Compare commits

..

117 Commits

Author SHA1 Message Date
Eugene Yurtsev
19f2a92609 core: release 0.3.63 (#31419)
Release core 0.3.63

Small update just to expand the list of well known tools. This is
necessary while the logic lives in langchain-core.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-29 14:48:18 -04:00
ccurme
394d42b4ae docs: update default model (#31420) 2025-05-29 14:28:05 -04:00
ccurme
afd349cc95 openai: cache httpx client (#31260)
![Screenshot 2025-05-16 at 3 49
54 PM](https://github.com/user-attachments/assets/4b377384-a769-4487-b801-bd1aa0ed66c1)

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-05-29 14:03:06 -04:00
Eugene Yurtsev
e6633a7efb langchain-core: Add image_generation tool to list of known openai tools (#31396)
Add image generation tool to the list of well known tools. This is needed for changes in the ChatOpenAI client. 

TODO: Some of this logic needs to be moved from core directly into the client as changes in core should not be required to add a new tool to the openai chat client.
2025-05-29 13:13:21 -04:00
Michael Li
d9631edd87 docs: fix misspelled word in promptlayer.ipynb (#31410) 2025-05-29 15:55:35 +00:00
Michael Li
c532facbc4 docs: fix misspelled word in uptrain.ipynb (#31411) 2025-05-29 11:46:36 -04:00
Sydney Runkle
1917dd1ccd benchmarks: always run (not conditional on changes) (#31409) 2025-05-29 11:45:57 -04:00
ccurme
49eeb0f3c3 standard-tests: add benchmarks (#31302)
Co-authored-by: Sydney Runkle <sydneymarierunkle@gmail.com>
2025-05-29 15:21:37 +00:00
ccurme
6d39e59c2e infra: update cassettes for notebook (#31407) 2025-05-29 15:21:29 +00:00
Michael Li
b808d27284 docs: fix grammar in xai.ipynb (#31399)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-28 14:22:30 -04:00
Michael Li
b81a4ed77e doc: fix grammar in vectara.ipynb (#31401)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-28 14:21:58 -04:00
ccurme
0e3f35effe anthropic: store cache ttl details on usage metadata (#31393) 2025-05-28 13:52:37 -04:00
Michael Li
0aec05bde5 docs: fix grammar in multiple docs (#31375)
Fix grammar in multiple docs
2025-05-28 12:12:56 -04:00
Yilin Juang
bf1750a771 docs: fix typo (#31388)
- **Description:** fix typo in ragatouille doc
2025-05-28 12:12:16 -04:00
Hanieh Moshki
7b8b8a26e7 docs: update typos in release_policy.mdx (#31397)
Deleted two outdated phrases that were reflecting the current versions
of packages at the time i.e.: 1-"langchain-community is currently on
version 0.2.x." 2-langchain-"experimental is currently on version 0.0.x"
2025-05-28 11:45:55 -04:00
Alexander Ng
60119b9ba6 [UPDATE] Valyu 0.2.0 langchain package (#31363)
docs: update Valyu integration notebooks to reflect current
langchain-valyu package implementation

Updated the Valyu integration documentation notebooks to align with the
current implementation of the langchain-valyu package. The changes
include:

- Updated ValyuContextRetriever to ValyuRetriever class name
- Changed parameter name from similarity_threshold to
relevance_threshold
- Removed query_rewrite parameter from search tool examples
- Added start_date and end_date parameters for time filtering
- Updated default values to match current implementation
(relevance_threshold: 0.5)
- Enhanced parameter documentation with proper descriptions and
constraints
- Updated section titles to reflect "Deep Search" functionality
2025-05-27 16:06:05 -04:00
Michael Li
5a13ad02ca docs: fix wikipedia description at https://python.langchain.com/docs/integrations/retrievers/ All retrievers section (#31372)
…integrations/retrievers/ All retrievers section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-27 15:59:14 -04:00
Michael Li
0c80a2c55c docs: fix google_books and memgraph descriptions at https://python.langchain.com/docs/integrations/tools/ All tools section (#31373)
…ngchain.com/docs/integrations/tools/ All tools section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-27 15:57:57 -04:00
Michael Li
dcb88b618d docs: fix scrapfly and scrapingant descriptions at https://python.langchain.com/docs/integrations/document_loaders/ All document loaders section (#31370)
…gchain.com/docs/integrations/document_loaders/ All document loaders
section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-27 15:57:38 -04:00
Michael Li
9bd956598d docs: fix pdfloaders' descriptions at https://python.langchain.com/docs/integrations/document_loaders/ All document loaders section (#31371)
…cs/integrations/document_loaders/ All document loaders section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-27 15:56:55 -04:00
Michael Li
0478f544d5 docs: fix blockchain and mintbase descriptions at https://python.langchain.com/docs/integrations/document_loaders/ All document loaders section (#31369)
…chain.com/docs/integrations/document_loaders/ All document loaders
section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-27 15:56:33 -04:00
ccurme
ab8b4003be openai[patch]: add test case for code interpreter (#31383) 2025-05-27 19:11:31 +00:00
ccurme
c8a656c05b docs: update xai docs (#31382) 2025-05-27 15:09:51 -04:00
ccurme
6ecc85c163 xai: document live search feature (#31381) 2025-05-27 14:51:19 -04:00
ccurme
5bff018951 xai: release 0.2.4 (#31380) 2025-05-27 14:33:36 -04:00
ccurme
8b1f54c419 xai: support live search (#31379)
https://docs.x.ai/docs/guides/live-search
2025-05-27 14:08:59 -04:00
ccurme
443341a20d anthropic: release 0.3.14 (#31378) 2025-05-27 17:31:05 +00:00
ccurme
930aa6073e core: release 0.3.62 (#31376) 2025-05-27 16:52:09 +00:00
ccurme
580986b260 anthropic: support for code execution, MCP connector, files API features (#31340)
Support for the new [batch of beta
features](https://www.anthropic.com/news/agent-capabilities-api)
released yesterday:

- [Code
execution](https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/code-execution-tool)
- [MCP
connector](https://docs.anthropic.com/en/docs/agents-and-tools/mcp-connector)
- [Files
API](https://docs.anthropic.com/en/docs/build-with-claude/files)

Also verified support for [prompt cache
TTL](https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#1-hour-cache-duration-beta).
2025-05-27 12:45:45 -04:00
Ahmad Elmalah
1ebcbf1d11 Docs: Fixing a little typo in extraction tutorial (#31360)
Just a little typo: force should be forced
2025-05-26 15:30:05 -04:00
Michael Li
611a3cb02a docs: fix incorrect grammar in azure_ai.ipynb (#31345)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-26 19:23:33 +00:00
Hyunjoon Jeong
4f94548bb7 docs: fix vocabs and missing redirect links in concepts (#31352)
### Description
Fix typo errors and missing redirect links in LangChain concepts
documents.

### Issue
None

### Dependencies
None

---------

Co-authored-by: 정현준/AIX 팀 <126749237+hyunjoon1015@users.noreply.github.com>
2025-05-26 15:22:35 -04:00
Michael Li
71cf26095e docs: fix model2vec description at https://python.langchain.com/docs/integrations/text_embedding/ All embedding models section (#31349)
…integrations/document_loaders/ All document loaders section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-26 15:17:29 -04:00
Michael Li
4e8779b3a5 docs: fix incorrect grammar in octoai.ipynb and predictionguard.ipynb (#31347)
…tionguard.ipynb

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-26 15:16:42 -04:00
Michael Li
19166a6af6 docs: fix incorrect grammar and vocabulary in llamacpp.ipynb (#31346)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-26 15:12:34 -04:00
Michael Li
b5dfdd1ab2 docs: fix incorrect grammar in abso.ipynb (#31344)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-26 15:07:15 -04:00
Michael Li
c8448c9a61 docs: fix incorrect grammar and vocabulary in ernie.ipynb (#31343)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-26 15:05:24 -04:00
Michael Li
de3d8b4b5c docs: fix Langgraph Platform URL in Readme file (#31341)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-26 14:59:48 -04:00
Aman pandey
d0b7e2f03d docs: fix truncation of retriever descriptions in overview table (#31327)
### Description
Added a note above the retriever overview table to clarify that the
descriptions are truncated for readability and how to view the full
version (via hover or click).

### Issue
Fixes #31311 — Users were confused by incomplete retriever descriptions
in the integration docs.

### Dependencies
None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-24 02:14:48 +00:00
Michael Li
20e48598dc docs: fix ai21 description at https://python.langchain.com/docs/integrations/chat/ All chat models section (#31313)
…rations/chat/ All chat models section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-23 16:49:18 -04:00
Michael Li
1c03555f95 docs: fix maritalk description at https://python.langchain.com/docs/integrations/chat/ All chat models section (#31314)
…ntegrations/chat/ All chat models section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-23 16:48:10 -04:00
Michael Li
1a873fca87 docs: fix nebula description at https://python.langchain.com/docs/integrations/chat/ All chat models section (#31315)
…egrations/chat/ All chat models section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-23 16:47:35 -04:00
Michael Li
6bc497cc0f docs: fix vectara description at https://python.langchain.com/docs/integrations/chat/ All chat models section (#31316)
…tegrations/chat/ All chat models section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-23 16:46:52 -04:00
DayDang
5bf539f405 docs: fix missing 'self' reference in for-loop over documents (#31332)
**Description:** fix missing 'self' reference in for-loop over documents
2025-05-23 16:39:59 -04:00
Harikrishna
f2b4698b54 langchain[patch]: update AgentType docstring with correct documentation URL (#31333)
### What does this PR do?

Updates the docstring for `AgentType` in the
`langchain.agents.agent_types` module to reflect the current URL for the
documentation.

### Why is this needed?

The existing URL
(https://python.langchain.com/docs/modules/agents/agent_types/) returns
"Page Moved" message. This fix improves developer experience by pointing
to the correct API reference documentation.

### Reference

New link:
https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent_types.AgentType.html

Co-authored-by: Harikrishna <harikrishna.gurram@walmart.com>
2025-05-23 16:38:57 -04:00
Michael Li
e2b54a5d72 docs: update deprecated doc for solar.ipynb (#31337)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-23 16:38:03 -04:00
Ante Javor
83ea571d57 docs: Fix Memgraph class name (#31329)
- **Description:** Fix Memgraph name that has been changed in the
integration.
2025-05-23 16:36:39 -04:00
ccurme
635ce60a22 Revert "infra: temporarily drop OpenAI from core release test matrix" (#31322)
Reverts langchain-ai/langchain#31318
2025-05-22 17:25:17 +00:00
ccurme
0ce2e69cc1 openai: release 0.3.18 (#31320) 2025-05-22 12:53:53 -04:00
ccurme
851fd438cf openai[patch]: relax Azure llm streaming callback test (#31319)
Effectively reverts
https://github.com/langchain-ai/langchain/pull/29302, but check that
counts are "less than" instead of equal to an expected count.
2025-05-22 16:14:53 +00:00
ccurme
092697de60 infra: temporarily drop OpenAI from core release test matrix (#31318)
As part of core releases we run tests on the last released version of
some packages (including langchain-openai) using the new version of
langchain-core. We run langchain-openai's test suite as it was when it
was last released.

OpenAI has since updated their API— relaxing constraints on what schemas
are supported when `strict=True`— causing these tests to break. They
have since been fixed. But the old tests will continue to fail.

Will revert this change after we release OpenAI today.
2025-05-22 16:07:45 +00:00
ccurme
71c074d28f core: release 0.3.61 (#31317) 2025-05-22 11:54:28 -04:00
ccurme
053a1246da openai[patch]: support built-in code interpreter and remote MCP tools (#31304) 2025-05-22 11:47:57 -04:00
ccurme
1b5ffe4107 openai[patch]: run _tokenize in background thread in async embedding invocations (#31312) 2025-05-22 10:27:33 -04:00
Ishan Goswami
f16456139b exa docs and python package update (#31307)
Added support for new Exa API features. Updated Exa docs and python
package (langchain-exa).

Description

Added support for new Exa API features in the langchain-exa package:
- Added max_characters option for text content
- Added support for summary and custom summary prompts
- Added livecrawl option with "always", "fallback", "never" settings
- Added "auto" option for search type
- Updated documentation and tests

Dependencies
- No new dependencies required. Using existing features from exa-py.

twitter: @theishangoswami

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-21 21:33:30 -04:00
Mason Daugherty
cf1fa27e27 docs: correct groq description typo (#31308)
**Description:** a space was missing between the words "Groq" and
"developed" and has been added
2025-05-21 21:23:37 -04:00
ccurme
beacedd6b3 openai[patch]: update tests for strict schemas (#31306)
Following recent [changes](https://platform.openai.com/docs/changelog).
2025-05-21 22:06:17 +00:00
Vikram Saraph
53d6286539 Fix link to deprecation alternative for ConversationChain in docs (#31299)
**Description:** ConversationChain has been deprecated, and the
documentation says to use RunnableWithMessageHistory in its place, but
the link at the top of the page to RunnableWithMessageHistory is broken
(it's rendering as "html()"). See here at the top of the page:
https://python.langchain.com/api_reference/langchain/chains/langchain.chains.conversation.base.ConversationChain.html.
This PR fixes the link.
**Issue**: N/A
**Dependencies**: N/A
**Twitter handle:**: If you're on Bluesky, I'm @vikramsaraph.com
2025-05-21 09:31:06 -04:00
Ako
7b45d46210 ci: fix typo in doc-string (#31284)
Fix typo

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2025-05-20 20:52:18 +00:00
Shaya Ulman
580fc7d464 docs: fix broken link (#31294)
As stated
[here](https://github.com/langchain-ai/langchain/blob/master/libs/community/README.md)
this package has moved, hence the broken link
2025-05-20 16:49:50 -04:00
Mert Arcan
6993bc9ad1 typo fix (#31295)
typo fix
%pip install -upgrade langchain-google
to:
%pip install --upgrade langchain-google
2025-05-20 16:49:21 -04:00
ccurme
dcb5aba999 openai[patch]: reduce tested constraints on strict schema adherence for Responses API (#31290)
Scheduled testing started failing today because the Responses API
stopped raising `BadRequestError` for a schema that was previously
invalid when `strict=True`.

Although docs still say that [some type-specific keywords are not yet
supported](https://platform.openai.com/docs/guides/structured-outputs#some-type-specific-keywords-are-not-yet-supported)
(including `minimum` and `maximum` for numbers), the below appears to
run and correctly respect the constraints:
```python
import json
import openai

maximums = list(range(1, 11))
arg_values = []
for maximum in maximums:

    tool = {
        "type": "function",
        "name": "magic_function",
        "description": "Applies a magic function to an input.",
        "parameters": {
            "properties": {
                "input": {"maximum": maximum, "minimum": 0, "type": "integer"}
            },
            "required": ["input"],
            "type": "object",
            "additionalProperties": False
        },
        "strict": True
    }
    
    client = openai.OpenAI()
    
    response = client.responses.create(
        model="gpt-4.1",
        input=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
        tools=[tool],
    )
    function_call = next(item for item in response.output if item.type == "function_call")
    args = json.loads(function_call.arguments)
    arg_values.append(args["input"])


print(maximums)
print(arg_values)

# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# [1, 2, 3, 3, 3, 3, 3, 3, 3, 3]
```
Until yesterday this raised BadRequestError.

The same is not true of Chat Completions, which appears to still raise
BadRequestError
```python
tool = {
    "type": "function",
    "function": {
        "name": "magic_function",
        "description": "Applies a magic function to an input.",
        "parameters": {
            "properties": {
                "input": {"maximum": 5, "minimum": 0, "type": "integer"}
            },
            "required": ["input"],
            "type": "object",
            "additionalProperties": False
        },
        "strict": True
    }
}

response = client.chat.completions.create(
    model="gpt-4.1",
    messages=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
    tools=[tool],
)
response  # raises BadRequestError
```

Here we update tests accordingly.
2025-05-20 14:50:31 +00:00
Ahmad Elmalah
f29659728c Docs: Fixing a typo in retrievers concepts page (#31288)
The second 'is` is redundant, it makes the meaning confusing
2025-05-20 09:08:33 -04:00
Michael Li
916768e3c1 doc: replace initialize agent in steam.ipynb (#31283)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-19 19:21:35 -04:00
Himanshu Sharma
ff12555bdc docs: clarify hub.pull behavior with non-US LangSmith endpoints (#31270)
**Description**:

This PR updates the documentation to address a potential issue when
using `hub.pull(...)` with non-US LangSmith endpoints (e.g.,
`https://eu.api.smith.langchain.com`).

By default, the `hub.pull` function assumes the non US-based API URL.
When the `LANGSMITH_ENDPOINT` environment variable is set to a non-US
region, this can lead to `LangSmithNotFoundError 404 not found` errors
when pulling public assets from the LangChain Hub.

Issue: #31191

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-19 23:06:37 +00:00
Michael Li
0c6137ec2b docs: replace deprecated load_tools in google_jobs.ipynb (#31272)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-19 18:58:31 -04:00
ccurme
bf645c83f4 voyageai: remove from monorepo (#31281)
langchain-voyageai is now maintained at
https://github.com/voyage-ai/langchain-voyageai.
2025-05-19 16:33:38 +00:00
DarinVerheijke
49fbcec34f community: add Featherless.ai integration (#31250)
Update docs to add Featherless.ai Provider & Chat Model
- **Description:** Adding Featherless.ai as provider in teh
documentations giving access to over 4300+ open-source models
- **Twitter handle:** https://x.com/FeatherlessAI
2025-05-19 10:40:25 -04:00
ccurme
32fcc97a90 openai[patch]: compat with Bedrock Converse (#31280)
ChatBedrockConverse passes through reasoning content blocks in [Bedrock
Converse
format](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ContentBlock.html).

Similar to how we handle Anthropic thinking blocks, here we ensure these
are filtered out of OpenAI request payloads.

Resolves https://github.com/langchain-ai/langchain/issues/31279.
2025-05-19 10:35:26 -04:00
Xu Song
8b6fec89bc docs: Update flashrank-reranker.ipynb (#31274)
- **Description:** Fix import in doc, `FlashrankRerank` has been moved
to `langchain_community`
2025-05-19 10:11:15 -04:00
ccurme
ea1f9e2d5b docs: remove integration page with DSPy (#31278)
DSPy removed their LangChain integration in version 2.6.6.

Here we remove the page and add a redirect to the LangChain v0.2 docs
for posterity.

We add an admonition to the v0.2 docs in
https://github.com/langchain-ai/langchain/pull/31277.
2025-05-19 10:10:20 -04:00
Christophe Bornet
17c5a1621f core: Improve Runnable __or__ method typing annotations (#31273)
* It is possible to chain a `Runnable` with an `AsyncIterator` as seen
in `test_runnable.py`.
* Iterator and AsyncIterator Input/Output of Callables must be put
before `Callable[[Other], Any]` otherwise the pattern matching picks the
latter.
2025-05-19 09:32:31 -04:00
mathislindner
e1af509966 anthropic: emit informative error message if there are only system messages in a prompt (#30822)
**PR message**: Not sure if I put the check at the right spot, but I
thought throwing the error before the loop made sense to me.
**Description:** Checks if there are only system messages using
AnthropicChat model and throws an error if it's the case. Check Issue
for more details
**Issue:** #30764

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-16 20:43:59 +00:00
OysterMax
eb25d7472d core: support Union type args in strict mode of OpenAI function calling / structured output (#30971)
**Issue:**[
#309070](https://github.com/langchain-ai/langchain/issues/30970)

**Cause**
Arg type in python code
```
arg: Union[SubSchema1, SubSchema2]
``` 
is translated to `anyOf` in **json schema**
```
"anyOf" : [{sub schema 1 ...}, {sub schema 1 ...}]
```
The value of anyOf is a list sub schemas. 
The bug is caused since the sub schemas inside `anyOf` list is not taken
care of.
The location where the issue happens is `convert_to_openai_function`
function -> `_recursive_set_additional_properties_false` function, that
recursively adds `"additionalProperties": false` to json schema which is
[required by OpenAI's strict function
calling](https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses#additionalproperties-false-must-always-be-set-in-objects)

**Solution:**
This PR fixes this issue by iterating each sub schema inside `anyOf`
list.
A unit test is added.

**Twitter handle:** shengboma 


If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-05-16 16:20:32 -04:00
Christophe Bornet
c982573f1e core: Add ruff rules A (builtins shadowing) (#29312)
See https://docs.astral.sh/ruff/rules/#flake8-builtins-a
* Renamed vars where possible
* Added `noqa` where backward compatibility was needed
* Added `@override` when applicable
2025-05-16 15:19:37 -04:00
Shkarupa Alex
671e4fd114 langchain[patch]: Allow async indexing code to work for vectorstores that only defined sync delete (#30869)
`aindex` function should check not only `adelete` method, but `delete`
method too

**PR title**: "core: fix async indexing issue with adelete/delete
checking"
**PR message**: Currently `langchain.indexes.aindex` checks if vector
store has overrided adelete method. But due to `adelete` default
implementation store can have just `delete` overrided to make `adelete`
working.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-05-16 15:10:25 -04:00
Shashank Reddy Boosi
bd367ba10c docs: Update confluence code blocks with all the latest changes and update documentation (#31242)
Description: This document change concerns the document-loader
integration, specifically `Confluence`.

I am trying to use the ConfluenceLoader and came across deprecations
when I followed the instructions in the documentation. So I updated the
code blocks with the latest changes made to langchain, and also updated
the documentation for better readability

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-05-16 09:47:06 -04:00
Baitur Ulukbekov
1f43b6062e Fix link SQL: Agents to proper destination in sql_large_db.ipynb (#31255)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-16 12:52:09 +00:00
Eugene Yurtsev
c178ad87b6 docs: remove docs that disable ssl verification (#31254)
Remove examples that disable ssl verification
2025-05-15 17:21:22 -04:00
mateencog
12b063eb67 Fix: Extend pyproject.toml check in create_api_rst.py to langchain/libs folder (#31128)
- **Description:** The file ```docs/api_reference/create_api_rst.py```
uses a pyproject.toml check to remove partners which don't have a valid
pyproject.toml. This PR extends that check to ```/langchain/libs/*```
sub-directories as well. Without this the ```make api_docs_build```
command fails (see error).
- **Issue:** #31109
- **Dependencies:** none
- **Error Traceback:** 
uv run --no-group test python docs/api_reference/create_api_rst.py
Starting to build API reference files.
Building package: community
pyproject.toml not found in /langchain/libs/community.
You are either attempting to build a directory which is not a package or
the package is missing a pyproject.toml file which should be
added.Aborting the build.
make: *** [Makefile:35: api_docs_build] Error 1
2025-05-15 16:53:45 -04:00
ccurme
a401d7e52a ollama: release 0.3.3 (#31253) 2025-05-15 16:24:04 -04:00
Alexey Bondarenko
9efafe3337 ollama: Add separate kwargs parameter for async client (#31209)
**Description**:

Add a `async_client_kwargs` field to ollama chat/llm/embeddings adapters
that is passed to async httpx client constructor.

**Motivation:**

In my use-case:
- chat/embedding model adapters may be created frequently, sometimes to
be called just once or to never be called at all
- they may be used in bots sunc and async mode (not known at the moment
they are created)

So, I want to keep a static transport instance maintaining connection
pool, so model adapters can be created and destroyed freely. But that
doesn't work when both sync and async functions are in use as I can only
pass one transport instance for both sync and async client, while
transport types must be different for them. So I can't make both sync
and async calls use shared transport with current model adapter
interfaces.

In this PR I add a separate `async_client_kwargs` that gets passed to
async client constructor, so it will be possible to pass a separate
transport instance. For sake of backwards compatibility, it is merged
with `client_kwargs`, so nothing changes when it is not set.

I am unable to run linter right now, but the changes look ok.
2025-05-15 16:10:10 -04:00
dependabot[bot]
03adca6c44 build(deps): bump Ana06/get-changed-files from 2.2.0 to 2.3.0 (#31236)
Bumps
[Ana06/get-changed-files](https://github.com/ana06/get-changed-files)
from 2.2.0 to 2.3.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/ana06/get-changed-files/releases">Ana06/get-changed-files's
releases</a>.</em></p>
<blockquote>
<h2>v2.3.0</h2>
<p>This project is a fork of <a
href="https://github.com/jitterbit/get-changed-files">jitterbit/get-changed-files</a>,
which:</p>
<ul>
<li>Supports <code>pull_request_target</code></li>
<li>Allows to filter files using regular expressions</li>
<li>Removes the ahead check</li>
<li>Considers renamed modified files as modified</li>
<li>Adds <code>added_modified_renamed</code> that includes renamed
non-modified files and all files in <code>added_modified</code></li>
<li>Uses Node 20</li>
</ul>
<h2>Changes</h2>
<ul>
<li>Update to Node 20</li>
<li>Update dependencies</li>
</ul>
<h2>Raw diff</h2>
<p><a
href="https://github.com/Ana06/get-changed-files/compare/v2.2.0...v2.3.0">https://github.com/Ana06/get-changed-files/compare/v2.2.0...v2.3.0</a></p>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="25f79e676e"><code>25f79e6</code></a>
Update version in package.json</li>
<li><a
href="6f5373eb01"><code>6f5373e</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/42">#42</a>
from Ana06/release2-3</li>
<li><a
href="64dffb46a4"><code>64dffb4</code></a>
Prepare 2.3.0 release</li>
<li><a
href="791f7645b7"><code>791f764</code></a>
[CI] Update actions/checkout</li>
<li><a
href="5a4a136e91"><code>5a4a136</code></a>
[CI] Ensure GH action uses node version 20</li>
<li><a
href="38bdb2e498"><code>38bdb2e</code></a>
Update to Node 20</li>
<li><a
href="5558be5781"><code>5558be5</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/30">#30</a>
from Ana06/dependabot/npm_and_yarn/decode-uri-componen...</li>
<li><a
href="6a376fdbb3"><code>6a376fd</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/31">#31</a>
from Ana06/dependabot/npm_and_yarn/qs-6.5.3</li>
<li><a
href="ace6e7bcbb"><code>ace6e7b</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/32">#32</a>
from brtrick/main</li>
<li><a
href="a102fae9bf"><code>a102fae</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/33">#33</a>
from Ana06/dependabot/npm_and_yarn/json5-2.2.3</li>
<li>Additional commits viewable in <a
href="https://github.com/ana06/get-changed-files/compare/v2.2.0...v2.3.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=Ana06/get-changed-files&package-manager=github_actions&previous-version=2.2.0&new-version=2.3.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-05-15 16:08:16 -04:00
ccurme
6bbc12b7f7 chroma: release 0.2.4 (#31252) 2025-05-15 15:58:29 -04:00
Jai Radhakrishnan
aa4890c136 partners: update deps for langchain-chroma (#31251)
Updates dependencies to Chroma to integrate the major release of Chroma
with improved performance, and to fix issues users have been seeing
using the latest chroma docker image with langchain-chroma

https://github.com/langchain-ai/langchain/issues/31047#issuecomment-2850790841
Updates chromadb dependency to >=1.0.9

This also removes the dependency of chroma-hnswlib, meaning it can run
against python 3.13 runners for tests as well.

Tested this by pulling the latest Chroma docker image, running
langchain-chroma using client mode
```
httpClient = chromadb.HttpClient(host="localhost", port=8000)

vector_store = Chroma(
    client=httpClient,
    collection_name="test",
    embedding_function=embeddings,
)
```
2025-05-15 15:55:15 -04:00
Christophe Bornet
a8f2ddee31 core: Add ruff rules RUF (#29353)
See https://docs.astral.sh/ruff/rules/#ruff-specific-rules-ruf
Mostly:
* [RUF022](https://docs.astral.sh/ruff/rules/unsorted-dunder-all/)
(unsorted `__all__`)
* [RUF100](https://docs.astral.sh/ruff/rules/unused-noqa/) (unused noqa)
*
[RUF021](https://docs.astral.sh/ruff/rules/parenthesize-chained-operators/)
(parenthesize-chained-operators)
*
[RUF015](https://docs.astral.sh/ruff/rules/unnecessary-iterable-allocation-for-first-element/)
(unnecessary-iterable-allocation-for-first-element)
*
[RUF005](https://docs.astral.sh/ruff/rules/collection-literal-concatenation/)
(collection-literal-concatenation)
* [RUF046](https://docs.astral.sh/ruff/rules/unnecessary-cast-to-int/)
(unnecessary-cast-to-int)

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-05-15 15:43:57 -04:00
Christophe Bornet
6cd1aadf60 langchain: use mypy strict checking with exemptions (#31018)
* Use strict checking and exclude some rules as TODOs
* Fix imports not exposed in `__all__`

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-05-15 11:37:18 -04:00
Christophe Bornet
eab8484a80 text-splitters[patch]: fix some import-untyped errors (#31030) 2025-05-15 11:34:22 -04:00
ccurme
672339f3c6 core: release 0.3.60 (#31249) 2025-05-15 11:14:04 -04:00
renchao
6f2acbcf2e Update sql_large_db.ipynb (#31241)
"Alanis Morissette" spelling error

