025-09-11 14:15:17 -07:00
Hyunjoon Jeong
9cc85387d1 fix(text-splitters): add validation to prevent infinite loop and prevent empty token splitter (#32205)
### Description
1) Add validation to prevent infinite loop condition when
```tokenizer.tokens_per_chunk > tokenizer.chunk_overlap```
2) Avoid empty decoded chunk when splitter appends tokens

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-11 16:55:32 -04:00
Mason Daugherty
7e5180e2fa refactor: inline test release (#32903)
Reusable workflows are not currently supported by PyPI's Trusted
Publishing
functionality, and are subject to breakage. Users are strongly
encouraged
to avoid using reusable workflows for Trusted Publishing until support
becomes official. Please, do not report bugs if this breaks.
2025-09-11 16:20:07 -04:00
Mason Daugherty
bbb1b9085d release(prompty): 0.1.2 (#32907) 2025-09-11 16:19:07 -04:00
Vincent Min
ff9f17bc66 fix(core): preserve ordering in RunnableRetry batch/abatch results (#32526)
Description: Fixes a bug in RunnableRetry where .batch / .abatch could
return misordered outputs (e.g. inputs [0,1,2] yielding [1,1,2]) when
some items succeeded on an earlier attempt and others were retried. Root
cause: successful results were stored keyed by the index within the
shrinking “pending” subset rather than the original input index, causing
collisions and reordered/duplicated outputs after retries. Fix updates
_batch and _abatch to:

- Track remaining original indices explicitly.
- Call underlying batch/abatch only on remaining inputs.
- Map results back to original indices.
- Preserve final ordering by reconstructing outputs in original
positional order.

Issue: Fixes #21326

Tests:

- Added regression tests: test_retry_batch_preserves_order and
test_async_retry_batch_preserves_order asserting correct ordering after
a single controlled failure + retry.
- Existing retry tests still pass.

Dependencies:

- None added or changed.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-11 16:18:25 -04:00
Matthew Lapointe
b1f08467cd feat(core): allow overriding ls_model_name from kwargs (#32541) 2025-09-11 16:18:06 -04:00
Eugene Yurtsev
2903e08311 chore(docs): remove langchain_experimental from api reference (#32904)
This removes langchain-experimental from api reference.

We do not recommend it to users for production use cases, so let's also
deprecate it from documentation
2025-09-11 16:13:58 -04:00
Mason Daugherty
115e20a0bc release(ollama): 0.3.8 (#32906) 2025-09-11 16:00:41 -04:00
Mason Daugherty
0ea945d291 release(nomic): 0.1.5 (#32905) 2025-09-11 15:54:19 -04:00
Mason Daugherty
5795ec3c4d release(exa): 0.3.1 (#32902) 2025-09-11 15:53:13 -04:00
Mason Daugherty
bd765753ca release(chroma): 0.2.6 (#32901) 2025-09-11 15:52:19 -04:00
Christophe Bornet
5fd7962a78 fix(core): fix support of Pydantic v1 models in BaseTool.args (#32487)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-11 15:44:51 -04:00
Marcus Chia
c68796579e fix(core): resolve infinite recursion in _dereference_refs_helper with mixed $ref objects (#32578)
**Description:** Fixes infinite recursion issue in JSON schema
dereferencing when objects contain both $ref and other properties (e.g.,
nullable, description, additionalProperties). This was causing Apollo
MCP server schemas to hang indefinitely during tool binding.

**Problem:**
- Commit fb5da8384 changed the condition from `set(obj.keys()) ==
{"$ref"}` to `"$ref" in set(obj.keys())`
- This caused objects with $ref + other properties to be treated as pure
$ref nodes
- Result: other properties were lost and infinite recursion occurred
with complex schemas

**Solution:**
- Restore pure $ref detection for objects with only $ref key  
- Add proper handling for mixed $ref objects that preserves all
properties
- Merge resolved reference content with other properties
- Maintain cycle detection to prevent infinite recursion

**Impact:**
- Fixes Apollo MCP server schema integration
- Resolves tool binding infinite recursion with complex GraphQL schemas
- Preserves backward compatibility with existing functionality
- No performance impact - actually improves handling of complex schemas

**Issue:** Fixes #32511

**Dependencies:** None

**Testing:**
- Added comprehensive unit tests covering mixed $ref scenarios
- All existing tests pass (1326 passed, 0 failed)
- Tested with realistic Apollo GraphQL schemas
- Stress tested with 100 iterations of complex schemas

**Verification:**
-  `make format` - All files properly formatted
-  `make lint` - All linting checks pass  
-  `make test` - All 1326 unit tests pass
-  No breaking changes - full backwards compatibility maintained

---------

Co-authored-by: Marcus <marcus@Marcus-M4-MAX.local>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-11 15:21:31 -04:00
Mason Daugherty
255ad31955 release(anthropic): 0.3.20 (#32900) 2025-09-11 15:18:43 -04:00
Mason Daugherty
00e992a780 feat(anthropic): web fetch beta (#32894)
Note: citations are broken until Anthropic fixes their API
2025-09-11 15:14:06 -04:00
Mason Daugherty
83d938593b lint 2025-09-11 15:12:38 -04:00
Mason Daugherty
38afeddcb6 fix(groq): update docs due to model deprecation (#32899)
On Friday, October 10th, the moonshotai/kimi-k2-instruct model will be
decommissioned in favor of the latest version,
moonshotai/kimi-k2-instruct-0905.
 
Until then, requests to moonshotai/kimi-k2-instruct will automatically
be routed to moonshotai/kimi-k2-instruct-0905.
2025-09-11 15:00:24 -04:00
Yu Zhong
fca1aaa9b5 fix(core): force overwrite additionalProperties to False in strict mode (#32879)
# Description
This PR fixes a bug in _recursive_set_additional_properties_false used
in function_calling.convert_to_openai_function.

Previously, schemas with "additionalProperties=True" were not correctly
overridden when strict validation was expected, which could lead to
invalid OpenAI function schemas.

The updated implementation ensures that:
- Any schema with "additionalProperties" already set will now be forced
to False under strict mode.
- Recursive traversal of properties, items, and anyOf is preserved.
- Function signature remains unchanged for backward compatibility.

# Issue
When using tool calling in OpenAI structured output strict mode
(strict=True), 400: "Invalid schema for response_format XXXXX
'additionalProperties' is required to be supplied and to be false" error
raises for the parameter that contains dict type. OpenAI requires
additionalProperties to be set to False.
Some PRs try to resolved the issue.
- PR #25169 introduced _recursive_set_additional_properties_false to
recursively set additionalProperties=False.
- PR #26287 fixed handling of empty parameter tools for OpenAI function
generation.
- PR #30971 added support for Union type arguments in strict mode of
OpenAI function calling / structured output.

Despite these improvements, since Pydantic 2.11, it will always add
`additionalProperties: True` for arbitrary dictionary schemas dict or
Any (https://pydantic.dev/articles/pydantic-v2-11-release#changes).
Schemas that already had additionalProperties=True in such cases were
not being overridden, which this PR addresses to ensure strict mode
behaves correctly in all cases.

# Dependencies
No Changes

---------

Co-authored-by: Zhong, Yu <yzhong@freewheel.com>
2025-09-11 11:02:12 -04:00
Jonathan Paserman
af17774186 docs: add MLflow tracking and evaluation cookbook (#32667)
This PR adds a new cookbook demonstrating how to build a RAG pipeline
with LangChain and track + evaluate it using MLflow.
Currently not much documentation on LangChain MLflow integration, hope
this can help folks trying to monitor and evaluate their LangChain
applications.

- ArXiv document loader 
- In Memory vector store
- LCEL rag pipeline
- MLflow tracing
- MLflow evaluation

Issue:
N/A

Dependencies:
N/A
2025-09-10 22:55:28 -04:00
chen-assert
d72da29c0b docs: Fix classification notebook small mistake (#32636)
Fix some minor issues in the Classification Notebook.
While some code still using hardcoded OpenAI model instead of selected
chat model.

Specifically, on page [Classify Text into
Labels](https://python.langchain.com/docs/tutorials/classification/)

We selected chat model before and have init_chat_model with our chosen
mode.
<img width="1262" height="576" alt="image"
src="https://github.com/user-attachments/assets/14eb436b-d2ef-4074-96d8-71640a13c0f7"
/>

But the following sample code still uses the hard-coded OpenAI model,
which in my case is obviously unrunable (lack of openai api key)
<img width="1263" height="543" alt="image"
src="https://github.com/user-attachments/assets/d13846aa-1c4b-4dee-b9c1-c66570ba3461"
/>
2025-09-10 22:43:44 -04:00
Amit Biswas
653b0908af docs: update Confident callback integration and examples (#32458)
**Description:**
Updates the Confident AI integration documentation to use modern
patterns and improve code quality. This change:
- Replaces deprecated `DeepEvalCallbackHandler` with the new
`CallbackHandler` from `deepeval.integrations.langchain`
- Updates installation and authentication instructions to match current
best practices
- Adds modern integration examples using LangChain's latest patterns
- Removes deprecated metrics and outdated code examples
- Updates code samples to follow current best practices

The changes make the documentation more maintainable and ensure users
follow the recommended integration patterns.

**Issue:** Fixes #32444

**Dependencies:**
- deepeval
- langchain
- langchain-openai

**Twitter handle:** @Muwinuddin

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-09-10 22:43:31 -04:00
GDanksAnchor
eb77da7de5 docs: add name title for Anchor Browser (#32512)
# description
change the sidebar name to Anchor Browser from anchor_browser.

# Issue
Anchor Browser sidebar name looks unattractive.
2025-09-10 22:40:37 -04:00
Tianyu Chen
9c93439a01 docs: add Linux quick setup method for JaguarDB (#32520)
Description:
Added "Method Two: Quick Setup (Linux)" section to prerequisites,
providing a curl-based installation method for deploying JaguarDB
without Docker. Retained original Docker setup instructions for
flexibility.
2025-09-10 22:36:01 -04:00
Marco Vinciguerra
64fe1e9a80 docs: update scrapegraph.ipynb (#32617)
I updated ScrapeGraphAI for checking the new ScrapeGraphAI tool
2025-09-10 22:33:57 -04:00
chen-assert
e4a90490c3 docs: Fix agents tutorials parameter missing (#32639)
Fix a minor issue in the Agents Tutorials Notebook.
While a config parameter is missing.

Specifically, on page [Build an Agent#Streaming
tokens](https://python.langchain.com/docs/tutorials/agents/#streaming-tokens)

These pieces of code can not be run without the config parameter, which
seems to have been omitted by the author.
<img width="1318" height="691" alt="image"
src="https://github.com/user-attachments/assets/54ce2833-9499-41bb-9de0-d5f9beba9ef9"
/>
2025-09-10 22:27:24 -04:00
dwelch-spike
80776b80f0 docs: remove aerospike vector store (#32726)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- **Description:** Aerospike Vector Store has been retired. It is no
longer supported so It should no longer be documented on the Langchain
site.

- **Add tests and docs**: Removes docs for retired Aerospike vector
store.

- **Lint and test**: NA
2025-09-10 22:19:43 -04:00
may
2c2bab93fc docs: add example for reusing an existing collection (#32774)
Added a short section to the Weaviate integration docs showing how to
connect to an existing collection (reuse an index) with
`WeaviateVectorStore`. This helps clarify required parameters
(`index_name`, `text_key`) when loading a pre-existing store, which was
previously missing.

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

### Description
Added a short section to the Weaviate integration docs showing how to
connect to an existing collection (reuse an index) with
`WeaviateVectorStore`. This helps clarify required parameters
(`index_name`, `text_key`) when loading a pre-existing store, which was
previously missing.

### Issue
Fixes langchain-ai/langchain-weaviate#197

### Dependencies
None
2025-09-10 22:16:46 -04:00
Mateusz Świtała
221c96e7b4 docs: fix import path in WatsonxToolkit after releasing langchain-ibm 0.3.17 (#32746)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [x] **PR message**: 
- **Description:** Fixing the import path for `WatsonxToolkit` in
examples after releasing `lnagchain-ibm==0.3.17`

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-09-10 22:14:43 -04:00
yrk111222
364465bd11 docs: update modelscope.mdx (#32823)
### Description
This PR is primarily aimed at updating some usage methods in the
`modelscope.mdx` file.
Specifically, it changes from `ModelScopeLLM` to `ModelScopeEndpoint`.
### Relevant PR
The relevant PR link is:
https://github.com/langchain-ai/langchain/pull/28941
2025-09-10 22:07:19 -04:00
Mason Daugherty
7b874da9b2 fix(docs): text-embedding-004 -> gemini-embedding-001 (#32596)
`text-embedding-004` will be discontinued
2025-09-10 21:47:45 -04:00
Mason Daugherty
8e213c9f1a fix(core): AsyncCallbackHandler docstring cleanup (#32897)
plus IDE warning fixes
2025-09-10 21:31:45 -04:00
Yash Vishwanath Tobre
a8828b1bda fix(core): raise OutputParserException for non-dict JSON outputs (#32236)
**Description:**
Raise a more descriptive OutputParserException when JSON parsing results
in a non-dict type. This improves debugging and aligns behavior with
expectations when using expected_keys.

**Issue:**
Fixes #32233

**Twitter handle:**
@yashvtobre

**Testing:**

- Ran make format and make lint from the root directory; both passed
cleanly.
- Attempted make test but no such target exists in the root Makefile.
- Executed tests directly via pytest targeting the relevant test file,
confirming all tests pass except for unrelated async test failures
outside the scope of this change.

**Notes:**

- No additional dependencies introduced.
- Changes are backward compatible and isolated within the output parser
module.

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-09-10 20:57:09 -04:00
Mason Daugherty
7a158c7f1c revert: "chore: remove ruff target-version" (#32895)
Reverts langchain-ai/langchain#32880

Not needed at the moment, will do when finishing v1
2025-09-10 20:56:48 -04:00
Daniel Barker
25c34bd9b2 feat(core): allow custom Mermaid URL (#32831)
- **Description:** Currently,
`langchain_core.runnables.graph_mermaid.py` is hardcoded to use
mermaid.ink to render graph diagrams. It would be nice to allow users to
specify a custom URL, e.g. for self-hosted instances of the Mermaid
server.
- **Issue:** [Langchain Forum: allow custom mermaid API
URL](https://forum.langchain.com/t/feature-request-allow-custom-mermaid-api-url/1472)
  - **Dependencies:** None

- [X] **Add tests and docs**: Added unit tests using mock requests.
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`.

Minimal example using the feature:

```python
import os
import operator
from pathlib import Path
from typing import Any, Annotated, TypedDict

from langgraph.graph import StateGraph

class State(TypedDict):
    messages: Annotated[list[dict[str, Any]], operator.add]

def hello_node(state: State) -> State:
    return {"messages": [{"role": "assistant", "content": "pong!"}]}

builder = StateGraph(State)
builder.add_node("hello_node", hello_node)
builder.add_edge("__start__", "hello_node")
builder.add_edge("hello_node", "__end__")

graph = builder.compile()

# Run graph
output = graph.invoke({"messages": [{"role": "user", "content": "ping?"}]})

# Draw graph
Path("graph.png").write_bytes(graph.get_graph().draw_mermaid_png(base_url="https://custom-mermaid.ink"))
```

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-10 17:14:50 -04:00
Mason Daugherty
38001699d5 fix(anthropic): remove unneeded beta flags (#32893)
- Beta isn't needed for search result tests anymore
- Add TODO for other tests to come back when generally available
- Regenerate remote MCP snapshot after some testing (now the same, but
fresher)
- Bump deps
2025-09-10 20:47:13 +00:00
Mason Daugherty
3da0377c02 fix(anthropic): update ChatAnthropic model in tests/doc (#32892)
from `'claude-3-5-sonnet-latest'` to `'claude-3-5-haiku-latest'` since
sonnet is deprecated
2025-09-10 16:44:04 -04:00
JADAVA VINEETH KUMAR RAO
0abf82a45a fix(openai): ainvoke uses async _aget_response; add async tests (#32459) 2025-09-10 15:52:15 -04:00
Jonathan Hill
2fed177d0b fix(core): preserve ToolMessage.status field in convert_to_messages (#32840) 2025-09-10 15:49:39 -04:00
Aasish
9c7d262ff4 fix(openai): update AzureOpenAIEmbeddings validation logic for openai_api_base (#31782) 2025-09-10 14:53:30 -04:00
ccurme
67e651b592 fix(infra): fix min version check (#32891)
Should no longer require `langchain-core>=(version in monorepo)`
2025-09-10 14:04:26 -04:00
Shibayan003
f08dfb6f49 test: Add failing test for BaseCallbackManager.merge (#32040)
This pull request introduces a failing unit test to reproduce the bug
reported in issue #32028.
The test asserts the expected behavior: `BaseCallbackManager.merge()`
should combine `handlers` and `inheritable_handlers` independently,
without mixing them. This test will fail on the current codebase and is
intended to guide the fix and prevent future regressions.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-10 13:56:18 -04:00
ccurme
450870c9ac release(qdrant): 0.2.1 (#32889) 2025-09-10 13:21:16 -04:00
Zhou Jing
10dfeea110 fix(qdrant): allow as_retriever to work without embeddings in SPARSE mode (#32757) 2025-09-10 13:08:50 -04:00
ccurme
34ecb92178 release(openai): 0.3.33 (#32887) 2025-09-10 11:53:26 -04:00
ccurme
49b3918c26 fix(infra): update scheduled test workflow following uv migration in langchain-google (#32886) 2025-09-10 11:30:55 -04:00
Christophe Bornet
12921a94c5 test(core): reactivate commented tests in test_indexing (#32882)
* These tests now pass
* Commenting them is a [ruff
ERA](https://docs.astral.sh/ruff/rules/commented-out-code/) violation
2025-09-10 11:14:14 -04:00
Alexey Bondarenko
181bb91ce0 fix(ollama): Fix handling message content lists (#32881)
The Ollama chat model adapter does not support all of the possible
message content formats. That leads to Ollama model adapter crashing on
some messages from different models (e.g. Gemini 2.5 Flash).

These changes should fix one known scenario - when `content` is a list
containing a string.
2025-09-10 11:13:28 -04:00
Christophe Bornet
b274416441 chore: remove ruff target-version (#32880)
This is not needed anymore since `requires-python` was added when moving
to `uv`.
2025-09-10 11:12:30 -04:00
ccurme
389a781aa0 fix(infra): exclude pre-releases from latest version checks in core release workflow (#32883) 2025-09-10 10:35:24 -04:00
William FH
443f0ccb0e release(core): 0.3.76 (#32877) 2025-09-10 14:10:44 +00:00
Lauren Hirata Singh
00e547c311 docs: update banner with docs deprecation notice (#32871) 2025-09-10 00:35:43 +00:00
Sydney Runkle
d464d3089b chore: redirect docs template -> docs repo (#32872) 2025-09-09 18:24:22 -04:00
William FH
f1d44d0f9d fix(core): honor enabled=false in nested tracing (#31986)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-09-09 13:12:17 -07:00
Christophe Bornet
a35ee49f37 chore(langchain): enable ruff docstring-code-format in langchain (#32858) 2025-09-09 15:00:38 -04:00
Christophe Bornet
352ff363ca chore(cli): remove ruff exclusion of templates (#32864) 2025-09-09 14:56:47 -04:00
Christophe Bornet
256a0b5f2f chore(langchain): add ruff rule BLE (#32868)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-09 18:52:53 +00:00
ccurme
937087a29c release(groq): 0.3.8 (#32870) 2025-09-09 14:39:02 -04:00
Jan Z
08bf4c321f feat(groq): add support for json_schema (#32396) 2025-09-09 18:30:07 +00:00
Mason Daugherty
4c6af2d1b2 fix(openai): structured output (#32551) 2025-09-09 11:37:50 -04:00
Christophe Bornet
ee268db1c5 feat(standard-tests): add a property to skip relevant tests if the vector store doesn't support get_by_ids() (#32633) 2025-09-09 11:37:23 -04:00
Zhou Jing
dcc517b187 fix(core): ensure InjectedToolCallId always overrides LLM-generated values (#32766) 2025-09-09 11:25:52 -04:00
Mason Daugherty
c124e67325 chore(docs): update package READMEs (#32869)
- Fix badges
- Focus on agents
- Cut down fluff
2025-09-09 14:50:32 +00:00
Christophe Bornet
699a5d06d1 chore(langchain): add ruff rule ERA (#32867) 2025-09-09 10:13:18 -04:00
Christophe Bornet
00f699c60d chore(core): cleanup pyproject.toml (#32865) 2025-09-09 10:12:18 -04:00
Christophe Bornet
e36e25fe2f feat(langchain): support PEP604 ( | union) in tool node error handlers (#32861)
This allows to use PEP604 syntax for `ToolNode` error handlers
```python
def error_handler(e: ValueError | ToolException) -> str:
    return "error"

