Compare commits

..

2 Commits

Author SHA1 Message Date
Harrison Chase
56f663e92e cr 2022-11-17 08:35:59 -08:00
Harrison Chase
618e271c14 prompt docs 2022-11-16 18:23:52 -08:00
1057 changed files with 4497 additions and 133173 deletions

View File

@@ -1,6 +0,0 @@
.venv
.github
.git
.mypy_cache
.pytest_cache
Dockerfile

View File

@@ -1,6 +1,5 @@
[flake8]
exclude =
venv
.venv
__pycache__
notebooks

View File

@@ -1,190 +0,0 @@
# Contributing to LangChain
Hi there! Thank you for even being interested in contributing to LangChain.
As an open source project in a rapidly developing field, we are extremely open
to contributions, whether it be in the form of a new feature, improved infra, or better documentation.
To contribute to this project, please follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
Please do not try to push directly to this repo unless you are maintainer.
## 🗺Contributing Guidelines
### 🚩GitHub Issues
Our [issues](https://github.com/hwchase17/langchain/issues) page is kept up to date
with bugs, improvements, and feature requests. There is a taxonomy of labels to help
with sorting and discovery of issues of interest. These include:
- prompts: related to prompt tooling/infra.
- llms: related to LLM wrappers/tooling/infra.
- chains
- utilities: related to different types of utilities to integrate with (Python, SQL, etc.).
- agents
- memory
- applications: related to example applications to build
If you start working on an issue, please assign it to yourself.
If you are adding an issue, please try to keep it focused on a single modular bug/improvement/feature.
If the two issues are related, or blocking, please link them rather than keep them as one single one.
We will try to keep these issues as up to date as possible, though
with the rapid rate of develop in this field some may get out of date.
If you notice this happening, please just let us know.
### 🙋Getting Help
Although we try to have a developer setup to make it as easy as possible for others to contribute (see below)
it is possible that some pain point may arise around environment setup, linting, documentation, or other.
Should that occur, please contact a maintainer! Not only do we want to help get you unblocked,
but we also want to make sure that the process is smooth for future contributors.
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
If you are finding these difficult (or even just annoying) to work with,
feel free to contact a maintainer for help - we do not want these to get in the way of getting
good code into the codebase.
### 🏭Release process
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
a developer and published to [PyPI](https://pypi.org/project/langchain/).
LangChain follows the [semver](https://semver.org/) versioning standard. However, as pre-1.0 software,
even patch releases may contain [non-backwards-compatible changes](https://semver.org/#spec-item-4).
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or in another manner.
## 🚀Quick Start
This project uses [Poetry](https://python-poetry.org/) as a dependency manager. Check out Poetry's [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
❗Note: If you use `Conda` or `Pyenv` as your environment / package manager, avoid dependency conflicts by doing the following first:
1. *Before installing Poetry*, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
2. Install Poetry (see above)
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
4. Continue with the following steps.
To install requirements:
```bash
poetry install -E all
```
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage. Note the `-E all` flag will install all optional dependencies necessary for integration testing.
❗Note: If you're running Poetry 1.4.1 and receive a `WheelFileValidationError` for `debugpy` during installation, you can try either downgrading to Poetry 1.4.0 or disabling "modern installation" (`poetry config installer.modern-installation false`) and re-install requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
Now, you should be able to run the common tasks in the following section.
## ✅Common Tasks
Type `make` for a list of common tasks.
### Code Formatting
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
To run formatting for this project:
```bash
make format
```
### Linting
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
To run linting for this project:
```bash
make lint
```
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Coverage
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
To get a report of current coverage, run the following:
```bash
make coverage
```
### Testing
Unit tests cover modular logic that does not require calls to outside APIs.
To run unit tests:
```bash
make test
```
To run unit tests in Docker:
```bash
make docker_tests
```
If you add new logic, please add a unit test.
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
To run integration tests:
```bash
make integration_tests
```
If you add support for a new external API, please add a new integration test.
### Adding a Jupyter Notebook
If you are adding a Jupyter notebook example, you'll want to install the optional `dev` dependencies.
To install dev dependencies:
```bash
poetry install --with dev
```
Launch a notebook:
```bash
poetry run jupyter notebook
```
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
## Documentation
### Contribute Documentation
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Build Documentation Locally
Before building the documentation, it is always a good idea to clean the build directory:
```bash
make docs_clean
```
Next, you can run the linkchecker to make sure all links are valid:
```bash
make docs_linkcheck
```
Finally, you can build the documentation as outlined below:
```bash
make docs_build
```

