Compare commits

..

4 Commits

Author SHA1 Message Date
Harrison Chase
7df74a4d52 load prompt 2022-11-15 06:58:05 -08:00
Harrison Chase
0d0d3f122a cr 2022-11-14 22:54:12 -08:00
Harrison Chase
bf3a9973f0 Merge branch 'master' into harrison/prompts_take_2 2022-11-14 22:43:06 -08:00
Harrison Chase
c28d5ec3ba update prompts 2022-11-14 20:58:34 -08:00
3090 changed files with 9634 additions and 427962 deletions

View File

@@ -1,49 +0,0 @@
# Dev container
This project includes a [dev container](https://containers.dev/), which lets you use a container as a full-featured dev environment.
You can use the dev container configuration in this folder to build and run the app without needing to install any of its tools locally! You can use it in [GitHub Codespaces](https://github.com/features/codespaces) or the [VS Code Dev Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers).
## GitHub Codespaces
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/langchain-ai/langchain)
You may use the button above, or follow these steps to open this repo in a Codespace:
1. Click the **Code** drop-down menu at the top of <https://github.com/langchain-ai/langchain>.
1. Click on the **Codespaces** tab.
1. Click **Create codespace on master**.
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
> [!NOTE]
> If you click the link above you will open the main repo (`langchain-ai/langchain`) and *not* your local cloned repo. This is fine if you only want to run and test the library, but if you want to contribute you can use the link below and replace with your username and cloned repo name:
```txt
https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/&lt;YOUR_USERNAME&gt;/&lt;YOUR_CLONED_REPO_NAME&gt;
```
Then you will have a local cloned repo where you can contribute and then create pull requests.
If you already have VS Code and Docker installed, you can use the button above to get started. This will use VSCode to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
Alternatively you can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in the [getting started steps](https://aka.ms/vscode-remote/containers/getting-started).
2. Open a locally cloned copy of the code:
- Fork and Clone this repository to your local filesystem.
- Press <kbd>F1</kbd> and select the **Dev Containers: Open Folder in Container...** command.
- Select the cloned copy of this folder, wait for the container to start, and try things out!
You can learn more in the [Dev Containers documentation](https://code.visualstudio.com/docs/devcontainers/containers).
## Tips and tricks
- If you are working with the same repository folder in a container and Windows, you'll want consistent line endings (otherwise you may see hundreds of changes in the SCM view). The `.gitattributes` file in the root of this repo will disable line ending conversion and should prevent this. See [tips and tricks](https://code.visualstudio.com/docs/devcontainers/tips-and-tricks#_resolving-git-line-ending-issues-in-containers-resulting-in-many-modified-files) for more info.
- If you'd like to review the contents of the image used in this dev container, you can check it out in the [devcontainers/images](https://github.com/devcontainers/images/tree/main/src/python) repo.

View File

@@ -1,58 +0,0 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/docker-existing-docker-compose
{
// Name for the dev container
"name": "langchain",
// Point to a Docker Compose file
"dockerComposeFile": "./docker-compose.yaml",
// Required when using Docker Compose. The name of the service to connect to once running
"service": "langchain",
// The optional 'workspaceFolder' property is the path VS Code should open by default when
// connected. This is typically a file mount in .devcontainer/docker-compose.yml
"workspaceFolder": "/workspaces/langchain",
"mounts": [
"source=langchain-workspaces,target=/workspaces/langchain,type=volume"
],
// Prevent the container from shutting down
"overrideCommand": true,
// Features to add to the dev container. More info: https://containers.dev/features
"features": {
"ghcr.io/devcontainers/features/git:1": {},
"ghcr.io/devcontainers/features/github-cli:1": {}
},
"containerEnv": {
"UV_LINK_MODE": "copy"
},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Run commands after the container is created
"postCreateCommand": "cd libs/langchain_v1 && uv sync && echo 'LangChain (Python) dev environment ready!'",
// Configure tool-specific properties.
"customizations": {
"vscode": {
"extensions": [
"ms-python.python",
"ms-python.debugpy",
"ms-python.mypy-type-checker",
"ms-python.isort",
"unifiedjs.vscode-mdx",
"davidanson.vscode-markdownlint",
"ms-toolsai.jupyter",
"GitHub.copilot",
"GitHub.copilot-chat"
],
"settings": {
"python.defaultInterpreterPath": "libs/langchain_v1/.venv/bin/python",
"python.formatting.provider": "none",
"[python]": {
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {
"source.organizeImports": true
}
}
}
}
}
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
// "remoteUser": "root"
}

View File

@@ -1,13 +0,0 @@
version: '3'
services:
langchain:
build:
dockerfile: libs/langchain/dev.Dockerfile
context: ..
networks:
- langchain-network
networks:
langchain-network:
driver: bridge

View File

@@ -1,34 +0,0 @@
# Git
.git
.github
# Python
__pycache__
*.pyc
*.pyo
.venv
.mypy_cache
.pytest_cache
.ruff_cache
*.egg-info
.tox
# IDE
.idea
.vscode
# Worktree
worktree
# Test artifacts
.coverage
htmlcov
coverage.xml
# Build artifacts
dist
build
# Misc
*.log
.DS_Store

View File

@@ -1,52 +0,0 @@
# top-most EditorConfig file
root = true
# All files
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
trim_trailing_whitespace = true
# Python files
[*.py]
indent_style = space
indent_size = 4
max_line_length = 88
# JSON files
[*.json]
indent_style = space
indent_size = 2
# YAML files
[*.{yml,yaml}]
indent_style = space
indent_size = 2
# Markdown files
[*.md]
indent_style = space
indent_size = 2
trim_trailing_whitespace = false
# Configuration files
[*.{toml,ini,cfg}]
indent_style = space
indent_size = 4
# Shell scripts
[*.sh]
indent_style = space
indent_size = 2
# Makefile
[Makefile]
indent_style = tab
indent_size = 4
# Jupyter notebooks
[*.ipynb]
# Jupyter may include trailing whitespace in cell
# outputs that's semantically meaningful
trim_trailing_whitespace = false

View File

@@ -1,6 +1,5 @@
[flake8]
exclude =
venv
.venv
__pycache__
notebooks

3
.gitattributes vendored
View File

@@ -1,3 +0,0 @@
* text=auto eol=lf
*.{cmd,[cC][mM][dD]} text eol=crlf
*.{bat,[bB][aA][tT]} text eol=crlf

3
.github/CODEOWNERS vendored
View File

@@ -1,3 +0,0 @@
/.github/ @baskaryan @ccurme @eyurtsev
/libs/core/ @eyurtsev
/libs/partners/ @ccurme @mdrxy

View File

@@ -1,142 +0,0 @@
name: "\U0001F41B Bug Report"
description: Report a bug in LangChain. To report a security issue, please instead use the security option below. For questions, please use the LangChain forum.
labels: ["bug"]
type: bug
body:
- type: markdown
attributes:
value: |
Thank you for taking the time to file a bug report.
For usage questions, feature requests and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
Check these before submitting to see if your issue has already been reported, fixed or if there's another way to solve your problem:
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
* [API Reference Documentation](https://reference.langchain.com/python/),
* [LangChain ChatBot](https://chat.langchain.com/)
* [GitHub search](https://github.com/langchain-ai/langchain),
* [LangChain Forum](https://forum.langchain.com/),
- type: checkboxes
id: checks
attributes:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: This is a bug, not a usage question.
required: true
- label: I added a clear and descriptive title that summarizes this issue.
required: true
- label: I used the GitHub search to find a similar question and didn't find it.
required: true
- label: I am sure that this is a bug in LangChain rather than my code.
required: true
- label: The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).
required: true
- label: This is not related to the langchain-community package.
required: true
- label: I posted a self-contained, minimal, reproducible example. A maintainer can copy it and run it AS IS.
required: true
- type: checkboxes
id: package
attributes:
label: Package (Required)
description: |
Which `langchain` package(s) is this bug related to? Select at least one.
Note that if the package you are reporting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in [`langchain-ai/langchain-google`](https://github.com/langchain-ai/langchain-google/)).
Please report issues for other packages to their respective repositories.
options:
- label: langchain
- label: langchain-openai
- label: langchain-anthropic
- label: langchain-classic
- label: langchain-core
- label: langchain-cli
- label: langchain-model-profiles
- label: langchain-tests
- label: langchain-text-splitters
- label: langchain-chroma
- label: langchain-deepseek
- label: langchain-exa
- label: langchain-fireworks
- label: langchain-groq
- label: langchain-huggingface
- label: langchain-mistralai
- label: langchain-nomic
- label: langchain-ollama
- label: langchain-perplexity
- label: langchain-prompty
- label: langchain-qdrant
- label: langchain-xai
- label: Other / not sure / general
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Example Code (Python)
description: |
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
**Important!**
* Avoid screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
* Reduce your code to the minimum required to reproduce the issue if possible.
(This will be automatically formatted into code, so no need for backticks.)
render: python
placeholder: |
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
raise NotImplementedError('For demo purpose')
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
- type: textarea
attributes:
label: Error Message and Stack Trace (if applicable)
description: |
If you are reporting an error, please copy and paste the full error message and
stack trace.
(This will be automatically formatted into code, so no need for backticks.)
render: shell
- type: textarea
id: description
attributes:
label: Description
description: |
What is the problem, question, or error?
Write a short description telling what you are doing, what you expect to happen, and what is currently happening.
placeholder: |
* I'm trying to use the `langchain` library to do X.
* I expect to see Y.
* Instead, it does Z.
validations:
required: true
- type: textarea
id: system-info
attributes:
label: System Info
description: |
Please share your system info with us.
Run the following command in your terminal and paste the output here:
`python -m langchain_core.sys_info`
or if you have an existing python interpreter running:
```python
from langchain_core import sys_info
sys_info.print_sys_info()
```
placeholder: |
python -m langchain_core.sys_info
validations:
required: true

View File

@@ -1,15 +0,0 @@
blank_issues_enabled: false
version: 2.1
contact_links:
- name: 📚 Documentation issue
url: https://github.com/langchain-ai/docs/issues/new?template=01-langchain.yml
about: Report an issue related to the LangChain documentation
- name: 💬 LangChain Forum
url: https://forum.langchain.com/
about: General community discussions and support
- name: 📚 LangChain Documentation
url: https://docs.langchain.com/oss/python/langchain/overview
about: View the official LangChain documentation
- name: 📚 API Reference Documentation
url: https://reference.langchain.com/python/
about: View the official LangChain API reference documentation

View File

@@ -1,152 +0,0 @@
name: "✨ Feature Request"
description: Request a new feature or enhancement for LangChain. For questions, please use the LangChain forum.
labels: ["feature request"]
type: feature
body:
- type: markdown
attributes:
value: |
Thank you for taking the time to request a new feature.
Use this to request NEW FEATURES or ENHANCEMENTS in LangChain. For bug reports, please use the bug report template. For usage questions and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
Relevant links to check before filing a feature request to see if your request has already been made or
if there's another way to achieve what you want:
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
* [API Reference Documentation](https://reference.langchain.com/python/),
* [LangChain ChatBot](https://chat.langchain.com/)
* [GitHub search](https://github.com/langchain-ai/langchain),
* [LangChain Forum](https://forum.langchain.com/),
- type: checkboxes
id: checks
attributes:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: This is a feature request, not a bug report or usage question.
required: true
- label: I added a clear and descriptive title that summarizes the feature request.
required: true
- label: I used the GitHub search to find a similar feature request and didn't find it.
required: true
- label: I checked the LangChain documentation and API reference to see if this feature already exists.
required: true
- label: This is not related to the langchain-community package.
required: true
- type: checkboxes
id: package
attributes:
label: Package (Required)
description: |
Which `langchain` package(s) is this request related to? Select at least one.
Note that if the package you are requesting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in `langchain-ai/langchain`).
Please submit feature requests for other packages to their respective repositories.
options:
- label: langchain
- label: langchain-openai
- label: langchain-anthropic
- label: langchain-classic
- label: langchain-core
- label: langchain-cli
- label: langchain-model-profiles
- label: langchain-tests
- label: langchain-text-splitters
- label: langchain-chroma
- label: langchain-deepseek
- label: langchain-exa
- label: langchain-fireworks
- label: langchain-groq
- label: langchain-huggingface
- label: langchain-mistralai
- label: langchain-nomic
- label: langchain-ollama
- label: langchain-perplexity
- label: langchain-prompty
- label: langchain-qdrant
- label: langchain-xai
- label: Other / not sure / general
- type: textarea
id: feature-description
validations:
required: true
attributes:
label: Feature Description
description: |
Please provide a clear and concise description of the feature you would like to see added to LangChain.
What specific functionality are you requesting? Be as detailed as possible.
placeholder: |
I would like LangChain to support...
This feature would allow users to...
- type: textarea
id: use-case
validations:
required: true
attributes:
label: Use Case
description: |
Describe the specific use case or problem this feature would solve.
Why do you need this feature? What problem does it solve for you or other users?
placeholder: |
I'm trying to build an application that...
Currently, I have to work around this by...
This feature would help me/users to...
- type: textarea
id: proposed-solution
validations:
required: false
attributes:
label: Proposed Solution
description: |
If you have ideas about how this feature could be implemented, please describe them here.
This is optional but can be helpful for maintainers to understand your vision.
placeholder: |
I think this could be implemented by...
The API could look like...
```python
# Example of how the feature might work
```
- type: textarea
id: alternatives
validations:
required: false
attributes:
label: Alternatives Considered
description: |
Have you considered any alternative solutions or workarounds?
What other approaches have you tried or considered?
placeholder: |
I've tried using...
Alternative approaches I considered:
1. ...
2. ...
But these don't work because...
- type: textarea
id: additional-context
validations:
required: false
attributes:
label: Additional Context
description: |
Add any other context, screenshots, examples, or references that would help explain your feature request.
placeholder: |
Related issues: #...
Similar features in other libraries:
- ...
Additional context or examples:
- ...

View File

@@ -1,50 +0,0 @@
name: 🔒 Privileged
description: You are a LangChain maintainer, or was asked directly by a maintainer to create an issue here. If not, check the other options.
body:
- type: markdown
attributes:
value: |
If you are not a LangChain maintainer, employee, or were not asked directly by a maintainer to create an issue, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead.
- type: checkboxes
id: privileged
attributes:
label: Privileged issue
description: Confirm that you are allowed to create an issue here.
options:
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create an issue here.
required: true
- type: textarea
id: content
attributes:
label: Issue Content
description: Add the content of the issue here.
- type: checkboxes
id: package
attributes:
label: Package (Required)
description: |
Please select package(s) that this issue is related to.
options:
- label: langchain
- label: langchain-openai
- label: langchain-anthropic
- label: langchain-classic
- label: langchain-core
- label: langchain-cli
- label: langchain-model-profiles
- label: langchain-tests
- label: langchain-text-splitters
- label: langchain-chroma
- label: langchain-deepseek
- label: langchain-exa
- label: langchain-fireworks
- label: langchain-groq
- label: langchain-huggingface
- label: langchain-mistralai
- label: langchain-nomic
- label: langchain-ollama
- label: langchain-perplexity
- label: langchain-prompty
- label: langchain-qdrant
- label: langchain-xai
- label: Other / not sure / general

View File

@@ -1,121 +0,0 @@
name: "📋 Task"
description: Create a task for project management and tracking by LangChain maintainers. If you are not a maintainer, please use other templates or the forum.
labels: ["task"]
type: task
body:
- type: markdown
attributes:
value: |
Thanks for creating a task to help organize LangChain development.
This template is for **maintainer tasks** such as project management, development planning, refactoring, documentation updates, and other organizational work.
If you are not a LangChain maintainer or were not asked directly by a maintainer to create a task, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead or use the appropriate bug report or feature request templates on the previous page.
- type: checkboxes
id: maintainer
attributes:
label: Maintainer task
description: Confirm that you are allowed to create a task here.
options:
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create a task here.
required: true
- type: textarea
id: task-description
attributes:
label: Task Description
description: |
Provide a clear and detailed description of the task.
What needs to be done? Be specific about the scope and requirements.
placeholder: |
This task involves...
The goal is to...
Specific requirements:
- ...
- ...
validations:
required: true
- type: textarea
id: acceptance-criteria
attributes:
label: Acceptance Criteria
description: |
Define the criteria that must be met for this task to be considered complete.
What are the specific deliverables or outcomes expected?
placeholder: |
This task will be complete when:
- [ ] ...
- [ ] ...
- [ ] ...
validations:
required: true
- type: textarea
id: context
attributes:
label: Context and Background
description: |
Provide any relevant context, background information, or links to related issues/PRs.
Why is this task needed? What problem does it solve?
placeholder: |
Background:
- ...
Related issues/PRs:
- #...
Additional context:
- ...
validations:
required: false
- type: textarea
id: dependencies
attributes:
label: Dependencies
description: |
List any dependencies or blockers for this task.
Are there other tasks, issues, or external factors that need to be completed first?
placeholder: |
This task depends on:
- [ ] Issue #...
- [ ] PR #...
- [ ] External dependency: ...
Blocked by:
- ...
validations:
required: false
- type: checkboxes
id: package
attributes:
label: Package (Required)
description: |
Please select package(s) that this task is related to.
options:
- label: langchain
- label: langchain-openai
- label: langchain-anthropic
- label: langchain-classic
- label: langchain-core
- label: langchain-cli
- label: langchain-model-profiles
- label: langchain-tests
- label: langchain-text-splitters
- label: langchain-chroma
- label: langchain-deepseek
- label: langchain-exa
- label: langchain-fireworks
- label: langchain-groq
- label: langchain-huggingface
- label: langchain-mistralai
- label: langchain-nomic
- label: langchain-ollama
- label: langchain-perplexity
- label: langchain-prompty
- label: langchain-qdrant
- label: langchain-xai
- label: Other / not sure / general

View File

@@ -1,30 +0,0 @@
(Replace this entire block of text)
Read the full contributing guidelines: https://docs.langchain.com/oss/python/contributing/overview
Thank you for contributing to LangChain! Follow these steps to have your pull request considered as ready for review.
1. PR title: Should follow the format: TYPE(SCOPE): DESCRIPTION
- Examples:
- fix(anthropic): resolve flag parsing error
- feat(core): add multi-tenant support
- test(openai): update API usage tests
- Allowed TYPE and SCOPE values: https://github.com/langchain-ai/langchain/blob/master/.github/workflows/pr_lint.yml#L15-L33
2. PR description:
- Write 1-2 sentences summarizing the change.
- If this PR addresses a specific issue, please include "Fixes #ISSUE_NUMBER" in the description to automatically close the issue when the PR is merged.
- If there are any breaking changes, please clearly describe them.
- If this PR depends on another PR being merged first, please include "Depends on #PR_NUMBER" inthe description.
3. Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified.
- We will not consider a PR unless these three are passing in CI.
Additional guidelines:
- We ask that if you use generative AI for your contribution, you include a disclaimer.
- PRs should not touch more than one package unless absolutely necessary.
- Do not update the `uv.lock` files unless or add dependencies to `pyproject.toml` files (even optional ones) unless you have explicit permission to do so by a maintainer.

View File

@@ -1,39 +0,0 @@
# Helper to set up Python and uv with caching
name: uv-install
description: Set up Python and uv with caching
inputs:
python-version:
description: Python version, supporting MAJOR.MINOR only
required: true
enable-cache:
description: Enable caching for uv dependencies
required: false
default: "true"
cache-suffix:
description: Custom cache key suffix for cache invalidation
required: false
default: ""
working-directory:
description: Working directory for cache glob scoping
required: false
default: "**"
env:
UV_VERSION: "0.5.25"
runs:
using: composite
steps:
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v7
with:
version: ${{ env.UV_VERSION }}
python-version: ${{ inputs.python-version }}
enable-cache: ${{ inputs.enable-cache }}
cache-dependency-glob: |
${{ inputs.working-directory }}/pyproject.toml
${{ inputs.working-directory }}/uv.lock
${{ inputs.working-directory }}/requirements*.txt
cache-suffix: ${{ inputs.cache-suffix }}

View File

@@ -1,11 +0,0 @@
# Please see the documentation for all configuration options:
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
# and
# https://docs.github.com/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"

View File

@@ -1,25 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1584.81 250">
<defs>
<style>
.cls-1 {
fill: #1c3c3c;
stroke-width: 0px;
}
</style>
</defs>
<g id="LanChain-logo">
<g id="LangChain-logotype">
<polygon class="cls-1" points="596.33 49.07 596.33 200.67 700.76 200.67 700.76 177.78 620.04 177.78 620.04 49.07 596.33 49.07"/>
<path class="cls-1" d="M1126.83,49.07c-20.53,0-37.95,7.4-50.38,21.41-12.32,13.88-18.82,33.36-18.82,56.33,0,47.23,27.25,77.75,69.41,77.75,29.71,0,52.71-15.54,61.54-41.56l2.14-6.31-23.53-8.94-2.17,7.03c-5.26,17.01-18.75,26.38-37.99,26.38-27.48,0-44.55-20.82-44.55-54.34s17.23-54.34,44.97-54.34c19.23,0,30.31,7.54,35.95,24.44l2.46,7.37,22.91-10.75-2.1-5.9c-8.96-25.22-29.65-38.56-59.85-38.56Z"/>
<path class="cls-1" d="M756.43,85.05c-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.52-.04,2.09-.04,2.09,0,0-17.76,2.88-25.08,4.43-31.23,6.6-44.31,18.52-44.31,38.02,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.99,0,11.81-.89,17.2-2.53,12.25-4.07,15.67-12.07,15.67-12.07v10.46h20.29v-74.78c0-25.42-16.7-40.6-44.67-40.6ZM777.46,164.85c0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23,3.75-3.13,10.38-5.37,20.62-7.6,8.42-1.83,19.54-3.85,19.54-3.85v15.48Z"/>
<path class="cls-1" d="M876.11,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96l.02-9.31h-22.74s0,112.19,0,112.19h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
<path class="cls-1" d="M1539.12,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96v-9.32h-22.72v112.2h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
<path class="cls-1" d="M1020.76,88.26v11.55s-5.81-14.77-32.24-14.77c-32.84,0-53.24,22.66-53.24,59.15,0,20.59,6.58,36.8,18.19,47.04,9.03,7.96,21.09,12.04,35.45,12.32,9.99.19,16.46-2.53,20.5-5.1,7.76-4.94,10.64-9.63,10.64-9.63,0,0-.33,3.67-.93,8.64-.43,3.6-1.24,6.13-1.24,6.13h0c-3.61,12.85-14.17,20.28-29.57,20.28s-24.73-5.07-26.58-15.06l-23.05,6.88c3.98,19.2,22,30.66,48.2,30.66,17.81,0,31.77-4.84,41.5-14.4,9.81-9.64,14.79-23.53,14.79-41.29v-102.41h-22.42ZM1019.26,145.21c0,22.44-10.96,35.84-29.32,35.84-19.67,0-30.95-13.44-30.95-36.86s11.28-36.66,30.95-36.66c17.92,0,29.15,13.34,29.32,34.82v2.86Z"/>
<path class="cls-1" d="M1259.01,85.04c-2.6,0-5.13.17-7.59.49-17.88,2.79-23.14,11.9-23.14,11.9v-2.67h-.01s0-45.69,0-45.69h-23.71v151.39h23.71v-62.18c0-21.27,15.41-30.95,29.73-30.95,15.48,0,23,8.32,23,25.45v67.68h23.71v-70.94c0-27.01-17.94-44.47-45.69-44.47Z"/>
<circle class="cls-1" cx="1450.93" cy="64.47" r="15.37"/>
<path class="cls-1" d="M1439.14,88.2v56.94h0c-6.75-5.56-14.6-9.75-23.5-12.26v-7.23c0-25.42-16.7-40.6-44.67-40.6-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.08,0,1.15,0,2.86-10.04-.28-19.38.69-27.77,2.66,0,0,0,0,0,0-11.06,2.5-31.6,8.85-38.94,25.36-.05.11-1.13,2.96-1.13,2.96-1.06,3.28-1.59,6.84-1.59,10.7,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.88,0,11.6-.86,16.91-2.44,12.49-4.04,15.96-12.16,15.96-12.16v10.47h20.29v-34.27c-5.7-3.56-14.26-5.66-23.65-5.64,0,2.65,0,4.33,0,4.33,0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23l-.04-.11c8.42-6.89,24.97-9.64,40.17-9.04v.03c12.94.47,22.62,3.01,29.53,7.77,1.88,1.19,3.65,2.52,5.28,3.98,6.94,6.23,9.73,13.9,10.93,18.38,1.95,7.31,1.43,18.57,1.43,18.57h23.59v-112.2h-23.59Z"/>
</g>
<path id="LangChain-symbol" class="cls-1" d="M393.52,75.2c9.66,9.66,9.66,25.38,0,35.04l-21.64,21.29-.22-1.22c-1.58-8.75-5.74-16.69-12.02-22.97-4.73-4.72-10.32-8.21-16.62-10.37-3.91,3.93-6.06,9.08-6.06,14.5,0,1.1.1,2.24.3,3.38,3.47,1.25,6.54,3.18,9.12,5.76,9.66,9.66,9.66,25.38,0,35.04l-18.84,18.84c-4.83,4.83-11.17,7.24-17.52,7.24s-12.69-2.41-17.52-7.24c-9.66-9.66-9.66-25.38,0-35.04l21.64-21.28.22,1.22c1.57,8.73,5.73,16.67,12.03,22.96,4.74,4.74,9.99,7.89,16.28,10.04l1.16-1.16c3.52-3.52,5.45-8.2,5.45-13.19,0-1.11-.1-2.22-.29-3.31-3.63-1.2-6.62-2.91-9.34-5.63-3.92-3.92-6.36-8.93-7.04-14.48-.05-.4-.08-.79-.12-1.19-.54-7.23,2.07-14.29,7.16-19.37l18.84-18.84c4.67-4.67,10.89-7.25,17.52-7.25s12.85,2.57,17.52,7.25ZM491.9,125c0,68.93-56.08,125-125,125H125C56.08,250,0,193.93,0,125S56.08,0,125,0h241.9c68.93,0,125,56.08,125,125ZM240.9,187.69c1.97-2.39-7.13-9.12-8.99-11.59-3.78-4.1-3.8-10-6.35-14.79-6.24-14.46-13.41-28.81-23.44-41.05-10.6-13.39-23.68-24.47-35.17-37.04-8.53-8.77-10.81-21.26-18.34-30.69-10.38-15.33-43.2-19.51-48.01,2.14.02.68-.19,1.11-.78,1.54-2.66,1.93-5.03,4.14-7.02,6.81-4.87,6.78-5.62,18.28.46,24.37.2-3.21.31-6.24,2.85-8.54,4.7,4.03,11.8,5.46,17.25,2.45,12.04,17.19,9.04,40.97,18.6,59.49,2.64,4.38,5.3,8.85,8.69,12.69,2.75,4.28,12.25,9.33,12.81,13.29.1,6.8-.7,14.23,3.76,19.92,2.1,4.26-3.06,8.54-7.22,8.01-5.4.74-11.99-3.63-16.72-.94-1.67,1.81-4.94-.19-6.38,2.32-.5,1.3-3.2,3.13-1.59,4.38,1.79-1.36,3.45-2.78,5.86-1.97-.36,1.96,1.19,2.24,2.42,2.81-.04,1.33-.82,2.69.2,3.82,1.19-1.2,1.9-2.9,3.79-3.4,6.28,8.37,12.67-8.47,26.26-.89-2.76-.14-5.21.21-7.07,2.48-.46.51-.85,1.11-.04,1.77,7.33-4.73,7.29,1.62,12.05-.33,3.66-1.91,7.3-4.3,11.65-3.62-4.23,1.22-4.4,4.62-6.88,7.49-.42.44-.62.94-.13,1.67,8.78-.74,9.5-3.66,16.59-7.24,5.29-3.23,10.56,4.6,15.14.14,1.01-.97,2.39-.64,3.64-.77-1.6-8.53-19.19,1.56-18.91-9.88,5.66-3.85,4.36-11.22,4.74-17.17,6.51,3.61,13.75,5.71,20.13,9.16,3.22,5.2,8.27,12.07,15,11.62.18-.52.34-.98.53-1.51,2.04.35,4.66,1.7,5.78-.88,3.05,3.19,7.53,3.03,11.52,2.21,2.95-2.4-5.55-5.82-6.69-8.29ZM419.51,92.72c0-11.64-4.52-22.57-12.73-30.78-8.21-8.21-19.14-12.73-30.79-12.73s-22.58,4.52-30.79,12.73l-18.84,18.84c-4.4,4.4-7.74,9.57-9.93,15.36l-.13.33-.34.1c-6.84,2.11-12.87,5.73-17.92,10.78l-18.84,18.84c-16.97,16.98-16.97,44.6,0,61.57,8.21,8.21,19.14,12.73,30.78,12.73h0c11.64,0,22.58-4.52,30.79-12.73l18.84-18.84c4.38-4.38,7.7-9.53,9.89-15.31l.13-.33.34-.11c6.72-2.06,12.92-5.8,17.95-10.82l18.84-18.84c8.21-8.21,12.73-19.14,12.73-30.79ZM172.38,173.6c-1.62,6.32-2.15,17.09-10.37,17.4-.68,3.65,2.53,5.02,5.44,3.85,2.89-1.33,4.26,1.05,5.23,3.42,4.46.65,11.06-1.49,11.31-6.77-6.66-3.84-8.72-11.14-11.62-17.9Z"/>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 6.4 KiB

