mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-11 19:49:54 +00:00
Compare commits
181 Commits
mdrxy/call
...
langchain-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7ab4a7841a | ||
|
|
6e968fd23c | ||
|
|
640d85c60f | ||
|
|
fa7789d6c2 | ||
|
|
889e8b6de8 | ||
|
|
5cb0501c59 | ||
|
|
5838e3e8e5 | ||
|
|
fbd96c688a | ||
|
|
2085f69d68 | ||
|
|
df2ec0ca38 | ||
|
|
51e1447c9e | ||
|
|
bac96fe33f | ||
|
|
d8b08a1ecd | ||
|
|
9b5e00f578 | ||
|
|
8c22e69491 | ||
|
|
d62b4499ad | ||
|
|
f8bb3f0d19 | ||
|
|
8284e278d6 | ||
|
|
3a846eeb8d | ||
|
|
d273341249 | ||
|
|
db49a14a34 | ||
|
|
ab7eda236e | ||
|
|
d418cbdf44 | ||
|
|
b93d2f7f3a | ||
|
|
a763ebe86c | ||
|
|
5fa1094451 | ||
|
|
dd4de696b8 | ||
|
|
809a0216a5 | ||
|
|
44ec72fa0d | ||
|
|
5459ff1ee3 | ||
|
|
f95669aa0a | ||
|
|
3a465d635b | ||
|
|
0b51de4cab | ||
|
|
5904cbea89 | ||
|
|
c9590ef79d | ||
|
|
c972552c40 | ||
|
|
e16feb93b9 | ||
|
|
2bb57d45d2 | ||
|
|
d7cce2f469 | ||
|
|
48b77752d0 | ||
|
|
6f2d16e6be | ||
|
|
a9eda18e1e | ||
|
|
a89c549cb0 | ||
|
|
a336afaecd | ||
|
|
af07949d13 | ||
|
|
a10e880c00 | ||
|
|
7b5e839be3 | ||
|
|
740842485c | ||
|
|
08bb74f148 | ||
|
|
7d78ed9b53 | ||
|
|
7ccff656eb | ||
|
|
002d623f2d | ||
|
|
34f8031bd9 | ||
|
|
a541b5bee1 | ||
|
|
3e970506ba | ||
|
|
d1b0196faa | ||
|
|
aac69839a9 | ||
|
|
64141072a3 | ||
|
|
0795be2a04 | ||
|
|
9c97597175 | ||
|
|
eed0f6c289 | ||
|
|
729637a347 | ||
|
|
3325196be1 | ||
|
|
f402fdcea3 | ||
|
|
ca9217c02d | ||
|
|
f9bae40475 | ||
|
|
839a18e112 | ||
|
|
33a6def762 | ||
|
|
c456c8ae51 | ||
|
|
54ea62050b | ||
|
|
986302322f | ||
|
|
a5137b0a3e | ||
|
|
5bea28393d | ||
|
|
c3fed20940 | ||
|
|
6d418ba983 | ||
|
|
12daba63ff | ||
|
|
eaf8dce7c2 | ||
|
|
f82de1a8d7 | ||
|
|
e3efd1e891 | ||
|
|
d6769cf032 | ||
|
|
7ab2e0dd3b | ||
|
|
81319ad3f0 | ||
|
|
e3f3c13b75 | ||
|
|
c30844fce4 | ||
|
|
c9eb3bdb2d | ||
|
|
e97baeb9a6 | ||
|
|
3a6046b157 | ||
|
|
8fdc619f75 | ||
|
|
729bfe8369 | ||
|
|
9b624a79b2 | ||
|
|
c60c5a91cb | ||
|
|
d9e0c212e0 | ||
|
|
f015526e42 | ||
|
|
57d931532f | ||
|
|
50012d95e2 | ||
|
|
33f06875cb | ||
|
|
e5730307e7 | ||
|
|
4783a9c18e | ||
|
|
ee4d84de7c | ||
|
|
092dd5e174 | ||
|
|
dd81e1c3fb | ||
|
|
135a5b97e6 | ||
|
|
b92b394804 | ||
|
|
083bb3cdd7 | ||
|
|
2e9291cdd7 | ||
|
|
4f8a76b571 | ||
|
|
05ba941230 | ||
|
|
ae4976896e | ||
|
|
504ef96500 | ||
|
|
d99a02bb27 | ||
|
|
793de80429 | ||
|
|
7d4e9d8cda | ||
|
|
54dca494cf | ||
|
|
7b30e58386 | ||
|
|
e62b541dfd | ||
|
|
8699980d09 | ||
|
|
79e536b0d6 | ||
|
|
b5720ff17a | ||
|
|
48b05224ad | ||
|
|
89079ad411 | ||
|
|
2c95586f2a | ||
|
|
9c1285cf5b | ||
|
|
c3be45bf14 | ||
|
|
8f488d62b2 | ||
|
|
cdae9e4942 | ||
|
|
7ddc798f95 | ||
|
|
7dcf6a515e | ||
|
|
043a7560a5 | ||
|
|
5b418d3f26 | ||
|
|
6b4054c795 | ||
|
|
30fde5af38 | ||
|
|
781db9d892 | ||
|
|
f2b0afd0b7 | ||
|
|
c3654202a3 | ||
|
|
4d118777bc | ||
|
|
f158cea1e8 | ||
|
|
90280d1f58 | ||
|
|
ee340e0a3b | ||
|
|
d5ba5d3511 | ||
|
|
76d0758007 | ||
|
|
8b3f74012c | ||
|
|
54a9556f5c | ||
|
|
66041a2778 | ||
|
|
ab1b822523 | ||
|
|
543d90e108 | ||
|
|
f8640630d8 | ||
|
|
f9605c7438 | ||
|
|
ebd6f7d8a3 | ||
|
|
e63c1d7171 | ||
|
|
8180020b93 | ||
|
|
435194acf6 | ||
|
|
244c699551 | ||
|
|
369858de19 | ||
|
|
4ebce80fbb | ||
|
|
8670b24c8e | ||
|
|
8d60ddba3a | ||
|
|
9f6431924f | ||
|
|
569a3d9602 | ||
|
|
8ef4df903f | ||
|
|
b944bbc766 | ||
|
|
0be7515abc | ||
|
|
cc9a97a477 | ||
|
|
ee17adb022 | ||
|
|
6a43f140bc | ||
|
|
4619a2727f | ||
|
|
6487a7e2e5 | ||
|
|
406ebc9141 | ||
|
|
e6b5ff213a | ||
|
|
03f0ebd93e | ||
|
|
c9eed530ce | ||
|
|
e6c38a043f | ||
|
|
dc47c2c598 | ||
|
|
3420ca1da2 | ||
|
|
f11dd177e9 | ||
|
|
d5a4abf960 | ||
|
|
b1497bcea1 | ||
|
|
84f9824cc9 | ||
|
|
0814bfe5ed | ||
|
|
cbaf97ada4 | ||
|
|
dc2da95ac0 | ||
|
|
9e78ff19ab |
6
.github/CONTRIBUTING.md
vendored
6
.github/CONTRIBUTING.md
vendored
@@ -3,8 +3,4 @@
|
||||
Hi there! Thank you for even being interested in contributing to LangChain.
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
|
||||
|
||||
To learn how to contribute to LangChain, please follow the [contribution guide here](https://python.langchain.com/docs/contributing/).
|
||||
|
||||
## New features
|
||||
|
||||
For new features, please start a new [discussion on our forum](https://forum.langchain.com/), where the maintainers will help with scoping out the necessary changes.
|
||||
To learn how to contribute to LangChain, please follow the [contribution guide here](https://docs.langchain.com/oss/python/contributing).
|
||||
|
||||
4
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
4
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -119,7 +119,3 @@ body:
|
||||
python -m langchain_core.sys_info
|
||||
validations:
|
||||
required: true
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
26
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
26
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
@@ -42,11 +42,11 @@ body:
|
||||
label: Feature Description
|
||||
description: |
|
||||
Please provide a clear and concise description of the feature you would like to see added to LangChain.
|
||||
|
||||
|
||||
What specific functionality are you requesting? Be as detailed as possible.
|
||||
placeholder: |
|
||||
I would like LangChain to support...
|
||||
|
||||
|
||||
This feature would allow users to...
|
||||
- type: textarea
|
||||
id: use-case
|
||||
@@ -56,13 +56,13 @@ body:
|
||||
label: Use Case
|
||||
description: |
|
||||
Describe the specific use case or problem this feature would solve.
|
||||
|
||||
|
||||
Why do you need this feature? What problem does it solve for you or other users?
|
||||
placeholder: |
|
||||
I'm trying to build an application that...
|
||||
|
||||
|
||||
Currently, I have to work around this by...
|
||||
|
||||
|
||||
This feature would help me/users to...
|
||||
- type: textarea
|
||||
id: proposed-solution
|
||||
@@ -72,13 +72,13 @@ body:
|
||||
label: Proposed Solution
|
||||
description: |
|
||||
If you have ideas about how this feature could be implemented, please describe them here.
|
||||
|
||||
|
||||
This is optional but can be helpful for maintainers to understand your vision.
|
||||
placeholder: |
|
||||
I think this could be implemented by...
|
||||
|
||||
|
||||
The API could look like...
|
||||
|
||||
|
||||
```python
|
||||
# Example of how the feature might work
|
||||
```
|
||||
@@ -90,15 +90,15 @@ body:
|
||||
label: Alternatives Considered
|
||||
description: |
|
||||
Have you considered any alternative solutions or workarounds?
|
||||
|
||||
|
||||
What other approaches have you tried or considered?
|
||||
placeholder: |
|
||||
I've tried using...
|
||||
|
||||
|
||||
Alternative approaches I considered:
|
||||
1. ...
|
||||
2. ...
|
||||
|
||||
|
||||
But these don't work because...
|
||||
- type: textarea
|
||||
id: additional-context
|
||||
@@ -110,9 +110,9 @@ body:
|
||||
Add any other context, screenshots, examples, or references that would help explain your feature request.
|
||||
placeholder: |
|
||||
Related issues: #...
|
||||
|
||||
|
||||
Similar features in other libraries:
|
||||
- ...
|
||||
|
||||
|
||||
Additional context or examples:
|
||||
- ...
|
||||
|
||||
2
.github/actions/people/action.yml
vendored
2
.github/actions/people/action.yml
vendored
@@ -1,4 +1,6 @@
|
||||
# Adapted from https://github.com/tiangolo/fastapi/blob/master/.github/actions/people/action.yml
|
||||
# TODO: fix this, migrate to new docs repo?
|
||||
|
||||
name: "Generate LangChain People"
|
||||
description: "Generate the data for the LangChain People page"
|
||||
author: "Jacob Lee <jacob@langchain.dev>"
|
||||
|
||||
24
.github/actions/uv_setup/action.yml
vendored
24
.github/actions/uv_setup/action.yml
vendored
@@ -1,12 +1,24 @@
|
||||
# TODO: https://docs.astral.sh/uv/guides/integration/github/#caching
|
||||
# Helper to set up Python and uv with caching
|
||||
|
||||
name: uv-install
|
||||
description: Set up Python and uv
|
||||
description: Set up Python and uv with caching
|
||||
|
||||
inputs:
|
||||
python-version:
|
||||
description: Python version, supporting MAJOR.MINOR only
|
||||
required: true
|
||||
enable-cache:
|
||||
description: Enable caching for uv dependencies
|
||||
required: false
|
||||
default: "true"
|
||||
cache-suffix:
|
||||
description: Custom cache key suffix for cache invalidation
|
||||
required: false
|
||||
default: ""
|
||||
working-directory:
|
||||
description: Working directory for cache glob scoping
|
||||
required: false
|
||||
default: "**"
|
||||
|
||||
env:
|
||||
UV_VERSION: "0.5.25"
|
||||
@@ -15,7 +27,13 @@ runs:
|
||||
using: composite
|
||||
steps:
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
version: ${{ env.UV_VERSION }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
enable-cache: ${{ inputs.enable-cache }}
|
||||
cache-dependency-glob: |
|
||||
${{ inputs.working-directory }}/pyproject.toml
|
||||
${{ inputs.working-directory }}/uv.lock
|
||||
${{ inputs.working-directory }}/requirements*.txt
|
||||
cache-suffix: ${{ inputs.cache-suffix }}
|
||||
|
||||
80
.github/pr-file-labeler.yml
vendored
Normal file
80
.github/pr-file-labeler.yml
vendored
Normal file
@@ -0,0 +1,80 @@
|
||||
# Label PRs (config)
|
||||
# Automatically applies labels based on changed files and branch patterns
|
||||
|
||||
# Core packages
|
||||
core:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/core/**/*"
|
||||
|
||||
langchain:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/langchain/**/*"
|
||||
- "libs/langchain_v1/**/*"
|
||||
|
||||
v1:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/langchain_v1/**/*"
|
||||
|
||||
cli:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/cli/**/*"
|
||||
|
||||
standard-tests:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/standard-tests/**/*"
|
||||
|
||||
# Partner integrations
|
||||
integration:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "libs/partners/**/*"
|
||||
|
||||
# Infrastructure and DevOps
|
||||
infra:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ".github/**/*"
|
||||
- "Makefile"
|
||||
- ".pre-commit-config.yaml"
|
||||
- "scripts/**/*"
|
||||
- "docker/**/*"
|
||||
- "Dockerfile*"
|
||||
|
||||
github_actions:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ".github/workflows/**/*"
|
||||
- ".github/actions/**/*"
|
||||
|
||||
dependencies:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "**/pyproject.toml"
|
||||
- "uv.lock"
|
||||
- "**/requirements*.txt"
|
||||
- "**/poetry.lock"
|
||||
|
||||
# Documentation
|
||||
documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "docs/**/*"
|
||||
- "**/*.md"
|
||||
- "**/*.rst"
|
||||
- "**/README*"
|
||||
|
||||
# Security related changes
|
||||
security:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "**/*security*"
|
||||
- "**/*auth*"
|
||||
- "**/*credential*"
|
||||
- "**/*secret*"
|
||||
- "**/*token*"
|
||||
- ".github/workflows/security*"
|
||||
41
.github/pr-title-labeler.yml
vendored
Normal file
41
.github/pr-title-labeler.yml
vendored
Normal file
@@ -0,0 +1,41 @@
|
||||
# PR title labeler config
|
||||
#
|
||||
# Labels PRs based on conventional commit patterns in titles
|
||||
#
|
||||
# Format: type(scope): description or type!: description (breaking)
|
||||
|
||||
add-missing-labels: true
|
||||
clear-prexisting: false
|
||||
include-commits: false
|
||||
include-title: true
|
||||
label-for-breaking-changes: breaking
|
||||
|
||||
label-mapping:
|
||||
documentation: ["docs"]
|
||||
feature: ["feat"]
|
||||
fix: ["fix"]
|
||||
infra: ["build", "ci", "chore"]
|
||||
integration:
|
||||
[
|
||||
"anthropic",
|
||||
"chroma",
|
||||
"deepseek",
|
||||
"exa",
|
||||
"fireworks",
|
||||
"groq",
|
||||
"huggingface",
|
||||
"mistralai",
|
||||
"nomic",
|
||||
"ollama",
|
||||
"openai",
|
||||
"perplexity",
|
||||
"prompty",
|
||||
"qdrant",
|
||||
"xai",
|
||||
]
|
||||
linting: ["style"]
|
||||
performance: ["perf"]
|
||||
refactor: ["refactor"]
|
||||
release: ["release"]
|
||||
revert: ["revert"]
|
||||
tests: ["test"]
|
||||
28
.github/scripts/check_diff.py
vendored
28
.github/scripts/check_diff.py
vendored
@@ -1,3 +1,18 @@
|
||||
"""Analyze git diffs to determine which directories need to be tested.
|
||||
|
||||
Intelligently determines which LangChain packages and directories need to be tested,
|
||||
linted, or built based on the changes. Handles dependency relationships between
|
||||
packages, maps file changes to appropriate CI job configurations, and outputs JSON
|
||||
configurations for GitHub Actions.
|
||||
|
||||
- Maps changed files to affected package directories (libs/core, libs/partners/*, etc.)
|
||||
- Builds dependency graph to include dependent packages when core components change
|
||||
- Generates test matrix configurations with appropriate Python versions
|
||||
- Handles special cases for Pydantic version testing and performance benchmarks
|
||||
|
||||
Used as part of the check_diffs workflow.
|
||||
"""
|
||||
|
||||
import glob
|
||||
import json
|
||||
import os
|
||||
@@ -17,7 +32,7 @@ LANGCHAIN_DIRS = [
|
||||
"libs/langchain_v1",
|
||||
]
|
||||
|
||||
# when set to True, we are ignoring core dependents
|
||||
# When set to True, we are ignoring core dependents
|
||||
# in order to be able to get CI to pass for each individual
|
||||
# package that depends on core
|
||||
# e.g. if you touch core, we don't then add textsplitters/etc to CI
|
||||
@@ -49,9 +64,9 @@ def all_package_dirs() -> Set[str]:
|
||||
|
||||
|
||||
def dependents_graph() -> dict:
|
||||
"""
|
||||
Construct a mapping of package -> dependents, such that we can
|
||||
run tests on all dependents of a package when a change is made.
|
||||
"""Construct a mapping of package -> dependents
|
||||
|
||||
Done such that we can run tests on all dependents of a package when a change is made.
|
||||
"""
|
||||
dependents = defaultdict(set)
|
||||
|
||||
@@ -123,9 +138,6 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
elif dir_ == "libs/core":
|
||||
py_versions = ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
# custom logic for specific directories
|
||||
elif dir_ == "libs/partners/milvus":
|
||||
# milvus doesn't allow 3.12 because they declare deps in funny way
|
||||
py_versions = ["3.9", "3.11"]
|
||||
|
||||
elif dir_ in PY_312_MAX_PACKAGES:
|
||||
py_versions = ["3.9", "3.12"]
|
||||
@@ -134,6 +146,8 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
py_versions = ["3.9", "3.13"]
|
||||
elif dir_ == "libs/langchain_v1":
|
||||
py_versions = ["3.10", "3.13"]
|
||||
elif dir_ in {"libs/cli"}:
|
||||
py_versions = ["3.10", "3.13"]
|
||||
|
||||
elif dir_ == ".":
|
||||
# unable to install with 3.13 because tokenizers doesn't support 3.13 yet
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
"""Check that no dependencies allow prereleases unless we're releasing a prerelease."""
|
||||
|
||||
import sys
|
||||
|
||||
import tomllib
|
||||
@@ -6,15 +8,14 @@ if __name__ == "__main__":
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
|
||||
# read toml file
|
||||
with open(toml_file, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# see if we're releasing an rc
|
||||
# See if we're releasing an rc or dev version
|
||||
version = toml_data["project"]["version"]
|
||||
releasing_rc = "rc" in version or "dev" in version
|
||||
|
||||
# if not, iterate through dependencies and make sure none allow prereleases
|
||||
# If not, iterate through dependencies and make sure none allow prereleases
|
||||
if not releasing_rc:
|
||||
dependencies = toml_data["project"]["dependencies"]
|
||||
for dep_version in dependencies:
|
||||
|
||||
45
.github/scripts/get_min_versions.py
vendored
45
.github/scripts/get_min_versions.py
vendored
@@ -1,3 +1,5 @@
|
||||
"""Get minimum versions of dependencies from a pyproject.toml file."""
|
||||
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import Optional
|
||||
@@ -5,7 +7,7 @@ from typing import Optional
|
||||
if sys.version_info >= (3, 11):
|
||||
import tomllib
|
||||
else:
|
||||
# for python 3.10 and below, which doesnt have stdlib tomllib
|
||||
# For Python 3.10 and below, which doesnt have stdlib tomllib
|
||||
import tomli as tomllib
|
||||
|
||||
import re
|
||||
@@ -34,14 +36,13 @@ SKIP_IF_PULL_REQUEST = [
|
||||
|
||||
|
||||
def get_pypi_versions(package_name: str) -> List[str]:
|
||||
"""
|
||||
Fetch all available versions for a package from PyPI.
|
||||
"""Fetch all available versions for a package from PyPI.
|
||||
|
||||
Args:
|
||||
package_name (str): Name of the package
|
||||
package_name: Name of the package
|
||||
|
||||
Returns:
|
||||
List[str]: List of all available versions
|
||||
List of all available versions
|
||||
|
||||
Raises:
|
||||
requests.exceptions.RequestException: If PyPI API request fails
|
||||
@@ -54,24 +55,23 @@ def get_pypi_versions(package_name: str) -> List[str]:
|
||||
|
||||
|
||||
def get_minimum_version(package_name: str, spec_string: str) -> Optional[str]:
|
||||
"""
|
||||
Find the minimum published version that satisfies the given constraints.
|
||||
"""Find the minimum published version that satisfies the given constraints.
|
||||
|
||||
Args:
|
||||
package_name (str): Name of the package
|
||||
spec_string (str): Version specification string (e.g., ">=0.2.43,<0.4.0,!=0.3.0")
|
||||
package_name: Name of the package
|
||||
spec_string: Version specification string (e.g., ">=0.2.43,<0.4.0,!=0.3.0")
|
||||
|
||||
Returns:
|
||||
Optional[str]: Minimum compatible version or None if no compatible version found
|
||||
Minimum compatible version or None if no compatible version found
|
||||
"""
|
||||
# rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
|
||||
# Rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
|
||||
spec_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", spec_string)
|
||||
# rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1 (can be anywhere in constraint string)
|
||||
# Rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1 (can be anywhere in constraint string)
|
||||
for y in range(1, 10):
|
||||
spec_string = re.sub(
|
||||
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}", spec_string
|
||||
)
|
||||
# rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
# Rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
for x in range(1, 10):
|
||||
spec_string = re.sub(
|
||||
rf"\^{x}\.(\d+)\.(\d+)", rf">={x}.\1.\2,<{x + 1}", spec_string
|
||||
@@ -154,22 +154,25 @@ def get_min_version_from_toml(
|
||||
|
||||
|
||||
def check_python_version(version_string, constraint_string):
|
||||
"""
|
||||
Check if the given Python version matches the given constraints.
|
||||
"""Check if the given Python version matches the given constraints.
|
||||
|
||||
:param version_string: A string representing the Python version (e.g. "3.8.5").
|
||||
:param constraint_string: A string representing the package's Python version constraints (e.g. ">=3.6, <4.0").
|
||||
:return: True if the version matches the constraints, False otherwise.
|
||||
Args:
|
||||
version_string: A string representing the Python version (e.g. "3.8.5").
|
||||
constraint_string: A string representing the package's Python version
|
||||
constraints (e.g. ">=3.6, <4.0").
|
||||
|
||||
Returns:
|
||||
True if the version matches the constraints
|
||||
"""
|
||||
|
||||
# rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
|
||||
# Rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
|
||||
constraint_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", constraint_string)
|
||||
# rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1.0 (can be anywhere in constraint string)
|
||||
# Rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1.0 (can be anywhere in constraint string)
|
||||
for y in range(1, 10):
|
||||
constraint_string = re.sub(
|
||||
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}.0", constraint_string
|
||||
)
|
||||
# rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
# Rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
for x in range(1, 10):
|
||||
constraint_string = re.sub(
|
||||
rf"\^{x}\.0\.(\d+)", rf">={x}.0.\1,<{x + 1}.0.0", constraint_string
|
||||
|
||||
20
.github/scripts/prep_api_docs_build.py
vendored
20
.github/scripts/prep_api_docs_build.py
vendored
@@ -1,5 +1,8 @@
|
||||
#!/usr/bin/env python
|
||||
"""Script to sync libraries from various repositories into the main langchain repository."""
|
||||
"""Sync libraries from various repositories into this monorepo.
|
||||
|
||||
Moves cloned partner packages into libs/partners structure.
|
||||
"""
|
||||
|
||||
import os
|
||||
import shutil
|
||||
@@ -10,7 +13,7 @@ import yaml
|
||||
|
||||
|
||||
def load_packages_yaml() -> Dict[str, Any]:
|
||||
"""Load and parse the packages.yml file."""
|
||||
"""Load and parse packages.yml."""
|
||||
with open("langchain/libs/packages.yml", "r") as f:
|
||||
return yaml.safe_load(f)
|
||||
|
||||
@@ -61,12 +64,15 @@ def move_libraries(packages: list) -> None:
|
||||
|
||||
|
||||
def main():
|
||||
"""Main function to orchestrate the library sync process."""
|
||||
"""Orchestrate the library sync process."""
|
||||
try:
|
||||
# Load packages configuration
|
||||
package_yaml = load_packages_yaml()
|
||||
|
||||
# Clean target directories
|
||||
# Clean/empty target directories in preparation for moving new ones
|
||||
#
|
||||
# Only for packages in the langchain-ai org or explicitly included via
|
||||
# include_in_api_ref, excluding 'langchain' itself and 'langchain-ai21'
|
||||
clean_target_directories(
|
||||
[
|
||||
p
|
||||
@@ -80,7 +86,9 @@ def main():
|
||||
]
|
||||
)
|
||||
|
||||
# Move libraries to their new locations
|
||||
# Move cloned libraries to their new locations, only for packages in the
|
||||
# langchain-ai org or explicitly included via include_in_api_ref,
|
||||
# excluding 'langchain' itself and 'langchain-ai21'
|
||||
move_libraries(
|
||||
[
|
||||
p
|
||||
@@ -95,7 +103,7 @@ def main():
|
||||
]
|
||||
)
|
||||
|
||||
# Delete ones without a pyproject.toml
|
||||
# Delete partner packages without a pyproject.toml
|
||||
for partner in Path("langchain/libs/partners").iterdir():
|
||||
if partner.is_dir() and not (partner / "pyproject.toml").exists():
|
||||
print(f"Removing {partner} as it does not have a pyproject.toml")
|
||||
|
||||
10
.github/workflows/_compile_integration_test.yml
vendored
10
.github/workflows/_compile_integration_test.yml
vendored
@@ -1,3 +1,11 @@
|
||||
# Validates that a package's integration tests compile without syntax or import errors.
|
||||
#
|
||||
# (If an integration test fails to compile, it won't run.)
|
||||
#
|
||||
# Called as part of check_diffs.yml workflow
|
||||
#
|
||||
# Runs pytest with compile marker to check syntax/imports.
|
||||
|
||||
name: '🔗 Compile Integration Tests'
|
||||
|
||||
on:
|
||||
@@ -33,6 +41,8 @@ jobs:
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: compile-integration-tests-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: '📦 Install Integration Dependencies'
|
||||
shell: bash
|
||||
|
||||
11
.github/workflows/_integration_test.yml
vendored
11
.github/workflows/_integration_test.yml
vendored
@@ -1,3 +1,10 @@
|
||||
|
||||
# Runs `make integration_tests` on the specified package.
|
||||
#
|
||||
# Manually triggered via workflow_dispatch for testing with real APIs.
|
||||
#
|
||||
# Installs integration test dependencies and executes full test suite.
|
||||
|
||||
name: '🚀 Integration Tests'
|
||||
run-name: 'Test ${{ inputs.working-directory }} on Python ${{ inputs.python-version }}'
|
||||
|
||||
@@ -34,6 +41,8 @@ jobs:
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: integration-tests-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: '📦 Install Integration Dependencies'
|
||||
shell: bash
|
||||
@@ -81,7 +90,7 @@ jobs:
|
||||
run: |
|
||||
make integration_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
- name: 'Ensure testing did not create/modify files'
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
34
.github/workflows/_lint.yml
vendored
34
.github/workflows/_lint.yml
vendored
@@ -1,6 +1,11 @@
|
||||
name: '🧹 Code Linting'
|
||||
# Runs code quality checks using ruff, mypy, and other linting tools
|
||||
# Checks both package code and test code for consistency
|
||||
# Runs linting.
|
||||
#
|
||||
# Uses the package's Makefile to run the checks, specifically the
|
||||
# `lint_package` and `lint_tests` targets.
|
||||
#
|
||||
# Called as part of check_diffs.yml workflow.
|
||||
|
||||
name: '🧹 Linting'
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
@@ -39,16 +44,10 @@ jobs:
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: lint-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: '📦 Install Lint & Typing Dependencies'
|
||||
# Also installs dev/lint/test/typing dependencies, to ensure we have
|
||||
# type hints for as many of our libraries as possible.
|
||||
# This helps catch errors that require dependencies to be spotted, for example:
|
||||
# https://github.com/langchain-ai/langchain/pull/10249/files#diff-935185cd488d015f026dcd9e19616ff62863e8cde8c0bee70318d3ccbca98341
|
||||
#
|
||||
# If you change this configuration, make sure to change the `cache-key`
|
||||
# in the `poetry_setup` action above to stop using the old cache.
|
||||
# It doesn't matter how you change it, any change will cause a cache-bust.
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --group lint --group typing
|
||||
@@ -58,20 +57,13 @@ jobs:
|
||||
run: |
|
||||
make lint_package
|
||||
|
||||
- name: '📦 Install Unit Test Dependencies'
|
||||
# Also installs dev/lint/test/typing dependencies, to ensure we have
|
||||
# type hints for as many of our libraries as possible.
|
||||
# This helps catch errors that require dependencies to be spotted, for example:
|
||||
# https://github.com/langchain-ai/langchain/pull/10249/files#diff-935185cd488d015f026dcd9e19616ff62863e8cde8c0bee70318d3ccbca98341
|
||||
#
|
||||
# If you change this configuration, make sure to change the `cache-key`
|
||||
# in the `poetry_setup` action above to stop using the old cache.
|
||||
# It doesn't matter how you change it, any change will cause a cache-bust.
|
||||
- name: '📦 Install Test Dependencies (non-partners)'
|
||||
# (For directories NOT starting with libs/partners/)
|
||||
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --inexact --group test
|
||||
- name: '📦 Install Unit + Integration Test Dependencies'
|
||||
- name: '📦 Install Test Dependencies'
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
|
||||
34
.github/workflows/_release.yml
vendored
34
.github/workflows/_release.yml
vendored
@@ -1,3 +1,9 @@
|
||||
# Builds and publishes LangChain packages to PyPI.
|
||||
#
|
||||
# Manually triggered, though can be used as a reusable workflow (workflow_call).
|
||||
#
|
||||
# Handles version bumping, building, and publishing to PyPI with authentication.
|
||||
|
||||
name: '🚀 Package Release'
|
||||
run-name: 'Release ${{ inputs.working-directory }} ${{ inputs.release-version }}'
|
||||
on:
|
||||
@@ -52,8 +58,8 @@ jobs:
|
||||
|
||||
# We want to keep this build stage *separate* from the release stage,
|
||||
# so that there's no sharing of permissions between them.
|
||||
# The release stage has trusted publishing and GitHub repo contents write access,
|
||||
# and we want to keep the scope of that access limited just to the release job.
|
||||
# (Release stage has trusted publishing and GitHub repo contents write access,
|
||||
#
|
||||
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
|
||||
# could get access to our GitHub or PyPI credentials.
|
||||
#
|
||||
@@ -288,16 +294,19 @@ jobs:
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install dist/*.whl
|
||||
|
||||
- name: Run unit tests
|
||||
run: make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Check for prerelease versions
|
||||
# Block release if any dependencies allow prerelease versions
|
||||
# (unless this is itself a prerelease version)
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
|
||||
|
||||
- name: Run unit tests
|
||||
run: make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Get minimum versions
|
||||
# Find the minimum published versions that satisfies the given constraints
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
run: |
|
||||
@@ -322,6 +331,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Run integration tests
|
||||
# Uses the Makefile's `integration_tests` target for the specified package
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
env:
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
@@ -362,7 +372,11 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# Test select published packages against new core
|
||||
# Done when code changes are made to langchain-core
|
||||
test-prior-published-packages-against-new-core:
|
||||
# Installs the new core with old partners: Installs the new unreleased core
|
||||
# alongside the previously published partner packages and runs integration tests
|
||||
if: github.ref != 'refs/heads/v0.3'
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
@@ -390,6 +404,7 @@ jobs:
|
||||
|
||||
# We implement this conditional as Github Actions does not have good support
|
||||
# for conditionally needing steps. https://github.com/actions/runner/issues/491
|
||||
# TODO: this seems to be resolved upstream, so we can probably remove this workaround
|
||||
- name: Check if libs/core
|
||||
run: |
|
||||
if [ "${{ startsWith(inputs.working-directory, 'libs/core') }}" != "true" ]; then
|
||||
@@ -417,7 +432,7 @@ jobs:
|
||||
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
|
||||
| awk '{print $2}' \
|
||||
| sed 's|refs/tags/||' \
|
||||
| grep -E '[0-9]+\.[0-9]+\.[0-9]+$' \
|
||||
| grep -E '==0\.3\.[0-9]+$' \
|
||||
| sort -Vr \
|
||||
| head -n 1
|
||||
)"
|
||||
@@ -444,12 +459,12 @@ jobs:
|
||||
make integration_tests
|
||||
|
||||
publish:
|
||||
# Publishes the package to PyPI
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
- test-prior-published-packages-against-new-core
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
# This permission is used for trusted publishing:
|
||||
@@ -486,6 +501,7 @@ jobs:
|
||||
attestations: false
|
||||
|
||||
mark-release:
|
||||
# Marks the GitHub release with the new version tag
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
@@ -495,7 +511,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
# This permission is needed by `ncipollo/release-action` to
|
||||
# create the GitHub release.
|
||||
# create the GitHub release/tag
|
||||
contents: write
|
||||
|
||||
defaults:
|
||||
|
||||
8
.github/workflows/_test.yml
vendored
8
.github/workflows/_test.yml
vendored
@@ -1,6 +1,7 @@
|
||||
name: '🧪 Unit Testing'
|
||||
# Runs unit tests with both current and minimum supported dependency versions
|
||||
# to ensure compatibility across the supported range
|
||||
# to ensure compatibility across the supported range.
|
||||
|
||||
name: '🧪 Unit Testing'
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
@@ -39,6 +40,9 @@ jobs:
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: test-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: '📦 Install Test Dependencies'
|
||||
shell: bash
|
||||
run: uv sync --group test --dev
|
||||
|
||||
9
.github/workflows/_test_doc_imports.yml
vendored
9
.github/workflows/_test_doc_imports.yml
vendored
@@ -1,3 +1,10 @@
|
||||
# Validates that all import statements in `.ipynb` notebooks are correct and functional.
|
||||
#
|
||||
# Called as part of check_diffs.yml.
|
||||
#
|
||||
# Installs test dependencies and LangChain packages in editable mode and
|
||||
# runs check_imports.py.
|
||||
|
||||
name: '📑 Documentation Import Testing'
|
||||
|
||||
on:
|
||||
@@ -27,6 +34,8 @@ jobs:
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: test-doc-imports-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: '📦 Install Test Dependencies'
|
||||
shell: bash
|
||||
|
||||
4
.github/workflows/_test_pydantic.yml
vendored
4
.github/workflows/_test_pydantic.yml
vendored
@@ -1,3 +1,5 @@
|
||||
# Facilitate unit testing against different Pydantic versions for a provided package.
|
||||
|
||||
name: '🐍 Pydantic Version Testing'
|
||||
|
||||
on:
|
||||
@@ -40,6 +42,8 @@ jobs:
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache-suffix: test-pydantic-${{ inputs.working-directory }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: '📦 Install Test Dependencies'
|
||||
shell: bash
|
||||
|
||||
46
.github/workflows/api_doc_build.yml
vendored
46
.github/workflows/api_doc_build.yml
vendored
@@ -1,11 +1,19 @@
|
||||
# Build the API reference documentation.
|
||||
#
|
||||
# Runs daily. Can also be triggered manually for immediate updates.
|
||||
#
|
||||
# Built HTML pushed to langchain-ai/langchain-api-docs-html.
|
||||
#
|
||||
# Looks for langchain-ai org repos in packages.yml and checks them out.
|
||||
# Calls prep_api_docs_build.py.
|
||||
|
||||
name: '📚 API Docs'
|
||||
run-name: 'Build & Deploy API Reference'
|
||||
# Runs daily or can be triggered manually for immediate updates
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: '0 13 * * *' # Daily at 1PM UTC
|
||||
- cron: '0 13 * * *' # Runs daily at 1PM UTC (9AM EDT/6AM PDT)
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
|
||||
@@ -31,6 +39,8 @@ jobs:
|
||||
uses: mikefarah/yq@master
|
||||
with:
|
||||
cmd: |
|
||||
# Extract repos from packages.yml that are in the langchain-ai org
|
||||
# (excluding 'langchain' itself)
|
||||
yq '
|
||||
.packages[]
|
||||
| select(
|
||||
@@ -77,24 +87,31 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- name: '📦 Install Initial Python Dependencies'
|
||||
- name: '📦 Install Initial Python Dependencies using uv'
|
||||
working-directory: langchain
|
||||
run: |
|
||||
python -m pip install -U uv
|
||||
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
|
||||
|
||||
- name: '📦 Organize Library Directories'
|
||||
# Places cloned partner packages into libs/partners structure
|
||||
run: python langchain/.github/scripts/prep_api_docs_build.py
|
||||
|
||||
- name: '🧹 Remove Old HTML Files'
|
||||
- name: '🧹 Clear Prior Build'
|
||||
run:
|
||||
# Remove artifacts from prior docs build
|
||||
rm -rf langchain-api-docs-html/api_reference_build/html
|
||||
|
||||
- name: '📦 Install Documentation Dependencies'
|
||||
- name: '📦 Install Documentation Dependencies using uv'
|
||||
working-directory: langchain
|
||||
run: |
|
||||
python -m uv pip install $(ls ./libs/partners | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt
|
||||
# Install all partner packages in editable mode with overrides
|
||||
python -m uv pip install $(ls ./libs/partners | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt --prerelease=allow
|
||||
|
||||
# Install core langchain and other main packages
|
||||
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental libs/standard-tests
|
||||
|
||||
# Install Sphinx and related packages for building docs
|
||||
python -m uv pip install -r docs/api_reference/requirements.txt
|
||||
|
||||
- name: '🔧 Configure Git Settings'
|
||||
@@ -106,14 +123,29 @@ jobs:
|
||||
- name: '📚 Build API Documentation'
|
||||
working-directory: langchain
|
||||
run: |
|
||||
# Generate the API reference RST files
|
||||
python docs/api_reference/create_api_rst.py
|
||||
|
||||
# Build the HTML documentation using Sphinx
|
||||
# -T: show full traceback on exception
|
||||
# -E: don't use cached environment (force rebuild, ignore cached doctrees)
|
||||
# -b html: build HTML docs (vs PDS, etc.)
|
||||
# -d: path for the cached environment (parsed document trees / doctrees)
|
||||
# - Separate from output dir for faster incremental builds
|
||||
# -c: path to conf.py
|
||||
# -j auto: parallel build using all available CPU cores
|
||||
python -m sphinx -T -E -b html -d ../langchain-api-docs-html/_build/doctrees -c docs/api_reference docs/api_reference ../langchain-api-docs-html/api_reference_build/html -j auto
|
||||
|
||||
# Post-process the generated HTML
|
||||
python docs/api_reference/scripts/custom_formatter.py ../langchain-api-docs-html/api_reference_build/html
|
||||
|
||||
# Default index page is blank so we copy in the actual home page.
|
||||
cp ../langchain-api-docs-html/api_reference_build/html/{reference,index}.html
|
||||
|
||||
# Removes Sphinx's intermediate build artifacts after the build is complete.
|
||||
rm -rf ../langchain-api-docs-html/_build/
|
||||
|
||||
# https://github.com/marketplace/actions/add-commit
|
||||
# Commit and push changes to langchain-api-docs-html repo
|
||||
- uses: EndBug/add-and-commit@v9
|
||||
with:
|
||||
cwd: langchain-api-docs-html
|
||||
|
||||
6
.github/workflows/check-broken-links.yml
vendored
6
.github/workflows/check-broken-links.yml
vendored
@@ -1,9 +1,11 @@
|
||||
# Runs broken link checker in /docs on a daily schedule.
|
||||
|
||||
name: '🔗 Check Broken Links'
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
- cron: '0 13 * * *' # Runs daily at 1PM UTC (9AM EDT/6AM PDT)
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
@@ -15,7 +17,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- name: '🟢 Setup Node.js 18.x'
|
||||
uses: actions/setup-node@v4
|
||||
uses: actions/setup-node@v5
|
||||
with:
|
||||
node-version: 18.x
|
||||
cache: "yarn"
|
||||
|
||||
8
.github/workflows/check_core_versions.yml
vendored
8
.github/workflows/check_core_versions.yml
vendored
@@ -1,6 +1,8 @@
|
||||
name: '🔍 Check `core` Version Equality'
|
||||
# Ensures version numbers in pyproject.toml and version.py stay in sync
|
||||
# Prevents releases with mismatched version numbers
|
||||
# Ensures version numbers in pyproject.toml and version.py stay in sync.
|
||||
#
|
||||
# (Prevents releases with mismatched version numbers)
|
||||
|
||||
name: '🔍 Check Version Equality'
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
|
||||
87
.github/workflows/check_diffs.yml
vendored
87
.github/workflows/check_diffs.yml
vendored
@@ -1,3 +1,18 @@
|
||||
# Primary CI workflow.
|
||||
#
|
||||
# Only runs against packages that have changed files.
|
||||
#
|
||||
# Runs:
|
||||
# - Linting (_lint.yml)
|
||||
# - Unit Tests (_test.yml)
|
||||
# - Pydantic compatibility tests (_test_pydantic.yml)
|
||||
# - Documentation import tests (_test_doc_imports.yml)
|
||||
# - Integration test compilation checks (_compile_integration_test.yml)
|
||||
# - Extended test suites that require additional dependencies
|
||||
# - Codspeed benchmarks (if not labeled 'codspeed-ignore')
|
||||
#
|
||||
# Reports status to GitHub checks and PR status.
|
||||
|
||||
name: '🔧 CI'
|
||||
|
||||
on:
|
||||
@@ -11,8 +26,8 @@ on:
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
# a limited number of job runners to be active at the same time, so it's better to
|
||||
# cancel pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
@@ -54,6 +69,7 @@ jobs:
|
||||
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
|
||||
test-doc-imports: ${{ steps.set-matrix.outputs.test-doc-imports }}
|
||||
test-pydantic: ${{ steps.set-matrix.outputs.test-pydantic }}
|
||||
codspeed: ${{ steps.set-matrix.outputs.codspeed }}
|
||||
# Run linting only on packages that have changed files
|
||||
lint:
|
||||
needs: [ build ]
|
||||
@@ -110,6 +126,7 @@ jobs:
|
||||
|
||||
# Verify integration tests compile without actually running them (faster feedback)
|
||||
compile-integration-tests:
|
||||
name: 'Compile Integration Tests'
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.compile-integration-tests != '[]' }}
|
||||
strategy:
|
||||
@@ -144,6 +161,8 @@ jobs:
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
cache-suffix: extended-tests-${{ matrix.job-configs.working-directory }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
|
||||
- name: '📦 Install Dependencies & Run Extended Tests'
|
||||
shell: bash
|
||||
@@ -166,10 +185,72 @@ jobs:
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
|
||||
# Run codspeed benchmarks only on packages that have changed files
|
||||
codspeed:
|
||||
name: '⚡ CodSpeed Benchmarks'
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.codspeed != '[]' && !contains(github.event.pull_request.labels.*.name, 'codspeed-ignore') }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.codspeed) }}
|
||||
fail-fast: false
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
# We have to use 3.12 as 3.13 is not yet supported
|
||||
- name: '📦 Install UV Package Manager'
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: "3.12"
|
||||
|
||||
- uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.12"
|
||||
|
||||
- name: '📦 Install Test Dependencies'
|
||||
run: uv sync --group test
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
|
||||
- name: '⚡ Run Benchmarks: ${{ matrix.job-configs.working-directory }}'
|
||||
uses: CodSpeedHQ/action@v4
|
||||
env:
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
|
||||
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
with:
|
||||
token: ${{ secrets.CODSPEED_TOKEN }}
|
||||
run: |
|
||||
cd ${{ matrix.job-configs.working-directory }}
|
||||
if [ "${{ matrix.job-configs.working-directory }}" = "libs/core" ]; then
|
||||
uv run --no-sync pytest ./tests/benchmarks --codspeed
|
||||
else
|
||||
uv run --no-sync pytest ./tests/ --codspeed
|
||||
fi
|
||||
mode: ${{ matrix.job-configs.working-directory == 'libs/core' && 'walltime' || 'instrumentation' }}
|
||||
|
||||
# Final status check - ensures all required jobs passed before allowing merge
|
||||
ci_success:
|
||||
name: '✅ CI Success'
|
||||
needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports, test-pydantic]
|
||||
needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports, test-pydantic, codspeed]
|
||||
if: |
|
||||
always()