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-15 11:07:51 -04:00
ccurme
8b145d5dc3 openai: release 0.3.17 (#31246) 2025-05-15 09:18:22 -04:00
dependabot[bot]
d4f77a8c8f build(deps): bump actions/setup-python from 3 to 5 (#31234)
Bumps [actions/setup-python](https://github.com/actions/setup-python)
from 3 to 5.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/setup-python/releases">actions/setup-python's
releases</a>.</em></p>
<blockquote>
<h2>v5.0.0</h2>
<h2>What's Changed</h2>
<p>In scope of this release, we update node version runtime from node16
to node20 (<a
href="https://redirect.github.com/actions/setup-python/pull/772">actions/setup-python#772</a>).
Besides, we update dependencies to the latest versions.</p>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-python/compare/v4.8.0...v5.0.0">https://github.com/actions/setup-python/compare/v4.8.0...v5.0.0</a></p>
<h2>v4.9.1</h2>
<h2>What's Changed</h2>
<ul>
<li>Add workflow file for publishing releases to immutable action
package by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1084">actions/setup-python#1084</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-python/compare/v4...v4.9.1">https://github.com/actions/setup-python/compare/v4...v4.9.1</a></p>
<h2>v4.9.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Upgrade <code>actions/cache</code> to 4.0.3 by <a
href="https://github.com/priya-kinthali"><code>@​priya-kinthali</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1073">actions/setup-python#1073</a>
In scope of this release we updated actions/cache package to ensure
continued support and compatibility, as older versions of the package
are now deprecated. For more information please refer to the <a
href="https://github.com/actions/toolkit/discussions/1890">toolkit/cache</a>.</li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-python/compare/v4.8.0...v4.9.0">https://github.com/actions/setup-python/compare/v4.8.0...v4.9.0</a></p>
<h2>v4.8.0</h2>
<h2>What's Changed</h2>
<p>In scope of this release we added support for GraalPy (<a
href="https://redirect.github.com/actions/setup-python/pull/694">actions/setup-python#694</a>).
You can use this snippet to set up GraalPy:</p>
<pre lang="yaml"><code>steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4 
  with:
    python-version: 'graalpy-22.3' 
- run: python my_script.py
</code></pre>
<p>Besides, the release contains such changes as:</p>
<ul>
<li>Trim python version when reading from file by <a
href="https://github.com/FerranPares"><code>@​FerranPares</code></a> in
<a
href="https://redirect.github.com/actions/setup-python/pull/628">actions/setup-python#628</a></li>
<li>Use non-deprecated versions in examples by <a
href="https://github.com/jeffwidman"><code>@​jeffwidman</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/724">actions/setup-python#724</a></li>
<li>Change deprecation comment to past tense by <a
href="https://github.com/jeffwidman"><code>@​jeffwidman</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/723">actions/setup-python#723</a></li>
<li>Bump <code>@​babel/traverse</code> from 7.9.0 to 7.23.2 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/743">actions/setup-python#743</a></li>
<li>advanced-usage.md: Encourage the use actions/checkout@v4 by <a
href="https://github.com/cclauss"><code>@​cclauss</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/729">actions/setup-python#729</a></li>
<li>Examples now use checkout@v4 by <a
href="https://github.com/simonw"><code>@​simonw</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/738">actions/setup-python#738</a></li>
<li>Update actions/checkout to v4 by <a
href="https://github.com/dmitry-shibanov"><code>@​dmitry-shibanov</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/761">actions/setup-python#761</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a
href="https://github.com/FerranPares"><code>@​FerranPares</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/setup-python/pull/628">actions/setup-python#628</a></li>
<li><a href="https://github.com/timfel"><code>@​timfel</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/setup-python/pull/694">actions/setup-python#694</a></li>
<li><a
href="https://github.com/jeffwidman"><code>@​jeffwidman</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/setup-python/pull/724">actions/setup-python#724</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-python/compare/v4...v4.8.0">https://github.com/actions/setup-python/compare/v4...v4.8.0</a></p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="a26af69be9"><code>a26af69</code></a>
Bump ts-jest from 29.1.2 to 29.3.2 (<a
href="https://redirect.github.com/actions/setup-python/issues/1081">#1081</a>)</li>
<li><a
href="30eafe9548"><code>30eafe9</code></a>
Bump prettier from 2.8.8 to 3.5.3 (<a
href="https://redirect.github.com/actions/setup-python/issues/1046">#1046</a>)</li>
<li><a
href="5d95bc16d4"><code>5d95bc1</code></a>
Bump semver and <code>@​types/semver</code> (<a
href="https://redirect.github.com/actions/setup-python/issues/1091">#1091</a>)</li>
<li><a
href="6ed2c67c8a"><code>6ed2c67</code></a>
Fix for Candidate Not Iterable Error (<a
href="https://redirect.github.com/actions/setup-python/issues/1082">#1082</a>)</li>
<li><a
href="e348410e00"><code>e348410</code></a>
Remove Ubuntu 20.04 from workflows due to deprecation from 2025-04-15
(<a
href="https://redirect.github.com/actions/setup-python/issues/1065">#1065</a>)</li>
<li><a
href="8d9ed9ac5c"><code>8d9ed9a</code></a>
Add e2e Testing for free threaded and Bump <code>@​action/cache</code>
from 4.0.0 to 4.0.3 ...</li>
<li><a
href="19e4675e06"><code>19e4675</code></a>
Add support for .tool-versions file in setup-python (<a
href="https://redirect.github.com/actions/setup-python/issues/1043">#1043</a>)</li>
<li><a
href="6fd11e170a"><code>6fd11e1</code></a>
Bump <code>@​actions/glob</code> from 0.4.0 to 0.5.0 (<a
href="https://redirect.github.com/actions/setup-python/issues/1015">#1015</a>)</li>
<li><a
href="9e62be81b2"><code>9e62be8</code></a>
Support free threaded Python versions like '3.13t' (<a
href="https://redirect.github.com/actions/setup-python/issues/973">#973</a>)</li>
<li><a
href="6ca8e8598f"><code>6ca8e85</code></a>
Bump <code>@​vercel/ncc</code> from 0.38.1 to 0.38.3 (<a
href="https://redirect.github.com/actions/setup-python/issues/1016">#1016</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/actions/setup-python/compare/v3...v5">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/setup-python&package-manager=github_actions&previous-version=3&new-version=5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-05-14 15:48:33 -04:00
dependabot[bot]
71b71768bf build(deps): bump actions/setup-node from 3 to 4 (#31237)
Bumps [actions/setup-node](https://github.com/actions/setup-node) from 3
to 4.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/setup-node/releases">actions/setup-node's
releases</a>.</em></p>
<blockquote>
<h2>v4.0.0</h2>
<h2>What's Changed</h2>
<p>In scope of this release we changed version of node runtime for
action from node16 to node20 and updated dependencies in <a
href="https://redirect.github.com/actions/setup-node/pull/866">actions/setup-node#866</a></p>
<p>Besides, release contains such changes as:</p>
<ul>
<li>Upgrade actions/checkout to v4 by <a
href="https://github.com/gmembre-zenika"><code>@​gmembre-zenika</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/868">actions/setup-node#868</a></li>
<li>Update actions/checkout for documentation and yaml by <a
href="https://github.com/dmitry-shibanov"><code>@​dmitry-shibanov</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/876">actions/setup-node#876</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a
href="https://github.com/gmembre-zenika"><code>@​gmembre-zenika</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/setup-node/pull/868">actions/setup-node#868</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-node/compare/v3...v4.0.0">https://github.com/actions/setup-node/compare/v3...v4.0.0</a></p>
<h2>v3.9.1</h2>
<h2>What's Changed</h2>
<ul>
<li>Add workflow file for publishing releases to immutable action
package by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/1281">actions/setup-node#1281</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-node/compare/v3...v3.9.1">https://github.com/actions/setup-node/compare/v3...v3.9.1</a></p>
<h2>v3.9.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Upgrade <code>@​actions/cache</code> to 4.0.3 by <a
href="https://github.com/gowridurgad"><code>@​gowridurgad</code></a> in
<a
href="https://redirect.github.com/actions/setup-node/pull/1270">actions/setup-node#1270</a>
In scope of this release we updated actions/cache package to ensure
continued support and compatibility, as older versions of the package
are now deprecated. For more information please refer to the <a
href="https://github.com/actions/toolkit/discussions/1890">toolkit/cache</a>.</li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-node/compare/v3...v3.9.0">https://github.com/actions/setup-node/compare/v3...v3.9.0</a></p>
<h2>v3.8.2</h2>
<h2>What's Changed</h2>
<ul>
<li>Update semver by <a
href="https://github.com/dmitry-shibanov"><code>@​dmitry-shibanov</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/861">actions/setup-node#861</a></li>
<li>Update temp directory creation by <a
href="https://github.com/nikolai-laevskii"><code>@​nikolai-laevskii</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/859">actions/setup-node#859</a></li>
<li>Bump <code>@​babel/traverse</code> from 7.15.4 to 7.23.2 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/setup-node/pull/870">actions/setup-node#870</a></li>
<li>Add notice about binaries not being updated yet by <a
href="https://github.com/nikolai-laevskii"><code>@​nikolai-laevskii</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/872">actions/setup-node#872</a></li>
<li>Update toolkit cache and core by <a
href="https://github.com/dmitry-shibanov"><code>@​dmitry-shibanov</code></a>
and <a
href="https://github.com/seongwon-privatenote"><code>@​seongwon-privatenote</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/875">actions/setup-node#875</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-node/compare/v3...v3.8.2">https://github.com/actions/setup-node/compare/v3...v3.8.2</a></p>
<h2>v3.8.1</h2>
<h2>What's Changed</h2>
<p>In scope of this release, the filter was removed within the
cache-save step by <a
href="https://github.com/dmitry-shibanov"><code>@​dmitry-shibanov</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/831">actions/setup-node#831</a>.
It is filtered and checked in the toolkit/cache library.</p>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-node/compare/v3...v3.8.1">https://github.com/actions/setup-node/compare/v3...v3.8.1</a></p>
<h2>v3.8.0</h2>
<h2>What's Changed</h2>
<h3>Bug fixes:</h3>
<ul>
<li>Add check for existing paths by <a
href="https://github.com/dmitry-shibanov"><code>@​dmitry-shibanov</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/803">actions/setup-node#803</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="49933ea528"><code>49933ea</code></a>
Bump <code>@​action/cache</code> from 4.0.2 to 4.0.3 (<a
href="https://redirect.github.com/actions/setup-node/issues/1262">#1262</a>)</li>
<li><a
href="e3ce749e20"><code>e3ce749</code></a>
feat: support private mirrors (<a
href="https://redirect.github.com/actions/setup-node/issues/1240">#1240</a>)</li>
<li><a
href="40337cb8f7"><code>40337cb</code></a>
Add support for indented eslint output (<a
href="https://redirect.github.com/actions/setup-node/issues/1245">#1245</a>)</li>
<li><a
href="1ccdddc9b8"><code>1ccdddc</code></a>
Make eslint-compact matcher compatible with Stylelint (<a
href="https://redirect.github.com/actions/setup-node/issues/98">#98</a>)</li>
<li><a
href="cdca7365b2"><code>cdca736</code></a>
Bump <code>@​actions/tool-cache</code> from 2.0.1 to 2.0.2 (<a
href="https://redirect.github.com/actions/setup-node/issues/1220">#1220</a>)</li>
<li><a
href="22c0e7494f"><code>22c0e74</code></a>
Bump <code>@​vercel/ncc</code> from 0.38.1 to 0.38.3 (<a
href="https://redirect.github.com/actions/setup-node/issues/1203">#1203</a>)</li>
<li><a
href="a7c2d9473e"><code>a7c2d94</code></a>
actions/cache upgrade (<a
href="https://redirect.github.com/actions/setup-node/issues/1251">#1251</a>)</li>
<li><a
href="802632921f"><code>8026329</code></a>
Bump <code>@​actions/glob</code> from 0.4.0 to 0.5.0 (<a
href="https://redirect.github.com/actions/setup-node/issues/1200">#1200</a>)</li>
<li><a
href="1d0ff469b7"><code>1d0ff46</code></a>
Bump undici from 5.28.4 to 5.28.5 (<a
href="https://redirect.github.com/actions/setup-node/issues/1205">#1205</a>)</li>
<li><a
href="574f09a9fa"><code>574f09a</code></a>
Bump <code>@​types/jest</code> from 29.5.12 to 29.5.14 (<a
href="https://redirect.github.com/actions/setup-node/issues/1201">#1201</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/actions/setup-node/compare/v3...v4">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/setup-node&package-manager=github_actions&previous-version=3&new-version=4)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-05-14 14:43:18 -04:00
Christophe Bornet
921573e2b7 core: Add ruff rules SLF (#30666)
Add ruff rules SLF: https://docs.astral.sh/ruff/rules/#flake8-self-slf

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-05-14 18:42:39 +00:00
dependabot[bot]
d8a7eda12e build(deps): bump astral-sh/setup-uv from 5 to 6 (#31235)
Bumps [astral-sh/setup-uv](https://github.com/astral-sh/setup-uv) from 5
to 6.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/astral-sh/setup-uv/releases">astral-sh/setup-uv's
releases</a>.</em></p>
<blockquote>
<h2>v6.0.0 🌈 activate-environment and working-directory</h2>
<h2>Changes</h2>
<p>This version contains some breaking changes which have been gathering
up for a while. Lets dive into them:</p>
<ul>
<li><a
href="https://github.com/astral-sh/setup-uv/blob/HEAD/#activate-environment">Activate
environment</a></li>
<li><a
href="https://github.com/astral-sh/setup-uv/blob/HEAD/#working-directory">Working
Directory</a></li>
<li><a
href="https://github.com/astral-sh/setup-uv/blob/HEAD/#default-cache-dependency-glob">Default
<code>cache-dependency-glob</code></a></li>
<li><a
href="https://github.com/astral-sh/setup-uv/blob/HEAD/#use-default-cache-dir-on-self-hosted-runners">Use
default cache dir on self hosted runners</a></li>
</ul>
<h3>Activate environment</h3>
<p>In previous versions using the input <code>python-version</code>
automatically activated a venv at the repository root.
This led to some unwanted side-effects, was sometimes unexpected and not
flexible enough.</p>
<p>The venv activation is now explicitly controlled with the new input
<code>activate-environment</code> (false by default):</p>
<pre lang="yaml"><code>- name: Install the latest version of uv and
activate the environment
  uses: astral-sh/setup-uv@v6
  with:
    activate-environment: true
- run: uv pip install pip
</code></pre>
<p>The venv gets created by the <a
href="https://docs.astral.sh/uv/pip/environments/"><code>uv
venv</code></a> command so the python version is controlled by the
<code>python-version</code> input or the files
<code>pyproject.toml</code>, <code>uv.toml</code>,
<code>.python-version</code> in the <code>working-directory</code>.</p>
<h3>Working Directory</h3>
<p>The new input <code>working-directory</code> controls where we look
for <code>pyproject.toml</code>, <code>uv.toml</code> and
<code>.python-version</code> files
which are used to determine the version of uv and python to install.</p>
<p>It can also be used to control where the venv gets created.</p>
<pre lang="yaml"><code>- name: Install uv based on the config files in
the working-directory
  uses: astral-sh/setup-uv@v6
  with:
    working-directory: my/subproject/dir
</code></pre>
<blockquote>
<p>[!CAUTION]</p>
<p>The inputs <code>pyproject-file</code> and <code>uv-file</code> have
been removed.</p>
</blockquote>
<h3>Default <code>cache-dependency-glob</code></h3>
<p><a href="https://github.com/ssbarnea"><code>@​ssbarnea</code></a>
found out that the default <code>cache-dependency-glob</code> was not
suitable for a lot of users.</p>
<p>The old default</p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="6b9c6063ab"><code>6b9c606</code></a>
Bump dependencies (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/389">#389</a>)</li>
<li><a
href="ef6bcdff59"><code>ef6bcdf</code></a>
Fix default cache dependency glob (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/388">#388</a>)</li>
<li><a
href="9a311713f4"><code>9a31171</code></a>
chore: update known checksums for 0.6.17 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/384">#384</a>)</li>
<li><a
href="c7f87aa956"><code>c7f87aa</code></a>
bump to v6 in README (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/382">#382</a>)</li>
<li><a
href="aadfaf08d6"><code>aadfaf0</code></a>
Change default cache-dependency-glob (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/352">#352</a>)</li>
<li><a
href="a0f9da6273"><code>a0f9da6</code></a>
No default UV_CACHE_DIR on selfhosted runners (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/380">#380</a>)</li>
<li><a
href="ec4c691628"><code>ec4c691</code></a>
new inputs activate-environment and working-directory (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/381">#381</a>)</li>
<li><a
href="aa1290542e"><code>aa12905</code></a>
chore: update known checksums for 0.6.16 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/378">#378</a>)</li>
<li><a
href="fcaddda076"><code>fcaddda</code></a>
chore: update known checksums for 0.6.15 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/377">#377</a>)</li>
<li><a
href="fb3a0a97fa"><code>fb3a0a9</code></a>
log info on venv activation (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/375">#375</a>)</li>
<li>See full diff in <a
href="https://github.com/astral-sh/setup-uv/compare/v5...v6">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=astral-sh/setup-uv&package-manager=github_actions&previous-version=5&new-version=6)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-05-14 14:41:13 -04:00
Minh Nguyen
8af0dc5fd6 docs: Update langchain-anthropic version for tutorial with web search tool (#31240)
**Description:** This is a document change regarding integration with
package `langchain-anthropic` for newly released websearch tool ([Claude
doc](https://docs.anthropic.com/en/docs/build-with-claude/tool-use/web-search-tool)).

Issue 1: The sample in [Web Search
section](https://python.langchain.com/docs/integrations/chat/anthropic/#web-search)
did not run. You would get an error as below:
```
File "my_file.py", line 170, in call
    model_with_tools = model.bind_tools([websearch_tool])
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/langchain_anthropic/chat_models.py", line 1363, in bind_tools
    tool if _is_builtin_tool(tool) else convert_to_anthropic_tool(tool)
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/langchain_anthropic/chat_models.py", line 1645, in convert_to_anthropic_tool
    input_schema=oai_formatted["parameters"],
                 ~~~~~~~~~~~~~^^^^^^^^^^^^^^
KeyError: 'parameters'
```
This is because websearch tool is only recently supported in
langchain-anthropic==0.3.13`, in [0.3.13
release](https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-anthropic%3D%3D0%22&expanded=true)
mentioning:
> anthropic[patch]: support web search
(https://github.com/langchain-ai/langchain/pull/31157)



Issue 2: The current doc has outdated package requirements for Websearch
tool: "This guide requires langchain-anthropic>=0.3.10".

Changes:
- Updated the required `langchain-anthropic` package version (0.3.10 ->
0.3.13).
- Added notes to user when using websearch sample.

I believe this will help avoid future confusion from readers.

**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
2025-05-14 14:19:32 -04:00
Sydney Runkle
7263011b24 perf[core]: remove unnecessary model validators (#31238)
* Remove unnecessary cast of id -> str (can do with a field setting)
* Remove unnecessary `set_text` model validator (can be done with a
computed field - though we had to make some changes to the `Generation`
class to make this possible

Before: ~2.4s

Blue circles represent time spent in custom validators :(

<img width="1337" alt="Screenshot 2025-05-14 at 10 10 12 AM"
src="https://github.com/user-attachments/assets/bb4f477f-4ee3-4870-ae93-14ca7f197d55"
/>


After: ~2.2s

<img width="1344" alt="Screenshot 2025-05-14 at 10 11 03 AM"
src="https://github.com/user-attachments/assets/99f97d80-49de-462f-856f-9e7e8662adbc"
/>

We still want to optimize the backwards compatible tool calls model
validator, though I think this might involve breaking changes, so wanted
to separate that into a different PR. This is circled in green.
2025-05-14 10:20:22 -07:00
Sydney Runkle
1523602196 packaging[core]: bump min pydantic version (#31239)
Bumping to a version that's a year old, so seems like a reasonable bump.
2025-05-14 10:01:24 -07:00
ccurme
367566b02f docs: fix notebook (#31233)
This is no longer runnable in CI.
2025-05-14 11:53:38 -04:00
Scott Brenner
29bfbc0ea6 infra: Dependabot configuration to update actions in workflow (#31026)
Noticed a few Actions used in the workflows here are outdated, proposing
a Dependabot configuration to update - reference
https://docs.github.com/en/actions/security-guides/using-githubs-security-features-to-secure-your-use-of-github-actions#keeping-the-actions-in-your-workflows-secure-and-up-to-date

Suggest enabling
https://docs.github.com/en/code-security/dependabot/working-with-dependabot/about-dependabot-on-github-actions-runners#enabling-or-disabling-for-your-repository
as well
2025-05-14 11:40:54 -04:00
Lope Ramos
b8ae2de169 langchain-core[patch]: Incremental record manager deletion should be batched (#31206)
**Description:** Before this commit, if one record is batched in more
than 32k rows for sqlite3 >= 3.32 or more than 999 rows for sqlite3 <
3.31, the `record_manager.delete_keys()` will fail, as we are creating a
query with too many variables.

This commit ensures that we are batching the delete operation leveraging
the `cleanup_batch_size` as it is already done for `full` cleanup.

Added unit tests for incremental mode as well on different deleting
batch size.
2025-05-14 11:38:21 -04:00
Sydney Runkle
263c215112 perf[core]: remove generations summation from hot loop (#31231)
1. Removes summation of `ChatGenerationChunk` from hot loops in `stream`
and `astream`
2. Removes run id gen from loop as well (minor impact)

Again, benchmarking on processing ~200k chunks (a poem about broccoli).

Before: ~4.2s

Blue circle is all the time spent adding up gen chunks

<img width="1345" alt="Screenshot 2025-05-14 at 7 48 33 AM"
src="https://github.com/user-attachments/assets/08a59d78-134d-4cd3-9d54-214de689df51"
/>

After: ~2.3s

Blue circle is remaining time spent on adding chunks, which can be
minimized in a future PR by optimizing the `merge_content`,
`merge_dicts`, and `merge_lists` utilities.

<img width="1353" alt="Screenshot 2025-05-14 at 7 50 08 AM"
src="https://github.com/user-attachments/assets/df6b3506-929e-4b6d-b198-7c4e992c6d34"
/>
2025-05-14 08:13:05 -07:00
Sydney Runkle
17b799860f perf[core]: remove costly async helpers for non-end event handlers (#31230)
1. Remove `shielded` decorator from non-end event handlers
2. Exit early with a `self.handlers` check instead of doing unnecessary
asyncio work

Using a benchmark that processes ~200k chunks (a poem about broccoli).

Before: ~15s

Circled in blue is unnecessary event handling time. This is addressed by
point 2 above

<img width="1347" alt="Screenshot 2025-05-14 at 7 37 53 AM"
src="https://github.com/user-attachments/assets/675e0fed-8f37-46c0-90b3-bef3cb9a1e86"
/>

After: ~4.2s

The total time is largely reduced by the removal of the `shielded`
decorator, which holds little significance for non-end handlers.

<img width="1348" alt="Screenshot 2025-05-14 at 7 37 22 AM"
src="https://github.com/user-attachments/assets/54be8a3e-5827-4136-a87b-54b0d40fe331"
/>
2025-05-14 07:42:56 -07:00
ccurme
0b8837a0cc openai: support runtime kwargs in embeddings (#31195) 2025-05-14 09:14:40 -04:00
Rares Vernica
4f41b54bcb docs:Fix Google GenAI Embedding params (#31188)
Extend Google parameters in the embeddings tab to include Google GenAI
(Gemini)

**Description:** Update embeddings tab to include example for Google
GenAI (Gemini)

**Issue:** N/A

**Dependencies:** N/A

**Twitter handle:** N/A


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-14 08:50:11 -04:00
MedlockM
ce0b1a9428 docs: update how_to docs to reflect new loaders interface and functionalities (#31219)
- **Description:** Updates two notebooks in the how_to documentation to
reflect new loader interfaces and functionalities.
- **Issue:** Some how_to notebooks were still using loader interfaces
from previous versions of LangChain and did not demonstrate the latest
loader functionalities (e.g., extracting images with `ImageBlobParser`,
extracting tables in specific output formats, parsing documents using
Vision-Language Models with `ZeroxPDFLoader`, and using
`CloudBlobLoader` in the `GenericLoader`, etc.).
- **Dependencies:** `py-zerox`
- **Twitter handle:** @MarcMedlock2

---------

Co-authored-by: Marc Medlock <marc.medlock@octo.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-13 17:59:01 -04:00
Michael Li
275e3b6710 docs: replace initialize_agent with create_react_agent in searchapi - replace deprecated load_tools (#31203)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 16:19:18 -04:00
Collier King
e53c10e546 docs: update Cloudflare examples for env references (#31205)
- [ ] **Docs Update**: "langchain-cloudflare: add env var references in
example notebooks"
- We've updated our Cloudflare integration example notebooks with
examples showing environmental variables to initialize the class
instances.
2025-05-13 16:18:27 -04:00
Michael Li
395f057243 docs: replace deprecated load_tools in google_finance.ipynb (#31220)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 14:56:11 -04:00
Michael Li
a9ee625f32 docs: replace deprecated load_tools in searx.mdx (#31218)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 14:53:44 -04:00
Michael Li
544648eb71 docs: replace deprecated load_tools in wolfram_alpha.mdx (#31217)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 14:53:29 -04:00
Michael Li
40be8d1d90 docs: replace deprecated load_tools in stackexchange.mdx (#31216)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 14:53:15 -04:00
Michael Li
f034bd7933 docs: replace deprecated load_tools in serpapi.mdx (#31215)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 14:53:01 -04:00
Michael Li
17a04dd598 docs: replace deprecated load_tools in google.mdx (#31214)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 14:52:46 -04:00
Michael Li
a44e707811 docs: replace deprecated load_tools in google_serper.mdx (#31213)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 14:52:30 -04:00
Michael Li
3520520a48 docs: replace deprecated load_tools in golden.mdx (#31212)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 14:52:15 -04:00
Michael Li
09d74504e3 docs: replace deprecated load_tools in dataforseo.mdx (#31211)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-13 14:51:40 -04:00
354 changed files with 13843 additions and 9738 deletions

11
.github/dependabot.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
# Please see the documentation for all configuration options:
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
# and
# https://docs.github.com/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"

View File

@@ -37,7 +37,6 @@ IGNORED_PARTNERS = [
]
PY_312_MAX_PACKAGES = [
"libs/partners/voyageai",
"libs/partners/chroma", # https://github.com/chroma-core/chroma/issues/4382
]
@@ -120,7 +119,9 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
if job == "test-pydantic":
return _get_pydantic_test_configs(dir_)
if dir_ == "libs/core":
if job == "codspeed":
py_versions = ["3.12"] # 3.13 is not yet supported
elif dir_ == "libs/core":
py_versions = ["3.9", "3.10", "3.11", "3.12", "3.13"]
# custom logic for specific directories
elif dir_ == "libs/partners/milvus":
@@ -211,6 +212,8 @@ def _get_configs_for_multi_dirs(
)
elif job == "extended-tests":
dirs = list(dirs_to_run["extended-test"])
elif job == "codspeed":
dirs = list(dirs_to_run["codspeed"])
else:
raise ValueError(f"Unknown job: {job}")
@@ -226,6 +229,7 @@ if __name__ == "__main__":
"lint": set(),
"test": set(),
"extended-test": set(),
"codspeed": set(),
}
docs_edited = False
@@ -249,6 +253,8 @@ if __name__ == "__main__":
dirs_to_run["extended-test"].update(LANGCHAIN_DIRS)
dirs_to_run["lint"].add(".")
if file.startswith("libs/core"):
dirs_to_run["codspeed"].add(f"libs/core")
if any(file.startswith(dir_) for dir_ in LANGCHAIN_DIRS):
# add that dir and all dirs after in LANGCHAIN_DIRS
# for extended testing
@@ -287,6 +293,7 @@ if __name__ == "__main__":
if not filename.startswith(".")
] != ["README.md"]:
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
dirs_to_run["codspeed"].add(f"libs/partners/{partner_dir}")
# Skip if the directory was deleted or is just a tombstone readme
elif file == "libs/packages.yml":
continue
@@ -312,6 +319,7 @@ if __name__ == "__main__":
"compile-integration-tests",
"dependencies",
"test-pydantic",
"codspeed",
]
}
map_job_to_configs["test-doc-imports"] = (

View File

@@ -41,6 +41,8 @@ jobs:
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
@@ -67,7 +69,6 @@ jobs:
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
ES_API_KEY: ${{ secrets.ES_API_KEY }}
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}

View File

@@ -322,7 +322,6 @@ jobs:
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
ES_API_KEY: ${{ secrets.ES_API_KEY }}
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
@@ -345,6 +344,8 @@ jobs:
fail-fast: false # Continue testing other partners if one fails
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}

View File

@@ -12,7 +12,7 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Use Node.js 18.x
uses: actions/setup-node@v3
uses: actions/setup-node@v4
with:
node-version: 18.x
cache: "yarn"

View File

@@ -29,7 +29,7 @@ jobs:
with:
python-version: '3.11'
- id: files
uses: Ana06/get-changed-files@v2.2.0
uses: Ana06/get-changed-files@v2.3.0
- id: set-matrix
run: |
python -m pip install packaging requests
@@ -152,6 +152,7 @@ jobs:
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'
ci_success:
name: "CI Success"
needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports, test-pydantic]

View File

@@ -24,7 +24,7 @@ jobs:
with:
python-version: '3.10'
- id: files
uses: Ana06/get-changed-files@v2.2.0
uses: Ana06/get-changed-files@v2.3.0
with:
filter: |
*.ipynb

View File

@@ -5,40 +5,61 @@ on:
branches:
- master
pull_request:
paths:
- 'libs/core/**'
# `workflow_dispatch` allows CodSpeed to trigger backtest
# performance analysis in order to generate initial data.
workflow_dispatch:
env:
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
DEEPSEEK_API_KEY: foo
FIREWORKS_API_KEY: foo
jobs:
codspeed:
name: Run benchmarks
if: (github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'run-codspeed-benchmarks')) || github.event_name == 'workflow_dispatch' || github.event_name == 'push'
runs-on: ubuntu-latest
strategy:
matrix:
include:
- working-directory: libs/core
mode: walltime
- working-directory: libs/partners/openai
- working-directory: libs/partners/anthropic
- working-directory: libs/partners/deepseek
- working-directory: libs/partners/fireworks
- working-directory: libs/partners/xai
- working-directory: libs/partners/mistralai
- working-directory: libs/partners/groq
fail-fast: false
steps:
- uses: actions/checkout@v4
# We have to use 3.12, 3.13 is not yet supported
# We have to use 3.12 as 3.13 is not yet supported
- name: Install uv
uses: astral-sh/setup-uv@v5
uses: astral-sh/setup-uv@v6
with:
python-version: "3.12"
# Using this action is still necessary for CodSpeed to work
- uses: actions/setup-python@v3
- uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: install deps
- name: Install dependencies
run: uv sync --group test
working-directory: ./libs/core
working-directory: ${{ matrix.working-directory }}
- name: Run benchmarks
- name: Run benchmarks ${{ matrix.working-directory }}
uses: CodSpeedHQ/action@v3
with:
token: ${{ secrets.CODSPEED_TOKEN }}
run: |
cd libs/core
uv run --no-sync pytest ./tests/benchmarks --codspeed
mode: walltime
cd ${{ matrix.working-directory }}
if [ "${{ matrix.working-directory }}" = "libs/core" ]; then
uv run --no-sync pytest ./tests/benchmarks --codspeed
else
uv run --no-sync pytest ./tests/ --codspeed
fi
mode: ${{ matrix.mode || 'instrumentation' }}

View File

@@ -127,6 +127,8 @@ jobs:
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}

View File

@@ -103,12 +103,6 @@ repos:
entry: make -C libs/partners/qdrant format
files: ^libs/partners/qdrant/
pass_filenames: false
- id: voyageai
name: format partners/voyageai
language: system
entry: make -C libs/partners/voyageai format
files: ^libs/partners/voyageai/
pass_filenames: false
- id: root
name: format docs, cookbook
language: system

View File

@@ -66,7 +66,7 @@ reliably handle complex tasks with LangGraph, our low-level agent orchestration
framework. LangGraph offers customizable architecture, long-term memory, and
human-in-the-loop workflows — and is trusted in production by companies like LinkedIn,
Uber, Klarna, and GitLab.
- [LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/#langgraph-platform) - Deploy
- [LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/langgraph_platform/) - Deploy
and scale agents effortlessly with a purpose-built deployment platform for long
running, stateful workflows. Discover, reuse, configure, and share agents across
teams — and iterate quickly with visual prototyping in

View File

@@ -663,6 +663,7 @@ def main(dirs: Optional[list] = None) -> None:
dir_
for dir_ in os.listdir(ROOT_DIR / "libs")
if dir_ not in ("cli", "partners", "packages.yml")
and "pyproject.toml" in os.listdir(ROOT_DIR / "libs" / dir_)
]
dirs += [
dir_