View File

@@ -1,25 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1584.81 250">
<defs>
<style>
.cls-1 {
fill: #fff;
stroke-width: 0px;
}
</style>
</defs>
<g id="LanChain-logo">
<g id="LangChain-logotype">
<polygon class="cls-1" points="596.33 49.07 596.33 200.67 700.76 200.67 700.76 177.78 620.04 177.78 620.04 49.07 596.33 49.07"/>
<path class="cls-1" d="M1126.83,49.07c-20.53,0-37.95,7.4-50.38,21.41-12.32,13.88-18.82,33.36-18.82,56.33,0,47.23,27.25,77.75,69.41,77.75,29.71,0,52.71-15.54,61.54-41.56l2.14-6.31-23.53-8.94-2.17,7.03c-5.26,17.01-18.75,26.38-37.99,26.38-27.48,0-44.55-20.82-44.55-54.34s17.23-54.34,44.97-54.34c19.23,0,30.31,7.54,35.95,24.44l2.46,7.37,22.91-10.75-2.1-5.9c-8.96-25.22-29.65-38.56-59.85-38.56Z"/>
<path class="cls-1" d="M756.43,85.05c-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.52-.04,2.09-.04,2.09,0,0-17.76,2.88-25.08,4.43-31.23,6.6-44.31,18.52-44.31,38.02,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.99,0,11.81-.89,17.2-2.53,12.25-4.07,15.67-12.07,15.67-12.07v10.46h20.29v-74.78c0-25.42-16.7-40.6-44.67-40.6ZM777.46,164.85c0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23,3.75-3.13,10.38-5.37,20.62-7.6,8.42-1.83,19.54-3.85,19.54-3.85v15.48Z"/>
<path class="cls-1" d="M876.11,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96l.02-9.31h-22.74s0,112.19,0,112.19h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
<path class="cls-1" d="M1539.12,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96v-9.32h-22.72v112.2h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
<path class="cls-1" d="M1020.76,88.26v11.55s-5.81-14.77-32.24-14.77c-32.84,0-53.24,22.66-53.24,59.15,0,20.59,6.58,36.8,18.19,47.04,9.03,7.96,21.09,12.04,35.45,12.32,9.99.19,16.46-2.53,20.5-5.1,7.76-4.94,10.64-9.63,10.64-9.63,0,0-.33,3.67-.93,8.64-.43,3.6-1.24,6.13-1.24,6.13h0c-3.61,12.85-14.17,20.28-29.57,20.28s-24.73-5.07-26.58-15.06l-23.05,6.88c3.98,19.2,22,30.66,48.2,30.66,17.81,0,31.77-4.84,41.5-14.4,9.81-9.64,14.79-23.53,14.79-41.29v-102.41h-22.42ZM1019.26,145.21c0,22.44-10.96,35.84-29.32,35.84-19.67,0-30.95-13.44-30.95-36.86s11.28-36.66,30.95-36.66c17.92,0,29.15,13.34,29.32,34.82v2.86Z"/>
<path class="cls-1" d="M1259.01,85.04c-2.6,0-5.13.17-7.59.49-17.88,2.79-23.14,11.9-23.14,11.9v-2.67h-.01s0-45.69,0-45.69h-23.71v151.39h23.71v-62.18c0-21.27,15.41-30.95,29.73-30.95,15.48,0,23,8.32,23,25.45v67.68h23.71v-70.94c0-27.01-17.94-44.47-45.69-44.47Z"/>
<circle class="cls-1" cx="1450.93" cy="64.47" r="15.37"/>
<path class="cls-1" d="M1439.14,88.2v56.94h0c-6.75-5.56-14.6-9.75-23.5-12.26v-7.23c0-25.42-16.7-40.6-44.67-40.6-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.08,0,1.15,0,2.86-10.04-.28-19.38.69-27.77,2.66,0,0,0,0,0,0-11.06,2.5-31.6,8.85-38.94,25.36-.05.11-1.13,2.96-1.13,2.96-1.06,3.28-1.59,6.84-1.59,10.7,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.88,0,11.6-.86,16.91-2.44,12.49-4.04,15.96-12.16,15.96-12.16v10.47h20.29v-34.27c-5.7-3.56-14.26-5.66-23.65-5.64,0,2.65,0,4.33,0,4.33,0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23l-.04-.11c8.42-6.89,24.97-9.64,40.17-9.04v.03c12.94.47,22.62,3.01,29.53,7.77,1.88,1.19,3.65,2.52,5.28,3.98,6.94,6.23,9.73,13.9,10.93,18.38,1.95,7.31,1.43,18.57,1.43,18.57h23.59v-112.2h-23.59Z"/>
</g>
<path id="LangChain-symbol" class="cls-1" d="M393.52,75.2c9.66,9.66,9.66,25.38,0,35.04l-21.64,21.29-.22-1.22c-1.58-8.75-5.74-16.69-12.02-22.97-4.73-4.72-10.32-8.21-16.62-10.37-3.91,3.93-6.06,9.08-6.06,14.5,0,1.1.1,2.24.3,3.38,3.47,1.25,6.54,3.18,9.12,5.76,9.66,9.66,9.66,25.38,0,35.04l-18.84,18.84c-4.83,4.83-11.17,7.24-17.52,7.24s-12.69-2.41-17.52-7.24c-9.66-9.66-9.66-25.38,0-35.04l21.64-21.28.22,1.22c1.57,8.73,5.73,16.67,12.03,22.96,4.74,4.74,9.99,7.89,16.28,10.04l1.16-1.16c3.52-3.52,5.45-8.2,5.45-13.19,0-1.11-.1-2.22-.29-3.31-3.63-1.2-6.62-2.91-9.34-5.63-3.92-3.92-6.36-8.93-7.04-14.48-.05-.4-.08-.79-.12-1.19-.54-7.23,2.07-14.29,7.16-19.37l18.84-18.84c4.67-4.67,10.89-7.25,17.52-7.25s12.85,2.57,17.52,7.25ZM491.9,125c0,68.93-56.08,125-125,125H125C56.08,250,0,193.93,0,125S56.08,0,125,0h241.9C435.82,0,491.9,56.08,491.9,125ZM240.9,187.69c1.97-2.39-7.13-9.12-8.99-11.59-3.78-4.1-3.8-10-6.35-14.79-6.24-14.46-13.41-28.81-23.44-41.05-10.6-13.39-23.68-24.47-35.17-37.04-8.53-8.77-10.81-21.26-18.34-30.69-10.38-15.33-43.2-19.51-48.01,2.14.02.68-.19,1.11-.78,1.54-2.66,1.93-5.03,4.14-7.02,6.81-4.87,6.78-5.62,18.28.46,24.37.2-3.21.31-6.24,2.85-8.54,4.7,4.03,11.8,5.46,17.25,2.45,12.04,17.19,9.04,40.97,18.6,59.49,2.64,4.38,5.3,8.85,8.69,12.69,2.75,4.28,12.25,9.33,12.81,13.29.1,6.8-.7,14.23,3.76,19.92,2.1,4.26-3.06,8.54-7.22,8.01-5.4.74-11.99-3.63-16.72-.94-1.67,1.81-4.94-.19-6.38,2.32-.5,1.3-3.2,3.13-1.59,4.38,1.79-1.36,3.45-2.78,5.86-1.97-.36,1.96,1.19,2.24,2.42,2.81-.04,1.33-.82,2.69.2,3.82,1.19-1.2,1.9-2.9,3.79-3.4,6.28,8.37,12.67-8.47,26.26-.89-2.76-.14-5.21.21-7.07,2.48-.46.51-.85,1.11-.04,1.77,7.33-4.73,7.29,1.62,12.05-.33,3.66-1.91,7.3-4.3,11.65-3.62-4.23,1.22-4.4,4.62-6.88,7.49-.42.44-.62.94-.13,1.67,8.78-.74,9.5-3.66,16.59-7.24,5.29-3.23,10.56,4.6,15.14.14,1.01-.97,2.39-.64,3.64-.77-1.6-8.53-19.19,1.56-18.91-9.88,5.66-3.85,4.36-11.22,4.74-17.17,6.51,3.61,13.75,5.71,20.13,9.16,3.22,5.2,8.27,12.07,15,11.62.18-.52.34-.98.53-1.51,2.04.35,4.66,1.7,5.78-.88,3.05,3.19,7.53,3.03,11.52,2.21,2.95-2.4-5.55-5.82-6.69-8.29ZM419.51,92.72c0-11.64-4.52-22.57-12.73-30.78-8.21-8.21-19.14-12.73-30.79-12.73s-22.58,4.52-30.79,12.73l-18.84,18.84c-4.4,4.4-7.74,9.57-9.93,15.36l-.13.33-.34.1c-6.84,2.11-12.87,5.73-17.92,10.78l-18.84,18.84c-16.97,16.98-16.97,44.6,0,61.57,8.21,8.21,19.14,12.73,30.78,12.73h0c11.64,0,22.58-4.52,30.79-12.73l18.84-18.84c4.38-4.38,7.7-9.53,9.89-15.31l.13-.33.34-.11c6.72-2.06,12.92-5.8,17.95-10.82l18.84-18.84c8.21-8.21,12.73-19.14,12.73-30.79ZM172.38,173.6c-1.62,6.32-2.15,17.09-10.37,17.4-.68,3.65,2.53,5.02,5.44,3.85,2.89-1.33,4.26,1.05,5.23,3.42,4.46.65,11.06-1.49,11.31-6.77-6.66-3.84-8.72-11.14-11.62-17.9Z"/>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 6.4 KiB

View File

@@ -1,152 +0,0 @@
# Label PRs (config)
# Automatically applies labels based on changed files and branch patterns
# Core packages
core:
- changed-files:
- any-glob-to-any-file:
- "libs/core/**/*"
langchain-classic:
- changed-files:
- any-glob-to-any-file:
- "libs/langchain/**/*"
langchain:
- changed-files:
- any-glob-to-any-file:
- "libs/langchain_v1/**/*"
cli:
- changed-files:
- any-glob-to-any-file:
- "libs/cli/**/*"
standard-tests:
- changed-files:
- any-glob-to-any-file:
- "libs/standard-tests/**/*"
model-profiles:
- changed-files:
- any-glob-to-any-file:
- "libs/model-profiles/**/*"
text-splitters:
- changed-files:
- any-glob-to-any-file:
- "libs/text-splitters/**/*"
# Partner integrations
integration:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/**/*"
anthropic:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/anthropic/**/*"
chroma:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/chroma/**/*"
deepseek:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/deepseek/**/*"
exa:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/exa/**/*"
fireworks:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/fireworks/**/*"
groq:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/groq/**/*"
huggingface:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/huggingface/**/*"
mistralai:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/mistralai/**/*"
nomic:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/nomic/**/*"
ollama:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/ollama/**/*"
openai:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/openai/**/*"
perplexity:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/perplexity/**/*"
prompty:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/prompty/**/*"
qdrant:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/qdrant/**/*"
xai:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/xai/**/*"
# Infrastructure and DevOps
infra:
- changed-files:
- any-glob-to-any-file:
- ".github/**/*"
- "Makefile"
- ".pre-commit-config.yaml"
- "scripts/**/*"
- "docker/**/*"
- "Dockerfile*"
github_actions:
- changed-files:
- any-glob-to-any-file:
- ".github/workflows/**/*"
- ".github/actions/**/*"
dependencies:
- changed-files:
- any-glob-to-any-file:
- "**/pyproject.toml"
- "uv.lock"
- "**/requirements*.txt"
- "**/poetry.lock"
# Documentation
documentation:
- changed-files:
- any-glob-to-any-file:
- "**/*.md"
- "**/README*"

View File

@@ -1,340 +0,0 @@
"""Analyze git diffs to determine which directories need to be tested.
Intelligently determines which LangChain packages and directories need to be tested,
linted, or built based on the changes. Handles dependency relationships between
packages, maps file changes to appropriate CI job configurations, and outputs JSON
configurations for GitHub Actions.
- Maps changed files to affected package directories (libs/core, libs/partners/*, etc.)
- Builds dependency graph to include dependent packages when core components change
- Generates test matrix configurations with appropriate Python versions
- Handles special cases for Pydantic version testing and performance benchmarks
Used as part of the check_diffs workflow.
"""
import glob
import json
import os
import sys
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Set
import tomllib
from get_min_versions import get_min_version_from_toml
from packaging.requirements import Requirement
LANGCHAIN_DIRS = [
"libs/core",
"libs/text-splitters",
"libs/langchain",
"libs/langchain_v1",
"libs/model-profiles",
]
# When set to True, we are ignoring core dependents
# in order to be able to get CI to pass for each individual
# package that depends on core
# e.g. if you touch core, we don't then add textsplitters/etc to CI
IGNORE_CORE_DEPENDENTS = False
# ignored partners are removed from dependents
# but still run if directly edited
IGNORED_PARTNERS = [
# remove huggingface from dependents because of CI instability
# specifically in huggingface jobs
# https://github.com/langchain-ai/langchain/issues/25558
"huggingface",
# prompty exhibiting issues with numpy for Python 3.13
# https://github.com/langchain-ai/langchain/actions/runs/12651104685/job/35251034969?pr=29065
"prompty",
]
def all_package_dirs() -> Set[str]:
return {
"/".join(path.split("/")[:-1]).lstrip("./")
for path in glob.glob("./libs/**/pyproject.toml", recursive=True)
if "libs/cli" not in path and "libs/standard-tests" not in path
}
def dependents_graph() -> dict:
"""Construct a mapping of package -> dependents
Done such that we can run tests on all dependents of a package when a change is made.
"""
dependents = defaultdict(set)
for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
if "template" in path:
continue
# load regular and test deps from pyproject.toml
with open(path, "rb") as f:
pyproject = tomllib.load(f)
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
for dep in [
*pyproject["project"]["dependencies"],
*pyproject["dependency-groups"]["test"],
]:
requirement = Requirement(dep)
package_name = requirement.name
if "langchain" in dep:
dependents[package_name].add(pkg_dir)
continue
# load extended deps from extended_testing_deps.txt
package_path = Path(path).parent
extended_requirement_path = package_path / "extended_testing_deps.txt"
if extended_requirement_path.exists():
with open(extended_requirement_path, "r") as f:
extended_deps = f.read().splitlines()
for depline in extended_deps:
if depline.startswith("-e "):
# editable dependency
assert depline.startswith("-e ../partners/"), (
"Extended test deps should only editable install partner packages"
)
partner = depline.split("partners/")[1]
dep = f"langchain-{partner}"
else:
dep = depline.split("==")[0]
if "langchain" in dep:
dependents[dep].add(pkg_dir)
for k in dependents:
for partner in IGNORED_PARTNERS:
if f"libs/partners/{partner}" in dependents[k]:
dependents[k].remove(f"libs/partners/{partner}")
return dependents
def add_dependents(dirs_to_eval: Set[str], dependents: dict) -> List[str]:
updated = set()
for dir_ in dirs_to_eval:
# handle core manually because it has so many dependents
if "core" in dir_:
updated.add(dir_)
continue
pkg = "langchain-" + dir_.split("/")[-1]
updated.update(dependents[pkg])
updated.add(dir_)
return list(updated)
def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
if job == "test-pydantic":
return _get_pydantic_test_configs(dir_)
if job == "codspeed":
py_versions = ["3.13"]
elif dir_ == "libs/core":
py_versions = ["3.10", "3.11", "3.12", "3.13", "3.14"]
# custom logic for specific directories
elif dir_ in {"libs/partners/chroma"}:
py_versions = ["3.10", "3.13"]
else:
py_versions = ["3.10", "3.14"]
return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions]
def _get_pydantic_test_configs(
dir_: str, *, python_version: str = "3.12"
) -> List[Dict[str, str]]:
with open("./libs/core/uv.lock", "rb") as f:
core_uv_lock_data = tomllib.load(f)
for package in core_uv_lock_data["package"]:
if package["name"] == "pydantic":
core_max_pydantic_minor = package["version"].split(".")[1]
break
with open(f"./{dir_}/uv.lock", "rb") as f:
dir_uv_lock_data = tomllib.load(f)
for package in dir_uv_lock_data["package"]:
if package["name"] == "pydantic":
dir_max_pydantic_minor = package["version"].split(".")[1]
break
core_min_pydantic_version = get_min_version_from_toml(
"./libs/core/pyproject.toml", "release", python_version, include=["pydantic"]
)["pydantic"]
core_min_pydantic_minor = (
core_min_pydantic_version.split(".")[1]
if "." in core_min_pydantic_version
else "0"
)
dir_min_pydantic_version = get_min_version_from_toml(
f"./{dir_}/pyproject.toml", "release", python_version, include=["pydantic"]
).get("pydantic", "0.0.0")
dir_min_pydantic_minor = (
dir_min_pydantic_version.split(".")[1]
if "." in dir_min_pydantic_version
else "0"
)
max_pydantic_minor = min(
int(dir_max_pydantic_minor),
int(core_max_pydantic_minor),
)
min_pydantic_minor = max(
int(dir_min_pydantic_minor),
int(core_min_pydantic_minor),
)
configs = [
{
"working-directory": dir_,
"pydantic-version": f"2.{v}.0",
"python-version": python_version,
}
for v in range(min_pydantic_minor, max_pydantic_minor + 1)
]
return configs
def _get_configs_for_multi_dirs(
job: str, dirs_to_run: Dict[str, Set[str]], dependents: dict
) -> List[Dict[str, str]]:
if job == "lint":
dirs = add_dependents(
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"],
dependents,
)
elif job in ["test", "compile-integration-tests", "dependencies", "test-pydantic"]:
dirs = add_dependents(
dirs_to_run["test"] | dirs_to_run["extended-test"], dependents
)
elif job == "extended-tests":
dirs = list(dirs_to_run["extended-test"])
elif job == "codspeed":
dirs = list(dirs_to_run["codspeed"])
else:
raise ValueError(f"Unknown job: {job}")
return [
config for dir_ in dirs for config in _get_configs_for_single_dir(job, dir_)
]
if __name__ == "__main__":
files = sys.argv[1:]
dirs_to_run: Dict[str, set] = {
"lint": set(),
"test": set(),
"extended-test": set(),
"codspeed": set(),
}
docs_edited = False
if len(files) >= 300:
# max diff length is 300 files - there are likely files missing
dirs_to_run["lint"] = all_package_dirs()
dirs_to_run["test"] = all_package_dirs()
dirs_to_run["extended-test"] = set(LANGCHAIN_DIRS)
for file in files:
if any(
file.startswith(dir_)
for dir_ in (
".github/workflows",
".github/tools",
".github/actions",
".github/scripts/check_diff.py",
)
):
# Infrastructure changes (workflows, actions, CI scripts) trigger tests on
# all core packages as a safety measure. This ensures that changes to CI/CD
# infrastructure don't inadvertently break package testing, even if the change
# appears unrelated (e.g., documentation build workflows). This is intentionally
# conservative to catch unexpected side effects from workflow modifications.
#
# Example: A PR modifying .github/workflows/api_doc_build.yml will trigger
# lint/test jobs for libs/core, libs/text-splitters, libs/langchain, and
# libs/langchain_v1, even though the workflow may only affect documentation.
dirs_to_run["extended-test"].update(LANGCHAIN_DIRS)
if file.startswith("libs/core"):
dirs_to_run["codspeed"].add("libs/core")
if any(file.startswith(dir_) for dir_ in LANGCHAIN_DIRS):
# add that dir and all dirs after in LANGCHAIN_DIRS
# for extended testing
found = False
for dir_ in LANGCHAIN_DIRS:
if dir_ == "libs/core" and IGNORE_CORE_DEPENDENTS:
dirs_to_run["extended-test"].add(dir_)
continue
if file.startswith(dir_):
found = True
if found:
dirs_to_run["extended-test"].add(dir_)
elif file.startswith("libs/standard-tests"):
# TODO: update to include all packages that rely on standard-tests (all partner packages)
# Note: won't run on external repo partners
dirs_to_run["lint"].add("libs/standard-tests")
dirs_to_run["test"].add("libs/standard-tests")
dirs_to_run["test"].add("libs/partners/mistralai")
dirs_to_run["test"].add("libs/partners/openai")
dirs_to_run["test"].add("libs/partners/anthropic")
dirs_to_run["test"].add("libs/partners/fireworks")
dirs_to_run["test"].add("libs/partners/groq")
elif file.startswith("libs/cli"):
dirs_to_run["lint"].add("libs/cli")
dirs_to_run["test"].add("libs/cli")
elif file.startswith("libs/partners"):
partner_dir = file.split("/")[2]
if os.path.isdir(f"libs/partners/{partner_dir}") and [
filename
for filename in os.listdir(f"libs/partners/{partner_dir}")
if not filename.startswith(".")
] != ["README.md"]:
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
# Skip codspeed for partners without benchmarks or in IGNORED_PARTNERS
if partner_dir not in IGNORED_PARTNERS:
dirs_to_run["codspeed"].add(f"libs/partners/{partner_dir}")
# Skip if the directory was deleted or is just a tombstone readme
elif file.startswith("libs/"):
# Check if this is a root-level file in libs/ (e.g., libs/README.md)
file_parts = file.split("/")
if len(file_parts) == 2:
# Root-level file in libs/, skip it (no tests needed)
continue
raise ValueError(
f"Unknown lib: {file}. check_diff.py likely needs "
"an update for this new library!"
)
elif file in [
"pyproject.toml",
"uv.lock",
]: # root uv files
docs_edited = True
dependents = dependents_graph()
# we now have dirs_by_job
# todo: clean this up
map_job_to_configs = {
job: _get_configs_for_multi_dirs(job, dirs_to_run, dependents)
for job in [
"lint",
"test",
"extended-tests",
"compile-integration-tests",
"dependencies",
"test-pydantic",
"codspeed",
]
}
for key, value in map_job_to_configs.items():
json_output = json.dumps(value)
print(f"{key}={json_output}")

View File

@@ -1,36 +0,0 @@
"""Check that no dependencies allow prereleases unless we're releasing a prerelease."""
import sys
import tomllib
if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
with open(toml_file, "rb") as file:
toml_data = tomllib.load(file)
# See if we're releasing an rc or dev version
version = toml_data["project"]["version"]
releasing_rc = "rc" in version or "dev" in version
# If not, iterate through dependencies and make sure none allow prereleases
if not releasing_rc:
dependencies = toml_data["project"]["dependencies"]
for dep_version in dependencies:
dep_version_string = (
dep_version["version"] if isinstance(dep_version, dict) else dep_version
)
if "rc" in dep_version_string:
raise ValueError(
f"Dependency {dep_version} has a prerelease version. Please remove this."
)
if isinstance(dep_version, dict) and dep_version.get(
"allow-prereleases", False
):
raise ValueError(
f"Dependency {dep_version} has allow-prereleases set to true. Please remove this."
)

View File

@@ -1,199 +0,0 @@
"""Get minimum versions of dependencies from a pyproject.toml file."""
import sys
from collections import defaultdict
if sys.version_info >= (3, 11):
import tomllib
else:
# For Python 3.10 and below, which doesnt have stdlib tomllib
import tomli as tomllib
import re
from typing import List
import requests
from packaging.requirements import Requirement
from packaging.specifiers import SpecifierSet
from packaging.version import Version, parse
MIN_VERSION_LIBS = [
"langchain-core",
"langchain",
"langchain-text-splitters",
"numpy",
"SQLAlchemy",
]
# some libs only get checked on release because of simultaneous changes in
# multiple libs
SKIP_IF_PULL_REQUEST = [
"langchain-core",
"langchain-text-splitters",
"langchain",
]
def get_pypi_versions(package_name: str) -> List[str]:
"""Fetch all available versions for a package from PyPI.
Args:
package_name: Name of the package
Returns:
List of all available versions
Raises:
requests.exceptions.RequestException: If PyPI API request fails
KeyError: If package not found or response format unexpected
"""
pypi_url = f"https://pypi.org/pypi/{package_name}/json"
response = requests.get(pypi_url)
response.raise_for_status()
return list(response.json()["releases"].keys())
def get_minimum_version(package_name: str, spec_string: str) -> str | None:
"""Find the minimum published version that satisfies the given constraints.
Args:
package_name: Name of the package
spec_string: Version specification string (e.g., ">=0.2.43,<0.4.0,!=0.3.0")
Returns:
Minimum compatible version or None if no compatible version found
"""
# Rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
spec_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", spec_string)
# Rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1 (can be anywhere in constraint string)
for y in range(1, 10):
spec_string = re.sub(
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}", spec_string
)
# Rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
for x in range(1, 10):
spec_string = re.sub(
rf"\^{x}\.(\d+)\.(\d+)", rf">={x}.\1.\2,<{x + 1}", spec_string
)
spec_set = SpecifierSet(spec_string)
all_versions = get_pypi_versions(package_name)
valid_versions = []
for version_str in all_versions:
try:
version = parse(version_str)
if spec_set.contains(version):
valid_versions.append(version)
except ValueError:
continue
return str(min(valid_versions)) if valid_versions else None
def _check_python_version_from_requirement(
requirement: Requirement, python_version: str
) -> bool:
if not requirement.marker:
return True
else:
marker_str = str(requirement.marker)
if "python_version" in marker_str or "python_full_version" in marker_str:
python_version_str = "".join(
char
for char in marker_str
if char.isdigit() or char in (".", "<", ">", "=", ",")
)
return check_python_version(python_version, python_version_str)
return True
def get_min_version_from_toml(
toml_path: str,
versions_for: str,
python_version: str,
*,
include: list | None = None,
):
# Parse the TOML file
with open(toml_path, "rb") as file:
toml_data = tomllib.load(file)
dependencies = defaultdict(list)
for dep in toml_data["project"]["dependencies"]:
requirement = Requirement(dep)
dependencies[requirement.name].append(requirement)
# Initialize a dictionary to store the minimum versions
min_versions = {}
# Iterate over the libs in MIN_VERSION_LIBS
for lib in set(MIN_VERSION_LIBS + (include or [])):
if versions_for == "pull_request" and lib in SKIP_IF_PULL_REQUEST:
# some libs only get checked on release because of simultaneous
# changes in multiple libs
continue
# Check if the lib is present in the dependencies
if lib in dependencies:
if include and lib not in include:
continue
requirements = dependencies[lib]
for requirement in requirements:
if _check_python_version_from_requirement(requirement, python_version):
version_string = str(requirement.specifier)
break
# Use parse_version to get the minimum supported version from version_string
min_version = get_minimum_version(lib, version_string)
# Store the minimum version in the min_versions dictionary
min_versions[lib] = min_version
return min_versions
def check_python_version(version_string, constraint_string):
"""Check if the given Python version matches the given constraints.
Args:
version_string: A string representing the Python version (e.g. "3.8.5").
constraint_string: A string representing the package's Python version
constraints (e.g. ">=3.6, <4.0").
Returns:
True if the version matches the constraints
"""
# Rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
constraint_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", constraint_string)
# Rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1.0 (can be anywhere in constraint string)
for y in range(1, 10):
constraint_string = re.sub(
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}.0", constraint_string
)
# Rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
for x in range(1, 10):
constraint_string = re.sub(
rf"\^{x}\.0\.(\d+)", rf">={x}.0.\1,<{x + 1}.0.0", constraint_string
)
try:
version = Version(version_string)
constraints = SpecifierSet(constraint_string)
return version in constraints
except Exception as e:
print(f"Error: {e}")
return False
if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
versions_for = sys.argv[2]
python_version = sys.argv[3]
assert versions_for in ["release", "pull_request"]
# Call the function to get the minimum versions
min_versions = get_min_version_from_toml(toml_file, versions_for, python_version)
print(" ".join([f"{lib}=={version}" for lib, version in min_versions.items()]))