ToolNode(my_tool, handle_tool_errors=error_handler).invoke(...)
```
Without this change, this fails with `AttributeError: 'types.UnionType'
object has no attribute '__mro__'`
2025-09-09 10:11:12 -04:00
Christophe Bornet
cc3b5afe52 fix(huggingface): fix typing in test_standard (#32863) 2025-09-09 10:05:41 -04:00
Gal Bloch
428c2ee6c5 fix(langchain): preserve supplied llm in FlareChain.from_llm (#32847) 2025-09-09 13:41:23 +00:00
Christophe Bornet
714f74a847 refactor(core): improve beta decorator (#32505)
This is better than using a subclass as returning a `property` works
with `ClassWithBetaMethods.beta_property.__doc__`

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 18:06:48 -04:00
Christophe Bornet
c3b28c769a chore(langchain): add ruff rules D (except D100 and D104) (#31994)
See https://docs.astral.sh/ruff/rules/#pydocstyle-d

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 21:47:22 +00:00
Christophe Bornet
017348b27c chore(langchain): add ruff rule E501 in langchain_v1 (#32812)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 17:28:14 -04:00
Christophe Bornet
1e101ae9a2 chore(langchain): add ruff rules N (#32098)
See https://docs.astral.sh/ruff/rules/#pep8-naming-n

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 17:27:43 -04:00
Christophe Bornet
fe6c415c9f chore(langchain): add ruff rule UP007 in langchain_v1 (#32811)
Done by autofix
2025-09-08 17:26:00 -04:00
Christophe Bornet
54c2419a4e chore(langchain): enable ruff docstring-code-format in langchain_v1 (#32855) 2025-09-08 16:51:18 -04:00
Mason Daugherty
35e9d36b0e fix(standard-tests): ensure non-negative token counts in usage metadata assertions (#32593) 2025-09-08 16:49:26 -04:00
Christophe Bornet
8b90eae455 chore(text-splitters): enable ruff docstring-code-format (#32854) 2025-09-08 16:40:11 -04:00
Christophe Bornet
05d14775f2 chore(standard-tests): enable ruff docstring-code-format (#32852) 2025-09-08 16:39:53 -04:00
PieterKok-jaam
33c7f230e0 feat(core): add id field to Document passed to filter for InMemoryVectorStore similarity search (#32688)
Added an id field to the Document passed to filter for
InMemoryVectorStore similarity search. This allows filtering by Document
id and brings the input to the filter in line with the result returned
by the vector similarity search.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-08 20:39:18 +00:00
Mason Daugherty
97dd7628d2 chore: update badges (#32851)
- stars badge redundant (look at the top of the page)
- remove version badge since we have many pkgs (and it was only showing
core) -- also, just look at the releases tab to the right of the readme
2025-09-08 20:06:59 +00:00
Adithya1617
f5bd00d1f1 feat(core): support AWS Bedrock document content blocks in msg_content_output (#32799) 2025-09-08 19:40:28 +00:00
Sadra Barikbin
3486d6c74d feat(core): support for adding PromptTemplates with formats other than f-string (#32253)
Allow adding`PromptTemplate`s with formats other than `f-string`. Fixes
#32151

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-08 19:16:54 +00:00
Stefano Lottini
390606c155 fix(standard-tests): standard vectorstore tests accept out-of-order get_by_ids (#32821)
- **Description:** The vectorstore standard-test mistakenly assumes that
the store's `get_by_ids` respects the order of the provided `ids`. This
is not the case (as the base class docstring states). This PR fixes
those tests that would fail otherwise (see issue #32820 for details,
repro and all). Fixes #32820
- **Issue:** Fixes #32820
- **Dependencies:** none

Co-authored-by: Stefano Lottini <stefano.lottini@ibm.com>
2025-09-08 14:22:14 -04:00
Christophe Bornet
cc98fb9bee chore(core): add ruff rule PLC0415 (#32351)
See https://docs.astral.sh/ruff/rules/import-outside-top-level/

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 14:15:04 -04:00
Christophe Bornet
16420cad71 chore(core): fix some pydocs to use google-style (#32764)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 17:52:17 +00:00
Christophe Bornet
01fdeede50 chore(core): fix some ruff preview rules (#32785)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:55:20 +00:00
Christophe Bornet
f4e83e0ad8 chore(core): fix some docstrings (from DOC preview rule) (#32833)
* Add `Raises` sections
* Add `Returns` sections
* Add `Yields` sections

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:44:15 +00:00
dependabot[bot]
4024d47412 chore(infra): bump actions/setup-python from 5 to 6 (#32842)
Bumps [actions/setup-python](https://github.com/actions/setup-python)
from 5 to 6.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/setup-python/releases">actions/setup-python's
releases</a>.</em></p>
<blockquote>
<h2>v6.0.0</h2>
<h2>What's Changed</h2>
<h3>Breaking Changes</h3>
<ul>
<li>Upgrade to node 24 by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1164">actions/setup-python#1164</a></li>
</ul>
<p>Make sure your runner is on version v2.327.1 or later to ensure
compatibility with this release. <a
href="https://github.com/actions/runner/releases/tag/v2.327.1">See
Release Notes</a></p>
<h3>Enhancements:</h3>
<ul>
<li>Add support for <code>pip-version</code> by <a
href="https://github.com/priyagupta108"><code>@​priyagupta108</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1129">actions/setup-python#1129</a></li>
<li>Enhance reading from .python-version by <a
href="https://github.com/krystof-k"><code>@​krystof-k</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/787">actions/setup-python#787</a></li>
<li>Add version parsing from Pipfile by <a
href="https://github.com/aradkdj"><code>@​aradkdj</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1067">actions/setup-python#1067</a></li>
</ul>
<h3>Bug fixes:</h3>
<ul>
<li>Clarify pythonLocation behaviour for PyPy and GraalPy in environment
variables by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1183">actions/setup-python#1183</a></li>
<li>Change missing cache directory error to warning by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1182">actions/setup-python#1182</a></li>
<li>Add Architecture-Specific PATH Management for Python with --user
Flag on Windows by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1122">actions/setup-python#1122</a></li>
<li>Include python version in PyPy python-version output by <a
href="https://github.com/cdce8p"><code>@​cdce8p</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1110">actions/setup-python#1110</a></li>
<li>Update docs: clarification on pip authentication with setup-python
by <a
href="https://github.com/priya-kinthali"><code>@​priya-kinthali</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1156">actions/setup-python#1156</a></li>
</ul>
<h3>Dependency updates:</h3>
<ul>
<li>Upgrade idna from 2.9 to 3.7 in /<strong>tests</strong>/data by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-python/pull/843">actions/setup-python#843</a></li>
<li>Upgrade form-data to fix critical vulnerabilities <a
href="https://redirect.github.com/actions/setup-python/issues/182">#182</a>
&amp; <a
href="https://redirect.github.com/actions/setup-python/issues/183">#183</a>
by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1163">actions/setup-python#1163</a></li>
<li>Upgrade setuptools to 78.1.1 to fix path traversal vulnerability in
PackageIndex.download by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1165">actions/setup-python#1165</a></li>
<li>Upgrade actions/checkout from 4 to 5 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-python/pull/1181">actions/setup-python#1181</a></li>
<li>Upgrade <code>@​actions/tool-cache</code> from 2.0.1 to 2.0.2 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-python/pull/1095">actions/setup-python#1095</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/krystof-k"><code>@​krystof-k</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/setup-python/pull/787">actions/setup-python#787</a></li>
<li><a href="https://github.com/cdce8p"><code>@​cdce8p</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/setup-python/pull/1110">actions/setup-python#1110</a></li>
<li><a href="https://github.com/aradkdj"><code>@​aradkdj</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/setup-python/pull/1067">actions/setup-python#1067</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-python/compare/v5...v6.0.0">https://github.com/actions/setup-python/compare/v5...v6.0.0</a></p>
<h2>v5.6.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Workflow updates related to Ubuntu 20.04 by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1065">actions/setup-python#1065</a></li>
<li>Fix for Candidate Not Iterable Error by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1082">actions/setup-python#1082</a></li>
<li>Upgrade semver and <code>@​types/semver</code> by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1091">actions/setup-python#1091</a></li>
<li>Upgrade prettier from 2.8.8 to 3.5.3 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1046">actions/setup-python#1046</a></li>
<li>Upgrade ts-jest from 29.1.2 to 29.3.2 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1081">actions/setup-python#1081</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-python/compare/v5...v5.6.0">https://github.com/actions/setup-python/compare/v5...v5.6.0</a></p>
<h2>v5.5.0</h2>
<h2>What's Changed</h2>
<h3>Enhancements:</h3>
<ul>
<li>Support free threaded Python versions like '3.13t' by <a
href="https://github.com/colesbury"><code>@​colesbury</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/973">actions/setup-python#973</a></li>
<li>Enhance Workflows: Include ubuntu-arm runners, Add e2e Testing for
free threaded and Upgrade <code>@​action/cache</code> from 4.0.0 to
4.0.3 by <a
href="https://github.com/priya-kinthali"><code>@​priya-kinthali</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1056">actions/setup-python#1056</a></li>
<li>Add support for .tool-versions file in setup-python by <a
href="https://github.com/mahabaleshwars"><code>@​mahabaleshwars</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1043">actions/setup-python#1043</a></li>
</ul>
<h3>Bug fixes:</h3>
<ul>
<li>Fix architecture for pypy on Linux ARM64 by <a
href="https://github.com/mayeut"><code>@​mayeut</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1011">actions/setup-python#1011</a>
This update maps arm64 to aarch64 for Linux ARM64 PyPy
installations.</li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="e797f83bcb"><code>e797f83</code></a>
Upgrade to node 24 (<a
href="https://redirect.github.com/actions/setup-python/issues/1164">#1164</a>)</li>
<li><a
href="3d1e2d2ca0"><code>3d1e2d2</code></a>
Revert &quot;Enhance cache-dependency-path handling to support files
outside the w...</li>
<li><a
href="65b071217a"><code>65b0712</code></a>
Clarify pythonLocation behavior for PyPy and GraalPy in environment
variables...</li>
<li><a
href="5b668cf765"><code>5b668cf</code></a>
Bump actions/checkout from 4 to 5 (<a
href="https://redirect.github.com/actions/setup-python/issues/1181">#1181</a>)</li>
<li><a
href="f62a0e252f"><code>f62a0e2</code></a>
Change missing cache directory error to warning (<a
href="https://redirect.github.com/actions/setup-python/issues/1182">#1182</a>)</li>
<li><a
href="9322b3ca74"><code>9322b3c</code></a>
Upgrade setuptools to 78.1.1 to fix path traversal vulnerability in
PackageIn...</li>
<li><a
href="fbeb884f69"><code>fbeb884</code></a>
Bump form-data to fix critical vulnerabilities <a
href="https://redirect.github.com/actions/setup-python/issues/182">#182</a>
&amp; <a
href="https://redirect.github.com/actions/setup-python/issues/183">#183</a>
(<a
href="https://redirect.github.com/actions/setup-python/issues/1163">#1163</a>)</li>
<li><a
href="03bb6152f4"><code>03bb615</code></a>
Bump idna from 2.9 to 3.7 in /<strong>tests</strong>/data (<a
href="https://redirect.github.com/actions/setup-python/issues/843">#843</a>)</li>
<li><a
href="36da51d563"><code>36da51d</code></a>
Add version parsing from Pipfile (<a
href="https://redirect.github.com/actions/setup-python/issues/1067">#1067</a>)</li>
<li><a
href="3c6f142cc0"><code>3c6f142</code></a>
update documentation (<a
href="https://redirect.github.com/actions/setup-python/issues/1156">#1156</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/actions/setup-python/compare/v5...v6">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/setup-python&package-manager=github_actions&previous-version=5&new-version=6)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 11:27:54 -04:00
Christophe Bornet
f589168411 refactor(core): use pytest style in TestGetBufferString (#32786)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:16:13 +00:00
Christophe Bornet
5840dad40b chore(core): enable ruff docstring-code-format (#32834)
See https://docs.astral.sh/ruff/settings/#format_docstring-code-format

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:13:50 +00:00
Christophe Bornet
e3b6c9bb66 chore(core): fix some mypy warn_unreachable issues (#32560)
Found by setting `warn_unreachable: true` in mypy.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:02:08 +00:00
Christophe Bornet
c672590f42 chore(standard-tests): select ALL rules with exclusions (#31937)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 14:57:47 +00:00
Christophe Bornet
323729915a chore(standard-tests): add mypy strict checking (#32384)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 10:50:38 -04:00
Christophe Bornet
0c3e8ccd0e chore(text-splitters): select ALL rules with exclusions (#32325)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 14:46:09 +00:00
Christophe Bornet
20401df25d chore(cli): fix some DOC rules (preview) (#32839)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 14:36:22 +00:00
dependabot[bot]
e0aaaccb61 chore(infra): bump aws-actions/configure-aws-credentials from 4 to 5 (#32841)
Bumps
[aws-actions/configure-aws-credentials](https://github.com/aws-actions/configure-aws-credentials)
from 4 to 5.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/aws-actions/configure-aws-credentials/releases">aws-actions/configure-aws-credentials's
releases</a>.</em></p>
<blockquote>
<h2>v5.0.0</h2>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.3.1...v5.0.0">5.0.0</a>
(2025-09-03)</h2>
<h3>⚠ BREAKING CHANGES</h3>
<ul>
<li>Cleanup input handling. Changes invalid boolean input behavior (see
<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1445">#1445</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li>add skip OIDC option (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1458">#1458</a>)
(<a
href="8c45f6b081">8c45f6b</a>)</li>
<li>Cleanup input handling. Changes invalid boolean input behavior (see
<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1445">#1445</a>)
(<a
href="74b3e27aa8">74b3e27</a>)</li>
<li>support account id allowlist (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1456">#1456</a>)
(<a
href="c4be498953">c4be498</a>)</li>
</ul>
<h2>v4.3.1</h2>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.3.0...v4.3.1">4.3.1</a>
(2025-08-04)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>update readme to 4.3.1 (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1424">#1424</a>)
(<a
href="be2e7ad815">be2e7ad</a>)</li>
</ul>
<h2>v4.3.0</h2>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.3.0...v4.3.0">4.3.0</a>
(2025-08-04)</h2>
<p>NOTE: This release tag originally pointed to
59b441846ad109fa4a1549b73ef4e149c4bfb53b, but a critical bug was
discovered shortly after publishing. We updated this tag to
d0834ad3a60a024346910e522a81b0002bd37fea to prevent anyone using the
4.3.0 tag from encountering the bug, and we published 4.3.1 to allow
workflows to auto update correctly.</p>
<h3>Features</h3>
<ul>
<li>dependency update and feature cleanup (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1414">#1414</a>)
(<a
href="59489ba544">59489ba</a>),
closes <a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1062">#1062</a>
<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1191">#1191</a></li>
<li>Optional environment variable output (<a
href="c3b3ce61b0">c3b3ce6</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li><strong>docs:</strong> readme samples versioning (<a
href="5b3c895046">5b3c895</a>)</li>
<li>the wrong example region for China partition in README (<a
href="37fe9a740b">37fe9a7</a>)</li>
<li>properly set proxy environment variable (<a
href="cbea70821e">cbea708</a>)</li>
</ul>
<h3>Miscellaneous Chores</h3>
<ul>
<li>release 4.3.0 (<a
href="3f7c218721">3f7c218</a>)</li>
</ul>
<h2>v4.2.1</h2>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.2.0...v4.2.1">4.2.1</a>
(2025-05-14)</h2>
<h3>Bug Fixes</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/aws-actions/configure-aws-credentials/blob/main/CHANGELOG.md">aws-actions/configure-aws-credentials's
changelog</a>.</em></p>
<blockquote>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.3.0...v4.3.1">4.3.1</a>
(2025-08-04)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>update readme to 4.3.1 (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1424">#1424</a>)
(<a
href="be2e7ad815">be2e7ad</a>)</li>
</ul>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.2.1...v4.3.0">4.3.0</a>
(2025-08-04)</h2>
<h3>Features</h3>
<ul>
<li>depenency update and feature cleanup (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1414">#1414</a>)
(<a
href="59489ba544">59489ba</a>),
closes <a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1062">#1062</a>
<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1191">#1191</a></li>
<li>Optional environment variable output (<a
href="c3b3ce61b0">c3b3ce6</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li><strong>docs:</strong> readme samples versioning (<a
href="5b3c895046">5b3c895</a>)</li>
<li>the wrong example region for China partition in README (<a
href="37fe9a740b">37fe9a7</a>)</li>
<li>properly set proxy environment variable (<a
href="cbea70821e">cbea708</a>)</li>
</ul>
<h3>Miscellaneous Chores</h3>
<ul>
<li>release 4.3.0 (<a
href="3f7c218721">3f7c218</a>)</li>
</ul>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.2.0...v4.2.1">4.2.1</a>
(2025-05-14)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>ensure explicit inputs take precedence over environment variables
(<a
href="e56e6c4038">e56e6c4</a>)</li>
<li>prioritize explicit inputs over environment variables (<a
href="df9c8fed6b">df9c8fe</a>)</li>
</ul>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.1.0...v4.2.0">4.2.0</a>
(2025-05-06)</h2>
<h3>Features</h3>
<ul>
<li>add Expiration field to Outputs (<a
href="a4f326760c">a4f3267</a>)</li>
<li>Document role-duration-seconds range (<a
href="5a0cf0167f">5a0cf01</a>)</li>
<li>support action inputs as environment variables (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1338">#1338</a>)
(<a
href="2c168adcae">2c168ad</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li>make sure action builds, also fix dependabot autoapprove (<a
href="c401b8a98c">c401b8a</a>)</li>
<li>role chaning on mulitple runs (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1340">#1340</a>)
(<a
href="9e38641911">9e38641</a>)</li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="a03048d875"><code>a03048d</code></a>
chore(main): release 5.0.0 (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1451">#1451</a>)</li>
<li><a
href="337f510212"><code>337f510</code></a>
chore: Fix markdown link formatting in README.md (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1466">#1466</a>)</li>
<li><a
href="f001d79eaa"><code>f001d79</code></a>
chore: update README with versioning (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1465">#1465</a>)</li>
<li><a
href="cf5f2acba3"><code>cf5f2ac</code></a>
chore: Update dist</li>
<li><a
href="b394bdd9f0"><code>b394bdd</code></a>
chore(deps-dev): bump <code>@​aws-sdk/credential-provider-env</code> (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1463">#1463</a>)</li>
<li><a
href="b632c0b5e4"><code>b632c0b</code></a>
chore(deps-dev): bump memfs from 4.38.1 to 4.38.2 (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1462">#1462</a>)</li>
<li><a
href="978e44aa36"><code>978e44a</code></a>
chore: Update dist</li>
<li><a
href="c4be498953"><code>c4be498</code></a>
feat: support account id allowlist (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1456">#1456</a>)</li>
<li><a
href="c5a43c32e1"><code>c5a43c3</code></a>
chore: Update dist</li>
<li><a
href="8c45f6b081"><code>8c45f6b</code></a>
feat: add skip OIDC option (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1458">#1458</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4...v5">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=aws-actions/configure-aws-credentials&package-manager=github_actions&previous-version=4&new-version=5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 10:18:01 -04:00
dependabot[bot]
9368ce6b07 chore(infra): bump google-github-actions/auth from 2 to 3 (#32777)
Bumps
[google-github-actions/auth](https://github.com/google-github-actions/auth)
from 2 to 3.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/google-github-actions/auth/releases">google-github-actions/auth's
releases</a>.</em></p>
<blockquote>
<h2>v3.0.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Bump to Node 24 and remove old parameters by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/508">google-github-actions/auth#508</a></li>
<li>Remove hacky script by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/509">google-github-actions/auth#509</a></li>
<li>Release: v3.0.0 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/510">google-github-actions/auth#510</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2...v3.0.0">https://github.com/google-github-actions/auth/compare/v2...v3.0.0</a></p>
<h2>v2.1.13</h2>
<h2>What's Changed</h2>
<ul>
<li>Update deps by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/506">google-github-actions/auth#506</a></li>
<li>Release: v2.1.13 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/507">google-github-actions/auth#507</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2.1.12...v2.1.13">https://github.com/google-github-actions/auth/compare/v2.1.12...v2.1.13</a></p>
<h2>v2.1.12</h2>
<h2>What's Changed</h2>
<ul>
<li>Add retries for getIDToken by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/502">google-github-actions/auth#502</a></li>
<li>Release: v2.1.12 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/503">google-github-actions/auth#503</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2.1.11...v2.1.12">https://github.com/google-github-actions/auth/compare/v2.1.11...v2.1.12</a></p>
<h2>v2.1.11</h2>
<h2>What's Changed</h2>
<ul>
<li>Update troubleshooting docs for Python by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/488">google-github-actions/auth#488</a></li>
<li>Add linters by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/499">google-github-actions/auth#499</a></li>
<li>Update deps by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/500">google-github-actions/auth#500</a></li>
<li>Release: v2.1.11 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/501">google-github-actions/auth#501</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2.1.10...v2.1.11">https://github.com/google-github-actions/auth/compare/v2.1.10...v2.1.11</a></p>
<h2>v2.1.10</h2>
<h2>What's Changed</h2>
<ul>
<li>Declare workflow permissions by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/482">google-github-actions/auth#482</a></li>
<li>Document that the OIDC token expires in 5min by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/483">google-github-actions/auth#483</a></li>
<li>Release: v2.1.10 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/484">google-github-actions/auth#484</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2.1.9...v2.1.10">https://github.com/google-github-actions/auth/compare/v2.1.9...v2.1.10</a></p>
<h2>v2.1.9</h2>
<h2>What's Changed</h2>
<ul>
<li>Use our custom boolean parsing by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/478">google-github-actions/auth#478</a></li>
<li>Update deps by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/479">google-github-actions/auth#479</a></li>
<li>Release: v2.1.9 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/480">google-github-actions/auth#480</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="7c6bc770da"><code>7c6bc77</code></a>
Release: v3.0.0 (<a
href="https://redirect.github.com/google-github-actions/auth/issues/510">#510</a>)</li>
<li><a
href="42e4997ee3"><code>42e4997</code></a>
Remove hacky script (<a
href="https://redirect.github.com/google-github-actions/auth/issues/509">#509</a>)</li>
<li><a
href="5ea4dc1147"><code>5ea4dc1</code></a>
Bump to Node 24 and remove old parameters (<a
href="https://redirect.github.com/google-github-actions/auth/issues/508">#508</a>)</li>
<li>See full diff in <a
href="https://github.com/google-github-actions/auth/compare/v2...v3">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=google-github-actions/auth&package-manager=github_actions&previous-version=2&new-version=3)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 10:16:59 -04:00
dependabot[bot]
f8bcc98362 chore(infra): bump amannn/action-semantic-pull-request from 5 to 6 (#32585)
Bumps
[amannn/action-semantic-pull-request](https://github.com/amannn/action-semantic-pull-request)
from 5 to 6.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/amannn/action-semantic-pull-request/releases">amannn/action-semantic-pull-request's
releases</a>.</em></p>
<blockquote>
<h2>v6.0.0</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.5.3...v6.0.0">6.0.0</a>
(2025-08-13)</h2>
<h3>⚠ BREAKING CHANGES</h3>
<ul>
<li>Upgrade action to use Node.js 24 and ESM (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/287">#287</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li>Upgrade action to use Node.js 24 and ESM (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/287">#287</a>)
(<a
href="bc0c9a79ab">bc0c9a7</a>)</li>
</ul>
<h2>v5.5.3</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.5.2...v5.5.3">5.5.3</a>
(2024-06-28)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>Bump <code>braces</code> dependency (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/269">#269</a>.
by <a href="https://github.com/EelcoLos"><code>@​EelcoLos</code></a>)
(<a
href="2d952a1bf9">2d952a1</a>)</li>
</ul>
<h2>v5.5.2</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.5.1...v5.5.2">5.5.2</a>
(2024-04-24)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>Bump tar from 6.1.11 to 6.2.1 (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/262">#262</a>
by <a href="https://github.com/EelcoLos"><code>@​EelcoLos</code></a>)
(<a
href="9a90d5a5ac">9a90d5a</a>)</li>
</ul>
<h2>v5.5.1</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.5.0...v5.5.1">5.5.1</a>
(2024-04-24)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>Bump ip from 2.0.0 to 2.0.1 (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/263">#263</a>
by <a href="https://github.com/EelcoLos"><code>@​EelcoLos</code></a>)
(<a
href="5e7e9acca3">5e7e9ac</a>)</li>
</ul>
<h2>v5.5.0</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.4.0...v5.5.0">5.5.0</a>
(2024-04-23)</h2>
<h3>Features</h3>
<ul>
<li>Add outputs for <code>type</code>, <code>scope</code> and
<code>subject</code> (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/261">#261</a>
by <a href="https://github.com/bcaurel"><code>@​bcaurel</code></a>) (<a
href="b05f5f6423">b05f5f6</a>)</li>
</ul>
<h2>v5.4.0</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.3.0...v5.4.0">5.4.0</a>
(2023-11-03)</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/amannn/action-semantic-pull-request/blob/main/CHANGELOG.md">amannn/action-semantic-pull-request's
changelog</a>.</em></p>
<blockquote>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.2.0...v5.3.0">5.3.0</a>
(2023-09-25)</h2>
<h3>Features</h3>
<ul>
<li>Use Node.js 20 in action (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/240">#240</a>)
(<a
href="4c0d5a21fc">4c0d5a2</a>)</li>
</ul>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.1.0...v5.2.0">5.2.0</a>
(2023-03-16)</h2>
<h3>Features</h3>
<ul>
<li>Update dependencies by <a
href="https://github.com/EelcoLos"><code>@​EelcoLos</code></a> (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/229">#229</a>)
(<a
href="e797448a07">e797448</a>)</li>
</ul>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.0.2...v5.1.0">5.1.0</a>
(2023-02-10)</h2>
<h3>Features</h3>
<ul>
<li>Add regex support to <code>scope</code> and
<code>disallowScopes</code> configuration (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/226">#226</a>)
(<a
href="403a6f8924">403a6f8</a>)</li>
</ul>