View File

@@ -1 +1 @@
eNqdVXtw0/YdN4QeOdIy2ErCs/jc3ng0SiRZdhynvtZJIORlB9shIaUNivSTpdh6RJId2+FRkrZwJFcmxmODdUAT4i1NSSGhQIBCjwMyYNDBVgglZe3WtHBj7AYbG2ywnx2nTQ7+ms6WLX1fn+/n+/g1RoNAVjhRGNPJCSqQSUqFD4rWGJVBXQAo6pvtPFBZkW4rc7o9rQGZ65/PqqqkWDMzSYnLECUgkFwGJfKZQSyTYkk1E/6X/CDupq1GpMP9KxoMPFAU0gsUg/XVBgMlwkiCarAaKqD+HEWvskAv+mkYTe8TxHpBD0JkzIdeZPRUQAAcI8q8Id0gi34ArQIKkA0rX0s38CIN/PCFV1IRQkR4TuCglqLKgOQNVob0K2BllAUkDVPc0MaKiqrtGQ26i6QoAK2BQIk0J3i1D7wRTkrX04DxkyrogFAFEKdE6/ABICGknwuC9iEr7UNSkvwcRcbkmbWKKHQmUkPUsAQeF3fEkCOQB0HVepwQhL0wsywM2RX0WIbZkoF/GEIUleQEP6QL8ZMQT7sUlx8eKZBIygedIInKae1DxntG6oiKtruUpJzuUS5JmWK13aTMm4nuke/lgKByPNCieWWPh0sIvwsXNWZgGPzsHeVZCQuUtjvO+YFR1kCVwwglQifaLnTPMEF+IHhVVmvFcOJXMlAk2CygqR2aqQGlsQ0WA5zriya65j1n8XAVv9ClteXDwmhH3aSarsdxfSkp63EUN+kxzGrMsqKYvqDU05mXCON5Yh32emRSUBhYiwXDdY9SbEDwAboj74kVPxqrOMwmBh92IQJCkqgAJIFK66xEXEPjghTmdw+1FyLKXlLgIvGw2tF46esjoXqaCtA0G6zn0ewIYeRqQIBiehImkizGwkBACK9obThKZO1JiIbZ74DJogiGIijWG0JkyIWf4zlIaPyeGFpoa0JR9ODjCqroA3C8owQavz4eqSEDHlYtFvx7N0R2dvaRJysNuzJClWyLuXe0lgJGosFwXjn4uELCxXuo0hka1kY4Wut/AT5UG000AcwmCwlQ1EQxRHaWmTFjVLaZoYwANxGH4KRzFPQSq6YkyiqiAApuKDWs9afzZCg2aTYjZjKaYaY5ek6g/AEauAM1+WIsByVHL8nAL5J0F8UgFEmxABlqQC2av9RhLy3M63BDkHmi6OPAxqtjplZXU0x1DW9zLEGZBRWFFQ6fkw7XLq4OSFWSKVBYRtW7w+hCwuN1qbloTdlip6wgWBaBmwkjgWMIloFmwMFByh0s4SorF501eAVWgMsWur7WxzoDJWGWoZwLS7BqB4MXlzpyIxELkasGI2UiXhgoVkswexnG5Xu58gVsJVPktnsrc12eoqBa5zIulLCsEMsRxVWeqgDPGesKzIuKCJi1RKqsLTMHrlSJg6TbEnODwLlBYlODW9HhqcnR03FibBmjl2SOfhHc+E7BH87Ru2MMA/hL8sDNqcDmEAXQvwkSEwhytM1VwNqX5DsKHRVLK+RyI+lhKS9rLGAjbp+bKRQkEKrKD3oY1lTqG8GMhTAhaIIcM0pY4q35PfT/E9VHlcjINYA4paGjLSqIisAxTLsbyHCqtA7KLwZouO9l0J63EHHZl2o92ThhMhMMxVgI0sKQOJILN+mwt++WRlvssIiSfth4QUrrZo02g5UgjIYcPU/aLGY4Y/EDcE17rFEF78mxP5vdnKyLX0nw++hRi+fz2hn2p1feq1gXrv1kouOrwX9embHJVXUxZdMPW15qHSg3vlhq6i4s6Tu2dWl076WUu2D24KKCb77dd+BHutOfvLvmzqzU61FLw8OL52/d6s7csb0rJTJbPH9sRV9Fc1fX9dnRoHRp2673b//5bFenrWvlek8lSGp4Pt2z9N6GtPEFzSdOPryRfHf63M96zJv7c722lAsTB8c39/8n9NFqecfAvIYzf33641KdTjgt/mHeGuHatHPRY69Hzkx7Vfb+wK47T3yWtjZbyZh7svTAzop5L7Tedc5ac+qVQ8d3f7tfN7D8H5p9xt+aJmXV2pbNSNuSOja1ccr94rkTWOuiN040/XvmL4+Fnkp/46uftx3PObOtZ/kFy1u/6FNOPEctu7zz4uSp+ztdzStmRvCQ63ANnnLw7c68G33jvpj6MNQ7fof1zLg3Uy/nbKzcl+XY/+W0Pb9J3rb4nQn/Wuebe3C9B985btEp2/TLKzZfnTRhPxHpamo51XKkqs/d13Rbd2fuvqn3z66vTfqg9spPpoFZ59zPbbbvfHH9tvu1D+ouoEm5g0sW3nHpTkxZH8U2PdW7q2BM18qXkxs6He2ftvJFE8p757dav7HuKsqZOLhqZsPhPFPt2y2BvfS6uvGvTEaef3DQkXavb+DE2AX8T2/Mf7Tl5vTU8wMXk7uLXtuyjDg0+eh23bKWZutLV21bSx54tizI5NIPrO7ZpXx+50rjnNP3lv+usW4Ot8ry35QBvMz+Tth76d2C64uvtAsXxq493ptUEix59OtB8dqMP6XfevSpOOb2vCkTztLPXnk5eOQZY8fqDavfshHhZ/+C909pqEr98ftNyb//46SsrFt/t6bd3PpMcfGWlqy1A21f36S/du74cubR7ddKV42NtV+S7revL984OE6n+x/1QgjS
eNqdVXtUE1cax9faVo+PwlrcbTWNlVZkwiSZhAwxbREQeYQICRB0VxxmbjJDkplhHiGBuirW3fVR6NRHK/VYK5BY6kFaWKx06aq7ler62NZlF9pdPV2sZ0/Xx9YHdreu3ZsQWjj6V+ckk8zc7/H7fr/vu7c+7AeCyHDshIMMKwGBICX4ICr1YQFUy0CUXgz5gERzVMsKm93RLAvMYDItSbyYnppK8IyG4wFLMBqS86X6takkTUip8D/vBdEwLZUcFRx8oU7tA6JIuIGoTl9VpyY5mImV1OnqMmj/tKiSaKDivBTMpvKwXA2rAgEiEkPFuVSkzALGxQk+dYpa4LwAeskiENRrf56i9nEU8MIXbl5CMA7xMSwDrURJAIRPne4ivCJYG6YBQcESG1toTpSU9vGgDxEkCaA3YEmOYli30umuZfgUFQVcXkICKapaUaLaIGAWRIlR2jwA8AjhZfwgNOKrdBA872VIIrKeWiVy7MFYgYgU5MH9y20R/Ahkg5WULhuEkpGbuiIIOWZVWk0aqkE7AogoEQzrhaQhXgKiCvHR9ffHLvAE6YFBkJh+SmjEuX2sDScqrVaCtNnHhSQEklZaCcFnxDrHvhdkVmJ8QAlnrrg/XWzxu3RhvUarhZ93xkUWgyyptEaZPzzOG0hCECE5GER5E20fJcgLWLdEK81aHXZAACIPWwZsDEE3SRbrW6Ak4PRH4Vjv7Lflj2p5IS6xJQvKo/Q6aDlFpcNVViKo0qE6g0prSEfxdC2qyrE6DmbG0jgeqMM7DoFgRRfUIntU/TBJy6wHUG2ZD1S8N6I4rCYCH/YiAgI8JwIkhko56ESKR4YGyc3qHGkyhBPcBMvURtMqvVHpa2oDNRQpUxTtr/GheC2mZyqBTLq6Yi68wEXSQECIT1RadDoca48tjbLfBotFES2KoNreAOxePxdEZH6k8xGYw8+QAImKGXE39QQQAfLlZXwMJD16j403jG9AUfS9+w0kzgPgRhDG0Oj1wVgLAfigshGA34fBcBz/7YONRkPpoQluMvaMtxLBWDRanU98736DWIj9qHgwMGqNMJQy+BR8qNAZjDodpccBwE0USWldqMlIpBkwFFAuDAP4EcgMQ8IoEcV5TpAgRyTcy6SgMpjiIwKRabTotQa9EVZqVjEs6ZUpYJcrs7hIDaJZxQvAyxHUIdKFkARJA2SkSZVwVnlhhjU3s80OQWZynIcBr3w6IbGignRVVPosRo+uJruKcuMrOLEIz3IKOVnLNC4es5dWcIyXqyn0SwZraX4p7ccQbRpmMui1egMUVoNq4HAhrhyrS8xzLZcyZWpZmkHAHCa0iGVdSwMlJiNZ5sQqUK9dyrU6soPVOCpUlcullZ4MqsKzMsvHFZUVL6UraatdtubZglWFOF29vEAy2opILcMHUWsaXhL0cUG+CmM8jiJYIiHRllQz3Hx5BpJuic0WAmcLGZks/ehkmVVUlBiLZvx2alYth2eDjfUGzSp7hGEAfwkfsDMSsBRyLBjcAYmR/QxlsVUSORm5ATLHSaOE1Z1dbs3RWWXjUr2MVUmUhOb5nXyw2qErNGWPYQbHMQSNkWNEMVO0Nb+H/gNRdTuRsVsFYuNHDsEwy4ks43KF7HCigKC0kV5OpuDJIIBQ5jKkOKNc6cKxNCPAMdRFulyUUY8juRlZHaPRvttYWiLHSpjwwsbzk0onrbeo0zFMrzarfITFZIQzFj0qN4Qijcq6P5x4bP7Wh+Ki1yT4/fbbbQ4rtyBteu83ZbPSP9tw1fTTpw9bP55oSXimh9na7Ux8fLP+9ysfLdlM9j104+K0l7YPvP96XN3c6V9//dWF+Na+h9cTbvbYwLz+X15y1wxfb3yj/S/s4btXV98rIOpunp+/tqXiunSnzB36zdKmdSe/zO/ftPPlJYvylxw3xif3t2/9V/9/vxSqj6xsfH5Wzge75Fz34t1TGpasOvvq24N3a7udz5XdOb5ry5FN65Li4hqHDt/Y1jDvNHI6nKo837om5/Kw4eGj1FeGyo4EzZaiM7cmr9ycV93yi4vxv65xJHQXDc/+54S3GyZ+Uv+EunoxfvTZTuHK0TcfxejD+ya+Vrxr6owDl2byR/ac+/zar+ZvWLCmq6Do88eSX8nSooVPEqXdG/uuzDTk1tUXPJH/v+wpmllg5nPuu9cnXqtLnoxd3kvzKUaxLemxAXvS8t2TXMNTEx/B6YWZSYsHz3RnvVXMzhhqsWXuO534xwS05yfp67vyZpuu/eE6vW1DvHnyli3ystv74qvBI9TCvDXTmrRzuhZsIhdLtydvdTkuzHZ4+045lv24+Uft97o33rk+4Fk4q6v8+EfH3i1l/103r9s+cKckfDsQ9+GJ7XMGOodfHmiT5trPzTn1JPaPaX/qTGhIJg+pdse9fups8pWTMrbYkiS4hxpDq/ccWh7yP+P8KzbjwhsTEpsf//vcV2/e1N+41dOwumdH66KKnU3dTX/mdITiLDt04Cn9flv8+nNDn86s8L6bW770k5dO7TpRvXVmn/+yNHj26H9uzC0puuU+WmlZ23zxhKL+RvBXb8v+bLt551527oyGL6a/tuete7vOruptPIX7L56/N9mZn3vSV5zUN5x/MtxVcFtbm3q1/wulY9GOGi/TXHBk74vNc6aue0FdgCe0djC4f4f98pD549CZ/i1NJUPP/u1nTSfPX1oX7dNJcb/rM882TImL+z+l5DCL

View File

@@ -1 +1 @@
eNqFVsuOG0UUFQsW7PiEUk8QieRu98OP8UgsJhMFmTAkyjiAIBEqV13bFXdXdaqq7emMvCA8Vmws/oCMMmgUQTYs2c2CBT8Q/gWJW91jB08mIHlRXa97zrnn3vKTkxloI5R867mQFjRlFj/M8smJhkcFGPvtswzsRPHjO7cPBk8LLV5OJtbmZqfZHALXik19XUgrMggK4wM11o8CmtHHStK5CZjKmpnikDaptBOtcsECltKCg5/4RkkJ1o/DuBXGcc+fRe8lu2GTKelAwfFQ8fLlD0deBsbQMRhvh3x55GmVAo68woD2GsTD7RakrRctHLqR99mE2vcNsRMgKuXIg0ylmksChzTLU5wcEVZIECOlM2/xYPEALzKlsZC5e9yXkCPQIBnsKTkSY5w+WixOJkA5Yvv++V4d1R+UOSzP3qV5ngpGnXjNh8jr9B6i83fHuGV59uN1ZVXSjIKkE0QJyXjTTTClYWs1V9BmHIREmWZGmTJbcRJ08Bu3Us0mW1RnnRZJqRw38xLTIbeSIIrw53bkpUBOW3t3qhXCRuOmBqtL3wm/lcKYspKsIq5QnH7u72aP/RvUOviYgnaYxPEgipJu2PviN4prhk99IWeqpuULvjy70uuGNGZR6PPtXuS3ut22v70Nod8Z0i5tb/c6MOK/rg6fW2h59g61qGxuP4h+Wen2McixnSyfRq3wZw0mR9PBN8+MpbYwT44ZIv/zj5PzxP90+9ZK+O82hX9xUffjitDvB9Q2SByTfaqJ40aiaCfp7kRd8uH+4MWhjwilf7eG1+fLl1e2kzawYbfl97ZbyAvaHb8Xh6EPrWE7avNRyFrt0z3n16pAlqdTgNynqZjBRUrHUTtJKu9+jXy0kOO/3v7bmRjHDD185KWIUbJyHz86vV64aHiqsHlh3do5ZTdcG3vta2/wBj+bDUOTuRYW4xKOgciQsimxilCtCslJkiCtBLmR63sBOVBZVQyuUIDqVLir15fOsQLIqDomZLWHSiYQEzkoMtCCotswUh3+ni6muM7JR5BxsOQTarQ7ZpDcBLQk+2BUrizNBCVXnTe19DktSV/TR9eC+/K+3CUjmJMplBu8zGUYX5EV0jAt8qpvVfGptmKEjczgEkux1ey4u6NrxKl3S5gJGdBhigivsoAk7UqJazvktlxH2ZC4vh+bHVHDh5h+08A9whCT0TQl2MxKYuv75tT8v1qlC+JQBKRvyRAJOZwpFZxoAO6bCc0xVkb1FFPoWhi1SAkI2sEIFA0Xc43V7K8lqLSLa35VFvqfVkLU436fOPeYmm6V/WjF+eZlaFcg3XHHFQz8m6ZxSCytMvtf5sGFDKvZIV/nqs4UwdbNUSmNjLEncWdVyjMhBdYL1vIMsTCG0KypqCU1tZtU0/PU1WTizpqHVlkFwwhbQTqYFLrIc3o5AZGmRRUKqkMS5SHYesbVUQ4zSFWeOSmQ5KvcXSyvClurxtaXeF9RP54b8S8Afd1k7jIsc5IK9/zqksyVnpraeyunIYBa0A2vn6cBTc9ngkGVcnQGvp1DUxWexRmq+WUU6msqBgeq2lxkaLmysZlMdIcw2JkwXa93FzjEnp46/1Z95vIWQ0YuNW9qG29oDw00Ro6vAh5xgRyksaa8oCmBmUoLx7++uK6EWjvE8KpqEAwK5Jx4uAZcP/ABvveN838RHjVGOJ2st8A2bKzK7+J/GCVxCST/Cu0rvQb+1ThvyUKiGAM1BYm9O+quGvdqJml3Gp5FDul6ppssFv8ApHFdNA==
eNp1Vs1u20YQRg899NZHWNApmgCkJJKSbRnowXGBIk3dBLGCFG2KYrgcSVuRu8zuUgpj6ND059SL0DdojDgwgjaXHnvzoYe+QPo0nSVFOU5dQID2d+b7Zr6Z5dPTOWojlHznpZAWNXBLE7N6eqrxUYnG/vA8RztV6cndO0ejZ6UWr6dTawuz1+0mmGrFZ4EupRU5dkoTIBgbhB3I4YmSsDAdrvJurlLMuiDtVKtC8A7PoEwxiAOjpEQbRL2o34uiYTAPP4j3e12upAOFJ4lKq9c/H3s5GgMTNN4e++rY0ypDGnmlQe35zKPjFqVtNi0+diPvwRTsh4bZKTKVpcSDzaRaSIaPIS8yWhwzXkoUY6Vzb/n18msyZCpjMXd23EzIMWqUHA+UHIsJLR8vl6dThJSw/fTyoPEajKoCV+fvQ1FkgoMLXvdb4nV2n9AF+xM6sjr/5aayKu6GnXi7E8YsT7tugSuNW+1aCd2o02PKdHPgymxFcWeb5nQUNJ9ugc63+ywDOekWFaVDbsWdMKSfO1FUgjhtHdytdxgfT7oara4CF/itDCfAK9Z6bFGcfRHs50+Cj8E6+JSCQW8QDUfhoDcMh1/+AbRn0lkg5Fw1tAKRrs6v7cSczlL2YJcPg348SIMhJONgnMRp0t/l/Z20/3t7eS2h1fl7YCmyhf0o/K2N22coJ3a6ehb2ey80moJEh98/NxZsaZ6ecEL+91+n68T/eud2G/gfXz0OyLwM7jW2b6Wr19eSKNyOx/0oGAx2toP+zi4PdpP+OEhwp0//CeIQ33Z8Evb7u2cHToG15FdnM8QigEzM8XJyX72d25M6aH+OpqXPoiE7hIq5+LFwsNcb7kU77JPDUa3d74iPFnLyz7svnIhpzEnDx15G9yWvDmmyu70dLX1PlbYordtbU3bDjbA3uvZG/6Nnc0nQbKGFJb8sJUcsAT5jVjHQqpQpi6NeL4h7vR67ecCAFhYkc5YKwxVVHaZMyLpsNE5cJ3CGQXJBQNghGlUoC7kAdt2JS0tyUbFbGh7d6DyUD+WRyuvacgYQdCYukF6gE9JwLYq60dCEZ9QN9tztsMMcwdvCTNkIkgwtu847LB7UYG/s0a4wzOSQZYyaSMVsc2hcE1vjbsEelTlqAeRY2Mphqs3S/QQJ1pyIUkwSQis3iNeRfTOm60h22C3LXD6AwDNqYlZNNBRTwS+zcfGcoGpyzciamEhTRyZquN3X5WzNzTTkYpeOsGW4T0WuJ0i+sqwRZp3ZC7KG4HGYU2JTNtYqv8S5pVp7eTNDD0DPwF8nygExuLG3psUKTS0i+I+IfLYgmlO2AKJHh5CX2ijtoudcX5xvwlCTjRuymxQcbA6NSMdr4sQ5iIYXqXWYgKRortKQA0PFQKqkJpaaNtlve/cvtDAHLVRprtQDmWSZmDXp8NmnmKcko8/BaL9O4dG01GVRwKzmUbUiZZDmQgoqamoGc2zB+GTLWNNcNaJ+XyTo5lCT/dEVWOuIkjkrSM8ViWWOmSoorUlVc2sB12SvKsG6eMmGayeasKnCicKtQgr1mCwpMqWJ81xk4gm0NfdGhfvMlJReaB7L/dkMUufUZzchqTIlm4mzum9MVQOqq0FjTqpp+gU9xRR4zVwHYbHvmktFqaN7OcxcIxL2ijpr+kLbq5rXdwNuoXSWduhp9tcPvgfGUJjpM8JbUsc0VhX36HNDSdpCmX5jSy09n74K1t1TSOqoIzVDSW023Gl7bLsSxwPfsxTJbLMyiJbLfwGzkz5r

View File

@@ -1 +1 @@
eNptkwlcE3cWxwVr24+4W9ai6K7KEDlKzCSTiwQQNIYbwmGQwwuHZHKQZGaYmUACHpWirojYrEJVKseCSaAiSJWKSrXuai2HXWkRsejKsVLEil3XsirgTkT8tJ/Pzud95vNm3sx7v/d9759vy0YIUouhTie0KIUQsIKiH0hLvo1AsowISRVYDQilwZQ1CfHypGojoe1drqEonAzkcDDYSGl4bDWGqfUIjGtJtgIzcChMh6A1GZjSfNtpnpqAUSqdMuNIMIGoCITUpL+K+yj0WoSOaJXBIn8BJPaHhFyxEAL9swgB7q/Gtf4aVAj545QYyTRmiflKLV/A1RgJNozj5OuKRhIhFBgtGqUchWdSkoiCQKhgJRgeGyBM5AZkiWSJhnBcKdJEhkJJZp/f6AjmevPCaYO4qrg4WRJC4sJwqVSdFiVZK5FESMLkcTnhYGxAFEGJDDE80pQiU+dmrAsFRalcNYbo1qfGSY3adBjKwMMzVVkGFbkuO1QVLxcl6mFKq0kLCIVjhfI0MkEYFxBm0yCwkoa9p24drRyUqGm1lmbcTNNFwde0SQ6PzaetQaJQIDgFhqEKTKlF1ZZ6da4WZwFKREVnRqzTYUs1k8Osk2Ioirwam6VOhyA4COu12cgJ6TQaMImGb+n1pMHptQrY8RnHBObk5IAqjDCARkKPOGogylMm0MEVpAcJTqO09Pqp9eC0QA6fzeXSBjhm7hApZkMADVoJOobLMZ6cKReLoGpKY6nm+YvtNGecXibkIytJwZSRzK9xVOq4ZjMgJAmrkb/Gx8xA2X8qiV4VUkWDedOzTaExojpE2TiT+02kxkGjJhkmzAet8YRWrUXtqeC0Y1uL0EkQ4rf9X/x1+5kkhgYBCg1MkPSiGCkVKK6XwgoNAjr+ITC9pZeNYqDC8YoF0B5JYQTtGWATSKsOhmjXSFL0zLJp1Ep6HjWh9M3SKocpFsDjATKYAHgQTwhwuYF8USAkBiJkSQ2pYDgBGxAwHp8+YnVyiSwsfm1URFScNYGA1QbYYp8p25wK/lr/m39sKEaiWpXKKkcI+uBazpEKWKXC9A4qAIYCkUlJCdMhni3MhGvpCVhaZRjKAiAuEA2jADcgAAIgKPCVOWQ1poKpcjmYQGDU6yWqgmwSPQXKsxU0Bw0/mBEoEPAZQXT7wTxhAA+CIJaGD/IC/k/g1bHfSU+boPVcmf29x753Zzku55etid+U1kW63rnYYJeP3nR+q+QLhWusm+uRXhNwxDtK6VoV/zJP0T0A5vV8Jhbtzls+MDU5OjjIL4BGzm04MBY1+ezFIDnXL3vp/I0Dmzi/k1ozhw+cjH505e2mJfbsDr/ceY+V4SP3hzp8ktN0PbuiO4kHheXHBD38W2cvn7rLyLX7hvSd2btaKhiSMWozlPH3Tfr/7BRdv/pVyKLSFkbs+S0rxgDVGjw6Tuq+sfj2bogxSVRdpcZ+1l6cO+7v0bnnUG6I27bk9vZy9jLDn+Ye2TGgvz508h05r7gponbX7XJm6xDWcUnVsC/j2XNo0ALkdAynj5UdTJGfjspZcdcdW1Q6eT3bVfTNiznmf4rujDU0ZC3pWXw1raRAdqPeMzy9/x/D6Y2XpRcy6xrjs/aFTH3Wmpe0qSvE5fCJFZ8ueLrj9/Ni8hJtpmOVjfaQ0voHjKneiR+sG1ZNstp84bLTq0oYU4Mwz8/s9bc1HLfvyp1qF1TOtmPOTnongtl97tudmoSji4a3mzu7e63ClDaje+z22gVHD//hyxLD1vHVI01NWxI+nbMrcuWjTjMRWR25/ynju0v7n8f1/9e0tL+oQh3N3FboXf08sCJxosh+1iXWWvTBgMzi+7TMWX+6a5HxhodwdLVuYY/ujEAbUTzXf2t11dZUwm3lH6l7/l6nmwI+HvvcJ1r8y6V7eRPv+lqLP2guVu4pOMQHj0pZQVLWxI3CTYMvu44q3C+c2VxnqqBGr9sZX9Pb//ei78FrLM728X4Pl83mggHeoeM+zMN5956NrV/Q4jJ1Uid+LGA8dmP/5bhnpeDh+W48vIc51dw14t5nLqvMt6+pGu2T9Lo2ZteNnfde+KJ8t2SvSyRT7e7nm/LIkvhxrSrdcv9ft6z5KVBrS93KzYJ1LvMzR95/oI89By3c+cmB9omYDY//fXE/0zn3VJ9sWdu9osvSlidf3KCGVUMVQSV3sJ/7R4bi5t/exsxaeuFY4TL9n9upORHHD4GXYkr7ZZLAZDLnFnrQq6ts5Eg3rHtfIX7L+65nfeHD9YV47c0PdU92RiQsNE+ae/Pbxjc0Hbza+kC0+L2awQ/nHWbedqngVHYMSm/uW3zWa/0TVyDfgn2UtcX69pI5UeyYQZNGzZjFicqX7dV85XaNndu58BPPW33JW3/q9mP25bWEiXbkdxxP9wJLGgQZurKg5sUYzPVCr7T8WApjZ9b+OGJ65xl+ejlw/2Hl52BRQXHUSOf2iFVL4zM2/vBezCQrL9TY/kvItm/NXy+p8J39U9Gkl0fz+eG2bNmjJz2rXjp/Ob71ctGcWbP+BxnnjUU=
eNptk3tUE2caxkEPVqytLtKDLF5GBC2USSYJgQSlSwokXBIuJmCAFRiTL5mBZCaZmQBBscUrKtZmvSHqUcolFpWArciC1kM5rq7iahUvwbWwVnrQKrS4wiIqOwH1tOd0zvvHN+edb97n+z3Pt95eACgaJwn34zjBAArVMOwLbVtvp4DZAmhmY50RMBiprUlJVqqqLRTuXIwxjImO4HJJ1MJgfI6eJPUGgJpwmqMhjVyGzAdEzWpSa+12n6mnUILJYawmEEkBHQVoLGeiv0RjwAHbwbWR4WGhiCgMEfJEQgQOM1OhpjC9CQ/DCCESZmJEIM9iFgm0uCCUh1koDmoy0a8nWmhAaUhWNMG4Br/5JQ00FGAitbBULham8sTmcEWqUWrShmNxMYjKuuR3OiJ5gXwpW4jwE0thBpkpEGSqZdH6jHjJColEJklTJhVKYbk4nkqJS0o3pKXKiuNCY/OVoEgLVpPJ+QQRHc/jh0qJzEQyLVFCZxTChQKMKBaspuWq4rTQMLW1KDUmRy8UKxUiOwZQLQt7S30aqxyW6Fm1tmaTlaVLwK9p01w+R8CWQ6LRABMDxxIaUosTetsJfTFuCoG0QGdAGVA32bZVB3OD66NJggATttnq8wEwwagBLwDHoyfRwCoWvs25iAVnwDWo6zNuEVxYWAjrSMoIWygDcM0A2qYi2MUVZo2EJ1HanEF6AzwpkCvg8HhsQS7PXSJFHARiQWthl7lcS8ObcXJA6BnMVs0PEx1lOZvYMIENdTSDMhZ6fY1rUudFuxHQNKoHXyYnvoGyw6GGpRRqBHCyaTKB9UqJIjZ5RbwsPqkuhUL1RtR2lCBhDarBQKMaViuVcApFMq9PXoXYY4tMODvRdlZBEiEQwoMSUALiicUIhCAREwXJFKomFRtJWsca8JatXYNZiHygbVbDv4X2VomdIGkC1+ka33Tf7qxxuVKnBBR7iWyttAbV6UiDqwORBBSnUqVMtvi/N+Pcb73Io0liGaTBUIpmU2thdLCoJh2lrLvqkilcjxNH1fDkwr4CsKoBVRPDBsB2VoVZQiC+GFKgVoiP8IUQTxiBiCN44a5D2iUGBlYWaGxODiaI9I8IDRX4L4OMaCRfKOYjCBKCCWC++A8aJ6JdeCcwUKSB3f6GeAjErmiGpNiVES2CWfciEXZpoRk2uwVs5LSsrIlrX8q6TbEMzk/tWrh9upvrmTJ+NvX03mPq2Z09Kzv3F8k27LH6ekmhlumk1/s/rGopd0OHH5/jVnpmtzilJa3H2urbfh7MIclBdJ69ZOHMo0l3R3rIwcS4gwWL/iHavaxzNOpJ4Ie5V4N7FnbcBWnzm9VTU8XrTlkDlo88XmRaGtszS2S5QO/0SZhW5YswibntFqJsanlX22eH6u2NP/xUUvrdtz1jmv268CNPN4deyp/q2P0X88m59J6jilIO/cXJ6UEHZPN6V14xB15pqv3oObJ1SP1E2a1TvYxZAA4+6UgcuFch5829xy96EtyycUXBO8SnAw6Z1wXk0E9pGbG5h5AXUefGn7WKD7UN2YYlo60VNcn2wbyF1ZySs0fmbm4YfzkqVtzgyD7cgt/Z85IjvaIXvX9eP+4x9t9fQ35k3knNbibHhQjxBByoWtW9MfDF1eG5X/JG+3NF2v7vzxizToGhr0dPK9obX4QUJ3XInv9PcunBzi0P/T+wzd6XF+R7K/j+Ee81Tb4R4/4D56XBy290rL3g8J4Tdc5r5bW4FOF5p+NRLH7c0hG/MwW72aXr7a99VFa71tbYBbIPhvvdviS/a+Svkgc7vBIanns7+oPmrO3709Llec/SiL/pYwLOktfSYnK52/yNOd7+nsHGFRnklCUy912+UZe5vZdmf2wdiFKWZ+0oc/y5b9n8BQdGH737bIZ6QWCDqHjAus2ndUeZ0s8zbMGc4ZP451tzd/6zb2f6fWx8361KA7f7G92mEz43j+ObAJbSl9VpvlmOg1PZJf0X1v+9rLJmhse32xNah1cNbmq/6Bwi50E9HhWDCfKAX6qT3R6ITbv95i/pSe/u2DvCedjRUqrov3NKbVH/u/uXMeLVxuU+UNMntSt/9YK8vzMkeZu2OVt6x8oey6OoDbozLbk2Q+U2X01w/oltX/Xm7k/ogeuM66Yda34pb1fd8A+/7Hfw46y4w+I0zbt5nvEZvOH+HyXuiz/zaH1vlkIxS7ouIN0vqbzIb8TZ7pnJwTLVB6ZlWtY89nhwpyTqouq6t9n/SnNMoaBWt+FgtjNXPM26N+urj/rGdmELQqaZ8/EdZfNVw90nlzYs+9fpgGvk+X3cxZVVn29vaMRX7c7TzS/nOPx4/8EPret95SU689f3Cu/kC4RJ0feup9ZWP66a8dQoLe+8t2G7rZR79fDAdagrnfKaUtFUK7+cnvO1r9PMlG413obngPbU222zstNvHQ9qOjbw/T76UWD1TGZNUrf9XlfA4r6Rh9YvvJ9vvh59ax6e0DfUURy1x7zFmt9UkTTzeQjq42juFjx99fPhT93Dcu6vL/dwc/s/IPGG9w==