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
3
.github/workflows/check_new_docs.yml
vendored
3
.github/workflows/check_new_docs.yml
vendored
@@ -1,3 +1,6 @@
|
||||
# For integrations, we run check_templates.py to ensure that new docs use the correct
|
||||
# templates based on their type. See the script for more details.
|
||||
|
||||
name: '📑 Integration Docs Lint'
|
||||
|
||||
on:
|
||||
|
||||
66
.github/workflows/codspeed.yml
vendored
66
.github/workflows/codspeed.yml
vendored
@@ -1,66 +0,0 @@
|
||||
name: '⚡ CodSpeed'
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
env:
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: foo
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: foo
|
||||
DEEPSEEK_API_KEY: foo
|
||||
FIREWORKS_API_KEY: foo
|
||||
|
||||
jobs:
|
||||
codspeed:
|
||||
name: 'Benchmark'
|
||||
runs-on: ubuntu-latest
|
||||
if: ${{ !contains(github.event.pull_request.labels.*.name, 'codspeed-ignore') }}
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- working-directory: libs/core
|
||||
mode: walltime
|
||||
- working-directory: libs/partners/openai
|
||||
- working-directory: libs/partners/anthropic
|
||||
- working-directory: libs/partners/deepseek
|
||||
- working-directory: libs/partners/fireworks
|
||||
- working-directory: libs/partners/xai
|
||||
- working-directory: libs/partners/mistralai
|
||||
- working-directory: libs/partners/groq
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
|
||||
# We have to use 3.12 as 3.13 is not yet supported
|
||||
- name: '📦 Install UV Package Manager'
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: "3.12"
|
||||
|
||||
- uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.12"
|
||||
|
||||
- name: '📦 Install Test Dependencies'
|
||||
run: uv sync --group test
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
|
||||
- name: '⚡ Run Benchmarks: ${{ matrix.working-directory }}'
|
||||
uses: CodSpeedHQ/action@v3
|
||||
with:
|
||||
token: ${{ secrets.CODSPEED_TOKEN }}
|
||||
run: |
|
||||
cd ${{ matrix.working-directory }}
|
||||
if [ "${{ matrix.working-directory }}" = "libs/core" ]; then
|
||||
uv run --no-sync pytest ./tests/benchmarks --codspeed
|
||||
else
|
||||
uv run --no-sync pytest ./tests/ --codspeed
|
||||
fi
|
||||
mode: ${{ matrix.mode || 'instrumentation' }}
|
||||
10
.github/workflows/extract_ignored_words_list.py
vendored
10
.github/workflows/extract_ignored_words_list.py
vendored
@@ -1,10 +0,0 @@
|
||||
import toml
|
||||
|
||||
pyproject_toml = toml.load("pyproject.toml")
|
||||
|
||||
# Extract the ignore words list (adjust the key as per your TOML structure)
|
||||
ignore_words_list = (
|
||||
pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
|
||||
)
|
||||
|
||||
print(f"::set-output name=ignore_words_list::{ignore_words_list}")
|
||||
6
.github/workflows/people.yml
vendored
6
.github/workflows/people.yml
vendored
@@ -1,9 +1,11 @@
|
||||
# Updates the LangChain People data by fetching the latest info from the LangChain Git.
|
||||
# TODO: broken/not used
|
||||
|
||||
name: '👥 LangChain People'
|
||||
run-name: 'Update People Data'
|
||||
# This workflow updates the LangChain People data by fetching the latest information from the LangChain Git
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 14 1 * *"
|
||||
- cron: "0 14 1 * *" # Runs at 14:00 UTC on the 1st of every month (10AM EDT/7AM PDT)
|
||||
push:
|
||||
branches: [jacob/people]
|
||||
workflow_dispatch:
|
||||
|
||||
28
.github/workflows/pr_labeler_file.yml
vendored
Normal file
28
.github/workflows/pr_labeler_file.yml
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
# Label PRs based on changed files.
|
||||
#
|
||||
# See `.github/pr-file-labeler.yml` to see rules for each label/directory.
|
||||
|
||||
name: "🏷️ Pull Request Labeler"
|
||||
|
||||
on:
|
||||
# Safe since we're not checking out or running the PR's code
|
||||
# Never check out the PR's head in a pull_request_target job
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened, edited]
|
||||
|
||||
jobs:
|
||||
labeler:
|
||||
name: 'label'
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
issues: write
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Label Pull Request
|
||||
uses: actions/labeler@v6
|
||||
with:
|
||||
repo-token: "${{ secrets.GITHUB_TOKEN }}"
|
||||
configuration-path: .github/pr-file-labeler.yml
|
||||
sync-labels: false
|
||||
28
.github/workflows/pr_labeler_title.yml
vendored
Normal file
28
.github/workflows/pr_labeler_title.yml
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
# Label PRs based on their titles.
|
||||
#
|
||||
# See `.github/pr-title-labeler.yml` to see rules for each label/title pattern.
|
||||
|
||||
name: "🏷️ PR Title Labeler"
|
||||
|
||||
on:
|
||||
# Safe since we're not checking out or running the PR's code
|
||||
# Never check out the PR's head in a pull_request_target job
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened, edited]
|
||||
|
||||
jobs:
|
||||
pr-title-labeler:
|
||||
name: 'label'
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
issues: write
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Label PR based on title
|
||||
# Archived repo; latest commit (v0.1.0)
|
||||
uses: grafana/pr-labeler-action@f19222d3ef883d2ca5f04420fdfe8148003763f0
|
||||
with:
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
configuration-path: .github/pr-title-labeler.yml
|
||||
70
.github/workflows/pr_lint.yml
vendored
70
.github/workflows/pr_lint.yml
vendored
@@ -1,50 +1,43 @@
|
||||
# -----------------------------------------------------------------------------
|
||||
# PR Title Lint Workflow
|
||||
# PR title linting.
|
||||
#
|
||||
# Purpose:
|
||||
# Enforces Conventional Commits format for pull request titles to maintain a
|
||||
# clear, consistent, and machine-readable change history across our repository.
|
||||
# This helps with automated changelog generation and semantic versioning.
|
||||
# FORMAT (Conventional Commits 1.0.0):
|
||||
#
|
||||
# Enforced Commit Message Format (Conventional Commits 1.0.0):
|
||||
# <type>[optional scope]: <description>
|
||||
# [optional body]
|
||||
# [optional footer(s)]
|
||||
#
|
||||
# Examples:
|
||||
# feat(core): add multi‐tenant support
|
||||
# fix(cli): resolve flag parsing error
|
||||
# docs: update API usage examples
|
||||
# docs(openai): update API usage examples
|
||||
#
|
||||
# Allowed Types:
|
||||
# • feat — a new feature (MINOR bump)
|
||||
# • fix — a bug fix (PATCH bump)
|
||||
# • docs — documentation only changes
|
||||
# • style — formatting, missing semi-colons, etc.; no code change
|
||||
# • refactor — code change that neither fixes a bug nor adds a feature
|
||||
# • perf — code change that improves performance
|
||||
# • test — adding missing tests or correcting existing tests
|
||||
# • build — changes that affect the build system or external dependencies
|
||||
# • ci — continuous integration/configuration changes
|
||||
# • chore — other changes that don't modify src or test files
|
||||
# • revert — reverts a previous commit
|
||||
# • release — prepare a new release
|
||||
# * feat — a new feature (MINOR)
|
||||
# * fix — a bug fix (PATCH)
|
||||
# * docs — documentation only changes (either in /docs or code comments)
|
||||
# * style — formatting, linting, etc.; no code change or typing refactors
|
||||
# * refactor — code change that neither fixes a bug nor adds a feature
|
||||
# * perf — code change that improves performance
|
||||
# * test — adding tests or correcting existing
|
||||
# * build — changes that affect the build system/external dependencies
|
||||
# * ci — continuous integration/configuration changes
|
||||
# * chore — other changes that don't modify source or test files
|
||||
# * revert — reverts a previous commit
|
||||
# * release — prepare a new release
|
||||
#
|
||||
# Allowed Scopes (optional):
|
||||
# core, cli, langchain, standard-tests, docs, anthropic, chroma, deepseek,
|
||||
# exa, fireworks, groq, huggingface, mistralai, nomic, ollama, openai,
|
||||
# perplexity, prompty, qdrant, xai
|
||||
# core, cli, langchain, langchain_v1, langchain_legacy, standard-tests,
|
||||
# text-splitters, docs, anthropic, chroma, deepseek, exa, fireworks, groq,
|
||||
# huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant,
|
||||
# xai, infra
|
||||
#
|
||||
# Rules & Tips for New Committers:
|
||||
# 1. Subject (type) must start with a lowercase letter and, if possible, be
|
||||
# followed by a scope wrapped in parenthesis `(scope)`
|
||||
# 2. Breaking changes:
|
||||
# – Append "!" after type/scope (e.g., feat!: drop Node 12 support)
|
||||
# – Or include a footer "BREAKING CHANGE: <details>"
|
||||
# 3. Example PR titles:
|
||||
# feat(core): add multi‐tenant support
|
||||
# fix(cli): resolve flag parsing error
|
||||
# docs: update API usage examples
|
||||
# docs(openai): update API usage examples
|
||||
# Rules:
|
||||
# 1. The 'Type' must start with a lowercase letter.
|
||||
# 2. Breaking changes: append "!" after type/scope (e.g., feat!: drop x support)
|
||||
#
|
||||
# Resources:
|
||||
# • Conventional Commits spec: https://www.conventionalcommits.org/en/v1.0.0/
|
||||
# -----------------------------------------------------------------------------
|
||||
# Enforces Conventional Commits format for pull request titles to maintain a clear and
|
||||
# machine-readable change history.
|
||||
|
||||
name: '🏷️ PR Title Lint'
|
||||
|
||||
@@ -56,9 +49,9 @@ on:
|
||||
types: [opened, edited, synchronize]
|
||||
|
||||
jobs:
|
||||
# Validates that PR title follows Conventional Commits specification
|
||||
# Validates that PR title follows Conventional Commits 1.0.0 specification
|
||||
lint-pr-title:
|
||||
name: 'Validate PR Title Format'
|
||||
name: 'validate format'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: '✅ Validate Conventional Commits Format'
|
||||
@@ -84,6 +77,7 @@ jobs:
|
||||
cli
|
||||
langchain
|
||||
langchain_v1
|
||||
langchain_legacy
|
||||
standard-tests
|
||||
text-splitters
|
||||
docs
|
||||
|
||||
4
.github/workflows/run_notebooks.yml
vendored
4
.github/workflows/run_notebooks.yml
vendored
@@ -1,3 +1,5 @@
|
||||
# Integration tests for documentation notebooks.
|
||||
|
||||
name: '📓 Validate Documentation Notebooks'
|
||||
run-name: 'Test notebooks in ${{ inputs.working-directory }}'
|
||||
on:
|
||||
@@ -32,6 +34,8 @@ jobs:
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ github.event.inputs.python_version || '3.11' }}
|
||||
cache-suffix: run-notebooks-${{ github.event.inputs.working-directory || 'all' }}
|
||||
working-directory: ${{ github.event.inputs.working-directory || '**' }}
|
||||
|
||||
- name: '🔐 Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
|
||||
14
.github/workflows/scheduled_test.yml
vendored
14
.github/workflows/scheduled_test.yml
vendored
@@ -1,8 +1,14 @@
|
||||
# Routine integration tests against partner libraries with live API credentials.
|
||||
#
|
||||
# Uses `make integration_tests` for each library in the matrix.
|
||||
#
|
||||
# Runs daily. Can also be triggered manually for immediate updates.
|
||||
|
||||
name: '⏰ Scheduled Integration Tests'
|
||||
run-name: "Run Integration Tests - ${{ inputs.working-directory-force || 'all libs' }} (Python ${{ inputs.python-version-force || '3.9, 3.11' }})"
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows maintainers to trigger the workflow manually in GitHub UI
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
working-directory-force:
|
||||
type: string
|
||||
@@ -54,13 +60,13 @@ jobs:
|
||||
echo $matrix
|
||||
echo "matrix=$matrix" >> $GITHUB_OUTPUT
|
||||
# Run integration tests against partner libraries with live API credentials
|
||||
# Tests are run with both Poetry and UV depending on the library's setup
|
||||
# Tests are run with Poetry or UV depending on the library's setup
|
||||
build:
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
name: '🐍 Python ${{ matrix.python-version }}: ${{ matrix.working-directory }}'
|
||||
runs-on: ubuntu-latest
|
||||
needs: [compute-matrix]
|
||||
timeout-minutes: 20
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
@@ -161,7 +167,7 @@ jobs:
|
||||
make integration_tests
|
||||
|
||||
- name: '🧹 Clean up External Libraries'
|
||||
# Clean up external libraries to avoid affecting git status check
|
||||
# Clean up external libraries to avoid affecting the following git status check
|
||||
run: |
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
|
||||
9
.github/workflows/v1_changes.md
vendored
Normal file
9
.github/workflows/v1_changes.md
vendored
Normal file
@@ -0,0 +1,9 @@
|
||||
With the deprecation of v0 docs, the following files will need to be migrated/supported
|
||||
in the new docs repo:
|
||||
|
||||
- run_notebooks.yml: New repo should run Integration tests on code snippets?
|
||||
- people.yml: Need to fix and somehow display on the new docs site
|
||||
- Subsequently, `.github/actions/people/`
|
||||
- _test_doc_imports.yml
|
||||
- check_new_docs.yml
|
||||
- check-broken-links.yml
|
||||
@@ -2,110 +2,104 @@ repos:
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: core
|
||||
name: format core
|
||||
name: format and lint core
|
||||
language: system
|
||||
entry: make -C libs/core format
|
||||
entry: make -C libs/core format lint
|
||||
files: ^libs/core/
|
||||
pass_filenames: false
|
||||
- id: langchain
|
||||
name: format langchain
|
||||
name: format and lint langchain
|
||||
language: system
|
||||
entry: make -C libs/langchain format
|
||||
entry: make -C libs/langchain format lint
|
||||
files: ^libs/langchain/
|
||||
pass_filenames: false
|
||||
- id: standard-tests
|
||||
name: format standard-tests
|
||||
name: format and lint standard-tests
|
||||
language: system
|
||||
entry: make -C libs/standard-tests format
|
||||
entry: make -C libs/standard-tests format lint
|
||||
files: ^libs/standard-tests/
|
||||
pass_filenames: false
|
||||
- id: text-splitters
|
||||
name: format text-splitters
|
||||
name: format and lint text-splitters
|
||||
language: system
|
||||
entry: make -C libs/text-splitters format
|
||||
entry: make -C libs/text-splitters format lint
|
||||
files: ^libs/text-splitters/
|
||||
pass_filenames: false
|
||||
- id: anthropic
|
||||
name: format partners/anthropic
|
||||
name: format and lint partners/anthropic
|
||||
language: system
|
||||
entry: make -C libs/partners/anthropic format
|
||||
entry: make -C libs/partners/anthropic format lint
|
||||
files: ^libs/partners/anthropic/
|
||||
pass_filenames: false
|
||||
- id: chroma
|
||||
name: format partners/chroma
|
||||
name: format and lint partners/chroma
|
||||
language: system
|
||||
entry: make -C libs/partners/chroma format
|
||||
entry: make -C libs/partners/chroma format lint
|
||||
files: ^libs/partners/chroma/
|
||||
pass_filenames: false
|
||||
- id: couchbase
|
||||
name: format partners/couchbase
|
||||
language: system
|
||||
entry: make -C libs/partners/couchbase format
|
||||
files: ^libs/partners/couchbase/
|
||||
pass_filenames: false
|
||||
- id: exa
|
||||
name: format partners/exa
|
||||
name: format and lint partners/exa
|
||||
language: system
|
||||
entry: make -C libs/partners/exa format
|
||||
entry: make -C libs/partners/exa format lint
|
||||
files: ^libs/partners/exa/
|
||||
pass_filenames: false
|
||||
- id: fireworks
|
||||
name: format partners/fireworks
|
||||
name: format and lint partners/fireworks
|
||||
language: system
|
||||
entry: make -C libs/partners/fireworks format
|
||||
entry: make -C libs/partners/fireworks format lint
|
||||
files: ^libs/partners/fireworks/
|
||||
pass_filenames: false
|
||||
- id: groq
|
||||
name: format partners/groq
|
||||
name: format and lint partners/groq
|
||||
language: system
|
||||
entry: make -C libs/partners/groq format
|
||||
entry: make -C libs/partners/groq format lint
|
||||
files: ^libs/partners/groq/
|
||||
pass_filenames: false
|
||||
- id: huggingface
|
||||
name: format partners/huggingface
|
||||
name: format and lint partners/huggingface
|
||||
language: system
|
||||
entry: make -C libs/partners/huggingface format
|
||||
entry: make -C libs/partners/huggingface format lint
|
||||
files: ^libs/partners/huggingface/
|
||||
pass_filenames: false
|
||||
- id: mistralai
|
||||
name: format partners/mistralai
|
||||
name: format and lint partners/mistralai
|
||||
language: system
|
||||
entry: make -C libs/partners/mistralai format
|
||||
entry: make -C libs/partners/mistralai format lint
|
||||
files: ^libs/partners/mistralai/
|
||||
pass_filenames: false
|
||||
- id: nomic
|
||||
name: format partners/nomic
|
||||
name: format and lint partners/nomic
|
||||
language: system
|
||||
entry: make -C libs/partners/nomic format
|
||||
entry: make -C libs/partners/nomic format lint
|
||||
files: ^libs/partners/nomic/
|
||||
pass_filenames: false
|
||||
- id: ollama
|
||||
name: format partners/ollama
|
||||
name: format and lint partners/ollama
|
||||
language: system
|
||||
entry: make -C libs/partners/ollama format
|
||||
entry: make -C libs/partners/ollama format lint
|
||||
files: ^libs/partners/ollama/
|
||||
pass_filenames: false
|
||||
- id: openai
|
||||
name: format partners/openai
|
||||
name: format and lint partners/openai
|
||||
language: system
|
||||
entry: make -C libs/partners/openai format
|
||||
entry: make -C libs/partners/openai format lint
|
||||
files: ^libs/partners/openai/
|
||||
pass_filenames: false
|
||||
- id: prompty
|
||||
name: format partners/prompty
|
||||
name: format and lint partners/prompty
|
||||
language: system
|
||||
entry: make -C libs/partners/prompty format
|
||||
entry: make -C libs/partners/prompty format lint
|
||||
files: ^libs/partners/prompty/
|
||||
pass_filenames: false
|
||||
- id: qdrant
|
||||
name: format partners/qdrant
|
||||
name: format and lint partners/qdrant
|
||||
language: system
|
||||
entry: make -C libs/partners/qdrant format
|
||||
entry: make -C libs/partners/qdrant format lint
|
||||
files: ^libs/partners/qdrant/
|
||||
pass_filenames: false
|
||||
- id: root
|
||||
name: format docs, cookbook
|
||||
name: format and lint docs, cookbook
|
||||
language: system
|
||||
entry: make format
|
||||
entry: make format lint
|
||||
files: ^(docs|cookbook)/
|
||||
pass_filenames: false
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
# Read the Docs configuration file
|
||||
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
|
||||
version: 2
|
||||
|
||||
# Set the version of Python and other tools you might need
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.11"
|
||||
commands:
|
||||
- mkdir -p $READTHEDOCS_OUTPUT
|
||||
- cp -r api_reference_build/* $READTHEDOCS_OUTPUT
|
||||
|
||||
# Build documentation in the docs/ directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/api_reference/conf.py
|
||||
|
||||
# If using Sphinx, optionally build your docs in additional formats such as PDF
|
||||
formats:
|
||||
- pdf
|
||||
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
install:
|
||||
- requirements: docs/api_reference/requirements.txt
|
||||
7
.vscode/settings.json
vendored
7
.vscode/settings.json
vendored
@@ -78,5 +78,10 @@
|
||||
"editor.insertSpaces": true
|
||||
},
|
||||
"python.terminal.activateEnvironment": false,
|
||||
"python.defaultInterpreterPath": "./.venv/bin/python"
|
||||
"python.defaultInterpreterPath": "./.venv/bin/python",
|
||||
"github.copilot.chat.commitMessageGeneration.instructions": [
|
||||
{
|
||||
"file": ".github/workflows/pr_lint.yml"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
325
AGENTS.md
Normal file
325
AGENTS.md
Normal file
@@ -0,0 +1,325 @@
|
||||
# Global Development Guidelines for LangChain Projects
|
||||
|
||||
## Core Development Principles
|
||||
|
||||
### 1. Maintain Stable Public Interfaces ⚠️ CRITICAL
|
||||
|
||||
**Always attempt to preserve function signatures, argument positions, and names for exported/public methods.**
|
||||
|
||||
❌ **Bad - Breaking Change:**
|
||||
|
||||
```python
|
||||
def get_user(id, verbose=False): # Changed from `user_id`
|
||||
pass
|
||||
```
|
||||
|
||||
✅ **Good - Stable Interface:**
|
||||
|
||||
```python
|
||||
def get_user(user_id: str, verbose: bool = False) -> User:
|
||||
"""Retrieve user by ID with optional verbose output."""
|
||||
pass
|
||||
```
|
||||
|
||||
**Before making ANY changes to public APIs:**
|
||||
|
||||
- Check if the function/class is exported in `__init__.py`
|
||||
- Look for existing usage patterns in tests and examples
|
||||
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
|
||||
- Mark experimental features clearly with docstring warnings (using reStructuredText, like `.. warning::`)
|
||||
|
||||
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
|
||||
|
||||
### 2. Code Quality Standards
|
||||
|
||||
**All Python code MUST include type hints and return types.**
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def p(u, d):
|
||||
return [x for x in u if x not in d]
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
|
||||
"""Filter out users that are not in the known users set.
|
||||
|
||||
Args:
|
||||
users: List of user identifiers to filter.
|
||||
known_users: Set of known/valid user identifiers.
|
||||
|
||||
Returns:
|
||||
List of users that are not in the known_users set.
|
||||
"""
|
||||
return [user for user in users if user not in known_users]
|
||||
```
|
||||
|
||||
**Style Requirements:**
|
||||
|
||||
- Use descriptive, **self-explanatory variable names**. Avoid overly short or cryptic identifiers.
|
||||
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
|
||||
- Avoid unnecessary abstraction or premature optimization
|
||||
- Follow existing patterns in the codebase you're modifying
|
||||
|
||||
### 3. Testing Requirements
|
||||
|
||||
**Every new feature or bugfix MUST be covered by unit tests.**
|
||||
|
||||
**Test Organization:**
|
||||
|
||||
- Unit tests: `tests/unit_tests/` (no network calls allowed)
|
||||
- Integration tests: `tests/integration_tests/` (network calls permitted)
|
||||
- Use `pytest` as the testing framework
|
||||
|
||||
**Test Quality Checklist:**
|
||||
|
||||
- [ ] Tests fail when your new logic is broken
|
||||
- [ ] Happy path is covered
|
||||
- [ ] Edge cases and error conditions are tested
|
||||
- [ ] Use fixtures/mocks for external dependencies
|
||||
- [ ] Tests are deterministic (no flaky tests)
|
||||
|
||||
Checklist questions:
|
||||
|
||||
- [ ] Does the test suite fail if your new logic is broken?
|
||||
- [ ] Are all expected behaviors exercised (happy path, invalid input, etc)?
|
||||
- [ ] Do tests use fixtures or mocks where needed?
|
||||
|
||||
```python
|
||||
def test_filter_unknown_users():
|
||||
"""Test filtering unknown users from a list."""
|
||||
users = ["alice", "bob", "charlie"]
|
||||
known_users = {"alice", "bob"}
|
||||
|
||||
result = filter_unknown_users(users, known_users)
|
||||
|
||||
assert result == ["charlie"]
|
||||
assert len(result) == 1
|
||||
```
|
||||
|
||||
### 4. Security and Risk Assessment
|
||||
|
||||
**Security Checklist:**
|
||||
|
||||
- No `eval()`, `exec()`, or `pickle` on user-controlled input
|
||||
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
|
||||
- Remove unreachable/commented code before committing
|
||||
- Race conditions or resource leaks (file handles, sockets, threads).
|
||||
- Ensure proper resource cleanup (file handles, connections)
|
||||
|
||||
❌ **Bad:**
|
||||
|
||||
```python
|
||||
def load_config(path):
|
||||
with open(path) as f:
|
||||
return eval(f.read()) # ⚠️ Never eval config
|
||||
```
|
||||
|
||||
✅ **Good:**
|
||||
|
||||
```python
|
||||
import json
|
||||
|
||||
def load_config(path: str) -> dict:
|
||||
with open(path) as f:
|
||||
return json.load(f)
|
||||
```
|
||||
|
||||
### 5. Documentation Standards
|
||||
|
||||
**Use Google-style docstrings with Args section for all public functions.**
|
||||
|
||||
❌ **Insufficient Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to, msg):
|
||||
"""Send an email to a recipient."""
|
||||
```
|
||||
|
||||
✅ **Complete Documentation:**
|
||||
|
||||
```python
|
||||
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
|
||||
"""
|
||||
Send an email to a recipient with specified priority.
|
||||
|
||||
Args:
|
||||
to: The email address of the recipient.
|
||||
msg: The message body to send.
|
||||
priority: Email priority level (``'low'``, ``'normal'``, ``'high'``).
|
||||
|
||||
Returns:
|
||||
True if email was sent successfully, False otherwise.
|
||||
|
||||
Raises:
|
||||
InvalidEmailError: If the email address format is invalid.
|
||||
SMTPConnectionError: If unable to connect to email server.
|
||||
"""
|
||||
```
|
||||
|
||||
**Documentation Guidelines:**
|
||||
|
||||
- Types go in function signatures, NOT in docstrings
|
||||
- Focus on "why" rather than "what" in descriptions
|
||||
- Document all parameters, return values, and exceptions
|
||||
- Keep descriptions concise but clear
|
||||
- Use reStructuredText for docstrings to enable rich formatting
|
||||
|
||||
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
|
||||
|
||||
### 6. Architectural Improvements
|
||||
|
||||
**When you encounter code that could be improved, suggest better designs:**
|
||||
|
||||
❌ **Poor Design:**
|
||||
|
||||
```python
|
||||
def process_data(data, db_conn, email_client, logger):
|
||||
# Function doing too many things
|
||||
validated = validate_data(data)
|
||||
result = db_conn.save(validated)
|
||||
email_client.send_notification(result)
|
||||
logger.log(f"Processed {len(data)} items")
|
||||
return result
|
||||
```
|
||||
|
||||
✅ **Better Design:**
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
class ProcessingResult:
|
||||
"""Result of data processing operation."""
|
||||
items_processed: int
|
||||
success: bool
|
||||
errors: List[str] = field(default_factory=list)
|
||||
|
||||
class DataProcessor:
|
||||
"""Handles data validation, storage, and notification."""
|
||||
|
||||
def __init__(self, db_conn: Database, email_client: EmailClient):
|
||||
self.db = db_conn
|
||||
self.email = email_client
|
||||
|
||||
def process(self, data: List[dict]) -> ProcessingResult:
|
||||
"""Process and store data with notifications."""
|
||||
validated = self._validate_data(data)
|
||||
result = self.db.save(validated)
|
||||
self._notify_completion(result)
|
||||
return result
|
||||
```
|
||||
|
||||
**Design Improvement Areas:**
|
||||
|
||||
If there's a **cleaner**, **more scalable**, or **simpler** design, highlight it and suggest improvements that would:
|
||||
|
||||
- Reduce code duplication through shared utilities
|
||||
- Make unit testing easier
|
||||
- Improve separation of concerns (single responsibility)
|
||||
- Make unit testing easier through dependency injection
|
||||
- Add clarity without adding complexity
|
||||
- Prefer dataclasses for structured data
|
||||
|
||||
## Development Tools & Commands
|
||||
|
||||
### Package Management
|
||||
|
||||
```bash
|
||||
# Add package
|
||||
uv add package-name
|
||||
|
||||
# Sync project dependencies
|
||||
uv sync
|
||||
uv lock
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
```bash
|
||||
# Run unit tests (no network)
|
||||
make test
|
||||
|
||||
# Don't run integration tests, as API keys must be set
|
||||
|
||||
# Run specific test file
|
||||
uv run --group test pytest tests/unit_tests/test_specific.py
|
||||
```
|
||||
|
||||
### Code Quality
|
||||
|
||||
```bash
|
||||
# Lint code
|
||||
make lint
|
||||
|
||||
# Format code
|
||||
make format
|
||||
|
||||
# Type checking
|
||||
uv run --group lint mypy .
|
||||
```
|
||||
|
||||
### Dependency Management Patterns
|
||||
|
||||
**Local Development Dependencies:**
|
||||
|
||||
```toml
|
||||
[tool.uv.sources]
|
||||
langchain-core = { path = "../core", editable = true }
|
||||
langchain-tests = { path = "../standard-tests", editable = true }
|
||||
```
|
||||
|
||||
**For tools, use the `@tool` decorator from `langchain_core.tools`:**
|
||||
|
||||
```python
|
||||
from langchain_core.tools import tool
|
||||
|
||||
@tool
|
||||
def search_database(query: str) -> str:
|
||||
"""Search the database for relevant information.
|
||||
|
||||
Args:
|
||||
query: The search query string.
|
||||
"""
|
||||
# Implementation here
|
||||
return results
|
||||
```
|
||||
|
||||
## Commit Standards
|
||||
|
||||
**Use Conventional Commits format for PR titles:**
|
||||
|
||||
- `feat(core): add multi-tenant support`
|
||||
- `fix(cli): resolve flag parsing error`
|
||||
- `docs: update API usage examples`
|
||||
- `docs(openai): update API usage examples`
|
||||
|
||||
## Framework-Specific Guidelines
|
||||
|
||||
- Follow the existing patterns in `langchain-core` for base abstractions
|
||||
- Use `langchain_core.callbacks` for execution tracking
|
||||
- Implement proper streaming support where applicable
|
||||
- Avoid deprecated components like legacy `LLMChain`
|
||||
|
||||
### Partner Integrations
|
||||
|
||||
- Follow the established patterns in existing partner libraries
|
||||
- Implement standard interfaces (`BaseChatModel`, `BaseEmbeddings`, etc.)
|
||||
- Include comprehensive integration tests
|
||||
- Document API key requirements and authentication
|
||||
|
||||
---
|
||||
|
||||
## Quick Reference Checklist
|
||||
|
||||
Before submitting code changes:
|
||||
|
||||
- [ ] **Breaking Changes**: Verified no public API changes
|
||||
- [ ] **Type Hints**: All functions have complete type annotations
|
||||
- [ ] **Tests**: New functionality is fully tested
|
||||
- [ ] **Security**: No dangerous patterns (eval, silent failures, etc.)
|
||||
- [ ] **Documentation**: Google-style docstrings for public functions
|
||||
- [ ] **Code Quality**: `make lint` and `make format` pass
|
||||
- [ ] **Architecture**: Suggested improvements where applicable
|
||||
- [ ] **Commit Message**: Follows Conventional Commits format
|
||||
16
Makefile
16
Makefile
@@ -1,4 +1,4 @@
|
||||
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
|
||||
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck lint lint_package lint_tests format format_diff
|
||||
|
||||
.EXPORT_ALL_VARIABLES:
|
||||
UV_FROZEN = true
|
||||
@@ -78,18 +78,6 @@ api_docs_linkcheck:
|
||||
fi
|
||||
@echo "✅ API link check complete"
|
||||
|
||||
## spell_check: Run codespell on the project.
|
||||
spell_check:
|
||||
@echo "✏️ Checking spelling across project..."
|
||||
uv run --group codespell codespell --toml pyproject.toml
|
||||
@echo "✅ Spell check complete"
|
||||
|
||||
## spell_fix: Run codespell on the project and fix the errors.
|
||||
spell_fix:
|
||||
@echo "✏️ Fixing spelling errors across project..."
|
||||
uv run --group codespell codespell --toml pyproject.toml -w
|
||||
@echo "✅ Spelling errors fixed"
|
||||
|
||||
######################
|
||||
# LINTING AND FORMATTING
|
||||
######################
|
||||
@@ -100,7 +88,7 @@ lint lint_package lint_tests:
|
||||
uv run --group lint ruff check docs cookbook
|
||||
uv run --group lint ruff format docs cookbook cookbook --diff
|
||||
git --no-pager grep 'from langchain import' docs cookbook | grep -vE 'from langchain import (hub)' && echo "Error: no importing langchain from root in docs, except for hub" && exit 1 || exit 0
|
||||
|
||||
|
||||
git --no-pager grep 'api.python.langchain.com' -- docs/docs ':!docs/docs/additional_resources/arxiv_references.mdx' ':!docs/docs/integrations/document_loaders/sitemap.ipynb' || exit 0 && \
|
||||
echo "Error: you should link python.langchain.com/api_reference, not api.python.langchain.com in the docs" && \
|
||||
exit 1
|
||||
|
||||
108
README.md
108
README.md
@@ -1,83 +1,75 @@
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: light)" srcset="docs/static/img/logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: dark)" srcset="docs/static/img/logo-light.svg">
|
||||
<img alt="LangChain Logo" src="docs/static/img/logo-dark.svg" width="80%">
|
||||
</picture>
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: light)" srcset="docs/static/img/logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: dark)" srcset="docs/static/img/logo-light.svg">
|
||||
<img alt="LangChain Logo" src="docs/static/img/logo-dark.svg" width="80%">
|
||||
</picture>
|
||||
</p>
|
||||
|
||||
<div>
|
||||
<br>
|
||||
</div>
|
||||
<p align="center">
|
||||
The platform for reliable agents.
|
||||
</p>
|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://pypistats.org/packages/langchain-core)
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
[<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://codspeed.io/langchain-ai/langchain)
|
||||
[](https://twitter.com/langchainai)
|
||||
<p align="center">
|
||||
<a href="https://opensource.org/licenses/MIT" target="_blank">
|
||||
<img src="https://img.shields.io/pypi/l/langchain-core?style=flat-square" alt="PyPI - License">
|
||||
</a>
|
||||
<a href="https://pypistats.org/packages/langchain-core" target="_blank">
|
||||
<img src="https://img.shields.io/pepy/dt/langchain" alt="PyPI - Downloads">
|
||||
</a>
|
||||
<a href="https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain" target="_blank">
|
||||
<img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode&style=flat-square" alt="Open in Dev Containers">
|
||||
</a>
|
||||
<a href="https://codespaces.new/langchain-ai/langchain" target="_blank">
|
||||
<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">
|
||||
</a>
|
||||
<a href="https://codspeed.io/langchain-ai/langchain" target="_blank">
|
||||
<img src="https://img.shields.io/endpoint?url=https://codspeed.io/badge.json" alt="CodSpeed Badge">
|
||||
</a>
|
||||
<a href="https://twitter.com/langchainai" target="_blank">
|
||||
<img src="https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI" alt="Twitter / X">
|
||||
</a>
|
||||
</p>
|
||||
|
||||
> [!NOTE]
|
||||
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
|
||||
LangChain is a framework for building LLM-powered applications. It helps you chain
|
||||
together interoperable components and third-party integrations to simplify AI
|
||||
application development — all while future-proofing decisions as the underlying
|
||||
technology evolves.
|
||||
LangChain is a framework for building LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development — all while future-proofing decisions as the underlying technology evolves.
|
||||
|
||||
```bash
|
||||
pip install -U langchain
|
||||
```
|
||||
|
||||
To learn more about LangChain, check out
|
||||
[the docs](https://python.langchain.com/docs/introduction/). If you’re looking for more
|
||||
advanced customization or agent orchestration, check out
|
||||
[LangGraph](https://langchain-ai.github.io/langgraph/), our framework for building
|
||||
controllable agent workflows.
|
||||
---
|
||||
|
||||
**Documentation**: To learn more about LangChain, check out [the docs](https://python.langchain.com/docs/introduction/).
|
||||
|
||||
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://langchain-ai.github.io/langgraph/), our framework for building controllable agent workflows.
|
||||
|
||||
> [!NOTE]
|
||||
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
|
||||
## Why use LangChain?
|
||||
|
||||
LangChain helps developers build applications powered by LLMs through a standard
|
||||
interface for models, embeddings, vector stores, and more.
|
||||
LangChain helps developers build applications powered by LLMs through a standard interface for models, embeddings, vector stores, and more.
|
||||
|
||||
Use LangChain for:
|
||||
|
||||
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and
|
||||
external/internal systems, drawing from LangChain’s vast library of integrations with
|
||||
model providers, tools, vector stores, retrievers, and more.
|
||||
- **Model interoperability**. Swap models in and out as your engineering team
|
||||
experiments to find the best choice for your application’s needs. As the industry
|
||||
frontier evolves, adapt quickly — LangChain’s abstractions keep you moving without
|
||||
losing momentum.
|
||||
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and external/internal systems, drawing from LangChain’s vast library of integrations with model providers, tools, vector stores, retrievers, and more.
|
||||
- **Model interoperability**. Swap models in and out as your engineering team experiments to find the best choice for your application’s needs. As the industry frontier evolves, adapt quickly — LangChain’s abstractions keep you moving without losing momentum.
|
||||
|
||||
## LangChain’s ecosystem
|
||||
|
||||
While the LangChain framework can be used standalone, it also integrates seamlessly
|
||||
with any LangChain product, giving developers a full suite of tools when building LLM
|
||||
applications.
|
||||
While the LangChain framework can be used standalone, it also integrates seamlessly with any LangChain product, giving developers a full suite of tools when building LLM applications.
|
||||
|
||||
To improve your LLM application development, pair LangChain with:
|
||||
|
||||
- [LangSmith](https://www.langchain.com/langsmith) - Helpful for agent evals and
|
||||
observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain
|
||||
visibility in production, and improve performance over time.
|
||||
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can
|
||||
reliably handle complex tasks with LangGraph, our low-level agent orchestration
|
||||
framework. LangGraph offers customizable architecture, long-term memory, and
|
||||
human-in-the-loop workflows — and is trusted in production by companies like LinkedIn,
|
||||
Uber, Klarna, and GitLab.
|
||||
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy
|
||||
and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across
|
||||
teams — and iterate quickly with visual prototyping in
|
||||
[LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
|
||||
- [LangSmith](https://www.langchain.com/langsmith) - Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
|
||||
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows — and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
|
||||
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams — and iterate quickly with visual prototyping in [LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
|
||||
|
||||
## Additional resources
|
||||
|
||||
- [Tutorials](https://python.langchain.com/docs/tutorials/): Simple walkthroughs with
|
||||
guided examples on getting started with LangChain.
|
||||
- [How-to Guides](https://python.langchain.com/docs/how_to/): Quick, actionable code
|
||||
snippets for topics such as tool calling, RAG use cases, and more.
|
||||
- [Conceptual Guides](https://python.langchain.com/docs/concepts/): Explanations of key
|
||||
concepts behind the LangChain framework.
|
||||
- [Tutorials](https://python.langchain.com/docs/tutorials/): Simple walkthroughs with guided examples on getting started with LangChain.
|
||||
- [How-to Guides](https://python.langchain.com/docs/how_to/): Quick, actionable code snippets for topics such as tool calling, RAG use cases, and more.
|
||||
- [Conceptual Guides](https://python.langchain.com/docs/concepts/): Explanations of key concepts behind the LangChain framework.
|
||||
- [LangChain Forum](https://forum.langchain.com/): Connect with the community and share all of your technical questions, ideas, and feedback.
|
||||
- [API Reference](https://python.langchain.com/api_reference/): Detailed reference on
|
||||
navigating base packages and integrations for LangChain.
|
||||
- [API Reference](https://python.langchain.com/api_reference/): Detailed reference on navigating base packages and integrations for LangChain.
|
||||
- [Chat LangChain](https://chat.langchain.com/): Ask questions & chat with our documentation.
|
||||
|
||||
10
SECURITY.md
10
SECURITY.md
@@ -22,9 +22,7 @@ Example scenarios with mitigation strategies:
|
||||
* A user may ask an agent with write access to an external API to write malicious data to the API, or delete data from that API. To mitigate, give the agent read-only API keys, or limit it to only use endpoints that are already resistant to such misuse.
|
||||
* A user may ask an agent with access to a database to drop a table or mutate the schema. To mitigate, scope the credentials to only the tables that the agent needs to access and consider issuing READ-ONLY credentials.
|
||||
|
||||
If you're building applications that access external resources like file systems, APIs
|
||||
or databases, consider speaking with your company's security team to determine how to best
|
||||
design and secure your applications.
|
||||
If you're building applications that access external resources like file systems, APIs or databases, consider speaking with your company's security team to determine how to best design and secure your applications.
|
||||
|
||||
## Reporting OSS Vulnerabilities
|
||||
|
||||
@@ -37,10 +35,8 @@ open source projects at [huntr](https://huntr.com/bounties/disclose/?target=http
|
||||
Before reporting a vulnerability, please review:
|
||||
|
||||
1) In-Scope Targets and Out-of-Scope Targets below.
|
||||
2) The [langchain-ai/langchain](https://python.langchain.com/docs/contributing/repo_structure) monorepo structure.
|
||||
3) The [Best Practices](#best-practices) above to
|
||||
understand what we consider to be a security vulnerability vs. developer
|
||||
responsibility.
|
||||
2) The [langchain-ai/langchain](https://docs.langchain.com/oss/python/contributing/code#supporting-packages) monorepo structure.
|
||||
3) The [Best Practices](#best-practices) above to understand what we consider to be a security vulnerability vs. developer responsibility.
|
||||
|
||||
### In-Scope Targets
|
||||
|
||||
|
||||
@@ -47,10 +47,12 @@
|
||||
"source": [
|
||||
"### Prerequisites\n",
|
||||
"\n",
|
||||
"Please install the Oracle Database [python-oracledb driver](https://pypi.org/project/oracledb/) to use LangChain with Oracle AI Vector Search:\n",
|
||||
"You'll need to install `langchain-oracledb` with `python -m pip install -U langchain-oracledb` to use this integration.\n",
|
||||
"\n",
|
||||
"The `python-oracledb` driver is installed automatically as a dependency of langchain-oracledb.\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"$ python -m pip install --upgrade oracledb\n",
|
||||
"$ python -m pip install -U langchain-oracledb\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
@@ -217,7 +219,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_oracledb.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"\n",
|
||||
"# please update with your related information\n",
|
||||
"# make sure that you have onnx file in the system\n",
|
||||
@@ -296,7 +298,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.oracleai import OracleDocLoader\n",
|
||||
"from langchain_oracledb.document_loaders.oracleai import OracleDocLoader\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# loading from Oracle Database table\n",
|
||||
@@ -354,7 +356,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_oracledb.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# using 'database' provider\n",
|
||||
@@ -395,7 +397,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.oracleai import OracleTextSplitter\n",
|
||||
"from langchain_oracledb.document_loaders.oracleai import OracleTextSplitter\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# split by default parameters\n",
|
||||
@@ -452,7 +454,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_oracledb.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# using ONNX model loaded to Oracle Database\n",
|
||||
@@ -498,14 +500,14 @@
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"import oracledb\n",
|
||||
"from langchain_community.document_loaders.oracleai import (\n",
|
||||
"from langchain_oracledb.document_loaders.oracleai import (\n",
|
||||
" OracleDocLoader,\n",
|
||||
" OracleTextSplitter,\n",
|
||||
")\n",
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_community.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_community.vectorstores import oraclevs\n",
|
||||
"from langchain_community.vectorstores.oraclevs import OracleVS\n",
|
||||
"from langchain_oracledb.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_oracledb.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_oracledb.vectorstores import oraclevs\n",
|
||||
"from langchain_oracledb.vectorstores.oraclevs import OracleVS\n",
|
||||
"from langchain_community.vectorstores.utils import DistanceStrategy\n",
|
||||
"from langchain_core.documents import Document"
|
||||
]
|
||||
@@ -677,19 +679,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"What is Oracle AI Vector Store?\"\n",
|
||||
"filter = {\"document_id\": [\"1\"]}\n",
|
||||
"db_filter = {\"document_id\": \"1\"}\n",
|
||||
"\n",
|
||||
"# Similarity search without a filter\n",
|
||||
"print(vectorstore.similarity_search(query, 1))\n",
|
||||
"\n",
|
||||
"# Similarity search with a filter\n",
|
||||
"print(vectorstore.similarity_search(query, 1, filter=filter))\n",
|
||||
"print(vectorstore.similarity_search(query, 1, filter=db_filter))\n",
|
||||
"\n",
|
||||
"# Similarity search with relevance score\n",
|
||||
"print(vectorstore.similarity_search_with_score(query, 1))\n",
|
||||
"\n",
|
||||
"# Similarity search with relevance score with filter\n",
|
||||
"print(vectorstore.similarity_search_with_score(query, 1, filter=filter))\n",
|
||||
"print(vectorstore.similarity_search_with_score(query, 1, filter=db_filter))\n",
|
||||
"\n",
|
||||
"# Max marginal relevance search\n",
|
||||
"print(vectorstore.max_marginal_relevance_search(query, 1, fetch_k=20, lambda_mult=0.5))\n",
|
||||
@@ -697,7 +699,7 @@
|
||||
"# Max marginal relevance search with filter\n",
|
||||
"print(\n",
|
||||
" vectorstore.max_marginal_relevance_search(\n",
|
||||
" query, 1, fetch_k=20, lambda_mult=0.5, filter=filter\n",
|
||||
" query, 1, fetch_k=20, lambda_mult=0.5, filter=db_filter\n",
|
||||
" )\n",
|
||||
")"
|
||||
]
|
||||
|
||||
153
docs/README.md
153
docs/README.md
@@ -1,3 +1,154 @@
|
||||
# LangChain Documentation
|
||||
|
||||
For more information on contributing to our documentation, see the [Documentation Contributing Guide](https://python.langchain.com/docs/contributing/how_to/documentation)
|
||||
For more information on contributing to our documentation, see the [Documentation Contributing Guide](https://python.langchain.com/docs/contributing/how_to/documentation).
|
||||
|
||||
## Structure
|
||||
|
||||
The primary documentation is located in the `docs/` directory. This directory contains
|
||||
both the source files for the main documentation as well as the API reference doc
|
||||
build process.
|
||||
|
||||
### API Reference
|
||||
|
||||
API reference documentation is located in `docs/api_reference/` and is generated from
|
||||
the codebase using Sphinx.
|
||||
|
||||
The API reference have additional build steps that differ from the main documentation.
|
||||
|
||||
#### Deployment Process
|
||||
|
||||
Currently, the build process roughly follows these steps:
|
||||
|
||||
1. Using the `api_doc_build.yml` GitHub workflow, the API reference docs are
|
||||
[built](#build-technical-details) and copied to the `langchain-api-docs-html`
|
||||
repository. This workflow is triggered either (1) on a cron routine interval or (2)
|
||||
triggered manually.