<h3><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.0.1...v5.0.2">5.0.2</a>
(2022-10-17)</h3>
<h3>Bug Fixes</h3>
<ul>
<li>Upgrade <code>@actions/core</code> to avoid deprecation warnings (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/208">#208</a>)
(<a
href="91f4126c9e">91f4126</a>)</li>
</ul>
<h3><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.0.0...v5.0.1">5.0.1</a>
(2022-10-14)</h3>
<h3>Bug Fixes</h3>
<ul>
<li>Upgrade GitHub Action to use Node v16 (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/207">#207</a>)
(<a
href="6282ee339b">6282ee3</a>)</li>
</ul>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v4.6.0...v5.0.0">5.0.0</a>
(2022-10-11)</h2>
<h3>⚠ BREAKING CHANGES</h3>
<ul>
<li>Enum options need to be newline delimited (to allow whitespace
within them) (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/205">#205</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li>Enum options need to be newline delimited (to allow whitespace
within them) (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/205">#205</a>)
(<a
href="c906fe1e5a">c906fe1</a>)</li>
</ul>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v4.5.0...v4.6.0">4.6.0</a>
(2022-09-26)</h2>
<h3>Features</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="fdd4d3ddf6"><code>fdd4d3d</code></a>
chore: Release 6.0.1 [skip ci]</li>
<li><a
href="58e4ab40f5"><code>58e4ab4</code></a>
fix: Actually execute action (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/289">#289</a>)</li>
<li><a
href="04a8d177d9"><code>04a8d17</code></a>
chore: Release 6.0.0 [skip ci]</li>
<li><a
href="bc0c9a79ab"><code>bc0c9a7</code></a>
feat!: Upgrade action to use Node.js 24 and ESM (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/287">#287</a>)</li>
<li><a
href="631ffdc028"><code>631ffdc</code></a>
build(deps): bump the github-action-workflows group with 2 updates (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/286">#286</a>)</li>
<li><a
href="c1807ceb58"><code>c1807ce</code></a>
build: configure Dependabot (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/231">#231</a>)</li>
<li><a
href="3352882559"><code>3352882</code></a>
docs: Remove <code>synchronize</code> trigger (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/281">#281</a>)</li>
<li><a
href="04501d43b5"><code>04501d4</code></a>
docs: More restrictive permissions (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/280">#280</a>)</li>
<li><a
href="40166f0081"><code>40166f0</code></a>
chore: Update actions in release workflow (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/276">#276</a>)</li>
<li><a
href="80c0371c57"><code>80c0371</code></a>
docs: Mention <code>reopened</code> trigger in README (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/272">#272</a>
by <a
href="https://github.com/garysassano"><code>@​garysassano</code></a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5...v6">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=amannn/action-semantic-pull-request&package-manager=github_actions&previous-version=5&new-version=6)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 10:16:19 -04:00
dependabot[bot]
d8d93882f9 chore(infra): bump actions/checkout from 4 to 5 (#32584)
Bumps [actions/checkout](https://github.com/actions/checkout) from 4 to
5.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/checkout/releases">actions/checkout's
releases</a>.</em></p>
<blockquote>
<h2>v5.0.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Update actions checkout to use node 24 by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2226">actions/checkout#2226</a></li>
<li>Prepare v5.0.0 release by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2238">actions/checkout#2238</a></li>
</ul>
<h2>⚠️ Minimum Compatible Runner Version</h2>
<p><strong>v2.327.1</strong><br />
<a
href="https://github.com/actions/runner/releases/tag/v2.327.1">Release
Notes</a></p>
<p>Make sure your runner is updated to this version or newer to use this
release.</p>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/checkout/compare/v4...v5.0.0">https://github.com/actions/checkout/compare/v4...v5.0.0</a></p>
<h2>v4.3.0</h2>
<h2>What's Changed</h2>
<ul>
<li>docs: update README.md by <a
href="https://github.com/motss"><code>@​motss</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1971">actions/checkout#1971</a></li>
<li>Add internal repos for checking out multiple repositories by <a
href="https://github.com/mouismail"><code>@​mouismail</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1977">actions/checkout#1977</a></li>
<li>Documentation update - add recommended permissions to Readme by <a
href="https://github.com/benwells"><code>@​benwells</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2043">actions/checkout#2043</a></li>
<li>Adjust positioning of user email note and permissions heading by <a
href="https://github.com/joshmgross"><code>@​joshmgross</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2044">actions/checkout#2044</a></li>
<li>Update README.md by <a
href="https://github.com/nebuk89"><code>@​nebuk89</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2194">actions/checkout#2194</a></li>
<li>Update CODEOWNERS for actions by <a
href="https://github.com/TingluoHuang"><code>@​TingluoHuang</code></a>
in <a
href="https://redirect.github.com/actions/checkout/pull/2224">actions/checkout#2224</a></li>
<li>Update package dependencies by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2236">actions/checkout#2236</a></li>
<li>Prepare release v4.3.0 by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2237">actions/checkout#2237</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/motss"><code>@​motss</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/1971">actions/checkout#1971</a></li>
<li><a href="https://github.com/mouismail"><code>@​mouismail</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/1977">actions/checkout#1977</a></li>
<li><a href="https://github.com/benwells"><code>@​benwells</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/2043">actions/checkout#2043</a></li>
<li><a href="https://github.com/nebuk89"><code>@​nebuk89</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/2194">actions/checkout#2194</a></li>
<li><a href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/2236">actions/checkout#2236</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/checkout/compare/v4...v4.3.0">https://github.com/actions/checkout/compare/v4...v4.3.0</a></p>
<h2>v4.2.2</h2>
<h2>What's Changed</h2>
<ul>
<li><code>url-helper.ts</code> now leverages well-known environment
variables by <a href="https://github.com/jww3"><code>@​jww3</code></a>
in <a
href="https://redirect.github.com/actions/checkout/pull/1941">actions/checkout#1941</a></li>
<li>Expand unit test coverage for <code>isGhes</code> by <a
href="https://github.com/jww3"><code>@​jww3</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1946">actions/checkout#1946</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/checkout/compare/v4.2.1...v4.2.2">https://github.com/actions/checkout/compare/v4.2.1...v4.2.2</a></p>
<h2>v4.2.1</h2>
<h2>What's Changed</h2>
<ul>
<li>Check out other refs/* by commit if provided, fall back to ref by <a
href="https://github.com/orhantoy"><code>@​orhantoy</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1924">actions/checkout#1924</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/Jcambass"><code>@​Jcambass</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/1919">actions/checkout#1919</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/checkout/compare/v4.2.0...v4.2.1">https://github.com/actions/checkout/compare/v4.2.0...v4.2.1</a></p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/actions/checkout/blob/main/CHANGELOG.md">actions/checkout's
changelog</a>.</em></p>
<blockquote>
<h1>Changelog</h1>
<h2>V5.0.0</h2>
<ul>
<li>Update actions checkout to use node 24 by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2226">actions/checkout#2226</a></li>
</ul>
<h2>V4.3.0</h2>
<ul>
<li>docs: update README.md by <a
href="https://github.com/motss"><code>@​motss</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1971">actions/checkout#1971</a></li>
<li>Add internal repos for checking out multiple repositories by <a
href="https://github.com/mouismail"><code>@​mouismail</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1977">actions/checkout#1977</a></li>
<li>Documentation update - add recommended permissions to Readme by <a
href="https://github.com/benwells"><code>@​benwells</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2043">actions/checkout#2043</a></li>
<li>Adjust positioning of user email note and permissions heading by <a
href="https://github.com/joshmgross"><code>@​joshmgross</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2044">actions/checkout#2044</a></li>
<li>Update README.md by <a
href="https://github.com/nebuk89"><code>@​nebuk89</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2194">actions/checkout#2194</a></li>
<li>Update CODEOWNERS for actions by <a
href="https://github.com/TingluoHuang"><code>@​TingluoHuang</code></a>
in <a
href="https://redirect.github.com/actions/checkout/pull/2224">actions/checkout#2224</a></li>
<li>Update package dependencies by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2236">actions/checkout#2236</a></li>
</ul>
<h2>v4.2.2</h2>
<ul>
<li><code>url-helper.ts</code> now leverages well-known environment
variables by <a href="https://github.com/jww3"><code>@​jww3</code></a>
in <a
href="https://redirect.github.com/actions/checkout/pull/1941">actions/checkout#1941</a></li>
<li>Expand unit test coverage for <code>isGhes</code> by <a
href="https://github.com/jww3"><code>@​jww3</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1946">actions/checkout#1946</a></li>
</ul>
<h2>v4.2.1</h2>
<ul>
<li>Check out other refs/* by commit if provided, fall back to ref by <a
href="https://github.com/orhantoy"><code>@​orhantoy</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1924">actions/checkout#1924</a></li>
</ul>
<h2>v4.2.0</h2>
<ul>
<li>Add Ref and Commit outputs by <a
href="https://github.com/lucacome"><code>@​lucacome</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1180">actions/checkout#1180</a></li>
<li>Dependency updates by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>- <a
href="https://redirect.github.com/actions/checkout/pull/1777">actions/checkout#1777</a>,
<a
href="https://redirect.github.com/actions/checkout/pull/1872">actions/checkout#1872</a></li>
</ul>
<h2>v4.1.7</h2>
<ul>
<li>Bump the minor-npm-dependencies group across 1 directory with 4
updates by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1739">actions/checkout#1739</a></li>
<li>Bump actions/checkout from 3 to 4 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1697">actions/checkout#1697</a></li>
<li>Check out other refs/* by commit by <a
href="https://github.com/orhantoy"><code>@​orhantoy</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1774">actions/checkout#1774</a></li>
<li>Pin actions/checkout's own workflows to a known, good, stable
version. by <a href="https://github.com/jww3"><code>@​jww3</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1776">actions/checkout#1776</a></li>
</ul>
<h2>v4.1.6</h2>
<ul>
<li>Check platform to set archive extension appropriately by <a
href="https://github.com/cory-miller"><code>@​cory-miller</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1732">actions/checkout#1732</a></li>
</ul>
<h2>v4.1.5</h2>
<ul>
<li>Update NPM dependencies by <a
href="https://github.com/cory-miller"><code>@​cory-miller</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1703">actions/checkout#1703</a></li>
<li>Bump github/codeql-action from 2 to 3 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1694">actions/checkout#1694</a></li>
<li>Bump actions/setup-node from 1 to 4 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1696">actions/checkout#1696</a></li>
<li>Bump actions/upload-artifact from 2 to 4 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1695">actions/checkout#1695</a></li>
<li>README: Suggest <code>user.email</code> to be
<code>41898282+github-actions[bot]@users.noreply.github.com</code> by <a
href="https://github.com/cory-miller"><code>@​cory-miller</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1707">actions/checkout#1707</a></li>
</ul>
<h2>v4.1.4</h2>
<ul>
<li>Disable <code>extensions.worktreeConfig</code> when disabling
<code>sparse-checkout</code> by <a
href="https://github.com/jww3"><code>@​jww3</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1692">actions/checkout#1692</a></li>
<li>Add dependabot config by <a
href="https://github.com/cory-miller"><code>@​cory-miller</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1688">actions/checkout#1688</a></li>
<li>Bump the minor-actions-dependencies group with 2 updates by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1693">actions/checkout#1693</a></li>
<li>Bump word-wrap from 1.2.3 to 1.2.5 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1643">actions/checkout#1643</a></li>
</ul>
<h2>v4.1.3</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="08c6903cd8"><code>08c6903</code></a>
Prepare v5.0.0 release (<a
href="https://redirect.github.com/actions/checkout/issues/2238">#2238</a>)</li>
<li><a
href="9f265659d3"><code>9f26565</code></a>
Update actions checkout to use node 24 (<a
href="https://redirect.github.com/actions/checkout/issues/2226">#2226</a>)</li>
<li>See full diff in <a
href="https://github.com/actions/checkout/compare/v4...v5">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/checkout&package-manager=github_actions&previous-version=4&new-version=5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 10:14:09 -04:00
Sadiq Khan
228fbac3a6 fix(openai): handle AIMessages without response_id in _get_last_messages (#32824) 2025-09-08 10:12:50 -04:00
JunHyungKang
6ea06ca972 fix(openai): Fix Azure OpenAI Responses API model field issue (#32649) 2025-09-08 10:08:35 -04:00
ccurme
5b0a55ad35 chore(openai): apply formatting changes to AzureChatOpenAI (#32848) 2025-09-08 09:54:20 -04:00
Sydney Runkle
6e2f46d04c feat(langchain): middleware support in create_agent (#32828)
## Overview

Adding new `AgentMiddleware` primitive that supports `before_model`,
`after_model`, and `prepare_model_request` hooks.

This is very exciting! It makes our `create_agent` prebuilt much more
extensible + capable. Still in alpha and subject to change.

This is different than the initial
[implementation](https://github.com/langchain-ai/langgraph/tree/nc/25aug/agent)
in that it:
* Fills in gaps w/ missing features, for ex -- new structured output,
optionality of tools + system prompt, sync and async model requests,
provider builtin tools
* Exposes private state extensions for middleware, enabling things like
model call tracking, etc
* Middleware can register tools
* Uses a `TypedDict` for `AgentState` -- dataclass subclassing is tricky
w/ required values + required decorators
* Addition of `model_settings` to `ModelRequest` so that we can pass
through things to bind (like cache kwargs for anthropic middleware)

## TODOs

### top prio
- [x] add middleware support to existing agent
- [x] top prio middlewares
  - [x] summarization node
  - [x] HITL
  - [x] prompt caching
 
other ones
- [x] model call limits
- [x] tool calling limits
- [ ] usage (requires output state)

### secondary prio
- [x] improve typing for state updates from middleware (not working
right now w/ simple `AgentUpdate` and `AgentJump`, at least in Python)
- [ ] add support for public state (input / output modifications via
pregel channel mods) -- to be tackled in another PR
- [x] testing!

### docs
See https://github.com/langchain-ai/docs/pull/390
- [x] high level docs about middleware
- [x] summarization node
- [x] HITL
- [x] prompt caching

## open questions

Lots of open questions right now, many of them inlined as comments for
the short term, will catalog some more significant ones here.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2025-09-08 01:10:57 +00:00
Christophe Bornet
5bf0b218c8 chore(cli): fix some ruff preview rules (#32803) 2025-09-07 16:53:19 -04:00
Mason Daugherty
4e39c164bb fix(anthropic): remove beta header warning for TTL (#32832)
No longer beta as of Aug 13
2025-09-05 14:28:58 -04:00
ScarletMercy
0b3af47335 fix(docs): resolve malformed character in tool_calling.ipynb (#32825)
**Description:**  
Remove a character in tool_calling.ipynb that causes a grammatical error
Verification: Local docs build passed after fix 
 
**Issue:**  
None (direct hotfix for rendering issue identified during documentation
review)
 
**Dependencies:**  
None
2025-09-05 11:28:56 -04:00
Mason Daugherty
bc91a4811c chore: update PR template (#32819) 2025-09-04 19:53:54 +00:00
Christophe Bornet
05a61f9508 fix(langchain): fix mypy versions in langchain_v1 (#32816) 2025-09-04 11:51:08 -04:00
Christophe Bornet
aa63de9366 chore(langchain): cleanup langchain_v1 mypy config (#32809)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-03 19:28:06 +00:00
Christophe Bornet
86fa34f3eb chore(langchain): add ruff rules D for langchain_v1 (#32808) 2025-09-03 15:26:17 -04:00
JING
36037c9251 fix(docs): update Anthropic model name and add version warnings (#32807)
**Description:** This PR fixes the broken Anthropic model example in the
documentation introduction page and adds a comment field to display
model version warnings in code blocks. The changes ensure that users can
successfully run the example code and are reminded to check for the
latest model versions.

**Issue:** https://github.com/langchain-ai/langchain/issues/32806

**Changes made:**
- Update Anthropic model from broken "claude-3-5-sonnet-latest" to
working "claude-3-7-sonnet-20250219"
- Add comment field to display model version warnings in code blocks
- Improve user experience by providing working examples and version
guidance

**Dependencies:** None required
2025-09-03 15:25:13 -04:00
Martin Meier-Zavodsky
ad26c892ea docs(langchain): update evaluation tutorial link (#32796)
**Description**
This PR updates the evaluation tutorial link for LangSmith to the new
official docs location.

**Issue**
N/A

**Dependencies**
None
2025-09-03 15:22:46 -04:00
Shahroz Ahmad
4828a85ab0 feat(core): add web_search in OpenAI tools list (#32738) 2025-09-02 21:57:25 +00:00
ccurme
b999f356e8 fix(langchain): update __init__ version (#32793) 2025-09-02 13:14:42 -04:00
Sydney Runkle
062196a7b3 release(langchain): v1.0.0a3 (#32791) 2025-09-02 12:29:14 -04:00
Sydney Runkle
dc9f941326 chore(langchain): rename create_react_agent -> create_agent (#32789) 2025-09-02 12:13:12 -04:00
Adithya1617
238ecd09e0 docs(langchain): update redirect url of "this langsmith conceptual guide" in tracing.mdx (#32776)
…ge (issue : #32775)

- **Description: updated the redirect url of "this langsmith conceptual
guide" in tracing.mdx
  - **Issue:** fixes #32775

---------

Co-authored-by: Adithya <adithya.vardhan1617@gmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-01 19:02:21 +00:00
Mason Daugherty
6b5fdfb804 release(text-splitters): 0.3.11 (#32770)
Fixes #32747

SpaCy integration test fixture was trying to use pip to download the
SpaCy language model (`en_core_web_sm`), but uv-managed environments
don't include pip by default. Fail test if not installed as opposed to
downloading.
2025-08-31 23:00:05 +00:00
Ravirajsingh Sodha
b42dac5fe6 docs: standardize OllamaLLM and BaseOpenAI docstrings (#32758)
- Add comprehensive docstring following LangChain standards
- Include Setup, Key init args, Instantiate, Invoke, Stream, and Async
sections
- Provide detailed parameter descriptions and code examples
- Fix linting issues for code formatting compliance

Contributes to #24803

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-31 17:45:56 -05:00
Christophe Bornet
e0a4af8d8b docs(text-splitters): fix some docstrings (#32767) 2025-08-31 13:46:11 -05:00
Rémy HUBSCHER
fcf7175392 chore(langchain): improve PostgreSQL Manager upsert SQLAlchemy API calls. (#32748)
- Make explicit the `constraint` parameter name to avoid mixing it with
`index_elements`
[[Documentation](https://docs.sqlalchemy.org/en/20/dialects/postgresql.html#sqlalchemy.dialects.postgresql.Insert.on_conflict_do_update)]
- ~Fallback on the existing `group_id` row value, to avoid setting it to
`None`.~
2025-08-30 14:13:24 -05:00
Kush Goswami
1f2ab17dff docs: fix typo and grammer in Conceptual guide (#32754)
fixed small typo and grammatical inconsistency in Conceptual guide
2025-08-30 13:48:55 -05:00
Mason Daugherty
2dc89a2ae7 release(cli): 0.0.37 (#32760)
It's been a minute. Final release prior to dropping Python 3.9 support.
2025-08-30 13:07:55 -05:00
Christophe Bornet
e3c4aeaea1 chore(cli): add mypy strict checking (#32386)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-30 13:02:45 -05:00
Vikas Shivpuriya
444939945a docs: fix punctuation in style guide (#32756)
Removed a period in bulleted list for consistency

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-30 12:56:17 -05:00
Vikas Shivpuriya
ae8db86486 docs: fixed typo in contributing guide (#32755)
Completed the sentence by adding a period ".", in sync with other points

>> Click "Propose changes"

to 

>> Click "Propose changes".

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-30 12:55:25 -05:00
Christophe Bornet
8a1419dad1 chore(cli): add ruff rules ANN401 and D1 (#32576) 2025-08-30 12:41:16 -05:00
Kush Goswami
840e4c8e9f docs: fix grammar and typo in Documentation style guide (#32741)
fixed grammer and one typo in the Documentation style guide
2025-08-29 14:22:54 -04:00
Caspar Broekhuizen
37aff0a153 chore: bump langchain-core minimum to 0.3.75 (#32753)
Update `langchain-core` dependency min from `>=0.3.63` to `>=0.3.75`.

### Motivation
- We located the `langchain-core` package locally in the monorepo and
need to align `langchain-tests` with the new minimum version.
2025-08-29 14:11:28 -04:00
Caspar Broekhuizen
a163d59988 chore(standard-tests): relax langchain-core bounds for langchain-tests 1.0.0a1 (#32752)
### Overview
Preparing the `1.0.0a1` release of `langchain-tests` to align with
`langchain-core` version `1.0.0a1`.

### Changes
- Bump package version to `1.0.0a1`
- Relax `langchain-core` requirement from `<1.0.0,>=0.3.63` to
`<2.0.0,>=0.3.63`

### Motivation
All main LangChain packages are now publishing `1.0.0a` prereleases.  
`langchain-tests` needs a matching prerelease so downstreams can install
tests alongside the 1.0 series without conflicts.

### Tests
- Verified installation and tests against both `0.3.75` and `1.0.0a1`.
2025-08-29 13:46:48 -04:00
Sydney Runkle
b26e52aa4d chore(text-splitters): bump version of core (#32740) 2025-08-28 13:14:57 -04:00
Sydney Runkle
38cdd7a2ec chore(text-splitters): relax max bound for langchain-core (#32739) 2025-08-28 13:05:47 -04:00
Sydney Runkle
26e5d1302b chore(langchain): remove upper bound at v1 for core (#32737) 2025-08-28 12:14:42 -04:00
Christopher Jones
107425c68d docs: fix basic Oracle example issues such as capitalization (#32730)
**Description:** fix capitalization and basic issues in
https://python.langchain.com/docs/integrations/document_loaders/oracleadb_loader/

Signed-off-by: Christopher Jones <christopher.jones@oracle.com>
2025-08-28 10:32:45 -04:00
Tik1993
009cc3bf50 docs(docs): added content= keyword when creating SystemMessage and HumanMessage (#32734)
Description: 
Added the content= keyword when creating SystemMessage and HumanMessage
in the messages list, making it consistent with the API reference.
2025-08-28 10:31:46 -04:00
NOOR UL HUDA
6185558449 docs: replace smart quotes with straight quotes on How-to guides landing page (#32725)
### Summary

This PR updates the sentence on the "How-to guides" landing page to
replace smart (curly) quotes with straight quotes in the phrase:

> "How do I...?"

### Why This Change?

- Ensures formatting consistency across documentation
- Avoids encoding or rendering issues with smart quotes
- Matches standard Markdown and inline code formatting

This is a small change, but improves clarity and polish on a key landing
page.
2025-08-28 10:30:12 -04:00
Kush Goswami
0928ff5b12 docs: fix typo in LangGraph section of Introduction (#32728)
Change "Linkedin" to "LinkedIn" to be consistent with LinkedIn's
spelling.

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-28 10:29:35 -04:00
Sydney Runkle
7f9b0772fc chore(langchain): also bump text splitters (#32722) 2025-08-27 18:09:57 +00:00
Sydney Runkle
d6e618258f chore(langchain): use latest core (#32720) 2025-08-27 14:06:07 -04:00
Sydney Runkle
806bc593ab chore(langchain): revert back to static versioning for now (#32719) 2025-08-27 13:54:41 -04:00
Sydney Runkle
047bcbaa13 release(langchain): v1.0.0a1 (#32718)
Also removing globals usage + static version
2025-08-27 13:46:20 -04:00
Sydney Runkle
18db07c292 feat(langchain): revamped create_react_agent (#32705)
Adding `create_react_agent` and introducing `langchain.agents`!

## Enhanced Structured Output

`create_react_agent` supports coercion of outputs to structured data
types like `pydantic` models, dataclasses, typed dicts, or JSON schemas
specifications.

### Structural Changes

In langgraph < 1.0, `create_react_agent` implemented support for
structured output via an additional LLM call to the model after the
standard model / tool calling loop finished. This introduced extra
expense and was unnecessary.

This new version implements structured output support in the main loop,
allowing a model to choose between calling tools or generating
structured output (or both).

The same basic pattern for structured output generation works:

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent("openai:gpt-4o-mini", tools=[weather_tool], response_format=Weather)
print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

### Advanced Configuration

The new API exposes two ways to configure how structured output is
generated. Under the hood, LangChain will attempt to pick the best
approach if not explicitly specified. That is, if provider native
support is available for a given model, that takes priority over
artificial tool calling.

1. Artificial tool calling (the default for most models)

LangChain generates a tool (or tools) under the hood that match the
schema of your response format. When the model calls those tools,
LangChain coerces the args to the desired format. Note, LangChain does
not validate outputs adhering to JSON schema specifications.

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ToolStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather, tool_message_content="Final Weather result generated"
    ),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_Gg933BMHMwck50Q39dtBjXm7)
 Call ID: call_Gg933BMHMwck50Q39dtBjXm7
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================
Tool Calls:
  Weather (call_9xOkYUM7PuEXl9DQq9sWGv5l)
 Call ID: call_9xOkYUM7PuEXl9DQq9sWGv5l
  Args:
    temperature: 70
    condition: sunny
================================= Tool Message =================================
Name: Weather

Final Weather result generated
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

</details>

2. Provider implementations (limited to OpenAI, Groq)

Some providers support structured output generating directly. For those
cases, we offer the `ProviderStrategy` hint:

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ProviderStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ProviderStrategy(Weather),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_OFJq1FngIXS6cvjWv5nfSFZp)
 Call ID: call_OFJq1FngIXS6cvjWv5nfSFZp
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================

{"temperature":70,"condition":"sunny"}
Weather(temperature=70.0, condition='sunny')
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

Note! The final tool message has the custom content provided by the dev.

</details>

Prompted output was previously supported and is no longer supported via
the `response_format` argument to `create_react_agent`. If there's
significant demand for this, we'd be happy to engineer a solution.

## Error Handling

`create_react_agent` now exposes an API for managing errors associated
with structured output generation. There are two common problems with
structured output generation (w/ artificial tool calling):

1. **Parsing error** -- the model generates data that doesn't match the
desired structure for the output
2. **Multiple tool calls error** -- the model generates 2 or more tool
calls associated with structured output schemas

A developer can control the desired behavior for this via the
`handle_errors` arg to `ToolStrategy`.

<details>
<summary>Extended example</summary>

