mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-04 00:00:34 +00:00
Compare commits
378 Commits
langchain=
...
mdrxy/temp
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5e87e7d35f | ||
|
|
0b99ca4fcd | ||
|
|
5799aa1045 | ||
|
|
cf5b011055 | ||
|
|
2ab225769d | ||
|
|
1dc2600cd4 | ||
|
|
6bcc4a1af1 | ||
|
|
725d204b95 | ||
|
|
2ef23882d2 | ||
|
|
e261924030 | ||
|
|
d22cfaf7c6 | ||
|
|
3bd8c0c4a3 | ||
|
|
a7b943bbe3 | ||
|
|
5fbf270c9d | ||
|
|
e73b027686 | ||
|
|
ecd19ff71f | ||
|
|
cb0d227d8a | ||
|
|
b688e36e38 | ||
|
|
606ef38e74 | ||
|
|
36e590ca5f | ||
|
|
fc417aaf17 | ||
|
|
5dc8ba3c99 | ||
|
|
f1ab8c5c80 | ||
|
|
bfe0a26547 | ||
|
|
bb5bd1181f | ||
|
|
9093c6effe | ||
|
|
8cb7dbd37b | ||
|
|
2a2a4067ca | ||
|
|
5e9765d811 | ||
|
|
703736a1e3 | ||
|
|
61fd703e5f | ||
|
|
4e40c2766a | ||
|
|
9ce73a73f8 | ||
|
|
b4cd67ac15 | ||
|
|
8e3c6b109f | ||
|
|
fd69425439 | ||
|
|
e6dde3267a | ||
|
|
23c4c506d3 | ||
|
|
d1404e63bb | ||
|
|
18c25e9f10 | ||
|
|
8e824d9ec4 | ||
|
|
fbe9babb34 | ||
|
|
9bd028d04a | ||
|
|
2e8744559d | ||
|
|
19edaa8acb | ||
|
|
b500244250 | ||
|
|
d972d00b3a | ||
|
|
384158daec | ||
|
|
c080296bed | ||
|
|
323c76504a | ||
|
|
ed2aa9f747 | ||
|
|
76da99e022 | ||
|
|
2847814c70 | ||
|
|
d383f00489 | ||
|
|
50c5bb5607 | ||
|
|
2b6911d9af | ||
|
|
f805ea9601 | ||
|
|
0276cc0290 | ||
|
|
ceca38d3fe | ||
|
|
5554a36ad5 | ||
|
|
bda22aa1d9 | ||
|
|
48cd13114f | ||
|
|
e6a9694f5d | ||
|
|
25bb36de81 | ||
|
|
92afcaae60 | ||
|
|
7ad1c19d9c | ||
|
|
f10225184d | ||
|
|
0c7b7e045d | ||
|
|
4c86e8ba39 | ||
|
|
048de6dfb6 | ||
|
|
557eddfd51 | ||
|
|
aa9c63b96a | ||
|
|
8aeff95341 | ||
|
|
0438f8c277 | ||
|
|
7f4f130479 | ||
|
|
6537939f53 | ||
|
|
a2529cd805 | ||
|
|
c1f1641018 | ||
|
|
225e0fa8c9 | ||
|
|
f021e899dc | ||
|
|
578cef9622 | ||
|
|
7979fd3d9f | ||
|
|
3b65985551 | ||
|
|
c4babed5c6 | ||
|
|
5ae53fdfb3 | ||
|
|
901690ceec | ||
|
|
be2c7f1aa8 | ||
|
|
b5c5ba0a5f | ||
|
|
944b43dd25 | ||
|
|
730a3676f8 | ||
|
|
cd5b36456a | ||
|
|
13cfdf1676 | ||
|
|
c25f3847d0 | ||
|
|
7ca0efde04 | ||
|
|
9495eb348d | ||
|
|
e5d4acf681 | ||
|
|
659eab2607 | ||
|
|
458a186540 | ||
|
|
a7aad60989 | ||
|
|
9da28bac86 | ||
|
|
0b91774263 | ||
|
|
5517ef37fb | ||
|
|
2bbe4216e0 | ||
|
|
fcc02f78e4 | ||
|
|
721bf15430 | ||
|
|
dcfd9c0e04 | ||
|
|
e03d6b80d5 | ||
|
|
33378f16fb | ||
|
|
ea25f5ebdd | ||
|
|
04c0c1bdc3 | ||
|
|
c1f5d0963d | ||
|
|
e81f00fb29 | ||
|
|
9ecf6360af | ||
|
|
7ce68f27da | ||
|
|
03ae39747b | ||
|
|
10de0a5364 | ||
|
|
30ac1da0de | ||
|
|
6d447f89d9 | ||
|
|
5ef9f6e036 | ||
|
|
e3939ade5a | ||
|
|
b0e4ef3158 | ||
|
|
ca7790f895 | ||
|
|
5884fb9523 | ||
|
|
0bd862b814 | ||
|
|
85f1ba2351 | ||
|
|
d46187201d | ||
|
|
3d78cc69f1 | ||
|
|
a92c032ff6 | ||
|
|
88b5f22f1c | ||
|
|
78b2d51edc | ||
|
|
294dda8df2 | ||
|
|
21c7cf1fa0 | ||
|
|
2212137931 | ||
|
|
e99ccbc126 | ||
|
|
75e237643a | ||
|
|
1f403cf612 | ||
|
|
451e8496e7 | ||
|
|
d4b7a6542e | ||
|
|
75b07b3d4e | ||
|
|
2e0bed6a21 | ||
|
|
5ec0fa69de | ||
|
|
6a416c6186 | ||
|
|
3dcafac79b | ||
|
|
d3e9c4d29d | ||
|
|
1cc4dc7cc9 | ||
|
|
398c067f30 | ||
|
|
d84eef667a | ||
|
|
8d93720c70 | ||
|
|
85c401f648 | ||
|
|
04ec6cacaf | ||
|
|
ed9bd6e3ad | ||
|
|
c739afd45b | ||
|
|
4fbeffcfee | ||
|
|
72f1d79022 | ||
|
|
f6297ced67 | ||
|
|
4804bd6ec2 | ||
|
|
10087ac024 | ||
|
|
f752c1a07f | ||
|
|
7902fa3238 | ||
|
|
4be9407b09 | ||
|
|
9225bff326 | ||
|
|
d4cb740e0c | ||
|
|
e5c9912a89 | ||
|
|
8bca31f8c4 | ||
|
|
c5baa3ac27 | ||
|
|
795e746ca7 | ||
|
|
6519a5675b | ||
|
|
e9f7cd3e0e | ||
|
|
5c94e47d14 | ||
|
|
e0950f29b7 | ||
|
|
71778cb721 | ||
|
|
37d8666276 | ||
|
|
c286c06f16 | ||
|
|
b83e9b1056 | ||
|
|
c1f66611fc | ||
|
|
f93bc48915 | ||
|
|
516d74b6df | ||
|
|
c85f7b6061 | ||
|
|
f167c35243 | ||
|
|
b8a76cb6e9 | ||
|
|
dbcdf0b702 | ||
|
|
beb2ee6edf | ||
|
|
9f61ed8b81 | ||
|
|
6cff82d02e | ||
|
|
0cd72b50fb | ||
|
|
1a3cd46d88 | ||
|
|
470160cf81 | ||
|
|
20b8342fdf | ||
|
|
2f8af61218 | ||
|
|
81758e22f3 | ||
|
|
54241f4d06 | ||
|
|
7c9223d2b2 | ||
|
|
3342e4d62d | ||
|
|
5842110dbc | ||
|
|
62db04c43a | ||
|
|
fb892ee50a | ||
|
|
8ad0e9f267 | ||
|
|
d0b13e926d | ||
|
|
6fa4a45311 | ||
|
|
97dd5f2cb8 | ||
|
|
2a82fbc0ff | ||
|
|
0e5e33ba03 | ||
|
|
fc35544e0d | ||
|
|
15cc090e52 | ||
|
|
0f940d74b2 | ||
|
|
7829b722b1 | ||
|
|
914730cf8d | ||
|
|
c3738ea376 | ||
|
|
cd124a0949 | ||
|
|
57ff48e62e | ||
|
|
bc232e6d03 | ||
|
|
be32382d92 | ||
|
|
16c984ef0a | ||
|
|
13dd115d1d | ||
|
|
75d365418b | ||
|
|
2cff369cdc | ||
|
|
f5b6eecf72 | ||
|
|
a528ea1796 | ||
|
|
bf6a5eb122 | ||
|
|
5720dea41b | ||
|
|
087107557f | ||
|
|
05ba853548 | ||
|
|
3fb90666be | ||
|
|
6a2a149f89 | ||
|
|
bbc1d46efe | ||
|
|
d6b5f05f33 | ||
|
|
10377a7373 | ||
|
|
373ad8ac2c | ||
|
|
5eec11e2db | ||
|
|
badc0cf1b6 | ||
|
|
3b7abdff96 | ||
|
|
4aebfbad59 | ||
|
|
ae1f03fbe0 | ||
|
|
46dbb3967e | ||
|
|
dd0b990ba5 | ||
|
|
5aa46501cf | ||
|
|
92df109dd5 | ||
|
|
d27fb0c432 | ||
|
|
69dd39c461 | ||
|
|
41cebfe4fb | ||
|
|
5350967ddc | ||
|
|
7542278997 | ||
|
|
ff6e3558d7 | ||
|
|
585e12e53b | ||
|
|
73ba156a7d | ||
|
|
395c8d0bd4 | ||
|
|
34d31b8394 | ||
|
|
2aa0555941 | ||
|
|
dff229d018 | ||
|
|
b009ca4d23 | ||
|
|
0254c12cb0 | ||
|
|
2faed37ff1 | ||
|
|
d886dcfba5 | ||
|
|
91d5ca275d | ||
|
|
dcb670f395 | ||
|
|
85012ae601 | ||
|
|
aa0f4fb927 | ||
|
|
d18cdc6f32 | ||
|
|
8a5f46322b | ||
|
|
a0e86b18bf | ||
|
|
6affec92ce | ||
|
|
a64aee310c | ||
|
|
ba6c2590ae | ||
|
|
bb71f53585 | ||
|
|
9875ffbabc | ||
|
|
b5efafe80c | ||
|
|
ff3353f02f | ||
|
|
3ace4e3680 | ||
|
|
80c397019f | ||
|
|
4a42158e6c | ||
|
|
7ba3e80057 | ||
|
|
50e27a447b | ||
|
|
78c10f8790 | ||
|
|
ccfc9f795a | ||
|
|
b21926fe6c | ||
|
|
f1ad0da8f5 | ||
|
|
f67af34ea0 | ||
|
|
3030ffc248 | ||
|
|
1ad9de4b45 | ||
|
|
b95cb770e8 | ||
|
|
1867521d1a | ||
|
|
8e3ca21bd3 | ||
|
|
e92c817518 | ||
|
|
28727618b3 | ||
|
|
3108b14164 | ||
|
|
1922adc092 | ||
|
|
4a242a8a4f | ||
|
|
064b37f90e | ||
|
|
062678fa18 | ||
|
|
5d3e3d3f31 | ||
|
|
5a7cf87626 | ||
|
|
c63f23d233 | ||
|
|
b7091d391d | ||
|
|
7a2952210e | ||
|
|
7549845d82 | ||
|
|
878f033ed7 | ||
|
|
4065106c2e | ||
|
|
12df938ace | ||
|
|
65ee43cc10 | ||
|
|
fe7c000fc1 | ||
|
|
dad50e5624 | ||
|
|
0a6d01e61d | ||
|
|
c6f8b0875a | ||
|
|
4c3800d743 | ||
|
|
7fe1c4b78f | ||
|
|
c375732396 | ||
|
|
9c21f83e82 | ||
|
|
880652b713 | ||
|
|
4ab94579ad | ||
|
|
eb0545a173 | ||
|
|
a2e389de9f | ||
|
|
01573c1375 | ||
|
|
2ba3ce81a6 | ||
|
|
4e4e5d7337 | ||
|
|
2a863727f9 | ||
|
|
30e2260e26 | ||
|
|
cbaea351b2 | ||
|
|
f070217c3b | ||
|
|
0915682c12 | ||
|
|
68ab9a1e56 | ||
|
|
47b79c30c0 | ||
|
|
5899f980aa | ||
|
|
b0bf4afe81 | ||
|
|
33e5d01f7c | ||
|
|
ee3373afc2 | ||
|
|
b296f103a9 | ||
|
|
525d5c0169 | ||
|
|
c4b6ba254e | ||
|
|
b7d1831f9d | ||
|
|
328ba36601 | ||
|
|
6f677ef5c1 | ||
|
|
d47d41cbd3 | ||
|
|
32bbe99efc | ||
|
|
990e346c46 | ||
|
|
9b7792631d | ||
|
|
558a8fe25b | ||
|
|
52b1516d44 | ||
|
|
8a3bb73c05 | ||
|
|
099c042395 | ||
|
|
2d4f00a451 | ||
|
|
9bd401a6d4 | ||
|
|
6aa3794b74 | ||
|
|
189dcf7295 | ||
|
|
1bc88028e6 | ||
|
|
d2942351ce | ||
|
|
83c078f363 | ||
|
|
26d39ffc4a | ||
|
|
421e2ceeee | ||
|
|
275dcbf69f | ||
|
|
9f87b27a5b | ||
|
|
b2e1196e29 | ||
|
|
2dc1396380 | ||
|
|
77941ab3ce | ||
|
|
ee19a30dde | ||
|
|
5d799b3174 | ||
|
|
8f33a985a2 | ||
|
|
78eeccef0e | ||
|
|
3d415441e8 | ||
|
|
74385e0ebd | ||
|
|
2bfbc29ccc | ||
|
|
ef79c26f18 | ||
|
|
fbe32c8e89 | ||
|
|
2511c28f92 | ||
|
|
637bb1cbbc | ||
|
|
3dfea96ec1 | ||
|
|
68643153e5 | ||
|
|
462762f75b | ||
|
|
4f3729c004 | ||
|
|
ba428cdf54 | ||
|
|
69c7d1b01b | ||
|
|
733299ec13 | ||
|
|
e1adf781c6 | ||
|
|
31b5e4810c | ||
|
|
c6801fe159 | ||
|
|
1b563067f8 | ||
|
|
1996d81d72 | ||
|
|
ab0677c6f1 | ||
|
|
bdb53c93cc |
@@ -26,7 +26,7 @@
|
||||
// Use 'forwardPorts' to make a list of ports inside the container available locally.
|
||||
// "forwardPorts": [],
|
||||
// Run commands after the container is created
|
||||
"postCreateCommand": "uv sync && echo 'LangChain (Python) dev environment ready!'",
|
||||
"postCreateCommand": "cd libs/langchain_v1 && uv sync && echo 'LangChain (Python) dev environment ready!'",
|
||||
// Configure tool-specific properties.
|
||||
"customizations": {
|
||||
"vscode": {
|
||||
@@ -42,7 +42,7 @@
|
||||
"GitHub.copilot-chat"
|
||||
],
|
||||
"settings": {
|
||||
"python.defaultInterpreterPath": ".venv/bin/python",
|
||||
"python.defaultInterpreterPath": "libs/langchain_v1/.venv/bin/python",
|
||||
"python.formatting.provider": "none",
|
||||
"[python]": {
|
||||
"editor.formatOnSave": true,
|
||||
|
||||
34
.dockerignore
Normal file
34
.dockerignore
Normal file
@@ -0,0 +1,34 @@
|
||||
# Git
|
||||
.git
|
||||
.github
|
||||
|
||||
# Python
|
||||
__pycache__
|
||||
*.pyc
|
||||
*.pyo
|
||||
.venv
|
||||
.mypy_cache
|
||||
.pytest_cache
|
||||
.ruff_cache
|
||||
*.egg-info
|
||||
.tox
|
||||
|
||||
# IDE
|
||||
.idea
|
||||
.vscode
|
||||
|
||||
# Worktree
|
||||
worktree
|
||||
|
||||
# Test artifacts
|
||||
.coverage
|
||||
htmlcov
|
||||
coverage.xml
|
||||
|
||||
# Build artifacts
|
||||
dist
|
||||
build
|
||||
|
||||
# Misc
|
||||
*.log
|
||||
.DS_Store
|
||||
132
.github/CODE_OF_CONDUCT.md
vendored
132
.github/CODE_OF_CONDUCT.md
vendored
@@ -1,132 +0,0 @@
|
||||
# Contributor Covenant Code of Conduct
|
||||
|
||||
## Our Pledge
|
||||
|
||||
We as members, contributors, and leaders pledge to make participation in our
|
||||
community a harassment-free experience for everyone, regardless of age, body
|
||||
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
||||
identity and expression, level of experience, education, socio-economic status,
|
||||
nationality, personal appearance, race, caste, color, religion, or sexual
|
||||
identity and orientation.
|
||||
|
||||
We pledge to act and interact in ways that contribute to an open, welcoming,
|
||||
diverse, inclusive, and healthy community.
|
||||
|
||||
## Our Standards
|
||||
|
||||
Examples of behavior that contributes to a positive environment for our
|
||||
community include:
|
||||
|
||||
* Demonstrating empathy and kindness toward other people
|
||||
* Being respectful of differing opinions, viewpoints, and experiences
|
||||
* Giving and gracefully accepting constructive feedback
|
||||
* Accepting responsibility and apologizing to those affected by our mistakes,
|
||||
and learning from the experience
|
||||
* Focusing on what is best not just for us as individuals, but for the overall
|
||||
community
|
||||
|
||||
Examples of unacceptable behavior include:
|
||||
|
||||
* The use of sexualized language or imagery, and sexual attention or advances of
|
||||
any kind
|
||||
* Trolling, insulting or derogatory comments, and personal or political attacks
|
||||
* Public or private harassment
|
||||
* Publishing others' private information, such as a physical or email address,
|
||||
without their explicit permission
|
||||
* Other conduct which could reasonably be considered inappropriate in a
|
||||
professional setting
|
||||
|
||||
## Enforcement Responsibilities
|
||||
|
||||
Community leaders are responsible for clarifying and enforcing our standards of
|
||||
acceptable behavior and will take appropriate and fair corrective action in
|
||||
response to any behavior that they deem inappropriate, threatening, offensive,
|
||||
or harmful.
|
||||
|
||||
Community leaders have the right and responsibility to remove, edit, or reject
|
||||
comments, commits, code, wiki edits, issues, and other contributions that are
|
||||
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
||||
decisions when appropriate.
|
||||
|
||||
## Scope
|
||||
|
||||
This Code of Conduct applies within all community spaces, and also applies when
|
||||
an individual is officially representing the community in public spaces.
|
||||
Examples of representing our community include using an official e-mail address,
|
||||
posting via an official social media account, or acting as an appointed
|
||||
representative at an online or offline event.
|
||||
|
||||
## Enforcement
|
||||
|
||||
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
||||
reported to the community leaders responsible for enforcement at
|
||||
conduct@langchain.dev.
|
||||
All complaints will be reviewed and investigated promptly and fairly.
|
||||
|
||||
All community leaders are obligated to respect the privacy and security of the
|
||||
reporter of any incident.
|
||||
|
||||
## Enforcement Guidelines
|
||||
|
||||
Community leaders will follow these Community Impact Guidelines in determining
|
||||
the consequences for any action they deem in violation of this Code of Conduct:
|
||||
|
||||
### 1. Correction
|
||||
|
||||
**Community Impact**: Use of inappropriate language or other behavior deemed
|
||||
unprofessional or unwelcome in the community.
|
||||
|
||||
**Consequence**: A private, written warning from community leaders, providing
|
||||
clarity around the nature of the violation and an explanation of why the
|
||||
behavior was inappropriate. A public apology may be requested.
|
||||
|
||||
### 2. Warning
|
||||
|
||||
**Community Impact**: A violation through a single incident or series of
|
||||
actions.
|
||||
|
||||
**Consequence**: A warning with consequences for continued behavior. No
|
||||
interaction with the people involved, including unsolicited interaction with
|
||||
those enforcing the Code of Conduct, for a specified period of time. This
|
||||
includes avoiding interactions in community spaces as well as external channels
|
||||
like social media. Violating these terms may lead to a temporary or permanent
|
||||
ban.
|
||||
|
||||
### 3. Temporary Ban
|
||||
|
||||
**Community Impact**: A serious violation of community standards, including
|
||||
sustained inappropriate behavior.
|
||||
|
||||
**Consequence**: A temporary ban from any sort of interaction or public
|
||||
communication with the community for a specified period of time. No public or
|
||||
private interaction with the people involved, including unsolicited interaction
|
||||
with those enforcing the Code of Conduct, is allowed during this period.
|
||||
Violating these terms may lead to a permanent ban.
|
||||
|
||||
### 4. Permanent Ban
|
||||
|
||||
**Community Impact**: Demonstrating a pattern of violation of community
|
||||
standards, including sustained inappropriate behavior, harassment of an
|
||||
individual, or aggression toward or disparagement of classes of individuals.
|
||||
|
||||
**Consequence**: A permanent ban from any sort of public interaction within the
|
||||
community.
|
||||
|
||||
## Attribution
|
||||
|
||||
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
||||
version 2.1, available at
|
||||
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
|
||||
|
||||
Community Impact Guidelines were inspired by
|
||||
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
|
||||
|
||||
For answers to common questions about this code of conduct, see the FAQ at
|
||||
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
|
||||
[https://www.contributor-covenant.org/translations][translations].
|
||||
|
||||
[homepage]: https://www.contributor-covenant.org
|
||||
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
|
||||
[Mozilla CoC]: https://github.com/mozilla/diversity
|
||||
[FAQ]: https://www.contributor-covenant.org/faq
|
||||
[translations]: https://www.contributor-covenant.org/translations
|
||||
6
.github/CONTRIBUTING.md
vendored
6
.github/CONTRIBUTING.md
vendored
@@ -1,6 +0,0 @@
|
||||
# Contributing to LangChain
|
||||
|
||||
Hi there! Thank you for even being interested in contributing to LangChain.
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
|
||||
|
||||
To learn how to contribute to LangChain, please follow the [contribution guide here](https://docs.langchain.com/oss/python/contributing).
|
||||
77
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
77
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -8,16 +8,15 @@ body:
|
||||
value: |
|
||||
Thank you for taking the time to file a bug report.
|
||||
|
||||
Use this to report BUGS in LangChain. For usage questions, feature requests and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
|
||||
For usage questions, feature requests and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
|
||||
|
||||
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
|
||||
if there's another way to solve your problem:
|
||||
Check these before submitting to see if your issue has already been reported, fixed or if there's another way to solve your problem:
|
||||
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
* [LangChain documentation with the integrated search](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference](https://reference.langchain.com/python/),
|
||||
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference Documentation](https://reference.langchain.com/python/),
|
||||
* [LangChain ChatBot](https://chat.langchain.com/)
|
||||
* [GitHub search](https://github.com/langchain-ai/langchain),
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
@@ -36,16 +35,48 @@ body:
|
||||
required: true
|
||||
- label: This is not related to the langchain-community package.
|
||||
required: true
|
||||
- label: I read what a minimal reproducible example is (https://stackoverflow.com/help/minimal-reproducible-example).
|
||||
required: true
|
||||
- label: I posted a self-contained, minimal, reproducible example. A maintainer can copy it and run it AS IS.
|
||||
required: true
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Which `langchain` package(s) is this bug related to? Select at least one.
|
||||
|
||||
Note that if the package you are reporting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in [`langchain-ai/langchain-google`](https://github.com/langchain-ai/langchain-google/)).
|
||||
|
||||
Please report issues for other packages to their respective repositories.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Example Code
|
||||
label: Example Code (Python)
|
||||
description: |
|
||||
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
|
||||
|
||||
@@ -53,15 +84,12 @@ body:
|
||||
|
||||
**Important!**
|
||||
|
||||
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
|
||||
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
|
||||
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
|
||||
* Avoid screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible.
|
||||
|
||||
(This will be automatically formatted into code, so no need for backticks.)
|
||||
render: python
|
||||
placeholder: |
|
||||
The following code:
|
||||
|
||||
```python
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
def bad_code(inputs) -> int:
|
||||
@@ -69,17 +97,14 @@ body:
|
||||
|
||||
chain = RunnableLambda(bad_code)
|
||||
chain.invoke('Hello!')
|
||||
```
|
||||
- type: textarea
|
||||
id: error
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Error Message and Stack Trace (if applicable)
|
||||
description: |
|
||||
If you are reporting an error, please include the full error message and stack trace.
|
||||
placeholder: |
|
||||
Exception + full stack trace
|
||||
If you are reporting an error, please copy and paste the full error message and
|
||||
stack trace.
|
||||
(This will be automatically formatted into code, so no need for backticks.)
|
||||
render: shell
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
@@ -99,9 +124,7 @@ body:
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us. Do NOT skip this step and please don't trim
|
||||
the output. Most users don't include enough information here and it makes it harder
|
||||
for us to help you.
|
||||
Please share your system info with us.
|
||||
|
||||
Run the following command in your terminal and paste the output here:
|
||||
|
||||
@@ -113,8 +136,6 @@ body:
|
||||
from langchain_core import sys_info
|
||||
sys_info.print_sys_info()
|
||||
```
|
||||
|
||||
alternatively, put the entire output of `pip freeze` here.
|
||||
placeholder: |
|
||||
python -m langchain_core.sys_info
|
||||
validations:
|
||||
|
||||
8
.github/ISSUE_TEMPLATE/config.yml
vendored
8
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,9 +1,15 @@
|
||||
blank_issues_enabled: false
|
||||
version: 2.1
|
||||
contact_links:
|
||||
- name: 📚 Documentation
|
||||
- name: 📚 Documentation issue
|
||||
url: https://github.com/langchain-ai/docs/issues/new?template=01-langchain.yml
|
||||
about: Report an issue related to the LangChain documentation
|
||||
- name: 💬 LangChain Forum
|
||||
url: https://forum.langchain.com/
|
||||
about: General community discussions and support
|
||||
- name: 📚 LangChain Documentation
|
||||
url: https://docs.langchain.com/oss/python/langchain/overview
|
||||
about: View the official LangChain documentation
|
||||
- name: 📚 API Reference Documentation
|
||||
url: https://reference.langchain.com/python/
|
||||
about: View the official LangChain API reference documentation
|
||||
|
||||
40
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
40
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
@@ -13,11 +13,11 @@ body:
|
||||
Relevant links to check before filing a feature request to see if your request has already been made or
|
||||
if there's another way to achieve what you want:
|
||||
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
* [LangChain documentation with the integrated search](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference](https://reference.langchain.com/python/),
|
||||
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
|
||||
* [API Reference Documentation](https://reference.langchain.com/python/),
|
||||
* [LangChain ChatBot](https://chat.langchain.com/)
|
||||
* [GitHub search](https://github.com/langchain-ai/langchain),
|
||||
* [LangChain Forum](https://forum.langchain.com/),
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
@@ -34,6 +34,40 @@ body:
|
||||
required: true
|
||||
- label: This is not related to the langchain-community package.
|
||||
required: true
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Which `langchain` package(s) is this request related to? Select at least one.
|
||||
|
||||
Note that if the package you are requesting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in `langchain-ai/langchain`).
|
||||
|
||||
Please submit feature requests for other packages to their respective repositories.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
- type: textarea
|
||||
id: feature-description
|
||||
validations:
|
||||
|
||||
30
.github/ISSUE_TEMPLATE/privileged.yml
vendored
30
.github/ISSUE_TEMPLATE/privileged.yml
vendored
@@ -18,3 +18,33 @@ body:
|
||||
attributes:
|
||||
label: Issue Content
|
||||
description: Add the content of the issue here.
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Please select package(s) that this issue is related to.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
|
||||
48
.github/ISSUE_TEMPLATE/task.yml
vendored
48
.github/ISSUE_TEMPLATE/task.yml
vendored
@@ -25,13 +25,13 @@ body:
|
||||
label: Task Description
|
||||
description: |
|
||||
Provide a clear and detailed description of the task.
|
||||
|
||||
|
||||
What needs to be done? Be specific about the scope and requirements.
|
||||
placeholder: |
|
||||
This task involves...
|
||||
|
||||
|
||||
The goal is to...
|
||||
|
||||
|
||||
Specific requirements:
|
||||
- ...
|
||||
- ...
|
||||
@@ -43,7 +43,7 @@ body:
|
||||
label: Acceptance Criteria
|
||||
description: |
|
||||
Define the criteria that must be met for this task to be considered complete.
|
||||
|
||||
|
||||
What are the specific deliverables or outcomes expected?
|
||||
placeholder: |
|
||||
This task will be complete when:
|
||||
@@ -58,15 +58,15 @@ body:
|
||||
label: Context and Background
|
||||
description: |
|
||||
Provide any relevant context, background information, or links to related issues/PRs.
|
||||
|
||||
|
||||
Why is this task needed? What problem does it solve?
|
||||
placeholder: |
|
||||
Background:
|
||||
- ...
|
||||
|
||||
|
||||
Related issues/PRs:
|
||||
- #...
|
||||
|
||||
|
||||
Additional context:
|
||||
- ...
|
||||
validations:
|
||||
@@ -77,15 +77,45 @@ body:
|
||||
label: Dependencies
|
||||
description: |
|
||||
List any dependencies or blockers for this task.
|
||||
|
||||
|
||||
Are there other tasks, issues, or external factors that need to be completed first?
|
||||
placeholder: |
|
||||
This task depends on:
|
||||
- [ ] Issue #...
|
||||
- [ ] PR #...
|
||||
- [ ] External dependency: ...
|
||||
|
||||
|
||||
Blocked by:
|
||||
- ...
|
||||
validations:
|
||||
required: false
|
||||
- type: checkboxes
|
||||
id: package
|
||||
attributes:
|
||||
label: Package (Required)
|
||||
description: |
|
||||
Please select package(s) that this task is related to.
|
||||
options:
|
||||
- label: langchain
|
||||
- label: langchain-openai
|
||||
- label: langchain-anthropic
|
||||
- label: langchain-classic
|
||||
- label: langchain-core
|
||||
- label: langchain-cli
|
||||
- label: langchain-model-profiles
|
||||
- label: langchain-tests
|
||||
- label: langchain-text-splitters
|
||||
- label: langchain-chroma
|
||||
- label: langchain-deepseek
|
||||
- label: langchain-exa
|
||||
- label: langchain-fireworks
|
||||
- label: langchain-groq
|
||||
- label: langchain-huggingface
|
||||
- label: langchain-mistralai
|
||||
- label: langchain-nomic
|
||||
- label: langchain-ollama
|
||||
- label: langchain-perplexity
|
||||
- label: langchain-prompty
|
||||
- label: langchain-qdrant
|
||||
- label: langchain-xai
|
||||
- label: Other / not sure / general
|
||||
|
||||
38
.github/PULL_REQUEST_TEMPLATE.md
vendored
38
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -1,28 +1,30 @@
|
||||
(Replace this entire block of text)
|
||||
|
||||
Thank you for contributing to LangChain! Follow these steps to mark your pull request as ready for review. **If any of these steps are not completed, your PR will not be considered for review.**
|
||||
Read the full contributing guidelines: https://docs.langchain.com/oss/python/contributing/overview
|
||||
|
||||
Thank you for contributing to LangChain! Follow these steps to have your pull request considered as ready for review.
|
||||
|
||||
1. PR title: Should follow the format: TYPE(SCOPE): DESCRIPTION
|
||||
|
||||
- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
|
||||
- Examples:
|
||||
- fix(anthropic): resolve flag parsing error
|
||||
- feat(core): add multi-tenant support
|
||||
- fix(cli): resolve flag parsing error
|
||||
- docs(openai): update API usage examples
|
||||
- Allowed `{TYPE}` values:
|
||||
- feat, fix, docs, style, refactor, perf, test, build, ci, chore, revert, release
|
||||
- Allowed `{SCOPE}` values (optional):
|
||||
- core, cli, langchain, standard-tests, text-splitters, docs, anthropic, chroma, deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant, xai, infra
|
||||
- Once you've written the title, please delete this checklist item; do not include it in the PR.
|
||||
- test(openai): update API usage tests
|
||||
- Allowed TYPE and SCOPE values: https://github.com/langchain-ai/langchain/blob/master/.github/workflows/pr_lint.yml#L15-L33
|
||||
|
||||
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
|
||||
- **Description:** a description of the change. Include a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) if applicable to a relevant issue.
|
||||
- **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
|
||||
- **Dependencies:** any dependencies required for this change
|
||||
2. PR description:
|
||||
|
||||
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. **We will not consider a PR unless these three are passing in CI.** See [contribution guidelines](https://docs.langchain.com/oss/python/contributing) for more.
|
||||
- Write 1-2 sentences summarizing the change.
|
||||
- If this PR addresses a specific issue, please include "Fixes #ISSUE_NUMBER" in the description to automatically close the issue when the PR is merged.
|
||||
- If there are any breaking changes, please clearly describe them.
|
||||
- If this PR depends on another PR being merged first, please include "Depends on #PR_NUMBER" inthe description.
|
||||
|
||||
3. Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified.
|
||||
|
||||
- We will not consider a PR unless these three are passing in CI.
|
||||
|
||||
Additional guidelines:
|
||||
|
||||
- Most PRs should not touch more than one package.
|
||||
- Please do not add dependencies to `pyproject.toml` files (even optional ones) unless they are **required** for unit tests. Likewise, please do not update the `uv.lock` files unless you are adding a required dependency.
|
||||
- Changes should be backwards compatible.
|
||||
- Make sure optional dependencies are imported within a function.
|
||||
- We ask that if you use generative AI for your contribution, you include a disclaimer.
|
||||
- PRs should not touch more than one package unless absolutely necessary.
|
||||
- Do not update the `uv.lock` files unless or add dependencies to `pyproject.toml` files (even optional ones) unless you have explicit permission to do so by a maintainer.
|
||||
|
||||
2
.github/actions/uv_setup/action.yml
vendored
2
.github/actions/uv_setup/action.yml
vendored
@@ -27,7 +27,7 @@ runs:
|
||||
using: composite
|
||||
steps:
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v6
|
||||
uses: astral-sh/setup-uv@v7
|
||||
with:
|
||||
version: ${{ env.UV_VERSION }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
330
.github/copilot-instructions.md
vendored
330
.github/copilot-instructions.md
vendored
@@ -1,330 +0,0 @@
|
||||
# Global Development Guidelines for LangChain Projects
|
||||
|
||||
## Core Development Principles
|
||||
|
||||
### 1. Maintain Stable Public Interfaces ⚠️ CRITICAL
|
||||
|
||||
**Always attempt to preserve function signatures, argument positions, and names for exported/public methods.**
|
||||
|
||||
❌ **Bad - Breaking Change:**
|
||||
|
||||
```python
|
||||
def get_user(id, verbose=False): # Changed from `user_id`
|
||||
pass
|
||||
```
|
||||
|
||||
✅ **Good - Stable Interface:**
|
||||
|
||||
```python
|
||||
def get_user(user_id: str, verbose: bool = False) -> User:
|
||||
"""Retrieve user by ID with optional verbose output."""
|
||||
pass
|
||||
```
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring admonitions (using MkDocs Material, like `!!! warning`)
|
||||
|
||||
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### 2. Code Quality Standards
|
||||
|
||||
**All Python code MUST include type hints and return types.**
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def p(u, d):
|
||||
return [x for x in u if x not in d]
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Filter out users that are not in the known users set.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
return [user for user in users if user not in known_users]
|
||||
```
|
||||
|
||||
**Style Requirements:**
|
||||
|
||||
- Use descriptive, **self-explanatory variable names**. Avoid overly short or cryptic identifiers.
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
- Avoid unnecessary abstraction or premature optimization
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
|
||||
### 3. Testing Requirements
|
||||
|
||||
**Every new feature or bugfix MUST be covered by unit tests.**
|
||||
|
||||
**Test Organization:**
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- Use `pytest` as the testing framework
|
||||
|
||||
**Test Quality Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
|
||||
Checklist questions:
|
||||
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
- [ ] Are all expected behaviors exercised (happy path, invalid input, etc)?
|
||||
- [ ] Do tests use fixtures or mocks where needed?
|
||||
|
||||
```python
|
||||
def test_filter_unknown_users():
|
||||
"""Test filtering unknown users from a list."""
|
||||
users = ["alice", "bob", "charlie"]
|
||||
known_users = {"alice", "bob"}
|
||||
|
||||
result = filter_unknown_users(users, known_users)
|
||||
|
||||
assert result == ["charlie"]
|
||||
assert len(result) == 1
|
||||
```
|
||||
|
||||
### 4. Security and Risk Assessment
|
||||
|
||||
**Security Checklist:**
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def load_config(path):
|
||||
with open(path) as f:
|
||||
return eval(f.read()) # ⚠️ Never eval config
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
import json
|
||||
|
||||
def load_config(path: str) -> dict:
|
||||
with open(path) as f:
|
||||
return json.load(f)
|
||||
```
|
||||
|
||||
### 5. Documentation Standards
|
||||
|
||||
**Use Google-style docstrings with Args and Returns sections for all public functions.**
|
||||
|
||||
❌ **Insufficient Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to, msg):
|
||||
"""Send an email to a recipient."""
|
||||
```
|
||||
|
||||
✅ **Complete Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""
|
||||
Send an email to a recipient with specified priority.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level.
|
||||
|
||||
Returns:
|
||||
True if email was sent successfully, False otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
**Documentation Guidelines:**
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
|
||||
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
|
||||
|
||||
### 6. Architectural Improvements
|
||||
|
||||
**When you encounter code that could be improved, suggest better designs:**
|
||||
|
||||
❌ **Poor Design:**
|
||||
|
||||
```python
|
||||
def process_data(data, db_conn, email_client, logger):
|
||||
# Function doing too many things
|
||||
validated = validate_data(data)
|
||||
result = db_conn.save(validated)
|
||||
email_client.send_notification(result)
|
||||
logger.log(f"Processed {len(data)} items")
|
||||
return result
|
||||
```
|
||||
|
||||
✅ **Better Design:**
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class ProcessingResult:
|
||||
"""Result of data processing operation."""
|
||||
items_processed: int
|
||||
success: bool
|
||||
errors: List[str] = field(default_factory=list)
|
||||
|
||||
class DataProcessor:
|
||||
"""Handles data validation, storage, and notification."""
|
||||
|
||||
def __init__(self, db_conn: Database, email_client: EmailClient):
|
||||
self.db = db_conn
|
||||
self.email = email_client
|
||||
|
||||
def process(self, data: List[dict]) -> ProcessingResult:
|
||||
"""Process and store data with notifications.
|
||||
|
||||
Args:
|
||||
data: List of data items to process.
|
||||
|
||||
Returns:
|
||||
ProcessingResult with details of the operation.
|
||||
"""
|
||||
validated = self._validate_data(data)
|
||||
result = self.db.save(validated)
|
||||
self._notify_completion(result)
|
||||
return result
|
||||
```
|
||||
|
||||
**Design Improvement Areas:**
|
||||
|
||||
If there's a **cleaner**, **more scalable**, or **simpler** design, highlight it and suggest improvements that would:
|
||||
|
||||
- Reduce code duplication through shared utilities
|
||||
- Make unit testing easier
|
||||
- Improve separation of concerns (single responsibility)
|
||||
- Make unit testing easier through dependency injection
|
||||
- Add clarity without adding complexity
|
||||
- Prefer dataclasses for structured data
|
||||
|
||||
## Development Tools & Commands
|
||||
|
||||
### Package Management
|
||||
|
||||
```bash
|
||||
# Add package
|
||||
uv add package-name
|
||||
|
||||
# Sync project dependencies
|
||||
uv sync
|
||||
uv lock
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
```bash
|
||||
# Run unit tests (no network)
|
||||
make test
|
||||
|
||||
# Don't run integration tests, as API keys must be set
|
||||
|
||||
# Run specific test file
|
||||
uv run --group test pytest tests/unit_tests/test_specific.py
|
||||
```
|
||||
|
||||
### Code Quality
|
||||
|
||||
```bash
|
||||
# Lint code
|
||||
make lint
|
||||
|
||||
# Format code
|
||||
make format
|
||||
|
||||
# Type checking
|
||||
uv run --group lint mypy .
|
||||
```
|
||||
|
||||
### Dependency Management Patterns
|
||||
|
||||
**Local Development Dependencies:**
|
||||
|
||||
```toml
|
||||
[tool.uv.sources]
|
||||
langchain-core = { path = "../core", editable = true }
|
||||
langchain-tests = { path = "../standard-tests", editable = true }
|
||||
```
|
||||
|
||||
**For tools, use the `@tool` decorator from `langchain_core.tools`:**
|
||||
|
||||
```python
|
||||
from langchain_core.tools import tool
|
||||
|
||||
@tool
|
||||
def search_database(query: str) -> str:
|
||||
"""Search the database for relevant information.
|
||||
|
||||
Args:
|
||||
query: The search query string.
|
||||
"""
|
||||
# Implementation here
|
||||
return results
|
||||
```
|
||||
|
||||
## Commit Standards
|
||||
|
||||
**Use Conventional Commits format for PR titles:**
|
||||
|
||||
- `feat(core): add multi-tenant support`
|
||||
- `!fix(cli): resolve flag parsing error` (breaking change uses exclamation mark)
|
||||
- `docs: update API usage examples`
|
||||
- `docs(openai): update API usage examples`
|
||||
|
||||
## Framework-Specific Guidelines
|
||||
|
||||
- Follow the existing patterns in `langchain_core` for base abstractions
|
||||
- Implement proper streaming support where applicable
|
||||
- Avoid deprecated components
|
||||
|
||||
### Partner Integrations
|
||||
|
||||
- Follow the established patterns in existing partner libraries
|
||||
- Implement standard interfaces (`BaseChatModel`, `BaseEmbeddings`, etc.)
|
||||
- Include comprehensive integration tests
|
||||
- Document API key requirements and authentication
|
||||
|
||||
---
|
||||
|
||||
## Quick Reference Checklist
|
||||
|
||||
Before submitting code changes:
|
||||
|
||||
- [ ] **Breaking Changes**: Verified no public API changes
|
||||
- [ ] **Type Hints**: All functions have complete type annotations
|
||||
- [ ] **Tests**: New functionality is fully tested
|
||||
- [ ] **Security**: No dangerous patterns (eval, silent failures, etc.)
|
||||
- [ ] **Documentation**: Google-style docstrings for public functions
|
||||
- [ ] **Code Quality**: `make lint` and `make format` pass
|
||||
- [ ] **Architecture**: Suggested improvements where applicable
|
||||
- [ ] **Commit Message**: Follows Conventional Commits format
|
||||
11
.github/pr-file-labeler.yml
vendored
11
.github/pr-file-labeler.yml
vendored
@@ -148,16 +148,5 @@ documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "**/*.md"
|
||||
- "**/*.rst"
|
||||
- "**/README*"
|
||||
|
||||
# Security related changes
|
||||
security:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "**/*security*"
|
||||
- "**/*auth*"
|
||||
- "**/*credential*"
|
||||
- "**/*secret*"
|
||||
- "**/*token*"
|
||||
- ".github/workflows/security*"
|
||||
|
||||
@@ -35,7 +35,7 @@ jobs:
|
||||
timeout-minutes: 20
|
||||
name: "Python ${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
|
||||
8
.github/workflows/_lint.yml
vendored
8
.github/workflows/_lint.yml
vendored
@@ -38,7 +38,7 @@ jobs:
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v5
|
||||
uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
@@ -47,6 +47,12 @@ jobs:
|
||||
cache-suffix: lint-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# - name: "🔒 Verify Lockfile is Up-to-Date"
|
||||
# working-directory: ${{ inputs.working-directory }}
|
||||
# run: |
|
||||
# unset UV_FROZEN
|
||||
# uv lock --check
|
||||
|
||||
- name: "📦 Install Lint & Typing Dependencies"
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
|
||||
31
.github/workflows/_release.yml
vendored
31
.github/workflows/_release.yml
vendored
@@ -19,7 +19,7 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
default: "libs/langchain"
|
||||
default: "libs/langchain_v1"
|
||||
release-version:
|
||||
required: true
|
||||
type: string
|
||||
@@ -54,7 +54,7 @@ jobs:
|
||||
version: ${{ steps.check-version.outputs.version }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
@@ -77,7 +77,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
uses: actions/upload-artifact@v5
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -105,7 +105,7 @@ jobs:
|
||||
outputs:
|
||||
release-body: ${{ steps.generate-release-body.outputs.release-body }}
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: langchain-ai/langchain
|
||||
path: langchain
|
||||
@@ -206,9 +206,9 @@ jobs:
|
||||
id-token: write
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- uses: actions/download-artifact@v6
|
||||
- uses: actions/download-artifact@v7
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -237,7 +237,7 @@ jobs:
|
||||
contents: read
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
# We explicitly *don't* set up caching here. This ensures our tests are
|
||||
# maximally sensitive to catching breakage.
|
||||
@@ -258,7 +258,7 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v6
|
||||
- uses: actions/download-artifact@v7
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -394,6 +394,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
if: false # temporarily skip
|
||||
strategy:
|
||||
matrix:
|
||||
partner: [openai, anthropic]
|
||||
@@ -412,7 +413,7 @@ jobs:
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
# We implement this conditional as Github Actions does not have good support
|
||||
# for conditionally needing steps. https://github.com/actions/runner/issues/491
|
||||
@@ -430,7 +431,7 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v6
|
||||
- uses: actions/download-artifact@v7
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
with:
|
||||
name: dist
|
||||
@@ -477,7 +478,7 @@ jobs:
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
- test-prior-published-packages-against-new-core
|
||||
# - test-prior-published-packages-against-new-core
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
# This permission is used for trusted publishing:
|
||||
@@ -492,14 +493,14 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v6
|
||||
- uses: actions/download-artifact@v7
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
@@ -532,14 +533,14 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v6
|
||||
- uses: actions/download-artifact@v7
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
2
.github/workflows/_test.yml
vendored
2
.github/workflows/_test.yml
vendored
@@ -33,7 +33,7 @@ jobs:
|
||||
name: "Python ${{ inputs.python-version }}"
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v5
|
||||
uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
|
||||
2
.github/workflows/_test_pydantic.yml
vendored
2
.github/workflows/_test_pydantic.yml
vendored
@@ -36,7 +36,7 @@ jobs:
|
||||
name: "Pydantic ~=${{ inputs.pydantic-version }}"
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v5
|
||||
uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
|
||||
107
.github/workflows/auto-label-by-package.yml
vendored
Normal file
107
.github/workflows/auto-label-by-package.yml
vendored
Normal file
@@ -0,0 +1,107 @@
|
||||
name: Auto Label Issues by Package
|
||||
|
||||
on:
|
||||
issues:
|
||||
types: [opened, edited]
|
||||
|
||||
jobs:
|
||||
label-by-package:
|
||||
permissions:
|
||||
issues: write
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Sync package labels
|
||||
uses: actions/github-script@v8
|
||||
with:
|
||||
script: |
|
||||
const body = context.payload.issue.body || "";
|
||||
|
||||
// Extract text under "### Package" (handles " (Required)" suffix and being last section)
|
||||
const match = body.match(/### Package[^\n]*\n([\s\S]*?)(?:\n###|$)/i);
|
||||
if (!match) return;
|
||||
|
||||
const packageSection = match[1].trim();
|
||||
|
||||
// Mapping table for package names to labels
|
||||
const mapping = {
|
||||
"langchain": "langchain",
|
||||
"langchain-openai": "openai",
|
||||
"langchain-anthropic": "anthropic",
|
||||
"langchain-classic": "langchain-classic",
|
||||
"langchain-core": "core",
|
||||
"langchain-cli": "cli",
|
||||
"langchain-model-profiles": "model-profiles",
|
||||
"langchain-tests": "standard-tests",
|
||||
"langchain-text-splitters": "text-splitters",
|
||||
"langchain-chroma": "chroma",
|
||||
"langchain-deepseek": "deepseek",
|
||||
"langchain-exa": "exa",
|
||||
"langchain-fireworks": "fireworks",
|
||||
"langchain-groq": "groq",
|
||||
"langchain-huggingface": "huggingface",
|
||||
"langchain-mistralai": "mistralai",
|
||||
"langchain-nomic": "nomic",
|
||||
"langchain-ollama": "ollama",
|
||||
"langchain-perplexity": "perplexity",
|
||||
"langchain-prompty": "prompty",
|
||||
"langchain-qdrant": "qdrant",
|
||||
"langchain-xai": "xai",
|
||||
};
|
||||
|
||||
// All possible package labels we manage
|
||||
const allPackageLabels = Object.values(mapping);
|
||||
const selectedLabels = [];
|
||||
|
||||
// Check if this is checkbox format (multiple selection)
|
||||
const checkboxMatches = packageSection.match(/- \[x\]\s+([^\n\r]+)/gi);
|
||||
if (checkboxMatches) {
|
||||
// Handle checkbox format
|
||||
for (const match of checkboxMatches) {
|
||||
const packageName = match.replace(/- \[x\]\s+/i, '').trim();
|
||||
const label = mapping[packageName];
|
||||
if (label && !selectedLabels.includes(label)) {
|
||||
selectedLabels.push(label);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Handle dropdown format (single selection)
|
||||
const label = mapping[packageSection];
|
||||
if (label) {
|
||||
selectedLabels.push(label);
|
||||
}
|
||||
}
|
||||
|
||||
// Get current issue labels
|
||||
const issue = await github.rest.issues.get({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number
|
||||
});
|
||||
|
||||
const currentLabels = issue.data.labels.map(label => label.name);
|
||||
const currentPackageLabels = currentLabels.filter(label => allPackageLabels.includes(label));
|
||||
|
||||
// Determine labels to add and remove
|
||||
const labelsToAdd = selectedLabels.filter(label => !currentPackageLabels.includes(label));
|
||||
const labelsToRemove = currentPackageLabels.filter(label => !selectedLabels.includes(label));
|
||||
|
||||
// Add new labels
|
||||
if (labelsToAdd.length > 0) {
|
||||
await github.rest.issues.addLabels({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
labels: labelsToAdd
|
||||
});
|
||||
}
|
||||
|
||||
// Remove old labels
|
||||
for (const label of labelsToRemove) {
|
||||
await github.rest.issues.removeLabel({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
name: label
|
||||
});
|
||||
}
|
||||
2
.github/workflows/check_core_versions.yml
vendored
2
.github/workflows/check_core_versions.yml
vendored
@@ -18,7 +18,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: "✅ Verify pyproject.toml & version.py Match"
|
||||
run: |
|
||||
|
||||
6
.github/workflows/check_diffs.yml
vendored
6
.github/workflows/check_diffs.yml
vendored
@@ -47,7 +47,7 @@ jobs:
|
||||
if: ${{ !contains(github.event.pull_request.labels.*.name, 'ci-ignore') }}
|
||||
steps:
|
||||
- name: "📋 Checkout Code"
|
||||
uses: actions/checkout@v5
|
||||
uses: actions/checkout@v6
|
||||
- name: "🐍 Setup Python 3.11"
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
@@ -141,7 +141,7 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: "🐍 Set up Python ${{ matrix.job-configs.python-version }} + UV"
|
||||
uses: "./.github/actions/uv_setup"
|
||||
@@ -182,7 +182,7 @@ jobs:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.codspeed) }}
|
||||
fail-fast: false
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: "📦 Install UV Package Manager"
|
||||
uses: astral-sh/setup-uv@v7
|
||||
|
||||
6
.github/workflows/integration_tests.yml
vendored
6
.github/workflows/integration_tests.yml
vendored
@@ -71,14 +71,14 @@ jobs:
|
||||
working-directory: ${{ fromJSON(needs.compute-matrix.outputs.matrix).working-directory }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
path: langchain
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: langchain-ai/langchain-google
|
||||
path: langchain-google
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: langchain-ai/langchain-aws
|
||||
path: langchain-aws
|
||||
|
||||
13
.github/workflows/pr_lint.yml
vendored
13
.github/workflows/pr_lint.yml
vendored
@@ -26,11 +26,13 @@
|
||||
# * revert — reverts a previous commit
|
||||
# * release — prepare a new release
|
||||
#
|
||||
# Allowed Scopes (optional):
|
||||
# core, cli, langchain, langchain_v1, langchain-classic, standard-tests,
|
||||
# text-splitters, docs, anthropic, chroma, deepseek, exa, fireworks, groq,
|
||||
# huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant,
|
||||
# xai, infra, deps
|
||||
# Allowed Scope(s) (optional):
|
||||
# core, cli, langchain, langchain-classic, model-profiles,
|
||||
# standard-tests, text-splitters, docs, anthropic, chroma, deepseek, exa,
|
||||
# fireworks, groq, huggingface, mistralai, nomic, ollama, openai,
|
||||
# perplexity, prompty, qdrant, xai, infra, deps
|
||||
#
|
||||
# Multiple scopes can be used by separating them with a comma.
|
||||
#
|
||||
# Rules:
|
||||
# 1. The 'Type' must start with a lowercase letter.
|
||||
@@ -100,6 +102,7 @@ jobs:
|
||||
qdrant
|
||||
xai
|
||||
infra
|
||||
deps
|
||||
requireScope: false
|
||||
disallowScopes: |
|
||||
release
|
||||
|
||||
4
.github/workflows/v03_api_doc_build.yml
vendored
4
.github/workflows/v03_api_doc_build.yml
vendored
@@ -23,12 +23,12 @@ jobs:
|
||||
permissions:
|
||||
contents: read
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
ref: v0.3
|
||||
path: langchain
|
||||
|
||||
- uses: actions/checkout@v5
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
repository: langchain-ai/langchain-api-docs-html
|
||||
path: langchain-api-docs-html
|
||||
|
||||
8
.github/workflows/v1_changes.md
vendored
8
.github/workflows/v1_changes.md
vendored
@@ -1,8 +0,0 @@
|
||||
With the deprecation of v0 docs, the following files will need to be migrated/supported
|
||||
in the new docs repo:
|
||||
|
||||
- run_notebooks.yml: New repo should run Integration tests on code snippets?
|
||||
- people.yml: Need to fix and somehow display on the new docs site
|
||||
- Subsequently, `.github/actions/people/`
|
||||
- _test_doc_imports.yml
|
||||
- check-broken-links.yml
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -163,3 +163,6 @@ node_modules
|
||||
|
||||
prof
|
||||
virtualenv/
|
||||
scratch/
|
||||
|
||||
.langgraph_api/
|
||||
|
||||
@@ -1,4 +1,24 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.3.0
|
||||
hooks:
|
||||
- id: no-commit-to-branch # prevent direct commits to protected branches
|
||||
args: ["--branch", "master"]
|
||||
- id: check-yaml # validate YAML syntax
|
||||
args: ["--unsafe"] # allow custom tags
|
||||
- id: check-toml # validate TOML syntax
|
||||
- id: end-of-file-fixer # ensure files end with a newline
|
||||
- id: trailing-whitespace # remove trailing whitespace from lines
|
||||
exclude: \.ambr$
|
||||
|
||||
# Text normalization hooks for consistent formatting
|
||||
- repo: https://github.com/sirosen/texthooks
|
||||
rev: 0.6.8
|
||||
hooks:
|
||||
- id: fix-smartquotes # replace curly quotes with straight quotes
|
||||
- id: fix-spaces # replace non-standard spaces (e.g., non-breaking) with regular spaces
|
||||
|
||||
# Per-package format and lint hooks for the monorepo
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: core
|
||||
|
||||
2
.vscode/extensions.json
vendored
2
.vscode/extensions.json
vendored
@@ -6,8 +6,6 @@
|
||||
"ms-toolsai.jupyter",
|
||||
"ms-toolsai.jupyter-keymap",
|
||||
"ms-toolsai.jupyter-renderers",
|
||||
"ms-toolsai.vscode-jupyter-cell-tags",
|
||||
"ms-toolsai.vscode-jupyter-slideshow",
|
||||
"yzhang.markdown-all-in-one",
|
||||
"davidanson.vscode-markdownlint",
|
||||
"bierner.markdown-mermaid",
|
||||
|
||||
405
AGENTS.md
405
AGENTS.md
@@ -1,255 +1,58 @@
|
||||
# Global Development Guidelines for LangChain Projects
|
||||
# Global development guidelines for the LangChain monorepo
|
||||
|
||||
## Core Development Principles
|
||||
This document provides context to understand the LangChain Python project and assist with development.
|
||||
|
||||
### 1. Maintain Stable Public Interfaces ⚠️ CRITICAL
|
||||
## Project architecture and context
|
||||
|
||||
**Always attempt to preserve function signatures, argument positions, and names for exported/public methods.**
|
||||
### Monorepo structure
|
||||
|
||||
❌ **Bad - Breaking Change:**
|
||||
This is a Python monorepo with multiple independently versioned packages that use `uv`.
|
||||
|
||||
```python
|
||||
def get_user(id, verbose=False): # Changed from `user_id`
|
||||
pass
|
||||
```txt
|
||||
langchain/
|
||||
├── libs/
|
||||
│ ├── core/ # `langchain-core` primitives and base abstractions
|
||||
│ ├── langchain/ # `langchain-classic` (legacy, no new features)
|
||||
│ ├── langchain_v1/ # Actively maintained `langchain` package
|
||||
│ ├── partners/ # Third-party integrations
|
||||
│ │ ├── openai/ # OpenAI models and embeddings
|
||||
│ │ ├── anthropic/ # Anthropic (Claude) integration
|
||||
│ │ ├── ollama/ # Local model support
|
||||
│ │ └── ... (other integrations maintained by the LangChain team)
|
||||
│ ├── text-splitters/ # Document chunking utilities
|
||||
│ ├── standard-tests/ # Shared test suite for integrations
|
||||
│ ├── model-profiles/ # Model configuration profiles
|
||||
│ └── cli/ # Command-line interface tools
|
||||
├── .github/ # CI/CD workflows and templates
|
||||
├── .vscode/ # VSCode IDE standard settings and recommended extensions
|
||||
└── README.md # Information about LangChain
|
||||
```
|
||||
|
||||
✅ **Good - Stable Interface:**
|
||||
- **Core layer** (`langchain-core`): Base abstractions, interfaces, and protocols. Users should not need to know about this layer directly.
|
||||
- **Implementation layer** (`langchain`): Concrete implementations and high-level public utilities
|
||||
- **Integration layer** (`partners/`): Third-party service integrations. Note that this monorepo is not exhaustive of all LangChain integrations; some are maintained in separate repos, such as `langchain-ai/langchain-google` and `langchain-ai/langchain-aws`. Usually these repos are cloned at the same level as this monorepo, so if needed, you can refer to their code directly by navigating to `../langchain-google/` from this monorepo.
|
||||
- **Testing layer** (`standard-tests/`): Standardized integration tests for partner integrations
|
||||
|
||||
```python
|
||||
def get_user(user_id: str, verbose: bool = False) -> User:
|
||||
"""Retrieve user by ID with optional verbose output."""
|
||||
pass
|
||||
```
|
||||
### Development tools & commands**
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
- `uv` – Fast Python package installer and resolver (replaces pip/poetry)
|
||||
- `make` – Task runner for common development commands. Feel free to look at the `Makefile` for available commands and usage patterns.
|
||||
- `ruff` – Fast Python linter and formatter
|
||||
- `mypy` – Static type checking
|
||||
- `pytest` – Testing framework
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
This monorepo uses `uv` for dependency management. Local development uses editable installs: `[tool.uv.sources]`
|
||||
|
||||
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### 2. Code Quality Standards
|
||||
|
||||
**All Python code MUST include type hints and return types.**
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def p(u, d):
|
||||
return [x for x in u if x not in d]
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Filter out users that are not in the known users set.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
return [user for user in users if user not in known_users]
|
||||
```
|
||||
|
||||
**Style Requirements:**
|
||||
|
||||
- Use descriptive, **self-explanatory variable names**. Avoid overly short or cryptic identifiers.