|
||||
|
||||
In short, the workflow extracts all `langchain-ai`-org-owned repos defined in
|
||||
`langchain/libs/packages.yml`, clones them locally (in the workflow runner's file
|
||||
system), and then builds the API reference RST files (using `create_api_rst.py`).
|
||||
Following post-processing, the HTML files are pushed to the
|
||||
`langchain-api-docs-html` repository.
|
||||
2. After the HTML files are in the `langchain-api-docs-html` repository, they are **not**
|
||||
automatically published to the [live docs site](https://python.langchain.com/api_reference/).
|
||||
|
||||
The docs site is served by Vercel. The Vercel deployment process copies the HTML
|
||||
files from the `langchain-api-docs-html` repository and deploys them to the live
|
||||
site. Deployments are triggered on each new commit pushed to `v0.3`.
|
||||
|
||||
#### Build Technical Details
|
||||
|
||||
The build process creates a virtual monorepo by syncing multiple repositories, then generates comprehensive API documentation:
|
||||
|
||||
1. **Repository Sync Phase:**
|
||||
- `.github/scripts/prep_api_docs_build.py` - Clones external partner repos and organizes them into the `libs/partners/` structure to create a virtual monorepo for documentation building
|
||||
|
||||
2. **RST Generation Phase:**
|
||||
- `docs/api_reference/create_api_rst.py` - Main script that **generates RST files** from Python source code
|
||||
- Scans `libs/` directories and extracts classes/functions from each module (using `inspect`)
|
||||
- Creates `.rst` files using specialized templates for different object types
|
||||
- Templates in `docs/api_reference/templates/` (`pydantic.rst`, `runnable_pydantic.rst`, etc.)
|
||||
|
||||
3. **HTML Build Phase:**
|
||||
- Sphinx-based, uses `sphinx.ext.autodoc` (auto-extracts docstrings from the codebase)
|
||||
- `docs/api_reference/conf.py` (sphinx config) configures `autodoc` and other extensions
|
||||
- `sphinx-build` processes the generated `.rst` files into HTML using autodoc
|
||||
- `docs/api_reference/scripts/custom_formatter.py` - Post-processes the generated HTML
|
||||
- Copies `reference.html` to `index.html` to create the default landing page (artifact? might not need to do this - just put everyhing in index directly?)
|
||||
|
||||
4. **Deployment:**
|
||||
- `.github/workflows/api_doc_build.yml` - Workflow responsible for orchestrating the entire build and deployment process
|
||||
- Built HTML files are committed and pushed to the `langchain-api-docs-html` repository
|
||||
|
||||
#### Local Build
|
||||
|
||||
For local development and testing of API documentation, use the Makefile targets in the repository root:
|
||||
|
||||
```bash
|
||||
# Full build
|
||||
make api_docs_build
|
||||
```
|
||||
|
||||
Like the CI process, this target:
|
||||
|
||||
- Installs the CLI package in editable mode
|
||||
- Generates RST files for all packages using `create_api_rst.py`
|
||||
- Builds HTML documentation with Sphinx
|
||||
- Post-processes the HTML with `custom_formatter.py`
|
||||
- Opens the built documentation (`reference.html`) in your browser
|
||||
|
||||
**Quick Preview:**
|
||||
|
||||
```bash
|
||||
make api_docs_quick_preview API_PKG=openai
|
||||
```
|
||||
|
||||
- Generates RST files for only the specified package (default: `text-splitters`)
|
||||
- Builds and post-processes HTML documentation
|
||||
- Opens the preview in your browser
|
||||
|
||||
Both targets automatically clean previous builds and handle the complete build pipeline locally, mirroring the CI process but for faster iteration during development.
|
||||
|
||||
#### Documentation Standards
|
||||
|
||||
**Docstring Format:**
|
||||
The API reference uses **Google-style docstrings** with reStructuredText markup. Sphinx processes these through the `sphinx.ext.napoleon` extension to generate documentation.
|
||||
|
||||
**Required format:**
|
||||
|
||||
```python
|
||||
def example_function(param1: str, param2: int = 5) -> bool:
|
||||
"""Brief description of the function.
|
||||
|
||||
Longer description can go here. Use reStructuredText syntax for
|
||||
rich formatting like **bold** and *italic*.
|
||||
|
||||
TODO: code: figure out what works?
|
||||
|
||||
Args:
|
||||
param1: Description of the first parameter.
|
||||
param2: Description of the second parameter with default value.
|
||||
|
||||
Returns:
|
||||
Description of the return value.
|
||||
|
||||
Raises:
|
||||
ValueError: When param1 is empty.
|
||||
TypeError: When param2 is not an integer.
|
||||
|
||||
.. warning::
|
||||
This function is experimental and may change.
|
||||
"""
|
||||
```
|
||||
|
||||
**Special Markers:**
|
||||
|
||||
- `:private:` in docstrings excludes members from documentation
|
||||
- `.. warning::` adds warning admonitions
|
||||
|
||||
#### Site Styling and Assets
|
||||
|
||||
**Theme and Styling:**
|
||||
|
||||
- Uses [**PyData Sphinx Theme**](https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html) (`pydata_sphinx_theme`)
|
||||
- Custom CSS in `docs/api_reference/_static/css/custom.css` with LangChain-specific:
|
||||
- Color palette
|
||||
- Inter font family
|
||||
- Custom navbar height and sidebar formatting
|
||||
- Deprecated/beta feature styling
|
||||
|
||||
**Static Assets:**
|
||||
|
||||
- Logos: `_static/wordmark-api.svg` (light) and `_static/wordmark-api-dark.svg` (dark mode)
|
||||
- Favicon: `_static/img/brand/favicon.png`
|
||||
- Custom CSS: `_static/css/custom.css`
|
||||
|
||||
**Post-Processing:**
|
||||
|
||||
- `scripts/custom_formatter.py` cleans up generated HTML:
|
||||
- Shortens TOC entries from `ClassName.method()` to `method()`
|
||||
|
||||
**Analytics and Integration:**
|
||||
|
||||
- GitHub integration (source links, edit buttons)
|
||||
- Example backlinking through custom `ExampleLinksDirective`
|
||||
|
||||
@@ -50,7 +50,7 @@ class GalleryGridDirective(SphinxDirective):
|
||||
individual cards + ["image", "header", "content", "title"].
|
||||
|
||||
Danger:
|
||||
This directive can only be used in the context of a Myst documentation page as
|
||||
This directive can only be used in the context of a MyST documentation page as
|
||||
the templates use Markdown flavored formatting.
|
||||
"""
|
||||
|
||||
|
||||
@@ -394,3 +394,21 @@ p {
|
||||
font-size: 0.9rem;
|
||||
margin-bottom: 0.5rem;
|
||||
}
|
||||
|
||||
/* Deprecation announcement banner styling */
|
||||
.bd-header-announcement {
|
||||
background-color: #790000 !important;
|
||||
color: white !important;
|
||||
font-weight: 600;
|
||||
padding: 0.75rem 1rem;
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
.bd-header-announcement a {
|
||||
color: white !important;
|
||||
text-decoration: underline !important;
|
||||
}
|
||||
|
||||
.bd-header-announcement a:hover {
|
||||
color: #f0f0f0 !important;
|
||||
}
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
"""Configuration file for the Sphinx documentation builder."""
|
||||
|
||||
# Configuration file for the Sphinx documentation builder.
|
||||
#
|
||||
# This file only contains a selection of the most common options. For a full
|
||||
# list see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
@@ -20,16 +18,18 @@ from docutils.parsers.rst.directives.admonitions import BaseAdmonition
|
||||
from docutils.statemachine import StringList
|
||||
from sphinx.util.docutils import SphinxDirective
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
|
||||
# Add paths to Python import system so Sphinx can import LangChain modules
|
||||
# This allows autodoc to introspect and document the actual code
|
||||
_DIR = Path(__file__).parent.absolute()
|
||||
sys.path.insert(0, os.path.abspath("."))
|
||||
sys.path.insert(0, os.path.abspath("../../libs/langchain"))
|
||||
sys.path.insert(0, os.path.abspath(".")) # Current directory
|
||||
sys.path.insert(0, os.path.abspath("../../libs/langchain")) # LangChain main package
|
||||
|
||||
# Load package metadata from pyproject.toml (for version info, etc.)
|
||||
with (_DIR.parents[1] / "libs" / "langchain" / "pyproject.toml").open("r") as f:
|
||||
data = toml.load(f)
|
||||
|
||||
# Load mapping of classes to example notebooks for backlinking
|
||||
# This file is generated by scripts that scan our tutorial/example notebooks
|
||||
with (_DIR / "guide_imports.json").open("r") as f:
|
||||
imported_classes = json.load(f)
|
||||
|
||||
@@ -86,6 +86,7 @@ class Beta(BaseAdmonition):
|
||||
|
||||
|
||||
def setup(app):
|
||||
"""Register custom directives and hooks with Sphinx."""
|
||||
app.add_directive("example_links", ExampleLinksDirective)
|
||||
app.add_directive("beta", Beta)
|
||||
app.connect("autodoc-skip-member", skip_private_members)
|
||||
@@ -125,7 +126,7 @@ extensions = [
|
||||
"sphinx.ext.viewcode",
|
||||
"sphinxcontrib.autodoc_pydantic",
|
||||
"IPython.sphinxext.ipython_console_highlighting",
|
||||
"myst_parser",
|
||||
"myst_parser", # For generated index.md and reference.md
|
||||
"_extensions.gallery_directive",
|
||||
"sphinx_design",
|
||||
"sphinx_copybutton",
|
||||
@@ -217,7 +218,7 @@ html_theme_options = {
|
||||
# # Use :html_theme.sidebar_secondary.remove: for file-wide removal
|
||||
# "secondary_sidebar_items": {"**": ["page-toc", "sourcelink"]},
|
||||
# "show_version_warning_banner": True,
|
||||
# "announcement": None,
|
||||
"announcement": "⚠️ THESE DOCS ARE OUTDATED. <a href='https://docs.langchain.com/oss/python/langchain/overview' target='_blank' style='color: white; text-decoration: underline;'>Visit the new v1.0 docs</a> and new <a href='https://reference.langchain.com/python' target='_blank' style='color: white; text-decoration: underline;'>reference docs</a>",
|
||||
"icon_links": [
|
||||
{
|
||||
# Label for this link
|
||||
@@ -258,6 +259,7 @@ html_static_path = ["_static"]
|
||||
html_css_files = ["css/custom.css"]
|
||||
html_use_index = False
|
||||
|
||||
# Only used on the generated index.md and reference.md files
|
||||
myst_enable_extensions = ["colon_fence"]
|
||||
|
||||
# generate autosummary even if no references
|
||||
@@ -268,11 +270,11 @@ autosummary_ignore_module_all = False
|
||||
html_copy_source = False
|
||||
html_show_sourcelink = False
|
||||
|
||||
googleanalytics_id = "G-9B66JQQH2F"
|
||||
|
||||
# Set canonical URL from the Read the Docs Domain
|
||||
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "")
|
||||
|
||||
googleanalytics_id = "G-9B66JQQH2F"
|
||||
|
||||
# Tell Jinja2 templates the build is running on Read the Docs
|
||||
if os.environ.get("READTHEDOCS", "") == "True":
|
||||
html_context["READTHEDOCS"] = True
|
||||
|
||||
@@ -1,4 +1,41 @@
|
||||
"""Script for auto-generating api_reference.rst."""
|
||||
"""Auto-generate API reference documentation (RST files) for LangChain packages.
|
||||
|
||||
* Automatically discovers all packages in `libs/` and `libs/partners/`
|
||||
* For each package, recursively walks the filesystem to:
|
||||
* Load Python modules using importlib
|
||||
* Extract classes and functions using Python's inspect module
|
||||
* Classify objects by type (Pydantic models, Runnables, TypedDicts, etc.)
|
||||
* Filter out private members (names starting with '_') and deprecated items
|
||||
* Creates structured RST files with:
|
||||
* Module-level documentation pages with autosummary tables
|
||||
* Different Sphinx templates based on object type (see templates/ directory)
|
||||
* Proper cross-references and navigation structure
|
||||
* Separation of current vs deprecated APIs
|
||||
* Generates a directory tree like:
|
||||
```
|
||||
docs/api_reference/
|
||||
├── index.md # Main landing page with package gallery
|
||||
├── reference.md # Package overview and navigation
|
||||
├── core/ # langchain-core documentation
|
||||
│ ├── index.rst
|
||||
│ ├── callbacks.rst
|
||||
│ └── ...
|
||||
├── langchain/ # langchain documentation
|
||||
│ ├── index.rst
|
||||
│ └── ...
|
||||
└── partners/ # Integration packages
|
||||
├── openai/
|
||||
├── anthropic/
|
||||
└── ...
|
||||
```
|
||||
|
||||
## Key Features
|
||||
|
||||
* Respects privacy markers:
|
||||
* Modules with `:private:` in docstring are excluded entirely
|
||||
* Objects with `:private:` in docstring are filtered out
|
||||
* Names starting with '_' are treated as private
|
||||
"""
|
||||
|
||||
import importlib
|
||||
import inspect
|
||||
@@ -177,12 +214,13 @@ def _load_package_modules(
|
||||
Traversal based on the file system makes it easy to determine which
|
||||
of the modules/packages are part of the package vs. 3rd party or built-in.
|
||||
|
||||
Parameters:
|
||||
package_directory (Union[str, Path]): Path to the package directory.
|
||||
submodule (Optional[str]): Optional name of submodule to load.
|
||||
Args:
|
||||
package_directory: Path to the package directory.
|
||||
submodule: Optional name of submodule to load.
|
||||
|
||||
Returns:
|
||||
Dict[str, ModuleMembers]: A dictionary where keys are module names and values are ModuleMembers objects.
|
||||
A dictionary where keys are module names and values are `ModuleMembers`
|
||||
objects.
|
||||
"""
|
||||
package_path = (
|
||||
Path(package_directory)
|
||||
@@ -199,12 +237,13 @@ def _load_package_modules(
|
||||
package_path = package_path / submodule
|
||||
|
||||
for file_path in package_path.rglob("*.py"):
|
||||
# Skip private modules
|
||||
if file_path.name.startswith("_"):
|
||||
continue
|
||||
|
||||
# Skip integration_template and project_template directories (for libs/cli)
|
||||
if "integration_template" in file_path.parts:
|
||||
continue
|
||||
|
||||
if "project_template" in file_path.parts:
|
||||
continue
|
||||
|
||||
@@ -215,8 +254,13 @@ def _load_package_modules(
|
||||
continue
|
||||
|
||||
# Get the full namespace of the module
|
||||
# Example: langchain_core/schema/output_parsers.py ->
|
||||
# langchain_core.schema.output_parsers
|
||||
namespace = str(relative_module_name).replace(".py", "").replace("/", ".")
|
||||
|
||||
# Keep only the top level namespace
|
||||
# Example: langchain_core.schema.output_parsers ->
|
||||
# langchain_core
|
||||
top_namespace = namespace.split(".")[0]
|
||||
|
||||
try:
|
||||
@@ -253,16 +297,16 @@ def _construct_doc(
|
||||
members_by_namespace: Dict[str, ModuleMembers],
|
||||
package_version: str,
|
||||
) -> List[typing.Tuple[str, str]]:
|
||||
"""Construct the contents of the reference.rst file for the given package.
|
||||
"""Construct the contents of the `reference.rst` for the given package.
|
||||
|
||||
Args:
|
||||
package_namespace: The package top level namespace
|
||||
members_by_namespace: The members of the package, dict organized by top level
|
||||
module contains a list of classes and functions
|
||||
inside of the top level namespace.
|
||||
members_by_namespace: The members of the package dict organized by top level.
|
||||
Module contains a list of classes and functions inside of the top level
|
||||
namespace.
|
||||
|
||||
Returns:
|
||||
The contents of the reference.rst file.
|
||||
The string contents of the reference.rst file.
|
||||
"""
|
||||
docs = []
|
||||
index_doc = f"""\
|
||||
@@ -465,10 +509,13 @@ def _construct_doc(
|
||||
|
||||
|
||||
def _build_rst_file(package_name: str = "langchain") -> None:
|
||||
"""Create a rst file for building of documentation.
|
||||
"""Create a rst file for a given package.
|
||||
|
||||
Args:
|
||||
package_name: Can be either "langchain" or "core"
|
||||
package_name: Name of the package to create the rst file for.
|
||||
|
||||
Returns:
|
||||
The rst file is created in the same directory as this script.
|
||||
"""
|
||||
package_dir = _package_dir(package_name)
|
||||
package_members = _load_package_modules(package_dir)
|
||||
@@ -500,7 +547,10 @@ def _package_namespace(package_name: str) -> str:
|
||||
|
||||
|
||||
def _package_dir(package_name: str = "langchain") -> Path:
|
||||
"""Return the path to the directory containing the documentation."""
|
||||
"""Return the path to the directory containing the documentation.
|
||||
|
||||
Attempts to find the package in `libs/` first, then `libs/partners/`.
|
||||
"""
|
||||
if (ROOT_DIR / "libs" / package_name).exists():
|
||||
return ROOT_DIR / "libs" / package_name / _package_namespace(package_name)
|
||||
else:
|
||||
@@ -514,7 +564,7 @@ def _package_dir(package_name: str = "langchain") -> Path:
|
||||
|
||||
|
||||
def _get_package_version(package_dir: Path) -> str:
|
||||
"""Return the version of the package."""
|
||||
"""Return the version of the package by reading the `pyproject.toml`."""
|
||||
try:
|
||||
with open(package_dir.parent / "pyproject.toml", "r") as f:
|
||||
pyproject = toml.load(f)
|
||||
@@ -540,6 +590,15 @@ def _out_file_path(package_name: str) -> Path:
|
||||
|
||||
|
||||
def _build_index(dirs: List[str]) -> None:
|
||||
"""Build the index.md file for the API reference.
|
||||
|
||||
Args:
|
||||
dirs: List of package directories to include in the index.
|
||||
|
||||
Returns:
|
||||
The index.md file is created in the same directory as this script.
|
||||
"""
|
||||
|
||||
custom_names = {
|
||||
"aws": "AWS",
|
||||
"ai21": "AI21",
|
||||
@@ -556,12 +615,17 @@ def _build_index(dirs: List[str]) -> None:
|
||||
integrations = sorted(dir_ for dir_ in dirs if dir_ not in main_)
|
||||
doc = """# LangChain Python API Reference
|
||||
|
||||
Welcome to the LangChain Python API reference. This is a reference for all
|
||||
Welcome to the LangChain v0.3 Python API reference. This is a reference for all
|
||||
`langchain-x` packages.
|
||||
|
||||
For user guides see [https://python.langchain.com](https://python.langchain.com).
|
||||
```{danger}
|
||||
These pages refer to the the v0.3 versions of LangChain packages and integrations. To
|
||||
visit the documentation for the latest versions of LangChain, visit [https://docs.langchain.com](https://docs.langchain.com)
|
||||
and [https://reference.langchain.com/python/](https://reference.langchain.com/python/) (for references.)
|
||||
|
||||
For the legacy API reference (<v0.3) hosted on ReadTheDocs see [https://api.python.langchain.com/](https://api.python.langchain.com/).
|
||||
```
|
||||
|
||||
For the legacy API reference hosted on ReadTheDocs see [https://api.python.langchain.com/](https://api.python.langchain.com/).
|
||||
"""
|
||||
|
||||
if main_:
|
||||
@@ -647,9 +711,14 @@ See the full list of integrations in the Section Navigation.
|
||||
{integration_tree}
|
||||
```
|
||||
"""
|
||||
# Write the reference.md file
|
||||
with open(HERE / "reference.md", "w") as f:
|
||||
f.write(doc)
|
||||
|
||||
# Write a dummy index.md file that points to reference.md
|
||||
# Sphinx requires an index file to exist in each doc directory
|
||||
# TODO: investigate why we don't just put everything in index.md directly?
|
||||
# if it works it works I guess
|
||||
dummy_index = """\
|
||||
# API reference
|
||||
|
||||
@@ -665,8 +734,11 @@ Reference<reference>
|
||||
|
||||
|
||||
def main(dirs: Optional[list] = None) -> None:
|
||||
"""Generate the api_reference.rst file for each package."""
|
||||
print("Starting to build API reference files.")
|
||||
"""Generate the `api_reference.rst` file for each package.
|
||||
|
||||
If dirs is None, generate for all packages in `libs/` and `libs/partners/`.
|
||||
Otherwise generate only for the specified package(s).
|
||||
"""
|
||||
if not dirs:
|
||||
dirs = [
|
||||
p.parent.name
|
||||
@@ -675,18 +747,17 @@ def main(dirs: Optional[list] = None) -> None:
|
||||
if p.parent.parent.name in ("libs", "partners")
|
||||
]
|
||||
for dir_ in sorted(dirs):
|
||||
# Skip any hidden directories
|
||||
# Skip any hidden directories prefixed with a dot
|
||||
# Some of these could be present by mistake in the code base
|
||||
# e.g., .pytest_cache from running tests from the wrong location.
|
||||
# (e.g., .pytest_cache from running tests from the wrong location)
|
||||
if dir_.startswith("."):
|
||||
print("Skipping dir:", dir_)
|
||||
continue
|
||||
else:
|
||||
print("Building package:", dir_)
|
||||
print("Building:", dir_)
|
||||
_build_rst_file(package_name=dir_)
|
||||
|
||||
_build_index(sorted(dirs))
|
||||
print("API reference files built.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
autodoc_pydantic>=2,<3
|
||||
sphinx>=8,<9
|
||||
myst-parser>=3
|
||||
sphinx-autobuild>=2024
|
||||
pydata-sphinx-theme>=0.15
|
||||
toml>=0.10.2
|
||||
myst-nb>=1.1.1
|
||||
pyyaml
|
||||
sphinx-design
|
||||
sphinx-copybutton
|
||||
beautifulsoup4
|
||||
sphinxcontrib-googleanalytics
|
||||
pydata-sphinx-theme>=0.15
|
||||
myst-parser>=3
|
||||
myst-nb>=1.1.1
|
||||
toml>=0.10.2
|
||||
pyyaml
|
||||
beautifulsoup4
|
||||
|
||||
@@ -1,3 +1,10 @@
|
||||
"""Post-process generated HTML files to clean up table-of-contents headers.
|
||||
|
||||
Runs after Sphinx generates the API reference HTML. It finds TOC entries like
|
||||
"ClassName.method_name()" and shortens them to just "method_name()" for better
|
||||
readability in the sidebar navigation.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from glob import glob
|
||||
from pathlib import Path
|
||||
|
||||
@@ -1,3 +1,7 @@
|
||||
:::danger
|
||||
⚠️ THESE DOCS ARE OUTDATED. <a href='https://docs.langchain.com/oss/python/langchain/overview' target='_blank'>Visit the new v1.0 docs</a>
|
||||
:::
|
||||
|
||||
# Conceptual guide
|
||||
|
||||
This guide provides explanations of the key concepts behind the LangChain framework and AI applications more broadly.
|
||||
|
||||
@@ -189,40 +189,6 @@ This can be very helpful when you've made changes to only certain parts of the p
|
||||
|
||||
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
|
||||
|
||||
### Spellcheck
|
||||
|
||||
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
|
||||
Note that `codespell` finds common typos, so it could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
|
||||
|
||||
To check spelling for this project:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make spell_check
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
uv run --all-groups codespell --toml pyproject.toml
|
||||
```
|
||||
|
||||
To fix spelling in place:
|
||||
|
||||
```bash
|
||||
# If you have `make` installed:
|
||||
make spell_fix
|
||||
|
||||
# If you don't have `make` (Windows alternative):
|
||||
uv run --all-groups codespell --toml pyproject.toml -w
|
||||
```
|
||||
|
||||
If codespell is incorrectly flagging a word, you can skip spellcheck for that word by adding it to the codespell config in the `pyproject.toml` file.
|
||||
|
||||
```python
|
||||
[tool.codespell]
|
||||
...
|
||||
# Add here:
|
||||
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure'
|
||||
```
|
||||
|
||||
### Pre-commit
|
||||
|
||||
We use [pre-commit](https://pre-commit.com/) to ensure commits are formatted/linted.
|
||||
|
||||
@@ -3,6 +3,10 @@ sidebar_position: 0
|
||||
sidebar_class_name: hidden
|
||||
---
|
||||
|
||||
:::danger
|
||||
⚠️ THESE DOCS ARE OUTDATED. <a href='https://docs.langchain.com/oss/python/langchain/overview' target='_blank'>Visit the new v1.0 docs</a>
|
||||
:::
|
||||
|
||||
# How-to guides
|
||||
|
||||
Here you’ll find answers to "How do I….?" types of questions.
|
||||
@@ -72,7 +76,7 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
|
||||
|
||||
### Example selectors
|
||||
|
||||
[Example Selectors](/docs/concepts/example_selectors) are responsible for selecting the correct few shot examples to pass to the prompt.
|
||||
[Example Selectors](/docs/concepts/example_selectors) are responsible for selecting the correct few-shot examples to pass to the prompt.
|
||||
|
||||
- [How to: use example selectors](/docs/how_to/example_selectors)
|
||||
- [How to: select examples by length](/docs/how_to/example_selectors_length_based)
|
||||
@@ -168,7 +172,7 @@ See [supported integrations](/docs/integrations/vectorstores/) for details on ge
|
||||
|
||||
Indexing is the process of keeping your vectorstore in-sync with the underlying data source.
|
||||
|
||||
- [How to: reindex data to keep your vectorstore in sync with the underlying data source](/docs/how_to/indexing)
|
||||
- [How to: reindex data to keep your vectorstore in-sync with the underlying data source](/docs/how_to/indexing)
|
||||
|
||||
### Tools
|
||||
|
||||
|
||||
@@ -668,7 +668,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": null,
|
||||
"id": "df0370e3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -685,7 +685,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"structured_llm = llm.with_structured_output(None, method=\"json_mode\")\n",
|
||||
"structured_llm = llm.with_structured_output(None, method=\"json_schema\")\n",
|
||||
"\n",
|
||||
"structured_llm.invoke(\n",
|
||||
" \"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys\"\n",
|
||||
|
||||
@@ -39,6 +39,16 @@
|
||||
"/>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ecc06359",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"See also: [How to summarize through parallelization](/docs/how_to/summarize_map_reduce/) and\n",
|
||||
"[How to summarize through iterative refinement](/docs/how_to/summarize_refine/).\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
|
||||
288
docs/docs/integrations/chat/aimlapi.ipynb
Normal file
288
docs/docs/integrations/chat/aimlapi.ipynb
Normal file
@@ -0,0 +1,288 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fbeb3f1eb129d115",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: AI/ML API\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6051ba9cfc65a60a",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"# ChatAimlapi\n",
|
||||
"\n",
|
||||
"This page will help you get started with AI/ML API [chat models](/docs/concepts/chat_models.mdx). For detailed documentation of all ChatAimlapi features and configurations, head to the [API reference](https://docs.aimlapi.com/?utm_source=langchain&utm_medium=github&utm_campaign=integration).\n",
|
||||
"\n",
|
||||
"AI/ML API provides access to **300+ models** (Deepseek, Gemini, ChatGPT, etc.) via high-uptime and high-rate API."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "512f94fa4bea2628",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ChatAimlapi | langchain-aimlapi | ✅ | beta | ❌ |  |  |"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7163684608502d37",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"### Model features\n",
|
||||
"| Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |\n",
|
||||
"|:------------:|:-----------------:|:---------:|:-----------:|:-----------:|:-----------:|:---------------------:|:------------:|:-----------:|:--------:|\n",
|
||||
"| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bb9345d5b24a7741",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"To access AI/ML API models, sign up at [aimlapi.com](https://aimlapi.com/app/?utm_source=langchain&utm_medium=github&utm_campaign=integration), generate an API key, and set the `AIMLAPI_API_KEY` environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "b26280519672f194",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:16:58.837623Z",
|
||||
"start_time": "2025-08-07T07:16:55.346214Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if \"AIMLAPI_API_KEY\" not in os.environ:\n",
|
||||
" os.environ[\"AIMLAPI_API_KEY\"] = getpass.getpass(\"Enter your AI/ML API key: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fa131229e62dfd47",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"Install the `langchain-aimlapi` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "3777dc00d768299e",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:17:11.195741Z",
|
||||
"start_time": "2025-08-07T07:17:02.288142Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain-aimlapi"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d168108b0c4f9d7",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"Now we can instantiate the `ChatAimlapi` model and generate chat completions:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "f29131e65e47bd16",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:17:23.499746Z",
|
||||
"start_time": "2025-08-07T07:17:11.196747Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_aimlapi import ChatAimlapi\n",
|
||||
"\n",
|
||||
"llm = ChatAimlapi(\n",
|
||||
" model=\"meta-llama/Llama-3-70b-chat-hf\",\n",
|
||||
" temperature=0.7,\n",
|
||||
" max_tokens=512,\n",
|
||||
" timeout=30,\n",
|
||||
" max_retries=3,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "861b87289f8e146d",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"You can invoke the model with a list of messages:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "430b1cff2e6d77b4",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:17:30.586261Z",
|
||||
"start_time": "2025-08-07T07:17:29.074409Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"J'adore la programmation.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"messages = [\n",
|
||||
" (\"system\", \"You are a helpful assistant that translates English to French.\"),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"ai_msg = llm.invoke(messages)\n",
|
||||
"print(ai_msg.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5463797524a19b2e",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"We can chain the model with a prompt template as follows:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "bf6defc12a0c5d78",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:17:36.368436Z",
|
||||
"start_time": "2025-08-07T07:17:34.770581Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ich liebe das Programmieren.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | llm\n",
|
||||
"response = chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"print(response.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fcf0bf10a872355c",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ChatAimlapi features and configurations, visit the [API Reference](https://docs.aimlapi.com/?utm_source=langchain&utm_medium=github&utm_campaign=integration)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"This notebook provides a quick overview for getting started with Anthropic [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatAnthropic features and configurations head to the [API reference](https://python.langchain.com/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html).\n",
|
||||
"\n",
|
||||
"Anthropic has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the [Anthropic docs](https://docs.anthropic.com/en/docs/models-overview).\n",
|
||||
"Anthropic has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the [Anthropic docs](https://docs.anthropic.com/en/docs/about-claude/models/overview).\n",
|
||||
"\n",
|
||||
"\n",
|
||||
":::info AWS Bedrock and Google VertexAI\n",
|
||||
@@ -840,7 +840,7 @@
|
||||
"source": [
|
||||
"## Token-efficient tool use\n",
|
||||
"\n",
|
||||
"Anthropic supports a (beta) [token-efficient tool use](https://docs.anthropic.com/en/docs/build-with-claude/tool-use/token-efficient-tool-use) feature. To use it, specify the relevant beta-headers when instantiating the model."
|
||||
"Anthropic supports a (beta) [token-efficient tool use](https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/token-efficient-tool-use) feature. To use it, specify the relevant beta-headers when instantiating the model."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -1191,6 +1191,40 @@
|
||||
"response.content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "74247a07-b153-444f-9c56-77659aeefc88",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Context management\n",
|
||||
"\n",
|
||||
"Anthropic supports a context editing feature that will automatically manage the model's context window (e.g., by clearing tool results).\n",
|
||||
"\n",
|
||||
"See [Anthropic documentation](https://docs.claude.com/en/docs/build-with-claude/context-editing) for details and configuration options.\n",
|
||||
"\n",
|
||||
":::info\n",
|
||||
"Requires ``langchain-anthropic>=0.3.21``\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cbb79c5d-37b5-4212-b36f-f27366192cf9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"\n",
|
||||
"llm = ChatAnthropic(\n",
|
||||
" model=\"claude-sonnet-4-5-20250929\",\n",
|
||||
" betas=[\"context-management-2025-06-27\"],\n",
|
||||
" context_management={\"edits\": [{\"type\": \"clear_tool_uses_20250919\"}]},\n",
|
||||
")\n",
|
||||
"llm_with_tools = llm.bind_tools([{\"type\": \"web_search_20250305\", \"name\": \"web_search\"}])\n",
|
||||
"response = llm_with_tools.invoke(\"Search for recent developments in AI\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cbfec7a9-d9df-4d12-844e-d922456dd9bf",
|
||||
@@ -1198,7 +1232,7 @@
|
||||
"source": [
|
||||
"## Built-in tools\n",
|
||||
"\n",
|
||||
"Anthropic supports a variety of [built-in tools](https://docs.anthropic.com/en/docs/build-with-claude/tool-use/text-editor-tool), which can be bound to the model in the [usual way](/docs/how_to/tool_calling/). Claude will generate tool calls adhering to its internal schema for the tool:"
|
||||
"Anthropic supports a variety of [built-in tools](https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/text-editor-tool), which can be bound to the model in the [usual way](/docs/how_to/tool_calling/). Claude will generate tool calls adhering to its internal schema for the tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -1208,7 +1242,7 @@
|
||||
"source": [
|
||||
"### Web search\n",
|
||||
"\n",
|
||||
"Claude can use a [web search tool](https://docs.anthropic.com/en/docs/build-with-claude/tool-use/web-search-tool) to run searches and ground its responses with citations."
|
||||
"Claude can use a [web search tool](https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/web-search-tool) to run searches and ground its responses with citations."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -1457,6 +1491,38 @@
|
||||
"</details>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "29405da2-d2ef-415c-b674-6e29073cd05e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Memory tool\n",
|
||||
"\n",
|
||||
"Claude supports a memory tool for client-side storage and retrieval of context across conversational threads. See docs [here](https://docs.claude.com/en/docs/agents-and-tools/tool-use/memory-tool) for details.\n",
|
||||
"\n",
|
||||
":::info\n",
|
||||
"Requires ``langchain-anthropic>=0.3.21``\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bbd76eaa-041f-4fb8-8346-ca8fe0001c01",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"\n",
|
||||
"llm = ChatAnthropic(\n",
|
||||
" model=\"claude-sonnet-4-5-20250929\",\n",
|
||||
" betas=[\"context-management-2025-06-27\"],\n",
|
||||
")\n",
|
||||
"llm_with_tools = llm.bind_tools([{\"type\": \"memory_20250818\", \"name\": \"memory\"}])\n",
|
||||
"\n",
|
||||
"response = llm_with_tools.invoke(\"What are my interests?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "040f381a-1768-479a-9a5e-aa2d7d77e0d5",
|
||||
@@ -1522,7 +1588,7 @@
|
||||
"source": [
|
||||
"### Text editor\n",
|
||||
"\n",
|
||||
"The text editor tool can be used to view and modify text files. See docs [here](https://docs.anthropic.com/en/docs/build-with-claude/tool-use/text-editor-tool) for details."