View File

@@ -1 +1 @@
eNqNVXtQE3ceR6FXcbyOrU7tiIYQHkplw25eJNTT4aEOUuQVHlorXXZ/SRY2u8vuBgXBO1DqMNZeFz0dRVuUkEiKIkJLEW21Ux9zIoJztRPRU9s7bUfROtKKL7hfIIieqM3kj+z+vp/H9/VLubMQ8ALFMuMaKEYEPE6I8EGQyp08KLABQVznsALRwpL2lOR0Y62Np9yhFlHkhOjISJyjlDgjWniWowglwVojC7FIKxAE3AwEey5LFrk/Wq2w4qtyRDYfMIIiGkNVmgjFSIgi+r3VCp6lgSJaYRMAr4hQECw0wYjwRZYFF2cJctEC5CxNQiPyfIZdycjBKtzK0fClSU7YGECZWN6qKH0fsrIkoCGQoHEbCRA1okUElmGAiNC4CPGKUqcF4CTM9t8+r9strCBKTc9k0IgTBOBEBDAES1KMWdprLqa4CDkJTB4WF+FhHCqR5MoHgENwmioEzasQQcQphoaJISJlBaxNlOqXJBtzFiVkLljiGCaV9uMcR1ME7oFH5kFzDd50EbGIA88euzxFQWClGFFqjRmxGZlSBPvByFGlxqBE9z8pTePQsYMbOm9/8oDDiXzIg3h7LTmGwfuejGEFqS4JJ5LTn6LEecIi1eG8Vad5KkvexngSlZxxKc/KeQ8fyznVSgyD36anmIUihpDqTDgtgKbHTXiMcalQlRpBdQiKtT7FDUS+CCFYKCHtQveNVJAGjFm0SLWYBt3DA4GDMwzWOiBMtAnldthM0HHS6R283cmJo6Pwlj0eNlY6nI6LEXKVSp6E83IorZVjWLQ6KhrVyRclGRvivDLGMRvVZORxRjDBZi0YmRsnYbEx+YB0xY05MW7FaMY81KcpKyUi3pWDjfQ8SnYNiqLusBdG8sAKK+NRtKsNBsNLeGFlgCi1ePJDUDWiUhm9WaqWja1DMZwNjufQ+npdOTyuoK+3Xxo/6m0EE/YHMM93OGssNFy1ZyzW6YfU5rw8ftSiFzPrj2CeY1G7zC0fC/5/5RsWCnlB5JOFG46WvzD6uSVzeTuPUKR0CP7OQTEsMXGxCcMXvluYnRqrT1ypM1mwlUzbKD/Lm3GGKh6abg/OHaI26NRaUp2LgFwTiWgM+ijEYFBhSK5KpSc1eixKQ+pqCylccsEll5tZ1kyDRsKEEDhhAcjwDkrO+KVLYpIS4hqykTQ2l4XDaMTh0DIsAxzpgIdrL7kImrWR8KLlgSNuIZIWs1RqMag0Wp0WJTBci2kIQo3EwgtqZBsfb5vdc0sP/eOUwZ3n4atj478L3DDBZ+jjSxsTN1xYOHlgzoKcG38zdXeG6Tu6NxRMCtpKjw8K+HD7zen16r3KNlcxCdyDsoPmQKwzoaa4pLFKtnwScy1s5u+PfjuRwfzQ3nOpdf6J+Ve/WZ8zbwv/aI1tZ7PNcX6BS//J9R2cKzJF68J1P7RV+oa2CvNw/5Y298P9qZ3b6Obe1ks5d3v2Xt9xjd58unegZNWKvL66j1tPdF7c6LdjfP3R8DtVZV9f1sxKuxzcXxUuWxqWHbKsw9dPU+57f8pbvhO3zrhs6rlbXf31rSuPel89MuODoCD9l7kdHwSPMwWGB/Rb8i8+rN485VDSje492gxtVdS4rP6Q/nvtc74KSPCfEHrsnzcrpk08GlEQW0m9Mim9IzWp68dtNa6zx8/N9jX/6p+Fzg1R9R4R9v0pM7RknaH4pxhO9kV3J1BUyqaQupaTS3fNrnBlnGz2k5/Z5vz5qF/zbjZppuV2cI2ufteByvVpiafjPw17rVvxfsobsux9N++Ursn4at7rjeeVWM23h6srNkZFhl94R//Jid3GsszJ2ytazi8rID5+Eyub/lrf4C8zfz4ZO/nP43eG375wKIq5k458/9PE2UEDcdrjaNfCRQ2lZ94RM2r96fi1FUfOtUVnbkoBgddLI7qPZ/Vt+c+p/vKJK/YcW5Md8Gvj6cKGecrgwfXbN6Z+dnvFlPkHjkR8f3/7v5aTptCKqcl9m89ejddk7c+LKj4TmnXj6r3kQ13b7GuTa4K3Ts07J0pEsP/h1MtzuYBp8xUFP+6KQSKcp/6yqIKwTz14yt2VFne3JKw+6MGXhVfvXzlm2thleHvctLIq3wTh3i8TckqKay/JHvxj9cPPhby5typSDO07a2f8nhnS7iw/ey3Wvannv1Vp1xY/ADdkyzuEpsO3Kw8cvPhbe2dRX3Bv9SPpzsD1DwfalOuu9Eyf9iDv4t9vyQIHX/HxGRz09Un76+Ldp/18fP4Hx/kGeA==
eNqNVQtwE9cVNTZQkpSWYBIIhHijODYGP0urH5JpCcYYGhx/RhYYSMF52n2SNl7tLrsrxx+gsQIxnRLjrSH1J5gBy1JQ8G/shIJjhsC0SQmf4iHFCp/gDi20Ic7Q4rq006pPtmxDMZAdaUZ67557z73n3rsefxESJYbnJhxkOBmJkJLxH0nx+EW00Y0keavPhWQnT3tzc/KsjW6RCb7olGVBSlWrocCkQE52irzAUCkU71IXkWoXkiToQJLXxtMlwR1lKhcsLpD5QsRJqlRSo9Unq0ZMVKmvlqlEnkWqVJVbQqIqWUXxmAQn44N8J5QTJUJ2IoJnaUyEKOT4NzgCFUOXwOJDO0G5OcTYedGl2rwee+VpxGIgxUI3jYAOGIDEcxySAQtljFdt9jsRpHG2V6Ke9Dp5SVba78ugFVIUEmSAOIqnGc6hdDhKGSGZoJE97CWZKJVkOkCF/Q4VSgkUIiQAyDJFqKMYSDJkOBanB2TGhXi3rBzIzrEWrHh5dUa2b9i10gYFgWUoGIarX8cUD0aSBnKJgO6/DoRLA3C9OFk5lDZCVp1bglXhCE2KQZtCtt0dmoWYt08Yuu+6+0KAVCH2AyKKK75hcMvdNrykNGVBKifvHpdQpJxKExRdRv09WYpuLpyo4k/PvT9c5HI0nF+XQpL4036PZ6mEo5QmO2Ql1D4qxSgmoNVodUBjBBry0D2+kSyWAIrHIZR9mpaRCrKIc8hOpZHUa94XkSTgTkZv+TBMdkseL5YUnfrMH2m//TmZYw3xjHcZllfptjrdyYTWTGTBEgKHNhCkIVVjTiX1xIos68H0SBjruEK1W0XISXYsVsZI9/gpp5srRHQgfdyOCSaMZSzi+CzjYmTAcIIbN8PQyIChI8Wn14Sf4PxH2ovIhWsUjj2CSfgOGAnJSmc4X6AxAK3ZGsmaXBdMHA+NG/s+ik2moWgLHm0/RjGCSfwumAdQ1K8LqsaDR7bXCDuv/oGlGLUc4+XVmc3mR/h9WNGI8ZD/J+hw6vEPsbxbymFr4qHWD+QTiJAGDK18jH8XaEgyPZfSivblNmdxxjqLNr8YMktz4WFJFhkKuww3ssCLMpAQhVe+XKIEk/EeD2+hH+tIg86I2SwiGI5i8arNc9uW8WGq0iJCEBHLQ/rwGFFedECOKR0akzCBYLzObNQZaJ0NIJudBnqzaSEwm7UksGm1JlpvIhfqaWNjEQOVAN4WhIPnHSxqpeyAgpQTgeFhVvzL1manZb2cfnANsPA2HgtihVg4jueQLw+JeH8oAYrl3TTe2yLypS8HlrS1SqdZv9CIzAaSok0a0kzpQEa+pW1krEfH1hte+kMvsHJfuCSc4zfR9XG/mBI19MTgbyjE5mXycxZO+++CmIbpr6HPxB3RR2acbtzYnyQ6H4fLKju3/lpXX7vvWnNfaENV9s3J3zAT/lbfN/hlRVVe79u/q+waGLj86SExtOVn/wSXL/12MK7/yn+O3hEH35jlUesMM2r7lOPTrCsXLelgK2/CKdXx8+Ec2yd1TnfHkfW1mupW49en678esMe+PW3bnt4T/zhbEZe5p/9icYg9cV1ZslIlmdp/OuvGc/7DVeXPEqt9m6btubo/qIt7fl/sTbLh2KTcJtFTf7p0Kv/V5qhrE2daPLvAydpd0+nJcY9VUQlF24O/+ujOD5sTi1fF73+pvG72n1Ydn7Q4aUvZ5kl7V2ijl4LD7WV//qKgRpLN889Qla73zn3Q88Rba/++te7z6C/mfZI2Q7P8wKVV+lm+JMmYf3tTQs0HZ2x0zLyMc+dfW2xfPHvXJpWQYdzRsK35rGNxbJczoetfJwvubOuPrvz3Uu73lz49teuY+EJI/eXkjl+unfltdML3Kta03frm+2kH3rljCUwVnpGe7VN9GD/vhneJI8lROpubnNNz7dv6hhvCPtm7+x1Tnif/LHl0y5lzT0t1LVezU+SEuVdje3svdJjKd95wNU+nY6p/Tpw7inZWd94yrUwzHOs+35B1+8rUOUfMx1f8Rauv/InlWs0L717fQL9+pfOCnRk4teZk9Mrr7ETLU/MTe1bffjf90GBmhdqy94817z9V1X/d0/2j9Zv8PTHFSS3zdojlN7+amynk1tZ9FFpwobXvVuvzNZ9/nLc09gcXl7xXtGH3icEnGvndJkuvCNCUD0P7L1ZUlbQclcxPvtq7IaTdun2jd731+B/qL599c2Bn2YuvhLqr//pSc1f3XI/SIHn3OHrapl4mzs94Li40IdyBMVF7E2duz58YFfU/s88KiA==

View File

@@ -1 +1 @@
eNp9VAtYFNcVJvgkUWpiUhOtMB2iBmT2xS77sBAR4wNEDA8RjeIwc5cdmJ0ZZ2aBRfFDIlJDXsMjaIyKsjxCQLAqQaMCYmjRlBTxtfWBxkdMUFFpaqOt9M4uqG1s9/tmv3vvOd855//P+U9uVTrgBYplnqulGBHwOCHCiyDlVvFglQ0I4vpKKxAtLOlYFB0bV27jKWewRRQ5waRU4hylMFM8yGD5NEGBU0qKMQMeMARQpquVhAUXlQRr5WjgCulIZkm7s301amVJQKMmFCcI1saIgvJxDKXLJChpGrfiWHoQp8b0qmSMYgSRtxEiGojCA8CtqMmM0wIIRK1AEPAUIKCmZatRnqUBDGsTAA89CRbCYUT4kAALmSYgogUgLE1CSEgaw2YwCMjE5eIQ1owQNgZQZpa3otnLA1EGNakDURFYOciHaONhVJVCJSdnOdTE2Gg6u8oCcBISl++wsIIoNfw3FZUQHOBEqTxAGVDvPmOQGJakmBSpLiWL4gIREphpXAQ1sFIGuGiXatIA4DCcptJBjYwDg+AYUdrD2WELGEwmPlOpUmgMCvWuQYAYDZgU0SKVq42G2qE30c4BuSiOpghcjqxMFVimmgcCBzsB3q0URAhMyHXAisA3f6oa5HFndOQQsIserzlmw+qkQ7G4GIhoNEgUziMalUaHqNWmIL1JE4TMjYqrDR/MGPfMjLvjeJwR4FBgbw2BryIsNiYNkDXhz4RdGT4Hi8Ht0l6jRqsL1unNQYTBrCVVAJsVHVsPjeE4YQFYrKt+qWp24sKwqPnhX4VBigUBk6uBY4CF0TSbgUXzVArFSDsCDj5uDWalSJIGGTgPsMHBl3ama7584sDxcGQhg2wagDLYqdEdeGIT5IGBIDCWc6vEeQGOM56Z5PZGTZAgrSEQ+c/ZQeThgW8sl5Qm3wbPnMuihzcrxQzeXDY7BymkXS9q14vZJUWGsCdxgMFp0f7Yl4MdlfX2CwMPOKg6ucinTO5oVopn5fYniTifAqBAEHminzbQvCuOOtuJPIUd8JAwmR6ZaZkEkbICqUKjCNYa6mLd1jjKKvfYOV1kRZyeQdr4EI3RYFCoZkDdESFonPyMxAyOIQLdAXooEyojnbVjNs6tblcqigDuBA5NsNZ4IBODbAIahocD7/ofXE+wRcEqJ/pLu7slGNSP3AhASo5glUrV/D8d3X2XKmQvVePTbqyMzHWUdjLs4adNPLDiFCOT8aQcndE59dk+zy7J6fd/vYfq0hmNel1t5lAijCIl5+u6YAMgVUYDptYl6zAjIPSYwUDimC45WaNJJqGAiGDHYpy3S/Vh7iU0pMNKd8ekGoJmbSRcRDxoGNLyY6065EVVBacHE9IJaY8lKAQ1abVB6AzEiocYgrUqlWupr4PrhIf+Xw/L8C0Y7eH6DYPfwMD7Jd8yk+aOaU/K2xSpmL7sE+xcV53C8+To3JHVRT416KXORUsX72m79XGaU7fm2BfXWt9L/Nfu4qaZ7JHbYzr6/ti3LMTozVyvLD3zcjtbPzelO8uUFfkoVcyezGnrejsc3t3HP28WS4oeKO9dN3fqLdNW/FVRuPv1BON2rw9yt2xdvnyBQtmpVHQGnIkou2H2PlQaunmbwtC99F5EdH5C1kS/RsOBN/s65yRcyTo6H7t/MaJ1ztmiA07f6A9jy0bpJyXsmhL/TuGWkP2BUoQ1fnGb9rxEFh/LyRi77ujM1IaIPyyc+asllSMSc/rG353Fv9D7TTvlVZtzyS80F5/csVKqGJE2WmWvJO8s64kxL7jk9ImUovcnxbd4nR671P9jcuxbcQvLcz7ittztG9+UtiRDl/hleZl3xfe3b587Q/ccNrff2rx/WIcqo8KwZs6UpqgfgzJG3Dsfn+PvMWm4Nqa6q75luCpyu+dn0e1Xun52Zo7Rv9n8BfK3/fOmbw01qzfSxV2jTccCd1gM42zfSgOtJ66T267/MCGxO+RaatPF9yYGNpSsyH/u9MtXboyqWW8M9Wm4tvVYj/+GrqibsWWvXibM1oJiW9thI9JTMqHl3YufetY6P90x60i6ZdHavmkrXrH2xUTqzO8U8sa72/b5543gff1vtixQ6Bc09p4NjrlTWDwMPJ+XHIVQPdXVl7/bVjcr+5ThYR59v2defUX9WN3aE5Ul8zZdCq8/OWHVnd62WXz1pe6H6/qjmo0PBupSv2bGBpyc7XX6N2+EemZFb30758GLJ/UvqXuPez7/66ZzE+lRj2wvRBXkTZ3btOJ8QRnWvmTyFLCp6qq3scRPOnXsaqTUsLugtLGkpd2Rf/Dwub0RD/3+6efTU7eyqGDdd3WH3l4S2Tiy8OCigArPC7HFu7DXHvXdUAZt8PETE3/3ObMrLX9+WKS3KreKzA79y505v72T3Hr4o8Xj0j8zXSZz2o6uLTpR+P2F0Pv7e+jVtz/8aWsL/mNx43r9uFHdASsr/WLCtSWlGyfcXGV5tDT0p305PvazEwNeLF7tPfz+qw9PfHXz96UflIDNB9uFaPWt5mLfeRXj2z65ezQkgWnduO/nQq/4wi1G3Q/n+7eX9Gb43lNEnnNOKHplim1Px15+6oZVA1fXmPx7/n6h+c/H+ztO9fc3u9Q1zOMN8z+2Hxnp4fFv1O8fSg==
eNp9VQtUE1caFnWFXa2i9YVonY09IpLJOyEJsCziCxFkNQUfRRySGzIwmRlnJoEoqGDVrYoyVay24oPnlqWC8qgiKr4ttWrdKgYV8aACuroqbn227p0ElLO6m3PIuff+H/d+//f/35+sEjtgWJwiPcpwkgMMZuTghuWzShiw2AZY7rNiK+AslKkwZtYcQ4GNwZ0aC8fRrF4qxWhcYsYZkEoxKawEw6U4aQYMII1AapdLjRaMkxopK00A15WFiZTJ4axaKrJSJkCI9CLMaKRsJMdK39whdYVYKUFgVgy1K2k5GihLRHGS5RibkROJRXABMKtIb8YIFohFVsCyWBJgRfoFS0UMRQB4rY0FDEQaKZgOycGDOEjEj0U4C0AowgRTQlJIKpVEQBomkEMoM2K0kQA3U4xVlBEvFpEivVx4iqJFetJGEBklFoCZoExrCi0Uy/EV/514MUwF0BxfMFE6sdy9RqEMlAknk/jKpCU4LUZMwExgHBAjS1jOVArZkcAlNV+aAgCNYgRuB6UCdxQmRHJ8Je2AspOoIHaaVCZRaCXyPV1JoQQgkzgLXyDXysq6zzgHDQRqNIEbMeFmaTJLkX9jAEtD9cHKYpbDOBubVQh5gbNnSrq0y58V2Z1ec69RhZMhR/6QwWITIwodEoU5EIVMoUbkar1Mp1epkGlRhrLwrhcN731xr4HBSBY2AjqlW4ISo8VGpgBTafh70y4On4rOxhx8lU4VqAE6s06hU5lUSqBBp8TNLofBcMxoAegcF3++ZPK86LCoiPCDYVBolkUFNrD0aBhBUKnoLAZPwkl+98S6NwVCrbjJRIBUjAFoV7Pz+XbFd28BNAPbFCpIpQDY+vkKde3bGCs0CUwCpWi3M5zXYQtjaQlutEgPBVJpxYiIA1Ya+oezMbALEblEJpxRdEIK3HWvaWEtCYQ7K0527VwxBw0lJFwn7v80u+xHGh0JNCAxgnO8wdKwooLH3gkwgIZOE0j2CLlvs+IMJZQ/gcOYJABNgQh93TNAMK575BlOpEfugIGCCfIISgsicLgV8EVKiVwpd378DlCIQhVRGGC75OSLZBKlSvvtHDfCgFuFhnAGcBSHEUEmGxOiCdQpJLIgaExjiMggHCOzu3oWgXAgOpQGzWSnHKiNdtvf9RxuBG42hUq5UlubhkLpAQGvh+5wfXfNL1hPjcwpejfurh8KzSZUDZj4Qo1MJjvyP4HuJuGLBJSspieMEjJzLfl8kjrcM8QAK4aTgnJv6ah1zvHvx7yfknPc/0V381LrdIHqsrTuh1DcxDs/BiBQBxRmGapUJZpQlVqtRBONMhWKYWalViXXBJp1gYWxGOPgy8Pcc6vbtMXuivGlRoKymeDsYkBFt/HfGLtQmG0lsNVQ1m7kKy3KEBEcEkpREGLFQrQalUzmmvqZcPYwEH+yT8vYdV69XJ8+8O/16/W5V0nfQO/VCaD+65r6Bh79u51rHNpvyFA4e75aV+o19VbZFvWXlXnbcsv6HW6w3Zg4KDZnS/r0AVVxB1uwO22hN3J2fjqAvPnXczsuRgTlnY2Owxj9zvPjA0JD8pCays5/tI4931SStGdx3YtNdQdWdY5p4tuWTTfxlSnbR0wqaBl+OqmkrdP56J+vCheHeM4gb15Y+lFlxybNH6zzJP+OyLvo549t3PQjod2xPSpu09ZLpiexve2jQ75Z8Oq370+Obm9Ai7PvRQxrvDV853Y6f8gCdSm2Z6nW97boYfy0ev+cUZ+am827AsTJmQseGouv7HviPaxs3Nza1IQ/rct4Lh58lM49w3WMumL/KdX7gldsu/ToyJi0sx53Kjs4Rei26JvO8yMe/vq7GU1Hp4yP/qm2HUM+H71Mm5U65v6iyEne+Uuac2JWbL35rONJXXrki6iZv2/8pClvQ79mZuOBV4sGrpiU4+g/ZuMMjwt3z8XNvXa6r3Ra0V7p4F8OKoI3JosPfnHL2R40dHbQ/DtAcjl9afNXHmHfzxh67zOv9GPX79fZLBeGNM0dEft6/6qwK2n7ci3y8qcLW49ebvSvPzkh2NscI11cUdRn+NzaG4m/PR6U9eDFML/42nHPLpw0DMQrxq20z8Q9M9NH1ybOnzNp4hiN4cCOylMxqHr1J7za6/lfNhetvzbsxaLdtuA9QQGbxpBesZN9SgvQ/ovajRuSs4YHGrgZVYM/HFAwoKzw0pG2uqIPIoY9CR3p2/Do9sDqQZuP3Zo3it21uSV78v2x+4oTjmuCtkX7Vbb2Iai1rf6jIjw6t1SN6Lfg53JZgL/85XRnS+NeP3/TM8vB/EeH1n8ZNa8aLcqe7xGQ4e8YQntK+76u3U2FPvU+vLPqni634UHHOp+FCdXi3ZlPj1zL/+WMIzK47315ke+p1folOyv2IVO+lS08VXe59Lh+be/PHzfp0TmTFuf5Tnjmczt/RXJAs3N5eHy1393vTtDFvs3fPFhftPWl4u5x/UfeN15m+iSGVmz+2jNGXNN+f9GBppH2NfszNZvT2iM/2H8o+8NOK1j4xeP61Rknkq/2fxmN/ZAYj6/Zt39+5/QKzzifY/NlhoWrQjoOJ9nqy3atmjezxf/qBPhLqX2R4CnNOG7dG3iiJnvZzOrld6vn/nhmqsLLOTjYkn36wdaMU6e3TsBr5DFNmTlttg3LR1weSvzgGfD0euyxJ2X28t5Pi24g9Pm2l/EP18a09L604Zqtteniv65P+6PhHHnz5zS6cbmKDK5TrKRDr0xrjWy4O9yv85SPb/FV3vm8LDh4TclDMn3ZsoxfpS4b9+mVbcz9c4Jnr17/AcjtYQ0=

View File

@@ -1 +1 @@
eNptVH9UU/cVB2ldtXr0oJ7JsNvrm2tXzUveS0JIQuMaAyJKCCT8Si2NX977Jnnh/fK9l0hAt5byj7Mre6VVNmq3ISTCoIDpKa0/urnp6nHqpjtsoMfVM+vpaWVz1M5Wz5z7BsEDR3Ny8l6+997P9977+dzbkoxBWWFFIbOfFVQoA1pFfxStJSnDbVGoqK0JHqphkeku9/gq90dldtwQVlVJsRsMQGL1IVncpqdF3iBKUACsIUYZ6DBQDehI4uAUVne9yMTHe5txHioKCEEFt29pxmWRg7gdjypQxnU4LaLLBRUd1KDopxVMDUNM5BiUANYgiNsFDDaCNCImBjE6KkA2KMo8vrNOh/MiAzkUyHGAB4RJTxHWeoIVFBUgPB0u4HZKhyuqKOF2Icpx6XcZAh63BwGnQB2uQl5CdatRGeVD6vN3JsMQMKgpbd1hUVG1/tllDgKahpJKQIEWGVYIaQOhJlbSYQwMckCFfagOAU61UOtrgFAiAMfGYOJelDYEJIljaZC2GyKKKPRP102ocQk+aO5Ld4dALRNUbZADQgi1lhUMpB5VOdRIoBJZgUNNJdI2LSHFEVHC4dkGCdANKJ6YJllLkHrKqiffme0jKlqPG9Ae3xxIINNhrQfIvMWcmn0uRwWV5aGWdJU/eN208f51SZQohb7Dc5CVuEBrPVPtH5kTDVU5TtAiAtF+Rb4z0xsOCiE1rO2nLLYDMlQkJCn4SgKFqVGlpRvxAE+fTE5rq8uzeYa+v2cs7y5EnGhHfUDVYUYj5gYyZiSNeRhF2U35diOJFbsr+13T11Q+lILhShkIShDRUDRDeZIOR4UGyPS5Hkr2gAvQYUikYZHGtfF8SWZjKA8dxoPGNJkOUocJIqpblOHUG50OQOaooqIexBAKg/y7q4Ec1xIemQ2xwkAtUYwkSHhhKH1df1QhaJS0DDiCOlRLeJE/x/KsSpRO/XrvzS4iljKbSfL9Bz0qxQaIxrzbQpLkh7PNXsgjPlCdc0BMNtuRh3vNAOXZrOZDc10UOCuTLovy/oPm6egeykLySn/tjDtRwmgfogUUIKkIUrUN5FuDFKXQFpjHK8Z4qFECg3TwXuOIe0rQkoX+Mqe7xNXnQ7guUWxgoXYhMzsQoIOBet4hlLuiZb6SBn6jxIkRz3ampMRTWcSDyCZ9gxzycm5LYalfVAPmjVaCyjcbLWYTah1B6dHEoJ1Sv542hyqbmCbB+7zkDQkRv7/aU1WpxvPM9fmWeFNFVeFml7VkU4SK0OVx/+ZoSFof3WYLV7sjtRGjv6bCWVYuFDqDbhDx+9RNwRoGePOM9Sos9tc6TUpjrJQ2eUtQlfXOAkwCathhKEA7T2KR4h3TAiaQgIm0fI12cka+BRgjpqlw3F9RBdhGtJ89AhcvwHyQRmsNPQEPfawKHWWiABM+KKMB1fpoTowyaG/JMOHaQHidfu1dm9GcZ8nLB1ar1WJmKEisR2thZkLuT0B3euklAacSSozWUmGTA7ebzSa8AEncgQJJcmrnv4yGVEb+J+ZVfWf3YxlTnyym3dPWSS49cf3O8v02V+vLP/3t8FFVfPP2p+cHujKXHM+ll13ksge+uLQ21cnVXLWe7rx1NDn5+Jpdi2PNCy9ZP1PbxdTiq/EL1dHOPV1vsnUDIyzRuPb2i8vxAN3y3s5/6I8sqNn3xNNnnP5XFsRee2bo+Abu1JE1uw+ezl41wPxkccT93Z4Tm7ovWqr+8A3jk5Gb1dGJ4Vt3Wk5tXEcvK5pwLH71zOP2X+fkrr4+Wke7ty7L+eFETv+eiaxVrzpyLpuKsCGHmgKjW/Jbvlh6c9EPLu14KfBJ/NElmWWfONd8PB6K6Zw5S6MvZuYseH1ec7i34Lmh586e3bBeC+Xs+N/rL721z/h742Rn6lhkxVjF1o6xZ9a2W39cmhx75Ot1bRPZ1n9WjbStpBaFvCXfbJTUF5zmf5e+vfcXqwPHxs8dOPRoT2hhir47mHulIJno+KDtMH7yYLGW6Q52sJdXPPvz4hujb39tm3f8208lR39UcqutYt9bC889YZv/+e9Knw/8cnusdesS7r/zVhwYXbXueDEYP9cr7crae0CsONVRP3z24Lsn9yyqaXSXXwTye/8Z6/Bfe6QZvvHx9VXtI/NzvzxW1nin/fKOw61XTpuut3wrp5P73ucvMF3fL2xpT11ZHhtsHXvj2lfntyh7rsarHtM+uvJB3UQddvDMR7f5op/VTF5cvZLD7uhrP/3q/NGR/htNqd7BBbd3L3n2X01wfqzd98fem3957a9VAcr3FHnshiDdXLmT+NOfJ7ft3ZX8LDtygWt+ckfNZNOXt6DV0/q3a8nfIP3cvZuVkTt21zCUlZHxfzq9j+4=
eNptVHlwE9cZN/EfOEMoDZMMmSRutusATUYrre7DqFP5kOI4wsaSje00MU+7T9Jae3l3ddlOUoiThnFSWIcwCRmmAWSpMXawMTnKYcpRB6c4hbgtGFzKUPckTU0urgb3ydiMPaDZ0b593/He9/v9vm9dJgYlmRH4ed0Mr0AJUAr6kNV1GQk2RaGstKU5qIQFOlVZ4fPviErMqC6sKKLs0OmAyGhDktCkpQROJ4iQB4wuptdRYaDo0JbIwqlcqYBAJ0ffbcE5KMsgBGXc8XQLLgksxB14VIYSrsEpAR3OK2hjNYpeLmNKGGICS6MLYBFeiPMYTIBsRkwIYlSUh0xQkDj8uWc0OCfQkEWBLAs4QBi1esIWIBheVgDKp8F53KHX4LIiiLiDj7Jsdi1BwOGOIGBlqMEVyImobiUqofuQWutzmTAENAJlQyosyIraPbvMXYCioKgQkKcEmuFDan+omRE1GA2DLFCgBmuWFboLVcPDKSDVrgiEIgFYJgbTN2PVXiCKLEOBrF3XKAt893T1hJIU4e3mrixGBAKOV9RdLOBDCGCG15Fao9bQmyBQoQzPImiJrE1Ni0lEF79vtkEEVATFE9NUq2lSq7dpyfdm+wiy2ukFVIVvTkogUWG1E0icxdQ/e1+K8grDQTVTXHn7cdPGW8dlECl69PTNySwneUrtnCLhwznRUJGSBCWgJOo28r0ZbFjIh5SwukNvsf9KgrKIhAVfTKMwJSqvSyE24PFjmWmFba8onyHxXM59qRLEjHrAH45qMIMd84IkZiANZkxvdpB2h9GKebz+7uLpY/x3pKDPLwFeDiIaSmeIz1DhKB+BdFfxHcnuKQZUGBLZtEjp6qhVlJjYlEI4kMiS6SQ1GC+gugUJTq2obAAyR2UFYRBDWWjkn4oBKammKyQmxPA9CSIrRGQOZY/rjsoEhS4tAZbQ700QSMSQZTgGgTX1P93BiFi9yUSSH93uoQgRiJo9ZSFJcmC2WYIc4gPVOSeJ0W7ff2evmURmu820d66LDGfdZLtF/uh283R0p95CcnJ3YsadYGh1AK0bSH1jHNphwhyDChcwcHSTVeaMQXtTZBcVvAkccVMJaqakbqXLW1bc5UN5iwUhwkD1zLzFDQ1UsCHAOV2gtMiXqDSVB+ptq2KltYG4PS4Yy40NJS7SZ/a6qzi32ShwlgZmFaG3mmxmo95otRJ6LeoYNFmqGynS615dQ1X7npICghgyS9Eaj5cqC4Y8T9FRUBtYGanR2i0lsMTlCnuqkrStaRUng6Qn3FzTZE3QriK3X4wa7I2Uka83hJQgmeDjItnskb1UdX0iXC4oETdpp+tNhZgIlLBTV4gmn8ggnJzTAiaQgImb8jXOyLcQo4UsFc5bg6oQewJN6QqeTRZiPkih4YbegIM+RoHOlQIP0z4ooQZVuyhWiNJoekkwXewmqlx16h67yWqB9qDJYLcZrMCmJ0pXV/XOdMitDkhlR18GsAohxyi1P2x04g6TyYgXIok7bRakuKnJvxY1qYT8f3tX5JH2vJypX26bz9t+lvz+gcur75HLFsR6Pz9d1jq2+wR8TKOUL+p8oO7Bs2eOdRQMva0pv9HS91Xf1/78n18OnmsxNnuW9pWcvIRdc318cc9GfKjk+OJlf72fq9vPfLlM+6fSwa9SQ1WDZNHTBzfmLblQdfr5E/dtMj+wTTyaW6YZbX5/yLi559S939Z0DC5+/+/ODf1L263R7lcXjbWtH6lbeoy6ej3/DVU5aljfu/y/yfLagR39W3pLvjiwt6n7bnrZwt/nr/1jR+vPtvbNz1XGX8d6F75ycmNj90VXMi//0IXMQ/GJ4xEvuHfeqXPP1v7vriul9YPxZlPHnpeXZ1oP1h6WMyvEJf4jpW9uGRpaKoY8BT8sf/3RT2s7fvPnUy3n3YfXtmz8ZMH1J/nDL/3abi1S78b8ibfHvQH8yspz37NMPNt0ZYXtS7pIc/WhFbaByd1twrc/2TWOV4IvCn/X6h/Ydy3n4ppL4z+6ceiZyGuLJ9bsFxvfjBmGk/70Sy0jvuF8YWinfDK+IC//l9/lRfZ39J9esy2d/GSScm5Yf/6dovljOVffuSab/nPP1u1vVdVdeKyIO3to9AzFuHsK2E2rBnY+3CQs3PzPF/Mnvl5++NLeq989UVDt+qYN7qbPRgdr2H1ln+peE8UPHim6//NfvPqx9MYLm7SpR8uspVvokeGfLvrm5ZBm8sPnt24K/WMJ6F17cVGROvaklT30QbKGzrRPdMWOxj/7wXEa/PhG+998bTeG5/97p/utzWPn/9B6ZLjyUnX9+J76oYcLVtT09F9f75ys8Fx/HOjmn/lM/0LniVOM7nLkL6Hh2MEjI/8aaUCqmpzMzXn8WGfuUG5Ozv8BEYit3Q==