```py
from langchain_core.messages import HumanMessage
from pydantic import BaseModel

from langchain.agents import create_react_agent
from langchain.agents.structured_output import StructuredOutputValidationError, ToolStrategy


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""
    return f"it's sunny and 70 degrees in {city}"


def handle_validation_error(error: Exception) -> str:
    if isinstance(error, StructuredOutputValidationError):
        return (
            f"Please call the {error.tool_name} call again with the correct arguments. "
            f"Your mistake was: {error.source}"
        )
    raise error


agent = create_react_agent(
    "openai:gpt-5",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather,
        handle_errors=handle_validation_error,
    ),
)
```

</details>

## Error Handling for Tool Calling

Tools fail for two main reasons:

1. **Invocation failure** -- the args generated by the model for the
tool are incorrect (missing, incompatible data types, etc)
2. **Execution failure** -- the tool execution itself fails due to a
developer error, network error, or some other exception.

By default, when tool **invocation** fails, the react agent will return
an artificial `ToolMessage` to the model asking it to correct its
mistakes and retry.

Now, when tool **execution** fails, the react agent raises the
`ToolException` by default instead of asking the model to retry. This
helps to avoid looping that should be avoided due to the aforementioned
issues.

Developers can configure their desired behavior for retries / error
handling via the `handle_tool_errors` arg to `ToolNode`.

## Pre-Bound Models

`create_react_agent` no longer supports inputs to `model` that have been
pre-bound w/ tools or other configuration. To properly support
structured output generation, the agent itself needs the power to bind
tools + structured output kwargs.

This also makes the devx cleaner - it's always expected that `model` is
an instance of `BaseChatModel` (or `str` that we coerce into a chat
model instance).

Dynamic model functions can return a pre-bound model **IF** structured
output is not also used. Dynamic model functions can then bind tools /
structured output logic.

## Import Changes

Users should now use `create_react_agent` from `langchain.agents`
instead of `langgraph.prebuilts`.
Other imports have a similar migration path, `ToolNode` and `AgentState`
for example.

* `chat_agent_executor.py` -> `react_agent.py`

Some notes:
1. Disabled blockbuster + some linting in `langchain/agents` -- beyond
ideal, but necessary to get this across the line for the alpha. We
should re-enable before official release.
2025-08-27 17:32:21 +00:00
637 changed files with 31646 additions and 21814 deletions

View File

@@ -1,6 +1,7 @@
name: "\U0001F41B Bug Report"
description: Report a bug in LangChain. To report a security issue, please instead use the security option below. For questions, please use the LangChain forum.
labels: ["bug"]
type: bug
body:
- type: markdown
attributes:
@@ -13,9 +14,7 @@ body:
if there's another way to solve your problem:
* [LangChain Forum](https://forum.langchain.com/),
* [LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
* [LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
* [LangChain how-to guides](https://python.langchain.com/docs/how_to/),
* [LangChain documentation with the integrated search](https://docs.langchain.com/oss/python/langchain/overview),
* [API Reference](https://python.langchain.com/api_reference/),
* [LangChain ChatBot](https://chat.langchain.com/)
* [GitHub search](https://github.com/langchain-ai/langchain),
@@ -25,7 +24,7 @@ body:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: This is a bug, not a usage question. For questions, please use the LangChain Forum (https://forum.langchain.com/).
- label: This is a bug, not a usage question.
required: true
- label: I added a clear and descriptive title that summarizes this issue.
required: true
@@ -35,6 +34,8 @@ body:
required: true
- label: The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).
required: true
- label: This is not related to the langchain-community package.
required: true
- label: I read what a minimal reproducible example is (https://stackoverflow.com/help/minimal-reproducible-example).
required: true
- label: I posted a self-contained, minimal, reproducible example. A maintainer can copy it and run it AS IS.
@@ -118,3 +119,7 @@ body:
python -m langchain_core.sys_info
validations:
required: true

View File

@@ -1,6 +1,9 @@
blank_issues_enabled: false
version: 2.1
contact_links:
- name: LangChain Forum
url: https://forum.langchain.com/
about: General community discussions, support, and feature requests
- name: 📚 Documentation
url: https://github.com/langchain-ai/docs/issues/new?template=langchain.yml
about: Report an issue related to the LangChain documentation
- name: 💬 LangChain Forum
url: https://forum.langchain.com/
about: General community discussions and support

View File

@@ -1,59 +0,0 @@
name: Documentation
description: Report an issue related to the LangChain documentation.
title: "docs: <Please write a comprehensive title after the 'docs: ' prefix>"
labels: [documentation]
body:
- type: markdown
attributes:
value: |
Thank you for taking the time to report an issue in the documentation.
Only report issues with documentation here, explain if there are
any missing topics or if you found a mistake in the documentation.
Do **NOT** use this to ask usage questions or reporting issues with your code.
If you have usage questions or need help solving some problem,
please use the [LangChain Forum](https://forum.langchain.com/).
If you're in the wrong place, here are some helpful links to find a better
place to ask your question:
* [LangChain Forum](https://forum.langchain.com/),
* [LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
* [LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
* [LangChain how-to guides](https://python.langchain.com/docs/how_to/),
* [API Reference](https://python.langchain.com/api_reference/),
* [LangChain ChatBot](https://chat.langchain.com/)
* [GitHub search](https://github.com/langchain-ai/langchain),
- type: input
id: url
attributes:
label: URL
description: URL to documentation
validations:
required: false
- type: checkboxes
id: checks
attributes:
label: Checklist
description: Please confirm and check all the following options.
options:
- label: I added a very descriptive title to this issue.
required: true
- label: I included a link to the documentation page I am referring to (if applicable).
required: true
- type: textarea
attributes:
label: "Issue with current documentation:"
description: >
Please make sure to leave a reference to the document/code you're
referring to. Feel free to include names of classes, functions, methods
or concepts you'd like to see documented more.
- type: textarea
attributes:
label: "Idea or request for content:"
description: >
Please describe as clearly as possible what topics you think are missing
from the current documentation.

View File

@@ -0,0 +1,118 @@
name: "✨ Feature Request"
description: Request a new feature or enhancement for LangChain. For questions, please use the LangChain forum.
labels: ["feature request"]
type: feature
body:
- type: markdown
attributes:
value: |
Thank you for taking the time to request a new feature.
Use this to request NEW FEATURES or ENHANCEMENTS in LangChain. For bug reports, please use the bug report template. For usage questions and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
Relevant links to check before filing a feature request to see if your request has already been made or
if there's another way to achieve what you want:
* [LangChain Forum](https://forum.langchain.com/),
* [LangChain documentation with the integrated search](https://docs.langchain.com/oss/python/langchain/overview),
* [API Reference](https://python.langchain.com/api_reference/),
* [LangChain ChatBot](https://chat.langchain.com/)
* [GitHub search](https://github.com/langchain-ai/langchain),
- type: checkboxes
id: checks
attributes:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: This is a feature request, not a bug report or usage question.
required: true
- label: I added a clear and descriptive title that summarizes the feature request.
required: true
- label: I used the GitHub search to find a similar feature request and didn't find it.
required: true
- label: I checked the LangChain documentation and API reference to see if this feature already exists.
required: true
- label: This is not related to the langchain-community package.
required: true
- type: textarea
id: feature-description
validations:
required: true
attributes:
label: Feature Description
description: |
Please provide a clear and concise description of the feature you would like to see added to LangChain.
What specific functionality are you requesting? Be as detailed as possible.
placeholder: |
I would like LangChain to support...
This feature would allow users to...
- type: textarea
id: use-case
validations:
required: true
attributes:
label: Use Case
description: |
Describe the specific use case or problem this feature would solve.
Why do you need this feature? What problem does it solve for you or other users?
placeholder: |
I'm trying to build an application that...
Currently, I have to work around this by...
This feature would help me/users to...
- type: textarea
id: proposed-solution
validations:
required: false
attributes:
label: Proposed Solution
description: |
If you have ideas about how this feature could be implemented, please describe them here.
This is optional but can be helpful for maintainers to understand your vision.
placeholder: |
I think this could be implemented by...
The API could look like...
```python
# Example of how the feature might work
```
- type: textarea
id: alternatives
validations:
required: false
attributes:
label: Alternatives Considered
description: |
Have you considered any alternative solutions or workarounds?
What other approaches have you tried or considered?
placeholder: |
I've tried using...
Alternative approaches I considered:
1. ...
2. ...
But these don't work because...
- type: textarea
id: additional-context
validations:
required: false
attributes:
label: Additional Context
description: |
Add any other context, screenshots, examples, or references that would help explain your feature request.
placeholder: |
Related issues: #...
Similar features in other libraries:
- ...
Additional context or examples:
- ...

View File

@@ -4,12 +4,7 @@ body:
- type: markdown
attributes:
value: |
Thanks for your interest in LangChain! 🚀
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead.
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
or are a regular contributor to LangChain with previous merged pull requests.
If you are not a LangChain maintainer, employee, or were not asked directly by a maintainer to create an issue, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead.
- type: checkboxes
id: privileged
attributes:

91
.github/ISSUE_TEMPLATE/task.yml vendored Normal file
View File

@@ -0,0 +1,91 @@
name: "📋 Task"
description: Create a task for project management and tracking by LangChain maintainers. If you are not a maintainer, please use other templates or the forum.
labels: ["task"]
type: task
body:
- type: markdown
attributes:
value: |
Thanks for creating a task to help organize LangChain development.
This template is for **maintainer tasks** such as project management, development planning, refactoring, documentation updates, and other organizational work.
If you are not a LangChain maintainer or were not asked directly by a maintainer to create a task, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead or use the appropriate bug report or feature request templates on the previous page.
- type: checkboxes
id: maintainer
attributes:
label: Maintainer task
description: Confirm that you are allowed to create a task here.
options:
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create a task here.
required: true
- type: textarea
id: task-description
attributes:
label: Task Description
description: |
Provide a clear and detailed description of the task.
What needs to be done? Be specific about the scope and requirements.
placeholder: |
This task involves...
The goal is to...
Specific requirements:
- ...
- ...
validations:
required: true
- type: textarea
id: acceptance-criteria
attributes:
label: Acceptance Criteria
description: |
Define the criteria that must be met for this task to be considered complete.
What are the specific deliverables or outcomes expected?
placeholder: |
This task will be complete when:
- [ ] ...
- [ ] ...
- [ ] ...
validations:
required: true
- type: textarea
id: context
attributes:
label: Context and Background
description: |
Provide any relevant context, background information, or links to related issues/PRs.
Why is this task needed? What problem does it solve?
placeholder: |
Background:
- ...
Related issues/PRs:
- #...
Additional context:
- ...
validations:
required: false
- type: textarea
id: dependencies
attributes:
label: Dependencies
description: |
List any dependencies or blockers for this task.
Are there other tasks, issues, or external factors that need to be completed first?
placeholder: |
This task depends on:
- [ ] Issue #...
- [ ] PR #...
- [ ] External dependency: ...
Blocked by:
- ...
validations:
required: false

View File

@@ -1,3 +1,5 @@
(Replace this entire block of text)
Thank you for contributing to LangChain! Follow these steps to mark your pull request as ready for review. **If any of these steps are not completed, your PR will not be considered for review.**
- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
@@ -9,14 +11,13 @@ Thank you for contributing to LangChain! Follow these steps to mark your pull re
- feat, fix, docs, style, refactor, perf, test, build, ci, chore, revert, release
- Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma, deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant, xai
- Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- *Note:* the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do not include it in the PR.
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
- **Description:** a description of the change. Include a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) if applicable to a relevant issue.
- **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, you must include:
1. A test for the integration, preferably unit tests that do not rely on network access,
@@ -26,7 +27,7 @@ Thank you for contributing to LangChain! Follow these steps to mark your pull re
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Please do not add dependencies to `pyproject.toml` files (even optional ones) unless they are **required** for unit tests.
- Changes should be backwards compatible.
- Make sure optional dependencies are imported within a function.

View File

@@ -121,25 +121,25 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
if job == "codspeed":
py_versions = ["3.12"] # 3.13 is not yet supported
elif dir_ == "libs/core":
py_versions = ["3.10", "3.11", "3.12", "3.13"]
py_versions = ["3.9", "3.10", "3.11", "3.12", "3.13"]
# custom logic for specific directories
elif dir_ == "libs/partners/milvus":
# milvus doesn't allow 3.12 because they declare deps in funny way
py_versions = ["3.10", "3.11"]
py_versions = ["3.9", "3.11"]
elif dir_ in PY_312_MAX_PACKAGES:
py_versions = ["3.10", "3.12"]
py_versions = ["3.9", "3.12"]
elif dir_ == "libs/langchain" and job == "extended-tests":
py_versions = ["3.10", "3.13"]
py_versions = ["3.9", "3.13"]
elif dir_ == "libs/langchain_v1":
py_versions = ["3.10", "3.13"]
elif dir_ == ".":
# unable to install with 3.13 because tokenizers doesn't support 3.13 yet
py_versions = ["3.10", "3.12"]
py_versions = ["3.9", "3.12"]
else:
py_versions = ["3.10", "3.13"]
py_versions = ["3.9", "3.13"]
return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions]

View File

@@ -27,7 +27,7 @@ jobs:
timeout-minutes: 20
name: 'Python ${{ inputs.python-version }}'
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
uses: "./.github/actions/uv_setup"

View File

@@ -28,7 +28,7 @@ jobs:
runs-on: ubuntu-latest
name: 'Python ${{ inputs.python-version }}'
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
uses: "./.github/actions/uv_setup"

View File

@@ -33,7 +33,7 @@ jobs:
timeout-minutes: 20
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
uses: "./.github/actions/uv_setup"

View File

@@ -43,7 +43,7 @@ jobs:
version: ${{ steps.check-version.outputs.version }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
@@ -92,7 +92,7 @@ jobs:
outputs:
release-body: ${{ steps.generate-release-body.outputs.release-body }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
repository: langchain-ai/langchain
path: langchain
@@ -183,13 +183,36 @@ jobs:
needs:
- build
- release-notes
uses:
./.github/workflows/_test_release.yml
permissions: write-all
with:
working-directory: ${{ inputs.working-directory }}
dangerous-nonmaster-release: ${{ inputs.dangerous-nonmaster-release }}
secrets: inherit
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
#
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
steps:
- uses: actions/checkout@v5
- uses: actions/download-artifact@v5
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Publish to test PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
repository-url: https://test.pypi.org/legacy/
# We overwrite any existing distributions with the same name and version.
# This is *only for CI use* and is *extremely dangerous* otherwise!
# https://github.com/pypa/gh-action-pypi-publish#tolerating-release-package-file-duplicates
skip-existing: true
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
attestations: false
pre-release-checks:
needs:
@@ -199,7 +222,7 @@ jobs:
runs-on: ubuntu-latest
timeout-minutes: 20
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
# We explicitly *don't* set up caching here. This ensures our tests are
# maximally sensitive to catching breakage.
@@ -289,7 +312,8 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS --editable .
VIRTUAL_ENV=.venv uv pip install --force-reinstall --editable .
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}
@@ -347,7 +371,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
partner: [openai]
partner: [openai, anthropic]
fail-fast: false # Continue testing other partners if one fails
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
@@ -362,7 +386,7 @@ jobs:
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
# We implement this conditional as Github Actions does not have good support
# for conditionally needing steps. https://github.com/actions/runner/issues/491
@@ -393,7 +417,7 @@ jobs:
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
| awk '{print $2}' \
| sed 's|refs/tags/||' \
| grep -Ev '==[^=]*(\.?dev[0-9]*|\.?rc[0-9]*)$' \
| grep -E '[0-9]+\.[0-9]+\.[0-9]+$' \
| sort -Vr \
| head -n 1
)"
@@ -440,7 +464,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
@@ -479,7 +503,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"

View File

@@ -32,7 +32,7 @@ jobs:
name: 'Python ${{ inputs.python-version }}'
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
uses: "./.github/actions/uv_setup"

View File

@@ -21,7 +21,7 @@ jobs:
name: '🔍 Check Doc Imports (Python ${{ inputs.python-version }})'
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
uses: "./.github/actions/uv_setup"

View File

@@ -34,7 +34,7 @@ jobs:
name: 'Pydantic ~=${{ inputs.pydantic-version }}'
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
uses: "./.github/actions/uv_setup"

View File

@@ -1,106 +0,0 @@
name: '🧪 Test Release Package'
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
dangerous-nonmaster-release:
required: false
type: boolean
default: false
description: "Release from a non-master branch (danger!)"
env:
PYTHON_VERSION: "3.11"
UV_FROZEN: "true"
jobs:
build:
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
runs-on: ubuntu-latest
outputs:
pkg-name: ${{ steps.check-version.outputs.pkg-name }}
version: ${{ steps.check-version.outputs.version }}
steps:
- uses: actions/checkout@v4
- name: '🐍 Set up Python + UV'
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
# The release stage has trusted publishing and GitHub repo contents write access,
# and we want to keep the scope of that access limited just to the release job.
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
# could get access to our GitHub or PyPI credentials.
#
# Per the trusted publishing GitHub Action:
# > It is strongly advised to separate jobs for building [...]
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: '📦 Build Project for Distribution'
run: uv build
working-directory: ${{ inputs.working-directory }}
- name: '⬆️ Upload Build Artifacts'
uses: actions/upload-artifact@v4
with:
name: test-dist
path: ${{ inputs.working-directory }}/dist/
- name: '🔍 Extract Version Information'
id: check-version
shell: python
working-directory: ${{ inputs.working-directory }}
run: |
import os
import tomllib
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pkg_name = data["project"]["name"]
version = data["project"]["version"]
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
f.write(f"pkg-name={pkg_name}\n")
f.write(f"version={version}\n")
publish:
needs:
- build
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
#
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v5
with:
name: test-dist
path: ${{ inputs.working-directory }}/dist/
- name: Publish to test PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
repository-url: https://test.pypi.org/legacy/
# We overwrite any existing distributions with the same name and version.
# This is *only for CI use* and is *extremely dangerous* otherwise!
# https://github.com/pypa/gh-action-pypi-publish#tolerating-release-package-file-duplicates
skip-existing: true
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
attestations: false

View File

@@ -17,10 +17,10 @@ jobs:
permissions:
contents: read
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
path: langchain
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
repository: langchain-ai/langchain-api-docs-html
path: langchain-api-docs-html
@@ -72,7 +72,7 @@ jobs:
done
- name: '🐍 Setup Python ${{ env.PYTHON_VERSION }}'
uses: actions/setup-python@v5
uses: actions/setup-python@v6
id: setup-python
with:
python-version: ${{ env.PYTHON_VERSION }}

View File

@@ -13,7 +13,7 @@ jobs:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: '🟢 Setup Node.js 18.x'
uses: actions/setup-node@v4
with:

View File

@@ -16,19 +16,34 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: '✅ Verify pyproject.toml & version.py Match'
run: |
PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)
VERSION_PY_VERSION=$(grep -Po '(?<=^VERSION = ")[^"]*' libs/core/langchain_core/version.py)
# Check core versions
CORE_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)
CORE_VERSION_PY_VERSION=$(grep -Po '(?<=^VERSION = ")[^"]*' libs/core/langchain_core/version.py)
# Compare the two versions
if [ "$PYPROJECT_VERSION" != "$VERSION_PY_VERSION" ]; then
# Compare core versions
if [ "$CORE_PYPROJECT_VERSION" != "$CORE_VERSION_PY_VERSION" ]; then
echo "langchain-core versions in pyproject.toml and version.py do not match!"
echo "pyproject.toml version: $PYPROJECT_VERSION"
echo "version.py version: $VERSION_PY_VERSION"
echo "pyproject.toml version: $CORE_PYPROJECT_VERSION"
echo "version.py version: $CORE_VERSION_PY_VERSION"
exit 1
else
echo "Versions match: $PYPROJECT_VERSION"
echo "Core versions match: $CORE_PYPROJECT_VERSION"
fi
# Check langchain_v1 versions
LANGCHAIN_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/langchain_v1/pyproject.toml)
LANGCHAIN_INIT_PY_VERSION=$(grep -Po '(?<=^__version__ = ")[^"]*' libs/langchain_v1/langchain/__init__.py)
# Compare langchain_v1 versions
if [ "$LANGCHAIN_PYPROJECT_VERSION" != "$LANGCHAIN_INIT_PY_VERSION" ]; then
echo "langchain_v1 versions in pyproject.toml and __init__.py do not match!"
echo "pyproject.toml version: $LANGCHAIN_PYPROJECT_VERSION"
echo "version.py version: $LANGCHAIN_INIT_PY_VERSION"
exit 1
else
echo "Langchain v1 versions match: $LANGCHAIN_PYPROJECT_VERSION"
fi

View File

@@ -33,9 +33,9 @@ jobs:
if: ${{ !contains(github.event.pull_request.labels.*.name, 'ci-ignore') }}
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
uses: actions/checkout@v5
- name: '🐍 Setup Python 3.11'
uses: actions/setup-python@v5
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: '📂 Get Changed Files'
@@ -54,6 +54,7 @@ jobs:
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
test-doc-imports: ${{ steps.set-matrix.outputs.test-doc-imports }}
test-pydantic: ${{ steps.set-matrix.outputs.test-pydantic }}
codspeed: ${{ steps.set-matrix.outputs.codspeed }}
# Run linting only on packages that have changed files
lint:
needs: [ build ]
@@ -138,7 +139,7 @@ jobs:
run:
working-directory: ${{ matrix.job-configs.working-directory }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ matrix.job-configs.python-version }} + UV'
uses: "./.github/actions/uv_setup"
@@ -166,10 +167,50 @@ jobs:
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'
# Run codspeed benchmarks only on packages that have changed files
codspeed:
name: '⚡ CodSpeed Benchmarks'
needs: [ build ]
if: ${{ needs.build.outputs.codspeed != '[]' && !contains(github.event.pull_request.labels.*.name, 'codspeed-ignore') }}
runs-on: ubuntu-latest
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.codspeed) }}
fail-fast: false
steps:
- uses: actions/checkout@v5
# We have to use 3.12 as 3.13 is not yet supported
- name: '📦 Install UV Package Manager'
uses: astral-sh/setup-uv@v6
with:
python-version: "3.12"
- uses: actions/setup-python@v6
with:
python-version: "3.12"
- name: '📦 Install Test Dependencies'
run: uv sync --group test
working-directory: ${{ matrix.job-configs.working-directory }}
- name: '⚡ Run Benchmarks: ${{ matrix.job-configs.working-directory }}'
uses: CodSpeedHQ/action@v3
with:
token: ${{ secrets.CODSPEED_TOKEN }}
run: |
cd ${{ matrix.job-configs.working-directory }}
if [ "${{ matrix.job-configs.working-directory }}" = "libs/core" ]; then
uv run --no-sync pytest ./tests/benchmarks --codspeed
else
uv run --no-sync pytest ./tests/ --codspeed
fi
mode: ${{ matrix.job-configs.working-directory == 'libs/core' && 'walltime' || 'instrumentation' }}
# Final status check - ensures all required jobs passed before allowing merge
ci_success:
name: '✅ CI Success'
needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports, test-pydantic]
needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports, test-pydantic, codspeed]
if: |
always()
runs-on: ubuntu-latest

View File

@@ -22,8 +22,8 @@ jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
- uses: actions/checkout@v5
- uses: actions/setup-python@v6
with:
python-version: '3.10'
- id: files

View File

@@ -1,66 +0,0 @@
name: '⚡ CodSpeed'
on:
push:
branches:
- master
pull_request:
workflow_dispatch:
permissions:
contents: read
env:
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: foo
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: foo
DEEPSEEK_API_KEY: foo
FIREWORKS_API_KEY: foo
jobs:
codspeed:
name: 'Benchmark'
runs-on: ubuntu-latest
if: ${{ !contains(github.event.pull_request.labels.*.name, 'codspeed-ignore') }}
strategy:
matrix:
include:
- working-directory: libs/core
mode: walltime
- working-directory: libs/partners/openai
- working-directory: libs/partners/anthropic
- working-directory: libs/partners/deepseek
- working-directory: libs/partners/fireworks
- working-directory: libs/partners/xai
- working-directory: libs/partners/mistralai
- working-directory: libs/partners/groq
fail-fast: false
steps:
- uses: actions/checkout@v4
# We have to use 3.12 as 3.13 is not yet supported
- name: '📦 Install UV Package Manager'
uses: astral-sh/setup-uv@v6
with:
python-version: "3.12"
- uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: '📦 Install Test Dependencies'
run: uv sync --group test
working-directory: ${{ matrix.working-directory }}
- name: '⚡ Run Benchmarks: ${{ matrix.working-directory }}'
uses: CodSpeedHQ/action@v3
with:
token: ${{ secrets.CODSPEED_TOKEN }}
run: |
cd ${{ matrix.working-directory }}
if [ "${{ matrix.working-directory }}" = "libs/core" ]; then
uv run --no-sync pytest ./tests/benchmarks --codspeed
else
uv run --no-sync pytest ./tests/ --codspeed
fi
mode: ${{ matrix.mode || 'instrumentation' }}

View File

@@ -19,7 +19,7 @@ jobs:
env:
GITHUB_CONTEXT: ${{ toJson(github) }}
run: echo "$GITHUB_CONTEXT"
- uses: actions/checkout@v4
- uses: actions/checkout@v5
# Ref: https://github.com/actions/runner/issues/2033
- name: '🔧 Fix Git Safe Directory in Container'
run: mkdir -p /home/runner/work/_temp/_github_home && printf "[safe]\n\tdirectory = /github/workspace" > /home/runner/work/_temp/_github_home/.gitconfig

View File

@@ -62,7 +62,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: '✅ Validate Conventional Commits Format'
uses: amannn/action-semantic-pull-request@v5
uses: amannn/action-semantic-pull-request@v6
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:

View File

@@ -26,7 +26,7 @@ jobs:
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
name: '📑 Test Documentation Notebooks'
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: '🐍 Set up Python + UV'
uses: "./.github/actions/uv_setup"
@@ -35,12 +35,12 @@ jobs:
- name: '🔐 Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
uses: google-github-actions/auth@v3
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: '🔐 Configure AWS Credentials'
uses: aws-actions/configure-aws-credentials@v4
uses: aws-actions/configure-aws-credentials@v5
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}

View File

@@ -1,5 +1,5 @@
name: '⏰ Scheduled Integration Tests'
run-name: "Run Integration Tests - ${{ inputs.working-directory-force || 'all libs' }} (Python ${{ inputs.python-version-force || '3.10, 3.13' }})"
run-name: "Run Integration Tests - ${{ inputs.working-directory-force || 'all libs' }} (Python ${{ inputs.python-version-force || '3.9, 3.11' }})"
on:
workflow_dispatch: # Allows maintainers to trigger the workflow manually in GitHub UI
@@ -9,7 +9,7 @@ on:
description: "From which folder this pipeline executes - defaults to all in matrix - example value: libs/partners/anthropic"
python-version-force:
type: string
description: "Python version to use - defaults to 3.10 and 3.13 in matrix - example value: 3.11"
description: "Python version to use - defaults to 3.9 and 3.11 in matrix - example value: 3.9"
schedule:
- cron: '0 13 * * *' # Runs daily at 1PM UTC (9AM EDT/6AM PDT)
@@ -20,7 +20,7 @@ env:
POETRY_VERSION: "1.8.4"
UV_FROZEN: "true"
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
POETRY_LIBS: ("libs/partners/google-vertexai" "libs/partners/google-genai" "libs/partners/aws")
POETRY_LIBS: ("libs/partners/aws")
jobs:
# Generate dynamic test matrix based on input parameters or defaults
@@ -40,9 +40,9 @@ jobs:
PYTHON_VERSION_FORCE: ${{ github.event.inputs.python-version-force || '' }}
run: |
# echo "matrix=..." where matrix is a json formatted str with keys python-version and working-directory
# python-version should default to 3.10 and 3.13, but is overridden to [PYTHON_VERSION_FORCE] if set
# python-version should default to 3.9 and 3.11, but is overridden to [PYTHON_VERSION_FORCE] if set
# working-directory should default to DEFAULT_LIBS, but is overridden to [WORKING_DIRECTORY_FORCE] if set
python_version='["3.10", "3.13"]'
python_version='["3.9", "3.11"]'
working_directory="$DEFAULT_LIBS"
if [ -n "$PYTHON_VERSION_FORCE" ]; then
python_version="[\"$PYTHON_VERSION_FORCE\"]"
@@ -68,14 +68,14 @@ jobs:
working-directory: ${{ fromJSON(needs.compute-matrix.outputs.matrix).working-directory }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
path: langchain
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
repository: langchain-ai/langchain-google
path: langchain-google
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
repository: langchain-ai/langchain-aws
path: langchain-aws
@@ -106,12 +106,12 @@ jobs:
- name: '🔐 Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
uses: google-github-actions/auth@v3
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: '🔐 Configure AWS Credentials'
uses: aws-actions/configure-aws-credentials@v4
uses: aws-actions/configure-aws-credentials@v5
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}

View File

@@ -8,10 +8,8 @@
<br>
</div>
[![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain?style=flat-square)](https://github.com/langchain-ai/langchain/releases)
[![PyPI - License](https://img.shields.io/pypi/l/langchain-core?style=flat-square)](https://opensource.org/licenses/MIT)
[![PyPI - Downloads](https://img.shields.io/pepy/dt/langchain)](https://pypistats.org/packages/langchain-core)
[![GitHub star chart](https://img.shields.io/github/stars/langchain-ai/langchain?style=flat-square)](https://star-history.com/#langchain-ai/langchain)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode&style=flat-square)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
[<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">](https://codespaces.new/langchain-ai/langchain)
[![CodSpeed Badge](https://img.shields.io/endpoint?url=https://codspeed.io/badge.json)](https://codspeed.io/langchain-ai/langchain)

View File

@@ -64,3 +64,4 @@ Notebook | Description
[visual_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/visual_RAG_vdms.ipynb) | Performs Visual Retrieval-Augmented-Generation (RAG) using videos and scene descriptions generated by open source models.
[contextual_rag.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/contextual_rag.ipynb) | Performs contextual retrieval-augmented generation (RAG) prepending chunk-specific explanatory context to each chunk before embedding.
[rag-agents-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/local_rag_agents_intel_cpu.ipynb) | Build a RAG agent locally with open source models that routes questions through one of two paths to find answers. The agent generates answers based on documents retrieved from either the vector database or retrieved from web search. If the vector database lacks relevant information, the agent opts for web search. Open-source models for LLM and embeddings are used locally on an Intel Xeon CPU to execute this pipeline.
[rag_mlflow_tracking_evaluation.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_mlflow_tracking_evaluation.ipynb) | Guide on how to create a RAG pipeline and track + evaluate it with MLflow.

View File

@@ -0,0 +1,455 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "3716230e",
"metadata": {},
"source": [
"# RAG Pipeline with MLflow Tracking, Tracing & Evaluation\n",
"\n",
"This notebook demonstrates how to build a complete Retrieval-Augmented Generation (RAG) pipeline using LangChain and integrate it with MLflow for experiment tracking, tracing, and evaluation.\n",
"\n",
"\n",
"- **RAG Pipeline Construction**: Build a complete RAG system using LangChain components\n",
"- **MLflow Integration**: Track experiments, parameters, and artifacts\n",
"- **Tracing**: Monitor inputs, outputs, retrieved documents, scores, prompts, and timings\n",
"- **Evaluation**: Use MLflow's built-in scorers to assess RAG performance\n",
"- **Best Practices**: Implement proper configuration management and reproducible experiments\n",
"\n",
"We'll build a RAG system that can answer questions about academic papers by:\n",
"1. Loading and chunking documents from ArXiv\n",
"2. Creating embeddings and a vector store\n",
"3. Setting up a retrieval-augmented generation chain\n",
"4. Tracking all experiments with MLflow\n",
"5. Evaluating the system's performance\n",
"\n",
"![System Diagram](https://miro.medium.com/v2/resize:fit:720/format:webp/1*eiw86PP4hrBBxhjTjP0JUQ.png)"
]
},
{
"cell_type": "markdown",
"id": "2f7561c4",
"metadata": {},
"source": [
"#### Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0814ebe9",
"metadata": {},
"outputs": [],
"source": [
"%pip install -U langchain mlflow langchain-community arxiv pymupdf langchain-text-splitters langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "747399b6",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import mlflow\n",
"from mlflow.genai.scorers import RelevanceToQuery, Correctness, ExpectationsGuidelines\n",
"from langchain_community.document_loaders import ArxivLoader\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4141ee05",
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"OPENAI_API_KEY\"] = \"<YOUR OPENAI API KEY>\"\n",
"\n",
"mlflow.set_experiment(\"LangChain-RAG-MLflow\")\n",
"mlflow.langchain.autolog()"
]
},
{
"cell_type": "markdown",
"id": "dd5eb41b",
"metadata": {},
"source": [
"Define all hyperparameters and configuration in a centralized dictionary. This makes it easy to:\n",
"- Track different experiment configurations\n",
"- Reproduce results\n",
"- Perform hyperparameter tuning\n",
"\n",
"**Key Parameters**:\n",
"- `chunk_size`: Size of text chunks for document splitting\n",
"- `chunk_overlap`: Overlap between consecutive chunks\n",
"- `retriever_k`: Number of documents to retrieve\n",
"- `embeddings_model`: OpenAI embedding model\n",
"- `llm`: Language model for generation\n",
"- `temperature`: Sampling temperature for the LLM"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6dcdc5d8",
"metadata": {},
"outputs": [],
"source": [
"CONFIG = {\n",
" \"chunk_size\": 400,\n",
" \"chunk_overlap\": 80,\n",
" \"retriever_k\": 3,\n",
" \"embeddings_model\": \"text-embedding-3-small\",\n",
" \"system_prompt\": \"You are a helpful assistant. Use the following context to answer the question. Use three sentences maximum and keep the answer concise.\",\n",
" \"llm\": \"gpt-5-nano\",\n",
" \"temperature\": 0,\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "8a2985f1",
"metadata": {},
"source": [
"#### ArXiv Dcoument Loading and Processing"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1f32aa36",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'Published': '2023-08-02', 'Title': 'Attention Is All You Need', 'Authors': 'Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin', 'Summary': 'The dominant sequence transduction models are based on complex recurrent or\\nconvolutional neural networks in an encoder-decoder configuration. The best\\nperforming models also connect the encoder and decoder through an attention\\nmechanism. We propose a new simple network architecture, the Transformer, based\\nsolely on attention mechanisms, dispensing with recurrence and convolutions\\nentirely. Experiments on two machine translation tasks show these models to be\\nsuperior in quality while being more parallelizable and requiring significantly\\nless time to train. Our model achieves 28.4 BLEU on the WMT 2014\\nEnglish-to-German translation task, improving over the existing best results,\\nincluding ensembles by over 2 BLEU. On the WMT 2014 English-to-French\\ntranslation task, our model establishes a new single-model state-of-the-art\\nBLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction\\nof the training costs of the best models from the literature. We show that the\\nTransformer generalizes well to other tasks by applying it successfully to\\nEnglish constituency parsing both with large and limited training data.'}\n"
]
}
],
"source": [
"# Load documents from ArXiv\n",
"loader = ArxivLoader(\n",
" query=\"1706.03762\",\n",
" load_max_docs=1,\n",
")\n",
"docs = loader.load()\n",
"print(docs[0].metadata)\n",
"\n",
"# Split documents into chunks\n",
"splitter = RecursiveCharacterTextSplitter(\n",
" chunk_size=CONFIG[\"chunk_size\"],\n",
" chunk_overlap=CONFIG[\"chunk_overlap\"],\n",
")\n",
"chunks = splitter.split_documents(docs)\n",
"\n",
"\n",
"# Join chunks into a single string\n",
"def join_chunks(chunks):\n",
" return \"\\n\\n\".join([chunk.page_content for chunk in chunks])"
]
},
{
"cell_type": "markdown",
"id": "6e194ab4",
"metadata": {},
"source": [
"#### Vector Store and Retriever Setup"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "26dfbeaa",
"metadata": {},
"outputs": [],
"source": [
"# Create embeddings\n",
"embeddings = OpenAIEmbeddings(model=CONFIG[\"embeddings_model\"])\n",
"\n",
"# Create vector store from documents\n",
"vectorstore = InMemoryVectorStore.from_documents(\n",
" chunks,\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Create retriever\n",
"retriever = vectorstore.as_retriever(search_kwargs={\"k\": CONFIG[\"retriever_k\"]})"
]
},
{
"cell_type": "markdown",
"id": "bc1f181b",
"metadata": {},
"source": [
"#### RAG Chain Construction using [LCEL](https://python.langchain.com/docs/concepts/lcel/)\n",
"\n",
"Flow:\n",
"1. Query → Retriever (finds relevant chunks)\n",
"2. Chunks → join_chunks (creates context)\n",
"3. Context + Query → Prompt Template\n",
"4. Prompt → Language Model → Response\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6a810dc3",
"metadata": {},
"outputs": [],
"source": [
"# Initialize the language model\n",
"llm = ChatOpenAI(model=CONFIG[\"llm\"], temperature=CONFIG[\"temperature\"])\n",
"\n",
"# Create the prompt template\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", CONFIG[\"system_prompt\"] + \"\\n\\nContext:\\n{context}\\n\\n\"),\n",
" (\"human\", \"\\n{question}\\n\"),\n",
" ]\n",
")\n",
"\n",
"# Construct the RAG chain\n",
"rag_chain = (\n",
" {\n",
" \"context\": retriever | RunnableLambda(join_chunks),\n",
" \"question\": RunnablePassthrough(),\n",
" }\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "c04bd019",
"metadata": {},
"source": [
"#### Prediction Function with MLflow Tracing\n",
"\n",
"Create a prediction function decorated with `@mlflow.trace` to automatically log:\n",
"- Input queries\n",
"- Retrieved documents\n",
"- Generated responses\n",
"- Execution time\n",
"- Chain intermediate steps"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7b45fc04",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Question: What is the main idea of the paper?\n",