|
||||
"The text editor tool can be used to view and modify text files. See docs [here](https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/text-editor-tool) for details."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -31,7 +31,7 @@
|
||||
"\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |\n",
|
||||
"| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |\n",
|
||||
"\n",
|
||||
"### Setup\n",
|
||||
"\n",
|
||||
@@ -653,15 +653,35 @@
|
||||
"\n",
|
||||
"# Initialize the model\n",
|
||||
"llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\", temperature=0)\n",
|
||||
"structured_llm = llm.with_structured_output(Person)\n",
|
||||
"\n",
|
||||
"# Method 1: Default function calling approach\n",
|
||||
"structured_llm_default = llm.with_structured_output(Person)\n",
|
||||
"\n",
|
||||
"# Method 2: Native JSON mode\n",
|
||||
"structured_llm_json = llm.with_structured_output(Person, method=\"json_mode\")\n",
|
||||
"\n",
|
||||
"# Invoke the model with a query asking for structured information\n",
|
||||
"result = structured_llm.invoke(\n",
|
||||
"result = structured_llm_json.invoke(\n",
|
||||
" \"Who was the 16th president of the USA, and how tall was he in meters?\"\n",
|
||||
")\n",
|
||||
"print(result)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "g9w06ld1ggq",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Structured Output Methods\n",
|
||||
"\n",
|
||||
"Two methods are supported for structured output:\n",
|
||||
"\n",
|
||||
"- **`method=\"function_calling\"` (default)**: Uses tool calling to extract structured data. Compatible with all Gemini models.\n",
|
||||
"- **`method=\"json_mode\"`**: Uses Gemini's native structured output with `responseSchema`. More reliable but requires Gemini 1.5+ models.\n",
|
||||
"\n",
|
||||
"The `json_mode` method is **recommended for better reliability** as it constrains the model's generation process directly rather than relying on post-processing tool calls."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "90d4725e",
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
"source": [
|
||||
"# ChatOCIGenAI\n",
|
||||
"\n",
|
||||
"This notebook provides a quick overview for getting started with OCIGenAI [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatOCIGenAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html).\n",
|
||||
"This notebook provides a quick overview for getting started with OCIGenAI [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatOCIGenAI features and configurations head to the [API reference](https://pypi.org/project/langchain-oci/).\n",
|
||||
"\n",
|
||||
"Oracle Cloud Infrastructure (OCI) Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases, and which is available through a single API.\n",
|
||||
"Using the OCI Generative AI service you can access ready-to-use pretrained models, or create and host your own fine-tuned custom models based on your own data on dedicated AI clusters. Detailed documentation of the service and API is available __[here](https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm)__ and __[here](https://docs.oracle.com/en-us/iaas/api/#/en/generative-ai/20231130/)__.\n",
|
||||
@@ -26,9 +26,9 @@
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/oci_generative_ai) |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: |\n",
|
||||
"| [ChatOCIGenAI](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ |\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/oci_generative_ai) |\n",
|
||||
"| :--- |:---------------------------------------------------------------------------------| :---: | :---: | :---: |\n",
|
||||
"| [ChatOCIGenAI](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html) | [langchain-oci](https://github.com/oracle/langchain-oracle) | ❌ | ❌ | ❌ |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | [JSON mode](/docs/how_to/structured_output/#advanced-specifying-the-method-for-structuring-outputs) | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
@@ -37,7 +37,7 @@
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"To access OCIGenAI models you'll need to install the `oci` and `langchain-community` packages.\n",
|
||||
"To access OCIGenAI models you'll need to install the `oci` and `langchain-oci` packages.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
@@ -84,13 +84,15 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_oci.chat_models import ChatOCIGenAI\n",
|
||||
"from langchain_core.messages import AIMessage, HumanMessage, SystemMessage\n",
|
||||
"\n",
|
||||
"chat = ChatOCIGenAI(\n",
|
||||
" model_id=\"cohere.command-r-16k\",\n",
|
||||
" model_id=\"cohere.command-r-plus-08-2024\",\n",
|
||||
" service_endpoint=\"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com\",\n",
|
||||
" compartment_id=\"MY_OCID\",\n",
|
||||
" model_kwargs={\"temperature\": 0.7, \"max_tokens\": 500},\n",
|
||||
" compartment_id=\"compartment_id\",\n",
|
||||
" model_kwargs={\"temperature\": 0, \"max_tokens\": 500},\n",
|
||||
" auth_type=\"SECURITY_TOKEN\",\n",
|
||||
" auth_profile=\"auth_profile_name\",\n",
|
||||
" auth_file_location=\"auth_file_location\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -110,14 +112,7 @@
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"messages = [\n",
|
||||
" SystemMessage(content=\"your are an AI assistant.\"),\n",
|
||||
" AIMessage(content=\"Hi there human!\"),\n",
|
||||
" HumanMessage(content=\"tell me a joke.\"),\n",
|
||||
"]\n",
|
||||
"response = chat.invoke(messages)"
|
||||
]
|
||||
"source": "response = chat.invoke(\"Tell me one fact about Earth\")"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
@@ -146,13 +141,22 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"from langchain_oci.chat_models import ChatOCIGenAI\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(\"Tell me a joke about {topic}\")\n",
|
||||
"chain = prompt | chat\n",
|
||||
"\n",
|
||||
"response = chain.invoke({\"topic\": \"dogs\"})\n",
|
||||
"print(response.content)"
|
||||
"llm = ChatOCIGenAI(\n",
|
||||
" model_id=\"cohere.command-r-plus-08-2024\",\n",
|
||||
" service_endpoint=\"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com\",\n",
|
||||
" compartment_id=\"compartment_id\",\n",
|
||||
" model_kwargs={\"temperature\": 0, \"max_tokens\": 500},\n",
|
||||
" auth_type=\"SECURITY_TOKEN\",\n",
|
||||
" auth_profile=\"auth_profile_name\",\n",
|
||||
" auth_file_location=\"auth_file_location\",\n",
|
||||
")\n",
|
||||
"prompt = PromptTemplate(input_variables=[\"query\"], template=\"{query}\")\n",
|
||||
"llm_chain = prompt | llm\n",
|
||||
"response = llm_chain.invoke(\"what is the capital of france?\")\n",
|
||||
"print(response)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -162,7 +166,7 @@
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ChatOCIGenAI features and configurations head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html"
|
||||
"For detailed documentation of all ChatOCIGenAI features and configurations head to the API reference: https://pypi.org/project/langchain-oci/"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
408
docs/docs/integrations/chat/qwen.ipynb
Normal file
408
docs/docs/integrations/chat/qwen.ipynb
Normal file
@@ -0,0 +1,408 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "afaf8039",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: Qwen\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e49f1e0d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ChatQwen\n",
|
||||
"\n",
|
||||
"This will help you get started with Qwen [chat models](../../concepts/chat_models.mdx). For detailed documentation of all ChatQwen features and configurations head to the [API reference](https://pypi.org/project/langchain-qwq/).\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatQwen](https://pypi.org/project/langchain-qwq/) | [langchain-qwq](https://pypi.org/project/langchain-qwq/) | ❌ | beta |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](../../how_to/tool_calling.ipynb) | [Structured output](../../how_to/structured_output.ipynb) | JSON mode | [Image input](../../how_to/multimodal_inputs.ipynb) | Audio input | Video input | [Token-level streaming](../../how_to/chat_streaming.ipynb) | Native async | [Token usage](../../how_to/chat_token_usage_tracking.ipynb) | [Logprobs](../../how_to/logprobs.ipynb) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ✅ |✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | \n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"To access Qwen models you'll need to create an Alibaba Cloud account, get an API key, and install the `langchain-qwq` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"Head to [Alibaba's API Key page](https://account.alibabacloud.com/login/login.htm?oauth_callback=https%3A%2F%2Fbailian.console.alibabacloud.com%2F%3FapiKey%3D1&lang=en#/api-key) to sign up to Alibaba Cloud and generate an API key. Once you've done this set the `DASHSCOPE_API_KEY` environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if not os.getenv(\"DASHSCOPE_API_KEY\"):\n",
|
||||
" os.environ[\"DASHSCOPE_API_KEY\"] = getpass.getpass(\"Enter your Dashscope API key: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain QwQ integration lives in the `langchain-qwq` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain-qwq"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our model object and generate chat completions:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Hello! How can I assist you today? 😊', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'model_name': 'qwen-flash'}, id='run--62798a20-d425-48ab-91fc-8e62e37c6084-0', usage_metadata={'input_tokens': 9, 'output_tokens': 11, 'total_tokens': 20, 'input_token_details': {}, 'output_token_details': {}})"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_qwq import ChatQwen\n",
|
||||
"\n",
|
||||
"llm = ChatQwen(model=\"qwen-flash\")\n",
|
||||
"response = llm.invoke(\"Hello\")\n",
|
||||
"\n",
|
||||
"response"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b4f3e15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "62e0dbc3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'model_name': 'qwen-flash'}, id='run--33f905e0-880a-4a67-ab83-313fd7a06369-0', usage_metadata={'input_tokens': 32, 'output_tokens': 8, 'total_tokens': 40, 'input_token_details': {}, 'output_token_details': {}})"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"messages = [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates English to French.\"\n",
|
||||
" \"Translate the user sentence.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"ai_msg = llm.invoke(messages)\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"We can [chain](../../how_to/sequence.ipynb) our model with a prompt template like so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Ich liebe Programmierung.', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'model_name': 'qwen-flash'}, id='run--9d8bab6d-d6fe-4b9f-95f2-c30c3ff0a50e-0', usage_metadata={'input_tokens': 28, 'output_tokens': 5, 'total_tokens': 33, 'input_token_details': {}, 'output_token_details': {}})"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates\"\n",
|
||||
" \"{input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | llm\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8d1b3ef3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tool Calling\n",
|
||||
"ChatQwen supports tool calling API that lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6db1a355",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Use with `bind_tools`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "15fb6a6d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='' additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_f0c2cc49307f480db78a45', 'function': {'arguments': '{\"first_int\": 5, \"second_int\": 42}', 'name': 'multiply'}, 'type': 'function'}]} response_metadata={'finish_reason': 'tool_calls', 'model_name': 'qwen-flash'} id='run--27c5aafb-9710-42f5-ab78-5a2ad1d9050e-0' tool_calls=[{'name': 'multiply', 'args': {'first_int': 5, 'second_int': 42}, 'id': 'call_f0c2cc49307f480db78a45', 'type': 'tool_call'}] usage_metadata={'input_tokens': 166, 'output_tokens': 27, 'total_tokens': 193, 'input_token_details': {}, 'output_token_details': {}}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"from langchain_qwq import ChatQwen\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def multiply(first_int: int, second_int: int) -> int:\n",
|
||||
" \"\"\"Multiply two integers together.\"\"\"\n",
|
||||
" return first_int * second_int\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"llm = ChatQwen(model=\"qwen-flash\")\n",
|
||||
"\n",
|
||||
"llm_with_tools = llm.bind_tools([multiply])\n",
|
||||
"\n",
|
||||
"msg = llm_with_tools.invoke(\"What's 5 times forty two\")\n",
|
||||
"\n",
|
||||
"print(msg)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cc8ffd89-c474-45a7-a123-e0b1d362f54f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### vision Support"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3e8a7d46-d1f6-4ae8-835a-266ca47e4daf",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Image"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "54f69db3-fa51-4b9a-885c-1353968066e3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"This image depicts a cozy, rustic Christmas scene set against a wooden backdrop. The arrangement features a variety of festive decorations that evoke a warm, holiday atmosphere:\n",
|
||||
"\n",
|
||||
"- **Centerpiece**: A decorative reindeer figurine with large antlers stands prominently in the background.\n",
|
||||
"- **Miniature Trees**: Two small, snow-dusted artificial Christmas trees flank the reindeer, adding to the wintry feel.\n",
|
||||
"- **Candles**: Three log-shaped candle holders made from birch bark are lit, casting a soft, warm glow. Two are in the foreground, and one is slightly behind them.\n",
|
||||
"- **\"Merry Christmas\" Sign**: A wooden cutout sign spelling \"MERRY CHRISTMAS\" is placed on the left, decorated with a tiny golden gift box and a small reindeer silhouette.\n",
|
||||
"- **Holiday Elements**: Pinecones, red berries, greenery, and fairy lights are scattered throughout, enhancing the natural, festive theme.\n",
|
||||
"- **Other Details**: A white sack with \"SANTA\" written on it is partially visible on the left, along with a large glass ornament and twinkling string lights.\n",
|
||||
"\n",
|
||||
"The overall aesthetic is warm, inviting, and traditional, emphasizing natural materials like wood, pine, and birch bark. It captures the essence of a rustic, homemade Christmas celebration.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"model = ChatQwen(model=\"qwen-vl-max-latest\")\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" HumanMessage(\n",
|
||||
" content=[\n",
|
||||
" {\n",
|
||||
" \"type\": \"image_url\",\n",
|
||||
" \"image_url\": {\"url\": \"https://example.com/image/image.png\"},\n",
|
||||
" },\n",
|
||||
" {\"type\": \"text\", \"text\": \"What do you see in this image?\"},\n",
|
||||
" ]\n",
|
||||
" )\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"response = model.invoke(messages)\n",
|
||||
"print(response.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b1faea19-932f-4dc8-b0af-60e3507eee08",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Video"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "59355c38-d3e2-4051-811a-2b99286ea01b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"This video features a young woman with a warm and cheerful expression, standing outdoors in a well-lit environment. She has short, neatly styled brown hair with bangs and is wearing a soft pink knitted cardigan over a white top. A delicate necklace adorns her neck, adding a subtle touch of elegance to her outfit.\n",
|
||||
"\n",
|
||||
"Throughout the video, she maintains eye contact with the camera, smiling gently and occasionally opening her mouth as if speaking or laughing. Her facial expressions are natural and engaging, suggesting a friendly and approachable demeanor. The background is softly blurred, indicating a shallow depth of field, which keeps the focus on her. It appears to be an urban setting with modern buildings, possibly a residential or commercial area.\n",
|
||||
"\n",
|
||||
"The lighting is bright and natural, likely from sunlight, casting a soft glow on her face and highlighting her features. The overall tone of the video is pleasant and inviting, evoking a sense of warmth and positivity.\n",
|
||||
"\n",
|
||||
"In the top right corner of the frames, there is a watermark that reads \"通义·AI合成,\" which indicates that this video was generated using AI technology by Tongyi Lab, a company known for its advancements in artificial intelligence and digital content creation. This suggests that the video may be a demonstration of AI-generated human-like avatars or synthetic media.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"model = ChatQwen(model=\"qwen-vl-max-latest\")\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" HumanMessage(\n",
|
||||
" content=[\n",
|
||||
" {\n",
|
||||
" \"type\": \"video_url\",\n",
|
||||
" \"video_url\": {\"url\": \"https://example.com/video/1.mp4\"},\n",
|
||||
" },\n",
|
||||
" {\"type\": \"text\", \"text\": \"Can you tell me about this video?\"},\n",
|
||||
" ]\n",
|
||||
" )\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"response = model.invoke(messages)\n",
|
||||
"print(response.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ChatQwen features and configurations head to the [API reference](https://pypi.org/project/langchain-qwq/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ce1026e3",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -34,7 +34,7 @@
|
||||
"### Model features\n",
|
||||
"| [Tool calling](../../how_to/tool_calling.ipynb) | [Structured output](../../how_to/structured_output.ipynb) | JSON mode | [Image input](../../how_to/multimodal_inputs.ipynb) | Audio input | Video input | [Token-level streaming](../../how_to/chat_streaming.ipynb) | Native async | [Token usage](../../how_to/chat_token_usage_tracking.ipynb) | [Logprobs](../../how_to/logprobs.ipynb) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ✅ |❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
|
||||
"| ✅ | ✅ | ✅ |✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | \n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
@@ -47,7 +47,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 1,
|
||||
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -91,7 +91,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 2,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -117,7 +117,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 3,
|
||||
"id": "62e0dbc3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -126,10 +126,10 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"J'aime la programmation.\", additional_kwargs={'reasoning_content': 'Okay, the user wants me to translate \"I love programming.\" into French. Let\\'s start by breaking down the sentence. The subject is \"I\", which in French is \"Je\". The verb is \"love\", which in this context is present tense, so \"aime\". The object is \"programming\". Now, \"programming\" in French can be \"la programmation\". \\n\\nWait, should it be \"programmation\" or \"programmation\"? Let me confirm the spelling. Yes, \"programmation\" is correct. Now, putting it all together: \"Je aime la programmation.\" Hmm, but in French, there\\'s a tendency to contract \"je\" and \"aime\". Wait, actually, \"je\" followed by a vowel sound usually takes \"j\\'\". So it should be \"J\\'aime la programmation.\" \\n\\nLet me double-check. \"J\\'aime\" is the correct contraction for \"I love\". The definite article \"la\" is needed because \"programmation\" is a feminine noun. Yes, \"programmation\" is a feminine noun, so \"la\" is correct. \\n\\nIs there any other way to say it? Maybe \"J\\'adore la programmation\" for \"I love\" in a stronger sense, but the user didn\\'t specify the intensity. Since the original is straightforward, \"J\\'aime la programmation.\" is the direct translation. \\n\\nI think that\\'s it. No mistakes there. So the final translation should be \"J\\'aime la programmation.\"'}, response_metadata={'model_name': 'qwq-plus'}, id='run-5045cd6a-edbd-4b2f-bf24-b7bdf3777fb9-0', usage_metadata={'input_tokens': 32, 'output_tokens': 326, 'total_tokens': 358, 'input_token_details': {}, 'output_token_details': {}})"
|
||||
"AIMessage(content=\"J'aime la programmation.\", additional_kwargs={'reasoning_content': 'Okay, the user wants me to translate \"I love programming.\" into French. Let me start by recalling the basic translation. The verb \"love\" in French is \"aimer\", and \"programming\" is \"la programmation\". So the literal translation would be \"J\\'aime la programmation.\" But wait, I should check if there\\'s any context or nuances I need to consider. The user mentioned they\\'re a helpful assistant, so maybe they want a more natural or commonly used phrase. Sometimes in French, people might use \"adorer\" instead of \"aimer\" for stronger emphasis, but \"aimer\" is more standard here. Also, the structure \"J\\'aime\" is correct for \"I love\". No need for any articles if it\\'s a general statement, but \"la programmation\" is a feminine noun, so the article is necessary. Let me confirm the gender of \"programmation\"—yes, it\\'s feminine. So \"la\" is correct. I think that\\'s it. The translation should be \"J\\'aime la programmation.\"'}, response_metadata={'model_name': 'qwq-plus'}, id='run--396edf0f-ab92-4317-99be-cc9f5377c312-0', usage_metadata={'input_tokens': 32, 'output_tokens': 229, 'total_tokens': 261, 'input_token_details': {}, 'output_token_details': {}})"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -159,17 +159,17 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 4,
|
||||
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Ich liebe das Programmieren.', additional_kwargs={'reasoning_content': 'Okay, the user wants me to translate \"I love programming.\" into German. Let me think. The verb \"love\" is \"lieben\" or \"mögen\" in German, but \"lieben\" is more like love, while \"mögen\" is prefer. Since it\\'s about programming, which is a strong affection, \"lieben\" is better. The subject is \"I\", which is \"ich\". Then \"programming\" is \"Programmierung\" or \"Coding\". But \"Programmierung\" is more formal. Alternatively, sometimes people say \"ich liebe es zu programmieren\" which is \"I love to program\". Hmm, maybe the direct translation would be \"Ich liebe die Programmierung.\" But maybe the more natural way is \"Ich liebe es zu programmieren.\" Let me check. Both are correct, but the second one might sound more natural in everyday speech. The user might prefer the concise version. Alternatively, maybe \"Ich liebe die Programmierung.\" is better. Wait, the original is \"programming\" as a noun. So using the noun form would be appropriate. So \"Ich liebe die Programmierung.\" But sometimes people also use \"Coding\" in German, like \"Ich liebe das Coding.\" But that\\'s more anglicism. Probably better to stick with \"Programmierung\". Alternatively, \"Programmieren\" as a noun. Oh right! \"Programmieren\" can be a noun when used in the accusative case. So \"Ich liebe das Programmieren.\" That\\'s correct and natural. Yes, that\\'s the best translation. So the answer is \"Ich liebe das Programmieren.\"'}, response_metadata={'model_name': 'qwq-plus'}, id='run-2c418451-51d8-4319-8269-2ce129363a1a-0', usage_metadata={'input_tokens': 28, 'output_tokens': 341, 'total_tokens': 369, 'input_token_details': {}, 'output_token_details': {}})"
|
||||
"AIMessage(content='Ich liebe das Programmieren.', additional_kwargs={'reasoning_content': 'Okay, the user wants to translate \"I love programming.\" into German. Let\\'s start by breaking down the sentence. The subject is \"I,\" which translates to \"Ich\" in German. The verb \"love\" is \"liebe\" in present tense for the first person singular. Then \"programming\" is a noun. Now, in German, the word for programming, especially in the context of computer programming, is \"Programmierung.\" However, sometimes people might use \"Programmieren\" as well. Wait, but \"Programmierung\" is the noun form, so \"die Programmierung.\" The structure in German would be \"Ich liebe die Programmierung.\" Alternatively, could it be \"Programmieren\" as the verb in a nominalized form? Let me think. If you say \"Ich liebe das Programmieren,\" that\\'s also correct because \"das Programmieren\" is the gerundive form, which is commonly used for activities. So both are possible. Which one is more natural? Hmm. \"Das Programmieren\" might be more common in everyday language. Let me check some examples. For instance, \"I love cooking\" would be \"Ich liebe das Kochen.\" So following that pattern, \"Ich liebe das Programmieren\" would be the equivalent. Therefore, maybe \"Programmieren\" with the article \"das\" is better here. But the user might just want a direct translation without the article. Wait, the original sentence is \"I love programming,\" which is a noun, so in German, you need an article. So the correct translation would include \"das\" before the noun. So the correct sentence is \"Ich liebe das Programmieren.\" Alternatively, if they want to use the noun without an article, maybe in a more abstract sense, but I think \"das\" is necessary here. Let me confirm. Yes, in German, when using the noun form of a verb like this, you need the article. So the best translation is \"Ich liebe das Programmieren.\" I think that\\'s the most natural way to say it. Alternatively, \"Programmierung\" is more formal, but \"Programmieren\" is more commonly used in such contexts. So I\\'ll go with \"Ich liebe das Programmieren.\"'}, response_metadata={'model_name': 'qwq-plus'}, id='run--0ceaba8a-7842-48fb-8bec-eb96d2c83ed4-0', usage_metadata={'input_tokens': 28, 'output_tokens': 466, 'total_tokens': 494, 'input_token_details': {}, 'output_token_details': {}})"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -217,7 +217,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 5,
|
||||
"id": "15fb6a6d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -225,12 +225,13 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='' additional_kwargs={'reasoning_content': 'Okay, the user is asking \"What\\'s 5 times forty two\". Let me break this down. First, I need to identify the numbers involved. The first number is 5, which is straightforward. The second number is forty two, which is 42 in digits. The operation they want is multiplication.\\n\\nLooking at the tools provided, there\\'s a function called multiply that takes two integers. So I should use that. The parameters are first_int and second_int. \\n\\nI need to convert \"forty two\" to 42. Since the function requires integers, both numbers should be in integer form. So 5 and 42. \\n\\nNow, I\\'ll structure the tool call. The function name is multiply, and the arguments should be first_int: 5 and second_int: 42. I\\'ll make sure the JSON is correctly formatted without any syntax errors. Let me double-check the parameters to ensure they\\'re required and of the right type. Yep, both are required and integers. \\n\\nNo examples were provided, but the function\\'s purpose is clear. So the correct tool call should be to multiply those two numbers. I think that\\'s all. No other functions are needed here.'} response_metadata={'model_name': 'qwq-plus'} id='run-638895aa-fdde-4567-bcfa-7d8e5d4f24af-0' tool_calls=[{'name': 'multiply', 'args': {'first_int': 5, 'second_int': 42}, 'id': 'call_d088275851c140529ed2ad', 'type': 'tool_call'}] usage_metadata={'input_tokens': 176, 'output_tokens': 277, 'total_tokens': 453, 'input_token_details': {}, 'output_token_details': {}}\n"
|
||||
"content='' additional_kwargs={'reasoning_content': 'Okay, the user is asking \"What\\'s 5 times forty two\". Let me break this down. They want the product of 5 and 42. The function provided is called multiply, which takes two integers. First, I need to parse the numbers from the question. The first integer is 5, straightforward. The second is forty two, which is 42 in numeric form. So I should call the multiply function with first_int=5 and second_int=42. Let me double-check the parameters: both are required and of type integer. Yep, that\\'s correct. No examples given, but the function should handle these numbers. Alright, time to format the tool call.'} response_metadata={'model_name': 'qwq-plus'} id='run--3c5ff46c-3fc8-4caf-a665-2405aeef2948-0' tool_calls=[{'name': 'multiply', 'args': {'first_int': 5, 'second_int': 42}, 'id': 'call_33fb94c6662d44928e56ec', 'type': 'tool_call'}] usage_metadata={'input_tokens': 176, 'output_tokens': 173, 'total_tokens': 349, 'input_token_details': {}, 'output_token_details': {}}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"from langchain_qwq import ChatQwQ\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -249,6 +250,170 @@
|
||||
"print(msg)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "88aa9980-1bd6-4cc9-aeac-4c9011e617fc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### vision Support"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "79e372e3-7050-4038-bf88-d1e8f5ddae09",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Image"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "c2372365-7208-42f9-a147-deffdc390313",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The image depicts a charming Christmas-themed arrangement set against a rustic wooden backdrop, creating a warm and festive atmosphere. Here's a detailed breakdown:\n",
|
||||
"\n",
|
||||
"### **Background & Setting**\n",
|
||||
"- **Wooden Wall**: A horizontally paneled wooden wall forms the backdrop, giving a cozy, cabin-like feel.\n",
|
||||
"- **Foreground Surface**: The decorations rest on a smooth wooden surface (likely a table or desk), enhancing the natural, earthy tone of the scene.\n",
|
||||
"\n",
|
||||
"### **Key Elements**\n",
|
||||
"1. **Snow-Covered Trees**:\n",
|
||||
" - Two miniature evergreen trees dusted with artificial snow flank the sides of the arrangement, evoking a wintry landscape.\n",
|
||||
"\n",
|
||||
"2. **String Lights**:\n",
|
||||
" - A strand of white bulb lights stretches across the back, weaving through the decor and adding a soft, glowing ambiance.\n",
|
||||
"\n",
|
||||
"3. **Ornamental Sphere**:\n",
|
||||
" - A reflective gold sphere with striped patterns sits near the center-left, catching and dispersing light.\n",
|
||||
"\n",
|
||||
"4. **\"Merry Christmas\" Sign**:\n",
|
||||
" - A wooden cutout spelling \"MERRY CHRISTMAS\" in capital letters serves as the focal point. The letters feature star-shaped cutouts, allowing light to shine through.\n",
|
||||
"\n",
|
||||
"5. **Reindeer Figurine**:\n",
|
||||
" - A brown reindeer with white facial markings and large antlers stands prominently on the right, facing forward and adding a playful touch.\n",
|
||||
"\n",
|
||||
"6. **Candle Holders**:\n",
|
||||
" - Three birch-bark candle holders are arranged in front of the reindeer. Two hold lit tealights, casting a warm glow, while the third remains unlit.\n",
|
||||
"\n",
|
||||
"7. **Natural Accents**:\n",
|
||||
" - **Pinecones**: Scattered throughout, adding texture and a woodland feel.\n",
|
||||
" - **Berry Branches**: Red-berried greenery (likely holly) weaves behind the sign, introducing vibrant color.\n",
|
||||
" - **Pine Branches**: Fresh-looking branches enhance the seasonal authenticity.\n",
|
||||
"\n",
|
||||
"8. **Gift Box**:\n",
|
||||
" - A small golden gift box with a bow sits near the left, symbolizing holiday gifting.\n",
|
||||
"\n",
|
||||
"9. **Textile Detail**:\n",
|
||||
" - A fabric piece with \"Christmas\" embroidered on it peeks from the left, partially obscured but contributing to the thematic unity.\n",
|
||||
"\n",
|
||||
"### **Color Palette & Mood**\n",
|
||||
"- **Warm Tones**: Browns (wood, reindeer), golds (ornament, gift box), and whites (snow, lights) dominate, creating a inviting glow.\n",
|
||||
"- **Cool Accents**: Greens (trees, branches) and reds (berries) provide contrast, balancing the warmth.\n",
|
||||
"- **Lighting**: The lit candles and string lights cast a soft, flickering illumination, enhancing the intimate, celebratory vibe.\n",
|
||||
"\n",
|
||||
"### **Composition**\n",
|
||||
"- **Balance**: The arrangement is symmetrical, with trees and candles on either side framing the central sign and reindeer.\n",
|
||||
"- **Depth**: Layered elements (trees, lights, branches) create visual interest, drawing the eye inward.\n",
|
||||
"\n",
|
||||
"This image beautifully captures the essence of a cozy, handmade Christmas display, blending traditional symbols with natural textures to evoke nostalgia and joy.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"model = ChatQwQ(model=\"qvq-max-latest\")\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" HumanMessage(\n",
|
||||
" content=[\n",
|
||||
" {\n",
|
||||
" \"type\": \"image_url\",\n",
|
||||
" \"image_url\": {\"url\": \"https://example.com/image/image.png\"},\n",
|
||||
" },\n",
|
||||
" {\"type\": \"text\", \"text\": \"What do you see in this image?\"},\n",
|
||||
" ]\n",
|
||||
" )\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"response = model.invoke(messages)\n",
|
||||
"print(response.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9242acf7-9a66-40b1-98b5-b113d28fc6ec",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Video"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "f0a9e542-7a85-44d2-8576-14314a50d948",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The image provided is a still frame from a video featuring a young woman with short brown hair and bangs, smiling brightly at the camera. Here's a detailed breakdown:\n",
|
||||
"\n",
|
||||
"### **Description of the Image:**\n",
|
||||
"- **Subject:** A youthful female with a cheerful expression, showcasing a wide smile with visible teeth.\n",
|
||||
"- **Appearance:** \n",
|
||||
" - Short, neatly styled brown hair with blunt bangs.\n",
|
||||
" - Natural makeup emphasizing clear skin and subtle eye makeup.\n",
|
||||
" - Wearing a white round-neck shirt layered under a light pink knitted cardigan.\n",
|
||||
" - Accessories include a delicate necklace with a small pendant and small earrings.\n",
|
||||
"- **Background:** An outdoor setting with blurred architectural elements (e.g., buildings with columns), suggesting a campus, park, or residential area.\n",
|
||||
"- **Lighting:** Soft, natural daylight, enhancing the warm and inviting atmosphere.\n",
|
||||
"\n",
|
||||
"### **Key Details About the Video:**\n",
|
||||
"1. **AI-Generated Content:** The watermark (\"通义·AI合成\" / \"Tongyi AI Synthesis\") indicates this image was created using Alibaba's Tongyi AI model, known for generating hyper-realistic visuals.\n",
|
||||
"2. **Style & Purpose:** The high-quality, photorealistic style suggests the video may demonstrate AI imaging capabilities, potentially for advertising, entertainment, or educational purposes.\n",
|
||||
"3. **Context Clues:** The subject's casual yet polished look and the pleasant outdoor setting imply a positive, approachable theme (e.g., lifestyle, technology promotion, or social media content).\n",
|
||||
"\n",
|
||||
"### **What We Can Infer About the Video:**\n",
|
||||
"- Likely showcases dynamic AI-generated scenes featuring the same character in various poses or interactions.\n",
|
||||
"- May highlight realism in digital avatars or synthetic media.\n",
|
||||
"- Could be part of a demo reel, tutorial, or creative project emphasizing AI artistry.\n",
|
||||
"\n",
|
||||
"### **Limitations:**\n",
|
||||
"- As only a single frame is provided, specifics about the video's length, narrative, or additional scenes cannot be determined.\n",
|
||||
"\n",
|
||||
"If you have more frames or context, feel free to share! 😊\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"model = ChatQwQ(model=\"qvq-max-latest\")\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" HumanMessage(\n",
|
||||
" content=[\n",
|
||||
" {\n",
|
||||
" \"type\": \"video_url\",\n",
|
||||
" \"video_url\": {\"url\": \"https://example.com/video/1.mp4\"},\n",
|
||||
" },\n",
|
||||
" {\"type\": \"text\", \"text\": \"Can you tell me about this video?\"},\n",
|
||||
" ]\n",
|
||||
" )\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"response = model.invoke(messages)\n",
|
||||
"print(response.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
|
||||
@@ -258,11 +423,19 @@
|
||||
"\n",
|
||||
"For detailed documentation of all ChatQwQ features and configurations head to the [API reference](https://pypi.org/project/langchain-qwq/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "824f0c67-5f3b-4079-bc17-2cf92755bdd5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -276,7 +449,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.1"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -16,13 +16,7 @@
|
||||
"This notebook covers how to load documents from Oracle Autonomous Database.\n",
|
||||
"\n",
|
||||
"## Prerequisites\n",
|
||||
"1. Install python-oracledb:\n",
|
||||
"\n",
|
||||
" `pip install oracledb`\n",
|
||||
" \n",
|
||||
" See [Installing python-oracledb](https://python-oracledb.readthedocs.io/en/latest/user_guide/installation.html).\n",
|
||||
"\n",
|
||||
"2. A database that python-oracledb's default 'Thin' mode can connected to. This is true of Oracle Autonomous Database, see [python-oracledb Architecture](https://python-oracledb.readthedocs.io/en/latest/user_guide/introduction.html#architecture).\n"
|
||||
"1. A database that python-oracledb's default 'Thin' mode can connected to. This is true of Oracle Autonomous Database, see [python-oracledb Architecture](https://python-oracledb.readthedocs.io/en/latest/user_guide/introduction.html#architecture).\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -38,17 +32,12 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"pip install oracledb"
|
||||
"You'll need to install `langchain-oracledb` with `python -m pip install -U langchain-oracledb` to use this integration.\n",
|
||||
"\n",
|
||||
"The `python-oracledb` driver is installed automatically as a dependency of langchain-oracledb."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -62,7 +51,21 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import OracleAutonomousDatabaseLoader\n",
|
||||
"# python -m pip install -U langchain-oracledb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_oracledb.document_loaders import OracleAutonomousDatabaseLoader\n",
|
||||
"from settings import s"
|
||||
]
|
||||
},
|
||||
@@ -99,7 +102,7 @@
|
||||
" config_dir=s.CONFIG_DIR,\n",
|
||||
" wallet_location=s.WALLET_LOCATION,\n",
|
||||
" wallet_password=s.PASSWORD,\n",
|
||||
" tns_name=s.TNS_NAME,\n",
|
||||
" dsn=s.DSN,\n",
|
||||
")\n",
|
||||
"doc_1 = doc_loader_1.load()\n",
|
||||
"\n",
|
||||
@@ -108,7 +111,7 @@
|
||||
" user=s.USERNAME,\n",
|
||||
" password=s.PASSWORD,\n",
|
||||
" schema=s.SCHEMA,\n",
|
||||
" connection_string=s.CONNECTION_STRING,\n",
|
||||
" dsn=s.DSN,\n",
|
||||
" wallet_location=s.WALLET_LOCATION,\n",
|
||||
" wallet_password=s.PASSWORD,\n",
|
||||
")\n",
|
||||
@@ -147,7 +150,7 @@
|
||||
" password=s.PASSWORD,\n",
|
||||
" schema=s.SCHEMA,\n",
|
||||
" config_dir=s.CONFIG_DIR,\n",
|
||||
" tns_name=s.TNS_NAME,\n",
|
||||
" dsn=s.DSN,\n",
|
||||
" parameters=[\"Direct Sales\"],\n",
|
||||
")\n",
|
||||
"doc_3 = doc_loader_3.load()\n",
|
||||
@@ -157,7 +160,7 @@
|
||||
" user=s.USERNAME,\n",
|
||||
" password=s.PASSWORD,\n",
|
||||
" schema=s.SCHEMA,\n",
|
||||
" connection_string=s.CONNECTION_STRING,\n",
|
||||
" dsn=s.DSN,\n",
|
||||
" parameters=[\"Direct Sales\"],\n",
|
||||
")\n",
|
||||
"doc_4 = doc_loader_4.load()"
|
||||
|
||||
@@ -42,7 +42,9 @@
|
||||
"source": [
|
||||
"### Prerequisites\n",
|
||||
"\n",
|
||||
"Please install Oracle Python Client driver to use Langchain with Oracle AI Vector Search. "
|
||||
"You'll need to install `langchain-oracledb` with `python -m pip install -U langchain-oracledb` to use this integration.\n",
|
||||
"\n",
|
||||
"The `python-oracledb` driver is installed automatically as a dependency of langchain-oracledb."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -51,7 +53,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# pip install oracledb"
|
||||
"# python -m pip install -U langchain-oracledb"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -154,7 +156,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.oracleai import OracleDocLoader\n",
|
||||
"from langchain_oracledb.document_loaders.oracleai import OracleDocLoader\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\"\"\"\n",
|
||||
@@ -199,7 +201,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.oracleai import OracleTextSplitter\n",
|
||||
"from langchain_oracledb.document_loaders.oracleai import OracleTextSplitter\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\"\"\"\n",
|
||||
|
||||
357
docs/docs/integrations/llms/aimlapi.ipynb
Normal file
357
docs/docs/integrations/llms/aimlapi.ipynb
Normal file
@@ -0,0 +1,357 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: AI/ML API\n",
|
||||
"---"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "c74887ead73c5eb4"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# AimlapiLLM\n",
|
||||
"\n",
|
||||
"This page will help you get started with AI/ML API [text completion models](/docs/concepts/text_llms). For detailed documentation of all AimlapiLLM features and configurations, head to the [API reference](https://docs.aimlapi.com/?utm_source=langchain&utm_medium=github&utm_campaign=integration).\n",
|
||||
"\n",
|
||||
"AI/ML API provides access to **300+ models** (Deepseek, Gemini, ChatGPT, etc.) via high-uptime and high-rate API."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "c1895707cde83d90"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| AimlapiLLM | langchain-aimlapi | ✅ | beta | ❌ |  |  |"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "72b0a510b6eac641"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### Model features\n",
|
||||
"| Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |\n",
|
||||
"|:------------:|:-----------------:|:---------:|:-----------:|:-----------:|:-----------:|:---------------------:|:------------:|:-----------:|:--------:|\n",
|
||||
"| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |\n"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "4b87089494d8877d"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"To access AI/ML API models, sign up at [aimlapi.com](https://aimlapi.com/app/?utm_source=langchain&utm_medium=github&utm_campaign=integration), generate an API key, and set the `AIMLAPI_API_KEY` environment variable:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "2c45017efcc36569"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if \"AIMLAPI_API_KEY\" not in os.environ:\n",
|
||||
" os.environ[\"AIMLAPI_API_KEY\"] = getpass.getpass(\"Enter your AI/ML API key: \")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:24:48.681319Z",
|
||||
"start_time": "2025-08-07T07:24:47.490206Z"
|
||||
}
|
||||
},
|
||||
"id": "86b05af725c45941",
|
||||
"execution_count": 1
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"Install the `langchain-aimlapi` package:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "51171ba92cb2b382"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain-aimlapi"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:18:08.606708Z",
|
||||
"start_time": "2025-08-07T07:17:59.901457Z"
|
||||
}
|
||||
},
|
||||
"id": "2b15cbaf7d5e1560",
|
||||
"execution_count": 2
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"Now we can instantiate the `AimlapiLLM` model and generate text completions:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "e94379f9d37fe6b3"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_aimlapi import AimlapiLLM\n",
|
||||
"\n",
|
||||
"llm = AimlapiLLM(\n",
|
||||
" model=\"gpt-3.5-turbo-instruct\",\n",
|
||||
" temperature=0.5,\n",
|
||||
" max_tokens=256,\n",
|
||||
")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:46:52.875867Z",
|
||||
"start_time": "2025-08-07T07:46:52.869961Z"
|
||||
}
|
||||
},
|
||||
"id": "8a3af681997723b0",
|
||||
"execution_count": 23
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"You can invoke the model with a prompt:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "c983ab1d95887e8f"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Bubble sort is a simple sorting algorithm that repeatedly steps through the list to be sorted, compares each pair of adjacent items and swaps them if they are in the wrong order. This process is repeated until the entire list is sorted.\n",
|
||||
"\n",
|
||||
"The algorithm gets its name from the way smaller elements \"bubble\" to the top of the list. It is commonly used for educational purposes due to its simplicity, but it is not a very efficient sorting algorithm for large data sets.\n",
|
||||
"\n",
|
||||
"Here is an implementation of the bubble sort algorithm in Python:\n",
|
||||
"\n",
|
||||
"1. Start by defining a function that takes in a list as its argument.\n",
|
||||
"2. Set a variable \"swapped\" to True, indicating that a swap has occurred.\n",
|
||||
"3. Create a while loop that runs as long as the \"swapped\" variable is True.\n",
|
||||
"4. Inside the loop, set the \"swapped\" variable to False.\n",
|
||||
"5. Create a for loop that iterates through the list, starting from the first element and ending at the second to last element.\n",
|
||||
"6. Inside the for loop, compare the current element with the next element. If the current element is larger than the next element, swap them and set the \"swapped\" variable to True.\n",
|
||||
"7. After the for loop, if the \"swapped\" variable\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"response = llm.invoke(\"Explain the bubble sort algorithm in Python.\")\n",
|
||||
"print(response)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:46:57.209950Z",
|
||||
"start_time": "2025-08-07T07:46:53.935975Z"
|
||||
}
|
||||
},
|
||||
"id": "9a193081f431a42a",
|
||||
"execution_count": 24
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Streaming Invocation\n",
|
||||
"You can also stream responses token-by-token:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "1afedb28f556c7bd"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" \n",
|
||||
"\n",
|
||||
"1. Python\n",
|
||||
"Python has been consistently growing in popularity and has become one of the most widely used programming languages in recent years. It is used for a wide range of applications such as web development, data analysis, machine learning, and artificial intelligence. Its simple syntax and readability make it an attractive choice for beginners and experienced programmers alike. With the rise of data-driven technology and automation, Python is projected to be the most in-demand language in 2025.\n",
|
||||
"\n",
|
||||
"2. JavaScript\n",
|
||||
"JavaScript continues to dominate the web development scene and is expected to maintain its position as a top programming language in 2025. With the increasing use of front-end frameworks like React and Angular, JavaScript is crucial for building dynamic and interactive user interfaces. Additionally, the rise of serverless architecture and the popularity of Node.js make JavaScript an essential language for both front-end and back-end development.\n",
|
||||
"\n",
|
||||
"3. Go\n",
|
||||
"Go, also known as Golang, is a relatively new programming language developed by Google. It is designed for"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = AimlapiLLM(\n",
|
||||
" model=\"gpt-3.5-turbo-instruct\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"for chunk in llm.stream(\"List top 5 programming languages in 2025 with reasons.\"):\n",
|
||||
" print(chunk, end=\"\", flush=True)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:49:25.223233Z",
|
||||
"start_time": "2025-08-07T07:49:22.101498Z"
|
||||
}
|
||||
},
|
||||
"id": "a132c9183f648fb4",
|
||||
"execution_count": 26
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all AimlapiLLM features and configurations, visit the [API Reference](https://docs.aimlapi.com/?utm_source=langchain&utm_medium=github&utm_campaign=integration).\n"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "7b4ab33058dc0974"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"You can also easily combine with a prompt template for easy structuring of user input. We can do this using [LCEL](/docs/concepts/lcel)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "900f36a35477c8ae"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = PromptTemplate.from_template(\"Tell me a joke about {topic}\")\n",
|
||||
"chain = prompt | llm"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:49:34.857042Z",
|
||||
"start_time": "2025-08-07T07:49:34.853032Z"
|
||||
}
|
||||
},
|
||||
"id": "d7f10052eb4ff249",
|
||||
"execution_count": 27
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "\"\\n\\nWhy do bears have fur coats?\\n\\nBecause they'd look silly in sweaters! \""
|
||||
},
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"topic\": \"bears\"})"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:49:48.565804Z",
|
||||
"start_time": "2025-08-07T07:49:35.558426Z"
|
||||
}
|
||||
},
|
||||
"id": "184c333c60f94b05",
|
||||
"execution_count": 28
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all `AI/ML API` llm features and configurations head to the API reference: [API Reference](https://docs.aimlapi.com/?utm_source=langchain&utm_medium=github&utm_campaign=integration)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "804f3a79a8046ec1"
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -22,30 +22,28 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"Ensure that the oci sdk and the langchain-community package are installed"
|
||||
"Ensure that the oci sdk and the langchain-community package are installed\n",
|
||||
"\n",
|
||||
":::caution You are currently on a page documenting the use of Oracle's text generation models. Which are deprecated."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install -U langchain-oci"
|
||||
]
|
||||
"execution_count": null,
|
||||
"source": "!pip install -U langchain-oci"
|
||||
},
|
||||
{
|
||||
"metadata": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage"
|
||||
]
|
||||
"source": "## Usage"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"execution_count": null,
|
||||
"source": [
|
||||
"from langchain_oci.llms import OCIGenAI\n",
|
||||
"\n",
|
||||
|
||||
272
docs/docs/integrations/providers/aimlapi.ipynb
Normal file
272
docs/docs/integrations/providers/aimlapi.ipynb
Normal file
@@ -0,0 +1,272 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# AI/ML API LLM\n",
|
||||
"\n",
|
||||
"[AI/ML API](https://aimlapi.com/app/?utm_source=langchain&utm_medium=github&utm_campaign=integration) provides an API to query **300+ leading AI models** (Deepseek, Gemini, ChatGPT, etc.) with enterprise-grade performance.\n",
|
||||
"\n",
|
||||
"This example demonstrates how to use LangChain to interact with AI/ML API models."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "bb9dcd1ba7b0f560"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Installation"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "e4c35f60c565d369"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Requirement already satisfied: langchain-aimlapi in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (0.1.0)\n",
|
||||
"Requirement already satisfied: langchain-core<0.4.0,>=0.3.15 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langchain-aimlapi) (0.3.67)\n",
|
||||
"Requirement already satisfied: langsmith>=0.3.45 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (0.4.4)\n",
|
||||
"Requirement already satisfied: tenacity!=8.4.0,<10.0.0,>=8.1.0 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (9.1.2)\n",
|
||||
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (1.33)\n",
|
||||
"Requirement already satisfied: PyYAML>=5.3 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (6.0.2)\n",
|
||||
"Requirement already satisfied: packaging<25,>=23.2 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (24.2)\n",
|
||||
"Requirement already satisfied: typing-extensions>=4.7 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (4.14.0)\n",
|
||||
"Requirement already satisfied: pydantic>=2.7.4 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (2.11.7)\n",
|
||||
"Requirement already satisfied: jsonpointer>=1.9 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (3.0.0)\n",
|
||||
"Requirement already satisfied: httpx<1,>=0.23.0 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (0.28.1)\n",
|
||||
"Requirement already satisfied: orjson<4.0.0,>=3.9.14 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (3.10.18)\n",
|
||||
"Requirement already satisfied: requests<3,>=2 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (2.32.4)\n",
|
||||
"Requirement already satisfied: requests-toolbelt<2.0.0,>=1.0.0 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (1.0.0)\n",
|
||||
"Requirement already satisfied: zstandard<0.24.0,>=0.23.0 in c:\\users\\tuman\\appdata\\roaming\\python\\python312\\site-packages (from langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (0.23.0)\n",
|
||||
"Requirement already satisfied: annotated-types>=0.6.0 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from pydantic>=2.7.4->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (0.7.0)\n",
|
||||
"Requirement already satisfied: pydantic-core==2.33.2 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from pydantic>=2.7.4->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (2.33.2)\n",
|
||||
"Requirement already satisfied: typing-inspection>=0.4.0 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from pydantic>=2.7.4->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (0.4.1)\n",
|
||||
"Requirement already satisfied: anyio in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from httpx<1,>=0.23.0->langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (4.9.0)\n",
|
||||
"Requirement already satisfied: certifi in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from httpx<1,>=0.23.0->langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (2025.6.15)\n",
|
||||
"Requirement already satisfied: httpcore==1.* in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from httpx<1,>=0.23.0->langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (1.0.9)\n",
|
||||
"Requirement already satisfied: idna in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from httpx<1,>=0.23.0->langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (3.10)\n",
|
||||
"Requirement already satisfied: h11>=0.16 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from httpcore==1.*->httpx<1,>=0.23.0->langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (0.16.0)\n",
|
||||
"Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from requests<3,>=2->langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (3.4.2)\n",
|
||||
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from requests<3,>=2->langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (2.5.0)\n",
|
||||
"Requirement already satisfied: sniffio>=1.1 in c:\\users\\tuman\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from anyio->httpx<1,>=0.23.0->langsmith>=0.3.45->langchain-core<0.4.0,>=0.3.15->langchain-aimlapi) (1.3.1)\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"[notice] A new release of pip is available: 25.0.1 -> 25.2\n",
|
||||
"[notice] To update, run: python.exe -m pip install --upgrade pip\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --upgrade langchain-aimlapi"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-06T15:22:02.570792Z",
|
||||
"start_time": "2025-08-06T15:21:32.377131Z"
|
||||
}
|
||||
},
|
||||
"id": "77d4a44909effc3c",
|
||||
"execution_count": 4
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Environment\n",
|
||||
"\n",
|
||||
"To use AI/ML API, you'll need an API key which you can generate at:\n",
|
||||
"[https://aimlapi.com/app/](https://aimlapi.com/app/?utm_source=langchain&utm_medium=github&utm_campaign=integration)\n",
|
||||
"\n",
|
||||
"You can pass it via `aimlapi_api_key` parameter or set as environment variable `AIMLAPI_API_KEY`."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "c41eaf364c0b414f"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import getpass\n",
|
||||
"\n",
|
||||
"if \"AIMLAPI_API_KEY\" not in os.environ:\n",
|
||||
" os.environ[\"AIMLAPI_API_KEY\"] = getpass.getpass(\"Enter your AI/ML API key: \")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:15:37.147559Z",
|
||||
"start_time": "2025-08-07T07:15:30.919160Z"
|
||||
}
|
||||
},
|
||||
"id": "421cd40d4e54de62",
|
||||
"execution_count": 3
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Example: Chat Model"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "d9cbe98904f4c5e4"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The city that never sleeps! New York City is a treasure trove of excitement, entertainment, and adventure. Here are some fun things to do in NYC:\n",
|
||||
"\n",
|
||||
"**Iconic Attractions:**\n",
|
||||
"\n",
|
||||
"1. **Statue of Liberty and Ellis Island**: Take a ferry to Liberty Island to see the iconic statue up close and visit the Ellis Island Immigration Museum.\n",
|
||||
"2. **Central Park**: A tranquil oasis in the middle of Manhattan, perfect for a stroll, picnic, or bike ride.\n",
|
||||
"3. **Empire State Building**: For a panoramic view of the city, head to the observation deck of this iconic skyscraper.\n",
|
||||
"4. **The Metropolitan Museum of Art**: One of the world's largest and most famous museums, with a collection that spans over 5,000 years of human history.\n",
|
||||
"\n",
|
||||
"**Neighborhood Explorations:**\n",
|
||||
"\n",
|
||||
"1. **SoHo**: Known for its trendy boutiques, art galleries, and cast-iron buildings.\n",
|
||||
"2. **Greenwich Village**: A charming neighborhood with a rich history, known for its bohemian vibe, jazz clubs, and historic brownstones.\n",
|
||||
"3. **Chinatown and Little Italy**: Experience the vibrant cultures of these two iconic neighborhoods, with delicious food, street festivals, and unique shops.\n",
|
||||
"4. **Williamsburg, Brooklyn**: A hip neighborhood with a thriving arts scene, trendy bars, and some of the best restaurants in the city.\n",
|
||||
"\n",
|
||||
"**Food and Drink:**\n",
|
||||
"\n",
|
||||
"1. **Try a classic NYC slice of pizza**: Visit Lombardi's, Joe's Pizza, or Patsy's Pizzeria for a taste of the city's famous pizza.\n",
|
||||
"2. **Bagels with lox and cream cheese**: A classic NYC breakfast at a Jewish deli like Russ & Daughters Cafe or Ess-a-Bagel.\n",
|
||||
"3. **Food markets**: Visit Smorgasburg in Brooklyn or Chelsea Market for a variety of artisanal foods and drinks.\n",
|
||||
"4. **Rooftop bars**: Enjoy a drink with a view at 230 Fifth, the Top of the Strand, or the Roof at The Viceroy Central Park.\n",
|
||||
"**Performing Arts:**\n",
|
||||
"\n",
|
||||
"1. **Broadway shows**: Catch a musical or play on the Great White Way, like Hamilton, The Lion King, or Wicked.\n",
|
||||
"2. **Jazz clubs**: Visit Blue Note Jazz Club, the Village Vanguard, or the Jazz Standard for live music performances.\n",
|
||||
"3. **Lincoln Center**: Home to the New York City Ballet, the Metropolitan Opera, and the Juilliard School.\n",
|
||||
"4. **"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_aimlapi import ChatAimlapi\n",
|
||||
"\n",
|
||||
"chat = ChatAimlapi(\n",
|
||||
" model=\"meta-llama/Llama-3-70b-chat-hf\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Stream response\n",
|
||||
"for chunk in chat.stream(\"Tell me fun things to do in NYC\"):\n",
|
||||
" print(chunk.content, end=\"\", flush=True)\n",
|
||||
"\n",
|
||||
"# Or use invoke()\n",
|
||||
"# response = chat.invoke(\"Tell me fun things to do in NYC\")\n",
|
||||
"# print(response)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:15:59.612289Z",
|
||||
"start_time": "2025-08-07T07:15:47.864231Z"
|
||||
}
|
||||
},
|
||||
"id": "3f73a8e113a58e9b",
|
||||
"execution_count": 4
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Example: Text Completion Model"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "7aca59af5cadce80"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" # Funkcja ponownie zwraca nową listę, bez zmienienia listy przekazanej jako argument w funkcji\n",
|
||||
" my_list = [16, 12, 16, 3, 2, 6]\n",
|
||||
" new_list = my_list[:]\n",
|
||||
" for x in range(len(new_list)):\n",
|
||||
" for y in range(len(new_list) - 1):\n",
|
||||
" if new_list[y] > new_list[y + 1]:\n",
|
||||
" new_list[y], new_list[y + 1] = new_list[y + 1], new_list[y]\n",
|
||||
" return new_list, my_list\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def bubble_sort_lib3(list): # Sortowanie z wykorzystaniem zewnętrznej biblioteki poza pętlą\n",
|
||||
" from itertools import permutations\n",
|
||||
" y = len(list)\n",
|
||||
" perms = []\n",
|
||||
" for a in range(0, y + 1):\n",
|
||||
" for subset in permutations(list, a):\n",
|
||||
" \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_aimlapi import AimlapiLLM\n",
|
||||
"\n",
|
||||
"llm = AimlapiLLM(\n",
|
||||
" model=\"gpt-3.5-turbo-instruct\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(llm.invoke(\"def bubble_sort(): \"))"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:16:22.595703Z",
|
||||
"start_time": "2025-08-07T07:16:19.410881Z"
|
||||
}
|
||||
},
|
||||
"id": "2af3be417769efc3",
|
||||
"execution_count": 6
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -36,7 +36,7 @@ For end-to-end usage check out
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- [LangChain Docling integration GitHub](https://github.com/DS4SD/docling-langchain)
|
||||
- [LangChain Docling integration GitHub](https://github.com/docling-project/docling-langchain)
|
||||
- [LangChain Docling integration PyPI package](https://pypi.org/project/langchain-docling/)
|
||||
- [Docling GitHub](https://github.com/DS4SD/docling)
|
||||
- [Docling docs](https://ds4sd.github.io/docling/)
|
||||
- [Docling GitHub](https://github.com/docling-project/docling)
|
||||
- [Docling docs](https://docling-project.github.io/docling/)
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
Install the python SDK:
|
||||
|
||||
```bash
|
||||
pip install firecrawl-py==0.0.20
|
||||
pip install firecrawl-py
|
||||
```
|
||||
|
||||
## Document loader
|
||||
|
||||
129
docs/docs/integrations/providers/google-bigtable.mdx
Normal file
129
docs/docs/integrations/providers/google-bigtable.mdx
Normal file
@@ -0,0 +1,129 @@
|
||||
# Bigtable
|
||||
|
||||
Bigtable is a scalable, fully managed key-value and wide-column store ideal for fast access to structured, semi-structured, or unstructured data. This page provides an overview of Bigtable's LangChain integrations.