View File

@@ -1 +1 @@
eNp9VHtUE1cehkVWpBVpaw/KcXXMainIJJkk5AFElkdQkPBKkAXL4mRykwxMZoaZCRCUPqxsrVbboT7KEe0irxJdX+AKWLuuBXzVtrhndWmpK+qixdJDtWytWtkbBM7uanf+Sebe3+v75vt+65pLAceTDO27j6QFwOGEAF94cV0zB0pcgBfWNzmB4GCsDZkZJnO9iyP7IhyCwPLRMhnOklInyQscTklxUlaKyQgHLsgIxslSYLxMg4Wxuvvq1kicgOdxO+Al0avWSDiGApJoiYsHnCRSQjCwLy3Ag1yYHcYjggMgDGWFvZFimimjEVCOeysijA0hXDQgbQznlFQWREqcjBVQMHFiCJR34hSFUrgAc2FlAThZiEhwcbCdXKqBJwxbyEqisUgJTAC4UxJtwykeVDY7AG6FPLzR4GB4Qdz/38gO4AQBWAEFNMFYSdou/tFeQbKRiBXYvL08EAENxnkTPcUAsChOkaXA48WHQtC0ILaybsghjXqZK5fJpQqtFNs3ARwV3CwQD+IsS5EE7q0iK+IZuulR08cv9k/mUYC2Cw6xHlNjH3CAZyHf4PUmXoCA+XUNcFTwyenmCeL3ZKyYxHjZJ6QhCY4tHjfhQiSiUCBGnEMUckUUgmHRSk00pkOWGc37EifamJ843iEzh9O8DSI0TLLSTDhcdDGwehKfyMdH5Sj8FoAinaRgcfNkBUDH/6NOknbBcZoV8vGnT/J4IAecOEnDJlPBmE6t0enkfQv/bzCE4BA9Op1OoZTLYf0jj8fyQBD3qJQdP1tlqteRJ44/Nffxn8U3PsVeTD71dP5vIHQa50YJr/YalQo55i0G6FLGjbrYR0pFoZhKSQKgAukEYgOmlSuPeRXC86hXD9BSkGWKKUMZjrSTtFgXcbQcLWYgCVMVvFqlCfd4srZt4pblmHL31FWd4tDE+YT7UdIq9iFaHFfodFEWtVxl0yhUUEZAqbNEWVUWLY5pMdUBwoYSOOEA6CP1ic1JeenxxpREjwkIaCLDFJNA/MJ3dmEhYSu0OPWZJemFOjNuSy/TZaU68iqK5HZHunlFrjvX5HDFu1Ny3NJUjbUiPr/CgGIalUKtUqqUOhSTyqWYFEMd8Xm4pijToE3TKSuMJoXBrF2R52AKk5LKXFnulWnOBJBnxMk0nlKShMVamFtcoTEb1FFFuhWZGQnlbukyoTzVuVzAbGXmohwik1KWpBuZImd6ijQjJ6tMRybnRSWos/hiizEGYXHBoZfFwCXEklAt+gnToNA0qNcyimj5pGViECvjFY3+P3ZHDLIcej6DptwxiAkQcBXBX9wJTKQA9OkMDZpM8MMCTvQQFOOywoXCgabEZDQ7Pk9s0ylUUeooNYFrtUqtjcDQhAzTwUlfTvmuwbuNmnFKQPlSQmx1KPWSaJVKKYlBnLheq1bJ5eNr+DW4GjgY3/2Lews2BfiMP35W8znumjr4wbbw2mdDGqsNdNs5olr/zcIjIWE7tP8M9U18BtuA235f/fyOMb3/0KGNPwSWEqFfnXe7sPaLzovn/1Sfc/TenM6mL9ULNDOrZt2ij5EnK38Kbz/73b+Y24P5N9a0Nd7A06xi697akIT6K1/cN7Y+bGnZWWHqeM1v8aXOhZ4ZTVVB712Q1In5A9/P07cUj611YdMrSoY9nF/L1S0v3R9a/1zHxboi88cvaXtqd8c2New/b0rddqd2M5c1+vlzbGDDLz+rmTX3pv+mJP9vT2TUWE4pTsTv6f7w9VeTDxrGnu559aQpaLU+vnf65lF519YXb2hnjtyRvb/kc3HtN5aalyNrl9wtq9mNL3pz3pU37hhdx/PRodGinPY46UBd2GJkq/Bhr+V7S+CL0/rnguCh5etPRqYM9G4+2bNpyUCv77nRuw+ql01fdVsb/nzKsuDQqq2HfQfvJEX1P9MVWxzU1tx1LTO4v+DBb5cOnnoQFbJYWbQ66iZ7JWXMfv1+WNKugbKy1qcKH7bPwduN1oqy6btG5MTaNqLDktzzdOOC6hDft0cMI+9vSrG/sNWK2U7Iu2JzT1/d/ZvTrdP8P/HNNv81ULhd+d2SQT0g3gxriRlU0ouyPq25EHst31fv6fV5N1u7k1cujUDeSnj5WdAx7bJx8U+tVbPptzJlJaqD82c6kL4CWdVnrfY/z1d6DGMfRdzK2Ps3S8Er2tzG6yMjlWn/CNFG3O1K/Trgg7NLt8cFB/Xec9+M+VKR1T5jRJM9v4/d8F7dO2ckpP+vNxriGucK2+NW9/yqYH1AeMbVr69TP356+ON5Y92HnwqUDGwHMwp/WLS65A9DybHDumG7PbV7oC3pd9KUtXuvnTnlNxS+a4t/cBAWHDD4Vf+FkmrxyIYtfc3hs1duTF6nnpHzzkjm+dCq7P7u7Os/vrKq8+hZV/fOhykB21qLd4W+/e3wgbPGHcPKwFn1+rlxppWXLl8C9+c03TrT2XLuXgf1F+bG6NDwcBwU+diYn0+G5tjfV/r7+PwbBje00g==
eNqdVH1QFOcZh1gnjePo1MFoGRs3h8Yv9ti974OcjhzINxg5YA5T6d7ue9x6++Xu3nF3YvyIHUcl6BLJSDQlHoTTkyiK4igKDRVDY0ajxigxosbPTEWjJWJriX0PT2vbpH/0/WN3dt/n6/d7nt+zKuQFokTzXGwzzclAJEgZfkjKqpAIlniAJK9uYoHs4qnG+QWFtgaPSPfOdMmyICUnJRECrWZpSRYJRk3QSV48iXQRchLJswIDhsM0OnjK37ttqYoFkkSUA0mVvHCpSuQZoEpWeSQgqhJVJA/zcjL8UQK9p0mI7AIIz1AwN+Lm+AoOAT4iEhHhnQjp4QDt5EVWtey3iSqWpwADHaNFoBJLMAzKEDL0hZFlwAoQkewRYTpMbYR/eKFMUCXjiSroAAhWlewkGAksC7kAQUEe1jS6eElWdv07st0ESQJBRgFH8hTNlSut5QFaSEQo4IzkSkQCkkyFIQ4ODLOnhN0ACCjB0F4QjqBEIXROVloFP2SSQyP8+ZIwtcakxpuj8FHZLwClhRAEhiaJSJSkxRLPNT1J/d8Xu576MYArl11KA27At4tAEiDr4O0mSYawpVWNsGDweU8oSn+wIOcp0r6YuMY0WLxyxObyJCIaM5JH+BENptEjuD4ZMydrjUhGnq3ZGk1j+8ny9thEgpOcEGH6U25CpMvDuQEVtv4kH0d8kEYv70c9wpMWoJAfL00CVKZZoDSaDBpDpw+FXQMMzdIQ3/BT5t2Ak1CW5jyw5pAGGz69Cc9bioAlaA7W8J/WuNlsNuoNHT8fFoJ0KTtx7NnpVf3vyMMOYfOTA2Mfed48agTlI/pRMjJQDRqdrj3SSklCI42DCoB0MHwFyot0Oc0p22Ye8KFuHmZ4xktktDjSDykxYbp90VtB5H3+Z1dBXLsnehFVK0pTSi+iIwidTo+ZTWY9ACaNQe8gnbgJd5gMgIQPfDfpREmCdAH0yZwooTR7/ty8LGu4EMiolefdNKj5OjaurIx0ljlYSxajznQbCyTSWuQpmcsHSvBsYE2rKM8vXmzNUQe8EmkQPVmlLj1nR3GjzqTX4lqjEcXVmBpX42h2cUW2UzCkaT05hMObmxfITxVL0x22N/gsI29wLvaXOnJLOSw1Q8ZpE2YtVhc5fXZtDu5kjXb/Es4l6u2CwaQpKM/m2TRrfqAiINishiIsF+iX2CV1hdlFaQJluiw6Pz0FEQjZZUlKgUtDoKEeLNHxRuF4o0+GW/t0uFMQio801vKc1lOQTKjOAo7xpyCFgISrA74JFhTSMrDk8xzo3QhJ8XhpylJWXMSZyUxNunoB6xPdaTypyeaLHE6vCc+leCOrw3QggOvS4Tg8xwqmw1EsSowB05mGx+1fZf8fFTUVQgUBUQmTDO+h4EoSQZN1Hrpgrl3ZZ9YZDcDsIByEU6/TUBSaXrKg5ammn2m2MbLPQgQjo5KXVFpdWosqWafTqlIQlrCYDDoMG17kK+FaEaF99wsPJq//ZczwGSHb8vhJxtFDs1bn9zuY2wHDfsuBKbdenb5u0elF73ddzvzm11/VmGpNbn7048HU+LsZX9yYeU+5a7Hc627RfnCw4VHHkYMVd28futjX3ta5pL2t4sKFCykX+grd8QlDl6iz8rHq7eeKu65l2YN0Vd7q7BPylgv9F9u9Z36Uz21Gqg9/l3u5+aWhojG3hmozPmoeqR218LOmR3/tFuQB5pCHfOF61Yi6O91T7lHJb5ul4qqRDaofPwkO9spLHnTgxcEFic2zTyi+aTNiyjdmIilfKCswf1Pz9xOvz0jd0XP9zow94qT4P95aMX76/Pie2IyHtXtzgxMnXlmjSuietebFh5u+r58c++7np872LfzNqy2DcQknY2dX/uNv8bM3/OLbi36VhdwTHrN/Wg1/9ZNt4wZck+deP3/o4q5zJWz7ovrkG+mfXvlmdOEb221x46vSWl4Z++H5paffLLKv7W7X+Bw7NVO2zmvbOHbbhPq5GTZfMA2bImsDy1c49v/p2kP3D8GNq5C1MY/uVxW7b1b2ZMfW9mf1iPLQ1LfWdg5teDRy/JRZt7GerZ1XR91cV/rxW1de77oZBvsXX6aplOLd9z8qMJavH7X3vQln103SIg+NP/xqBPreUfPAJnFEYY2lPXUreYP4Mp2pq1YLzduK+gp/r9ROX4l+WNTXej/1sG3Wi+HwpYxTyjjqFdXd844v+cn9zXcGdXO6QnN+Fzz6bfHOMzv7a1aXkvaxIHXH4U3Ld3SgM3ort9SQCdVfnbwzp3ScPUttPFt3mFpOfLyGPnXt6ImVwY5uqzclewXmG1PY1Jqzfl+zqTLp6+OffoaVTBy9NxS3YUJswhi90VE3MB89nPv3g/WnW9UrD9BtVR2Vjs0NDbYzpYfi5lU/uAZmXkua7fvA+xrjP/mHTkfvm7WD3eWdht3v9I7vPLYmbfPU909QtX/WHTuOTf3u0ssn/1L2Tt2G9Yuzx722bL6/cXPeAfp4cMFA6N0t/W1M+GrX6/UHtpw7tzw2Jubx4xExzmmXlq8cGRPzT06hzwc=

View File

@@ -48,7 +48,7 @@ From the opposite direction, scientists use `LangChain` in research and referenc
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022&#8209;05&#8209;25 | `API:` [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022&#8209;03&#8209;15 | `Docs:` [docs/tutorials/sql_qa](https://python.langchain.com/docs/tutorials/sql_qa), `API:` [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022&#8209;02&#8209;01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021&#8209;12&#8209;02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/docs/integrations/providers/dspy)
| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021&#8209;12&#8209;02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts)
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021&#8209;02&#8209;26 | `API:` [langchain_experimental.open_clip](https://python.langchain.com/api_reference/experimental/open_clip.html)
| `2005.14165v4` [Language Models are Few-Shot Learners](http://arxiv.org/abs/2005.14165v4) | Tom B. Brown, Benjamin Mann, Nick Ryder, et al. | 2020&#8209;05&#8209;28 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
| `2005.11401v4` [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](http://arxiv.org/abs/2005.11401v4) | Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. | 2020&#8209;05&#8209;22 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
@@ -970,7 +970,7 @@ reducing degenerate repetitions.
- **arXiv id:** [2112.01488v3](http://arxiv.org/abs/2112.01488v3) **Published Date:** 2021-12-02
- **LangChain:**
- **Documentation:** [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/docs/integrations/providers/dspy)
- **Documentation:** [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts)
**Abstract:** Neural information retrieval (IR) has greatly advanced search and other
knowledge-intensive language tasks. While many neural IR methods encode queries

View File

@@ -15,7 +15,7 @@ LangChain previously introduced the `AgentExecutor` as a runtime for agents.
While it served as an excellent starting point, its limitations became apparent when dealing with more sophisticated and customized agents.
As a result, we're gradually phasing out `AgentExecutor` in favor of more flexible solutions in LangGraph.
### Transitioning from AgentExecutor to langgraph
### Transitioning from AgentExecutor to LangGraph
If you're currently using `AgentExecutor`, don't worry! We've prepared resources to help you:

View File

@@ -9,7 +9,7 @@ LLM based applications often involve a lot of I/O-bound operations, such as maki
:::note
You are expected to be familiar with asynchronous programming in Python before reading this guide. If you are not, please find appropriate resources online to learn how to program asynchronously in Python.
This guide specifically focuses on what you need to know to work with LangChain in an asynchronous context, assuming that you are already familiar with asynch
This guide specifically focuses on what you need to know to work with LangChain in an asynchronous context, assuming that you are already familiar with asynchronous programming.
:::
## Langchain asynchronous APIs

View File

@@ -6,7 +6,7 @@
LangChain provides a callback system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
You can subscribe to these events by using the `callbacks` argument available throughout the API. This argument is list of handler objects, which are expected to implement one or more of the methods described below in more detail.
You can subscribe to these events by using the `callbacks` argument available throughout the API. This argument is a list of handler objects, which are expected to implement one or more of the methods described below in more detail.
## Callback events