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
- Avoid unnecessary abstraction or premature optimization
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
|
||||
### 3. Testing Requirements
|
||||
|
||||
**Every new feature or bugfix MUST be covered by unit tests.**
|
||||
|
||||
**Test Organization:**
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- Use `pytest` as the testing framework
|
||||
|
||||
**Test Quality Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
|
||||
Checklist questions:
|
||||
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
- [ ] Are all expected behaviors exercised (happy path, invalid input, etc)?
|
||||
- [ ] Do tests use fixtures or mocks where needed?
|
||||
|
||||
```python
|
||||
def test_filter_unknown_users():
|
||||
"""Test filtering unknown users from a list."""
|
||||
users = ["alice", "bob", "charlie"]
|
||||
known_users = {"alice", "bob"}
|
||||
|
||||
result = filter_unknown_users(users, known_users)
|
||||
|
||||
assert result == ["charlie"]
|
||||
assert len(result) == 1
|
||||
```
|
||||
|
||||
### 4. Security and Risk Assessment
|
||||
|
||||
**Security Checklist:**
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def load_config(path):
|
||||
with open(path) as f:
|
||||
return eval(f.read()) # ⚠️ Never eval config
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
import json
|
||||
|
||||
def load_config(path: str) -> dict:
|
||||
with open(path) as f:
|
||||
return json.load(f)
|
||||
```
|
||||
|
||||
### 5. Documentation Standards
|
||||
|
||||
**Use Google-style docstrings with Args section for all public functions.**
|
||||
|
||||
❌ **Insufficient Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to, msg):
|
||||
"""Send an email to a recipient."""
|
||||
```
|
||||
|
||||
✅ **Complete Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""
|
||||
Send an email to a recipient with specified priority.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level (`'low'`, `'normal'`, `'high'`).
|
||||
|
||||
Returns:
|
||||
`True` if email was sent successfully, `False` otherwise.
|
||||
|
||||
Raises:
|
||||
`InvalidEmailError`: If the email address format is invalid.
|
||||
`SMTPConnectionError`: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
**Documentation Guidelines:**
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
- Ensure American English spelling (e.g., "behavior", not "behaviour")
|
||||
|
||||
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
|
||||
|
||||
### 6. Architectural Improvements
|
||||
|
||||
**When you encounter code that could be improved, suggest better designs:**
|
||||
|
||||
❌ **Poor Design:**
|
||||
|
||||
```python
|
||||
def process_data(data, db_conn, email_client, logger):
|
||||
# Function doing too many things
|
||||
validated = validate_data(data)
|
||||
result = db_conn.save(validated)
|
||||
email_client.send_notification(result)
|
||||
logger.log(f"Processed {len(data)} items")
|
||||
return result
|
||||
```
|
||||
|
||||
✅ **Better Design:**
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class ProcessingResult:
|
||||
"""Result of data processing operation."""
|
||||
items_processed: int
|
||||
success: bool
|
||||
errors: List[str] = field(default_factory=list)
|
||||
|
||||
class DataProcessor:
|
||||
"""Handles data validation, storage, and notification."""
|
||||
|
||||
def __init__(self, db_conn: Database, email_client: EmailClient):
|
||||
self.db = db_conn
|
||||
self.email = email_client
|
||||
|
||||
def process(self, data: List[dict]) -> ProcessingResult:
|
||||
"""Process and store data with notifications."""
|
||||
validated = self._validate_data(data)
|
||||
result = self.db.save(validated)
|
||||
self._notify_completion(result)
|
||||
return result
|
||||
```
|
||||
|
||||
**Design Improvement Areas:**
|
||||
|
||||
If there's a **cleaner**, **more scalable**, or **simpler** design, highlight it and suggest improvements that would:
|
||||
|
||||
- Reduce code duplication through shared utilities
|
||||
- Make unit testing easier
|
||||
- Improve separation of concerns (single responsibility)
|
||||
- Make unit testing easier through dependency injection
|
||||
- Add clarity without adding complexity
|
||||
- Prefer dataclasses for structured data
|
||||
|
||||
## Development Tools & Commands
|
||||
|
||||
### Package Management
|
||||
|
||||
```bash
|
||||
# Add package
|
||||
uv add package-name
|
||||
|
||||
# Sync project dependencies
|
||||
uv sync
|
||||
uv lock
|
||||
```
|
||||
|
||||
### Testing
|
||||
Each package in `libs/` has its own `pyproject.toml` and `uv.lock`.
|
||||
|
||||
```bash
|
||||
# Run unit tests (no network)
|
||||
make test
|
||||
|
||||
# Don't run integration tests, as API keys must be set
|
||||
|
||||
# Run specific test file
|
||||
uv run --group test pytest tests/unit_tests/test_specific.py
|
||||
```
|
||||
|
||||
### Code Quality
|
||||
|
||||
```bash
|
||||
# Lint code
|
||||
make lint
|
||||
@@ -261,66 +64,118 @@ make format
|
||||
uv run --group lint mypy .
|
||||
```
|
||||
|
||||
### Dependency Management Patterns
|
||||
#### Key config files
|
||||
|
||||
**Local Development Dependencies:**
|
||||
- pyproject.toml: Main workspace configuration with dependency groups
|
||||
- uv.lock: Locked dependencies for reproducible builds
|
||||
- Makefile: Development tasks
|
||||
|
||||
```toml
|
||||
[tool.uv.sources]
|
||||
langchain-core = { path = "../core", editable = true }
|
||||
langchain-tests = { path = "../standard-tests", editable = true }
|
||||
```
|
||||
#### Commit standards
|
||||
|
||||
**For tools, use the `@tool` decorator from `langchain_core.tools`:**
|
||||
Suggest PR titles that follow Conventional Commits format. Refer to .github/workflows/pr_lint for allowed types and scopes.
|
||||
|
||||
```python
|
||||
from langchain_core.tools import tool
|
||||
#### Pull request guidelines
|
||||
|
||||
@tool
|
||||
def search_database(query: str) -> str:
|
||||
"""Search the database for relevant information.
|
||||
- Always add a disclaimer to the PR description mentioning how AI agents are involved with the contribution.
|
||||
- Describe the "why" of the changes, why the proposed solution is the right one. Limit prose.
|
||||
- Highlight areas of the proposed changes that require careful review.
|
||||
|
||||
## Core development principles
|
||||
|
||||
### Maintain stable public interfaces
|
||||
|
||||
CRITICAL: Always attempt to preserve function signatures, argument positions, and names for exported/public methods. Do not make breaking changes.
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
|
||||
Ask: "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### Code quality standards
|
||||
|
||||
All Python code MUST include type hints and return types.
|
||||
|
||||
```python title="Example"
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Single line description of the function.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
query: The search query string.
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
# Implementation here
|
||||
return results
|
||||
```
|
||||
|
||||
## Commit Standards
|
||||
- Use descriptive, self-explanatory variable names.
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
|
||||
**Use Conventional Commits format for PR titles:**
|
||||
### Testing requirements
|
||||
|
||||
- `feat(core): add multi-tenant support`
|
||||
- `fix(cli): resolve flag parsing error`
|
||||
- `docs: update API usage examples`
|
||||
- `docs(openai): update API usage examples`
|
||||
Every new feature or bugfix MUST be covered by unit tests.
|
||||
|
||||
## Framework-Specific Guidelines
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- We use `pytest` as the testing framework; if in doubt, check other existing tests for examples.
|
||||
- The testing file structure should mirror the source code structure.
|
||||
|
||||
- Follow the existing patterns in `langchain-core` for base abstractions
|
||||
- Use `langchain_core.callbacks` for execution tracking
|
||||
- Implement proper streaming support where applicable
|
||||
- Avoid deprecated components like legacy `LLMChain`
|
||||
**Checklist:**
|
||||
|
||||
### Partner Integrations
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
|
||||
- Follow the established patterns in existing partner libraries
|
||||
- Implement standard interfaces (`BaseChatModel`, `BaseEmbeddings`, etc.)
|
||||
- Include comprehensive integration tests
|
||||
- Document API key requirements and authentication
|
||||
### Security and risk assessment
|
||||
|
||||
---
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
## Quick Reference Checklist
|
||||
### Documentation standards
|
||||
|
||||
Before submitting code changes:
|
||||
Use Google-style docstrings with Args section for all public functions.
|
||||
|
||||
- [ ] **Breaking Changes**: Verified no public API changes
|
||||
- [ ] **Type Hints**: All functions have complete type annotations
|
||||
- [ ] **Tests**: New functionality is fully tested
|
||||
- [ ] **Security**: No dangerous patterns (eval, silent failures, etc.)
|
||||
- [ ] **Documentation**: Google-style docstrings for public functions
|
||||
- [ ] **Code Quality**: `make lint` and `make format` pass
|
||||
- [ ] **Architecture**: Suggested improvements where applicable
|
||||
- [ ] **Commit Message**: Follows Conventional Commits format
|
||||
```python title="Example"
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""Send an email to a recipient with specified priority.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level.
|
||||
|
||||
Returns:
|
||||
`True` if email was sent successfully, `False` otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
- Ensure American English spelling (e.g., "behavior", not "behaviour")
|
||||
|
||||
## Additional resources
|
||||
|
||||
- **Documentation:** https://docs.langchain.com/oss/python/langchain/overview and source at https://github.com/langchain-ai/docs or `../docs/`. Prefer the local install and use file search tools for best results. If needed, use the docs MCP server as defined in `.mcp.json` for programmatic access.
|
||||
- **Contributing Guide:** [`.github/CONTRIBUTING.md`](https://docs.langchain.com/oss/python/contributing/overview)
|
||||
|
||||
405
CLAUDE.md
405
CLAUDE.md
@@ -1,255 +1,58 @@
|
||||
# Global Development Guidelines for LangChain Projects
|
||||
# Global development guidelines for the LangChain monorepo
|
||||
|
||||
## Core Development Principles
|
||||
This document provides context to understand the LangChain Python project and assist with development.
|
||||
|
||||
### 1. Maintain Stable Public Interfaces ⚠️ CRITICAL
|
||||
## Project architecture and context
|
||||
|
||||
**Always attempt to preserve function signatures, argument positions, and names for exported/public methods.**
|
||||
### Monorepo structure
|
||||
|
||||
❌ **Bad - Breaking Change:**
|
||||
This is a Python monorepo with multiple independently versioned packages that use `uv`.
|
||||
|
||||
```python
|
||||
def get_user(id, verbose=False): # Changed from `user_id`
|
||||
pass
|
||||
```txt
|
||||
langchain/
|
||||
├── libs/
|
||||
│ ├── core/ # `langchain-core` primitives and base abstractions
|
||||
│ ├── langchain/ # `langchain-classic` (legacy, no new features)
|
||||
│ ├── langchain_v1/ # Actively maintained `langchain` package
|
||||
│ ├── partners/ # Third-party integrations
|
||||
│ │ ├── openai/ # OpenAI models and embeddings
|
||||
│ │ ├── anthropic/ # Anthropic (Claude) integration
|
||||
│ │ ├── ollama/ # Local model support
|
||||
│ │ └── ... (other integrations maintained by the LangChain team)
|
||||
│ ├── text-splitters/ # Document chunking utilities
|
||||
│ ├── standard-tests/ # Shared test suite for integrations
|
||||
│ ├── model-profiles/ # Model configuration profiles
|
||||
│ └── cli/ # Command-line interface tools
|
||||
├── .github/ # CI/CD workflows and templates
|
||||
├── .vscode/ # VSCode IDE standard settings and recommended extensions
|
||||
└── README.md # Information about LangChain
|
||||
```
|
||||
|
||||
✅ **Good - Stable Interface:**
|
||||
- **Core layer** (`langchain-core`): Base abstractions, interfaces, and protocols. Users should not need to know about this layer directly.
|
||||
- **Implementation layer** (`langchain`): Concrete implementations and high-level public utilities
|
||||
- **Integration layer** (`partners/`): Third-party service integrations. Note that this monorepo is not exhaustive of all LangChain integrations; some are maintained in separate repos, such as `langchain-ai/langchain-google` and `langchain-ai/langchain-aws`. Usually these repos are cloned at the same level as this monorepo, so if needed, you can refer to their code directly by navigating to `../langchain-google/` from this monorepo.
|
||||
- **Testing layer** (`standard-tests/`): Standardized integration tests for partner integrations
|
||||
|
||||
```python
|
||||
def get_user(user_id: str, verbose: bool = False) -> User:
|
||||
"""Retrieve user by ID with optional verbose output."""
|
||||
pass
|
||||
```
|
||||
### Development tools & commands**
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
- `uv` – Fast Python package installer and resolver (replaces pip/poetry)
|
||||
- `make` – Task runner for common development commands. Feel free to look at the `Makefile` for available commands and usage patterns.
|
||||
- `ruff` – Fast Python linter and formatter
|
||||
- `mypy` – Static type checking
|
||||
- `pytest` – Testing framework
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
This monorepo uses `uv` for dependency management. Local development uses editable installs: `[tool.uv.sources]`
|
||||
|
||||
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### 2. Code Quality Standards
|
||||
|
||||
**All Python code MUST include type hints and return types.**
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def p(u, d):
|
||||
return [x for x in u if x not in d]
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Filter out users that are not in the known users set.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
return [user for user in users if user not in known_users]
|
||||
```
|
||||
|
||||
**Style Requirements:**
|
||||
|
||||
- Use descriptive, **self-explanatory variable names**. Avoid overly short or cryptic identifiers.
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
- Avoid unnecessary abstraction or premature optimization
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
|
||||
### 3. Testing Requirements
|
||||
|
||||
**Every new feature or bugfix MUST be covered by unit tests.**
|
||||
|
||||
**Test Organization:**
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- Use `pytest` as the testing framework
|
||||
|
||||
**Test Quality Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
|
||||
Checklist questions:
|
||||
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
- [ ] Are all expected behaviors exercised (happy path, invalid input, etc)?
|
||||
- [ ] Do tests use fixtures or mocks where needed?
|
||||
|
||||
```python
|
||||
def test_filter_unknown_users():
|
||||
"""Test filtering unknown users from a list."""
|
||||
users = ["alice", "bob", "charlie"]
|
||||
known_users = {"alice", "bob"}
|
||||
|
||||
result = filter_unknown_users(users, known_users)
|
||||
|
||||
assert result == ["charlie"]
|
||||
assert len(result) == 1
|
||||
```
|
||||
|
||||
### 4. Security and Risk Assessment
|
||||
|
||||
**Security Checklist:**
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def load_config(path):
|
||||
with open(path) as f:
|
||||
return eval(f.read()) # ⚠️ Never eval config
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
import json
|
||||
|
||||
def load_config(path: str) -> dict:
|
||||
with open(path) as f:
|
||||
return json.load(f)
|
||||
```
|
||||
|
||||
### 5. Documentation Standards
|
||||
|
||||
**Use Google-style docstrings with Args section for all public functions.**
|
||||
|
||||
❌ **Insufficient Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to, msg):
|
||||
"""Send an email to a recipient."""
|
||||
```
|
||||
|
||||
✅ **Complete Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""
|
||||
Send an email to a recipient with specified priority.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level (`'low'`, `'normal'`, `'high'`).
|
||||
|
||||
Returns:
|
||||
`True` if email was sent successfully, `False` otherwise.
|
||||
|
||||
Raises:
|
||||
`InvalidEmailError`: If the email address format is invalid.
|
||||
`SMTPConnectionError`: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
**Documentation Guidelines:**
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
- Ensure American English spelling (e.g., "behavior", not "behaviour")
|
||||
|
||||
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
|
||||
|
||||
### 6. Architectural Improvements
|
||||
|
||||
**When you encounter code that could be improved, suggest better designs:**
|
||||
|
||||
❌ **Poor Design:**
|
||||
|
||||
```python
|
||||
def process_data(data, db_conn, email_client, logger):
|
||||
# Function doing too many things
|
||||
validated = validate_data(data)
|
||||
result = db_conn.save(validated)
|
||||
email_client.send_notification(result)
|
||||
logger.log(f"Processed {len(data)} items")
|
||||
return result
|
||||
```
|
||||
|
||||
✅ **Better Design:**
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class ProcessingResult:
|
||||
"""Result of data processing operation."""
|
||||
items_processed: int
|
||||
success: bool
|
||||
errors: List[str] = field(default_factory=list)
|
||||
|
||||
class DataProcessor:
|
||||
"""Handles data validation, storage, and notification."""
|
||||
|
||||
def __init__(self, db_conn: Database, email_client: EmailClient):
|
||||
self.db = db_conn
|
||||
self.email = email_client
|
||||
|
||||
def process(self, data: List[dict]) -> ProcessingResult:
|
||||
"""Process and store data with notifications."""
|
||||
validated = self._validate_data(data)
|
||||
result = self.db.save(validated)
|
||||
self._notify_completion(result)
|
||||
return result
|
||||
```
|
||||
|
||||
**Design Improvement Areas:**
|
||||
|
||||
If there's a **cleaner**, **more scalable**, or **simpler** design, highlight it and suggest improvements that would:
|
||||
|
||||
- Reduce code duplication through shared utilities
|
||||
- Make unit testing easier
|
||||
- Improve separation of concerns (single responsibility)
|
||||
- Make unit testing easier through dependency injection
|
||||
- Add clarity without adding complexity
|
||||
- Prefer dataclasses for structured data
|
||||
|
||||
## Development Tools & Commands
|
||||
|
||||
### Package Management
|
||||
|
||||
```bash
|
||||
# Add package
|
||||
uv add package-name
|
||||
|
||||
# Sync project dependencies
|
||||
uv sync
|
||||
uv lock
|
||||
```
|
||||
|
||||
### Testing
|
||||
Each package in `libs/` has its own `pyproject.toml` and `uv.lock`.
|
||||
|
||||
```bash
|
||||
# Run unit tests (no network)
|
||||
make test
|
||||
|
||||
# Don't run integration tests, as API keys must be set
|
||||
|
||||
# Run specific test file
|
||||
uv run --group test pytest tests/unit_tests/test_specific.py
|
||||
```
|
||||
|
||||
### Code Quality
|
||||
|
||||
```bash
|
||||
# Lint code
|
||||
make lint
|
||||
@@ -261,66 +64,118 @@ make format
|
||||
uv run --group lint mypy .
|
||||
```
|
||||
|
||||
### Dependency Management Patterns
|
||||
#### Key config files
|
||||
|
||||
**Local Development Dependencies:**
|
||||
- pyproject.toml: Main workspace configuration with dependency groups
|
||||
- uv.lock: Locked dependencies for reproducible builds
|
||||
- Makefile: Development tasks
|
||||
|
||||
```toml
|
||||
[tool.uv.sources]
|
||||
langchain-core = { path = "../core", editable = true }
|
||||
langchain-tests = { path = "../standard-tests", editable = true }
|
||||
```
|
||||
#### Commit standards
|
||||
|
||||
**For tools, use the `@tool` decorator from `langchain_core.tools`:**
|
||||
Suggest PR titles that follow Conventional Commits format. Refer to .github/workflows/pr_lint for allowed types and scopes.
|
||||
|
||||
```python
|
||||
from langchain_core.tools import tool
|
||||
#### Pull request guidelines
|
||||
|
||||
@tool
|
||||
def search_database(query: str) -> str:
|
||||
"""Search the database for relevant information.
|
||||
- Always add a disclaimer to the PR description mentioning how AI agents are involved with the contribution.
|
||||
- Describe the "why" of the changes, why the proposed solution is the right one. Limit prose.
|
||||
- Highlight areas of the proposed changes that require careful review.
|
||||
|
||||
## Core development principles
|
||||
|
||||
### Maintain stable public interfaces
|
||||
|
||||
CRITICAL: Always attempt to preserve function signatures, argument positions, and names for exported/public methods. Do not make breaking changes.
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
|
||||
|
||||
Ask: "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### Code quality standards
|
||||
|
||||
All Python code MUST include type hints and return types.
|
||||
|
||||
```python title="Example"
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Single line description of the function.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
query: The search query string.
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
# Implementation here
|
||||
return results
|
||||
```
|
||||
|
||||
## Commit Standards
|
||||
- Use descriptive, self-explanatory variable names.
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
|
||||
**Use Conventional Commits format for PR titles:**
|
||||
### Testing requirements
|
||||
|
||||
- `feat(core): add multi-tenant support`
|
||||
- `fix(cli): resolve flag parsing error`
|
||||
- `docs: update API usage examples`
|
||||
- `docs(openai): update API usage examples`
|
||||
Every new feature or bugfix MUST be covered by unit tests.
|
||||
|
||||
## Framework-Specific Guidelines
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- We use `pytest` as the testing framework; if in doubt, check other existing tests for examples.
|
||||
- The testing file structure should mirror the source code structure.
|
||||
|
||||
- Follow the existing patterns in `langchain-core` for base abstractions
|
||||
- Use `langchain_core.callbacks` for execution tracking
|
||||
- Implement proper streaming support where applicable
|
||||
- Avoid deprecated components like legacy `LLMChain`
|
||||
**Checklist:**
|
||||
|
||||
### Partner Integrations
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
|
||||
- Follow the established patterns in existing partner libraries
|
||||
- Implement standard interfaces (`BaseChatModel`, `BaseEmbeddings`, etc.)
|
||||
- Include comprehensive integration tests
|
||||
- Document API key requirements and authentication
|
||||
### Security and risk assessment
|
||||
|
||||
---
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
## Quick Reference Checklist
|
||||
### Documentation standards
|
||||
|
||||
Before submitting code changes:
|
||||
Use Google-style docstrings with Args section for all public functions.
|
||||
|
||||
- [ ] **Breaking Changes**: Verified no public API changes
|
||||
- [ ] **Type Hints**: All functions have complete type annotations
|
||||
- [ ] **Tests**: New functionality is fully tested
|
||||
- [ ] **Security**: No dangerous patterns (eval, silent failures, etc.)
|
||||
- [ ] **Documentation**: Google-style docstrings for public functions
|
||||
- [ ] **Code Quality**: `make lint` and `make format` pass
|
||||
- [ ] **Architecture**: Suggested improvements where applicable
|
||||
- [ ] **Commit Message**: Follows Conventional Commits format
|
||||
```python title="Example"
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""Send an email to a recipient with specified priority.
|
||||
|
||||
Any additional context about the function can go here.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level.
|
||||
|
||||
Returns:
|
||||
`True` if email was sent successfully, `False` otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
- Ensure American English spelling (e.g., "behavior", not "behaviour")
|
||||
|
||||
## Additional resources
|
||||
|
||||
- **Documentation:** https://docs.langchain.com/oss/python/langchain/overview and source at https://github.com/langchain-ai/docs or `../docs/`. Prefer the local install and use file search tools for best results. If needed, use the docs MCP server as defined in `.mcp.json` for programmatic access.
|
||||
- **Contributing Guide:** [`.github/CONTRIBUTING.md`](https://docs.langchain.com/oss/python/contributing/overview)
|
||||
|
||||
@@ -1,9 +0,0 @@
|
||||
# Migrating
|
||||
|
||||
Please see the following guides for migrating LangChain code:
|
||||
|
||||
* Migrate to [LangChain v1.0](https://docs.langchain.com/oss/python/migrate/langchain-v1)
|
||||
* Migrate to [LangChain v0.3](https://python.langchain.com/docs/versions/v0_3/)
|
||||
* Migrate to [LangChain v0.2](https://python.langchain.com/docs/versions/v0_2/)
|
||||
* Migrating from [LangChain 0.0.x Chains](https://python.langchain.com/docs/versions/migrating_chains/)
|
||||
* Upgrade to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/)
|
||||
57
README.md
57
README.md
@@ -1,38 +1,26 @@
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: light)" srcset=".github/images/logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: dark)" srcset=".github/images/logo-light.svg">
|
||||
<img alt="LangChain Logo" src=".github/images/logo-dark.svg" width="80%">
|
||||
</picture>
|
||||
</p>
|
||||
<div align="center">
|
||||
<a href="https://www.langchain.com/">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: light)" srcset=".github/images/logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: dark)" srcset=".github/images/logo-light.svg">
|
||||
<img alt="LangChain Logo" src=".github/images/logo-dark.svg" width="80%">
|
||||
</picture>
|
||||
</a>
|
||||
</div>
|
||||
|
||||
<p align="center">
|
||||
The platform for reliable agents.
|
||||
</p>
|
||||
<div align="center">
|
||||
<h3>The platform for reliable agents.</h3>
|
||||
</div>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://opensource.org/licenses/MIT" target="_blank">
|
||||
<img src="https://img.shields.io/pypi/l/langchain" alt="PyPI - License">
|
||||
</a>
|
||||
<a href="https://pypistats.org/packages/langchain" target="_blank">
|
||||
<img src="https://img.shields.io/pepy/dt/langchain" alt="PyPI - Downloads">
|
||||
</a>
|
||||
<a href="https://pypi.org/project/langchain/#history" target="_blank">
|
||||
<img src="https://img.shields.io/pypi/v/langchain?label=%20" alt="Version">
|
||||
</a>
|
||||
<a href="https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain" target="_blank">
|
||||
<img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode" alt="Open in Dev Containers">
|
||||
</a>
|
||||
<a href="https://codespaces.new/langchain-ai/langchain" target="_blank">
|
||||
<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">
|
||||
</a>
|
||||
<a href="https://codspeed.io/langchain-ai/langchain" target="_blank">
|
||||
<img src="https://img.shields.io/endpoint?url=https://codspeed.io/badge.json" alt="CodSpeed Badge">
|
||||
</a>
|
||||
<a href="https://twitter.com/langchainai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI" alt="Twitter / X">
|
||||
</a>
|
||||
</p>
|
||||
<div align="center">
|
||||
<a href="https://opensource.org/licenses/MIT" target="_blank"><img src="https://img.shields.io/pypi/l/langchain" alt="PyPI - License"></a>
|
||||
<a href="https://pypistats.org/packages/langchain" target="_blank"><img src="https://img.shields.io/pepy/dt/langchain" alt="PyPI - Downloads"></a>
|
||||
<a href="https://pypi.org/project/langchain/#history" target="_blank"><img src="https://img.shields.io/pypi/v/langchain?label=%20" alt="Version"></a>
|
||||
<a href="https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode" alt="Open in Dev Containers"></a>
|
||||
<a href="https://codespaces.new/langchain-ai/langchain" target="_blank"><img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20"></a>
|
||||
<a href="https://codspeed.io/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/endpoint?url=https://codspeed.io/badge.json" alt="CodSpeed Badge"></a>
|
||||
<a href="https://twitter.com/langchainai" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI" alt="Twitter / X"></a>
|
||||
</div>
|
||||
|
||||
LangChain is a framework for building agents and LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development – all while future-proofing decisions as the underlying technology evolves.
|
||||
|
||||
@@ -83,4 +71,5 @@ To improve your LLM application development, pair LangChain with:
|
||||
|
||||
- [API Reference](https://reference.langchain.com/python) – Detailed reference on navigating base packages and integrations for LangChain.
|
||||
- [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview) – Learn how to contribute to LangChain projects and find good first issues.
|
||||
- [Code of Conduct](https://github.com/langchain-ai/langchain/blob/master/.github/CODE_OF_CONDUCT.md) – Our community guidelines and standards for participation.
|
||||
- [Code of Conduct](https://github.com/langchain-ai/langchain/?tab=coc-ov-file) – Our community guidelines and standards for participation.
|
||||
- [LangChain Academy](https://academy.langchain.com/) – Comprehensive, free courses on LangChain libraries and products, made by the LangChain team.
|
||||
|
||||
80
SECURITY.md
80
SECURITY.md
@@ -1,80 +0,0 @@
|
||||
# Security Policy
|
||||
|
||||
LangChain has a large ecosystem of integrations with various external resources like local and remote file systems, APIs and databases. These integrations allow developers to create versatile applications that combine the power of LLMs with the ability to access, interact with and manipulate external resources.
|
||||
|
||||
## Best practices
|
||||
|
||||
When building such applications, developers should remember to follow good security practices:
|
||||
|
||||
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), specifying proxy configurations to control external requests, etc., as appropriate for your application.
|
||||
* **Anticipate Potential Misuse**: Just as humans can err, so can Large Language Models (LLMs). Always assume that any system access or credentials may be used in any way allowed by the permissions they are assigned. For example, if a pair of database credentials allows deleting data, it's safest to assume that any LLM able to use those credentials may in fact delete data.
|
||||
* [**Defense in Depth**](https://en.wikipedia.org/wiki/Defense_in_depth_(computing)): No security technique is perfect. Fine-tuning and good chain design can reduce, but not eliminate, the odds that a Large Language Model (LLM) may make a mistake. It's best to combine multiple layered security approaches rather than relying on any single layer of defense to ensure security. For example: use both read-only permissions and sandboxing to ensure that LLMs are only able to access data that is explicitly meant for them to use.
|
||||
|
||||
Risks of not doing so include, but are not limited to:
|
||||
|
||||
* Data corruption or loss.
|
||||
* Unauthorized access to confidential information.
|
||||
* Compromised performance or availability of critical resources.
|
||||
|
||||
Example scenarios with mitigation strategies:
|
||||
|
||||
* A user may ask an agent with access to the file system to delete files that should not be deleted or read the content of files that contain sensitive information. To mitigate, limit the agent to only use a specific directory and only allow it to read or write files that are safe to read or write. Consider further sandboxing the agent by running it in a container.
|
||||
* A user may ask an agent with write access to an external API to write malicious data to the API, or delete data from that API. To mitigate, give the agent read-only API keys, or limit it to only use endpoints that are already resistant to such misuse.
|
||||
* A user may ask an agent with access to a database to drop a table or mutate the schema. To mitigate, scope the credentials to only the tables that the agent needs to access and consider issuing READ-ONLY credentials.
|
||||
|
||||
If you're building applications that access external resources like file systems, APIs or databases, consider speaking with your company's security team to determine how to best design and secure your applications.
|
||||
|
||||
## Reporting OSS Vulnerabilities
|
||||
|
||||
LangChain is partnered with [huntr by Protect AI](https://huntr.com/) to provide
|
||||
a bounty program for our open source projects.
|
||||
|
||||
Please report security vulnerabilities associated with the LangChain
|
||||
open source projects at [huntr](https://huntr.com/bounties/disclose/?target=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Flangchain&validSearch=true).
|
||||
|
||||
Before reporting a vulnerability, please review:
|
||||
|
||||
1) In-Scope Targets and Out-of-Scope Targets below.
|
||||
2) The [langchain-ai/langchain](https://docs.langchain.com/oss/python/contributing/code#repository-structure) monorepo structure.
|
||||
3) The [Best Practices](#best-practices) above to understand what we consider to be a security vulnerability vs. developer responsibility.
|
||||
|
||||
### In-Scope Targets
|
||||
|
||||
The following packages and repositories are eligible for bug bounties:
|
||||
|
||||
* langchain-core
|
||||
* langchain (see exceptions)
|
||||
* langchain-community (see exceptions)
|
||||
* langgraph
|
||||
* langserve
|
||||
|
||||
### Out of Scope Targets
|
||||
|
||||
All out of scope targets defined by huntr as well as:
|
||||
|
||||
* **langchain-experimental**: This repository is for experimental code and is not
|
||||
eligible for bug bounties (see [package warning](https://pypi.org/project/langchain-experimental/)), bug reports to it will be marked as interesting or waste of
|
||||
time and published with no bounty attached.
|
||||
* **tools**: Tools in either `langchain` or `langchain-community` are not eligible for bug
|
||||
bounties. This includes the following directories
|
||||
* `libs/langchain/langchain/tools`
|
||||
* `libs/community/langchain_community/tools`
|
||||
* Please review the [Best Practices](#best-practices)
|
||||
for more details, but generally tools interact with the real world. Developers are
|
||||
expected to understand the security implications of their code and are responsible
|
||||
for the security of their tools.
|
||||
* Code documented with security notices. This will be decided on a case-by-case basis, but likely will not be eligible for a bounty as the code is already
|
||||
documented with guidelines for developers that should be followed for making their
|
||||
application secure.
|
||||
* Any LangSmith related repositories or APIs (see [Reporting LangSmith Vulnerabilities](#reporting-langsmith-vulnerabilities)).
|
||||
|
||||
## Reporting LangSmith Vulnerabilities
|
||||
|
||||
Please report security vulnerabilities associated with LangSmith by email to `security@langchain.dev`.
|
||||
|
||||
* LangSmith site: [https://smith.langchain.com](https://smith.langchain.com)
|
||||
* SDK client: [https://github.com/langchain-ai/langsmith-sdk](https://github.com/langchain-ai/langsmith-sdk)
|
||||
|
||||
### Other Security Concerns
|
||||
|
||||
For any other security concerns, please contact us at `security@langchain.dev`.
|
||||
20
libs/Makefile
Normal file
20
libs/Makefile
Normal file
@@ -0,0 +1,20 @@
|
||||
# Makefile for libs/ directory
|
||||
# Contains targets that operate across multiple packages
|
||||
|
||||
LANGCHAIN_DIRS = core text-splitters langchain langchain_v1 model-profiles
|
||||
|
||||
.PHONY: lock check-lock
|
||||
|
||||
# Regenerate lockfiles for all core packages
|
||||
lock:
|
||||
@for dir in $(LANGCHAIN_DIRS); do \
|
||||
echo "=== Locking $$dir ==="; \
|
||||
(cd $$dir && uv lock); \
|
||||
done
|
||||
|
||||
# Verify all lockfiles are up-to-date
|
||||
check-lock:
|
||||
@for dir in $(LANGCHAIN_DIRS); do \
|
||||
echo "=== Checking $$dir ==="; \
|
||||
(cd $$dir && uv lock --check) || exit 1; \
|
||||
done
|
||||
@@ -36,6 +36,9 @@ dev-dependencies = [
|
||||
[tool.ruff.lint]
|
||||
select = ["E", "F", "I", "T201"]
|
||||
|
||||
[tool.ruff.lint.flake8-tidy-imports]
|
||||
ban-relative-imports = "all"
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"docs/**" = [ "ALL",]
|
||||
|
||||
|
||||
@@ -6,9 +6,8 @@ import hashlib
|
||||
import logging
|
||||
import re
|
||||
import shutil
|
||||
from collections.abc import Sequence
|
||||
from pathlib import Path
|
||||
from typing import Any, TypedDict
|
||||
from typing import TYPE_CHECKING, Any, TypedDict
|
||||
|
||||
from git import Repo
|
||||
|
||||
@@ -18,6 +17,9 @@ from langchain_cli.constants import (
|
||||
DEFAULT_GIT_SUBDIRECTORY,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
||||
@@ -38,14 +38,16 @@ dev = [
|
||||
"pytest-watcher>=0.3.4,<1.0.0"
|
||||
]
|
||||
lint = [
|
||||
"ruff>=0.13.1,<0.14",
|
||||
"mypy>=1.18.1,<1.19"
|
||||
"ruff>=0.14.11,<0.15.0"
|
||||
]
|
||||
test = [
|
||||
"langchain-core",
|
||||
"langchain-classic"
|
||||
]
|
||||
typing = ["langchain-classic"]
|
||||
typing = [
|
||||
"mypy>=1.19.1,<1.20",
|
||||
"langchain-classic"
|
||||
]
|
||||
test_integration = []
|
||||
|
||||
[tool.uv.sources]
|
||||
@@ -64,10 +66,6 @@ ignore = [
|
||||
"FIX002", # Line contains TODO
|
||||
"PERF203", # Rarely useful
|
||||
"PLR09", # Too many something (arg, statements, etc)
|
||||
"RUF012", # Doesn't play well with Pydantic
|
||||
"TC001", # Doesn't play well with Pydantic
|
||||
"TC002", # Doesn't play well with Pydantic
|
||||
"TC003", # Doesn't play well with Pydantic
|
||||
"TD002", # Missing author in TODO
|
||||
"TD003", # Missing issue link in TODO
|
||||
|
||||
@@ -76,7 +74,6 @@ ignore = [
|
||||
]
|
||||
unfixable = [
|
||||
"B028", # People should intentionally tune the stacklevel
|
||||
"PLW1510", # People should intentionally set the check argument
|
||||
]
|
||||
|
||||
flake8-annotations.allow-star-arg-any = true
|
||||
@@ -89,6 +86,9 @@ pyupgrade.keep-runtime-typing = true
|
||||
convention = "google"
|
||||
ignore-var-parameters = true # ignore missing documentation for *args and **kwargs parameters
|
||||
|
||||
[tool.ruff.lint.flake8-tidy-imports]
|
||||
ban-relative-imports = "all"
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"tests/**" = [ "D1", "S", "SLF",]
|
||||
"scripts/**" = [ "INP", "S",]
|
||||
|
||||
@@ -1,9 +1,11 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from .file import File
|
||||
from .folder import Folder
|
||||
if TYPE_CHECKING:
|
||||
from tests.unit_tests.migrate.cli_runner.file import File
|
||||
from tests.unit_tests.migrate.cli_runner.folder import Folder
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from .file import File
|
||||
from tests.unit_tests.migrate.cli_runner.file import File
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class Folder:
|
||||
|
||||
254
libs/cli/uv.lock
generated
254
libs/cli/uv.lock
generated
@@ -193,6 +193,8 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/7f/91/ae2eb6b7979e2f9b035a9f612cf70f1bf54aad4e1d125129bef1eae96f19/greenlet-3.2.4-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c2ca18a03a8cfb5b25bc1cbe20f3d9a4c80d8c3b13ba3df49ac3961af0b1018d", size = 584358, upload-time = "2025-08-07T13:18:23.708Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f7/85/433de0c9c0252b22b16d413c9407e6cb3b41df7389afc366ca204dbc1393/greenlet-3.2.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9fe0a28a7b952a21e2c062cd5756d34354117796c6d9215a87f55e38d15402c5", size = 1113550, upload-time = "2025-08-07T13:42:37.467Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a1/8d/88f3ebd2bc96bf7747093696f4335a0a8a4c5acfcf1b757717c0d2474ba3/greenlet-3.2.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8854167e06950ca75b898b104b63cc646573aa5fef1353d4508ecdd1ee76254f", size = 1137126, upload-time = "2025-08-07T13:18:20.239Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f1/29/74242b7d72385e29bcc5563fba67dad94943d7cd03552bac320d597f29b2/greenlet-3.2.4-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f47617f698838ba98f4ff4189aef02e7343952df3a615f847bb575c3feb177a7", size = 1544904, upload-time = "2025-11-04T12:42:04.763Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/e2/1572b8eeab0f77df5f6729d6ab6b141e4a84ee8eb9bc8c1e7918f94eda6d/greenlet-3.2.4-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:af41be48a4f60429d5cad9d22175217805098a9ef7c40bfef44f7669fb9d74d8", size = 1611228, upload-time = "2025-11-04T12:42:08.423Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/6f/b60b0291d9623c496638c582297ead61f43c4b72eef5e9c926ef4565ec13/greenlet-3.2.4-cp310-cp310-win_amd64.whl", hash = "sha256:73f49b5368b5359d04e18d15828eecc1806033db5233397748f4ca813ff1056c", size = 298654, upload-time = "2025-08-07T13:50:00.469Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a4/de/f28ced0a67749cac23fecb02b694f6473f47686dff6afaa211d186e2ef9c/greenlet-3.2.4-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:96378df1de302bc38e99c3a9aa311967b7dc80ced1dcc6f171e99842987882a2", size = 272305, upload-time = "2025-08-07T13:15:41.288Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/09/16/2c3792cba130000bf2a31c5272999113f4764fd9d874fb257ff588ac779a/greenlet-3.2.4-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1ee8fae0519a337f2329cb78bd7a8e128ec0f881073d43f023c7b8d4831d5246", size = 632472, upload-time = "2025-08-07T13:42:55.044Z" },
|
||||
@@ -202,6 +204,8 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/1f/8e/abdd3f14d735b2929290a018ecf133c901be4874b858dd1c604b9319f064/greenlet-3.2.4-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2523e5246274f54fdadbce8494458a2ebdcdbc7b802318466ac5606d3cded1f8", size = 587684, upload-time = "2025-08-07T13:18:25.164Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5d/65/deb2a69c3e5996439b0176f6651e0052542bb6c8f8ec2e3fba97c9768805/greenlet-3.2.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1987de92fec508535687fb807a5cea1560f6196285a4cde35c100b8cd632cc52", size = 1116647, upload-time = "2025-08-07T13:42:38.655Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3f/cc/b07000438a29ac5cfb2194bfc128151d52f333cee74dd7dfe3fb733fc16c/greenlet-3.2.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:55e9c5affaa6775e2c6b67659f3a71684de4c549b3dd9afca3bc773533d284fa", size = 1142073, upload-time = "2025-08-07T13:18:21.737Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/67/24/28a5b2fa42d12b3d7e5614145f0bd89714c34c08be6aabe39c14dd52db34/greenlet-3.2.4-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c9c6de1940a7d828635fbd254d69db79e54619f165ee7ce32fda763a9cb6a58c", size = 1548385, upload-time = "2025-11-04T12:42:11.067Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6a/05/03f2f0bdd0b0ff9a4f7b99333d57b53a7709c27723ec8123056b084e69cd/greenlet-3.2.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:03c5136e7be905045160b1b9fdca93dd6727b180feeafda6818e6496434ed8c5", size = 1613329, upload-time = "2025-11-04T12:42:12.928Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d8/0f/30aef242fcab550b0b3520b8e3561156857c94288f0332a79928c31a52cf/greenlet-3.2.4-cp311-cp311-win_amd64.whl", hash = "sha256:9c40adce87eaa9ddb593ccb0fa6a07caf34015a29bf8d344811665b573138db9", size = 299100, upload-time = "2025-08-07T13:44:12.287Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/44/69/9b804adb5fd0671f367781560eb5eb586c4d495277c93bde4307b9e28068/greenlet-3.2.4-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3b67ca49f54cede0186854a008109d6ee71f66bd57bb36abd6d0a0267b540cdd", size = 274079, upload-time = "2025-08-07T13:15:45.033Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/46/e9/d2a80c99f19a153eff70bc451ab78615583b8dac0754cfb942223d2c1a0d/greenlet-3.2.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ddf9164e7a5b08e9d22511526865780a576f19ddd00d62f8a665949327fde8bb", size = 640997, upload-time = "2025-08-07T13:42:56.234Z" },
|
||||
@@ -211,6 +215,8 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/19/0d/6660d55f7373b2ff8152401a83e02084956da23ae58cddbfb0b330978fe9/greenlet-3.2.4-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:3b3812d8d0c9579967815af437d96623f45c0f2ae5f04e366de62a12d83a8fb0", size = 607586, upload-time = "2025-08-07T13:18:28.544Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8e/1a/c953fdedd22d81ee4629afbb38d2f9d71e37d23caace44775a3a969147d4/greenlet-3.2.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:abbf57b5a870d30c4675928c37278493044d7c14378350b3aa5d484fa65575f0", size = 1123281, upload-time = "2025-08-07T13:42:39.858Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3f/c7/12381b18e21aef2c6bd3a636da1088b888b97b7a0362fac2e4de92405f97/greenlet-3.2.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:20fb936b4652b6e307b8f347665e2c615540d4b42b3b4c8a321d8286da7e520f", size = 1151142, upload-time = "2025-08-07T13:18:22.981Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/27/45/80935968b53cfd3f33cf99ea5f08227f2646e044568c9b1555b58ffd61c2/greenlet-3.2.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ee7a6ec486883397d70eec05059353b8e83eca9168b9f3f9a361971e77e0bcd0", size = 1564846, upload-time = "2025-11-04T12:42:15.191Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/69/02/b7c30e5e04752cb4db6202a3858b149c0710e5453b71a3b2aec5d78a1aab/greenlet-3.2.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:326d234cbf337c9c3def0676412eb7040a35a768efc92504b947b3e9cfc7543d", size = 1633814, upload-time = "2025-11-04T12:42:17.175Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/08/b0814846b79399e585f974bbeebf5580fbe59e258ea7be64d9dfb253c84f/greenlet-3.2.4-cp312-cp312-win_amd64.whl", hash = "sha256:a7d4e128405eea3814a12cc2605e0e6aedb4035bf32697f72deca74de4105e02", size = 299899, upload-time = "2025-08-07T13:38:53.448Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/49/e8/58c7f85958bda41dafea50497cbd59738c5c43dbbea5ee83d651234398f4/greenlet-3.2.4-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:1a921e542453fe531144e91e1feedf12e07351b1cf6c9e8a3325ea600a715a31", size = 272814, upload-time = "2025-08-07T13:15:50.011Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/62/dd/b9f59862e9e257a16e4e610480cfffd29e3fae018a68c2332090b53aac3d/greenlet-3.2.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd3c8e693bff0fff6ba55f140bf390fa92c994083f838fece0f63be121334945", size = 641073, upload-time = "2025-08-07T13:42:57.23Z" },
|
||||
@@ -220,6 +226,8 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/ee/43/3cecdc0349359e1a527cbf2e3e28e5f8f06d3343aaf82ca13437a9aa290f/greenlet-3.2.4-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:23768528f2911bcd7e475210822ffb5254ed10d71f4028387e5a99b4c6699671", size = 610497, upload-time = "2025-08-07T13:18:31.636Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b8/19/06b6cf5d604e2c382a6f31cafafd6f33d5dea706f4db7bdab184bad2b21d/greenlet-3.2.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:00fadb3fedccc447f517ee0d3fd8fe49eae949e1cd0f6a611818f4f6fb7dc83b", size = 1121662, upload-time = "2025-08-07T13:42:41.117Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a2/15/0d5e4e1a66fab130d98168fe984c509249c833c1a3c16806b90f253ce7b9/greenlet-3.2.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:d25c5091190f2dc0eaa3f950252122edbbadbb682aa7b1ef2f8af0f8c0afefae", size = 1149210, upload-time = "2025-08-07T13:18:24.072Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1c/53/f9c440463b3057485b8594d7a638bed53ba531165ef0ca0e6c364b5cc807/greenlet-3.2.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6e343822feb58ac4d0a1211bd9399de2b3a04963ddeec21530fc426cc121f19b", size = 1564759, upload-time = "2025-11-04T12:42:19.395Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/e4/3bb4240abdd0a8d23f4f88adec746a3099f0d86bfedb623f063b2e3b4df0/greenlet-3.2.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca7f6f1f2649b89ce02f6f229d7c19f680a6238af656f61e0115b24857917929", size = 1634288, upload-time = "2025-11-04T12:42:21.174Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0b/55/2321e43595e6801e105fcfdee02b34c0f996eb71e6ddffca6b10b7e1d771/greenlet-3.2.4-cp313-cp313-win_amd64.whl", hash = "sha256:554b03b6e73aaabec3745364d6239e9e012d64c68ccd0b8430c64ccc14939a8b", size = 299685, upload-time = "2025-08-07T13:24:38.824Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/22/5c/85273fd7cc388285632b0498dbbab97596e04b154933dfe0f3e68156c68c/greenlet-3.2.4-cp314-cp314-macosx_11_0_universal2.whl", hash = "sha256:49a30d5fda2507ae77be16479bdb62a660fa51b1eb4928b524975b3bde77b3c0", size = 273586, upload-time = "2025-08-07T13:16:08.004Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d1/75/10aeeaa3da9332c2e761e4c50d4c3556c21113ee3f0afa2cf5769946f7a3/greenlet-3.2.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:299fd615cd8fc86267b47597123e3f43ad79c9d8a22bebdce535e53550763e2f", size = 686346, upload-time = "2025-08-07T13:42:59.944Z" },
|
||||
@@ -227,6 +235,8 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/dc/8b/29aae55436521f1d6f8ff4e12fb676f3400de7fcf27fccd1d4d17fd8fecd/greenlet-3.2.4-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b4a1870c51720687af7fa3e7cda6d08d801dae660f75a76f3845b642b4da6ee1", size = 694659, upload-time = "2025-08-07T13:53:17.759Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/92/2e/ea25914b1ebfde93b6fc4ff46d6864564fba59024e928bdc7de475affc25/greenlet-3.2.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:061dc4cf2c34852b052a8620d40f36324554bc192be474b9e9770e8c042fd735", size = 695355, upload-time = "2025-08-07T13:18:34.517Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/60/fc56c62046ec17f6b0d3060564562c64c862948c9d4bc8aa807cf5bd74f4/greenlet-3.2.4-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:44358b9bf66c8576a9f57a590d5f5d6e72fa4228b763d0e43fee6d3b06d3a337", size = 657512, upload-time = "2025-08-07T13:18:33.969Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/23/6e/74407aed965a4ab6ddd93a7ded3180b730d281c77b765788419484cdfeef/greenlet-3.2.4-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:2917bdf657f5859fbf3386b12d68ede4cf1f04c90c3a6bc1f013dd68a22e2269", size = 1612508, upload-time = "2025-11-04T12:42:23.427Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/da/343cd760ab2f92bac1845ca07ee3faea9fe52bee65f7bcb19f16ad7de08b/greenlet-3.2.4-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:015d48959d4add5d6c9f6c5210ee3803a830dce46356e3bc326d6776bde54681", size = 1680760, upload-time = "2025-11-04T12:42:25.341Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/a5/6ddab2b4c112be95601c13428db1d8b6608a8b6039816f2ba09c346c08fc/greenlet-3.2.4-cp314-cp314-win_amd64.whl", hash = "sha256:e37ab26028f12dbb0ff65f29a8d3d44a765c61e729647bf2ddfbbed621726f01", size = 303425, upload-time = "2025-08-07T13:32:27.59Z" },
|
||||
]
|
||||
|
||||
@@ -341,7 +351,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-classic"
|
||||
version = "1.0.0"
|
||||
version = "1.0.1"
|
||||
source = { editable = "../langchain" }
|
||||
dependencies = [
|
||||
{ name = "async-timeout", marker = "python_full_version < '3.11'" },
|
||||
@@ -392,10 +402,9 @@ dev = [
|
||||
lint = [
|
||||
{ name = "cffi", marker = "python_full_version < '3.10'", specifier = "<1.17.1" },
|
||||
{ name = "cffi", marker = "python_full_version >= '3.10'" },
|
||||
{ name = "ruff", specifier = ">=0.13.1,<0.14.0" },
|
||||
{ name = "ruff", specifier = ">=0.14.10,<0.15.0" },
|
||||
]
|
||||
test = [
|
||||
{ name = "blockbuster", specifier = ">=1.5.18,<1.6.0" },
|
||||
{ name = "cffi", marker = "python_full_version < '3.10'", specifier = "<1.17.1" },
|
||||
{ name = "cffi", marker = "python_full_version >= '3.10'" },
|
||||
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
|
||||
@@ -435,7 +444,7 @@ typing = [
|
||||
{ name = "fastapi", specifier = ">=0.116.1,<1.0.0" },
|
||||
{ name = "langchain-core", editable = "../core" },
|
||||
{ name = "langchain-text-splitters", editable = "../text-splitters" },
|
||||
{ name = "mypy", specifier = ">=1.18.2,<1.19.0" },
|
||||
{ name = "mypy", specifier = ">=1.19.1,<1.20.0" },
|
||||
{ name = "mypy-protobuf", specifier = ">=3.0.0,<4.0.0" },
|
||||
{ name = "numpy", marker = "python_full_version < '3.13'", specifier = ">=1.26.4" },
|
||||
{ name = "numpy", marker = "python_full_version >= '3.13'", specifier = ">=2.1.0" },
|
||||
@@ -466,7 +475,6 @@ dev = [
|
||||
{ name = "pytest-watcher" },
|
||||
]
|
||||
lint = [
|
||||
{ name = "mypy" },
|
||||
{ name = "ruff" },
|
||||
]
|
||||
test = [
|
||||
@@ -475,6 +483,7 @@ test = [
|
||||
]
|
||||
typing = [
|
||||
{ name = "langchain-classic" },
|
||||
{ name = "mypy" },
|
||||
]
|
||||
|
||||
[package.metadata]
|
||||
@@ -492,20 +501,20 @@ dev = [
|
||||
{ name = "pytest", specifier = ">=7.4.2,<9.0.0" },
|
||||
{ name = "pytest-watcher", specifier = ">=0.3.4,<1.0.0" },
|
||||
]
|
||||
lint = [
|
||||
{ name = "mypy", specifier = ">=1.18.1,<1.19" },
|
||||
{ name = "ruff", specifier = ">=0.13.1,<0.14" },
|
||||
]
|
||||
lint = [{ name = "ruff", specifier = ">=0.14.11,<0.15.0" }]
|
||||
test = [
|
||||
{ name = "langchain-classic", editable = "../langchain" },
|
||||
{ name = "langchain-core", editable = "../core" },
|
||||
]
|
||||
test-integration = []
|
||||
typing = [{ name = "langchain-classic", editable = "../langchain" }]
|
||||
typing = [
|
||||
{ name = "langchain-classic", editable = "../langchain" },
|
||||
{ name = "mypy", specifier = ">=1.19.1,<1.20" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langchain-core"
|
||||
version = "1.0.0"
|
||||
version = "1.2.5"
|
||||
source = { editable = "../core" }
|
||||
dependencies = [
|
||||
{ name = "jsonpatch" },
|
||||
@@ -515,6 +524,7 @@ dependencies = [
|
||||
{ name = "pyyaml" },
|
||||
{ name = "tenacity" },
|
||||
{ name = "typing-extensions" },
|
||||
{ name = "uuid-utils" },
|
||||
]
|
||||
|
||||
[package.metadata]
|
||||
@@ -526,6 +536,7 @@ requires-dist = [
|
||||
{ name = "pyyaml", specifier = ">=5.3.0,<7.0.0" },
|
||||
{ name = "tenacity", specifier = ">=8.1.0,!=8.4.0,<10.0.0" },
|
||||
{ name = "typing-extensions", specifier = ">=4.7.0,<5.0.0" },
|
||||
{ name = "uuid-utils", specifier = ">=0.12.0,<1.0" },
|
||||
]
|
||||
|
||||
[package.metadata.requires-dev]
|
||||
@@ -534,7 +545,7 @@ dev = [
|
||||
{ name = "jupyter", specifier = ">=1.0.0,<2.0.0" },
|
||||
{ name = "setuptools", specifier = ">=67.6.1,<68.0.0" },
|
||||
]
|
||||
lint = [{ name = "ruff", specifier = ">=0.13.1,<0.14.0" }]
|
||||
lint = [{ name = "ruff", specifier = ">=0.14.11,<0.15.0" }]
|
||||
test = [
|
||||
{ name = "blockbuster", specifier = ">=1.5.18,<1.6.0" },
|
||||
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
|
||||
@@ -556,14 +567,14 @@ test = [
|
||||
test-integration = []
|
||||
typing = [
|
||||
{ name = "langchain-text-splitters", directory = "../text-splitters" },
|
||||
{ name = "mypy", specifier = ">=1.18.1,<1.19.0" },
|
||||
{ name = "mypy", specifier = ">=1.19.1,<1.20.0" },
|
||||
{ name = "types-pyyaml", specifier = ">=6.0.12.2,<7.0.0.0" },
|
||||
{ name = "types-requests", specifier = ">=2.28.11.5,<3.0.0.0" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langchain-text-splitters"
|
||||
version = "1.0.0"
|
||||
version = "1.1.0"
|
||||
source = { editable = "../text-splitters" }
|
||||
dependencies = [
|
||||
{ name = "langchain-core" },
|
||||
@@ -579,7 +590,7 @@ dev = [
|
||||
]
|
||||
lint = [
|
||||
{ name = "langchain-core", editable = "../core" },
|
||||
{ name = "ruff", specifier = ">=0.13.1,<0.14.0" },
|
||||
{ name = "ruff", specifier = ">=0.14.10,<0.15.0" },
|
||||
]
|
||||
test = [
|
||||
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
|
||||
@@ -596,7 +607,7 @@ test-integration = [
|
||||
{ name = "nltk", specifier = ">=3.9.1,<4.0.0" },
|
||||
{ name = "scipy", marker = "python_full_version == '3.12.*'", specifier = ">=1.7.0,<2.0.0" },
|
||||
{ name = "scipy", marker = "python_full_version >= '3.13'", specifier = ">=1.14.1,<2.0.0" },
|
||||
{ name = "sentence-transformers", marker = "python_full_version < '3.14'", specifier = ">=3.0.1,<4.0.0" },
|
||||
{ name = "sentence-transformers", specifier = ">=3.0.1,<4.0.0" },
|
||||
{ name = "spacy", marker = "python_full_version < '3.14'", specifier = ">=3.8.7,<4.0.0" },
|
||||
{ name = "thinc", specifier = ">=8.3.6,<9.0.0" },
|
||||
{ name = "tiktoken", specifier = ">=0.8.0,<1.0.0" },
|
||||
@@ -605,7 +616,7 @@ test-integration = [
|
||||
typing = [
|
||||
{ name = "beautifulsoup4", specifier = ">=4.13.5,<5.0.0" },
|
||||
{ name = "lxml-stubs", specifier = ">=0.5.1,<1.0.0" },
|
||||
{ name = "mypy", specifier = ">=1.18.1,<1.19.0" },
|
||||
{ name = "mypy", specifier = ">=1.19.1,<1.20.0" },
|
||||
{ name = "tiktoken", specifier = ">=0.8.0,<1.0.0" },
|
||||
{ name = "types-requests", specifier = ">=2.31.0.20240218,<3.0.0.0" },
|
||||
]
|
||||
@@ -706,6 +717,79 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/3e/8e/e7a43d907a147e1f87eebdd6737483f9feba52a5d4b20f69d0bd6f2fa22f/langsmith-0.4.31-py3-none-any.whl", hash = "sha256:64f340bdead21defe5f4a6ca330c11073e35444989169f669508edf45a19025f", size = 386347, upload-time = "2025-09-25T04:18:16.69Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "librt"
|
||||