|
||||
|
||||
**Client Library Documentation:** [cloud.google.com/python/docs/reference/langchain-google-bigtable/latest](https://cloud.google.com/python/docs/reference/langchain-google-bigtable/latest)
|
||||
|
||||
**Product Documentation:** [cloud.google.com/bigtable](https://cloud.google.com/bigtable)
|
||||
|
||||
## Quick Start
|
||||
|
||||
To use this library, you first need to:
|
||||
|
||||
1. Select or create a Cloud Platform project.
|
||||
2. Enable billing for your project.
|
||||
3. Enable the Google Cloud Bigtable API.
|
||||
4. Set up Authentication.
|
||||
|
||||
## Installation
|
||||
|
||||
The main package for this integration is `langchain-google-bigtable`.
|
||||
|
||||
```bash
|
||||
pip install -U langchain-google-bigtable
|
||||
```
|
||||
|
||||
## Integrations
|
||||
|
||||
The `langchain-google-bigtable` package provides the following integrations:
|
||||
|
||||
### Vector Store
|
||||
|
||||
With `BigtableVectorStore`, you can store documents and their vector embeddings to find the most similar or relevant information in your database.
|
||||
|
||||
* **Full `VectorStore` Implementation:** Supports all methods from the LangChain `VectorStore` abstract class.
|
||||
* **Async/Sync Support:** All methods are available in both asynchronous and synchronous versions.
|
||||
* **Metadata Filtering:** Powerful filtering on metadata fields, including logical AND/OR combinations.
|
||||
* **Multiple Distance Strategies:** Supports both Cosine and Euclidean distance for similarity search.
|
||||
* **Customizable Storage:** Full control over how content, embeddings, and metadata are stored in Bigtable columns.
|
||||
|
||||
```python
|
||||
from langchain_google_bigtable import BigtableVectorStore
|
||||
|
||||
# Your embedding service and other configurations
|
||||
# embedding_service = ...
|
||||
|
||||
engine = await BigtableEngine.async_initialize(project_id="your-project-id")
|
||||
vector_store = await BigtableVectorStore.create(
|
||||
engine=engine,
|
||||
instance_id="your-instance-id",
|
||||
table_id="your-table-id",
|
||||
embedding_service=embedding_service,
|
||||
collection="your_collection_name",
|
||||
)
|
||||
await vector_store.aadd_documents([your_documents])
|
||||
results = await vector_store.asimilarity_search("your query")
|
||||
```
|
||||
|
||||
|
||||
Learn more in the [Vector Store how-to guide](https://colab.research.google.com/github/googleapis/langchain-google-bigtable-python/blob/main/docs/vector_store.ipynb).
|
||||
|
||||
### Key-value Store
|
||||
|
||||
Use `BigtableByteStore` as a persistent, scalable key-value store for caching, session management, or other storage needs. It supports both synchronous and asynchronous operations.
|
||||
|
||||
```python
|
||||
from langchain_google_bigtable import BigtableByteStore
|
||||
|
||||
# Initialize the store
|
||||
store = await BigtableByteStore.create(
|
||||
project_id="your-project-id",
|
||||
instance_id="your-instance-id",
|
||||
table_id="your-table-id",
|
||||
)
|
||||
|
||||
# Set and get values
|
||||
await store.amset([("key1", b"value1")])
|
||||
retrieved = await store.amget(["key1"])
|
||||
```
|
||||
|
||||
Learn more in the [Key-value Store how-to guide](https://cloud.google.com/python/docs/reference/langchain-google-bigtable/latest/key-value-store).
|
||||
|
||||
### Document Loader
|
||||
|
||||
Use the `BigtableLoader` to load data from a Bigtable table and represent it as LangChain `Document` objects.
|
||||
|
||||
```python
|
||||
from langchain_google_bigtable import BigtableLoader
|
||||
|
||||
loader = BigtableLoader(
|
||||
project_id="your-project-id",
|
||||
instance_id="your-instance-id",
|
||||
table_id="your-table-name"
|
||||
)
|
||||
docs = loader.load()
|
||||
```
|
||||
|
||||
Learn more in the [Document Loader how-to guide](https://cloud.google.com/python/docs/reference/langchain-google-bigtable/latest/document-loader).
|
||||
|
||||
### Chat Message History
|
||||
|
||||
Use `BigtableChatMessageHistory` to store conversation histories, enabling stateful chains and agents.
|
||||
|
||||
```python
|
||||
from langchain_google_bigtable import BigtableChatMessageHistory
|
||||
|
||||
history = BigtableChatMessageHistory(
|
||||
project_id="your-project-id",
|
||||
instance_id="your-instance-id",
|
||||
table_id="your-message-store",
|
||||
session_id="user-session-123"
|
||||
)
|
||||
|
||||
history.add_user_message("Hello!")
|
||||
history.add_ai_message("Hi there!")
|
||||
```
|
||||
|
||||
Learn more in the [Chat Message History how-to guide](https://cloud.google.com/python/docs/reference/langchain-google-bigtable/latest/chat-message-history).
|
||||
|
||||
## Contributions
|
||||
|
||||
Contributions to this library are welcome. Please see the CONTRIBUTING guide in the [package repo](https://github.com/googleapis/langchain-google-bigtable-python/) for more details
|
||||
|
||||
## License
|
||||
|
||||
This project is licensed under the Apache 2.0 License - see the LICENSE file in the [package repo](https://github.com/googleapis/langchain-google-bigtable-python/blob/main/LICENSE) for details.
|
||||
|
||||
## Disclaimer
|
||||
|
||||
This is not an officially supported Google product.
|
||||
@@ -1,4 +1,4 @@
|
||||
# Oracle Cloud Infrastructure (OCI)
|
||||
# Oracle Cloud Infrastructure (OCI)
|
||||
|
||||
The `LangChain` integrations related to [Oracle Cloud Infrastructure](https://www.oracle.com/artificial-intelligence/).
|
||||
|
||||
@@ -11,16 +11,14 @@ The `LangChain` integrations related to [Oracle Cloud Infrastructure](https://ww
|
||||
To use, you should have the latest `oci` python SDK and the langchain_community package installed.
|
||||
|
||||
```bash
|
||||
pip install -U langchain_oci
|
||||
python -m pip install -U langchain-oci
|
||||
```
|
||||
|
||||
See [chat](/docs/integrations/llms/oci_generative_ai), [complete](/docs/integrations/chat/oci_generative_ai), and [embedding](/docs/integrations/text_embedding/oci_generative_ai) usage examples.
|
||||
See [chat](/docs/integrations/chat/oci_generative_ai), [complete](/docs/integrations/chat/oci_generative_ai), and [embedding](/docs/integrations/text_embedding/oci_generative_ai) usage examples.
|
||||
|
||||
```python
|
||||
from langchain_oci.chat_models import ChatOCIGenAI
|
||||
|
||||
from langchain_oci.llms import OCIGenAI
|
||||
|
||||
from langchain_oci.embeddings import OCIGenAIEmbeddings
|
||||
```
|
||||
|
||||
|
||||
72
docs/docs/integrations/providers/scraperapi.ipynb
Normal file
72
docs/docs/integrations/providers/scraperapi.ipynb
Normal file
@@ -0,0 +1,72 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ScraperAPI\n",
|
||||
"\n",
|
||||
"[ScraperAPI](https://www.scraperapi.com/) enables data collection from any public website with its web scraping API, without worrying about proxies, browsers, or CAPTCHA handling. [langchain-scraperapi](https://github.com/scraperapi/langchain-scraperapi) wraps this service, making it easy for AI agents to browse the web and scrape data from it.\n",
|
||||
"\n",
|
||||
"## Installation and Setup\n",
|
||||
"\n",
|
||||
"- Install the Python package with `pip install langchain-scraperapi`.\n",
|
||||
"- Obtain an API key from [ScraperAPI](https://www.scraperapi.com/) and set the environment variable `SCRAPERAPI_API_KEY`.\n",
|
||||
"\n",
|
||||
"### Tools\n",
|
||||
"\n",
|
||||
"The package offers 3 tools to scrape any website, get structured Google search results, and get structured Amazon search results respectively.\n",
|
||||
"\n",
|
||||
"To import them:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install langchain_scraperapi\n",
|
||||
"\n",
|
||||
"from langchain_scraperapi.tools import (\n",
|
||||
" ScraperAPIAmazonSearchTool,\n",
|
||||
" ScraperAPIGoogleSearchTool,\n",
|
||||
" ScraperAPITool,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Example use:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tool = ScraperAPITool()\n",
|
||||
"\n",
|
||||
"result = tool.invoke({\"url\": \"https://example.com\", \"output_format\": \"markdown\"})\n",
|
||||
"print(result)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For a more detailed walkthrough of how to use these tools, visit the [official repository](https://github.com/scraperapi/langchain-scraperapi)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
140
docs/docs/integrations/providers/superlinked.mdx
Normal file
140
docs/docs/integrations/providers/superlinked.mdx
Normal file
@@ -0,0 +1,140 @@
|
||||
---
|
||||
title: Superlinked
|
||||
description: LangChain integration package for the Superlinked retrieval stack
|
||||
---
|
||||
|
||||
import Link from '@docusaurus/Link';
|
||||
|
||||
### Overview
|
||||
|
||||
Superlinked enables context‑aware retrieval using multiple space types (text similarity, categorical, numerical, recency, and more). The `langchain-superlinked` package provides a LangChain‑native `SuperlinkedRetriever` that plugs directly into your RAG chains.
|
||||
|
||||
### Links
|
||||
|
||||
- <Link to="https://github.com/superlinked/langchain-superlinked">Integration repository</Link>
|
||||
- <Link to="https://links.superlinked.com/langchain_repo_sl">Superlinked core repository</Link>
|
||||
- <Link to="https://links.superlinked.com/langchain_article">Article: Build RAG using LangChain & Superlinked</Link>
|
||||
|
||||
### Install
|
||||
|
||||
```bash
|
||||
pip install -U langchain-superlinked superlinked
|
||||
```
|
||||
|
||||
### Quickstart
|
||||
|
||||
```python
|
||||
import superlinked.framework as sl
|
||||
from langchain_superlinked import SuperlinkedRetriever
|
||||
|
||||
# 1) Define schema
|
||||
class DocumentSchema(sl.Schema):
|
||||
id: sl.IdField
|
||||
content: sl.String
|
||||
|
||||
doc_schema = DocumentSchema()
|
||||
|
||||
# 2) Define space and index
|
||||
text_space = sl.TextSimilaritySpace(
|
||||
text=doc_schema.content, model="sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
doc_index = sl.Index([text_space])
|
||||
|
||||
# 3) Define query
|
||||
query = (
|
||||
sl.Query(doc_index)
|
||||
.find(doc_schema)
|
||||
.similar(text_space.text, sl.Param("query_text"))
|
||||
.select([doc_schema.content])
|
||||
.limit(sl.Param("limit"))
|
||||
)
|
||||
|
||||
# 4) Minimal app setup
|
||||
source = sl.InMemorySource(schema=doc_schema)
|
||||
executor = sl.InMemoryExecutor(sources=[source], indices=[doc_index])
|
||||
app = executor.run()
|
||||
source.put([
|
||||
{"id": "1", "content": "Machine learning algorithms process data efficiently."},
|
||||
{"id": "2", "content": "Natural language processing understands human language."},
|
||||
])
|
||||
|
||||
# 5) LangChain retriever
|
||||
retriever = SuperlinkedRetriever(
|
||||
sl_client=app, sl_query=query, page_content_field="content"
|
||||
)
|
||||
|
||||
# Search
|
||||
docs = retriever.invoke("artificial intelligence", limit=2)
|
||||
for d in docs:
|
||||
print(d.page_content)
|
||||
```
|
||||
|
||||
### What the retriever expects (App and Query)
|
||||
|
||||
The retriever takes two core inputs:
|
||||
|
||||
- `sl_client`: a Superlinked App created by running an executor (e.g., `InMemoryExecutor(...).run()`)
|
||||
- `sl_query`: a `QueryDescriptor` returned by chaining `sl.Query(...).find(...).similar(...).select(...).limit(...)`
|
||||
|
||||
Minimal setup:
|
||||
|
||||
```python
|
||||
import superlinked.framework as sl
|
||||
from langchain_superlinked import SuperlinkedRetriever
|
||||
|
||||
class Doc(sl.Schema):
|
||||
id: sl.IdField
|
||||
content: sl.String
|
||||
|
||||
doc = Doc()
|
||||
space = sl.TextSimilaritySpace(text=doc.content, model="sentence-transformers/all-MiniLM-L6-v2")
|
||||
index = sl.Index([space])
|
||||
|
||||
query = (
|
||||
sl.Query(index)
|
||||
.find(doc)
|
||||
.similar(space.text, sl.Param("query_text"))
|
||||
.select([doc.content])
|
||||
.limit(sl.Param("limit"))
|
||||
)
|
||||
|
||||
source = sl.InMemorySource(schema=doc)
|
||||
app = sl.InMemoryExecutor(sources=[source], indices=[index]).run()
|
||||
|
||||
retriever = SuperlinkedRetriever(sl_client=app, sl_query=query, page_content_field="content")
|
||||
```
|
||||
|
||||
Note: For a persistent vector DB, pass `vector_database=...` to the executor (e.g., Qdrant) before `.run()`.
|
||||
|
||||
### Use within a chain
|
||||
|
||||
```python
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
def format_docs(docs):
|
||||
return "\n\n".join(doc.page_content for doc in docs)
|
||||
|
||||
prompt = ChatPromptTemplate.from_template(
|
||||
"""
|
||||
Answer based on context:\n\nContext: {context}\nQuestion: {question}
|
||||
"""
|
||||
)
|
||||
|
||||
chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}
|
||||
| prompt
|
||||
| ChatOpenAI())
|
||||
|
||||
answer = chain.invoke("How does machine learning work?")
|
||||
```
|
||||
|
||||
### Resources
|
||||
|
||||
- <Link to="https://pypi.org/project/langchain-superlinked/">PyPI: langchain-superlinked</Link>
|
||||
- <Link to="https://pypi.org/project/superlinked/">PyPI: superlinked</Link>
|
||||
- <Link to="https://github.com/superlinked/langchain-superlinked">Source repository</Link>
|
||||
- <Link to="https://links.superlinked.com/langchain_repo_sl">Superlinked core repository</Link>
|
||||
- <Link to="https://links.superlinked.com/langchain_article">Build RAG using LangChain & Superlinked (article)</Link>
|
||||
|
||||
|
||||
170
docs/docs/integrations/providers/timbr.mdx
Normal file
170
docs/docs/integrations/providers/timbr.mdx
Normal file
@@ -0,0 +1,170 @@
|
||||
# Timbr
|
||||
|
||||
[Timbr](https://docs.timbr.ai/doc/docs/integration/langchain-sdk/) integrates natural language inputs with Timbr's ontology-driven semantic layer. Leveraging Timbr's robust ontology capabilities, the SDK integrates with Timbr data models and leverages semantic relationships and annotations, enabling users to query data using business-friendly language.
|
||||
|
||||
Timbr provides a pre-built SQL agent, `TimbrSqlAgent`, which can be used for end-to-end purposes from user prompt, through semantic SQL query generation and validation, to query execution and result analysis.
|
||||
|
||||
For customizations and partial usage, you can use LangChain chains and LangGraph nodes with our 5 main tools:
|
||||
|
||||
- `IdentifyTimbrConceptChain` & `IdentifyConceptNode` - Identify relevant concepts from user prompts
|
||||
- `GenerateTimbrSqlChain` & `GenerateTimbrSqlNode` - Generate SQL queries from natural language prompts
|
||||
- `ValidateTimbrSqlChain` & `ValidateSemanticSqlNode` - Validate SQL queries against Timbr knowledge graph schemas
|
||||
- `ExecuteTimbrQueryChain` & `ExecuteSemanticQueryNode` - Execute (semantic and regular) SQL queries against Timbr knowledge graph databases
|
||||
- `GenerateAnswerChain` & `GenerateResponseNode` - Generate human-readable answers based on a given prompt and data rows
|
||||
|
||||
Additionally, `langchain-timbr` provides `TimbrLlmConnector` for manual integration with Timbr's semantic layer using LLM providers. This connector includes the following methods:
|
||||
|
||||
- `get_ontologies` - List Timbr's semantic knowledge graphs
|
||||
- `get_concepts` - List selected knowledge graph ontology representation concepts
|
||||
- `get_views` - List selected knowledge graph ontology representation views
|
||||
- `determine_concept` - Identify relevant concepts from user prompts
|
||||
- `generate_sql` - Generate SQL queries from natural language prompts
|
||||
- `validate_sql` - Validate SQL queries against Timbr knowledge graph schemas
|
||||
- `run_timbr_query` - Execute (semantic and regular) SQL queries against Timbr knowledge graph databases
|
||||
- `run_llm_query` - Execute agent pipeline to determine concept, generate SQL, and run query from natural language prompt
|
||||
|
||||
## Quickstart
|
||||
|
||||
### Installation
|
||||
|
||||
#### Install the package
|
||||
|
||||
```bash
|
||||
pip install langchain-timbr
|
||||
```
|
||||
|
||||
#### Optional: Install with selected LLM provider
|
||||
|
||||
Choose one of: openai, anthropic, google, azure_openai, snowflake, databricks (or 'all')
|
||||
|
||||
```bash
|
||||
pip install 'langchain-timbr[<your selected providers, separated by comma without spaces>]'
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
Starting from `langchain-timbr` v2.0.0, all chains, agents, and nodes support optional environment-based configuration. You can set the following environment variables to provide default values and simplify setup for the provided tools:
|
||||
|
||||
### Timbr Connection Parameters
|
||||
|
||||
- **TIMBR_URL**: Default Timbr server URL
|
||||
- **TIMBR_TOKEN**: Default Timbr authentication token
|
||||
- **TIMBR_ONTOLOGY**: Default ontology/knowledge graph name
|
||||
|
||||
When these environment variables are set, the corresponding parameters (`url`, `token`, `ontology`) become optional in all chain and agent constructors and will use the environment values as defaults.
|
||||
|
||||
### LLM Configuration Parameters
|
||||
|
||||
- **LLM_TYPE**: The type of LLM provider (one of langchain_timbr LlmTypes enum: 'openai-chat', 'anthropic-chat', 'chat-google-generative-ai', 'azure-openai-chat', 'snowflake-cortex', 'chat-databricks')
|
||||
- **LLM_API_KEY**: The API key for authenticating with the LLM provider
|
||||
- **LLM_MODEL**: The model name or deployment to use
|
||||
- **LLM_TEMPERATURE**: Temperature setting for the LLM
|
||||
- **LLM_ADDITIONAL_PARAMS**: Additional parameters as dict or JSON string
|
||||
|
||||
When LLM environment variables are set, the `llm` parameter becomes optional and will use the `LlmWrapper` with environment configuration.
|
||||
|
||||
Example environment setup:
|
||||
|
||||
```bash
|
||||
# Timbr connection
|
||||
export TIMBR_URL="https://your-timbr-app.com/"
|
||||
export TIMBR_TOKEN="tk_XXXXXXXXXXXXXXXXXXXXXXXX"
|
||||
export TIMBR_ONTOLOGY="timbr_knowledge_graph"
|
||||
|
||||
# LLM configuration
|
||||
export LLM_TYPE="openai-chat"
|
||||
export LLM_API_KEY="your-openai-api-key"
|
||||
export LLM_MODEL="gpt-4o"
|
||||
export LLM_TEMPERATURE="0.1"
|
||||
export LLM_ADDITIONAL_PARAMS='{"max_tokens": 1000}'
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Import and utilize your intended chain/node, or use TimbrLlmConnector to manually integrate with Timbr's semantic layer. For a complete agent working example, see the [Timbr tool page](/docs/integrations/tools/timbr).
|
||||
|
||||
### ExecuteTimbrQueryChain example
|
||||
|
||||
```python
|
||||
from langchain_timbr import ExecuteTimbrQueryChain
|
||||
|
||||
# You can use the standard LangChain ChatOpenAI/ChatAnthropic models
|
||||
# or any other LLM model based on langchain_core.language_models.chat.BaseChatModel
|
||||
llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key='open-ai-api-key')
|
||||
|
||||
# Optional alternative: Use Timbr's LlmWrapper, which provides generic connections to different LLM providers
|
||||
from langchain_timbr import LlmWrapper, LlmTypes
|
||||
llm = LlmWrapper(llm_type=LlmTypes.OpenAI, api_key="open-ai-api-key", model="gpt-4o")
|
||||
|
||||
execute_timbr_query_chain = ExecuteTimbrQueryChain(
|
||||
llm=llm,
|
||||
url="https://your-timbr-app.com/",
|
||||
token="tk_XXXXXXXXXXXXXXXXXXXXXXXX",
|
||||
ontology="timbr_knowledge_graph",
|
||||
schema="dtimbr", # optional
|
||||
concept="Sales", # optional
|
||||
concepts_list=["Sales","Orders"], # optional
|
||||
views_list=["sales_view"], # optional
|
||||
note="We only need sums", # optional
|
||||
retries=3, # optional
|
||||
should_validate_sql=True # optional
|
||||
)
|
||||
|
||||
result = execute_timbr_query_chain.invoke({"prompt": "What are the total sales for last month?"})
|
||||
rows = result["rows"]
|
||||
sql = result["sql"]
|
||||
concept = result["concept"]
|
||||
schema = result["schema"]
|
||||
error = result.get("error", None)
|
||||
|
||||
usage_metadata = result.get("execute_timbr_usage_metadata", {})
|
||||
determine_concept_usage = usage_metadata.get('determine_concept', {})
|
||||
generate_sql_usage = usage_metadata.get('generate_sql', {})
|
||||
# Each usage_metadata item contains:
|
||||
# * 'approximate': Estimated token count calculated before invoking the LLM
|
||||
# * 'input_tokens'/'output_tokens'/'total_tokens'/etc.: Actual token usage metrics returned by the LLM
|
||||
```
|
||||
|
||||
### Multiple chains using SequentialChain example
|
||||
|
||||
```python
|
||||
from langchain.chains import SequentialChain
|
||||
from langchain_timbr import ExecuteTimbrQueryChain, GenerateAnswerChain
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
# You can use the standard LangChain ChatOpenAI/ChatAnthropic models
|
||||
# or any other LLM model based on langchain_core.language_models.chat.BaseChatModel
|
||||
llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key='open-ai-api-key')
|
||||
|
||||
# Optional alternative: Use Timbr's LlmWrapper, which provides generic connections to different LLM providers
|
||||
from langchain_timbr import LlmWrapper, LlmTypes
|
||||
llm = LlmWrapper(llm_type=LlmTypes.OpenAI, api_key="open-ai-api-key", model="gpt-4o")
|
||||
|
||||
execute_timbr_query_chain = ExecuteTimbrQueryChain(
|
||||
llm=llm,
|
||||
url='https://your-timbr-app.com/',
|
||||
token='tk_XXXXXXXXXXXXXXXXXXXXXXXX',
|
||||
ontology='timbr_knowledge_graph',
|
||||
)
|
||||
|
||||
generate_answer_chain = GenerateAnswerChain(
|
||||
llm=llm,
|
||||
url='https://your-timbr-app.com/',
|
||||
token='tk_XXXXXXXXXXXXXXXXXXXXXXXX',
|
||||
)
|
||||
|
||||
pipeline = SequentialChain(
|
||||
chains=[execute_timbr_query_chain, generate_answer_chain],
|
||||
input_variables=["prompt"],
|
||||
output_variables=["answer", "sql"]
|
||||
)
|
||||
|
||||
result = pipeline.invoke({"prompt": "What are the total sales for last month?"})
|
||||
```
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- [PyPI](https://pypi.org/project/langchain-timbr)
|
||||
- [GitHub](https://github.com/WPSemantix/langchain-timbr)
|
||||
- [LangChain Timbr Docs](https://docs.timbr.ai/doc/docs/integration/langchain-sdk/)
|
||||
- [LangGraph Timbr Docs](https://docs.timbr.ai/doc/docs/integration/langgraph-sdk)
|
||||
68
docs/docs/integrations/providers/zenrows.ipynb
Normal file
68
docs/docs/integrations/providers/zenrows.ipynb
Normal file
@@ -0,0 +1,68 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "_MFfVhVCa15x"
|
||||
},
|
||||
"source": [
|
||||
"# ZenRows\n",
|
||||
"\n",
|
||||
"[ZenRows](https://www.zenrows.com/) is an enterprise-grade web scraping tool that provides advanced web data extraction capabilities at scale. ZenRows specializes in scraping modern websites, bypassing anti-bot systems, extracting structured data from any website, rendering JavaScript-heavy content, accessing geo-restricted websites, and more.\n",
|
||||
"\n",
|
||||
"[langchain-zenrows](https://pypi.org/project/langchain-zenrows/) provides tools that allow LLMs to access web data using ZenRows' powerful scraping infrastructure.\n",
|
||||
"\n",
|
||||
"## Installation and Setup\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install langchain-zenrows\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"You'll need to set up your ZenRows API key:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"import os\n",
|
||||
"os.environ[\"ZENROWS_API_KEY\"] = \"your-api-key\"\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Or you can pass it directly when initializing tools:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"from langchain_zenrows import ZenRowsUniversalScraper\n",
|
||||
"zenrows_scraper_tool = ZenRowsUniversalScraper(zenrows_api_key=\"your-api-key\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Tools\n",
|
||||
"\n",
|
||||
"### ZenRowsUniversalScraper\n",
|
||||
"\n",
|
||||
"The ZenRows integration provides comprehensive web scraping features:\n",
|
||||
"\n",
|
||||
"- **JavaScript Rendering**: Scrape modern SPAs and dynamic content\n",
|
||||
"- **Anti-Bot Bypass**: Overcome sophisticated bot detection systems \n",
|
||||
"- **Geo-Targeting**: Access region-specific content with 190+ countries\n",
|
||||
"- **Multiple Output Formats**: HTML, Markdown, Plaintext, PDF, Screenshots\n",
|
||||
"- **CSS Extraction**: Target specific data with CSS selectors\n",
|
||||
"- **Structured Data Extraction**: Automatically extract emails, phone numbers, links, and more\n",
|
||||
"- **Session Management**: Maintain consistent sessions across requests\n",
|
||||
"- **Premium Proxies**: Residential IPs for maximum success rates\n",
|
||||
"\n",
|
||||
"See more in the [ZenRows tool documentation](/docs/integrations/tools/zenrows_universal_scraper)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
603
docs/docs/integrations/providers/zeusdb.mdx
Normal file
603
docs/docs/integrations/providers/zeusdb.mdx
Normal file
@@ -0,0 +1,603 @@
|
||||
<p align="center" width="100%">
|
||||
<h1 align="center">LangChain ZeusDB Integration</h1>
|
||||
</p>
|
||||
|
||||
A high-performance LangChain integration for ZeusDB, bringing enterprise-grade vector search capabilities to your LangChain applications.
|
||||
|
||||
## Features
|
||||
|
||||
🚀 **High Performance**
|
||||
- Rust-powered vector database backend
|
||||
- Advanced HNSW indexing for sub-millisecond search
|
||||
- Product Quantization for 4x-256x memory compression
|
||||
- Concurrent search with automatic parallelization
|
||||
|
||||
🎯 **LangChain Native**
|
||||
- Full VectorStore API compliance
|
||||
- Async/await support for all operations
|
||||
- Seamless integration with LangChain retrievers
|
||||
- Maximal Marginal Relevance (MMR) search
|
||||
|
||||
🏢 **Enterprise Ready**
|
||||
- Structured logging with performance monitoring
|
||||
- Index persistence with complete state preservation
|
||||
- Advanced metadata filtering
|
||||
- Graceful error handling and fallback mechanisms
|
||||
|
||||
## Quick Start
|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
pip install -qU langchain-zeusdb
|
||||
```
|
||||
|
||||
### Getting Started
|
||||
|
||||
This example uses *OpenAIEmbeddings*, which requires an OpenAI API key - [Get your OpenAI API key here](https://platform.openai.com/api-keys)
|
||||
|
||||
If you prefer, you can also use this package with any other embedding provider (Hugging Face, Cohere, custom functions, etc.).
|
||||
```bash
|
||||
pip install langchain-openai
|
||||
```
|
||||
|
||||
```python
|
||||
import os
|
||||
import getpass
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')
|
||||
```
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```python
|
||||
from langchain_zeusdb import ZeusDBVectorStore
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from zeusdb import VectorDatabase
|
||||
|
||||
# Initialize embeddings
|
||||
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
||||
|
||||
# Create ZeusDB index
|
||||
vdb = VectorDatabase()
|
||||
index = vdb.create(
|
||||
index_type="hnsw",
|
||||
dim=1536,
|
||||
space="cosine"
|
||||
)
|
||||
|
||||
# Create vector store
|
||||
vector_store = ZeusDBVectorStore(
|
||||
zeusdb_index=index,
|
||||
embedding=embeddings
|
||||
)
|
||||
|
||||
# Add documents
|
||||
from langchain_core.documents import Document
|
||||
|
||||
docs = [
|
||||
Document(page_content="ZeusDB is fast", metadata={"source": "docs"}),
|
||||
Document(page_content="LangChain is powerful", metadata={"source": "docs"}),
|
||||
]
|
||||
|
||||
vector_store.add_documents(docs)
|
||||
|
||||
# Search
|
||||
results = vector_store.similarity_search("fast database", k=2)
|
||||
print(f"Found the following {len(results)} results:")
|
||||
print(results)
|
||||
```
|
||||
|
||||
**Expected results:**
|
||||
```
|
||||
Found the following 2 results:
|
||||
[Document(id='ea2b4f13-b0b7-4cef-bb91-0fc4f4c41295', metadata={'source': 'docs'}, page_content='ZeusDB is fast'), Document(id='33dc1e87-a18a-4827-a0df-6ee47eabc7b2', metadata={'source': 'docs'}, page_content='LangChain is powerful')]
|
||||
```
|
||||
|
||||
<br />
|
||||
|
||||
### Factory Methods
|
||||
|
||||
For convenience, you can create and populate a vector store in a single step:
|
||||
|
||||
**Example 1: - Create from texts (creates index and adds texts in one step)**
|
||||
```python
|
||||
vector_store_texts = ZeusDBVectorStore.from_texts(
|
||||
texts=["Hello world", "Goodbye world"],
|
||||
embedding=embeddings,
|
||||
metadatas=[{"source": "text1"}, {"source": "text2"}]
|
||||
)
|
||||
|
||||
print("texts store count:", vector_store_texts.get_vector_count()) # -> 2
|
||||
print("texts store peek:", vector_store_texts.zeusdb_index.list(2)) # [('id1', {...}), ('id2', {...})]
|
||||
|
||||
# Search the texts-based store
|
||||
results = vector_store_texts.similarity_search("Hello", k=1)
|
||||
print(f"Found in texts store: {results[0].page_content}") # -> "Hello world"
|
||||
```
|
||||
|
||||
**Expected results:**
|
||||
```
|
||||
texts store count: 2
|
||||
texts store peek: [('e9c39b44-b610-4e00-91f3-bf652e9989ac', {'source': 'text1', 'text': 'Hello world'}), ('d33f210c-ed53-4006-a64a-a9eee397fec9', {'source': 'text2', 'text': 'Goodbye world'})]
|
||||
Found in texts store: Hello world
|
||||
```
|
||||
|
||||
<br />
|
||||
|
||||
**Example 2: - Create from documents (creates index and adds documents in one step)**
|
||||
```python
|
||||
new_docs = [
|
||||
Document(page_content="Python is great", metadata={"source": "python"}),
|
||||
Document(page_content="JavaScript is flexible", metadata={"source": "js"}),
|
||||
]
|
||||
|
||||
vector_store_docs = ZeusDBVectorStore.from_documents(
|
||||
documents=new_docs,
|
||||
embedding=embeddings
|
||||
)
|
||||
|
||||
print("docs store count:", vector_store_docs.get_vector_count()) # -> 2
|
||||
print("docs store peek:", vector_store_docs.zeusdb_index.list(2)) # [('id3', {...}), ('id4', {...})]
|
||||
|
||||
# Search the documents-based store
|
||||
results = vector_store_docs.similarity_search("Python", k=1)
|
||||
print(f"Found in docs store: {results[0].page_content}") # -> "Python is great"
|
||||
```
|
||||
|
||||
**Expected results:**
|
||||
```
|
||||
docs store count: 2
|
||||
docs store peek: [('aab2d1c1-7e02-4817-8dd8-6fb03570bb6f', {'text': 'Python is great', 'source': 'python'}), ('9a8a82cb-0e70-456c-9db2-556e464de14e', {'text': 'JavaScript is flexible', 'source': 'js'})]
|
||||
Found in docs store: Python is great
|
||||
```
|
||||
|
||||
<br />
|
||||
|
||||
## Advanced Features
|
||||
|
||||
ZeusDB's enterprise-grade capabilities are fully integrated into the LangChain ecosystem, providing quantization, persistence, advanced search features and many other enterprise capabilities.
|
||||
|
||||
### Memory-Efficient Setup with Quantization
|
||||
|
||||
For large datasets, use Product Quantization to reduce memory usage:
|
||||
|
||||
```python
|
||||
# Create quantized index for memory efficiency
|
||||
quantization_config = {
|
||||
'type': 'pq',
|
||||
'subvectors': 8,
|
||||
'bits': 8,
|
||||
'training_size': 10000
|
||||
}
|
||||
|
||||
vdb = VectorDatabase()
|
||||
index = vdb.create(
|
||||
index_type="hnsw",
|
||||
dim=1536,
|
||||
space="cosine",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
vector_store = ZeusDBVectorStore(
|
||||
zeusdb_index=index,
|
||||
embedding=embeddings
|
||||
)
|
||||
```
|
||||
|
||||
Please refer to our [documentation](https://docs.zeusdb.com/en/latest/vector_database/product_quantization.html) for helpful configuration guidelines and recommendations for setting up quantization.
|
||||
|
||||
<br />
|
||||
|
||||
### Persistence
|
||||
|
||||
ZeusDB persistence lets you save a fully populated index to disk and load it later with complete state restoration. This includes vectors, metadata, HNSW graph, and (if enabled) Product Quantization models.
|
||||
|
||||
What gets saved:
|
||||
- Vectors & IDs
|
||||
- Metadata
|
||||
- HNSW graph structure
|
||||
- Quantization config, centroids, and training state (if PQ is enabled)
|
||||
|
||||
|
||||
**How to Save your vector store**
|
||||
```python
|
||||
# Save index
|
||||
vector_store.save_index("my_index.zdb")
|
||||
```
|
||||
|
||||
**How to Load your vector store**
|
||||
```python
|
||||
# Load index
|
||||
loaded_store = ZeusDBVectorStore.load_index(
|
||||
path="my_index.zdb",
|
||||
embedding=embeddings
|
||||
)
|
||||
|
||||
# Verify after load
|
||||
print("vector count:", loaded_store.get_vector_count())
|
||||
print("index info:", loaded_store.info())
|
||||
print("store peek:", loaded_store.zeusdb_index.list(2))
|
||||
```
|
||||
|
||||
**Notes**
|
||||
- The path is a directory, not a single file. Ensure the target is writable.
|
||||
- Saved indexes are cross-platform and include format/version info for compatibility checks.
|
||||
- If you used PQ, both the compression model and state are preserved—no need to retrain after loading.
|
||||
- You can continue to use all vector store APIs (similarity_search, retrievers, etc.) on the loaded_store.
|
||||
|
||||
For further details (including file structure, and further comprehensive examples), see the [documentation](https://docs.zeusdb.com/en/latest/vector_database/persistence.html).
|
||||
|
||||
<br />
|
||||
|
||||
### Advanced Search Options
|
||||
|
||||
Use these to control scoring, diversity, metadata filtering, and retriever integration for your searches.
|
||||
|
||||
#### Similarity search with scores
|
||||
|
||||
Returns `(Document, raw_distance)` pairs from ZeusDB — **lower distance = more similar**.
|
||||
If you prefer normalized relevance in `[0, 1]`, use `similarity_search_with_relevance_scores`.
|
||||
|
||||
```python
|
||||
# Similarity search with scores
|
||||
results_with_scores = vector_store.similarity_search_with_score(
|
||||
query="machine learning",
|
||||
k=5
|
||||
)
|
||||
|
||||
print(results_with_scores)
|
||||
```
|
||||
|
||||
**Expected results:**
|
||||
```
|
||||
[
|
||||
(Document(id='ac0eaf5b-9f02-4ce2-8957-c369a7262c61', metadata={'source': 'docs'}, page_content='LangChain is powerful'), 0.8218843340873718),
|
||||
(Document(id='faae3adf-7cf3-463c-b282-3790b096fa23', metadata={'source': 'docs'}, page_content='ZeusDB is fast'), 0.9140053391456604)
|
||||
]
|
||||
```
|
||||
|
||||
#### MMR search for diversity
|
||||
|
||||
MMR (Maximal Marginal Relevance) balances two forces: relevance to the query and diversity among selected results, reducing near-duplicate answers. Control the trade-off with lambda_mult (1.0 = all relevance, 0.0 = all diversity).
|
||||
|
||||
```python
|
||||
# MMR search for diversity
|
||||
mmr_results = vector_store.max_marginal_relevance_search(
|
||||
query="AI applications",
|
||||
k=5,
|
||||
fetch_k=20,
|
||||
lambda_mult=0.7 # Balance relevance vs diversity
|
||||
)
|
||||
|
||||
print(mmr_results)
|
||||
```
|
||||
|
||||
#### Search with metadata filtering
|
||||
|
||||
Filter results using document metadata you stored when adding docs
|
||||
|
||||
```python
|
||||
# Search with metadata filtering
|
||||
results = vector_store.similarity_search(
|
||||
query="database performance",
|
||||
k=3,
|
||||
filter={"source": "documentation"}
|
||||
)
|
||||
```
|
||||
|
||||
For supported metadata query types and operators, please refer to the [documentation](https://docs.zeusdb.com/en/latest/vector_database/metadata_filtering.html).
|
||||
|
||||
#### As a Retriever
|
||||
|
||||
Turning the vector store into a retriever gives you a standard LangChain interface that chains (e.g., RetrievalQA) can call to fetch context. Under the hood it uses your chosen search type (similarity or mmr) and search_kwargs.
|
||||
|
||||
```python
|
||||
# Convert to retriever for use in chains
|
||||
retriever = vector_store.as_retriever(
|
||||
search_type="mmr",
|
||||
search_kwargs={"k": 3, "lambda_mult": 0.8}
|
||||
)
|
||||
|
||||
# Use with LangChain Expression Language (LCEL) - requires only langchain-core
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
def format_docs(docs):
|
||||
return "\n\n".join([d.page_content for d in docs])
|
||||
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
|
||||
Question: {question}
|
||||
"""
|
||||
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
llm = ChatOpenAI()
|
||||
|
||||
# Create a chain using LCEL
|
||||
chain = (
|
||||
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
||||
| prompt
|
||||
| llm
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
# Use the chain
|
||||
answer = chain.invoke("What is ZeusDB?")
|
||||
print(answer)
|
||||
```
|
||||
|
||||
**Expected results:**
|
||||
```
|
||||
ZeusDB is a fast database management system.
|
||||
```
|
||||
|
||||
<br />
|
||||
|
||||
## Async Support
|
||||
|
||||
ZeusDB supports asynchronous operations for non-blocking, concurrent vector operations.
|
||||
|
||||
**When to use async:** web servers (FastAPI/Starlette), agents/pipelines doing parallel searches, or notebooks where you want non-blocking/concurrent retrieval. If you're writing simple scripts, the sync methods are fine.
|
||||
|
||||
Those are **asynchronous operations** - the async/await versions of the regular synchronous methods. Here's what each one does:
|
||||
|
||||
1. `await vector_store.aadd_documents(documents)` - Asynchronously adds documents to the vector store (async version of `add_documents()`)
|
||||
2. `await vector_store.asimilarity_search("query", k=5)` - Asynchronously performs similarity search (async version of `similarity_search()`)
|
||||
3. `await vector_store.adelete(ids=["doc1", "doc2"])` - Asynchronously deletes documents by their IDs (async version of `delete()`)
|
||||
|
||||
The async versions are useful when:
|
||||
- You're building async applications (using `asyncio`, FastAPI, etc.)
|
||||
- You want non-blocking operations that can run concurrently
|
||||
- You're handling multiple requests simultaneously
|
||||
- You want better performance in I/O-bound applications
|
||||
|
||||
For example, instead of blocking while adding documents:
|
||||
|
||||
```python
|
||||
# Synchronous (blocking)
|
||||
vector_store.add_documents(docs) # Blocks until complete
|
||||
|
||||
# Asynchronous (non-blocking)
|
||||
await vector_store.aadd_documents(docs) # Can do other work while this runs
|
||||
```
|
||||
|
||||
All operations support async/await:
|
||||
|
||||
**Script version (`python my_script.py`):**
|
||||
```python
|
||||
import asyncio
|
||||
from langchain_zeusdb import ZeusDBVectorStore
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from langchain_core.documents import Document
|
||||
from zeusdb import VectorDatabase
|
||||
|
||||
# Setup
|
||||
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
||||
vdb = VectorDatabase()
|
||||
index = vdb.create(index_type="hnsw", dim=1536, space="cosine")
|
||||
vector_store = ZeusDBVectorStore(zeusdb_index=index, embedding=embeddings)
|
||||
|
||||
docs = [
|
||||
Document(page_content="ZeusDB is fast", metadata={"source": "docs"}),
|
||||
Document(page_content="LangChain is powerful", metadata={"source": "docs"}),
|
||||
]
|
||||
|
||||
async def main():
|
||||
# Add documents asynchronously
|
||||
ids = await vector_store.aadd_documents(docs)
|
||||
print("Added IDs:", ids)
|
||||
|
||||
# Run multiple searches concurrently
|
||||
results_fast, results_powerful = await asyncio.gather(
|
||||
vector_store.asimilarity_search("fast", k=2),
|
||||
vector_store.asimilarity_search("powerful", k=2),
|
||||
)
|
||||
print("Fast results:", [d.page_content for d in results_fast])
|
||||
print("Powerful results:", [d.page_content for d in results_powerful])
|
||||
|
||||
# Delete documents asynchronously
|
||||
deleted = await vector_store.adelete(ids=ids[:1])
|
||||
print("Deleted first doc:", deleted)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
**Colab/Notebook/Jupyter version (top-level `await`):**
|
||||
```python
|
||||
from langchain_zeusdb import ZeusDBVectorStore
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from langchain_core.documents import Document
|
||||
from zeusdb import VectorDatabase
|
||||
import asyncio
|
||||
|
||||
# Setup
|
||||
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
||||
vdb = VectorDatabase()
|
||||
index = vdb.create(index_type="hnsw", dim=1536, space="cosine")
|
||||
vector_store = ZeusDBVectorStore(zeusdb_index=index, embedding=embeddings)
|
||||
|
||||
docs = [
|
||||
Document(page_content="ZeusDB is fast", metadata={"source": "docs"}),
|
||||
Document(page_content="LangChain is powerful", metadata={"source": "docs"}),
|
||||
]
|
||||
|
||||
# Add documents asynchronously
|
||||
ids = await vector_store.aadd_documents(docs)
|
||||
print("Added IDs:", ids)
|
||||
|
||||
# Run multiple searches concurrently
|
||||
results_fast, results_powerful = await asyncio.gather(
|
||||
vector_store.asimilarity_search("fast", k=2),
|
||||
vector_store.asimilarity_search("powerful", k=2),
|
||||
)
|
||||
print("Fast results:", [d.page_content for d in results_fast])
|
||||
print("Powerful results:", [d.page_content for d in results_powerful])
|
||||
|
||||
# Delete documents asynchronously
|
||||
deleted = await vector_store.adelete(ids=ids[:1])
|
||||
print("Deleted first doc:", deleted)
|
||||
```
|
||||
|
||||
**Expected results:**
|
||||
```
|
||||
Added IDs: ['9c440918-715f-49ba-9b97-0d991d29e997', 'ad59c645-d3ba-4a4a-a016-49ed39514123']
|
||||
Fast results: ['ZeusDB is fast', 'LangChain is powerful']
|
||||
Powerful results: ['LangChain is powerful', 'ZeusDB is fast']
|
||||
Deleted first doc: True
|
||||
```
|
||||
|
||||
<br />
|
||||
|
||||
## Monitoring and Observability
|
||||
|
||||
### Performance Monitoring
|
||||
|
||||
```python
|
||||
# Get index statistics
|
||||
stats = vector_store.get_zeusdb_stats()
|
||||
print(f"Index size: {stats.get('total_vectors', '0')} vectors")
|
||||
print(f"Dimension: {stats.get('dimension')} | Space: {stats.get('space')} | Index type: {stats.get('index_type')}")
|
||||
|
||||
# Benchmark search performance
|
||||
performance = vector_store.benchmark_search_performance(
|
||||
query_count=100,
|
||||
max_threads=4
|
||||
)
|
||||
print(f"Search QPS: {performance.get('parallel_qps', 0):.0f}")
|
||||
|
||||
# Check quantization status
|
||||
if vector_store.is_quantized():
|
||||
progress = vector_store.get_training_progress()
|
||||
print(f"Quantization training: {progress:.1f}% complete")
|
||||
else:
|
||||
print("Index is not quantized")
|
||||
```
|
||||
|
||||
**Expected results:**
|
||||
```
|
||||
Index size: 2 vectors
|
||||
Dimension: 1536 | Space: cosine | Index type: HNSW
|
||||
Search QPS: 53807
|
||||
Index is not quantized
|
||||
```
|
||||
|
||||
### Enterprise Logging
|
||||
|
||||
ZeusDB includes enterprise-grade structured logging that works automatically with smart environment detection:
|
||||
|
||||
```python
|
||||
import logging
|
||||
|
||||
# ZeusDB automatically detects your environment and applies appropriate logging:
|
||||
# - Development: Human-readable logs, WARNING level
|
||||
# - Production: JSON structured logs, ERROR level
|
||||
# - Testing: Minimal output, CRITICAL level
|
||||
# - Jupyter: Clean readable logs, INFO level
|
||||
|
||||
# Operations are automatically logged with performance metrics
|
||||
vector_store.add_documents(docs)
|
||||
# Logs: {"operation":"vector_addition","total_inserted":2,"duration_ms":45}
|
||||
|
||||
# Control logging with environment variables if needed
|
||||
# ZEUSDB_LOG_LEVEL=debug ZEUSDB_LOG_FORMAT=json python your_app.py
|
||||
```
|
||||
|
||||
To learn more about the full features of ZeusDB's enterprise logging capabilities please read the following [documentation](https://docs.zeusdb.com/en/latest/vector_database/logging.html).