View File

@@ -32,7 +32,7 @@ The only requirement for a retriever is the ability to accepts a query and retur
In particular, [LangChain's retriever class](https://python.langchain.com/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html#) only requires that the `_get_relevant_documents` method is implemented, which takes a `query: str` and returns a list of [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects that are most relevant to the query.
The underlying logic used to get relevant documents is specified by the retriever and can be whatever is most useful for the application.
A LangChain retriever is a [runnable](/docs/how_to/lcel_cheatsheet/), which is a standard interface is for LangChain components.
A LangChain retriever is a [runnable](/docs/how_to/lcel_cheatsheet/), which is a standard interface for LangChain components.
This means that it has a few common methods, including `invoke`, that are used to interact with it. A retriever can be invoked with a query:
```python

View File

@@ -3,8 +3,8 @@
:::info[Prerequisites]
* [Documents](/docs/concepts/retrievers/#interface)
* Tokenization(/docs/concepts/tokens)
* [Documents](./retrievers.mdx)
* [Tokenization](./tokens.mdx)
:::
## Overview

View File

@@ -98,7 +98,7 @@
" ) -> List[Document]:\n",
" \"\"\"Sync implementations for retriever.\"\"\"\n",
" matching_documents = []\n",
" for document in documents:\n",
" for document in self.documents:\n",
" if len(matching_documents) > self.k:\n",
" return matching_documents\n",
"\n",

View File

@@ -67,9 +67,34 @@
"When implementing a document loader do **NOT** provide parameters via the `lazy_load` or `alazy_load` methods.\n",
"\n",
"All configuration is expected to be passed through the initializer (__init__). This was a design choice made by LangChain to make sure that once a document loader has been instantiated it has all the information needed to load documents.\n",
":::\n",
"\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "520edbbabde7df6e",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"Install **langchain-core** and **langchain_community**."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "936bd5fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain_core langchain_community"
]
},
{
"cell_type": "markdown",
"id": "a93f17a87d323bdd",
"metadata": {},
"source": [
"### Implementation\n",
"\n",
"Let's create an example of a standard document loader that loads a file and creates a document from each line in the file."
@@ -77,9 +102,13 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "20f128c1-1a2c-43b9-9e7b-cf9b3a86d1db",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:56.764714Z",
"start_time": "2025-04-21T08:49:56.623508Z"
},
"tags": []
},
"outputs": [],
@@ -122,7 +151,7 @@
" self,\n",
" ) -> AsyncIterator[Document]: # <-- Does not take any arguments\n",
" \"\"\"An async lazy loader that reads a file line by line.\"\"\"\n",
" # Requires aiofiles (install with pip)\n",
" # Requires aiofiles\n",
" # https://github.com/Tinche/aiofiles\n",
" import aiofiles\n",
"\n",
@@ -151,9 +180,13 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "b1751198-c6dd-4149-95bd-6370ce8fa06f",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:56.776521Z",
"start_time": "2025-04-21T08:49:56.773511Z"
},
"tags": []
},
"outputs": [],
@@ -167,9 +200,23 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "c5210428",
"metadata": {},
"outputs": [],
"source": [
"%pip install -q aiofiles"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "71ef1482-f9de-4852-b5a4-0938f350612e",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:57.972675Z",
"start_time": "2025-04-21T08:49:57.969411Z"
},
"tags": []
},
"outputs": [
@@ -179,10 +226,12 @@
"text": [
"\n",
"<class 'langchain_core.documents.base.Document'>\n",
"page_content='meow meow🐱 \\n' metadata={'line_number': 0, 'source': './meow.txt'}\n",
"page_content='meow meow🐱 \n",
"' metadata={'line_number': 0, 'source': './meow.txt'}\n",
"\n",
"<class 'langchain_core.documents.base.Document'>\n",
"page_content=' meow meow🐱 \\n' metadata={'line_number': 1, 'source': './meow.txt'}\n",
"page_content=' meow meow🐱 \n",
"' metadata={'line_number': 1, 'source': './meow.txt'}\n",
"\n",
"<class 'langchain_core.documents.base.Document'>\n",
"page_content=' meow😻😻' metadata={'line_number': 2, 'source': './meow.txt'}\n"
@@ -199,9 +248,13 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 6,
"id": "1588e78c-e81a-4d40-b36c-634242c84a6a",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.028989Z",
"start_time": "2025-04-21T08:49:58.021972Z"
},
"tags": []
},
"outputs": [
@@ -211,10 +264,12 @@
"text": [
"\n",
"<class 'langchain_core.documents.base.Document'>\n",
"page_content='meow meow🐱 \\n' metadata={'line_number': 0, 'source': './meow.txt'}\n",
"page_content='meow meow🐱 \n",
"' metadata={'line_number': 0, 'source': './meow.txt'}\n",
"\n",
"<class 'langchain_core.documents.base.Document'>\n",
"page_content=' meow meow🐱 \\n' metadata={'line_number': 1, 'source': './meow.txt'}\n",
"page_content=' meow meow🐱 \n",
"' metadata={'line_number': 1, 'source': './meow.txt'}\n",
"\n",
"<class 'langchain_core.documents.base.Document'>\n",
"page_content=' meow😻😻' metadata={'line_number': 2, 'source': './meow.txt'}\n"
@@ -245,21 +300,25 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"id": "df5ad46a-9e00-4073-8505-489fc4f3799e",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.078111Z",
"start_time": "2025-04-21T08:49:58.071421Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='meow meow🐱 \\n', metadata={'line_number': 0, 'source': './meow.txt'}),\n",
" Document(page_content=' meow meow🐱 \\n', metadata={'line_number': 1, 'source': './meow.txt'}),\n",
" Document(page_content=' meow😻😻', metadata={'line_number': 2, 'source': './meow.txt'})]"
"[Document(metadata={'line_number': 0, 'source': './meow.txt'}, page_content='meow meow🐱 \\n'),\n",
" Document(metadata={'line_number': 1, 'source': './meow.txt'}, page_content=' meow meow🐱 \\n'),\n",
" Document(metadata={'line_number': 2, 'source': './meow.txt'}, page_content=' meow😻😻')]"
]
},
"execution_count": 6,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -286,9 +345,13 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"id": "209f6a91-2f15-4cb2-9237-f79fc9493b82",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.124363Z",
"start_time": "2025-04-21T08:49:58.120782Z"
},
"tags": []
},
"outputs": [],
@@ -313,9 +376,13 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 9,
"id": "b1275c59-06d4-458f-abd2-fcbad0bde442",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.172506Z",
"start_time": "2025-04-21T08:49:58.167416Z"
},
"tags": []
},
"outputs": [],
@@ -326,21 +393,25 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 10,
"id": "56a3d707-2086-413b-ae82-50e92ddb27f6",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.218426Z",
"start_time": "2025-04-21T08:49:58.214684Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='meow meow🐱 \\n', metadata={'line_number': 1, 'source': './meow.txt'}),\n",
" Document(page_content=' meow meow🐱 \\n', metadata={'line_number': 2, 'source': './meow.txt'}),\n",
" Document(page_content=' meow😻😻', metadata={'line_number': 3, 'source': './meow.txt'})]"
"[Document(metadata={'line_number': 1, 'source': './meow.txt'}, page_content='meow meow🐱 \\n'),\n",
" Document(metadata={'line_number': 2, 'source': './meow.txt'}, page_content=' meow meow🐱 \\n'),\n",
" Document(metadata={'line_number': 3, 'source': './meow.txt'}, page_content=' meow😻😻')]"
]
},
"execution_count": 8,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -359,20 +430,24 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 11,
"id": "20d03092-ba35-47d7-b612-9d1631c261cd",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.267755Z",
"start_time": "2025-04-21T08:49:58.264369Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='some data from memory\\n', metadata={'line_number': 1, 'source': None}),\n",
" Document(page_content='meow', metadata={'line_number': 2, 'source': None})]"
"[Document(metadata={'line_number': 1, 'source': None}, page_content='some data from memory\\n'),\n",
" Document(metadata={'line_number': 2, 'source': None}, page_content='meow')]"
]
},
"execution_count": 9,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -394,9 +469,13 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 12,
"id": "a9e92e0e-c8da-401c-b8c6-f0676004cf58",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.330432Z",
"start_time": "2025-04-21T08:49:58.327223Z"
},
"tags": []
},
"outputs": [],
@@ -406,9 +485,13 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 13,
"id": "6b559d30-8b0c-4e45-86b1-e4602d9aaa7e",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.383905Z",
"start_time": "2025-04-21T08:49:58.380658Z"
},
"tags": []
},
"outputs": [
@@ -418,7 +501,7 @@
"'utf-8'"
]
},
"execution_count": 11,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -429,9 +512,13 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 14,
"id": "2f7b145a-9c6f-47f9-9487-1f4b25aff46f",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.443829Z",
"start_time": "2025-04-21T08:49:58.440222Z"
},
"tags": []
},
"outputs": [
@@ -441,7 +528,7 @@
"b'meow meow\\xf0\\x9f\\x90\\xb1 \\n meow meow\\xf0\\x9f\\x90\\xb1 \\n meow\\xf0\\x9f\\x98\\xbb\\xf0\\x9f\\x98\\xbb'"
]
},
"execution_count": 12,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@@ -452,9 +539,13 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 15,
"id": "9b9482fa-c49c-42cd-a2ef-80bc93214631",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.498609Z",
"start_time": "2025-04-21T08:49:58.494903Z"
},
"tags": []
},
"outputs": [
@@ -464,7 +555,7 @@
"'meow meow🐱 \\n meow meow🐱 \\n meow😻😻'"
]
},
"execution_count": 13,
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -475,19 +566,23 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 16,
"id": "04cc7a81-290e-4ef8-b7e1-d885fcc59ece",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.551353Z",
"start_time": "2025-04-21T08:49:58.547518Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"<contextlib._GeneratorContextManager at 0x743f34324450>"
"<contextlib._GeneratorContextManager at 0x74b8d42e9940>"
]
},
"execution_count": 14,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -498,9 +593,13 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 17,
"id": "ec8de0ab-51d7-4e41-82c9-3ce0a6fdc2cd",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.599576Z",
"start_time": "2025-04-21T08:49:58.596567Z"
},
"tags": []
},
"outputs": [
@@ -510,7 +609,7 @@
"{'foo': 'bar'}"
]
},
"execution_count": 15,
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -521,9 +620,13 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 18,
"id": "19eae991-ae48-43c2-8952-7347cdb76a34",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.649634Z",
"start_time": "2025-04-21T08:49:58.646313Z"
},
"tags": []
},
"outputs": [
@@ -533,7 +636,7 @@
"'./meow.txt'"
]
},
"execution_count": 16,
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
@@ -551,65 +654,50 @@
"\n",
"While a parser encapsulates the logic needed to parse binary data into documents, *blob loaders* encapsulate the logic that's necessary to load blobs from a given storage location.\n",
"\n",
"At the moment, `LangChain` only supports `FileSystemBlobLoader`.\n",
"At the moment, `LangChain` supports `FileSystemBlobLoader` and `CloudBlobLoader`.\n",
"\n",
"You can use the `FileSystemBlobLoader` to load blobs and then use the parser to parse them."
]
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 19,
"id": "c093becb-2e84-4329-89e3-956a3bd765e5",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.718259Z",
"start_time": "2025-04-21T08:49:58.705367Z"
},
"tags": []
},
"outputs": [],
"source": [
"from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader\n",
"\n",
"blob_loader = FileSystemBlobLoader(path=\".\", glob=\"*.mdx\", show_progress=True)"
"filesystem_blob_loader = FileSystemBlobLoader(\n",
" path=\".\", glob=\"*.mdx\", show_progress=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "77739dab-2a1e-4b64-8daa-fee8aa029972",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "45e85d3f63224bb59db02a40ae2e3268",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/8 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='# Microsoft Office\\n' metadata={'line_number': 1, 'source': 'office_file.mdx'}\n",
"page_content='# Markdown\\n' metadata={'line_number': 1, 'source': 'markdown.mdx'}\n",
"page_content='# JSON\\n' metadata={'line_number': 1, 'source': 'json.mdx'}\n",
"page_content='---\\n' metadata={'line_number': 1, 'source': 'pdf.mdx'}\n",
"page_content='---\\n' metadata={'line_number': 1, 'source': 'index.mdx'}\n",
"page_content='# File Directory\\n' metadata={'line_number': 1, 'source': 'file_directory.mdx'}\n",
"page_content='# CSV\\n' metadata={'line_number': 1, 'source': 'csv.mdx'}\n",
"page_content='# HTML\\n' metadata={'line_number': 1, 'source': 'html.mdx'}\n"
]
}
],
"execution_count": null,
"id": "21b91bad",
"metadata": {},
"outputs": [],
"source": [
"%pip install -q tqdm"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40be670b",
"metadata": {},
"outputs": [],
"source": [
"parser = MyParser()\n",
"for blob in blob_loader.yield_blobs():\n",
"for blob in filesystem_blob_loader.yield_blobs():\n",
" for doc in parser.lazy_parse(blob):\n",
" print(doc)\n",
" break"
@@ -620,56 +708,104 @@
"id": "f016390c-d38b-4261-946d-34eefe546df7",
"metadata": {},
"source": [
"### Generic Loader\n",
"\n",
"LangChain has a `GenericLoader` abstraction which composes a `BlobLoader` with a `BaseBlobParser`.\n",
"\n",
"`GenericLoader` is meant to provide standardized classmethods that make it easy to use existing `BlobLoader` implementations. At the moment, only the `FileSystemBlobLoader` is supported."
"Or, you can use `CloudBlobLoader` to load blobs from a cloud storage location (Supports s3://, az://, gs://, file:// schemes)."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "1de74daf-70ee-4616-9089-d28e26b16851",
"execution_count": null,
"id": "8210714e",
"metadata": {},
"outputs": [],
"source": [
"%pip install -q 'cloudpathlib[s3]'"
]
},
{
"cell_type": "markdown",
"id": "d3f84501-b0aa-4a60-aad2-5109cbd37d4f",
"metadata": {},
"source": [
"```python\n",
"from cloudpathlib import S3Client, S3Path\n",
"from langchain_community.document_loaders.blob_loaders import CloudBlobLoader\n",
"\n",
"client = S3Client(no_sign_request=True)\n",
"client.set_as_default_client()\n",
"\n",
"path = S3Path(\n",
" \"s3://bucket-01\", client=client\n",
") # Supports s3://, az://, gs://, file:// schemes.\n",
"\n",
"cloud_loader = CloudBlobLoader(path, glob=\"**/*.pdf\", show_progress=True)\n",
"\n",
"for blob in cloud_loader.yield_blobs():\n",
" print(blob)\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "40c361ba4cd30164",
"metadata": {},
"source": [
"### Generic Loader\n",
"\n",
"LangChain has a `GenericLoader` abstraction which composes a `BlobLoader` with a `BaseBlobParser`.\n",
"\n",
"`GenericLoader` is meant to provide standardized classmethods that make it easy to use existing `BlobLoader` implementations. At the moment, the `FileSystemBlobLoader` and `CloudBlobLoader` are supported. See example below:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "5dfb2be02fe662c5",
"metadata": {
"tags": []
"ExecuteTime": {
"end_time": "2025-04-21T08:50:16.244917Z",
"start_time": "2025-04-21T08:50:15.527562Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5f1f6810a71a4909ac9fe1e8f8cb9e0a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/8 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 7/7 [00:00<00:00, 1224.82it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='# Microsoft Office\\n' metadata={'line_number': 1, 'source': 'office_file.mdx'}\n",
"page_content='\\n' metadata={'line_number': 2, 'source': 'office_file.mdx'}\n",
"page_content='>[The Microsoft Office](https://www.office.com/) suite of productivity software includes Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Outlook, and Microsoft OneNote. It is available for Microsoft Windows and macOS operating systems. It is also available on Android and iOS.\\n' metadata={'line_number': 3, 'source': 'office_file.mdx'}\n",
"page_content='\\n' metadata={'line_number': 4, 'source': 'office_file.mdx'}\n",
"page_content='This covers how to load commonly used file formats including `DOCX`, `XLSX` and `PPTX` documents into a document format that we can use downstream.\\n' metadata={'line_number': 5, 'source': 'office_file.mdx'}\n",
"page_content='# Text embedding models\n",
"' metadata={'line_number': 1, 'source': 'embed_text.mdx'}\n",
"page_content='\n",
"' metadata={'line_number': 2, 'source': 'embed_text.mdx'}\n",
"page_content=':::info\n",
"' metadata={'line_number': 3, 'source': 'embed_text.mdx'}\n",
"page_content='Head to [Integrations](/docs/integrations/text_embedding/) for documentation on built-in integrations with text embedding model providers.\n",
"' metadata={'line_number': 4, 'source': 'embed_text.mdx'}\n",
"page_content=':::\n",
"' metadata={'line_number': 5, 'source': 'embed_text.mdx'}\n",
"... output truncated for demo purposes\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"from langchain_community.document_loaders.generic import GenericLoader\n",
"\n",
"loader = GenericLoader.from_filesystem(\n",
" path=\".\", glob=\"*.mdx\", show_progress=True, parser=MyParser()\n",
"generic_loader_filesystem = GenericLoader(\n",
" blob_loader=filesystem_blob_loader, blob_parser=parser\n",
")\n",
"\n",
"for idx, doc in enumerate(loader.lazy_load()):\n",
"for idx, doc in enumerate(generic_loader_filesystem.lazy_load()):\n",
" if idx < 5:\n",
" print(doc)\n",
"\n",
@@ -690,9 +826,13 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 28,
"id": "23633102-dc44-4fed-a4e1-8159489101c8",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:50:34.841862Z",
"start_time": "2025-04-21T08:50:34.838375Z"
},
"tags": []
},
"outputs": [],
@@ -709,37 +849,46 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 29,
"id": "dc95be85-4a29-4c6f-a260-08afa3c95538",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:50:34.901734Z",
"start_time": "2025-04-21T08:50:34.888098Z"
},
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4320598ea3b44a52b1873e1c801db312",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/8 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 7/7 [00:00<00:00, 814.86it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='# Microsoft Office\\n' metadata={'line_number': 1, 'source': 'office_file.mdx'}\n",
"page_content='\\n' metadata={'line_number': 2, 'source': 'office_file.mdx'}\n",
"page_content='>[The Microsoft Office](https://www.office.com/) suite of productivity software includes Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Outlook, and Microsoft OneNote. It is available for Microsoft Windows and macOS operating systems. It is also available on Android and iOS.\\n' metadata={'line_number': 3, 'source': 'office_file.mdx'}\n",
"page_content='\\n' metadata={'line_number': 4, 'source': 'office_file.mdx'}\n",
"page_content='This covers how to load commonly used file formats including `DOCX`, `XLSX` and `PPTX` documents into a document format that we can use downstream.\\n' metadata={'line_number': 5, 'source': 'office_file.mdx'}\n",
"page_content='# Text embedding models\n",
"' metadata={'line_number': 1, 'source': 'embed_text.mdx'}\n",
"page_content='\n",
"' metadata={'line_number': 2, 'source': 'embed_text.mdx'}\n",
"page_content=':::info\n",
"' metadata={'line_number': 3, 'source': 'embed_text.mdx'}\n",
"page_content='Head to [Integrations](/docs/integrations/text_embedding/) for documentation on built-in integrations with text embedding model providers.\n",
"' metadata={'line_number': 4, 'source': 'embed_text.mdx'}\n",
"page_content=':::\n",
"' metadata={'line_number': 5, 'source': 'embed_text.mdx'}\n",
"... output truncated for demo purposes\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
@@ -769,7 +918,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.10.4"
}
},
"nbformat": 4,

View File

@@ -20,7 +20,7 @@
"\n",
"LangChain integrates with a host of PDF parsers. Some are simple and relatively low-level; others will support OCR and image-processing, or perform advanced document layout analysis. The right choice will depend on your needs. Below we enumerate the possibilities.\n",
"\n",
"We will demonstrate these approaches on a [sample file](https://github.com/langchain-ai/langchain/blob/master/libs/community/tests/integration_tests/examples/layout-parser-paper.pdf):"
"We will demonstrate these approaches on a [sample file](https://github.com/langchain-ai/langchain-community/blob/main/libs/community/tests/examples/layout-parser-paper.pdf):"
]
},
{

View File

@@ -102,7 +102,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 1,
"id": "39549336-25f5-4839-9846-f687cd77e59b",
"metadata": {},
"outputs": [
@@ -110,43 +110,20 @@
"data": {
"text/plain": [
"{'is_blocked': False,\n",
" 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH',\n",
" 'probability_label': 'NEGLIGIBLE',\n",
" 'probability_score': 0.046142578125,\n",
" 'blocked': False,\n",
" 'severity': 'HARM_SEVERITY_NEGLIGIBLE',\n",
" 'severity_score': 0.07275390625},\n",
" {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',\n",
" 'probability_label': 'NEGLIGIBLE',\n",
" 'probability_score': 0.05419921875,\n",
" 'blocked': False,\n",
" 'severity': 'HARM_SEVERITY_NEGLIGIBLE',\n",
" 'severity_score': 0.03955078125},\n",
" {'category': 'HARM_CATEGORY_HARASSMENT',\n",
" 'probability_label': 'NEGLIGIBLE',\n",
" 'probability_score': 0.083984375,\n",
" 'blocked': False,\n",
" 'severity': 'HARM_SEVERITY_NEGLIGIBLE',\n",
" 'severity_score': 0.029296875},\n",
" {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT',\n",
" 'probability_label': 'NEGLIGIBLE',\n",
" 'probability_score': 0.054931640625,\n",
" 'blocked': False,\n",
" 'severity': 'HARM_SEVERITY_NEGLIGIBLE',\n",
" 'severity_score': 0.03466796875}],\n",
" 'safety_ratings': [],\n",
" 'usage_metadata': {'prompt_token_count': 10,\n",
" 'candidates_token_count': 193,\n",
" 'total_token_count': 203,\n",
" 'candidates_token_count': 55,\n",
" 'total_token_count': 65,\n",
" 'prompt_tokens_details': [{'modality': 1, 'token_count': 10}],\n",
" 'candidates_tokens_details': [{'modality': 1, 'token_count': 193}],\n",
" 'candidates_tokens_details': [{'modality': 1, 'token_count': 55}],\n",
" 'cached_content_token_count': 0,\n",
" 'cache_tokens_details': []},\n",
" 'finish_reason': 'STOP',\n",
" 'avg_logprobs': -0.5702065976790196,\n",
" 'model_name': 'gemini-1.5-flash-001'}"
" 'avg_logprobs': -0.251378042047674,\n",
" 'model_name': 'gemini-2.0-flash-001'}"
]
},
"execution_count": 3,
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
@@ -154,7 +131,7 @@
"source": [
"from langchain_google_vertexai import ChatVertexAI\n",
"\n",
"llm = ChatVertexAI(model=\"gemini-1.5-flash-001\")\n",
"llm = ChatVertexAI(model=\"gemini-2.0-flash-001\")\n",
"msg = llm.invoke(\"What's the oldest known example of cuneiform\")\n",
"msg.response_metadata"
]

View File

@@ -162,7 +162,7 @@
"\n",
"table_chain = prompt | llm_with_tools | output_parser\n",
"\n",
"table_chain.invoke({\"input\": \"What are all the genres of Alanis Morisette songs\"})"
"table_chain.invoke({\"input\": \"What are all the genres of Alanis Morissette songs\"})"
]
},
{
@@ -206,7 +206,7 @@
")\n",
"\n",
"category_chain = prompt | llm_with_tools | output_parser\n",
"category_chain.invoke({\"input\": \"What are all the genres of Alanis Morisette songs\"})"
"category_chain.invoke({\"input\": \"What are all the genres of Alanis Morissette songs\"})"
]
},
{
@@ -261,7 +261,7 @@
"\n",
"\n",
"table_chain = category_chain | get_tables\n",
"table_chain.invoke({\"input\": \"What are all the genres of Alanis Morisette songs\"})"
"table_chain.invoke({\"input\": \"What are all the genres of Alanis Morissette songs\"})"
]
},
{
@@ -313,7 +313,7 @@
],
"source": [
"query = full_chain.invoke(\n",
" {\"question\": \"What are all the genres of Alanis Morisette songs\"}\n",
" {\"question\": \"What are all the genres of Alanis Morissette songs\"}\n",
")\n",
"print(query)"
]
@@ -346,7 +346,7 @@
"source": [
"We can see the LangSmith trace for this run [here](https://smith.langchain.com/public/4fbad408-3554-4f33-ab47-1e510a1b52a3/r).\n",
"\n",
"We've seen how to dynamically include a subset of table schemas in a prompt within a chain. Another possible approach to this problem is to let an Agent decide for itself when to look up tables by giving it a Tool to do so. You can see an example of this in the [SQL: Agents](/docs/tutorials/agents) guide."
"We've seen how to dynamically include a subset of table schemas in a prompt within a chain. Another possible approach to this problem is to let an Agent decide for itself when to look up tables by giving it a Tool to do so. You can see an example of this in the [SQL: Agents](/docs/tutorials/sql_qa/#agents) guide."
]
},
{
@@ -555,7 +555,7 @@
"source": [
"We can see that with retrieval we're able to correct the spelling from \"Elenis Moriset\" to \"Alanis Morissette\" and get back a valid result.\n",
"\n",
"Another possible approach to this problem is to let an Agent decide for itself when to look up proper nouns. You can see an example of this in the [SQL: Agents](/docs/tutorials/agents) guide."
"Another possible approach to this problem is to let an Agent decide for itself when to look up proper nouns. You can see an example of this in the [SQL: Agents](/docs/tutorials/sql_qa/#agents) guide."
]
}
],

View File

@@ -43,7 +43,7 @@
"### Getting API Credentials\n",
"\n",
"If you do not have a PromptLayer account, create one on [promptlayer.com](https://www.promptlayer.com). Then get an API key by clicking on the settings cog in the navbar and\n",
"set it as an environment variabled called `PROMPTLAYER_API_KEY`\n"
"set it as an environment variable called `PROMPTLAYER_API_KEY`\n"
]
},
{

View File

@@ -26,7 +26,7 @@
"\n",
"This notebook showcases the UpTrain callback handler seamlessly integrating into your pipeline, facilitating diverse evaluations. We have chosen a few evaluations that we deemed apt for evaluating the chains. These evaluations run automatically, with results displayed in the output. More details on UpTrain's evaluations can be found [here](https://github.com/uptrain-ai/uptrain?tab=readme-ov-file#pre-built-evaluations-we-offer-). \n",
"\n",
"Selected retievers from Langchain are highlighted for demonstration:\n",
"Selected retrievers from Langchain are highlighted for demonstration:\n",
"\n",
"### 1. **Vanilla RAG**:\n",
"RAG plays a crucial role in retrieving context and generating responses. To ensure its performance and response quality, we conduct the following evaluations:\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# ChatAbso\n",
"\n",
"This will help you getting started with ChatAbso [chat models](https://python.langchain.com/docs/concepts/chat_models/). For detailed documentation of all ChatAbso features and configurations head to the [API reference](https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html).\n",
"This will help you get started with ChatAbso [chat models](https://python.langchain.com/docs/concepts/chat_models/). For detailed documentation of all ChatAbso features and configurations, head to the [API reference](https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html).\n",
"\n",
"- You can find the full documentation for the Abso router [here] (https://abso.ai)\n",
"\n",
@@ -29,13 +29,13 @@
"| [ChatAbso](https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html) | [langchain-abso](https://python.langchain.com/api_reference/en/latest/abso_api_reference.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-abso?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-abso?style=flat-square&label=%20) |\n",
"\n",
"## Setup\n",
"To access ChatAbso models you'll need to create an OpenAI account, get an API key, and install the `langchain-abso` integration package.\n",
"To access ChatAbso models, you'll need to create an OpenAI account, get an API key, and install the `langchain-abso` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to ChatAbso and generate an API key. Once you've done this set the ABSO_API_KEY environment variable:"
"Head to (TODO: link) to sign up for ChatAbso and generate an API key. Once you've done this, set the ABSO_API_KEY environment variable:"
]
},
{
@@ -198,7 +198,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.12.10"
}
},
"nbformat": 4,

View File

@@ -17,8 +17,6 @@
"source": [
"# ChatAI21\n",
"\n",
"## Overview\n",
"\n",
"This notebook covers how to get started with AI21 chat models.\n",
"Note that different chat models support different parameters. See the [AI21 documentation](https://docs.ai21.com/reference) to learn more about the parameters in your chosen model.\n",
"[See all AI21's LangChain components.](https://pypi.org/project/langchain-ai21/)\n",
@@ -68,7 +66,9 @@
"cell_type": "markdown",
"id": "f6844fff-3702-4489-ab74-732f69f3b9d7",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
@@ -198,13 +198,17 @@
"cell_type": "markdown",
"id": "39c0ccd229927eab",
"metadata": {},
"source": "# Tool Calls / Function Calling"
"source": [
"# Tool Calls / Function Calling"
]
},
{
"cell_type": "markdown",
"id": "2bf6b40be07fe2d4",
"metadata": {},
"source": "This example shows how to use tool calling with AI21 models:"
"source": [
"This example shows how to use tool calling with AI21 models:"
]
},
{
"cell_type": "code",

View File

@@ -107,7 +107,7 @@
"id": "fe4993ad-4a9b-4021-8ebd-f0fbbc739f49",
"metadata": {},
"source": [
":::info This guide requires ``langchain-anthropic>=0.3.10``\n",
":::info This guide requires ``langchain-anthropic>=0.3.13``\n",
"\n",
":::"
]
@@ -325,6 +325,102 @@
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
"id": "535a16e4-cd5a-479f-b315-37c816ec4387",
"metadata": {},
"source": [
"## Multimodal\n",
"\n",
"Claude supports image and PDF inputs as content blocks, both in Anthropic's native format (see docs for [vision](https://docs.anthropic.com/en/docs/build-with-claude/vision#base64-encoded-image-example) and [PDF support](https://docs.anthropic.com/en/docs/build-with-claude/pdf-support)) as well as LangChain's [standard format](/docs/how_to/multimodal_inputs/).\n",
"\n",
"### Files API\n",
"\n",
"Claude also supports interactions with files through its managed [Files API](https://docs.anthropic.com/en/docs/build-with-claude/files). See examples below.\n",
"\n",
"The Files API can also be used to upload files to a container for use with Claude's built-in code-execution tools. See the [code execution](#code-execution) section below, for details.\n",
"\n",
"<details>\n",
"<summary>Images</summary>\n",
"\n",
"```python\n",
"# Upload image\n",
"\n",
"import anthropic\n",
"\n",
"client = anthropic.Anthropic()\n",
"file = client.beta.files.upload(\n",
" # Supports image/jpeg, image/png, image/gif, image/webp\n",
" file=(\"image.png\", open(\"/path/to/image.png\", \"rb\"), \"image/png\"),\n",
")\n",
"image_file_id = file.id\n",
"\n",
"\n",
"# Run inference\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-sonnet-4-20250514\",\n",
" betas=[\"files-api-2025-04-14\"],\n",
")\n",
"\n",
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"Describe this image.\",\n",
" },\n",
" {\n",
" \"type\": \"image\",\n",
" \"source\": {\n",
" \"type\": \"file\",\n",
" \"file_id\": image_file_id,\n",
" },\n",
" },\n",
" ],\n",
"}\n",
"llm.invoke([input_message])\n",
"```\n",
"\n",
"</details>\n",
"\n",
"<details>\n",
"<summary>PDFs</summary>\n",
"\n",
"```python\n",
"# Upload document\n",
"\n",
"import anthropic\n",
"\n",
"client = anthropic.Anthropic()\n",
"file = client.beta.files.upload(\n",
" file=(\"document.pdf\", open(\"/path/to/document.pdf\", \"rb\"), \"application/pdf\"),\n",
")\n",
"pdf_file_id = file.id\n",
"\n",
"\n",
"# Run inference\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-sonnet-4-20250514\",\n",
" betas=[\"files-api-2025-04-14\"],\n",
")\n",
"\n",
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\"type\": \"text\", \"text\": \"Describe this document.\"},\n",
" {\"type\": \"document\", \"source\": {\"type\": \"file\", \"file_id\": pdf_file_id}}\n",
" ],\n",
"}\n",
"llm.invoke([input_message])\n",
"```\n",
"\n",
"</details>"
]
},
{
"cell_type": "markdown",
"id": "6e36d25c-f358-49e5-aefa-b99fbd3fec6b",
@@ -454,6 +550,27 @@
"print(f\"\\nSecond:\\n{usage_2}\")"
]
},
{
"cell_type": "markdown",
"id": "9678656f-1ec4-4bf1-bf62-bbd49eb5c4e7",
"metadata": {},
"source": [
":::tip Extended caching\n",
"\n",
" The cache lifetime is 5 minutes by default. If this is too short, you can apply one hour caching by enabling the `\"extended-cache-ttl-2025-04-11\"` beta header:\n",
"\n",
" ```python\n",
" llm = ChatAnthropic(\n",
" model=\"claude-3-7-sonnet-20250219\",\n",
" # highlight-next-line\n",
" betas=[\"extended-cache-ttl-2025-04-11\"],\n",
" )\n",
" ```\n",
" and specifying `\"cache_control\": {\"type\": \"ephemeral\", \"ttl\": \"1h\"}`.\n",
"\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "141ce9c5-012d-4502-9d61-4a413b5d959a",
@@ -926,6 +1043,16 @@
"Claude can use a [web search tool](https://docs.anthropic.com/en/docs/build-with-claude/tool-use/web-search-tool) to run searches and ground its responses with citations."
]
},
{
"cell_type": "markdown",
"id": "6a0e8fd5",
"metadata": {},
"source": [
":::info Web search tool is supported since ``langchain-anthropic>=0.3.13``\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -943,6 +1070,159 @@
"response = llm_with_tools.invoke(\"How do I update a web app to TypeScript 5.5?\")"
]
},
{
"cell_type": "markdown",
"id": "1478cdc6-2e52-4870-80f9-b4ddf88f2db2",
"metadata": {},
"source": [
"### Code execution\n",
"\n",
"Claude can use a [code execution tool](https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/code-execution-tool) to execute Python code in a sandboxed environment.\n",
"\n",
":::info Code execution is supported since ``langchain-anthropic>=0.3.14``\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "2ce13632-a2da-439f-a429-f66481501630",
"metadata": {},
"outputs": [],
"source": [
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-sonnet-4-20250514\",\n",
" betas=[\"code-execution-2025-05-22\"],\n",
")\n",
"\n",
"tool = {\"type\": \"code_execution_20250522\", \"name\": \"code_execution\"}\n",
"llm_with_tools = llm.bind_tools([tool])\n",
"\n",
"response = llm_with_tools.invoke(\n",
" \"Calculate the mean and standard deviation of \" \"[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "24076f91-3a3d-4e53-9618-429888197061",
"metadata": {},
"source": [
"<details>\n",
"<summary>Use with Files API</summary>\n",
"\n",
"Using the Files API, Claude can write code to access files for data analysis and other purposes. See example below:\n",
"\n",
"```python\n",
"# Upload file\n",
"\n",
"import anthropic\n",
"\n",
"client = anthropic.Anthropic()\n",
"file = client.beta.files.upload(\n",
" file=open(\"/path/to/sample_data.csv\", \"rb\")\n",
")\n",
"file_id = file.id\n",
"\n",
"\n",
"# Run inference\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-sonnet-4-20250514\",\n",
" betas=[\"code-execution-2025-05-22\"],\n",
")\n",
"\n",
"tool = {\"type\": \"code_execution_20250522\", \"name\": \"code_execution\"}\n",
"llm_with_tools = llm.bind_tools([tool])\n",
"\n",
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"Please plot these data and tell me what you see.\",\n",
" },\n",
" {\n",
" \"type\": \"container_upload\",\n",
" \"file_id\": file_id,\n",
" },\n",
" ]\n",
"}\n",
"llm_with_tools.invoke([input_message])\n",
"```\n",
"\n",
"Note that Claude may generate files as part of its code execution. You can access these files using the Files API:\n",
"```python\n",
"# Take all file outputs for demonstration purposes\n",
"file_ids = []\n",
"for block in response.content:\n",
" if block[\"type\"] == \"code_execution_tool_result\":\n",
" file_ids.extend(\n",
" content[\"file_id\"]\n",
" for content in block.get(\"content\", {}).get(\"content\", [])\n",
" if \"file_id\" in content\n",
" )\n",
"\n",
"for i, file_id in enumerate(file_ids):\n",
" file_content = client.beta.files.download(file_id)\n",
" file_content.write_to_file(f\"/path/to/file_{i}.png\")\n",
"```\n",
"\n",
"</details>"
]
},
{
"cell_type": "markdown",
"id": "040f381a-1768-479a-9a5e-aa2d7d77e0d5",
"metadata": {},
"source": [
"### Remote MCP\n",
"\n",
"Claude can use a [MCP connector tool](https://docs.anthropic.com/en/docs/agents-and-tools/mcp-connector) for model-generated calls to remote MCP servers.\n",
"\n",
":::info Remote MCP is supported since ``langchain-anthropic>=0.3.14``\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "22fc4a89-e6d8-4615-96cb-2e117349aebf",
"metadata": {},
"outputs": [],
"source": [
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"mcp_servers = [\n",
" {\n",
" \"type\": \"url\",\n",
" \"url\": \"https://mcp.deepwiki.com/mcp\",\n",
" \"name\": \"deepwiki\",\n",
" \"tool_configuration\": { # optional configuration\n",
" \"enabled\": True,\n",
" \"allowed_tools\": [\"ask_question\"],\n",
" },\n",
" \"authorization_token\": \"PLACEHOLDER\", # optional authorization\n",
" }\n",
"]\n",
"\n",
"llm = ChatAnthropic(\n",
" model=\"claude-sonnet-4-20250514\",\n",
" betas=[\"mcp-client-2025-04-04\"],\n",
" mcp_servers=mcp_servers,\n",
")\n",
"\n",
"response = llm.invoke(\n",
" \"What transport protocols does the 2025-03-26 version of the MCP \"\n",
" \"spec (modelcontextprotocol/modelcontextprotocol) support?\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2fd5d545-a40d-42b1-ad0c-0a79e2536c9b",

View File

@@ -17,9 +17,9 @@
"source": [
"# AzureAIChatCompletionsModel\n",
"\n",
"This will help you getting started with AzureAIChatCompletionsModel [chat models](/docs/concepts/chat_models). For detailed documentation of all AzureAIChatCompletionsModel features and configurations head to the [API reference](https://python.langchain.com/api_reference/azure_ai/chat_models/langchain_azure_ai.chat_models.AzureAIChatCompletionsModel.html)\n",
"This will help you get started with AzureAIChatCompletionsModel [chat models](/docs/concepts/chat_models). For detailed documentation of all AzureAIChatCompletionsModel features and configurations, head to the [API reference](https://python.langchain.com/api_reference/azure_ai/chat_models/langchain_azure_ai.chat_models.AzureAIChatCompletionsModel.html)\n",
"\n",
"The AzureAIChatCompletionsModel class uses the Azure AI Foundry SDK. AI Foundry has several chat models including AzureOpenAI, Cohere, Llama, Phi-3/4, and DeepSeek-R1 to name a few. You can find information about their latest models and their costs, context windows, and supported input types in the [Azure docs](https://learn.microsoft.com/azure/ai-studio/how-to/model-catalog-overview).\n",
"The AzureAIChatCompletionsModel class uses the Azure AI Foundry SDK. AI Foundry has several chat models, including AzureOpenAI, Cohere, Llama, Phi-3/4, and DeepSeek-R1, among others. You can find information about their latest models and their costs, context windows, and supported input types in the [Azure docs](https://learn.microsoft.com/azure/ai-studio/how-to/model-catalog-overview).\n",
"\n",
"\n",
"## Overview\n",
@@ -37,12 +37,12 @@
"\n",
"## Setup\n",
"\n",
"To access AzureAIChatCompletionsModel models you'll need to create an [Azure account](https://azure.microsoft.com/pricing/purchase-options/azure-account), get an API key, and install the `langchain-azure-ai` integration package.\n",
"To access AzureAIChatCompletionsModel models, you'll need to create an [Azure account](https://azure.microsoft.com/pricing/purchase-options/azure-account), get an API key, and install the `langchain-azure-ai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"\n",
"Head to the [Azure docs](https://learn.microsoft.com/en-us/azure/ai-studio/how-to/develop/sdk-overview?tabs=sync&pivots=programming-language-python) to see how to create your deployment and generate an API key. Once your model is deployed you click the 'get endpoint' button in AI Foundry. This will show you your endpoint and api key. Once you've done this set the AZURE_INFERENCE_CREDENTIAL and AZURE_INFERENCE_ENDPOINT environment variables:"
"Head to the [Azure docs](https://learn.microsoft.com/en-us/azure/ai-studio/how-to/develop/sdk-overview?tabs=sync&pivots=programming-language-python) to see how to create your deployment and generate an API key. Once your model is deployed, you click the 'get endpoint' button in AI Foundry. This will show you your endpoint and api key. Once you've done this, set the AZURE_INFERENCE_CREDENTIAL and AZURE_INFERENCE_ENDPOINT environment variables:"
]
},
{
@@ -71,7 +71,7 @@
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
"If you want to get automated tracing of your model calls, you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
@@ -247,13 +247,13 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all AzureAIChatCompletionsModel features and configurations head to the API reference: https://python.langchain.com/api_reference/azure_ai/chat_models/langchain_azure_ai.chat_models.AzureAIChatCompletionsModel.html"
"For detailed documentation of all AzureAIChatCompletionsModel features and configurations, head to the API reference: https://python.langchain.com/api_reference/azure_ai/chat_models/langchain_azure_ai.chat_models.AzureAIChatCompletionsModel.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain-3-9",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -267,7 +267,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
"version": "3.12.10"
}
},
"nbformat": 4,

View File

@@ -18,7 +18,7 @@
"# ChatCloudflareWorkersAI\n",
"\n",
"\n",
"This will help you getting started with CloudflareWorkersAI [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatCloudflareWorkersAI features and configurations head to the [API reference](https://python.langchain.com/docs/integrations/chat/cloudflare_workersai/).\n",
"This will help you get started with CloudflareWorkersAI [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatCloudflareWorkersAI features and configurations head to the [API reference](https://python.langchain.com/docs/integrations/chat/cloudflare_workersai/).\n",
"\n",
"\n",
"## Overview\n",
@@ -41,7 +41,7 @@
"### Credentials\n",
"\n",
"\n",
"Head to https://www.cloudflare.com/developer-platform/products/workers-ai/ to sign up to CloudflareWorkersAI and generate an API key. Once you've done this set the CF_API_KEY environment variable and the CF_ACCOUNT_ID environment variable:"
"Head to https://www.cloudflare.com/developer-platform/products/workers-ai/ to sign up to CloudflareWorkersAI and generate an API key. Once you've done this set the CF_AI_API_KEY environment variable and the CF_ACCOUNT_ID environment variable:"
]
},
{
@@ -56,8 +56,8 @@
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"CF_API_KEY\"):\n",
" os.environ[\"CF_API_KEY\"] = getpass.getpass(\n",
"if not os.getenv(\"CF_AI_API_KEY\"):\n",
" os.environ[\"CF_AI_API_KEY\"] = getpass.getpass(\n",
" \"Enter your CloudflareWorkersAI API key: \"\n",
" )\n",
"\n",

View File

@@ -21,7 +21,7 @@
"source": [
"# ChatContextual\n",
"\n",
"This will help you getting started with Contextual AI's Grounded Language Model [chat models](/docs/concepts/chat_models/).\n",
"This will help you get started with Contextual AI's Grounded Language Model [chat models](/docs/concepts/chat_models/).\n",
"\n",
"To learn more about Contextual AI, please visit our [documentation](https://docs.contextual.ai/).\n",
"\n",

View File

@@ -18,7 +18,7 @@
"# ChatDeepSeek\n",
"\n",
"\n",
"This will help you getting started with DeepSeek's hosted [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatDeepSeek features and configurations head to the [API reference](https://python.langchain.com/api_reference/deepseek/chat_models/langchain_deepseek.chat_models.ChatDeepSeek.html).\n",
"This will help you get started with DeepSeek's hosted [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatDeepSeek features and configurations head to the [API reference](https://python.langchain.com/api_reference/deepseek/chat_models/langchain_deepseek.chat_models.ChatDeepSeek.html).\n",
"\n",
":::tip\n",
"\n",

View File

@@ -25,17 +25,16 @@
"source": [
"**Deprecated Warning**\n",
"\n",
"We recommend users using `langchain_community.chat_models.ErnieBotChat` \n",
"to use `langchain_community.chat_models.QianfanChatEndpoint` instead.\n",
"We recommend users switch from `langchain_community.chat_models.ErnieBotChat` to `langchain_community.chat_models.QianfanChatEndpoint`.\n",
"\n",
"documentation for `QianfanChatEndpoint` is [here](/docs/integrations/chat/baidu_qianfan_endpoint/).\n",
"\n",
"they are 4 why we recommend users to use `QianfanChatEndpoint`:\n",
"There are 4 reasons why we recommend users to use `QianfanChatEndpoint`:\n",
"\n",
"1. `QianfanChatEndpoint` support more LLM in the Qianfan platform.\n",
"2. `QianfanChatEndpoint` support streaming mode.\n",
"3. `QianfanChatEndpoint` support function calling usgage.\n",
"4. `ErnieBotChat` is lack of maintenance and deprecated."
"1. `QianfanChatEndpoint` supports more LLMs in the Qianfan platform.\n",
"2. `QianfanChatEndpoint` supports streaming mode.\n",
"3. `QianfanChatEndpoint` support function calling usage.\n",
"4. `ErnieBotChat` is no longer maintained and has been deprecated."
]
},
{
@@ -132,9 +131,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.12.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -0,0 +1,308 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"sidebar_label: Featherless AI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatFeatherlessAi\n",
"\n",
"\n",
"This will help you get started with FeatherlessAi [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatFeatherlessAi features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.ChatFeatherlessAi.html).\n",
"\n",
"- See https://featherless.ai/ for an example.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatFeatherlessAi](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/__module_name__.chat_models.ChatFeatherlessAi.html) | [langchain-featherless-ai](https://python.langchain.com/api_reference/__package_name_short_snake__/) | ✅ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-featherless-ai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-featherless-ai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ❌ | ❌ | ✅| ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"\n",
"To access Featherless AI models you'll need to create a/an Featherless AI account, get an API key, and install the `langchain-featherless-ai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"\n",
"Head to https://featherless.ai/ to sign up to FeatherlessAI and generate an API key. Once you've done this set the FEATHERLESSAI_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"FEATHERLESSAI_API_KEY\"):\n",
" os.environ[\"FEATHERLESSAI_API_KEY\"] = getpass.getpass(\n",
" \"Enter your FeatherlessAI API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain FeatherlessAi integration lives in the `langchain-featherless-ai` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-featherless-ai"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_featherless_ai import ChatFeatherlessAi\n",
"\n",
"llm = ChatFeatherlessAi(\n",
" model=\"featherless-ai/Qwerky-72B\",\n",
" temperature=0.9,\n",
" max_tokens=None,\n",
" timeout=None,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Python311\\Lib\\site-packages\\pydantic\\main.py:463: UserWarning: Pydantic serializer warnings:\n",
" PydanticSerializationUnexpectedValue(Expected `int` - serialized value may not be as expected [input_value=1747322408.706, input_type=float])\n",
" return self.__pydantic_serializer__.to_python(\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"J'aime programmer.\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 27, 'total_tokens': 32, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'featherless-ai/Qwerky-72B', 'system_fingerprint': '', 'id': 'G1sgui', 'service_tier': None, 'finish_reason': 'stop', 'logprobs': None}, id='run--6ecbe184-c94e-4d03-bf75-9bd85b04ba5b-0', usage_metadata={'input_tokens': 27, 'output_tokens': 5, 'total_tokens': 32, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'aime programmer.\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fca9e713",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 24,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Python311\\Lib\\site-packages\\pydantic\\main.py:463: UserWarning: Pydantic serializer warnings:\n",
" PydanticSerializationUnexpectedValue(Expected `int` - serialized value may not be as expected [input_value=1747322423.487, input_type=float])\n",
" return self.__pydantic_serializer__.to_python(\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 22, 'total_tokens': 27, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'featherless-ai/Qwerky-72B', 'system_fingerprint': '', 'id': 'BoBqht', 'service_tier': None, 'finish_reason': 'stop', 'logprobs': None}, id='run--67464357-83d1-4591-9a62-303ed74b8148-0', usage_metadata={'input_tokens': 22, 'output_tokens': 5, 'total_tokens': 27, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatFeatherlessAi features and configurations head to the [API reference](https://python.langchain.com/api_reference/__package_name_short_snake__/chat_models/.chat_models.ChatFeatherlessAi.html)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,117 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"# GigaChat\n",
"This notebook shows how to use LangChain with [GigaChat](https://developers.sber.ru/portal/products/gigachat).\n",
"To use you need to install ```langchain_gigachat``` python package."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"pycharm": {
"is_executing": true
}
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-gigachat"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/individuals-quickstart)\n",
"\n",
"## Example"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"if \"GIGACHAT_CREDENTIALS\" not in os.environ:\n",
" os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from langchain_gigachat import GigaChat\n",
"\n",
"chat = GigaChat(verify_ssl_certs=False, scope=\"GIGACHAT_API_PERS\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The capital of Russia is Moscow.\n"
]
}
],
"source": [
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"\n",
"messages = [\n",
" SystemMessage(\n",
" content=\"You are a helpful AI that shares everything you know. Talk in English.\"\n",
" ),\n",
" HumanMessage(content=\"What is capital of Russia?\"),\n",
"]\n",
"\n",
"print(chat.invoke(messages).content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -17,7 +17,7 @@
"source": [
"# ChatGoodfire\n",
"\n",
"This will help you getting started with Goodfire [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatGoodfire features and configurations head to the [PyPI project page](https://pypi.org/project/langchain-goodfire/), or go directly to the [Goodfire SDK docs](https://docs.goodfire.ai/sdk-reference/example). All of the Goodfire-specific functionality (e.g. SAE features, variants, etc.) is available via the main `goodfire` package. This integration is a wrapper around the Goodfire SDK.\n",
"This will help you get started with Goodfire [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatGoodfire features and configurations head to the [PyPI project page](https://pypi.org/project/langchain-goodfire/), or go directly to the [Goodfire SDK docs](https://docs.goodfire.ai/sdk-reference/example). All of the Goodfire-specific functionality (e.g. SAE features, variants, etc.) is available via the main `goodfire` package. This integration is a wrapper around the Goodfire SDK.\n",
"\n",
"## Overview\n",
"### Integration details\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# ChatGroq\n",
"\n",
"This will help you getting started with Groq [chat models](../../concepts/chat_models.mdx). For detailed documentation of all ChatGroq features and configurations head to the [API reference](https://python.langchain.com/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html). For a list of all Groq models, visit this [link](https://console.groq.com/docs/models?utm_source=langchain).\n",
"This will help you get started with Groq [chat models](../../concepts/chat_models.mdx). For detailed documentation of all ChatGroq features and configurations head to the [API reference](https://python.langchain.com/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html). For a list of all Groq models, visit this [link](https://console.groq.com/docs/models?utm_source=langchain).\n",
"\n",
"## Overview\n",
"### Integration details\n",

View File

@@ -6,7 +6,7 @@
"source": [
"# ChatHuggingFace\n",
"\n",
"This will help you getting started with `langchain_huggingface` [chat models](/docs/concepts/chat_models). For detailed documentation of all `ChatHuggingFace` features and configurations head to the [API reference](https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html). For a list of models supported by Hugging Face check out [this page](https://huggingface.co/models).\n",
"This will help you get started with `langchain_huggingface` [chat models](/docs/concepts/chat_models). For detailed documentation of all `ChatHuggingFace` features and configurations head to the [API reference](https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html). For a list of models supported by Hugging Face check out [this page](https://huggingface.co/models).\n",
"\n",
"## Overview\n",
"### Integration details\n",

View File

@@ -41,7 +41,7 @@
"\n",
"## Setup\n",
"\n",
"To get started and use **all** the features show below, we reccomend using a model that has been fine-tuned for tool-calling.\n",
"To get started and use **all** the features shown below, we recommend using a model that has been fine-tuned for tool-calling.\n",
"\n",
"We will use [\n",
"Hermes-2-Pro-Llama-3-8B-GGUF](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF) from NousResearch. \n",
@@ -204,7 +204,7 @@
"\n",
"OpenAI has a [tool calling](https://platform.openai.com/docs/guides/function-calling) (we use \"tool calling\" and \"function calling\" interchangeably here) API that lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool. tool-calling is extremely useful for building tool-using chains and agents, and for getting structured outputs from models more generally.\n",
"\n",
"With `ChatLlamaCpp.bind_tools`, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood these are converted to an OpenAI tool schemas, which looks like:\n",
"With `ChatLlamaCpp.bind_tools`, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood, these are converted to an OpenAI tool schema, which looks like:\n",
"```\n",
"{\n",
" \"name\": \"...\",\n",
@@ -404,7 +404,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatLlamaCpp features and configurations head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html"
"For detailed documentation of all ChatLlamaCpp features and configurations, head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html"
]
}
],
@@ -424,7 +424,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.12.10"
}
},
"nbformat": 4,

View File

@@ -8,8 +8,6 @@
"\n",
"# Maritalk\n",
"\n",
"## Introduction\n",
"\n",
"MariTalk is an assistant developed by the Brazilian company [Maritaca AI](https://www.maritaca.ai).\n",
"MariTalk is based on language models that have been specially trained to understand Portuguese well.\n",
"\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# ChatMistralAI\n",
"\n",
"This will help you getting started with Mistral [chat models](/docs/concepts/chat_models). For detailed documentation of all `ChatMistralAI` features and configurations head to the [API reference](https://python.langchain.com/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html). The `ChatMistralAI` class is built on top of the [Mistral API](https://docs.mistral.ai/api/). For a list of all the models supported by Mistral, check out [this page](https://docs.mistral.ai/getting-started/models/).\n",
"This will help you get started with Mistral [chat models](/docs/concepts/chat_models). For detailed documentation of all `ChatMistralAI` features and configurations head to the [API reference](https://python.langchain.com/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html). The `ChatMistralAI` class is built on top of the [Mistral API](https://docs.mistral.ai/api/). For a list of all the models supported by Mistral, check out [this page](https://docs.mistral.ai/getting-started/models/).\n",
"\n",
"## Overview\n",
"### Integration details\n",

View File

@@ -20,7 +20,7 @@
"\n",
"ModelScope ([Home](https://www.modelscope.cn/) | [GitHub](https://github.com/modelscope/modelscope)) is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. \n",
"\n",
"This will help you getting started with ModelScope Chat Endpoint.\n",
"This will help you get started with ModelScope Chat Endpoint.\n",
"\n",
"\n",
"## Overview\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# ChatNetmind\n",
"\n",
"This will help you getting started with Netmind [chat models](https://www.netmind.ai/). For detailed documentation of all ChatNetmind features and configurations head to the [API reference](https://github.com/protagolabs/langchain-netmind).\n",