View File

@@ -1,756 +0,0 @@
#!/usr/bin/env python3
#
# git-restore-mtime - Change mtime of files based on commit date of last change
#
# Copyright (C) 2012 Rodrigo Silva (MestreLion) <linux@rodrigosilva.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. See <http://www.gnu.org/licenses/gpl.html>
#
# Source: https://github.com/MestreLion/git-tools
# Version: July 13, 2023 (commit hash 5f832e72453e035fccae9d63a5056918d64476a2)
"""
Change the modification time (mtime) of files in work tree, based on the
date of the most recent commit that modified the file, including renames.
Ignores untracked files and uncommitted deletions, additions and renames, and
by default modifications too.
---
Useful prior to generating release tarballs, so each file is archived with a
date that is similar to the date when the file was actually last modified,
assuming the actual modification date and its commit date are close.
"""
# TODO:
# - Add -z on git whatchanged/ls-files, so we don't deal with filename decoding
# - When Python is bumped to 3.7, use text instead of universal_newlines on subprocess
# - Update "Statistics for some large projects" with modern hardware and repositories.
# - Create a README.md for git-restore-mtime alone. It deserves extensive documentation
# - Move Statistics there
# - See git-extras as a good example on project structure and documentation
# FIXME:
# - When current dir is outside the worktree, e.g. using --work-tree, `git ls-files`
# assume any relative pathspecs are to worktree root, not the current dir. As such,
# relative pathspecs may not work.
# - Renames are tricky:
# - R100 should not change mtime, but original name is not on filelist. Should
# track renames until a valid (A, M) mtime found and then set on current name.
# - Should set mtime for both current and original directories.
# - Check mode changes with unchanged blobs?
# - Check file (A, D) for the directory mtime is not sufficient:
# - Renames also change dir mtime, unless rename was on a parent dir
# - If most recent change of all files in a dir was a Modification (M),
# dir might not be touched at all.
# - Dirs containing only subdirectories but no direct files will also
# not be touched. They're files' [grand]parent dir, but never their dirname().
# - Some solutions:
# - After files done, perform some dir processing for missing dirs, finding latest
# file (A, D, R)
# - Simple approach: dir mtime is the most recent child (dir or file) mtime
# - Use a virtual concept of "created at most at" to fill missing info, bubble up
# to parents and grandparents
# - When handling [grand]parent dirs, stay inside <pathspec>
# - Better handling of merge commits. `-m` is plain *wrong*. `-c/--cc` is perfect, but
# painfully slow. First pass without merge commits is not accurate. Maybe add a new
# `--accurate` mode for `--cc`?
if __name__ != "__main__":
raise ImportError("{} should not be used as a module.".format(__name__))
import argparse
import datetime
import logging
import os.path
import shlex
import signal
import subprocess
import sys
import time
__version__ = "2022.12+dev"
# Update symlinks only if the platform supports not following them
UPDATE_SYMLINKS = bool(os.utime in getattr(os, "supports_follow_symlinks", []))
# Call os.path.normpath() only if not in a POSIX platform (Windows)
NORMALIZE_PATHS = os.path.sep != "/"
# How many files to process in each batch when re-trying merge commits
STEPMISSING = 100
# (Extra) keywords for the os.utime() call performed by touch()
UTIME_KWS = {} if not UPDATE_SYMLINKS else {"follow_symlinks": False}
# Command-line interface ######################################################
def parse_args():
parser = argparse.ArgumentParser(description=__doc__.split("\n---")[0])
group = parser.add_mutually_exclusive_group()
group.add_argument(
"--quiet",
"-q",
dest="loglevel",
action="store_const",
const=logging.WARNING,
default=logging.INFO,
help="Suppress informative messages and summary statistics.",
)
group.add_argument(
"--verbose",
"-v",
action="count",
help="""
Print additional information for each processed file.
Specify twice to further increase verbosity.
""",
)
parser.add_argument(
"--cwd",
"-C",
metavar="DIRECTORY",
help="""
Run as if %(prog)s was started in directory %(metavar)s.
This affects how --work-tree, --git-dir and PATHSPEC arguments are handled.
See 'man 1 git' or 'git --help' for more information.
""",
)
parser.add_argument(
"--git-dir",
dest="gitdir",
metavar="GITDIR",
help="""
Path to the git repository, by default auto-discovered by searching
the current directory and its parents for a .git/ subdirectory.
""",
)
parser.add_argument(
"--work-tree",
dest="workdir",
metavar="WORKTREE",
help="""
Path to the work tree root, by default the parent of GITDIR if it's
automatically discovered, or the current directory if GITDIR is set.
""",
)
parser.add_argument(
"--force",
"-f",
default=False,
action="store_true",
help="""
Force updating files with uncommitted modifications.
Untracked files and uncommitted deletions, renames and additions are
always ignored.
""",
)
parser.add_argument(
"--merge",
"-m",
default=False,
action="store_true",
help="""
Include merge commits.
Leads to more recent times and more files per commit, thus with the same
time, which may or may not be what you want.
Including merge commits may lead to fewer commits being evaluated as files
are found sooner, which can improve performance, sometimes substantially.
But as merge commits are usually huge, processing them may also take longer.
By default, merge commits are only used for files missing from regular commits.
""",
)
parser.add_argument(
"--first-parent",
default=False,
action="store_true",
help="""
Consider only the first parent, the "main branch", when evaluating merge commits.
Only effective when merge commits are processed, either when --merge is
used or when finding missing files after the first regular log search.
See --skip-missing.
""",
)
parser.add_argument(
"--skip-missing",
"-s",
dest="missing",
default=True,
action="store_false",
help="""
Do not try to find missing files.
If merge commits were not evaluated with --merge and some files were
not found in regular commits, by default %(prog)s searches for these
files again in the merge commits.
This option disables this retry, so files found only in merge commits
will not have their timestamp updated.
""",
)
parser.add_argument(
"--no-directories",
"-D",
dest="dirs",
default=True,
action="store_false",
help="""
Do not update directory timestamps.
By default, use the time of its most recently created, renamed or deleted file.
Note that just modifying a file will NOT update its directory time.
""",
)
parser.add_argument(
"--test",
"-t",
default=False,
action="store_true",
help="Test run: do not actually update any file timestamp.",
)
parser.add_argument(
"--commit-time",
"-c",
dest="commit_time",
default=False,
action="store_true",
help="Use commit time instead of author time.",
)
parser.add_argument(
"--oldest-time",
"-o",
dest="reverse_order",
default=False,
action="store_true",
help="""
Update times based on the oldest, instead of the most recent commit of a file.
This reverses the order in which the git log is processed to emulate a
file "creation" date. Note this will be inaccurate for files deleted and
re-created at later dates.
""",
)
parser.add_argument(
"--skip-older-than",
metavar="SECONDS",
type=int,
help="""
Ignore files that are currently older than %(metavar)s.
Useful in workflows that assume such files already have a correct timestamp,
as it may improve performance by processing fewer files.
""",
)
parser.add_argument(
"--skip-older-than-commit",
"-N",
default=False,
action="store_true",
help="""
Ignore files older than the timestamp it would be updated to.
Such files may be considered "original", likely in the author's repository.
""",
)
parser.add_argument(
"--unique-times",
default=False,
action="store_true",
help="""
Set the microseconds to a unique value per commit.
Allows telling apart changes that would otherwise have identical timestamps,
as git's time accuracy is in seconds.
""",
)
parser.add_argument(
"pathspec",
nargs="*",
metavar="PATHSPEC",
help="""
Only modify paths matching %(metavar)s, relative to current directory.
By default, update all but untracked files and submodules.
""",
)
parser.add_argument(
"--version",
"-V",
action="version",
version="%(prog)s version {version}".format(version=get_version()),
)
args_ = parser.parse_args()
if args_.verbose:
args_.loglevel = max(logging.TRACE, logging.DEBUG // args_.verbose)
args_.debug = args_.loglevel <= logging.DEBUG
return args_
def get_version(version=__version__):
if not version.endswith("+dev"):
return version
try:
cwd = os.path.dirname(os.path.realpath(__file__))
return Git(cwd=cwd, errors=False).describe().lstrip("v")
except Git.Error:
return "-".join((version, "unknown"))
# Helper functions ############################################################
def setup_logging():
"""Add TRACE logging level and corresponding method, return the root logger"""
logging.TRACE = TRACE = logging.DEBUG // 2
logging.Logger.trace = lambda _, m, *a, **k: _.log(TRACE, m, *a, **k)
return logging.getLogger()
def normalize(path):
r"""Normalize paths from git, handling non-ASCII characters.
Git stores paths as UTF-8 normalization form C.
If path contains non-ASCII or non-printable characters, git outputs the UTF-8
in octal-escaped notation, escaping double-quotes and backslashes, and then
double-quoting the whole path.
https://git-scm.com/docs/git-config#Documentation/git-config.txt-corequotePath
This function reverts this encoding, so:
normalize(r'"Back\\slash_double\"quote_a\303\247a\303\255"') =>
r'Back\slash_double"quote_açaí')
Paths with invalid UTF-8 encoding, such as single 0x80-0xFF bytes (e.g, from
Latin1/Windows-1251 encoding) are decoded using surrogate escape, the same
method used by Python for filesystem paths. So 0xE6 ("æ" in Latin1, r'\\346'
from Git) is decoded as "\udce6". See https://peps.python.org/pep-0383/ and
https://vstinner.github.io/painful-history-python-filesystem-encoding.html
Also see notes on `windows/non-ascii-paths.txt` about path encodings on
non-UTF-8 platforms and filesystems.
"""
if path and path[0] == '"':
# Python 2: path = path[1:-1].decode("string-escape")
# Python 3: https://stackoverflow.com/a/46650050/624066
path = (
path[1:-1] # Remove enclosing double quotes
.encode("latin1") # Convert to bytes, required by 'unicode-escape'
.decode("unicode-escape") # Perform the actual octal-escaping decode
.encode("latin1") # 1:1 mapping to bytes, UTF-8 encoded
.decode("utf8", "surrogateescape")
) # Decode from UTF-8
if NORMALIZE_PATHS:
# Make sure the slash matches the OS; for Windows we need a backslash
path = os.path.normpath(path)
return path
def dummy(*_args, **_kwargs):
"""No-op function used in dry-run tests"""
def touch(path, mtime):
"""The actual mtime update"""
os.utime(path, (mtime, mtime), **UTIME_KWS)
def touch_ns(path, mtime_ns):
"""The actual mtime update, using nanoseconds for unique timestamps"""
os.utime(path, None, ns=(mtime_ns, mtime_ns), **UTIME_KWS)
def isodate(secs: int):
# time.localtime() accepts floats, but discards fractional part
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(secs))
def isodate_ns(ns: int):
# for integers fromtimestamp() is equivalent and ~16% slower than isodate()
return datetime.datetime.fromtimestamp(ns / 1000000000).isoformat(sep=" ")
def get_mtime_ns(secs: int, idx: int):
# Time resolution for filesystems and functions:
# ext-4 and other POSIX filesystems: 1 nanosecond
# NTFS (Windows default): 100 nanoseconds
# datetime.datetime() (due to 64-bit float epoch): 1 microsecond
us = idx % 1000000 # 10**6
return 1000 * (1000000 * secs + us)
def get_mtime_path(path):
return os.path.getmtime(path)
# Git class and parse_log(), the heart of the script ##########################
class Git:
def __init__(self, workdir=None, gitdir=None, cwd=None, errors=True):
self.gitcmd = ["git"]
self.errors = errors
self._proc = None
if workdir:
self.gitcmd.extend(("--work-tree", workdir))
if gitdir:
self.gitcmd.extend(("--git-dir", gitdir))
if cwd:
self.gitcmd.extend(("-C", cwd))
self.workdir, self.gitdir = self._get_repo_dirs()
def ls_files(self, paths: list = None):
return (normalize(_) for _ in self._run("ls-files --full-name", paths))
def ls_dirty(self, force=False):
return (
normalize(_[3:].split(" -> ", 1)[-1])
for _ in self._run("status --porcelain")
if _[:2] != "??" and (not force or (_[0] in ("R", "A") or _[1] == "D"))
)
def log(
self,
merge=False,
first_parent=False,
commit_time=False,
reverse_order=False,
paths: list = None,
):
cmd = "whatchanged --pretty={}".format("%ct" if commit_time else "%at")
if merge:
cmd += " -m"
if first_parent:
cmd += " --first-parent"
if reverse_order:
cmd += " --reverse"
return self._run(cmd, paths)
def describe(self):
return self._run("describe --tags", check=True)[0]
def terminate(self):
if self._proc is None:
return
try:
self._proc.terminate()
except OSError:
# Avoid errors on OpenBSD
pass
def _get_repo_dirs(self):
return (
os.path.normpath(_)
for _ in self._run(
"rev-parse --show-toplevel --absolute-git-dir", check=True
)
)
def _run(self, cmdstr: str, paths: list = None, output=True, check=False):
cmdlist = self.gitcmd + shlex.split(cmdstr)
if paths:
cmdlist.append("--")
cmdlist.extend(paths)
popen_args = dict(universal_newlines=True, encoding="utf8")
if not self.errors:
popen_args["stderr"] = subprocess.DEVNULL
log.trace("Executing: %s", " ".join(cmdlist))
if not output:
return subprocess.call(cmdlist, **popen_args)
if check:
try:
stdout: str = subprocess.check_output(cmdlist, **popen_args)
return stdout.splitlines()
except subprocess.CalledProcessError as e:
raise self.Error(e.returncode, e.cmd, e.output, e.stderr)
self._proc = subprocess.Popen(cmdlist, stdout=subprocess.PIPE, **popen_args)
return (_.rstrip() for _ in self._proc.stdout)
def __del__(self):
self.terminate()
class Error(subprocess.CalledProcessError):
"""Error from git executable"""
def parse_log(filelist, dirlist, stats, git, merge=False, filterlist=None):
mtime = 0
datestr = isodate(0)
for line in git.log(
merge, args.first_parent, args.commit_time, args.reverse_order, filterlist
):
stats["loglines"] += 1
# Blank line between Date and list of files
if not line:
continue
# Date line
if line[0] != ":": # Faster than `not line.startswith(':')`
stats["commits"] += 1
mtime = int(line)
if args.unique_times:
mtime = get_mtime_ns(mtime, stats["commits"])
if args.debug:
datestr = isodate(mtime)
continue
# File line: three tokens if it describes a renaming, otherwise two
tokens = line.split("\t")
# Possible statuses:
# M: Modified (content changed)
# A: Added (created)
# D: Deleted
# T: Type changed: to/from regular file, symlinks, submodules
# R099: Renamed (moved), with % of unchanged content. 100 = pure rename
# Not possible in log: C=Copied, U=Unmerged, X=Unknown, B=pairing Broken
status = tokens[0].split(" ")[-1]
file = tokens[-1]
# Handles non-ASCII chars and OS path separator
file = normalize(file)
def do_file():
if args.skip_older_than_commit and get_mtime_path(file) <= mtime:
stats["skip"] += 1
return
if args.debug:
log.debug(
"%d\t%d\t%d\t%s\t%s",
stats["loglines"],
stats["commits"],
stats["files"],
datestr,
file,
)
try:
touch(os.path.join(git.workdir, file), mtime)
stats["touches"] += 1
except Exception as e:
log.error("ERROR: %s: %s", e, file)
stats["errors"] += 1
def do_dir():
if args.debug:
log.debug(
"%d\t%d\t-\t%s\t%s",
stats["loglines"],
stats["commits"],
datestr,
"{}/".format(dirname or "."),
)
try:
touch(os.path.join(git.workdir, dirname), mtime)
stats["dirtouches"] += 1
except Exception as e:
log.error("ERROR: %s: %s", e, dirname)
stats["direrrors"] += 1
if file in filelist:
stats["files"] -= 1
filelist.remove(file)
do_file()
if args.dirs and status in ("A", "D"):
dirname = os.path.dirname(file)
if dirname in dirlist:
dirlist.remove(dirname)
do_dir()
# All files done?
if not stats["files"]:
git.terminate()
return
# Main Logic ##################################################################
def main():
start = time.time() # yes, Wall time. CPU time is not realistic for users.
stats = {
_: 0
for _ in (
"loglines",
"commits",
"touches",
"skip",
"errors",
"dirtouches",
"direrrors",
)
}
logging.basicConfig(level=args.loglevel, format="%(message)s")
log.trace("Arguments: %s", args)
# First things first: Where and Who are we?
if args.cwd:
log.debug("Changing directory: %s", args.cwd)
try:
os.chdir(args.cwd)
except OSError as e:
log.critical(e)
return e.errno
# Using both os.chdir() and `git -C` is redundant, but might prevent side effects
# `git -C` alone could be enough if we make sure that:
# - all paths, including args.pathspec, are processed by git: ls-files, rev-parse
# - touch() / os.utime() path argument is always prepended with git.workdir
try:
git = Git(workdir=args.workdir, gitdir=args.gitdir, cwd=args.cwd)
except Git.Error as e:
# Not in a git repository, and git already informed user on stderr. So we just...
return e.returncode
# Get the files managed by git and build file list to be processed
if UPDATE_SYMLINKS and not args.skip_older_than:
filelist = set(git.ls_files(args.pathspec))
else:
filelist = set()
for path in git.ls_files(args.pathspec):
fullpath = os.path.join(git.workdir, path)
# Symlink (to file, to dir or broken - git handles the same way)
if not UPDATE_SYMLINKS and os.path.islink(fullpath):
log.warning(
"WARNING: Skipping symlink, no OS support for updates: %s", path
)
continue
# skip files which are older than given threshold
if (
args.skip_older_than
and start - get_mtime_path(fullpath) > args.skip_older_than
):
continue
# Always add files relative to worktree root
filelist.add(path)
# If --force, silently ignore uncommitted deletions (not in the filesystem)
# and renames / additions (will not be found in log anyway)
if args.force:
filelist -= set(git.ls_dirty(force=True))
# Otherwise, ignore any dirty files
else:
dirty = set(git.ls_dirty())
if dirty:
log.warning(
"WARNING: Modified files in the working directory were ignored."
"\nTo include such files, commit your changes or use --force."
)
filelist -= dirty
# Build dir list to be processed
dirlist = set(os.path.dirname(_) for _ in filelist) if args.dirs else set()
stats["totalfiles"] = stats["files"] = len(filelist)
log.info("{0:,} files to be processed in work dir".format(stats["totalfiles"]))
if not filelist:
# Nothing to do. Exit silently and without errors, just like git does
return
# Process the log until all files are 'touched'
log.debug("Line #\tLog #\tF.Left\tModification Time\tFile Name")
parse_log(filelist, dirlist, stats, git, args.merge, args.pathspec)
# Missing files
if filelist:
# Try to find them in merge logs, if not done already
# (usually HUGE, thus MUCH slower!)
if args.missing and not args.merge:
filterlist = list(filelist)
missing = len(filterlist)
log.info(
"{0:,} files not found in log, trying merge commits".format(missing)
)
for i in range(0, missing, STEPMISSING):
parse_log(
filelist,
dirlist,
stats,
git,
merge=True,
filterlist=filterlist[i : i + STEPMISSING],
)
# Still missing some?
for file in filelist:
log.warning("WARNING: not found in the log: %s", file)
# Final statistics
# Suggestion: use git-log --before=mtime to brag about skipped log entries
def log_info(msg, *a, width=13):
ifmt = "{:%d,}" % (width,) # not using 'n' for consistency with ffmt
ffmt = "{:%d,.2f}" % (width,)
# %-formatting lacks a thousand separator, must pre-render with .format()
log.info(msg.replace("%d", ifmt).replace("%f", ffmt).format(*a))
log_info(
"Statistics:\n%f seconds\n%d log lines processed\n%d commits evaluated",
time.time() - start,
stats["loglines"],
stats["commits"],
)
if args.dirs:
if stats["direrrors"]:
log_info("%d directory update errors", stats["direrrors"])
log_info("%d directories updated", stats["dirtouches"])
if stats["touches"] != stats["totalfiles"]:
log_info("%d files", stats["totalfiles"])
if stats["skip"]:
log_info("%d files skipped", stats["skip"])
if stats["files"]:
log_info("%d files missing", stats["files"])
if stats["errors"]:
log_info("%d file update errors", stats["errors"])
log_info("%d files updated", stats["touches"])
if args.test:
log.info("TEST RUN - No files modified!")
# Keep only essential, global assignments here. Any other logic must be in main()
log = setup_logging()
args = parse_args()
# Set the actual touch() and other functions based on command-line arguments
if args.unique_times:
touch = touch_ns
isodate = isodate_ns
# Make sure this is always set last to ensure --test behaves as intended
if args.test:
touch = dummy
# UI done, it's showtime!
try:
sys.exit(main())
except KeyboardInterrupt:
log.info("\nAborting")
signal.signal(signal.SIGINT, signal.SIG_DFL)
os.kill(os.getpid(), signal.SIGINT)

View File

@@ -1,65 +0,0 @@
# Validates that a package's integration tests compile without syntax or import errors.
#
# (If an integration test fails to compile, it won't run.)
#
# Called as part of check_diffs.yml workflow
#
# Runs pytest with compile marker to check syntax/imports.
name: "🔗 Compile Integration Tests"
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
python-version:
required: true
type: string
description: "Python version to use"
permissions:
contents: read
env:
UV_FROZEN: "true"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: "Python ${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v6
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
cache-suffix: compile-integration-tests-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: "📦 Install Integration Dependencies"
shell: bash
run: uv sync --group test --group test_integration
- name: "🔗 Check Integration Tests Compile"
shell: bash
run: uv run pytest -m compile tests/integration_tests
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,81 +0,0 @@
# Runs linting.
#
# Uses the package's Makefile to run the checks, specifically the
# `lint_package` and `lint_tests` targets.
#
# Called as part of check_diffs.yml workflow.
name: "🧹 Linting"
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
python-version:
required: true
type: string
description: "Python version to use"
permissions:
contents: read
env:
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
# This env var allows us to get inline annotations when ruff has complaints.
RUFF_OUTPUT_FORMAT: github
UV_FROZEN: "true"
jobs:
# Linting job - runs quality checks on package and test code
build:
name: "Python ${{ inputs.python-version }}"
runs-on: ubuntu-latest
timeout-minutes: 20
steps:
- name: "📋 Checkout Code"
uses: actions/checkout@v6
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
cache-suffix: lint-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
# - name: "🔒 Verify Lockfile is Up-to-Date"
# working-directory: ${{ inputs.working-directory }}
# run: |
# unset UV_FROZEN
# uv lock --check
- name: "📦 Install Lint & Typing Dependencies"
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --group lint --group typing
- name: "🔍 Analyze Package Code with Linters"
working-directory: ${{ inputs.working-directory }}
run: |
make lint_package
- name: "📦 Install Test Dependencies (non-partners)"
# (For directories NOT starting with libs/partners/)
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test
- name: "📦 Install Test Dependencies"
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test --group test_integration
- name: "🔍 Analyze Test Code with Linters"
working-directory: ${{ inputs.working-directory }}
run: |
make lint_tests

View File

@@ -1,556 +0,0 @@
# Builds and publishes LangChain packages to PyPI.
#
# Manually triggered, though can be used as a reusable workflow (workflow_call).
#
# Handles version bumping, building, and publishing to PyPI with authentication.
name: "🚀 Package Release"
run-name: "Release ${{ inputs.working-directory }} ${{ inputs.release-version }}"
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
workflow_dispatch:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
default: "libs/langchain_v1"
release-version:
required: true
type: string
default: "0.1.0"
description: "New version of package being released"
dangerous-nonmaster-release:
required: false
type: boolean
default: false
description: "Release from a non-master branch (danger!) - Only use for hotfixes"
env:
PYTHON_VERSION: "3.11"
UV_FROZEN: "true"
UV_NO_SYNC: "true"
permissions:
contents: write # Required for creating GitHub releases
jobs:
# Build the distribution package and extract version info
# Runs in isolated environment with minimal permissions for security
build:
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
environment: Scheduled testing
runs-on: ubuntu-latest
permissions:
contents: read
outputs:
pkg-name: ${{ steps.check-version.outputs.pkg-name }}
version: ${{ steps.check-version.outputs.version }}
steps:
- uses: actions/checkout@v6
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
# (Release stage has trusted publishing and GitHub repo contents write access,
#
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
# could get access to our GitHub or PyPI credentials.
#
# Per the trusted publishing GitHub Action:
# > It is strongly advised to separate jobs for building [...]
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: Build project for distribution
run: uv build
working-directory: ${{ inputs.working-directory }}
- name: Upload build
uses: actions/upload-artifact@v6
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Check version
id: check-version
shell: python
working-directory: ${{ inputs.working-directory }}
run: |
import os
import tomllib
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pkg_name = data["project"]["name"]
version = data["project"]["version"]
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
f.write(f"pkg-name={pkg_name}\n")
f.write(f"version={version}\n")
release-notes:
needs:
- build
runs-on: ubuntu-latest
permissions:
contents: read
outputs:
release-body: ${{ steps.generate-release-body.outputs.release-body }}
steps:
- uses: actions/checkout@v6
with:
repository: langchain-ai/langchain
path: langchain
sparse-checkout: | # this only grabs files for relevant dir
${{ inputs.working-directory }}
ref: ${{ github.ref }} # this scopes to just ref'd branch
fetch-depth: 0 # this fetches entire commit history
- name: Check tags
id: check-tags
shell: bash
working-directory: langchain/${{ inputs.working-directory }}
env:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
run: |
# Handle regular versions and pre-release versions differently
if [[ "$VERSION" == *"-"* ]]; then
# This is a pre-release version (contains a hyphen)
# Extract the base version without the pre-release suffix
BASE_VERSION=${VERSION%%-*}
# Look for the latest release of the same base version
REGEX="^$PKG_NAME==$BASE_VERSION\$"
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
# If no exact base version match, look for the latest release of any kind
if [ -z "$PREV_TAG" ]; then
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
fi
else
# Regular version handling
PREV_TAG="$PKG_NAME==${VERSION%.*}.$(( ${VERSION##*.} - 1 ))"; [[ "${VERSION##*.}" -eq 0 ]] && PREV_TAG=""
# backup case if releasing e.g. 0.3.0, looks up last release
# note if last release (chronologically) was e.g. 0.1.47 it will get
# that instead of the last 0.2 release
if [ -z "$PREV_TAG" ]; then
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
echo $REGEX
PREV_TAG=$(git tag --sort=-creatordate | (grep -P $REGEX || true) | head -1)
fi
fi
# if PREV_TAG is empty or came out to 0.0.0, let it be empty
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
echo "No previous tag found - first release"
else
# confirm prev-tag actually exists in git repo with git tag
GIT_TAG_RESULT=$(git tag -l "$PREV_TAG")
if [ -z "$GIT_TAG_RESULT" ]; then
echo "Previous tag $PREV_TAG not found in git repo"
exit 1
fi
fi
TAG="${PKG_NAME}==${VERSION}"
if [ "$TAG" == "$PREV_TAG" ]; then
echo "No new version to release"
exit 1
fi
echo tag="$TAG" >> $GITHUB_OUTPUT
echo prev-tag="$PREV_TAG" >> $GITHUB_OUTPUT
- name: Generate release body
id: generate-release-body
working-directory: langchain
env:
WORKING_DIR: ${{ inputs.working-directory }}
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
TAG: ${{ steps.check-tags.outputs.tag }}
PREV_TAG: ${{ steps.check-tags.outputs.prev-tag }}
run: |
PREAMBLE="Changes since $PREV_TAG"
# if PREV_TAG is empty or 0.0.0, then we are releasing the first version
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
PREAMBLE="Initial release"
PREV_TAG=$(git rev-list --max-parents=0 HEAD)
fi
{
echo 'release-body<<EOF'
echo $PREAMBLE
echo
git log --format="%s" "$PREV_TAG"..HEAD -- $WORKING_DIR
echo EOF
} >> "$GITHUB_OUTPUT"
test-pypi-publish:
needs:
- build
- release-notes
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
#
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
steps:
- uses: actions/checkout@v6
- uses: actions/download-artifact@v7
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Publish to test PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
repository-url: https://test.pypi.org/legacy/
# We overwrite any existing distributions with the same name and version.
# This is *only for CI use* and is *extremely dangerous* otherwise!
# https://github.com/pypa/gh-action-pypi-publish#tolerating-release-package-file-duplicates
skip-existing: true
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
attestations: false
pre-release-checks:
needs:
- build
- release-notes
- test-pypi-publish
runs-on: ubuntu-latest
permissions:
contents: read
timeout-minutes: 20
steps:
- uses: actions/checkout@v6
# We explicitly *don't* set up caching here. This ensures our tests are
# maximally sensitive to catching breakage.
#
# For example, here's a way that caching can cause a falsely-passing test:
# - Make the langchain package manifest no longer list a dependency package
# as a requirement. This means it won't be installed by `pip install`,
# and attempting to use it would cause a crash.
# - That dependency used to be required, so it may have been cached.
# When restoring the venv packages from cache, that dependency gets included.
# - Tests pass, because the dependency is present even though it wasn't specified.
# - The package is published, and it breaks on the missing dependency when
# used in the real world.
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
id: setup-python
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v7
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Import dist package
shell: bash
working-directory: ${{ inputs.working-directory }}
env:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
# Here we use:
# - The default regular PyPI index as the *primary* index, meaning
# that it takes priority (https://pypi.org/simple)
# - The test PyPI index as an extra index, so that any dependencies that
# are not found on test PyPI can be resolved and installed anyway.
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
# package because VERSION will not have been uploaded to regular PyPI yet.
# - attempt install again after 5 seconds if it fails because there is
# sometimes a delay in availability on test pypi
run: |
uv venv
VIRTUAL_ENV=.venv uv pip install dist/*.whl
# Replace all dashes in the package name with underscores,
# since that's how Python imports packages with dashes in the name.
# also remove _official suffix
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g | sed s/_official//g)"
uv run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
- name: Import test dependencies
run: uv sync --group test
working-directory: ${{ inputs.working-directory }}
# Overwrite the local version of the package with the built version
- name: Import published package (again)
working-directory: ${{ inputs.working-directory }}
shell: bash
env:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
run: |
VIRTUAL_ENV=.venv uv pip install dist/*.whl
- name: Check for prerelease versions
# Block release if any dependencies allow prerelease versions
# (unless this is itself a prerelease version)
working-directory: ${{ inputs.working-directory }}
run: |
uv run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
- name: Run unit tests
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: Get minimum versions
# Find the minimum published versions that satisfies the given constraints
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
VIRTUAL_ENV=.venv uv pip install packaging requests
python_version="$(uv run python --version | awk '{print $2}')"
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: Run unit tests with minimum dependency versions
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install --force-reinstall --editable .
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}
- name: Import integration test dependencies
run: uv sync --group test --group test_integration
working-directory: ${{ inputs.working-directory }}
- name: Run integration tests
# Uses the Makefile's `integration_tests` target for the specified package
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
env:
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
ES_URL: ${{ secrets.ES_URL }}
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
ES_API_KEY: ${{ secrets.ES_API_KEY }}
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
# Test select published packages against new core
# Done when code changes are made to langchain-core
test-prior-published-packages-against-new-core:
# Installs the new core with old partners: Installs the new unreleased core
# alongside the previously published partner packages and runs integration tests
needs:
- build
- release-notes
- test-pypi-publish
- pre-release-checks
runs-on: ubuntu-latest
permissions:
contents: read
strategy:
matrix:
partner: [openai, anthropic]
fail-fast: false # Continue testing other partners if one fails
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
steps:
- uses: actions/checkout@v6
# We implement this conditional as Github Actions does not have good support
# for conditionally needing steps. https://github.com/actions/runner/issues/491
# TODO: this seems to be resolved upstream, so we can probably remove this workaround
- name: Check if libs/core
run: |
if [ "${{ startsWith(inputs.working-directory, 'libs/core') }}" != "true" ]; then
echo "Not in libs/core. Exiting successfully."
exit 0
fi
- name: Set up Python + uv
if: startsWith(inputs.working-directory, 'libs/core')
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v7
if: startsWith(inputs.working-directory, 'libs/core')
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Test against ${{ matrix.partner }}
if: startsWith(inputs.working-directory, 'libs/core')
run: |
# Identify latest tag, excluding pre-releases
LATEST_PACKAGE_TAG="$(
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
| awk '{print $2}' \
| sed 's|refs/tags/||' \
| grep -E '[0-9]+\.[0-9]+\.[0-9]+$' \
| sort -Vr \
| head -n 1
)"
echo "Latest package tag: $LATEST_PACKAGE_TAG"
# Shallow-fetch just that single tag
git fetch --depth=1 origin tag "$LATEST_PACKAGE_TAG"
# Checkout the latest package files
rm -rf $GITHUB_WORKSPACE/libs/partners/${{ matrix.partner }}/*
rm -rf $GITHUB_WORKSPACE/libs/standard-tests/*
cd $GITHUB_WORKSPACE/libs/
git checkout "$LATEST_PACKAGE_TAG" -- standard-tests/
git checkout "$LATEST_PACKAGE_TAG" -- partners/${{ matrix.partner }}/
cd partners/${{ matrix.partner }}
# Print as a sanity check
echo "Version number from pyproject.toml: "
cat pyproject.toml | grep "version = "
# Run tests
uv sync --group test --group test_integration
uv pip install ../../core/dist/*.whl
make integration_tests
publish:
# Publishes the package to PyPI
needs:
- build
- release-notes
- test-pypi-publish
- pre-release-checks
- test-prior-published-packages-against-new-core
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
#
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v6
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v7
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
attestations: false
mark-release:
# Marks the GitHub release with the new version tag
needs:
- build
- release-notes
- test-pypi-publish
- pre-release-checks
- publish
runs-on: ubuntu-latest
permissions:
# This permission is needed by `ncipollo/release-action` to
# create the GitHub release/tag
contents: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v6
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v7
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Create Tag
uses: ncipollo/release-action@v1
with:
artifacts: "dist/*"
token: ${{ secrets.GITHUB_TOKEN }}
generateReleaseNotes: false
tag: ${{needs.build.outputs.pkg-name}}==${{ needs.build.outputs.version }}
body: ${{ needs.release-notes.outputs.release-body }}
commit: ${{ github.sha }}
makeLatest: ${{ needs.build.outputs.pkg-name == 'langchain-core'}}