|
||||
|
||||
<br />
|
||||
|
||||
## Configuration Options
|
||||
|
||||
### Index Parameters
|
||||
|
||||
```python
|
||||
vdb = VectorDatabase()
|
||||
index = vdb.create(
|
||||
index_type="hnsw", # Index algorithm
|
||||
dim=1536, # Vector dimension
|
||||
space="cosine", # Distance metric: cosine, l2, l1
|
||||
m=16, # HNSW connectivity
|
||||
ef_construction=200, # Build-time search width
|
||||
expected_size=100000, # Expected number of vectors
|
||||
quantization_config=None # Optional quantization
|
||||
)
|
||||
```
|
||||
|
||||
### Search Parameters
|
||||
|
||||
```python
|
||||
results = vector_store.similarity_search(
|
||||
query="search query",
|
||||
k=5, # Number of results
|
||||
ef_search=None, # Runtime search width (auto if None)
|
||||
filter={"key": "value"} # Metadata filter
|
||||
)
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
The integration includes comprehensive error handling:
|
||||
|
||||
```python
|
||||
try:
|
||||
results = vector_store.similarity_search("query")
|
||||
print(results)
|
||||
except Exception as e:
|
||||
# Graceful degradation with logging
|
||||
print(f"Search failed: {e}")
|
||||
# Fallback logic here
|
||||
```
|
||||
|
||||
## Requirements
|
||||
|
||||
- **Python**: 3.10 or higher
|
||||
- **ZeusDB**: 0.0.8 or higher
|
||||
- **LangChain Core**: 0.3.74 or higher
|
||||
|
||||
## Installation from Source
|
||||
|
||||
```bash
|
||||
git clone https://github.com/zeusdb/langchain-zeusdb.git
|
||||
cd langchain-zeusdb/libs/zeusdb
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
## Use Cases
|
||||
|
||||
- **RAG Applications**: High-performance retrieval for question answering
|
||||
- **Semantic Search**: Fast similarity search across large document collections
|
||||
- **Recommendation Systems**: Vector-based content and collaborative filtering
|
||||
- **Embeddings Analytics**: Analysis of high-dimensional embedding spaces
|
||||
- **Real-time Applications**: Low-latency vector search for production systems
|
||||
|
||||
## Compatibility
|
||||
|
||||
### LangChain Versions
|
||||
- **LangChain Core**: 0.3.74+
|
||||
|
||||
### Distance Metrics
|
||||
- **Cosine**: Default, normalized similarity
|
||||
- **Euclidean (L2)**: Geometric distance
|
||||
- **Manhattan (L1)**: City-block distance
|
||||
|
||||
### Embedding Models
|
||||
Compatible with any embedding provider:
|
||||
- OpenAI (`text-embedding-3-small`, `text-embedding-3-large`)
|
||||
- Hugging Face Transformers
|
||||
- Cohere Embeddings
|
||||
- Custom embedding functions
|
||||
|
||||
## Support
|
||||
|
||||
- **Documentation**: [docs.zeusdb.com](https://docs.zeusdb.com)
|
||||
- **Issues**: [GitHub Issues](https://github.com/zeusdb/langchain-zeusdb/issues)
|
||||
- **Email**: contact@zeusdb.com
|
||||
|
||||
---
|
||||
|
||||
*Making vector search fast, scalable, and developer-friendly.*
|
||||
1292
docs/docs/integrations/retrievers/superlinked.ipynb
Normal file
1292
docs/docs/integrations/retrievers/superlinked.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
204
docs/docs/integrations/retrievers/superlinked_examples.ipynb
Normal file
204
docs/docs/integrations/retrievers/superlinked_examples.ipynb
Normal file
@@ -0,0 +1,204 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# SuperlinkedRetriever Examples\n",
|
||||
"\n",
|
||||
"This notebook demonstrates how to build a Superlinked App and Query Descriptor and use them with the LangChain `SuperlinkedRetriever`.\n",
|
||||
"\n",
|
||||
"Install the integration from PyPI:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install -U langchain-superlinked superlinked\n",
|
||||
"```\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"Install the integration and its peer dependency:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install -U langchain-superlinked superlinked\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"See below for creating a Superlinked App (`sl_client`) and a `QueryDescriptor` (`sl_query`), then wiring them into `SuperlinkedRetriever`.\n",
|
||||
"\n",
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"Call `retriever.invoke(query_text, **params)` to retrieve `Document` objects. Examples below show single-space and multi-space setups.\n",
|
||||
"\n",
|
||||
"## Use within a chain\n",
|
||||
"\n",
|
||||
"The retriever can be used in LangChain chains by piping it into your prompt and model. See the main Superlinked retriever page for a full RAG example.\n",
|
||||
"\n",
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"Refer to the API docs:\n",
|
||||
"\n",
|
||||
"- https://python.langchain.com/api_reference/superlinked/retrievers/langchain_superlinked.retrievers.SuperlinkedRetriever.html\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import superlinked.framework as sl\n",
|
||||
"from langchain_superlinked import SuperlinkedRetriever\n",
|
||||
"from datetime import timedelta\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Define schema\n",
|
||||
"class DocumentSchema(sl.Schema):\n",
|
||||
" id: sl.IdField\n",
|
||||
" content: sl.String\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"doc_schema = DocumentSchema()\n",
|
||||
"\n",
|
||||
"# Space + index\n",
|
||||
"text_space = sl.TextSimilaritySpace(\n",
|
||||
" text=doc_schema.content, model=\"sentence-transformers/all-MiniLM-L6-v2\"\n",
|
||||
")\n",
|
||||
"doc_index = sl.Index([text_space])\n",
|
||||
"\n",
|
||||
"# Query descriptor\n",
|
||||
"query = (\n",
|
||||
" sl.Query(doc_index)\n",
|
||||
" .find(doc_schema)\n",
|
||||
" .similar(text_space.text, sl.Param(\"query_text\"))\n",
|
||||
" .select([doc_schema.content])\n",
|
||||
" .limit(sl.Param(\"limit\"))\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Minimal app\n",
|
||||
"source = sl.InMemorySource(schema=doc_schema)\n",
|
||||
"executor = sl.InMemoryExecutor(sources=[source], indices=[doc_index])\n",
|
||||
"app = executor.run()\n",
|
||||
"\n",
|
||||
"# Data\n",
|
||||
"source.put(\n",
|
||||
" [\n",
|
||||
" {\"id\": \"1\", \"content\": \"Machine learning algorithms process data efficiently.\"},\n",
|
||||
" {\n",
|
||||
" \"id\": \"2\",\n",
|
||||
" \"content\": \"Natural language processing understands human language.\",\n",
|
||||
" },\n",
|
||||
" {\"id\": \"3\", \"content\": \"Deep learning models require significant compute.\"},\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Retriever\n",
|
||||
"retriever = SuperlinkedRetriever(\n",
|
||||
" sl_client=app, sl_query=query, page_content_field=\"content\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"retriever.invoke(\"artificial intelligence\", limit=2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Multi-space example (blog posts)\n",
|
||||
"class BlogPostSchema(sl.Schema):\n",
|
||||
" id: sl.IdField\n",
|
||||
" title: sl.String\n",
|
||||
" content: sl.String\n",
|
||||
" category: sl.String\n",
|
||||
" published_date: sl.Timestamp\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"blog = BlogPostSchema()\n",
|
||||
"\n",
|
||||
"content_space = sl.TextSimilaritySpace(\n",
|
||||
" text=blog.content, model=\"sentence-transformers/all-MiniLM-L6-v2\"\n",
|
||||
")\n",
|
||||
"title_space = sl.TextSimilaritySpace(\n",
|
||||
" text=blog.title, model=\"sentence-transformers/all-MiniLM-L6-v2\"\n",
|
||||
")\n",
|
||||
"cat_space = sl.CategoricalSimilaritySpace(\n",
|
||||
" category_input=blog.category, categories=[\"technology\", \"science\", \"business\"]\n",
|
||||
")\n",
|
||||
"recency_space = sl.RecencySpace(\n",
|
||||
" timestamp=blog.published_date,\n",
|
||||
" period_time_list=[\n",
|
||||
" sl.PeriodTime(timedelta(days=30)),\n",
|
||||
" sl.PeriodTime(timedelta(days=90)),\n",
|
||||
" ],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"blog_index = sl.Index([content_space, title_space, cat_space, recency_space])\n",
|
||||
"\n",
|
||||
"blog_query = (\n",
|
||||
" sl.Query(\n",
|
||||
" blog_index,\n",
|
||||
" weights={\n",
|
||||
" content_space: sl.Param(\"content_weight\"),\n",
|
||||
" title_space: sl.Param(\"title_weight\"),\n",
|
||||
" cat_space: sl.Param(\"category_weight\"),\n",
|
||||
" recency_space: sl.Param(\"recency_weight\"),\n",
|
||||
" },\n",
|
||||
" )\n",
|
||||
" .find(blog)\n",
|
||||
" .similar(content_space.text, sl.Param(\"query_text\"))\n",
|
||||
" .select([blog.title, blog.content, blog.category, blog.published_date])\n",
|
||||
" .limit(sl.Param(\"limit\"))\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"source = sl.InMemorySource(schema=blog)\n",
|
||||
"app = sl.InMemoryExecutor(sources=[source], indices=[blog_index]).run()\n",
|
||||
"\n",
|
||||
"from datetime import datetime\n",
|
||||
"\n",
|
||||
"source.put(\n",
|
||||
" [\n",
|
||||
" {\n",
|
||||
" \"id\": \"p1\",\n",
|
||||
" \"title\": \"Intro to ML\",\n",
|
||||
" \"content\": \"Machine learning 101\",\n",
|
||||
" \"category\": \"technology\",\n",
|
||||
" \"published_date\": int((datetime.now() - timedelta(days=5)).timestamp()),\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"id\": \"p2\",\n",
|
||||
" \"title\": \"AI in Healthcare\",\n",
|
||||
" \"content\": \"Transforming diagnosis\",\n",
|
||||
" \"category\": \"science\",\n",
|
||||
" \"published_date\": int((datetime.now() - timedelta(days=15)).timestamp()),\n",
|
||||
" },\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"blog_retriever = SuperlinkedRetriever(\n",
|
||||
" sl_client=app,\n",
|
||||
" sl_query=blog_query,\n",
|
||||
" page_content_field=\"content\",\n",
|
||||
" metadata_fields=[\"title\", \"category\", \"published_date\"],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"blog_retriever.invoke(\n",
|
||||
" \"machine learning\", content_weight=1.0, recency_weight=0.5, limit=2\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
483
docs/docs/integrations/stores/bigtable.ipynb
Normal file
483
docs/docs/integrations/stores/bigtable.ipynb
Normal file
@@ -0,0 +1,483 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: Google Bigtable\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# BigtableByteStore\n",
|
||||
"\n",
|
||||
"This guide covers how to use Google Cloud Bigtable as a key-value store.\n",
|
||||
"\n",
|
||||
"[Bigtable](https://cloud.google.com/bigtable) is a key-value and wide-column store, ideal for fast access to structured, semi-structured, or unstructured data. \n",
|
||||
"\n",
|
||||
"[](https://colab.research.google.com/github/googleapis/langchain-google-bigtable-python/blob/main/docs/key_value_store.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"The `BigtableByteStore` uses Google Cloud Bigtable as a backend for a key-value store. It supports synchronous and asynchronous operations for setting, getting, and deleting key-value pairs.\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"| Class | Package | Local | JS support | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
|
||||
"| [BigtableByteStore](https://github.com/googleapis/langchain-google-bigtable-python/blob/main/src/langchain_google_bigtable/key_value_store.py) | [langchain-google-bigtable](https://pypi.org/project/langchain-google-bigtable/) | ❌ | ❌ |  |  |"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"### Prerequisites\n",
|
||||
"\n",
|
||||
"To get started, you will need a Google Cloud project with an active Bigtable instance and table. \n",
|
||||
"* [Create a Google Cloud Project](https://developers.google.com/workspace/guides/create-project)\n",
|
||||
"* [Enable the Bigtable API](https://console.cloud.google.com/flows/enableapi?apiid=bigtable.googleapis.com)\n",
|
||||
"* [Create a Bigtable instance and table](https://cloud.google.com/bigtable/docs/creating-instance)\n",
|
||||
"\n",
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The integration is in the `langchain-google-bigtable` package. The command below also installs `langchain-google-vertexai` for the embedding cache example."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain-google-bigtable langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### ☁ Set Your Google Cloud Project\n",
|
||||
"Set your Google Cloud project to use its resources within this notebook.\n",
|
||||
"\n",
|
||||
"If you don't know your project ID, you can run `gcloud config list` or see the support page: [Locate the project ID](https://support.google.com/googleapi/answer/7014113)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @markdown Please fill in your project, instance, and table details.\n",
|
||||
"PROJECT_ID = \"your-gcp-project-id\" # @param {type:\"string\"}\n",
|
||||
"INSTANCE_ID = \"your-instance-id\" # @param {type:\"string\"}\n",
|
||||
"TABLE_ID = \"your-table-id\" # @param {type:\"string\"}\n",
|
||||
"\n",
|
||||
"!gcloud config set project {PROJECT_ID}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 🔐 Authentication\n",
|
||||
"Authenticate to Google Cloud to access your project resources.\n",
|
||||
"- For **Colab**, use the cell below.\n",
|
||||
"- For **Vertex AI Workbench**, see the [setup instructions](https://github.com/GoogleCloudPlatform/generative-ai/tree/main/setup-env)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from google.colab import auth\n",
|
||||
"\n",
|
||||
"auth.authenticate_user()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"To use `BigtableByteStore`, we first ensure a table exists and then initialize a `BigtableEngine` to manage connections."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_bigtable import (\n",
|
||||
" BigtableByteStore,\n",
|
||||
" BigtableEngine,\n",
|
||||
" init_key_value_store_table,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Ensure the table and column family exist.\n",
|
||||
"init_key_value_store_table(\n",
|
||||
" project_id=PROJECT_ID,\n",
|
||||
" instance_id=INSTANCE_ID,\n",
|
||||
" table_id=TABLE_ID,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### BigtableEngine\n",
|
||||
"A `BigtableEngine` object handles the execution context for the store, especially for async operations. It's recommended to initialize a single engine and reuse it across multiple stores for better performance."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Initialize the engine to manage async operations.\n",
|
||||
"engine = await BigtableEngine.async_initialize(\n",
|
||||
" project_id=PROJECT_ID, instance_id=INSTANCE_ID\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### BigtableByteStore\n",
|
||||
"\n",
|
||||
"This is the main class for interacting with the key-value store. It provides the methods for setting, getting, and deleting data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Initialize the store.\n",
|
||||
"store = await BigtableByteStore.create(engine=engine, table_id=TABLE_ID)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"The store supports both sync (`mset`, `mget`) and async (`amset`, `amget`) methods. This guide uses the async versions."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Set\n",
|
||||
"Use `amset` to save key-value pairs to the store."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"kv_pairs = [\n",
|
||||
" (\"key1\", b\"value1\"),\n",
|
||||
" (\"key2\", b\"value2\"),\n",
|
||||
" (\"key3\", b\"value3\"),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"await store.amset(kv_pairs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Get\n",
|
||||
"Use `amget` to retrieve values. If a key is not found, `None` is returned for that key."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retrieved_vals = await store.amget([\"key1\", \"key2\", \"nonexistent_key\"])\n",
|
||||
"print(retrieved_vals)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Delete\n",
|
||||
"Use `amdelete` to remove keys from the store."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"await store.amdelete([\"key3\"])\n",
|
||||
"\n",
|
||||
"# Verifying the key was deleted\n",
|
||||
"await store.amget([\"key1\", \"key3\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Iterate over keys\n",
|
||||
"Use `ayield_keys` to iterate over all keys or keys with a specific prefix."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"all_keys = [key async for key in store.ayield_keys()]\n",
|
||||
"print(f\"All keys: {all_keys}\")\n",
|
||||
"\n",
|
||||
"prefixed_keys = [key async for key in store.ayield_keys(prefix=\"key1\")]\n",
|
||||
"print(f\"Prefixed keys: {prefixed_keys}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Advanced Usage: Embedding Caching\n",
|
||||
"\n",
|
||||
"A common use case for a key-value store is to cache expensive operations like computing text embeddings, which saves time and cost."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import CacheBackedEmbeddings\n",
|
||||
"from langchain_google_vertexai.embeddings import VertexAIEmbeddings\n",
|
||||
"\n",
|
||||
"underlying_embeddings = VertexAIEmbeddings(\n",
|
||||
" project=PROJECT_ID, model_name=\"textembedding-gecko@003\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Use a namespace to avoid key collisions with other data.\n",
|
||||
"cached_embedder = CacheBackedEmbeddings.from_bytes_store(\n",
|
||||
" underlying_embeddings, store, namespace=\"text-embeddings\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"First call (computes and caches embedding):\")\n",
|
||||
"%time embedding_result_1 = await cached_embedder.aembed_query(\"Hello, world!\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"\\nSecond call (retrieves from cache):\")\n",
|
||||
"%time embedding_result_2 = await cached_embedder.aembed_query(\"Hello, world!\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### As a Simple Document Retriever\n",
|
||||
"\n",
|
||||
"This section shows how to create a simple retriever using the Bigtable store. It acts as a document persistence layer, fetching documents that match a query prefix."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.retrievers import BaseRetriever\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_core.callbacks import CallbackManagerForRetrieverRun\n",
|
||||
"from typing import List, Optional, Any, Union\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class SimpleKVStoreRetriever(BaseRetriever):\n",
|
||||
" \"\"\"A simple retriever that retrieves documents based on a prefix match in the key-value store.\"\"\"\n",
|
||||
"\n",
|
||||
" store: BigtableByteStore\n",
|
||||
" documents: List[Union[Document, str]]\n",
|
||||
" k: int\n",
|
||||
"\n",
|
||||
" def set_up_store(self):\n",
|
||||
" kv_pairs_to_set = []\n",
|
||||
" for i, doc in enumerate(self.documents):\n",
|
||||
" if isinstance(doc, str):\n",
|
||||
" doc = Document(page_content=doc)\n",
|
||||
" if not doc.id:\n",
|
||||
" doc.id = str(i)\n",
|
||||
" value = (\n",
|
||||
" \"Page Content\\n\"\n",
|
||||
" + doc.page_content\n",
|
||||
" + \"\\nMetadata\"\n",
|
||||
" + json.dumps(doc.metadata)\n",
|
||||
" )\n",
|
||||
" kv_pairs_to_set.append((doc.id, value.encode(\"utf-8\")))\n",
|
||||
" self.store.mset(kv_pairs_to_set)\n",
|
||||
"\n",
|
||||
" async def _aget_relevant_documents(\n",
|
||||
" self,\n",
|
||||
" query: str,\n",
|
||||
" *,\n",
|
||||
" run_manager: Optional[CallbackManagerForRetrieverRun] = None,\n",
|
||||
" ) -> List[Document]:\n",
|
||||
" keys = [key async for key in self.store.ayield_keys(prefix=query)][: self.k]\n",
|
||||
" documents_retrieved = []\n",
|
||||
" async for document in await self.store.amget(keys):\n",
|
||||
" if document:\n",
|
||||
" document_str = document.decode(\"utf-8\")\n",
|
||||
" page_content = document_str.split(\"Content\\n\")[1].split(\"\\nMetadata\")[0]\n",
|
||||
" metadata = json.loads(document_str.split(\"\\nMetadata\")[1])\n",
|
||||
" documents_retrieved.append(\n",
|
||||
" Document(page_content=page_content, metadata=metadata)\n",
|
||||
" )\n",
|
||||
" return documents_retrieved\n",
|
||||
"\n",
|
||||
" def _get_relevant_documents(\n",
|
||||
" self,\n",
|
||||
" query: str,\n",
|
||||
" *,\n",
|
||||
" run_manager: Optional[CallbackManagerForRetrieverRun] = None,\n",
|
||||
" ) -> list[Document]:\n",
|
||||
" keys = [key for key in self.store.yield_keys(prefix=query)][: self.k]\n",
|
||||
" documents_retrieved = []\n",
|
||||
" for document in self.store.mget(keys):\n",
|
||||
" if document:\n",
|
||||
" document_str = document.decode(\"utf-8\")\n",
|
||||
" page_content = document_str.split(\"Content\\n\")[1].split(\"\\nMetadata\")[0]\n",
|
||||
" metadata = json.loads(document_str.split(\"\\nMetadata\")[1])\n",
|
||||
" documents_retrieved.append(\n",
|
||||
" Document(page_content=page_content, metadata=metadata)\n",
|
||||
" )\n",
|
||||
" return documents_retrieved"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"documents = [\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Goldfish are popular pets for beginners, requiring relatively simple care.\",\n",
|
||||
" metadata={\"type\": \"fish\", \"trait\": \"low maintenance\"},\n",
|
||||
" id=\"fish#Goldfish\",\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Cats are independent pets that often enjoy their own space.\",\n",
|
||||
" metadata={\"type\": \"cat\", \"trait\": \"independence\"},\n",
|
||||
" id=\"mammals#Cats\",\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Rabbits are social animals that need plenty of space to hop around.\",\n",
|
||||
" metadata={\"type\": \"rabbit\", \"trait\": \"social\"},\n",
|
||||
" id=\"mammals#Rabbits\",\n",
|
||||
" ),\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever_store = BigtableByteStore.create_sync(\n",
|
||||
" engine=engine, instance_id=INSTANCE_ID, table_id=TABLE_ID\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"KVDocumentRetriever = SimpleKVStoreRetriever(\n",
|
||||
" store=retriever_store, documents=documents, k=2\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"KVDocumentRetriever.set_up_store()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"KVDocumentRetriever.invoke(\"fish\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"KVDocumentRetriever.invoke(\"mammals\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For full details on the `BigtableByteStore` class, see the source code on [GitHub](https://github.com/googleapis/langchain-google-bigtable-python/blob/main/src/langchain_google_bigtable/key_value_store.py)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
319
docs/docs/integrations/text_embedding/aimlapi.ipynb
Normal file
319
docs/docs/integrations/text_embedding/aimlapi.ipynb
Normal file
@@ -0,0 +1,319 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: AI/ML API Embeddings\n",
|
||||
"---"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "24ae9a5bcf0c8c19"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# AimlapiEmbeddings\n",
|
||||
"\n",
|
||||
"This will help you get started with AI/ML API embedding models using LangChain. For detailed documentation on `AimlapiEmbeddings` features and configuration options, please refer to the [API reference](https://docs.aimlapi.com/?utm_source=langchain&utm_medium=github&utm_campaign=integration).\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"import { ItemTable } from \"@theme/FeatureTables\";\n",
|
||||
"\n",
|
||||
"<ItemTable category=\"text_embedding\" item=\"AI/ML API\" />\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"To access AI/ML API embedding models you'll need to create an account, get an API key, and install the `langchain-aimlapi` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"Head to [https://aimlapi.com/app/](https://aimlapi.com/app/?utm_source=langchain&utm_medium=github&utm_campaign=integration) to sign up and generate an API key. Once you've done this, set the `AIMLAPI_API_KEY` environment variable:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "4af58f76e6ce897a"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if not os.getenv(\"AIMLAPI_API_KEY\"):\n",
|
||||
" os.environ[\"AIMLAPI_API_KEY\"] = getpass.getpass(\"Enter your AI/ML API key: \")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:50:37.393789Z",
|
||||
"start_time": "2025-08-07T07:50:27.679399Z"
|
||||
}
|
||||
},
|
||||
"id": "3297a770bc0b2b88",
|
||||
"execution_count": 1
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "da319ae795659a93"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:50:40.840377Z",
|
||||
"start_time": "2025-08-07T07:50:40.837144Z"
|
||||
}
|
||||
},
|
||||
"id": "6869f433a2f9dc3e",
|
||||
"execution_count": 2
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain AI/ML API integration lives in the `langchain-aimlapi` package:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "3f6de2cfc36a4dba"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain-aimlapi"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:50:50.693835Z",
|
||||
"start_time": "2025-08-07T07:50:41.453138Z"
|
||||
}
|
||||
},
|
||||
"id": "23c22092f806aa31",
|
||||
"execution_count": 3
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our embeddings model and perform embedding operations:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "db718f4b551164f3"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_aimlapi import AimlapiEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = AimlapiEmbeddings(\n",
|
||||
" model=\"text-embedding-ada-002\",\n",
|
||||
")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:51:03.046723Z",
|
||||
"start_time": "2025-08-07T07:50:50.694842Z"
|
||||
}
|
||||
},
|
||||
"id": "88b86f20598af88e",
|
||||
"execution_count": 4
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Indexing and Retrieval\n",
|
||||
"\n",
|
||||
"Embedding models are often used in retrieval-augmented generation (RAG) flows. Below is how to index and retrieve data using the `embeddings` object we initialized above with `InMemoryVectorStore`."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "847447f4ff1fe82a"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "'LangChain is the framework for building context-aware reasoning applications'"
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.vectorstores import InMemoryVectorStore\n",
|
||||
"\n",
|
||||
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
|
||||
"\n",
|
||||
"vectorstore = InMemoryVectorStore.from_texts(\n",
|
||||
" [text],\n",
|
||||
" embedding=embeddings,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"retriever = vectorstore.as_retriever()\n",
|
||||
"\n",
|
||||
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
|
||||
"retrieved_documents[0].page_content"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:51:05.421030Z",
|
||||
"start_time": "2025-08-07T07:51:03.047729Z"
|
||||
}
|
||||
},
|
||||
"id": "595ccebd97dabeef",
|
||||
"execution_count": 5
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Direct Usage\n",
|
||||
"\n",
|
||||
"You can directly call `embed_query` and `embed_documents` for custom embedding scenarios.\n",
|
||||
"\n",
|
||||
"### Embed single text:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "aa922f78938d1ae1"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[-0.0011368310078978539, 0.00714730704203248, -0.014703838154673576, -0.034064359962940216, 0.011239\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"single_vector = embeddings.embed_query(text)\n",
|
||||
"print(str(single_vector)[:100])"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:51:06.285037Z",
|
||||
"start_time": "2025-08-07T07:51:05.422035Z"
|
||||
}
|
||||
},
|
||||
"id": "c06952ac53aab22",
|
||||
"execution_count": 6
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### Embed multiple texts:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "52c9b7de79992a7b"
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[-0.0011398226488381624, 0.007080476265400648, -0.014682820066809654, -0.03407655283808708, 0.011276\n",
|
||||
"[-0.005510928109288216, 0.016650190576910973, -0.011078780516982079, -0.03116573952138424, -0.003735\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"text2 = (\n",
|
||||
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
|
||||
")\n",
|
||||
"two_vectors = embeddings.embed_documents([text, text2])\n",
|
||||
"for vector in two_vectors:\n",
|
||||
" print(str(vector)[:100])"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-08-07T07:51:07.954778Z",
|
||||
"start_time": "2025-08-07T07:51:06.285544Z"
|
||||
}
|
||||
},
|
||||
"id": "f1dcf3c389e11cc1",
|
||||
"execution_count": 7
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## API Reference\n",
|
||||
"\n",
|
||||
"For detailed documentation on `AimlapiEmbeddings` features and configuration options, please refer to the [API reference](https://docs.aimlapi.com/?utm_source=langchain&utm_medium=github&utm_campaign=integration).\n"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"id": "a45ff6faef63cab2"
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -26,13 +26,11 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install -U langchain_oci"
|
||||
]
|
||||
"execution_count": null,
|
||||
"source": "!pip install -U langchain-oci"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -75,9 +73,9 @@
|
||||
"\n",
|
||||
"# use default authN method API-key\n",
|
||||
"embeddings = OCIGenAIEmbeddings(\n",
|
||||
" model_id=\"MY_EMBEDDING_MODEL\",\n",
|
||||
" model_id=\"cohere.embed-v4.0\",\n",
|
||||
" service_endpoint=\"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com\",\n",
|
||||
" compartment_id=\"MY_OCID\",\n",
|
||||
" compartment_id=\"compartment_id\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
||||
@@ -42,7 +42,9 @@
|
||||
"source": [
|
||||
"### Prerequisites\n",
|
||||
"\n",
|
||||
"Ensure you have the Oracle Python Client driver installed to facilitate the integration of Langchain with Oracle AI Vector Search."
|
||||
"You'll need to install `langchain-oracledb` with `python -m pip install -U langchain-oracledb` to use this integration.\n",
|
||||
"\n",
|
||||
"The `python-oracledb` driver is installed automatically as a dependency of langchain-oracledb."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -51,7 +53,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# pip install oracledb"
|
||||
"# python -m pip install -U langchain-oracledb"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -113,7 +115,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_oracledb.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"\n",
|
||||
"# Update the directory and file names for your ONNX model\n",
|
||||
"# make sure that you have onnx file in the system\n",
|
||||
@@ -223,7 +225,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_oracledb.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\"\"\"\n",
|
||||
@@ -237,10 +239,10 @@
|
||||
"\n",
|
||||
"# using huggingface\n",
|
||||
"embedder_params = {\n",
|
||||
" \"provider\": \"huggingface\", \n",
|
||||
" \"credential_name\": \"HF_CRED\", \n",
|
||||
" \"url\": \"https://api-inference.huggingface.co/pipeline/feature-extraction/\", \n",
|
||||
" \"model\": \"sentence-transformers/all-MiniLM-L6-v2\", \n",
|
||||
" \"provider\": \"huggingface\",\n",
|
||||
" \"credential_name\": \"HF_CRED\",\n",
|
||||
" \"url\": \"https://api-inference.huggingface.co/pipeline/feature-extraction/\",\n",
|
||||
" \"model\": \"sentence-transformers/all-MiniLM-L6-v2\",\n",
|
||||
" \"wait_for_model\": \"true\"\n",
|
||||
"}\n",
|
||||
"\"\"\"\n",
|
||||
|
||||
@@ -42,7 +42,9 @@
|
||||
"source": [
|
||||
"### Prerequisites\n",
|
||||
"\n",
|
||||
"Please install Oracle Python Client driver to use Langchain with Oracle AI Vector Search. "
|
||||
"You'll need to install `langchain-oracledb` with `python -m pip install -U langchain-oracledb` to use this integration.\n",
|
||||
"\n",
|
||||
"The `python-oracledb` driver is installed automatically as a dependency of langchain-oracledb."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -51,7 +53,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# pip install oracledb"
|
||||
"# python -m pip install -U langchain-oracledb"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -123,7 +125,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_oracledb.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\"\"\"\n",
|
||||
|
||||
329
docs/docs/integrations/tools/scraperapi.ipynb
Normal file
329
docs/docs/integrations/tools/scraperapi.ipynb
Normal file
@@ -0,0 +1,329 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d3a12ba8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# LangChain – ScraperAPI\n",
|
||||
"\n",
|
||||
"Give your AI agent the ability to browse websites, search Google and Amazon in just two lines of code.\n",
|
||||
"\n",
|
||||
"The `langchain-scraperapi` package adds three ready-to-use LangChain tools backed by the [ScraperAPI](https://www.scraperapi.com/) service:\n",
|
||||
"\n",
|
||||
"| Tool class | Use it to |\n",
|
||||
"|------------|------------------|\n",
|
||||
"| `ScraperAPITool` | Grab the HTML/text/markdown of any web page |\n",
|
||||
"| `ScraperAPIGoogleSearchTool` | Get structured Google Search SERP data |\n",
|
||||
"| `ScraperAPIAmazonSearchTool` | Get structured Amazon product-search data |\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Package | Serializable | [JS support](https://js.langchain.com/docs/integrations/tools/__module_name__) | Package latest |\n",
|
||||
"| :--- | :---: | :---: | :---: |\n",
|
||||
"| [langchain-scraperapi](https://pypi.org/project/langchain-scraperapi/) | ❌ | ❌ | v0.1.1 |"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d1f7c70f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Setup\n",
|
||||
"\n",
|
||||
"Install the `langchain-scraperapi` package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "494ecbc3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -U langchain-scraperapi"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c111d2fb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"Create an account at https://www.scraperapi.com/ and get an API key."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4d315465",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"SCRAPERAPI_API_KEY\"] = \"your-api-key\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e06ffe48",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "27ae5612",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_scraperapi.tools import ScraperAPITool\n",
|
||||
"\n",
|
||||
"tool = ScraperAPITool()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9ff46136",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6e1a4c7f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"output = tool.invoke(\n",
|
||||
" {\n",
|
||||
" \"url\": \"https://langchain.com\",\n",
|
||||
" \"output_format\": \"markdown\",\n",
|
||||
" \"render\": True,\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"print(output)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "051ef7b1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Features\n",
|
||||
"\n",
|
||||
"### 1. `ScraperAPITool` — browse any website\n",
|
||||
"\n",
|
||||
"Invoke the *raw* ScraperAPI endpoint and get HTML, rendered DOM, text, or markdown.\n",
|
||||
"\n",
|
||||
"**Invocation arguments**\n",
|
||||
"\n",
|
||||
"* **`url`** **(required)** – target page URL \n",
|
||||
"* **Optional (mirror ScraperAPI query params)** \n",
|
||||
" * `output_format`: `\"text\"` | `\"markdown\"` (default returns raw HTML) \n",
|
||||
" * `country_code`: e.g. `\"us\"`, `\"de\"` \n",
|
||||
" * `device_type`: `\"desktop\"` | `\"mobile\"` \n",
|
||||
" * `premium`: `bool` – use premium proxies \n",
|
||||
" * `render`: `bool` – run JS before returning HTML \n",
|
||||
" * `keep_headers`: `bool` – include response headers \n",
|
||||
" \n",
|
||||
"For the complete set of modifiers see the [ScraperAPI request-customisation docs](https://docs.scraperapi.com/python/making-requests/customizing-requests)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1a0c7cc2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_scraperapi.tools import ScraperAPITool\n",
|
||||
"\n",
|
||||
"tool = ScraperAPITool()\n",
|
||||
"\n",
|
||||
"html_text = tool.invoke(\n",
|
||||
" {\n",
|
||||
" \"url\": \"https://langchain.com\",\n",
|
||||
" \"output_format\": \"markdown\",\n",
|
||||
" \"render\": True,\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"print(html_text[:300], \"…\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9f2947dd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2. `ScraperAPIGoogleSearchTool` — structured Google Search\n",
|
||||
"\n",
|
||||
"Structured SERP data via `/structured/google/search`.\n",
|
||||
"\n",
|
||||
"**Invocation arguments**\n",
|
||||
"\n",
|
||||
"* **`query`** **(required)** – natural-language search string \n",
|
||||
"* **Optional** — `country_code`, `tld`, `uule`, `hl`, `gl`, `ie`, `oe`, `start`, `num` \n",
|
||||
"* `output_format`: `\"json\"` (default) or `\"csv\"`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aeac1195",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_scraperapi.tools import ScraperAPIGoogleSearchTool\n",
|
||||
"\n",
|
||||
"google_search = ScraperAPIGoogleSearchTool()\n",
|
||||
"\n",
|
||||
"results = google_search.invoke(\n",
|
||||
" {\n",
|
||||
" \"query\": \"what is langchain\",\n",
|
||||
" \"num\": 20,\n",
|
||||
" \"output_format\": \"json\",\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"print(results)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3dc2f845",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 3. `ScraperAPIAmazonSearchTool` — structured Amazon Search\n",
|
||||
"\n",
|
||||
"Structured product results via `/structured/amazon/search`.\n",
|
||||
"\n",
|
||||
"**Invocation arguments**\n",
|
||||
"\n",
|
||||
"* **`query`** **(required)** – product search terms \n",
|
||||
"* **Optional** — `country_code`, `tld`, `page` \n",
|
||||
"* `output_format`: `\"json\"` (default) or `\"csv\"`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "05a4a6ed",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_scraperapi.tools import ScraperAPIAmazonSearchTool\n",
|
||||
"\n",
|
||||
"amazon_search = ScraperAPIAmazonSearchTool()\n",
|
||||
"\n",
|
||||
"products = amazon_search.invoke(\n",
|
||||
" {\n",
|
||||
" \"query\": \"noise cancelling headphones\",\n",
|
||||
" \"tld\": \"co.uk\",\n",
|
||||
" \"page\": 2,\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"print(products)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "607eb8c8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use within an agent\n",
|
||||
"\n",
|
||||
"Here is an example of using the tools in an AI agent. The `ScraperAPITool` gives the AI the ability to browse any website, summarize articles, and click on links to navigate between pages."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6541b286",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -U langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cb62e921",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.agents import AgentExecutor, create_tool_calling_agent\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"from langchain_scraperapi.tools import ScraperAPITool\n",
|
||||
"\n",
|
||||
"os.environ[\"SCRAPERAPI_API_KEY\"] = \"your-api-key\"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"your-api-key\"\n",
|
||||
"\n",
|
||||
"tools = [ScraperAPITool(output_format=\"markdown\")]\n",
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4o\", temperature=0)\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that can browse websites for users. When asked to browse a website or a link, do so with the ScraperAPITool, then provide information based on the website based on the user's needs.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"agent = create_tool_calling_agent(llm, tools, prompt)\n",
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)\n",
|
||||
"response = agent_executor.invoke(\n",
|
||||
" {\"input\": \"can you browse hacker news and summarize the first website\"}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4e90c894",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"Below you can find more information on additional parameters to the tools to customize your requests.\n",
|
||||
"\n",
|
||||
"* [ScraperAPITool](https://docs.scraperapi.com/python/making-requests/customizing-requests)\n",
|
||||
"* [ScraperAPIGoogleSearchTool](https://docs.scraperapi.com/python/make-requests-with-scraperapi-in-python/scraperapi-structured-data-collection-in-python/google-serp-api-structured-data-in-python)\n",
|
||||
"* [ScraperAPIAmazonSearchTool](https://docs.scraperapi.com/python/make-requests-with-scraperapi-in-python/scraperapi-structured-data-collection-in-python/amazon-search-api-structured-data-in-python)\n",
|
||||
"\n",
|
||||
"The LangChain wrappers surface these parameters directly."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"jupytext": {
|
||||
"cell_metadata_filter": "-all",
|
||||
"main_language": "python",
|
||||
"notebook_metadata_filter": "-all"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.10.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -118,7 +118,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from stripe_agent_toolkit.crewai.toolkit import StripeAgentToolkit\n",
|
||||
"from stripe_agent_toolkit.langchain.toolkit import StripeAgentToolkit\n",
|
||||
"\n",
|
||||
"stripe_agent_toolkit = StripeAgentToolkit(\n",
|
||||
" secret_key=os.getenv(\"STRIPE_SECRET_KEY\"),\n",
|
||||
|
||||
350
docs/docs/integrations/tools/timbr.ipynb
Normal file
350
docs/docs/integrations/tools/timbr.ipynb
Normal file
@@ -0,0 +1,350 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "2ce4bdbc",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: timbr\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a6f91f20",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Timbr\n",
|
||||
"\n",
|
||||
"[Timbr](https://docs.timbr.ai/doc/docs/integration/langchain-sdk/) integrates natural language inputs with Timbr's ontology-driven semantic layer. Leveraging Timbr's robust ontology capabilities, the SDK integrates with Timbr data models and leverages semantic relationships and annotations, enabling users to query data using business-friendly language.\n",
|
||||
"\n",
|
||||
"This notebook provides a quick overview for getting started with Timbr tools and agents. For more information about Timbr visit [Timbr.ai](https://timbr.ai/) or the [Timbr Documentation](https://docs.timbr.ai/doc/docs/integration/langchain-sdk/)\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"Timbr package for LangChain is [langchain-timbr](https://pypi.org/project/langchain-timbr), which provides seamless integration with Timbr's semantic layer for natural language to SQL conversion.\n",
|
||||
"\n",
|
||||
"### Tool features\n",
|
||||
"\n",
|
||||
"| Tool Name | Description |\n",
|
||||
"| :--- | :--- |\n",
|
||||
"| `IdentifyTimbrConceptChain` | Identify relevant concepts from user prompts |\n",
|
||||
"| `GenerateTimbrSqlChain` | Generate SQL queries from natural language prompts |\n",
|
||||
"| `ValidateTimbrSqlChain` | Validate SQL queries against Timbr knowledge graph schemas |\n",
|
||||
"| `ExecuteTimbrQueryChain` | Execute SQL queries against Timbr knowledge graph databases |\n",
|
||||
"| `GenerateAnswerChain` | Generate human-readable answers from query results |\n",
|
||||
"| `TimbrSqlAgent` | End-to-end SQL agent for natural language queries |\n",
|
||||
"\n",
|
||||
"### TimbrSqlAgent Parameters\n",
|
||||
"\n",
|
||||
"The `TimbrSqlAgent` is a pre-built agent that combines all the above tools for end-to-end natural language to SQL processing.\n",
|
||||
"\n",
|
||||
"For the complete list of parameters and detailed documentation, see: [TimbrSqlAgent Documentation](https://docs.timbr.ai/doc/docs/integration/langchain-sdk/#timbr-sql-agent)\n",
|
||||
"\n",
|
||||
"| Parameter | Type | Required | Description |\n",
|
||||
"| :--- | :--- | :--- | :--- |\n",
|
||||
"| `llm` | BaseChatModel | Yes | Language model instance (ChatOpenAI, ChatAnthropic, etc.) |\n",
|
||||
"| `url` | str | Yes | Timbr application URL |\n",
|
||||
"| `token` | str | Yes | Timbr API token |\n",
|
||||
"| `ontology` | str | Yes | Knowledge graph ontology name |\n",
|
||||
"| `schema` | str | No | Database schema name |\n",
|
||||
"| `concept` | str | No | Specific concept to focus on |\n",
|
||||
"| `concepts_list` | List[str] | No | List of relevant concepts |\n",
|
||||
"| `views_list` | List[str] | No | List of available views |\n",
|
||||
"| `note` | str | No | Additional context or instructions |\n",
|
||||
"| `retries` | int | No | Number of retry attempts (default: 3) |\n",
|
||||
"| `should_validate_sql` | bool | No | Whether to validate generated SQL (default: True) |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"The integration lives in the `langchain-timbr` package.\n",
|
||||
"\n",
|
||||
"In this example, we'll use OpenAI for the LLM provider."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f85b4089",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --quiet -U langchain-timbr[openai]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b15e9266",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"You'll need Timbr credentials to use the tools. Get your API token from your Timbr application's API settings."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e0b178a2-8816-40ca-b57c-ccdd86dde9c9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Set up Timbr credentials\n",
|
||||
"if not os.environ.get(\"TIMBR_URL\"):\n",
|
||||
" os.environ[\"TIMBR_URL\"] = input(\"Timbr URL:\\n\")\n",
|
||||
"\n",
|
||||
"if not os.environ.get(\"TIMBR_TOKEN\"):\n",
|
||||
" os.environ[\"TIMBR_TOKEN\"] = getpass.getpass(\"Timbr API Token:\\n\")\n",
|
||||
"\n",
|
||||
"if not os.environ.get(\"TIMBR_ONTOLOGY\"):\n",
|
||||
" os.environ[\"TIMBR_ONTOLOGY\"] = input(\"Timbr Ontology:\\n\")\n",
|
||||
"\n",
|
||||
"if not os.environ.get(\"OPENAI_API_KEY\"):\n",
|
||||
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1c97218f-f366-479d-8bf7-fe9f2f6df73f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Instantiate Timbr tools and agents. First, let's set up the LLM and basic Timbr chains:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8b3ddfe9-ca79-494c-a7ab-1f56d9407a64",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_timbr import (\n",
|
||||
" ExecuteTimbrQueryChain,\n",
|
||||
" GenerateAnswerChain,\n",
|
||||
" TimbrSqlAgent,\n",
|
||||
" LlmWrapper,\n",
|
||||
" LlmTypes,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Set up the LLM\n",
|
||||
"# from langchain_openai import ChatOpenAI\n",
|
||||
"# llm = ChatOpenAI(model=\"gpt-4o\", temperature=0)\n",
|
||||
"\n",
|
||||
"# Alternative: Use Timbr's LlmWrapper for an easy LLM setup\n",
|
||||
"llm = LlmWrapper(\n",
|
||||
" llm_type=LlmTypes.OpenAI, api_key=os.environ[\"OPENAI_API_KEY\"], model=\"gpt-4o\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Instantiate Timbr chains\n",
|
||||
"execute_timbr_query_chain = ExecuteTimbrQueryChain(\n",
|
||||
" llm=llm,\n",
|
||||
" url=os.environ[\"TIMBR_URL\"],\n",
|
||||
" token=os.environ[\"TIMBR_TOKEN\"],\n",
|
||||
" ontology=os.environ[\"TIMBR_ONTOLOGY\"],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"generate_answer_chain = GenerateAnswerChain(\n",
|
||||
" llm=llm, url=os.environ[\"TIMBR_URL\"], token=os.environ[\"TIMBR_TOKEN\"]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "74147a1a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"\n",
|
||||
"### Execute SQL queries from natural language\n",