"This will help you get started with Netmind [chat models](https://www.netmind.ai/). For detailed documentation of all ChatNetmind features and configurations head to the [API reference](https://github.com/protagolabs/langchain-netmind).\n",
"\n",
"- See https://www.netmind.ai/ for an example.\n",
"\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# ChatNVIDIA\n",
"\n",
"This will help you getting started with NVIDIA [chat models](/docs/concepts/chat_models). For detailed documentation of all `ChatNVIDIA` features and configurations head to the [API reference](https://python.langchain.com/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html).\n",
"This will help you get started with NVIDIA [chat models](/docs/concepts/chat_models). For detailed documentation of all `ChatNVIDIA` features and configurations head to the [API reference](https://python.langchain.com/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html).\n",
"\n",
"## Overview\n",
"The `langchain-nvidia-ai-endpoints` package contains LangChain integrations building applications with models on\n",

View File

@@ -19,7 +19,7 @@
"source": [
"# ChatOCIModelDeployment\n",
"\n",
"This will help you getting started with OCIModelDeployment [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatOCIModelDeployment features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.oci_data_science.ChatOCIModelDeployment.html).\n",
"This will help you get started with OCIModelDeployment [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatOCIModelDeployment features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.oci_data_science.ChatOCIModelDeployment.html).\n",
"\n",
"[OCI Data Science](https://docs.oracle.com/en-us/iaas/data-science/using/home.htm) is a fully managed and serverless platform for data science teams to build, train, and manage machine learning models in the Oracle Cloud Infrastructure. You can use [AI Quick Actions](https://blogs.oracle.com/ai-and-datascience/post/ai-quick-actions-in-oci-data-science) to easily deploy LLMs on [OCI Data Science Model Deployment Service](https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-about.htm). You may choose to deploy the model with popular inference frameworks such as vLLM or TGI. By default, the model deployment endpoint mimics the OpenAI API protocol.\n",
"\n",

View File

@@ -16,7 +16,7 @@
"\n",
"1. Get an API Token from [your OctoAI account page](https://octoai.cloud/settings).\n",
" \n",
"2. Paste your API token in in the code cell below or use the `octoai_api_token` keyword argument.\n",
"2. Paste your API token in the code cell below or use the `octoai_api_token` keyword argument.\n",
"\n",
"Note: If you want to use a different model than the [available models](https://octoai.cloud/text?selectedTags=Chat), you can containerize the model and make a custom OctoAI endpoint yourself, by following [Build a Container from Python](https://octo.ai/docs/bring-your-own-model/advanced-build-a-container-from-scratch-in-python) and [Create a Custom Endpoint from a Container](https://octo.ai/docs/bring-your-own-model/create-custom-endpoints-from-a-container/create-custom-endpoints-from-a-container) and then updating your `OCTOAI_API_BASE` environment variable.\n"
]
@@ -99,7 +99,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.12.10"
},
"vscode": {
"interpreter": {

View File

@@ -915,6 +915,175 @@
"response_2.text()"
]
},
{
"cell_type": "markdown",
"id": "34ad0015-688c-4274-be55-93268b44f558",
"metadata": {},
"source": [
"#### Code interpreter\n",
"\n",
"OpenAI implements a [code interpreter](https://platform.openai.com/docs/guides/tools-code-interpreter) tool to support the sandboxed generation and execution of code.\n",
"\n",
"Example use:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "34826aae-6d48-4b84-bc00-89594a87d461",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"o4-mini\", use_responses_api=True)\n",
"\n",
"llm_with_tools = llm.bind_tools(\n",
" [\n",
" {\n",
" \"type\": \"code_interpreter\",\n",
" # Create a new container\n",
" \"container\": {\"type\": \"auto\"},\n",
" }\n",
" ]\n",
")\n",
"response = llm_with_tools.invoke(\n",
" \"Write and run code to answer the question: what is 3^3?\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1b4d92b9-941f-4d54-93a5-b0c73afd66b2",
"metadata": {},
"source": [
"Note that the above command created a new container. We can also specify an existing container ID:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d8c82895-5011-4062-a1bb-278ec91321e9",
"metadata": {},
"outputs": [],
"source": [
"tool_outputs = response.additional_kwargs[\"tool_outputs\"]\n",
"assert len(tool_outputs) == 1\n",
"# highlight-next-line\n",
"container_id = tool_outputs[0][\"container_id\"]\n",
"\n",
"llm_with_tools = llm.bind_tools(\n",
" [\n",
" {\n",
" \"type\": \"code_interpreter\",\n",
" # Use an existing container\n",
" # highlight-next-line\n",
" \"container\": container_id,\n",
" }\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "8db30501-522c-4915-963d-d60539b5c16e",
"metadata": {},
"source": [
"#### Remote MCP\n",
"\n",
"OpenAI implements a [remote MCP](https://platform.openai.com/docs/guides/tools-remote-mcp) tool that allows for model-generated calls to MCP servers.\n",
"\n",
"Example use:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7044a87b-8b99-49e8-8ca4-e2a8ae49f65a",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"o4-mini\", use_responses_api=True)\n",
"\n",
"llm_with_tools = llm.bind_tools(\n",
" [\n",
" {\n",
" \"type\": \"mcp\",\n",
" \"server_label\": \"deepwiki\",\n",
" \"server_url\": \"https://mcp.deepwiki.com/mcp\",\n",
" \"require_approval\": \"never\",\n",
" }\n",
" ]\n",
")\n",
"response = llm_with_tools.invoke(\n",
" \"What transport protocols does the 2025-03-26 version of the MCP \"\n",
" \"spec (modelcontextprotocol/modelcontextprotocol) support?\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0ed7494e-425d-4bdf-ab83-3164757031dd",
"metadata": {},
"source": [
"<details>\n",
"<summary>MCP Approvals</summary>\n",
"\n",
"OpenAI will at times request approval before sharing data with a remote MCP server.\n",
"\n",
"In the above command, we instructed the model to never require approval. We can also configure the model to always request approval, or to always request approval for specific tools:\n",
"\n",
"```python\n",
"llm_with_tools = llm.bind_tools(\n",
" [\n",
" {\n",
" \"type\": \"mcp\",\n",
" \"server_label\": \"deepwiki\",\n",
" \"server_url\": \"https://mcp.deepwiki.com/mcp\",\n",
" \"require_approval\": {\n",
" \"always\": {\n",
" \"tool_names\": [\"read_wiki_structure\"]\n",
" }\n",
" }\n",
" }\n",
" ]\n",
")\n",
"response = llm_with_tools.invoke(\n",
" \"What transport protocols does the 2025-03-26 version of the MCP \"\n",
" \"spec (modelcontextprotocol/modelcontextprotocol) support?\"\n",
")\n",
"```\n",
"\n",
"Responses may then include blocks with type `\"mcp_approval_request\"`.\n",
"\n",
"To submit approvals for an approval request, structure it into a content block in an input message:\n",
"\n",
"```python\n",
"approval_message = {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"mcp_approval_response\",\n",
" \"approve\": True,\n",
" \"approval_request_id\": output[\"id\"],\n",
" }\n",
" for output in response.additional_kwargs[\"tool_outputs\"]\n",
" if output[\"type\"] == \"mcp_approval_request\"\n",
" ]\n",
"}\n",
"\n",
"next_response = llm_with_tools.invoke(\n",
" [approval_message],\n",
" # continue existing thread\n",
" previous_response_id=response.response_metadata[\"id\"]\n",
")\n",
"```\n",
"\n",
"</details>"
]
},
{
"cell_type": "markdown",
"id": "6fda05f0-4b81-4709-9407-f316d760ad50",

View File

@@ -17,7 +17,7 @@
"source": [
"# ChatOutlines\n",
"\n",
"This will help you getting started with Outlines [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatOutlines features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.outlines.ChatOutlines.html).\n",
"This will help you get started with Outlines [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatOutlines features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.outlines.ChatOutlines.html).\n",
"\n",
"[Outlines](https://github.com/outlines-dev/outlines) is a library for constrained language generation. It allows you to use large language models (LLMs) with various backends while applying constraints to the generated output.\n",
"\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# ChatPipeshift\n",
"\n",
"This will help you getting started with Pipeshift [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatPipeshift features and configurations head to the [API reference](https://dashboard.pipeshift.com/docs).\n",
"This will help you get started with Pipeshift [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatPipeshift features and configurations head to the [API reference](https://dashboard.pipeshift.com/docs).\n",
"\n",
"## Overview\n",
"### Integration details\n",

View File

@@ -4,93 +4,99 @@
"cell_type": "markdown",
"id": "3f0a201c",
"metadata": {},
"source": "# ChatPredictionGuard"
"source": [
"# ChatPredictionGuard"
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": ">[Prediction Guard](https://predictionguard.com) is a secure, scalable GenAI platform that safeguards sensitive data, prevents common AI malfunctions, and runs on affordable hardware.\n",
"id": "c3adc2aac37985ac"
"id": "c3adc2aac37985ac",
"metadata": {},
"source": [
">[Prediction Guard](https://predictionguard.com) is a secure, scalable GenAI platform that safeguards sensitive data, prevents common AI malfunctions, and runs on affordable hardware.\n"
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Overview",
"id": "4e1ec341481fb244"
"id": "4e1ec341481fb244",
"metadata": {},
"source": [
"## Overview"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "b4090b7489e37a91",
"metadata": {},
"source": [
"### Integration details\n",
"This integration utilizes the Prediction Guard API, which includes various safeguards and security features."
],
"id": "b4090b7489e37a91"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "e26e5b3240452162",
"metadata": {},
"source": [
"### Model features\n",
"The models supported by this integration only feature text-generation currently, along with the input and output checks described here."
],
"id": "e26e5b3240452162"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "4fca548b61efb049",
"metadata": {},
"source": [
"## Setup\n",
"To access Prediction Guard models, contact us [here](https://predictionguard.com/get-started) to get a Prediction Guard API key and get started. "
],
"id": "4fca548b61efb049"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "7cc34a9cd865690c",
"metadata": {},
"source": [
"### Credentials\n",
"Once you have a key, you can set it with "
],
"id": "7cc34a9cd865690c"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fa57fba89276da13",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T18:23:30.746350Z",
"start_time": "2025-04-21T18:23:30.744744Z"
}
},
"cell_type": "code",
"outputs": [],
"source": [
"import os\n",
"\n",
"if \"PREDICTIONGUARD_API_KEY\" not in os.environ:\n",
" os.environ[\"PREDICTIONGUARD_API_KEY\"] = \"<Your Prediction Guard API Key>\""
],
"id": "fa57fba89276da13",
"outputs": [],
"execution_count": 2
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "87dc1742af7b053",
"metadata": {},
"source": [
"### Installation\n",
"Install the Prediction Guard Langchain integration with"
],
"id": "87dc1742af7b053"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b816ae8553cba021",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T18:23:33.359278Z",
"start_time": "2025-04-21T18:23:32.853207Z"
}
},
"cell_type": "code",
"source": "%pip install -qU langchain-predictionguard",
"id": "b816ae8553cba021",
"outputs": [
{
"name": "stdout",
@@ -100,7 +106,9 @@
]
}
],
"execution_count": 3
"source": [
"%pip install -qU langchain-predictionguard"
]
},
{
"cell_type": "markdown",
@@ -108,63 +116,61 @@
"metadata": {
"id": "mesCTyhnJkNS"
},
"source": "## Instantiation"
"source": [
"## Instantiation"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7191a5ce",
"metadata": {
"id": "2xe8JEUwA7_y",
"ExecuteTime": {
"end_time": "2025-04-21T18:23:39.812675Z",
"start_time": "2025-04-21T18:23:39.666881Z"
}
},
"id": "2xe8JEUwA7_y"
},
"source": "from langchain_predictionguard import ChatPredictionGuard",
"outputs": [],
"execution_count": 4
"source": [
"from langchain_predictionguard import ChatPredictionGuard"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "140717c9",
"metadata": {
"id": "Ua7Mw1N4HcER",
"ExecuteTime": {
"end_time": "2025-04-21T18:23:41.590296Z",
"start_time": "2025-04-21T18:23:41.253237Z"
}
},
"id": "Ua7Mw1N4HcER"
},
"outputs": [],
"source": [
"# If predictionguard_api_key is not passed, default behavior is to use the `PREDICTIONGUARD_API_KEY` environment variable.\n",
"chat = ChatPredictionGuard(model=\"Hermes-3-Llama-3.1-8B\")"
],
"outputs": [],
"execution_count": 5
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Invocation",
"id": "8dbdfc55b638e4c2"
"id": "8dbdfc55b638e4c2",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5a1635e7ae7134a3",
"metadata": {
"ExecuteTime": {
"end_time": "2024-11-08T19:44:56.634939Z",
"start_time": "2024-11-08T19:44:55.924534Z"
}
},
"cell_type": "code",
"source": [
"messages = [\n",
" (\"system\", \"You are a helpful assistant that tells jokes.\"),\n",
" (\"human\", \"Tell me a joke\"),\n",
"]\n",
"\n",
"ai_msg = chat.invoke(messages)\n",
"ai_msg"
],
"id": "5a1635e7ae7134a3",
"outputs": [
{
"data": {
@@ -177,18 +183,26 @@
"output_type": "execute_result"
}
],
"execution_count": 4
"source": [
"messages = [\n",
" (\"system\", \"You are a helpful assistant that tells jokes.\"),\n",
" (\"human\", \"Tell me a joke\"),\n",
"]\n",
"\n",
"ai_msg = chat.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a6f8025726e5da3c",
"metadata": {
"ExecuteTime": {
"end_time": "2024-11-08T19:44:57.501782Z",
"start_time": "2024-11-08T19:44:57.498931Z"
}
},
"cell_type": "code",
"source": "print(ai_msg.content)",
"id": "a6f8025726e5da3c",
"outputs": [
{
"name": "stdout",
@@ -198,16 +212,21 @@
]
}
],
"execution_count": 5
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "e9e96106-8e44-4373-9c57-adc3d0062df3",
"metadata": {},
"source": "## Streaming"
"source": [
"## Streaming"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ea62d2da-802c-4b8a-a63e-5d1d0a72540f",
"metadata": {
"ExecuteTime": {
@@ -215,12 +234,6 @@
"start_time": "2024-11-08T19:44:59.095584Z"
}
},
"source": [
"chat = ChatPredictionGuard(model=\"Hermes-2-Pro-Llama-3-8B\")\n",
"\n",
"for chunk in chat.stream(\"Tell me a joke\"):\n",
" print(chunk.content, end=\"\", flush=True)"
],
"outputs": [
{
"name": "stdout",
@@ -232,33 +245,39 @@
]
}
],
"execution_count": 6
"source": [
"chat = ChatPredictionGuard(model=\"Hermes-2-Pro-Llama-3-8B\")\n",
"\n",
"for chunk in chat.stream(\"Tell me a joke\"):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "1227780d6e6728ba",
"metadata": {},
"source": [
"## Tool Calling\n",
"\n",
"Prediction Guard has a tool calling API that lets you describe tools and their arguments, which enables the model return a JSON object with a tool to call and the inputs to that tool. Tool-calling is very useful for building tool-using chains and agents, and for getting structured outputs from models more generally.\n"
],
"id": "1227780d6e6728ba"
"Prediction Guard has a tool calling API that lets you describe tools and their arguments, which enables the model to return a JSON object with a tool to call and the inputs to that tool. Tool-calling is very useful for building tool-using chains and agents, and for getting structured outputs from models more generally.\n"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "23446aa52e01d1ba",
"metadata": {},
"source": [
"### ChatPredictionGuard.bind_tools()\n",
"\n",
"Using `ChatPredictionGuard.bind_tools()`, you can pass in Pydantic classes, dict schemas, and Langchain tools as tools to the model, which are then reformatted to allow for use by the model."
],
"id": "23446aa52e01d1ba"
]
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"id": "135efb0bfc5916c1",
"metadata": {},
"outputs": [],
"source": [
"from pydantic import BaseModel, Field\n",
"\n",
@@ -279,24 +298,18 @@
" [GetWeather, GetPopulation]\n",
" # strict = True # enforce tool args schema is respected\n",
")"
],
"id": "135efb0bfc5916c1"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8136f19a8836cd58",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T18:42:41.834079Z",
"start_time": "2025-04-21T18:42:40.289095Z"
}
},
"cell_type": "code",
"source": [
"ai_msg = llm_with_tools.invoke(\n",
" \"Which city is hotter today and which is bigger: LA or NY?\"\n",
")\n",
"ai_msg"
],
"id": "8136f19a8836cd58",
"outputs": [
{
"data": {
@@ -309,28 +322,33 @@
"output_type": "execute_result"
}
],
"execution_count": 7
"source": [
"ai_msg = llm_with_tools.invoke(\n",
" \"Which city is hotter today and which is bigger: LA or NY?\"\n",
")\n",
"ai_msg"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "84f405c45a35abe5",
"metadata": {},
"source": [
"### AIMessage.tool_calls\n",
"\n",
"Notice that the AIMessage has a tool_calls attribute. This contains in a standardized ToolCall format that is model-provider agnostic."
],
"id": "84f405c45a35abe5"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "bdcee85475019719",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T18:43:00.429453Z",
"start_time": "2025-04-21T18:43:00.426399Z"
}
},
"cell_type": "code",
"source": "ai_msg.tool_calls",
"id": "bdcee85475019719",
"outputs": [
{
"data": {
@@ -358,7 +376,9 @@
"output_type": "execute_result"
}
],
"execution_count": 8
"source": [
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
@@ -386,6 +406,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"id": "9c5d7a87",
"metadata": {
"ExecuteTime": {
@@ -393,16 +414,6 @@
"start_time": "2024-11-08T19:45:01.633319Z"
}
},
"source": [
"chat = ChatPredictionGuard(\n",
" model=\"Hermes-2-Pro-Llama-3-8B\", predictionguard_input={\"pii\": \"block\"}\n",
")\n",
"\n",
"try:\n",
" chat.invoke(\"Hello, my name is John Doe and my SSN is 111-22-3333\")\n",
"except ValueError as e:\n",
" print(e)"
],
"outputs": [
{
"name": "stdout",
@@ -412,7 +423,16 @@
]
}
],
"execution_count": 7
"source": [
"chat = ChatPredictionGuard(\n",
" model=\"Hermes-2-Pro-Llama-3-8B\", predictionguard_input={\"pii\": \"block\"}\n",
")\n",
"\n",
"try:\n",
" chat.invoke(\"Hello, my name is John Doe and my SSN is 111-22-3333\")\n",
"except ValueError as e:\n",
" print(e)"
]
},
{
"cell_type": "markdown",
@@ -424,6 +444,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a9f96fb4-00c3-4a39-b177-d1ccd5caecab",
"metadata": {
"ExecuteTime": {
@@ -431,6 +452,15 @@
"start_time": "2024-11-08T19:45:03.275661Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Could not make prediction. prompt injection detected\n"
]
}
],
"source": [
"chat = ChatPredictionGuard(\n",
" model=\"Hermes-2-Pro-Llama-3-8B\",\n",
@@ -443,17 +473,7 @@
" )\n",
"except ValueError as e:\n",
" print(e)"
],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Could not make prediction. prompt injection detected\n"
]
}
],
"execution_count": 8
]
},
{
"cell_type": "markdown",
@@ -483,23 +503,15 @@
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0cb3b91f",
"metadata": {
"id": "PzxSbYwqTm2w",
"ExecuteTime": {
"end_time": "2024-11-08T19:45:10.044203Z",
"start_time": "2024-11-08T19:45:05.692378Z"
}
},
"id": "PzxSbYwqTm2w"
},
"source": [
"chat = ChatPredictionGuard(\n",
" model=\"Hermes-2-Pro-Llama-3-8B\", predictionguard_output={\"toxicity\": True}\n",
")\n",
"try:\n",
" chat.invoke(\"Please tell me something that would fail a toxicity check!\")\n",
"except ValueError as e:\n",
" print(e)"
],
"outputs": [
{
"name": "stdout",
@@ -509,7 +521,15 @@
]
}
],
"execution_count": 9
"source": [
"chat = ChatPredictionGuard(\n",
" model=\"Hermes-2-Pro-Llama-3-8B\", predictionguard_output={\"toxicity\": True}\n",
")\n",
"try:\n",
" chat.invoke(\"Please tell me something that would fail a toxicity check!\")\n",
"except ValueError as e:\n",
" print(e)"
]
},
{
"cell_type": "markdown",
@@ -521,6 +541,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"id": "249da02a-d32d-4f91-82d0-10ec0505aec7",
"metadata": {
"ExecuteTime": {
@@ -528,16 +549,6 @@
"start_time": "2024-11-08T19:45:10.109509Z"
}
},
"source": [
"chat = ChatPredictionGuard(\n",
" model=\"Hermes-2-Pro-Llama-3-8B\", predictionguard_output={\"factuality\": True}\n",
")\n",
"\n",
"try:\n",
" chat.invoke(\"Make up something that would fail a factuality check!\")\n",
"except ValueError as e:\n",
" print(e)"
],
"outputs": [
{
"name": "stdout",
@@ -547,22 +558,47 @@
]
}
],
"execution_count": 10
"source": [
"chat = ChatPredictionGuard(\n",
" model=\"Hermes-2-Pro-Llama-3-8B\", predictionguard_output={\"factuality\": True}\n",
")\n",
"\n",
"try:\n",
" chat.invoke(\"Make up something that would fail a factuality check!\")\n",
"except ValueError as e:\n",
" print(e)"
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Chaining",
"id": "3c81e5a85a765ece"
"id": "3c81e5a85a765ece",
"metadata": {},
"source": [
"## Chaining"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "beb4e0666bb514a7",
"metadata": {
"ExecuteTime": {
"end_time": "2024-11-08T19:45:17.525848Z",
"start_time": "2024-11-08T19:45:15.197628Z"
}
},
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Step 1: Determine the year Justin Bieber was born.\\nJustin Bieber was born on March 1, 1994.\\n\\nStep 2: Determine which NFL team won the Super Bowl in 1994.\\nThe 1994 Super Bowl was Super Bowl XXVIII, which took place on January 30, 1994. The winning team was the Dallas Cowboys, who defeated the Buffalo Bills with a score of 30-13.\\n\\nSo, the NFL team that won the Super Bowl in the year Justin Bieber was born is the Dallas Cowboys.', additional_kwargs={}, response_metadata={}, id='run-bbc94f8b-9ab0-4839-8580-a9e510bfc97a-0')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"\n",
@@ -577,30 +613,24 @@
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"chat_chain.invoke({\"question\": question})"
],
"id": "beb4e0666bb514a7",
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Step 1: Determine the year Justin Bieber was born.\\nJustin Bieber was born on March 1, 1994.\\n\\nStep 2: Determine which NFL team won the Super Bowl in 1994.\\nThe 1994 Super Bowl was Super Bowl XXVIII, which took place on January 30, 1994. The winning team was the Dallas Cowboys, who defeated the Buffalo Bills with a score of 30-13.\\n\\nSo, the NFL team that won the Super Bowl in the year Justin Bieber was born is the Dallas Cowboys.', additional_kwargs={}, response_metadata={}, id='run-bbc94f8b-9ab0-4839-8580-a9e510bfc97a-0')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 11
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "d87695d5ff1471c1",
"metadata": {},
"source": [
"## API reference\n",
"For detailed documentation of all ChatPredictionGuard features and configurations check out the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.predictionguard.ChatPredictionGuard.html"
],
"id": "d87695d5ff1471c1"
"For detailed documentation of all ChatPredictionGuard features and configurations, check out the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.predictionguard.ChatPredictionGuard.html"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3664cc0e-841c-46f1-a158-4d5f5185bc94",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -622,7 +652,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.12.10"
}
},
"nbformat": 4,

View File

@@ -21,7 +21,7 @@
"source": [
"# ChatQwQ\n",
"\n",
"This will help you getting started with QwQ [chat models](../../concepts/chat_models.mdx). For detailed documentation of all ChatQwQ features and configurations head to the [API reference](https://pypi.org/project/langchain-qwq/).\n",
"This will help you get started with QwQ [chat models](../../concepts/chat_models.mdx). For detailed documentation of all ChatQwQ features and configurations head to the [API reference](https://pypi.org/project/langchain-qwq/).\n",
"\n",
"## Overview\n",
"### Integration details\n",

View File

@@ -19,7 +19,7 @@
"source": [
"# ChatSambaNovaCloud\n",
"\n",
"This will help you getting started with SambaNovaCloud [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatSambaNovaCloud features and configurations head to the [API reference](https://docs.sambanova.ai/cloud/docs/get-started/overview).\n",
"This will help you get started with SambaNovaCloud [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatSambaNovaCloud features and configurations head to the [API reference](https://docs.sambanova.ai/cloud/docs/get-started/overview).\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [SambaNova Cloud](https://cloud.sambanova.ai/) is a platform for performing inference with open-source models\n",
"\n",

View File

@@ -19,7 +19,7 @@
"source": [
"# ChatSambaStudio\n",
"\n",
"This will help you getting started with SambaStudio [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatStudio features and configurations head to the [API reference](https://docs.sambanova.ai/sambastudio/latest/index.html).\n",
"This will help you get started with SambaStudio [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatStudio features and configurations head to the [API reference](https://docs.sambanova.ai/sambastudio/latest/index.html).\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [SambaStudio](https://docs.sambanova.ai/sambastudio/latest/sambastudio-intro.html) SambaStudio is a rich, GUI-based platform that provides the functionality to train, deploy, and manage models in SambaNova [DataScale](https://sambanova.ai/products/datascale) systems.\n",
"\n",

View File

@@ -1,5 +1,13 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "516cad96-cfcb-4dd1-b70e-ecaef33e60ba",
"metadata": {},
"source": [
"Deprecated since version 0.0.34: Use langchain_upstage.ChatUpstage instead."
]
},
{
"cell_type": "code",
"execution_count": 5,
@@ -72,7 +80,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.0"
"version": "3.12.10"
}
},
"nbformat": 4,

View File

@@ -21,7 +21,6 @@
"source": [
"# Nebula (Symbl.ai)\n",
"\n",
"## Overview\n",
"This notebook covers how to get started with [Nebula](https://docs.symbl.ai/docs/nebula-llm) - Symbl.ai's chat model.\n",
"\n",
"### Integration details\n",

View File

@@ -5,16 +5,14 @@
"id": "134a0785",
"metadata": {},
"source": [
"## Overview\n",
"\n",
"[Vectara](https://vectara.com/) is the trusted AI Assistant and Agent platform which focuses on enterprise readiness for mission-critical applications.\n",
"[Vectara](https://vectara.com/) is the trusted AI Assistant and Agent platform, which focuses on enterprise readiness for mission-critical applications.\n",
"Vectara serverless RAG-as-a-service provides all the components of RAG behind an easy-to-use API, including:\n",
"1. A way to extract text from files (PDF, PPT, DOCX, etc)\n",
"2. ML-based chunking that provides state of the art performance.\n",
"2. ML-based chunking that provides state-of-the-art performance.\n",
"3. The [Boomerang](https://vectara.com/how-boomerang-takes-retrieval-augmented-generation-to-the-next-level-via-grounded-generation/) embeddings model.\n",
"4. Its own internal vector database where text chunks and embedding vectors are stored.\n",
"5. A query service that automatically encodes the query into embedding, and retrieves the most relevant text segments, including support for [Hybrid Search](https://docs.vectara.com/docs/api-reference/search-apis/lexical-matching) as well as multiple reranking options such as the [multi-lingual relevance reranker](https://www.vectara.com/blog/deep-dive-into-vectara-multilingual-reranker-v1-state-of-the-art-reranker-across-100-languages), [MMR](https://vectara.com/get-diverse-results-and-comprehensive-summaries-with-vectaras-mmr-reranker/), [UDF reranker](https://www.vectara.com/blog/rag-with-user-defined-functions-based-reranking). \n",
"6. An LLM to for creating a [generative summary](https://docs.vectara.com/docs/learn/grounded-generation/grounded-generation-overview), based on the retrieved documents (context), including citations.\n",
"6. An LLM for creating a [generative summary](https://docs.vectara.com/docs/learn/grounded-generation/grounded-generation-overview), based on the retrieved documents (context), including citations.\n",
"\n",
"For more information:\n",
"- [Documentation](https://docs.vectara.com/docs/)\n",
@@ -26,7 +24,7 @@
"\n",
"### Setup\n",
"\n",
"To use the `VectaraVectorStore` you first need to install the partner package.\n"
"To use the `VectaraVectorStore`, you first need to install the partner package.\n"
]
},
{
@@ -48,8 +46,8 @@
"\n",
"To get started, use the following steps:\n",
"1. If you don't already have one, [Sign up](https://www.vectara.com/integrations/langchain) for your free Vectara trial.\n",
"2. Within your account you can create one or more corpora. Each corpus represents an area that stores text data upon ingest from input documents. To create a corpus, use the **\"Create Corpus\"** button. You then provide a name to your corpus as well as a description. Optionally you can define filtering attributes and apply some advanced options. If you click on your created corpus, you can see its name and corpus ID right on the top.\n",
"3. Next you'll need to create API keys to access the corpus. Click on the **\"Access Control\"** tab in the corpus view and then the **\"Create API Key\"** button. Give your key a name, and choose whether you want query-only or query+index for your key. Click \"Create\" and you now have an active API key. Keep this key confidential. \n",
"2. Within your account, you can create one or more corpora. Each corpus represents an area that stores text data upon ingestion from input documents. To create a corpus, use the **\"Create Corpus\"** button. You then provide a name to your corpus as well as a description. Optionally, you can define filtering attributes and apply some advanced options. If you click on your created corpus, you can see its name and corpus ID right on the top.\n",
"3. Next, you'll need to create API keys to access the corpus. Click on the **\"Access Control\"** tab in the corpus view and then the **\"Create API Key\"** button. Give your key a name, and choose whether you want query-only or query+index for your key. Click \"Create\", and you now have an active API key. Keep this key confidential. \n",
"\n",
"To use LangChain with Vectara, you'll need to have these two values: `corpus_key` and `api_key`.\n",
"You can provide `VECTARA_API_KEY` to LangChain in two ways:\n",
@@ -75,7 +73,7 @@
")\n",
"```\n",
"\n",
"In this notebook we assume they are provided in the environment."
"In this notebook, we assume they are provided in the environment."
]
},
{
@@ -111,9 +109,9 @@
"\n",
"In most uses of LangChain to create chatbots, one must integrate a special `memory` component that maintains the history of chat sessions and then uses that history to ensure the chatbot is aware of conversation history.\n",
"\n",
"With Vectara Chat - all of that is performed in the backend by Vectara automatically. You can look at the [Chat](https://docs.vectara.com/docs/api-reference/chat-apis/chat-apis-overview) documentation for the details, to learn more about the internals of how this is implemented, but with LangChain all you have to do is turn that feature on in the Vectara vectorstore.\n",
"With Vectara Chat, all of that is performed in the backend by Vectara automatically. You can look at the [Chat](https://docs.vectara.com/docs/api-reference/chat-apis/chat-apis-overview) documentation for the details, to learn more about the internals of how this is implemented, but with LangChain, all you have to do is turn that feature on in the Vectara vectorstore.\n",
"\n",
"Let's see an example. First we load the SOTU document (remember, text extraction and chunking all occurs automatically on the Vectara platform):"
"Let's see an example. First, we load the SOTU document (remember, text extraction and chunking all occur automatically on the Vectara platform):"
]
},
{
@@ -243,8 +241,8 @@
"source": [
"## Chat with streaming\n",
"\n",
"Of course the chatbot interface also supports streaming.\n",
"Instead of the `invoke` method you simply use `stream`:"
"Of course, the chatbot interface also supports streaming.\n",
"Instead of the `invoke` method, you simply use `stream`:"
]
},
{
@@ -281,12 +279,15 @@
"cell_type": "markdown",
"id": "cefdf72b1d90085a",
"metadata": {
"collapsed": false
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Chaining\n",
"\n",
"For additional capabilities you can use chaining."
"For additional capabilities, you can use chaining."
]
},
{
@@ -346,7 +347,10 @@
"cell_type": "markdown",
"id": "3b8bb761-db4a-436c-8939-41e9f8652083",
"metadata": {
"collapsed": false
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## API reference\n",
@@ -371,7 +375,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.0"
"version": "3.12.10"
}
},
"nbformat": 4,

View File

@@ -20,7 +20,7 @@
"vLLM can be deployed as a server that mimics the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API. This server can be queried in the same format as OpenAI API.\n",
"\n",
"## Overview\n",
"This will help you getting started with vLLM [chat models](/docs/concepts/chat_models), which leverage the `langchain-openai` package. For detailed documentation of all `ChatOpenAI` features and configurations head to the [API reference](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html).\n",
"This will help you get started with vLLM [chat models](/docs/concepts/chat_models), which leverage the `langchain-openai` package. For detailed documentation of all `ChatOpenAI` features and configurations head to the [API reference](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html).\n",
"\n",
"### Integration details\n",
"\n",

View File

@@ -1,330 +1,373 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: xAI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatXAI\n",
"\n",
"\n",
"This page will help you get started with xAI [chat models](../../concepts/chat_models.mdx). For detailed documentation of all `ChatXAI` features and configurations head to the [API reference](https://python.langchain.com/api_reference/xai/chat_models/langchain_xai.chat_models.ChatXAI.html).\n",
"\n",
"[xAI](https://console.x.ai/) offers an API to interact with Grok models.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/xai) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatXAI](https://python.langchain.com/api_reference/xai/chat_models/langchain_xai.chat_models.ChatXAI.html) | [langchain-xai](https://python.langchain.com/api_reference/xai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-xai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-xai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](../../how_to/tool_calling.ipynb) | [Structured output](../../how_to/structured_output.ipynb) | JSON mode | [Image input](../../how_to/multimodal_inputs.ipynb) | Audio input | Video input | [Token-level streaming](../../how_to/chat_streaming.ipynb) | Native async | [Token usage](../../how_to/chat_token_usage_tracking.ipynb) | [Logprobs](../../how_to/logprobs.ipynb) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ✅ | ✅ |\n",
"\n",
"## Setup\n",
"\n",
"To access xAI models you'll need to create an xAI account, get an API key, and install the `langchain-xai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [this page](https://console.x.ai/) to sign up for xAI and generate an API key. Once you've done this set the `XAI_API_KEY` environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if \"XAI_API_KEY\" not in os.environ:\n",
" os.environ[\"XAI_API_KEY\"] = getpass.getpass(\"Enter your xAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain xAI integration lives in the `langchain-xai` package:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-xai"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_xai import ChatXAI\n",
"\n",
"llm = ChatXAI(\n",
" model=\"grok-beta\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore programmer.\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 30, 'total_tokens': 36, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'grok-beta', 'system_fingerprint': 'fp_14b89b2dfc', 'finish_reason': 'stop', 'logprobs': None}, id='run-adffb7a3-e48a-4f52-b694-340d85abe5c3-0', usage_metadata={'input_tokens': 30, 'output_tokens': 6, 'total_tokens': 36, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore programmer.\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](../../how_to/sequence.ipynb) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe das Programmieren.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 7, 'prompt_tokens': 25, 'total_tokens': 32, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'grok-beta', 'system_fingerprint': 'fp_14b89b2dfc', 'finish_reason': 'stop', 'logprobs': None}, id='run-569fc8dc-101b-4e6d-864e-d4fa80df2b63-0', usage_metadata={'input_tokens': 25, 'output_tokens': 7, 'total_tokens': 32, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e074bce1-0994-4b83-b393-ae7aa7e21750",
"metadata": {},
"source": [
"## Tool calling\n",
"\n",
"ChatXAI has a [tool calling](https://docs.x.ai/docs#capabilities) (we use \"tool calling\" and \"function calling\" interchangeably here) API that lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool. Tool-calling is extremely useful for building tool-using chains and agents, and for getting structured outputs from models more generally.\n",
"\n",
"### ChatXAI.bind_tools()\n",
"\n",
"With `ChatXAI.bind_tools`, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood these are converted to an OpenAI tool schemas, which looks like:\n",
"```\n",
"{\n",
" \"name\": \"...\",\n",
" \"description\": \"...\",\n",
" \"parameters\": {...} # JSONSchema\n",
"}\n",
"```\n",
"and passed in every model invocation."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c6bfe929-ec02-46bd-9d54-76350edddabc",
"metadata": {},
"outputs": [],
"source": [
"from pydantic import BaseModel, Field\n",
"\n",
"\n",
"class GetWeather(BaseModel):\n",
" \"\"\"Get the current weather in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"llm_with_tools = llm.bind_tools([GetWeather])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "5265c892-d8c2-48af-aef5-adbee1647ba6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='I am retrieving the current weather for San Francisco.', additional_kwargs={'tool_calls': [{'id': '0', 'function': {'arguments': '{\"location\":\"San Francisco, CA\"}', 'name': 'GetWeather'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 151, 'total_tokens': 162, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'grok-beta', 'system_fingerprint': 'fp_14b89b2dfc', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-73707da7-afec-4a52-bee1-a176b0ab8585-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': '0', 'type': 'tool_call'}], usage_metadata={'input_tokens': 151, 'output_tokens': 11, 'total_tokens': 162, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ai_msg = llm_with_tools.invoke(\n",
" \"what is the weather like in San Francisco\",\n",
")\n",
"ai_msg"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `ChatXAI` features and configurations head to the API reference: https://python.langchain.com/api_reference/xai/chat_models/langchain_xai.chat_models.ChatXAI.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: xAI\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatXAI\n",
"\n",
"\n",
"This page will help you get started with xAI [chat models](../../concepts/chat_models.mdx). For detailed documentation of all `ChatXAI` features and configurations, head to the [API reference](https://python.langchain.com/api_reference/xai/chat_models/langchain_xai.chat_models.ChatXAI.html).\n",
"\n",
"[xAI](https://console.x.ai/) offers an API to interact with Grok models.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/xai) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatXAI](https://python.langchain.com/api_reference/xai/chat_models/langchain_xai.chat_models.ChatXAI.html) | [langchain-xai](https://python.langchain.com/api_reference/xai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-xai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-xai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](../../how_to/tool_calling.ipynb) | [Structured output](../../how_to/structured_output.ipynb) | JSON mode | [Image input](../../how_to/multimodal_inputs.ipynb) | Audio input | Video input | [Token-level streaming](../../how_to/chat_streaming.ipynb) | Native async | [Token usage](../../how_to/chat_token_usage_tracking.ipynb) | [Logprobs](../../how_to/logprobs.ipynb) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ✅ | ✅ |\n",
"\n",
"## Setup\n",
"\n",
"To access xAI models, you'll need to create an xAI account, get an API key, and install the `langchain-xai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [this page](https://console.x.ai/) to sign up for xAI and generate an API key. Once you've done this, set the `XAI_API_KEY` environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if \"XAI_API_KEY\" not in os.environ:\n",
" os.environ[\"XAI_API_KEY\"] = getpass.getpass(\"Enter your xAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain xAI integration lives in the `langchain-xai` package:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-xai"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_xai import ChatXAI\n",
"\n",
"llm = ChatXAI(\n",
" model=\"grok-beta\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore programmer.\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 30, 'total_tokens': 36, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'grok-beta', 'system_fingerprint': 'fp_14b89b2dfc', 'finish_reason': 'stop', 'logprobs': None}, id='run-adffb7a3-e48a-4f52-b694-340d85abe5c3-0', usage_metadata={'input_tokens': 30, 'output_tokens': 6, 'total_tokens': 36, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore programmer.\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](../../how_to/sequence.ipynb) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe das Programmieren.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 7, 'prompt_tokens': 25, 'total_tokens': 32, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'grok-beta', 'system_fingerprint': 'fp_14b89b2dfc', 'finish_reason': 'stop', 'logprobs': None}, id='run-569fc8dc-101b-4e6d-864e-d4fa80df2b63-0', usage_metadata={'input_tokens': 25, 'output_tokens': 7, 'total_tokens': 32, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e074bce1-0994-4b83-b393-ae7aa7e21750",
"metadata": {},
"source": [
"## Tool calling\n",
"\n",
"ChatXAI has a [tool calling](https://docs.x.ai/docs#capabilities) (we use \"tool calling\" and \"function calling\" interchangeably here) API that lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool. Tool-calling is extremely useful for building tool-using chains and agents, and for getting structured outputs from models more generally.\n",
"\n",
"### ChatXAI.bind_tools()\n",
"\n",
"With `ChatXAI.bind_tools`, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood, these are converted to an OpenAI tool schema, which looks like:\n",
"```\n",
"{\n",
" \"name\": \"...\",\n",
" \"description\": \"...\",\n",
" \"parameters\": {...} # JSONSchema\n",
"}\n",
"```\n",
"and passed in every model invocation."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c6bfe929-ec02-46bd-9d54-76350edddabc",
"metadata": {},
"outputs": [],
"source": [
"from pydantic import BaseModel, Field\n",
"\n",
"\n",
"class GetWeather(BaseModel):\n",
" \"\"\"Get the current weather in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"llm_with_tools = llm.bind_tools([GetWeather])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "5265c892-d8c2-48af-aef5-adbee1647ba6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='I am retrieving the current weather for San Francisco.', additional_kwargs={'tool_calls': [{'id': '0', 'function': {'arguments': '{\"location\":\"San Francisco, CA\"}', 'name': 'GetWeather'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 151, 'total_tokens': 162, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'grok-beta', 'system_fingerprint': 'fp_14b89b2dfc', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-73707da7-afec-4a52-bee1-a176b0ab8585-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': '0', 'type': 'tool_call'}], usage_metadata={'input_tokens': 151, 'output_tokens': 11, 'total_tokens': 162, 'input_token_details': {}, 'output_token_details': {}})"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ai_msg = llm_with_tools.invoke(\n",
" \"what is the weather like in San Francisco\",\n",
")\n",
"ai_msg"
]
},
{
"cell_type": "markdown",
"id": "00297c44-9bd6-4f1f-b364-2a7ff77090fd",
"metadata": {},
"source": [
"## Live Search\n",
"\n",
"xAI supports a [Live Search](https://docs.x.ai/docs/guides/live-search) feature that enables Grok to ground its answers using results from web searches:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d39cd1a4-80f2-48b2-8a74-3856d7706973",
"metadata": {},
"outputs": [],
"source": [
"from langchain_xai import ChatXAI\n",
"\n",
"llm = ChatXAI(\n",
" model=\"grok-3-latest\",\n",
" search_parameters={\n",
" \"mode\": \"auto\",\n",
" # Example optional parameters below:\n",
" \"max_search_results\": 3,\n",
" \"from_date\": \"2025-05-26\",\n",
" \"to_date\": \"2025-05-27\",\n",
" },\n",
")\n",
"\n",
"llm.invoke(\"Provide me a digest of world news in the last 24 hours.\")"
]
},
{
"cell_type": "markdown",
"id": "cc62dc4d-e3ce-4b8b-8b94-d3e2e1a48bd1",
"metadata": {},
"source": [
"See [xAI docs](https://docs.x.ai/docs/guides/live-search) for the full set of web search options."
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `ChatXAI` features and configurations, head to the API reference: https://python.langchain.com/api_reference/xai/chat_models/langchain_xai.chat_models.ChatXAI.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -6,7 +6,7 @@
"source": [
"# ChatYI\n",
"\n",
"This will help you getting started with Yi [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatYi features and configurations head to the [API reference](https://python.langchain.com/api_reference/lanchain_community/chat_models/lanchain_community.chat_models.yi.ChatYi.html).\n",
"This will help you get started with Yi [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatYi features and configurations head to the [API reference](https://python.langchain.com/api_reference/lanchain_community/chat_models/lanchain_community.chat_models.yi.ChatYi.html).\n",
"\n",
"[01.AI](https://www.lingyiwanwu.com/en), founded by Dr. Kai-Fu Lee, is a global company at the forefront of AI 2.0. They offer cutting-edge large language models, including the Yi series, which range from 6B to hundreds of billions of parameters. 01.AI also provides multimodal models, an open API platform, and open-source options like Yi-34B/9B/6B and Yi-VL.\n",
"\n",

View File

@@ -9,15 +9,6 @@
"# Blockchain"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5WjXERXzFEhg"
},
"source": [
"## Overview"
]
},
{
"attachments": {},
"cell_type": "markdown",

View File

@@ -6,20 +6,54 @@
"source": [
"# Confluence\n",
"\n",
">[Confluence](https://www.atlassian.com/software/confluence) is a wiki collaboration platform that saves and organizes all of the project-related material. `Confluence` is a knowledge base that primarily handles content management activities. \n",
"[Confluence](https://www.atlassian.com/software/confluence) is a wiki collaboration platform designed to save and organize all project-related materials. As a knowledge base, Confluence primarily serves content management activities.\n",
"\n",
"A loader for `Confluence` pages.\n",
"This loader allows you to fetch and process Confluence pages into `Document` objects.\n",
"\n",
"---\n",
"\n",
"This currently supports `username/api_key`, `Oauth2 login`, `cookies`. Additionally, on-prem installations also support `token` authentication. \n",
"## Authentication Methods\n",
"\n",
"The following authentication methods are supported:\n",
"\n",
"Specify a list `page_id`-s and/or `space_key` to load in the corresponding pages into Document objects, if both are specified the union of both sets will be returned.\n",
"- `username/api_key`\n",
"- `OAuth2 login`\n",
"- `cookies`\n",
"- On-premises installations: `token` authentication\n",
"\n",
"---\n",
"\n",
"You can also specify a boolean `include_attachments` to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceReader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: `PDF`, `PNG`, `JPEG/JPG`, `SVG`, `Word` and `Excel`.\n",
"## Page Selection\n",
"\n",
"Hint: `space_key` and `page_id` can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/&lt;space_key&gt;/pages/&lt;page_id&gt;\n"
"You can specify which pages to load using:\n",
"\n",
"- **page_ids** (*list*): \n",
" A list of `page_id` values to load the corresponding pages.\n",
"\n",
"- **space_key** (*string*): \n",
" A string of `space_key` value to load all pages within the specified confluence space.\n",
"\n",
"If both `page_ids` and `space_key` are provided, the loader will return the union of pages from both lists.\n",
"\n",
"*Hint:* Both `space_key` and `page_id` can be found in the URL of a Confluence page: \n",
"`https://yoursite.atlassian.com/wiki/spaces/{space_key}/pages/{page_id}`\n",
"\n",
"---\n",
"\n",
"## Attachments\n",
"\n",
"You may include attachments in the loaded `Document` objects by setting the boolean parameter **include_attachments** to `True` (default: `False`). When enabled, all attachments are downloaded and their text content is extracted and added to the Document.\n",
"\n",
"**Currently supported attachment types:**\n",
"\n",
"- PDF (`.pdf`)\n",
"- PNG (`.png`)\n",
"- JPEG/JPG (`.jpeg`, `.jpg`)\n",
"- SVG (`.svg`)\n",
"- Word (`.doc`, `.docx`)\n",
"- Excel (`.xls`, `.xlsx`)\n",
"\n",
"---"
]
},
{
@@ -70,9 +104,14 @@
"from langchain_community.document_loaders import ConfluenceLoader\n",
"\n",
"loader = ConfluenceLoader(\n",
" url=\"https://yoursite.atlassian.com/wiki\", username=\"me\", api_key=\"12345\"\n",
" url=\"https://yoursite.atlassian.com/wiki\",\n",
" username=\"<your-confluence-username>\",\n",
" api_key=\"<your-api-token>\",\n",
" space_key=\"<your-space-key>\",\n",
" include_attachments=True,\n",
" limit=50,\n",
")\n",
"documents = loader.load(space_key=\"SPACE\", include_attachments=True, limit=50)"
"documents = loader.load()"
]
},
{
@@ -95,10 +134,15 @@
"source": [
"from langchain_community.document_loaders import ConfluenceLoader\n",
"\n",
"loader = ConfluenceLoader(url=\"https://yoursite.atlassian.com/wiki\", token=\"12345\")\n",
"documents = loader.load(\n",
" space_key=\"SPACE\", include_attachments=True, limit=50, max_pages=50\n",
")"
"loader = ConfluenceLoader(\n",
" url=\"https://confluence.yoursite.com/\",\n",
" token=\"<your-personal-access-token>\",\n",
" space_key=\"<your-space-key>\",\n",
" include_attachments=True,\n",
" limit=50,\n",
" max_pages=50,\n",
")\n",
"documents = loader.load()"
]
}
],

View File

@@ -57,7 +57,7 @@
},
"outputs": [],
"source": [
"%pip install -upgrade --quiet langchain-google-firestore"
"%pip install --upgrade --quiet langchain-google-firestore"
]
},
{

View File

@@ -9,15 +9,6 @@
"# Near Blockchain"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5WjXERXzFEhg"
},
"source": [
"## Overview"
]
},
{
"attachments": {},
"cell_type": "markdown",

View File

@@ -4,7 +4,6 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## ScrapFly\n",
"[ScrapFly](https://scrapfly.io/) is a web scraping API with headless browser capabilities, proxies, and anti-bot bypass. It allows for extracting web page data into accessible LLM markdown or text."
]
},

View File

@@ -9,7 +9,6 @@
"---\n",
"\n",
"# ScrapingAnt\n",
"## Overview\n",
"[ScrapingAnt](https://scrapingant.com/) is a web scraping API with headless browser capabilities, proxies, and anti-bot bypass. It allows for extracting web page data into accessible LLM markdown.\n",
"\n",
"This particular integration uses only Markdown extraction feature, but don't hesitate to [reach out to us](mailto:support@scrapingant.com) if you need more features provided by ScrapingAnt, but not yet implemented in this integration.\n",

View File

@@ -6,8 +6,6 @@
"source": [
"# UnstructuredPDFLoader\n",
"\n",
"## Overview\n",
"\n",
"[Unstructured](https://unstructured-io.github.io/unstructured/) supports a common interface for working with unstructured or semi-structured file formats, such as Markdown or PDF. LangChain's [UnstructuredPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.UnstructuredPDFLoader.html) integrates with Unstructured to parse PDF documents into LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects.\n",
"\n",
"Please see [this page](/docs/integrations/providers/unstructured/) for more information on installing system requirements.\n",
@@ -34,7 +32,9 @@
{
"cell_type": "markdown",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",

View File

@@ -6,7 +6,6 @@
"source": [
"# ZeroxPDFLoader\n",
"\n",
"## Overview\n",
"`ZeroxPDFLoader` is a document loader that leverages the [Zerox](https://github.com/getomni-ai/zerox) library. Zerox converts PDF documents into images, processes them using a vision-capable language model, and generates a structured Markdown representation. This loader allows for asynchronous operations and provides page-level document extraction.\n",
"\n",
"### Integration details\n",

View File

@@ -65,14 +65,16 @@
"\n",
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_memgraph.chains.graph_qa import MemgraphQAChain\n",
"from langchain_memgraph.graphs.memgraph import Memgraph\n",
"from langchain_memgraph.graphs.memgraph import MemgraphLangChain\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"url = os.environ.get(\"MEMGRAPH_URI\", \"bolt://localhost:7687\")\n",
"username = os.environ.get(\"MEMGRAPH_USERNAME\", \"\")\n",
"password = os.environ.get(\"MEMGRAPH_PASSWORD\", \"\")\n",
"\n",
"graph = Memgraph(url=url, username=username, password=password, refresh_schema=False)"
"graph = MemgraphLangChain(\n",
" url=url, username=username, password=password, refresh_schema=False\n",
")"
]
},
{

View File

@@ -1,118 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"# GigaChat\n",
"This notebook shows how to use LangChain with [GigaChat](https://developers.sber.ru/portal/products/gigachat).\n",
"To use you need to install ```gigachat``` python package."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"pycharm": {
"is_executing": true
}
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet gigachat"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/individuals-quickstart)\n",
"\n",
"## Example"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"if \"GIGACHAT_CREDENTIALS\" not in os.environ:\n",
" os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from langchain_community.llms import GigaChat\n",
"\n",
"llm = GigaChat(verify_ssl_certs=False, scope=\"GIGACHAT_API_PERS\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The capital of Russia is Moscow.\n"
]
}
],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"template = \"What is capital of {country}?\"\n",
"\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",
"generated = llm_chain.invoke(input={\"country\": \"Russia\"})\n",
"print(generated[\"text\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -6,7 +6,7 @@
"source": [
"# NVIDIA\n",
"\n",
"This will help you getting started with NVIDIA [models](/docs/concepts/text_llms). For detailed documentation of all `NVIDIA` features and configurations head to the [API reference](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.NVIDIA.html).\n",
"This will help you get started with NVIDIA [models](/docs/concepts/text_llms). For detailed documentation of all `NVIDIA` features and configurations head to the [API reference](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.NVIDIA.html).\n",
"\n",
"## Overview\n",
"The `langchain-nvidia-ai-endpoints` package contains LangChain integrations building applications with models on \n",

View File

@@ -6,7 +6,7 @@
"source": [
"# Outlines\n",
"\n",
"This will help you getting started with Outlines LLM. For detailed documentation of all Outlines features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.outlines.Outlines.html).\n",
"This will help you get started with Outlines LLM. For detailed documentation of all Outlines features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.outlines.Outlines.html).\n",
"\n",
"[Outlines](https://github.com/outlines-dev/outlines) is a library for constrained language generation. It allows you to use large language models (LLMs) with various backends while applying constraints to the generated output.\n",
"\n",

View File

@@ -32,7 +32,7 @@ For a detailed walkthrough of this wrapper, see [this notebook](/docs/integratio
You can also load this wrapper as a Tool to use with an Agent:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["dataforseo-api-search"])
```