version = "0.7.5"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b5/8a/071f6628363d83e803d4783e0cd24fb9c5b798164300fcfaaa47c30659c0/librt-0.7.5.tar.gz", hash = "sha256:de4221a1181fa9c8c4b5f35506ed6f298948f44003d84d2a8b9885d7e01e6cfa", size = 145868, upload-time = "2025-12-25T03:53:16.039Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/88/f2/3248d8419db99ab80bb36266735d1241f766ad5fd993071211f789b618a5/librt-0.7.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:81056e01bba1394f1d92904ec61a4078f66df785316275edbaf51d90da8c6e26", size = 54703, upload-time = "2025-12-25T03:51:48.394Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/30/7e179543dbcb1311f84b7e797658ad85cf2d4474c468f5dbafa13f2a98a5/librt-0.7.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d7c72c8756eeb3aefb1b9e3dac7c37a4a25db63640cac0ab6fc18e91a0edf05a", size = 56660, upload-time = "2025-12-25T03:51:49.791Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/15/91/3ba03ac1ac1abd66757a134b3bd56d9674928b163d0e686ea065a2bbb92d/librt-0.7.5-cp310-cp310-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:ddc4a16207f88f9597b397fc1f60781266d13b13de922ff61c206547a29e4bbd", size = 161026, upload-time = "2025-12-25T03:51:51.021Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/6e/b8365f547817d37b44c4be2ffa02630be995ef18be52d72698cecc3640c5/librt-0.7.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:63055d3dda433ebb314c9f1819942f16a19203c454508fdb2d167613f7017169", size = 169530, upload-time = "2025-12-25T03:51:52.417Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/63/6a/8442eb0b6933c651a06e1888f863971f3391cc11338fdaa6ab969f7d1eac/librt-0.7.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9f85f9b5db87b0f52e53c68ad2a0c5a53e00afa439bd54a1723742a2b1021276", size = 183272, upload-time = "2025-12-25T03:51:53.713Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/90/c4/b1166df6ef8e1f68d309f50bf69e8e750a5ea12fe7e2cf202c771ff359fc/librt-0.7.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c566a4672564c5d54d8ab65cdaae5a87ee14c1564c1a2ddc7a9f5811c750f023", size = 179040, upload-time = "2025-12-25T03:51:55.048Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fc/30/8f3fd9fd975b16c37832d6c248b976d2a0e33f155063781e064f249b37f1/librt-0.7.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fee15c2a190ef389f14928135c6fb2d25cd3fdb7887bfd9a7b444bbdc8c06b96", size = 173506, upload-time = "2025-12-25T03:51:56.407Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/75/71/c3d4d5658f9849bf8e07ffba99f892d49a0c9a4001323ed610db72aedc82/librt-0.7.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:584cb3e605ec45ba350962cec853e17be0a25a772f21f09f1e422f7044ae2a7d", size = 193573, upload-time = "2025-12-25T03:51:57.949Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/86/7c/c1c8a0116a2eed3d58c8946c589a8f9e1354b9b825cc92eba58bb15f6fb1/librt-0.7.5-cp310-cp310-win32.whl", hash = "sha256:9c08527055fbb03c641c15bbc5b79dd2942fb6a3bd8dabf141dd7e97eeea4904", size = 42603, upload-time = "2025-12-25T03:51:59.215Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1d/00/b52c77ca294247420020b829b70465c6e6f2b9d59ab21d8051aac20432da/librt-0.7.5-cp310-cp310-win_amd64.whl", hash = "sha256:dd810f2d39c526c42ea205e0addad5dc08ef853c625387806a29d07f9d150d9b", size = 48977, upload-time = "2025-12-25T03:52:00.519Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/11/89/42b3ccb702a7e5f7a4cf2afc8a0a8f8c5e7d4b4d3a7c3de6357673dddddb/librt-0.7.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f952e1a78c480edee8fb43aa2bf2e84dcd46c917d44f8065b883079d3893e8fc", size = 54705, upload-time = "2025-12-25T03:52:01.433Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/bb/90/c16970b509c3c448c365041d326eeef5aeb2abaed81eb3187b26a3cd13f8/librt-0.7.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75965c1f4efb7234ff52a58b729d245a21e87e4b6a26a0ec08052f02b16274e4", size = 56667, upload-time = "2025-12-25T03:52:02.391Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ac/2f/da4bdf6c190503f4663fbb781dfae5564a2b1c3f39a2da8e1ac7536ac7bd/librt-0.7.5-cp311-cp311-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:732e0aa0385b59a1b2545159e781c792cc58ce9c134249233a7c7250a44684c4", size = 161705, upload-time = "2025-12-25T03:52:03.395Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/88/c5da8e1f5f22b23d56e1fbd87266799dcf32828d47bf69fabc6f9673c6eb/librt-0.7.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:cdde31759bd8888f3ef0eebda80394a48961328a17c264dce8cc35f4b9cde35d", size = 171029, upload-time = "2025-12-25T03:52:04.798Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/38/8a/8dfc00a6f1febc094ed9a55a448fc0b3a591b5dfd83be6cfd76d0910b1f0/librt-0.7.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:df3146d52465b3b6397d25d513f428cb421c18df65b7378667bb5f1e3cc45805", size = 184704, upload-time = "2025-12-25T03:52:05.887Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ad/57/65dec835ff235f431801064a3b41268f2f5ee0d224dc3bbf46d911af5c1a/librt-0.7.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:29c8d2fae11d4379ea207ba7fc69d43237e42cf8a9f90ec6e05993687e6d648b", size = 180720, upload-time = "2025-12-25T03:52:06.925Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1e/27/92033d169bbcaa0d9a2dd476c179e5171ec22ed574b1b135a3c6104fb7d4/librt-0.7.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:bb41f04046b4f22b1e7ba5ef513402cd2e3477ec610e5f92d38fe2bba383d419", size = 174538, upload-time = "2025-12-25T03:52:08.075Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/44/5c/0127098743575d5340624d8d4ec508d4d5ff0877dcee6f55f54bf03e5ed0/librt-0.7.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:8bb7883c1e94ceb87c2bf81385266f032da09cd040e804cc002f2c9d6b842e2f", size = 195240, upload-time = "2025-12-25T03:52:09.427Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/47/0f/be028c3e906a8ee6d29a42fd362e6d57d4143057f2bc0c454d489a0f898b/librt-0.7.5-cp311-cp311-win32.whl", hash = "sha256:84d4a6b9efd6124f728558a18e79e7cc5c5d4efc09b2b846c910de7e564f5bad", size = 42941, upload-time = "2025-12-25T03:52:10.527Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ac/3a/2f0ed57f4c3ae3c841780a95dfbea4cd811c6842d9ee66171ce1af606d25/librt-0.7.5-cp311-cp311-win_amd64.whl", hash = "sha256:ab4b0d3bee6f6ff7017e18e576ac7e41a06697d8dea4b8f3ab9e0c8e1300c409", size = 49244, upload-time = "2025-12-25T03:52:11.832Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ee/7c/d7932aedfa5a87771f9e2799e7185ec3a322f4a1f4aa87c234159b75c8c8/librt-0.7.5-cp311-cp311-win_arm64.whl", hash = "sha256:730be847daad773a3c898943cf67fb9845a3961d06fb79672ceb0a8cd8624cfa", size = 42614, upload-time = "2025-12-25T03:52:12.745Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/33/9d/cb0a296cee177c0fee7999ada1c1af7eee0e2191372058814a4ca6d2baf0/librt-0.7.5-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:ba1077c562a046208a2dc6366227b3eeae8f2c2ab4b41eaf4fd2fa28cece4203", size = 55689, upload-time = "2025-12-25T03:52:14.041Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/79/5c/d7de4d4228b74c5b81a3fbada157754bb29f0e1f8c38229c669a7f90422a/librt-0.7.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:654fdc971c76348a73af5240d8e2529265b9a7ba6321e38dd5bae7b0d4ab3abe", size = 57142, upload-time = "2025-12-25T03:52:15.336Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e5/b2/5da779184aae369b69f4ae84225f63741662a0fe422e91616c533895d7a4/librt-0.7.5-cp312-cp312-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:6b7b58913d475911f6f33e8082f19dd9b120c4f4a5c911d07e395d67b81c6982", size = 165323, upload-time = "2025-12-25T03:52:16.384Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/40/6d5abc15ab6cc70e04c4d201bb28baffff4cfb46ab950b8e90935b162d58/librt-0.7.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b8e0fd344bad57026a8f4ccfaf406486c2fc991838050c2fef156170edc3b775", size = 174218, upload-time = "2025-12-25T03:52:17.518Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/d0/5239a8507e6117a3cb59ce0095bdd258bd2a93d8d4b819a506da06d8d645/librt-0.7.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:46aa91813c267c3f60db75d56419b42c0c0b9748ec2c568a0e3588e543fb4233", size = 189007, upload-time = "2025-12-25T03:52:18.585Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1f/a4/8eed1166ffddbb01c25363e4c4e655f4bac298debe9e5a2dcfaf942438a1/librt-0.7.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ddc0ab9dbc5f9ceaf2bf7a367bf01f2697660e908f6534800e88f43590b271db", size = 183962, upload-time = "2025-12-25T03:52:19.723Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a1/83/260e60aab2f5ccba04579c5c46eb3b855e51196fde6e2bcf6742d89140a8/librt-0.7.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:7a488908a470451338607650f1c064175094aedebf4a4fa37890682e30ce0b57", size = 177611, upload-time = "2025-12-25T03:52:21.18Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/36/6dcfed0df41e9695665462bab59af15b7ed2b9c668d85c7ebadd022cbb76/librt-0.7.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e47fc52602ffc374e69bf1b76536dc99f7f6dd876bd786c8213eaa3598be030a", size = 199273, upload-time = "2025-12-25T03:52:22.25Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a6/b7/157149c8cffae6bc4293a52e0267860cee2398cb270798d94f1c8a69b9ae/librt-0.7.5-cp312-cp312-win32.whl", hash = "sha256:cda8b025875946ffff5a9a7590bf9acde3eb02cb6200f06a2d3e691ef3d9955b", size = 43191, upload-time = "2025-12-25T03:52:23.643Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f8/91/197dfeb8d3bdeb0a5344d0d8b3077f183ba5e76c03f158126f6072730998/librt-0.7.5-cp312-cp312-win_amd64.whl", hash = "sha256:b591c094afd0ffda820e931148c9e48dc31a556dc5b2b9b3cc552fa710d858e4", size = 49462, upload-time = "2025-12-25T03:52:24.637Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/03/ea/052a79454cc52081dfaa9a1c4c10a529f7a6a6805b2fac5805fea5b25975/librt-0.7.5-cp312-cp312-win_arm64.whl", hash = "sha256:532ddc6a8a6ca341b1cd7f4d999043e4c71a212b26fe9fd2e7f1e8bb4e873544", size = 42830, upload-time = "2025-12-25T03:52:25.944Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/9a/8f61e16de0ff76590af893cfb5b1aa5fa8b13e5e54433d0809c7033f59ed/librt-0.7.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:b1795c4b2789b458fa290059062c2f5a297ddb28c31e704d27e161386469691a", size = 55750, upload-time = "2025-12-25T03:52:26.975Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/05/7c/a8a883804851a066f301e0bad22b462260b965d5c9e7fe3c5de04e6f91f8/librt-0.7.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:2fcbf2e135c11f721193aa5f42ba112bb1046afafbffd407cbc81d8d735c74d0", size = 57170, upload-time = "2025-12-25T03:52:27.948Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d6/5d/b3b47facf5945be294cf8a835b03589f70ee0e791522f99ec6782ed738b3/librt-0.7.5-cp313-cp313-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:c039bbf79a9a2498404d1ae7e29a6c175e63678d7a54013a97397c40aee026c5", size = 165834, upload-time = "2025-12-25T03:52:29.09Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b4/b6/b26910cd0a4e43e5d02aacaaea0db0d2a52e87660dca08293067ee05601a/librt-0.7.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3919c9407faeeee35430ae135e3a78acd4ecaaaa73767529e2c15ca1d73ba325", size = 174820, upload-time = "2025-12-25T03:52:30.463Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/a3/81feddd345d4c869b7a693135a462ae275f964fcbbe793d01ea56a84c2ee/librt-0.7.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:26b46620e1e0e45af510d9848ea0915e7040605dd2ae94ebefb6c962cbb6f7ec", size = 189609, upload-time = "2025-12-25T03:52:31.492Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ce/a9/31310796ef4157d1d37648bf4a3b84555319f14cee3e9bad7bdd7bfd9a35/librt-0.7.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:9bbb8facc5375476d392990dd6a71f97e4cb42e2ac66f32e860f6e47299d5e89", size = 184589, upload-time = "2025-12-25T03:52:32.59Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/22/da3900544cb0ac6ab7a2857850158a0a093b86f92b264aa6c4a4f2355ff3/librt-0.7.5-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:e9e9c988b5ffde7be02180f864cbd17c0b0c1231c235748912ab2afa05789c25", size = 178251, upload-time = "2025-12-25T03:52:33.745Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/db/77/78e02609846e78b9b8c8e361753b3dbac9a07e6d5b567fe518de9e074ab0/librt-0.7.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:edf6b465306215b19dbe6c3fb63cf374a8f3e1ad77f3b4c16544b83033bbb67b", size = 199852, upload-time = "2025-12-25T03:52:34.826Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2a/25/05706f6b346429c951582f1b3561f4d5e1418d0d7ba1a0c181237cd77b3b/librt-0.7.5-cp313-cp313-win32.whl", hash = "sha256:060bde69c3604f694bd8ae21a780fe8be46bb3dbb863642e8dfc75c931ca8eee", size = 43250, upload-time = "2025-12-25T03:52:35.905Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/59/c38677278ac0b9ae1afc611382ef6c9ea87f52ad257bd3d8d65f0eacdc6a/librt-0.7.5-cp313-cp313-win_amd64.whl", hash = "sha256:a82d5a0ee43aeae2116d7292c77cc8038f4841830ade8aa922e098933b468b9e", size = 49421, upload-time = "2025-12-25T03:52:36.895Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c0/47/1d71113df4a81de5fdfbd3d7244e05d3d67e89f25455c3380ca50b92741e/librt-0.7.5-cp313-cp313-win_arm64.whl", hash = "sha256:3c98a8d0ac9e2a7cb8ff8c53e5d6e8d82bfb2839abf144fdeaaa832f2a12aa45", size = 42827, upload-time = "2025-12-25T03:52:37.856Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/97/ae/8635b4efdc784220f1378be640d8b1a794332f7f6ea81bb4859bf9d18aa7/librt-0.7.5-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:9937574e6d842f359b8585903d04f5b4ab62277a091a93e02058158074dc52f2", size = 55191, upload-time = "2025-12-25T03:52:38.839Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/52/11/ed7ef6955dc2032af37db9b0b31cd5486a138aa792e1bb9e64f0f4950e27/librt-0.7.5-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:5cd3afd71e9bc146203b6c8141921e738364158d4aa7cdb9a874e2505163770f", size = 56894, upload-time = "2025-12-25T03:52:39.805Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/24/f1/02921d4a66a1b5dcd0493b89ce76e2762b98c459fe2ad04b67b2ea6fdd39/librt-0.7.5-cp314-cp314-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:9cffa3ef0af29687455161cb446eff059bf27607f95163d6a37e27bcb37180f6", size = 163726, upload-time = "2025-12-25T03:52:40.79Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/65/87/27df46d2756fcb7a82fa7f6ca038a0c6064c3e93ba65b0b86fbf6a4f76a2/librt-0.7.5-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:82f3f088482e2229387eadf8215c03f7726d56f69cce8c0c40f0795aebc9b361", size = 172470, upload-time = "2025-12-25T03:52:42.226Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/a9/e65a35e5d423639f4f3d8e17301ff13cc41c2ff97677fe9c361c26dbfbb7/librt-0.7.5-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d7aa33153a5bb0bac783d2c57885889b1162823384e8313d47800a0e10d0070e", size = 186807, upload-time = "2025-12-25T03:52:43.688Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/b0/ac68aa582a996b1241773bd419823290c42a13dc9f494704a12a17ddd7b6/librt-0.7.5-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:265729b551a2dd329cc47b323a182fb7961af42abf21e913c9dd7d3331b2f3c2", size = 181810, upload-time = "2025-12-25T03:52:45.095Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e1/c1/03f6717677f20acd2d690813ec2bbe12a2de305f32c61479c53f7b9413bc/librt-0.7.5-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:168e04663e126416ba712114050f413ac306759a1791d87b7c11d4428ba75760", size = 175599, upload-time = "2025-12-25T03:52:46.177Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/01/d7/f976ff4c07c59b69bb5eec7e5886d43243075bbef834428124b073471c86/librt-0.7.5-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:553dc58987d1d853adda8aeadf4db8e29749f0b11877afcc429a9ad892818ae2", size = 196506, upload-time = "2025-12-25T03:52:47.327Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/74/004f068b8888e61b454568b5479f88018fceb14e511ac0609cccee7dd227/librt-0.7.5-cp314-cp314-win32.whl", hash = "sha256:263f4fae9eba277513357c871275b18d14de93fd49bf5e43dc60a97b81ad5eb8", size = 39747, upload-time = "2025-12-25T03:52:48.437Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/37/b1/ea3ec8fcf5f0a00df21f08972af77ad799604a306db58587308067d27af8/librt-0.7.5-cp314-cp314-win_amd64.whl", hash = "sha256:85f485b7471571e99fab4f44eeb327dc0e1f814ada575f3fa85e698417d8a54e", size = 45970, upload-time = "2025-12-25T03:52:49.389Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5d/30/5e3fb7ac4614a50fc67e6954926137d50ebc27f36419c9963a94f931f649/librt-0.7.5-cp314-cp314-win_arm64.whl", hash = "sha256:49c596cd18e90e58b7caa4d7ca7606049c1802125fcff96b8af73fa5c3870e4d", size = 39075, upload-time = "2025-12-25T03:52:50.395Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a4/7f/0af0a9306a06c2aabee3a790f5aa560c50ec0a486ab818a572dd3db6c851/librt-0.7.5-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:54d2aef0b0f5056f130981ad45081b278602ff3657fe16c88529f5058038e802", size = 57375, upload-time = "2025-12-25T03:52:51.439Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/57/1f/c85e510baf6572a3d6ef40c742eacedc02973ed2acdb5dba2658751d9af8/librt-0.7.5-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:0b4791202296ad51ac09a3ff58eb49d9da8e3a4009167a6d76ac418a974e5fd4", size = 59234, upload-time = "2025-12-25T03:52:52.687Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/49/b1/bb6535e4250cd18b88d6b18257575a0239fa1609ebba925f55f51ae08e8e/librt-0.7.5-cp314-cp314t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:6e860909fea75baef941ee6436e0453612505883b9d0d87924d4fda27865b9a2", size = 183873, upload-time = "2025-12-25T03:52:53.705Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8e/49/ad4a138cca46cdaa7f0e15fa912ce3ccb4cc0d4090bfeb8ccc35766fa6d5/librt-0.7.5-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f02c4337bf271c4f06637f5ff254fad2238c0b8e32a3a480ebb2fc5e26f754a5", size = 194609, upload-time = "2025-12-25T03:52:54.884Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9c/2d/3b3cb933092d94bb2c1d3c9b503d8775f08d806588c19a91ee4d1495c2a8/librt-0.7.5-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7f51ffe59f4556243d3cc82d827bde74765f594fa3ceb80ec4de0c13ccd3416", size = 206777, upload-time = "2025-12-25T03:52:55.969Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3a/52/6e7611d3d1347812233dabc44abca4c8065ee97b83c9790d7ecc3f782bc8/librt-0.7.5-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:0b7f080ba30601dfa3e3deed3160352273e1b9bc92e652f51103c3e9298f7899", size = 203208, upload-time = "2025-12-25T03:52:57.036Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/27/aa/466ae4654bd2d45903fbf180815d41e3ae8903e5a1861f319f73c960a843/librt-0.7.5-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:fb565b4219abc8ea2402e61c7ba648a62903831059ed3564fa1245cc245d58d7", size = 196698, upload-time = "2025-12-25T03:52:58.481Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/97/8f/424f7e4525bb26fe0d3e984d1c0810ced95e53be4fd867ad5916776e18a3/librt-0.7.5-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:8a3cfb15961e7333ea6ef033dc574af75153b5c230d5ad25fbcd55198f21e0cf", size = 217194, upload-time = "2025-12-25T03:52:59.575Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9e/33/13a4cb798a171b173f3c94db23adaf13a417130e1493933dc0df0d7fb439/librt-0.7.5-cp314-cp314t-win32.whl", hash = "sha256:118716de5ad6726332db1801bc90fa6d94194cd2e07c1a7822cebf12c496714d", size = 40282, upload-time = "2025-12-25T03:53:01.091Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5f/f1/62b136301796399d65dad73b580f4509bcbd347dff885a450bff08e80cb6/librt-0.7.5-cp314-cp314t-win_amd64.whl", hash = "sha256:3dd58f7ce20360c6ce0c04f7bd9081c7f9c19fc6129a3c705d0c5a35439f201d", size = 46764, upload-time = "2025-12-25T03:53:02.381Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/49/cb/940431d9410fda74f941f5cd7f0e5a22c63be7b0c10fa98b2b7022b48cb1/librt-0.7.5-cp314-cp314t-win_arm64.whl", hash = "sha256:08153ea537609d11f774d2bfe84af39d50d5c9ca3a4d061d946e0c9d8bce04a1", size = 39728, upload-time = "2025-12-25T03:53:03.306Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "markdown-it-py"
|
||||
version = "4.0.0"
|
||||
@@ -729,47 +813,48 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "mypy"
|
||||
version = "1.18.2"
|
||||
version = "1.19.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "librt", marker = "platform_python_implementation != 'PyPy'" },
|
||||
{ name = "mypy-extensions" },
|
||||
{ name = "pathspec" },
|
||||
{ name = "tomli", marker = "python_full_version < '3.11'" },
|
||||
{ name = "typing-extensions" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c0/77/8f0d0001ffad290cef2f7f216f96c814866248a0b92a722365ed54648e7e/mypy-1.18.2.tar.gz", hash = "sha256:06a398102a5f203d7477b2923dda3634c36727fa5c237d8f859ef90c42a9924b", size = 3448846, upload-time = "2025-09-19T00:11:10.519Z" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/f5/db/4efed9504bc01309ab9c2da7e352cc223569f05478012b5d9ece38fd44d2/mypy-1.19.1.tar.gz", hash = "sha256:19d88bb05303fe63f71dd2c6270daca27cb9401c4ca8255fe50d1d920e0eb9ba", size = 3582404, upload-time = "2025-12-15T05:03:48.42Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/03/6f/657961a0743cff32e6c0611b63ff1c1970a0b482ace35b069203bf705187/mypy-1.18.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c1eab0cf6294dafe397c261a75f96dc2c31bffe3b944faa24db5def4e2b0f77c", size = 12807973, upload-time = "2025-09-19T00:10:35.282Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/10/e9/420822d4f661f13ca8900f5fa239b40ee3be8b62b32f3357df9a3045a08b/mypy-1.18.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7a780ca61fc239e4865968ebc5240bb3bf610ef59ac398de9a7421b54e4a207e", size = 11896527, upload-time = "2025-09-19T00:10:55.791Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/aa/73/a05b2bbaa7005f4642fcfe40fb73f2b4fb6bb44229bd585b5878e9a87ef8/mypy-1.18.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:448acd386266989ef11662ce3c8011fd2a7b632e0ec7d61a98edd8e27472225b", size = 12507004, upload-time = "2025-09-19T00:11:05.411Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4f/01/f6e4b9f0d031c11ccbd6f17da26564f3a0f3c4155af344006434b0a05a9d/mypy-1.18.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f9e171c465ad3901dc652643ee4bffa8e9fef4d7d0eece23b428908c77a76a66", size = 13245947, upload-time = "2025-09-19T00:10:46.923Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/97/19727e7499bfa1ae0773d06afd30ac66a58ed7437d940c70548634b24185/mypy-1.18.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:592ec214750bc00741af1f80cbf96b5013d81486b7bb24cb052382c19e40b428", size = 13499217, upload-time = "2025-09-19T00:09:39.472Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/4f/90dc8c15c1441bf31cf0f9918bb077e452618708199e530f4cbd5cede6ff/mypy-1.18.2-cp310-cp310-win_amd64.whl", hash = "sha256:7fb95f97199ea11769ebe3638c29b550b5221e997c63b14ef93d2e971606ebed", size = 9766753, upload-time = "2025-09-19T00:10:49.161Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/88/87/cafd3ae563f88f94eec33f35ff722d043e09832ea8530ef149ec1efbaf08/mypy-1.18.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:807d9315ab9d464125aa9fcf6d84fde6e1dc67da0b6f80e7405506b8ac72bc7f", size = 12731198, upload-time = "2025-09-19T00:09:44.857Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0f/e0/1e96c3d4266a06d4b0197ace5356d67d937d8358e2ee3ffac71faa843724/mypy-1.18.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:776bb00de1778caf4db739c6e83919c1d85a448f71979b6a0edd774ea8399341", size = 11817879, upload-time = "2025-09-19T00:09:47.131Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/ef/0c9ba89eb03453e76bdac5a78b08260a848c7bfc5d6603634774d9cd9525/mypy-1.18.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1379451880512ffce14505493bd9fe469e0697543717298242574882cf8cdb8d", size = 12427292, upload-time = "2025-09-19T00:10:22.472Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/52/ec4a061dd599eb8179d5411d99775bec2a20542505988f40fc2fee781068/mypy-1.18.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1331eb7fd110d60c24999893320967594ff84c38ac6d19e0a76c5fd809a84c86", size = 13163750, upload-time = "2025-09-19T00:09:51.472Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/5f/2cf2ceb3b36372d51568f2208c021870fe7834cf3186b653ac6446511839/mypy-1.18.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3ca30b50a51e7ba93b00422e486cbb124f1c56a535e20eff7b2d6ab72b3b2e37", size = 13351827, upload-time = "2025-09-19T00:09:58.311Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/7d/2697b930179e7277529eaaec1513f8de622818696857f689e4a5432e5e27/mypy-1.18.2-cp311-cp311-win_amd64.whl", hash = "sha256:664dc726e67fa54e14536f6e1224bcfce1d9e5ac02426d2326e2bb4e081d1ce8", size = 9757983, upload-time = "2025-09-19T00:10:09.071Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/07/06/dfdd2bc60c66611dd8335f463818514733bc763e4760dee289dcc33df709/mypy-1.18.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:33eca32dd124b29400c31d7cf784e795b050ace0e1f91b8dc035672725617e34", size = 12908273, upload-time = "2025-09-19T00:10:58.321Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/81/14/6a9de6d13a122d5608e1a04130724caf9170333ac5a924e10f670687d3eb/mypy-1.18.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a3c47adf30d65e89b2dcd2fa32f3aeb5e94ca970d2c15fcb25e297871c8e4764", size = 11920910, upload-time = "2025-09-19T00:10:20.043Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5f/a9/b29de53e42f18e8cc547e38daa9dfa132ffdc64f7250e353f5c8cdd44bee/mypy-1.18.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5d6c838e831a062f5f29d11c9057c6009f60cb294fea33a98422688181fe2893", size = 12465585, upload-time = "2025-09-19T00:10:33.005Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/77/ae/6c3d2c7c61ff21f2bee938c917616c92ebf852f015fb55917fd6e2811db2/mypy-1.18.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01199871b6110a2ce984bde85acd481232d17413868c9807e95c1b0739a58914", size = 13348562, upload-time = "2025-09-19T00:10:11.51Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4d/31/aec68ab3b4aebdf8f36d191b0685d99faa899ab990753ca0fee60fb99511/mypy-1.18.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a2afc0fa0b0e91b4599ddfe0f91e2c26c2b5a5ab263737e998d6817874c5f7c8", size = 13533296, upload-time = "2025-09-19T00:10:06.568Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9f/83/abcb3ad9478fca3ebeb6a5358bb0b22c95ea42b43b7789c7fb1297ca44f4/mypy-1.18.2-cp312-cp312-win_amd64.whl", hash = "sha256:d8068d0afe682c7c4897c0f7ce84ea77f6de953262b12d07038f4d296d547074", size = 9828828, upload-time = "2025-09-19T00:10:28.203Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5f/04/7f462e6fbba87a72bc8097b93f6842499c428a6ff0c81dd46948d175afe8/mypy-1.18.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:07b8b0f580ca6d289e69209ec9d3911b4a26e5abfde32228a288eb79df129fcc", size = 12898728, upload-time = "2025-09-19T00:10:01.33Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/99/5b/61ed4efb64f1871b41fd0b82d29a64640f3516078f6c7905b68ab1ad8b13/mypy-1.18.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ed4482847168439651d3feee5833ccedbf6657e964572706a2adb1f7fa4dfe2e", size = 11910758, upload-time = "2025-09-19T00:10:42.607Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3c/46/d297d4b683cc89a6e4108c4250a6a6b717f5fa96e1a30a7944a6da44da35/mypy-1.18.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c3ad2afadd1e9fea5cf99a45a822346971ede8685cc581ed9cd4d42eaf940986", size = 12475342, upload-time = "2025-09-19T00:11:00.371Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/83/45/4798f4d00df13eae3bfdf726c9244bcb495ab5bd588c0eed93a2f2dd67f3/mypy-1.18.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a431a6f1ef14cf8c144c6b14793a23ec4eae3db28277c358136e79d7d062f62d", size = 13338709, upload-time = "2025-09-19T00:11:03.358Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d7/09/479f7358d9625172521a87a9271ddd2441e1dab16a09708f056e97007207/mypy-1.18.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7ab28cc197f1dd77a67e1c6f35cd1f8e8b73ed2217e4fc005f9e6a504e46e7ba", size = 13529806, upload-time = "2025-09-19T00:10:26.073Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/71/cf/ac0f2c7e9d0ea3c75cd99dff7aec1c9df4a1376537cb90e4c882267ee7e9/mypy-1.18.2-cp313-cp313-win_amd64.whl", hash = "sha256:0e2785a84b34a72ba55fb5daf079a1003a34c05b22238da94fcae2bbe46f3544", size = 9833262, upload-time = "2025-09-19T00:10:40.035Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/0c/7d5300883da16f0063ae53996358758b2a2df2a09c72a5061fa79a1f5006/mypy-1.18.2-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:62f0e1e988ad41c2a110edde6c398383a889d95b36b3e60bcf155f5164c4fdce", size = 12893775, upload-time = "2025-09-19T00:10:03.814Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/50/df/2cffbf25737bdb236f60c973edf62e3e7b4ee1c25b6878629e88e2cde967/mypy-1.18.2-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:8795a039bab805ff0c1dfdb8cd3344642c2b99b8e439d057aba30850b8d3423d", size = 11936852, upload-time = "2025-09-19T00:10:51.631Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/be/50/34059de13dd269227fb4a03be1faee6e2a4b04a2051c82ac0a0b5a773c9a/mypy-1.18.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6ca1e64b24a700ab5ce10133f7ccd956a04715463d30498e64ea8715236f9c9c", size = 12480242, upload-time = "2025-09-19T00:11:07.955Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5b/11/040983fad5132d85914c874a2836252bbc57832065548885b5bb5b0d4359/mypy-1.18.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d924eef3795cc89fecf6bedc6ed32b33ac13e8321344f6ddbf8ee89f706c05cb", size = 13326683, upload-time = "2025-09-19T00:09:55.572Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e9/ba/89b2901dd77414dd7a8c8729985832a5735053be15b744c18e4586e506ef/mypy-1.18.2-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:20c02215a080e3a2be3aa50506c67242df1c151eaba0dcbc1e4e557922a26075", size = 13514749, upload-time = "2025-09-19T00:10:44.827Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/25/bc/cc98767cffd6b2928ba680f3e5bc969c4152bf7c2d83f92f5a504b92b0eb/mypy-1.18.2-cp314-cp314-win_amd64.whl", hash = "sha256:749b5f83198f1ca64345603118a6f01a4e99ad4bf9d103ddc5a3200cc4614adf", size = 9982959, upload-time = "2025-09-19T00:10:37.344Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/87/e3/be76d87158ebafa0309946c4a73831974d4d6ab4f4ef40c3b53a385a66fd/mypy-1.18.2-py3-none-any.whl", hash = "sha256:22a1748707dd62b58d2ae53562ffc4d7f8bcc727e8ac7cbc69c053ddc874d47e", size = 2352367, upload-time = "2025-09-19T00:10:15.489Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/63/e499890d8e39b1ff2df4c0c6ce5d371b6844ee22b8250687a99fd2f657a8/mypy-1.19.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5f05aa3d375b385734388e844bc01733bd33c644ab48e9684faa54e5389775ec", size = 13101333, upload-time = "2025-12-15T05:03:03.28Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/72/4b/095626fc136fba96effc4fd4a82b41d688ab92124f8c4f7564bffe5cf1b0/mypy-1.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:022ea7279374af1a5d78dfcab853fe6a536eebfda4b59deab53cd21f6cd9f00b", size = 12164102, upload-time = "2025-12-15T05:02:33.611Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/5b/952928dd081bf88a83a5ccd49aaecfcd18fd0d2710c7ff07b8fb6f7032b9/mypy-1.19.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ee4c11e460685c3e0c64a4c5de82ae143622410950d6be863303a1c4ba0e36d6", size = 12765799, upload-time = "2025-12-15T05:03:28.44Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2a/0d/93c2e4a287f74ef11a66fb6d49c7a9f05e47b0a4399040e6719b57f500d2/mypy-1.19.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:de759aafbae8763283b2ee5869c7255391fbc4de3ff171f8f030b5ec48381b74", size = 13522149, upload-time = "2025-12-15T05:02:36.011Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/7b/0e/33a294b56aaad2b338d203e3a1d8b453637ac36cb278b45005e0901cf148/mypy-1.19.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ab43590f9cd5108f41aacf9fca31841142c786827a74ab7cc8a2eacb634e09a1", size = 13810105, upload-time = "2025-12-15T05:02:40.327Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0e/fd/3e82603a0cb66b67c5e7abababce6bf1a929ddf67bf445e652684af5c5a0/mypy-1.19.1-cp310-cp310-win_amd64.whl", hash = "sha256:2899753e2f61e571b3971747e302d5f420c3fd09650e1951e99f823bc3089dac", size = 10057200, upload-time = "2025-12-15T05:02:51.012Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ef/47/6b3ebabd5474d9cdc170d1342fbf9dddc1b0ec13ec90bf9004ee6f391c31/mypy-1.19.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d8dfc6ab58ca7dda47d9237349157500468e404b17213d44fc1cb77bce532288", size = 13028539, upload-time = "2025-12-15T05:03:44.129Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5c/a6/ac7c7a88a3c9c54334f53a941b765e6ec6c4ebd65d3fe8cdcfbe0d0fd7db/mypy-1.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e3f276d8493c3c97930e354b2595a44a21348b320d859fb4a2b9f66da9ed27ab", size = 12083163, upload-time = "2025-12-15T05:03:37.679Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/67/af/3afa9cf880aa4a2c803798ac24f1d11ef72a0c8079689fac5cfd815e2830/mypy-1.19.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:2abb24cf3f17864770d18d673c85235ba52456b36a06b6afc1e07c1fdcd3d0e6", size = 12687629, upload-time = "2025-12-15T05:02:31.526Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2d/46/20f8a7114a56484ab268b0ab372461cb3a8f7deed31ea96b83a4e4cfcfca/mypy-1.19.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a009ffa5a621762d0c926a078c2d639104becab69e79538a494bcccb62cc0331", size = 13436933, upload-time = "2025-12-15T05:03:15.606Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5b/f8/33b291ea85050a21f15da910002460f1f445f8007adb29230f0adea279cb/mypy-1.19.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f7cee03c9a2e2ee26ec07479f38ea9c884e301d42c6d43a19d20fb014e3ba925", size = 13661754, upload-time = "2025-12-15T05:02:26.731Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/a3/47cbd4e85bec4335a9cd80cf67dbc02be21b5d4c9c23ad6b95d6c5196bac/mypy-1.19.1-cp311-cp311-win_amd64.whl", hash = "sha256:4b84a7a18f41e167f7995200a1d07a4a6810e89d29859df936f1c3923d263042", size = 10055772, upload-time = "2025-12-15T05:03:26.179Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/06/8a/19bfae96f6615aa8a0604915512e0289b1fad33d5909bf7244f02935d33a/mypy-1.19.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:a8174a03289288c1f6c46d55cef02379b478bfbc8e358e02047487cad44c6ca1", size = 13206053, upload-time = "2025-12-15T05:03:46.622Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/34/3e63879ab041602154ba2a9f99817bb0c85c4df19a23a1443c8986e4d565/mypy-1.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ffcebe56eb09ff0c0885e750036a095e23793ba6c2e894e7e63f6d89ad51f22e", size = 12219134, upload-time = "2025-12-15T05:03:24.367Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/89/cc/2db6f0e95366b630364e09845672dbee0cbf0bbe753a204b29a944967cd9/mypy-1.19.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b64d987153888790bcdb03a6473d321820597ab8dd9243b27a92153c4fa50fd2", size = 12731616, upload-time = "2025-12-15T05:02:44.725Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/00/be/dd56c1fd4807bc1eba1cf18b2a850d0de7bacb55e158755eb79f77c41f8e/mypy-1.19.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c35d298c2c4bba75feb2195655dfea8124d855dfd7343bf8b8c055421eaf0cf8", size = 13620847, upload-time = "2025-12-15T05:03:39.633Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6d/42/332951aae42b79329f743bf1da088cd75d8d4d9acc18fbcbd84f26c1af4e/mypy-1.19.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:34c81968774648ab5ac09c29a375fdede03ba253f8f8287847bd480782f73a6a", size = 13834976, upload-time = "2025-12-15T05:03:08.786Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6f/63/e7493e5f90e1e085c562bb06e2eb32cae27c5057b9653348d38b47daaecc/mypy-1.19.1-cp312-cp312-win_amd64.whl", hash = "sha256:b10e7c2cd7870ba4ad9b2d8a6102eb5ffc1f16ca35e3de6bfa390c1113029d13", size = 10118104, upload-time = "2025-12-15T05:03:10.834Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/de/9f/a6abae693f7a0c697dbb435aac52e958dc8da44e92e08ba88d2e42326176/mypy-1.19.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e3157c7594ff2ef1634ee058aafc56a82db665c9438fd41b390f3bde1ab12250", size = 13201927, upload-time = "2025-12-15T05:02:29.138Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9a/a4/45c35ccf6e1c65afc23a069f50e2c66f46bd3798cbe0d680c12d12935caa/mypy-1.19.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:bdb12f69bcc02700c2b47e070238f42cb87f18c0bc1fc4cdb4fb2bc5fd7a3b8b", size = 12206730, upload-time = "2025-12-15T05:03:01.325Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/05/bb/cdcf89678e26b187650512620eec8368fded4cfd99cfcb431e4cdfd19dec/mypy-1.19.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f859fb09d9583a985be9a493d5cfc5515b56b08f7447759a0c5deaf68d80506e", size = 12724581, upload-time = "2025-12-15T05:03:20.087Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/d1/32/dd260d52babf67bad8e6770f8e1102021877ce0edea106e72df5626bb0ec/mypy-1.19.1-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c9a6538e0415310aad77cb94004ca6482330fece18036b5f360b62c45814c4ef", size = 13616252, upload-time = "2025-12-15T05:02:49.036Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/71/d0/5e60a9d2e3bd48432ae2b454b7ef2b62a960ab51292b1eda2a95edd78198/mypy-1.19.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:da4869fc5e7f62a88f3fe0b5c919d1d9f7ea3cef92d3689de2823fd27e40aa75", size = 13840848, upload-time = "2025-12-15T05:02:55.95Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/98/76/d32051fa65ecf6cc8c6610956473abdc9b4c43301107476ac03559507843/mypy-1.19.1-cp313-cp313-win_amd64.whl", hash = "sha256:016f2246209095e8eda7538944daa1d60e1e8134d98983b9fc1e92c1fc0cb8dd", size = 10135510, upload-time = "2025-12-15T05:02:58.438Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/de/eb/b83e75f4c820c4247a58580ef86fcd35165028f191e7e1ba57128c52782d/mypy-1.19.1-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:06e6170bd5836770e8104c8fdd58e5e725cfeb309f0a6c681a811f557e97eac1", size = 13199744, upload-time = "2025-12-15T05:03:30.823Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/94/28/52785ab7bfa165f87fcbb61547a93f98bb20e7f82f90f165a1f69bce7b3d/mypy-1.19.1-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:804bd67b8054a85447c8954215a906d6eff9cabeabe493fb6334b24f4bfff718", size = 12215815, upload-time = "2025-12-15T05:02:42.323Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0a/c6/bdd60774a0dbfb05122e3e925f2e9e846c009e479dcec4821dad881f5b52/mypy-1.19.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:21761006a7f497cb0d4de3d8ef4ca70532256688b0523eee02baf9eec895e27b", size = 12740047, upload-time = "2025-12-15T05:03:33.168Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/2a/66ba933fe6c76bd40d1fe916a83f04fed253152f451a877520b3c4a5e41e/mypy-1.19.1-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:28902ee51f12e0f19e1e16fbe2f8f06b6637f482c459dd393efddd0ec7f82045", size = 13601998, upload-time = "2025-12-15T05:03:13.056Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/e3/da/5055c63e377c5c2418760411fd6a63ee2b96cf95397259038756c042574f/mypy-1.19.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:481daf36a4c443332e2ae9c137dfee878fcea781a2e3f895d54bd3002a900957", size = 13807476, upload-time = "2025-12-15T05:03:17.977Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cd/09/4ebd873390a063176f06b0dbf1f7783dd87bd120eae7727fa4ae4179b685/mypy-1.19.1-cp314-cp314-win_amd64.whl", hash = "sha256:8bb5c6f6d043655e055be9b542aa5f3bdd30e4f3589163e85f93f3640060509f", size = 10281872, upload-time = "2025-12-15T05:03:05.549Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/8d/f4/4ce9a05ce5ded1de3ec1c1d96cf9f9504a04e54ce0ed55cfa38619a32b8d/mypy-1.19.1-py3-none-any.whl", hash = "sha256:f1235f5ea01b7db5468d53ece6aaddf1ad0b88d9e7462b86ef96fe04995d7247", size = 2471239, upload-time = "2025-12-15T05:03:07.248Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1215,28 +1300,28 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "ruff"
|
||||
version = "0.13.3"
|
||||
version = "0.14.11"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c7/8e/f9f9ca747fea8e3ac954e3690d4698c9737c23b51731d02df999c150b1c9/ruff-0.13.3.tar.gz", hash = "sha256:5b0ba0db740eefdfbcce4299f49e9eaefc643d4d007749d77d047c2bab19908e", size = 5438533, upload-time = "2025-10-02T19:29:31.582Z" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/d4/77/9a7fe084d268f8855d493e5031ea03fa0af8cc05887f638bf1c4e3363eb8/ruff-0.14.11.tar.gz", hash = "sha256:f6dc463bfa5c07a59b1ff2c3b9767373e541346ea105503b4c0369c520a66958", size = 5993417, upload-time = "2026-01-08T19:11:58.322Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/d2/33/8f7163553481466a92656d35dea9331095122bb84cf98210bef597dd2ecd/ruff-0.13.3-py3-none-linux_armv6l.whl", hash = "sha256:311860a4c5e19189c89d035638f500c1e191d283d0cc2f1600c8c80d6dcd430c", size = 12484040, upload-time = "2025-10-02T19:28:49.199Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b0/b5/4a21a4922e5dd6845e91896b0d9ef493574cbe061ef7d00a73c61db531af/ruff-0.13.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:2bdad6512fb666b40fcadb65e33add2b040fc18a24997d2e47fee7d66f7fcae2", size = 13122975, upload-time = "2025-10-02T19:28:52.446Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/40/90/15649af836d88c9f154e5be87e64ae7d2b1baa5a3ef317cb0c8fafcd882d/ruff-0.13.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:fc6fa4637284708d6ed4e5e970d52fc3b76a557d7b4e85a53013d9d201d93286", size = 12346621, upload-time = "2025-10-02T19:28:54.712Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/42/bcbccb8141305f9a6d3f72549dd82d1134299177cc7eaf832599700f95a7/ruff-0.13.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c9e6469864f94a98f412f20ea143d547e4c652f45e44f369d7b74ee78185838", size = 12574408, upload-time = "2025-10-02T19:28:56.679Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ce/19/0f3681c941cdcfa2d110ce4515624c07a964dc315d3100d889fcad3bfc9e/ruff-0.13.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5bf62b705f319476c78891e0e97e965b21db468b3c999086de8ffb0d40fd2822", size = 12285330, upload-time = "2025-10-02T19:28:58.79Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/10/f8/387976bf00d126b907bbd7725219257feea58650e6b055b29b224d8cb731/ruff-0.13.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78cc1abed87ce40cb07ee0667ce99dbc766c9f519eabfd948ed87295d8737c60", size = 13980815, upload-time = "2025-10-02T19:29:01.577Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0c/a6/7c8ec09d62d5a406e2b17d159e4817b63c945a8b9188a771193b7e1cc0b5/ruff-0.13.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:4fb75e7c402d504f7a9a259e0442b96403fa4a7310ffe3588d11d7e170d2b1e3", size = 14987733, upload-time = "2025-10-02T19:29:04.036Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/97/e5/f403a60a12258e0fd0c2195341cfa170726f254c788673495d86ab5a9a9d/ruff-0.13.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:17b951f9d9afb39330b2bdd2dd144ce1c1335881c277837ac1b50bfd99985ed3", size = 14439848, upload-time = "2025-10-02T19:29:06.684Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/39/49/3de381343e89364c2334c9f3268b0349dc734fc18b2d99a302d0935c8345/ruff-0.13.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6052f8088728898e0a449f0dde8fafc7ed47e4d878168b211977e3e7e854f662", size = 13421890, upload-time = "2025-10-02T19:29:08.767Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ab/b5/c0feca27d45ae74185a6bacc399f5d8920ab82df2d732a17213fb86a2c4c/ruff-0.13.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dc742c50f4ba72ce2a3be362bd359aef7d0d302bf7637a6f942eaa763bd292af", size = 13444870, upload-time = "2025-10-02T19:29:11.234Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/50/a1/b655298a1f3fda4fdc7340c3f671a4b260b009068fbeb3e4e151e9e3e1bf/ruff-0.13.3-py3-none-manylinux_2_31_riscv64.whl", hash = "sha256:8e5640349493b378431637019366bbd73c927e515c9c1babfea3e932f5e68e1d", size = 13691599, upload-time = "2025-10-02T19:29:13.353Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/32/b0/a8705065b2dafae007bcae21354e6e2e832e03eb077bb6c8e523c2becb92/ruff-0.13.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:6b139f638a80eae7073c691a5dd8d581e0ba319540be97c343d60fb12949c8d0", size = 12421893, upload-time = "2025-10-02T19:29:15.668Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/0d/1e/cbe7082588d025cddbb2f23e6dfef08b1a2ef6d6f8328584ad3015b5cebd/ruff-0.13.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:6b547def0a40054825de7cfa341039ebdfa51f3d4bfa6a0772940ed351d2746c", size = 12267220, upload-time = "2025-10-02T19:29:17.583Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a5/99/4086f9c43f85e0755996d09bdcb334b6fee9b1eabdf34e7d8b877fadf964/ruff-0.13.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:9cc48a3564423915c93573f1981d57d101e617839bef38504f85f3677b3a0a3e", size = 13177818, upload-time = "2025-10-02T19:29:19.943Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/9b/de/7b5db7e39947d9dc1c5f9f17b838ad6e680527d45288eeb568e860467010/ruff-0.13.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:1a993b17ec03719c502881cb2d5f91771e8742f2ca6de740034433a97c561989", size = 13618715, upload-time = "2025-10-02T19:29:22.527Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/28/d3/bb25ee567ce2f61ac52430cf99f446b0e6d49bdfa4188699ad005fdd16aa/ruff-0.13.3-py3-none-win32.whl", hash = "sha256:f14e0d1fe6460f07814d03c6e32e815bff411505178a1f539a38f6097d3e8ee3", size = 12334488, upload-time = "2025-10-02T19:29:24.782Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/cf/49/12f5955818a1139eed288753479ba9d996f6ea0b101784bb1fe6977ec128/ruff-0.13.3-py3-none-win_amd64.whl", hash = "sha256:621e2e5812b691d4f244638d693e640f188bacbb9bc793ddd46837cea0503dd2", size = 13455262, upload-time = "2025-10-02T19:29:26.882Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fe/72/7b83242b26627a00e3af70d0394d68f8f02750d642567af12983031777fc/ruff-0.13.3-py3-none-win_arm64.whl", hash = "sha256:9e9e9d699841eaf4c2c798fa783df2fabc680b72059a02ca0ed81c460bc58330", size = 12538484, upload-time = "2025-10-02T19:29:28.951Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f0/a6/a4c40a5aaa7e331f245d2dc1ac8ece306681f52b636b40ef87c88b9f7afd/ruff-0.14.11-py3-none-linux_armv6l.whl", hash = "sha256:f6ff2d95cbd335841a7217bdfd9c1d2e44eac2c584197ab1385579d55ff8830e", size = 12951208, upload-time = "2026-01-08T19:12:09.218Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5c/5c/360a35cb7204b328b685d3129c08aca24765ff92b5a7efedbdd6c150d555/ruff-0.14.11-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:6f6eb5c1c8033680f4172ea9c8d3706c156223010b8b97b05e82c59bdc774ee6", size = 13330075, upload-time = "2026-01-08T19:12:02.549Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1b/9e/0cc2f1be7a7d33cae541824cf3f95b4ff40d03557b575912b5b70273c9ec/ruff-0.14.11-py3-none-macosx_11_0_arm64.whl", hash = "sha256:f2fc34cc896f90080fca01259f96c566f74069a04b25b6205d55379d12a6855e", size = 12257809, upload-time = "2026-01-08T19:12:00.366Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a7/e5/5faab97c15bb75228d9f74637e775d26ac703cc2b4898564c01ab3637c02/ruff-0.14.11-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53386375001773ae812b43205d6064dae49ff0968774e6befe16a994fc233caa", size = 12678447, upload-time = "2026-01-08T19:12:13.899Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1b/33/e9767f60a2bef779fb5855cab0af76c488e0ce90f7bb7b8a45c8a2ba4178/ruff-0.14.11-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a697737dce1ca97a0a55b5ff0434ee7205943d4874d638fe3ae66166ff46edbe", size = 12758560, upload-time = "2026-01-08T19:11:42.55Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/eb/84/4c6cf627a21462bb5102f7be2a320b084228ff26e105510cd2255ea868e5/ruff-0.14.11-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6845ca1da8ab81ab1dce755a32ad13f1db72e7fba27c486d5d90d65e04d17b8f", size = 13599296, upload-time = "2026-01-08T19:11:30.371Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/88/e1/92b5ed7ea66d849f6157e695dc23d5d6d982bd6aa8d077895652c38a7cae/ruff-0.14.11-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:e36ce2fd31b54065ec6f76cb08d60159e1b32bdf08507862e32f47e6dde8bcbf", size = 15048981, upload-time = "2026-01-08T19:12:04.742Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/61/df/c1bd30992615ac17c2fb64b8a7376ca22c04a70555b5d05b8f717163cf9f/ruff-0.14.11-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:590bcc0e2097ecf74e62a5c10a6b71f008ad82eb97b0a0079e85defe19fe74d9", size = 14633183, upload-time = "2026-01-08T19:11:40.069Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/04/e9/fe552902f25013dd28a5428a42347d9ad20c4b534834a325a28305747d64/ruff-0.14.11-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:53fe71125fc158210d57fe4da26e622c9c294022988d08d9347ec1cf782adafe", size = 14050453, upload-time = "2026-01-08T19:11:37.555Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ae/93/f36d89fa021543187f98991609ce6e47e24f35f008dfe1af01379d248a41/ruff-0.14.11-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a35c9da08562f1598ded8470fcfef2afb5cf881996e6c0a502ceb61f4bc9c8a3", size = 13757889, upload-time = "2026-01-08T19:12:07.094Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b7/9f/c7fb6ecf554f28709a6a1f2a7f74750d400979e8cd47ed29feeaa1bd4db8/ruff-0.14.11-py3-none-manylinux_2_31_riscv64.whl", hash = "sha256:0f3727189a52179393ecf92ec7057c2210203e6af2676f08d92140d3e1ee72c1", size = 13955832, upload-time = "2026-01-08T19:11:55.064Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/db/a0/153315310f250f76900a98278cf878c64dfb6d044e184491dd3289796734/ruff-0.14.11-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:eb09f849bd37147a789b85995ff734a6c4a095bed5fd1608c4f56afc3634cde2", size = 12586522, upload-time = "2026-01-08T19:11:35.356Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/2f/2b/a73a2b6e6d2df1d74bf2b78098be1572191e54bec0e59e29382d13c3adc5/ruff-0.14.11-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:c61782543c1231bf71041461c1f28c64b961d457d0f238ac388e2ab173d7ecb7", size = 12724637, upload-time = "2026-01-08T19:11:47.796Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f0/41/09100590320394401cd3c48fc718a8ba71c7ddb1ffd07e0ad6576b3a3df2/ruff-0.14.11-py3-none-musllinux_1_2_i686.whl", hash = "sha256:82ff352ea68fb6766140381748e1f67f83c39860b6446966cff48a315c3e2491", size = 13145837, upload-time = "2026-01-08T19:11:32.87Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/3b/d8/e035db859d1d3edf909381eb8ff3e89a672d6572e9454093538fe6f164b0/ruff-0.14.11-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:728e56879df4ca5b62a9dde2dd0eb0edda2a55160c0ea28c4025f18c03f86984", size = 13850469, upload-time = "2026-01-08T19:12:11.694Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/4e/02/bb3ff8b6e6d02ce9e3740f4c17dfbbfb55f34c789c139e9cd91985f356c7/ruff-0.14.11-py3-none-win32.whl", hash = "sha256:337c5dd11f16ee52ae217757d9b82a26400be7efac883e9e852646f1557ed841", size = 12851094, upload-time = "2026-01-08T19:11:45.163Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/58/f1/90ddc533918d3a2ad628bc3044cdfc094949e6d4b929220c3f0eb8a1c998/ruff-0.14.11-py3-none-win_amd64.whl", hash = "sha256:f981cea63d08456b2c070e64b79cb62f951aa1305282974d4d5216e6e0178ae6", size = 14001379, upload-time = "2026-01-08T19:11:52.591Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c4/1c/1dbe51782c0e1e9cfce1d1004752672d2d4629ea46945d19d731ad772b3b/ruff-0.14.11-py3-none-win_arm64.whl", hash = "sha256:649fb6c9edd7f751db276ef42df1f3df41c38d67d199570ae2a7bd6cbc3590f0", size = 12938644, upload-time = "2026-01-08T19:11:50.027Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1441,6 +1526,35 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795, upload-time = "2025-06-18T14:07:40.39Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "uuid-utils"
|
||||
version = "0.12.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/0b/0e/512fb221e4970c2f75ca9dae412d320b7d9ddc9f2b15e04ea8e44710396c/uuid_utils-0.12.0.tar.gz", hash = "sha256:252bd3d311b5d6b7f5dfce7a5857e27bb4458f222586bb439463231e5a9cbd64", size = 20889, upload-time = "2025-12-01T17:29:55.494Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/8a/43/de5cd49a57b6293b911b6a9a62fc03e55db9f964da7d5882d9edbee1e9d2/uuid_utils-0.12.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:3b9b30707659292f207b98f294b0e081f6d77e1fbc760ba5b41331a39045f514", size = 603197, upload-time = "2025-12-01T17:29:30.104Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/02/fa/5fd1d8c9234e44f0c223910808cde0de43bb69f7df1349e49b1afa7f2baa/uuid_utils-0.12.0-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:add3d820c7ec14ed37317375bea30249699c5d08ff4ae4dbee9fc9bce3bfbf65", size = 305168, upload-time = "2025-12-01T17:29:31.384Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c8/c6/8633ac9942bf9dc97a897b5154e5dcffa58816ec4dd780b3b12b559ff05c/uuid_utils-0.12.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b8fce83ecb3b16af29c7809669056c4b6e7cc912cab8c6d07361645de12dd79", size = 340580, upload-time = "2025-12-01T17:29:32.362Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f3/88/8a61307b04b4da1c576373003e6d857a04dade52ab035151d62cb84d5cb5/uuid_utils-0.12.0-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ec921769afcb905035d785582b0791d02304a7850fbd6ce924c1a8976380dfc6", size = 346771, upload-time = "2025-12-01T17:29:33.708Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1c/fb/aab2dcf94b991e62aa167457c7825b9b01055b884b888af926562864398c/uuid_utils-0.12.0-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6f3b060330f5899a92d5c723547dc6a95adef42433e9748f14c66859a7396664", size = 474781, upload-time = "2025-12-01T17:29:35.237Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/7a/dbd5e49c91d6c86dba57158bbfa0e559e1ddf377bb46dcfd58aea4f0d567/uuid_utils-0.12.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:908dfef7f0bfcf98d406e5dc570c25d2f2473e49b376de41792b6e96c1d5d291", size = 343685, upload-time = "2025-12-01T17:29:36.677Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/1a/19/8c4b1d9f450159733b8be421a4e1fb03533709b80ed3546800102d085572/uuid_utils-0.12.0-cp39-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4c6a24148926bd0ca63e8a2dabf4cc9dc329a62325b3ad6578ecd60fbf926506", size = 366482, upload-time = "2025-12-01T17:29:37.979Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/82/43/c79a6e45687647f80a159c8ba34346f287b065452cc419d07d2212d38420/uuid_utils-0.12.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:64a91e632669f059ef605f1771d28490b1d310c26198e46f754e8846dddf12f4", size = 523132, upload-time = "2025-12-01T17:29:39.293Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/5a/a2/b2d75a621260a40c438aa88593827dfea596d18316520a99e839f7a5fb9d/uuid_utils-0.12.0-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:93c082212470bb4603ca3975916c205a9d7ef1443c0acde8fbd1e0f5b36673c7", size = 614218, upload-time = "2025-12-01T17:29:40.315Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/13/6b/ba071101626edd5a6dabf8525c9a1537ff3d885dbc210540574a03901fef/uuid_utils-0.12.0-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:431b1fb7283ba974811b22abd365f2726f8f821ab33f0f715be389640e18d039", size = 546241, upload-time = "2025-12-01T17:29:41.656Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/01/12/9a942b81c0923268e6d85bf98d8f0a61fcbcd5e432fef94fdf4ce2ef8748/uuid_utils-0.12.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:2ffd7838c40149100299fa37cbd8bab5ee382372e8e65a148002a37d380df7c8", size = 511842, upload-time = "2025-12-01T17:29:43.107Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/a9/a7/c326f5163dd48b79368b87d8a05f5da4668dd228a3f5ca9d79d5fee2fc40/uuid_utils-0.12.0-cp39-abi3-win32.whl", hash = "sha256:487f17c0fee6cbc1d8b90fe811874174a9b1b5683bf2251549e302906a50fed3", size = 179088, upload-time = "2025-12-01T17:29:44.492Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/38/92/41c8734dd97213ee1d5ae435cf4499705dc4f2751e3b957fd12376f61784/uuid_utils-0.12.0-cp39-abi3-win_amd64.whl", hash = "sha256:9598e7c9da40357ae8fffc5d6938b1a7017f09a1acbcc95e14af8c65d48c655a", size = 183003, upload-time = "2025-12-01T17:29:45.47Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c9/f9/52ab0359618987331a1f739af837d26168a4b16281c9c3ab46519940c628/uuid_utils-0.12.0-cp39-abi3-win_arm64.whl", hash = "sha256:c9bea7c5b2aa6f57937ebebeee4d4ef2baad10f86f1b97b58a3f6f34c14b4e84", size = 182975, upload-time = "2025-12-01T17:29:46.444Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/ef/f7/6c55b7722cede3b424df02ed5cddb25c19543abda2f95fa4cfc34a892ae5/uuid_utils-0.12.0-pp311-pypy311_pp73-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:e2209d361f2996966ab7114f49919eb6aaeabc6041672abbbbf4fdbb8ec1acc0", size = 593065, upload-time = "2025-12-01T17:29:47.507Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b8/40/ce5fe8e9137dbd5570e0016c2584fca43ad81b11a1cef809a1a1b4952ab7/uuid_utils-0.12.0-pp311-pypy311_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d9636bcdbd6cfcad2b549c352b669412d0d1eb09be72044a2f13e498974863cd", size = 300047, upload-time = "2025-12-01T17:29:48.596Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fb/9b/31c5d0736d7b118f302c50214e581f40e904305d8872eb0f0c921d50e138/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8cd8543a3419251fb78e703ce3b15fdfafe1b7c542cf40caf0775e01db7e7674", size = 335165, upload-time = "2025-12-01T17:29:49.755Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f6/5c/d80b4d08691c9d7446d0ad58fd41503081a662cfd2c7640faf68c64d8098/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e98db2d8977c052cb307ae1cb5cc37a21715e8d415dbc65863b039397495a013", size = 341437, upload-time = "2025-12-01T17:29:51.112Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/f6/b3/9dccdc6f3c22f6ef5bd381ae559173f8a1ae185ae89ed1f39f499d9d8b02/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f8f2bdf5e4ffeb259ef6d15edae92aed60a1d6f07cbfab465d836f6b12b48da8", size = 469123, upload-time = "2025-12-01T17:29:52.389Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/fd/90/6c35ef65fbc49f8189729839b793a4a74a7dd8c5aa5eb56caa93f8c97732/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c3ec53c0cb15e1835870c139317cc5ec06e35aa22843e3ed7d9c74f23f23898", size = 335892, upload-time = "2025-12-01T17:29:53.44Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6b/c7/e3f3ce05c5af2bf86a0938d22165affe635f4dcbfd5687b1dacc042d3e0e/uuid_utils-0.12.0-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:84e5c0eba209356f7f389946a3a47b2cc2effd711b3fc7c7f155ad9f7d45e8a3", size = 360693, upload-time = "2025-12-01T17:29:54.558Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "uvicorn"
|
||||
version = "0.37.0"
|
||||
|
||||
@@ -34,7 +34,7 @@ The LangChain ecosystem is built on top of `langchain-core`. Some of the benefit
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
For full documentation, see the [API reference](https://reference.langchain.com/python/langchain_core/).