"Response: The main idea is to replace recurrent/convolutional sequence models with a pure attention-based architecture called the Transformer. It uses self-attention to model dependencies between all positions in the input and output, enabling full parallelization and better handling of long-range relations. This approach achieves strong results on translation and can extend to other modalities.\n"
]
}
],
"source": [
"@mlflow.trace\n",
"def predict_fn(question: str) -> str:\n",
" return rag_chain.invoke(question)\n",
"\n",
"\n",
"# Test the prediction function\n",
"sample_question = \"What is the main idea of the paper?\"\n",
"response = predict_fn(sample_question)\n",
"print(f\"Question: {sample_question}\")\n",
"print(f\"Response: {response}\")"
]
},
{
"cell_type": "markdown",
"id": "421469de",
"metadata": {},
"source": [
"#### Evaluation Dataset and Scoring\n",
"\n",
"Define an evaluation dataset and run systematic evaluation using [MLflow's built-in scorers](https://mlflow.org/docs/latest/genai/eval-monitor/scorers/llm-judge/predefined/#available-scorers):\n",
"\n",
"<u>Evaluation Components:</u>\n",
"- **Dataset**: Questions with expected concepts and facts\n",
"- **Scorers**: \n",
" - `RelevanceToQuery`: Measures how relevant the response is to the question\n",
" - `Correctness`: Evaluates factual accuracy of the response\n",
" - `ExpectationsGuidelines`: Checks that output matches expectation guidelines\n",
"\n",
"<u>Best Practices:</u>\n",
"- Create diverse test cases covering different query types\n",
"- Include expected concepts to guide evaluation\n",
"- Use multiple scoring metrics for comprehensive assessment"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5c1dc4f2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2025/08/23 20:14:39 INFO mlflow.models.evaluation.utils.trace: Auto tracing is temporarily enabled during the model evaluation for computing some metrics and debugging. To disable tracing, call `mlflow.autolog(disable=True)`.\n",
"2025/08/23 20:14:39 INFO mlflow.genai.utils.data_validation: Testing model prediction with the first sample in the dataset.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b6c6687efa24796b39c7951d589d481",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating: 0%| | 0/3 [Elapsed: 00:00, Remaining: ?] "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"✨ Evaluation completed.\n",
"\n",
"Metrics and evaluation results are logged to the MLflow run:\n",
" Run name: \u001b[94mbaseline_eval\u001b[0m\n",
" Run ID: \u001b[94ma2218d9f24c9415f8040d3b77af103a9\u001b[0m\n",
"\n",
"To view the detailed evaluation results with sample-wise scores,\n",
"open the \u001b[93m\u001b[1mTraces\u001b[0m tab in the Run page in the MLflow UI.\n",
"\n"
]
}
],
"source": [
"# Define evaluation dataset\n",
"eval_dataset = [\n",
" {\n",
" \"inputs\": {\"question\": \"What is the main idea of the paper?\"},\n",
" \"expectations\": {\n",
" \"key_concepts\": [\"attention mechanism\", \"transformer\", \"neural network\"],\n",
" \"expected_facts\": [\n",
" \"attention mechanism is a key component of the transformer model\"\n",
" ],\n",
" \"guidelines\": [\"The response must be factual and concise\"],\n",
" },\n",
" },\n",
" {\n",
" \"inputs\": {\n",
" \"question\": \"What's the difference between a transformer and a recurrent neural network?\"\n",
" },\n",
" \"expectations\": {\n",
" \"key_concepts\": [\"sequential\", \"attention mechanism\", \"hidden state\"],\n",
" \"expected_facts\": [\n",
" \"transformer processes data in parallel while RNN processes data sequentially\"\n",
" ],\n",
" \"guidelines\": [\n",
" \"The response must be factual and focus on the difference between the two models\"\n",
" ],\n",
" },\n",
" },\n",
" {\n",
" \"inputs\": {\"question\": \"What does the attention mechanism do?\"},\n",
" \"expectations\": {\n",
" \"key_concepts\": [\"query\", \"key\", \"value\", \"relationship\", \"similarity\"],\n",
" \"expected_facts\": [\n",
" \"attention allows the model to weigh the importance of different parts of the input sequence when processing it\"\n",
" ],\n",
" \"guidelines\": [\n",
" \"The response must be factual and explain the concept of attention\"\n",
" ],\n",
" },\n",
" },\n",
"]\n",
"\n",
"# Run evaluation with MLflow\n",
"with mlflow.start_run(run_name=\"baseline_eval\") as run:\n",
" # Log configuration parameters\n",
" mlflow.log_params(CONFIG)\n",
"\n",
" # Run evaluation\n",
" results = mlflow.genai.evaluate(\n",
" data=eval_dataset,\n",
" predict_fn=predict_fn,\n",
" scorers=[RelevanceToQuery(), Correctness(), ExpectationsGuidelines()],\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "52b137c7",
"metadata": {},
"source": [
"#### Launch MLflow UI to check out the results\n",
"\n",
"<u>What you'll see in the UI:</u>\n",
"- **Experiments**: Compare different RAG configurations\n",
"- **Runs**: Individual experiment runs with metrics and parameters\n",
"- **Traces**: Detailed execution traces showing retrieval and generation steps\n",
"- **Evaluation Results**: Scoring metrics and detailed comparisons\n",
"- **Artifacts**: Saved models, datasets, and other files\n",
"\n",
"Navigate to `http://localhost:5000` after running the command below."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "817c3799",
"metadata": {},
"outputs": [],
"source": [
"!mlflow ui"
]
},
{
"cell_type": "markdown",
"id": "c75861e3",
"metadata": {},
"source": [
"You should see something like this\n",
"\n",
"![MLflow UI image](https://miro.medium.com/v2/resize:fit:720/format:webp/1*Cx7MMy53pAP7150x_hvztA.png)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -468,7 +468,7 @@ def _build_rst_file(package_name: str = "langchain") -> None:
"""Create a rst file for building of documentation.
Args:
package_name: Can be either "langchain" or "core" or "experimental".
package_name: Can be either "langchain" or "core"
"""
package_dir = _package_dir(package_name)
package_members = _load_package_modules(package_dir)
@@ -487,7 +487,7 @@ def _package_namespace(package_name: str) -> str:
"""Returns the package name used.
Args:
package_name: Can be either "langchain" or "core" or "experimental".
package_name: Can be either "langchain" or "core"
Returns:
modified package_name: Can be either "langchain" or "langchain_{package_name}"
@@ -550,7 +550,6 @@ def _build_index(dirs: List[str]) -> None:
"langchain",
"text-splitters",
"community",
"experimental",
"standard-tests",
]
main_ = [dir_ for dir_ in ordered if dir_ in dirs]

File diff suppressed because one or more lines are too long

View File

@@ -31,7 +31,7 @@ The conceptual guide does not cover step-by-step instructions or specific implem
- **[Vector stores](/docs/concepts/vectorstores)**: Storage of and efficient search over vectors and associated metadata.
- **[Retriever](/docs/concepts/retrievers)**: A component that returns relevant documents from a knowledge base in response to a query.
- **[Retrieval Augmented Generation (RAG)](/docs/concepts/rag)**: A technique that enhances language models by combining them with external knowledge bases.
- **[Agents](/docs/concepts/agents)**: Use a [language model](/docs/concepts/chat_models) to choose a sequence of actions to take. Agents can interact with external resources via [tool](/docs/concepts/tools).
- **[Agents](/docs/concepts/agents)**: Use a [language model](/docs/concepts/chat_models) to choose a sequence of actions to take. Agents can interact with external resources via [tools](/docs/concepts/tools).
- **[Prompt templates](/docs/concepts/prompt_templates)**: Component for factoring out the static parts of a model "prompt" (usually a sequence of messages). Useful for serializing, versioning, and reusing these static parts.
- **[Output parsers](/docs/concepts/output_parsers)**: Responsible for taking the output of a model and transforming it into a more suitable format for downstream tasks. Output parsers were primarily useful prior to the general availability of [tool calling](/docs/concepts/tool_calling) and [structured outputs](/docs/concepts/structured_outputs).
- **[Few-shot prompting](/docs/concepts/few_shot_prompting)**: A technique for improving model performance by providing a few examples of the task to perform in the prompt.
@@ -48,7 +48,7 @@ The conceptual guide does not cover step-by-step instructions or specific implem
- **[AIMessage](/docs/concepts/messages#aimessage)**: Represents a complete response from an AI model.
- **[astream_events](/docs/concepts/chat_models#key-methods)**: Stream granular information from [LCEL](/docs/concepts/lcel) chains.
- **[BaseTool](/docs/concepts/tools/#tool-interface)**: The base class for all tools in LangChain.
- **[batch](/docs/concepts/runnables)**: Use to execute a runnable with batch inputs.
- **[batch](/docs/concepts/runnables)**: Used to execute a runnable with batch inputs.
- **[bind_tools](/docs/concepts/tool_calling/#tool-binding)**: Allows models to interact with tools.
- **[Caching](/docs/concepts/chat_models#caching)**: Storing results to avoid redundant calls to a chat model.
- **[Chat models](/docs/concepts/multimodality/#multimodality-in-chat-models)**: Chat models that handle multiple data modalities.

View File

@@ -7,4 +7,4 @@ Traces contain individual steps called `runs`. These can be individual calls fro
tool, or sub-chains.
Tracing gives you observability inside your chains and agents, and is vital in diagnosing issues.
For a deeper dive, check out [this LangSmith conceptual guide](https://docs.smith.langchain.com/concepts/tracing).
For a deeper dive, check out [this LangSmith conceptual guide](https://docs.langchain.com/langsmith/observability-quickstart).

View File

@@ -3,9 +3,9 @@
Here are some things to keep in mind for all types of contributions:
- Follow the ["fork and pull request"](https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project) workflow.
- Fill out the checked-in pull request template when opening pull requests. Note related issues and tag relevant maintainers.
- Fill out the checked-in pull request template when opening pull requests. Note related issues.
- Ensure your PR passes formatting, linting, and testing checks before requesting a review.
- If you would like comments or feedback on your current progress, please open an issue or discussion and tag a maintainer.
- If you would like comments or feedback on your current progress, please open an issue or discussion.
- See the sections on [Testing](setup.mdx#testing) and [Formatting and Linting](setup.mdx#formatting-and-linting) for how to run these checks locally.
- Backwards compatibility is key. Your changes must not be breaking, except in case of critical bug and security fixes.
- Look for duplicate PRs or issues that have already been opened before opening a new one.

View File

@@ -79,7 +79,7 @@ Here are some high-level tips on writing a good how-to guide:
### Conceptual guide
LangChain's conceptual guide falls under the **Explanation** quadrant of Diataxis. These guides should cover LangChain terms and concepts
LangChain's conceptual guides fall under the **Explanation** quadrant of Diataxis. These guides should cover LangChain terms and concepts
in a more abstract way than how-to guides or tutorials, targeting curious users interested in
gaining a deeper understanding and insights of the framework. Try to avoid excessively large code examples as the primary goal is to
provide perspective to the user rather than to finish a practical project. These guides should cover **why** things work the way they do.
@@ -105,7 +105,7 @@ Here are some high-level tips on writing a good conceptual guide:
### References
References contain detailed, low-level information that describes exactly what functionality exists and how to use it.
In LangChain, this is mainly our API reference pages, which are populated from docstrings within code.
In LangChain, these are mainly our API reference pages, which are populated from docstrings within code.
References pages are generally not read end-to-end, but are consulted as necessary when a user needs to know
how to use something specific.
@@ -119,7 +119,7 @@ but here are some high-level tips on writing a good docstring:
- Be concise
- Discuss special cases and deviations from a user's expectations
- Go into detail on required inputs and outputs
- Light details on when one might use the feature are fine, but in-depth details belong in other sections.
- Light details on when one might use the feature are fine, but in-depth details belong in other sections
Each category serves a distinct purpose and requires a specific approach to writing and structuring the content.
@@ -127,17 +127,17 @@ Each category serves a distinct purpose and requires a specific approach to writ
Here are some other guidelines you should think about when writing and organizing documentation.
We generally do not merge new tutorials from outside contributors without an actue need.
We generally do not merge new tutorials from outside contributors without an acute need.
We welcome updates as well as new integration docs, how-tos, and references.
### Avoid duplication
Multiple pages that cover the same material in depth are difficult to maintain and cause confusion. There should
be only one (very rarely two), canonical pages for a given concept or feature. Instead, you should link to other guides.
be only one (very rarely two) canonical pages for a given concept or feature. Instead, you should link to other guides.
### Link to other sections
Because sections of the docs do not exist in a vacuum, it is important to link to other sections frequently,
Because sections of the docs do not exist in a vacuum, it is important to link to other sections frequently
to allow a developer to learn more about an unfamiliar topic within the flow of reading.
This includes linking to the API references and conceptual sections!

View File

@@ -33,7 +33,7 @@ Sometimes you want to make a small change, like fixing a typo, and the easiest w
- Click the "Commit changes..." button at the top-right corner of the page.
- Give your commit a title like "Fix typo in X section."
- Optionally, write an extended commit description.
- Click "Propose changes"
- Click "Propose changes".
5. **Submit a pull request (PR):**
- GitHub will redirect you to a page where you can create a pull request.

View File

@@ -5,7 +5,7 @@ sidebar_class_name: hidden
# How-to guides
Here youll find answers to How do I….? types of questions.
Here youll find answers to "How do I….?" types of questions.
These guides are *goal-oriented* and *concrete*; they're meant to help you complete a specific task.
For conceptual explanations see the [Conceptual guide](/docs/concepts/).
For end-to-end walkthroughs see [Tutorials](/docs/tutorials).

View File

@@ -61,7 +61,7 @@
" * document addition by id (`add_documents` method with `ids` argument)\n",
" * delete by id (`delete` method with `ids` argument)\n",
"\n",
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `AzureSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MongoDBAtlasVectorSearch`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SingleStoreDB`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
"Compatible Vectorstores: `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `AzureSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MongoDBAtlasVectorSearch`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SingleStoreDB`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
" \n",
"## Caution\n",
"\n",

View File

@@ -58,7 +58,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 10,
"id": "1fcf7b27-1cc3-420a-b920-0420b5892e20",
"metadata": {},
"outputs": [
@@ -102,7 +102,7 @@
" ],\n",
"}\n",
"response = llm.invoke([message])\n",
"print(response.text)"
"print(response.text())"
]
},
{
@@ -133,7 +133,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "99d27f8f-ae78-48bc-9bf2-3cef35213ec7",
"metadata": {},
"outputs": [
@@ -163,7 +163,7 @@
" ],\n",
"}\n",
"response = llm.invoke([message])\n",
"print(response.text)"
"print(response.text())"
]
},
{
@@ -176,7 +176,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "325fb4ca",
"metadata": {},
"outputs": [
@@ -198,7 +198,7 @@
" ],\n",
"}\n",
"response = llm.invoke([message])\n",
"print(response.text)"
"print(response.text())"
]
},
{
@@ -234,7 +234,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "6c1455a9-699a-4702-a7e0-7f6eaec76a21",
"metadata": {},
"outputs": [
@@ -284,7 +284,7 @@
" ],\n",
"}\n",
"response = llm.invoke([message])\n",
"print(response.text)"
"print(response.text())"
]
},
{
@@ -312,7 +312,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "55e1d937-3b22-4deb-b9f0-9e688f0609dc",
"metadata": {},
"outputs": [
@@ -342,7 +342,7 @@
" ],\n",
"}\n",
"response = llm.invoke([message])\n",
"print(response.text)"
"print(response.text())"
]
},
{
@@ -417,7 +417,7 @@
" ],\n",
"}\n",
"response = llm.invoke([message])\n",
"print(response.text)"
"print(response.text())"
]
},
{
@@ -443,7 +443,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "83593b9d-a8d3-4c99-9dac-64e0a9d397cb",
"metadata": {},
"outputs": [
@@ -488,13 +488,13 @@
" ],\n",
"}\n",
"response = llm.invoke([message])\n",
"print(response.text)\n",
"print(response.text())\n",
"response.usage_metadata"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "9bbf578e-794a-4dc0-a469-78c876ccd4a3",
"metadata": {},
"outputs": [
@@ -530,7 +530,7 @@
" ],\n",
"}\n",
"response = llm.invoke([message, response, next_message])\n",
"print(response.text)\n",
"print(response.text())\n",
"response.usage_metadata"
]
},
@@ -600,7 +600,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"id": "ae076c9b-ff8f-461d-9349-250f396c9a25",
"metadata": {},
"outputs": [
@@ -641,7 +641,7 @@
" ],\n",
"}\n",
"response = llm.invoke([message])\n",
"print(response.text)"
"print(response.text())"
]
},
{

View File

@@ -54,7 +54,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "5df2e558-321d-4cf7-994e-2815ac37e704",
"metadata": {},
"outputs": [
@@ -75,7 +75,7 @@
"\n",
"chain = prompt | llm\n",
"response = chain.invoke({\"image_url\": url})\n",
"print(response.text)"
"print(response.text())"
]
},
{
@@ -117,7 +117,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "25e4829e-0073-49a8-9669-9f43e5778383",
"metadata": {},
"outputs": [
@@ -144,7 +144,7 @@
" \"cache_type\": \"ephemeral\",\n",
" }\n",
")\n",
"print(response.text)"
"print(response.text())"
]
},
{

View File

@@ -55,7 +55,7 @@
"source": [
"## Defining tool schemas\n",
"\n",
"For a model to be able to call tools, we need to pass in tool schemas that describe what the tool does and what it's arguments are. Chat models that support tool calling features implement a `.bind_tools()` method for passing tool schemas to the model. Tool schemas can be passed in as Python functions (with typehints and docstrings), Pydantic models, TypedDict classes, or LangChain [Tool objects](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.base.BaseTool.html#basetool). Subsequent invocations of the model will pass in these tool schemas along with the prompt.\n",
"For a model to be able to call tools, we need to pass in tool schemas that describe what the tool does and what its arguments are. Chat models that support tool calling features implement a `.bind_tools()` method for passing tool schemas to the model. Tool schemas can be passed in as Python functions (with typehints and docstrings), Pydantic models, TypedDict classes, or LangChain [Tool objects](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.base.BaseTool.html#basetool). Subsequent invocations of the model will pass in these tool schemas along with the prompt.\n",
"\n",
"### Python functions\n",
"Our tool schemas can be Python functions:"

View File

@@ -7,10 +7,7 @@
"source": [
"# Confident\n",
"\n",
">[DeepEval](https://confident-ai.com) package for unit testing LLMs.\n",
"> Using Confident, everyone can build robust language models through faster iterations\n",
"> using both unit testing and integration testing. We provide support for each step in the iteration\n",
"> from synthetic data creation to testing.\n"
">[DeepEval](https://confident-ai.com) package for unit testing LLMs."
]
},
{
@@ -42,7 +39,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai langchain-community deepeval langchain-chroma"
"!pip install deepeval langchain langchain-openai"
]
},
{
@@ -64,11 +61,29 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">🎉🥳 Congratulations! You've successfully logged in! 🙌 \n",
"</pre>\n"
],
"text/plain": [
"🎉🥳 Congratulations! You've successfully logged in! 🙌 \n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"!deepeval login"
"import os\n",
"import deepeval\n",
"\n",
"api_key = os.getenv(\"DEEPEVAL_API_KEY\")\n",
"deepeval.login(api_key)"
]
},
{
@@ -76,12 +91,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup DeepEval\n",
"### Setup Confident AI Callback (Modern)\n",
"\n",
"You can, by default, use the `DeepEvalCallbackHandler` to set up the metrics you want to track. However, this has limited support for metrics at the moment (more to be added soon). It currently supports:\n",
"- [Answer Relevancy](https://docs.confident-ai.com/docs/measuring_llm_performance/answer_relevancy)\n",
"- [Bias](https://docs.confident-ai.com/docs/measuring_llm_performance/debias)\n",
"- [Toxicness](https://docs.confident-ai.com/docs/measuring_llm_performance/non_toxic)"
"The previous DeepEvalCallbackHandler and metric tracking are deprecated. Please use the new integration below."
]
},
{
@@ -90,10 +102,15 @@
"metadata": {},
"outputs": [],
"source": [
"from deepeval.metrics.answer_relevancy import AnswerRelevancy\n",
"from deepeval.integrations.langchain import CallbackHandler\n",
"\n",
"# Here we want to make sure the answer is minimally relevant\n",
"answer_relevancy_metric = AnswerRelevancy(minimum_score=0.5)"
"handler = CallbackHandler(\n",
" name=\"My Trace\",\n",
" tags=[\"production\", \"v1\"],\n",
" metadata={\"experiment\": \"A/B\"},\n",
" thread_id=\"thread-123\",\n",
" user_id=\"user-456\",\n",
")"
]
},
{
@@ -103,186 +120,11 @@
"source": [
"## Get Started"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"To use the `DeepEvalCallbackHandler`, we need the `implementation_name`. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.callbacks.confident_callback import DeepEvalCallbackHandler\n",
"\n",
"deepeval_callback = DeepEvalCallbackHandler(\n",
" implementation_name=\"langchainQuickstart\", metrics=[answer_relevancy_metric]\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scenario 1: Feeding into LLM\n",
"\n",
"You can then feed it into your LLM with OpenAI."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LLMResult(generations=[[Generation(text='\\n\\nQ: What did the fish say when he hit the wall? \\nA: Dam.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\\n\\nThe Moon \\n\\nThe moon is high in the midnight sky,\\nSparkling like a star above.\\nThe night so peaceful, so serene,\\nFilling up the air with love.\\n\\nEver changing and renewing,\\nA never-ending light of grace.\\nThe moon remains a constant view,\\nA reminder of lifes gentle pace.\\n\\nThrough time and space it guides us on,\\nA never-fading beacon of hope.\\nThe moon shines down on us all,\\nAs it continues to rise and elope.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\\n\\nQ. What did one magnet say to the other magnet?\\nA. \"I find you very attractive!\"', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text=\"\\n\\nThe world is charged with the grandeur of God.\\nIt will flame out, like shining from shook foil;\\nIt gathers to a greatness, like the ooze of oil\\nCrushed. Why do men then now not reck his rod?\\n\\nGenerations have trod, have trod, have trod;\\nAnd all is seared with trade; bleared, smeared with toil;\\nAnd wears man's smudge and shares man's smell: the soil\\nIs bare now, nor can foot feel, being shod.\\n\\nAnd for all this, nature is never spent;\\nThere lives the dearest freshness deep down things;\\nAnd though the last lights off the black West went\\nOh, morning, at the brown brink eastward, springs —\\n\\nBecause the Holy Ghost over the bent\\nWorld broods with warm breast and with ah! bright wings.\\n\\n~Gerard Manley Hopkins\", generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\\n\\nQ: What did one ocean say to the other ocean?\\nA: Nothing, they just waved.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text=\"\\n\\nA poem for you\\n\\nOn a field of green\\n\\nThe sky so blue\\n\\nA gentle breeze, the sun above\\n\\nA beautiful world, for us to love\\n\\nLife is a journey, full of surprise\\n\\nFull of joy and full of surprise\\n\\nBe brave and take small steps\\n\\nThe future will be revealed with depth\\n\\nIn the morning, when dawn arrives\\n\\nA fresh start, no reason to hide\\n\\nSomewhere down the road, there's a heart that beats\\n\\nBelieve in yourself, you'll always succeed.\", generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {'completion_tokens': 504, 'total_tokens': 528, 'prompt_tokens': 24}, 'model_name': 'text-davinci-003'})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(\n",
" temperature=0,\n",
" callbacks=[deepeval_callback],\n",
" verbose=True,\n",
" openai_api_key=\"<YOUR_API_KEY>\",\n",
")\n",
"output = llm.generate(\n",
" [\n",
" \"What is the best evaluation tool out there? (no bias at all)\",\n",
" ]\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"You can then check the metric if it was successful by calling the `is_successful()` method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"answer_relevancy_metric.is_successful()\n",
"# returns True/False"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Once you have ran that, you should be able to see our dashboard below. \n",
"\n",
"![Dashboard](https://docs.confident-ai.com/assets/images/dashboard-screenshot-b02db73008213a211b1158ff052d969e.png)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scenario 2: Tracking an LLM in a chain without callbacks\n",
"\n",
"To track an LLM in a chain without callbacks, you can plug into it at the end.\n",
"\n",
"We can start by defining a simple chain as shown below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"from langchain.chains import RetrievalQA\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",
"text_file_url = \"https://raw.githubusercontent.com/hwchase17/chat-your-data/master/state_of_the_union.txt\"\n",
"\n",
"openai_api_key = \"sk-XXX\"\n",
"\n",
"with open(\"state_of_the_union.txt\", \"w\") as f:\n",
" response = requests.get(text_file_url)\n",
" f.write(response.text)\n",
"\n",
"loader = TextLoader(\"state_of_the_union.txt\")\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)\n",
"docsearch = Chroma.from_documents(texts, embeddings)\n",
"\n",
"qa = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(openai_api_key=openai_api_key),\n",
" chain_type=\"stuff\",\n",
" retriever=docsearch.as_retriever(),\n",
")\n",
"\n",
"# Providing a new question-answering pipeline\n",
"query = \"Who is the president?\"\n",
"result = qa.run(query)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"After defining a chain, you can then manually check for answer similarity."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"answer_relevancy_metric.measure(result, query)\n",
"answer_relevancy_metric.is_successful()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### What's next?\n",
"\n",
"You can create your own custom metrics [here](https://docs.confident-ai.com/docs/quickstart/custom-metrics). \n",
"\n",
"DeepEval also offers other features such as being able to [automatically create unit tests](https://docs.confident-ai.com/docs/quickstart/synthetic-data-creation), [tests for hallucination](https://docs.confident-ai.com/docs/measuring_llm_performance/factual_consistency).\n",
"\n",
"If you are interested, check out our Github repository here [https://github.com/confident-ai/deepeval](https://github.com/confident-ai/deepeval). We welcome any PRs and discussions on how to improve LLM performance."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "langchain",
"language": "python",
"name": "python3"
},
@@ -296,12 +138,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"vscode": {
"interpreter": {
"hash": "a53ebf4a859167383b364e7e7521d0add3c2dbbdecce4edf676e8c4634ff3fbb"
}
"version": "3.12.11"
}
},
"nbformat": 4,

View File

@@ -970,8 +970,8 @@
"source": [
"### In tool results (agentic RAG)\n",
"\n",
":::info Requires ``langchain-anthropic>=0.3.17``\n",
"\n",
":::info\n",
"Requires ``langchain-anthropic>=0.3.17``\n",
":::\n",
"\n",
"Claude supports a [search_result](https://docs.anthropic.com/en/docs/build-with-claude/search-results) content block representing citable results from queries against a knowledge base or other custom source. These content blocks can be passed to claude both top-line (as in the above example) and within a tool result. This allows Claude to cite elements of its response using the result of a tool call.\n",
@@ -998,8 +998,6 @@
" ]\n",
"```\n",
"\n",
"We also need to specify the `search-results-2025-06-09` beta when instantiating ChatAnthropic. You can see an end-to-end example below.\n",
"\n",
"<details>\n",
"<summary>End to end example with LangGraph</summary>\n",
"\n",
@@ -1292,6 +1290,58 @@
"print(f\"Key Points: {result.key_points}\")"
]
},
{
"cell_type": "markdown",
"id": "c580c20a",
"metadata": {},
"source": [
"### Web fetching\n",
"\n",
"Claude can use a [web fetching tool](https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/web-fetch-tool) to run searches and ground its responses with citations."
]
},
{
"cell_type": "markdown",
"id": "5cf6ad08",
"metadata": {},
"source": [
":::info\n",
"Web search tool is supported since ``langchain-anthropic>=0.3.20``\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4804be1",
"metadata": {},
"outputs": [],
"source": [
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-3-5-haiku-latest\",\n",
" betas=[\"web-fetch-2025-09-10\"], # Enable web fetch beta\n",
")\n",
"\n",
"tool = {\"type\": \"web_fetch_20250910\", \"name\": \"web_fetch\", \"max_uses\": 3}\n",
"llm_with_tools = llm.bind_tools([tool])\n",
"\n",
"response = llm_with_tools.invoke(\n",
" \"Please analyze the content at https://example.com/article\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "088c41d0",
"metadata": {},
"source": [
":::warning\n",
"Note: you must add the `'web-fetch-2025-09-10'` beta header to use this tool.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "1478cdc6-2e52-4870-80f9-b4ddf88f2db2",
@@ -1301,14 +1351,14 @@
"\n",
"Claude can use a [code execution tool](https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/code-execution-tool) to execute Python code in a sandboxed environment.\n",
"\n",
":::info Code execution is supported since ``langchain-anthropic>=0.3.14``\n",
"\n",
":::info\n",
"Code execution is supported since ``langchain-anthropic>=0.3.14``\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "2ce13632-a2da-439f-a429-f66481501630",
"metadata": {},
"outputs": [],
@@ -1317,7 +1367,7 @@
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-sonnet-4-20250514\",\n",
" betas=[\"code-execution-2025-05-22\"],\n",
" betas=[\"code-execution-2025-05-22\"], # Enable code execution beta\n",
")\n",
"\n",
"tool = {\"type\": \"code_execution_20250522\", \"name\": \"code_execution\"}\n",
@@ -1328,6 +1378,16 @@
")"
]
},
{
"cell_type": "markdown",
"id": "a6b5e15a",
"metadata": {},
"source": [
":::warning\n",
"Note: you must add the `'code_execution_20250522'` beta header to use this tool.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "24076f91-3a3d-4e53-9618-429888197061",
@@ -1406,14 +1466,14 @@
"\n",
"Claude can use a [MCP connector tool](https://docs.anthropic.com/en/docs/agents-and-tools/mcp-connector) for model-generated calls to remote MCP servers.\n",
"\n",
":::info Remote MCP is supported since ``langchain-anthropic>=0.3.14``\n",
"\n",
":::info\n",
"Remote MCP is supported since ``langchain-anthropic>=0.3.14``\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "22fc4a89-e6d8-4615-96cb-2e117349aebf",
"metadata": {},
"outputs": [],
@@ -1425,17 +1485,17 @@
" \"type\": \"url\",\n",
" \"url\": \"https://mcp.deepwiki.com/mcp\",\n",
" \"name\": \"deepwiki\",\n",
" \"tool_configuration\": { # optional configuration\n",
" \"tool_configuration\": { # Optional configuration\n",
" \"enabled\": True,\n",
" \"allowed_tools\": [\"ask_question\"],\n",
" },\n",
" \"authorization_token\": \"PLACEHOLDER\", # optional authorization\n",
" \"authorization_token\": \"PLACEHOLDER\", # Optional authorization\n",
" }\n",
"]\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-sonnet-4-20250514\",\n",
" betas=[\"mcp-client-2025-04-04\"],\n",
" betas=[\"mcp-client-2025-04-04\"], # Enable MCP beta\n",
" mcp_servers=mcp_servers,\n",
")\n",
"\n",
@@ -1445,6 +1505,16 @@
")"
]
},
{
"cell_type": "markdown",
"id": "0d6d7197",
"metadata": {},
"source": [
":::warning\n",
"Note: you must add the `'mcp-client-2025-04-04'` beta header to use this tool.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "2fd5d545-a40d-42b1-ad0c-0a79e2536c9b",
@@ -1457,7 +1527,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "30a0af36-2327-4b1d-9ba5-e47cb72db0be",
"metadata": {},
"outputs": [
@@ -1493,7 +1563,7 @@
"response = llm_with_tools.invoke(\n",
" \"There's a syntax error in my primes.py file. Can you help me fix it?\"\n",
")\n",
"print(response.text)\n",
"print(response.text())\n",
"response.tool_calls"
]
},

View File

@@ -243,12 +243,12 @@
"id": "0ef05abb-9c04-4dc3-995e-f857779644d5",
"metadata": {},
"source": [
"You can filter to text using the [.text](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.text) property on the output:"
"You can filter to text using the [.text()](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.text) method on the output:"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"id": "2a4e743f-ea7d-4e5a-9b12-f9992362de8b",
"metadata": {},
"outputs": [
@@ -262,7 +262,7 @@
],
"source": [
"for chunk in llm.stream(messages):\n",
" print(chunk.text, end=\"|\")"
" print(chunk.text(), end=\"|\")"
]
},
{

View File

@@ -261,7 +261,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
"metadata": {
"colab": {
@@ -286,7 +286,7 @@
],
"source": [
"async for token in llm.astream(\"Hello, please explain how antibiotics work\"):\n",
" print(token.text, end=\"\")"
" print(token.text(), end=\"\")"
]
},
{

View File

@@ -814,7 +814,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "1f758726-33ef-4c04-8a54-49adb783bbb3",
"metadata": {},
"outputs": [
@@ -860,7 +860,7 @@
"llm_with_tools = llm.bind_tools([tool])\n",
"\n",
"response = llm_with_tools.invoke(\"What is deep research by OpenAI?\")\n",
"print(response.text)"
"print(response.text())"
]
},
{
@@ -1151,7 +1151,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 8,
"id": "073f6010-6b0e-4db6-b2d3-7427c8dec95b",
"metadata": {},
"outputs": [
@@ -1167,7 +1167,7 @@
}
],
"source": [
"response_2.text"
"response_2.text()"
]
},
{
@@ -1198,7 +1198,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 10,
"id": "b6da5bd6-a44a-4c64-970b-30da26b003d6",
"metadata": {},
"outputs": [
@@ -1214,7 +1214,7 @@
}
],
"source": [
"response_2.text"
"response_2.text()"
]
},
{
@@ -1404,7 +1404,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "51d3e4d3-ea78-426c-9205-aecb0937fca7",
"metadata": {},
"outputs": [
@@ -1428,13 +1428,13 @@
"messages = [{\"role\": \"user\", \"content\": first_query}]\n",
"\n",
"response = llm_with_tools.invoke(messages)\n",
"response_text = response.text\n",
"response_text = response.text()\n",
"print(f\"{response_text[:100]}... {response_text[-100:]}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "b248bedf-2050-4c17-a90e-3a26eeb1b055",
"metadata": {},
"outputs": [
@@ -1460,7 +1460,7 @@
" ]\n",
")\n",
"second_response = llm_with_tools.invoke(messages)\n",
"print(second_response.text)"
"print(second_response.text())"
]
},
{
@@ -1482,7 +1482,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "009e541a-b372-410e-b9dd-608a8052ce09",
"metadata": {},
"outputs": [
@@ -1502,12 +1502,12 @@
" output_version=\"responses/v1\",\n",
")\n",
"response = llm.invoke(\"Hi, I'm Bob.\")\n",
"print(response.text)"
"print(response.text())"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "393a443a-4c5f-4a07-bc0e-c76e529b35e3",
"metadata": {},
"outputs": [
@@ -1524,7 +1524,7 @@
" \"What is my name?\",\n",
" previous_response_id=response.response_metadata[\"id\"],\n",
")\n",
"print(second_response.text)"
"print(second_response.text())"
]
},
{
@@ -1589,7 +1589,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "8d322f3a-0732-45ab-ac95-dfd4596e0d85",
"metadata": {},
"outputs": [
@@ -1616,7 +1616,7 @@
"response = llm.invoke(\"What is 3^3?\")\n",
"\n",
"# Output\n",
"response.text"
"response.text()"
]
},
{

View File

@@ -2,67 +2,91 @@
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"# Oracle Autonomous Database\n",
"\n",
"Oracle autonomous database is a cloud database that uses machine learning to automate database tuning, security, backups, updates, and other routine management tasks traditionally performed by DBAs.\n",
"Oracle Autonomous Database is a cloud database that uses machine learning to automate database tuning, security, backups, updates, and other routine management tasks traditionally performed by DBAs.\n",
"\n",
"This notebook covers how to load documents from oracle autonomous database, the loader supports connection with connection string or tns configuration.\n",
"This notebook covers how to load documents from Oracle Autonomous Database.\n",
"\n",
"## Prerequisites\n",
"1. Database runs in a 'Thin' mode:\n",
" https://python-oracledb.readthedocs.io/en/latest/user_guide/appendix_b.html\n",
"2. `pip install oracledb`:\n",
" https://python-oracledb.readthedocs.io/en/latest/user_guide/installation.html"
],
"metadata": {
"collapsed": false
}
"1. Install python-oracledb:\n",
"\n",
" `pip install oracledb`\n",
" \n",
" See [Installing python-oracledb](https://python-oracledb.readthedocs.io/en/latest/user_guide/installation.html).\n",
"\n",
"2. A database that python-oracledb's default 'Thin' mode can connected to. This is true of Oracle Autonomous Database, see [python-oracledb Architecture](https://python-oracledb.readthedocs.io/en/latest/user_guide/introduction.html#architecture).\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Instructions"
],
"metadata": {
"collapsed": false
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"pip install oracledb"
],
"metadata": {
"collapsed": false
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"from langchain_community.document_loaders import OracleAutonomousDatabaseLoader\n",
"from settings import s"
],
"metadata": {
"collapsed": false
}
]
},
{
"cell_type": "markdown",
"source": [
"With mutual TLS authentication (mTLS), wallet_location and wallet_password are required to create the connection, user can create connection by providing either connection string or tns configuration details."
],
"metadata": {
"collapsed": false
}
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"With mutual TLS authentication (mTLS), wallet_location and wallet_password parameters are required to create the connection. See python-oracledb documentation [Connecting to Oracle Cloud Autonomous Databases](https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html#connecting-to-oracle-cloud-autonomous-databases)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"SQL_QUERY = \"select prod_id, time_id from sh.costs fetch first 5 rows only\"\n",
@@ -89,24 +113,30 @@
" wallet_password=s.PASSWORD,\n",
")\n",
"doc_2 = doc_loader_2.load()"
],
"metadata": {
"collapsed": false
}
]
},
{
"cell_type": "markdown",
"source": [
"With TLS authentication, wallet_location and wallet_password are not required.\n",
"Bind variable option is provided by argument \"parameters\"."
],
"metadata": {
"collapsed": false
}
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"With 1-way TLS authentication, only the database credentials and connection string are required to establish a connection.\n",
"The example below also shows passing bind variable values with the argument \"parameters\"."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"SQL_QUERY = \"select channel_id, channel_desc from sh.channels where channel_desc = :1 fetch first 5 rows only\"\n",
@@ -131,31 +161,28 @@
" parameters=[\"Direct Sales\"],\n",
")\n",
"doc_4 = doc_loader_4.load()"
],
"metadata": {
"collapsed": false
}
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
"nbformat_minor": 4
}

View File

@@ -1,26 +0,0 @@
# Aerospike
>[Aerospike](https://aerospike.com/docs/vector) is a high-performance, distributed database known for its speed and scalability, now with support for vector storage and search, enabling retrieval and search of embedding vectors for machine learning and AI applications.
> See the documentation for Aerospike Vector Search (AVS) [here](https://aerospike.com/docs/vector).
## Installation and Setup
Install the AVS Python SDK and AVS langchain vector store:
```bash
pip install aerospike-vector-search langchain-aerospike
```
See the documentation for the Python SDK [here](https://aerospike-vector-search-python-client.readthedocs.io/en/latest/index.html).
The documentation for the AVS langchain vector store is [here](https://langchain-aerospike.readthedocs.io/en/latest/).
## Vector Store
To import this vectorstore:
```python
from langchain_aerospike.vectorstores import Aerospike
```
See a usage example [here](https://python.langchain.com/docs/integrations/vectorstores/aerospike/).

View File

@@ -21,6 +21,38 @@ pip install deepeval
See an [example](/docs/integrations/callbacks/confident).
```python
from langchain.callbacks.confident_callback import DeepEvalCallbackHandler
## Modern Integration Example
Install the required packages:
```bash
pip install deepeval langchain langchain-openai
```
Authenticate with your API key:
```python
import os
import deepeval
# Load API key from environment variable for security
api_key = os.environ.get("DEEPEVAL_API_KEY")
deepeval.login(api_key)
```
Use the new callback handler:
```python
from deepeval.integrations.langchain import CallbackHandler
handler = CallbackHandler(
name="My Trace",
tags=["production", "v1"],
metadata={"experiment": "A/B"},
thread_id="thread-123",
user_id="user-456"
)
```
See the [full example](/docs/integrations/callbacks/confident).