View File

@@ -1,85 +0,0 @@
# Runs unit tests with both current and minimum supported dependency versions
# to ensure compatibility across the supported range.
name: "🧪 Unit Testing"
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
python-version:
required: true
type: string
description: "Python version to use"
permissions:
contents: read
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
jobs:
# Main test job - runs unit tests with current deps, then retests with minimum versions
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: "Python ${{ inputs.python-version }}"
steps:
- name: "📋 Checkout Code"
uses: actions/checkout@v6
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
id: setup-python
with:
python-version: ${{ inputs.python-version }}
cache-suffix: test-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: "📦 Install Test Dependencies"
shell: bash
run: uv sync --group test --dev
- name: "🧪 Run Core Unit Tests"
shell: bash
run: |
make test
- name: "🔍 Calculate Minimum Dependency Versions"
working-directory: ${{ inputs.working-directory }}
id: min-version
shell: bash
run: |
VIRTUAL_ENV=.venv uv pip install packaging tomli requests
python_version="$(uv run python --version | awk '{print $2}')"
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: "🧪 Run Tests with Minimum Dependencies"
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,73 +0,0 @@
# Facilitate unit testing against different Pydantic versions for a provided package.
name: "🐍 Pydantic Version Testing"
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
python-version:
required: false
type: string
description: "Python version to use"
default: "3.12"
pydantic-version:
required: true
type: string
description: "Pydantic version to test."
permissions:
contents: read
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: "Pydantic ~=${{ inputs.pydantic-version }}"
steps:
- name: "📋 Checkout Code"
uses: actions/checkout@v6
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
cache-suffix: test-pydantic-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: "📦 Install Test Dependencies"
shell: bash
run: uv sync --group test
- name: "🔄 Install Specific Pydantic Version"
shell: bash
env:
PYDANTIC_VERSION: ${{ inputs.pydantic-version }}
run: VIRTUAL_ENV=.venv uv pip install "pydantic~=$PYDANTIC_VERSION"
- name: "🧪 Run Core Tests"
shell: bash
run: |
make test
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,107 +0,0 @@
name: Auto Label Issues by Package
on:
issues:
types: [opened, edited]
jobs:
label-by-package:
permissions:
issues: write
runs-on: ubuntu-latest
steps:
- name: Sync package labels
uses: actions/github-script@v8
with:
script: |
const body = context.payload.issue.body || "";
// Extract text under "### Package"
const match = body.match(/### Package\s+([\s\S]*?)\n###/i);
if (!match) return;
const packageSection = match[1].trim();
// Mapping table for package names to labels
const mapping = {
"langchain": "langchain",
"langchain-openai": "openai",
"langchain-anthropic": "anthropic",
"langchain-classic": "langchain-classic",
"langchain-core": "core",
"langchain-cli": "cli",
"langchain-model-profiles": "model-profiles",
"langchain-tests": "standard-tests",
"langchain-text-splitters": "text-splitters",
"langchain-chroma": "chroma",
"langchain-deepseek": "deepseek",
"langchain-exa": "exa",
"langchain-fireworks": "fireworks",
"langchain-groq": "groq",
"langchain-huggingface": "huggingface",
"langchain-mistralai": "mistralai",
"langchain-nomic": "nomic",
"langchain-ollama": "ollama",
"langchain-perplexity": "perplexity",
"langchain-prompty": "prompty",
"langchain-qdrant": "qdrant",
"langchain-xai": "xai",
};
// All possible package labels we manage
const allPackageLabels = Object.values(mapping);
const selectedLabels = [];
// Check if this is checkbox format (multiple selection)
const checkboxMatches = packageSection.match(/- \[x\]\s+([^\n\r]+)/gi);
if (checkboxMatches) {
// Handle checkbox format
for (const match of checkboxMatches) {
const packageName = match.replace(/- \[x\]\s+/i, '').trim();
const label = mapping[packageName];
if (label && !selectedLabels.includes(label)) {
selectedLabels.push(label);
}
}
} else {
// Handle dropdown format (single selection)
const label = mapping[packageSection];
if (label) {
selectedLabels.push(label);
}
}
// Get current issue labels
const issue = await github.rest.issues.get({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number
});
const currentLabels = issue.data.labels.map(label => label.name);
const currentPackageLabels = currentLabels.filter(label => allPackageLabels.includes(label));
// Determine labels to add and remove
const labelsToAdd = selectedLabels.filter(label => !currentPackageLabels.includes(label));
const labelsToRemove = currentPackageLabels.filter(label => !selectedLabels.includes(label));
// Add new labels
if (labelsToAdd.length > 0) {
await github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
labels: labelsToAdd
});
}
// Remove old labels
for (const label of labelsToRemove) {
await github.rest.issues.removeLabel({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
name: label
});
}

View File

@@ -1,51 +0,0 @@
# Ensures version numbers in pyproject.toml and version.py stay in sync.
#
# (Prevents releases with mismatched version numbers)
name: "🔍 Check Version Equality"
on:
pull_request:
paths:
- "libs/core/pyproject.toml"
- "libs/core/langchain_core/version.py"
permissions:
contents: read
jobs:
check_version_equality:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v6
- name: "✅ Verify pyproject.toml & version.py Match"
run: |
# Check core versions
CORE_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)
CORE_VERSION_PY_VERSION=$(grep -Po '(?<=^VERSION = ")[^"]*' libs/core/langchain_core/version.py)
# Compare core versions
if [ "$CORE_PYPROJECT_VERSION" != "$CORE_VERSION_PY_VERSION" ]; then
echo "langchain-core versions in pyproject.toml and version.py do not match!"
echo "pyproject.toml version: $CORE_PYPROJECT_VERSION"
echo "version.py version: $CORE_VERSION_PY_VERSION"
exit 1
else
echo "Core versions match: $CORE_PYPROJECT_VERSION"
fi
# Check langchain_v1 versions
LANGCHAIN_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/langchain_v1/pyproject.toml)
LANGCHAIN_INIT_PY_VERSION=$(grep -Po '(?<=^__version__ = ")[^"]*' libs/langchain_v1/langchain/__init__.py)
# Compare langchain_v1 versions
if [ "$LANGCHAIN_PYPROJECT_VERSION" != "$LANGCHAIN_INIT_PY_VERSION" ]; then
echo "langchain_v1 versions in pyproject.toml and __init__.py do not match!"
echo "pyproject.toml version: $LANGCHAIN_PYPROJECT_VERSION"
echo "version.py version: $LANGCHAIN_INIT_PY_VERSION"
exit 1
else
echo "Langchain v1 versions match: $LANGCHAIN_PYPROJECT_VERSION"
fi

View File

@@ -1,261 +0,0 @@
# Primary CI workflow.
#
# Only runs against packages that have changed files.
#
# Runs:
# - Linting (_lint.yml)
# - Unit Tests (_test.yml)
# - Pydantic compatibility tests (_test_pydantic.yml)
# - Integration test compilation checks (_compile_integration_test.yml)
# - Extended test suites that require additional dependencies
# - Codspeed benchmarks (if not labeled 'codspeed-ignore')
#
# Reports status to GitHub checks and PR status.
name: "🔧 CI"
on:
push:
branches: [master]
pull_request:
merge_group:
# Optimizes CI performance by canceling redundant workflow runs
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to
# cancel pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
permissions:
contents: read
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
jobs:
# This job analyzes which files changed and creates a dynamic test matrix
# to only run tests/lints for the affected packages, improving CI efficiency
build:
name: "Detect Changes & Set Matrix"
runs-on: ubuntu-latest
if: ${{ !contains(github.event.pull_request.labels.*.name, 'ci-ignore') }}
steps:
- name: "📋 Checkout Code"
uses: actions/checkout@v6
- name: "🐍 Setup Python 3.11"
uses: actions/setup-python@v6
with:
python-version: "3.11"
- name: "📂 Get Changed Files"
id: files
uses: Ana06/get-changed-files@v2.3.0
- name: "🔍 Analyze Changed Files & Generate Build Matrix"
id: set-matrix
run: |
python -m pip install packaging requests
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
outputs:
lint: ${{ steps.set-matrix.outputs.lint }}
test: ${{ steps.set-matrix.outputs.test }}
extended-tests: ${{ steps.set-matrix.outputs.extended-tests }}
compile-integration-tests: ${{ steps.set-matrix.outputs.compile-integration-tests }}
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
test-pydantic: ${{ steps.set-matrix.outputs.test-pydantic }}
codspeed: ${{ steps.set-matrix.outputs.codspeed }}
# Run linting only on packages that have changed files
lint:
needs: [build]
if: ${{ needs.build.outputs.lint != '[]' }}
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.lint) }}
fail-fast: false
uses: ./.github/workflows/_lint.yml
with:
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
# Run unit tests only on packages that have changed files
test:
needs: [build]
if: ${{ needs.build.outputs.test != '[]' }}
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.test) }}
fail-fast: false
uses: ./.github/workflows/_test.yml
with:
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
# Test compatibility with different Pydantic versions for affected packages
test-pydantic:
needs: [build]
if: ${{ needs.build.outputs.test-pydantic != '[]' }}
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.test-pydantic) }}
fail-fast: false
uses: ./.github/workflows/_test_pydantic.yml
with:
working-directory: ${{ matrix.job-configs.working-directory }}
pydantic-version: ${{ matrix.job-configs.pydantic-version }}
secrets: inherit
# Verify integration tests compile without actually running them (faster feedback)
compile-integration-tests:
name: "Compile Integration Tests"
needs: [build]
if: ${{ needs.build.outputs.compile-integration-tests != '[]' }}
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.compile-integration-tests) }}
fail-fast: false
uses: ./.github/workflows/_compile_integration_test.yml
with:
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
# Run extended test suites that require additional dependencies
extended-tests:
name: "Extended Tests"
needs: [build]
if: ${{ needs.build.outputs.extended-tests != '[]' }}
strategy:
matrix:
# note different variable for extended test dirs
job-configs: ${{ fromJson(needs.build.outputs.extended-tests) }}
fail-fast: false
runs-on: ubuntu-latest
timeout-minutes: 20
defaults:
run:
working-directory: ${{ matrix.job-configs.working-directory }}
steps:
- uses: actions/checkout@v6
- name: "🐍 Set up Python ${{ matrix.job-configs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ matrix.job-configs.python-version }}
cache-suffix: extended-tests-${{ matrix.job-configs.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
- name: "📦 Install Dependencies & Run Extended Tests"
shell: bash
run: |
echo "Running extended tests, installing dependencies with uv..."
uv venv
uv sync --group test
VIRTUAL_ENV=.venv uv pip install -r extended_testing_deps.txt
VIRTUAL_ENV=.venv make extended_tests
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'
# Run codspeed benchmarks only on packages that have changed files
codspeed:
name: "⚡ CodSpeed Benchmarks"
needs: [build]
if: ${{ needs.build.outputs.codspeed != '[]' && !contains(github.event.pull_request.labels.*.name, 'codspeed-ignore') }}
runs-on: ubuntu-latest
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.codspeed) }}
fail-fast: false
steps:
- uses: actions/checkout@v6
- name: "📦 Install UV Package Manager"
uses: astral-sh/setup-uv@v7
with:
python-version: "3.13"
- uses: actions/setup-python@v6
with:
python-version: "3.13"
- name: "📦 Install Test Dependencies"
run: uv sync --group test
working-directory: ${{ matrix.job-configs.working-directory }}
- name: "⚡ Run Benchmarks: ${{ matrix.job-configs.working-directory }}"
uses: CodSpeedHQ/action@v4
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
with:
token: ${{ secrets.CODSPEED_TOKEN }}
run: |
cd ${{ matrix.job-configs.working-directory }}
if [ "${{ matrix.job-configs.working-directory }}" = "libs/core" ]; then
uv run --no-sync pytest ./tests/benchmarks --codspeed
else
uv run --no-sync pytest ./tests/ --codspeed
fi
mode: ${{ matrix.job-configs.working-directory == 'libs/core' && 'walltime' || 'instrumentation' }}
# Final status check - ensures all required jobs passed before allowing merge
ci_success:
name: "✅ CI Success"
needs:
[
build,
lint,
test,
compile-integration-tests,
extended-tests,
test-pydantic,
codspeed,
]
if: |
always()
runs-on: ubuntu-latest
env:
JOBS_JSON: ${{ toJSON(needs) }}
RESULTS_JSON: ${{ toJSON(needs.*.result) }}
EXIT_CODE: ${{!contains(needs.*.result, 'failure') && !contains(needs.*.result, 'cancelled') && '0' || '1'}}
steps:
- name: "🎉 All Checks Passed"
run: |
echo $JOBS_JSON
echo $RESULTS_JSON
echo "Exiting with $EXIT_CODE"
exit $EXIT_CODE

View File

@@ -1,181 +0,0 @@
# Routine integration tests against partner libraries with live API credentials.
#
# Uses `make integration_tests` for each library in the matrix.
#
# Runs daily. Can also be triggered manually for immediate updates.
name: "⏰ Integration Tests"
run-name: "Run Integration Tests - ${{ inputs.working-directory-force || 'all libs' }} (Python ${{ inputs.python-version-force || '3.10, 3.13' }})"
on:
workflow_dispatch:
inputs:
working-directory-force:
type: string
description: "From which folder this pipeline executes - defaults to all in matrix - example value: libs/partners/anthropic"
python-version-force:
type: string
description: "Python version to use - defaults to 3.10 and 3.13 in matrix - example value: 3.11"
schedule:
- cron: "0 13 * * *" # Runs daily at 1PM UTC (9AM EDT/6AM PDT)
permissions:
contents: read
env:
UV_FROZEN: "true"
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
jobs:
# Generate dynamic test matrix based on input parameters or defaults
# Only runs on the main repo (for scheduled runs) or when manually triggered
compute-matrix:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
runs-on: ubuntu-latest
name: "📋 Compute Test Matrix"
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: "🔢 Generate Python & Library Matrix"
id: set-matrix
env:
DEFAULT_LIBS: ${{ env.DEFAULT_LIBS }}
WORKING_DIRECTORY_FORCE: ${{ github.event.inputs.working-directory-force || '' }}
PYTHON_VERSION_FORCE: ${{ github.event.inputs.python-version-force || '' }}
run: |
# echo "matrix=..." where matrix is a json formatted str with keys python-version and working-directory
# python-version should default to 3.10 and 3.13, but is overridden to [PYTHON_VERSION_FORCE] if set
# working-directory should default to DEFAULT_LIBS, but is overridden to [WORKING_DIRECTORY_FORCE] if set
python_version='["3.10", "3.13"]'
working_directory="$DEFAULT_LIBS"
if [ -n "$PYTHON_VERSION_FORCE" ]; then
python_version="[\"$PYTHON_VERSION_FORCE\"]"
fi
if [ -n "$WORKING_DIRECTORY_FORCE" ]; then
working_directory="[\"$WORKING_DIRECTORY_FORCE\"]"
fi
matrix="{\"python-version\": $python_version, \"working-directory\": $working_directory}"
echo $matrix
echo "matrix=$matrix" >> $GITHUB_OUTPUT
# Run integration tests against partner libraries with live API credentials
build:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
name: "🐍 Python ${{ matrix.python-version }}: ${{ matrix.working-directory }}"
runs-on: ubuntu-latest
needs: [compute-matrix]
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ${{ fromJSON(needs.compute-matrix.outputs.matrix).python-version }}
working-directory: ${{ fromJSON(needs.compute-matrix.outputs.matrix).working-directory }}
steps:
- uses: actions/checkout@v6
with:
path: langchain
- uses: actions/checkout@v6
with:
repository: langchain-ai/langchain-google
path: langchain-google
- uses: actions/checkout@v6
with:
repository: langchain-ai/langchain-aws
path: langchain-aws
- name: "📦 Organize External Libraries"
run: |
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai
mv langchain-google/libs/genai langchain/libs/partners/google-genai
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: "🐍 Set up Python ${{ matrix.python-version }} + UV"
uses: "./langchain/.github/actions/uv_setup"
with:
python-version: ${{ matrix.python-version }}
- name: "🔐 Authenticate to Google Cloud"
id: "auth"
uses: google-github-actions/auth@v3
with:
credentials_json: "${{ secrets.GOOGLE_CREDENTIALS }}"
- name: "🔐 Configure AWS Credentials"
uses: aws-actions/configure-aws-credentials@v5
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: "📦 Install Dependencies"
run: |
echo "Running scheduled tests, installing dependencies with uv..."
cd langchain/${{ matrix.working-directory }}
uv sync --group test --group test_integration
- name: "🚀 Run Integration Tests"
env:
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
ES_URL: ${{ secrets.ES_URL }}
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
ES_API_KEY: ${{ secrets.ES_API_KEY }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
run: |
cd langchain/${{ matrix.working-directory }}
make integration_tests
- name: "🧹 Clean up External Libraries"
# Clean up external libraries to avoid affecting the following git status check
run: |
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai \
langchain/libs/partners/aws
- name: "🧹 Verify Clean Working Directory"
working-directory: langchain
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

23
.github/workflows/lint.yml vendored Normal file
View File

@@ -0,0 +1,23 @@
name: lint
on: [push, pull_request]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.7"]
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r test_requirements.txt
- name: Analysing the code with our lint
run: |
make lint

View File

@@ -1,28 +0,0 @@
# Label PRs based on changed files.
#
# See `.github/pr-file-labeler.yml` to see rules for each label/directory.
name: "🏷️ Pull Request Labeler"
on:
# Safe since we're not checking out or running the PR's code
# Never check out the PR's head in a pull_request_target job
pull_request_target:
types: [opened, synchronize, reopened, edited]
jobs:
labeler:
name: "label"
permissions:
contents: read
pull-requests: write
issues: write
runs-on: ubuntu-latest
steps:
- name: Label Pull Request
uses: actions/labeler@v6
with:
repo-token: "${{ secrets.GITHUB_TOKEN }}"
configuration-path: .github/pr-file-labeler.yml
sync-labels: false

View File

@@ -1,44 +0,0 @@
# Label PRs based on their titles.
#
# Uses conventional commit types from PR titles to apply labels.
# Note: Scope-based labeling (e.g., integration labels) is handled by pr_labeler_file.yml
name: "🏷️ PR Title Labeler"
on:
# Safe since we're not checking out or running the PR's code
# Never check out the PR's head in a pull_request_target job
pull_request_target:
types: [opened, edited]
jobs:
pr-title-labeler:
name: "label"
permissions:
contents: read
pull-requests: write
issues: write
runs-on: ubuntu-latest
steps:
- name: Label PR based on title
uses: bcoe/conventional-release-labels@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}
type_labels: >-
{
"feat": "feature",
"fix": "fix",
"docs": "documentation",
"style": "linting",
"refactor": "refactor",
"perf": "performance",
"test": "tests",
"build": "infra",
"ci": "infra",
"chore": "infra",
"revert": "revert",
"release": "release",
"breaking": "breaking"
}
ignored_types: '[]'

View File

@@ -1,111 +0,0 @@
# PR title linting.
#
# FORMAT (Conventional Commits 1.0.0):
#
# <type>[optional scope]: <description>
# [optional body]
# [optional footer(s)]
#
# Examples:
# feat(core): add multitenant support
# fix(cli): resolve flag parsing error
# docs: update API usage examples
# docs(openai): update API usage examples
#
# Allowed Types:
# * feat — a new feature (MINOR)
# * fix — a bug fix (PATCH)
# * docs — documentation only changes
# * style — formatting, linting, etc.; no code change or typing refactors
# * refactor — code change that neither fixes a bug nor adds a feature
# * perf — code change that improves performance
# * test — adding tests or correcting existing
# * build — changes that affect the build system/external dependencies
# * ci — continuous integration/configuration changes
# * chore — other changes that don't modify source or test files
# * revert — reverts a previous commit
# * release — prepare a new release
#
# Allowed Scope(s) (optional):
# core, cli, langchain, langchain_v1, langchain-classic, model-profiles,
# standard-tests, text-splitters, docs, anthropic, chroma, deepseek, exa,
# fireworks, groq, huggingface, mistralai, nomic, ollama, openai,
# perplexity, prompty, qdrant, xai, infra, deps
#
# Multiple scopes can be used by separating them with a comma.
#
# Rules:
# 1. The 'Type' must start with a lowercase letter.
# 2. Breaking changes: append "!" after type/scope (e.g., feat!: drop x support)
# 3. When releasing (updating the pyproject.toml and uv.lock), the commit message
# should be: `release(scope): x.y.z` (e.g., `release(core): 1.2.0` with no
# body, footer, or preceeding/proceeding text).
#
# Enforces Conventional Commits format for pull request titles to maintain a clear and
# machine-readable change history.
name: "🏷️ PR Title Lint"
permissions:
pull-requests: read
on:
pull_request:
types: [opened, edited, synchronize]
jobs:
# Validates that PR title follows Conventional Commits 1.0.0 specification
lint-pr-title:
name: "validate format"
runs-on: ubuntu-latest
steps:
- name: "✅ Validate Conventional Commits Format"
uses: amannn/action-semantic-pull-request@v6
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
types: |
feat
fix
docs
style
refactor
perf
test
build
ci
chore
revert
release
scopes: |
core
cli
langchain
langchain-classic
model-profiles
standard-tests
text-splitters
docs
anthropic
chroma
deepseek
exa
fireworks
groq
huggingface
mistralai
nomic
ollama
openai
perplexity
prompty
qdrant
xai
infra
deps
requireScope: false
disallowScopes: |
release
[A-Z]+
ignoreLabels: |
ignore-lint-pr-title

23
.github/workflows/test.yml vendored Normal file
View File

@@ -0,0 +1,23 @@
name: test
on: [push, pull_request]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.7"]
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r test_requirements.txt
- name: Run unit tests
run: |
make tests

View File

@@ -1,164 +0,0 @@
# Build the API reference documentation for v0.3 branch.
#
# Manual trigger only.
#
# Built HTML pushed to langchain-ai/langchain-api-docs-html.
#
# Looks for langchain-ai org repos in packages.yml and checks them out.
# Calls prep_api_docs_build.py.
name: "📚 API Docs (v0.3)"
run-name: "Build & Deploy API Reference (v0.3)"
on:
workflow_dispatch:
env:
PYTHON_VERSION: "3.11"
jobs:
build:
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- uses: actions/checkout@v6
with:
ref: v0.3
path: langchain
- uses: actions/checkout@v6
with:
repository: langchain-ai/langchain-api-docs-html
path: langchain-api-docs-html
token: ${{ secrets.TOKEN_GITHUB_API_DOCS_HTML }}
- name: "📋 Extract Repository List with yq"
id: get-unsorted-repos
uses: mikefarah/yq@master
with:
cmd: |
# Extract repos from packages.yml that are in the langchain-ai org
# (excluding 'langchain' itself)
yq '
.packages[]
| select(
(
(.repo | test("^langchain-ai/"))
and
(.repo != "langchain-ai/langchain")
)
or
(.include_in_api_ref // false)
)
| .repo
' langchain/libs/packages.yml
- name: "📋 Parse YAML & Checkout Repositories"
env:
REPOS_UNSORTED: ${{ steps.get-unsorted-repos.outputs.result }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Get unique repositories
REPOS=$(echo "$REPOS_UNSORTED" | sort -u)
# Checkout each unique repository
for repo in $REPOS; do
# Validate repository format (allow any org with proper format)
if [[ ! "$repo" =~ ^[a-zA-Z0-9_.-]+/[a-zA-Z0-9_.-]+$ ]]; then
echo "Error: Invalid repository format: $repo"
exit 1
fi
REPO_NAME=$(echo $repo | cut -d'/' -f2)
# Additional validation for repo name
if [[ ! "$REPO_NAME" =~ ^[a-zA-Z0-9_.-]+$ ]]; then
echo "Error: Invalid repository name: $REPO_NAME"
exit 1
fi
echo "Checking out $repo to $REPO_NAME"
# Special handling for langchain-tavily: checkout by commit hash
if [[ "$REPO_NAME" == "langchain-tavily" ]]; then
git clone https://github.com/$repo.git $REPO_NAME
cd $REPO_NAME
git checkout f3515654724a9e87bdfe2c2f509d6cdde646e563
cd ..
else
git clone --depth 1 --branch v0.3 https://github.com/$repo.git $REPO_NAME
fi
done
- name: "🐍 Setup Python ${{ env.PYTHON_VERSION }}"
uses: actions/setup-python@v6
id: setup-python
with:
python-version: ${{ env.PYTHON_VERSION }}
- name: "📦 Install Initial Python Dependencies using uv"
working-directory: langchain
run: |
python -m pip install -U uv
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
- name: "📦 Organize Library Directories"
# Places cloned partner packages into libs/partners structure
run: python langchain/.github/scripts/prep_api_docs_build.py
- name: "🧹 Clear Prior Build"
run:
# Remove artifacts from prior docs build
rm -rf langchain-api-docs-html/api_reference_build/html
- name: "📦 Install Documentation Dependencies using uv"
working-directory: langchain
run: |
# Install all partner packages in editable mode with overrides
python -m uv pip install $(ls ./libs/partners | grep -v azure-ai | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt --prerelease=allow
# Install langchain-azure-ai with tools extra
python -m uv pip install "./libs/partners/azure-ai[tools]" --overrides ./docs/vercel_overrides.txt --prerelease=allow
# Install core langchain and other main packages
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental libs/standard-tests
# Install Sphinx and related packages for building docs
python -m uv pip install -r docs/api_reference/requirements.txt
- name: "🔧 Configure Git Settings"
working-directory: langchain
run: |
git config --local user.email "actions@github.com"
git config --local user.name "Github Actions"
- name: "📚 Build API Documentation"
working-directory: langchain
run: |
# Generate the API reference RST files
python docs/api_reference/create_api_rst.py
# Build the HTML documentation using Sphinx
# -T: show full traceback on exception
# -E: don't use cached environment (force rebuild, ignore cached doctrees)
# -b html: build HTML docs (vs PDS, etc.)
# -d: path for the cached environment (parsed document trees / doctrees)
# - Separate from output dir for faster incremental builds
# -c: path to conf.py
# -j auto: parallel build using all available CPU cores
python -m sphinx -T -E -b html -d ../langchain-api-docs-html/_build/doctrees -c docs/api_reference docs/api_reference ../langchain-api-docs-html/api_reference_build/html -j auto
# Post-process the generated HTML
python docs/api_reference/scripts/custom_formatter.py ../langchain-api-docs-html/api_reference_build/html
# Default index page is blank so we copy in the actual home page.
cp ../langchain-api-docs-html/api_reference_build/html/{reference,index}.html
# Removes Sphinx's intermediate build artifacts after the build is complete.
rm -rf ../langchain-api-docs-html/_build/
# Commit and push changes to langchain-api-docs-html repo
- uses: EndBug/add-and-commit@v9
with:
cwd: langchain-api-docs-html
message: "Update API docs build from v0.3 branch"