|
||||
For full documentation, see the [API reference](https://reference.langchain.com/python/langchain_core/). For conceptual guides, tutorials, and examples on using LangChain, see the [LangChain Docs](https://docs.langchain.com/oss/python/langchain/overview).
|
||||
|
||||
## 📕 Releases & Versioning
|
||||
|
||||
|
||||
@@ -13,20 +13,20 @@ from typing import TYPE_CHECKING
|
||||
from langchain_core._import_utils import import_attr
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .beta_decorator import (
|
||||
from langchain_core._api.beta_decorator import (
|
||||
LangChainBetaWarning,
|
||||
beta,
|
||||
suppress_langchain_beta_warning,
|
||||
surface_langchain_beta_warnings,
|
||||
)
|
||||
from .deprecation import (
|
||||
from langchain_core._api.deprecation import (
|
||||
LangChainDeprecationWarning,
|
||||
deprecated,
|
||||
suppress_langchain_deprecation_warning,
|
||||
surface_langchain_deprecation_warnings,
|
||||
warn_deprecated,
|
||||
)
|
||||
from .path import as_import_path, get_relative_path
|
||||
from langchain_core._api.path import as_import_path, get_relative_path
|
||||
|
||||
__all__ = (
|
||||
"LangChainBetaWarning",
|
||||
@@ -58,6 +58,20 @@ _dynamic_imports = {
|
||||
|
||||
|
||||
def __getattr__(attr_name: str) -> object:
|
||||
"""Dynamically import and return an attribute from a submodule.
|
||||
|
||||
This function enables lazy loading of API functions from submodules, reducing
|
||||
initial import time and circular dependency issues.
|
||||
|
||||
Args:
|
||||
attr_name: Name of the attribute to import.
|
||||
|
||||
Returns:
|
||||
The imported attribute object.
|
||||
|
||||
Raises:
|
||||
AttributeError: If the attribute is not a valid dynamic import.
|
||||
"""
|
||||
module_name = _dynamic_imports.get(attr_name)
|
||||
result = import_attr(attr_name, module_name, __spec__.parent)
|
||||
globals()[attr_name] = result
|
||||
@@ -65,4 +79,9 @@ def __getattr__(attr_name: str) -> object:
|
||||
|
||||
|
||||
def __dir__() -> list[str]:
|
||||
"""Return a list of available attributes for this module.
|
||||
|
||||
Returns:
|
||||
List of attribute names that can be imported from this module.
|
||||
"""
|
||||
return list(__all__)
|
||||
|
||||
@@ -125,7 +125,7 @@ def beta(
|
||||
_name = _name or obj.__qualname__
|
||||
old_doc = obj.__doc__
|
||||
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: # noqa: ARG001
|
||||
def finalize(_: Callable[..., Any], new_doc: str, /) -> T:
|
||||
"""Finalize the annotation of a class."""
|
||||
# Can't set new_doc on some extension objects.
|
||||
with contextlib.suppress(AttributeError):
|
||||
@@ -168,7 +168,7 @@ def beta(
|
||||
emit_warning()
|
||||
obj.fdel(instance)
|
||||
|
||||
def finalize(_wrapper: Callable[..., Any], new_doc: str) -> Any:
|
||||
def finalize(_: Callable[..., Any], new_doc: str, /) -> Any:
|
||||
"""Finalize the property."""
|
||||
return property(fget=_fget, fset=_fset, fdel=_fdel, doc=new_doc)
|
||||
|
||||
@@ -181,7 +181,7 @@ def beta(
|
||||
wrapped = obj
|
||||
old_doc = wrapped.__doc__
|
||||
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str) -> T:
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str, /) -> T:
|
||||
"""Wrap the wrapped function using the wrapper and update the docstring.
|
||||
|
||||
Args:
|
||||
|
||||
@@ -28,6 +28,27 @@ from pydantic.v1.fields import FieldInfo as FieldInfoV1
|
||||
from langchain_core._api.internal import is_caller_internal
|
||||
|
||||
|
||||
def _build_deprecation_message(
|
||||
*,
|
||||
alternative: str = "",
|
||||
alternative_import: str = "",
|
||||
) -> str:
|
||||
"""Build a simple deprecation message for `__deprecated__` attribute.
|
||||
|
||||
Args:
|
||||
alternative: An alternative API name.
|
||||
alternative_import: A fully qualified import path for the alternative.
|
||||
|
||||
Returns:
|
||||
A deprecation message string for IDE/type checker display.
|
||||
"""
|
||||
if alternative_import:
|
||||
return f"Use {alternative_import} instead."
|
||||
if alternative:
|
||||
return f"Use {alternative} instead."
|
||||
return "Deprecated."
|
||||
|
||||
|
||||
class LangChainDeprecationWarning(DeprecationWarning):
|
||||
"""A class for issuing deprecation warnings for LangChain users."""
|
||||
|
||||
@@ -81,60 +102,57 @@ def deprecated(
|
||||
) -> Callable[[T], T]:
|
||||
"""Decorator to mark a function, a class, or a property as deprecated.
|
||||
|
||||
When deprecating a classmethod, a staticmethod, or a property, the
|
||||
`@deprecated` decorator should go *under* `@classmethod` and
|
||||
`@staticmethod` (i.e., `deprecated` should directly decorate the
|
||||
underlying callable), but *over* `@property`.
|
||||
When deprecating a classmethod, a staticmethod, or a property, the `@deprecated`
|
||||
decorator should go *under* `@classmethod` and `@staticmethod` (i.e., `deprecated`
|
||||
should directly decorate the underlying callable), but *over* `@property`.
|
||||
|
||||
When deprecating a class `C` intended to be used as a base class in a
|
||||
multiple inheritance hierarchy, `C` *must* define an `__init__` method
|
||||
(if `C` instead inherited its `__init__` from its own base class, then
|
||||
`@deprecated` would mess up `__init__` inheritance when installing its
|
||||
own (deprecation-emitting) `C.__init__`).
|
||||
When deprecating a class `C` intended to be used as a base class in a multiple
|
||||
inheritance hierarchy, `C` *must* define an `__init__` method (if `C` instead
|
||||
inherited its `__init__` from its own base class, then `@deprecated` would mess up
|
||||
`__init__` inheritance when installing its own (deprecation-emitting) `C.__init__`).
|
||||
|
||||
Parameters are the same as for `warn_deprecated`, except that *obj_type*
|
||||
defaults to 'class' if decorating a class, 'attribute' if decorating a
|
||||
property, and 'function' otherwise.
|
||||
Parameters are the same as for `warn_deprecated`, except that *obj_type* defaults to
|
||||
'class' if decorating a class, 'attribute' if decorating a property, and 'function'
|
||||
otherwise.
|
||||
|
||||
Args:
|
||||
since:
|
||||
The release at which this API became deprecated.
|
||||
message:
|
||||
Override the default deprecation message. The %(since)s,
|
||||
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
|
||||
and %(removal)s format specifiers will be replaced by the
|
||||
since: The release at which this API became deprecated.
|
||||
message: Override the default deprecation message.
|
||||
|
||||
The `%(since)s`, `%(name)s`, `%(alternative)s`, `%(obj_type)s`,
|
||||
`%(addendum)s`, and `%(removal)s` format specifiers will be replaced by the
|
||||
values of the respective arguments passed to this function.
|
||||
name:
|
||||
The name of the deprecated object.
|
||||
alternative:
|
||||
An alternative API that the user may use in place of the
|
||||
deprecated API. The deprecation warning will tell the user
|
||||
about this alternative if provided.
|
||||
alternative_import:
|
||||
An alternative import that the user may use instead.
|
||||
pending:
|
||||
If `True`, uses a `PendingDeprecationWarning` instead of a
|
||||
DeprecationWarning. Cannot be used together with removal.
|
||||
obj_type:
|
||||
The object type being deprecated.
|
||||
addendum:
|
||||
Additional text appended directly to the final message.
|
||||
removal:
|
||||
The expected removal version. With the default (an empty
|
||||
string), a removal version is automatically computed from
|
||||
since. Set to other Falsy values to not schedule a removal
|
||||
date. Cannot be used together with pending.
|
||||
package:
|
||||
The package of the deprecated object.
|
||||
name: The name of the deprecated object.
|
||||
alternative: An alternative API that the user may use in place of the deprecated
|
||||
API.
|
||||
|
||||
The deprecation warning will tell the user about this alternative if
|
||||
provided.
|
||||
alternative_import: An alternative import that the user may use instead.
|
||||
pending: If `True`, uses a `PendingDeprecationWarning` instead of a
|
||||
`DeprecationWarning`.
|
||||
|
||||
Cannot be used together with removal.
|
||||
obj_type: The object type being deprecated.
|
||||
addendum: Additional text appended directly to the final message.
|
||||
removal: The expected removal version.
|
||||
|
||||
With the default (an empty string), a removal version is automatically
|
||||
computed from since. Set to other Falsy values to not schedule a removal
|
||||
date.
|
||||
|
||||
Cannot be used together with pending.
|
||||
package: The package of the deprecated object.
|
||||
|
||||
Returns:
|
||||
A decorator to mark a function or class as deprecated.
|
||||
|
||||
```python
|
||||
@deprecated("1.4.0")
|
||||
def the_function_to_deprecate():
|
||||
pass
|
||||
```
|
||||
Example:
|
||||
```python
|
||||
@deprecated("1.4.0")
|
||||
def the_function_to_deprecate():
|
||||
pass
|
||||
```
|
||||
"""
|
||||
_validate_deprecation_params(
|
||||
removal, alternative, alternative_import, pending=pending
|
||||
@@ -204,7 +222,7 @@ def deprecated(
|
||||
_name = _name or obj.__qualname__
|
||||
old_doc = obj.__doc__
|
||||
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: # noqa: ARG001
|
||||
def finalize(_: Callable[..., Any], new_doc: str, /) -> T:
|
||||
"""Finalize the deprecation of a class."""
|
||||
# Can't set new_doc on some extension objects.
|
||||
with contextlib.suppress(AttributeError):
|
||||
@@ -223,6 +241,11 @@ def deprecated(
|
||||
obj.__init__ = functools.wraps(obj.__init__)( # type: ignore[misc]
|
||||
warn_if_direct_instance
|
||||
)
|
||||
# Set __deprecated__ for PEP 702 (IDE/type checker support)
|
||||
obj.__deprecated__ = _build_deprecation_message( # type: ignore[attr-defined]
|
||||
alternative=alternative,
|
||||
alternative_import=alternative_import,
|
||||
)
|
||||
return obj
|
||||
|
||||
elif isinstance(obj, FieldInfoV1):
|
||||
@@ -234,7 +257,7 @@ def deprecated(
|
||||
raise ValueError(msg)
|
||||
old_doc = obj.description
|
||||
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: # noqa: ARG001
|
||||
def finalize(_: Callable[..., Any], new_doc: str, /) -> T:
|
||||
return cast(
|
||||
"T",
|
||||
FieldInfoV1(
|
||||
@@ -255,7 +278,7 @@ def deprecated(
|
||||
raise ValueError(msg)
|
||||
old_doc = obj.description
|
||||
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: # noqa: ARG001
|
||||
def finalize(_: Callable[..., Any], new_doc: str, /) -> T:
|
||||
return cast(
|
||||
"T",
|
||||
FieldInfo(
|
||||
@@ -313,14 +336,17 @@ def deprecated(
|
||||
if _name == "<lambda>":
|
||||
_name = set_name
|
||||
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: # noqa: ARG001
|
||||
def finalize(_: Callable[..., Any], new_doc: str, /) -> T:
|
||||
"""Finalize the property."""
|
||||
return cast(
|
||||
"T",
|
||||
_DeprecatedProperty(
|
||||
fget=obj.fget, fset=obj.fset, fdel=obj.fdel, doc=new_doc
|
||||
),
|
||||
prop = _DeprecatedProperty(
|
||||
fget=obj.fget, fset=obj.fset, fdel=obj.fdel, doc=new_doc
|
||||
)
|
||||
# Set __deprecated__ for PEP 702 (IDE/type checker support)
|
||||
prop.__deprecated__ = _build_deprecation_message( # type: ignore[attr-defined]
|
||||
alternative=alternative,
|
||||
alternative_import=alternative_import,
|
||||
)
|
||||
return cast("T", prop)
|
||||
|
||||
else:
|
||||
_name = _name or cast("type | Callable", obj).__qualname__
|
||||
@@ -331,7 +357,7 @@ def deprecated(
|
||||
wrapped = obj
|
||||
old_doc = wrapped.__doc__
|
||||
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str) -> T:
|
||||
def finalize(wrapper: Callable[..., Any], new_doc: str, /) -> T:
|
||||
"""Wrap the wrapped function using the wrapper and update the docstring.
|
||||
|
||||
Args:
|
||||
@@ -343,6 +369,11 @@ def deprecated(
|
||||
"""
|
||||
wrapper = functools.wraps(wrapped)(wrapper)
|
||||
wrapper.__doc__ = new_doc
|
||||
# Set __deprecated__ for PEP 702 (IDE/type checker support)
|
||||
wrapper.__deprecated__ = _build_deprecation_message( # type: ignore[attr-defined]
|
||||
alternative=alternative,
|
||||
alternative_import=alternative_import,
|
||||
)
|
||||
return cast("T", wrapper)
|
||||
|
||||
old_doc = inspect.cleandoc(old_doc or "").strip("\n")
|
||||
@@ -398,7 +429,7 @@ def deprecated(
|
||||
|
||||
@contextlib.contextmanager
|
||||
def suppress_langchain_deprecation_warning() -> Generator[None, None, None]:
|
||||
"""Context manager to suppress LangChainDeprecationWarning."""
|
||||
"""Context manager to suppress `LangChainDeprecationWarning`."""
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", LangChainDeprecationWarning)
|
||||
warnings.simplefilter("ignore", LangChainPendingDeprecationWarning)
|
||||
@@ -421,35 +452,33 @@ def warn_deprecated(
|
||||
"""Display a standardized deprecation.
|
||||
|
||||
Args:
|
||||
since:
|
||||
The release at which this API became deprecated.
|
||||
message:
|
||||
Override the default deprecation message. The %(since)s,
|
||||
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s,
|
||||
and %(removal)s format specifiers will be replaced by the
|
||||
since: The release at which this API became deprecated.
|
||||
message: Override the default deprecation message.
|
||||
|
||||
The `%(since)s`, `%(name)s`, `%(alternative)s`, `%(obj_type)s`,
|
||||
`%(addendum)s`, and `%(removal)s` format specifiers will be replaced by the
|
||||
values of the respective arguments passed to this function.
|
||||
name:
|
||||
The name of the deprecated object.
|
||||
alternative:
|
||||
An alternative API that the user may use in place of the
|
||||
deprecated API. The deprecation warning will tell the user
|
||||
about this alternative if provided.
|
||||
alternative_import:
|
||||
An alternative import that the user may use instead.
|
||||
pending:
|
||||
If `True`, uses a `PendingDeprecationWarning` instead of a
|
||||
DeprecationWarning. Cannot be used together with removal.
|
||||
obj_type:
|
||||
The object type being deprecated.
|
||||
addendum:
|
||||
Additional text appended directly to the final message.
|
||||
removal:
|
||||
The expected removal version. With the default (an empty
|
||||
string), a removal version is automatically computed from
|
||||
since. Set to other Falsy values to not schedule a removal
|
||||
date. Cannot be used together with pending.
|
||||
package:
|
||||
The package of the deprecated object.
|
||||
name: The name of the deprecated object.
|
||||
alternative: An alternative API that the user may use in place of the
|
||||
deprecated API.
|
||||
|
||||
The deprecation warning will tell the user about this alternative if
|
||||
provided.
|
||||
alternative_import: An alternative import that the user may use instead.
|
||||
pending: If `True`, uses a `PendingDeprecationWarning` instead of a
|
||||
`DeprecationWarning`.
|
||||
|
||||
Cannot be used together with removal.
|
||||
obj_type: The object type being deprecated.
|
||||
addendum: Additional text appended directly to the final message.
|
||||
removal: The expected removal version.
|
||||
|
||||
With the default (an empty string), a removal version is automatically
|
||||
computed from since. Set to other Falsy values to not schedule a removal
|
||||
date.
|
||||
|
||||
Cannot be used together with pending.
|
||||
package: The package of the deprecated object.
|
||||
"""
|
||||
if not pending:
|
||||
if not removal:
|
||||
@@ -534,8 +563,8 @@ def rename_parameter(
|
||||
"""Decorator indicating that parameter *old* of *func* is renamed to *new*.
|
||||
|
||||
The actual implementation of *func* should use *new*, not *old*. If *old* is passed
|
||||
to *func*, a DeprecationWarning is emitted, and its value is used, even if *new* is
|
||||
also passed by keyword.
|
||||
to *func*, a `DeprecationWarning` is emitted, and its value is used, even if *new*
|
||||
is also passed by keyword.
|
||||
|
||||
Args:
|
||||
since: The version in which the parameter was renamed.
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import inspect
|
||||
from typing import cast
|
||||
|
||||
|
||||
def is_caller_internal(depth: int = 2) -> bool:
|
||||
@@ -16,7 +17,7 @@ def is_caller_internal(depth: int = 2) -> bool:
|
||||
return False
|
||||
# Directly access the module name from the frame's global variables
|
||||
module_globals = frame.f_globals
|
||||
caller_module_name = module_globals.get("__name__", "")
|
||||
caller_module_name = cast("str", module_globals.get("__name__", ""))
|
||||
return caller_module_name.startswith("langchain")
|
||||
finally:
|
||||
del frame
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
Distinct from provider-based [prompt caching](https://docs.langchain.com/oss/python/langchain/models#prompt-caching).
|
||||
|
||||
!!! warning "Beta feature"
|
||||
|
||||
This is a beta feature. Please be wary of deploying experimental code to production
|
||||
unless you've taken appropriate precautions.
|
||||
|
||||
|
||||
@@ -5,13 +5,12 @@ from __future__ import annotations
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from typing_extensions import Self
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
from uuid import UUID
|
||||
|
||||
from tenacity import RetryCallState
|
||||
from typing_extensions import Self
|
||||
|
||||
from langchain_core.agents import AgentAction, AgentFinish
|
||||
from langchain_core.documents import Document
|
||||
@@ -961,28 +960,29 @@ class BaseCallbackManager(CallbackManagerMixin):
|
||||
# ['tag2', 'tag1']
|
||||
```
|
||||
""" # noqa: E501
|
||||
manager = self.__class__(
|
||||
# Combine handlers and inheritable_handlers separately, using sets
|
||||
# to deduplicate (order not preserved)
|
||||
combined_handlers = list(set(self.handlers) | set(other.handlers))
|
||||
combined_inheritable = list(
|
||||
set(self.inheritable_handlers) | set(other.inheritable_handlers)
|
||||
)
|
||||
|
||||
return self.__class__(
|
||||
parent_run_id=self.parent_run_id or other.parent_run_id,
|
||||
handlers=[],
|
||||
inheritable_handlers=[],
|
||||
handlers=combined_handlers,
|
||||
inheritable_handlers=combined_inheritable,
|
||||
tags=list(set(self.tags + other.tags)),
|
||||
inheritable_tags=list(set(self.inheritable_tags + other.inheritable_tags)),
|
||||
metadata={
|
||||
**self.metadata,
|
||||
**other.metadata,
|
||||
},
|
||||
inheritable_metadata={
|
||||
**self.inheritable_metadata,
|
||||
**other.inheritable_metadata,
|
||||
},
|
||||
)
|
||||
|
||||
handlers = self.handlers + other.handlers
|
||||
inheritable_handlers = self.inheritable_handlers + other.inheritable_handlers
|
||||
|
||||
for handler in handlers:
|
||||
manager.add_handler(handler)
|
||||
|
||||
for handler in inheritable_handlers:
|
||||
manager.add_handler(handler, inherit=True)
|
||||
return manager
|
||||
|
||||
@property
|
||||
def is_async(self) -> bool:
|
||||
"""Whether the callback manager is async."""
|
||||
|
||||
@@ -6,14 +6,12 @@ import asyncio
|
||||
import atexit
|
||||
import functools
|
||||
import logging
|
||||
import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Callable
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from contextlib import asynccontextmanager, contextmanager
|
||||
from contextvars import copy_context
|
||||
from typing import TYPE_CHECKING, Any, TypeVar, cast
|
||||
from uuid import UUID
|
||||
|
||||
from langsmith.run_helpers import get_tracing_context
|
||||
from typing_extensions import Self, override
|
||||
@@ -39,12 +37,13 @@ from langchain_core.tracers.context import (
|
||||
tracing_v2_callback_var,
|
||||
)
|
||||
from langchain_core.tracers.langchain import LangChainTracer
|
||||
from langchain_core.tracers.schemas import Run
|
||||
from langchain_core.tracers.stdout import ConsoleCallbackHandler
|
||||
from langchain_core.utils.env import env_var_is_set
|
||||
from langchain_core.utils.uuid import uuid7
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import AsyncGenerator, Coroutine, Generator, Sequence
|
||||
from uuid import UUID
|
||||
|
||||
from tenacity import RetryCallState
|
||||
|
||||
@@ -52,6 +51,7 @@ if TYPE_CHECKING:
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.outputs import ChatGenerationChunk, GenerationChunk, LLMResult
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
from langchain_core.tracers.schemas import Run
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -504,7 +504,7 @@ class BaseRunManager(RunManagerMixin):
|
||||
|
||||
"""
|
||||
return cls(
|
||||
run_id=uuid.uuid4(),
|
||||
run_id=uuid7(),
|
||||
handlers=[],
|
||||
inheritable_handlers=[],
|
||||
tags=[],
|
||||
@@ -1330,7 +1330,7 @@ class CallbackManager(BaseCallbackManager):
|
||||
managers = []
|
||||
for i, prompt in enumerate(prompts):
|
||||
# Can't have duplicate runs with the same run ID (if provided)
|
||||
run_id_ = run_id if i == 0 and run_id is not None else uuid.uuid4()
|
||||
run_id_ = run_id if i == 0 and run_id is not None else uuid7()
|
||||
handle_event(
|
||||
self.handlers,
|
||||
"on_llm_start",
|
||||
@@ -1384,7 +1384,7 @@ class CallbackManager(BaseCallbackManager):
|
||||
run_id_ = run_id
|
||||
run_id = None
|
||||
else:
|
||||
run_id_ = uuid.uuid4()
|
||||
run_id_ = uuid7()
|
||||
handle_event(
|
||||
self.handlers,
|
||||
"on_chat_model_start",
|
||||
@@ -1433,7 +1433,7 @@ class CallbackManager(BaseCallbackManager):
|
||||
|
||||
"""
|
||||
if run_id is None:
|
||||
run_id = uuid.uuid4()
|
||||
run_id = uuid7()
|
||||
handle_event(
|
||||
self.handlers,
|
||||
"on_chain_start",
|
||||
@@ -1488,7 +1488,7 @@ class CallbackManager(BaseCallbackManager):
|
||||
|
||||
"""
|
||||
if run_id is None:
|
||||
run_id = uuid.uuid4()
|
||||
run_id = uuid7()
|
||||
|
||||
handle_event(
|
||||
self.handlers,
|
||||
@@ -1537,7 +1537,7 @@ class CallbackManager(BaseCallbackManager):
|
||||
The callback manager for the retriever run.
|
||||
"""
|
||||
if run_id is None:
|
||||
run_id = uuid.uuid4()
|
||||
run_id = uuid7()
|
||||
|
||||
handle_event(
|
||||
self.handlers,
|
||||
@@ -1594,7 +1594,7 @@ class CallbackManager(BaseCallbackManager):
|
||||
)
|
||||
raise ValueError(msg)
|
||||
if run_id is None:
|
||||
run_id = uuid.uuid4()
|
||||
run_id = uuid7()
|
||||
|
||||
handle_event(
|
||||
self.handlers,
|
||||
@@ -1816,7 +1816,7 @@ class AsyncCallbackManager(BaseCallbackManager):
|
||||
run_id_ = run_id
|
||||
run_id = None
|
||||
else:
|
||||
run_id_ = uuid.uuid4()
|
||||
run_id_ = uuid7()
|
||||
|
||||
if inline_handlers:
|
||||
inline_tasks.append(
|
||||
@@ -1900,7 +1900,7 @@ class AsyncCallbackManager(BaseCallbackManager):
|
||||
run_id_ = run_id
|
||||
run_id = None
|
||||
else:
|
||||
run_id_ = uuid.uuid4()
|
||||
run_id_ = uuid7()
|
||||
|
||||
for handler in self.handlers:
|
||||
task = ahandle_event(
|
||||
@@ -1962,7 +1962,7 @@ class AsyncCallbackManager(BaseCallbackManager):
|
||||
The async callback manager for the chain run.
|
||||
"""
|
||||
if run_id is None:
|
||||
run_id = uuid.uuid4()
|
||||
run_id = uuid7()
|
||||
|
||||
await ahandle_event(
|
||||
self.handlers,
|
||||
@@ -2010,7 +2010,7 @@ class AsyncCallbackManager(BaseCallbackManager):
|
||||
The async callback manager for the tool run.
|
||||
"""
|
||||
if run_id is None:
|
||||
run_id = uuid.uuid4()
|
||||
run_id = uuid7()
|
||||
|
||||
await ahandle_event(
|
||||
self.handlers,
|
||||
@@ -2060,7 +2060,7 @@ class AsyncCallbackManager(BaseCallbackManager):
|
||||
if not self.handlers:
|
||||
return
|
||||
if run_id is None:
|
||||
run_id = uuid.uuid4()
|
||||
run_id = uuid7()
|
||||
|
||||
if kwargs:
|
||||
msg = (
|
||||
@@ -2102,7 +2102,7 @@ class AsyncCallbackManager(BaseCallbackManager):
|
||||
The async callback manager for the retriever run.
|
||||
"""
|
||||
if run_id is None:
|
||||
run_id = uuid.uuid4()
|
||||
run_id = uuid7()
|
||||
|
||||
await ahandle_event(
|
||||
self.handlers,
|
||||
|
||||
@@ -95,7 +95,7 @@ def get_usage_metadata_callback(
|
||||
"""Get usage metadata callback.
|
||||
|
||||
Get context manager for tracking usage metadata across chat model calls using
|
||||
`AIMessage.usage_metadata`.
|
||||
[`AIMessage.usage_metadata`][langchain.messages.AIMessage.usage_metadata].
|
||||
|
||||
Args:
|
||||
name: The name of the context variable.
|
||||
|
||||
@@ -11,6 +11,7 @@ from typing_extensions import override
|
||||
|
||||
from langchain_core.document_loaders.base import BaseLoader
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.tracers._compat import pydantic_to_dict
|
||||
|
||||
|
||||
class LangSmithLoader(BaseLoader):
|
||||
@@ -118,14 +119,14 @@ class LangSmithLoader(BaseLoader):
|
||||
for key in self.content_key:
|
||||
content = content[key]
|
||||
content_str = self.format_content(content)
|
||||
metadata = example.dict()
|
||||
metadata = pydantic_to_dict(example)
|
||||
# Stringify datetime and UUID types.
|
||||
for k in ("dataset_id", "created_at", "modified_at", "source_run_id", "id"):
|
||||
metadata[k] = str(metadata[k]) if metadata[k] else metadata[k]
|
||||
yield Document(content_str, metadata=metadata)
|
||||
|
||||
|
||||
def _stringify(x: str | dict) -> str:
|
||||
def _stringify(x: str | dict[str, Any]) -> str:
|
||||
if isinstance(x, str):
|
||||
return x
|
||||
try:
|
||||
|
||||
@@ -30,9 +30,9 @@ from typing import TYPE_CHECKING
|
||||
from langchain_core._import_utils import import_attr
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .base import Document
|
||||
from .compressor import BaseDocumentCompressor
|
||||
from .transformers import BaseDocumentTransformer
|
||||
from langchain_core.documents.base import Document
|
||||
from langchain_core.documents.compressor import BaseDocumentCompressor
|
||||
from langchain_core.documents.transformers import BaseDocumentTransformer
|
||||
|
||||
__all__ = ("BaseDocumentCompressor", "BaseDocumentTransformer", "Document")
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ from langchain_core.prompts.prompt import PromptTemplate
|
||||
|
||||
|
||||
def _get_length_based(text: str) -> int:
|
||||
return len(re.split("\n| ", text))
|
||||
return len(re.split(r"\n| ", text))
|
||||
|
||||
|
||||
class LengthBasedExampleSelector(BaseExampleSelector, BaseModel):
|
||||
|
||||
@@ -6,16 +6,9 @@ import hashlib
|
||||
import json
|
||||
import uuid
|
||||
import warnings
|
||||
from collections.abc import (
|
||||
AsyncIterable,
|
||||
AsyncIterator,
|
||||
Callable,
|
||||
Iterable,
|
||||
Iterator,
|
||||
Sequence,
|
||||
)
|
||||
from itertools import islice
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Literal,
|
||||
TypedDict,
|
||||
@@ -29,6 +22,16 @@ from langchain_core.exceptions import LangChainException
|
||||
from langchain_core.indexing.base import DocumentIndex, RecordManager
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import (
|
||||
AsyncIterable,
|
||||
AsyncIterator,
|
||||
Callable,
|
||||
Iterable,
|
||||
Iterator,
|
||||
Sequence,
|
||||
)
|
||||
|
||||
# Magic UUID to use as a namespace for hashing.
|
||||
# Used to try and generate a unique UUID for each document
|
||||
# from hashing the document content and metadata.
|
||||
@@ -239,6 +242,17 @@ def _delete(
|
||||
vector_store: VectorStore | DocumentIndex,
|
||||
ids: list[str],
|
||||
) -> None:
|
||||
"""Delete documents from a vector store or document index by their IDs.
|
||||
|
||||
Args:
|
||||
vector_store: The vector store or document index to delete from.
|
||||
ids: List of document IDs to delete.
|
||||
|
||||
Raises:
|
||||
IndexingException: If the delete operation fails.
|
||||
TypeError: If the `vector_store` is neither a `VectorStore` nor a
|
||||
`DocumentIndex`.
|
||||
"""
|
||||
if isinstance(vector_store, VectorStore):
|
||||
delete_ok = vector_store.delete(ids)
|
||||
if delete_ok is not None and delete_ok is False:
|
||||
@@ -299,6 +313,7 @@ def index(
|
||||
are not able to specify the uid of the document.
|
||||
|
||||
!!! warning "Behavior changed in `langchain-core` 0.3.25"
|
||||
|
||||
Added `scoped_full` cleanup mode.
|
||||
|
||||
!!! warning
|
||||
@@ -637,6 +652,7 @@ async def aindex(
|
||||
are not able to specify the uid of the document.
|
||||
|
||||
!!! warning "Behavior changed in `langchain-core` 0.3.25"
|
||||
|
||||
Added `scoped_full` cleanup mode.
|
||||
|
||||
!!! warning
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
"""Language models.
|
||||
"""Core language model abstractions.
|
||||
|
||||
LangChain has two main classes to work with language models: chat models and
|
||||
"old-fashioned" LLMs.
|
||||
"old-fashioned" LLMs (string-in, string-out).
|
||||
|
||||
**Chat models**
|
||||
|
||||
@@ -11,14 +11,16 @@ as outputs (as opposed to using plain text).
|
||||
Chat models support the assignment of distinct roles to conversation messages, helping
|
||||
to distinguish messages from the AI, users, and instructions such as system messages.
|
||||
|
||||
The key abstraction for chat models is `BaseChatModel`. Implementations should inherit
|
||||
from this class.
|
||||
The key abstraction for chat models is
|
||||
[`BaseChatModel`][langchain_core.language_models.BaseChatModel]. Implementations should
|
||||
inherit from this class.
|
||||
|
||||
See existing [chat model integrations](https://docs.langchain.com/oss/python/integrations/chat).
|
||||
|
||||
**LLMs**
|
||||
**LLMs (legacy)**
|
||||
|
||||
Language models that takes a string as input and returns a string.
|
||||
|
||||
These are traditionally older models (newer models generally are chat models).
|
||||
|
||||
Although the underlying models are string in, string out, the LangChain wrappers also
|
||||
@@ -53,6 +55,10 @@ if TYPE_CHECKING:
|
||||
ParrotFakeChatModel,
|
||||
)
|
||||
from langchain_core.language_models.llms import LLM, BaseLLM
|
||||
from langchain_core.language_models.model_profile import (
|
||||
ModelProfile,
|
||||
ModelProfileRegistry,
|
||||
)
|
||||
|
||||
__all__ = (
|
||||
"LLM",
|
||||
@@ -68,6 +74,8 @@ __all__ = (
|
||||
"LanguageModelInput",
|
||||
"LanguageModelLike",
|
||||
"LanguageModelOutput",
|
||||
"ModelProfile",
|
||||
"ModelProfileRegistry",
|
||||
"ParrotFakeChatModel",
|
||||
"SimpleChatModel",
|
||||
"get_tokenizer",
|
||||
@@ -90,6 +98,8 @@ _dynamic_imports = {
|
||||
"GenericFakeChatModel": "fake_chat_models",
|
||||
"ParrotFakeChatModel": "fake_chat_models",
|
||||
"LLM": "llms",
|
||||
"ModelProfile": "model_profile",
|
||||
"ModelProfileRegistry": "model_profile",
|
||||
"BaseLLM": "llms",
|
||||
"is_openai_data_block": "_utils",
|
||||
}
|
||||
|
||||
@@ -140,6 +140,7 @@ def _normalize_messages(
|
||||
- LangChain v0 standard content blocks for backward compatibility
|
||||
|
||||
!!! warning "Behavior changed in `langchain-core` 1.0.0"
|
||||
|
||||
In previous versions, this function returned messages in LangChain v0 format.
|
||||
Now, it returns messages in LangChain v1 format, which upgraded chat models now
|
||||
expect to receive when passing back in message history. For backward
|
||||
|
||||
@@ -12,13 +12,14 @@ from typing import (
|
||||
Literal,
|
||||
TypeAlias,
|
||||
TypeVar,
|
||||
cast,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator
|
||||
from typing_extensions import TypedDict, override
|
||||
|
||||
from langchain_core.caches import BaseCache
|
||||
from langchain_core.callbacks import Callbacks
|
||||
from langchain_core.caches import BaseCache # noqa: TC001
|
||||
from langchain_core.callbacks import Callbacks # noqa: TC001
|
||||
from langchain_core.globals import get_verbose
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
@@ -86,13 +87,28 @@ def get_tokenizer() -> Any:
|
||||
return GPT2TokenizerFast.from_pretrained("gpt2")
|
||||
|
||||
|
||||
_GPT2_TOKENIZER_WARNED = False
|
||||
|
||||
|
||||
def _get_token_ids_default_method(text: str) -> list[int]:
|
||||
"""Encode the text into token IDs."""
|
||||
# get the cached tokenizer
|
||||
"""Encode the text into token IDs using the fallback GPT-2 tokenizer."""
|
||||
global _GPT2_TOKENIZER_WARNED # noqa: PLW0603
|
||||
if not _GPT2_TOKENIZER_WARNED:
|
||||
warnings.warn(
|
||||
"Using fallback GPT-2 tokenizer for token counting. "
|
||||
"Token counts may be inaccurate for non-GPT-2 models. "
|
||||
"For accurate counts, use a model-specific method if available.",
|
||||
stacklevel=3,
|
||||
)
|
||||
_GPT2_TOKENIZER_WARNED = True
|
||||
|
||||
tokenizer = get_tokenizer()
|
||||
|
||||
# tokenize the text using the GPT-2 tokenizer
|
||||
return tokenizer.encode(text)
|
||||
# Pass verbose=False to suppress the "Token indices sequence length is longer than
|
||||
# the specified maximum sequence length" warning from HuggingFace. This warning is
|
||||
# about GPT-2's 1024 token context limit, but we're only using the tokenizer for
|
||||
# counting, not for model input.
|
||||
return cast("list[int]", tokenizer.encode(text, verbose=False))
|
||||
|
||||
|
||||
LanguageModelInput = PromptValue | str | Sequence[MessageLikeRepresentation]
|
||||
@@ -299,6 +315,9 @@ class BaseLanguageModel(
|
||||
|
||||
Useful for checking if an input fits in a model's context window.
|
||||
|
||||
This should be overridden by model-specific implementations to provide accurate
|
||||
token counts via model-specific tokenizers.
|
||||
|
||||
Args:
|
||||
text: The string input to tokenize.
|
||||
|
||||
@@ -317,9 +336,17 @@ class BaseLanguageModel(
|
||||
|
||||
Useful for checking if an input fits in a model's context window.
|
||||
|
||||
This should be overridden by model-specific implementations to provide accurate
|
||||
token counts via model-specific tokenizers.
|
||||
|
||||
!!! note
|
||||
The base implementation of `get_num_tokens_from_messages` ignores tool
|
||||
schemas.
|
||||
|
||||
* The base implementation of `get_num_tokens_from_messages` ignores tool
|
||||
schemas.
|
||||
* The base implementation of `get_num_tokens_from_messages` adds additional
|
||||
prefixes to messages in represent user roles, which will add to the
|
||||
overall token count. Model-specific implementations may choose to
|
||||
handle this differently.
|
||||
|
||||
Args:
|
||||
messages: The message inputs to tokenize.
|
||||
|
||||
@@ -5,7 +5,6 @@ from __future__ import annotations
|
||||
import asyncio
|
||||
import inspect
|
||||
import json
|
||||
import typing
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import AsyncIterator, Callable, Iterator, Sequence
|
||||
from functools import cached_property
|
||||
@@ -15,7 +14,6 @@ from typing import TYPE_CHECKING, Any, Literal, cast
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from typing_extensions import override
|
||||
|
||||
from langchain_core._api.beta_decorator import beta
|
||||
from langchain_core.caches import BaseCache
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManager,
|
||||
@@ -34,6 +32,7 @@ from langchain_core.language_models.base import (
|
||||
LangSmithParams,
|
||||
LanguageModelInput,
|
||||
)
|
||||
from langchain_core.language_models.model_profile import ModelProfile
|
||||
from langchain_core.load import dumpd, dumps
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
@@ -74,10 +73,9 @@ from langchain_core.utils.pydantic import TypeBaseModel, is_basemodel_subclass
|
||||
from langchain_core.utils.utils import LC_ID_PREFIX, from_env
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import builtins
|
||||
import uuid
|
||||
|
||||
from langchain_model_profiles import ModelProfile # type: ignore[import-untyped]
|
||||
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.runnables import Runnable, RunnableConfig
|
||||
from langchain_core.tools import BaseTool
|
||||
@@ -91,7 +89,10 @@ def _generate_response_from_error(error: BaseException) -> list[ChatGeneration]:
|
||||
try:
|
||||
metadata["body"] = response.json()
|
||||
except Exception:
|
||||
metadata["body"] = getattr(response, "text", None)
|
||||
try:
|
||||
metadata["body"] = getattr(response, "text", None)
|
||||
except Exception:
|
||||
metadata["body"] = None
|
||||
if hasattr(response, "headers"):
|
||||
try:
|
||||
metadata["headers"] = dict(response.headers)
|
||||
@@ -332,17 +333,36 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
[`langchain-openai`](https://pypi.org/project/langchain-openai)) can also use this
|
||||
field to roll out new content formats in a backward-compatible way.
|
||||
|
||||
!!! version-added "Added in `langchain-core` 1.0"
|
||||
!!! version-added "Added in `langchain-core` 1.0.0"
|
||||
|
||||
"""
|
||||
|
||||
profile: ModelProfile | None = Field(default=None, exclude=True)
|
||||
"""Profile detailing model capabilities.
|
||||
|
||||
!!! warning "Beta feature"
|
||||
|
||||
This is a beta feature. The format of model profiles is subject to change.
|
||||
|
||||
If not specified, automatically loaded from the provider package on initialization
|
||||
if data is available.
|
||||
|
||||
Example profile data includes context window sizes, supported modalities, or support
|
||||
for tool calling, structured output, and other features.