View File

@@ -77,7 +77,7 @@ from langchain_ibm import WatsonxRerank
See a [usage example](/docs/integrations/tools/ibm_watsonx).
```python
from langchain_ibm import WatsonxToolkit
from langchain_ibm.agent_toolkits.utility import WatsonxToolkit
```
## DB2

View File

@@ -40,11 +40,11 @@ embeddings.embed_query("What is the meaning of life?")
```
## LLMs
`ModelScopeLLM` class exposes LLMs from ModelScope.
`ModelScopeEndpoint` class exposes LLMs from ModelScope.
```python
from langchain_modelscope import ModelScopeLLM
from langchain_modelscope import ModelScopeEndpoint
llm = ModelScopeLLM(model="Qwen/Qwen2.5-Coder-32B-Instruct")
llm = ModelScopeEndpoint(model="Qwen/Qwen2.5-Coder-32B-Instruct")
llm.invoke("The meaning of life is")
```

View File

@@ -103,7 +103,9 @@
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
@@ -157,7 +159,7 @@
"from langchain_google_vertexai import VertexAIEmbeddings\n",
"\n",
"# Initialize the a specific Embeddings Model version\n",
"embeddings = VertexAIEmbeddings(model_name=\"text-embedding-004\")"
"embeddings = VertexAIEmbeddings(model_name=\"gemini-embedding-001\")"
]
},
{

View File

@@ -1,19 +1,5 @@
{
"cells": [
{
"cell_type": "raw",
"id": "2ce4bdbc",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"sidebar_label: anchor_browser\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "a6f91f20",
@@ -63,7 +49,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --quiet -U langchain-anchorbrowser"
"%pip install --quiet -U langchain-anchorbrowser pydantic"
]
},
{
@@ -147,16 +133,27 @@
" {\"url\": \"https://docs.anchorbrowser.io\", \"width\": 1280, \"height\": 720}\n",
")\n",
"\n",
"# Get a Screenshot for https://docs.anchorbrowser.io\n",
"# Define a Pydantic model for the web task output schema\n",
"from pydantic import BaseModel\n",
"from typing import List\n",
"\n",
"\n",
"class NodeCpuUsage(BaseModel):\n",
" node: str\n",
" cluster: str\n",
" cpu_avg_percentage: float\n",
"\n",
"\n",
"class OutputSchema(BaseModel):\n",
" nodes_cpu_usage: List[NodeCpuUsage]\n",
"\n",
"\n",
"# Run a web task to collect data from a web page\n",
"anchor_advanced_web_task_tool.invoke(\n",
" {\n",
" \"prompt\": \"Collect the node names and their CPU average %\",\n",
" \"url\": \"https://play.grafana.org/a/grafana-k8s-app/navigation/nodes?from=now-1h&to=now&refresh=1m\",\n",
" \"output_schema\": {\n",
" \"nodes_cpu_usage\": [\n",
" {\"node\": \"string\", \"cluster\": \"string\", \"cpu_avg_percentage\": \"number\"}\n",
" ]\n",
" },\n",
" \"output_schema\": OutputSchema.model_json_schema(),\n",
" }\n",
")"
]

View File

@@ -30,7 +30,7 @@
"\n",
"| Class | Package | Serializable | [JS support](https://js.langchain.com/docs/integrations/toolkits/ibm/) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
"| [WatsonxToolkit](https://python.langchain.com/api_reference/ibm/toolkit/langchain_ibm.toolkit.WatsonxToolkit.html) | [langchain-ibm](https://python.langchain.com/api_reference/ibm/index.html) | ❌ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ibm?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ibm?style=flat-square&label=%20) |"
"| [WatsonxToolkit](https://python.langchain.com/api_reference/ibm/agent_toolkits/langchain_ibm.agent_toolkits.utility.toolkit.WatsonxToolkit.html) | [langchain-ibm](https://python.langchain.com/api_reference/ibm/index.html) | ❌ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ibm?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ibm?style=flat-square&label=%20) |"
]
},
{
@@ -78,7 +78,9 @@
"import os\n",
"\n",
"os.environ[\"WATSONX_URL\"] = \"your service instance url\"\n",
"os.environ[\"WATSONX_TOKEN\"] = \"your token for accessing the service instance\""
"os.environ[\"WATSONX_TOKEN\"] = \"your token for accessing the CLOUD or CPD cluster\"\n",
"os.environ[\"WATSONX_PASSWORD\"] = \"your password for accessing the CPD cluster\"\n",
"os.environ[\"WATSONX_USERNAME\"] = \"your username for accessing the CPD cluster\""
]
},
{
@@ -116,17 +118,38 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_ibm import WatsonxToolkit\n",
"from langchain_ibm.agent_toolkits.utility import WatsonxToolkit\n",
"\n",
"watsonx_toolkit = WatsonxToolkit(\n",
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can use Cloud Pak for Data credentials. For details, see [watsonx.ai software setup](https://ibm.github.io/watsonx-ai-python-sdk/setup_cpd.html). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"watsonx_toolkit = WatsonxToolkit(\n",
" url=\"PASTE YOUR URL HERE\",\n",
" username=\"PASTE YOUR USERNAME HERE\",\n",
" password=\"PASTE YOUR PASSWORD HERE\",\n",
" version=\"5.2\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -153,7 +176,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tools\n"
"## Tools"
]
},
{
@@ -187,6 +210,14 @@
"watsonx_toolkit.get_tools()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> **NOTE** \n",
"> The list of available tools may vary depending on whether it is IBM watsonx.ai for IBM Cloud or IBM watsonx.ai software."
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -220,7 +251,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -235,7 +266,7 @@
}
],
"source": [
"search_result = google_search.invoke(input=\"IBM\")\n",
"search_result = google_search.invoke({\"q\": \"IBM\"})\n",
"search_result"
]
},
@@ -308,7 +339,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -317,7 +348,7 @@
"config = {\"maxResults\": 3}\n",
"google_search.set_tool_config(config)\n",
"\n",
"search_result = google_search.invoke(input=\"IBM\")\n",
"search_result = google_search.invoke({\"q\": \"IBM\"})\n",
"output = json.loads(search_result.get(\"output\"))"
]
},
@@ -578,13 +609,13 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `WatsonxToolkit` features and configurations head to the [API reference](https://python.langchain.com/api_reference/ibm/toolkit/langchain_ibm.toolkit.WatsonxToolkit.html)."
"For detailed documentation of all `WatsonxToolkit` features and configurations head to the [API reference](https://python.langchain.com/api_reference/ibm/agent_toolkits/langchain_ibm.agent_toolkits.utility.toolkit.WatsonxToolkit.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain_env",
"display_name": "langchain_ibm_repo_env",
"language": "python",
"name": "python3"
},

View File

@@ -32,6 +32,7 @@
"| [SmartScraperTool](https://python.langchain.com/docs/integrations/tools/scrapegraph) | langchain-scrapegraph | ✅ | ❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-scrapegraph?style=flat-square&label=%20) |\n",
"| [SmartCrawlerTool](https://python.langchain.com/docs/integrations/tools/scrapegraph) | langchain-scrapegraph | ✅ | ❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-scrapegraph?style=flat-square&label=%20) |\n",
"| [MarkdownifyTool](https://python.langchain.com/docs/integrations/tools/scrapegraph) | langchain-scrapegraph | ✅ | ❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-scrapegraph?style=flat-square&label=%20) |\n",
"| [AgenticScraperTool](https://python.langchain.com/docs/integrations/tools/scrapegraph) | langchain-scrapegraph | ✅ | ❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-scrapegraph?style=flat-square&label=%20) |\n",
"| [GetCreditsTool](https://python.langchain.com/docs/integrations/tools/scrapegraph) | langchain-scrapegraph | ✅ | ❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-scrapegraph?style=flat-square&label=%20) |\n",
"\n",
"### Tool features\n",
@@ -41,6 +42,7 @@
"| SmartScraperTool | Extract structured data from websites | URL + prompt | JSON |\n",
"| SmartCrawlerTool | Extract data from multiple pages with crawling | URL + prompt + crawl options | JSON |\n",
"| MarkdownifyTool | Convert webpages to markdown | URL | Markdown text |\n",
"| AgenticScraperTool | Extract specifying steps | URL | Markdown text |\n",
"| GetCreditsTool | Check API credits | None | Credit info |\n",
"\n",
"\n",
@@ -51,7 +53,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "f85b4089",
"metadata": {},
"outputs": [
@@ -79,7 +81,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "e0b178a2",
"metadata": {},
"outputs": [],
@@ -285,7 +287,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"id": "f90e33a7",
"metadata": {},
"outputs": [
@@ -329,7 +331,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"id": "af3123ad",
"metadata": {},
"outputs": [
@@ -353,7 +355,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"id": "fdbf35b5",
"metadata": {},
"outputs": [

View File

@@ -1,555 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Aerospike\n",
"\n",
"[Aerospike Vector Search](https://aerospike.com/docs/vector) (AVS) is an\n",
"extension to the Aerospike Database that enables searches across very large\n",
"datasets stored in Aerospike. This new service lives outside of Aerospike and\n",
"builds an index to perform those searches.\n",
"\n",
"This notebook showcases the functionality of the [LangChain Aerospike VectorStore\n",
"integration](https://github.com/aerospike/langchain-aerospike).\n",
"\n",
"## Install AVS\n",
"\n",
"Before using this notebook, we need to have a running AVS instance. Use one of\n",
"the [available installation methods](https://aerospike.com/docs/vector/install). \n",
"\n",
"When finished, store your AVS instance's IP address and port to use later\n",
"in this demo:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"AVS_HOST = \"<avs_ip>\"\n",
"AVS_PORT = 5000"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install Dependencies \n",
"The `sentence-transformers` dependency is large. This step could take several minutes to complete."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m25.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install --upgrade --quiet aerospike-vector-search==4.2.0 langchain-aerospike langchain-community sentence-transformers langchain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download Quotes Dataset\n",
"\n",
"We will download a dataset of approximately 100,000 quotes and use a subset of those quotes for semantic search."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2025-05-07 21:06:30-- https://github.com/aerospike/aerospike-vector-search-examples/raw/7dfab0fccca0852a511c6803aba46578729694b5/quote-semantic-search/container-volumes/quote-search/data/quotes.csv.tgz\n",
"Resolving github.com (github.com)... 140.82.116.3\n",
"Connecting to github.com (github.com)|140.82.116.3|:443... connected.\n",
"HTTP request sent, awaiting response... 301 Moved Permanently\n",
"Location: https://github.com/aerospike/aerospike-vector/raw/7dfab0fccca0852a511c6803aba46578729694b5/quote-semantic-search/container-volumes/quote-search/data/quotes.csv.tgz [following]\n",
"--2025-05-07 21:06:30-- https://github.com/aerospike/aerospike-vector/raw/7dfab0fccca0852a511c6803aba46578729694b5/quote-semantic-search/container-volumes/quote-search/data/quotes.csv.tgz\n",
"Reusing existing connection to github.com:443.\n",
"HTTP request sent, awaiting response... 302 Found\n",
"Location: https://raw.githubusercontent.com/aerospike/aerospike-vector/7dfab0fccca0852a511c6803aba46578729694b5/quote-semantic-search/container-volumes/quote-search/data/quotes.csv.tgz [following]\n",
"--2025-05-07 21:06:30-- https://raw.githubusercontent.com/aerospike/aerospike-vector/7dfab0fccca0852a511c6803aba46578729694b5/quote-semantic-search/container-volumes/quote-search/data/quotes.csv.tgz\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.111.133, 185.199.108.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 11597643 (11M) [application/octet-stream]\n",
"Saving to: quotes.csv.tgz\n",
"\n",
"quotes.csv.tgz 100%[===================>] 11.06M 12.7MB/s in 0.9s \n",
"\n",
"2025-05-07 21:06:32 (12.7 MB/s) - quotes.csv.tgz saved [11597643/11597643]\n",
"\n"
]
}
],
"source": [
"!wget https://github.com/aerospike/aerospike-vector-search-examples/raw/7dfab0fccca0852a511c6803aba46578729694b5/quote-semantic-search/container-volumes/quote-search/data/quotes.csv.tgz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the Quotes Into Documents\n",
"\n",
"We will load our quotes dataset using the `CSVLoader` document loader. In this case, `lazy_load` returns an iterator to ingest our quotes more efficiently. In this example, we only load 5,000 quotes."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import itertools\n",
"import os\n",
"import tarfile\n",
"\n",
"from langchain_community.document_loaders.csv_loader import CSVLoader\n",
"\n",
"filename = \"./quotes.csv\"\n",
"\n",
"if not os.path.exists(filename) and os.path.exists(filename + \".tgz\"):\n",
" # Untar the file\n",
" with tarfile.open(filename + \".tgz\", \"r:gz\") as tar:\n",
" tar.extractall(path=os.path.dirname(filename))\n",
"\n",
"NUM_QUOTES = 5000\n",
"documents = CSVLoader(filename, metadata_columns=[\"author\", \"category\"]).lazy_load()\n",
"documents = list(\n",
" itertools.islice(documents, NUM_QUOTES)\n",
") # Allows us to slice an iterator"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='quote: I'm selfish, impatient and a little insecure. I make mistakes, I am out of control and at times hard to handle. But if you can't handle me at my worst, then you sure as hell don't deserve me at my best.' metadata={'source': './quotes.csv', 'row': 0, 'author': 'Marilyn Monroe', 'category': 'attributed-no-source, best, life, love, mistakes, out-of-control, truth, worst'}\n"
]
}
],
"source": [
"print(documents[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create your Embedder\n",
"\n",
"In this step, we use HuggingFaceEmbeddings and the \"all-MiniLM-L6-v2\" sentence transformer model to embed our documents so we can perform a vector search."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/h5/lm2_c1xs3s32kwp11prnpftw0000gp/T/ipykernel_84638/3255399720.py:6: LangChainDeprecationWarning: The class `HuggingFaceEmbeddings` was deprecated in LangChain 0.2.2 and will be removed in 1.0. An updated version of the class exists in the :class:`~langchain-huggingface package and should be used instead. To use it run `pip install -U :class:`~langchain-huggingface` and import as `from :class:`~langchain_huggingface import HuggingFaceEmbeddings``.\n",
" embedder = HuggingFaceEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n",
"/Users/dwelch/Desktop/everything/projects/langchain/myfork/langchain/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"from aerospike_vector_search.types import VectorDistanceMetric\n",
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
"\n",
"MODEL_DIM = 384\n",
"MODEL_DISTANCE_CALC = VectorDistanceMetric.COSINE\n",
"embedder = HuggingFaceEmbeddings(model_name=\"all-MiniLM-L6-v2\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an Aerospike Index and Embed Documents\n",
"\n",
"Before we add documents, we need to create an index in the Aerospike Database. In the example below, we use some convenience code that checks to see if the expected index already exists."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"quote-miniLM-L6-v2 does not exist. Creating index\n"
]
}
],
"source": [
"from aerospike_vector_search import Client, HostPort\n",
"from aerospike_vector_search.types import VectorDistanceMetric\n",
"from langchain_aerospike.vectorstores import Aerospike\n",
"\n",
"# Here we are using the AVS host and port you configured earlier\n",
"seed = HostPort(host=AVS_HOST, port=AVS_PORT)\n",
"\n",
"# The namespace of where to place our vectors. This should match the vector configured in your docstore.conf file.\n",
"NAMESPACE = \"test\"\n",
"\n",
"# The name of our new index.\n",
"INDEX_NAME = \"quote-miniLM-L6-v2\"\n",
"\n",
"# AVS needs to know which metadata key contains our vector when creating the index and inserting documents.\n",
"VECTOR_KEY = \"vector\"\n",
"\n",
"client = Client(seeds=seed)\n",
"index_exists = False\n",
"\n",
"# Check if the index already exists. If not, create it\n",
"for index in client.index_list():\n",
" if index[\"id\"][\"namespace\"] == NAMESPACE and index[\"id\"][\"name\"] == INDEX_NAME:\n",
" index_exists = True\n",
" print(f\"{INDEX_NAME} already exists. Skipping creation\")\n",
" break\n",
"\n",
"if not index_exists:\n",
" print(f\"{INDEX_NAME} does not exist. Creating index\")\n",
" client.index_create(\n",
" namespace=NAMESPACE,\n",
" name=INDEX_NAME,\n",
" vector_field=VECTOR_KEY,\n",
" vector_distance_metric=MODEL_DISTANCE_CALC,\n",
" dimensions=MODEL_DIM,\n",
" index_labels={\n",
" \"model\": \"miniLM-L6-v2\",\n",
" \"date\": \"05/04/2024\",\n",
" \"dim\": str(MODEL_DIM),\n",
" \"distance\": \"cosine\",\n",
" },\n",
" )\n",
"\n",
"docstore = Aerospike.from_documents(\n",
" documents,\n",
" embedder,\n",
" client=client,\n",
" namespace=NAMESPACE,\n",
" vector_key=VECTOR_KEY,\n",
" index_name=INDEX_NAME,\n",
" distance_strategy=MODEL_DISTANCE_CALC,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search the Documents\n",
"Now that we have embedded our vectors, we can use vector search on our quotes."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"~~~~ Document 0 ~~~~\n",
"auto-generated id: 4984b472-8a32-4552-b3eb-f03b31b68031\n",
"author: Carl Sagan, Cosmos\n",
"quote: The Cosmos is all that is or was or ever will be. Our feeblest contemplations of the Cosmos stir us -- there is a tingling in the spine, a catch in the voice, a faint sensation, as if a distant memory, of falling from a height. We know we are approaching the greatest of mysteries.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 1 ~~~~\n",
"auto-generated id: 486c8d87-8dd7-450d-9008-d7549e680ffb\n",
"author: Renee Ahdieh, The Rose & the Dagger\n",
"quote: From the stars, to the stars.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 2 ~~~~\n",
"auto-generated id: 4b43b309-ce51-498c-b225-5254383b5b4a\n",
"author: Elizabeth Gilbert\n",
"quote: The love that moves the sun and the other stars.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 3 ~~~~\n",
"auto-generated id: af784a10-f498-4570-bf81-2ffdca35440e\n",
"author: Dante Alighieri, Paradiso\n",
"quote: Love, that moves the sun and the other stars\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 4 ~~~~\n",
"auto-generated id: b45d5d5e-d818-4206-ae6b-b1d166ea3d43\n",
"author: Thich Nhat Hanh, Teachings on Love\n",
"quote: Through my love for you, I want to express my love for the whole cosmos, the whole of humanity, and all beings. By living with you, I want to learn to love everyone and all species. If I succeed in loving you, I will be able to love everyone and all species on Earth... This is the real message of love.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n"
]
}
],
"source": [
"query = \"A quote about the beauty of the cosmos\"\n",
"docs = docstore.similarity_search(\n",
" query, k=5, index_name=INDEX_NAME, metadata_keys=[\"_id\", \"author\"]\n",
")\n",
"\n",
"\n",
"def print_documents(docs):\n",
" for i, doc in enumerate(docs):\n",
" print(\"~~~~ Document\", i, \"~~~~\")\n",
" print(\"auto-generated id:\", doc.metadata[\"_id\"])\n",
" print(\"author: \", doc.metadata[\"author\"])\n",
" print(doc.page_content)\n",
" print(\"~~~~~~~~~~~~~~~~~~~~\\n\")\n",
"\n",
"\n",
"print_documents(docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Embedding Additional Quotes as Text\n",
"\n",
"We can use `add_texts` to add additional quotes."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"New IDs\n",
"['adf8064e-9c0e-46e2-b193-169c36432f4c', 'cf65b5ed-a0f4-491a-86ad-dcacc23c2815', '2ef52efd-d9b7-4077-bc14-defdf0b7dd2f']\n"
]
}
],
"source": [
"docstore = Aerospike(\n",
" client,\n",
" embedder,\n",
" NAMESPACE,\n",
" index_name=INDEX_NAME,\n",
" vector_key=VECTOR_KEY,\n",
" distance_strategy=MODEL_DISTANCE_CALC,\n",
")\n",
"\n",
"ids = docstore.add_texts(\n",
" [\n",
" \"quote: Rebellions are built on hope.\",\n",
" \"quote: Logic is the beginning of wisdom, not the end.\",\n",
" \"quote: If wishes were fishes, wed all cast nets.\",\n",
" ],\n",
" metadatas=[\n",
" {\"author\": \"Jyn Erso, Rogue One\"},\n",
" {\"author\": \"Spock, Star Trek\"},\n",
" {\"author\": \"Frank Herbert, Dune\"},\n",
" ],\n",
")\n",
"\n",
"print(\"New IDs\")\n",
"print(ids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search Documents Using Max Marginal Relevance Search\n",
"\n",
"We can use max marginal relevance search to find vectors that are similar to our query but dissimilar to each other. In this example, we create a retriever object using `as_retriever`, but this could be done just as easily by calling `docstore.max_marginal_relevance_search` directly. The `lambda_mult` search argument determines the diversity of our query response. 0 corresponds to maximum diversity and 1 to minimum diversity."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"~~~~ Document 0 ~~~~\n",
"auto-generated id: 91e77b39-a528-40c6-a58a-486ae85f991a\n",
"author: John Grogan, Marley and Me: Life and Love With the World's Worst Dog\n",
"quote: Such short little lives our pets have to spend with us, and they spend most of it waiting for us to come home each day. It is amazing how much love and laughter they bring into our lives and even how much closer we become with each other because of them.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 1 ~~~~\n",
"auto-generated id: c585b4ec-92b5-4579-948c-0529373abc2a\n",
"author: John Grogan, Marley and Me: Life and Love With the World's Worst Dog\n",
"quote: Dogs are great. Bad dogs, if you can really call them that, are perhaps the greatest of them all.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 2 ~~~~\n",
"auto-generated id: 5768b31c-fac4-4af7-84b4-fb11bbfcb590\n",
"author: Colleen Houck, Tiger's Curse\n",
"quote: He then put both hands on the door on either side of my head and leaned in close, pinning me against it. I trembled like a downy rabbit caught in the clutches of a wolf. The wolf came closer. He bent his head and began nuzzling my cheek. The problem was…I wanted the wolf to devour me.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 3 ~~~~\n",
"auto-generated id: 94f1b9fb-ad57-4f65-b470-7f49dd6c274c\n",
"author: Ray Bradbury\n",
"quote: Stuff your eyes with wonder,\" he said, \"live as if you'd drop dead in ten seconds. See the world. It's more fantastic than any dream made or paid for in factories. Ask no guarantees, ask for no security, there never was such an animal. And if there were, it would be related to the great sloth which hangs upside down in a tree all day every day, sleeping its life away. To hell with that,\" he said, \"shake the tree and knock the great sloth down on his ass.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n"
]
}
],
"source": [
"query = \"A quote about our favorite four-legged pets\"\n",
"retriever = docstore.as_retriever(\n",
" search_type=\"mmr\", search_kwargs={\"fetch_k\": 20, \"lambda_mult\": 0.7}\n",
")\n",
"matched_docs = retriever.invoke(query)\n",
"\n",
"print_documents(matched_docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search Documents with a Relevance Threshold\n",
"\n",
"Another useful feature is a similarity search with a relevance threshold. Generally, we only want results that are most similar to our query but also within some range of proximity. A relevance of 1 is most similar and a relevance of 0 is most dissimilar."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"~~~~ Document 0 ~~~~\n",
"auto-generated id: 6d9e67a6-0427-41e6-9e24-050518120d74\n",
"author: Roy T. Bennett, The Light in the Heart\n",
"quote: Never lose hope. Storms make people stronger and never last forever.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 1 ~~~~\n",
"auto-generated id: 7d426e59-7935-4bcf-a676-cbe8dd4860e7\n",
"author: Roy T. Bennett, The Light in the Heart\n",
"quote: Difficulties and adversities viciously force all their might on us and cause us to fall apart, but they are necessary elements of individual growth and reveal our true potential. We have got to endure and overcome them, and move forward. Never lose hope. Storms make people stronger and never last forever.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 2 ~~~~\n",
"auto-generated id: 6ec05e48-d162-440d-8819-001d2f3712f9\n",
"author: Vincent van Gogh, The Letters of Vincent van Gogh\n",
"quote: There is peace even in the storm\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n",
"~~~~ Document 3 ~~~~\n",
"auto-generated id: d3c3de59-4da4-4ae6-8f6d-83ed905dd320\n",
"author: Edwin Morgan, A Book of Lives\n",
"quote: Valentine WeatherKiss me with rain on your eyelashes,come on, let us sway together,under the trees, and to hell with thunder.\n",
"~~~~~~~~~~~~~~~~~~~~\n",
"\n"
]
}
],
"source": [
"query = \"A quote about stormy weather\"\n",
"retriever = docstore.as_retriever(\n",
" search_type=\"similarity_score_threshold\",\n",
" search_kwargs={\n",
" \"score_threshold\": 0.4\n",
" }, # A greater value returns items with more relevance\n",
")\n",
"matched_docs = retriever.invoke(query)\n",
"\n",
"print_documents(matched_docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clean up\n",
"\n",
"We need to make sure we close our client to release resources and clean up threads."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"client.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ready. Set. Search!\n",
"\n",
"Now that you are up to speed with Aerospike Vector Search's LangChain integration, you have the power of the Aerospike Database and the LangChain ecosystem at your finger tips. Happy building!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -28,10 +28,25 @@
"1. You must install and set up the JaguarDB server and its HTTP gateway server.\n",
" Please refer to the instructions in:\n",
" [www.jaguardb.com](http://www.jaguardb.com)\n",
"\n",
" **Method One: Docker**\n",
"\n",
" For quick setup in docker environment:\n",
" docker pull jaguardb/jaguardb\n",
" docker run -d -p 8888:8888 -p 8080:8080 --name jaguardb jaguardb/jaguardb\n",
"\n",
" **Method Two: Quick Setup(Linux)**\n",
"\n",
" Without Docker, run:\n",
" ```\n",
" curl -fsSL http://jaguardb.com/install.sh | sh\n",
" ```\n",
" This installs both the Jaguar vector database and HTTP gateway.\n",
" The servers will start automatically after installation.\n",
"\n",
"\n",
"\n",
"\n",
"2. You must install the http client package for JaguarDB:\n",
" ```\n",
" pip install -U jaguardb-http-client\n",

View File

@@ -496,7 +496,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a custom Vector Store\n",
"## Create a custom Vector Store\n",
"\n",
"Customize the vectorstore with special column names or with custom metadata columns.\n",
"\n",
@@ -617,7 +617,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Vector Store using existing table\n",
"## Create a Vector Store using existing table\n",
"\n",
"A Vector Store can be built up on an existing table.\n",
"\n",
@@ -713,6 +713,260 @@
"1. For new records, added via `VectorStore` embeddings are automatically generated."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Hybrid Search with PGVectorStore\n",
"\n",
"A Hybrid Search combines multiple lookup strategies to provide more comprehensive and relevant search results. Specifically, it leverages both dense embedding vector search (for semantic similarity) and TSV (Text Search Vector) based keyword search (for lexical matching). This approach is particularly powerful for applications requiring efficient searching through customized text and metadata, especially when a specialized embedding model isn't feasible or necessary.\n",
"\n",
"By integrating both semantic and lexical capabilities, hybrid search helps overcome the limitations of each individual method:\n",
"* **Semantic Search**: Excellent for understanding the meaning of a query, even if the exact keywords aren't present. However, it can sometimes miss highly relevant documents that contain the precise keywords but have a slightly different semantic context.\n",
"* **Keyword Search**: Highly effective for finding documents with exact keyword matches and is generally fast. Its weakness lies in its inability to understand synonyms, misspellings, or conceptual relationships."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Hybrid Search Config\n",
"\n",
"You can take advantage of hybrid search with PGVectorStore using the `HybridSearchConfig`.\n",
"\n",
"With a `HybridSearchConfig` provided, the `PGVectorStore` class can efficiently manage a hybrid search vector store using PostgreSQL as the backend, automatically handling the creation and population of the necessary TSV columns when possible."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Building the config\n",
"\n",
"Here are the parameters to the hybrid search config:\n",
"* **tsv_column:** The column name for TSV column. Default: `<content_column>_tsv`\n",
"* **tsv_lang:** Value representing a supported language. Default: `pg_catalog.english`\n",
"* **fts_query:** If provided, this would be used for secondary retrieval instead of user provided query.\n",
"* **fusion_function:** Determines how the results are to be merged, default is equal weighted sum ranking.\n",
"* **fusion_function_parameters:** Parameters for the fusion function\n",
"* **primary_top_k:** Max results fetched for primary retrieval. Default: `4`\n",
"* **secondary_top_k:** Max results fetched for secondary retrieval. Default: `4`\n",
"* **index_name:** Name of the index built on the `tsv_column`\n",
"* **index_type:** GIN or GIST. Default: `GIN`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is an example `HybridSearchConfig`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_postgres.v2.hybrid_search_config import (\n",
" HybridSearchConfig,\n",
" reciprocal_rank_fusion,\n",
")\n",
"\n",
"hybrid_search_config = HybridSearchConfig(\n",
" tsv_column=\"hybrid_description\",\n",
" tsv_lang=\"pg_catalog.english\",\n",
" fusion_function=reciprocal_rank_fusion,\n",
" fusion_function_parameters={\n",
" \"rrf_k\": 60,\n",
" \"fetch_top_k\": 10,\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note:** In this case, we have mentioned the fusion function to be a `reciprocal rank fusion` but you can also use the `weighted_sum_ranking`.\n",
"\n",
"Make sure to use the right fusion function parameters\n",
"\n",
"`reciprocal_rank_fusion`:\n",
"* rrf_k: The RRF parameter k. Defaults to 60\n",
"* fetch_top_k: The number of documents to fetch after merging the results. Defaults to 4\n",
"\n",
"`weighted_sum_ranking`:\n",
"* primary_results_weight: The weight for the primary source's scores. Defaults to 0.5\n",
"* secondary_results_weight: The weight for the secondary source's scores. Defaults to 0.5\n",
"* fetch_top_k: The number of documents to fetch after merging the results. Defaults to 4\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Usage\n",
"\n",
"Let's assume we are using the previously mentioned table [`products`](#create-a-vector-store-using-existing-table), which stores product details for an eComm venture.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### With a new hybrid search table\n",
"To create a new postgres table with the tsv column, specify the hybrid search config during the initialization of the vector store.\n",