51
.gitignore vendored
View File

@@ -1,8 +1,4 @@
.vs/
.claude/
.idea/
#Emacs backup
*~
.vscode/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@@ -32,12 +28,6 @@ share/python-wheels/
*.egg
MANIFEST
# Google GitHub Actions credentials files created by:
# https://github.com/google-github-actions/auth
#
# That action recommends adding this gitignore to prevent accidentally committing keys.
gha-creds-*.json
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
@@ -61,7 +51,6 @@ coverage.xml
*.py,cover
.hypothesis/
.pytest_cache/
.codspeed/
# Translations
*.mo
@@ -80,6 +69,9 @@ instance/
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
@@ -113,12 +105,12 @@ celerybeat.pid
# Environments
.env
.envrc
.venv*
venv*
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
@@ -132,37 +124,8 @@ env.bak/
# mypy
.mypy_cache/
.mypy_cache_test/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# macOS display setting files
.DS_Store
# Wandb directory
wandb/
# asdf tool versions
.tool-versions
/.ruff_cache/
*.pkl
*.bin
# integration test artifacts
data_map*
\[('_type', 'fake'), ('stop', None)]
# Replit files
*replit*
node_modules
prof
virtualenv/
scratch/
.langgraph_api/

View File

@@ -1,14 +0,0 @@
{
"MD013": false,
"MD024": {
"siblings_only": true
},
"MD025": false,
"MD033": false,
"MD034": false,
"MD036": false,
"MD041": false,
"MD046": {
"style": "fenced"
}
}

View File

@@ -1,8 +0,0 @@
{
"mcpServers": {
"docs-langchain": {
"type": "http",
"url": "https://docs.langchain.com/mcp"
}
}
}

View File

@@ -1,118 +0,0 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.3.0
hooks:
- id: no-commit-to-branch # prevent direct commits to protected branches
args: ["--branch", "master"]
- id: check-yaml # validate YAML syntax
args: ["--unsafe"] # allow custom tags
- id: check-toml # validate TOML syntax
- id: end-of-file-fixer # ensure files end with a newline
- id: trailing-whitespace # remove trailing whitespace from lines
# Text normalization hooks for consistent formatting
- repo: https://github.com/sirosen/texthooks
rev: 0.6.8
hooks:
- id: fix-smartquotes # replace curly quotes with straight quotes
- id: fix-spaces # replace non-standard spaces (e.g., non-breaking) with regular spaces
# Per-package format and lint hooks for the monorepo
- repo: local
hooks:
- id: core
name: format and lint core
language: system
entry: make -C libs/core format lint
files: ^libs/core/
pass_filenames: false
- id: langchain
name: format and lint langchain
language: system
entry: make -C libs/langchain format lint
files: ^libs/langchain/
pass_filenames: false
- id: standard-tests
name: format and lint standard-tests
language: system
entry: make -C libs/standard-tests format lint
files: ^libs/standard-tests/
pass_filenames: false
- id: text-splitters
name: format and lint text-splitters
language: system
entry: make -C libs/text-splitters format lint
files: ^libs/text-splitters/
pass_filenames: false
- id: anthropic
name: format and lint partners/anthropic
language: system
entry: make -C libs/partners/anthropic format lint
files: ^libs/partners/anthropic/
pass_filenames: false
- id: chroma
name: format and lint partners/chroma
language: system
entry: make -C libs/partners/chroma format lint
files: ^libs/partners/chroma/
pass_filenames: false
- id: exa
name: format and lint partners/exa
language: system
entry: make -C libs/partners/exa format lint
files: ^libs/partners/exa/
pass_filenames: false
- id: fireworks
name: format and lint partners/fireworks
language: system
entry: make -C libs/partners/fireworks format lint
files: ^libs/partners/fireworks/
pass_filenames: false
- id: groq
name: format and lint partners/groq
language: system
entry: make -C libs/partners/groq format lint
files: ^libs/partners/groq/
pass_filenames: false
- id: huggingface
name: format and lint partners/huggingface
language: system
entry: make -C libs/partners/huggingface format lint
files: ^libs/partners/huggingface/
pass_filenames: false
- id: mistralai
name: format and lint partners/mistralai
language: system
entry: make -C libs/partners/mistralai format lint
files: ^libs/partners/mistralai/
pass_filenames: false
- id: nomic
name: format and lint partners/nomic
language: system
entry: make -C libs/partners/nomic format lint
files: ^libs/partners/nomic/
pass_filenames: false
- id: ollama
name: format and lint partners/ollama
language: system
entry: make -C libs/partners/ollama format lint
files: ^libs/partners/ollama/
pass_filenames: false
- id: openai
name: format and lint partners/openai
language: system
entry: make -C libs/partners/openai format lint
files: ^libs/partners/openai/
pass_filenames: false
- id: prompty
name: format and lint partners/prompty
language: system
entry: make -C libs/partners/prompty format lint
files: ^libs/partners/prompty/
pass_filenames: false
- id: qdrant
name: format and lint partners/qdrant
language: system
entry: make -C libs/partners/qdrant format lint
files: ^libs/partners/qdrant/
pass_filenames: false

View File

@@ -1,19 +0,0 @@
{
"recommendations": [
"ms-python.python",
"charliermarsh.ruff",
"ms-python.mypy-type-checker",
"ms-toolsai.jupyter",
"ms-toolsai.jupyter-keymap",
"ms-toolsai.jupyter-renderers",
"yzhang.markdown-all-in-one",
"davidanson.vscode-markdownlint",
"bierner.markdown-mermaid",
"bierner.markdown-preview-github-styles",
"eamodio.gitlens",
"github.vscode-pull-request-github",
"github.vscode-github-actions",
"redhat.vscode-yaml",
"editorconfig.editorconfig",
],
}

78
.vscode/settings.json vendored
View File

@@ -1,78 +0,0 @@
{
"python.analysis.include": [
"libs/**",
],
"python.analysis.exclude": [
"**/node_modules",
"**/__pycache__",
"**/.pytest_cache",
"**/.*",
],
"python.analysis.autoImportCompletions": true,
"python.analysis.typeCheckingMode": "basic",
"python.testing.cwd": "${workspaceFolder}",
"python.linting.enabled": true,
"python.linting.ruffEnabled": true,
"[python]": {
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {
"source.organizeImports.ruff": "explicit",
"source.fixAll": "explicit"
},
"editor.defaultFormatter": "charliermarsh.ruff"
},
"editor.rulers": [
88
],
"editor.tabSize": 4,
"editor.insertSpaces": true,
"editor.trimAutoWhitespace": true,
"files.trimTrailingWhitespace": true,
"files.insertFinalNewline": true,
"files.exclude": {
"**/__pycache__": true,
"**/.pytest_cache": true,
"**/*.pyc": true,
"**/.mypy_cache": true,
"**/.ruff_cache": true,
"_dist/**": true,
"**/node_modules": true,
"**/.git": false
},
"search.exclude": {
"**/__pycache__": true,
"**/*.pyc": true,
"_dist/**": true,
"**/node_modules": true,
"**/.git": true,
"uv.lock": true,
"yarn.lock": true
},
"git.autofetch": true,
"git.enableSmartCommit": true,
"jupyter.askForKernelRestart": false,
"jupyter.interactiveWindow.textEditor.executeSelection": true,
"[markdown]": {
"editor.wordWrap": "on",
"editor.quickSuggestions": {
"comments": "off",
"strings": "off",
"other": "off"
}
},
"[yaml]": {
"editor.tabSize": 2,
"editor.insertSpaces": true
},
"[json]": {
"editor.tabSize": 2,
"editor.insertSpaces": true
},
"python.terminal.activateEnvironment": false,
"python.defaultInterpreterPath": "./.venv/bin/python",
"github.copilot.chat.commitMessageGeneration.instructions": [
{
"file": ".github/workflows/pr_lint.yml"
}
]
}

181
AGENTS.md
View File

@@ -1,181 +0,0 @@
# Global development guidelines for the LangChain monorepo
This document provides context to understand the LangChain Python project and assist with development.
## Project architecture and context
### Monorepo structure
This is a Python monorepo with multiple independently versioned packages that use `uv`.
```txt
langchain/
├── libs/
│ ├── core/ # `langchain-core` primitives and base abstractions
│ ├── langchain/ # `langchain-classic` (legacy, no new features)
│ ├── langchain_v1/ # Actively maintained `langchain` package
│ ├── partners/ # Third-party integrations
│ │ ├── openai/ # OpenAI models and embeddings
│ │ ├── anthropic/ # Anthropic (Claude) integration
│ │ ├── ollama/ # Local model support
│ │ └── ... (other integrations maintained by the LangChain team)
│ ├── text-splitters/ # Document chunking utilities
│ ├── standard-tests/ # Shared test suite for integrations
│ ├── model-profiles/ # Model configuration profiles
│ └── cli/ # Command-line interface tools
├── .github/ # CI/CD workflows and templates
├── .vscode/ # VSCode IDE standard settings and recommended extensions
└── README.md # Information about LangChain
```
- **Core layer** (`langchain-core`): Base abstractions, interfaces, and protocols. Users should not need to know about this layer directly.
- **Implementation layer** (`langchain`): Concrete implementations and high-level public utilities
- **Integration layer** (`partners/`): Third-party service integrations. Note that this monorepo is not exhaustive of all LangChain integrations; some are maintained in separate repos, such as `langchain-ai/langchain-google` and `langchain-ai/langchain-aws`. Usually these repos are cloned at the same level as this monorepo, so if needed, you can refer to their code directly by navigating to `../langchain-google/` from this monorepo.
- **Testing layer** (`standard-tests/`): Standardized integration tests for partner integrations
### Development tools & commands**
- `uv` Fast Python package installer and resolver (replaces pip/poetry)
- `make` Task runner for common development commands. Feel free to look at the `Makefile` for available commands and usage patterns.
- `ruff` Fast Python linter and formatter
- `mypy` Static type checking
- `pytest` Testing framework
This monorepo uses `uv` for dependency management. Local development uses editable installs: `[tool.uv.sources]`
Each package in `libs/` has its own `pyproject.toml` and `uv.lock`.
```bash
# Run unit tests (no network)
make test
# Run specific test file
uv run --group test pytest tests/unit_tests/test_specific.py
```
```bash
# Lint code
make lint
# Format code
make format
# Type checking
uv run --group lint mypy .
```
#### Key config files
- pyproject.toml: Main workspace configuration with dependency groups
- uv.lock: Locked dependencies for reproducible builds
- Makefile: Development tasks
#### Commit standards
Suggest PR titles that follow Conventional Commits format. Refer to .github/workflows/pr_lint for allowed types and scopes.
#### Pull request guidelines
- Always add a disclaimer to the PR description mentioning how AI agents are involved with the contribution.
- Describe the "why" of the changes, why the proposed solution is the right one. Limit prose.
- Highlight areas of the proposed changes that require careful review.
## Core development principles
### Maintain stable public interfaces
CRITICAL: Always attempt to preserve function signatures, argument positions, and names for exported/public methods. Do not make breaking changes.
**Before making ANY changes to public APIs:**
- Check if the function/class is exported in `__init__.py`
- Look for existing usage patterns in tests and examples
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
Ask: "Would this change break someone's code if they used it last week?"
### Code quality standards
All Python code MUST include type hints and return types.
```python title="Example"
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
"""Single line description of the function.
Any additional context about the function can go here.
Args:
users: List of user identifiers to filter.
known_users: Set of known/valid user identifiers.
Returns:
List of users that are not in the known_users set.
"""
```
- Use descriptive, self-explanatory variable names.
- Follow existing patterns in the codebase you're modifying
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
### Testing requirements
Every new feature or bugfix MUST be covered by unit tests.
- Unit tests: `tests/unit_tests/` (no network calls allowed)
- Integration tests: `tests/integration_tests/` (network calls permitted)
- We use `pytest` as the testing framework; if in doubt, check other existing tests for examples.
- The testing file structure should mirror the source code structure.
**Checklist:**
- [ ] Tests fail when your new logic is broken
- [ ] Happy path is covered
- [ ] Edge cases and error conditions are tested
- [ ] Use fixtures/mocks for external dependencies
- [ ] Tests are deterministic (no flaky tests)
- [ ] Does the test suite fail if your new logic is broken?
### Security and risk assessment
- No `eval()`, `exec()`, or `pickle` on user-controlled input
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
- Remove unreachable/commented code before committing
- Race conditions or resource leaks (file handles, sockets, threads).
- Ensure proper resource cleanup (file handles, connections)
### Documentation standards
Use Google-style docstrings with Args section for all public functions.
```python title="Example"
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
"""Send an email to a recipient with specified priority.
Any additional context about the function can go here.
Args:
to: The email address of the recipient.
msg: The message body to send.
priority: Email priority level.
Returns:
`True` if email was sent successfully, `False` otherwise.
Raises:
InvalidEmailError: If the email address format is invalid.
SMTPConnectionError: If unable to connect to email server.
"""
```
- Types go in function signatures, NOT in docstrings
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
- Focus on "why" rather than "what" in descriptions
- Document all parameters, return values, and exceptions
- Keep descriptions concise but clear
- Ensure American English spelling (e.g., "behavior", not "behaviour")
## Additional resources
- **Documentation:** https://docs.langchain.com/oss/python/langchain/overview and source at https://github.com/langchain-ai/docs or `../docs/`. Prefer the local install and use file search tools for best results. If needed, use the docs MCP server as defined in `.mcp.json` for programmatic access.
- **Contributing Guide:** [`.github/CONTRIBUTING.md`](https://docs.langchain.com/oss/python/contributing/overview)

View File

@@ -1,8 +0,0 @@
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Chase"
given-names: "Harrison"
title: "LangChain"
date-released: 2022-10-17
url: "https://github.com/langchain-ai/langchain"

181
CLAUDE.md
View File

@@ -1,181 +0,0 @@
# Global development guidelines for the LangChain monorepo
This document provides context to understand the LangChain Python project and assist with development.
## Project architecture and context
### Monorepo structure
This is a Python monorepo with multiple independently versioned packages that use `uv`.
```txt
langchain/
├── libs/
│ ├── core/ # `langchain-core` primitives and base abstractions
│ ├── langchain/ # `langchain-classic` (legacy, no new features)
│ ├── langchain_v1/ # Actively maintained `langchain` package
│ ├── partners/ # Third-party integrations
│ │ ├── openai/ # OpenAI models and embeddings
│ │ ├── anthropic/ # Anthropic (Claude) integration
│ │ ├── ollama/ # Local model support
│ │ └── ... (other integrations maintained by the LangChain team)
│ ├── text-splitters/ # Document chunking utilities
│ ├── standard-tests/ # Shared test suite for integrations
│ ├── model-profiles/ # Model configuration profiles
│ └── cli/ # Command-line interface tools
├── .github/ # CI/CD workflows and templates
├── .vscode/ # VSCode IDE standard settings and recommended extensions
└── README.md # Information about LangChain
```
- **Core layer** (`langchain-core`): Base abstractions, interfaces, and protocols. Users should not need to know about this layer directly.
- **Implementation layer** (`langchain`): Concrete implementations and high-level public utilities
- **Integration layer** (`partners/`): Third-party service integrations. Note that this monorepo is not exhaustive of all LangChain integrations; some are maintained in separate repos, such as `langchain-ai/langchain-google` and `langchain-ai/langchain-aws`. Usually these repos are cloned at the same level as this monorepo, so if needed, you can refer to their code directly by navigating to `../langchain-google/` from this monorepo.
- **Testing layer** (`standard-tests/`): Standardized integration tests for partner integrations
### Development tools & commands**
- `uv` Fast Python package installer and resolver (replaces pip/poetry)
- `make` Task runner for common development commands. Feel free to look at the `Makefile` for available commands and usage patterns.
- `ruff` Fast Python linter and formatter
- `mypy` Static type checking
- `pytest` Testing framework
This monorepo uses `uv` for dependency management. Local development uses editable installs: `[tool.uv.sources]`
Each package in `libs/` has its own `pyproject.toml` and `uv.lock`.
```bash
# Run unit tests (no network)
make test
# Run specific test file
uv run --group test pytest tests/unit_tests/test_specific.py
```
```bash
# Lint code
make lint
# Format code
make format
# Type checking
uv run --group lint mypy .
```
#### Key config files
- pyproject.toml: Main workspace configuration with dependency groups
- uv.lock: Locked dependencies for reproducible builds
- Makefile: Development tasks
#### Commit standards
Suggest PR titles that follow Conventional Commits format. Refer to .github/workflows/pr_lint for allowed types and scopes.
#### Pull request guidelines
- Always add a disclaimer to the PR description mentioning how AI agents are involved with the contribution.
- Describe the "why" of the changes, why the proposed solution is the right one. Limit prose.
- Highlight areas of the proposed changes that require careful review.
## Core development principles
### Maintain stable public interfaces
CRITICAL: Always attempt to preserve function signatures, argument positions, and names for exported/public methods. Do not make breaking changes.
**Before making ANY changes to public APIs:**
- Check if the function/class is exported in `__init__.py`
- Look for existing usage patterns in tests and examples
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
Ask: "Would this change break someone's code if they used it last week?"
### Code quality standards
All Python code MUST include type hints and return types.
```python title="Example"
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
"""Single line description of the function.
Any additional context about the function can go here.
Args:
users: List of user identifiers to filter.
known_users: Set of known/valid user identifiers.
Returns:
List of users that are not in the known_users set.
"""
```
- Use descriptive, self-explanatory variable names.
- Follow existing patterns in the codebase you're modifying
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
### Testing requirements
Every new feature or bugfix MUST be covered by unit tests.
- Unit tests: `tests/unit_tests/` (no network calls allowed)
- Integration tests: `tests/integration_tests/` (network calls permitted)
- We use `pytest` as the testing framework; if in doubt, check other existing tests for examples.
- The testing file structure should mirror the source code structure.
**Checklist:**
- [ ] Tests fail when your new logic is broken
- [ ] Happy path is covered
- [ ] Edge cases and error conditions are tested
- [ ] Use fixtures/mocks for external dependencies
- [ ] Tests are deterministic (no flaky tests)
- [ ] Does the test suite fail if your new logic is broken?
### Security and risk assessment
- No `eval()`, `exec()`, or `pickle` on user-controlled input
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
- Remove unreachable/commented code before committing
- Race conditions or resource leaks (file handles, sockets, threads).
- Ensure proper resource cleanup (file handles, connections)
### Documentation standards
Use Google-style docstrings with Args section for all public functions.
```python title="Example"
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
"""Send an email to a recipient with specified priority.
Any additional context about the function can go here.
Args:
to: The email address of the recipient.
msg: The message body to send.
priority: Email priority level.
Returns:
`True` if email was sent successfully, `False` otherwise.
Raises:
InvalidEmailError: If the email address format is invalid.
SMTPConnectionError: If unable to connect to email server.
"""
```
- Types go in function signatures, NOT in docstrings
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
- Focus on "why" rather than "what" in descriptions
- Document all parameters, return values, and exceptions
- Keep descriptions concise but clear
- Ensure American English spelling (e.g., "behavior", not "behaviour")
## Additional resources
- **Documentation:** https://docs.langchain.com/oss/python/langchain/overview and source at https://github.com/langchain-ai/docs or `../docs/`. Prefer the local install and use file search tools for best results. If needed, use the docs MCP server as defined in `.mcp.json` for programmatic access.
- **Contributing Guide:** [`.github/CONTRIBUTING.md`](https://docs.langchain.com/oss/python/contributing/overview)

12
LICENSE
View File

@@ -1,6 +1,6 @@
MIT License
The MIT License
Copyright (c) LangChain, Inc.
Copyright (c) Harrison Chase
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
@@ -9,13 +9,13 @@ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

3
MANIFEST.in Normal file
View File

@@ -0,0 +1,3 @@
include langchain/py.typed
include langchain/VERSION
include LICENSE

17
Makefile Normal file
View File

@@ -0,0 +1,17 @@
.PHONY: format lint tests integration_tests
format:
black .
isort .
lint:
mypy .
black . --check
isort . --check
flake8 .
tests:
pytest tests/unit_tests
integration_tests:
pytest tests/integration_tests