|
||||
|
||||
!!! version-added "Added in `langchain-core` 1.1.0"
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(
|
||||
arbitrary_types_allowed=True,
|
||||
)
|
||||
|
||||
@cached_property
|
||||
def _serialized(self) -> dict[str, Any]:
|
||||
return dumpd(self)
|
||||
# self is always a Serializable object in this case, thus the result is
|
||||
# guaranteed to be a dict since dumps uses the default callback, which uses
|
||||
# obj.to_json which always returns TypedDict subclasses
|
||||
return cast("dict[str, Any]", dumpd(self))
|
||||
|
||||
# --- Runnable methods ---
|
||||
|
||||
@@ -445,7 +465,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
|
||||
# Check if a runtime streaming flag has been passed in.
|
||||
if "stream" in kwargs:
|
||||
return kwargs["stream"]
|
||||
return bool(kwargs["stream"])
|
||||
|
||||
if "streaming" in self.model_fields_set:
|
||||
streaming_value = getattr(self, "streaming", None)
|
||||
@@ -531,7 +551,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
):
|
||||
if block["type"] != index_type:
|
||||
index_type = block["type"]
|
||||
index = index + 1
|
||||
index += 1
|
||||
if "index" not in block:
|
||||
block["index"] = index
|
||||
run_manager.on_llm_new_token(
|
||||
@@ -663,7 +683,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
):
|
||||
if block["type"] != index_type:
|
||||
index_type = block["type"]
|
||||
index = index + 1
|
||||
index += 1
|
||||
if "index" not in block:
|
||||
block["index"] = index
|
||||
await run_manager.on_llm_new_token(
|
||||
@@ -714,7 +734,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
|
||||
# --- Custom methods ---
|
||||
|
||||
def _combine_llm_outputs(self, llm_outputs: list[dict | None]) -> dict: # noqa: ARG002
|
||||
def _combine_llm_outputs(self, _llm_outputs: list[dict | None], /) -> dict:
|
||||
return {}
|
||||
|
||||
def _convert_cached_generations(self, cache_val: list) -> list[ChatGeneration]:
|
||||
@@ -1128,7 +1148,15 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
if check_cache:
|
||||
if llm_cache:
|
||||
llm_string = self._get_llm_string(stop=stop, **kwargs)
|
||||
prompt = dumps(messages)
|
||||
normalized_messages = [
|
||||
(
|
||||
msg.model_copy(update={"id": None})
|
||||
if getattr(msg, "id", None) is not None
|
||||
else msg
|
||||
)
|
||||
for msg in messages
|
||||
]
|
||||
prompt = dumps(normalized_messages)
|
||||
cache_val = llm_cache.lookup(prompt, llm_string)
|
||||
if isinstance(cache_val, list):
|
||||
converted_generations = self._convert_cached_generations(cache_val)
|
||||
@@ -1171,7 +1199,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
):
|
||||
if block["type"] != index_type:
|
||||
index_type = block["type"]
|
||||
index = index + 1
|
||||
index += 1
|
||||
if "index" not in block:
|
||||
block["index"] = index
|
||||
if run_manager:
|
||||
@@ -1246,7 +1274,15 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
if check_cache:
|
||||
if llm_cache:
|
||||
llm_string = self._get_llm_string(stop=stop, **kwargs)
|
||||
prompt = dumps(messages)
|
||||
normalized_messages = [
|
||||
(
|
||||
msg.model_copy(update={"id": None})
|
||||
if getattr(msg, "id", None) is not None
|
||||
else msg
|
||||
)
|
||||
for msg in messages
|
||||
]
|
||||
prompt = dumps(normalized_messages)
|
||||
cache_val = await llm_cache.alookup(prompt, llm_string)
|
||||
if isinstance(cache_val, list):
|
||||
converted_generations = self._convert_cached_generations(cache_val)
|
||||
@@ -1289,7 +1325,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
):
|
||||
if block["type"] != index_type:
|
||||
index_type = block["type"]
|
||||
index = index + 1
|
||||
index += 1
|
||||
if "index" not in block:
|
||||
block["index"] = index
|
||||
if run_manager:
|
||||
@@ -1484,9 +1520,7 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
|
||||
def bind_tools(
|
||||
self,
|
||||
tools: Sequence[
|
||||
typing.Dict[str, Any] | type | Callable | BaseTool # noqa: UP006
|
||||
],
|
||||
tools: Sequence[builtins.dict[str, Any] | type | Callable | BaseTool],
|
||||
*,
|
||||
tool_choice: str | None = None,
|
||||
**kwargs: Any,
|
||||
@@ -1505,11 +1539,11 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
|
||||
def with_structured_output(
|
||||
self,
|
||||
schema: typing.Dict | type, # noqa: UP006
|
||||
schema: builtins.dict[str, Any] | type,
|
||||
*,
|
||||
include_raw: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, typing.Dict | BaseModel]: # noqa: UP006
|
||||
) -> Runnable[LanguageModelInput, builtins.dict[str, Any] | BaseModel]:
|
||||
"""Model wrapper that returns outputs formatted to match the given schema.
|
||||
|
||||
Args:
|
||||
@@ -1562,88 +1596,89 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
depends on the `schema` as described above.
|
||||
- `'parsing_error'`: `BaseException | None`
|
||||
|
||||
Example: Pydantic schema (`include_raw=False`):
|
||||
???+ example "Pydantic schema (`include_raw=False`)"
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
|
||||
answer: str
|
||||
justification: str
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
|
||||
model = ChatModel(model="model-name", temperature=0)
|
||||
structured_model = model.with_structured_output(AnswerWithJustification)
|
||||
model = ChatModel(model="model-name", temperature=0)
|
||||
structured_model = model.with_structured_output(AnswerWithJustification)
|
||||
|
||||
structured_model.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
structured_model.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
|
||||
# -> AnswerWithJustification(
|
||||
# answer='They weigh the same',
|
||||
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
||||
# )
|
||||
```
|
||||
# -> AnswerWithJustification(
|
||||
# answer='They weigh the same',
|
||||
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
||||
# )
|
||||
```
|
||||
|
||||
Example: Pydantic schema (`include_raw=True`):
|
||||
??? example "Pydantic schema (`include_raw=True`)"
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
|
||||
answer: str
|
||||
justification: str
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
|
||||
model = ChatModel(model="model-name", temperature=0)
|
||||
structured_model = model.with_structured_output(
|
||||
AnswerWithJustification, include_raw=True
|
||||
)
|
||||
model = ChatModel(model="model-name", temperature=0)
|
||||
structured_model = model.with_structured_output(
|
||||
AnswerWithJustification, include_raw=True
|
||||
)
|
||||
|
||||
structured_model.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
||||
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
```
|
||||
structured_model.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
||||
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
```
|
||||
|
||||
Example: `dict` schema (`include_raw=False`):
|
||||
??? example "Dictionary schema (`include_raw=False`)"
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
|
||||
answer: str
|
||||
justification: str
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
|
||||
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
||||
model = ChatModel(model="model-name", temperature=0)
|
||||
structured_model = model.with_structured_output(dict_schema)
|
||||
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
||||
model = ChatModel(model="model-name", temperature=0)
|
||||
structured_model = model.with_structured_output(dict_schema)
|
||||
|
||||
structured_model.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'answer': 'They weigh the same',
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
||||
# }
|
||||
```
|
||||
structured_model.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'answer': 'They weigh the same',
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
||||
# }
|
||||
```
|
||||
|
||||
!!! warning "Behavior changed in `langchain-core` 0.2.26"
|
||||
|
||||
Added support for `TypedDict` class.
|
||||
|
||||
""" # noqa: E501
|
||||
@@ -1685,40 +1720,6 @@ class BaseChatModel(BaseLanguageModel[AIMessage], ABC):
|
||||
return RunnableMap(raw=llm) | parser_with_fallback
|
||||
return llm | output_parser
|
||||
|
||||
@property
|
||||
@beta()
|
||||
def profile(self) -> ModelProfile:
|
||||
"""Return profiling information for the model.
|
||||
|
||||
This property relies on the `langchain-model-profiles` package to retrieve chat
|
||||
model capabilities, such as context window sizes and supported features.
|
||||
|
||||
Raises:
|
||||
ImportError: If `langchain-model-profiles` is not installed.
|
||||
|
||||
Returns:
|
||||
A `ModelProfile` object containing profiling information for the model.
|
||||
"""
|
||||
try:
|
||||
from langchain_model_profiles import get_model_profile # noqa: PLC0415
|
||||
except ImportError as err:
|
||||
informative_error_message = (
|
||||
"To access model profiling information, please install the "
|
||||
"`langchain-model-profiles` package: "
|
||||
"`pip install langchain-model-profiles`."
|
||||
)
|
||||
raise ImportError(informative_error_message) from err
|
||||
|
||||
provider_id = self._llm_type
|
||||
model_name = (
|
||||
# Model name is not standardized across integrations. New integrations
|
||||
# should prefer `model`.
|
||||
getattr(self, "model", None)
|
||||
or getattr(self, "model_name", None)
|
||||
or getattr(self, "model_id", "")
|
||||
)
|
||||
return get_model_profile(provider_id, model_name) or {}
|
||||
|
||||
|
||||
class SimpleChatModel(BaseChatModel):
|
||||
"""Simplified implementation for a chat model to inherit from.
|
||||
|
||||
@@ -61,6 +61,8 @@ if TYPE_CHECKING:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_background_tasks: set[asyncio.Task] = set()
|
||||
|
||||
|
||||
@functools.lru_cache
|
||||
def _log_error_once(msg: str) -> None:
|
||||
@@ -100,9 +102,9 @@ def create_base_retry_decorator(
|
||||
asyncio.run(coro)
|
||||
else:
|
||||
if loop.is_running():
|
||||
# TODO: Fix RUF006 - this task should have a reference
|
||||
# and be awaited somewhere
|
||||
loop.create_task(coro) # noqa: RUF006
|
||||
task = loop.create_task(coro)
|
||||
_background_tasks.add(task)
|
||||
task.add_done_callback(_background_tasks.discard)
|
||||
else:
|
||||
asyncio.run(coro)
|
||||
except Exception as e:
|
||||
@@ -299,7 +301,10 @@ class BaseLLM(BaseLanguageModel[str], ABC):
|
||||
|
||||
@functools.cached_property
|
||||
def _serialized(self) -> dict[str, Any]:
|
||||
return dumpd(self)
|
||||
# self is always a Serializable object in this case, thus the result is
|
||||
# guaranteed to be a dict since dumps uses the default callback, which uses
|
||||
# obj.to_json which always returns TypedDict subclasses
|
||||
return cast("dict[str, Any]", dumpd(self))
|
||||
|
||||
# --- Runnable methods ---
|
||||
|
||||
|
||||
85
libs/core/langchain_core/language_models/model_profile.py
Normal file
85
libs/core/langchain_core/language_models/model_profile.py
Normal file
@@ -0,0 +1,85 @@
|
||||
"""Model profile types and utilities."""
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
|
||||
class ModelProfile(TypedDict, total=False):
|
||||
"""Model profile.
|
||||
|
||||
!!! warning "Beta feature"
|
||||
|
||||
This is a beta feature. The format of model profiles is subject to change.
|
||||
|
||||
Provides information about chat model capabilities, such as context window sizes
|
||||
and supported features.
|
||||
"""
|
||||
|
||||
# --- Input constraints ---
|
||||
|
||||
max_input_tokens: int
|
||||
"""Maximum context window (tokens)"""
|
||||
|
||||
image_inputs: bool
|
||||
"""Whether image inputs are supported."""
|
||||
# TODO: add more detail about formats?
|
||||
|
||||
image_url_inputs: bool
|
||||
"""Whether [image URL inputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
|
||||
pdf_inputs: bool
|
||||
"""Whether [PDF inputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
# TODO: add more detail about formats? e.g. bytes or base64
|
||||
|
||||
audio_inputs: bool
|
||||
"""Whether [audio inputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
# TODO: add more detail about formats? e.g. bytes or base64
|
||||
|
||||
video_inputs: bool
|
||||
"""Whether [video inputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
# TODO: add more detail about formats? e.g. bytes or base64
|
||||
|
||||
image_tool_message: bool
|
||||
"""Whether images can be included in tool messages."""
|
||||
|
||||
pdf_tool_message: bool
|
||||
"""Whether PDFs can be included in tool messages."""
|
||||
|
||||
# --- Output constraints ---
|
||||
|
||||
max_output_tokens: int
|
||||
"""Maximum output tokens"""
|
||||
|
||||
reasoning_output: bool
|
||||
"""Whether the model supports [reasoning / chain-of-thought](https://docs.langchain.com/oss/python/langchain/models#reasoning)"""
|
||||
|
||||
image_outputs: bool
|
||||
"""Whether [image outputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
|
||||
audio_outputs: bool
|
||||
"""Whether [audio outputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
|
||||
video_outputs: bool
|
||||
"""Whether [video outputs](https://docs.langchain.com/oss/python/langchain/models#multimodal)
|
||||
are supported."""
|
||||
|
||||
# --- Tool calling ---
|
||||
tool_calling: bool
|
||||
"""Whether the model supports [tool calling](https://docs.langchain.com/oss/python/langchain/models#tool-calling)"""
|
||||
|
||||
tool_choice: bool
|
||||
"""Whether the model supports [tool choice](https://docs.langchain.com/oss/python/langchain/models#forcing-tool-calls)"""
|
||||
|
||||
# --- Structured output ---
|
||||
structured_output: bool
|
||||
"""Whether the model supports a native [structured output](https://docs.langchain.com/oss/python/langchain/models#structured-outputs)
|
||||
feature"""
|
||||
|
||||
|
||||
ModelProfileRegistry = dict[str, ModelProfile]
|
||||
"""Registry mapping model identifiers or names to their ModelProfile."""
|
||||
@@ -6,7 +6,7 @@ from langchain_core._import_utils import import_attr
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain_core.load.dump import dumpd, dumps
|
||||
from langchain_core.load.load import loads
|
||||
from langchain_core.load.load import InitValidator, loads
|
||||
from langchain_core.load.serializable import Serializable
|
||||
|
||||
# Unfortunately, we have to eagerly import load from langchain_core/load/load.py
|
||||
@@ -15,11 +15,19 @@ if TYPE_CHECKING:
|
||||
# the `from langchain_core.load.load import load` absolute import should also work.
|
||||
from langchain_core.load.load import load
|
||||
|
||||
__all__ = ("Serializable", "dumpd", "dumps", "load", "loads")
|
||||
__all__ = (
|
||||
"InitValidator",
|
||||
"Serializable",
|
||||
"dumpd",
|
||||
"dumps",
|
||||
"load",
|
||||
"loads",
|
||||
)
|
||||
|
||||
_dynamic_imports = {
|
||||
"dumpd": "dump",
|
||||
"dumps": "dump",
|
||||
"InitValidator": "load",
|
||||
"loads": "load",
|
||||
"Serializable": "serializable",
|
||||
}
|
||||
|
||||
174
libs/core/langchain_core/load/_validation.py
Normal file
174
libs/core/langchain_core/load/_validation.py
Normal file
@@ -0,0 +1,174 @@
|
||||
"""Validation utilities for LangChain serialization.
|
||||
|
||||
Provides escape-based protection against injection attacks in serialized objects. The
|
||||
approach uses an allowlist design: only dicts explicitly produced by
|
||||
`Serializable.to_json()` are treated as LC objects during deserialization.
|
||||
|
||||
## How escaping works
|
||||
|
||||
During serialization, plain dicts (user data) that contain an `'lc'` key are wrapped:
|
||||
|
||||
```python
|
||||
{"lc": 1, ...} # user data that looks like LC object
|
||||
# becomes:
|
||||
{"__lc_escaped__": {"lc": 1, ...}}
|
||||
```
|
||||
|
||||
During deserialization, escaped dicts are unwrapped and returned as plain dicts,
|
||||
NOT instantiated as LC objects.
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.load.serializable import (
|
||||
Serializable,
|
||||
to_json_not_implemented,
|
||||
)
|
||||
|
||||
_LC_ESCAPED_KEY = "__lc_escaped__"
|
||||
"""Sentinel key used to mark escaped user dicts during serialization.
|
||||
|
||||
When a plain dict contains 'lc' key (which could be confused with LC objects),
|
||||
we wrap it as {"__lc_escaped__": {...original...}}.
|
||||
"""
|
||||
|
||||
|
||||
def _needs_escaping(obj: dict[str, Any]) -> bool:
|
||||
"""Check if a dict needs escaping to prevent confusion with LC objects.
|
||||
|
||||
A dict needs escaping if:
|
||||
|
||||
1. It has an `'lc'` key (could be confused with LC serialization format)
|
||||
2. It has only the escape key (would be mistaken for an escaped dict)
|
||||
"""
|
||||
return "lc" in obj or (len(obj) == 1 and _LC_ESCAPED_KEY in obj)
|
||||
|
||||
|
||||
def _escape_dict(obj: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Wrap a dict in the escape marker.
|
||||
|
||||
Example:
|
||||
```python
|
||||
{"key": "value"} # becomes {"__lc_escaped__": {"key": "value"}}
|
||||
```
|
||||
"""
|
||||
return {_LC_ESCAPED_KEY: obj}
|
||||
|
||||
|
||||
def _is_escaped_dict(obj: dict[str, Any]) -> bool:
|
||||
"""Check if a dict is an escaped user dict.
|
||||
|
||||
Example:
|
||||
```python
|
||||
{"__lc_escaped__": {...}} # is an escaped dict
|
||||
```
|
||||
"""
|
||||
return len(obj) == 1 and _LC_ESCAPED_KEY in obj
|
||||
|
||||
|
||||
def _serialize_value(obj: Any) -> Any:
|
||||
"""Serialize a value with escaping of user dicts.
|
||||
|
||||
Called recursively on kwarg values to escape any plain dicts that could be confused
|
||||
with LC objects.
|
||||
|
||||
Args:
|
||||
obj: The value to serialize.
|
||||
|
||||
Returns:
|
||||
The serialized value with user dicts escaped as needed.
|
||||
"""
|
||||
if isinstance(obj, Serializable):
|
||||
# This is an LC object - serialize it properly (not escaped)
|
||||
return _serialize_lc_object(obj)
|
||||
if isinstance(obj, dict):
|
||||
if not all(isinstance(k, (str, int, float, bool, type(None))) for k in obj):
|
||||
# if keys are not json serializable
|
||||
return to_json_not_implemented(obj)
|
||||
# Check if dict needs escaping BEFORE recursing into values.
|
||||
# If it needs escaping, wrap it as-is - the contents are user data that
|
||||
# will be returned as-is during deserialization (no instantiation).
|
||||
# This prevents re-escaping of already-escaped nested content.
|
||||
if _needs_escaping(obj):
|
||||
return _escape_dict(obj)
|
||||
# Safe dict (no 'lc' key) - recurse into values
|
||||
return {k: _serialize_value(v) for k, v in obj.items()}
|
||||
if isinstance(obj, (list, tuple)):
|
||||
return [_serialize_value(item) for item in obj]
|
||||
if isinstance(obj, (str, int, float, bool, type(None))):
|
||||
return obj
|
||||
|
||||
# Non-JSON-serializable object (datetime, custom objects, etc.)
|
||||
return to_json_not_implemented(obj)
|
||||
|
||||
|
||||
def _is_lc_secret(obj: Any) -> bool:
|
||||
"""Check if an object is a LangChain secret marker."""
|
||||
expected_num_keys = 3
|
||||
return (
|
||||
isinstance(obj, dict)
|
||||
and obj.get("lc") == 1
|
||||
and obj.get("type") == "secret"
|
||||
and "id" in obj
|
||||
and len(obj) == expected_num_keys
|
||||
)
|
||||
|
||||
|
||||
def _serialize_lc_object(obj: Any) -> dict[str, Any]:
|
||||
"""Serialize a `Serializable` object with escaping of user data in kwargs.
|
||||
|
||||
Args:
|
||||
obj: The `Serializable` object to serialize.
|
||||
|
||||
Returns:
|
||||
The serialized dict with user data in kwargs escaped as needed.
|
||||
|
||||
Note:
|
||||
Kwargs values are processed with `_serialize_value` to escape user data (like
|
||||
metadata) that contains `'lc'` keys. Secret fields (from `lc_secrets`) are
|
||||
skipped because `to_json()` replaces their values with secret markers.
|
||||
"""
|
||||
if not isinstance(obj, Serializable):
|
||||
msg = f"Expected Serializable, got {type(obj)}"
|
||||
raise TypeError(msg)
|
||||
|
||||
serialized: dict[str, Any] = dict(obj.to_json())
|
||||
|
||||
# Process kwargs to escape user data that could be confused with LC objects
|
||||
# Skip secret fields - to_json() already converted them to secret markers
|
||||
if serialized.get("type") == "constructor" and "kwargs" in serialized:
|
||||
serialized["kwargs"] = {
|
||||
k: v if _is_lc_secret(v) else _serialize_value(v)
|
||||
for k, v in serialized["kwargs"].items()
|
||||
}
|
||||
|
||||
return serialized
|
||||
|
||||
|
||||
def _unescape_value(obj: Any) -> Any:
|
||||
"""Unescape a value, processing escape markers in dict values and lists.
|
||||
|
||||
When an escaped dict is encountered (`{"__lc_escaped__": ...}`), it's
|
||||
unwrapped and the contents are returned AS-IS (no further processing).
|
||||
The contents represent user data that should not be modified.
|
||||
|
||||
For regular dicts and lists, we recurse to find any nested escape markers.
|
||||
|
||||
Args:
|
||||
obj: The value to unescape.
|
||||
|
||||
Returns:
|
||||
The unescaped value.
|
||||
"""
|
||||
if isinstance(obj, dict):
|
||||
if _is_escaped_dict(obj):
|
||||
# Unwrap and return the user data as-is (no further unescaping).
|
||||
# The contents are user data that may contain more escape keys,
|
||||
# but those are part of the user's actual data.
|
||||
return obj[_LC_ESCAPED_KEY]
|
||||
|
||||
# Regular dict - recurse into values to find nested escape markers
|
||||
return {k: _unescape_value(v) for k, v in obj.items()}
|
||||
if isinstance(obj, list):
|
||||
return [_unescape_value(item) for item in obj]
|
||||
return obj
|
||||
@@ -1,10 +1,26 @@
|
||||
"""Dump objects to json."""
|
||||
"""Serialize LangChain objects to JSON.
|
||||
|
||||
Provides `dumps` (to JSON string) and `dumpd` (to dict) for serializing
|
||||
`Serializable` objects.
|
||||
|
||||
## Escaping
|
||||
|
||||
During serialization, plain dicts (user data) that contain an `'lc'` key are escaped
|
||||
by wrapping them: `{"__lc_escaped__": {...original...}}`. This prevents injection
|
||||
attacks where malicious data could trick the deserializer into instantiating
|
||||
arbitrary classes. The escape marker is removed during deserialization.
|
||||
|
||||
This is an allowlist approach: only dicts explicitly produced by
|
||||
`Serializable.to_json()` are treated as LC objects; everything else is escaped if it
|
||||
could be confused with the LC format.
|
||||
"""
|
||||
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain_core.load._validation import _serialize_value
|
||||
from langchain_core.load.serializable import Serializable, to_json_not_implemented
|
||||
from langchain_core.messages import AIMessage
|
||||
from langchain_core.outputs import ChatGeneration
|
||||
@@ -25,6 +41,20 @@ def default(obj: Any) -> Any:
|
||||
|
||||
|
||||
def _dump_pydantic_models(obj: Any) -> Any:
|
||||
"""Convert nested Pydantic models to dicts for JSON serialization.
|
||||
|
||||
Handles the special case where a `ChatGeneration` contains an `AIMessage`
|
||||
with a parsed Pydantic model in `additional_kwargs["parsed"]`. Since
|
||||
Pydantic models aren't directly JSON serializable, this converts them to
|
||||
dicts.
|
||||
|
||||
Args:
|
||||
obj: The object to process.
|
||||
|
||||
Returns:
|
||||
A copy of the object with nested Pydantic models converted to dicts, or
|
||||
the original object unchanged if no conversion was needed.
|
||||
"""
|
||||
if (
|
||||
isinstance(obj, ChatGeneration)
|
||||
and isinstance(obj.message, AIMessage)
|
||||
@@ -40,10 +70,17 @@ def _dump_pydantic_models(obj: Any) -> Any:
|
||||
def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str:
|
||||
"""Return a JSON string representation of an object.
|
||||
|
||||
Note:
|
||||
Plain dicts containing an `'lc'` key are automatically escaped to prevent
|
||||
confusion with LC serialization format. The escape marker is removed during
|
||||
deserialization.
|
||||
|
||||
Args:
|
||||
obj: The object to dump.
|
||||
pretty: Whether to pretty print the json. If `True`, the json will be
|
||||
indented with 2 spaces (if no indent is provided as part of `kwargs`).
|
||||
pretty: Whether to pretty print the json.
|
||||
|
||||
If `True`, the json will be indented by either 2 spaces or the amount
|
||||
provided in the `indent` kwarg.
|
||||
**kwargs: Additional arguments to pass to `json.dumps`
|
||||
|
||||
Returns:
|
||||
@@ -55,28 +92,29 @@ def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str:
|
||||
if "default" in kwargs:
|
||||
msg = "`default` should not be passed to dumps"
|
||||
raise ValueError(msg)
|
||||
try:
|
||||
obj = _dump_pydantic_models(obj)
|
||||
if pretty:
|
||||
indent = kwargs.pop("indent", 2)
|
||||
return json.dumps(obj, default=default, indent=indent, **kwargs)
|
||||
return json.dumps(obj, default=default, **kwargs)
|
||||
except TypeError:
|
||||
if pretty:
|
||||
indent = kwargs.pop("indent", 2)
|
||||
return json.dumps(to_json_not_implemented(obj), indent=indent, **kwargs)
|
||||
return json.dumps(to_json_not_implemented(obj), **kwargs)
|
||||
|
||||
obj = _dump_pydantic_models(obj)
|
||||
serialized = _serialize_value(obj)
|
||||
|
||||
if pretty:
|
||||
indent = kwargs.pop("indent", 2)
|
||||
return json.dumps(serialized, indent=indent, **kwargs)
|
||||
return json.dumps(serialized, **kwargs)
|
||||
|
||||
|
||||
def dumpd(obj: Any) -> Any:
|
||||
"""Return a dict representation of an object.
|
||||
|
||||
Note:
|
||||
Plain dicts containing an `'lc'` key are automatically escaped to prevent
|
||||
confusion with LC serialization format. The escape marker is removed during
|
||||
deserialization.
|
||||
|
||||
Args:
|
||||
obj: The object to dump.
|
||||
|
||||
Returns:
|
||||
Dictionary that can be serialized to json using `json.dumps`.
|
||||
"""
|
||||
# Unfortunately this function is not as efficient as it could be because it first
|
||||
# dumps the object to a json string and then loads it back into a dictionary.
|
||||
return json.loads(dumps(obj))
|
||||
obj = _dump_pydantic_models(obj)
|
||||
return _serialize_value(obj)
|
||||
|
||||
@@ -1,11 +1,83 @@
|
||||
"""Load LangChain objects from JSON strings or objects."""
|
||||
"""Load LangChain objects from JSON strings or objects.
|
||||
|
||||
## How it works
|
||||
|
||||
Each `Serializable` LangChain object has a unique identifier (its "class path"), which
|
||||
is a list of strings representing the module path and class name. For example:
|
||||
|
||||
- `AIMessage` -> `["langchain_core", "messages", "ai", "AIMessage"]`
|
||||
- `ChatPromptTemplate` -> `["langchain_core", "prompts", "chat", "ChatPromptTemplate"]`
|
||||
|
||||
When deserializing, the class path from the JSON `'id'` field is checked against an
|
||||
allowlist. If the class is not in the allowlist, deserialization raises a `ValueError`.
|
||||
|
||||
## Security model
|
||||
|
||||
The `allowed_objects` parameter controls which classes can be deserialized:
|
||||
|
||||
- **`'core'` (default)**: Allow classes defined in the serialization mappings for
|
||||
langchain_core.
|
||||
- **`'all'`**: Allow classes defined in the serialization mappings. This
|
||||
includes core LangChain types (messages, prompts, documents, etc.) and trusted
|
||||
partner integrations. See `langchain_core.load.mapping` for the full list.
|
||||
- **Explicit list of classes**: Only those specific classes are allowed.
|
||||
|
||||
For simple data types like messages and documents, the default allowlist is safe to use.
|
||||
These classes do not perform side effects during initialization.
|
||||
|
||||
!!! note "Side effects in allowed classes"
|
||||
|
||||
Deserialization calls `__init__` on allowed classes. If those classes perform side
|
||||
effects during initialization (network calls, file operations, etc.), those side
|
||||
effects will occur. The allowlist prevents instantiation of classes outside the
|
||||
allowlist, but does not sandbox the allowed classes themselves.
|
||||
|
||||
Import paths are also validated against trusted namespaces before any module is
|
||||
imported.
|
||||
|
||||
### Injection protection (escape-based)
|
||||
|
||||
During serialization, plain dicts that contain an `'lc'` key are escaped by wrapping
|
||||
them: `{"__lc_escaped__": {...}}`. During deserialization, escaped dicts are unwrapped
|
||||
and returned as plain dicts, NOT instantiated as LC objects.
|
||||
|
||||
This is an allowlist approach: only dicts explicitly produced by
|
||||
`Serializable.to_json()` (which are NOT escaped) are treated as LC objects;
|
||||
everything else is user data.
|
||||
|
||||
Even if an attacker's payload includes `__lc_escaped__` wrappers, it will be unwrapped
|
||||
to plain dicts and NOT instantiated as malicious objects.
|
||||
|
||||
## Examples
|
||||
|
||||
```python
|
||||
from langchain_core.load import load
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
|
||||
# Use default allowlist (classes from mappings) - recommended
|
||||
obj = load(data)
|
||||
|
||||
# Allow only specific classes (most restrictive)
|
||||
obj = load(
|
||||
data,
|
||||
allowed_objects=[
|
||||
ChatPromptTemplate,
|
||||
AIMessage,
|
||||
HumanMessage,
|
||||
],
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
import importlib
|
||||
import json
|
||||
import os
|
||||
from typing import Any
|
||||
from collections.abc import Callable, Iterable
|
||||
from typing import Any, Literal, cast
|
||||
|
||||
from langchain_core._api import beta
|
||||
from langchain_core.load._validation import _is_escaped_dict, _unescape_value
|
||||
from langchain_core.load.mapping import (
|
||||
_JS_SERIALIZABLE_MAPPING,
|
||||
_OG_SERIALIZABLE_MAPPING,
|
||||
@@ -44,32 +116,209 @@ ALL_SERIALIZABLE_MAPPINGS = {
|
||||
**_JS_SERIALIZABLE_MAPPING,
|
||||
}
|
||||
|
||||
# Cache for the default allowed class paths computed from mappings
|
||||
# Maps mode ("all" or "core") to the cached set of paths
|
||||
_default_class_paths_cache: dict[str, set[tuple[str, ...]]] = {}
|
||||
|
||||
|
||||
def _get_default_allowed_class_paths(
|
||||
allowed_object_mode: Literal["all", "core"],
|
||||
) -> set[tuple[str, ...]]:
|
||||
"""Get the default allowed class paths from the serialization mappings.
|
||||
|
||||
This uses the mappings as the source of truth for what classes are allowed
|
||||
by default. Both the legacy paths (keys) and current paths (values) are included.
|
||||
|
||||
Args:
|
||||
allowed_object_mode: either `'all'` or `'core'`.
|
||||
|
||||
Returns:
|
||||
Set of class path tuples that are allowed by default.
|
||||
"""
|
||||
if allowed_object_mode in _default_class_paths_cache:
|
||||
return _default_class_paths_cache[allowed_object_mode]
|
||||
|
||||
allowed_paths: set[tuple[str, ...]] = set()
|
||||
for key, value in ALL_SERIALIZABLE_MAPPINGS.items():
|
||||
if allowed_object_mode == "core" and value[0] != "langchain_core":
|
||||
continue
|
||||
allowed_paths.add(key)
|
||||
allowed_paths.add(value)
|
||||
|
||||
_default_class_paths_cache[allowed_object_mode] = allowed_paths
|
||||
return _default_class_paths_cache[allowed_object_mode]
|
||||
|
||||
|
||||
def _block_jinja2_templates(
|
||||
class_path: tuple[str, ...],
|
||||
kwargs: dict[str, Any],
|
||||
) -> None:
|
||||
"""Block jinja2 templates during deserialization for security.
|
||||
|
||||
Jinja2 templates can execute arbitrary code, so they are blocked by default when
|
||||
deserializing objects with `template_format='jinja2'`.
|
||||
|
||||
Note:
|
||||
We intentionally do NOT check the `class_path` here to keep this simple and
|
||||
future-proof. If any new class is added that accepts `template_format='jinja2'`,
|
||||
it will be automatically blocked without needing to update this function.
|
||||
|
||||
Args:
|
||||
class_path: The class path tuple being deserialized (unused).
|
||||
kwargs: The kwargs dict for the class constructor.
|
||||
|
||||
Raises:
|
||||
ValueError: If `template_format` is `'jinja2'`.
|
||||
"""
|
||||
_ = class_path # Unused - see docstring for rationale. Kept to satisfy signature.
|
||||
if kwargs.get("template_format") == "jinja2":
|
||||
msg = (
|
||||
"Jinja2 templates are not allowed during deserialization for security "
|
||||
"reasons. Use 'f-string' template format instead, or explicitly allow "
|
||||
"jinja2 by providing a custom init_validator."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
|
||||
def default_init_validator(
|
||||
class_path: tuple[str, ...],
|
||||
kwargs: dict[str, Any],
|
||||
) -> None:
|
||||
"""Default init validator that blocks jinja2 templates.
|
||||
|
||||
This is the default validator used by `load()` and `loads()` when no custom
|
||||
validator is provided.
|
||||
|
||||
Args:
|
||||
class_path: The class path tuple being deserialized.
|
||||
kwargs: The kwargs dict for the class constructor.
|
||||
|
||||
Raises:
|
||||
ValueError: If template_format is `'jinja2'`.
|
||||
"""
|
||||
_block_jinja2_templates(class_path, kwargs)
|
||||
|
||||
|
||||
AllowedObject = type[Serializable]
|
||||
"""Type alias for classes that can be included in the `allowed_objects` parameter.
|
||||
|
||||
Must be a `Serializable` subclass (the class itself, not an instance).
|
||||
"""
|
||||
|
||||
InitValidator = Callable[[tuple[str, ...], dict[str, Any]], None]
|
||||
"""Type alias for a callable that validates kwargs during deserialization.
|
||||
|
||||
The callable receives:
|
||||
|
||||
- `class_path`: A tuple of strings identifying the class being instantiated
|
||||
(e.g., `('langchain', 'schema', 'messages', 'AIMessage')`).
|
||||
- `kwargs`: The kwargs dict that will be passed to the constructor.
|
||||
|
||||
The validator should raise an exception if the object should not be deserialized.
|
||||
"""
|
||||
|
||||
|
||||
def _compute_allowed_class_paths(
|
||||
allowed_objects: Iterable[AllowedObject],
|
||||
import_mappings: dict[tuple[str, ...], tuple[str, ...]],
|
||||
) -> set[tuple[str, ...]]:
|
||||
"""Return allowed class paths from an explicit list of classes.
|
||||
|
||||
A class path is a tuple of strings identifying a serializable class, derived from
|
||||
`Serializable.lc_id()`. For example: `('langchain_core', 'messages', 'AIMessage')`.
|
||||
|
||||
Args:
|
||||
allowed_objects: Iterable of `Serializable` subclasses to allow.
|
||||
import_mappings: Mapping of legacy class paths to current class paths.
|
||||
|
||||
Returns:
|
||||
Set of allowed class paths.
|
||||
|
||||
Example:
|
||||
```python
|
||||
# Allow a specific class
|
||||
_compute_allowed_class_paths([MyPrompt], {}) ->
|
||||
{("langchain_core", "prompts", "MyPrompt")}
|
||||
|
||||
# Include legacy paths that map to the same class
|
||||
import_mappings = {("old", "Prompt"): ("langchain_core", "prompts", "MyPrompt")}
|
||||
_compute_allowed_class_paths([MyPrompt], import_mappings) ->
|
||||
{("langchain_core", "prompts", "MyPrompt"), ("old", "Prompt")}
|
||||
```
|
||||
"""
|
||||
allowed_objects_list = list(allowed_objects)
|
||||
|
||||
allowed_class_paths: set[tuple[str, ...]] = set()
|
||||
for allowed_obj in allowed_objects_list:
|
||||
if not isinstance(allowed_obj, type) or not issubclass(
|
||||
allowed_obj, Serializable
|
||||
):
|
||||
msg = "allowed_objects must contain Serializable subclasses."
|
||||
raise TypeError(msg)
|
||||
|
||||
class_path = tuple(allowed_obj.lc_id())
|
||||
allowed_class_paths.add(class_path)
|
||||
# Add legacy paths that map to the same class.
|
||||
for mapping_key, mapping_value in import_mappings.items():
|
||||
if tuple(mapping_value) == class_path:
|
||||
allowed_class_paths.add(mapping_key)
|
||||
return allowed_class_paths
|
||||
|
||||
|
||||
class Reviver:
|
||||
"""Reviver for JSON objects."""
|
||||
"""Reviver for JSON objects.
|
||||
|
||||
Used as the `object_hook` for `json.loads` to reconstruct LangChain objects from
|
||||
their serialized JSON representation.
|
||||
|
||||
Only classes in the allowlist can be instantiated.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
allowed_objects: Iterable[AllowedObject] | Literal["all", "core"] = "core",
|
||||
secrets_map: dict[str, str] | None = None,
|
||||
valid_namespaces: list[str] | None = None,
|
||||
secrets_from_env: bool = True, # noqa: FBT001,FBT002
|
||||
secrets_from_env: bool = False, # noqa: FBT001,FBT002
|
||||
additional_import_mappings: dict[tuple[str, ...], tuple[str, ...]]
|
||||
| None = None,
|
||||
*,
|
||||
ignore_unserializable_fields: bool = False,
|
||||
init_validator: InitValidator | None = default_init_validator,
|
||||
) -> None:
|
||||
"""Initialize the reviver.
|
||||
|
||||
Args:
|
||||
secrets_map: A map of secrets to load. If a secret is not found in
|
||||
the map, it will be loaded from the environment if `secrets_from_env`
|
||||
is True.
|
||||
valid_namespaces: A list of additional namespaces (modules)
|
||||
to allow to be deserialized.
|
||||
allowed_objects: Allowlist of classes that can be deserialized.
|
||||
- `'core'` (default): Allow classes defined in the serialization
|
||||
mappings for `langchain_core`.
|
||||
- `'all'`: Allow classes defined in the serialization mappings.
|
||||
|
||||
This includes core LangChain types (messages, prompts, documents,
|
||||
etc.) and trusted partner integrations. See
|
||||
`langchain_core.load.mapping` for the full list.
|
||||
- Explicit list of classes: Only those specific classes are allowed.
|
||||
secrets_map: A map of secrets to load.
|
||||
If a secret is not found in the map, it will be loaded from the
|
||||
environment if `secrets_from_env` is `True`.
|
||||
valid_namespaces: Additional namespaces (modules) to allow during
|
||||
deserialization, beyond the default trusted namespaces.
|
||||
secrets_from_env: Whether to load secrets from the environment.
|
||||
additional_import_mappings: A dictionary of additional namespace mappings
|
||||
additional_import_mappings: A dictionary of additional namespace mappings.
|
||||
|
||||
You can use this to override default mappings or add new mappings.
|
||||
|
||||
When `allowed_objects` is `None` (using defaults), paths from these
|
||||
mappings are also added to the allowed class paths.
|
||||
ignore_unserializable_fields: Whether to ignore unserializable fields.
|
||||
init_validator: Optional callable to validate kwargs before instantiation.
|
||||
|
||||
If provided, this function is called with `(class_path, kwargs)` where
|
||||
`class_path` is the class path tuple and `kwargs` is the kwargs dict.
|
||||
The validator should raise an exception if the object should not be
|
||||
deserialized, otherwise return `None`.
|
||||
|
||||
Defaults to `default_init_validator` which blocks jinja2 templates.
|
||||
"""
|
||||
self.secrets_from_env = secrets_from_env
|
||||
self.secrets_map = secrets_map or {}
|
||||
@@ -88,7 +337,26 @@ class Reviver:
|
||||
if self.additional_import_mappings
|
||||
else ALL_SERIALIZABLE_MAPPINGS
|
||||
)
|
||||
# Compute allowed class paths:
|
||||
# - "all" -> use default paths from mappings (+ additional_import_mappings)
|
||||
# - Explicit list -> compute from those classes
|
||||
if allowed_objects in ("all", "core"):
|
||||
self.allowed_class_paths: set[tuple[str, ...]] | None = (
|
||||
_get_default_allowed_class_paths(
|
||||
cast("Literal['all', 'core']", allowed_objects)
|
||||
).copy()
|
||||
)
|
||||
# Add paths from additional_import_mappings to the defaults
|
||||
if self.additional_import_mappings:
|
||||
for key, value in self.additional_import_mappings.items():
|
||||
self.allowed_class_paths.add(key)
|
||||
self.allowed_class_paths.add(value)
|
||||
else:
|
||||
self.allowed_class_paths = _compute_allowed_class_paths(
|
||||
cast("Iterable[AllowedObject]", allowed_objects), self.import_mappings
|
||||
)
|
||||
self.ignore_unserializable_fields = ignore_unserializable_fields
|
||||
self.init_validator = init_validator
|
||||
|
||||
def __call__(self, value: dict[str, Any]) -> Any:
|
||||
"""Revive the value.
|
||||
@@ -139,6 +407,20 @@ class Reviver:
|
||||
[*namespace, name] = value["id"]
|
||||
mapping_key = tuple(value["id"])
|
||||
|
||||
if (
|
||||
self.allowed_class_paths is not None
|
||||
and mapping_key not in self.allowed_class_paths
|
||||
):
|
||||
msg = (
|
||||
f"Deserialization of {mapping_key!r} is not allowed. "
|
||||
"The default (allowed_objects='core') only permits core "
|
||||
"langchain-core classes. To allow trusted partner integrations, "
|
||||
"use allowed_objects='all'. Alternatively, pass an explicit list "
|
||||
"of allowed classes via allowed_objects=[...]. "
|
||||
"See langchain_core.load.mapping for the full allowlist."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
if (
|
||||
namespace[0] not in self.valid_namespaces
|
||||
# The root namespace ["langchain"] is not a valid identifier.
|
||||
@@ -146,13 +428,11 @@ class Reviver:
|
||||
):
|
||||
msg = f"Invalid namespace: {value}"
|
||||
raise ValueError(msg)
|
||||
# Has explicit import path.
|
||||
# Determine explicit import path
|
||||
if mapping_key in self.import_mappings:
|
||||
import_path = self.import_mappings[mapping_key]
|
||||
# Split into module and name
|
||||
import_dir, name = import_path[:-1], import_path[-1]
|
||||
# Import module
|
||||
mod = importlib.import_module(".".join(import_dir))
|
||||
elif namespace[0] in DISALLOW_LOAD_FROM_PATH:
|
||||
msg = (
|
||||
"Trying to deserialize something that cannot "
|
||||
@@ -160,9 +440,16 @@ class Reviver:
|
||||
f"{mapping_key}."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
# Otherwise, treat namespace as path.
|
||||
else:
|
||||
mod = importlib.import_module(".".join(namespace))
|
||||
# Otherwise, treat namespace as path.
|
||||
import_dir = namespace
|
||||
|
||||
# Validate import path is in trusted namespaces before importing
|
||||
if import_dir[0] not in self.valid_namespaces:
|
||||
msg = f"Invalid namespace: {value}"
|
||||
raise ValueError(msg)
|
||||
|
||||
mod = importlib.import_module(".".join(import_dir))
|
||||
|
||||
cls = getattr(mod, name)
|
||||
|
||||
@@ -174,6 +461,10 @@ class Reviver:
|
||||
# We don't need to recurse on kwargs
|
||||
# as json.loads will do that for us.
|
||||
kwargs = value.get("kwargs", {})
|
||||
|
||||
if self.init_validator is not None:
|
||||
self.init_validator(mapping_key, kwargs)
|
||||
|
||||
return cls(**kwargs)
|
||||
|
||||
return value
|
||||
@@ -183,40 +474,81 @@ class Reviver:
|
||||
def loads(
|
||||
text: str,
|
||||
*,
|
||||
allowed_objects: Iterable[AllowedObject] | Literal["all", "core"] = "core",
|
||||
secrets_map: dict[str, str] | None = None,
|
||||
valid_namespaces: list[str] | None = None,
|
||||
secrets_from_env: bool = True,
|
||||
secrets_from_env: bool = False,
|
||||
additional_import_mappings: dict[tuple[str, ...], tuple[str, ...]] | None = None,
|
||||
ignore_unserializable_fields: bool = False,
|
||||
init_validator: InitValidator | None = default_init_validator,
|
||||
) -> Any:
|
||||
"""Revive a LangChain class from a JSON string.
|
||||
|
||||
Equivalent to `load(json.loads(text))`.
|
||||
|
||||
Only classes in the allowlist can be instantiated. The default allowlist includes
|
||||
core LangChain types (messages, prompts, documents, etc.). See
|
||||
`langchain_core.load.mapping` for the full list.
|
||||
|
||||
!!! warning "Beta feature"
|
||||
|
||||
This is a beta feature. Please be wary of deploying experimental code to
|
||||
production unless you've taken appropriate precautions.
|
||||
|
||||
Args:
|
||||
text: The string to load.
|
||||
secrets_map: A map of secrets to load. If a secret is not found in
|
||||
the map, it will be loaded from the environment if `secrets_from_env`
|
||||
is True.
|
||||
valid_namespaces: A list of additional namespaces (modules)
|
||||
to allow to be deserialized.
|
||||
allowed_objects: Allowlist of classes that can be deserialized.
|
||||
|
||||
- `'core'` (default): Allow classes defined in the serialization mappings
|
||||
for `langchain_core`.
|
||||
- `'all'`: Allow classes defined in the serialization mappings.
|
||||
|
||||
This includes core LangChain types (messages, prompts, documents, etc.)
|
||||
and trusted partner integrations. See `langchain_core.load.mapping` for
|
||||
the full list.
|
||||
|
||||
- Explicit list of classes: Only those specific classes are allowed.
|
||||
- `[]`: Disallow all deserialization (will raise on any object).
|
||||
secrets_map: A map of secrets to load.
|
||||
|
||||
If a secret is not found in the map, it will be loaded from the environment
|
||||
if `secrets_from_env` is `True`.
|
||||
valid_namespaces: Additional namespaces (modules) to allow during
|
||||
deserialization, beyond the default trusted namespaces.
|
||||
secrets_from_env: Whether to load secrets from the environment.
|
||||
additional_import_mappings: A dictionary of additional namespace mappings
|
||||
additional_import_mappings: A dictionary of additional namespace mappings.
|
||||
|
||||
You can use this to override default mappings or add new mappings.
|
||||
|
||||
When `allowed_objects` is `None` (using defaults), paths from these
|
||||
mappings are also added to the allowed class paths.
|
||||
ignore_unserializable_fields: Whether to ignore unserializable fields.
|
||||
init_validator: Optional callable to validate kwargs before instantiation.
|
||||
|
||||
If provided, this function is called with `(class_path, kwargs)` where
|
||||
`class_path` is the class path tuple and `kwargs` is the kwargs dict.
|
||||
The validator should raise an exception if the object should not be
|
||||
deserialized, otherwise return `None`.
|
||||
|
||||
Defaults to `default_init_validator` which blocks jinja2 templates.
|
||||
|
||||
Returns:
|
||||
Revived LangChain objects.
|
||||
|
||||
Raises:
|
||||
ValueError: If an object's class path is not in the `allowed_objects` allowlist.
|
||||
"""
|
||||
return json.loads(
|
||||
text,
|
||||
object_hook=Reviver(
|
||||
secrets_map,
|
||||
valid_namespaces,
|
||||
secrets_from_env,
|
||||
additional_import_mappings,
|
||||
ignore_unserializable_fields=ignore_unserializable_fields,
|
||||
),
|
||||
# Parse JSON and delegate to load() for proper escape handling
|
||||
raw_obj = json.loads(text)
|
||||
return load(
|
||||
raw_obj,
|
||||
allowed_objects=allowed_objects,
|
||||
secrets_map=secrets_map,
|
||||
valid_namespaces=valid_namespaces,
|
||||
secrets_from_env=secrets_from_env,
|
||||
additional_import_mappings=additional_import_mappings,
|
||||
ignore_unserializable_fields=ignore_unserializable_fields,
|
||||
init_validator=init_validator,
|
||||
)
|
||||
|
||||
|
||||
@@ -224,49 +556,116 @@ def loads(
|
||||
def load(
|
||||
obj: Any,
|
||||
*,
|
||||
allowed_objects: Iterable[AllowedObject] | Literal["all", "core"] = "core",
|
||||
secrets_map: dict[str, str] | None = None,
|
||||
valid_namespaces: list[str] | None = None,
|
||||
secrets_from_env: bool = True,
|
||||
secrets_from_env: bool = False,
|
||||
additional_import_mappings: dict[tuple[str, ...], tuple[str, ...]] | None = None,
|
||||
ignore_unserializable_fields: bool = False,
|
||||
init_validator: InitValidator | None = default_init_validator,
|
||||
) -> Any:
|
||||
"""Revive a LangChain class from a JSON object.
|
||||
|
||||
Use this if you already have a parsed JSON object,
|
||||
eg. from `json.load` or `orjson.loads`.
|
||||
Use this if you already have a parsed JSON object, eg. from `json.load` or
|
||||
`orjson.loads`.
|
||||
|
||||
Only classes in the allowlist can be instantiated. The default allowlist includes
|
||||
core LangChain types (messages, prompts, documents, etc.). See
|
||||
`langchain_core.load.mapping` for the full list.
|
||||
|
||||
!!! warning "Beta feature"
|
||||
|
||||
This is a beta feature. Please be wary of deploying experimental code to
|
||||
production unless you've taken appropriate precautions.
|
||||
|
||||
Args:
|
||||
obj: The object to load.
|
||||
secrets_map: A map of secrets to load. If a secret is not found in
|
||||
the map, it will be loaded from the environment if `secrets_from_env`
|
||||
is True.
|
||||
valid_namespaces: A list of additional namespaces (modules)
|
||||
to allow to be deserialized.
|
||||
allowed_objects: Allowlist of classes that can be deserialized.
|
||||
|
||||
- `'core'` (default): Allow classes defined in the serialization mappings
|
||||
for `langchain_core`.
|
||||
- `'all'`: Allow classes defined in the serialization mappings.
|
||||
|
||||
This includes core LangChain types (messages, prompts, documents, etc.)
|
||||
and trusted partner integrations. See `langchain_core.load.mapping` for
|
||||
the full list.
|
||||
|
||||
- Explicit list of classes: Only those specific classes are allowed.
|
||||
- `[]`: Disallow all deserialization (will raise on any object).
|
||||
secrets_map: A map of secrets to load.
|
||||
|
||||
If a secret is not found in the map, it will be loaded from the environment
|
||||
if `secrets_from_env` is `True`.
|
||||
valid_namespaces: Additional namespaces (modules) to allow during
|
||||
deserialization, beyond the default trusted namespaces.
|
||||
secrets_from_env: Whether to load secrets from the environment.
|
||||
additional_import_mappings: A dictionary of additional namespace mappings
|
||||
additional_import_mappings: A dictionary of additional namespace mappings.
|
||||
|
||||
You can use this to override default mappings or add new mappings.
|
||||
|
||||
When `allowed_objects` is `None` (using defaults), paths from these
|
||||
mappings are also added to the allowed class paths.
|
||||
ignore_unserializable_fields: Whether to ignore unserializable fields.
|
||||
init_validator: Optional callable to validate kwargs before instantiation.
|
||||
|
||||
If provided, this function is called with `(class_path, kwargs)` where
|
||||
`class_path` is the class path tuple and `kwargs` is the kwargs dict.
|
||||
The validator should raise an exception if the object should not be
|
||||
deserialized, otherwise return `None`.
|
||||
|
||||
Defaults to `default_init_validator` which blocks jinja2 templates.
|
||||
|
||||
Returns:
|
||||
Revived LangChain objects.
|
||||
|
||||
Raises:
|
||||
ValueError: If an object's class path is not in the `allowed_objects` allowlist.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from langchain_core.load import load, dumpd
|
||||
from langchain_core.messages import AIMessage
|
||||
|
||||
msg = AIMessage(content="Hello")
|
||||
data = dumpd(msg)
|
||||
|
||||
# Deserialize using default allowlist
|
||||
loaded = load(data)
|
||||
|
||||
# Or with explicit allowlist
|
||||
loaded = load(data, allowed_objects=[AIMessage])
|
||||
|
||||
# Or extend defaults with additional mappings
|
||||
loaded = load(
|
||||
data,
|
||||
additional_import_mappings={
|
||||
("my_pkg", "MyClass"): ("my_pkg", "module", "MyClass"),
|
||||
},
|
||||
)
|
||||
```
|
||||
"""
|
||||
reviver = Reviver(
|
||||
allowed_objects,
|
||||
secrets_map,
|
||||
valid_namespaces,
|
||||
secrets_from_env,
|
||||
additional_import_mappings,
|
||||
ignore_unserializable_fields=ignore_unserializable_fields,
|
||||
init_validator=init_validator,
|
||||
)
|
||||
|
||||
def _load(obj: Any) -> Any:
|
||||
if isinstance(obj, dict):
|
||||
# Need to revive leaf nodes before reviving this node
|
||||
# Check for escaped dict FIRST (before recursing).
|
||||
# Escaped dicts are user data that should NOT be processed as LC objects.
|
||||
if _is_escaped_dict(obj):
|
||||
return _unescape_value(obj)
|
||||
|
||||
# Not escaped - recurse into children then apply reviver
|
||||
loaded_obj = {k: _load(v) for k, v in obj.items()}
|
||||
return reviver(loaded_obj)
|
||||
if isinstance(obj, list):
|
||||
return [_load(o) for o in obj]
|
||||
if isinstance(obj, str) and obj in reviver.secrets_map:
|
||||
return reviver.secrets_map[obj]
|
||||
return obj
|
||||
|
||||
return _load(obj)
|
||||
|
||||
@@ -1,21 +1,19 @@
|
||||
"""Serialization mapping.
|
||||
|
||||
This file contains a mapping between the lc_namespace path for a given
|
||||
subclass that implements from Serializable to the namespace
|
||||
This file contains a mapping between the `lc_namespace` path for a given
|
||||
subclass that implements from `Serializable` to the namespace
|
||||
where that class is actually located.
|
||||
|
||||
This mapping helps maintain the ability to serialize and deserialize
|
||||
well-known LangChain objects even if they are moved around in the codebase
|
||||
across different LangChain versions.
|
||||
|
||||
For example,
|
||||
For example, the code for the `AIMessage` class is located in
|
||||
`langchain_core.messages.ai.AIMessage`. This message is associated with the
|
||||
`lc_namespace` of `["langchain", "schema", "messages", "AIMessage"]`,
|
||||
because this code was originally in `langchain.schema.messages.AIMessage`.
|
||||
|
||||
The code for AIMessage class is located in langchain_core.messages.ai.AIMessage,
|
||||
This message is associated with the lc_namespace
|
||||
["langchain", "schema", "messages", "AIMessage"],
|
||||
because this code was originally in langchain.schema.messages.AIMessage.
|
||||
|
||||
The mapping allows us to deserialize an AIMessage created with an older
|
||||
The mapping allows us to deserialize an `AIMessage` created with an older
|
||||
version of LangChain where the code was in a different location.
|
||||
"""
|
||||
|
||||
@@ -275,6 +273,11 @@ SERIALIZABLE_MAPPING: dict[tuple[str, ...], tuple[str, ...]] = {
|
||||
"chat_models",
|
||||
"ChatGroq",
|
||||
),
|
||||
("langchain_xai", "chat_models", "ChatXAI"): (
|
||||
"langchain_xai",
|
||||
"chat_models",
|
||||
"ChatXAI",
|
||||
),
|
||||
("langchain", "chat_models", "fireworks", "ChatFireworks"): (
|
||||
"langchain_fireworks",
|
||||
"chat_models",
|
||||
@@ -529,16 +532,6 @@ SERIALIZABLE_MAPPING: dict[tuple[str, ...], tuple[str, ...]] = {
|
||||
"structured",
|
||||
"StructuredPrompt",
|
||||
),
|
||||
("langchain_sambanova", "chat_models", "ChatSambaNovaCloud"): (
|
||||
"langchain_sambanova",
|
||||
"chat_models",
|
||||
"ChatSambaNovaCloud",
|
||||
),
|
||||
("langchain_sambanova", "chat_models", "ChatSambaStudio"): (
|
||||
"langchain_sambanova",
|
||||
"chat_models",
|
||||
"ChatSambaStudio",
|
||||
),
|
||||
("langchain_core", "prompts", "message", "_DictMessagePromptTemplate"): (
|
||||
"langchain_core",
|
||||
"prompts",
|
||||
|
||||
@@ -92,11 +92,12 @@ class Serializable(BaseModel, ABC):
|
||||
|
||||
It relies on the following methods and properties:
|
||||
|
||||
- `is_lc_serializable`: Is this class serializable?
|
||||
- [`is_lc_serializable`][langchain_core.load.serializable.Serializable.is_lc_serializable]: Is this class serializable?
|
||||
|
||||
By design, even if a class inherits from `Serializable`, it is not serializable
|
||||
by default. This is to prevent accidental serialization of objects that should
|
||||
not be serialized.
|
||||
- `get_lc_namespace`: Get the namespace of the LangChain object.
|
||||
- [`get_lc_namespace`][langchain_core.load.serializable.Serializable.get_lc_namespace]: Get the namespace of the LangChain object.
|
||||
|
||||
During deserialization, this namespace is used to identify
|
||||
the correct class to instantiate.
|
||||
@@ -105,10 +106,10 @@ class Serializable(BaseModel, ABC):
|
||||
During deserialization an additional mapping is handle classes that have moved
|
||||
or been renamed across package versions.
|
||||
|
||||
- `lc_secrets`: A map of constructor argument names to secret ids.
|
||||
- `lc_attributes`: List of additional attribute names that should be included
|
||||
- [`lc_secrets`][langchain_core.load.serializable.Serializable.lc_secrets]: A map of constructor argument names to secret ids.
|
||||
- [`lc_attributes`][langchain_core.load.serializable.Serializable.lc_attributes]: List of additional attribute names that should be included
|
||||
as part of the serialized representation.
|
||||
"""
|
||||
""" # noqa: E501
|
||||
|
||||
# Remove default BaseModel init docstring.
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
@@ -132,8 +133,9 @@ class Serializable(BaseModel, ABC):
|
||||
def get_lc_namespace(cls) -> list[str]:
|
||||
"""Get the namespace of the LangChain object.
|
||||
|
||||
For example, if the class is `langchain.llms.openai.OpenAI`, then the
|
||||
namespace is `["langchain", "llms", "openai"]`
|
||||
For example, if the class is
|
||||
[`langchain.llms.openai.OpenAI`][langchain_openai.OpenAI], then the namespace is
|
||||
`["langchain", "llms", "openai"]`
|
||||
|
||||
Returns:
|
||||
The namespace.