|
||||
"\n",
|
||||
"You can use the individual chains to perform specific operations:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "65310a8b-eb0c-4d9e-a618-4f4abe2414fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Execute a natural language query\n",
|
||||
"result = execute_timbr_query_chain.invoke(\n",
|
||||
" {\"prompt\": \"What are the total sales for last month?\"}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"SQL Query:\", result[\"sql\"])\n",
|
||||
"print(\"Results:\", result[\"rows\"])\n",
|
||||
"print(\"Concept:\", result[\"concept\"])\n",
|
||||
"\n",
|
||||
"# Generate a human-readable answer from the results\n",
|
||||
"answer_result = generate_answer_chain.invoke(\n",
|
||||
" {\"prompt\": \"What are the total sales for last month?\", \"rows\": result[\"rows\"]}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"Human-readable answer:\", answer_result[\"answer\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d6e73897",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use within an agent\n",
|
||||
"\n",
|
||||
"### Using TimbrSqlAgent\n",
|
||||
"\n",
|
||||
"The `TimbrSqlAgent` provides an end-to-end solution that combines concept identification, SQL generation, validation, execution, and answer generation:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f90e33a7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentExecutor\n",
|
||||
"\n",
|
||||
"# Create a TimbrSqlAgent with all parameters\n",
|
||||
"timbr_agent = TimbrSqlAgent(\n",
|
||||
" llm=llm,\n",
|
||||
" url=os.environ[\"TIMBR_URL\"],\n",
|
||||
" token=os.environ[\"TIMBR_TOKEN\"],\n",
|
||||
" ontology=os.environ[\"TIMBR_ONTOLOGY\"],\n",
|
||||
" concepts_list=[\"Sales\", \"Orders\"], # optional\n",
|
||||
" views_list=[\"sales_view\"], # optional\n",
|
||||
" note=\"Focus on monthly aggregations\", # optional\n",
|
||||
" retries=3, # optional\n",
|
||||
" should_validate_sql=True, # optional\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Use the agent for end-to-end natural language to answer processing\n",
|
||||
"agent_result = AgentExecutor.from_agent_and_tools(\n",
|
||||
" agent=timbr_agent,\n",
|
||||
" tools=[], # No tools needed as we're directly using the chain\n",
|
||||
" verbose=True,\n",
|
||||
").invoke(\"Show me the top 5 customers by total sales amount this year\")\n",
|
||||
"\n",
|
||||
"print(\"Final Answer:\", agent_result[\"answer\"])\n",
|
||||
"print(\"Generated SQL:\", agent_result[\"sql\"])\n",
|
||||
"print(\"Usage Metadata:\", agent_result.get(\"usage_metadata\", {}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "659f9fbd-6fcf-445f-aa8c-72d8e60154bd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sequential Chains\n",
|
||||
"\n",
|
||||
"You can combine multiple Timbr chains using LangChain's SequentialChain for custom workflows:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af3123ad-7a02-40e5-b58e-7d56e23e5830",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import SequentialChain\n",
|
||||
"\n",
|
||||
"# Create a sequential pipeline\n",
|
||||
"pipeline = SequentialChain(\n",
|
||||
" chains=[execute_timbr_query_chain, generate_answer_chain],\n",
|
||||
" input_variables=[\"prompt\"],\n",
|
||||
" output_variables=[\"answer\", \"sql\", \"rows\"],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Execute the pipeline\n",
|
||||
"pipeline_result = pipeline.invoke(\n",
|
||||
" {\"prompt\": \"What are the average order values by customer segment?\"}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"Pipeline Result:\", pipeline_result)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fdbf35b5-3aaf-4947-9ec6-48c21533fb95",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example: Accessing usage metadata from Timbr operations\n",
|
||||
"result_with_metadata = execute_timbr_query_chain.invoke(\n",
|
||||
" {\"prompt\": \"How many orders were placed last quarter?\"}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Extract usage metadata\n",
|
||||
"usage_metadata = result_with_metadata.get(\"execute_timbr_usage_metadata\", {})\n",
|
||||
"determine_concept_usage = usage_metadata.get(\"determine_concept\", {})\n",
|
||||
"generate_sql_usage = usage_metadata.get(\"generate_sql\", {})\n",
|
||||
"\n",
|
||||
"print(determine_concept_usage)\n",
|
||||
"\n",
|
||||
"print(\n",
|
||||
" \"Concept determination token estimate:\",\n",
|
||||
" determine_concept_usage.get(\"approximate\", \"N/A\"),\n",
|
||||
")\n",
|
||||
"print(\n",
|
||||
" \"Concept determination tokens:\",\n",
|
||||
" determine_concept_usage.get(\"token_usage\", {}).get(\"total_tokens\", \"N/A\"),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"SQL generation token estimate:\", generate_sql_usage.get(\"approximate\", \"N/A\"))\n",
|
||||
"print(\n",
|
||||
" \"SQL generation tokens:\",\n",
|
||||
" generate_sql_usage.get(\"token_usage\", {}).get(\"total_tokens\", \"N/A\"),\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4ac8146c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"- [PyPI](https://pypi.org/project/langchain-timbr)\n",
|
||||
"- [GitHub](https://github.com/WPSemantix/langchain-timbr)\n",
|
||||
"- [LangChain Timbr Documentation](https://docs.timbr.ai/doc/docs/integration/langchain-sdk/)\n",
|
||||
"- [LangGraph Timbr Documentation](https://docs.timbr.ai/doc/docs/integration/langgraph-sdk)\n",
|
||||
"- [Timbr Official Website](https://timbr.ai/)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
281
docs/docs/integrations/tools/zenrows_universal_scraper.ipynb
Normal file
281
docs/docs/integrations/tools/zenrows_universal_scraper.ipynb
Normal file
@@ -0,0 +1,281 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "FVo_qZB6crBs"
|
||||
},
|
||||
"source": [
|
||||
"# ZenRowsUniversalScraper\n",
|
||||
"\n",
|
||||
"[ZenRows](https://www.zenrows.com/) is an enterprise-grade web scraping tool that provides advanced web data extraction capabilities at scale. For more information about ZenRows and its Universal Scraper API, visit the [official documentation](https://docs.zenrows.com/universal-scraper-api/).\n",
|
||||
"\n",
|
||||
"This document provides a quick overview for getting started with ZenRowsUniversalScraper tool. For detailed documentation of all ZenRowsUniversalScraper features and configurations head to the [API reference](https://github.com/ZenRows-Hub/langchain-zenrows?tab=readme-ov-file#api-reference).\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | JS support | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: |\n",
|
||||
"| [ZenRowsUniversalScraper](https://pypi.org/project/langchain-zenrows/) | [langchain-zenrows](https://pypi.org/project/langchain-zenrows/) | ❌ |  |\n",
|
||||
"\n",
|
||||
"### Tool features\n",
|
||||
"\n",
|
||||
"| Feature | Support |\n",
|
||||
"| :--- | :---: |\n",
|
||||
"| **JavaScript Rendering** | ✅ |\n",
|
||||
"| **Anti-Bot Bypass** | ✅ |\n",
|
||||
"| **Geo-Targeting** | ✅ |\n",
|
||||
"| **Multiple Output Formats** | ✅ |\n",
|
||||
"| **CSS Extraction** | ✅ |\n",
|
||||
"| **Screenshot Capture** | ✅ |\n",
|
||||
"| **Session Management** | ✅ |\n",
|
||||
"| **Premium Proxies** | ✅ |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"Install the required dependencies."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"id": "henNSgOlcww5"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pip install langchain-zenrows"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "IS2yw_UaczgP"
|
||||
},
|
||||
"source": [
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"You'll need a ZenRows API key to use this tool. You can sign up for free at [ZenRows](https://app.zenrows.com/register?prod=universal_scraper)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"id": "Z097qruic2iH"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Set your ZenRows API key\n",
|
||||
"os.environ[\"ZENROWS_API_KEY\"] = \"<YOUR_ZENROWS_API_KEY>\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "hB7fHgmQc5eh"
|
||||
},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Here's how to instantiate an instance of the ZenRowsUniversalScraper tool."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"id": "ezdGcI3Hc8H3"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain_zenrows import ZenRowsUniversalScraper\n",
|
||||
"\n",
|
||||
"# Set your ZenRows API key\n",
|
||||
"os.environ[\"ZENROWS_API_KEY\"] = \"<YOUR_ZENROWS_API_KEY>\"\n",
|
||||
"\n",
|
||||
"zenrows_scraper_tool = ZenRowsUniversalScraper()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "cUal-Ioic_0k"
|
||||
},
|
||||
"source": [
|
||||
"You can also pass the ZenRows API key when initializing the ZenRowsUniversalScraper tool."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"id": "sPd95HKzdCGr"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_zenrows import ZenRowsUniversalScraper\n",
|
||||
"\n",
|
||||
"zenrows_scraper_tool = ZenRowsUniversalScraper(zenrows_api_key=\"your-api-key\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "c8rEvAY4dFX2"
|
||||
},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"\n",
|
||||
"### Basic Usage\n",
|
||||
"\n",
|
||||
"The tool accepts a URL and various optional parameters to customize the scraping behavior:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "GKTDKhXEdGku"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain_zenrows import ZenRowsUniversalScraper\n",
|
||||
"\n",
|
||||
"# Set your ZenRows API key\n",
|
||||
"os.environ[\"ZENROWS_API_KEY\"] = \"<YOUR_ZENROWS_API_KEY>\"\n",
|
||||
"\n",
|
||||
"# Initialize the tool\n",
|
||||
"zenrows_scraper_tool = ZenRowsUniversalScraper()\n",
|
||||
"\n",
|
||||
"# Scrape a simple webpage\n",
|
||||
"result = zenrows_scraper_tool.invoke({\"url\": \"https://httpbin.io/html\"})\n",
|
||||
"print(result)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "7Kd1loN5dJbt"
|
||||
},
|
||||
"source": [
|
||||
"### Advanced Usage with Parameters"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "NfJOQdBhdLrp"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain_zenrows import ZenRowsUniversalScraper\n",
|
||||
"\n",
|
||||
"# Set your ZenRows API key\n",
|
||||
"os.environ[\"ZENROWS_API_KEY\"] = \"<YOUR_ZENROWS_API_KEY>\"\n",
|
||||
"\n",
|
||||
"zenrows_scraper_tool = ZenRowsUniversalScraper()\n",
|
||||
"\n",
|
||||
"# Scrape with JavaScript rendering and premium proxies\n",
|
||||
"result = zenrows_scraper_tool.invoke(\n",
|
||||
" {\n",
|
||||
" \"url\": \"https://www.scrapingcourse.com/ecommerce/\",\n",
|
||||
" \"js_render\": True,\n",
|
||||
" \"premium_proxy\": True,\n",
|
||||
" \"proxy_country\": \"us\",\n",
|
||||
" \"response_type\": \"markdown\",\n",
|
||||
" \"wait\": 2000,\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(result)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "8eivshtqdNe0"
|
||||
},
|
||||
"source": [
|
||||
"### Use within an agent"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "JmbPF7xadPgK"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain_openai import ChatOpenAI # or your preferred LLM\n",
|
||||
"from langchain_zenrows import ZenRowsUniversalScraper\n",
|
||||
"from langgraph.prebuilt import create_react_agent\n",
|
||||
"\n",
|
||||
"# Set your ZenRows and OpenAI API keys\n",
|
||||
"os.environ[\"ZENROWS_API_KEY\"] = \"<YOUR_ZENROWS_API_KEY>\"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_OPEN_AI_API_KEY>\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Initialize components\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-4o-mini\")\n",
|
||||
"zenrows_scraper_tool = ZenRowsUniversalScraper()\n",
|
||||
"\n",
|
||||
"# Create agent\n",
|
||||
"agent = create_react_agent(llm, [zenrows_scraper_tool])\n",
|
||||
"\n",
|
||||
"# Use the agent\n",
|
||||
"result = agent.invoke(\n",
|
||||
" {\n",
|
||||
" \"messages\": \"Scrape https://news.ycombinator.com/ and list the top 3 stories with title, points, comments, username, and time.\"\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"Agent Response:\")\n",
|
||||
"for message in result[\"messages\"]:\n",
|
||||
" print(f\"{message.content}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "k9lqlhoAdRSb"
|
||||
},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ZenRowsUniversalScraper features and configurations head to the [**ZenRowsUniversalScraper API reference**](https://github.com/ZenRows-Hub/langchain-zenrows).\n",
|
||||
"\n",
|
||||
"For comprehensive information about the underlying API parameters and capabilities, see the [ZenRows Universal API documentation](https://docs.zenrows.com/universal-scraper-api/api-reference)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
839
docs/docs/integrations/vectorstores/bigtable.ipynb
Normal file
839
docs/docs/integrations/vectorstores/bigtable.ipynb
Normal file
@@ -0,0 +1,839 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "7fb27b941602401d91542211134fc71a",
|
||||
"metadata": {
|
||||
"id": "7fb27b941602401d91542211134fc71a"
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: Google Bigtable\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "acae54e37e7d407bbb7b55eff062a284",
|
||||
"metadata": {
|
||||
"id": "acae54e37e7d407bbb7b55eff062a284"
|
||||
},
|
||||
"source": [
|
||||
"# BigtableVectorStore\n",
|
||||
"\n",
|
||||
"This guide covers the `BigtableVectorStore` integration for using Google Cloud Bigtable as a vector store.\n",
|
||||
"\n",
|
||||
"[Bigtable](https://cloud.google.com/bigtable) is a key-value and wide-column store, ideal for fast access to structured, semi-structured, or unstructured data.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9a63283cbaf04dbcab1f6479b197f3a8",
|
||||
"metadata": {
|
||||
"id": "9a63283cbaf04dbcab1f6479b197f3a8"
|
||||
},
|
||||
"source": [
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"The `BigtableVectorStore` uses Google Cloud Bigtable to store documents and their vector embeddings for similarity search and retrieval. It supports powerful metadata filtering to refine search results.\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"| Class | Package | Local | JS support | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
|
||||
"| [BigtableVectorStore](https://github.com/googleapis/langchain-google-bigtable-python/blob/main/src/langchain_google_bigtable/vector_store.py) | [langchain-google-bigtable](https://pypi.org/project/langchain-google-bigtable/) | ❌ | ❌ |  |  |"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8dd0d8092fe74a7c96281538738b07e2",
|
||||
"metadata": {
|
||||
"id": "8dd0d8092fe74a7c96281538738b07e2"
|
||||
},
|
||||
"source": [
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "72eea5119410473aa328ad9291626812",
|
||||
"metadata": {
|
||||
"id": "72eea5119410473aa328ad9291626812"
|
||||
},
|
||||
"source": [
|
||||
"### Prerequisites\n",
|
||||
"\n",
|
||||
"To get started, you will need a Google Cloud project with an active Bigtable instance.\n",
|
||||
"* [Create a Google Cloud Project](https://developers.google.com/workspace/guides/create-project)\n",
|
||||
"* [Enable the Bigtable API](https://console.cloud.google.com/flows/enableapi?apiid=bigtable.googleapis.com)\n",
|
||||
"* [Create a Bigtable instance](https://cloud.google.com/bigtable/docs/creating-instance)\n",
|
||||
"\n",
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The integration is in the `langchain-google-bigtable` package. The command below also installs `langchain-google-vertexai` to use for an embedding service."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8edb47106e1a46a883d545849b8ab81b",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "8edb47106e1a46a883d545849b8ab81b",
|
||||
"outputId": "b6c95f84-f271-4bd0-f024-81ea38ce7f80"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain-google-bigtable langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "WEparXIIO41L",
|
||||
"metadata": {
|
||||
"id": "WEparXIIO41L"
|
||||
},
|
||||
"source": [
|
||||
"**Colab only**: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "OB8Mg8HxO9HV",
|
||||
"metadata": {
|
||||
"id": "OB8Mg8HxO9HV"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Automatically restart kernel after installs so that your environment can access the new packages\n",
|
||||
"# import IPython\n",
|
||||
"\n",
|
||||
"# app = IPython.Application.instance()\n",
|
||||
"# app.kernel.do_shutdown(True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "10185d26023b46108eb7d9f57d49d2b3",
|
||||
"metadata": {
|
||||
"id": "10185d26023b46108eb7d9f57d49d2b3"
|
||||
},
|
||||
"source": [
|
||||
"### Set Your Google Cloud Project\n",
|
||||
"Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.\n",
|
||||
"\n",
|
||||
"If you don't know your project ID, try the following:\n",
|
||||
"\n",
|
||||
"* Run `gcloud config list`.\n",
|
||||
"* Run `gcloud projects list`.\n",
|
||||
"* See the support page: [Locate the project ID](https://support.google.com/googleapi/answer/7014113)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8763a12b2bbd4a93a75aff182afb95dc",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "8763a12b2bbd4a93a75aff182afb95dc",
|
||||
"outputId": "865ca13d-47e1-4458-dfe3-96b0e7a57810"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @markdown Please fill in your project, instance, and a new table name.\n",
|
||||
"PROJECT_ID = \"google.com:cloud-bigtable-dev\" # @param {type:\"string\"}\n",
|
||||
"INSTANCE_ID = \"anweshadas-test\" # @param {type:\"string\"}\n",
|
||||
"TABLE_ID = \"your-vector-store-table-3\" # @param {type:\"string\"}\n",
|
||||
"\n",
|
||||
"!gcloud config set project {PROJECT_ID}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "xx0JMrbNOfnV",
|
||||
"metadata": {
|
||||
"id": "xx0JMrbNOfnV"
|
||||
},
|
||||
"source": [
|
||||
"### 🔐 Authentication\n",
|
||||
"\n",
|
||||
"Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.\n",
|
||||
"\n",
|
||||
"- If you are using Colab to run this notebook, use the cell below and continue.\n",
|
||||
"- If you are using Vertex AI Workbench, check out the setup instructions [here](https://github.com/GoogleCloudPlatform/generative-ai/tree/main/setup-env)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "T1pPsDCzOURd",
|
||||
"metadata": {
|
||||
"id": "T1pPsDCzOURd"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from google.colab import auth\n",
|
||||
"\n",
|
||||
"auth.authenticate_user(project_id=PROJECT_ID)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7623eae2785240b9bd12b16a66d81610",
|
||||
"metadata": {
|
||||
"id": "7623eae2785240b9bd12b16a66d81610"
|
||||
},
|
||||
"source": [
|
||||
"## Initialization\n",
|
||||
"\n",
|
||||
"Initializing the `BigtableVectorStore` involves three steps: setting up the embedding service, ensuring the Bigtable table is created, and configuring the store's parameters."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7cdc8c89c7104fffa095e18ddfef8986",
|
||||
"metadata": {
|
||||
"id": "7cdc8c89c7104fffa095e18ddfef8986"
|
||||
},
|
||||
"source": [
|
||||
"### 1. Set up Embedding Service\n",
|
||||
"First, we need a model to create the vector embeddings for our documents. We'll use a Vertex AI model for this example."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b118ea5561624da68c537baed56e602f",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "b118ea5561624da68c537baed56e602f",
|
||||
"outputId": "99b55b9a-61c7-4dbe-bf1f-dd84ddc434da"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import VertexAIEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = VertexAIEmbeddings(project=PROJECT_ID, model_name=\"gemini-embedding-001\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "938c804e27f84196a10c8828c723f798",
|
||||
"metadata": {
|
||||
"id": "938c804e27f84196a10c8828c723f798"
|
||||
},
|
||||
"source": [
|
||||
"### 2. Initialize a Table\n",
|
||||
"Before creating a `BigtableVectorStore`, a table with the correct column families must exist. The `init_vector_store_table` helper function is the recommended way to create and configure a table. If the table already exists, it will do nothing."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "504fb2a444614c0babb325280ed9130a",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "504fb2a444614c0babb325280ed9130a",
|
||||
"outputId": "2e6453bc-5eed-4a3e-a8d4-59e945485be6"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_bigtable.vector_store import init_vector_store_table\n",
|
||||
"\n",
|
||||
"DATA_COLUMN_FAMILY = \"doc_data\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" init_vector_store_table(\n",
|
||||
" project_id=PROJECT_ID,\n",
|
||||
" instance_id=INSTANCE_ID,\n",
|
||||
" table_id=TABLE_ID,\n",
|
||||
" content_column_family=DATA_COLUMN_FAMILY,\n",
|
||||
" embedding_column_family=DATA_COLUMN_FAMILY,\n",
|
||||
" )\n",
|
||||
" print(f\"Table '{TABLE_ID}' is ready.\")\n",
|
||||
"except ValueError as e:\n",
|
||||
" print(e)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "59bbdb311c014d738909a11f9e486628",
|
||||
"metadata": {
|
||||
"id": "59bbdb311c014d738909a11f9e486628"
|
||||
},
|
||||
"source": [
|
||||
"### 3. Configure the Vector Store\n",
|
||||
"Now we define the parameters that control how the vector store connects to Bigtable and how it handles data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b43b363d81ae4b689946ece5c682cd59",
|
||||
"metadata": {
|
||||
"id": "b43b363d81ae4b689946ece5c682cd59"
|
||||
},
|
||||
"source": [
|
||||
"#### The BigtableEngine\n",
|
||||
"A `BigtableEngine` object manages clients and async operations. It is highly recommended to initialize a single engine and reuse it across multiple stores for better performance and resource management."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8a65eabff63a45729fe45fb5ade58bdc",
|
||||
"metadata": {
|
||||
"id": "8a65eabff63a45729fe45fb5ade58bdc"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_bigtable import BigtableEngine\n",
|
||||
"\n",
|
||||
"engine = await BigtableEngine.async_initialize(project_id=PROJECT_ID)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c3933fab20d04ec698c2621248eb3be0",
|
||||
"metadata": {
|
||||
"id": "c3933fab20d04ec698c2621248eb3be0"
|
||||
},
|
||||
"source": [
|
||||
"#### Collections\n",
|
||||
"A `collection` provides a logical namespace for your documents within a single Bigtable table. It is used as a prefix for the row keys, allowing multiple vector stores to coexist in the same table without interfering with each other."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4dd4641cc4064e0191573fe9c69df29b",
|
||||
"metadata": {
|
||||
"id": "4dd4641cc4064e0191573fe9c69df29b"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"collection_name = \"my_docs\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8309879909854d7188b41380fd92a7c3",
|
||||
"metadata": {
|
||||
"id": "8309879909854d7188b41380fd92a7c3"
|
||||
},
|
||||
"source": [
|
||||
"#### Metadata Configuration\n",
|
||||
"When creating a `BigtableVectorStore`, you have two optional parameters for handling metadata:\n",
|
||||
"\n",
|
||||
"* `metadata_mappings`: This is a list of `VectorMetadataMapping` objects. You **must** define a mapping for any metadata key you wish to use for filtering in your search queries. Each mapping specifies the data type (`encoding`) for the metadata field, which is crucial for correct filtering.\n",
|
||||
"* `metadata_as_json_column`: This is an optional `ColumnConfig` that tells the store to save the *entire* metadata dictionary as a single JSON string in a specific column. This is useful for efficiently retrieving all of a document's metadata at once, including fields not defined in `metadata_mappings`. **Note:** Fields stored only in this JSON column cannot be used for filtering."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3ed186c9a28b402fb0bc4494df01f08d",
|
||||
"metadata": {
|
||||
"id": "3ed186c9a28b402fb0bc4494df01f08d"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_bigtable import ColumnConfig, VectorMetadataMapping, Encoding\n",
|
||||
"\n",
|
||||
"# Define mappings for metadata fields you want to filter on.\n",
|
||||
"metadata_mappings = [\n",
|
||||
" VectorMetadataMapping(metadata_key=\"author\", encoding=Encoding.UTF8),\n",
|
||||
" VectorMetadataMapping(metadata_key=\"year\", encoding=Encoding.INT_BIG_ENDIAN),\n",
|
||||
" VectorMetadataMapping(metadata_key=\"category\", encoding=Encoding.UTF8),\n",
|
||||
" VectorMetadataMapping(metadata_key=\"rating\", encoding=Encoding.FLOAT),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"# Define the optional column for storing all metadata as a single JSON string.\n",
|
||||
"metadata_as_json_column = ColumnConfig(\n",
|
||||
" column_family=DATA_COLUMN_FAMILY, column_qualifier=\"metadata_json\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cb1e1581032b452c9409d6c6813c49d1",
|
||||
"metadata": {
|
||||
"id": "cb1e1581032b452c9409d6c6813c49d1"
|
||||
},
|
||||
"source": [
|
||||
"### 4. Create the BigtableVectorStore Instance"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "iKM4BktZR56p",
|
||||
"metadata": {
|
||||
"id": "iKM4BktZR56p"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Configure the columns for your store.\n",
|
||||
"content_column = ColumnConfig(\n",
|
||||
" column_family=DATA_COLUMN_FAMILY, column_qualifier=\"content\"\n",
|
||||
")\n",
|
||||
"embedding_column = ColumnConfig(\n",
|
||||
" column_family=DATA_COLUMN_FAMILY, column_qualifier=\"embedding\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "379cbbc1e968416e875cc15c1202d7eb",
|
||||
"metadata": {
|
||||
"id": "379cbbc1e968416e875cc15c1202d7eb"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_bigtable import BigtableVectorStore\n",
|
||||
"\n",
|
||||
"vector_store = await BigtableVectorStore.create(\n",
|
||||
" project_id=PROJECT_ID,\n",
|
||||
" instance_id=INSTANCE_ID,\n",
|
||||
" table_id=TABLE_ID,\n",
|
||||
" engine=engine,\n",
|
||||
" embedding_service=embeddings,\n",
|
||||
" collection=collection_name,\n",
|
||||
" metadata_mappings=metadata_mappings,\n",
|
||||
" metadata_as_json_column=metadata_as_json_column,\n",
|
||||
" content_column=content_column,\n",
|
||||
" embedding_column=embedding_column,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "277c27b1587741f2af2001be3712ef0d",
|
||||
"metadata": {
|
||||
"id": "277c27b1587741f2af2001be3712ef0d"
|
||||
},
|
||||
"source": [
|
||||
"## Manage vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "db7b79bc585a40fcaf58bf750017e135",
|
||||
"metadata": {
|
||||
"id": "db7b79bc585a40fcaf58bf750017e135"
|
||||
},
|
||||
"source": [
|
||||
"### Add Documents\n",
|
||||
"You can add documents with pre-defined IDs. If a `Document` is added without an `id` attribute, the vector store will automatically generate a **`uuid4` string** for it."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "916684f9a58a4a2aa5f864670399430d",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "916684f9a58a4a2aa5f864670399430d",
|
||||
"outputId": "eb343088-624a-41a1-94cd-53e0c3cfa207"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"docs_to_add = [\n",
|
||||
" Document(\n",
|
||||
" page_content=\"A young farm boy, Luke Skywalker, is thrust into a galactic conflict.\",\n",
|
||||
" id=\"doc_1\",\n",
|
||||
" metadata={\n",
|
||||
" \"author\": \"George Lucas\",\n",
|
||||
" \"year\": 1977,\n",
|
||||
" \"category\": \"sci-fi\",\n",
|
||||
" \"rating\": 4.8,\n",
|
||||
" },\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"A hobbit named Frodo Baggins must destroy a powerful ring.\",\n",
|
||||
" id=\"doc_2\",\n",
|
||||
" metadata={\n",
|
||||
" \"author\": \"J.R.R. Tolkien\",\n",
|
||||
" \"year\": 1954,\n",
|
||||
" \"category\": \"fantasy\",\n",
|
||||
" \"rating\": 4.9,\n",
|
||||
" },\n",
|
||||
" ),\n",
|
||||
" # Document without a pre-defined ID, one will be generated.\n",
|
||||
" Document(\n",
|
||||
" page_content=\"A group of children confront an evil entity emerging from the sewers.\",\n",
|
||||
" metadata={\"author\": \"Stephen King\", \"year\": 1986, \"category\": \"horror\"},\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"In a distant future, the noble House Atreides rules the desert planet Arrakis.\",\n",
|
||||
" id=\"doc_3\",\n",
|
||||
" metadata={\n",
|
||||
" \"author\": \"Frank Herbert\",\n",
|
||||
" \"year\": 1965,\n",
|
||||
" \"category\": \"sci-fi\",\n",
|
||||
" \"rating\": 4.9,\n",
|
||||
" },\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"added_ids = await vector_store.aadd_documents(docs_to_add)\n",
|
||||
"print(f\"Added documents with IDs: {added_ids}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1671c31a24314836a5b85d7ef7fbf015",
|
||||
"metadata": {
|
||||
"id": "1671c31a24314836a5b85d7ef7fbf015"
|
||||
},
|
||||
"source": [
|
||||
"### Update Documents\n",
|
||||
"`BigtableVectorStore` handles updates by overwriting. To update a document, simply add it again with the same ID but with new content or metadata."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "33b0902fd34d4ace834912fa1002cf8e",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "33b0902fd34d4ace834912fa1002cf8e",
|
||||
"outputId": "d80f2b01-44df-45d7-9ff5-f77527f04733"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"doc_to_update = [\n",
|
||||
" Document(\n",
|
||||
" page_content=\"An old hobbit, Frodo Baggins, must take a powerful ring to be destroyed.\", # Updated content\n",
|
||||
" id=\"doc_2\", # Same ID\n",
|
||||
" metadata={\n",
|
||||
" \"author\": \"J.R.R. Tolkien\",\n",
|
||||
" \"year\": 1954,\n",
|
||||
" \"category\": \"epic-fantasy\",\n",
|
||||
" \"rating\": 4.9,\n",
|
||||
" }, # Updated metadata\n",
|
||||
" )\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"await vector_store.aadd_documents(doc_to_update)\n",
|
||||
"print(\"Document 'doc_2' has been updated.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f6fa52606d8c4a75a9b52967216f8f3f",
|
||||
"metadata": {
|
||||
"id": "f6fa52606d8c4a75a9b52967216f8f3f"
|
||||
},
|
||||
"source": [
|
||||
"### Delete Documents"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f5a1fa73e5044315a093ec459c9be902",
|
||||
"metadata": {
|
||||
"id": "f5a1fa73e5044315a093ec459c9be902"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"is_deleted = await vector_store.adelete(ids=[\"doc_2\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cdf66aed5cc84ca1b48e60bad68798a8",
|
||||
"metadata": {
|
||||
"id": "cdf66aed5cc84ca1b48e60bad68798a8"
|
||||
},
|
||||
"source": [
|
||||
"## Query vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "28d3efd5258a48a79c179ea5c6759f01",
|
||||
"metadata": {
|
||||
"id": "28d3efd5258a48a79c179ea5c6759f01"
|
||||
},
|
||||
"source": [
|
||||
"### Search"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3f9bc0b9dd2c44919cc8dcca39b469f8",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "3f9bc0b9dd2c44919cc8dcca39b469f8",
|
||||
"outputId": "dbd5426c-139a-451b-d456-c241cf794aec"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"results = await vector_store.asimilarity_search(\"a story about a powerful ring\", k=1)\n",
|
||||
"print(results[0].page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0e382214b5f147d187d36a2058b9c724",
|
||||
"metadata": {
|
||||
"id": "0e382214b5f147d187d36a2058b9c724"
|
||||
},
|
||||
"source": [
|
||||
"### Search with Filters\n",
|
||||
"\n",
|
||||
"Apply filters before the vector search runs."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e7f8g9h0-query-header-restored",
|
||||
"metadata": {
|
||||
"id": "e7f8g9h0-query-header-restored"
|
||||
},
|
||||
"source": [
|
||||
"#### The kNN Search Algorithm and Filtering\n",
|
||||
"\n",
|
||||
"By default, `BigtableVectorStore` uses a **k-Nearest Neighbors (kNN)** search algorithm to find the `k` vectors in the database that are most similar to your query vector. The vector store offers filtering to reduce the search space *before* the kNN search is performed, which can make queries faster and more relevant.\n",
|
||||
"\n",
|
||||
"#### Configuring Queries with `QueryParameters`\n",
|
||||
"\n",
|
||||
"All search settings are controlled via the `QueryParameters` object. This object allows you to specify not only filters but also other important search aspects:\n",
|
||||
"* `algorithm`: The search algorithm to use. Defaults to `\"kNN\"`.\n",
|
||||
"* `distance_strategy`: The metric used for comparison, such as `COSINE` (default) or `EUCLIDEAN`.\n",
|
||||
"* `vector_data_type`: The data type of the stored vectors, like `FLOAT32` or `DOUBLE64`. This should match the precision of your embeddings.\n",
|
||||
"* `filters`: A dictionary defining the filtering logic to apply.\n",
|
||||
"\n",
|
||||
"#### Understanding Encodings\n",
|
||||
"\n",
|
||||
"To filter on metadata fields, you must define them in `metadata_mappings` with the correct `encoding` so Bigtable can properly interpret the data. Supported encodings include:\n",
|
||||
"* **String**: `UTF8`, `UTF16`, `ASCII` for text-based metadata.\n",
|
||||
"* **Numeric**: `INT_BIG_ENDIAN` or `INT_LITTLE_ENDIAN` for integers, and `FLOAT` or `DOUBLE` for decimal numbers.\n",
|
||||
"* **Boolean**: `BOOL` for true/false values."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5b09d5ef5b5e4bb6ab9b829b10b6a29f",
|
||||
"metadata": {
|
||||
"id": "5b09d5ef5b5e4bb6ab9b829b10b6a29f"
|
||||
},
|
||||
"source": [
|
||||
"#### Filtering Support Table\n",
|
||||
"\n",
|
||||
"| Filter Category | Key / Operator | Meaning |\n",
|
||||
"|---|---|---|\n",
|
||||
"| **Row Key** | `RowKeyFilter` | Narrows search to document IDs with a specific prefix. |\n",
|
||||
"| **Metadata Key** | `ColumnQualifiers` | Checks for the presence of one or more exact metadata keys. |\n",
|
||||
"| | `ColumnQualifierPrefix` | Checks if a metadata key starts with a given prefix. |\n",
|
||||
"| | `ColumnQualifierRegex` | Checks if a metadata key matches a regular expression. |\n",
|
||||
"| **Metadata Value** | `ColumnValueFilter` | Container for all value-based conditions. |\n",
|
||||
"| | `==` | Equality |\n",
|
||||
"| | `!=` | Inequality |\n",
|
||||
"| | `>` | Greater than |\n",
|
||||
"| | `<` | Less than |\n",
|
||||
"| | `>=` | Greater than or equal |\n",
|
||||
"| | `<=` | Less than or equal |\n",
|
||||
"| | `in` | Value is in a list. |\n",
|
||||
"| | `nin` | Value is not in a list. |\n",
|
||||
"| | `contains` | Checks for substring presence. |\n",
|
||||
"| | `like` | Performs a regex match on a string. |\n",
|
||||
"| **Logical**| `ColumnValueChainFilter` | Logical AND for combining value conditions. |\n",
|
||||
"| | `ColumnValueUnionFilter` | Logical OR for combining value conditions. |"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a50416e276a0479cbe66534ed1713a40",
|
||||
"metadata": {
|
||||
"id": "a50416e276a0479cbe66534ed1713a40"
|
||||
},
|
||||
"source": [
|
||||
"#### Complex Filter Example\n",
|
||||
"\n",
|
||||
"This example uses multiple nested logical filters. It searches for documents that are either (`category` is 'sci-fi' AND `year` between 1970-2000) OR (`author` is 'J.R.R. Tolkien') OR (`rating` > 4.5)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "46a27a456b804aa2a380d5edf15a5daf",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "46a27a456b804aa2a380d5edf15a5daf",
|
||||
"outputId": "7679570a-80f6-4342-8380-daecb62d7cf8"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_bigtable.vector_store import QueryParameters\n",
|
||||
"\n",
|
||||
"complex_filter = {\n",
|
||||
" \"ColumnValueFilter\": {\n",
|
||||
" \"ColumnValueUnionFilter\": { # OR\n",
|
||||
" \"ColumnValueChainFilter\": { # First AND condition\n",
|
||||
" \"category\": {\"==\": \"sci-fi\"},\n",
|
||||
" \"year\": {\">\": 1970, \"<\": 2000},\n",
|
||||
" },\n",
|
||||
" \"author\": {\"==\": \"J.R.R. Tolkien\"},\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"query_params_complex = QueryParameters(filters=complex_filter)\n",
|
||||
"\n",
|
||||
"complex_results = await vector_store.asimilarity_search(\n",
|
||||
" \"a story about a hero's journey\", k=5, query_parameters=query_params_complex\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(f\"Found {len(complex_results)} documents matching the complex filter:\")\n",
|
||||
"for doc in complex_results:\n",
|
||||
" print(f\"- ID: {doc.id}, Metadata: {doc.metadata}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1944c39560714e6e80c856f20744a8e5",
|
||||
"metadata": {
|
||||
"id": "1944c39560714e6e80c856f20744a8e5"
|
||||
},
|
||||
"source": [
|
||||
"### Search with score\n",
|
||||
"You can also retrieve the distance score along with the documents."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d6ca27006b894b04b6fc8b79396e2797",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "d6ca27006b894b04b6fc8b79396e2797",
|
||||
"outputId": "32360bd3-7ccb-4ed6-b68a-52788c902049"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"results_with_scores = await vector_store.asimilarity_search_with_score(\n",
|
||||
" query=\"an evil entity\", k=1\n",
|
||||
")\n",
|
||||
"for doc, score in results_with_scores:\n",
|
||||
" print(f\"* [SCORE={score:.4f}] {doc.page_content} [{doc.metadata}]\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f61877af4e7f4313ad8234302950b331",
|
||||
"metadata": {
|
||||
"id": "f61877af4e7f4313ad8234302950b331"
|
||||
},
|
||||
"source": [
|
||||
"### Use as Retriever\n",
|
||||
"The vector store can be easily used as a retriever in RAG applications. You can specify the search type (e.g., `similarity` or `mmr`) and pass search-time arguments like `k` and `query_parameters`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "84d5ab97d17b4c38ab41a2b065bbd0c0",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "84d5ab97d17b4c38ab41a2b065bbd0c0",
|
||||
"outputId": "b33dc07f-08d4-4108-c50d-96dd4e8d719b"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define a filter to use with the retriever\n",
|
||||
"retriever_filter = {\"ColumnValueFilter\": {\"category\": {\"==\": \"horror\"}}}\n",
|
||||
"retriever_query_params = QueryParameters(filters=retriever_filter)\n",
|
||||
"\n",
|
||||
"retriever = vector_store.as_retriever(\n",
|
||||
" search_type=\"mmr\", # Specify MMR for retrieval\n",
|
||||
" search_kwargs={\n",
|
||||
" \"k\": 1,\n",
|
||||
" \"lambda_mult\": 0.8,\n",
|
||||
" \"query_parameters\": retriever_query_params, # Pass filter parameters\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"retrieved_docs = await retriever.ainvoke(\"a story about a hobbit\")\n",
|
||||
"print(retrieved_docs[0].page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "35ffc1ce1c7b4df9ace1bc936b8b1dc2",
|
||||
"metadata": {
|
||||
"id": "35ffc1ce1c7b4df9ace1bc936b8b1dc2"
|
||||
},
|
||||
"source": [
|
||||
"## Usage for retrieval-augmented generation\n",
|
||||
"\n",
|
||||
"For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
|
||||
"\n",
|
||||
"- [Tutorials](https://python.langchain.com/docs/tutorials/rag/)\n",
|
||||
"- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n",
|
||||
"- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/retrieval/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "76127f4a2f6a44fba749ea7800e59d51",
|
||||
"metadata": {
|
||||
"id": "76127f4a2f6a44fba749ea7800e59d51"
|
||||
},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For full details on the `BigtableVectorStore` class, see the source code on [GitHub](https://github.com/googleapis/langchain-google-bigtable-python/blob/main/src/langchain_google_bigtable/vector_store.py)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": [],
|
||||
"toc_visible": true
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -43,9 +43,9 @@
|
||||
"source": [
|
||||
"### Prerequisites for using Langchain with Oracle AI Vector Search\n",
|
||||
"\n",
|
||||
"You'll need to install `langchain-community` with `pip install -qU langchain-community` to use this integration\n",
|
||||
"You'll need to install `langchain-oracledb` with `python -m pip install -U langchain-oracledb` to use this integration.\n",
|
||||
"\n",
|
||||
"Please install Oracle Python Client driver to use Langchain with Oracle AI Vector Search. "
|
||||
"The `python-oracledb` driver is installed automatically as a dependency of langchain-oracledb."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -55,7 +55,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# pip install oracledb"
|
||||
"# python -m pip install -U langchain-oracledb"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -103,8 +103,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import oraclevs\n",
|
||||
"from langchain_community.vectorstores.oraclevs import OracleVS\n",
|
||||
"from langchain_oracledb.vectorstores import oraclevs\n",
|
||||
"from langchain_oracledb.vectorstores.oraclevs import OracleVS\n",
|
||||
"from langchain_community.vectorstores.utils import DistanceStrategy\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_huggingface import HuggingFaceEmbeddings"
|
||||
@@ -400,7 +400,111 @@
|
||||
"id": "7223d048-5c0b-4e91-a91b-a7daa9f86758",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Demonstrate advanced searches on all six vector stores, with and without attribute filtering – with filtering, we only select the document id 101 and nothing else"
|
||||
"### Demonstrate advanced searches on all six vector stores, with and without attribute filtering – with filtering, we only select the document id 101 and nothing else.\n",
|
||||
"\n",
|
||||
"Oracle Database 23ai supports pre-filtering, in-filtering, and post-filtering to enhance AI Vector Search capabilities. These filtering mechanisms allow users to apply constraints before, during, and after performing vector similarity searches, improving search performance and accuracy.\n",
|
||||
"\n",
|
||||
"Key Points about Filtering in Oracle 23ai:\n",
|
||||
"1. Pre-filtering\n",
|
||||
" Applies traditional SQL filters to reduce the dataset before performing the vector similarity search.\n",
|
||||
" Helps improve efficiency by limiting the amount of data processed by AI algorithms.\n",
|
||||
"2. In-filtering\n",
|
||||
" Utilizes AI Vector Search to perform similarity searches directly on vector embeddings, using optimized indexes and algorithms.\n",
|
||||
" Efficiently filters results based on vector similarity without requiring full dataset scans.\n",
|
||||
"3. Post-filtering\n",
|
||||
" Applies additional SQL filtering to refine the results after the vector similarity search.\n",
|
||||
" Allows further refinement based on business logic or additional metadata conditions.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"**Why is this Important?**\n",
|
||||
"- Performance Optimization: Pre-filtering significantly reduces query execution time, making searches on massive datasets more efficient.\n",
|
||||
"- Accuracy Enhancement: In-filtering ensures that vector searches are semantically meaningful, improving the quality of search results.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "71406bf9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Filter Details\n",
|
||||
"\n",
|
||||
"`OracleVS` supports a set of filters that can be applied to `metadata` fields using `filter` parameter. These filters allow you to select and refine data based on various criteria. \n",
|
||||
"\n",
|
||||
"**Available Filter Operators:**\n",
|
||||
"\n",
|
||||
"| Operator | Description |\n",
|
||||
"|--------------------------|--------------------------------------------------------------------------------------------------|\n",
|
||||
"| \\$exists | Field exists. |\n",
|
||||
"| \\$eq | Field value equals the operand value (`=`). |\n",
|
||||
"| \\$ne | Field exists and value does not equal the operand value (`!=`). |\n",
|
||||
"| \\$gt | Field value is greater than the operand value (`>`). |\n",
|
||||
"| \\$lt | Field value is less than the operand value (`<`). |\n",
|
||||
"| \\$gte | Field value is greater than or equal to the operand value (`>=`). |\n",
|
||||
"| \\$lte | Field value is less than or equal to the operand value (`<=`). |\n",
|
||||
"| \\$between | Field value is between (or equal to) two values in the operand array. |\n",
|
||||
"| \\$startsWith | Field value starts with the operand value. |\n",
|
||||
"| \\$hasSubstring | Field value contains the operand as a substring. |\n",
|
||||
"| \\$instr | Field value contains the operand as a substring. |\n",
|
||||
"| \\$regex | Field value matches the given regular expression pattern. |\n",
|
||||
"| \\$like | Field value matches the operand pattern (using SQL-like syntax). |\n",
|
||||
"| \\$in | Field value equals at least one value in the operand array. |\n",
|
||||
"| \\$nin | Field exists, but its value is not equal to any in the operand array, or the field does not exist.|\n",
|
||||
"| \\$all | Field value is an array containing all items from the operand array, or a scalar matching a single operand. |\n",
|
||||
"\n",
|
||||
"- You can combine these filters using logical operators:\n",
|
||||
"\n",
|
||||
"| Logical Operator | Description |\n",
|
||||
"|------------------|----------------------|\n",
|
||||
"| \\$and | Logical AND |\n",
|
||||
"| \\$or | Logical OR |\n",
|
||||
"| \\$nor | Logical NOR |\n",
|
||||
"\n",
|
||||
"**Example Filter:**\n",
|
||||
"```json\n",
|
||||
"{\n",
|
||||
" \"age\": 65,\n",
|
||||
" \"name\": {\"$regex\": \"*rk\"},\n",
|
||||
" \"$or\": [\n",
|
||||
" {\n",
|
||||
" \"$and\": [\n",
|
||||
" {\"name\": \"Jason\"},\n",
|
||||
" {\"drinks\": {\"$in\": [\"tea\", \"soda\"]}}\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"$nor\": [\n",
|
||||
" {\"age\": {\"$lt\": 65}},\n",
|
||||
" {\"name\": \"Jason\"}\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
" ]\n",
|
||||
"}\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"**Additional Usage Tips:**\n",
|
||||
"- You can omit `$and` when all filters in an object must be satisfied. These two are equivalent:\n",
|
||||
"```json\n",
|
||||
"{ \"$and\": [\n",
|
||||
" { \"name\": { \"$startsWith\": \"Fred\" } },\n",
|
||||
" { \"salary\": { \"$gt\": 10000, \"$lte\": 20000 } }\n",
|
||||
"]}\n",
|
||||
"```\n",
|
||||
"```json\n",
|
||||
"{\n",
|
||||
" \"name\": { \"$startsWith\": \"Fred\" },\n",
|
||||
" \"salary\": { \"$gt\": 10000, \"$lte\": 20000 }\n",
|
||||
"}\n",
|
||||
"```\n",
|
||||
"- The `$not` clause can negate a comparison operator:\n",
|
||||
"```json\n",
|
||||
"{ \"address.zip\": { \"$not\": { \"$eq\": \"90001\" } } }\n",
|
||||
"```\n",
|
||||
"- Using `field: scalar` is equivalent to `field: { \"$eq\": scalar }`:\n",
|
||||
"```json\n",
|
||||
"{ \"animal\": \"cat\" }\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"For more filter examples, refer to the [test specification](https://github.com/oracle/langchain-oracle/blob/main/libs/oracledb/tests/integration_tests/vectorstores/test_oraclevs.py)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -415,7 +519,23 @@
|
||||
" query = \"How are LOBS stored in Oracle Database\"\n",
|
||||
" # Constructing a filter for direct comparison against document metadata\n",
|
||||
" # This filter aims to include documents whose metadata 'id' is exactly '2'\n",
|
||||
" filter_criteria = {\"id\": [\"101\"]} # Direct comparison filter\n",
|
||||
" db_filter = {\n",
|
||||
" \"$and\": [\n",
|
||||
" {\"id\": \"101\"}, # FilterCondition\n",
|
||||
" {\n",
|
||||
" \"$or\": [ # FilterGroup\n",
|
||||
" {\"status\": \"approved\"},\n",
|
||||
" {\"link\": \"Document Example Test 2\"},\n",