165
README.md
View File

@@ -1,75 +1,132 @@
<div align="center">
<a href="https://www.langchain.com/">
<picture>
<source media="(prefers-color-scheme: light)" srcset=".github/images/logo-dark.svg">
<source media="(prefers-color-scheme: dark)" srcset=".github/images/logo-light.svg">
<img alt="LangChain Logo" src=".github/images/logo-dark.svg" width="80%">
</picture>
</a>
</div>
# 🦜️🔗 LangChain
<div align="center">
<h3>The platform for reliable agents.</h3>
</div>
⚡ Building applications with LLMs through composability ⚡
<div align="center">
<a href="https://opensource.org/licenses/MIT" target="_blank"><img src="https://img.shields.io/pypi/l/langchain" alt="PyPI - License"></a>
<a href="https://pypistats.org/packages/langchain" target="_blank"><img src="https://img.shields.io/pepy/dt/langchain" alt="PyPI - Downloads"></a>
<a href="https://pypi.org/project/langchain/#history" target="_blank"><img src="https://img.shields.io/pypi/v/langchain?label=%20" alt="Version"></a>
<a href="https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode" alt="Open in Dev Containers"></a>
<a href="https://codespaces.new/langchain-ai/langchain" target="_blank"><img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20"></a>
<a href="https://codspeed.io/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/endpoint?url=https://codspeed.io/badge.json" alt="CodSpeed Badge"></a>
<a href="https://twitter.com/langchainai" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI" alt="Twitter / X"></a>
</div>
[![lint](https://github.com/hwchase17/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [![test](https://github.com/hwchase17/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai) [![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
LangChain is a framework for building agents and LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development all while future-proofing decisions as the underlying technology evolves.
## Quick Install
```bash
pip install langchain
`pip install langchain`
## 🤔 What is this?
Large language models (LLMs) are emerging as a transformative technology, enabling
developers to build applications that they previously could not.
But using these LLMs in isolation is often not enough to
create a truly powerful app - the real power comes when you are able to
combine them with other sources of computation or knowledge.
This library is aimed at assisting in the development of those types of applications.
It aims to create:
1. a comprehensive collection of pieces you would ever want to combine
2. a flexible interface for combining pieces into a single comprehensive "chain"
3. a schema for easily saving and sharing those chains
## 📖 Documentation
Please see [here](https://langchain.readthedocs.io/en/latest/?) for full documentation on:
- Getting started (installation, setting up environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs)
- Resources (high level explanation of core concepts)
## 🚀 What can I do with this
This project was largely inspired by a few projects seen on Twitter for which we thought it would make sense to have more explicit tooling. A lot of the initial functionality was done in an attempt to recreate those. Those are:
**[Self-ask-with-search](https://ofir.io/self-ask.pdf)**
To recreate this paper, use the following code snippet or checkout the [example notebook](https://github.com/hwchase17/langchain/blob/master/examples/self_ask_with_search.ipynb).
```python
from langchain import SelfAskWithSearchChain, OpenAI, SerpAPIChain
llm = OpenAI(temperature=0)
search = SerpAPIChain()
self_ask_with_search = SelfAskWithSearchChain(llm=llm, search_chain=search)
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
```
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview), our framework for building controllable agent workflows.
**[LLM Math](https://twitter.com/amasad/status/1568824744367259648?s=20&t=-7wxpXBJinPgDuyHLouP1w)**
---
To recreate this example, use the following code snippet or check out the [example notebook](https://github.com/hwchase17/langchain/blob/master/examples/llm_math.ipynb).
**Documentation**:
```python
from langchain import OpenAI, LLMMathChain
- [docs.langchain.com](https://docs.langchain.com/oss/python/langchain/overview) Comprehensive documentation, including conceptual overviews and guides
- [reference.langchain.com/python](https://reference.langchain.com/python) API reference docs for LangChain packages
llm = OpenAI(temperature=0)
llm_math = LLMMathChain(llm=llm)
**Discussions**: Visit the [LangChain Forum](https://forum.langchain.com) to connect with the community and share all of your technical questions, ideas, and feedback.
llm_math.run("How many of the integers between 0 and 99 inclusive are divisible by 8?")
```
> [!NOTE]
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
**Generic Prompting**
## Why use LangChain?
You can also use this for simple prompting pipelines, as in the below example and this [example notebook](https://github.com/hwchase17/langchain/blob/master/examples/simple_prompts.ipynb).
LangChain helps developers build applications powered by LLMs through a standard interface for models, embeddings, vector stores, and more.
```python
from langchain import Prompt, OpenAI, LLMChain
Use LangChain for:
template = """Question: {question}
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and external/internal systems, drawing from LangChain's vast library of integrations with model providers, tools, vector stores, retrievers, and more.
- **Model interoperability**. Swap models in and out as your engineering team experiments to find the best choice for your application's needs. As the industry frontier evolves, adapt quickly LangChain's abstractions keep you moving without losing momentum.
- **Rapid prototyping**. Quickly build and iterate on LLM applications with LangChain's modular, component-based architecture. Test different approaches and workflows without rebuilding from scratch, accelerating your development cycle.
- **Production-ready features**. Deploy reliable applications with built-in support for monitoring, evaluation, and debugging through integrations like LangSmith. Scale with confidence using battle-tested patterns and best practices.
- **Vibrant community and ecosystem**. Leverage a rich ecosystem of integrations, templates, and community-contributed components. Benefit from continuous improvements and stay up-to-date with the latest AI developments through an active open-source community.
- **Flexible abstraction layers**. Work at the level of abstraction that suits your needs - from high-level chains for quick starts to low-level components for fine-grained control. LangChain grows with your application's complexity.
Answer: Let's think step by step."""
prompt = Prompt(template=template, input_variables=["question"])
llm = OpenAI(temperature=0)
llm_chain = LLMChain(prompt=prompt, llm=llm)
## LangChain ecosystem
question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
While the LangChain framework can be used standalone, it also integrates seamlessly with any LangChain product, giving developers a full suite of tools when building LLM applications.
llm_chain.predict(question=question)
```
To improve your LLM application development, pair LangChain with:
**Embed & Search Documents**
- [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview) Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
- [Integrations](https://docs.langchain.com/oss/python/integrations/providers/overview) List of LangChain integrations, including chat & embedding models, tools & toolkits, and more
- [LangSmith](https://www.langchain.com/langsmith) Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
- [LangSmith Deployment](https://docs.langchain.com/langsmith/deployments) Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams and iterate quickly with visual prototyping in [LangSmith Studio](https://docs.langchain.com/langsmith/studio).
- [Deep Agents](https://github.com/langchain-ai/deepagents) *(new!)* Build agents that can plan, use subagents, and leverage file systems for complex tasks
We support two vector databases to store and search embeddings -- FAISS and Elasticsearch. Here's a code snippet showing how to use FAISS to store embeddings and search for text similar to a query. Both database backends are featured in this [example notebook](https://github.com/hwchase17/langchain/blob/master/examples/embeddings.ipynb).
## Additional resources
```python
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.faiss import FAISS
from langchain.text_splitter import CharacterTextSplitter
- [API Reference](https://reference.langchain.com/python) Detailed reference on navigating base packages and integrations for LangChain.
- [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview) Learn how to contribute to LangChain projects and find good first issues.
- [Code of Conduct](https://github.com/langchain-ai/langchain/?tab=coc-ov-file) Our community guidelines and standards for participation.
- [LangChain Academy](https://academy.langchain.com/) Comprehensive, free courses on LangChain libraries and products, made by the LangChain team.
with open('state_of_the_union.txt') as f:
state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)
embeddings = OpenAIEmbeddings()
docsearch = FAISS.from_texts(texts, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)
```
## 🤖 Developer Guide
To begin developing on this project, first clone to the repo locally.
To install requirements, run `pip install -r requirements.txt`.
This will install all requirements for running the package, examples, linting, formatting, and tests.
Formatting for this project is a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
To run formatting for this project, run `make format`.
Linting for this project is a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
To run linting for this project, run `make lint`.
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.
Unit tests cover modular logic that does not require calls to outside apis.
To run unit tests, run `make tests`.
If you add new logic, please add a unit test.
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
To run integration tests, run `make integration_tests`.
If you add support for a new external API, please add a new integration test.
If you are adding a Jupyter notebook example, you can run `pip install -e .` to build the langchain package from your local changes, so your new logic can be imported into the notebook.
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.

21
docs/Makefile Normal file
View File

@@ -0,0 +1,21 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SPHINXAUTOBUILD ?= sphinx-autobuild
SOURCEDIR = .
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

87
docs/conf.py Normal file
View File

@@ -0,0 +1,87 @@
"""Configuration file for the Sphinx documentation builder."""
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
import langchain
# -- Project information -----------------------------------------------------
project = "LangChain"
copyright = "2022, Harrison Chase"
author = "Harrison Chase"
version = langchain.__version__
release = langchain.__version__
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
"sphinx.ext.autodoc",
"sphinx.ext.autodoc.typehints",
"sphinx.ext.autosummary",
"sphinx.ext.napoleon",
"sphinx.ext.viewcode",
"sphinxcontrib.autodoc_pydantic",
"myst_parser",
"nbsphinx",
"sphinx_panels",
]
autodoc_pydantic_model_show_json = False
autodoc_pydantic_field_list_validators = False
autodoc_pydantic_config_members = False
autodoc_pydantic_model_show_config_summary = False
autodoc_pydantic_model_show_validator_members = False
autodoc_pydantic_model_show_field_summary = False
autodoc_pydantic_model_members = False
autodoc_pydantic_model_undoc_members = False
# autodoc_typehints = "signature"
# autodoc_typehints = "description"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
# html_theme = "sphinx_typlog_theme"
html_context = {
"display_github": True, # Integrate GitHub
"github_user": "hwchase17", # Username
"github_repo": "langchain", # Repo name
"github_version": "master", # Version
"conf_py_path": "/docs/", # Path in the checkout to the docs root
}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path: list = []

25
docs/core_concepts.md Normal file
View File

@@ -0,0 +1,25 @@
# Core Concepts
This section goes over the core concepts of LangChain.
Understanding these will go a long way in helping you understand the codebase and how to construct chains.
## Prompts
Prompts generically have a `format` method that takes in variables and returns a formatted string.
The most simple implementation of this is to have a template string with some variables in it, and then format it with the incoming variables.
More complex iterations dynamically construct the template string from few shot examples, etc.
## LLMs
Wrappers around Large Language Models (in particular, the `generate` ability of large language models) are some of the core functionality of LangChain.
These wrappers are classes that are callable: they take in an input string, and return the generated output string.
## Embeddings
These classes are very similar to the LLM classes in that they are wrappers around models,
but rather than return a string they return an embedding (list of floats). This are particularly useful when
implementing semantic search functionality. They expose separate methods for embedding queries versus embedding documents.
## Vectorstores
These are datastores that store documents. They expose a method for passing in a string and finding similar documents.
## Chains
These are pipelines that combine multiple of the above ideas.
They vary greatly in complexity and are combination of generic, highly configurable pipelines and more narrow (but usually more complex) pipelines.

10
docs/examples/demos.rst Normal file
View File

@@ -0,0 +1,10 @@
Demos
=====
The examples here are all end-to-end chains of specific applications.
.. toctree::
:maxdepth: 1
:glob:
demos/*

View File

@@ -0,0 +1,91 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e71e720f",
"metadata": {},
"source": [
"# LLM Math\n",
"\n",
"This notebook showcases using LLMs and Python REPLs to do complex word math problems."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "44e9ba31",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"How many of the integers between 0 and 99 inclusive are divisible by 8?\u001b[102m\n",
"\n",
"```python\n",
"count = 0\n",
"for i in range(100):\n",
" if i % 8 == 0:\n",
" count += 1\n",
"print(count)\n",
"```\n",
"\u001b[0m\n",
"Answer: \u001b[103m13\n",
"\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 13\\n'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import OpenAI, LLMMathChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_math = LLMMathChain(llm=llm, verbose=True)\n",
"\n",
"llm_math.run(\"How many of the integers between 0 and 99 inclusive are divisible by 8?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f62f0c75",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,93 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d9a0131f",
"metadata": {},
"source": [
"# Map Reduce\n",
"\n",
"This notebok showcases an example of map-reduce chains: recursive summarization."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e9db25f3",
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, Prompt, LLMChain\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.chains.mapreduce import MapReduceChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",
"_prompt = \"\"\"Write a concise summary of the following:\n",
"\n",
"\n",
"{text}\n",
"\n",
"\n",
"CONCISE SUMMARY:\"\"\"\n",
"prompt = Prompt(template=_prompt, input_variables=[\"text\"])\n",
"\n",
"text_splitter = CharacterTextSplitter()\n",
"\n",
"mp_chain = MapReduceChain.from_params(llm, prompt, text_splitter)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "99bbe19b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"\\n\\nThe President discusses the recent aggression by Russia, and the response by the United States and its allies. He announces new sanctions against Russia, and says that the free world is united in holding Putin accountable. The President also discusses the American Rescue Plan, the Bipartisan Infrastructure Law, and the Bipartisan Innovation Act. Finally, the President addresses the need for women's rights and equality for LGBTQ+ Americans.\""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"mp_chain.run(state_of_the_union)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b581501e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,226 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f1390152",
"metadata": {},
"source": [
"# MRKL\n",
"\n",
"This notebook showcases using the MRKL chain to route between tasks"
]
},
{
"cell_type": "markdown",
"id": "39ea3638",
"metadata": {},
"source": [
"This uses the example Chinook database.\n",
"To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ac561cc4",
"metadata": {},
"outputs": [],
"source": [
"from langchain import LLMMathChain, OpenAI, SerpAPIChain, MRKLChain, SQLDatabase, SQLDatabaseChain\n",
"from langchain.chains.mrkl.base import ChainConfig"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "07e96d99",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"search = SerpAPIChain()\n",
"llm_math_chain = LLMMathChain(llm=llm, verbose=True)\n",
"db = SQLDatabase.from_uri(\"sqlite:///../../../notebooks/Chinook.db\")\n",
"db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)\n",
"chains = [\n",
" ChainConfig(\n",
" action_name = \"Search\",\n",
" action=search.run,\n",
" action_description=\"useful for when you need to answer questions about current events\"\n",
" ),\n",
" ChainConfig(\n",
" action_name=\"Calculator\",\n",
" action=llm_math_chain.run,\n",
" action_description=\"useful for when you need to answer questions about math\"\n",
" ),\n",
" \n",
" ChainConfig(\n",
" action_name=\"FooBar DB\",\n",
" action=db_chain.run,\n",
" action_description=\"useful for when you need to answer questions about FooBar. Input should be in the form of a question\"\n",
" )\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "a069c4b6",
"metadata": {},
"outputs": [],
"source": [
"mrkl = MRKLChain.from_chains(llm, chains, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e603cd7d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What is the age of Olivia Wilde's boyfriend raised to the 0.23 power?\n",
"Thought:\u001b[102m I need to find the age of Olivia Wilde's boyfriend\n",
"Action: Search\n",
"Action Input: \"Olivia Wilde's boyfriend\"\u001b[0m\n",
"Observation: \u001b[104mOlivia Wilde started dating Harry Styles after ending her years-long engagement to Jason Sudeikis — see their relationship timeline.\u001b[0m\n",
"Thought:\u001b[102m I need to find the age of Harry Styles\n",
"Action: Search\n",
"Action Input: \"Harry Styles age\"\u001b[0m\n",
"Observation: \u001b[104m28 years\u001b[0m\n",
"Thought:\u001b[102m I need to calculate 28 to the 0.23 power\n",
"Action: Calculator\n",
"Action Input: 28^0.23\u001b[0m\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"28^0.23\u001b[102m\n",
"\n",
"```python\n",
"print(28**0.23)\n",
"```\n",
"\u001b[0m\n",
"Answer: \u001b[103m2.1520202182226886\n",
"\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"Observation: \u001b[103mAnswer: 2.1520202182226886\n",
"\u001b[0m\n",
"Thought:\u001b[102m I now know the final answer\n",
"Final Answer: 2.1520202182226886\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'2.1520202182226886'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mrkl.run(\"What is the age of Olivia Wilde's boyfriend raised to the 0.23 power?\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "a5c07010",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Who recently released an album called 'The Storm Before the Calm' and are they in the FooBar database? If so, what albums of theirs are in the FooBar database?\n",
"Thought:\u001b[102m I need to find an album called 'The Storm Before the Calm'\n",
"Action: Search\n",
"Action Input: \"The Storm Before the Calm album\"\u001b[0m\n",
"Observation: \u001b[104mThe Storm Before the Calm (stylized in all lowercase) is the tenth (and eighth international) studio album by Canadian-American singer-songwriter Alanis ...\u001b[0m\n",
"Thought:\u001b[102m I need to check if Alanis is in the FooBar database\n",
"Action: FooBar DB\n",
"Action Input: \"Does Alanis Morissette exist in the FooBar database?\"\u001b[0m\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Does Alanis Morissette exist in the FooBar database?\n",
"SQLQuery:\u001b[102m SELECT * FROM Artist WHERE Name = 'Alanis Morissette'\u001b[0m\n",
"SQLResult: \u001b[103m[(4, 'Alanis Morissette')]\u001b[0m\n",
"Answer:\u001b[102m Yes\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"Observation: \u001b[101m Yes\u001b[0m\n",
"Thought:\u001b[102m I need to find out what albums of Alanis's are in the FooBar database\n",
"Action: FooBar DB\n",
"Action Input: \"What albums by Alanis Morissette are in the FooBar database?\"\u001b[0m\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What albums by Alanis Morissette are in the FooBar database?\n",
"SQLQuery:\u001b[102m SELECT Title FROM Album WHERE ArtistId = (SELECT ArtistId FROM Artist WHERE Name = 'Alanis Morissette')\u001b[0m\n",
"SQLResult: \u001b[103m[('Jagged Little Pill',)]\u001b[0m\n",
"Answer:\u001b[102m Jagged Little Pill\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"Observation: \u001b[101m Jagged Little Pill\u001b[0m\n",
"Thought:\u001b[102m I now know the final answer\n",
"Final Answer: The album is by Alanis Morissette and the albums in the FooBar database by her are Jagged Little Pill\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The album is by Alanis Morissette and the albums in the FooBar database by her are Jagged Little Pill'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mrkl.run(\"Who recently released an album called 'The Storm Before the Calm' and are they in the FooBar database? If so, what albums of theirs are in the FooBar database?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d7c2e6ac",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,88 @@
"""Run NatBot."""
import time
from langchain.chains.natbot.base import NatBotChain
from langchain.chains.natbot.crawler import Crawler # type: ignore
def run_cmd(cmd: str, _crawler: Crawler) -> None:
"""Run command."""
cmd = cmd.split("\n")[0]
if cmd.startswith("SCROLL UP"):
_crawler.scroll("up")
elif cmd.startswith("SCROLL DOWN"):
_crawler.scroll("down")
elif cmd.startswith("CLICK"):
commasplit = cmd.split(",")
id = commasplit[0].split(" ")[1]
_crawler.click(id)
elif cmd.startswith("TYPE"):
spacesplit = cmd.split(" ")
id = spacesplit[1]
text_pieces = spacesplit[2:]
text = " ".join(text_pieces)
# Strip leading and trailing double quotes
text = text[1:-1]
if cmd.startswith("TYPESUBMIT"):
text += "\n"
_crawler.type(id, text)
time.sleep(2)
if __name__ == "__main__":
objective = "Make a reservation for 2 at 7pm at bistro vida in menlo park"
print("\nWelcome to natbot! What is your objective?")
i = input()
if len(i) > 0:
objective = i
quiet = False
nat_bot_chain = NatBotChain.from_default(objective)
_crawler = Crawler()
_crawler.go_to_page("google.com")
try:
while True:
browser_content = "\n".join(_crawler.crawl())
llm_command = nat_bot_chain.execute(_crawler.page.url, browser_content)
if not quiet:
print("URL: " + _crawler.page.url)
print("Objective: " + objective)
print("----------------\n" + browser_content + "\n----------------\n")
if len(llm_command) > 0:
print("Suggested command: " + llm_command)
command = input()
if command == "r" or command == "":
run_cmd(llm_command, _crawler)
elif command == "g":
url = input("URL:")
_crawler.go_to_page(url)
elif command == "u":
_crawler.scroll("up")
time.sleep(1)
elif command == "d":
_crawler.scroll("down")
time.sleep(1)
elif command == "c":
id = input("id:")
_crawler.click(id)
time.sleep(1)
elif command == "t":
id = input("id:")
text = input("text:")
_crawler.type(id, text)
time.sleep(1)
elif command == "o":
objective = input("Objective:")
else:
print(
"(g) to visit url\n(u) scroll up\n(d) scroll down\n(c) to click"
"\n(t) to type\n(h) to view commands again"
"\n(r/enter) to run suggested command\n(o) change objective"
)
except KeyboardInterrupt:
print("\n[!] Ctrl+C detected, exiting gracefully.")
exit(0)

View File

@@ -0,0 +1,98 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "82140df0",
"metadata": {},
"source": [
"# ReAct\n",
"\n",
"This notebook showcases the implementation of the ReAct chain logic."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "4e272b47",
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, ReActChain, Wikipedia\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"react = ReActChain(llm=llm, docstore=Wikipedia(), verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8078c8f1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Author David Chanoff has collaborated with a U.S. Navy admiral who served as the ambassador to the United Kingdom under which President?\n",
"Thought 1:\u001b[102m I need to search David Chanoff and find the U.S. Navy admiral he\n",
"collaborated with.\n",
"Action 1: Search[David Chanoff]\u001b[0m\n",
"Observation 1: \u001b[103mDavid Chanoff is a noted author of non-fiction work. His work has typically involved collaborations with the principal protagonist of the work concerned. His collaborators have included; Augustus A. White, Joycelyn Elders, Đoàn Văn Toại, William J. Crowe, Ariel Sharon, Kenneth Good and Felix Zandman. He has also written about a wide range of subjects including literary history, education and foreign for The Washington Post, The New Republic and The New York Times Magazine. He has published more than twelve books.\u001b[0m\n",
"Thought 2:\u001b[102m The U.S. Navy admiral David Chanoff collaborated with is William J. Crowe.\n",
"Action 2: Search[William J. Crowe]\u001b[0m\n",
"Observation 2: \u001b[103mWilliam James Crowe Jr. (January 2, 1925 October 18, 2007) was a United States Navy admiral and diplomat who served as the 11th chairman of the Joint Chiefs of Staff under Presidents Ronald Reagan and George H. W. Bush, and as the ambassador to the United Kingdom and Chair of the Intelligence Oversight Board under President Bill Clinton.\u001b[0m\n",
"Thought 3:\u001b[102m William J. Crowe served as the ambassador to the United Kingdom under President Bill Clinton. So the answer is Bill Clinton.\n",
"Action 3: Finish[Bill Clinton]\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Bill Clinton'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question = \"Author David Chanoff has collaborated with a U.S. Navy admiral who served as the ambassador to the United Kingdom under which President?\"\n",
"react.run(question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a6bd3b4",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,88 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0c3f1df8",
"metadata": {},
"source": [
"# Self Ask With Search\n",
"\n",
"This notebook showcases the Self Ask With Search chain."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7e3b513e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What is the hometown of the reigning men's U.S. Open champion?\n",
"Are follow up questions needed here:\u001b[102m Yes.\n",
"Follow up: Who is the reigning men's U.S. Open champion?\u001b[0m\n",
"Intermediate answer: \u001b[103mCarlos Alcaraz won the 2022 Men's single title while Poland's Iga Swiatek won the Women's single title defeating Tunisian's Ons Jabeur..\u001b[0m\u001b[102m\n",
"Follow up: Where is Carlos Alcaraz from?\u001b[0m\n",
"Intermediate answer: \u001b[103mEl Palmar, Murcia, Spain.\u001b[0m\u001b[102m\n",
"So the final answer is: El Palmar, Murcia, Spain\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'\\nSo the final answer is: El Palmar, Murcia, Spain'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import SelfAskWithSearchChain, OpenAI, SerpAPIChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"search = SerpAPIChain()\n",
"\n",
"self_ask_with_search = SelfAskWithSearchChain(llm=llm, search_chain=search, verbose=True)\n",
"\n",
"self_ask_with_search.run(\"What is the hometown of the reigning men's U.S. Open champion?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "683d69e7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,74 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d8a5c5d4",
"metadata": {},
"source": [
"# Simple Example\n",
"\n",
"This notebook showcases a simple chain."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "51a54c4d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' The year Justin Beiber was born was 1994. In 1994, the Dallas Cowboys won the Super Bowl.'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import Prompt, OpenAI, LLMChain\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = Prompt(template=template, input_variables=[\"question\"])\n",
"llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0))\n",
"\n",
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "03dd6918",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,129 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0ed6aab1",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# SQLite example\n",
"\n",
"This example showcases hooking up an LLM to answer questions over a database."
]
},
{
"cell_type": "markdown",
"id": "b2f66479",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"This uses the example Chinook database.\n",
"To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d0e27d88",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain import OpenAI, SQLDatabase, SQLDatabaseChain"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "72ede462",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"db = SQLDatabase.from_uri(\"sqlite:///../../../notebooks/Chinook.db\")\n",
"llm = OpenAI(temperature=0)\n",
"db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "15ff81df",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"How many employees are there?\n",
"SQLQuery:\u001b[102m SELECT COUNT(*) FROM Employee\u001b[0m\n",
"SQLResult: \u001b[103m[(8,)]\u001b[0m\n",
"Answer:\u001b[102m 8\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' 8'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db_chain.run(\"How many employees are there?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "61d91b85",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,104 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "07c1e3b9",
"metadata": {},
"source": [
"# Vector DB Question/Answering\n",
"\n",
"This example showcases question answering over a vector database."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "82525493",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores.faiss import FAISS\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain import OpenAI, VectorDBQA"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5c7049db",
"metadata": {},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"docsearch = FAISS.from_texts(texts, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3018f865",
"metadata": {},
"outputs": [],
"source": [
"qa = VectorDBQA(llm=OpenAI(), vectorstore=docsearch)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "032a47f8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' The President said that Ketanji Brown Jackson is a consensus builder and has received a broad range of support since she was nominated.'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"qa.run(query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f0f20b92",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,10 @@
Integrations
============
The examples here all highlight a specific type of integration.
.. toctree::
:maxdepth: 1
:glob:
integrations/*

View File

@@ -0,0 +1,177 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "7ef4d402-6662-4a26-b612-35b542066487",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Embeddings & VectorStores\n",
"\n",
"This notebook show cases how to use embeddings to create a VectorStore"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "965eecee",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch\n",
"from langchain.vectorstores.faiss import FAISS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "68481687",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "015f4ff5",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"docsearch = FAISS.from_texts(texts, embeddings)\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "67baf32e",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence. \n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "eea6e627",
"metadata": {},
"source": [
"## Requires having ElasticSearch setup"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4906b8a3",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"docsearch = ElasticVectorSearch.from_texts(texts, embeddings, elasticsearch_url=\"http://localhost:9200\")\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "95f9eee9",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence. \n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,71 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "959300d4",
"metadata": {},
"source": [
"# HuggingFace Hub\n",
"\n",
"This example showcases how to connect to the HuggingFace Hub."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3acf0069",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Seattle Seahawks won the Super Bowl in 2010. Justin Beiber was born in 2010. The\n"
]
}
],
"source": [
"from langchain import Prompt, HuggingFaceHub, LLMChain\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = Prompt(template=template, input_variables=[\"question\"])\n",
"llm_chain = LLMChain(prompt=prompt, llm=HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\":1e-10}))\n",
"\n",
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"print(llm_chain.run(question))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ae4559c7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,180 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "b118c9dc",
"metadata": {},
"source": [
"# HuggingFace Tokenizers\n",
"\n",
"This notebook show cases how to use HuggingFace tokenizers to split text."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e82c4685",
"metadata": {},
"outputs": [],
"source": [
"from langchain.text_splitter import CharacterTextSplitter"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a8ce51d5",
"metadata": {},
"outputs": [],
"source": [
"from transformers import GPT2TokenizerFast\n",
"\n",
"tokenizer = GPT2TokenizerFast.from_pretrained(\"gpt2\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ca5e72c0",
"metadata": {},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(tokenizer, chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "37cdfbeb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n",
"\n",
"Last year COVID-19 kept us apart. This year we are finally together again. \n",
"\n",
"Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n",
"\n",
"With a duty to one another to the American people to the Constitution. \n",
"\n",
"And with an unwavering resolve that freedom will always triumph over tyranny. \n",
"\n",
"Six days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n",
"\n",
"He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n",
"\n",
"He met the Ukrainian people. \n",
"\n",
"From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. \n",
"\n",
"Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. \n",
"\n",
"In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight. \n",
"\n",
"Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world. \n",
"\n",
"Please rise if you are able and show that, Yes, we the United States of America stand with the Ukrainian people. \n",
"\n",
"Throughout our history weve learned this lesson when dictators do not pay a price for their aggression they cause more chaos. \n",
"\n",
"They keep moving. \n",
"\n",
"And the costs and the threats to America and the world keep rising. \n",
"\n",
"Thats why the NATO Alliance was created to secure peace and stability in Europe after World War 2. \n",
"\n",
"The United States is a member along with 29 other nations. \n",
"\n",
"It matters. American diplomacy matters. American resolve matters. \n",
"\n",
"Putins latest attack on Ukraine was premeditated and unprovoked. \n",
"\n",
"He rejected repeated efforts at diplomacy. \n",
"\n",
"He thought the West and NATO wouldnt respond. And he thought he could divide us at home. Putin was wrong. We were ready. Here is what we did. \n",
"\n",
"We prepared extensively and carefully. \n",
"\n",
"We spent months building a coalition of other freedom-loving nations from Europe and the Americas to Asia and Africa to confront Putin. \n",
"\n",
"I spent countless hours unifying our European allies. We shared with the world in advance what we knew Putin was planning and precisely how he would try to falsely justify his aggression. \n",
"\n",
"We countered Russias lies with truth. \n",
"\n",
"And now that he has acted the free world is holding him accountable. \n",
"\n",
"Along with twenty-seven members of the European Union including France, Germany, Italy, as well as countries like the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland. \n",
"\n",
"We are inflicting pain on Russia and supporting the people of Ukraine. Putin is now isolated from the world more than ever. \n",
"\n",
"Together with our allies we are right now enforcing powerful economic sanctions. \n",
"\n",
"We are cutting off Russias largest banks from the international financial system. \n",
"\n",
"Preventing Russias central bank from defending the Russian Ruble making Putins $630 Billion “war fund” worthless. \n",
"\n",
"We are choking off Russias access to technology that will sap its economic strength and weaken its military for years to come. \n",
"\n",
"Tonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more. \n",
"\n",
"The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs. \n",
"\n",
"We are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains. \n",
"\n",
"And tonight I am announcing that we will join our allies in closing off American air space to all Russian flights further isolating Russia and adding an additional squeeze on their economy. The Ruble has lost 30% of its value. \n",
"\n",
"The Russian stock market has lost 40% of its value and trading remains suspended. Russias economy is reeling and Putin alone is to blame. \n",
"\n",
"Together with our allies we are providing support to the Ukrainians in their fight for freedom. Military assistance. Economic assistance. Humanitarian assistance. \n",
"\n",
"We are giving more than $1 Billion in direct assistance to Ukraine. \n",
"\n",
"And we will continue to aid the Ukrainian people as they defend their country and to help ease their suffering. \n",
"\n",
"Let me be clear, our forces are not engaged and will not engage in conflict with Russian forces in Ukraine. \n",
"\n",
"Our forces are not going to Europe to fight in Ukraine, but to defend our NATO Allies in the event that Putin decides to keep moving west. \n"
]
}
],
"source": [
"print(texts[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d214aec2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,215 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "b4462a94",
"metadata": {},
"source": [
"# Manifest\n",
"\n",
"This notebook goes over how to use Manifest and LangChain."
]
},
{
"cell_type": "markdown",
"id": "59fcaebc",
"metadata": {},
"source": [
"For more detailed information on `manifest`, and how to use it with local hugginface models like in this example, see https://github.com/HazyResearch/manifest"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "04a0170a",
"metadata": {},
"outputs": [],
"source": [
"from manifest import Manifest\n",
"from langchain.llms.manifest import ManifestWrapper"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "de250a6a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'model_name': 'bigscience/T0_3B', 'model_path': 'bigscience/T0_3B'}\n"
]
}
],
"source": [
"manifest = Manifest(\n",
" client_name = \"huggingface\",\n",