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
"""AI message."""
|
||||
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
import operator
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, Literal, cast, overload
|
||||
|
||||
from pydantic import model_validator
|
||||
from pydantic import Field, model_validator
|
||||
from typing_extensions import NotRequired, Self, TypedDict, override
|
||||
|
||||
from langchain_core.messages import content as types
|
||||
@@ -51,22 +52,22 @@ class InputTokenDetails(TypedDict, total=False):
|
||||
May also hold extra provider-specific keys.
|
||||
|
||||
!!! version-added "Added in `langchain-core` 0.3.9"
|
||||
|
||||
"""
|
||||
|
||||
audio: int
|
||||
"""Audio input tokens."""
|
||||
|
||||
cache_creation: int
|
||||
"""Input tokens that were cached and there was a cache miss.
|
||||
|
||||
Since there was a cache miss, the cache was created from these tokens.
|
||||
"""
|
||||
|
||||
cache_read: int
|
||||
"""Input tokens that were cached and there was a cache hit.
|
||||
|
||||
Since there was a cache hit, the tokens were read from the cache. More precisely,
|
||||
the model state given these tokens was read from the cache.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
@@ -91,12 +92,12 @@ class OutputTokenDetails(TypedDict, total=False):
|
||||
|
||||
audio: int
|
||||
"""Audio output tokens."""
|
||||
|
||||
reasoning: int
|
||||
"""Reasoning output tokens.
|
||||
|
||||
Tokens generated by the model in a chain of thought process (i.e. by OpenAI's o1
|
||||
models) that are not returned as part of model output.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
@@ -124,9 +125,11 @@ class UsageMetadata(TypedDict):
|
||||
```
|
||||
|
||||
!!! warning "Behavior changed in `langchain-core` 0.3.9"
|
||||
|
||||
Added `input_token_details` and `output_token_details`.
|
||||
|
||||
!!! note "LangSmith SDK"
|
||||
|
||||
The LangSmith SDK also has a `UsageMetadata` class. While the two share fields,
|
||||
LangSmith's `UsageMetadata` has additional fields to capture cost information
|
||||
used by the LangSmith platform.
|
||||
@@ -134,15 +137,19 @@ class UsageMetadata(TypedDict):
|
||||
|
||||
input_tokens: int
|
||||
"""Count of input (or prompt) tokens. Sum of all input token types."""
|
||||
|
||||
output_tokens: int
|
||||
"""Count of output (or completion) tokens. Sum of all output token types."""
|
||||
|
||||
total_tokens: int
|
||||
"""Total token count. Sum of `input_tokens` + `output_tokens`."""
|
||||
|
||||
input_token_details: NotRequired[InputTokenDetails]
|
||||
"""Breakdown of input token counts.
|
||||
|
||||
Does *not* need to sum to full input token count. Does *not* need to have all keys.
|
||||
"""
|
||||
|
||||
output_token_details: NotRequired[OutputTokenDetails]
|
||||
"""Breakdown of output token counts.
|
||||
|
||||
@@ -160,10 +167,12 @@ class AIMessage(BaseMessage):
|
||||
(e.g., tool calls, usage metadata) added by the LangChain framework.
|
||||
"""
|
||||
|
||||
tool_calls: list[ToolCall] = []
|
||||
tool_calls: list[ToolCall] = Field(default_factory=list)
|
||||
"""If present, tool calls associated with the message."""
|
||||
invalid_tool_calls: list[InvalidToolCall] = []
|
||||
|
||||
invalid_tool_calls: list[InvalidToolCall] = Field(default_factory=list)
|
||||
"""If present, tool calls with parsing errors associated with the message."""
|
||||
|
||||
usage_metadata: UsageMetadata | None = None
|
||||
"""If present, usage metadata for a message, such as token counts.
|
||||
|
||||
@@ -318,7 +327,7 @@ class AIMessage(BaseMessage):
|
||||
if tool_calls := values.get("tool_calls"):
|
||||
values["tool_calls"] = [
|
||||
create_tool_call(
|
||||
**{k: v for k, v in tc.items() if k not in ("type", "extras")}
|
||||
**{k: v for k, v in tc.items() if k not in {"type", "extras"}}
|
||||
)
|
||||
for tc in tool_calls
|
||||
]
|
||||
@@ -386,7 +395,7 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
|
||||
type: Literal["AIMessageChunk"] = "AIMessageChunk" # type: ignore[assignment]
|
||||
"""The type of the message (used for deserialization)."""
|
||||
|
||||
tool_call_chunks: list[ToolCallChunk] = []
|
||||
tool_call_chunks: list[ToolCallChunk] = Field(default_factory=list)
|
||||
"""If provided, tool call chunks associated with the message."""
|
||||
|
||||
chunk_position: Literal["last"] | None = None
|
||||
@@ -397,8 +406,8 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
|
||||
"""
|
||||
|
||||
@property
|
||||
@override
|
||||
def lc_attributes(self) -> dict:
|
||||
"""Attributes to be serialized, even if they are derived from other initialization args.""" # noqa: E501
|
||||
return {
|
||||
"tool_calls": self.tool_calls,
|
||||
"invalid_tool_calls": self.invalid_tool_calls,
|
||||
@@ -434,7 +443,7 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
|
||||
blocks = [
|
||||
block
|
||||
for block in blocks
|
||||
if block["type"] not in ("tool_call", "invalid_tool_call")
|
||||
if block["type"] not in {"tool_call", "invalid_tool_call"}
|
||||
]
|
||||
for tool_call_chunk in self.tool_call_chunks:
|
||||
tc: types.ToolCallChunk = {
|
||||
@@ -555,7 +564,11 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
|
||||
|
||||
@model_validator(mode="after")
|
||||
def init_server_tool_calls(self) -> Self:
|
||||
"""Parse `server_tool_call_chunks`."""
|
||||
"""Initialize server tool calls.
|
||||
|
||||
Parse `server_tool_call_chunks` from
|
||||
[`ServerToolCallChunk`][langchain.messages.ServerToolCallChunk] objects.
|
||||
"""
|
||||
if (
|
||||
self.chunk_position == "last"
|
||||
and self.response_metadata.get("output_version") == "v1"
|
||||
@@ -565,7 +578,7 @@ class AIMessageChunk(AIMessage, BaseMessageChunk):
|
||||
if (
|
||||
isinstance(block, dict)
|
||||
and block.get("type")
|
||||
in ("server_tool_call", "server_tool_call_chunk")
|
||||
in {"server_tool_call", "server_tool_call_chunk"}
|
||||
and (args_str := block.get("args"))
|
||||
and isinstance(args_str, str)
|
||||
):
|
||||
@@ -643,29 +656,28 @@ def add_ai_message_chunks(
|
||||
else:
|
||||
usage_metadata = None
|
||||
|
||||
# Ranks are defined by the order of preference. Higher is better:
|
||||
# 2. Provider-assigned IDs (non lc_* and non lc_run-*)
|
||||
# 1. lc_run-* IDs
|
||||
# 0. lc_* and other remaining IDs
|
||||
best_rank = -1
|
||||
chunk_id = None
|
||||
candidates = [left.id] + [o.id for o in others]
|
||||
# first pass: pick the first provider-assigned id (non-run-* and non-lc_*)
|
||||
candidates = itertools.chain([left.id], (o.id for o in others))
|
||||
|
||||
for id_ in candidates:
|
||||
if (
|
||||
id_
|
||||
and not id_.startswith(LC_ID_PREFIX)
|
||||
and not id_.startswith(LC_AUTO_PREFIX)
|
||||
):
|
||||
if not id_:
|
||||
continue
|
||||
|
||||
if not id_.startswith(LC_ID_PREFIX) and not id_.startswith(LC_AUTO_PREFIX):
|
||||
chunk_id = id_
|
||||
# Highest rank, return instantly
|
||||
break
|
||||
else:
|
||||
# second pass: prefer lc_run-* IDs over lc_* IDs
|
||||
for id_ in candidates:
|
||||
if id_ and id_.startswith(LC_ID_PREFIX):
|
||||
chunk_id = id_
|
||||
break
|
||||
else:
|
||||
# third pass: take any remaining ID (auto-generated lc_* IDs)
|
||||
for id_ in candidates:
|
||||
if id_:
|
||||
chunk_id = id_
|
||||
break
|
||||
|
||||
rank = 1 if id_.startswith(LC_ID_PREFIX) else 0
|
||||
|
||||
if rank > best_rank:
|
||||
best_rank = rank
|
||||
chunk_id = id_
|
||||
|
||||
chunk_position: Literal["last"] | None = (
|
||||
"last" if any(x.chunk_position == "last" for x in [left, *others]) else None
|
||||
|
||||
@@ -5,7 +5,6 @@ from __future__ import annotations
|
||||
from typing import TYPE_CHECKING, Any, cast, overload
|
||||
|
||||
from pydantic import ConfigDict, Field
|
||||
from typing_extensions import Self
|
||||
|
||||
from langchain_core._api.deprecation import warn_deprecated
|
||||
from langchain_core.load.serializable import Serializable
|
||||
@@ -17,6 +16,8 @@ from langchain_core.utils.interactive_env import is_interactive_env
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
|
||||
from typing_extensions import Self
|
||||
|
||||
from langchain_core.prompts.chat import ChatPromptTemplate
|
||||
|
||||
|
||||
@@ -203,7 +204,6 @@ class BaseMessage(Serializable):
|
||||
|
||||
"""
|
||||
# Needed here to avoid circular import, as these classes import BaseMessages
|
||||
from langchain_core.messages import content as types # noqa: PLC0415
|
||||
from langchain_core.messages.block_translators.anthropic import ( # noqa: PLC0415
|
||||
_convert_to_v1_from_anthropic_input,
|
||||
)
|
||||
@@ -265,6 +265,9 @@ class BaseMessage(Serializable):
|
||||
|
||||
Can be used as both property (`message.text`) and method (`message.text()`).
|
||||
|
||||
Handles both string and list content types (e.g. for content blocks). Only
|
||||
extracts blocks with `type: 'text'`; other block types are ignored.
|
||||
|
||||
!!! deprecated
|
||||
As of `langchain-core` 1.0.0, calling `.text()` as a method is deprecated.
|
||||
Use `.text` as a property instead. This method will be removed in 2.0.0.
|
||||
@@ -276,7 +279,7 @@ class BaseMessage(Serializable):
|
||||
if isinstance(self.content, str):
|
||||
text_value = self.content
|
||||
else:
|
||||
# must be a list
|
||||
# Must be a list
|
||||
blocks = [
|
||||
block
|
||||
for block in self.content
|
||||
@@ -301,7 +304,7 @@ class BaseMessage(Serializable):
|
||||
from langchain_core.prompts.chat import ChatPromptTemplate # noqa: PLC0415
|
||||
|
||||
prompt = ChatPromptTemplate(messages=[self])
|
||||
return prompt + other
|
||||
return prompt.__add__(other)
|
||||
|
||||
def pretty_repr(
|
||||
self,
|
||||
@@ -390,12 +393,12 @@ class BaseMessageChunk(BaseMessage):
|
||||
Raises:
|
||||
TypeError: If the other object is not a message chunk.
|
||||
|
||||
For example,
|
||||
|
||||
`AIMessageChunk(content="Hello") + AIMessageChunk(content=" World")`
|
||||
|
||||
will give `AIMessageChunk(content="Hello World")`
|
||||
|
||||
Example:
|
||||
```txt
|
||||
AIMessageChunk(content="Hello", ...)
|
||||
+ AIMessageChunk(content=" World", ...)
|
||||
= AIMessageChunk(content="Hello World", ...)
|
||||
```
|
||||
"""
|
||||
if isinstance(other, BaseMessageChunk):
|
||||
# If both are (subclasses of) BaseMessageChunk,
|
||||
|
||||
@@ -12,10 +12,11 @@ the implementation in `BaseMessage`.
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Callable
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Callable
|
||||
|
||||
from langchain_core.messages import AIMessage, AIMessageChunk
|
||||
from langchain_core.messages import content as types
|
||||
|
||||
|
||||
@@ -159,12 +159,12 @@ def _convert_citation_to_v1(citation: dict[str, Any]) -> types.Annotation:
|
||||
|
||||
return url_citation
|
||||
|
||||
if citation_type in (
|
||||
if citation_type in {
|
||||
"char_location",
|
||||
"content_block_location",
|
||||
"page_location",
|
||||
"search_result_location",
|
||||
):
|
||||
}:
|
||||
document_citation: types.Citation = {
|
||||
"type": "citation",
|
||||
"cited_text": citation["cited_text"],
|
||||
@@ -173,8 +173,6 @@ def _convert_citation_to_v1(citation: dict[str, Any]) -> types.Annotation:
|
||||
document_citation["title"] = citation["document_title"]
|
||||
elif title := citation.get("title"):
|
||||
document_citation["title"] = title
|
||||
else:
|
||||
pass
|
||||
known_fields = {
|
||||
"type",
|
||||
"cited_text",
|
||||
@@ -245,11 +243,20 @@ def _convert_to_v1_from_anthropic(message: AIMessage) -> list[types.ContentBlock
|
||||
and message.chunk_position != "last"
|
||||
):
|
||||
# Isolated chunk
|
||||
tool_call_chunk: types.ToolCallChunk = (
|
||||
message.tool_call_chunks[0].copy() # type: ignore[assignment]
|
||||
chunk = message.tool_call_chunks[0]
|
||||
|
||||
tool_call_chunk = types.ToolCallChunk(
|
||||
name=chunk.get("name"),
|
||||
id=chunk.get("id"),
|
||||
args=chunk.get("args"),
|
||||
type="tool_call_chunk",
|
||||
)
|
||||
if "type" not in tool_call_chunk:
|
||||
tool_call_chunk["type"] = "tool_call_chunk"
|
||||
if "caller" in block:
|
||||
tool_call_chunk["extras"] = {"caller": block["caller"]}
|
||||
|
||||
index = chunk.get("index")
|
||||
if index is not None:
|
||||
tool_call_chunk["index"] = index
|
||||
yield tool_call_chunk
|
||||
else:
|
||||
tool_call_block: types.ToolCall | None = None
|
||||
@@ -271,8 +278,6 @@ def _convert_to_v1_from_anthropic(message: AIMessage) -> list[types.ContentBlock
|
||||
"id": tc.get("id"),
|
||||
}
|
||||
break
|
||||
else:
|
||||
pass
|
||||
if not tool_call_block:
|
||||
tool_call_block = {
|
||||
"type": "tool_call",
|
||||
@@ -282,17 +287,27 @@ def _convert_to_v1_from_anthropic(message: AIMessage) -> list[types.ContentBlock
|
||||
}
|
||||
if "index" in block:
|
||||
tool_call_block["index"] = block["index"]
|
||||
if "caller" in block:
|
||||
if "extras" not in tool_call_block:
|
||||
tool_call_block["extras"] = {}
|
||||
tool_call_block["extras"]["caller"] = block["caller"]
|
||||
|
||||
yield tool_call_block
|
||||
|
||||
elif block_type == "input_json_delta" and isinstance(
|
||||
message, AIMessageChunk
|
||||
):
|
||||
if len(message.tool_call_chunks) == 1:
|
||||
tool_call_chunk = (
|
||||
message.tool_call_chunks[0].copy() # type: ignore[assignment]
|
||||
chunk = message.tool_call_chunks[0]
|
||||
tool_call_chunk = types.ToolCallChunk(
|
||||
name=chunk.get("name"),
|
||||
id=chunk.get("id"),
|
||||
args=chunk.get("args"),
|
||||
type="tool_call_chunk",
|
||||
)
|
||||
if "type" not in tool_call_chunk:
|
||||
tool_call_chunk["type"] = "tool_call_chunk"
|
||||
index = chunk.get("index")
|
||||
if index is not None:
|
||||
tool_call_chunk["index"] = index
|
||||
yield tool_call_chunk
|
||||
|
||||
else:
|
||||
@@ -446,12 +461,26 @@ def _convert_to_v1_from_anthropic(message: AIMessage) -> list[types.ContentBlock
|
||||
|
||||
|
||||
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message with Anthropic content."""
|
||||
"""Derive standard content blocks from a message with Anthropic content.
|
||||
|
||||
Args:
|
||||
message: The message to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
return _convert_to_v1_from_anthropic(message)
|
||||
|
||||
|
||||
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message chunk with Anthropic content."""
|
||||
"""Derive standard content blocks from a message chunk with Anthropic content.
|
||||
|
||||
Args:
|
||||
message: The message chunk to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
return _convert_to_v1_from_anthropic(message)
|
||||
|
||||
|
||||
|
||||
@@ -65,14 +65,28 @@ def _convert_to_v1_from_bedrock_chunk(
|
||||
|
||||
|
||||
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message with Bedrock content."""
|
||||
"""Derive standard content blocks from a message with Bedrock content.
|
||||
|
||||
Args:
|
||||
message: The message to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
if "claude" not in message.response_metadata.get("model_name", "").lower():
|
||||
raise NotImplementedError # fall back to best-effort parsing
|
||||
return _convert_to_v1_from_bedrock(message)
|
||||
|
||||
|
||||
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message chunk with Bedrock content."""
|
||||
"""Derive standard content blocks from a message chunk with Bedrock content.
|
||||
|
||||
Args:
|
||||
message: The message chunk to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
# TODO: add model_name to all Bedrock chunks and update core merging logic
|
||||
# to not append during aggregation. Then raise NotImplementedError here if
|
||||
# not an Anthropic model to fall back to best-effort parsing.
|
||||
|
||||
@@ -209,11 +209,16 @@ def _convert_to_v1_from_converse(message: AIMessage) -> list[types.ContentBlock]
|
||||
and message.chunk_position != "last"
|
||||
):
|
||||
# Isolated chunk
|
||||
tool_call_chunk: types.ToolCallChunk = (
|
||||
message.tool_call_chunks[0].copy() # type: ignore[assignment]
|
||||
chunk = message.tool_call_chunks[0]
|
||||
tool_call_chunk = types.ToolCallChunk(
|
||||
name=chunk.get("name"),
|
||||
id=chunk.get("id"),
|
||||
args=chunk.get("args"),
|
||||
type="tool_call_chunk",
|
||||
)
|
||||
if "type" not in tool_call_chunk:
|
||||
tool_call_chunk["type"] = "tool_call_chunk"
|
||||
index = chunk.get("index")
|
||||
if index is not None:
|
||||
tool_call_chunk["index"] = index
|
||||
yield tool_call_chunk
|
||||
else:
|
||||
tool_call_block: types.ToolCall | None = None
|
||||
@@ -235,8 +240,6 @@ def _convert_to_v1_from_converse(message: AIMessage) -> list[types.ContentBlock]
|
||||
"id": tc.get("id"),
|
||||
}
|
||||
break
|
||||
else:
|
||||
pass
|
||||
if not tool_call_block:
|
||||
tool_call_block = {
|
||||
"type": "tool_call",
|
||||
@@ -253,11 +256,16 @@ def _convert_to_v1_from_converse(message: AIMessage) -> list[types.ContentBlock]
|
||||
and isinstance(message, AIMessageChunk)
|
||||
and len(message.tool_call_chunks) == 1
|
||||
):
|
||||
tool_call_chunk = (
|
||||
message.tool_call_chunks[0].copy() # type: ignore[assignment]
|
||||
chunk = message.tool_call_chunks[0]
|
||||
tool_call_chunk = types.ToolCallChunk(
|
||||
name=chunk.get("name"),
|
||||
id=chunk.get("id"),
|
||||
args=chunk.get("args"),
|
||||
type="tool_call_chunk",
|
||||
)
|
||||
if "type" not in tool_call_chunk:
|
||||
tool_call_chunk["type"] = "tool_call_chunk"
|
||||
index = chunk.get("index")
|
||||
if index is not None:
|
||||
tool_call_chunk["index"] = index
|
||||
yield tool_call_chunk
|
||||
|
||||
else:
|
||||
@@ -273,12 +281,26 @@ def _convert_to_v1_from_converse(message: AIMessage) -> list[types.ContentBlock]
|
||||
|
||||
|
||||
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message with Bedrock Converse content."""
|
||||
"""Derive standard content blocks from a message with Bedrock Converse content.
|
||||
|
||||
Args:
|
||||
message: The message to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
return _convert_to_v1_from_converse(message)
|
||||
|
||||
|
||||
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a chunk with Bedrock Converse content."""
|
||||
"""Derive standard content blocks from a chunk with Bedrock Converse content.
|
||||
|
||||
Args:
|
||||
message: The message chunk to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
return _convert_to_v1_from_converse(message)
|
||||
|
||||
|
||||
|
||||
@@ -9,6 +9,13 @@ from langchain_core.messages import AIMessage, AIMessageChunk
|
||||
from langchain_core.messages import content as types
|
||||
from langchain_core.messages.content import Citation, create_citation
|
||||
|
||||
try:
|
||||
import filetype # type: ignore[import-not-found]
|
||||
|
||||
_HAS_FILETYPE = True
|
||||
except ImportError:
|
||||
_HAS_FILETYPE = False
|
||||
|
||||
|
||||
def _bytes_to_b64_str(bytes_: bytes) -> str:
|
||||
"""Convert bytes to base64 encoded string."""
|
||||
@@ -76,21 +83,36 @@ def translate_grounding_metadata_to_citations(
|
||||
for chunk_index in chunk_indices:
|
||||
if chunk_index < len(grounding_chunks):
|
||||
chunk = grounding_chunks[chunk_index]
|
||||
web_info = chunk.get("web", {})
|
||||
|
||||
# Handle web and maps grounding
|
||||
web_info = chunk.get("web") or {}
|
||||
maps_info = chunk.get("maps") or {}
|
||||
|
||||
# Extract citation info depending on source
|
||||
url = maps_info.get("uri") or web_info.get("uri")
|
||||
title = maps_info.get("title") or web_info.get("title")
|
||||
|
||||
# Note: confidence_scores is a legacy field from Gemini 2.0 and earlier
|
||||
# that indicated confidence (0.0-1.0) for each grounding chunk.
|
||||
#
|
||||
# In Gemini 2.5+, this field is always None/empty and should be ignored.
|
||||
extras_metadata = {
|
||||
"web_search_queries": web_search_queries,
|
||||
"grounding_chunk_index": chunk_index,
|
||||
"confidence_scores": support.get("confidence_scores") or [],
|
||||
}
|
||||
|
||||
# Add maps-specific metadata if present
|
||||
if maps_info.get("placeId"):
|
||||
extras_metadata["place_id"] = maps_info["placeId"]
|
||||
|
||||
citation = create_citation(
|
||||
url=web_info.get("uri"),
|
||||
title=web_info.get("title"),
|
||||
url=url,
|
||||
title=title,
|
||||
start_index=start_index,
|
||||
end_index=end_index,
|
||||
cited_text=cited_text,
|
||||
extras={
|
||||
"google_ai_metadata": {
|
||||
"web_search_queries": web_search_queries,
|
||||
"grounding_chunk_index": chunk_index,
|
||||
"confidence_scores": support.get("confidence_scores", []),
|
||||
}
|
||||
},
|
||||
google_ai_metadata=extras_metadata,
|
||||
)
|
||||
citations.append(citation)
|
||||
|
||||
@@ -376,9 +398,7 @@ def _convert_to_v1_from_genai(message: AIMessage) -> list[types.ContentBlock]:
|
||||
"base64": url,
|
||||
}
|
||||
|
||||
try:
|
||||
import filetype # type: ignore[import-not-found] # noqa: PLC0415
|
||||
|
||||
if _HAS_FILETYPE:
|
||||
# Guess MIME type based on file bytes
|
||||
mime_type = None
|
||||
kind = filetype.guess(decoded_bytes)
|
||||
@@ -386,9 +406,6 @@ def _convert_to_v1_from_genai(message: AIMessage) -> list[types.ContentBlock]:
|
||||
mime_type = kind.mime
|
||||
if mime_type:
|
||||
image_url_b64_block["mime_type"] = mime_type
|
||||
except ImportError:
|
||||
# filetype library not available, skip type detection
|
||||
pass
|
||||
|
||||
converted_blocks.append(
|
||||
cast("types.ImageContentBlock", image_url_b64_block)
|
||||
@@ -396,7 +413,10 @@ def _convert_to_v1_from_genai(message: AIMessage) -> list[types.ContentBlock]:
|
||||
except Exception:
|
||||
# Not valid base64, treat as non-standard
|
||||
converted_blocks.append(
|
||||
{"type": "non_standard", "value": item}
|
||||
{
|
||||
"type": "non_standard",
|
||||
"value": item,
|
||||
}
|
||||
)
|
||||
else:
|
||||
# This likely won't be reached according to previous implementations
|
||||
@@ -508,12 +528,26 @@ def _convert_to_v1_from_genai(message: AIMessage) -> list[types.ContentBlock]:
|
||||
|
||||
|
||||
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message with Google (GenAI) content."""
|
||||
"""Derive standard content blocks from a message with Google (GenAI) content.
|
||||
|
||||
Args:
|
||||
message: The message to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
return _convert_to_v1_from_genai(message)
|
||||
|
||||
|
||||
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a chunk with Google (GenAI) content."""
|
||||
"""Derive standard content blocks from a chunk with Google (GenAI) content.
|
||||
|
||||
Args:
|
||||
message: The message chunk to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
return _convert_to_v1_from_genai(message)
|
||||
|
||||
|
||||
|
||||
@@ -105,26 +105,40 @@ def _convert_to_v1_from_groq(message: AIMessage) -> list[types.ContentBlock]:
|
||||
if isinstance(message.content, str) and message.content:
|
||||
content_blocks.append({"type": "text", "text": message.content})
|
||||
|
||||
for tool_call in message.tool_calls:
|
||||
content_blocks.append( # noqa: PERF401
|
||||
{
|
||||
"type": "tool_call",
|
||||
"name": tool_call["name"],
|
||||
"args": tool_call["args"],
|
||||
"id": tool_call.get("id"),
|
||||
}
|
||||
)
|
||||
content_blocks.extend(
|
||||
{
|
||||
"type": "tool_call",
|
||||
"name": tool_call["name"],
|
||||
"args": tool_call["args"],
|
||||
"id": tool_call.get("id"),
|
||||
}
|
||||
for tool_call in message.tool_calls
|
||||
)
|
||||
|
||||
return content_blocks
|
||||
|
||||
|
||||
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message with groq content."""
|
||||
"""Derive standard content blocks from a message with groq content.
|
||||
|
||||
Args:
|
||||
message: The message to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
return _convert_to_v1_from_groq(message)
|
||||
|
||||
|
||||
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message chunk with groq content."""
|
||||
"""Derive standard content blocks from a message chunk with groq content.
|
||||
|
||||
Args:
|
||||
message: The message chunk to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
return _convert_to_v1_from_groq(message)
|
||||
|
||||
|
||||
|
||||
@@ -4,21 +4,34 @@ from __future__ import annotations
|
||||
|
||||
import json
|
||||
import warnings
|
||||
from collections.abc import Iterable
|
||||
from typing import TYPE_CHECKING, Any, Literal, cast
|
||||
|
||||
from langchain_core.language_models._utils import (
|
||||
_parse_data_uri,
|
||||
is_openai_data_block,
|
||||
)
|
||||
from langchain_core.messages import AIMessageChunk
|
||||
from langchain_core.messages import content as types
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain_core.messages import AIMessage, AIMessageChunk
|
||||
from collections.abc import Iterable
|
||||
|
||||
from langchain_core.messages import AIMessage
|
||||
|
||||
|
||||
def convert_to_openai_image_block(block: dict[str, Any]) -> dict:
|
||||
"""Convert `ImageContentBlock` to format expected by OpenAI Chat Completions."""
|
||||
"""Convert `ImageContentBlock` to format expected by OpenAI Chat Completions.
|
||||
|
||||
Args:
|
||||
block: The image content block to convert.
|
||||
|
||||
Raises:
|
||||
ValueError: If required keys are missing.
|
||||
ValueError: If source type is unsupported.
|
||||
|
||||
Returns:
|
||||
The formatted image content block.
|
||||
"""
|
||||
if "url" in block:
|
||||
return {
|
||||
"type": "image_url",
|
||||
@@ -49,6 +62,18 @@ def convert_to_openai_data_block(
|
||||
|
||||
"Standard data content block" can include old-style LangChain v0 blocks
|
||||
(URLContentBlock, Base64ContentBlock, IDContentBlock) or new ones.
|
||||
|
||||
Args:
|
||||
block: The content block to convert.
|
||||
api: The OpenAI API being targeted. Either "chat/completions" or "responses".
|
||||
|
||||
Raises:
|
||||
ValueError: If required keys are missing.
|
||||
ValueError: If file URLs are used with Chat Completions API.
|
||||
ValueError: If block type is unsupported.
|
||||
|
||||
Returns:
|
||||
The formatted content block.
|
||||
"""
|
||||
if block["type"] == "image":
|
||||
chat_completions_block = convert_to_openai_image_block(block)
|
||||
@@ -168,8 +193,6 @@ def _convert_to_v1_from_chat_completions_input(
|
||||
Returns:
|
||||
Updated list with OpenAI blocks converted to v1 format.
|
||||
"""
|
||||
from langchain_core.messages import content as types # noqa: PLC0415
|
||||
|
||||
converted_blocks = []
|
||||
unpacked_blocks: list[dict[str, Any]] = [
|
||||
cast("dict[str, Any]", block)
|
||||
@@ -247,7 +270,7 @@ def _convert_from_v1_to_chat_completions(message: AIMessage) -> AIMessage:
|
||||
if block_type == "text":
|
||||
# Strip annotations
|
||||
new_content.append({"type": "text", "text": block["text"]})
|
||||
elif block_type in ("reasoning", "tool_call"):
|
||||
elif block_type in {"reasoning", "tool_call"}:
|
||||
pass
|
||||
else:
|
||||
new_content.append(block)
|
||||
@@ -264,8 +287,6 @@ _FUNCTION_CALL_IDS_MAP_KEY = "__openai_function_call_ids__"
|
||||
|
||||
def _convert_from_v03_ai_message(message: AIMessage) -> AIMessage:
|
||||
"""Convert v0 AIMessage into `output_version="responses/v1"` format."""
|
||||
from langchain_core.messages import AIMessageChunk # noqa: PLC0415
|
||||
|
||||
# Only update ChatOpenAI v0.3 AIMessages
|
||||
is_chatopenai_v03 = (
|
||||
isinstance(message.content, list)
|
||||
@@ -682,8 +703,6 @@ def _convert_to_v1_from_responses(message: AIMessage) -> list[types.ContentBlock
|
||||
) = None
|
||||
call_id = block.get("call_id", "")
|
||||
|
||||
from langchain_core.messages import AIMessageChunk # noqa: PLC0415
|
||||
|
||||
if (
|
||||
isinstance(message, AIMessageChunk)
|
||||
and len(message.tool_call_chunks) == 1
|
||||
@@ -705,8 +724,6 @@ def _convert_to_v1_from_responses(message: AIMessage) -> list[types.ContentBlock
|
||||
if invalid_tool_call.get("id") == call_id:
|
||||
tool_call_block = invalid_tool_call.copy()
|
||||
break
|
||||
else:
|
||||
pass
|
||||
if tool_call_block:
|
||||
if "id" in block:
|
||||
if "extras" not in tool_call_block:
|
||||
@@ -734,7 +751,7 @@ def _convert_to_v1_from_responses(message: AIMessage) -> list[types.ContentBlock
|
||||
k: v for k, v in block["action"].items() if k != "sources"
|
||||
}
|
||||
for key in block:
|
||||
if key not in ("type", "id", "action", "status", "index"):
|
||||
if key not in {"type", "id", "action", "status", "index"}:
|
||||
web_search_call[key] = block[key]
|
||||
|
||||
yield cast("types.ServerToolCall", web_search_call)
|
||||
@@ -760,8 +777,6 @@ def _convert_to_v1_from_responses(message: AIMessage) -> list[types.ContentBlock
|
||||
web_search_result["status"] = "success"
|
||||
elif status:
|
||||
web_search_result["extras"] = {"status": status}
|
||||
else:
|
||||
pass
|
||||
if "index" in block and isinstance(block["index"], int):
|
||||
web_search_result["index"] = f"lc_wsr_{block['index'] + 1}"
|
||||
yield cast("types.ServerToolResult", web_search_result)
|
||||
@@ -777,14 +792,14 @@ def _convert_to_v1_from_responses(message: AIMessage) -> list[types.ContentBlock
|
||||
file_search_call["index"] = f"lc_fsc_{block['index']}"
|
||||
|
||||
for key in block:
|
||||
if key not in (
|
||||
if key not in {
|
||||
"type",
|
||||
"id",
|
||||
"queries",
|
||||
"results",
|
||||
"status",
|
||||
"index",
|
||||
):
|
||||
}:
|
||||
file_search_call[key] = block[key]
|
||||
|
||||
yield cast("types.ServerToolCall", file_search_call)
|
||||
@@ -803,8 +818,6 @@ def _convert_to_v1_from_responses(message: AIMessage) -> list[types.ContentBlock
|
||||
file_search_result["status"] = "success"
|
||||
elif status:
|
||||
file_search_result["extras"] = {"status": status}
|
||||
else:
|
||||
pass
|
||||
if "index" in block and isinstance(block["index"], int):
|
||||
file_search_result["index"] = f"lc_fsr_{block['index'] + 1}"
|
||||
yield cast("types.ServerToolResult", file_search_result)
|
||||
@@ -848,8 +861,6 @@ def _convert_to_v1_from_responses(message: AIMessage) -> list[types.ContentBlock
|
||||
code_interpreter_result["status"] = "success"
|
||||
elif status:
|
||||
code_interpreter_result["extras"] = {"status": status}
|
||||
else:
|
||||
pass
|
||||
if "index" in block and isinstance(block["index"], int):
|
||||
code_interpreter_result["index"] = f"lc_cir_{block['index'] + 1}"
|
||||
|
||||
@@ -980,7 +991,14 @@ def _convert_to_v1_from_responses(message: AIMessage) -> list[types.ContentBlock
|
||||
|
||||
|
||||
def translate_content(message: AIMessage) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message with OpenAI content."""
|
||||
"""Derive standard content blocks from a message with OpenAI content.
|
||||
|
||||
Args:
|
||||
message: The message to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
if isinstance(message.content, str):
|
||||
return _convert_to_v1_from_chat_completions(message)
|
||||
message = _convert_from_v03_ai_message(message)
|
||||
@@ -988,7 +1006,14 @@ def translate_content(message: AIMessage) -> list[types.ContentBlock]:
|
||||
|
||||
|
||||
def translate_content_chunk(message: AIMessageChunk) -> list[types.ContentBlock]:
|
||||
"""Derive standard content blocks from a message chunk with OpenAI content."""
|
||||
"""Derive standard content blocks from a message chunk with OpenAI content.
|
||||
|
||||
Args:
|
||||
message: The message chunk to translate.
|
||||
|
||||
Returns:
|
||||
The derived content blocks.
|
||||
"""
|
||||
if isinstance(message.content, str):
|
||||
return _convert_to_v1_from_chat_completions_chunk(message)
|
||||
message = _convert_from_v03_ai_message(message) # type: ignore[assignment]
|
||||
|
||||
@@ -1,18 +1,14 @@
|
||||
"""Standard, multimodal content blocks for Large Language Model I/O.
|
||||
|
||||
!!! warning
|
||||
This module is under active development. The API is unstable and subject to
|
||||
change in future releases.
|
||||
|
||||
This module provides standardized data structures for representing inputs to and
|
||||
outputs from LLMs. The core abstraction is the **Content Block**, a `TypedDict`.
|
||||
This module provides standardized data structures for representing inputs to and outputs
|
||||
from LLMs. The core abstraction is the **Content Block**, a `TypedDict`.
|
||||
|
||||
**Rationale**
|
||||
|
||||
Different LLM providers use distinct and incompatible API schemas. This module
|
||||
provides a unified, provider-agnostic format to facilitate these interactions. A
|
||||
message to or from a model is simply a list of content blocks, allowing for the natural
|
||||
interleaving of text, images, and other content in a single ordered sequence.
|
||||
Different LLM providers use distinct and incompatible API schemas. This module provides
|
||||
a unified, provider-agnostic format to facilitate these interactions. A message to or
|
||||
from a model is simply a list of content blocks, allowing for the natural interleaving
|
||||
of text, images, and other content in a single ordered sequence.
|
||||
|
||||
An adapter for a specific provider is responsible for translating this standard list of
|
||||
blocks into the format required by its API.
|
||||
@@ -25,16 +21,27 @@ without losing the benefits of type checking and validation.
|
||||
|
||||
Furthermore, provider-specific fields **within** a standard block are fully supported
|
||||
by default in the `extras` field of each block. This allows for additional metadata
|
||||
to be included without breaking the standard structure.
|
||||
to be included without breaking the standard structure. For example, Google's thought
|
||||
signature:
|
||||
|
||||
```python
|
||||
AIMessage(
|
||||
content=[
|
||||
{
|
||||
"type": "text",
|
||||
"text": "J'adore la programmation.",
|
||||
"extras": {"signature": "EpoWCpc..."}, # Thought signature
|
||||
}
|
||||
], ...
|
||||
)
|
||||
```
|
||||
|
||||
!!! warning
|
||||
Do not heavily rely on the `extras` field for provider-specific data! This field
|
||||
is subject to deprecation in future releases as we move towards PEP 728.
|
||||
|
||||
!!! note
|
||||
|
||||
Following widespread adoption of [PEP 728](https://peps.python.org/pep-0728/), we
|
||||
will add `extra_items=Any` as a param to Content Blocks. This will signify to type
|
||||
checkers that additional provider-specific fields are allowed outside of the
|
||||
intend to add `extra_items=Any` as a param to Content Blocks. This will signify to
|
||||
type checkers that additional provider-specific fields are allowed outside of the
|
||||
`extras` field, and that will become the new standard approach to adding
|
||||
provider-specific metadata.
|
||||
|
||||
@@ -72,30 +79,10 @@ to be included without breaking the standard structure.
|
||||
openai_data = my_block["openai_metadata"] # Type: Any
|
||||
```
|
||||
|
||||
PEP 728 is enabled with `# type: ignore[call-arg]` comments to suppress
|
||||
warnings from type checkers that don't yet support it. The functionality works
|
||||
correctly in Python 3.13+ and will be fully supported as the ecosystem catches
|
||||
up.
|
||||
|
||||
**Key Block Types**
|
||||
|
||||
The module defines several types of content blocks, including:
|
||||
|
||||
- `TextContentBlock`: Standard text output.
|
||||
- `Citation`: For annotations that link text output to a source document.
|
||||
- `ToolCall`: For function calling.
|
||||
- `ReasoningContentBlock`: To capture a model's thought process.
|
||||
- Multimodal data:
|
||||
- `ImageContentBlock`
|
||||
- `AudioContentBlock`
|
||||
- `VideoContentBlock`
|
||||
- `PlainTextContentBlock` (e.g. .txt or .md files)
|
||||
- `FileContentBlock` (e.g. PDFs, etc.)
|
||||
|
||||
**Example Usage**
|
||||
|
||||
```python
|
||||
# Direct construction:
|
||||
# Direct construction
|
||||
from langchain_core.messages.content import TextContentBlock, ImageContentBlock
|
||||
|
||||
multimodal_message: AIMessage(
|
||||
@@ -109,7 +96,7 @@ multimodal_message: AIMessage(
|
||||
]
|
||||
)
|
||||
|
||||
# Using factories:
|
||||
# Using factories
|
||||
from langchain_core.messages.content import create_text_block, create_image_block
|
||||
|
||||
multimodal_message: AIMessage(
|
||||
@@ -124,6 +111,7 @@ multimodal_message: AIMessage(
|
||||
```
|
||||
|
||||
Factory functions offer benefits such as:
|
||||
|
||||
- Automatic ID generation (when not provided)
|
||||
- No need to manually specify the `type` field
|
||||
"""
|
||||
@@ -139,30 +127,30 @@ class Citation(TypedDict):
|
||||
"""Annotation for citing data from a document.
|
||||
|
||||
!!! note
|
||||
|
||||
`start`/`end` indices refer to the **response text**,
|
||||
not the source text. This means that the indices are relative to the model's
|
||||
response, not the original document (as specified in the `url`).
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`create_citation` may also be used as a factory to create a `Citation`.
|
||||
Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["citation"]
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
url: NotRequired[str]
|
||||
@@ -200,13 +188,12 @@ class NonStandardAnnotation(TypedDict):
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
value: dict[str, Any]
|
||||
@@ -224,25 +211,24 @@ class TextContentBlock(TypedDict):
|
||||
from a language model or the text of a user message.
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`create_text_block` may also be used as a factory to create a
|
||||
`TextContentBlock`. Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["text"]
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
text: str
|
||||
@@ -270,12 +256,12 @@ class ToolCall(TypedDict):
|
||||
and an identifier of "123".
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`create_tool_call` may also be used as a factory to create a
|
||||
`ToolCall`. Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["tool_call"]
|
||||
@@ -286,7 +272,6 @@ class ToolCall(TypedDict):
|
||||
|
||||
An identifier is needed to associate a tool call request with a tool
|
||||
call result in events when multiple concurrent tool calls are made.
|
||||
|
||||
"""
|
||||
# TODO: Consider making this NotRequired[str] in the future.
|
||||
|
||||
@@ -332,8 +317,8 @@ class ToolCallChunk(TypedDict):
|
||||
|
||||
An identifier is needed to associate a tool call request with a tool
|
||||
call result in events when multiple concurrent tool calls are made.
|
||||
|
||||
"""
|
||||
# TODO: Consider making this NotRequired[str] in the future.
|
||||
|
||||
name: str | None
|
||||
"""The name of the tool to be called."""
|
||||
@@ -353,7 +338,6 @@ class InvalidToolCall(TypedDict):
|
||||
|
||||
Here we add an `error` key to surface errors made during generation
|
||||
(e.g., invalid JSON arguments.)
|
||||
|
||||
"""
|
||||
|
||||
# TODO: Consider making fields NotRequired[str] in the future.
|
||||
@@ -366,8 +350,8 @@ class InvalidToolCall(TypedDict):
|
||||
|
||||
An identifier is needed to associate a tool call request with a tool
|
||||
call result in events when multiple concurrent tool calls are made.
|
||||
|
||||
"""
|
||||
# TODO: Consider making this NotRequired[str] in the future.
|
||||
|
||||
name: str | None
|
||||
"""The name of the tool to be called."""
|
||||
@@ -423,7 +407,13 @@ class ServerToolCallChunk(TypedDict):
|
||||
"""JSON substring of the arguments to the tool call."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""An identifier associated with the tool call."""
|
||||
"""Unique identifier for this server tool call chunk.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
"""
|
||||
|
||||
index: NotRequired[int | str]
|
||||
"""Index of block in aggregate response. Used during streaming."""
|
||||
@@ -439,7 +429,13 @@ class ServerToolResult(TypedDict):
|
||||
"""Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""An identifier associated with the server tool result."""
|
||||
"""Unique identifier for this server tool result.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
"""
|
||||
|
||||
tool_call_id: str
|
||||
"""ID of the corresponding server tool call."""
|
||||
@@ -461,25 +457,24 @@ class ReasoningContentBlock(TypedDict):
|
||||
"""Reasoning output from a LLM.
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`create_reasoning_block` may also be used as a factory to create a
|
||||
`ReasoningContentBlock`. Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["reasoning"]
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
reasoning: NotRequired[str]
|
||||
@@ -487,7 +482,6 @@ class ReasoningContentBlock(TypedDict):
|
||||
|
||||
Either the thought summary or the raw reasoning text itself. This is often parsed
|
||||
from `<think>` tags in the model's response.
|
||||
|
||||
"""
|
||||
|
||||
index: NotRequired[int | str]
|
||||
@@ -504,35 +498,38 @@ class ImageContentBlock(TypedDict):
|
||||
"""Image data.
|
||||
|
||||
!!! note "Factory function"
|
||||
`create_image_block` may also be used as a factory to create a
|
||||
|
||||
`create_image_block` may also be used as a factory to create an
|
||||
`ImageContentBlock`. Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["image"]
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
file_id: NotRequired[str]
|
||||
"""ID of the image file, e.g., from a file storage system."""
|
||||
"""Reference to the image in an external file storage system.
|
||||
|
||||
For example, OpenAI or Anthropic's Files API.
|
||||
"""
|
||||
|
||||
mime_type: NotRequired[str]
|
||||
"""MIME type of the image. Required for base64.
|
||||
"""MIME type of the image.
|
||||
|
||||
Required for base64 data.
|
||||
|
||||
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml#image)
|
||||
|
||||
"""
|
||||
|
||||
index: NotRequired[int | str]
|
||||
@@ -552,35 +549,38 @@ class VideoContentBlock(TypedDict):
|
||||
"""Video data.
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`create_video_block` may also be used as a factory to create a
|
||||
`VideoContentBlock`. Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["video"]
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
file_id: NotRequired[str]
|
||||
"""ID of the video file, e.g., from a file storage system."""
|
||||
"""Reference to the video in an external file storage system.
|
||||
|
||||
For example, OpenAI or Anthropic's Files API.
|
||||
"""
|
||||
|
||||
mime_type: NotRequired[str]
|
||||
"""MIME type of the video. Required for base64.
|
||||
"""MIME type of the video.
|
||||
|
||||
Required for base64 data.
|
||||
|
||||
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml#video)
|
||||
|
||||
"""
|
||||
|
||||
index: NotRequired[int | str]
|
||||
@@ -600,34 +600,38 @@ class AudioContentBlock(TypedDict):
|
||||
"""Audio data.
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`create_audio_block` may also be used as a factory to create an
|
||||
`AudioContentBlock`. Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["audio"]
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
file_id: NotRequired[str]
|
||||
"""ID of the audio file, e.g., from a file storage system."""
|
||||
"""Reference to the audio file in an external file storage system.
|
||||
|
||||
For example, OpenAI or Anthropic's Files API.
|
||||
"""
|
||||
|
||||
mime_type: NotRequired[str]
|
||||
"""MIME type of the audio. Required for base64.
|
||||
"""MIME type of the audio.
|
||||
|
||||
Required for base64 data.
|
||||
|
||||
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml#audio)
|
||||
|
||||
"""
|
||||
|
||||
index: NotRequired[int | str]
|
||||
@@ -647,42 +651,49 @@ class PlainTextContentBlock(TypedDict):
|
||||
"""Plaintext data (e.g., from a `.txt` or `.md` document).
|
||||
|
||||
!!! note
|
||||
|
||||
A `PlainTextContentBlock` existed in `langchain-core<1.0.0`. Although the
|
||||
name has carried over, the structure has changed significantly. The only shared
|
||||
keys between the old and new versions are `type` and `text`, though the
|
||||
`type` value has changed from `'text'` to `'text-plain'`.
|
||||
|
||||
!!! note
|
||||
|
||||
Title and context are optional fields that may be passed to the model. See
|
||||
Anthropic [example](https://docs.claude.com/en/docs/build-with-claude/citations#citable-vs-non-citable-content).
|
||||
Anthropic [example](https://platform.claude.com/docs/en/build-with-claude/citations#citable-vs-non-citable-content).
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`create_plaintext_block` may also be used as a factory to create a
|
||||
`PlainTextContentBlock`. Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["text-plain"]
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
file_id: NotRequired[str]
|
||||
"""ID of the plaintext file, e.g., from a file storage system."""
|
||||
"""Reference to the plaintext file in an external file storage system.
|
||||
|
||||
For example, OpenAI or Anthropic's Files API.
|
||||
"""
|
||||
|
||||
mime_type: Literal["text/plain"]
|
||||
"""MIME type of the file. Required for base64."""
|
||||
"""MIME type of the file.
|
||||
|
||||
Required for base64 data.
|
||||
"""
|
||||
|
||||
index: NotRequired[int | str]
|
||||
"""Index of block in aggregate response. Used during streaming."""
|
||||
@@ -717,35 +728,44 @@ class FileContentBlock(TypedDict):
|
||||
`PlainTextContentBlock`).
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`create_file_block` may also be used as a factory to create a
|
||||
`FileContentBlock`. Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["file"]
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Used for tracking and referencing specific blocks (e.g., during streaming).
|
||||
|
||||
Not to be confused with `file_id`, which references an external file in a
|
||||
storage system.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
file_id: NotRequired[str]
|
||||
"""ID of the file, e.g., from a file storage system."""
|
||||
"""Reference to the file in an external file storage system.
|
||||
|
||||
For example, a file ID from OpenAI's Files API or another cloud storage provider.
|
||||
This is distinct from `id`, which identifies the content block itself.
|
||||
"""
|
||||
|
||||
mime_type: NotRequired[str]
|
||||
"""MIME type of the file. Required for base64.
|
||||
"""MIME type of the file.
|
||||
|
||||
Required for base64 data.
|
||||
|
||||
[Examples from IANA](https://www.iana.org/assignments/media-types/media-types.xhtml)
|
||||
|
||||
"""
|
||||
|
||||
index: NotRequired[int | str]
|
||||
@@ -780,25 +800,24 @@ class NonStandardContentBlock(TypedDict):
|
||||
`value` field.