"\n",
"In this case, all the similarity searches will make use of hybrid search."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_postgres import PGVectorStore\n",
"\n",
"TABLE_NAME = \"hybrid_search_products\"\n",
"\n",
"await pg_engine.ainit_vectorstore_table(\n",
" table_name=TABLE_NAME,\n",
" # schema_name=SCHEMA_NAME,\n",
" vector_size=VECTOR_SIZE,\n",
" id_column=\"product_id\",\n",
" content_column=\"description\",\n",
" embedding_column=\"embed\",\n",
" metadata_columns=[\"name\", \"category\", \"price_usd\", \"quantity\", \"sku\", \"image_url\"],\n",
" metadata_json_column=\"metadata\",\n",
" hybrid_search_config=hybrid_search_config,\n",
" store_metadata=True,\n",
")\n",
"\n",
"vs_hybrid = await PGVectorStore.create(\n",
" pg_engine,\n",
" table_name=TABLE_NAME,\n",
" # schema_name=SCHEMA_NAME,\n",
" embedding_service=embedding,\n",
" # Connect to existing VectorStore by customizing below column names\n",
" id_column=\"product_id\",\n",
" content_column=\"description\",\n",
" embedding_column=\"embed\",\n",
" metadata_columns=[\"name\", \"category\", \"price_usd\", \"quantity\", \"sku\", \"image_url\"],\n",
" metadata_json_column=\"metadata\",\n",
" hybrid_search_config=hybrid_search_config,\n",
")\n",
"\n",
"# Fetch documents from the previously created store to fetch product documents\n",
"docs = await custom_store.asimilarity_search(\"products\", k=5)\n",
"# Add data normally to the hybrid search vector store, which will also add the tsv values in tsv_column\n",
"await vs_hybrid.aadd_documents(docs)\n",
"\n",
"# Use hybrid search\n",
"hybrid_docs = await vs_hybrid.asimilarity_search(\"products\", k=5)\n",
"print(hybrid_docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### With a pre-existing table\n",
"\n",
"If a hybrid search config is **NOT** provided during `init_vectorstore_table` while creating a table, the table will not contain a tsv_column. In this case you can still take advantage of hybrid search using the `HybridSearchConfig`.\n",
"\n",
"The specified TSV column is not present but the TSV vectors are created dynamically on-the-go for hybrid search."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_postgres import PGVectorStore\n",
"\n",
"# Set the existing table name\n",
"TABLE_NAME = \"products\"\n",
"# SCHEMA_NAME = \"my_schema\"\n",
"\n",
"hybrid_search_config = HybridSearchConfig(\n",
" tsv_lang=\"pg_catalog.english\",\n",
" fusion_function=reciprocal_rank_fusion,\n",
" fusion_function_parameters={\n",
" \"rrf_k\": 60,\n",
" \"fetch_top_k\": 10,\n",
" },\n",
")\n",
"\n",
"# Initialize PGVectorStore with the hybrid search config\n",
"custom_hybrid_store = await PGVectorStore.create(\n",
" pg_engine,\n",
" table_name=TABLE_NAME,\n",
" # schema_name=SCHEMA_NAME,\n",
" embedding_service=embedding,\n",
" # Connect to existing VectorStore by customizing below column names\n",
" id_column=\"product_id\",\n",
" content_column=\"description\",\n",
" embedding_column=\"embed\",\n",
" metadata_columns=[\"name\", \"category\", \"price_usd\", \"quantity\", \"sku\", \"image_url\"],\n",
" metadata_json_column=\"metadata\",\n",
" hybrid_search_config=hybrid_search_config,\n",
")\n",
"\n",
"# Use hybrid search\n",
"hybrid_docs = await custom_hybrid_store.asimilarity_search(\"products\", k=5)\n",
"print(hybrid_docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this case, all the similarity searches will make use of hybrid search."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Applying Hybrid Search to Specific Queries\n",
"\n",
"To use hybrid search only for certain queries, omit the configuration during initialization and pass it directly to the search method when needed.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use hybrid search\n",
"hybrid_docs = await custom_store.asimilarity_search(\n",
" \"products\", k=5, hybrid_search_config=hybrid_search_config\n",
")\n",
"print(hybrid_docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Hybrid Search Index\n",
"\n",
"Optionally, if you have created a Postgres table with a tsv_column, you can create an index."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await vs_hybrid.aapply_hybrid_search_index()"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -47,7 +47,20 @@
"\n",
"Some Weaviate instances, such as those running on WCS, have authentication enabled, such as API key and/or username+password authentication.\n",
"\n",
"Read the [client authentication guide](https://weaviate.io/developers/weaviate/client-libraries/python#authentication) for more information, as well as the [in-depth authentication configuration page](https://weaviate.io/developers/weaviate/configuration/authentication)."
"Read the [client authentication guide](https://weaviate.io/developers/weaviate/client-libraries/python#authentication) for more information, as well as the [in-depth authentication configuration page](https://weaviate.io/developers/weaviate/configuration/authentication).\n",
"\n",
"### Connect to an existing collection (reuse an index)\n",
"If you already created a collection in your local Weaviate instance, you can connect to it directly:",
"\n",
"```python\n",
"from langchain_weaviate import WeaviateVectorStore\n",
"\n",
"store = WeaviateVectorStore(\n",
" client=weaviate_client,\n",
" index_name=\"Test\",\n",
" text_key=\"text\",\n",
")\n",
"```\n"
]
},
{

View File

@@ -104,7 +104,7 @@ Head to the reference section for full documentation of all classes and methods
Trace and evaluate your language model applications and intelligent agents to help you move from prototype to production.
### [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph)
Build stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it. LangGraph powers production-grade agents, trusted by Linkedin, Uber, Klarna, GitLab, and many more.
Build stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it. LangGraph powers production-grade agents, trusted by LinkedIn, Uber, Klarna, GitLab, and many more.
## Additional resources

View File

@@ -302,7 +302,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"id": "c96c960b",
"metadata": {},
"outputs": [
@@ -320,7 +320,7 @@
"source": [
"query = \"Hi!\"\n",
"response = model.invoke([{\"role\": \"user\", \"content\": query}])\n",
"response.text"
"response.text()"
]
},
{
@@ -351,7 +351,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 11,
"id": "b6a7e925",
"metadata": {},
"outputs": [
@@ -371,7 +371,7 @@
"query = \"Hi!\"\n",
"response = model_with_tools.invoke([{\"role\": \"user\", \"content\": query}])\n",
"\n",
"print(f\"Message content: {response.text}\\n\")\n",
"print(f\"Message content: {response.text()}\\n\")\n",
"print(f\"Tool calls: {response.tool_calls}\")"
]
},
@@ -385,7 +385,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 16,
"id": "688b465d",
"metadata": {},
"outputs": [
@@ -403,7 +403,7 @@
"query = \"Search for the weather in SF\"\n",
"response = model_with_tools.invoke([{\"role\": \"user\", \"content\": query}])\n",
"\n",
"print(f\"Message content: {response.text}\\n\")\n",
"print(f\"Message content: {response.text()}\\n\")\n",
"print(f\"Tool calls: {response.tool_calls}\")"
]
},
@@ -615,12 +615,19 @@
"## Streaming tokens\n",
"\n",
"In addition to streaming back messages, it is also useful to stream back tokens.\n",
"We can do this by specifying `stream_mode=\"messages\"`."
"We can do this by specifying `stream_mode=\"messages\"`.\n",
"\n",
"\n",
"::: note\n",
"\n",
"Below we use `message.text()`, which requires `langchain-core>=0.3.37`.\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 18,
"id": "63198158-380e-43a3-a2ad-d4288949c1d4",
"metadata": {},
"outputs": [
@@ -642,9 +649,9 @@
],
"source": [
"for step, metadata in agent_executor.stream(\n",
" {\"messages\": [input_message]}, stream_mode=\"messages\"\n",
" {\"messages\": [input_message]}, config, stream_mode=\"messages\"\n",
"):\n",
" if metadata[\"langgraph_node\"] == \"agent\" and (text := step.text):\n",
" if metadata[\"langgraph_node\"] == \"agent\" and (text := step.text()):\n",
" print(text, end=\"|\")"
]
},

View File

@@ -95,7 +95,6 @@
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"from pydantic import BaseModel, Field\n",
"\n",
"tagging_prompt = ChatPromptTemplate.from_template(\n",
@@ -253,9 +252,7 @@
"\"\"\"\n",
")\n",
"\n",
"llm = ChatOpenAI(temperature=0, model=\"gpt-4o-mini\").with_structured_output(\n",
" Classification\n",
")"
"structured_llm = llm.with_structured_output(Classification)"
]
},
{
@@ -286,7 +283,7 @@
"source": [
"inp = \"Estoy increiblemente contento de haberte conocido! Creo que seremos muy buenos amigos!\"\n",
"prompt = tagging_prompt.invoke({\"input\": inp})\n",
"llm.invoke(prompt)"
"structured_llm.invoke(prompt)"
]
},
{
@@ -309,7 +306,7 @@
"source": [
"inp = \"Estoy muy enojado con vos! Te voy a dar tu merecido!\"\n",
"prompt = tagging_prompt.invoke({\"input\": inp})\n",
"llm.invoke(prompt)"
"structured_llm.invoke(prompt)"
]
},
{
@@ -332,7 +329,7 @@
"source": [
"inp = \"Weather is ok here, I can go outside without much more than a coat\"\n",
"prompt = tagging_prompt.invoke({\"input\": inp})\n",
"llm.invoke(prompt)"
"structured_llm.invoke(prompt)"
]
},
{

View File

@@ -44,4 +44,4 @@ You can peruse [LangSmith tutorials here](https://docs.smith.langchain.com/).
LangSmith helps you evaluate the performance of your LLM applications. The tutorial below is a great way to get started:
- [Evaluate your LLM application](https://docs.smith.langchain.com/tutorials/Developers/evaluation)
- [Evaluate your LLM application](https://docs.langchain.com/langsmith/evaluate-llm-application)

View File

@@ -159,7 +159,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "1b2481f0",
"metadata": {},
"outputs": [
@@ -178,8 +178,8 @@
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"\n",
"messages = [\n",
" SystemMessage(\"Translate the following from English into Italian\"),\n",
" HumanMessage(\"hi!\"),\n",
" SystemMessage(content=\"Translate the following from English into Italian\"),\n",
" HumanMessage(content=\"hi!\"),\n",
"]\n",
"\n",
"model.invoke(messages)"

View File

@@ -142,8 +142,8 @@ const config = {
respectPrefersColorScheme: true,
},
announcementBar: {
content: "Our new LangChain Academy Course Deep Research with LangGraph is now live! <a href='https://academy.langchain.com/courses/deep-research-with-langgraph/?utm_medium=internal&utm_source=docs&utm_campaign=q3-2025_deep-research-course_co' target='_blank'>Enroll for free</a>.",
backgroundColor: "#d0c9fe",
content: "These docs will be deprecated and no longer maintained with the release of LangChain v1.0 in October 2025. <a href='https://docs.langchain.com/oss/python/langchain/overview' target='_blank'>Visit the v1.0 alpha docs</a>",
backgroundColor: "#FFAE42",
},
prism: {
theme: {

View File

@@ -86,7 +86,7 @@ def _is_relevant_import(module: str) -> bool:
"langchain",
"langchain_core",
"langchain_community",
# "langchain_experimental",
"langchain_experimental",
"langchain_text_splitters",
]
return module.split(".")[0] in recognized_packages

View File

@@ -167,6 +167,11 @@ WEBBROWSING_TOOL_FEAT_TABLE = {
"interactions": False,
"pricing": "Free trial, with flat rate plans and pre-paid credits after",
},
"Anchor Browser": {
"link": "/docs/integrations/tools/anchor_browser",
"interactions": True,
"pricing": "Free trial, with flat rate plans and pre-paid credits after",
},
}
DATABASE_TOOL_FEAT_TABLE = {

View File

@@ -118,7 +118,8 @@ export default function ChatModelTabs(props) {
{
value: "anthropic",
label: "Anthropic",
model: "claude-3-5-sonnet-latest",
model: "claude-3-7-sonnet-20250219",
comment: "# Note: Model versions may become outdated. Check https://docs.anthropic.com/en/docs/models-overview for latest versions",
apiKeyName: "ANTHROPIC_API_KEY",
packageName: "langchain[anthropic]",
},
@@ -269,6 +270,9 @@ if not os.environ.get("${selectedTabItem.apiKeyName}"):
${llmVarName} = init_chat_model("${selectedTabItem.model}", model_provider="${selectedTabItem.value}"${selectedTabItem?.kwargs ? `, ${selectedTabItem.kwargs}` : ""})`;
// Add comment if available
const commentText = selectedTabItem?.comment ? selectedTabItem.comment + "\n\n" : "";
return (
<div>
<CustomDropdown
@@ -282,7 +286,7 @@ ${llmVarName} = init_chat_model("${selectedTabItem.model}", model_provider="${se
{`pip install -qU "${selectedTabItem.packageName}"`}
</CodeBlock>
<CodeBlock language="python">
{apiKeyText ? apiKeyText + "\n\n" + initModelText : initModelText}
{apiKeyText ? apiKeyText + "\n\n" + commentText + initModelText : commentText + initModelText}
</CodeBlock>
</div>
);

View File

@@ -14,7 +14,19 @@ def create_demo_server(
config_keys: Sequence[str] = (),
playground_type: Literal["default", "chat"] = "default",
) -> FastAPI:
"""Create a demo server for the current template."""
"""Create a demo server for the current template.
Args:
config_keys: Optional sequence of config keys to expose in the playground.
playground_type: The type of playground to use. Can be `'default'` or `'chat'`.
Returns:
The demo server.
Raises:
KeyError: If the `pyproject.toml` file is missing required fields.
ImportError: If the module defined in `pyproject.toml` cannot be imported.
"""
app = FastAPI()
package_root = get_package_root()
pyproject = package_root / "pyproject.toml"
@@ -41,10 +53,18 @@ def create_demo_server(
def create_demo_server_configurable() -> FastAPI:
"""Create a configurable demo server."""
"""Create a configurable demo server.
Returns:
The configurable demo server.
"""
return create_demo_server(config_keys=["configurable"])
def create_demo_server_chat() -> FastAPI:
"""Create a chat demo server."""
"""Create a chat demo server.
Returns:
The chat demo server.
"""
return create_demo_server(playground_type="chat")

View File

@@ -1,260 +1,262 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# Chat__ModuleName__\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This will help you get started with __ModuleName__ [chat models](/docs/concepts/chat_models). For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/chat/openai/ for an example.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [Chat__ModuleName__](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html) | [__package_name__](https://python.langchain.com/api_reference/__package_name_short_snake__/) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import Chat__ModuleName__\n",
"\n",
"llm = Chat__ModuleName__(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this model provider\n",
"\n",
"E.g. creating/using finetuned models via this provider. Delete if not relevant."
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# Chat__ModuleName__\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This will help you get started with __ModuleName__ [chat models](/docs/concepts/chat_models). For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/chat/openai/ for an example.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [Chat__ModuleName__](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html) | [__package_name__](https://python.langchain.com/api_reference/__package_name_short_snake__/) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ | ✅/❌ |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import Chat__ModuleName__\n",
"\n",
"llm = Chat__ModuleName__(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this model provider\n",
"\n",
"E.g. creating/using finetuned models via this provider. Delete if not relevant."
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.Chat__ModuleName__.html)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,217 +1,219 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# __ModuleName__Loader\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This notebook provides a quick overview for getting started with __ModuleName__ [document loader](https://python.langchain.com/docs/concepts/document_loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.__module_name___loader.__ModuleName__Loader.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about underlying API, etc.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/web_loaders/__module_name___loader)|\n",
"| :--- | :--- | :---: | :---: | :---: |\n",
"| [__ModuleName__Loader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.__module_name__loader.__ModuleName__Loader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ | \n",
"### Loader features\n",
"| Source | Document Lazy Loading | Native Async Support\n",
"| :---: | :---: | :---: | \n",
"| __ModuleName__Loader | ✅/❌ | ✅/❌ | \n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ document loader you'll need to install the `__package_name__` integration package, and create a **ModuleName** account and get an API key.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"Install **langchain_community**.\n",
"\n",
"- TODO: Add any other required packages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain_community"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialization\n",
"\n",
"Now we can instantiate our model object and load documents:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import __ModuleName__Loader\n",
"\n",
"loader = __ModuleName__Loader(\n",
" # required params = ...\n",
" # optional params = ...\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load\n",
"\n",
"- TODO: Run cells to show loading capabilities"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()\n",
"docs[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(docs[0].metadata)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Lazy Load\n",
"\n",
"- TODO: Run cells to show lazy loading capabilities. Delete if lazy loading is not implemented."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"page = []\n",
"for doc in loader.lazy_load():\n",
" page.append(doc)\n",
" if len(page) >= 10:\n",
" # do some paged operation, e.g.\n",
" # index.upsert(page)\n",
"\n",
" page = []"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this document loader\n",
"\n",
"E.g. using specific configs for different loading behavior. Delete if not relevant."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all __ModuleName__Loader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.__module_name___loader.__ModuleName__Loader.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 4
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# __ModuleName__Loader\n",
"\n",
"- TODO: Make sure API reference link is correct.\n",
"\n",
"This notebook provides a quick overview for getting started with __ModuleName__ [document loader](https://python.langchain.com/docs/concepts/document_loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.__module_name___loader.__ModuleName__Loader.html).\n",
"\n",
"- TODO: Add any other relevant links, like information about underlying API, etc.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/web_loaders/__module_name___loader)|\n",
"| :--- | :--- | :---: | :---: | :---: |\n",
"| [__ModuleName__Loader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.__module_name__loader.__ModuleName__Loader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ | \n",
"### Loader features\n",
"| Source | Document Lazy Loading | Native Async Support\n",
"| :---: | :---: | :---: | \n",
"| __ModuleName__Loader | ✅/❌ | ✅/❌ | \n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ document loader you'll need to install the `__package_name__` integration package, and create a **ModuleName** account and get an API key.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"Install **langchain_community**.\n",
"\n",
"- TODO: Add any other required packages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain_community"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialization\n",
"\n",
"Now we can instantiate our model object and load documents:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import __ModuleName__Loader\n",
"\n",
"loader = __ModuleName__Loader(\n",
" # required params = ...\n",
" # optional params = ...\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load\n",
"\n",
"- TODO: Run cells to show loading capabilities"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()\n",
"docs[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(docs[0].metadata)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Lazy Load\n",
"\n",
"- TODO: Run cells to show lazy loading capabilities. Delete if lazy loading is not implemented."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"page = []\n",
"for doc in loader.lazy_load():\n",
" page.append(doc)\n",
" if len(page) >= 10:\n",
" # do some paged operation, e.g.\n",
" # index.upsert(page)\n",
"\n",
" page = []"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this document loader\n",
"\n",
"E.g. using specific configs for different loading behavior. Delete if not relevant."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all __ModuleName__Loader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.__module_name___loader.__ModuleName__Loader.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,236 +1,236 @@
{
"cells": [
{
"cell_type": "raw",
"id": "67db2992",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9597802c",
"metadata": {},
"source": [
"# __ModuleName__LLM\n",
"\n",
"- [ ] TODO: Make sure API reference link is correct\n",
"\n",
"This will help you get started with __ModuleName__ completion models (LLMs) using LangChain. For detailed documentation on `__ModuleName__LLM` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [__ModuleName__LLM](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc51e756",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")"
]
},
{
"cell_type": "markdown",
"id": "4b6e1ca6",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "196c2b41",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "809c6577",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59c710c4",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "0a760037",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0562a13",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import __ModuleName__LLM\n",
"\n",
"llm = __ModuleName__LLM(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0ee90032",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"- [ ] TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "035dea0f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"input_text = \"__ModuleName__ is an AI company that \"\n",
"\n",
"completion = llm.invoke(input_text)\n",
"completion"
]
},
{
"cell_type": "markdown",
"id": "add38532",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our completion model with a prompt template like so:\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "078e9db2",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"prompt = PromptTemplate(\n",
" \"How to say {input} in {output_language}:\\n\"\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e99eef30",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this model provider\n",
"\n",
"E.g. creating/using finetuned models via this provider. Delete if not relevant"
]
},
{
"cell_type": "markdown",
"id": "e9bdfcef",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `__ModuleName__LLM` features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.1 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"vscode": {
"interpreter": {
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
}
}
"cells": [
{
"cell_type": "raw",
"id": "67db2992",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "9597802c",
"metadata": {},
"source": [
"# __ModuleName__LLM\n",
"\n",
"- [ ] TODO: Make sure API reference link is correct\n",
"\n",
"This will help you get started with __ModuleName__ completion models (LLMs) using LangChain. For detailed documentation on `__ModuleName__LLM` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"- TODO: Fill in table features.\n",
"- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n",
"- TODO: Make sure API reference links are correct.\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [__ModuleName__LLM](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n",
"\n",
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc51e756",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "4b6e1ca6",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "196c2b41",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "809c6577",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59c710c4",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "0a760037",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0562a13",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import __ModuleName__LLM\n",
"\n",
"llm = __ModuleName__LLM(\n",
" model=\"model-name\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0ee90032",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"- [ ] TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "035dea0f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"input_text = \"__ModuleName__ is an AI company that \"\n",
"\n",
"completion = llm.invoke(input_text)\n",
"completion"
]
},
{
"cell_type": "markdown",
"id": "add38532",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our completion model with a prompt template like so:\n",
"\n",
"- TODO: Run cells so output can be seen."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "078e9db2",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"prompt = PromptTemplate(\"How to say {input} in {output_language}:\\n\")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e99eef30",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this model provider\n",
"\n",
"E.g. creating/using finetuned models via this provider. Delete if not relevant"
]
},
{
"cell_type": "markdown",
"id": "e9bdfcef",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `__ModuleName__LLM` features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.1 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"vscode": {
"interpreter": {
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -62,7 +62,9 @@
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")"
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{

View File

@@ -1,244 +1,246 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# __ModuleName__Embeddings\n",
"\n",
"- [ ] TODO: Make sure API reference link is correct\n",
"\n",
"This will help you get started with __ModuleName__ embedding models using LangChain. For detailed documentation on `__ModuleName__Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/__package_name_short__/embeddings/__module_name__.embeddings__ModuleName__Embeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Provider | Package |\n",
"|:--------:|:-------:|\n",
"| [__ModuleName__](/docs/integrations/providers/__package_name_short__/) | [__package_name__](https://python.langchain.com/v0.2/api_reference/__module_name__/embeddings/__module_name__.embeddings__ModuleName__Embeddings.html) |\n",
"\n",
"## Setup\n",
"\n",
"- [ ] TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ embedding models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import __ModuleName__Embeddings\n",
"\n",
"embeddings = __ModuleName__Embeddings(\n",
" model=\"model-name\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d817716b",
"metadata": {},
"outputs": [],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d2befcd",
"metadata": {},
"outputs": [],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f4d6e97",
"metadata": {},
"outputs": [],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `__ModuleName__Embeddings` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/embeddings/__module_name__.embeddings.__ModuleName__Embeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# __ModuleName__Embeddings\n",
"\n",
"- [ ] TODO: Make sure API reference link is correct\n",
"\n",
"This will help you get started with __ModuleName__ embedding models using LangChain. For detailed documentation on `__ModuleName__Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/__package_name_short__/embeddings/__module_name__.embeddings__ModuleName__Embeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Provider | Package |\n",
"|:--------:|:-------:|\n",
"| [__ModuleName__](/docs/integrations/providers/__package_name_short__/) | [__package_name__](https://python.langchain.com/v0.2/api_reference/__module_name__/embeddings/__module_name__.embeddings__ModuleName__Embeddings.html) |\n",
"\n",
"## Setup\n",
"\n",
"- [ ] TODO: Update with relevant info.\n",
"\n",
"To access __ModuleName__ embedding models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU __package_name__"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from __module_name__ import __ModuleName__Embeddings\n",
"\n",
"embeddings = __ModuleName__Embeddings(\n",
" model=\"model-name\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d817716b",
"metadata": {},
"outputs": [],
"source": [
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d2befcd",
"metadata": {},
"outputs": [],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f4d6e97",
"metadata": {},
"outputs": [],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `__ModuleName__Embeddings` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/embeddings/__module_name__.embeddings.__ModuleName__Embeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -120,9 +120,7 @@
"from langchain_community.tools import __ModuleName__\n",
"\n",
"\n",
"tool = __ModuleName__(\n",
" ...\n",
")"
"tool = __ModuleName__(...)"
]
},
{

View File

@@ -1,340 +1,333 @@
{
"cells": [
{
"cell_type": "raw",
"id": "1957f5cb",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "ef1f0986",
"metadata": {},
"source": [
"# __ModuleName__VectorStore\n",
"\n",
"This notebook covers how to get started with the __ModuleName__ vector store."
]
},
{
"cell_type": "markdown",
"id": "36fdc060",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"- TODO: Update minimum version to be correct.\n",
"\n",
"To access __ModuleName__ vector stores you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package."
]
},
{
"cell_type": "raw",
"id": "64e28aa6",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"%pip install -qU \"__package_name__>=MINIMUM_VERSION\""
]
},
{
"cell_type": "markdown",
"id": "9695dee7",
"metadata": {},
"source": [
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "894c30e4",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")"
]
},
{
"cell_type": "markdown",
"id": "7f98392b",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7b6a6e0",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "93df377e",
"metadata": {},
"source": [
"## Initialization\n",
"\n",
"- TODO: Fill out with relevant init params\n",
"\n",
"\n",
"```{=mdx}\n",
"import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n",
"\n",
"<EmbeddingTabs/>\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc37144c-208d-4ab3-9f3a-0407a69fe052",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from __module_name__.vectorstores import __ModuleName__VectorStore\n",
"\n",