" client_connection = \"http://127.0.0.1:5000\"\n",
")\n",
"print(manifest.client.get_model_params())"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "67b719d6",
"metadata": {},
"outputs": [],
"source": [
"llm = ManifestWrapper(client=manifest, llm_kwargs={\"temperature\": 0.001, \"max_tokens\": 256})"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "5af505a8",
"metadata": {},
"outputs": [],
"source": [
"# Map reduce example\n",
"from langchain import Prompt\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.chains.mapreduce import MapReduceChain\n",
"\n",
"\n",
"_prompt = \"\"\"Write a concise summary of the following:\n",
"\n",
"\n",
"{text}\n",
"\n",
"\n",
"CONCISE SUMMARY:\"\"\"\n",
"prompt = Prompt(template=_prompt, input_variables=[\"text\"])\n",
"\n",
"text_splitter = CharacterTextSplitter()\n",
"\n",
"mp_chain = MapReduceChain.from_params(llm, prompt, text_splitter)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "485b3ec3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'President Obama delivered his annual State of the Union address on Tuesday night, laying out his priorities for the coming year. Obama said the government will provide free flu vaccines to all Americans, ending the government shutdown and allowing businesses to reopen. The president also said that the government will continue to send vaccines to 112 countries, more than any other nation. \"We have lost so much to COVID-19,\" Trump said. \"Time with one another. And worst of all, so much loss of life.\" He said the CDC is working on a vaccine for kids under 5, and that the government will be ready with plenty of vaccines when they are available. Obama says the new guidelines are a \"great step forward\" and that the virus is no longer a threat. He says the government is launching a \"Test to Treat\" initiative that will allow people to get tested at a pharmacy and get antiviral pills on the spot at no cost. Obama says the new guidelines are a \"great step forward\" and that the virus is no longer a threat. He says the government will continue to send vaccines to 112 countries, more than any other nation. \"We are coming for your'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"mp_chain.run(state_of_the_union)"
]
},
{
"cell_type": "markdown",
"id": "6e9d45a8",
"metadata": {},
"source": [
"## Compare HF Models"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "33407ab3",
"metadata": {},
"outputs": [],
"source": [
"from langchain.model_laboratory import ModelLaboratory\n",
"\n",
"manifest1 = ManifestWrapper(\n",
" client=Manifest(\n",
" client_name=\"huggingface\",\n",
" client_connection=\"http://127.0.0.1:5000\"\n",
" ),\n",
" llm_kwargs={\"temperature\": 0.01}\n",
")\n",
"manifest2 = ManifestWrapper(\n",
" client=Manifest(\n",
" client_name=\"huggingface\",\n",
" client_connection=\"http://127.0.0.1:5001\"\n",
" ),\n",
" llm_kwargs={\"temperature\": 0.01}\n",
")\n",
"manifest3 = ManifestWrapper(\n",
" client=Manifest(\n",
" client_name=\"huggingface\",\n",
" client_connection=\"http://127.0.0.1:5002\"\n",
" ),\n",
" llm_kwargs={\"temperature\": 0.01}\n",
")\n",
"llms = [manifest1, manifest2, manifest3]\n",
"model_lab = ModelLaboratory(llms)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "448935c3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"What color is a flamingo?\n",
"\n",
"\u001b[1mManifestWrapper\u001b[0m\n",
"Params: {'model_name': 'bigscience/T0_3B', 'model_path': 'bigscience/T0_3B', 'temperature': 0.01}\n",
"\u001b[104mpink\u001b[0m\n",
"\n",
"\u001b[1mManifestWrapper\u001b[0m\n",
"Params: {'model_name': 'EleutherAI/gpt-neo-125M', 'model_path': 'EleutherAI/gpt-neo-125M', 'temperature': 0.01}\n",
"\u001b[103mA flamingo is a small, round\u001b[0m\n",
"\n",
"\u001b[1mManifestWrapper\u001b[0m\n",
"Params: {'model_name': 'google/flan-t5-xl', 'model_path': 'google/flan-t5-xl', 'temperature': 0.01}\n",
"\u001b[101mpink\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab.compare(\"What color is a flamingo?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
},
"vscode": {
"interpreter": {
"hash": "51b9b5b89a4976ad21c8b4273a6c78d700e2954ce7d7452948b7774eb33bbce4"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,161 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "920a3c1a",
"metadata": {},
"source": [
"# Model Laboratory\n",
"\n",
"This example goes over basic functionality of how to use the ModelLaboratory to test out and try different models."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ab9e95ad",
"metadata": {},
"outputs": [],
"source": [
"from langchain import LLMChain, OpenAI, Cohere, HuggingFaceHub, Prompt\n",
"from langchain.model_laboratory import ModelLaboratory"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "32cb94e6",
"metadata": {},
"outputs": [],
"source": [
"llms = [\n",
" OpenAI(temperature=0), \n",
" Cohere(model=\"command-xlarge-20221108\", max_tokens=20, temperature=0), \n",
" HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\":1})\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "14cde09d",
"metadata": {},
"outputs": [],
"source": [
"model_lab = ModelLaboratory(llms)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f186c741",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"What color is a flamingo?\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\u001b[104m\n",
"\n",
"Flamingos are pink.\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\u001b[103m\n",
"\n",
"Pink\u001b[0m\n",
"\n",
"\u001b[1mHuggingFaceHub\u001b[0m\n",
"Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
"\u001b[101mpink\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab.compare(\"What color is a flamingo?\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "248b652a",
"metadata": {},
"outputs": [],
"source": [
"prompt = Prompt(template=\"What is the capital of {state}?\", input_variables=[\"state\"])\n",
"model_lab_with_prompt = ModelLaboratory(llms, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f64377ac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"New York\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\u001b[104m\n",
"\n",
"The capital of New York is Albany.\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\u001b[103m\n",
"\n",
"The capital of New York is Albany.\u001b[0m\n",
"\n",
"\u001b[1mHuggingFaceHub\u001b[0m\n",
"Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
"\u001b[101mst john s\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab_with_prompt.compare(\"New York\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "54336dbf",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

10
docs/examples/prompts.rst Normal file
View File

@@ -0,0 +1,10 @@
Prompts
=======
The examples here all highlight how to work with prompts.
.. toctree::
:maxdepth: 1
:glob:
prompts/*

View File

@@ -0,0 +1,142 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f5d249ee",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Generate Examples\n",
"\n",
"This notebook shows how to use LangChain to generate more examples similar to the ones you already have."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1685fa2f",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.chains.react.prompt import EXAMPLES\n",
"from langchain.llms.openai import OpenAI\n",
"from langchain.example_generator import generate_example, generate_example_from_dynamic_prompt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "334ef4f7",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/plain": [
"'Question: What is the elevation range for the area that the eastern sector of the\\nColorado orogeny extends into?\\nThought 1: I need to search Colorado orogeny, find the area that the eastern sector\\nof the Colorado orogeny extends into, then find the elevation range of the\\narea.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\\nColorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern\\nsector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\\nthe Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\\nneed to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the\\nHigh Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\\nm).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\\nis 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# print initial example for visibility\n",
"EXAMPLES[0]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a7bd36bc",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"new_example = generate_example(EXAMPLES, OpenAI())"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e1efb008",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/plain": [
"['',\n",
" '',\n",
" 'Question: Which ocean is the worlds smallest?',\n",
" '',\n",
" 'Thought 1: I need to search for oceans and find which one is the worlds smallest.',\n",
" '',\n",
" 'Action 1: Search[oceans]',\n",
" '',\n",
" 'Observation 1: There are five oceans: the Pacific, Atlantic, Indian, Southern, and Arctic.',\n",
" '',\n",
" 'Thought 2: I need to compare the sizes of the oceans and find which one is the smallest.',\n",
" '',\n",
" 'Action 2: Compare[Pacific, Atlantic, Indian, Southern, Arctic]',\n",
" '',\n",
" 'Observation 2: The Arctic is the smallest ocean.']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"new_example.split('\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ed01ba2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,579 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "43fb16cb",
"metadata": {},
"source": [
"# Prompt Walkthrough\n",
"\n",
"An overview of the different types of prompts in LangChain and how to use them"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "2c8d7587",
"metadata": {},
"outputs": [],
"source": [
"import yaml\n",
"\n",
"with open(\"simple_prompt.yaml\", \"r\") as stream:\n",
" config = yaml.safe_load(stream)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "1ab11b59",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input_variables': ['adjective', 'content'],\n",
" 'template': 'Tell me a {adjective} joke about {content}.\\nLike what does it mean?'}"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"config"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "78a2cf84",
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"from typing import Union\n",
"import yaml\n",
"def load_file(file: Union[str, Path]):\n",
" if isinstance(file, str):\n",
" file_path = Path(file)\n",
" else:\n",
" file_path = file\n",
" if file_path.suffix == \".json\":\n",
" with open(file_path) as f:\n",
" config = json.load(f)\n",
" elif file_path.suffix == \".yaml\":\n",
" with open(file_path, \"r\") as f:\n",
" config = yaml.safe_load(f)\n",
" else:\n",
" raise ValueError\n",
" return load_prompt_from_config(config)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "6e1f9bcd",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import Prompt, DynamicPrompt\n",
"import json\n",
"def load_prompt_from_config(config):\n",
" if \"type\" in config:\n",
" prompt_type = config.pop(\"type\")\n",
" else:\n",
" prompt_type = \"prompt\"\n",
" if prompt_type == \"prompt\":\n",
" return _load_prompt(config)\n",
" elif prompt_type == \"dynamic_prompt\":\n",
" return _load_dynamic_prompt(config)\n",
" else:\n",
" raise ValueError\n",
" \n",
"def _load_template(var_name: str, config: dict) -> dict:\n",
" if f\"{var_name}_path\" in config:\n",
" if var_name in config:\n",
" raise ValueError(f\"Both `{var_name}_path` and `{var_name}` cannot be provided.\")\n",
" template_path = Path(config.pop(f\"{var_name}_path\"))\n",
" if template_path.suffix == \".txt\":\n",
" with open(template_path) as f:\n",
" template = f.read()\n",
" else:\n",
" raise ValueError\n",
" config[var_name] = template\n",
" return config\n",
" \n",
" \n",
"def _load_dynamic_prompt(config):\n",
" if \"loader\" in config:\n",
" prompt_type = config.pop(\"loader\")\n",
" else:\n",
" prompt_type = \"init\"\n",
" if prompt_type == \"init\":\n",
" config = _load_template(\"suffix\", config)\n",
" config = _load_template(\"prefix\", config)\n",
" return DynamicPrompt(**config)\n",
" elif prompt_type == \"from_structured_examples\":\n",
" config = _load_template(\"suffix\", config)\n",
" config = _load_template(\"prefix\", config)\n",
" config[\"example_prompt\"] = _load_prompt(config[\"example_prompt\"])\n",
" if isinstance(config[\"examples\"], list):\n",
" pass\n",
" elif isinstance(config[\"examples\"], str):\n",
" with open(config[\"examples\"]) as f:\n",
" examples = json.load(f)\n",
" config[\"examples\"] = examples\n",
" else:\n",
" raise ValueError\n",
" return DynamicPrompt.from_structured_examples(**config)\n",
" else:\n",
" raise ValueError\n",
"\n",
"def _load_prompt(config):\n",
" if \"loader\" in config:\n",
" prompt_type = config.pop(\"loader\")\n",
" else:\n",
" prompt_type = \"init\"\n",
" if prompt_type == \"init\":\n",
" config = _load_template(\"template\", config)\n",
" return Prompt(**config)\n",
" elif prompt_type == \"from_examples\":\n",
" config = _load_template(\"suffix\", config)\n",
" config = _load_template(\"prefix\", config)\n",
" if isinstance(config[\"examples\"], list):\n",
" pass\n",
" elif isinstance(config[\"examples\"], str):\n",
" with open(config[\"examples\"]) as f:\n",
" examples = json.load(f)\n",
" config[\"examples\"] = examples\n",
" else:\n",
" raise ValueError\n",
" return Prompt.from_examples(**config)\n",
" elif prompt_type == \"from_structured_examples\":\n",
" config = _load_template(\"suffix\", config)\n",
" config = _load_template(\"prefix\", config)\n",
" config[\"example_prompt\"] = _load_prompt(config[\"example_prompt\"])\n",
" if isinstance(config[\"examples\"], list):\n",
" pass\n",
" elif isinstance(config[\"examples\"], str):\n",
" with open(config[\"examples\"]) as f:\n",
" examples = json.load(f)\n",
" config[\"examples\"] = examples\n",
" else:\n",
" raise ValueError\n",
" return Prompt.from_structured_examples(**config)\n",
" else:\n",
" raise ValueError"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b045da0f",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "cddb465e",
"metadata": {},
"source": [
"### Basic Prompt\n",
"\n",
"The most simple type of prompt - a string template that takes any number of input variables. The template should be formatted as a Python f-string."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ab46bd2a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tellme a joke.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with no input variables\n",
"_config = {\n",
" \"input_variables\": [],\n",
" \"template\": \"Tell me a joke.\"\n",
"}\n",
"no_input_prompt = load_prompt_from_config(_config)\n",
"no_input_prompt.format()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c3ad0fa8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke.'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with one input variable\n",
"_config = {\n",
" \"input_variables\": [\"adjective\"],\n",
" \"template\": \"Tell me a {adjective} joke.\"\n",
"}\n",
"one_input_prompt = load_prompt_from_config(_config)\n",
"one_input_prompt.format(adjective=\"funny\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ba577dcf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke about chickens.'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with multiple input variables\n",
"_config = {\n",
" \"input_variables\": [\"adjective\", \"content\"],\n",
" \"template\": \"Tell me a {adjective} joke about {content}.\"\n",
"}\n",
"multiple_input_prompt = load_prompt_from_config(_config)\n",
"multiple_input_prompt.format(adjective=\"funny\", content=\"chickens\")"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "e0ad7fb8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke about chickens.'"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"multiple_input_prompt = load_file(\"simple_prompt_with_template_file.json\")\n",
"multiple_input_prompt.format(adjective=\"funny\", content=\"chickens\")"
]
},
{
"cell_type": "markdown",
"id": "d27b1824",
"metadata": {},
"source": [
"### Examples\n",
"Examples are datapoints that can be used to show the model how to produce results. They can be either strings, or dictionaries that are then turned into strings by an example prompt itself."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "2c00e965",
"metadata": {},
"outputs": [],
"source": [
"string_examples = [\"Input: happy\\nOutput: sad\", \"Input: tall\\nOutput: short\"]\n",
"dict_examples = [{\"input\": \"happy\", \"output\": \"sad\"}, {\"input\": \"tall\", \"output\": \"short\"}]\n",
"example_prompt_config = {\"input_variables\": [\"input\",\"output\"], \"template\": \"Input: {input}\\nOutput: {output}\"}"
]
},
{
"cell_type": "markdown",
"id": "1492b49d",
"metadata": {},
"source": [
"### Simple Prompt with examples\n",
"\n",
"We can then use these examples to construct prompts."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "1a5a686d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"_config = {\n",
" \"loader\": \"from_examples\",\n",
" \"examples\": string_examples,\n",
" \"prefix\": \"Give the antonym of every input\",\n",
" \"suffix\": \"Input: {adjective}\\nOutput:\", \n",
" \"input_variables\": [\"adjective\"],\n",
"}\n",
"prompt_from_string_examples = load_prompt_from_config(_config)\n",
"print(prompt_from_string_examples.format(adjective=\"big\"))"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "08d43717",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"_config = {\n",
" \"loader\": \"from_examples\",\n",
" \"examples\": \"string_examples.json\",\n",
" \"prefix\": \"Give the antonym of every input\",\n",
" \"suffix\": \"Input: {adjective}\\nOutput:\", \n",
" \"input_variables\": [\"adjective\"],\n",
"}\n",
"prompt_from_string_examples = load_prompt_from_config(_config)\n",
"print(prompt_from_string_examples.format(adjective=\"big\"))"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "7931e5f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"_config = {\n",
" \"loader\": \"from_structured_examples\",\n",
" \"examples\": dict_examples,\n",
" \"example_prompt\": example_prompt_config,\n",
" \"prefix\": \"Give the antonym of every input\",\n",
" \"suffix\": \"Input: {adjective}\\nOutput:\", \n",
" \"input_variables\": [\"adjective\"],\n",
"}\n",
"prompt_from_structured_examples = load_prompt_from_config(_config)\n",
"print(prompt_from_structured_examples.format(adjective=\"big\"))"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "738ff0a8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"_config = {\n",
" \"loader\": \"from_structured_examples\",\n",
" \"examples\": \"structured_examples.json\",\n",
" \"example_prompt\": example_prompt_config,\n",
" \"prefix\": \"Give the antonym of every input\",\n",
" \"suffix\": \"Input: {adjective}\\nOutput:\", \n",
" \"input_variables\": [\"adjective\"],\n",
"}\n",
"prompt_from_structured_examples = load_prompt_from_config(_config)\n",
"print(prompt_from_structured_examples.format(adjective=\"big\"))"
]
},
{
"cell_type": "markdown",
"id": "861a4d1f",
"metadata": {},
"source": [
"### Dynamic Prompt\n",
"\n",
"We also do more clever things with prompts - for example, only select a certain number of examples in order to limit the size of the text passed in. This will vary with the input text size."
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "207e55f7",
"metadata": {},
"outputs": [],
"source": [
"_config = {\n",
" \"type\": \"dynamic_prompt\",\n",
" \"loader\": \"from_structured_examples\",\n",
" \"examples\": \"structured_examples.json\",\n",
" \"example_prompt\": example_prompt_config,\n",
" \"prefix\": \"Give the antonym of every input\",\n",
" \"suffix\": \"Input: {adjective}\\nOutput:\", \n",
" \"input_variables\": [\"adjective\"],\n",
" \"max_length\": 20,\n",
"}\n",
"dynamic_prompt = load_prompt_from_config(_config)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "d00b4385",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"# An example with small input, so it selects both examples.\n",
"print(dynamic_prompt.format(adjective=\"big\"))"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "878bcde9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: big and huge and massive\n",
"Output:\n"
]
}
],
"source": [
"# An example with long input, so it selects only one example.\n",
"print(dynamic_prompt.format(adjective=\"big and huge and massive\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76a1065d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,179 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d7467b67",
"metadata": {},
"source": [
"# Optimized Prompts\n",
"\n",
"This example showcases how using the OptimizedPrompt class enables selection of the most relevant examples to include as few-shot examples in the prompt."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e9e2b50b",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.react.prompt import EXAMPLES, SUFFIX\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.example_generator import generate_example, generate_example_from_dynamic_prompt\n",
"from langchain.llms.openai import OpenAI\n",
"from langchain.prompts.optimized import OptimizedPrompt\n",
"from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch\n",
"from langchain.vectorstores.faiss_search import FAISS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cb069606",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Question: What is the elevation range for the area that the eastern sector of the\\nColorado orogeny extends into?\\nThought 1: I need to search Colorado orogeny, find the area that the eastern sector\\nof the Colorado orogeny extends into, then find the elevation range of the\\narea.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\\nColorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern\\nsector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\\nthe Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\\nneed to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the\\nHigh Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\\nm).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\\nis 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"EXAMPLES[0]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5fda75a4",
"metadata": {},
"outputs": [],
"source": [
"prompt = OptimizedPrompt.from_examples(\n",
" examples=EXAMPLES, \n",
" suffix=SUFFIX, \n",
" input_variables=[\"input\"],\n",
" embeddings=OpenAIEmbeddings(),\n",
" vectorstore_cls=FAISS\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7a601df8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Question: What is the elevation range for the area that the eastern sector of the\n",
"Colorado orogeny extends into?\n",
"Thought 1: I need to search Colorado orogeny, find the area that the eastern sector\n",
"of the Colorado orogeny extends into, then find the elevation range of the\n",
"area.\n",
"Action 1: Search[Colorado orogeny]\n",
"Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\n",
"Colorado and surrounding areas.\n",
"Thought 2: It does not mention the eastern sector. So I need to look up eastern\n",
"sector.\n",
"Action 2: Lookup[eastern sector]\n",
"Observation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\n",
"the Central Plains orogeny.\n",
"Thought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\n",
"need to search High Plains and find its elevation range.\n",
"Action 3: Search[High Plains]\n",
"Observation 3: High Plains refers to one of two distinct land regions\n",
"Thought 4: I need to instead search High Plains (United States).\n",
"Action 4: Search[High Plains (United States)]\n",
"Observation 4: The High Plains are a subregion of the Great Plains. From east to west, the\n",
"High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\n",
"m).[3]\n",
"Thought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\n",
"is 1,800 to 7,000 ft.\n",
"Action 5: Finish[1,800 to 7,000 ft]\n",
"\n",
"\n",
"\n",
"Question: What is the highest mountain peak in Asia?\n"
]
}
],
"source": [
"print(prompt.format(k=1, input=\"What is the highest mountain peak in Asia?\"))"
]
},
{
"cell_type": "markdown",
"id": "a5dc3525",
"metadata": {},
"source": [
"## Requires having ElasticSearch setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bbd92d08",
"metadata": {},
"outputs": [],
"source": [
"prompt = OptimizedPrompt.from_examples(\n",
" examples=EXAMPLES, \n",
" suffix=SUFFIX, \n",
" input_variables=[\"input\"],\n",
" embeddings=OpenAIEmbeddings(),\n",
" vectorstore_cls=ElasticVectorSearch,\n",
" elasticsearch_url=\"http://localhost:9200\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bd91f408",
"metadata": {},
"outputs": [],
"source": [
"print(prompt.format(k=1, input=\"What is the highest mountain peak in Asia?\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "716165c2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,5 +1,4 @@
{
"_type": "prompt",
"input_variables": ["adjective", "content"],
"template": "Tell me a {adjective} joke about {content}."
}
}

View File

@@ -0,0 +1,5 @@
input_variables:
["adjective", "content"]
template: |
Tell me a {adjective} joke about {content}.
Like what does it mean?

View File

@@ -0,0 +1,4 @@
{
"input_variables": ["adjective", "content"],
"template_path": "simple_template.txt"
}

View File

@@ -0,0 +1 @@
["Input: happy\nOutput: sad", "Input: tall\nOutput: short"]

View File

@@ -0,0 +1 @@
[{"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}]

View File

@@ -0,0 +1,410 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "43fb16cb",
"metadata": {},
"source": [
"# Prompt Walkthrough\n",
"\n",
"An overview of the different types of prompts in LangChain and how to use them"
]
},
{
"cell_type": "markdown",
"id": "cddb465e",
"metadata": {},
"source": [
"### Basic Prompt\n",
"\n",
"The most simple type of prompt - a string template that takes any number of input variables. The template should be formatted as a Python f-string."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "094229f4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import Prompt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ab46bd2a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a joke.'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with no input variables\n",
"no_input_prompt = Prompt(input_variables=[], template=\"Tell me a joke.\")\n",
"no_input_prompt.format()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c3ad0fa8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke.'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with one input variable\n",
"no_input_prompt = Prompt(input_variables=[\"adjective\"], template=\"Tell me a {adjective} joke.\")\n",
"no_input_prompt.format(adjective=\"funny\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ba577dcf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke about chickens.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with multiple input variables\n",
"no_input_prompt = Prompt(input_variables=[\"adjective\", \"content\"], template=\"Tell me a {adjective} joke about {content}.\")\n",
"no_input_prompt.format(adjective=\"funny\", content=\"chickens\")"
]
},
{
"cell_type": "markdown",
"id": "d27b1824",
"metadata": {},
"source": [
"### Examples\n",
"Examples are datapoints that can be used to show the model how to produce results. They can be either strings, or dictionaries that are then turned into strings by an example prompt itself."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2c00e965",
"metadata": {},
"outputs": [],
"source": [
"string_examples = [\"Input: happy\\nOutput: sad\", \"Input: tall\\nOutput: short\"]\n",
"dict_examples = [{\"input\": \"happy\", \"output\": \"sad\"}, {\"input\": \"tall\", \"output\": \"short\"}]\n",
"example_prompt = Prompt(input_variables=[\"input\",\"output\"], template=\"Input: {input}\\nOutput: {output}\")"
]
},
{
"cell_type": "markdown",
"id": "1492b49d",
"metadata": {},
"source": [
"### Simple Prompt with examples\n",
"\n",
"We can then use these examples to construct prompts."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "1a5a686d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"prompt_from_string_examples = Prompt.from_examples(\n",
" string_examples, \n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
")\n",
"print(prompt_from_string_examples.format(adjective=\"big\"))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7931e5f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"prompt_from_string_examples = Prompt.from_structured_examples(\n",
" dict_examples,\n",
" example_prompt,\n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
")\n",
"print(prompt_from_string_examples.format(adjective=\"big\"))"
]
},
{
"cell_type": "markdown",
"id": "861a4d1f",
"metadata": {},
"source": [
"### Dynamic Prompt\n",
"\n",
"We also do more clever things with prompts - for example, only select a certain number of examples in order to limit the size of the text passed in. This will vary with the input text size."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "7c469c95",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import DynamicPrompt"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "207e55f7",
"metadata": {},
"outputs": [],
"source": [
"dynamic_prompt = DynamicPrompt.from_structured_examples(\n",
" dict_examples,\n",
" example_prompt,\n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
" max_length=20,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "d00b4385",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"# An example with small input, so it selects both examples.\n",
"print(dynamic_prompt.format(adjective=\"big\"))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "878bcde9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: big and huge and massive\n",
"Output:\n"
]
}
],
"source": [
"# An example with long input, so it selects only one example.\n",
"print(dynamic_prompt.format(adjective=\"big and huge and massive\"))"
]
},
{
"cell_type": "markdown",
"id": "2d007b0a",
"metadata": {},
"source": [
"# Optimized Prompt\n",
"\n",
"Besides selecting a variable number of examples to show, we can also select examples that most closely match the user input. This is done by creating embeddings of the user input and comparing it embeddings of the examples."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "241bfe80",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.optimized import OptimizedPrompt\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.embeddings import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "50d0a701",
"metadata": {},
"outputs": [],
"source": [
"optimized_prompt = OptimizedPrompt.from_structured_examples(\n",
" dict_examples,\n",
" example_prompt,\n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
" embeddings=OpenAIEmbeddings(),\n",
" vectorstore_cls=FAISS\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "4c8fdf45",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: worried\n",
"Output:\n"
]
}
],
"source": [
"# Input is a feeling, so should select the happy/sad example\n",
"print(optimized_prompt.format(adjective=\"worried\", k=1))"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "829af21a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: fat\n",
"Output:\n"
]
}
],
"source": [
"# Input is a measurment, so should select the tall/short example\n",
"print(optimized_prompt.format(adjective=\"fat\", k=1))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76a1065d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,723 @@
Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.
Last year COVID-19 kept us apart. This year we are finally together again.
Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.
With a duty to one another to the American people to the Constitution.
And with an unwavering resolve that freedom will always triumph over tyranny.
Six days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated.
He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined.
He met the Ukrainian people.
From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.
Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland.
In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.
Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world.
Please rise if you are able and show that, Yes, we the United States of America stand with the Ukrainian people.
Throughout our history weve learned this lesson when dictators do not pay a price for their aggression they cause more chaos.
They keep moving.
And the costs and the threats to America and the world keep rising.
Thats why the NATO Alliance was created to secure peace and stability in Europe after World War 2.
The United States is a member along with 29 other nations.
It matters. American diplomacy matters. American resolve matters.
Putins latest attack on Ukraine was premeditated and unprovoked.
He rejected repeated efforts at diplomacy.
He thought the West and NATO wouldnt respond. And he thought he could divide us at home. Putin was wrong. We were ready. Here is what we did.
We prepared extensively and carefully.
We spent months building a coalition of other freedom-loving nations from Europe and the Americas to Asia and Africa to confront Putin.
I spent countless hours unifying our European allies. We shared with the world in advance what we knew Putin was planning and precisely how he would try to falsely justify his aggression.
We countered Russias lies with truth.
And now that he has acted the free world is holding him accountable.
Along with twenty-seven members of the European Union including France, Germany, Italy, as well as countries like the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.
We are inflicting pain on Russia and supporting the people of Ukraine. Putin is now isolated from the world more than ever.
Together with our allies we are right now enforcing powerful economic sanctions.
We are cutting off Russias largest banks from the international financial system.
Preventing Russias central bank from defending the Russian Ruble making Putins $630 Billion “war fund” worthless.
We are choking off Russias access to technology that will sap its economic strength and weaken its military for years to come.
Tonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more.
The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs.
We are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains.
And tonight I am announcing that we will join our allies in closing off American air space to all Russian flights further isolating Russia and adding an additional squeeze on their economy. The Ruble has lost 30% of its value.
The Russian stock market has lost 40% of its value and trading remains suspended. Russias economy is reeling and Putin alone is to blame.
Together with our allies we are providing support to the Ukrainians in their fight for freedom. Military assistance. Economic assistance. Humanitarian assistance.
We are giving more than $1 Billion in direct assistance to Ukraine.
And we will continue to aid the Ukrainian people as they defend their country and to help ease their suffering.
Let me be clear, our forces are not engaged and will not engage in conflict with Russian forces in Ukraine.
Our forces are not going to Europe to fight in Ukraine, but to defend our NATO Allies in the event that Putin decides to keep moving west.
For that purpose weve mobilized American ground forces, air squadrons, and ship deployments to protect NATO countries including Poland, Romania, Latvia, Lithuania, and Estonia.
As I have made crystal clear the United States and our Allies will defend every inch of territory of NATO countries with the full force of our collective power.
And we remain clear-eyed. The Ukrainians are fighting back with pure courage. But the next few days weeks, months, will be hard on them.
Putin has unleashed violence and chaos. But while he may make gains on the battlefield he will pay a continuing high price over the long run.
And a proud Ukrainian people, who have known 30 years of independence, have repeatedly shown that they will not tolerate anyone who tries to take their country backwards.
To all Americans, I will be honest with you, as Ive always promised. A Russian dictator, invading a foreign country, has costs around the world.
And Im taking robust action to make sure the pain of our sanctions is targeted at Russias economy. And I will use every tool at our disposal to protect American businesses and consumers.
Tonight, I can announce that the United States has worked with 30 other countries to release 60 Million barrels of oil from reserves around the world.
America will lead that effort, releasing 30 Million barrels from our own Strategic Petroleum Reserve. And we stand ready to do more if necessary, unified with our allies.
These steps will help blunt gas prices here at home. And I know the news about whats happening can seem alarming.
But I want you to know that we are going to be okay.
When the history of this era is written Putins war on Ukraine will have left Russia weaker and the rest of the world stronger.
While it shouldnt have taken something so terrible for people around the world to see whats at stake now everyone sees it clearly.
We see the unity among leaders of nations and a more unified Europe a more unified West. And we see unity among the people who are gathering in cities in large crowds around the world even in Russia to demonstrate their support for Ukraine.
In the battle between democracy and autocracy, democracies are rising to the moment, and the world is clearly choosing the side of peace and security.
This is a real test. Its going to take time. So let us continue to draw inspiration from the iron will of the Ukrainian people.
To our fellow Ukrainian Americans who forge a deep bond that connects our two nations we stand with you.
Putin may circle Kyiv with tanks, but he will never gain the hearts and souls of the Ukrainian people.
He will never extinguish their love of freedom. He will never weaken the resolve of the free world.
We meet tonight in an America that has lived through two of the hardest years this nation has ever faced.
The pandemic has been punishing.
And so many families are living paycheck to paycheck, struggling to keep up with the rising cost of food, gas, housing, and so much more.
I understand.
I remember when my Dad had to leave our home in Scranton, Pennsylvania to find work. I grew up in a family where if the price of food went up, you felt it.
Thats why one of the first things I did as President was fight to pass the American Rescue Plan.
Because people were hurting. We needed to act, and we did.
Few pieces of legislation have done more in a critical moment in our history to lift us out of crisis.
It fueled our efforts to vaccinate the nation and combat COVID-19. It delivered immediate economic relief for tens of millions of Americans.
Helped put food on their table, keep a roof over their heads, and cut the cost of health insurance.
And as my Dad used to say, it gave people a little breathing room.
And unlike the $2 Trillion tax cut passed in the previous administration that benefitted the top 1% of Americans, the American Rescue Plan helped working people—and left no one behind.
And it worked. It created jobs. Lots of jobs.
In fact—our economy created over 6.5 Million new jobs just last year, more jobs created in one year
than ever before in the history of America.
Our economy grew at a rate of 5.7% last year, the strongest growth in nearly 40 years, the first step in bringing fundamental change to an economy that hasnt worked for the working people of this nation for too long.
For the past 40 years we were told that if we gave tax breaks to those at the very top, the benefits would trickle down to everyone else.
But that trickle-down theory led to weaker economic growth, lower wages, bigger deficits, and the widest gap between those at the top and everyone else in nearly a century.
Vice President Harris and I ran for office with a new economic vision for America.
Invest in America. Educate Americans. Grow the workforce. Build the economy from the bottom up
and the middle out, not from the top down.
Because we know that when the middle class grows, the poor have a ladder up and the wealthy do very well.
America used to have the best roads, bridges, and airports on Earth.
Now our infrastructure is ranked 13th in the world.