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`create_non_standard_block` may also be used as a factory to create a
|
||||
`NonStandardContentBlock`. Benefits include:
|
||||
|
||||
* Automatic ID generation (when not provided)
|
||||
* Required arguments strictly validated at creation time
|
||||
|
||||
"""
|
||||
|
||||
type: Literal["non_standard"]
|
||||
"""Type of the content block. Used for discrimination."""
|
||||
|
||||
id: NotRequired[str]
|
||||
"""Content block identifier.
|
||||
"""Unique identifier for this content block.
|
||||
|
||||
Either:
|
||||
|
||||
- Generated by the provider (e.g., OpenAI's file ID)
|
||||
- Generated by the provider
|
||||
- Generated by LangChain upon creation (`UUID4` prefixed with `'lc_'`))
|
||||
|
||||
"""
|
||||
|
||||
value: dict[str, Any]
|
||||
@@ -855,7 +874,7 @@ KNOWN_BLOCK_TYPES = {
|
||||
"non_standard",
|
||||
# citation and non_standard_annotation intentionally omitted
|
||||
}
|
||||
"""These are block types known to `langchain-core>=1.0.0`.
|
||||
"""These are block types known to `langchain-core >= 1.0.0`.
|
||||
|
||||
If a block has a type not in this set, it is considered to be provider-specific.
|
||||
"""
|
||||
@@ -895,7 +914,6 @@ def is_data_content_block(block: dict) -> bool:
|
||||
|
||||
Returns:
|
||||
`True` if the content block is a data content block, `False` otherwise.
|
||||
|
||||
"""
|
||||
if block.get("type") not in _get_data_content_block_types():
|
||||
return False
|
||||
@@ -940,17 +958,21 @@ def create_text_block(
|
||||
|
||||
Args:
|
||||
text: The text content of the block.
|
||||
id: Content block identifier. Generated automatically if not provided.
|
||||
id: Content block identifier.
|
||||
|
||||
Generated automatically if not provided.
|
||||
annotations: `Citation`s and other annotations for the text.
|
||||
index: Index of block in aggregate response. Used during streaming.
|
||||
index: Index of block in aggregate response.
|
||||
|
||||
Used during streaming.
|
||||
|
||||
Returns:
|
||||
A properly formatted `TextContentBlock`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
block = TextContentBlock(
|
||||
type="text",
|
||||
@@ -985,9 +1007,15 @@ def create_image_block(
|
||||
url: URL of the image.
|
||||
base64: Base64-encoded image data.
|
||||
file_id: ID of the image file from a file storage system.
|
||||
mime_type: MIME type of the image. Required for base64 data.
|
||||
id: Content block identifier. Generated automatically if not provided.
|
||||
index: Index of block in aggregate response. Used during streaming.
|
||||
mime_type: MIME type of the image.
|
||||
|
||||
Required for base64 data.
|
||||
id: Content block identifier.
|
||||
|
||||
Generated automatically if not provided.
|
||||
index: Index of block in aggregate response.
|
||||
|
||||
Used during streaming.
|
||||
|
||||
Returns:
|
||||
A properly formatted `ImageContentBlock`.
|
||||
@@ -997,9 +1025,9 @@ def create_image_block(
|
||||
`mime_type`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
if not any([url, base64, file_id]):
|
||||
msg = "Must provide one of: url, base64, or file_id"
|
||||
@@ -1041,9 +1069,15 @@ def create_video_block(
|
||||
url: URL of the video.
|
||||
base64: Base64-encoded video data.
|
||||
file_id: ID of the video file from a file storage system.
|
||||
mime_type: MIME type of the video. Required for base64 data.
|
||||
id: Content block identifier. Generated automatically if not provided.
|
||||
index: Index of block in aggregate response. Used during streaming.
|
||||
mime_type: MIME type of the video.
|
||||
|
||||
Required for base64 data.
|
||||
id: Content block identifier.
|
||||
|
||||
Generated automatically if not provided.
|
||||
index: Index of block in aggregate response.
|
||||
|
||||
Used during streaming.
|
||||
|
||||
Returns:
|
||||
A properly formatted `VideoContentBlock`.
|
||||
@@ -1053,9 +1087,9 @@ def create_video_block(
|
||||
`mime_type`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
if not any([url, base64, file_id]):
|
||||
msg = "Must provide one of: url, base64, or file_id"
|
||||
@@ -1101,9 +1135,15 @@ def create_audio_block(
|
||||
url: URL of the audio.
|
||||
base64: Base64-encoded audio data.
|
||||
file_id: ID of the audio file from a file storage system.
|
||||
mime_type: MIME type of the audio. Required for base64 data.
|
||||
id: Content block identifier. Generated automatically if not provided.
|
||||
index: Index of block in aggregate response. Used during streaming.
|
||||
mime_type: MIME type of the audio.
|
||||
|
||||
Required for base64 data.
|
||||
id: Content block identifier.
|
||||
|
||||
Generated automatically if not provided.
|
||||
index: Index of block in aggregate response.
|
||||
|
||||
Used during streaming.
|
||||
|
||||
Returns:
|
||||
A properly formatted `AudioContentBlock`.
|
||||
@@ -1113,9 +1153,9 @@ def create_audio_block(
|
||||
`mime_type`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
if not any([url, base64, file_id]):
|
||||
msg = "Must provide one of: url, base64, or file_id"
|
||||
@@ -1161,9 +1201,15 @@ def create_file_block(
|
||||
url: URL of the file.
|
||||
base64: Base64-encoded file data.
|
||||
file_id: ID of the file from a file storage system.
|
||||
mime_type: MIME type of the file. Required for base64 data.
|
||||
id: Content block identifier. Generated automatically if not provided.
|
||||
index: Index of block in aggregate response. Used during streaming.
|
||||
mime_type: MIME type of the file.
|
||||
|
||||
Required for base64 data.
|
||||
id: Content block identifier.
|
||||
|
||||
Generated automatically if not provided.
|
||||
index: Index of block in aggregate response.
|
||||
|
||||
Used during streaming.
|
||||
|
||||
Returns:
|
||||
A properly formatted `FileContentBlock`.
|
||||
@@ -1173,9 +1219,9 @@ def create_file_block(
|
||||
`mime_type`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
if not any([url, base64, file_id]):
|
||||
msg = "Must provide one of: url, base64, or file_id"
|
||||
@@ -1225,16 +1271,20 @@ def create_plaintext_block(
|
||||
file_id: ID of the plaintext file from a file storage system.
|
||||
title: Title of the text data.
|
||||
context: Context or description of the text content.
|
||||
id: Content block identifier. Generated automatically if not provided.
|
||||
index: Index of block in aggregate response. Used during streaming.
|
||||
id: Content block identifier.
|
||||
|
||||
Generated automatically if not provided.
|
||||
index: Index of block in aggregate response.
|
||||
|
||||
Used during streaming.
|
||||
|
||||
Returns:
|
||||
A properly formatted `PlainTextContentBlock`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
block = PlainTextContentBlock(
|
||||
type="text-plain",
|
||||
@@ -1277,16 +1327,20 @@ def create_tool_call(
|
||||
Args:
|
||||
name: The name of the tool to be called.
|
||||
args: The arguments to the tool call.
|
||||
id: An identifier for the tool call. Generated automatically if not provided.
|
||||
index: Index of block in aggregate response. Used during streaming.
|
||||
id: An identifier for the tool call.
|
||||
|
||||
Generated automatically if not provided.
|
||||
index: Index of block in aggregate response.
|
||||
|
||||
Used during streaming.
|
||||
|
||||
Returns:
|
||||
A properly formatted `ToolCall`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
block = ToolCall(
|
||||
type="tool_call",
|
||||
@@ -1315,16 +1369,20 @@ def create_reasoning_block(
|
||||
|
||||
Args:
|
||||
reasoning: The reasoning text or thought summary.
|
||||
id: Content block identifier. Generated automatically if not provided.
|
||||
index: Index of block in aggregate response. Used during streaming.
|
||||
id: Content block identifier.
|
||||
|
||||
Generated automatically if not provided.
|
||||
index: Index of block in aggregate response.
|
||||
|
||||
Used during streaming.
|
||||
|
||||
Returns:
|
||||
A properly formatted `ReasoningContentBlock`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
block = ReasoningContentBlock(
|
||||
type="reasoning",
|
||||
@@ -1360,15 +1418,17 @@ def create_citation(
|
||||
start_index: Start index in the response text where citation applies.
|
||||
end_index: End index in the response text where citation applies.
|
||||
cited_text: Excerpt of source text being cited.
|
||||
id: Content block identifier. Generated automatically if not provided.
|
||||
id: Content block identifier.
|
||||
|
||||
Generated automatically if not provided.
|
||||
|
||||
Returns:
|
||||
A properly formatted `Citation`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
block = Citation(type="citation", id=ensure_id(id))
|
||||
|
||||
@@ -1400,16 +1460,20 @@ def create_non_standard_block(
|
||||
|
||||
Args:
|
||||
value: Provider-specific content data.
|
||||
id: Content block identifier. Generated automatically if not provided.
|
||||
index: Index of block in aggregate response. Used during streaming.
|
||||
id: Content block identifier.
|
||||
|
||||
Generated automatically if not provided.
|
||||
index: Index of block in aggregate response.
|
||||
|
||||
Used during streaming.
|
||||
|
||||
Returns:
|
||||
A properly formatted `NonStandardContentBlock`.
|
||||
|
||||
!!! note
|
||||
|
||||
The `id` is generated automatically if not provided, using a UUID4 format
|
||||
prefixed with `'lc_'` to indicate it is a LangChain-generated ID.
|
||||
|
||||
"""
|
||||
block = NonStandardContentBlock(
|
||||
type="non_standard",
|
||||
|
||||
@@ -29,38 +29,39 @@ class ToolMessage(BaseMessage, ToolOutputMixin):
|
||||
`ToolMessage` objects contain the result of a tool invocation. Typically, the result
|
||||
is encoded inside the `content` field.
|
||||
|
||||
Example: A `ToolMessage` representing a result of `42` from a tool call with id
|
||||
`tool_call_id` is used to associate the tool call request with the tool call
|
||||
response. Useful in situations where a chat model is able to request multiple tool
|
||||
calls in parallel.
|
||||
|
||||
```python
|
||||
from langchain_core.messages import ToolMessage
|
||||
Example:
|
||||
A `ToolMessage` representing a result of `42` from a tool call with id
|
||||
|
||||
ToolMessage(content="42", tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL")
|
||||
```
|
||||
```python
|
||||
from langchain_core.messages import ToolMessage
|
||||
|
||||
Example: A `ToolMessage` where only part of the tool output is sent to the model
|
||||
and the full output is passed in to artifact.
|
||||
ToolMessage(content="42", tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL")
|
||||
```
|
||||
|
||||
```python
|
||||
from langchain_core.messages import ToolMessage
|
||||
Example:
|
||||
A `ToolMessage` where only part of the tool output is sent to the model
|
||||
and the full output is passed in to artifact.
|
||||
|
||||
tool_output = {
|
||||
"stdout": "From the graph we can see that the correlation between "
|
||||
"x and y is ...",
|
||||
"stderr": None,
|
||||
"artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."},
|
||||
}
|
||||
```python
|
||||
from langchain_core.messages import ToolMessage
|
||||
|
||||
ToolMessage(
|
||||
content=tool_output["stdout"],
|
||||
artifact=tool_output,
|
||||
tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL",
|
||||
)
|
||||
```
|
||||
|
||||
The `tool_call_id` field is used to associate the tool call request with the
|
||||
tool call response. Useful in situations where a chat model is able
|
||||
to request multiple tool calls in parallel.
|
||||
tool_output = {
|
||||
"stdout": "From the graph we can see that the correlation between "
|
||||
"x and y is ...",
|
||||
"stderr": None,
|
||||
"artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."},
|
||||
}
|
||||
|
||||
ToolMessage(
|
||||
content=tool_output["stdout"],
|
||||
artifact=tool_output,
|
||||
tool_call_id="call_Jja7J89XsjrOLA5r!MEOW!SL",
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
tool_call_id: str
|
||||
@@ -213,20 +214,29 @@ class ToolCall(TypedDict):
|
||||
This represents a request to call the tool named `'foo'` with arguments
|
||||
`{"a": 1}` and an identifier of `'123'`.
|
||||
|
||||
!!! note "Factory function"
|
||||
|
||||
`tool_call` may also be used as a factory to create a `ToolCall`. Benefits
|
||||
include:
|
||||
|
||||
* Required arguments strictly validated at creation time
|
||||
"""
|
||||
|
||||
name: str
|
||||
"""The name of the tool to be called."""
|
||||
|
||||
args: dict[str, Any]
|
||||
"""The arguments to the tool call."""
|
||||
"""The arguments to the tool call as a dictionary."""
|
||||
|
||||
id: str | None
|
||||
"""An identifier associated with the tool call.
|
||||
|
||||
An identifier is needed to associate a tool call request with a tool
|
||||
call result in events when multiple concurrent tool calls are made.
|
||||
|
||||
"""
|
||||
|
||||
type: NotRequired[Literal["tool_call"]]
|
||||
"""Used for discrimination."""
|
||||
|
||||
|
||||
def tool_call(
|
||||
@@ -239,7 +249,7 @@ def tool_call(
|
||||
|
||||
Args:
|
||||
name: The name of the tool to be called.
|
||||
args: The arguments to the tool call.
|
||||
args: The arguments to the tool call as a dictionary.
|
||||
id: An identifier associated with the tool call.
|
||||
|
||||
Returns:
|
||||
@@ -251,9 +261,9 @@ def tool_call(
|
||||
class ToolCallChunk(TypedDict):
|
||||
"""A chunk of a tool call (yielded when streaming).
|
||||
|
||||
When merging `ToolCallChunk`s (e.g., via `AIMessageChunk.__add__`),
|
||||
all string attributes are concatenated. Chunks are only merged if their
|
||||
values of `index` are equal and not None.
|
||||
When merging `ToolCallChunk` objects (e.g., via `AIMessageChunk.__add__`), all
|
||||
string attributes are concatenated. Chunks are only merged if their values of
|
||||
`index` are equal and not `None`.
|
||||
|
||||
Example:
|
||||
```python
|
||||
@@ -269,13 +279,25 @@ class ToolCallChunk(TypedDict):
|
||||
|
||||
name: str | None
|
||||
"""The name of the tool to be called."""
|
||||
|
||||
args: str | None
|
||||
"""The arguments to the tool call."""
|
||||
"""The arguments to the tool call as a JSON-parseable string."""
|
||||
|
||||
id: str | None
|
||||
"""An identifier associated with the tool call."""
|
||||
"""An identifier associated with the tool call.
|
||||
|
||||
An identifier is needed to associate a tool call request with a tool
|
||||
call result in events when multiple concurrent tool calls are made.
|
||||
"""
|
||||
|
||||
index: int | None
|
||||
"""The index of the tool call in a sequence."""
|
||||
"""The index of the tool call in a sequence.
|
||||
|
||||
Used for merging chunks.
|
||||
"""
|
||||
|
||||
type: NotRequired[Literal["tool_call_chunk"]]
|
||||
"""Used for discrimination."""
|
||||
|
||||
|
||||
def tool_call_chunk(
|
||||
@@ -289,7 +311,7 @@ def tool_call_chunk(
|
||||
|
||||
Args:
|
||||
name: The name of the tool to be called.
|
||||
args: The arguments to the tool call.
|
||||
args: The arguments to the tool call as a JSON string.
|
||||
id: An identifier associated with the tool call.
|
||||
index: The index of the tool call in a sequence.
|
||||
|
||||
@@ -312,7 +334,7 @@ def invalid_tool_call(
|
||||
|
||||
Args:
|
||||
name: The name of the tool to be called.
|
||||
args: The arguments to the tool call.
|
||||
args: The arguments to the tool call as a JSON string.
|
||||
id: An identifier associated with the tool call.
|
||||
error: An error message associated with the tool call.
|
||||
|
||||
|
||||
@@ -15,12 +15,16 @@ import json
|
||||
import logging
|
||||
import math
|
||||
from collections.abc import Callable, Iterable, Sequence
|
||||
from functools import partial
|
||||
from functools import partial, wraps
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Annotated,
|
||||
Any,
|
||||
Concatenate,
|
||||
Literal,
|
||||
ParamSpec,
|
||||
Protocol,
|
||||
TypeVar,
|
||||
cast,
|
||||
overload,
|
||||
)
|
||||
@@ -61,14 +65,19 @@ logger = logging.getLogger(__name__)
|
||||
def _get_type(v: Any) -> str:
|
||||
"""Get the type associated with the object for serialization purposes."""
|
||||
if isinstance(v, dict) and "type" in v:
|
||||
return v["type"]
|
||||
if hasattr(v, "type"):
|
||||
return v.type
|
||||
msg = (
|
||||
f"Expected either a dictionary with a 'type' key or an object "
|
||||
f"with a 'type' attribute. Instead got type {type(v)}."
|
||||
)
|
||||
raise TypeError(msg)
|
||||
result = v["type"]
|
||||
elif hasattr(v, "type"):
|
||||
result = v.type
|
||||
else:
|
||||
msg = (
|
||||
f"Expected either a dictionary with a 'type' key or an object "
|
||||
f"with a 'type' attribute. Instead got type {type(v)}."
|
||||
)
|
||||
raise TypeError(msg)
|
||||
if not isinstance(result, str):
|
||||
msg = f"Expected 'type' to be a str, got {type(result).__name__}"
|
||||
raise TypeError(msg)
|
||||
return result
|
||||
|
||||
|
||||
AnyMessage = Annotated[
|
||||
@@ -90,7 +99,10 @@ AnyMessage = Annotated[
|
||||
|
||||
|
||||
def get_buffer_string(
|
||||
messages: Sequence[BaseMessage], human_prefix: str = "Human", ai_prefix: str = "AI"
|
||||
messages: Sequence[BaseMessage],
|
||||
human_prefix: str = "Human",
|
||||
ai_prefix: str = "AI",
|
||||
message_separator: str = "\n",
|
||||
) -> str:
|
||||
r"""Convert a sequence of messages to strings and concatenate them into one string.
|
||||
|
||||
@@ -98,6 +110,7 @@ def get_buffer_string(
|
||||
messages: Messages to be converted to strings.
|
||||
human_prefix: The prefix to prepend to contents of `HumanMessage`s.
|
||||
ai_prefix: The prefix to prepend to contents of `AIMessage`.
|
||||
message_separator: The separator to use between messages.
|
||||
|
||||
Returns:
|
||||
A single string concatenation of all input messages.
|
||||
@@ -105,6 +118,11 @@ def get_buffer_string(
|
||||
Raises:
|
||||
ValueError: If an unsupported message type is encountered.
|
||||
|
||||
Note:
|
||||
If a message is an `AIMessage` and contains both tool calls under `tool_calls`
|
||||
and a function call under `additional_kwargs["function_call"]`, only the tool
|
||||
calls will be appended to the string representation.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from langchain_core import AIMessage, HumanMessage
|
||||
@@ -134,12 +152,19 @@ def get_buffer_string(
|
||||
else:
|
||||
msg = f"Got unsupported message type: {m}"
|
||||
raise ValueError(msg) # noqa: TRY004
|
||||
|
||||
message = f"{role}: {m.text}"
|
||||
if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs:
|
||||
message += f"{m.additional_kwargs['function_call']}"
|
||||
|
||||
if isinstance(m, AIMessage):
|
||||
if m.tool_calls:
|
||||
message += f"{m.tool_calls}"
|
||||
elif "function_call" in m.additional_kwargs:
|
||||
# Legacy behavior assumes only one function call per message
|
||||
message += f"{m.additional_kwargs['function_call']}"
|
||||
|
||||
string_messages.append(message)
|
||||
|
||||
return "\n".join(string_messages)
|
||||
return message_separator.join(string_messages)
|
||||
|
||||
|
||||
def _message_from_dict(message: dict) -> BaseMessage:
|
||||
@@ -202,8 +227,11 @@ def message_chunk_to_message(chunk: BaseMessage) -> BaseMessage:
|
||||
ignore_keys = ["type"]
|
||||
if isinstance(chunk, AIMessageChunk):
|
||||
ignore_keys.extend(["tool_call_chunks", "chunk_position"])
|
||||
return chunk.__class__.__mro__[1](
|
||||
**{k: v for k, v in chunk.__dict__.items() if k not in ignore_keys}
|
||||
return cast(
|
||||
"BaseMessage",
|
||||
chunk.__class__.__mro__[1](
|
||||
**{k: v for k, v in chunk.__dict__.items() if k not in ignore_keys}
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -225,13 +253,13 @@ def _create_message_from_message_type(
|
||||
"""Create a message from a `Message` type and content string.
|
||||
|
||||
Args:
|
||||
message_type: (str) the type of the message (e.g., `'human'`, `'ai'`, etc.).
|
||||
content: (str) the content string.
|
||||
name: (str) the name of the message.
|
||||
tool_call_id: (str) the tool call id.
|
||||
tool_calls: (list[dict[str, Any]]) the tool calls.
|
||||
id: (str) the id of the message.
|
||||
additional_kwargs: (dict[str, Any]) additional keyword arguments.
|
||||
message_type: the type of the message (e.g., `'human'`, `'ai'`, etc.).
|
||||
content: the content string.
|
||||
name: the name of the message.
|
||||
tool_call_id: the tool call id.
|
||||
tool_calls: the tool calls.
|
||||
id: the id of the message.
|
||||
additional_kwargs: additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
a message of the appropriate type.
|
||||
@@ -384,33 +412,54 @@ def convert_to_messages(
|
||||
return [_convert_to_message(m) for m in messages]
|
||||
|
||||
|
||||
def _runnable_support(func: Callable) -> Callable:
|
||||
_P = ParamSpec("_P")
|
||||
_R_co = TypeVar("_R_co", covariant=True)
|
||||
|
||||
|
||||
class _RunnableSupportCallable(Protocol[_P, _R_co]):
|
||||
@overload
|
||||
def wrapped(
|
||||
messages: None = None, **kwargs: Any
|
||||
) -> Runnable[Sequence[MessageLikeRepresentation], list[BaseMessage]]: ...
|
||||
def __call__(
|
||||
self,
|
||||
messages: None = None,
|
||||
*args: _P.args,
|
||||
**kwargs: _P.kwargs,
|
||||
) -> Runnable[Sequence[MessageLikeRepresentation], _R_co]: ...
|
||||
|
||||
@overload
|
||||
def wrapped(
|
||||
messages: Sequence[MessageLikeRepresentation], **kwargs: Any
|
||||
) -> list[BaseMessage]: ...
|
||||
def __call__(
|
||||
self,
|
||||
messages: Sequence[MessageLikeRepresentation] | PromptValue,
|
||||
*args: _P.args,
|
||||
**kwargs: _P.kwargs,
|
||||
) -> _R_co: ...
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
messages: Sequence[MessageLikeRepresentation] | PromptValue | None = None,
|
||||
*args: _P.args,
|
||||
**kwargs: _P.kwargs,
|
||||
) -> _R_co | Runnable[Sequence[MessageLikeRepresentation], _R_co]: ...
|
||||
|
||||
|
||||
def _runnable_support(
|
||||
func: Callable[
|
||||
Concatenate[Sequence[MessageLikeRepresentation] | PromptValue, _P], _R_co
|
||||
],
|
||||
) -> _RunnableSupportCallable[_P, _R_co]:
|
||||
@wraps(func)
|
||||
def wrapped(
|
||||
messages: Sequence[MessageLikeRepresentation] | None = None,
|
||||
**kwargs: Any,
|
||||
) -> (
|
||||
list[BaseMessage]
|
||||
| Runnable[Sequence[MessageLikeRepresentation], list[BaseMessage]]
|
||||
):
|
||||
messages: Sequence[MessageLikeRepresentation] | PromptValue | None = None,
|
||||
*args: _P.args,
|
||||
**kwargs: _P.kwargs,
|
||||
) -> _R_co | Runnable[Sequence[MessageLikeRepresentation], _R_co]:
|
||||
# Import locally to prevent circular import.
|
||||
from langchain_core.runnables.base import RunnableLambda # noqa: PLC0415
|
||||
|
||||
if messages is not None:
|
||||
return func(messages, **kwargs)
|
||||
return func(messages, *args, **kwargs)
|
||||
return RunnableLambda(partial(func, **kwargs), name=func.__name__)
|
||||
|
||||
wrapped.__doc__ = func.__doc__
|
||||
return wrapped
|
||||
return cast("_RunnableSupportCallable[_P, _R_co]", wrapped)
|
||||
|
||||
|
||||
@_runnable_support
|
||||
@@ -514,6 +563,7 @@ def filter_messages(
|
||||
):
|
||||
continue
|
||||
|
||||
new_msg = msg
|
||||
if isinstance(exclude_tool_calls, (list, tuple, set)):
|
||||
if isinstance(msg, AIMessage) and msg.tool_calls:
|
||||
tool_calls = [
|
||||
@@ -537,7 +587,7 @@ def filter_messages(
|
||||
)
|
||||
]
|
||||
|
||||
msg = msg.model_copy( # noqa: PLW2901
|
||||
new_msg = msg.model_copy(
|
||||
update={"tool_calls": tool_calls, "content": content}
|
||||
)
|
||||
elif (
|
||||
@@ -548,11 +598,11 @@ def filter_messages(
|
||||
# default to inclusion when no inclusion criteria given.
|
||||
if (
|
||||
not (include_types or include_ids or include_names)
|
||||
or (include_names and msg.name in include_names)
|
||||
or (include_types and _is_message_type(msg, include_types))
|
||||
or (include_ids and msg.id in include_ids)
|
||||
or (include_names and new_msg.name in include_names)
|
||||
or (include_types and _is_message_type(new_msg, include_types))
|
||||
or (include_ids and new_msg.id in include_ids)
|
||||
):
|
||||
filtered.append(msg)
|
||||
filtered.append(new_msg)
|
||||
|
||||
return filtered
|
||||
|
||||
@@ -695,7 +745,8 @@ def trim_messages(
|
||||
max_tokens: int,
|
||||
token_counter: Callable[[list[BaseMessage]], int]
|
||||
| Callable[[BaseMessage], int]
|
||||
| BaseLanguageModel,
|
||||
| BaseLanguageModel
|
||||
| Literal["approximate"],
|
||||
strategy: Literal["first", "last"] = "last",
|
||||
allow_partial: bool = False,
|
||||
end_on: str | type[BaseMessage] | Sequence[str | type[BaseMessage]] | None = None,
|
||||
@@ -733,51 +784,65 @@ def trim_messages(
|
||||
messages: Sequence of Message-like objects to trim.
|
||||
max_tokens: Max token count of trimmed messages.
|
||||
token_counter: Function or llm for counting tokens in a `BaseMessage` or a
|
||||
list of `BaseMessage`. If a `BaseLanguageModel` is passed in then
|
||||
`BaseLanguageModel.get_num_tokens_from_messages()` will be used.
|
||||
Set to `len` to count the number of **messages** in the chat history.
|
||||
list of `BaseMessage`.
|
||||
|
||||
If a `BaseLanguageModel` is passed in then
|
||||
`BaseLanguageModel.get_num_tokens_from_messages()` will be used. Set to
|
||||
`len` to count the number of **messages** in the chat history.
|
||||
|
||||
You can also use string shortcuts for convenience:
|
||||
|
||||
- `'approximate'`: Uses `count_tokens_approximately` for fast, approximate
|
||||
token counts.
|
||||
|
||||
!!! note
|
||||
Use `count_tokens_approximately` to get fast, approximate token
|
||||
counts.
|
||||
This is recommended for using `trim_messages` on the hot path, where
|
||||
exact token counting is not necessary.
|
||||
|
||||
`count_tokens_approximately` (or the shortcut `'approximate'`) is
|
||||
recommended for using `trim_messages` on the hot path, where exact token
|
||||
counting is not necessary.
|
||||
|
||||
strategy: Strategy for trimming.
|
||||
|
||||
- `'first'`: Keep the first `<= n_count` tokens of the messages.
|
||||
- `'last'`: Keep the last `<= n_count` tokens of the messages.
|
||||
allow_partial: Whether to split a message if only part of the message can be
|
||||
included. If `strategy='last'` then the last partial contents of a message
|
||||
are included. If `strategy='first'` then the first partial contents of a
|
||||
message are included.
|
||||
end_on: The message type to end on. If specified then every message after the
|
||||
last occurrence of this type is ignored. If `strategy='last'` then this
|
||||
is done before we attempt to get the last `max_tokens`. If
|
||||
`strategy='first'` then this is done after we get the first
|
||||
`max_tokens`. Can be specified as string names (e.g. `'system'`,
|
||||
`'human'`, `'ai'`, ...) or as `BaseMessage` classes (e.g.
|
||||
`SystemMessage`, `HumanMessage`, `AIMessage`, ...). Can be a single
|
||||
type or a list of types.
|
||||
included.
|
||||
|
||||
start_on: The message type to start on. Should only be specified if
|
||||
`strategy='last'`. If specified then every message before
|
||||
the first occurrence of this type is ignored. This is done after we trim
|
||||
the initial messages to the last `max_tokens`. Does not
|
||||
apply to a `SystemMessage` at index 0 if `include_system=True`. Can be
|
||||
specified as string names (e.g. `'system'`, `'human'`, `'ai'`, ...) or
|
||||
as `BaseMessage` classes (e.g. `SystemMessage`, `HumanMessage`,
|
||||
`AIMessage`, ...). Can be a single type or a list of types.
|
||||
If `strategy='last'` then the last partial contents of a message are
|
||||
included. If `strategy='first'` then the first partial contents of a
|
||||
message are included.
|
||||
end_on: The message type to end on.
|
||||
|
||||
If specified then every message after the last occurrence of this type is
|
||||
ignored. If `strategy='last'` then this is done before we attempt to get the
|
||||
last `max_tokens`. If `strategy='first'` then this is done after we get the
|
||||
first `max_tokens`. Can be specified as string names (e.g. `'system'`,
|
||||
`'human'`, `'ai'`, ...) or as `BaseMessage` classes (e.g. `SystemMessage`,
|
||||
`HumanMessage`, `AIMessage`, ...). Can be a single type or a list of types.
|
||||
|
||||
start_on: The message type to start on.
|
||||
|
||||
Should only be specified if `strategy='last'`. If specified then every
|
||||
message before the first occurrence of this type is ignored. This is done
|
||||
after we trim the initial messages to the last `max_tokens`. Does not apply
|
||||
to a `SystemMessage` at index 0 if `include_system=True`. Can be specified
|
||||
as string names (e.g. `'system'`, `'human'`, `'ai'`, ...) or as
|
||||
`BaseMessage` classes (e.g. `SystemMessage`, `HumanMessage`, `AIMessage`,
|
||||
...). Can be a single type or a list of types.
|
||||
|
||||
include_system: Whether to keep the `SystemMessage` if there is one at index
|
||||
`0`. Should only be specified if `strategy="last"`.
|
||||
`0`.
|
||||
|
||||
Should only be specified if `strategy="last"`.
|
||||
text_splitter: Function or `langchain_text_splitters.TextSplitter` for
|
||||
splitting the string contents of a message. Only used if
|
||||
`allow_partial=True`. If `strategy='last'` then the last split tokens
|
||||
from a partial message will be included. if `strategy='first'` then the
|
||||
first split tokens from a partial message will be included. Token splitter
|
||||
assumes that separators are kept, so that split contents can be directly
|
||||
concatenated to recreate the original text. Defaults to splitting on
|
||||
newlines.
|
||||
splitting the string contents of a message.
|
||||
|
||||
Only used if `allow_partial=True`. If `strategy='last'` then the last split
|
||||
tokens from a partial message will be included. if `strategy='first'` then
|
||||
the first split tokens from a partial message will be included. Token
|
||||
splitter assumes that separators are kept, so that split contents can be
|
||||
directly concatenated to recreate the original text. Defaults to splitting
|
||||
on newlines.
|
||||
|
||||
Returns:
|
||||
List of trimmed `BaseMessage`.
|
||||
@@ -788,8 +853,8 @@ def trim_messages(
|
||||
|
||||
Example:
|
||||
Trim chat history based on token count, keeping the `SystemMessage` if
|
||||
present, and ensuring that the chat history starts with a `HumanMessage` (
|
||||
or a `SystemMessage` followed by a `HumanMessage`).
|
||||
present, and ensuring that the chat history starts with a `HumanMessage` (or a
|
||||
`SystemMessage` followed by a `HumanMessage`).
|
||||
|
||||
```python
|
||||
from langchain_core.messages import (
|
||||
@@ -842,8 +907,34 @@ def trim_messages(
|
||||
]
|
||||
```
|
||||
|
||||
Trim chat history using approximate token counting with `'approximate'`:
|
||||
|
||||
```python
|
||||
trim_messages(
|
||||
messages,
|
||||
max_tokens=45,
|
||||
strategy="last",
|
||||
# Using the "approximate" shortcut for fast token counting
|
||||
token_counter="approximate",
|
||||
start_on="human",
|
||||
include_system=True,
|
||||
)
|
||||
|
||||
# This is equivalent to using `count_tokens_approximately` directly
|
||||
from langchain_core.messages.utils import count_tokens_approximately
|
||||
|
||||
trim_messages(
|
||||
messages,
|
||||
max_tokens=45,
|
||||
strategy="last",
|
||||
token_counter=count_tokens_approximately,
|
||||
start_on="human",
|
||||
include_system=True,
|
||||
)
|
||||
```
|
||||
|
||||
Trim chat history based on the message count, keeping the `SystemMessage` if
|
||||
present, and ensuring that the chat history starts with a `HumanMessage` (
|
||||
present, and ensuring that the chat history starts with a HumanMessage (
|
||||
or a `SystemMessage` followed by a `HumanMessage`).
|
||||
|
||||
trim_messages(
|
||||
@@ -965,24 +1056,44 @@ def trim_messages(
|
||||
raise ValueError(msg)
|
||||
|
||||
messages = convert_to_messages(messages)
|
||||
if hasattr(token_counter, "get_num_tokens_from_messages"):
|
||||
list_token_counter = token_counter.get_num_tokens_from_messages
|
||||
elif callable(token_counter):
|
||||
|
||||
# Handle string shortcuts for token counter
|
||||
if isinstance(token_counter, str):
|
||||
if token_counter in _TOKEN_COUNTER_SHORTCUTS:
|
||||
actual_token_counter = _TOKEN_COUNTER_SHORTCUTS[token_counter]
|
||||
else:
|
||||
available_shortcuts = ", ".join(
|
||||
f"'{key}'" for key in _TOKEN_COUNTER_SHORTCUTS
|
||||
)
|
||||
msg = (
|
||||
f"Invalid token_counter shortcut '{token_counter}'. "
|
||||
f"Available shortcuts: {available_shortcuts}."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
else:
|
||||
# Type narrowing: at this point token_counter is not a str
|
||||
actual_token_counter = token_counter # type: ignore[assignment]
|
||||
|
||||
if hasattr(actual_token_counter, "get_num_tokens_from_messages"):
|
||||
list_token_counter = actual_token_counter.get_num_tokens_from_messages
|
||||
elif callable(actual_token_counter):
|
||||
if (
|
||||
next(iter(inspect.signature(token_counter).parameters.values())).annotation
|
||||
next(
|
||||
iter(inspect.signature(actual_token_counter).parameters.values())
|
||||
).annotation
|
||||
is BaseMessage
|
||||
):
|
||||
|
||||
def list_token_counter(messages: Sequence[BaseMessage]) -> int:
|
||||
return sum(token_counter(msg) for msg in messages) # type: ignore[arg-type, misc]
|
||||
return sum(actual_token_counter(msg) for msg in messages) # type: ignore[arg-type, misc]
|
||||
|
||||
else:
|
||||
list_token_counter = token_counter
|
||||
list_token_counter = actual_token_counter
|
||||
else:
|
||||
msg = (
|
||||
f"'token_counter' expected to be a model that implements "
|
||||
f"'get_num_tokens_from_messages()' or a function. Received object of type "
|
||||
f"{type(token_counter)}."
|
||||
f"{type(actual_token_counter)}."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
@@ -1017,11 +1128,38 @@ def trim_messages(
|
||||
raise ValueError(msg)
|
||||
|
||||
|
||||
_SingleMessage = BaseMessage | str | dict[str, Any]
|
||||
_T = TypeVar("_T", bound=_SingleMessage)
|
||||
# A sequence of _SingleMessage that is NOT a bare str
|
||||
_MultipleMessages = Sequence[_T]
|
||||
|
||||
|
||||
@overload
|
||||
def convert_to_openai_messages(
|
||||
messages: _SingleMessage,
|
||||
*,
|
||||
text_format: Literal["string", "block"] = "string",
|
||||
include_id: bool = False,
|
||||
pass_through_unknown_blocks: bool = True,
|
||||
) -> dict: ...
|
||||
|
||||
|
||||
@overload
|
||||
def convert_to_openai_messages(
|
||||
messages: _MultipleMessages,
|
||||
*,
|
||||
text_format: Literal["string", "block"] = "string",
|
||||
include_id: bool = False,
|
||||
pass_through_unknown_blocks: bool = True,
|
||||
) -> list[dict]: ...
|
||||
|
||||
|
||||
def convert_to_openai_messages(
|
||||
messages: MessageLikeRepresentation | Sequence[MessageLikeRepresentation],
|
||||
*,
|
||||
text_format: Literal["string", "block"] = "string",
|
||||
include_id: bool = False,
|
||||
pass_through_unknown_blocks: bool = True,
|
||||
) -> dict | list[dict]:
|
||||
"""Convert LangChain messages into OpenAI message dicts.
|
||||
|
||||
@@ -1041,6 +1179,9 @@ def convert_to_openai_messages(
|
||||
content blocks these are left as is.
|
||||
include_id: Whether to include message IDs in the openai messages, if they
|
||||
are present in the source messages.
|
||||
pass_through_unknown_blocks: Whether to include content blocks with unknown
|
||||
formats in the output. If `False`, an error is raised if an unknown
|
||||
content block is encountered.
|
||||
|
||||
Raises:
|
||||
ValueError: if an unrecognized `text_format` is specified, or if a message
|
||||
@@ -1108,7 +1249,7 @@ def convert_to_openai_messages(
|
||||
err = f"Unrecognized {text_format=}, expected one of 'string' or 'block'."
|
||||
raise ValueError(err)
|
||||
|
||||
oai_messages: list = []
|
||||
oai_messages: list[dict] = []
|
||||
|
||||
if is_single := isinstance(messages, (BaseMessage, dict, str)):
|
||||
messages = [messages]
|
||||
@@ -1290,6 +1431,36 @@ def convert_to_openai_messages(
|
||||
},
|
||||
}
|
||||
)
|
||||
elif block.get("type") == "function_call": # OpenAI Responses
|
||||
if not any(
|
||||
tool_call["id"] == block.get("call_id")
|
||||
for tool_call in cast("AIMessage", message).tool_calls
|
||||
):
|
||||
if missing := [
|
||||
k
|
||||
for k in ("call_id", "name", "arguments")
|
||||
if k not in block
|
||||
]:
|
||||
err = (
|
||||
f"Unrecognized content block at "
|
||||
f"messages[{i}].content[{j}] has 'type': "
|
||||
f"'tool_use', but is missing expected key(s) "
|
||||
f"{missing}. Full content block:\n\n{block}"
|
||||
)
|
||||
raise ValueError(err)
|
||||
oai_msg["tool_calls"] = oai_msg.get("tool_calls", [])
|
||||
oai_msg["tool_calls"].append(
|
||||
{
|
||||
"type": "function",
|
||||
"id": block.get("call_id"),
|
||||
"function": {
|
||||
"name": block.get("name"),
|
||||
"arguments": block.get("arguments"),
|
||||
},
|
||||
}
|
||||
)
|
||||
if pass_through_unknown_blocks:
|
||||
content.append(block)
|
||||
elif block.get("type") == "tool_result":
|
||||
if missing := [
|
||||
k for k in ("content", "tool_use_id") if k not in block
|
||||
@@ -1370,7 +1541,10 @@ def convert_to_openai_messages(
|
||||
},
|
||||
}
|
||||
)
|
||||
elif block.get("type") in ["thinking", "reasoning"]:
|
||||
elif (
|
||||
block.get("type") in {"thinking", "reasoning"}
|
||||
or pass_through_unknown_blocks
|
||||
):
|
||||
content.append(block)
|
||||
else:
|
||||
err = (
|
||||
@@ -1642,7 +1816,11 @@ def _get_message_openai_role(message: BaseMessage) -> str:
|
||||
if isinstance(message, ToolMessage):
|
||||
return "tool"
|
||||
if isinstance(message, SystemMessage):
|
||||
return message.additional_kwargs.get("__openai_role__", "system")
|
||||
role = message.additional_kwargs.get("__openai_role__", "system")
|
||||
if not isinstance(role, str):
|
||||
msg = f"Expected '__openai_role__' to be a str, got {type(role).__name__}"
|
||||
raise TypeError(msg)
|
||||
return role
|
||||
if isinstance(message, FunctionMessage):
|
||||
return "function"
|
||||
if isinstance(message, ChatMessage):
|
||||
@@ -1675,26 +1853,29 @@ def count_tokens_approximately(
|
||||
"""Approximate the total number of tokens in messages.
|
||||
|
||||
The token count includes stringified message content, role, and (optionally) name.
|
||||
|
||||
- For AI messages, the token count also includes stringified tool calls.
|
||||
- For tool messages, the token count also includes the tool call ID.
|
||||
|
||||
Args:
|
||||
messages: List of messages to count tokens for.
|
||||
chars_per_token: Number of characters per token to use for the approximation.
|
||||
|
||||
One token corresponds to ~4 chars for common English text.
|
||||
|
||||
You can also specify `float` values for more fine-grained control.
|
||||
[See more here](https://platform.openai.com/tokenizer).
|
||||
extra_tokens_per_message: Number of extra tokens to add per message, e.g.
|
||||
special tokens, including beginning/end of message.
|
||||
|
||||
You can also specify `float` values for more fine-grained control.
|
||||
[See more here](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb).
|
||||
count_name: Whether to include message names in the count.
|
||||
Enabled by default.
|
||||
|
||||
Returns:
|
||||
Approximate number of tokens in the messages.
|
||||
|
||||
!!! note
|
||||
Note:
|
||||
This is a simple approximation that may not match the exact token count used by
|
||||
specific models. For accurate counts, use model-specific tokenizers.
|
||||
|
||||
@@ -1702,7 +1883,6 @@ def count_tokens_approximately(
|
||||
This function does not currently support counting image tokens.
|
||||
|
||||
!!! version-added "Added in `langchain-core` 0.3.46"
|
||||
|
||||
"""
|
||||
token_count = 0.0
|
||||
for message in convert_to_messages(messages):
|
||||
@@ -1743,3 +1923,14 @@ def count_tokens_approximately(
|
||||
|
||||
# round up once more time in case extra_tokens_per_message is a float
|
||||
return math.ceil(token_count)
|
||||
|
||||
|
||||
# Mapping from string shortcuts to token counter functions
|
||||
def _approximate_token_counter(messages: Sequence[BaseMessage]) -> int:
|
||||
"""Wrapper for `count_tokens_approximately` that matches expected signature."""
|
||||
return count_tokens_approximately(messages)
|
||||
|
||||
|
||||
_TOKEN_COUNTER_SHORTCUTS = {
|
||||
"approximate": _approximate_token_counter,
|
||||
}
|
||||
|
||||
@@ -9,6 +9,7 @@ from typing import (
|
||||
Any,
|
||||
Generic,
|
||||
TypeVar,
|
||||
cast,
|
||||
)
|
||||
|
||||
from typing_extensions import override
|
||||
@@ -46,7 +47,7 @@ class BaseLLMOutputParser(ABC, Generic[T]):
|
||||
async def aparse_result(
|
||||
self, result: list[Generation], *, partial: bool = False
|
||||
) -> T:
|
||||
"""Async parse a list of candidate model `Generation` objects into a specific format.
|
||||
"""Parse a list of candidate model `Generation` objects into a specific format.
|
||||
|
||||
Args:
|
||||
result: A list of `Generation` to be parsed. The Generations are assumed
|
||||
@@ -56,7 +57,7 @@ class BaseLLMOutputParser(ABC, Generic[T]):
|
||||
|
||||
Returns:
|
||||
Structured output.
|
||||
""" # noqa: E501
|
||||
"""
|
||||
return await run_in_executor(None, self.parse_result, result, partial=partial)
|
||||
|
||||
|
||||
@@ -77,7 +78,7 @@ class BaseGenerationOutputParser(
|
||||
"""Return the output type for the parser."""
|
||||
# even though mypy complains this isn't valid,
|
||||
# it is good enough for pydantic to build the schema from
|
||||
return T # type: ignore[misc]
|
||||
return cast("type[T]", T) # type: ignore[misc]
|
||||
|
||||
@override
|
||||
def invoke(
|
||||
@@ -181,7 +182,7 @@ class BaseOutputParser(
|
||||
if hasattr(base, "__pydantic_generic_metadata__"):
|
||||
metadata = base.__pydantic_generic_metadata__
|
||||
if "args" in metadata and len(metadata["args"]) > 0:
|
||||
return metadata["args"][0]
|
||||
return cast("type[T]", metadata["args"][0])
|
||||
|
||||
msg = (
|
||||
f"Runnable {self.__class__.__name__} doesn't have an inferable OutputType. "
|
||||
@@ -267,7 +268,7 @@ class BaseOutputParser(
|
||||
async def aparse_result(
|
||||
self, result: list[Generation], *, partial: bool = False
|
||||
) -> T:
|
||||
"""Async parse a list of candidate model `Generation` objects into a specific format.
|
||||
"""Parse a list of candidate model `Generation` objects into a specific format.
|
||||
|
||||
The return value is parsed from only the first `Generation` in the result, which
|
||||
is assumed to be the highest-likelihood `Generation`.
|
||||
@@ -280,7 +281,7 @@ class BaseOutputParser(
|
||||
|
||||
Returns:
|
||||
Structured output.
|
||||
""" # noqa: E501
|
||||
"""
|
||||
return await run_in_executor(None, self.parse_result, result, partial=partial)
|
||||
|
||||
async def aparse(self, text: str) -> T:
|
||||
|
||||
@@ -37,7 +37,7 @@ class OutputFunctionsParser(BaseGenerationOutputParser[Any]):
|
||||
The parsed JSON object.
|
||||
|
||||
Raises:
|
||||
`OutputParserException`: If the output is not valid JSON.
|
||||
OutputParserException: If the output is not valid JSON.
|
||||
"""
|
||||
generation = result[0]
|
||||
if not isinstance(generation, ChatGeneration):
|
||||
@@ -88,7 +88,7 @@ class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]):
|
||||
The parsed JSON object.
|
||||
|
||||
Raises:
|
||||
OutputParserExcept`ion: If the output is not valid JSON.
|
||||
OutputParserException: If the output is not valid JSON.
|
||||
"""
|
||||
if len(result) != 1:
|
||||
msg = f"Expected exactly one result, but got {len(result)}"
|
||||
@@ -228,7 +228,7 @@ class PydanticOutputFunctionsParser(OutputFunctionsParser):
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_schema(cls, values: dict) -> Any:
|
||||
def validate_schema(cls, values: dict[str, Any]) -> Any:
|
||||
"""Validate the Pydantic schema.
|
||||
|
||||
Args:
|
||||
|
||||
@@ -47,22 +47,24 @@ def parse_tool_call(
|
||||
"""
|
||||
if "function" not in raw_tool_call:
|
||||
return None
|
||||
|
||||
arguments = raw_tool_call["function"]["arguments"]
|
||||
|
||||
if partial:
|
||||
try:
|
||||
function_args = parse_partial_json(
|
||||
raw_tool_call["function"]["arguments"], strict=strict
|
||||
)
|
||||
function_args = parse_partial_json(arguments, strict=strict)
|
||||
except (JSONDecodeError, TypeError): # None args raise TypeError
|
||||
return None
|
||||
# Handle None or empty string arguments for parameter-less tools
|
||||
elif not arguments:
|
||||
function_args = {}
|
||||
else:
|
||||
try:
|
||||
function_args = json.loads(
|
||||
raw_tool_call["function"]["arguments"], strict=strict
|
||||
)
|
||||
function_args = json.loads(arguments, strict=strict)
|
||||
except JSONDecodeError as e:
|
||||
msg = (
|
||||
f"Function {raw_tool_call['function']['name']} arguments:\n\n"
|
||||
f"{raw_tool_call['function']['arguments']}\n\nare not valid JSON. "
|
||||
f"{arguments}\n\nare not valid JSON. "
|
||||
f"Received JSONDecodeError {e}"
|
||||
)
|
||||
raise OutputParserException(msg) from e
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
"""Output parsers using Pydantic."""
|
||||
|
||||
import json
|
||||
from typing import Annotated, Generic
|
||||
from typing import Annotated, Generic, Literal, overload
|
||||
|
||||
import pydantic
|
||||
from pydantic import SkipValidation
|
||||
@@ -37,11 +37,21 @@ class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]):
|
||||
def _parser_exception(
|
||||
self, e: Exception, json_object: dict
|
||||
) -> OutputParserException:
|
||||
json_string = json.dumps(json_object)
|
||||
json_string = json.dumps(json_object, ensure_ascii=False)
|
||||
name = self.pydantic_object.__name__
|
||||
msg = f"Failed to parse {name} from completion {json_string}. Got: {e}"
|
||||
return OutputParserException(msg, llm_output=json_string)
|
||||
|
||||
@overload
|
||||
def parse_result(
|
||||
self, result: list[Generation], *, partial: Literal[False] = False
|
||||
) -> TBaseModel: ...
|
||||
|
||||
@overload
|
||||
def parse_result(
|
||||
self, result: list[Generation], *, partial: bool = False
|
||||
) -> TBaseModel | None: ...
|
||||
|
||||
def parse_result(
|
||||
self, result: list[Generation], *, partial: bool = False
|
||||
) -> TBaseModel | None:
|
||||
@@ -54,7 +64,7 @@ class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]):
|
||||
all the keys that have been returned so far.
|
||||
|
||||
Raises:
|
||||
`OutputParserException`: If the result is not valid JSON
|
||||
OutputParserException: If the result is not valid JSON
|
||||
or does not conform to the Pydantic model.
|
||||
|
||||
Returns:
|
||||
@@ -77,7 +87,7 @@ class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]):
|
||||
Returns:
|
||||
The parsed Pydantic object.
|
||||
"""
|
||||
return super().parse(text)
|
||||
return self.parse_result([Generation(text=text)])
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
"""Return the format instructions for the JSON output.
|
||||
|
||||
@@ -6,7 +6,33 @@ from langchain_core.output_parsers.transform import BaseTransformOutputParser
|
||||
|
||||
|
||||
class StrOutputParser(BaseTransformOutputParser[str]):
|
||||
"""OutputParser that parses `LLMResult` into the top likely string."""
|
||||
"""Extract text content from model outputs as a string.
|
||||
|
||||
Converts model outputs (such as `AIMessage` or `AIMessageChunk` objects) into plain
|
||||
text strings. It's the simplest output parser and is useful when you need string
|
||||
responses for downstream processing, display, or storage.
|
||||
|
||||
Supports streaming, yielding text chunks as they're generated by the model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
model = ChatOpenAI(model="gpt-4o")
|
||||
parser = StrOutputParser()
|
||||
|
||||
# Get string output from a model
|
||||
message = model.invoke("Tell me a joke")
|
||||
result = parser.invoke(message)
|
||||
print(result) # plain string
|
||||
|
||||
# With streaming - use transform() to process a stream
|
||||
stream = model.stream("Tell me a story")
|
||||
for chunk in parser.transform(stream):
|
||||
print(chunk, end="", flush=True)
|
||||
```
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
|
||||
@@ -2,15 +2,17 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Literal
|
||||
from typing import TYPE_CHECKING, Literal
|
||||
|
||||
from pydantic import model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
from langchain_core.messages import BaseMessage, BaseMessageChunk
|
||||
from langchain_core.outputs.generation import Generation
|
||||
from langchain_core.utils._merge import merge_dicts
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
class ChatGeneration(Generation):
|
||||
"""A single chat generation output.
|
||||
|
||||
@@ -104,18 +104,31 @@ class ChatPromptValue(PromptValue):
|
||||
|
||||
|
||||
class ImageURL(TypedDict, total=False):
|
||||
"""Image URL."""
|
||||
"""Image URL for multimodal model inputs (OpenAI format).
|
||||
|
||||
Represents the inner `image_url` object in OpenAI's Chat Completion API format. This
|
||||
is used by `ImagePromptTemplate` and `ChatPromptTemplate`.
|
||||
|
||||
See Also:
|
||||
`ImageContentBlock`: LangChain's provider-agnostic image format used in message
|
||||
content blocks. Use `ImageContentBlock` when working with the standardized
|
||||
message format across different providers.
|
||||
|
||||
Note:
|
||||
The `detail` field values are not validated locally. Invalid values
|
||||
will be rejected by the downstream API, allowing new valid values to
|
||||
be used without requiring a LangChain update.
|
||||
"""
|
||||
|
||||
detail: Literal["auto", "low", "high"]
|
||||
"""Specifies the detail level of the image.
|
||||
|
||||
Can be `'auto'`, `'low'`, or `'high'`.
|
||||
|
||||
This follows OpenAI's Chat Completion API's image URL format.
|
||||
Defaults to ``'auto'`` if not specified. Higher detail levels consume
|
||||
more tokens but provide better image understanding.
|
||||
"""
|
||||
|
||||
url: str
|
||||
"""Either a URL of the image or the base64 encoded image data."""
|
||||
"""URL of the image or base64-encoded image data."""
|
||||
|
||||
|
||||
class ImagePromptValue(PromptValue):
|
||||
|
||||
@@ -2,19 +2,14 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import builtins # noqa: TC003
|
||||
import contextlib
|
||||
import json
|
||||
import typing
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Callable, Mapping
|
||||
from collections.abc import Mapping # noqa: TC003
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Generic,
|
||||
TypeVar,
|
||||
)
|
||||
from typing import TYPE_CHECKING, Any, Generic, TypeVar, cast
|
||||
|
||||
import yaml
|
||||
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
||||
@@ -22,7 +17,7 @@ from typing_extensions import Self, override
|
||||
|
||||
from langchain_core.exceptions import ErrorCode, create_message
|
||||
from langchain_core.load import dumpd
|
||||
from langchain_core.output_parsers.base import BaseOutputParser
|
||||
from langchain_core.output_parsers.base import BaseOutputParser # noqa: TC001
|
||||
from langchain_core.prompt_values import (
|
||||
ChatPromptValueConcrete,
|
||||
PromptValue,
|
||||
@@ -33,6 +28,8 @@ from langchain_core.runnables.config import ensure_config
|
||||
from langchain_core.utils.pydantic import create_model_v2
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Callable
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
|
||||
@@ -54,7 +51,7 @@ class BasePromptTemplate(
|
||||
|
||||
These variables are auto inferred from the prompt and user need not provide them.
|
||||
"""
|
||||
input_types: typing.Dict[str, Any] = Field(default_factory=dict, exclude=True) # noqa: UP006
|
||||
input_types: builtins.dict[str, Any] = Field(default_factory=dict, exclude=True)
|
||||
"""A dictionary of the types of the variables the prompt template expects.
|
||||
|
||||
If not provided, all variables are assumed to be strings.
|
||||
@@ -67,7 +64,7 @@ class BasePromptTemplate(
|
||||
Partial variables populate the template so that you don't need to pass them in every
|
||||
time you call the prompt.
|
||||
"""
|
||||
metadata: typing.Dict[str, Any] | None = None # noqa: UP006
|
||||
metadata: builtins.dict[str, Any] | None = None
|
||||
"""Metadata to be used for tracing."""
|
||||
tags: list[str] | None = None
|
||||
"""Tags to be used for tracing."""