|
||||
" {\n",
|
||||
" \"$and\": [ # Nested FilterGroup\n",
|
||||
" {\"status\": \"approved\"},\n",
|
||||
" {\"link\": \"Document Example Test 2\"},\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" for i, vs in enumerate(vector_stores, start=1):\n",
|
||||
" print(f\"\\n--- Vector Store {i} Advanced Searches ---\")\n",
|
||||
@@ -425,7 +545,7 @@
|
||||
"\n",
|
||||
" # Similarity search with a filter\n",
|
||||
" print(\"\\nSimilarity search results with filter:\")\n",
|
||||
" print(vs.similarity_search(query, 2, filter=filter_criteria))\n",
|
||||
" print(vs.similarity_search(query, 2, filter=db_filter))\n",
|
||||
"\n",
|
||||
" # Similarity search with relevance score\n",
|
||||
" print(\"\\nSimilarity search with relevance score:\")\n",
|
||||
@@ -433,7 +553,7 @@
|
||||
"\n",
|
||||
" # Similarity search with relevance score with filter\n",
|
||||
" print(\"\\nSimilarity search with relevance score with filter:\")\n",
|
||||
" print(vs.similarity_search_with_score(query, 2, filter=filter_criteria))\n",
|
||||
" print(vs.similarity_search_with_score(query, 2, filter=db_filter))\n",
|
||||
"\n",
|
||||
" # Max marginal relevance search\n",
|
||||
" print(\"\\nMax marginal relevance search results:\")\n",
|
||||
@@ -443,7 +563,7 @@
|
||||
" print(\"\\nMax marginal relevance search results with filter:\")\n",
|
||||
" print(\n",
|
||||
" vs.max_marginal_relevance_search(\n",
|
||||
" query, 2, fetch_k=20, lambda_mult=0.5, filter=filter_criteria\n",
|
||||
" query, 2, fetch_k=20, lambda_mult=0.5, filter=db_filter\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
@@ -477,7 +597,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
"version": "3.13.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
664
docs/docs/integrations/vectorstores/yugabytedb.ipynb
Normal file
664
docs/docs/integrations/vectorstores/yugabytedb.ipynb
Normal file
@@ -0,0 +1,664 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "1957f5cb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: YugabyteDB\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ef1f0986",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# YugabyteDBVectorStore\n",
|
||||
"\n",
|
||||
"This notebook covers how to get started with the YugabyteDB vector store in langchain, using the `langchain-yugabytedb` package.\n",
|
||||
"\n",
|
||||
"YugabyteDB is a cloud-native distributed PostgreSQL-compatible database that combines strong consistency with ultra-resilience, seamless scalability, geo-distribution, and highly flexible data locality to deliver business-critical, transactional applications.\n",
|
||||
"\n",
|
||||
"[YugabyteDB](https://www.yugabyte.com/ai/) combines the power of the `pgvector` PostgreSQL extension with an inherently distributed architecture. This future-proofed foundation helps you build GenAI applications using RAG retrieval that demands high-performance vector search.\n",
|
||||
"\n",
|
||||
"YugabyteDB’s unique approach to vector indexing addresses the limitations of single-node PostgreSQL systems when dealing with large-scale vector datasets.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"### Minimum Version\n",
|
||||
"`langchain-yugabytedb` module requires YugabyteDB `v2025.1.0.0` or higher.\n",
|
||||
"\n",
|
||||
"### Connecting to YugabyteDB database\n",
|
||||
"\n",
|
||||
"In order to get started with `YugabyteDBVectorStore`, lets start a local YugabyteDB node for development purposes - \n",
|
||||
"\n",
|
||||
"### Start YugabyteDB RF-1 Universe."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5a8147d9",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "plaintext"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"docker run -d --name yugabyte_node01 --hostname yugabyte01 \\\n",
|
||||
" -p 7000:7000 -p 9000:9000 -p 15433:15433 -p 5433:5433 -p 9042:9042 \\\n",
|
||||
" yugabytedb/yugabyte:2.25.2.0-b359 bin/yugabyted start --background=false \\\n",
|
||||
" --master_flags=\"allowed_preview_flags_csv=ysql_yb_enable_advisory_locks,ysql_yb_enable_advisory_locks=true\" \\\n",
|
||||
" --tserver_flags=\"allowed_preview_flags_csv=ysql_yb_enable_advisory_locks,ysql_yb_enable_advisory_locks=true\"\n",
|
||||
"\n",
|
||||
"docker exec -it yugabyte_node01 bin/ysqlsh -h yugabyte01 -c \"CREATE extension vector;\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "541e4507",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For production deployment, performance benchmarking, or deploying a true multi-node on multi-host setup, see Deploy [YugabyteDB](https://docs.yugabyte.com/stable/deploy/)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "36fdc060",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Installation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "432f461c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain\n",
|
||||
"%pip install --upgrade --quiet langchain-openai langchain-community tiktoken\n",
|
||||
"%pip install --upgrade --quiet psycopg-binary"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "64e28aa6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU \"langchain-yugabytedb\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3f9951f4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Set your YugabyteDB Values\n",
|
||||
"\n",
|
||||
"YugabyteDB clients connect to the cluster using a PostgreSQL compliant connection string. YugabyteDB connection parameters are provided below."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b4715d61",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"YUGABYTEDB_USER = \"yugabyte\" # @param {type: \"string\"}\n",
|
||||
"YUGABYTEDB_PASSWORD = \"\" # @param {type: \"string\"}\n",
|
||||
"YUGABYTEDB_HOST = \"localhost\" # @param {type: \"string\"}\n",
|
||||
"YUGABYTEDB_PORT = \"5433\" # @param {type: \"string\"}\n",
|
||||
"YUGABYTEDB_DB = \"yugabyte\" # @param {type: \"string\"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "93df377e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialization\n",
|
||||
"\n",
|
||||
"### Environment Setup\n",
|
||||
"\n",
|
||||
"This notebook uses the OpenAI API through `OpenAIEmbeddings`. We suggest obtaining an OpenAI API key and export it as an environment variable with the name `OPENAI_API_KEY`.\n",
|
||||
"\n",
|
||||
"### Connecting to YugabyteDB Universe"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "dc37144c-208d-4ab3-9f3a-0407a69fe052",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_yugabytedb import YBEngine, YugabyteDBVectorStore\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"TABLE_NAME = \"my_doc_collection\"\n",
|
||||
"VECTOR_SIZE = 1536\n",
|
||||
"\n",
|
||||
"CONNECTION_STRING = (\n",
|
||||
" f\"postgresql+asyncpg://{YUGABYTEDB_USER}:{YUGABYTEDB_PASSWORD}@{YUGABYTEDB_HOST}\"\n",
|
||||
" f\":{YUGABYTEDB_PORT}/{YUGABYTEDB_DB}\"\n",
|
||||
")\n",
|
||||
"engine = YBEngine.from_connection_string(url=CONNECTION_STRING)\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()\n",
|
||||
"engine.init_vectorstore_table(\n",
|
||||
" table_name=TABLE_NAME,\n",
|
||||
" vector_size=VECTOR_SIZE,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"yugabyteDBVectorStore = YugabyteDBVectorStore.create_sync(\n",
|
||||
" engine=engine,\n",
|
||||
" table_name=TABLE_NAME,\n",
|
||||
" embedding_service=embeddings,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ac6071d4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Manage vector store\n",
|
||||
"\n",
|
||||
"### Add items to vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "17f5efc0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"docs = [\n",
|
||||
" Document(page_content=\"Apples and oranges\"),\n",
|
||||
" Document(page_content=\"Cars and airplanes\"),\n",
|
||||
" Document(page_content=\"Train\"),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"yugabyteDBVectorStore.add_documents(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7b92b5f6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"['b40e7f47-3a4e-4b88-b6e2-cb3465dde6bd', '275823d2-1a47-440d-904b-c07b132fd72b', 'f0c5a9bc-1456-40fe-906b-4e808d601470']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "dcf1b905",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Delete items from vector store\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ef61e188",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"yugabyteDBVectorStore.delete(ids=[\"275823d2-1a47-440d-904b-c07b132fd72b\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f8f751e1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Update items from vector store\n",
|
||||
"\n",
|
||||
"Note: Update operation is not supported by YugabyteDBVectorStore."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c3620501",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Query vector store\n",
|
||||
"\n",
|
||||
"Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent. \n",
|
||||
"\n",
|
||||
"### Query directly\n",
|
||||
"\n",
|
||||
"Performing a simple similarity search can be done as follows:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aa0a16fa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"I'd like a fruit.\"\n",
|
||||
"docs = yugabyteDBVectorStore.similarity_search(query)\n",
|
||||
"print(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3ed9d733",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you want to execute a similarity search and receive the corresponding scores you can run:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5efd2eaa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"I'd like a fruit.\"\n",
|
||||
"docs = yugabyteDBVectorStore.similarity_search(query, k=1)\n",
|
||||
"print(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0c235cdc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Query by turning into retriever\n",
|
||||
"\n",
|
||||
"You can also transform the vector store into a retriever for easier usage in your chains. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f3460093",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = yugabyteDBVectorStore.as_retriever(search_kwargs={\"k\": 1})\n",
|
||||
"retriever.invoke(\"I'd like a fruit.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5e657ae6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## ChatMessageHistory\n",
|
||||
"\n",
|
||||
"The chat message history abstraction helps to persist chat message history in a YugabyteDB table.\n",
|
||||
"\n",
|
||||
"`YugabyteDBChatMessageHistory` is parameterized using a table_name and a session_id.\n",
|
||||
"\n",
|
||||
"The table_name is the name of the table in the database where the chat messages will be stored.\n",
|
||||
"\n",
|
||||
"The session_id is a unique identifier for the chat session. It can be assigned by the caller using uuid.uuid4()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0677c927",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain_core.messages import SystemMessage, AIMessage, HumanMessage\n",
|
||||
"from langchain_yugabytedb import YugabyteDBChatMessageHistory\n",
|
||||
"import psycopg\n",
|
||||
"\n",
|
||||
"# Establish a synchronous connection to the database\n",
|
||||
"# (or use psycopg.AsyncConnection for async)\n",
|
||||
"conn_info = \"dbname=yugabyte user=yugabyte host=localhost port=5433\"\n",
|
||||
"sync_connection = psycopg.connect(conn_info)\n",
|
||||
"\n",
|
||||
"# Create the table schema (only needs to be done once)\n",
|
||||
"table_name = \"chat_history\"\n",
|
||||
"YugabyteDBChatMessageHistory.create_tables(sync_connection, table_name)\n",
|
||||
"\n",
|
||||
"session_id = str(uuid.uuid4())\n",
|
||||
"\n",
|
||||
"# Initialize the chat history manager\n",
|
||||
"chat_history = YugabyteDBChatMessageHistory(\n",
|
||||
" table_name, session_id, sync_connection=sync_connection\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Add messages to the chat history\n",
|
||||
"chat_history.add_messages(\n",
|
||||
" [\n",
|
||||
" SystemMessage(content=\"Meow\"),\n",
|
||||
" AIMessage(content=\"woof\"),\n",
|
||||
" HumanMessage(content=\"bark\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(chat_history.messages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "901c75dc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage for retrieval-augmented generation\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"One of the primary advantages of the vector stores is to provide contextual data to the LLMs. LLMs often are trained with stale data and might not have the relevant domain specific knowledge which results in halucinations in LLMs responses. Take the following example - \n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d0f51eb3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage, AIMessage\n",
|
||||
"\n",
|
||||
"my_api_key = getpass.getpass(\"Enter your API Key: \")\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0.7, api_key=my_api_key)\n",
|
||||
"# Start with a system message to set the persona/behavior of the AI\n",
|
||||
"messages = [\n",
|
||||
" SystemMessage(\n",
|
||||
" content=\"You are a helpful and friendly assistant named 'YugaAI'. You love to answer questions about YugabyteDB and distributed sql.\"\n",
|
||||
" ),\n",
|
||||
" # First human turn\n",
|
||||
" HumanMessage(content=\"Hi YugaAI! Where's the headquarters of YugabyteDB?\"),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"print(\"--- First Interaction ---\")\n",
|
||||
"print(f\"Human: {messages[1].content}\") # Print the human message\n",
|
||||
"response1 = llm.invoke(messages)\n",
|
||||
"print(f\"YugaAI: {response1.content}\")\n",
|
||||
"\n",
|
||||
"print(\"\\n--- Second Interaction ---\")\n",
|
||||
"print(f\"Human: {messages[2].content}\") # Print the new human message\n",
|
||||
"response2 = llm.invoke(messages) # Send the *entire* message history\n",
|
||||
"print(f\"YugaAI: {response2.content}\")\n",
|
||||
"\n",
|
||||
"# Add the second AI response to the history\n",
|
||||
"messages.append(AIMessage(content=response2.content))\n",
|
||||
"\n",
|
||||
"# --- 5. Another Turn with a different topic ---\n",
|
||||
"messages.append(\n",
|
||||
" HumanMessage(\n",
|
||||
" content=\"Can you tell me the current preview release version of YugabyteDB?\"\n",
|
||||
" )\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"\\n--- Third Interaction ---\")\n",
|
||||
"print(f\"Human: {messages[4].content}\") # Print the new human message\n",
|
||||
"response3 = llm.invoke(messages) # Send the *entire* message history\n",
|
||||
"print(f\"YugaAI: {response3.content}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8500e27b",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "Log"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"--- First Interaction ---\n",
|
||||
"Human: Hi YugaAI! Where's the headquarters of YugabyteDB?\n",
|
||||
"YugaAI: Hello! YugabyteDB's headquarters is located in Sunnyvale, California, USA.\n",
|
||||
"\n",
|
||||
"--- Second Interaction ---\n",
|
||||
"Human: And what are YugabyteDB's supported APIs?\n",
|
||||
"YugaAI: YugabyteDB's headquarters is located in Sunnyvale, California, USA.\n",
|
||||
"\n",
|
||||
"YugabyteDB supports several APIs, including:\n",
|
||||
"1. YSQL (PostgreSQL-compatible SQL)\n",
|
||||
"2. YCQL (Cassandra-compatible query language)\n",
|
||||
"3. YEDIS (Redis-compatible key-value store)\n",
|
||||
"\n",
|
||||
"These APIs allow developers to interact with YugabyteDB using familiar interfaces and tools.\n",
|
||||
"\n",
|
||||
"--- Third Interaction ---\n",
|
||||
"Human: Can you tell me the current preview release version of YugabyteDB?\n",
|
||||
"YugaAI: The current preview release version of YugabyteDB is 2.11.0. This version includes new features, improvements, and bug fixes that are being tested by the community before the official stable release."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7fe4301c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The current preview release of YugabyteDB is `v2.25.2.0`, however LLMs is providing stale information which is 2-3 years old. This is where the vector stores complement the LLMs by providing a way to store and retrive relevant information."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d4e19220",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Construct a RAG for providing contextual information\n",
|
||||
"\n",
|
||||
"We will provide the relevant information to the LLMs by reading the YugabyteDB documentation. Let's first read the YugabyteDB docs and add data into YugabyteDB Vectorstore by loading, splitting and chuncking data from a html source. We will then store the vector embeddings generated by OpenAI embeddings into YugabyteDB Vectorstore.\n",
|
||||
"\n",
|
||||
"#### Generate Embeddings "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "05ec4ebc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"from langchain_community.document_loaders import WebBaseLoader\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"from langchain_yugabytedb import YBEngine, YugabyteDBVectorStore\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"my_api_key = getpass.getpass(\"Enter your API Key: \")\n",
|
||||
"url = \"https://docs.yugabyte.com/preview/releases/ybdb-releases/v2.25/\"\n",
|
||||
"\n",
|
||||
"loader = WebBaseLoader(url)\n",
|
||||
"\n",
|
||||
"documents = loader.load()\n",
|
||||
"\n",
|
||||
"print(f\"Number of documents loaded: {len(documents)}\")\n",
|
||||
"\n",
|
||||
"# For very large HTML files, you'll want to split the text into smaller\n",
|
||||
"# chunks before sending them to an LLM, as LLMs have token limits.\n",
|
||||
"for i, doc in enumerate(documents):\n",
|
||||
" text_splitter = CharacterTextSplitter(\n",
|
||||
" separator=\"\\n\\n\", # Split by double newline (common paragraph separator)\n",
|
||||
" chunk_size=1000, # Each chunk will aim for 1000 characters\n",
|
||||
" chunk_overlap=200, # Allow 200 characters overlap between chunks\n",
|
||||
" length_function=len,\n",
|
||||
" is_separator_regex=False,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # Apply the splitter to the loaded documents\n",
|
||||
" chunks = text_splitter.split_documents(documents)\n",
|
||||
"\n",
|
||||
" print(f\"\\n--- After Splitting ({len(chunks)} chunks) ---\")\n",
|
||||
"\n",
|
||||
" CONNECTION_STRING = \"postgresql+psycopg://yugabyte:@localhost:5433/yugabyte\"\n",
|
||||
" TABLE_NAME = \"yb_relnotes_chunks\"\n",
|
||||
" VECTOR_SIZE = 1536\n",
|
||||
" engine = YBEngine.from_connection_string(url=CONNECTION_STRING)\n",
|
||||
" engine.init_vectorstore_table(\n",
|
||||
" table_name=TABLE_NAME,\n",
|
||||
" vector_size=VECTOR_SIZE,\n",
|
||||
" )\n",
|
||||
" embeddings = OpenAIEmbeddings(api_key=my_api_key)\n",
|
||||
"\n",
|
||||
" # The PGVector.from_documents method handles:\n",
|
||||
" # 1. Creating the table if it doesn't exist (with 'embedding' column).\n",
|
||||
" # 2. Generating embeddings for each chunk using the provided embeddings model.\n",
|
||||
" # 3. Inserting the chunk text, metadata, and embeddings into the table.\n",
|
||||
" vectorstore = YugabyteDBVectorStore.from_documents(\n",
|
||||
" engine=engine, table_name=TABLE_NAME, documents=chunks, embedding=embeddings\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" print(f\"Successfully stored {len(chunks)} chunks in PostgreSQL table: {TABLE_NAME}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e6483d89",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Configure the YugabyteDB retriever"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "18a84445",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"retriever = vectorstore.as_retriever(search_kwargs={\"k\": 3})\n",
|
||||
"print(\n",
|
||||
" f\"Retriever created, set to retrieve top {retriever.search_kwargs['k']} documents.\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Initialize the Chat Model (e.g., OpenAI's GPT-3.5 Turbo)\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0, api_key=my_api_key)\n",
|
||||
"\n",
|
||||
"# Define the RAG prompt template\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful and friendly assistant named 'YugaAI'. You love to answer questions about YugabyteDB and distributed sql.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"Context: {context}\\nQuestion: {question}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"# Build the RAG chain\n",
|
||||
"# 1. Take the input question.\n",
|
||||
"# 2. Pass it to the retriever to get relevant documents.\n",
|
||||
"# 3. Format the documents into a string for the context.\n",
|
||||
"# 4. Pass the context and question to the prompt template.\n",
|
||||
"# 5. Send the prompt to the LLM.\n",
|
||||
"# 6. Parse the LLM's string output.\n",
|
||||
"rag_chain = (\n",
|
||||
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
|
||||
" | prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "04d12dc5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now, let's try asking the same question `Can you tell me the current preview release version of YugabyteDB?` again to the LLM"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "846e9963",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Invoke the RAG chain with a question\n",
|
||||
"rag_query = \"Can you tell me the current preview release version of YugabyteDB?\"\n",
|
||||
"print(f\"\\nQuerying RAG chain: '{rag_query}'\")\n",
|
||||
"rag_response = rag_chain.invoke(rag_query)\n",
|
||||
"print(\"\\n--- RAG Chain Response ---\")\n",
|
||||
"print(rag_response)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c6fc3e7f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Querying RAG chain: 'Can you tell me the current preview release version of YugabyteDB?'\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "efc2e0c7",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "log"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"--- RAG Chain Response ---\n",
|
||||
"The current preview release version of YugabyteDB is v2.25.2.0."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "af388f24",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
" \n",
|
||||
"For detailed information of all YugabyteDBVectorStore features and configurations head to the langchain-yugabytedb github repo: https://github.com/yugabyte/langchain-yugabytedb\""
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
617
docs/docs/integrations/vectorstores/zeusdb.ipynb
Normal file
617
docs/docs/integrations/vectorstores/zeusdb.ipynb
Normal file
@@ -0,0 +1,617 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ef1f0986",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ⚡ ZeusDB Vector Store\n",
|
||||
"\n",
|
||||
"ZeusDB is a high-performance, Rust-powered vector database with enterprise features like quantization, persistence and logging.\n",
|
||||
"\n",
|
||||
"This notebook covers how to get started with the ZeusDB Vector Store to efficiently use ZeusDB with LangChain."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "107c485d-13a3-4309-9fda-5a0440862d3c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "36fdc060",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d978e3fd-d130-436f-841d-d133c0fae8fb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Install the ZeusDB LangChain integration package from PyPi:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "42ca8320-b866-4f37-944e-96eda54231d2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pip install -qU langchain-zeusdb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2a0e518a-ae8a-464b-8b47-9deb9d4ab063",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"*Setup in Jupyter Notebooks*"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1d092ea6-8553-4686-9563-b8318225a04a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"> 💡 Tip: If you’re working inside Jupyter or Google Colab, use the %pip magic command so the package is installed into the active kernel:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "64e28aa6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain-zeusdb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c12fe175-a299-47d3-869f-9367b6aa572d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "31554e69-40b2-4201-9f92-57e73ac66d33",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Getting Started"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b696b3dd-0fed-4ed2-a79a-5b32598508c0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This example uses OpenAIEmbeddings, which requires an OpenAI API key – [Get your OpenAI API key here](https://platform.openai.com/api-keys)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b79766e-7725-4be0-a183-4947b56892c5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you prefer, you can also use this package with any other embedding provider (Hugging Face, Cohere, custom functions, etc.)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b5266cc7-28da-459e-a28d-128382ed5a20",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Install the LangChain OpenAI integration package from PyPi:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1ed941cd-5e06-4c61-9235-90bd0b0b0452",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pip install -qU langchain-openai\n",
|
||||
"\n",
|
||||
"# Use this command if inside Jupyter Notebooks\n",
|
||||
"#%pip install -qU langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0f49b2ec-d047-455d-8c05-da041112dd8a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Please choose an option below for your OpenAI key integration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ed2d9bf6-be53-4fc1-9611-158f03fd71b7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"*Option 1: 🔑 Enter your API key each time* "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "eff5b6a5-4c57-4531-896e-54bcb2b1dec2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Use getpass in Jupyter to securely input your key for the current session:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "08a50da9-5ed1-40dc-a390-07b031369761",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import getpass\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7321917e-8586-42e4-9822-b68cfd74f233",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"*Option 2: 🗂️ Use a .env file*"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b9297b6b-bd7e-457f-95af-5b41c7ab9b41",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Keep your key in a local .env file and load it automatically with python-dotenv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "85a139dc-f439-4e4e-bc46-76d9478c304d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"load_dotenv() # reads .env and sets OPENAI_API_KEY"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1af364e3-df59-4963-aaaa-0e83f6ec5e32",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"🎉🎉 That's it! You are good to go."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3146180e-026e-4421-a490-ffd14ceabac3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "93df377e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialization"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fb55dfe8-2c98-45b6-ba90-7a3667ceee0c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Import required Packages and Classes\n",
|
||||
"from langchain_zeusdb import ZeusDBVectorStore\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from zeusdb import VectorDatabase"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "dc37144c-208d-4ab3-9f3a-0407a69fe052",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Initialize embeddings\n",
|
||||
"embeddings = OpenAIEmbeddings(model=\"text-embedding-3-small\")\n",
|
||||
"\n",
|
||||
"# Create ZeusDB index\n",
|
||||
"vdb = VectorDatabase()\n",
|
||||
"index = vdb.create(index_type=\"hnsw\", dim=1536, space=\"cosine\")\n",
|
||||
"\n",
|
||||
"# Create vector store\n",
|
||||
"vector_store = ZeusDBVectorStore(zeusdb_index=index, embedding=embeddings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f45fa43c-8b54-4a75-b7b0-92ac0ac506c6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ac6071d4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Manage vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "edf53787-ebda-4306-afc3-f7d440dcb1ff",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.1 Add items to vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "17f5efc0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"document_1 = Document(\n",
|
||||
" page_content=\"ZeusDB is a high-performance vector database\",\n",
|
||||
" metadata={\"source\": \"https://docs.zeusdb.com\"},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"document_2 = Document(\n",
|
||||
" page_content=\"Product Quantization reduces memory usage significantly\",\n",
|
||||
" metadata={\"source\": \"https://docs.zeusdb.com\"},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"document_3 = Document(\n",
|
||||
" page_content=\"ZeusDB integrates seamlessly with LangChain\",\n",
|
||||
" metadata={\"source\": \"https://docs.zeusdb.com\"},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"documents = [document_1, document_2, document_3]\n",
|
||||
"\n",
|
||||
"vector_store.add_documents(documents=documents, ids=[\"1\", \"2\", \"3\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c738c3e0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.2 Update items in vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f0aa8b71",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"updated_document = Document(\n",
|
||||
" page_content=\"ZeusDB now supports advanced Product Quantization with 4x-256x compression\",\n",
|
||||
" metadata={\"source\": \"https://docs.zeusdb.com\", \"updated\": True},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"vector_store.add_documents([updated_document], ids=[\"1\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "dcf1b905",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.3 Delete items from vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ef61e188",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vector_store.delete(ids=[\"3\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1a0091af-777d-4651-888a-3b346d7990f5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c3620501",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Query vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4ba3fdb2-b7d6-4f0f-b8c9-91f63596018b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 3.1 Query directly"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "400a9b25-9587-4116-ab59-6888602ec2b1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Performing a simple similarity search:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aa0a16fa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"results = vector_store.similarity_search(query=\"high performance database\", k=2)\n",
|
||||
"\n",
|
||||
"for doc in results:\n",
|
||||
" print(f\"* {doc.page_content} [{doc.metadata}]\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3ed9d733",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you want to execute a similarity search and receive the corresponding scores:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5efd2eaa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"results = vector_store.similarity_search_with_score(query=\"memory optimization\", k=2)\n",
|
||||
"\n",
|
||||
"for doc, score in results:\n",
|
||||
" print(f\"* [SIM={score:.3f}] {doc.page_content} [{doc.metadata}]\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0c235cdc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 3.2 Query by turning into retriever"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "59292cb5-5dc8-4158-9137-89d0f6ca711d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also transform the vector store into a retriever for easier usage in your chains:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f3460093",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = vector_store.as_retriever(search_type=\"mmr\", search_kwargs={\"k\": 2})\n",
|
||||
"\n",
|
||||
"retriever.invoke(\"vector database features\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cc2d2b63-99d8-45c4-85e6-6a9409551ada",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "persistence_section",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## ZeusDB-Specific Features"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "memory_section",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 4.1 Memory-Efficient Setup with Product Quantization"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "12832d02-d9ea-4c35-a20f-05c85d1d7723",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For large datasets, use Product Quantization to reduce memory usage:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "quantization_example",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create memory-optimized vector store\n",
|
||||
"quantization_config = {\"type\": \"pq\", \"subvectors\": 8, \"bits\": 8, \"training_size\": 10000}\n",
|
||||
"\n",
|
||||
"vdb_quantized = VectorDatabase()\n",
|
||||
"quantized_index = vdb_quantized.create(\n",
|
||||
" index_type=\"hnsw\", dim=1536, quantization_config=quantization_config\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"quantized_vector_store = ZeusDBVectorStore(\n",
|
||||
" zeusdb_index=quantized_index, embedding=embeddings\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(f\"Created quantized store: {quantized_index.info()}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6ffe0613-b2a7-484e-9219-1166b65c49c5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 4.2 Persistence"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fbc323ee-4c6c-43fc-beba-675d820ca078",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Save and load your vector store to disk:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "834354d1-55ad-48fe-84e1-a5eacff3f6bb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"How to Save your vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f9d1332b-a7ac-4a4b-a060-f2061599d3f1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Save the vector store\n",
|
||||
"vector_store.save_index(\"my_zeusdb_index.zdb\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "23370621-5b51-4313-800f-3a2fb9de52d2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"How to Load your vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f9ed5778-58e4-4724-b69d-3c7b48cda429",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load the vector store\n",
|
||||
"loaded_store = ZeusDBVectorStore.load_index(\n",
|
||||
" path=\"my_zeusdb_index.zdb\", embedding=embeddings\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(f\"Loaded store with {loaded_store.get_vector_count()} vectors\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "610cfe63-d4a8-4ef0-88a8-cf9cc3cbbfce",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "901c75dc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage for retrieval-augmented generation\n",
|
||||
"\n",
|
||||
"For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n",
|
||||
"\n",
|
||||
"- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n",
|
||||
"- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/retrieval/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1d9d9d51-3798-410f-b1b3-f9736ea8c238",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "25b08eb0-99ab-4919-a201-5243fdfa39e9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "77fdca8b-f75e-4100-9f1d-7a017567dc59",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For detailed documentation of all ZeusDBVectorStore features and configurations head to the Doc reference: https://docs.zeusdb.com/en/latest/vector_database/integrations/langchain.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -3,6 +3,10 @@ sidebar_position: 0
|
||||
sidebar_class_name: hidden
|
||||
---
|
||||
|
||||
:::danger
|
||||
⚠️ THESE DOCS ARE OUTDATED. <a href='https://docs.langchain.com/oss/python/langchain/overview' target='_blank'>Visit the new v1.0 docs</a>
|
||||
:::
|
||||
|
||||
# Introduction
|
||||
|
||||
**LangChain** is a framework for developing applications powered by large language models (LLMs).
|
||||
|
||||
@@ -691,7 +691,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": null,
|
||||
"id": "a13462d0-2d02-4474-921e-15a1ba1fa274",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -709,16 +709,15 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"input_message = {\"role\": \"user\", \"content\": \"Hi, I'm Bob!\"}\n",
|
||||
"for step in agent_executor.stream(\n",
|
||||
" {\"messages\": [input_message]}, config, stream_mode=\"values\"\n",
|
||||
" {\"messages\": [(\"user\", \"Hi, I'm Bob!\")]}, config, stream_mode=\"values\"\n",
|
||||
"):\n",
|
||||
" step[\"messages\"][-1].pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": null,
|
||||
"id": "56d8028b-5dbc-40b2-86f5-ed60631d86a3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -736,9 +735,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"input_message = {\"role\": \"user\", \"content\": \"What's my name?\"}\n",
|
||||
"for step in agent_executor.stream(\n",
|
||||
" {\"messages\": [input_message]}, config, stream_mode=\"values\"\n",
|
||||
" {\"messages\": [(\"user\", \"What is my name?\")]}, config, stream_mode=\"values\"\n",
|
||||
"):\n",
|
||||
" step[\"messages\"][-1].pretty_print()"
|
||||
]
|
||||
@@ -761,7 +759,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"execution_count": null,
|
||||
"id": "24460239",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -782,9 +780,8 @@
|
||||
"# highlight-next-line\n",
|
||||
"config = {\"configurable\": {\"thread_id\": \"xyz123\"}}\n",
|
||||
"\n",
|
||||
"input_message = {\"role\": \"user\", \"content\": \"What's my name?\"}\n",
|
||||
"for step in agent_executor.stream(\n",
|
||||
" {\"messages\": [input_message]}, config, stream_mode=\"values\"\n",
|
||||
" {\"messages\": [(\"user\", \"What is my name?\")]}, config, stream_mode=\"values\"\n",
|
||||
"):\n",
|
||||
" step[\"messages\"][-1].pretty_print()"
|
||||
]
|
||||
|
||||
@@ -2,6 +2,11 @@
|
||||
sidebar_position: 0
|
||||
sidebar_class_name: hidden
|
||||
---
|
||||
|
||||
:::danger
|
||||
⚠️ THESE DOCS ARE OUTDATED. <a href='https://docs.langchain.com/oss/python/langchain/overview' target='_blank'>Visit the new v1.0 docs</a>
|
||||
:::
|
||||
|
||||
# Tutorials
|
||||
|
||||
New to LangChain or LLM app development in general? Read this material to quickly get up and running building your first applications.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# LangChain v0.3
|
||||
|
||||
*Last updated: 09.16.24*
|
||||
*Last updated: 09.16.2024*
|
||||
|
||||
## What's changed
|
||||
|
||||
|
||||
@@ -87,7 +87,7 @@ const config = {
|
||||
({
|
||||
docs: {
|
||||
editUrl:
|
||||
"https://github.com/langchain-ai/langchain/edit/master/docs/",
|
||||
"https://github.com/langchain-ai/langchain/edit/v0.3/docs/",
|
||||
sidebarPath: require.resolve("./sidebars.js"),
|
||||
remarkPlugins: [
|
||||
[require("@docusaurus/remark-plugin-npm2yarn"), { sync: true }],
|
||||
@@ -142,8 +142,8 @@ const config = {
|
||||
respectPrefersColorScheme: true,
|
||||
},
|
||||
announcementBar: {
|
||||
content: "These docs will be deprecated and no longer maintained with the release of LangChain v1.0 in October 2025. <a href='https://docs.langchain.com/oss/python/langchain/overview' target='_blank'>Visit the v1.0 alpha docs</a>",
|
||||
backgroundColor: "#FFAE42",
|
||||
content: "⚠️ THESE DOCS ARE OUTDATED. <a href='https://docs.langchain.com/oss/python/langchain/overview' target='_blank'>Visit the new v1.0 docs</a>",
|
||||
backgroundColor: "#790000ff",
|
||||
},
|
||||
prism: {
|
||||
theme: {
|
||||
|
||||
@@ -16,14 +16,13 @@ fi
|
||||
|
||||
if { \
|
||||
[ "$VERCEL_ENV" == "production" ] || \
|
||||
[ "$VERCEL_GIT_COMMIT_REF" == "master" ] || \
|
||||
[ "$VERCEL_GIT_COMMIT_REF" == "v0.1" ] || \
|
||||
[ "$VERCEL_GIT_COMMIT_REF" == "v0.2" ] || \
|
||||
[ "$VERCEL_GIT_COMMIT_REF" == "v0.3rc" ]; \
|
||||
} && [ "$VERCEL_GIT_REPO_OWNER" == "langchain-ai" ]
|
||||
then
|
||||
echo "✅ Production build - proceeding with build"
|
||||
exit 1
|
||||
echo "✅ Production build - proceeding with build"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +1,20 @@
|
||||
"""This script checks documentation for broken import statements."""
|
||||
"""Check documentation for broken import statements.
|
||||
|
||||
Validates that all import statements in Jupyter notebooks within the documentation
|
||||
directory are functional and can be successfully imported.
|
||||
|
||||
- Scans all `.ipynb` files in `docs/`
|
||||
- Extracts import statements from code cells
|
||||
- Tests each import to ensure it works
|
||||
- Reports any broken imports that would fail for users
|
||||
|
||||
Usage:
|
||||
python docs/scripts/check_imports.py
|
||||
|
||||
Exit codes:
|
||||
0: All imports are valid
|
||||
1: Found broken imports (ImportError raised)
|
||||
"""
|
||||
|
||||
import importlib
|
||||
import json
|
||||
|
||||
@@ -57,8 +57,8 @@ SEARCH_TOOL_FEAT_TABLE = {
|
||||
"available_data": "URL, Snippet, Title, Search Rank, Site Links, Authors",
|
||||
"link": "/docs/integrations/tools/searchapi",
|
||||
},
|
||||
"SerpAPI": {
|
||||
"pricing": "100 Free Searches/Month",
|
||||
"SerpApi": {
|
||||
"pricing": "250 Free Searches/Month",
|
||||
"available_data": "Answer",
|
||||
"link": "/docs/integrations/tools/serpapi",
|
||||
},
|
||||
|
||||
@@ -204,7 +204,7 @@ def get_vectorstore_table():
|
||||
"similarity_search_with_score": True,
|
||||
"asearch": True,
|
||||
"Passes Standard Tests": True,
|
||||
"Multi Tenancy": False,
|
||||
"Multi Tenancy": True,
|
||||
"Local/Cloud": "Local",
|
||||
"IDs in add Documents": True,
|
||||
},
|
||||
|
||||
@@ -119,7 +119,7 @@ export default function ChatModelTabs(props) {
|
||||
value: "anthropic",
|
||||
label: "Anthropic",
|
||||
model: "claude-3-7-sonnet-20250219",
|
||||
comment: "# Note: Model versions may become outdated. Check https://docs.anthropic.com/en/docs/models-overview for latest versions",
|
||||
comment: "# Note: Model versions may become outdated. Check https://docs.anthropic.com/en/docs/about-claude/models/overview for latest versions",
|
||||
apiKeyName: "ANTHROPIC_API_KEY",
|
||||
packageName: "langchain[anthropic]",
|
||||
},
|
||||
@@ -239,6 +239,13 @@ ${llmVarName} = ChatWatsonx(
|
||||
model: "deepseek-chat",
|
||||
apiKeyName: "DEEPSEEK_API_KEY",
|
||||
packageName: "langchain-deepseek",
|
||||
},
|
||||
{
|
||||
value: "chatocigenai",
|
||||
label: "ChatOCIGenAI",
|
||||
model: "cohere.command-r-plus-08-2024",
|
||||
apiKeyName: "OCI_API_KEY",
|
||||
packageName: "langchain-oci",
|
||||
}
|
||||
].map((item) => ({
|
||||
...item,
|
||||
|
||||
@@ -34,6 +34,7 @@ export default function EmbeddingTabs(props) {
|
||||
fakeEmbeddingParams,
|
||||
hideFakeEmbedding,
|
||||
customVarName,
|
||||
hideOCIGenAIEmbeddings
|
||||
} = props;
|
||||
|
||||
const openAIParamsOrDefault = openaiParams ?? `model="text-embedding-3-large"`;
|
||||
@@ -183,6 +184,15 @@ export default function EmbeddingTabs(props) {
|
||||
default: false,
|
||||
shouldHide: hideFakeEmbedding,
|
||||
},
|
||||
{
|
||||
value: "OCIGenAIEmbeddings",
|
||||
label: "OCIGenAIEmbeddings",
|
||||
text: `from langchain_oci.embeddings import OCIGenAIEmbeddings`,
|
||||
apiKeyName: "OCI_API_KEY",
|
||||
packageName: "langchain-oci",
|
||||
default: false,
|
||||
shouldHide: hideOCIGenAIEmbeddings,
|
||||
},
|
||||
];
|
||||
|
||||
const modelOptions = tabItems
|
||||
|
||||
@@ -39,6 +39,17 @@ const FEATURE_TABLES = {
|
||||
"local": false,
|
||||
"apiLink": "https://python.langchain.com/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html"
|
||||
},
|
||||
{
|
||||
"name": "ChatAIMLAPI",
|
||||
"package": "langchain-aimlapi",
|
||||
"link": "aimlapi/",
|
||||
"structured_output": true,
|
||||
"tool_calling": true,
|
||||
"json_mode": true,
|
||||
"multimodal": true,
|
||||
"local": false,
|
||||
"apiLink": "https://python.langchain.com/api_reference/aimlapi/chat_models/langchain_aimlapi.chat_models.ChatAIMLAPI.html"
|
||||
},
|
||||
{
|
||||
"name": "ChatFireworks",
|
||||
"package": "langchain-fireworks",
|
||||
@@ -247,6 +258,17 @@ const FEATURE_TABLES = {
|
||||
"multimodal": true,
|
||||
"local": false,
|
||||
"apiLink": "https://python.langchain.com/api_reference/perplexity/chat_models/langchain_perplexity.chat_models.ChatPerplexity.html"
|
||||
},
|
||||
{
|
||||
"name": "ChatOCIGenAI",
|
||||
"package": "langchain-oci",
|
||||
"link": "oci_generative_ai",
|
||||
"structured_output": true,
|
||||
"tool_calling": true,
|
||||
"json_mode": true,
|
||||
"multimodal": true,
|
||||
"local": false,
|
||||
"apiLink": "https://github.com/oracle/langchain-oracle"
|
||||
}
|
||||
],
|
||||
},
|
||||
@@ -301,6 +323,12 @@ const FEATURE_TABLES = {
|
||||
package: "langchain-fireworks",
|
||||
apiLink: "https://python.langchain.com/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html"
|
||||
},
|
||||
{
|
||||
name: "AimlapiLLM",
|
||||
link: "aimlapi",
|
||||
package: "langchain-aimlapi",
|
||||
apiLink: "https://python.langchain.com/api_reference/aimlapi/llms/langchain_aimlapi.llms.AimlapiLLM.html"
|
||||
},
|
||||
{
|
||||
name: "OllamaLLM",
|
||||
link: "ollama",
|
||||
@@ -382,6 +410,12 @@ const FEATURE_TABLES = {
|
||||
package: "langchain-fireworks",
|
||||
apiLink: "https://python.langchain.com/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html"
|
||||
},
|
||||
{
|
||||
name: "AI/ML API",
|
||||
link: "/docs/integrations/text_embedding/aimlapi",
|
||||
package: "langchain-aimlapi",
|
||||
apiLink: "https://python.langchain.com/api_reference/aimlapi/embeddings/langchain_aimlapi.embeddings.AimlapiEmbeddings.html"
|
||||
},
|
||||
{
|
||||
name: "MistralAI",
|
||||
link: "/docs/integrations/text_embedding/mistralai",
|
||||
@@ -418,6 +452,13 @@ const FEATURE_TABLES = {
|
||||
package: "langchain-nvidia",
|
||||
apiLink: "https://python.langchain.com/api_reference/nvidia_ai_endpoints/embeddings/langchain_nvidia_ai_endpoints.embeddings.NVIDIAEmbeddings.html"
|
||||
},
|
||||
{
|
||||
name: "OCIGenAIEmbeddings",
|
||||
link: "oci_generative_ai",
|
||||
package: "langchain-oci",
|
||||
apiLink: "https://github.com/oracle/langchain-oracle"
|
||||
|
||||
}
|
||||
]
|
||||
},
|
||||
document_retrievers: {
|
||||
@@ -1158,7 +1199,7 @@ const FEATURE_TABLES = {
|
||||
searchWithScore: true,
|
||||
async: true,
|
||||
passesStandardTests: false,
|
||||
multiTenancy: false,
|
||||
multiTenancy: true,
|
||||
local: true,
|
||||
idsInAddDocuments: true,
|
||||
},
|
||||
@@ -1189,17 +1230,17 @@ const FEATURE_TABLES = {
|
||||
idsInAddDocuments: true,
|
||||
},
|
||||
{
|
||||
name: "PGVectorStore",
|
||||
link: "pgvectorstore",
|
||||
deleteById: true,
|
||||
filtering: true,
|
||||
searchByVector: true,
|
||||
searchWithScore: true,
|
||||
async: true,
|
||||
passesStandardTests: true,
|
||||
multiTenancy: false,
|
||||
local: true,
|
||||
idsInAddDocuments: true,
|
||||
name: "PGVectorStore",
|
||||
link: "pgvectorstore",
|
||||
deleteById: true,
|
||||
filtering: true,
|
||||
searchByVector: true,
|
||||
searchWithScore: true,
|
||||
async: true,
|
||||
passesStandardTests: true,
|
||||
multiTenancy: false,
|
||||
local: true,
|
||||
idsInAddDocuments: true,
|
||||
},
|
||||
{
|
||||
name: "PineconeVectorStore",
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user