We wont be able to compete for the jobs of the 21st Century if we dont fix that.
Thats why it was so important to pass the Bipartisan Infrastructure Law—the most sweeping investment to rebuild America in history.
This was a bipartisan effort, and I want to thank the members of both parties who worked to make it happen.
Were done talking about infrastructure weeks.
Were going to have an infrastructure decade.
It is going to transform America and put us on a path to win the economic competition of the 21st Century that we face with the rest of the world—particularly with China.
As Ive told Xi Jinping, it is never a good bet to bet against the American people.
Well create good jobs for millions of Americans, modernizing roads, airports, ports, and waterways all across America.
And well do it all to withstand the devastating effects of the climate crisis and promote environmental justice.
Well build a national network of 500,000 electric vehicle charging stations, begin to replace poisonous lead pipes—so every child—and every American—has clean water to drink at home and at school, provide affordable high-speed internet for every American—urban, suburban, rural, and tribal communities.
4,000 projects have already been announced.
And tonight, Im announcing that this year we will start fixing over 65,000 miles of highway and 1,500 bridges in disrepair.
When we use taxpayer dollars to rebuild America we are going to Buy American: buy American products to support American jobs.
The federal government spends about $600 Billion a year to keep the country safe and secure.
Theres been a law on the books for almost a century
to make sure taxpayers dollars support American jobs and businesses.
Every Administration says theyll do it, but we are actually doing it.
We will buy American to make sure everything from the deck of an aircraft carrier to the steel on highway guardrails are made in America.
But to compete for the best jobs of the future, we also need to level the playing field with China and other competitors.
Thats why it is so important to pass the Bipartisan Innovation Act sitting in Congress that will make record investments in emerging technologies and American manufacturing.
Let me give you one example of why its so important to pass it.
If you travel 20 miles east of Columbus, Ohio, youll find 1,000 empty acres of land.
It wont look like much, but if you stop and look closely, youll see a “Field of dreams,” the ground on which Americas future will be built.
This is where Intel, the American company that helped build Silicon Valley, is going to build its $20 billion semiconductor “mega site”.
Up to eight state-of-the-art factories in one place. 10,000 new good-paying jobs.
Some of the most sophisticated manufacturing in the world to make computer chips the size of a fingertip that power the world and our everyday lives.
Smartphones. The Internet. Technology we have yet to invent.
But thats just the beginning.
Intels CEO, Pat Gelsinger, who is here tonight, told me they are ready to increase their investment from
$20 billion to $100 billion.
That would be one of the biggest investments in manufacturing in American history.
And all theyre waiting for is for you to pass this bill.
So lets not wait any longer. Send it to my desk. Ill sign it.
And we will really take off.
And Intel is not alone.
Theres something happening in America.
Just look around and youll see an amazing story.
The rebirth of the pride that comes from stamping products “Made In America.” The revitalization of American manufacturing.
Companies are choosing to build new factories here, when just a few years ago, they would have built them overseas.
Thats what is happening. Ford is investing $11 billion to build electric vehicles, creating 11,000 jobs across the country.
GM is making the largest investment in its history—$7 billion to build electric vehicles, creating 4,000 jobs in Michigan.
All told, we created 369,000 new manufacturing jobs in America just last year.
Powered by people Ive met like JoJo Burgess, from generations of union steelworkers from Pittsburgh, whos here with us tonight.
As Ohio Senator Sherrod Brown says, “Its time to bury the label “Rust Belt.”
Its time.
But with all the bright spots in our economy, record job growth and higher wages, too many families are struggling to keep up with the bills.
Inflation is robbing them of the gains they might otherwise feel.
I get it. Thats why my top priority is getting prices under control.
Look, our economy roared back faster than most predicted, but the pandemic meant that businesses had a hard time hiring enough workers to keep up production in their factories.
The pandemic also disrupted global supply chains.
When factories close, it takes longer to make goods and get them from the warehouse to the store, and prices go up.
Look at cars.
Last year, there werent enough semiconductors to make all the cars that people wanted to buy.
And guess what, prices of automobiles went up.
So—we have a choice.
One way to fight inflation is to drive down wages and make Americans poorer.
I have a better plan to fight inflation.
Lower your costs, not your wages.
Make more cars and semiconductors in America.
More infrastructure and innovation in America.
More goods moving faster and cheaper in America.
More jobs where you can earn a good living in America.
And instead of relying on foreign supply chains, lets make it in America.
Economists call it “increasing the productive capacity of our economy.”
I call it building a better America.
My plan to fight inflation will lower your costs and lower the deficit.
17 Nobel laureates in economics say my plan will ease long-term inflationary pressures. Top business leaders and most Americans support my plan. And heres the plan:
First cut the cost of prescription drugs. Just look at insulin. One in ten Americans has diabetes. In Virginia, I met a 13-year-old boy named Joshua Davis.
He and his Dad both have Type 1 diabetes, which means they need insulin every day. Insulin costs about $10 a vial to make.
But drug companies charge families like Joshua and his Dad up to 30 times more. I spoke with Joshuas mom.
Imagine what its like to look at your child who needs insulin and have no idea how youre going to pay for it.
What it does to your dignity, your ability to look your child in the eye, to be the parent you expect to be.
Joshua is here with us tonight. Yesterday was his birthday. Happy birthday, buddy.
For Joshua, and for the 200,000 other young people with Type 1 diabetes, lets cap the cost of insulin at $35 a month so everyone can afford it.
Drug companies will still do very well. And while were at it let Medicare negotiate lower prices for prescription drugs, like the VA already does.
Look, the American Rescue Plan is helping millions of families on Affordable Care Act plans save $2,400 a year on their health care premiums. Lets close the coverage gap and make those savings permanent.
Second cut energy costs for families an average of $500 a year by combatting climate change.
Lets provide investments and tax credits to weatherize your homes and businesses to be energy efficient and you get a tax credit; double Americas clean energy production in solar, wind, and so much more; lower the price of electric vehicles, saving you another $80 a month because youll never have to pay at the gas pump again.
Third cut the cost of child care. Many families pay up to $14,000 a year for child care per child.
Middle-class and working families shouldnt have to pay more than 7% of their income for care of young children.
My plan will cut the cost in half for most families and help parents, including millions of women, who left the workforce during the pandemic because they couldnt afford child care, to be able to get back to work.
My plan doesnt stop there. It also includes home and long-term care. More affordable housing. And Pre-K for every 3- and 4-year-old.
All of these will lower costs.
And under my plan, nobody earning less than $400,000 a year will pay an additional penny in new taxes. Nobody.
The one thing all Americans agree on is that the tax system is not fair. We have to fix it.
Im not looking to punish anyone. But lets make sure corporations and the wealthiest Americans start paying their fair share.
Just last year, 55 Fortune 500 corporations earned $40 billion in profits and paid zero dollars in federal income tax.
Thats simply not fair. Thats why Ive proposed a 15% minimum tax rate for corporations.
We got more than 130 countries to agree on a global minimum tax rate so companies cant get out of paying their taxes at home by shipping jobs and factories overseas.
Thats why Ive proposed closing loopholes so the very wealthy dont pay a lower tax rate than a teacher or a firefighter.
So thats my plan. It will grow the economy and lower costs for families.
So what are we waiting for? Lets get this done. And while youre at it, confirm my nominees to the Federal Reserve, which plays a critical role in fighting inflation.
My plan will not only lower costs to give families a fair shot, it will lower the deficit.
The previous Administration not only ballooned the deficit with tax cuts for the very wealthy and corporations, it undermined the watchdogs whose job was to keep pandemic relief funds from being wasted.
But in my administration, the watchdogs have been welcomed back.
Were going after the criminals who stole billions in relief money meant for small businesses and millions of Americans.
And tonight, Im announcing that the Justice Department will name a chief prosecutor for pandemic fraud.
By the end of this year, the deficit will be down to less than half what it was before I took office.
The only president ever to cut the deficit by more than one trillion dollars in a single year.
Lowering your costs also means demanding more competition.
Im a capitalist, but capitalism without competition isnt capitalism.
Its exploitation—and it drives up prices.
When corporations dont have to compete, their profits go up, your prices go up, and small businesses and family farmers and ranchers go under.
We see it happening with ocean carriers moving goods in and out of America.
During the pandemic, these foreign-owned companies raised prices by as much as 1,000% and made record profits.
Tonight, Im announcing a crackdown on these companies overcharging American businesses and consumers.
And as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up.
That ends on my watch.
Medicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect.
Well also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees.
Lets pass the Paycheck Fairness Act and paid leave.
Raise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty.
Lets increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls Americas best-kept secret: community colleges.
And lets pass the PRO Act when a majority of workers want to form a union—they shouldnt be stopped.
When we invest in our workers, when we build the economy from the bottom up and the middle out together, we can do something we havent done in a long time: build a better America.
For more than two years, COVID-19 has impacted every decision in our lives and the life of the nation.
And I know youre tired, frustrated, and exhausted.
But I also know this.
Because of the progress weve made, because of your resilience and the tools we have, tonight I can say
we are moving forward safely, back to more normal routines.
Weve reached a new moment in the fight against COVID-19, with severe cases down to a level not seen since last July.
Just a few days ago, the Centers for Disease Control and Prevention—the CDC—issued new mask guidelines.
Under these new guidelines, most Americans in most of the country can now be mask free.
And based on the projections, more of the country will reach that point across the next couple of weeks.
Thanks to the progress we have made this past year, COVID-19 need no longer control our lives.
I know some are talking about “living with COVID-19”. Tonight I say that we will never just accept living with COVID-19.
We will continue to combat the virus as we do other diseases. And because this is a virus that mutates and spreads, we will stay on guard.
Here are four common sense steps as we move forward safely.
First, stay protected with vaccines and treatments. We know how incredibly effective vaccines are. If youre vaccinated and boosted you have the highest degree of protection.
We will never give up on vaccinating more Americans. Now, I know parents with kids under 5 are eager to see a vaccine authorized for their children.
The scientists are working hard to get that done and well be ready with plenty of vaccines when they do.
Were also ready with anti-viral treatments. If you get COVID-19, the Pfizer pill reduces your chances of ending up in the hospital by 90%.
Weve ordered more of these pills than anyone in the world. And Pfizer is working overtime to get us 1 Million pills this month and more than double that next month.
And were launching the “Test to Treat” initiative so people can get tested at a pharmacy, and if theyre positive, receive antiviral pills on the spot at no cost.
If youre immunocompromised or have some other vulnerability, we have treatments and free high-quality masks.
Were leaving no one behind or ignoring anyones needs as we move forward.
And on testing, we have made hundreds of millions of tests available for you to order for free.
Even if you already ordered free tests tonight, I am announcing that you can order more from covidtests.gov starting next week.
Second we must prepare for new variants. Over the past year, weve gotten much better at detecting new variants.
If necessary, well be able to deploy new vaccines within 100 days instead of many more months or years.
And, if Congress provides the funds we need, well have new stockpiles of tests, masks, and pills ready if needed.
I cannot promise a new variant wont come. But I can promise you well do everything within our power to be ready if it does.
Third we can end the shutdown of schools and businesses. We have the tools we need.
Its time for Americans to get back to work and fill our great downtowns again. People working from home can feel safe to begin to return to the office.
Were doing that here in the federal government. The vast majority of federal workers will once again work in person.
Our schools are open. Lets keep it that way. Our kids need to be in school.
And with 75% of adult Americans fully vaccinated and hospitalizations down by 77%, most Americans can remove their masks, return to work, stay in the classroom, and move forward safely.
We achieved this because we provided free vaccines, treatments, tests, and masks.
Of course, continuing this costs money.
I will soon send Congress a request.
The vast majority of Americans have used these tools and may want to again, so I expect Congress to pass it quickly.
Fourth, we will continue vaccinating the world.
Weve sent 475 Million vaccine doses to 112 countries, more than any other nation.
And we wont stop.
We have lost so much to COVID-19. Time with one another. And worst of all, so much loss of life.
Lets use this moment to reset. Lets stop looking at COVID-19 as a partisan dividing line and see it for what it is: A God-awful disease.
Lets stop seeing each other as enemies, and start seeing each other for who we really are: Fellow Americans.
We cant change how divided weve been. But we can change how we move forward—on COVID-19 and other issues we must face together.
I recently visited the New York City Police Department days after the funerals of Officer Wilbert Mora and his partner, Officer Jason Rivera.
They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun.
Officer Mora was 27 years old.
Officer Rivera was 22.
Both Dominican Americans whod grown up on the same streets they later chose to patrol as police officers.
I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves.
Ive worked on these issues a long time.
I know what works: Investing in crime preventionand community police officers wholl walk the beat, wholl know the neighborhood, and who can restore trust and safety.
So lets not abandon our streets. Or choose between safety and equal justice.
Lets come together to protect our communities, restore trust, and hold law enforcement accountable.
Thats why the Justice Department required body cameras, banned chokeholds, and restricted no-knock warrants for its officers.
Thats why the American Rescue Plan provided $350 Billion that cities, states, and counties can use to hire more police and invest in proven strategies like community violence interruption—trusted messengers breaking the cycle of violence and trauma and giving young people hope.
We should all agree: The answer is not to Defund the police. The answer is to FUND the police with the resources and training they need to protect our communities.
I ask Democrats and Republicans alike: Pass my budget and keep our neighborhoods safe.
And I will keep doing everything in my power to crack down on gun trafficking and ghost guns you can buy online and make at home—they have no serial numbers and cant be traced.
And I ask Congress to pass proven measures to reduce gun violence. Pass universal background checks. Why should anyone on a terrorist list be able to purchase a weapon?
Ban assault weapons and high-capacity magazines.
Repeal the liability shield that makes gun manufacturers the only industry in America that cant be sued.
These laws dont infringe on the Second Amendment. They save lives.
The most fundamental right in America is the right to vote and to have it counted. And its under assault.
In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections.
We cannot let this happen.
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections.
Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.
A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.
And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system.
We can do both. At our border, weve installed new technology like cutting-edge scanners to better detect drug smuggling.
Weve set up joint patrols with Mexico and Guatemala to catch more human traffickers.
Were putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster.
Were securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.
We can do all this while keeping lit the torch of liberty that has led generations of immigrants to this land—my forefathers and so many of yours.
Provide a pathway to citizenship for Dreamers, those on temporary status, farm workers, and essential workers.
Revise our laws so businesses have the workers they need and families dont wait decades to reunite.
Its not only the right thing to do—its the economically smart thing to do.
Thats why immigration reform is supported by everyone from labor unions to religious leaders to the U.S. Chamber of Commerce.
Lets get it done once and for all.
Advancing liberty and justice also requires protecting the rights of women.
The constitutional right affirmed in Roe v. Wade—standing precedent for half a century—is under attack as never before.
If we want to go forward—not backward—we must protect access to health care. Preserve a womans right to choose. And lets continue to advance maternal health care in America.
And for our LGBTQ+ Americans, lets finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong.
As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential.
While it often appears that we never agree, that isnt true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.
And soon, well strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things.
So tonight Im offering a Unity Agenda for the Nation. Four big things we can do together.
First, beat the opioid epidemic.
There is so much we can do. Increase funding for prevention, treatment, harm reduction, and recovery.
Get rid of outdated rules that stop doctors from prescribing treatments. And stop the flow of illicit drugs by working with state and local law enforcement to go after traffickers.
If youre suffering from addiction, know you are not alone. I believe in recovery, and I celebrate the 23 million Americans in recovery.
Second, lets take on mental health. Especially among our children, whose lives and education have been turned upside down.
The American Rescue Plan gave schools money to hire teachers and help students make up for lost learning.
I urge every parent to make sure your school does just that. And we can all play a part—sign up to be a tutor or a mentor.
Children were also struggling before the pandemic. Bullying, violence, trauma, and the harms of social media.
As Frances Haugen, who is here with us tonight, has shown, we must hold social media platforms accountable for the national experiment theyre conducting on our children for profit.
Its time to strengthen privacy protections, ban targeted advertising to children, demand tech companies stop collecting personal data on our children.
And lets get all Americans the mental health services they need. More people they can turn to for help, and full parity between physical and mental health care.
Third, support our veterans.
Veterans are the best of us.
Ive always believed that we have a sacred obligation to equip all those we send to war and care for them and their families when they come home.
My administration is providing assistance with job training and housing, and now helping lower-income veterans get VA care debt-free.
Our troops in Iraq and Afghanistan faced many dangers.
One was stationed at bases and breathing in toxic smoke from “burn pits” that incinerated wastes of war—medical and hazard material, jet fuel, and more.
When they came home, many of the worlds fittest and best trained warriors were never the same.
Headaches. Numbness. Dizziness.
A cancer that would put them in a flag-draped coffin.
I know.
One of those soldiers was my son Major Beau Biden.
We dont know for sure if a burn pit was the cause of his brain cancer, or the diseases of so many of our troops.
But Im committed to finding out everything we can.
Committed to military families like Danielle Robinson from Ohio.
The widow of Sergeant First Class Heath Robinson.
He was born a soldier. Army National Guard. Combat medic in Kosovo and Iraq.
Stationed near Baghdad, just yards from burn pits the size of football fields.
Heaths widow Danielle is here with us tonight. They loved going to Ohio State football games. He loved building Legos with their daughter.
But cancer from prolonged exposure to burn pits ravaged Heaths lungs and body.
Danielle says Heath was a fighter to the very end.
He didnt know how to stop fighting, and neither did she.
Through her pain she found purpose to demand we do better.
Tonight, Danielle—we are.
The VA is pioneering new ways of linking toxic exposures to diseases, already helping more veterans get benefits.
And tonight, Im announcing were expanding eligibility to veterans suffering from nine respiratory cancers.
Im also calling on Congress: pass a law to make sure veterans devastated by toxic exposures in Iraq and Afghanistan finally get the benefits and comprehensive health care they deserve.
And fourth, lets end cancer as we know it.
This is personal to me and Jill, to Kamala, and to so many of you.
Cancer is the #2 cause of death in Americasecond only to heart disease.
Last month, I announced our plan to supercharge
the Cancer Moonshot that President Obama asked me to lead six years ago.
Our goal is to cut the cancer death rate by at least 50% over the next 25 years, turn more cancers from death sentences into treatable diseases.
More support for patients and families.
To get there, I call on Congress to fund ARPA-H, the Advanced Research Projects Agency for Health.
Its based on DARPA—the Defense Department project that led to the Internet, GPS, and so much more.
ARPA-H will have a singular purpose—to drive breakthroughs in cancer, Alzheimers, diabetes, and more.
A unity agenda for the nation.
We can do this.
My fellow Americans—tonight , we have gathered in a sacred space—the citadel of our democracy.
In this Capitol, generation after generation, Americans have debated great questions amid great strife, and have done great things.
We have fought for freedom, expanded liberty, defeated totalitarianism and terror.
And built the strongest, freest, and most prosperous nation the world has ever known.
Now is the hour.
Our moment of responsibility.
Our test of resolve and conscience, of history itself.
It is in this moment that our character is formed. Our purpose is found. Our future is forged.
Well I know this nation.
We will meet the test.
To protect freedom and liberty, to expand fairness and opportunity.
We will save democracy.
As hard as these times have been, I am more optimistic about America today than I have been my whole life.
Because I see the future that is within our grasp.
Because I know there is simply nothing beyond our capacity.
We are the only nation on Earth that has always turned every crisis we have faced into an opportunity.
The only nation that can be defined by a single word: possibilities.
So on this night, in our 245th year as a nation, I have come to report on the State of the Union.
And my report is this: the State of the Union is strong—because you, the American people, are strong.
We are stronger today than we were a year ago.
And we will be stronger a year from now than we are today.
Now is our moment to meet and overcome the challenges of our time.
And we will, as one people.
One America.
The United States of America.
May God bless you all. May God protect our troops.

View File

@@ -0,0 +1,38 @@
# Using Chains
Calling an LLM is a great first step, but it's just the beginning.
Normally when you use an LLM in an application, you are not sending user input directly to the LLM.
Instead, you are probably taking user input and constructing a prompt, and then sending that to the LLM.
For example, in the previous example, the text we passed in was hardcoded to ask for a name for a company that made colorful socks.
In this imaginary service, what we would want to do is take only the user input describing what the company does, and then format the prompt with that information.
This is easy to do with LangChain!
First lets define the prompt:
```python
from langchain.prompts import Prompt
prompt = Prompt(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
```
We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM:
```python
from langchain.chains import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
```
Now we can run that can only specifying the product!
```python
chain.run("colorful socks")
```
There we go! There's the first chain.
That is it for the Getting Started example.
As a next step, we would suggest checking out the more complex chains in the [Demos section](/examples/demos.rst)

View File

@@ -0,0 +1,37 @@
# Setting up your environment
Using LangChain will usually require integrations with one or more model providers, data stores, apis, etc.
There are two components to setting this up, installing the correct python packages and setting the right environment variables.
## Python packages
The python package needed varies based on the integration. See the list of integrations for details.
There should also be helpful error messages raised if you try to run an integration and are missing any required python packages.
## Environment Variables
The environment variable needed varies based on the integration. See the list of integrations for details.
There should also be helpful error messages raised if you try to run an integration and are missing any required environment variables.
You can set the environment variable in a few ways.
If you are trying to set the environment variable `FOO` to value `bar`, here are the ways you could do so:
- From the command line:
```
export FOO=bar
```
- From the python notebook/script:
```python
import os
os.environ["FOO"] = "bar"
```
For the Getting Started example, we will be using OpenAI's APIs, so we will first need to install their SDK:
```
pip install openai
```
We will then need to set the environment variable. Let's do this from inside the Jupyter notebook (or Python script).
```python
import os
os.environ["OPENAI_API_KEY"] = "..."
```

View File

@@ -0,0 +1,11 @@
# Installation
LangChain is available on PyPi, so to it is easily installable with:
```
pip install langchain
```
For more involved installation options, see the [Installation Reference](/installation.md) section.
That's it! LangChain is now installed. You can now use LangChain from a python script or Jupyter notebook.

View File

@@ -0,0 +1,25 @@
# Calling a LLM
The most basic building block of LangChain is calling an LLM on some input.
Let's walk through a simple example of how to do this.
For this purpose, let's pretend we are building a service that generates a company name based on what the company makes.
In order to do this, we first need to import the LLM wrapper.
```python
from langchain.llms import OpenAI
```
We can then initialize the wrapper with any arguments.
In this example, we probably want the outputs to be MORE random, so we'll initialize it with a HIGH temperature.
```python
llm = OpenAI(temperature=0.9)
```
We can now call it on some input!
```python
text = "What would be a good company name a company that makes colorful socks?"
llm(text)
```

74
docs/glossary.md Normal file
View File

@@ -0,0 +1,74 @@
# Glossary
This is a collection of terminology commonly used when developing LLM applications.
It contains reference to external papers or sources where the concept was first introduced,
as well as to places in LangChain where the concept is used.
### Chain of Thought Prompting
A prompting technique used to encourage the model to generate a series of intermediate reasoning steps.
A less formal way to induce this behavior is to include “Lets think step-by-step” in the prompt.
Resources:
- [Chain-of-Thought Paper](https://arxiv.org/pdf/2201.11903.pdf)
- [Step-by-Step Paper](https://arxiv.org/abs/2112.00114)
### Action Plan Generation
A prompt usage that uses a language model to generate actions to take.
The results of these actions can then be fed back into the language model to generate a subsequent action.
Resources:
- [WebGPT Paper](https://arxiv.org/pdf/2112.09332.pdf)
- [SayCan Paper](https://say-can.github.io/assets/palm_saycan.pdf)
### ReAct Prompting
A prompting technique that combines Chain-of-Thought prompting with action plan generation.
This induces the to model to think about what action to take, then take it.
Resources:
- [Paper](https://arxiv.org/pdf/2210.03629.pdf)
- [LangChain Example](https://github.com/hwchase17/langchain/blob/master/examples/react.ipynb)
### Self-ask
A prompting method that builds on top of chain-of-thought prompting.
In this method, the model explicitly asks itself follow-up questions, which are then answered by an external search engine.
Resources:
- [Paper](https://ofir.io/self-ask.pdf)
- [LangChain Example](https://github.com/hwchase17/langchain/blob/master/examples/self_ask_with_search.ipynb)
### Prompt Chaining
Combining multiple LLM calls together, with the output of one step being the input to the next.
Resources:
- [PromptChainer Paper](https://arxiv.org/pdf/2203.06566.pdf)
- [Language Model Cascades](https://arxiv.org/abs/2207.10342)
- [ICE Primer Book](https://primer.ought.org/)
- [Socratic Models](https://socraticmodels.github.io/)
### Memetic Proxy
Encouraging the LLM to respond in a certain way framing the discussion in a context that the model knows of and that will result in that type of response. For example, as a conversation between a student and a teacher.
Resources:
- [Paper](https://arxiv.org/pdf/2102.07350.pdf)
### Self Consistency
A decoding strategy that samples a diverse set of reasoning paths and then selects the most consistent answer.
Is most effective when combined with Chain-of-thought prompting.
Resources:
- [Paper](https://arxiv.org/pdf/2203.11171.pdf)
### Inception
Also called “First Person Instruction”.
Encouraging the model to think a certain way by including the start of the models response in the prompt.
Resources:
- [Example](https://twitter.com/goodside/status/1583262455207460865?s=20&t=8Hz7XBnK1OF8siQrxxCIGQ)

82
docs/index.rst Normal file
View File

@@ -0,0 +1,82 @@
Welcome to LangChain
==========================
Large language models (LLMs) are emerging as a transformative technology, enabling
developers to build applications that they previously could not.
But using these LLMs in isolation is often not enough to
create a truly powerful app - the real power comes when you are able to
combine them with other sources of computation or knowledge.
This library is aimed at assisting in the development of those types of applications.
It aims to create:
1. a comprehensive collection of pieces you would ever want to combine
2. a flexible interface for combining pieces into a single comprehensive "chain"
3. a schema for easily saving and sharing those chains
The documentation is structured into the following sections:
.. toctree::
:maxdepth: 1
:caption: Getting Started
:name: getting_started
getting_started/installation.md
getting_started/environment.md
getting_started/llm.md
getting_started/chains.md
Goes over a simple walk through and tutorial for getting started setting up a simple chain that generates a company name based on what the company makes.
Covers installation, environment set up, calling LLMs, and using prompts.
Start here if you haven't used LangChain before.
.. toctree::
:maxdepth: 1
:caption: How-To Examples
:name: examples
examples/demos.rst
examples/integrations.rst
examples/prompts.rst
examples/model_laboratory.ipynb
More elaborate examples and walk-throughs of particular
integrations and use cases. This is the place to look if you have questions
about how to integrate certain pieces, or if you want to find examples of
common tasks or cool demos.
.. toctree::
:maxdepth: 1
:caption: Reference
:name: reference
installation.md
integrations.md
modules/prompt
modules/llms
modules/embeddings
modules/text_splitter
modules/vectorstore
modules/chains
Full API documentation. This is the place to look if you want to
see detailed information about the various classes, methods, and APIs.
.. toctree::
:maxdepth: 1
:caption: Resources
:name: resources
core_concepts.md
glossary.md
Discord <https://discord.gg/6adMQxSpJS>
Higher level, conceptual explanations of the LangChain components.
This is the place to go if you want to increase your high level understanding
of the problems LangChain is solving, and how we decided to go about do so.

24
docs/installation.md Normal file
View File

@@ -0,0 +1,24 @@
# Installation Options
LangChain is available on PyPi, so to it is easily installable with:
```
pip install langchain
```
That will install the bare minimum requirements of LangChain.
A lot of the value of LangChain comes when integrating it with various model providers, datastores, etc.
By default, the dependencies needed to do that are NOT installed.
However, there are two other ways to install LangChain that do bring in those dependencies.
To install modules needed for the common LLM providers, run:
```
pip install langchain[llms]
```
To install all modules needed for all integrations, run:
```
pip install langchain[all]
```

33
docs/integrations.md Normal file
View File

@@ -0,0 +1,33 @@
# Integration Reference
Besides the installation of this python package, you will also need to install packages and set environment variables depending on which chains you want to use.
Note: the reason these packages are not included in the dependencies by default is that as we imagine scaling this package, we do not want to force dependencies that are not needed.
The following use cases require specific installs and api keys:
- _OpenAI_:
- Install requirements with `pip install openai`
- Get an OpenAI api key and either set it as an environment variable (`OPENAI_API_KEY`) or pass it to the LLM constructor as `openai_api_key`.
- _Cohere_:
- Install requirements with `pip install cohere`
- Get a Cohere api key and either set it as an environment variable (`COHERE_API_KEY`) or pass it to the LLM constructor as `cohere_api_key`.
- _HuggingFace Hub_
- Install requirements with `pip install huggingface_hub`
- Get a HuggingFace Hub api token and either set it as an environment variable (`HUGGINGFACEHUB_API_TOKEN`) or pass it to the LLM constructor as `huggingfacehub_api_token`.
- _SerpAPI_:
- Install requirements with `pip install google-search-results`
- Get a SerpAPI api key and either set it as an environment variable (`SERPAPI_API_KEY`) or pass it to the LLM constructor as `serpapi_api_key`.
- _NatBot_:
- Install requirements with `pip install playwright`
- _Wikipedia_:
- Install requirements with `pip install wikipedia`
- _Elasticsearch_:
- Install requirements with `pip install elasticsearch`
- Set up Elasticsearch backend. If you want to do locally, [this](https://www.elastic.co/guide/en/elasticsearch/reference/7.17/getting-started.html) is a good guide.
- _FAISS_:
- Install requirements with `pip install faiss` for Python 3.7 and `pip install faiss-cpu` for Python 3.10+.
- _Manifest_:
- Install requirements with `pip install manifest-ml` (Note: this is only available in Python 3.8+ currently).
If you are using the `NLTKTextSplitter` or the `SpacyTextSplitter`, you will also need to install the appropriate models. For example, if you want to use the `SpacyTextSplitter`, you will need to install the `en_core_web_sm` model with `python -m spacy download en_core_web_sm`. Similarly, if you want to use the `NLTKTextSplitter`, you will need to install the `punkt` model with `python -m nltk.downloader punkt`.

35
docs/make.bat Normal file
View File

@@ -0,0 +1,35 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=.
set BUILDDIR=_build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.http://sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

7
docs/modules/chains.rst Normal file
View File

@@ -0,0 +1,7 @@
:mod:`langchain.chains`
=======================
.. automodule:: langchain.chains
:members:
:undoc-members:

View File

@@ -0,0 +1,5 @@
:mod:`langchain.embeddings`
===========================
.. automodule:: langchain.embeddings
:members:

6
docs/modules/llms.rst Normal file
View File

@@ -0,0 +1,6 @@
:mod:`langchain.llms`
=======================
.. automodule:: langchain.llms
:members:
:special-members: __call__

5
docs/modules/prompt.rst Normal file
View File

@@ -0,0 +1,5 @@
:mod:`langchain.prompts`
========================
.. automodule:: langchain.prompts
:members:

View File

@@ -0,0 +1,6 @@
:mod:`langchain.text_splitter`
==============================
.. automodule:: langchain.text_splitter
:members:
:undoc-members:

View File

@@ -0,0 +1,6 @@
:mod:`langchain.vectorstores`
=============================
.. automodule:: langchain.vectorstores
:members:
:undoc-members:

8
docs/requirements.txt Normal file
View File

@@ -0,0 +1,8 @@
autodoc_pydantic==1.8.0
myst_parser
nbsphinx==0.8.9
sphinx==4.5.0
sphinx-autobuild==2021.3.14
sphinx_rtd_theme==1.0.0
sphinx-typlog-theme==0.8.0
sphinx-panels

1
langchain/VERSION Normal file
View File

@@ -0,0 +1 @@
0.0.14

45
langchain/__init__.py Normal file
View File

@@ -0,0 +1,45 @@
"""Main entrypoint into package."""
from pathlib import Path
with open(Path(__file__).absolute().parents[0] / "VERSION") as _f:
__version__ = _f.read().strip()
from langchain.chains import (
LLMChain,
LLMMathChain,
MRKLChain,
PythonChain,
ReActChain,
SelfAskWithSearchChain,
SerpAPIChain,
SQLDatabaseChain,
VectorDBQA,
)
from langchain.docstore import Wikipedia
from langchain.llms import Cohere, HuggingFaceHub, OpenAI
from langchain.prompts import BasePrompt, DynamicPrompt, Prompt
from langchain.sql_database import SQLDatabase
from langchain.vectorstores import FAISS, ElasticVectorSearch
__all__ = [
"LLMChain",
"LLMMathChain",
"PythonChain",
"SelfAskWithSearchChain",
"SerpAPIChain",
"Cohere",
"OpenAI",
"BasePrompt",
"DynamicPrompt",
"Prompt",
"ReActChain",
"Wikipedia",
"HuggingFaceHub",
"SQLDatabase",
"SQLDatabaseChain",
"FAISS",
"MRKLChain",
"VectorDBQA",
"ElasticVectorSearch",
]

Some files were not shown because too many files have changed in this diff Show More