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,12 @@
# Featherless AI
[Featherless AI](https://featherless.ai/) is a serverless AI inference platform that offers access to over 4300+ open-source models. Our goal is to make all AI models available for serverless inference. We provide inference via API to a continually expanding library of open-weight models.
# Installation and Setup
`pip install langchain-featherless-ai`
1. Sign up for an account at [Featherless](https://featherless.ai/register)
2. Subscribe to a plan and get your API key from [API Keys](https://featherless.ai/account/api-keys)
3. Set up your API key as an environment variable(`FEATHERLESSAI_API_KEY`)
# Model catalog
Visit our model catalog for an overview of all our models: https://featherless.ai/models

View File

@@ -27,7 +27,7 @@ For a more detailed walkthrough of this wrapper, see [this notebook](/docs/integ
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["golden-query"])
```

View File

@@ -880,7 +880,7 @@ from langchain_community.tools import GoogleSearchRun, GoogleSearchResults
Agent Loading:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["google-search"])
```
@@ -1313,7 +1313,7 @@ from langchain_community.tools import GoogleSearchRun, GoogleSearchResults
Agent Loading:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["google-search"])
```

View File

@@ -67,7 +67,7 @@ For a more detailed walkthrough of this wrapper, see [this notebook](/docs/integ
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["google-serper"])
```

View File

@@ -1,6 +1,6 @@
# Groq
>[Groq](https://groq.com)developed the world's first Language Processing Unit™, or `LPU`.
>[Groq](https://groq.com) developed the world's first Language Processing Unit™, or `LPU`.
> The `Groq LPU` has a deterministic, single core streaming architecture that sets the standard
> for GenAI inference speed with predictable and repeatable performance for any given workload.
>

View File

@@ -14,7 +14,7 @@ and use them to retrieve relevant information from the database.
```python
from langchain_memgraph.chains.graph_qa import MemgraphQAChain
from langchain_memgraph.graphs.memgraph import Memgraph
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
```
See a [usage example](/docs/integrations/graphs/memgraph)
@@ -24,7 +24,7 @@ See a [usage example](/docs/integrations/graphs/memgraph)
You can use the integration to construct a knowledge graph from unstructured data.
```python
from langchain_memgraph.graphs.memgraph import Memgraph
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
from langchain_experimental.graph_transformers import LLMGraphTransformer
```

View File

@@ -68,7 +68,7 @@
"source": [
"## Document Compressor\n",
"\n",
"We can also use RAGatouille off-the-shelf as a reranker. This will allow us to use ColBERT to rerank retrieved results from any generic retriever. The benefits of this are that we can do this on top of any existing index, so that we don't need to create a new idex. We can do this by using the [document compressor](/docs/how_to/contextual_compression) abstraction in LangChain."
"We can also use RAGatouille off-the-shelf as a reranker. This will allow us to use ColBERT to rerank retrieved results from any generic retriever. The benefits of this are that we can do this on top of any existing index, so that we don't need to create a new index. We can do this by using the [document compressor](/docs/how_to/contextual_compression) abstraction in LangChain."
]
},
{

View File

@@ -1,37 +0,0 @@
# Salute Devices
Salute Devices provides GigaChat LLM's models.
For more info how to get access to GigaChat [follow here](https://developers.sber.ru/docs/ru/gigachat/api/integration).
## Installation and Setup
GigaChat package can be installed via pip from PyPI:
```bash
pip install langchain-gigachat
```
## LLMs
See a [usage example](/docs/integrations/llms/gigachat).
```python
from langchain_community.llms import GigaChat
```
## Chat models
See a [usage example](/docs/integrations/chat/gigachat).
```python
from langchain_gigachat.chat_models import GigaChat
```
## Embeddings
See a [usage example](/docs/integrations/text_embedding/gigachat).
```python
from langchain_gigachat.embeddings import GigaChatEmbeddings
```

View File

@@ -73,7 +73,7 @@ You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["searchapi"])
```

View File

@@ -52,7 +52,7 @@ You can also load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["searx-search"],
searx_host="http://localhost:8888",
engines=["github"])

View File

@@ -24,7 +24,7 @@ For a more detailed walkthrough of this wrapper, see [this notebook](/docs/integ
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["serpapi"])
```

View File

@@ -29,7 +29,7 @@ For a more detailed walkthrough of this wrapper, see [this notebook](/docs/integ
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["stackexchange"])
```

View File

@@ -4,13 +4,12 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# ValyuContext\n",
"\n",
"# Valyu Deep Search\n",
">[Valyu](https://www.valyu.network/) allows AI applications and agents to search the internet and proprietary data sources for relevant LLM ready information.\n",
"\n",
"This notebook goes over how to use Valyu in LangChain.\n",
"\n",
"First, get an Valyu API key and add it as an environment variable. Get $10 free credit by [signing up here](https://exchange.valyu.network/).\n",
"First, get an Valyu API key and add it as an environment variable. Get $10 free credit by [signing up here](https://platform.valyu.network/).\n",
"\n",
"## Setup\n",
"\n",
@@ -43,12 +42,20 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_valyu import ValyuContextRetriever\n",
"from langchain_valyu import ValyuRetriever\n",
"\n",
"valyu_api_key = \"YOUR API KEY\"\n",
"\n",
"# Create a new instance of the ValyuContextRetriever\n",
"valyu_retriever = ValyuContextRetriever(valyu_api_key=valyu_api_key)\n",
"# Create a new instance of the ValyuRetriever\n",
"valyu_retriever = ValyuRetriever(\n",
" k=5,\n",
" search_type=\"all\",\n",
" relevance_threshold=0.5,\n",
" max_price=20.0,\n",
" start_date=\"2024-01-01\",\n",
" end_date=\"2024-12-31\",\n",
" valyu_api_key=valyu_api_key,\n",
")\n",
"\n",
"# Search for a query and save the results\n",
"docs = valyu_retriever.invoke(\"What are the benefits of renewable energy?\")\n",
@@ -84,9 +91,10 @@
" query=\"What are agentic search-enhanced large reasoning models?\",\n",
" search_type=\"all\",\n",
" max_num_results=5,\n",
" similarity_threshold=0.4,\n",
" query_rewrite=False,\n",
" relevance_threshold=0.5,\n",
" max_price=20.0,\n",
" start_date=\"2024-01-01\",\n",
" end_date=\"2024-12-31\",\n",
")\n",
"\n",
"print(\"Search Results:\", search_results)"

View File

@@ -32,7 +32,7 @@ For a more detailed walkthrough of this wrapper, see [this notebook](/docs/integ
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
from langchain_community.agent_toolkits.load_tools import load_tools
tools = load_tools(["wolfram-alpha"])
```

View File

@@ -45,7 +45,9 @@
"id": "8304b4d9",
"metadata": {},
"source": [
"## Example"
"## Example\n",
"\n",
"See [ChatXAI docs](/docs/integrations/chat/xai) for detail and supported features."
]
},
{

View File

@@ -21,7 +21,7 @@
"\n",
"`AzureAISearchRetriever` is an integration module that returns documents from an unstructured query. It's based on the BaseRetriever class and it targets the 2023-11-01 stable REST API version of Azure AI Search, which means it supports vector indexing and queries.\n",
"\n",
"This guide will help you getting started with the Azure AI Search [retriever](/docs/concepts/retrievers). For detailed documentation of all `AzureAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.azure_ai_search.AzureAISearchRetriever.html).\n",
"This guide will help you get started with the Azure AI Search [retriever](/docs/concepts/retrievers). For detailed documentation of all `AzureAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.azure_ai_search.AzureAISearchRetriever.html).\n",
"\n",
"`AzureAISearchRetriever` replaces `AzureCognitiveSearchRetriever`, which will soon be deprecated. We recommend switching to the newer version that's based on the most recent stable version of the search APIs.\n",
"\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# Bedrock (Knowledge Bases) Retriever\n",
"\n",
"This guide will help you getting started with the AWS Knowledge Bases [retriever](/docs/concepts/retrievers).\n",
"This guide will help you get started with the AWS Knowledge Bases [retriever](/docs/concepts/retrievers).\n",
"\n",
"[Knowledge Bases for Amazon Bedrock](https://aws.amazon.com/bedrock/knowledge-bases/) is an Amazon Web Services (AWS) offering which lets you quickly build RAG applications by using your private data to customize FM response.\n",
"\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# BoxRetriever\n",
"\n",
"This will help you getting started with the Box [retriever](/docs/concepts/retrievers). For detailed documentation of all BoxRetriever features and configurations head to the [API reference](https://python.langchain.com/api_reference/box/retrievers/langchain_box.retrievers.box.BoxRetriever.html).\n",
"This will help you get started with the Box [retriever](/docs/concepts/retrievers). For detailed documentation of all BoxRetriever features and configurations head to the [API reference](https://python.langchain.com/api_reference/box/retrievers/langchain_box.retrievers.box.BoxRetriever.html).\n",
"\n",
"# Overview\n",
"\n",

View File

@@ -17,7 +17,7 @@
"source": [
"# CogneeRetriever\n",
"\n",
"This will help you getting started with the Cognee [retriever](/docs/concepts/retrievers). For detailed documentation of all CogneeRetriever features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.cognee.CogneeRetriever.html).\n",
"This will help you get started with the Cognee [retriever](/docs/concepts/retrievers). For detailed documentation of all CogneeRetriever features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.cognee.CogneeRetriever.html).\n",
"\n",
"### Integration details\n",
"\n",

View File

@@ -23,7 +23,7 @@
"source": [
"# DappierRetriever\n",
"\n",
"This will help you getting started with the Dappier [retriever](https://python.langchain.com/docs/concepts/retrievers/). For detailed documentation of all DappierRetriever features and configurations head to the [API reference](https://python.langchain.com/en/latest/retrievers/langchain_dappier.retrievers.Dappier.DappierRetriever.html).\n",
"This will help you get started with the Dappier [retriever](https://python.langchain.com/docs/concepts/retrievers/). For detailed documentation of all DappierRetriever features and configurations head to the [API reference](https://python.langchain.com/en/latest/retrievers/langchain_dappier.retrievers.Dappier.DappierRetriever.html).\n",
"\n",
"### Setup\n",
"\n",

Some files were not shown because too many files have changed in this diff Show More