|
||||
@@ -120,7 +117,10 @@ class BasePromptTemplate(
|
||||
|
||||
@cached_property
|
||||
def _serialized(self) -> dict[str, Any]:
|
||||
return dumpd(self)
|
||||
# self is always a Serializable object in this case, thus the result is
|
||||
# guaranteed to be a dict since dumpd uses the default callback, which uses
|
||||
# obj.to_json which always returns TypedDict subclasses
|
||||
return cast("dict[str, Any]", dumpd(self))
|
||||
|
||||
@property
|
||||
@override
|
||||
@@ -154,7 +154,7 @@ class BasePromptTemplate(
|
||||
if not isinstance(inner_input, dict):
|
||||
if len(self.input_variables) == 1:
|
||||
var_name = self.input_variables[0]
|
||||
inner_input = {var_name: inner_input}
|
||||
inner_input_ = {var_name: inner_input}
|
||||
|
||||
else:
|
||||
msg = (
|
||||
@@ -166,12 +166,14 @@ class BasePromptTemplate(
|
||||
message=msg, error_code=ErrorCode.INVALID_PROMPT_INPUT
|
||||
)
|
||||
)
|
||||
missing = set(self.input_variables).difference(inner_input)
|
||||
else:
|
||||
inner_input_ = inner_input
|
||||
missing = set(self.input_variables).difference(inner_input_)
|
||||
if missing:
|
||||
msg = (
|
||||
f"Input to {self.__class__.__name__} is missing variables {missing}. "
|
||||
f" Expected: {self.input_variables}"
|
||||
f" Received: {list(inner_input.keys())}"
|
||||
f" Received: {list(inner_input_.keys())}"
|
||||
)
|
||||
example_key = missing.pop()
|
||||
msg += (
|
||||
@@ -182,7 +184,7 @@ class BasePromptTemplate(
|
||||
raise KeyError(
|
||||
create_message(message=msg, error_code=ErrorCode.INVALID_PROMPT_INPUT)
|
||||
)
|
||||
return inner_input
|
||||
return inner_input_
|
||||
|
||||
def _format_prompt_with_error_handling(self, inner_input: dict) -> PromptValue:
|
||||
inner_input_ = self._validate_input(inner_input)
|
||||
|
||||
@@ -3,9 +3,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Sequence
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Annotated,
|
||||
Any,
|
||||
TypedDict,
|
||||
@@ -48,9 +48,6 @@ from langchain_core.prompts.string import (
|
||||
from langchain_core.utils import get_colored_text
|
||||
from langchain_core.utils.interactive_env import is_interactive_env
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
|
||||
|
||||
class MessagesPlaceholder(BaseMessagePromptTemplate):
|
||||
"""Prompt template that assumes variable is already list of messages.
|
||||
@@ -765,7 +762,7 @@ MessageLike = BaseMessagePromptTemplate | BaseMessage | BaseChatPromptTemplate
|
||||
|
||||
MessageLikeRepresentation = (
|
||||
MessageLike
|
||||
| tuple[str | type, str | list[dict] | list[object]]
|
||||
| tuple[str | type, str | Sequence[dict] | Sequence[object]]
|
||||
| str
|
||||
| dict[str, Any]
|
||||
)
|
||||
@@ -848,9 +845,9 @@ class ChatPromptTemplate(BaseChatPromptTemplate):
|
||||
|
||||
!!! note "Single-variable template"
|
||||
|
||||
If your prompt has only a single input variable (i.e., 1 instance of "{variable_nams}"),
|
||||
and you invoke the template with a non-dict object, the prompt template will
|
||||
inject the provided argument into that variable location.
|
||||
If your prompt has only a single input variable (i.e., 1 instance of
|
||||
"{variable_nams}"), and you invoke the template with a non-dict object, the
|
||||
prompt template will inject the provided argument into that variable location.
|
||||
|
||||
```python
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
@@ -874,7 +871,7 @@ class ChatPromptTemplate(BaseChatPromptTemplate):
|
||||
# ]
|
||||
# )
|
||||
```
|
||||
""" # noqa: E501
|
||||
"""
|
||||
|
||||
messages: Annotated[list[MessageLike], SkipValidation()]
|
||||
"""List of messages consisting of either message prompt templates or messages."""
|
||||
@@ -903,23 +900,28 @@ class ChatPromptTemplate(BaseChatPromptTemplate):
|
||||
5. A string which is shorthand for `("human", template)`; e.g.,
|
||||
`"{user_input}"`
|
||||
template_format: Format of the template.
|
||||
input_variables: A list of the names of the variables whose values are
|
||||
required as inputs to the prompt.
|
||||
optional_variables: A list of the names of the variables for placeholder
|
||||
or MessagePlaceholder that are optional.
|
||||
**kwargs: Additional keyword arguments passed to `BasePromptTemplate`,
|
||||
including (but not limited to):
|
||||
|
||||
These variables are auto inferred from the prompt and user need not
|
||||
provide them.
|
||||
partial_variables: A dictionary of the partial variables the prompt
|
||||
template carries.
|
||||
- `input_variables`: A list of the names of the variables whose values
|
||||
are required as inputs to the prompt.
|
||||
- `optional_variables`: A list of the names of the variables for
|
||||
placeholder or `MessagePlaceholder` that are optional.
|
||||
|
||||
Partial variables populate the template so that you don't need to pass
|
||||
them in every time you call the prompt.
|
||||
validate_template: Whether to validate the template.
|
||||
input_types: A dictionary of the types of the variables the prompt template
|
||||
expects.
|
||||
These variables are auto inferred from the prompt and user need not
|
||||
provide them.
|
||||
|
||||
If not provided, all variables are assumed to be strings.
|
||||
- `partial_variables`: A dictionary of the partial variables the prompt
|
||||
template carries.
|
||||
|
||||
Partial variables populate the template so that you don't need to
|
||||
pass them in every time you call the prompt.
|
||||
|
||||
- `validate_template`: Whether to validate the template.
|
||||
- `input_types`: A dictionary of the types of the variables the prompt
|
||||
template expects.
|
||||
|
||||
If not provided, all variables are assumed to be strings.
|
||||
|
||||
Examples:
|
||||
Instantiation from a list of message templates:
|
||||
@@ -1423,16 +1425,26 @@ def _convert_to_message_template(
|
||||
f" Got: {message}"
|
||||
)
|
||||
raise ValueError(msg)
|
||||
message = (message["role"], message["content"])
|
||||
try:
|
||||
message_type_str = message["role"]
|
||||
template = message["content"]
|
||||
else:
|
||||
if len(message) != 2: # noqa: PLR2004
|
||||
msg = f"Expected 2-tuple of (role, template), got {message}"
|
||||
raise ValueError(msg)
|
||||
message_type_str, template = message
|
||||
except ValueError as e:
|
||||
msg = f"Expected 2-tuple of (role, template), got {message}"
|
||||
raise ValueError(msg) from e
|
||||
|
||||
if isinstance(message_type_str, str):
|
||||
message_ = _create_template_from_message_type(
|
||||
message_type_str, template, template_format=template_format
|
||||
)
|
||||
elif (
|
||||
hasattr(message_type_str, "model_fields")
|
||||
and "type" in message_type_str.model_fields
|
||||
):
|
||||
message_type = message_type_str.model_fields["type"].default
|
||||
message_ = _create_template_from_message_type(
|
||||
message_type, template, template_format=template_format
|
||||
)
|
||||
else:
|
||||
message_ = message_type_str(
|
||||
prompt=PromptTemplate.from_template(
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
import warnings
|
||||
from functools import cached_property
|
||||
from typing import Any, Literal
|
||||
from typing import Any, Literal, cast
|
||||
|
||||
from typing_extensions import override
|
||||
|
||||
@@ -65,7 +65,10 @@ class DictPromptTemplate(RunnableSerializable[dict, dict]):
|
||||
|
||||
@cached_property
|
||||
def _serialized(self) -> dict[str, Any]:
|
||||
return dumpd(self)
|
||||
# self is always a Serializable object in this case, thus the result is
|
||||
# guaranteed to be a dict since dumpd uses the default callback, which uses
|
||||
# obj.to_json which always returns TypedDict subclasses
|
||||
return cast("dict[str, Any]", dumpd(self))
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
@@ -116,7 +119,7 @@ def _insert_input_variables(
|
||||
inputs: dict[str, Any],
|
||||
template_format: Literal["f-string", "mustache"],
|
||||
) -> dict[str, Any]:
|
||||
formatted = {}
|
||||
formatted: dict[str, Any] = {}
|
||||
formatter = DEFAULT_FORMATTER_MAPPING[template_format]
|
||||
for k, v in template.items():
|
||||
if isinstance(v, str):
|
||||
@@ -132,7 +135,7 @@ def _insert_input_variables(
|
||||
warnings.warn(msg, stacklevel=2)
|
||||
formatted[k] = _insert_input_variables(v, inputs, template_format)
|
||||
elif isinstance(v, (list, tuple)):
|
||||
formatted_v = []
|
||||
formatted_v: list[str | dict[str, Any]] = []
|
||||
for x in v:
|
||||
if isinstance(x, str):
|
||||
formatted_v.append(formatter(x, **inputs))
|
||||
|
||||
@@ -6,6 +6,7 @@ from typing import Any
|
||||
from pydantic import ConfigDict, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
from langchain_core.example_selectors import BaseExampleSelector
|
||||
from langchain_core.prompts.prompt import PromptTemplate
|
||||
from langchain_core.prompts.string import (
|
||||
DEFAULT_FORMATTER_MAPPING,
|
||||
@@ -21,7 +22,7 @@ class FewShotPromptWithTemplates(StringPromptTemplate):
|
||||
"""Examples to format into the prompt.
|
||||
Either this or example_selector should be provided."""
|
||||
|
||||
example_selector: Any = None
|
||||
example_selector: BaseExampleSelector | None = None
|
||||
"""ExampleSelector to choose the examples to format into the prompt.
|
||||
Either this or examples should be provided."""
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
"""Image prompt template for a multimodal model."""
|
||||
|
||||
from typing import Any
|
||||
from typing import Any, Literal, cast
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
@@ -125,7 +125,7 @@ class ImagePromptTemplate(BasePromptTemplate[ImageURL]):
|
||||
output: ImageURL = {"url": url}
|
||||
if detail:
|
||||
# Don't check literal values here: let the API check them
|
||||
output["detail"] = detail
|
||||
output["detail"] = cast("Literal['auto', 'low', 'high']", detail)
|
||||
return output
|
||||
|
||||
async def aformat(self, **kwargs: Any) -> ImageURL:
|
||||
|
||||
@@ -6,10 +6,10 @@ from abc import ABC, abstractmethod
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from langchain_core.load import Serializable
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.utils.interactive_env import is_interactive_env
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.prompts.chat import ChatPromptTemplate
|
||||
|
||||
|
||||
@@ -92,4 +92,4 @@ class BaseMessagePromptTemplate(Serializable, ABC):
|
||||
from langchain_core.prompts.chat import ChatPromptTemplate # noqa: PLC0415
|
||||
|
||||
prompt = ChatPromptTemplate(messages=[self])
|
||||
return prompt + other
|
||||
return prompt.__add__(other)
|
||||
|
||||
@@ -3,12 +3,12 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import warnings
|
||||
from abc import ABC
|
||||
from collections.abc import Callable, Sequence
|
||||
from abc import ABC, abstractmethod
|
||||
from string import Formatter
|
||||
from typing import Any, Literal
|
||||
from typing import TYPE_CHECKING, Any, Literal, cast
|
||||
|
||||
from pydantic import BaseModel, create_model
|
||||
from typing_extensions import override
|
||||
|
||||
from langchain_core.prompt_values import PromptValue, StringPromptValue
|
||||
from langchain_core.prompts.base import BasePromptTemplate
|
||||
@@ -16,8 +16,11 @@ from langchain_core.utils import get_colored_text, mustache
|
||||
from langchain_core.utils.formatting import formatter
|
||||
from langchain_core.utils.interactive_env import is_interactive_env
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Callable, Sequence
|
||||
|
||||
try:
|
||||
from jinja2 import Environment, meta
|
||||
from jinja2 import meta
|
||||
from jinja2.sandbox import SandboxedEnvironment
|
||||
|
||||
_HAS_JINJA2 = True
|
||||
@@ -59,13 +62,9 @@ def jinja2_formatter(template: str, /, **kwargs: Any) -> str:
|
||||
)
|
||||
raise ImportError(msg)
|
||||
|
||||
# This uses a sandboxed environment to prevent arbitrary code execution.
|
||||
# Jinja2 uses an opt-out rather than opt-in approach for sand-boxing.
|
||||
# Please treat this sand-boxing as a best-effort approach rather than
|
||||
# a guarantee of security.
|
||||
# We recommend to never use jinja2 templates with untrusted inputs.
|
||||
# https://jinja.palletsprojects.com/en/3.1.x/sandbox/
|
||||
# approach not a guarantee of security.
|
||||
# Use a restricted sandbox that blocks ALL attribute/method access
|
||||
# Only simple variable lookups like {{variable}} are allowed
|
||||
# Attribute access like {{variable.attr}} or {{variable.method()}} is blocked
|
||||
return SandboxedEnvironment().from_string(template).render(**kwargs)
|
||||
|
||||
|
||||
@@ -101,7 +100,7 @@ def _get_jinja2_variables_from_template(template: str) -> set[str]:
|
||||
"Please install it with `pip install jinja2`."
|
||||
)
|
||||
raise ImportError(msg)
|
||||
env = Environment() # noqa: S701
|
||||
env = SandboxedEnvironment()
|
||||
ast = env.parse(template)
|
||||
return meta.find_undeclared_variables(ast)
|
||||
|
||||
@@ -191,17 +190,20 @@ def mustache_schema(template: str) -> type[BaseModel]:
|
||||
return _create_model_recursive("PromptInput", defs)
|
||||
|
||||
|
||||
def _create_model_recursive(name: str, defs: Defs) -> type:
|
||||
return create_model( # type: ignore[call-overload]
|
||||
name,
|
||||
**{
|
||||
k: (_create_model_recursive(k, v), None) if v else (type(v), None)
|
||||
for k, v in defs.items()
|
||||
},
|
||||
def _create_model_recursive(name: str, defs: Defs) -> type[BaseModel]:
|
||||
return cast(
|
||||
"type[BaseModel]",
|
||||
create_model( # type: ignore[call-overload]
|
||||
name,
|
||||
**{
|
||||
k: (_create_model_recursive(k, v), None) if v else (type(v), None)
|
||||
for k, v in defs.items()
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
DEFAULT_FORMATTER_MAPPING: dict[str, Callable] = {
|
||||
DEFAULT_FORMATTER_MAPPING: dict[str, Callable[..., str]] = {
|
||||
"f-string": formatter.format,
|
||||
"mustache": mustache_formatter,
|
||||
"jinja2": jinja2_formatter,
|
||||
@@ -271,6 +273,30 @@ def get_template_variables(template: str, template_format: str) -> list[str]:
|
||||
msg = f"Unsupported template format: {template_format}"
|
||||
raise ValueError(msg)
|
||||
|
||||
# For f-strings, block attribute access and indexing syntax
|
||||
# This prevents template injection attacks via accessing dangerous attributes
|
||||
if template_format == "f-string":
|
||||
for var in input_variables:
|
||||
# Formatter().parse() returns field names with dots/brackets if present
|
||||
# e.g., "obj.attr" or "obj[0]" - we need to block these
|
||||
if "." in var or "[" in var or "]" in var:
|
||||
msg = (
|
||||
f"Invalid variable name {var!r} in f-string template. "
|
||||
f"Variable names cannot contain attribute "
|
||||
f"access (.) or indexing ([])."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
# Block variable names that are all digits (e.g., "0", "100")
|
||||
# These are interpreted as positional arguments, not keyword arguments
|
||||
if var.isdigit():
|
||||
msg = (
|
||||
f"Invalid variable name {var!r} in f-string template. "
|
||||
f"Variable names cannot be all digits as they are interpreted "
|
||||
f"as positional arguments."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
return sorted(input_variables)
|
||||
|
||||
|
||||
@@ -308,6 +334,10 @@ class StringPromptTemplate(BasePromptTemplate, ABC):
|
||||
"""
|
||||
return StringPromptValue(text=await self.aformat(**kwargs))
|
||||
|
||||
@override
|
||||
@abstractmethod
|
||||
def format(self, **kwargs: Any) -> str: ...
|
||||
|
||||
def pretty_repr(
|
||||
self,
|
||||
html: bool = False, # noqa: FBT001,FBT002
|
||||
|
||||
@@ -48,8 +48,17 @@ class StructuredPrompt(ChatPromptTemplate):
|
||||
schema_: schema for the structured prompt.
|
||||
structured_output_kwargs: additional kwargs for structured output.
|
||||
template_format: template format for the prompt.
|
||||
|
||||
Raises:
|
||||
ValueError: if schema is not provided.
|
||||
"""
|
||||
schema_ = schema_ or kwargs.pop("schema")
|
||||
schema_ = schema_ or kwargs.pop("schema", None)
|
||||
if not schema_:
|
||||
err_msg = (
|
||||
"Must pass in a non-empty structured output schema. Received: "
|
||||
f"{schema_}"
|
||||
)
|
||||
raise ValueError(err_msg)
|
||||
structured_output_kwargs = structured_output_kwargs or {}
|
||||
for k in set(kwargs).difference(get_pydantic_field_names(self.__class__)):
|
||||
structured_output_kwargs[k] = kwargs.pop(k)
|
||||
|
||||
@@ -94,7 +94,7 @@ from langchain_core.tracers.root_listeners import (
|
||||
AsyncRootListenersTracer,
|
||||
RootListenersTracer,
|
||||
)
|
||||
from langchain_core.utils.aiter import aclosing, atee, py_anext
|
||||
from langchain_core.utils.aiter import aclosing, atee
|
||||
from langchain_core.utils.iter import safetee
|
||||
from langchain_core.utils.pydantic import create_model_v2
|
||||
|
||||
@@ -127,10 +127,10 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
Key Methods
|
||||
===========
|
||||
|
||||
- **`invoke`/`ainvoke`**: Transforms a single input into an output.
|
||||
- **`batch`/`abatch`**: Efficiently transforms multiple inputs into outputs.
|
||||
- **`stream`/`astream`**: Streams output from a single input as it's produced.
|
||||
- **`astream_log`**: Streams output and selected intermediate results from an
|
||||
- `invoke`/`ainvoke`: Transforms a single input into an output.
|
||||
- `batch`/`abatch`: Efficiently transforms multiple inputs into outputs.
|
||||
- `stream`/`astream`: Streams output from a single input as it's produced.
|
||||
- `astream_log`: Streams output and selected intermediate results from an
|
||||
input.
|
||||
|
||||
Built-in optimizations:
|
||||
@@ -315,7 +315,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
"args" in metadata
|
||||
and len(metadata["args"]) == _RUNNABLE_GENERIC_NUM_ARGS
|
||||
):
|
||||
return metadata["args"][0]
|
||||
return cast("type[Input]", metadata["args"][0])
|
||||
|
||||
# If we didn't find a Pydantic model in the parent classes,
|
||||
# then loop through __orig_bases__. This corresponds to
|
||||
@@ -323,7 +323,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined]
|
||||
type_args = get_args(cls)
|
||||
if type_args and len(type_args) == _RUNNABLE_GENERIC_NUM_ARGS:
|
||||
return type_args[0]
|
||||
return cast("type[Input]", type_args[0])
|
||||
|
||||
msg = (
|
||||
f"Runnable {self.get_name()} doesn't have an inferable InputType. "
|
||||
@@ -349,12 +349,12 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
"args" in metadata
|
||||
and len(metadata["args"]) == _RUNNABLE_GENERIC_NUM_ARGS
|
||||
):
|
||||
return metadata["args"][1]
|
||||
return cast("type[Output]", metadata["args"][1])
|
||||
|
||||
for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined]
|
||||
type_args = get_args(cls)
|
||||
if type_args and len(type_args) == _RUNNABLE_GENERIC_NUM_ARGS:
|
||||
return type_args[1]
|
||||
return cast("type[Output]", type_args[1])
|
||||
|
||||
msg = (
|
||||
f"Runnable {self.get_name()} doesn't have an inferable OutputType. "
|
||||
@@ -369,7 +369,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
|
||||
def get_input_schema(
|
||||
self,
|
||||
config: RunnableConfig | None = None, # noqa: ARG002
|
||||
config: RunnableConfig | None = None,
|
||||
) -> type[BaseModel]:
|
||||
"""Get a Pydantic model that can be used to validate input to the `Runnable`.
|
||||
|
||||
@@ -385,6 +385,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
Returns:
|
||||
A Pydantic model that can be used to validate input.
|
||||
"""
|
||||
_ = config
|
||||
root_type = self.InputType
|
||||
|
||||
if (
|
||||
@@ -447,7 +448,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
|
||||
def get_output_schema(
|
||||
self,
|
||||
config: RunnableConfig | None = None, # noqa: ARG002
|
||||
config: RunnableConfig | None = None,
|
||||
) -> type[BaseModel]:
|
||||
"""Get a Pydantic model that can be used to validate output to the `Runnable`.
|
||||
|
||||
@@ -463,6 +464,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
Returns:
|
||||
A Pydantic model that can be used to validate output.
|
||||
"""
|
||||
_ = config
|
||||
root_type = self.OutputType
|
||||
|
||||
if (
|
||||
@@ -707,51 +709,53 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
def pick(self, keys: str | list[str]) -> RunnableSerializable[Any, Any]:
|
||||
"""Pick keys from the output `dict` of this `Runnable`.
|
||||
|
||||
Pick a single key:
|
||||
!!! example "Pick a single key"
|
||||
|
||||
```python
|
||||
import json
|
||||
```python
|
||||
import json
|
||||
|
||||
from langchain_core.runnables import RunnableLambda, RunnableMap
|
||||
from langchain_core.runnables import RunnableLambda, RunnableMap
|
||||
|
||||
as_str = RunnableLambda(str)
|
||||
as_json = RunnableLambda(json.loads)
|
||||
chain = RunnableMap(str=as_str, json=as_json)
|
||||
as_str = RunnableLambda(str)
|
||||
as_json = RunnableLambda(json.loads)
|
||||
chain = RunnableMap(str=as_str, json=as_json)
|
||||
|
||||
chain.invoke("[1, 2, 3]")
|
||||
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
|
||||
chain.invoke("[1, 2, 3]")
|
||||
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
|
||||
|
||||
json_only_chain = chain.pick("json")
|
||||
json_only_chain.invoke("[1, 2, 3]")
|
||||
# -> [1, 2, 3]
|
||||
```
|
||||
json_only_chain = chain.pick("json")
|
||||
json_only_chain.invoke("[1, 2, 3]")
|
||||
# -> [1, 2, 3]
|
||||
```
|
||||
|
||||
Pick a list of keys:
|
||||
!!! example "Pick a list of keys"
|
||||
|
||||
```python
|
||||
from typing import Any
|
||||
```python
|
||||
from typing import Any
|
||||
|
||||
import json
|
||||
import json
|
||||
|
||||
from langchain_core.runnables import RunnableLambda, RunnableMap
|
||||
from langchain_core.runnables import RunnableLambda, RunnableMap
|
||||
|
||||
as_str = RunnableLambda(str)
|
||||
as_json = RunnableLambda(json.loads)
|
||||
as_str = RunnableLambda(str)
|
||||
as_json = RunnableLambda(json.loads)
|
||||
|
||||
|
||||
def as_bytes(x: Any) -> bytes:
|
||||
return bytes(x, "utf-8")
|
||||
def as_bytes(x: Any) -> bytes:
|
||||
return bytes(x, "utf-8")
|
||||
|
||||
|
||||
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
|
||||
chain = RunnableMap(
|
||||
str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
|
||||
)
|
||||
|
||||
chain.invoke("[1, 2, 3]")
|
||||
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
|
||||
chain.invoke("[1, 2, 3]")
|
||||
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
|
||||
|
||||
json_and_bytes_chain = chain.pick(["json", "bytes"])
|
||||
json_and_bytes_chain.invoke("[1, 2, 3]")
|
||||
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
|
||||
```
|
||||
json_and_bytes_chain = chain.pick(["json", "bytes"])
|
||||
json_and_bytes_chain.invoke("[1, 2, 3]")
|
||||
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
|
||||
```
|
||||
|
||||
Args:
|
||||
keys: A key or list of keys to pick from the output dict.
|
||||
@@ -1372,48 +1376,50 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
).with_config({"run_name": "my_template", "tags": ["my_template"]})
|
||||
```
|
||||
|
||||
For instance:
|
||||
!!! example
|
||||
|
||||
```python
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
```python
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
|
||||
async def reverse(s: str) -> str:
|
||||
return s[::-1]
|
||||
async def reverse(s: str) -> str:
|
||||
return s[::-1]
|
||||
|
||||
|
||||
chain = RunnableLambda(func=reverse)
|
||||
chain = RunnableLambda(func=reverse)
|
||||
|
||||
events = [event async for event in chain.astream_events("hello", version="v2")]
|
||||
events = [
|
||||
event async for event in chain.astream_events("hello", version="v2")
|
||||
]
|
||||
|
||||
# Will produce the following events
|
||||
# (run_id, and parent_ids has been omitted for brevity):
|
||||
[
|
||||
{
|
||||
"data": {"input": "hello"},
|
||||
"event": "on_chain_start",
|
||||
"metadata": {},
|
||||
"name": "reverse",
|
||||
"tags": [],
|
||||
},
|
||||
{
|
||||
"data": {"chunk": "olleh"},
|
||||
"event": "on_chain_stream",
|
||||
"metadata": {},
|
||||
"name": "reverse",
|
||||
"tags": [],
|
||||
},
|
||||
{
|
||||
"data": {"output": "olleh"},
|
||||
"event": "on_chain_end",
|
||||
"metadata": {},
|
||||
"name": "reverse",
|
||||
"tags": [],
|
||||
},
|
||||
]
|
||||
```
|
||||
# Will produce the following events
|
||||
# (run_id, and parent_ids has been omitted for brevity):
|
||||
[
|
||||
{
|
||||
"data": {"input": "hello"},
|
||||
"event": "on_chain_start",
|
||||
"metadata": {},
|
||||
"name": "reverse",
|
||||
"tags": [],
|
||||
},
|
||||
{
|
||||
"data": {"chunk": "olleh"},
|
||||
"event": "on_chain_stream",
|
||||
"metadata": {},
|
||||
"name": "reverse",
|
||||
"tags": [],
|
||||
},
|
||||
{
|
||||
"data": {"output": "olleh"},
|
||||
"event": "on_chain_end",
|
||||
"metadata": {},
|
||||
"name": "reverse",
|
||||
"tags": [],
|
||||
},
|
||||
]
|
||||
```
|
||||
|
||||
```python title="Example: Dispatch Custom Event"
|
||||
```python title="Dispatch custom event"
|
||||
from langchain_core.callbacks.manager import (
|
||||
adispatch_custom_event,
|
||||
)
|
||||
@@ -1447,10 +1453,13 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
Args:
|
||||
input: The input to the `Runnable`.
|
||||
config: The config to use for the `Runnable`.
|
||||
version: The version of the schema to use either `'v2'` or `'v1'`.
|
||||
version: The version of the schema to use, either `'v2'` or `'v1'`.
|
||||
|
||||
Users should use `'v2'`.
|
||||
|
||||
`'v1'` is for backwards compatibility and will be deprecated
|
||||
in `0.4.0`.
|
||||
|
||||
No default will be assigned until the API is stabilized.
|
||||
custom events will only be surfaced in `'v2'`.
|
||||
include_names: Only include events from `Runnable` objects with matching names.
|
||||
@@ -1460,6 +1469,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
exclude_types: Exclude events from `Runnable` objects with matching types.
|
||||
exclude_tags: Exclude events from `Runnable` objects with matching tags.
|
||||
**kwargs: Additional keyword arguments to pass to the `Runnable`.
|
||||
|
||||
These will be passed to `astream_log` as this implementation
|
||||
of `astream_events` is built on top of `astream_log`.
|
||||
|
||||
@@ -2269,6 +2279,9 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
Use this to implement `stream` or `transform` in `Runnable` subclasses.
|
||||
|
||||
"""
|
||||
# Extract defers_inputs from kwargs if present
|
||||
defers_inputs = kwargs.pop("defers_inputs", False)
|
||||
|
||||
# tee the input so we can iterate over it twice
|
||||
input_for_tracing, input_for_transform = tee(inputs, 2)
|
||||
# Start the input iterator to ensure the input Runnable starts before this one
|
||||
@@ -2285,6 +2298,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
run_type=run_type,
|
||||
name=config.get("run_name") or self.get_name(),
|
||||
run_id=config.pop("run_id", None),
|
||||
defers_inputs=defers_inputs,
|
||||
)
|
||||
try:
|
||||
child_config = patch_config(config, callbacks=run_manager.get_child())
|
||||
@@ -2366,10 +2380,13 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
Use this to implement `astream` or `atransform` in `Runnable` subclasses.
|
||||
|
||||
"""
|
||||
# Extract defers_inputs from kwargs if present
|
||||
defers_inputs = kwargs.pop("defers_inputs", False)
|
||||
|
||||
# tee the input so we can iterate over it twice
|
||||
input_for_tracing, input_for_transform = atee(inputs, 2)
|
||||
# Start the input iterator to ensure the input Runnable starts before this one
|
||||
final_input: Input | None = await py_anext(input_for_tracing, None)
|
||||
final_input: Input | None = await anext(input_for_tracing, None)
|
||||
final_input_supported = True
|
||||
final_output: Output | None = None
|
||||
final_output_supported = True
|
||||
@@ -2382,6 +2399,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
run_type=run_type,
|
||||
name=config.get("run_name") or self.get_name(),
|
||||
run_id=config.pop("run_id", None),
|
||||
defers_inputs=defers_inputs,
|
||||
)
|
||||
try:
|
||||
child_config = patch_config(config, callbacks=run_manager.get_child())
|
||||
@@ -2409,7 +2427,7 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
iterator = iterator_
|
||||
try:
|
||||
while True:
|
||||
chunk = await coro_with_context(py_anext(iterator), context)
|
||||
chunk = await coro_with_context(anext(iterator), context)
|
||||
yield chunk
|
||||
if final_output_supported:
|
||||
if final_output is None:
|
||||
@@ -2476,82 +2494,82 @@ class Runnable(ABC, Generic[Input, Output]):
|
||||
Returns:
|
||||
A `BaseTool` instance.
|
||||
|
||||
Typed dict input:
|
||||
!!! example "`TypedDict` input"
|
||||
|
||||
```python
|
||||
from typing_extensions import TypedDict
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
```python
|
||||
from typing_extensions import TypedDict
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
|
||||
class Args(TypedDict):
|
||||
a: int
|
||||
b: list[int]
|
||||
class Args(TypedDict):
|
||||
a: int
|
||||
b: list[int]
|
||||
|
||||
|
||||
def f(x: Args) -> str:
|
||||
return str(x["a"] * max(x["b"]))
|
||||
def f(x: Args) -> str:
|
||||
return str(x["a"] * max(x["b"]))
|
||||
|
||||
|
||||
runnable = RunnableLambda(f)
|
||||
as_tool = runnable.as_tool()
|
||||
as_tool.invoke({"a": 3, "b": [1, 2]})
|
||||
```
|
||||
runnable = RunnableLambda(f)
|
||||
as_tool = runnable.as_tool()
|
||||
as_tool.invoke({"a": 3, "b": [1, 2]})
|
||||
```
|
||||
|
||||
`dict` input, specifying schema via `args_schema`:
|
||||
!!! example "`dict` input, specifying schema via `args_schema`"
|
||||
|
||||
```python
|
||||
from typing import Any
|
||||
from pydantic import BaseModel, Field
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
```python
|
||||
from typing import Any
|
||||
from pydantic import BaseModel, Field
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
def f(x: dict[str, Any]) -> str:
|
||||
return str(x["a"] * max(x["b"]))
|
||||
def f(x: dict[str, Any]) -> str:
|
||||
return str(x["a"] * max(x["b"]))
|
||||
|
||||
class FSchema(BaseModel):
|
||||
\"\"\"Apply a function to an integer and list of integers.\"\"\"
|
||||
class FSchema(BaseModel):
|
||||
\"\"\"Apply a function to an integer and list of integers.\"\"\"
|
||||
|
||||
a: int = Field(..., description="Integer")
|
||||
b: list[int] = Field(..., description="List of ints")
|
||||
a: int = Field(..., description="Integer")
|
||||
b: list[int] = Field(..., description="List of ints")
|
||||
|
||||
runnable = RunnableLambda(f)
|
||||
as_tool = runnable.as_tool(FSchema)
|
||||
as_tool.invoke({"a": 3, "b": [1, 2]})
|
||||
```
|
||||
runnable = RunnableLambda(f)
|
||||
as_tool = runnable.as_tool(FSchema)
|
||||
as_tool.invoke({"a": 3, "b": [1, 2]})
|
||||
```
|
||||
|
||||
`dict` input, specifying schema via `arg_types`:
|
||||
!!! example "`dict` input, specifying schema via `arg_types`"
|
||||
|
||||
```python
|
||||
from typing import Any
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
```python
|
||||
from typing import Any
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
|
||||
def f(x: dict[str, Any]) -> str:
|
||||
return str(x["a"] * max(x["b"]))
|
||||
def f(x: dict[str, Any]) -> str:
|
||||
return str(x["a"] * max(x["b"]))
|
||||
|
||||
|
||||
runnable = RunnableLambda(f)
|
||||
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
|
||||
as_tool.invoke({"a": 3, "b": [1, 2]})
|
||||
```
|
||||
runnable = RunnableLambda(f)
|
||||
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
|
||||
as_tool.invoke({"a": 3, "b": [1, 2]})
|
||||
```
|
||||
|
||||
`str` input:
|
||||
!!! example "`str` input"
|
||||
|
||||
```python
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
```python
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
|
||||
def f(x: str) -> str:
|
||||
return x + "a"
|
||||
def f(x: str) -> str:
|
||||
return x + "a"
|
||||
|
||||
|
||||
def g(x: str) -> str:
|
||||
return x + "z"
|
||||
def g(x: str) -> str:
|
||||
return x + "z"
|
||||
|
||||
|
||||
runnable = RunnableLambda(f) | g
|
||||
as_tool = runnable.as_tool()
|
||||
as_tool.invoke("b")
|
||||
```
|
||||
runnable = RunnableLambda(f) | g
|
||||
as_tool = runnable.as_tool()
|
||||
as_tool.invoke("b")
|
||||
```
|
||||
"""
|
||||
# Avoid circular import
|
||||
from langchain_core.tools import convert_runnable_to_tool # noqa: PLC0415
|
||||
@@ -2603,29 +2621,33 @@ class RunnableSerializable(Serializable, Runnable[Input, Output]):
|
||||
Returns:
|
||||
A new `Runnable` with the fields configured.
|
||||
|
||||
```python
|
||||
from langchain_core.runnables import ConfigurableField
|
||||
from langchain_openai import ChatOpenAI
|
||||
!!! example
|
||||
|
||||
model = ChatOpenAI(max_tokens=20).configurable_fields(
|
||||
max_tokens=ConfigurableField(
|
||||
id="output_token_number",
|
||||
name="Max tokens in the output",
|
||||
description="The maximum number of tokens in the output",
|
||||
```python
|
||||
from langchain_core.runnables import ConfigurableField
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
model = ChatOpenAI(max_tokens=20).configurable_fields(
|
||||
max_tokens=ConfigurableField(
|
||||
id="output_token_number",
|
||||
name="Max tokens in the output",
|
||||
description="The maximum number of tokens in the output",
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
# max_tokens = 20
|
||||
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
|
||||
# max_tokens = 20
|
||||
print(
|
||||
"max_tokens_20: ", model.invoke("tell me something about chess").content
|
||||
)
|
||||
|
||||
# max_tokens = 200
|
||||
print(
|
||||
"max_tokens_200: ",
|
||||
model.with_config(configurable={"output_token_number": 200})
|
||||
.invoke("tell me something about chess")
|
||||
.content,
|
||||
)
|
||||
```
|
||||
# max_tokens = 200
|
||||
print(
|
||||
"max_tokens_200: ",
|
||||
model.with_config(configurable={"output_token_number": 200})
|
||||
.invoke("tell me something about chess")
|
||||
.content,
|
||||
)
|
||||
```
|
||||
"""
|
||||
# Import locally to prevent circular import
|
||||
from langchain_core.runnables.configurable import ( # noqa: PLC0415
|
||||
@@ -2664,29 +2686,31 @@ class RunnableSerializable(Serializable, Runnable[Input, Output]):
|
||||
Returns:
|
||||
A new `Runnable` with the alternatives configured.
|
||||
|
||||
```python
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
from langchain_core.runnables.utils import ConfigurableField
|
||||
from langchain_openai import ChatOpenAI
|
||||
!!! example
|
||||
|
||||
model = ChatAnthropic(
|
||||
model_name="claude-sonnet-4-5-20250929"
|
||||
).configurable_alternatives(
|
||||
ConfigurableField(id="llm"),
|
||||
default_key="anthropic",
|
||||
openai=ChatOpenAI(),
|
||||
)
|
||||
```python
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
from langchain_core.runnables.utils import ConfigurableField
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
# uses the default model ChatAnthropic
|
||||
print(model.invoke("which organization created you?").content)
|
||||
model = ChatAnthropic(
|
||||
model_name="claude-sonnet-4-5-20250929"
|
||||
).configurable_alternatives(
|
||||
ConfigurableField(id="llm"),
|
||||
default_key="anthropic",
|
||||
openai=ChatOpenAI(),
|
||||
)
|
||||
|
||||
# uses ChatOpenAI
|
||||
print(
|
||||
model.with_config(configurable={"llm": "openai"})
|
||||
.invoke("which organization created you?")
|
||||
.content
|
||||
)
|
||||
```
|
||||
# uses the default model ChatAnthropic
|
||||
print(model.invoke("which organization created you?").content)
|
||||
|
||||
# uses ChatOpenAI
|
||||
print(
|
||||
model.with_config(configurable={"llm": "openai"})
|
||||
.invoke("which organization created you?")
|
||||
.content
|
||||
)
|
||||
```
|
||||
"""
|
||||
# Import locally to prevent circular import
|
||||
from langchain_core.runnables.configurable import ( # noqa: PLC0415
|
||||
@@ -4011,7 +4035,7 @@ class RunnableParallel(RunnableSerializable[Input, dict[str, Any]]):
|
||||
|
||||
# Wrap in a coroutine to satisfy linter
|
||||
async def get_next_chunk(generator: AsyncIterator) -> Output | None:
|
||||
return await py_anext(generator)
|
||||
return await anext(generator)
|
||||
|
||||
# Start the first iteration of each generator
|
||||
tasks = {
|
||||
@@ -4309,6 +4333,7 @@ class RunnableGenerator(Runnable[Input, Output]):
|
||||
input,
|
||||
self._transform, # type: ignore[arg-type]
|
||||
config,
|
||||
defers_inputs=True,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -4342,7 +4367,7 @@ class RunnableGenerator(Runnable[Input, Output]):
|
||||
raise NotImplementedError(msg)
|
||||
|
||||
return self._atransform_stream_with_config(
|
||||
input, self._atransform, config, **kwargs
|
||||
input, self._atransform, config, defers_inputs=True, **kwargs
|
||||
)
|
||||
|
||||
@override
|
||||
@@ -4415,6 +4440,138 @@ class RunnableLambda(Runnable[Input, Output]):
|
||||
```
|
||||
"""
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input, RunnableConfig], Awaitable[Output]],
|
||||
afunc: None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input], Awaitable[Output]],
|
||||
afunc: None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input], AsyncIterator[Output]],
|
||||
afunc: None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]],
|
||||
afunc: None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[
|
||||
[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]
|
||||
],
|
||||
afunc: None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input, RunnableConfig], Output],
|
||||
afunc: Callable[[Input], Awaitable[Output]]
|
||||
| Callable[[Input], AsyncIterator[Output]]
|
||||
| Callable[[Input, RunnableConfig], Awaitable[Output]]
|
||||
| Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]]
|
||||
| Callable[
|
||||
[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]
|
||||
]
|
||||
| None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input], Iterator[Output]],
|
||||
afunc: Callable[[Input], Awaitable[Output]]
|
||||
| Callable[[Input], AsyncIterator[Output]]
|
||||
| Callable[[Input, RunnableConfig], Awaitable[Output]]
|
||||
| Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]]
|
||||
| Callable[
|
||||
[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]
|
||||
]
|
||||
| None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input], Runnable[Input, Output]],
|
||||
afunc: Callable[[Input], Awaitable[Output]]
|
||||
| Callable[[Input], AsyncIterator[Output]]
|
||||
| Callable[[Input, RunnableConfig], Awaitable[Output]]
|
||||
| Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]]
|
||||
| Callable[
|
||||
[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]
|
||||
]
|
||||
| None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input, CallbackManagerForChainRun], Output],
|
||||
afunc: Callable[[Input], Awaitable[Output]]
|
||||
| Callable[[Input], AsyncIterator[Output]]
|
||||
| Callable[[Input, RunnableConfig], Awaitable[Output]]
|
||||
| Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]]
|
||||
| Callable[
|
||||
[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]
|
||||
]
|
||||
| None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output],
|
||||
afunc: Callable[[Input], Awaitable[Output]]
|
||||
| Callable[[Input], AsyncIterator[Output]]
|
||||
| Callable[[Input, RunnableConfig], Awaitable[Output]]
|
||||
| Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]]
|
||||
| Callable[
|
||||
[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]
|
||||
]
|
||||
| None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input], Output],
|
||||
afunc: Callable[[Input], Awaitable[Output]]
|
||||
| Callable[[Input], AsyncIterator[Output]]
|
||||
| Callable[[Input, RunnableConfig], Awaitable[Output]]
|
||||
| Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]]
|
||||
| Callable[
|
||||
[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]
|
||||
]
|
||||
| None = None,
|
||||
name: str | None = None,
|
||||
) -> None: ...
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
func: Callable[[Input], Iterator[Output]]
|
||||
|
||||
@@ -303,7 +303,7 @@ class RunnableBranch(RunnableSerializable[Input, Output]):
|
||||
|
||||
Args:
|
||||
input: The input to the `Runnable`.
|
||||
config: The configuration for the Runna`ble.
|
||||
config: The configuration for the `Runnable`.
|
||||
**kwargs: Additional keyword arguments to pass to the `Runnable`.
|
||||
|
||||
Yields:
|
||||
|
||||
@@ -3,7 +3,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
|
||||
# Cannot move uuid to TYPE_CHECKING as RunnableConfig is used in Pydantic models
|
||||
import uuid # noqa: TC003
|
||||
import warnings
|
||||
from collections.abc import Awaitable, Callable, Generator, Iterable, Iterator, Sequence
|
||||
from concurrent.futures import Executor, Future, ThreadPoolExecutor
|
||||
@@ -47,54 +49,59 @@ class EmptyDict(TypedDict, total=False):
|
||||
|
||||
|
||||
class RunnableConfig(TypedDict, total=False):
|
||||
"""Configuration for a Runnable."""
|
||||
"""Configuration for a `Runnable`.
|
||||
|
||||
See the [reference docs](https://reference.langchain.com/python/langchain_core/runnables/#langchain_core.runnables.RunnableConfig)
|
||||
for more details.
|
||||
"""
|
||||
|
||||
tags: list[str]
|
||||
"""
|
||||
Tags for this call and any sub-calls (eg. a Chain calling an LLM).
|
||||
"""Tags for this call and any sub-calls (e.g. a Chain calling an LLM).
|
||||
|
||||
You can use these to filter calls.
|
||||
"""
|
||||
|
||||
metadata: dict[str, Any]
|
||||
"""
|
||||
Metadata for this call and any sub-calls (eg. a Chain calling an LLM).
|
||||
"""Metadata for this call and any sub-calls (e.g. a Chain calling an LLM).
|
||||
|
||||
Keys should be strings, values should be JSON-serializable.
|
||||
"""
|
||||
|
||||
callbacks: Callbacks
|
||||
"""
|
||||
Callbacks for this call and any sub-calls (eg. a Chain calling an LLM).
|
||||
"""Callbacks for this call and any sub-calls (e.g. a Chain calling an LLM).
|
||||
|
||||
Tags are passed to all callbacks, metadata is passed to handle*Start callbacks.
|
||||
"""
|
||||
|
||||
run_name: str
|
||||
"""
|
||||
Name for the tracer run for this call. Defaults to the name of the class.
|
||||
"""
|
||||
"""Name for the tracer run for this call.
|
||||
|
||||
Defaults to the name of the class."""
|
||||
|
||||
max_concurrency: int | None
|
||||
"""
|
||||
Maximum number of parallel calls to make. If not provided, defaults to
|
||||
`ThreadPoolExecutor`'s default.
|
||||
"""Maximum number of parallel calls to make.
|
||||
|
||||
If not provided, defaults to `ThreadPoolExecutor`'s default.
|
||||
"""
|
||||
|
||||
recursion_limit: int
|
||||
"""
|
||||
Maximum number of times a call can recurse. If not provided, defaults to `25`.
|
||||
"""Maximum number of times a call can recurse.
|
||||
|
||||
If not provided, defaults to `25`.
|
||||
"""
|
||||
|
||||
configurable: dict[str, Any]
|
||||
"""
|
||||
Runtime values for attributes previously made configurable on this `Runnable`,
|
||||
"""Runtime values for attributes previously made configurable on this `Runnable`,
|
||||
or sub-Runnables, through `configurable_fields` or `configurable_alternatives`.
|
||||
|
||||
Check `output_schema` for a description of the attributes that have been made
|
||||
configurable.
|
||||
"""
|
||||
|
||||
run_id: uuid.UUID | None
|
||||
"""
|
||||
Unique identifier for the tracer run for this call. If not provided, a new UUID
|
||||
will be generated.
|
||||
"""Unique identifier for the tracer run for this call.
|
||||
|
||||
If not provided, a new UUID will be generated.
|
||||
"""
|
||||
|
||||
|
||||
|
||||
@@ -28,7 +28,6 @@ from langchain_core.runnables.utils import (
|
||||
coro_with_context,
|
||||
get_unique_config_specs,
|
||||
)
|
||||
from langchain_core.utils.aiter import py_anext
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain_core.callbacks.manager import AsyncCallbackManagerForChainRun
|
||||
@@ -563,7 +562,7 @@ class RunnableWithFallbacks(RunnableSerializable[Input, Output]):
|
||||
child_config,
|
||||
**kwargs,
|
||||
)
|
||||
chunk = await coro_with_context(py_anext(stream), context)
|
||||
chunk = await coro_with_context(anext(stream), context)
|
||||
except self.exceptions_to_handle as e:
|
||||
first_error = e if first_error is None else first_error
|
||||
last_error = e
|
||||
|
||||
@@ -4,7 +4,6 @@ from __future__ import annotations
|
||||
|
||||
import inspect
|
||||
from collections import defaultdict
|
||||
from collections.abc import Callable
|
||||
from dataclasses import dataclass, field
|
||||
from enum import Enum
|
||||
from typing import (
|
||||
@@ -22,7 +21,7 @@ from langchain_core.runnables.base import Runnable, RunnableSerializable
|
||||
from langchain_core.utils.pydantic import _IgnoreUnserializable, is_basemodel_subclass
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
from collections.abc import Callable, Sequence
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -642,6 +641,7 @@ class Graph:
|
||||
retry_delay: float = 1.0,
|
||||
frontmatter_config: dict[str, Any] | None = None,
|
||||
base_url: str | None = None,
|
||||
proxies: dict[str, str] | None = None,
|
||||
) -> bytes:
|
||||
"""Draw the graph as a PNG image using Mermaid.
|
||||
|
||||
@@ -674,11 +674,10 @@ class Graph:
|
||||
}
|
||||
```
|
||||
base_url: The base URL of the Mermaid server for rendering via API.
|
||||
|
||||
proxies: HTTP/HTTPS proxies for requests (e.g. `{"http": "http://127.0.0.1:7890"}`).
|
||||
|
||||
Returns:
|
||||
The PNG image as bytes.
|
||||
|
||||
"""
|
||||
# Import locally to prevent circular import
|
||||
from langchain_core.runnables.graph_mermaid import ( # noqa: PLC0415
|
||||
@@ -699,6 +698,7 @@ class Graph:
|
||||
padding=padding,
|
||||
max_retries=max_retries,
|
||||
retry_delay=retry_delay,
|
||||
proxies=proxies,
|
||||
base_url=base_url,
|
||||
)
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ from __future__ import annotations
|
||||
|
||||
import math
|
||||
import os
|
||||
from collections.abc import Mapping, Sequence
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
try:
|
||||
@@ -20,6 +19,8 @@ except ImportError:
|
||||
_HAS_GRANDALF = False
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Mapping, Sequence
|
||||
|
||||
from langchain_core.runnables.graph import Edge as LangEdge
|
||||
|
||||
|
||||
@@ -164,6 +165,9 @@ class AsciiCanvas:
|
||||
y0: y coordinate of the box corner.
|
||||
width: box width.
|
||||
height: box height.
|
||||
|
||||
Raises:
|
||||
ValueError: if box dimensions are invalid.
|
||||
"""
|
||||
if width <= 1 or height <= 1:
|
||||
msg = "Box dimensions should be > 1"
|
||||
|
||||
@@ -8,9 +8,10 @@ import random
|
||||
import re
|
||||
import string
|
||||
import time
|
||||
import urllib.parse
|
||||
from dataclasses import asdict
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Literal
|
||||
from typing import TYPE_CHECKING, Any, Literal, cast
|
||||
|
||||
import yaml
|
||||
|
||||
@@ -40,6 +41,8 @@ except ImportError:
|
||||
|
||||
MARKDOWN_SPECIAL_CHARS = "*_`"
|
||||
|
||||
_HEX_COLOR_PATTERN = re.compile(r"^#(?:[0-9a-fA-F]{3}){1,2}$")
|
||||
|
||||
|
||||
def draw_mermaid(
|
||||
nodes: dict[str, Node],
|
||||
@@ -81,6 +84,7 @@ def draw_mermaid(
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Returns:
|
||||
Mermaid graph syntax.
|
||||
|
||||
@@ -281,6 +285,7 @@ def draw_mermaid_png(
|
||||
max_retries: int = 1,
|
||||
retry_delay: float = 1.0,
|
||||
base_url: str | None = None,
|
||||
proxies: dict[str, str] | None = None,
|
||||
) -> bytes:
|
||||
"""Draws a Mermaid graph as PNG using provided syntax.
|
||||
|
||||
@@ -293,6 +298,7 @@ def draw_mermaid_png(
|
||||
max_retries: Maximum number of retries (MermaidDrawMethod.API).
|
||||
retry_delay: Delay between retries (MermaidDrawMethod.API).
|
||||
base_url: Base URL for the Mermaid.ink API.
|
||||
proxies: HTTP/HTTPS proxies for requests (e.g. `{"http": "http://127.0.0.1:7890"}`).
|
||||
|
||||
Returns:
|
||||
PNG image bytes.
|
||||
@@ -314,6 +320,7 @@ def draw_mermaid_png(
|
||||
max_retries=max_retries,
|
||||
retry_delay=retry_delay,
|
||||
base_url=base_url,
|
||||
proxies=proxies,
|
||||
)
|
||||
else:
|
||||
supported_methods = ", ".join([m.value for m in MermaidDrawMethod])
|
||||
@@ -386,7 +393,7 @@ async def _render_mermaid_using_pyppeteer(
|
||||
}
|
||||
)
|
||||
|
||||
img_bytes = await page.screenshot({"fullPage": False})
|
||||
img_bytes = cast("bytes", await page.screenshot({"fullPage": False}))
|
||||
await browser.close()
|
||||
|
||||
if output_file_path is not None:
|
||||
@@ -405,6 +412,7 @@ def _render_mermaid_using_api(
|
||||
file_type: Literal["jpeg", "png", "webp"] | None = "png",
|
||||
max_retries: int = 1,
|
||||
retry_delay: float = 1.0,
|
||||
proxies: dict[str, str] | None = None,
|
||||
base_url: str | None = None,
|
||||
) -> bytes:
|
||||
"""Renders Mermaid graph using the Mermaid.INK API."""
|
||||
@@ -424,14 +432,14 @@ def _render_mermaid_using_api(
|
||||
)
|
||||
|
||||
# Check if the background color is a hexadecimal color code using regex
|
||||
if background_color is not None:
|
||||
hex_color_pattern = re.compile(r"^#(?:[0-9a-fA-F]{3}){1,2}$")
|
||||
if not hex_color_pattern.match(background_color):
|
||||
background_color = f"!{background_color}"
|
||||
if background_color is not None and not _HEX_COLOR_PATTERN.match(background_color):
|
||||
background_color = f"!{background_color}"
|
||||
|
||||
# URL-encode the background_color to handle special characters like '!'
|
||||
encoded_bg_color = urllib.parse.quote(str(background_color), safe="")
|
||||
image_url = (
|
||||
f"{base_url}/img/{mermaid_syntax_encoded}"
|
||||
f"?type={file_type}&bgColor={background_color}"
|
||||
f"?type={file_type}&bgColor={encoded_bg_color}"
|
||||
)
|
||||
|
||||
error_msg_suffix = (
|
||||
@@ -445,7 +453,7 @@ def _render_mermaid_using_api(
|
||||
|
||||
for attempt in range(max_retries + 1):
|
||||
try:
|
||||
response = requests.get(image_url, timeout=10)
|
||||
response = requests.get(image_url, timeout=10, proxies=proxies)
|
||||
if response.status_code == requests.codes.ok:
|
||||
img_bytes = response.content
|
||||
if output_file_path is not None:
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
"""Helper class to draw a state graph into a PNG file."""
|
||||
|
||||
from itertools import groupby
|
||||
from typing import Any
|
||||
from typing import Any, cast
|
||||
|
||||
from langchain_core.runnables.graph import Graph, LabelsDict
|
||||
|
||||
@@ -149,7 +149,7 @@ class PngDrawer:
|
||||
|
||||
# Save the graph as PNG
|
||||
try:
|
||||
return viz.draw(output_path, format="png", prog="dot")
|
||||
return cast("bytes | None", viz.draw(output_path, format="png", prog="dot"))
|
||||
finally:
|
||||
viz.close()
|
||||
|
||||
@@ -201,7 +201,8 @@ class PngDrawer:
|
||||
viz, start, end, str(data) if data is not None else None, cond
|
||||
)
|
||||
|
||||
def update_styles(self, viz: Any, graph: Graph) -> None:
|
||||
@staticmethod
|
||||
def update_styles(viz: Any, graph: Graph) -> None:
|
||||
"""Update the styles of the entrypoint and END nodes.
|
||||
|
||||
Args:
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user