"vector_store = __ModuleName__VectorStore(embeddings=embeddings)"
]
},
{
"cell_type": "markdown",
"id": "ac6071d4",
"metadata": {},
"source": [
"## Manage vector store\n",
"\n",
"### Add items to vector store\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "17f5efc0",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.documents import Document\n",
"\n",
"document_1 = Document(\n",
" page_content=\"foo\",\n",
" metadata={\"source\": \"https://example.com\"}\n",
")\n",
"\n",
"document_2 = Document(\n",
" page_content=\"bar\",\n",
" metadata={\"source\": \"https://example.com\"}\n",
")\n",
"\n",
"document_3 = Document(\n",
" page_content=\"baz\",\n",
" metadata={\"source\": \"https://example.com\"}\n",
")\n",
"\n",
"documents = [document_1, document_2, document_3]\n",
"\n",
"vector_store.add_documents(documents=documents,ids=[\"1\",\"2\",\"3\"])"
]
},
{
"cell_type": "markdown",
"id": "c738c3e0",
"metadata": {},
"source": [
"### Update items in vector store\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f0aa8b71",
"metadata": {},
"outputs": [],
"source": [
"updated_document = Document(\n",
" page_content=\"qux\",\n",
" metadata={\"source\": \"https://another-example.com\"}\n",
")\n",
"\n",
"vector_store.update_documents(document_id=\"1\",document=updated_document)"
]
},
{
"cell_type": "markdown",
"id": "dcf1b905",
"metadata": {},
"source": [
"### Delete items from vector store\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ef61e188",
"metadata": {},
"outputs": [],
"source": [
"vector_store.delete(ids=[\"3\"])"
]
},
{
"cell_type": "markdown",
"id": "c3620501",
"metadata": {},
"source": [
"## Query vector store\n",
"\n",
"Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.\n",
"\n",
"### Query directly\n",
"\n",
"Performing a simple similarity search can be done as follows:\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aa0a16fa",
"metadata": {},
"outputs": [],
"source": [
"results = vector_store.similarity_search(query=\"thud\",k=1,filter={\"source\":\"https://another-example.com\"})\n",
"for doc in results:\n",
" print(f\"* {doc.page_content} [{doc.metadata}]\")"
]
},
{
"cell_type": "markdown",
"id": "3ed9d733",
"metadata": {},
"source": [
"If you want to execute a similarity search and receive the corresponding scores you can run:\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5efd2eaa",
"metadata": {},
"outputs": [],
"source": [
"results = vector_store.similarity_search_with_score(query=\"thud\",k=1,filter={\"source\":\"https://example.com\"})\n",
"for doc, score in results:\n",
" print(f\"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]\")"
]
},
{
"cell_type": "markdown",
"id": "0c235cdc",
"metadata": {},
"source": [
"### Query by turning into retriever\n",
"\n",
"You can also transform the vector store into a retriever for easier usage in your chains.\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f3460093",
"metadata": {},
"outputs": [],
"source": [
"retriever = vector_store.as_retriever(\n",
" search_type=\"mmr\",\n",
" search_kwargs={\"k\": 1}\n",
")\n",
"retriever.invoke(\"thud\")"
]
},
{
"cell_type": "markdown",
"id": "901c75dc",
"metadata": {},
"source": [
"## Usage for retrieval-augmented generation\n",
"\n",
"For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
"- [Tutorials](/docs/tutorials/)\n",
"- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n",
"- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/retrieval/)"
]
},
{
"cell_type": "markdown",
"id": "069f1b5f",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this vector store\n",
"\n",
"E.g. creating a persisten database to save to your disk, etc."
]
},
{
"cell_type": "markdown",
"id": "8a27244f",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all __ModuleName__VectorStore features and configurations head to the API reference: https://api.python.langchain.com/en/latest/vectorstores/__module_name__.vectorstores.__ModuleName__VectorStore.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
"cells": [
{
"cell_type": "raw",
"id": "1957f5cb",
"metadata": {},
"source": [
"---\n",
"sidebar_label: __ModuleName__\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "ef1f0986",
"metadata": {},
"source": [
"# __ModuleName__VectorStore\n",
"\n",
"This notebook covers how to get started with the __ModuleName__ vector store."
]
},
{
"cell_type": "markdown",
"id": "36fdc060",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"- TODO: Update with relevant info.\n",
"- TODO: Update minimum version to be correct.\n",
"\n",
"To access __ModuleName__ vector stores you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package."
]
},
{
"cell_type": "raw",
"id": "64e28aa6",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"%pip install -qU \"__package_name__>=MINIMUM_VERSION\""
]
},
{
"cell_type": "markdown",
"id": "9695dee7",
"metadata": {},
"source": [
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "894c30e4",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
" os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\n",
" \"Enter your __ModuleName__ API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "7f98392b",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7b6a6e0",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "93df377e",
"metadata": {},
"source": [
"## Initialization\n",
"\n",
"- TODO: Fill out with relevant init params\n",
"\n",
"\n",
"```{=mdx}\n",
"import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n",
"\n",
"<EmbeddingTabs/>\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc37144c-208d-4ab3-9f3a-0407a69fe052",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from __module_name__.vectorstores import __ModuleName__VectorStore\n",
"\n",
"vector_store = __ModuleName__VectorStore(embeddings=embeddings)"
]
},
{
"cell_type": "markdown",
"id": "ac6071d4",
"metadata": {},
"source": [
"## Manage vector store\n",
"\n",
"### Add items to vector store\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "17f5efc0",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.documents import Document\n",
"\n",
"document_1 = Document(page_content=\"foo\", metadata={\"source\": \"https://example.com\"})\n",
"\n",
"document_2 = Document(page_content=\"bar\", metadata={\"source\": \"https://example.com\"})\n",
"\n",
"document_3 = Document(page_content=\"baz\", metadata={\"source\": \"https://example.com\"})\n",
"\n",
"documents = [document_1, document_2, document_3]\n",
"\n",
"vector_store.add_documents(documents=documents, ids=[\"1\", \"2\", \"3\"])"
]
},
{
"cell_type": "markdown",
"id": "c738c3e0",
"metadata": {},
"source": [
"### Update items in vector store\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f0aa8b71",
"metadata": {},
"outputs": [],
"source": [
"updated_document = Document(\n",
" page_content=\"qux\", metadata={\"source\": \"https://another-example.com\"}\n",
")\n",
"\n",
"vector_store.update_documents(document_id=\"1\", document=updated_document)"
]
},
{
"cell_type": "markdown",
"id": "dcf1b905",
"metadata": {},
"source": [
"### Delete items from vector store\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ef61e188",
"metadata": {},
"outputs": [],
"source": [
"vector_store.delete(ids=[\"3\"])"
]
},
{
"cell_type": "markdown",
"id": "c3620501",
"metadata": {},
"source": [
"## Query vector store\n",
"\n",
"Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.\n",
"\n",
"### Query directly\n",
"\n",
"Performing a simple similarity search can be done as follows:\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aa0a16fa",
"metadata": {},
"outputs": [],
"source": [
"results = vector_store.similarity_search(\n",
" query=\"thud\", k=1, filter={\"source\": \"https://another-example.com\"}\n",
")\n",
"for doc in results:\n",
" print(f\"* {doc.page_content} [{doc.metadata}]\")"
]
},
{
"cell_type": "markdown",
"id": "3ed9d733",
"metadata": {},
"source": [
"If you want to execute a similarity search and receive the corresponding scores you can run:\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5efd2eaa",
"metadata": {},
"outputs": [],
"source": [
"results = vector_store.similarity_search_with_score(\n",
" query=\"thud\", k=1, filter={\"source\": \"https://example.com\"}\n",
")\n",
"for doc, score in results:\n",
" print(f\"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]\")"
]
},
{
"cell_type": "markdown",
"id": "0c235cdc",
"metadata": {},
"source": [
"### Query by turning into retriever\n",
"\n",
"You can also transform the vector store into a retriever for easier usage in your chains.\n",
"\n",
"- TODO: Edit and then run code cell to generate output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f3460093",
"metadata": {},
"outputs": [],
"source": [
"retriever = vector_store.as_retriever(search_type=\"mmr\", search_kwargs={\"k\": 1})\n",
"retriever.invoke(\"thud\")"
]
},
{
"cell_type": "markdown",
"id": "901c75dc",
"metadata": {},
"source": [
"## Usage for retrieval-augmented generation\n",
"\n",
"For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
"\n",
"- [Tutorials](/docs/tutorials/)\n",
"- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n",
"- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/retrieval/)"
]
},
{
"cell_type": "markdown",
"id": "069f1b5f",
"metadata": {},
"source": [
"## TODO: Any functionality specific to this vector store\n",
"\n",
"E.g. creating a persisten database to save to your disk, etc."
]
},
{
"cell_type": "markdown",
"id": "8a27244f",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all __ModuleName__VectorStore features and configurations head to the API reference: https://api.python.langchain.com/en/latest/vectorstores/__module_name__.vectorstores.__ModuleName__VectorStore.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -21,11 +21,13 @@ class Chat__ModuleName__(BaseChatModel):
# https://github.com/langchain-ai/langchain/blob/7ff05357bac6eaedf5058a2af88f23a1817d40fe/libs/partners/openai/langchain_openai/chat_models/base.py#L1120
"""__ModuleName__ chat model integration.
The default implementation echoes the first `parrot_buffer_length` characters of the input.
The default implementation echoes the first `parrot_buffer_length` characters of
the input.
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable ``__MODULE_NAME___API_KEY``.
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
.. code-block:: bash
@@ -48,7 +50,8 @@ class Chat__ModuleName__(BaseChatModel):
max_retries: int
Max number of retries.
api_key: Optional[str]
__ModuleName__ API key. If not passed in will be read from env var __MODULE_NAME___API_KEY.
__ModuleName__ API key. If not passed in will be read from env var
__MODULE_NAME___API_KEY.
See full list of supported init args and their descriptions in the params section.
@@ -86,7 +89,7 @@ class Chat__ModuleName__(BaseChatModel):
.. code-block:: python
for chunk in llm.stream(messages):
print(chunk.text, end="")
print(chunk.text(), end="")
.. code-block:: python

View File

@@ -14,7 +14,8 @@ class __ModuleName__Loader(BaseLoader):
# TODO: Replace with relevant packages, env vars.
Setup:
Install ``__package_name__`` and set environment variable ``__MODULE_NAME___API_KEY``.
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
.. code-block:: bash
@@ -62,7 +63,7 @@ class __ModuleName__Loader(BaseLoader):
TODO: Example output
""" # noqa: E501
"""
# TODO: This method must be implemented to load documents.
# Do not implement load(), a default implementation is already available.

View File

@@ -12,7 +12,8 @@ class __ModuleName__Toolkit(BaseToolkit):
# TODO: Replace with relevant packages, env vars, etc.
Setup:
Install ``__package_name__`` and set environment variable ``__MODULE_NAME___API_KEY``.
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
.. code-block:: bash
@@ -65,7 +66,7 @@ class __ModuleName__Toolkit(BaseToolkit):
# TODO: Example output.
""" # noqa: E501
"""
# TODO: This method must be implemented to list tools.
def get_tools(self) -> List[BaseTool]:

View File

@@ -27,7 +27,8 @@ class __ModuleName__Tool(BaseTool): # type: ignore[override]
Setup:
# TODO: Replace with relevant packages, env vars.
Install ``__package_name__`` and set environment variable ``__MODULE_NAME___API_KEY``.
Install ``__package_name__`` and set environment variable
``__MODULE_NAME___API_KEY``.
.. code-block:: bash

View File

@@ -25,6 +25,9 @@ langchain-core = "^0.3.15"
[tool.ruff.lint]
select = ["E", "F", "I", "T201"]
[tool.ruff.lint.per-file-ignores]
"docs/**" = [ "ALL",]
[tool.coverage.run]
omit = ["tests/*"]

View File

@@ -72,9 +72,7 @@ def new(
name_str = name
pip_bool = bool(pip) # None should be false
else:
name_str = (
name if name else typer.prompt("What folder would you like to create?")
)
name_str = name or typer.prompt("What folder would you like to create?")
if not has_packages:
package = []
package_prompt = "What package would you like to add? (leave blank to skip)"

View File

@@ -11,7 +11,16 @@ def generate_raw_migrations(
to_package: str,
filter_by_all: bool = False, # noqa: FBT001, FBT002
) -> list[tuple[str, str]]:
"""Scan the `langchain` package and generate migrations for all modules."""
"""Scan the `langchain` package and generate migrations for all modules.
Args:
from_package: The package to migrate from.
to_package: The package to migrate to.
filter_by_all: Whether to only consider items in `__all__`.
Returns:
A list of tuples containing the original import path and the new import path.
"""
package = importlib.import_module(from_package)
items = []
@@ -84,6 +93,13 @@ def generate_top_level_imports(pkg: str) -> list[tuple[str, str]]:
and the second tuple will contain the path
to importing it from the top level namespaces
(e.g., ``langchain_community.chat_models.XYZ``)
Args:
pkg: The package to scan.
Returns:
A list of tuples containing the fully qualified path and the top-level
import path.
"""
package = importlib.import_module(pkg)
@@ -130,7 +146,17 @@ def generate_simplified_migrations(
to_package: str,
filter_by_all: bool = True, # noqa: FBT001, FBT002
) -> list[tuple[str, str]]:
"""Get all the raw migrations, then simplify them if possible."""
"""Get all the raw migrations, then simplify them if possible.
Args:
from_package: The package to migrate from.
to_package: The package to migrate to.
filter_by_all: Whether to only consider items in `__all__`.
Returns:
A list of tuples containing the original import path and the simplified
import path.
"""
raw_migrations = generate_raw_migrations(
from_package,
to_package,

View File

@@ -2,13 +2,28 @@
def split_package(package: str) -> tuple[str, str]:
"""Split a package name into the containing package and the final name."""
"""Split a package name into the containing package and the final name.
Args:
package: The full package name.
Returns:
A tuple of `(containing_package, final_name)`.
"""
parts = package.split(".")
return ".".join(parts[:-1]), parts[-1]
def dump_migrations_as_grit(name: str, migration_pairs: list[tuple[str, str]]) -> str:
"""Dump the migration pairs as a Grit file."""
"""Dump the migration pairs as a Grit file.
Args:
name: The name of the migration.
migration_pairs: A list of tuples `(from_module, to_module)`.
Returns:
The Grit file as a string.
"""
remapped = ",\n".join(
[
f"""

View File

@@ -6,7 +6,9 @@ import os
import pathlib
from pathlib import Path
from types import ModuleType
from typing import Any, Optional
from typing import Optional
from typing_extensions import override
HERE = Path(__file__).parent
# Should bring us to [root]/src
@@ -22,10 +24,11 @@ class ImportExtractor(ast.NodeVisitor):
def __init__(self, *, from_package: Optional[str] = None) -> None:
"""Extract all imports from the given code, optionally filtering by package."""
self.imports: list = []
self.imports: list[tuple[str, str]] = []
self.package = from_package
def visit_ImportFrom(self, node: ast.ImportFrom) -> None: # noqa: N802
@override
def visit_ImportFrom(self, node: ast.ImportFrom) -> None:
if node.module and (
self.package is None or str(node.module).startswith(self.package)
):
@@ -44,7 +47,8 @@ def _get_class_names(code: str) -> list[str]:
# Define a node visitor class to collect class names
class ClassVisitor(ast.NodeVisitor):
def visit_ClassDef(self, node: ast.ClassDef) -> None: # noqa: N802
@override
def visit_ClassDef(self, node: ast.ClassDef) -> None:
class_names.append(node.name)
self.generic_visit(node)
@@ -54,8 +58,16 @@ def _get_class_names(code: str) -> list[str]:
return class_names
def is_subclass(class_obj: Any, classes_: list[type]) -> bool:
"""Check if the given class object is a subclass of any class in list classes."""
def is_subclass(class_obj: type, classes_: list[type]) -> bool:
"""Check if the given class object is a subclass of any class in list classes.
Args:
class_obj: The class to check.
classes_: A list of classes to check against.
Returns:
True if `class_obj` is a subclass of any class in `classes_`, False otherwise.
"""
return any(
issubclass(class_obj, kls)
for kls in classes_
@@ -64,7 +76,15 @@ def is_subclass(class_obj: Any, classes_: list[type]) -> bool:
def find_subclasses_in_module(module: ModuleType, classes_: list[type]) -> list[str]:
"""Find all classes in the module that inherit from one of the classes."""
"""Find all classes in the module that inherit from one of the classes.
Args:
module: The module to inspect.
classes_: A list of classes to check against.
Returns:
A list of class names that are subclasses of any class in `classes_`.
"""
subclasses = []
# Iterate over all attributes of the module that are classes
for _name, obj in inspect.getmembers(module, inspect.isclass):
@@ -87,7 +107,15 @@ def identify_all_imports_in_file(
*,
from_package: Optional[str] = None,
) -> list[tuple[str, str]]:
"""Let's also identify all the imports in the given file."""
"""Identify all the imports in the given file.
Args:
file: The file to analyze.
from_package: If provided, only return imports from this package.
Returns:
A list of tuples `(module, name)` representing the imports found in the file.
"""
code = Path(file).read_text(encoding="utf-8")
return find_imports_from_package(code, from_package=from_package)
@@ -102,6 +130,9 @@ def identify_pkg_source(pkg_root: str) -> pathlib.Path:
Returns:
Returns the path to the source code for the package.
Raises:
ValueError: If there is not exactly one directory starting with `'langchain_'`
in the package root.
"""
dirs = [d for d in Path(pkg_root).iterdir() if d.is_dir()]
matching_dirs = [d for d in dirs if d.name.startswith("langchain_")]
@@ -112,7 +143,15 @@ def identify_pkg_source(pkg_root: str) -> pathlib.Path:
def list_classes_by_package(pkg_root: str) -> list[tuple[str, str]]:
"""List all classes in a package."""
"""List all classes in a package.
Args:
pkg_root: the root of the package.
Returns:
A list of tuples `(module, class_name)` representing all classes found in the
package, excluding test files.
"""
module_classes = []
pkg_source = identify_pkg_source(pkg_root)
files = list(pkg_source.rglob("*.py"))
@@ -126,7 +165,15 @@ def list_classes_by_package(pkg_root: str) -> list[tuple[str, str]]:
def list_init_imports_by_package(pkg_root: str) -> list[tuple[str, str]]:
"""List all the things that are being imported in a package by module."""
"""List all the things that are being imported in a package by module.
Args:
pkg_root: the root of the package.
Returns:
A list of tuples `(module, name)` representing the imports found in
`__init__.py` files.
"""
imports = []
pkg_source = identify_pkg_source(pkg_root)
# Scan all the files in the package
@@ -146,7 +193,15 @@ def find_imports_from_package(
*,
from_package: Optional[str] = None,
) -> list[tuple[str, str]]:
"""Find imports in code."""
"""Find imports in code.
Args:
code: The code to analyze.
from_package: If provided, only return imports from this package.
Returns:
A list of tuples `(module, name)` representing the imports found.
"""
# Parse the code into an AST
tree = ast.parse(code)
# Create an instance of the visitor

View File

@@ -4,7 +4,7 @@ from pathlib import Path
import rich
import typer
from gritql import run # type: ignore[import]
from gritql import run # type: ignore[import-untyped]
from typer import Option
@@ -68,7 +68,7 @@ def migrate(
final_code = run.apply_pattern(
"langchain_all_migrations()",
args,
grit_dir=get_gritdir_path(),
grit_dir=str(get_gritdir_path()),
)
raise typer.Exit(code=final_code)

View File

@@ -34,7 +34,7 @@ def new(
package_name_split = computed_name.split("/")
package_name = (
package_name_split[-2]
if len(package_name_split) > 1 and package_name_split[-1] == ""
if len(package_name_split) > 1 and not package_name_split[-1]
else package_name_split[-1]
)
module_name = re.sub(

View File

@@ -1,3 +1,5 @@
"""__module_name__ module."""
from __module_name__.chain import chain
__all__ = ["chain"]

View File

@@ -1,3 +1,5 @@
"""Chain definition."""
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

View File

@@ -0,0 +1 @@
"""Tests."""

View File

@@ -0,0 +1 @@
"""Server application."""

View File

@@ -1,3 +1,5 @@
"""Chain server."""
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
from langserve import add_routes
@@ -6,7 +8,7 @@ app = FastAPI()
@app.get("/")
async def redirect_root_to_docs():
async def _redirect_root_to_docs() -> RedirectResponse:
return RedirectResponse("/docs")
@@ -16,4 +18,4 @@ add_routes(app, NotImplemented)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
uvicorn.run(app, host="0.0.0.0", port=8000) # noqa: S104

View File

@@ -21,8 +21,15 @@ class EventDict(TypedDict):
properties: Optional[dict[str, Any]]
def create_events(events: list[EventDict]) -> Optional[Any]:
"""Create events."""
def create_events(events: list[EventDict]) -> Optional[dict[str, Any]]:
"""Create events.
Args:
events: A list of event dictionaries.
Returns:
The response from the event tracking service, or None if there was an error.
"""
try:
data = {
"events": [
@@ -48,7 +55,8 @@ def create_events(events: list[EventDict]) -> Optional[Any]:
res = conn.getresponse()
return json.loads(res.read())
response_data = json.loads(res.read())
return response_data if isinstance(response_data, dict) else None
except (http.client.HTTPException, OSError, json.JSONDecodeError) as exc:
typer.echo(f"Error sending events: {exc}")
return None

View File

@@ -4,7 +4,15 @@ from pathlib import Path
def find_and_replace(source: str, replacements: dict[str, str]) -> str:
"""Find and replace text in a string."""
"""Find and replace text in a string.
Args:
source: The source string.
replacements: A dictionary of `{find: replace}` pairs.
Returns:
The modified string.
"""
rtn = source
# replace keys in deterministic alphabetical order

View File

@@ -6,7 +6,7 @@ import re
import shutil
from collections.abc import Sequence
from pathlib import Path
from typing import Optional, TypedDict
from typing import Any, Optional, TypedDict
from git import Repo
@@ -26,7 +26,7 @@ class DependencySource(TypedDict):
ref: Optional[str]
subdirectory: Optional[str]
api_path: Optional[str]
event_metadata: dict
event_metadata: dict[str, Any]
# use poetry dependency string format
@@ -36,7 +36,20 @@ def parse_dependency_string(
branch: Optional[str],
api_path: Optional[str],
) -> DependencySource:
"""Parse a dependency string into a DependencySource."""
"""Parse a dependency string into a DependencySource.
Args:
dep: the dependency string.
repo: optional repository.
branch: optional branch.
api_path: optional API path.
Returns:
The parsed dependency source information.
Raises:
ValueError: if the dependency string is invalid.
"""
if dep is not None and dep.startswith("git+"):
if repo is not None or branch is not None:
msg = (
@@ -129,7 +142,22 @@ def parse_dependencies(
branch: list[str],
api_path: list[str],
) -> list[DependencySource]:
"""Parse dependencies."""
"""Parse dependencies.
Args:
dependencies: the dependencies to parse
repo: the repositories to use
branch: the branches to use
api_path: the api paths to use
Returns:
A list of DependencySource objects.
Raises:
ValueError: if the number of `dependencies`, `repos`, `branches`, or `api_paths`
do not match.
"""
num_deps = max(
len(dependencies) if dependencies is not None else 0,
len(repo),
@@ -138,8 +166,8 @@ def parse_dependencies(
if (
(dependencies and len(dependencies) != num_deps)
or (api_path and len(api_path) != num_deps)
or (repo and len(repo) not in [1, num_deps])
or (branch and len(branch) not in [1, num_deps])
or (repo and len(repo) not in {1, num_deps})
or (branch and len(branch) not in {1, num_deps})
):
msg = (
"Number of defined repos/branches/api_paths did not match the "
@@ -151,15 +179,15 @@ def parse_dependencies(
inner_repos = _list_arg_to_length(repo, num_deps)
inner_branches = _list_arg_to_length(branch, num_deps)
return [
parse_dependency_string(iter_dep, iter_repo, iter_branch, iter_api_path)
for iter_dep, iter_repo, iter_branch, iter_api_path in zip(
return list(
map(
parse_dependency_string,
inner_deps,
inner_repos,
inner_branches,
inner_api_paths,
)
]
)
def _get_repo_path(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
@@ -167,7 +195,7 @@ def _get_repo_path(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
ref_str = ref if ref is not None else ""
hashed = hashlib.sha256((f"{gitstring}:{ref_str}").encode()).hexdigest()[:8]
removed_protocol = gitstring.split("://")[-1]
removed_protocol = gitstring.split("://", maxsplit=1)[-1]
removed_basename = re.split(r"[/:]", removed_protocol, maxsplit=1)[-1]
removed_extras = removed_basename.split("#")[0]
foldername = re.sub(r"\W", "_", removed_extras)
@@ -177,7 +205,18 @@ def _get_repo_path(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
def update_repo(gitstring: str, ref: Optional[str], repo_dir: Path) -> Path:
"""Update a git repository to the specified ref."""
"""Update a git repository to the specified ref.
Tries to pull if the repo already exists, otherwise clones it.
Args:
gitstring: The git repository URL.
ref: The git reference.
repo_dir: The directory to clone the repository into.
Returns:
The path to the cloned repository.
"""
# see if path already saved
repo_path = _get_repo_path(gitstring, ref, repo_dir)
if repo_path.exists():

View File

@@ -6,7 +6,14 @@ from typing import Optional
def list_packages(*, contains: Optional[str] = None) -> list[str]:
"""List all packages in the langchain repository templates directory."""
"""List all packages in the langchain repository templates directory.
Args:
contains: Optional substring that the package name must contain.
Returns:
A list of package names.
"""
conn = http.client.HTTPSConnection("api.github.com")
try:
headers = {

View File

@@ -7,7 +7,19 @@ from tomlkit import load
def get_package_root(cwd: Optional[Path] = None) -> Path:
"""Get package root directory."""
"""Get package root directory.
Args:
cwd: The current working directory to start the search from.
If None, uses the current working directory of the process.
Returns:
The path to the package root directory.
Raises:
FileNotFoundError: If no `pyproject.toml` file is found in the directory
hierarchy.
"""
# traverse path for routes to host (any directory holding a pyproject.toml file)
package_root = Path.cwd() if cwd is None else cwd
visited: set[Path] = set()
@@ -38,7 +50,17 @@ class LangServeExport(TypedDict):
def get_langserve_export(filepath: Path) -> LangServeExport:
"""Get LangServe export information from a pyproject.toml file."""
"""Get LangServe export information from a `pyproject.toml` file.
Args:
filepath: Path to the `pyproject.toml` file.
Returns:
The LangServeExport information.
Raises:
KeyError: If the `pyproject.toml` file is missing required fields.
"""
with filepath.open() as f:
data: dict[str, Any] = load(f)
try:

View File

@@ -15,7 +15,7 @@ dependencies = [
"gritql<1.0.0,>=0.2.0",
]
name = "langchain-cli"
version = "0.0.36"
version = "0.0.37"
description = "CLI for interacting with LangChain"
readme = "README.md"
@@ -29,8 +29,8 @@ langchain = "langchain_cli.cli:app"
langchain-cli = "langchain_cli.cli:app"
[dependency-groups]
dev = ["pytest<8.0.0,>=7.4.2", "pytest-watcher<1.0.0,>=0.3.4"]
lint = ["ruff<0.13,>=0.12.2", "mypy<2.0.0,>=1.13.0"]
dev = ["pytest<9.0.0,>=7.4.2", "pytest-watcher<1.0.0,>=0.3.4"]
lint = ["ruff<0.13,>=0.12.2", "mypy<1.19,>=1.18.1"]
test = ["langchain-core", "langchain"]
typing = ["langchain"]
test_integration = []
@@ -41,17 +41,16 @@ langchain = { path = "../langchain", editable = true }
[tool.ruff]
target-version = "py39"
exclude = [
"langchain_cli/integration_template",
"langchain_cli/package_template",
"langchain_cli/project_template",
]
[tool.ruff.format]
docstring-code-format = true
[tool.ruff.lint]
select = [ "ALL",]
ignore = [
"C90", # McCabe complexity
"COM812", # Messes with the formatter
"CPY", # No copyright
"FIX002", # Line contains TODO
"PERF203", # Rarely useful
"PLR09", # Too many something (arg, statements, etc)
@@ -63,9 +62,7 @@ ignore = [
"TD003", # Missing issue link in TODO
# TODO rules
"ANN401",
"BLE",
"D1",
]
unfixable = [
"B028", # People should intentionally tune the stacklevel
@@ -80,10 +77,15 @@ pydocstyle.convention = "google"
pyupgrade.keep-runtime-typing = true
[tool.ruff.lint.per-file-ignores]
"tests/**" = [ "D1", "S", "SLF",]
"tests/**" = [ "D1", "DOC", "S", "SLF",]
"scripts/**" = [ "INP", "S",]
[tool.mypy]
plugins = ["pydantic.mypy"]
strict = true
enable_error_code = "deprecated"
warn_unreachable = true
exclude = [
"langchain_cli/integration_template",
"langchain_cli/package_template",

View File

@@ -52,7 +52,7 @@ def cli() -> None:
def generic(
pkg1: str,
pkg2: str,
output: str,
output: Optional[str],
filter_by_all: bool, # noqa: FBT001
format_: str,
) -> None:
@@ -73,7 +73,7 @@ def generic(
else:
dumped = dump_migrations_as_grit(name, migrations)
Path(output).write_text(dumped)
Path(output).write_text(dumped, encoding="utf-8")
def handle_partner(pkg: str, output: Optional[str] = None) -> None:
@@ -84,7 +84,7 @@ def handle_partner(pkg: str, output: Optional[str] = None) -> None:
data = dump_migrations_as_grit(name, migrations)
output_name = f"{name}.grit" if output is None else output
if migrations:
Path(output_name).write_text(data)
Path(output_name).write_text(data, encoding="utf-8")
click.secho(f"LangChain migration script saved to {output_name}")
else:
click.secho(f"No migrations found for {pkg}", fg="yellow")
@@ -109,7 +109,7 @@ def json_to_grit(json_file: str) -> None:
name = file.stem
data = dump_migrations_as_grit(name, migrations)
output_name = f"{name}.grit"
Path(output_name).write_text(data)
Path(output_name).write_text(data, encoding="utf-8")
click.secho(f"GritQL migration script saved to {output_name}")

View File

@@ -1,4 +1,4 @@
from typing import Optional
from typing import Any, Optional
import pytest
@@ -16,7 +16,7 @@ def _assert_dependency_equals(
git: Optional[str] = None,
ref: Optional[str] = None,
subdirectory: Optional[str] = None,
event_metadata: Optional[dict] = None,
event_metadata: Optional[dict[str, Any]] = None,
) -> None:
if dep["git"] != git:
msg = f"Expected git to be {git} but got {dep['git']}"

Some files were not shown because too many files have changed in this diff Show More