View File

@@ -1,36 +0,0 @@
name: linkcheck
on:
push:
branches: [master]
pull_request:
env:
POETRY_VERSION: "1.3.1"
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.11"
steps:
- uses: actions/checkout@v3
- name: Install poetry
run: |
pipx install poetry==$POETRY_VERSION
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: poetry
- name: Install dependencies
run: |
poetry install --with docs
- name: Build the docs
run: |
make docs_build
- name: Analyzing the docs with linkcheck
run: |
make docs_linkcheck

View File

@@ -1,36 +1,23 @@
name: lint
on:
push:
branches: [master]
pull_request:
env:
POETRY_VERSION: "1.3.1"
on: [push, pull_request]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
python-version: ["3.7"]
steps:
- uses: actions/checkout@v3
- name: Install poetry
run: |
pipx install poetry==$POETRY_VERSION
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: poetry
- name: Install dependencies
run: |
poetry install
- name: Analysing the code with our lint
run: |
make lint
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r test_requirements.txt
- name: Analysing the code with our lint
run: |
make lint

View File

@@ -1,49 +0,0 @@
name: release
on:
pull_request:
types:
- closed
branches:
- master
paths:
- 'pyproject.toml'
env:
POETRY_VERSION: "1.3.1"
jobs:
if_release:
if: |
${{ github.event.pull_request.merged == true }}
&& ${{ contains(github.event.pull_request.labels.*.name, 'release') }}
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install poetry
run: pipx install poetry==$POETRY_VERSION
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
cache: "poetry"
- name: Build project for distribution
run: poetry build
- name: Check Version
id: check-version
run: |
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- name: Create Release
uses: ncipollo/release-action@v1
with:
artifacts: "dist/*"
token: ${{ secrets.GITHUB_TOKEN }}
draft: false
generateReleaseNotes: true
tag: v${{ steps.check-version.outputs.version }}
commit: master
- name: Publish to PyPI
env:
POETRY_PYPI_TOKEN_PYPI: ${{ secrets.PYPI_API_TOKEN }}
run: |
poetry publish

View File

@@ -1,34 +1,23 @@
name: test
on:
push:
branches: [master]
pull_request:
env:
POETRY_VERSION: "1.3.1"
on: [push, pull_request]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
python-version: ["3.7"]
steps:
- uses: actions/checkout@v3
- name: Install poetry
run: pipx install poetry==$POETRY_VERSION
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: "poetry"
- name: Install dependencies
run: poetry install
- name: Run unit tests
run: |
make test
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r test_requirements.txt
- name: Run unit tests
run: |
make tests

13
.gitignore vendored
View File

@@ -1,5 +1,4 @@
.vscode/
.idea/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@@ -106,9 +105,7 @@ celerybeat.pid
# Environments
.env
.envrc
.venv
.venvs
env/
venv/
ENV/
@@ -132,13 +129,3 @@ dmypy.json
# Pyre type checker
.pyre/
# macOS display setting files
.DS_Store
# Wandb directory
wandb/
# asdf tool versions
.tool-versions
/.ruff_cache/

View File

@@ -1,8 +0,0 @@
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Chase"
given-names: "Harrison"
title: "LangChain"
date-released: 2022-10-17
url: "https://github.com/hwchase17/langchain"

View File

@@ -1,44 +0,0 @@
# This is a Dockerfile for running unit tests
# Use the Python base image
FROM python:3.11.2-bullseye AS builder
# Define the version of Poetry to install (default is 1.4.2)
ARG POETRY_VERSION=1.4.2
# Define the directory to install Poetry to (default is /opt/poetry)
ARG POETRY_HOME=/opt/poetry
# Create a Python virtual environment for Poetry and install it
RUN python3 -m venv ${POETRY_HOME} && \
$POETRY_HOME/bin/pip install --upgrade pip && \
$POETRY_HOME/bin/pip install poetry==${POETRY_VERSION}
# Test if Poetry is installed in the expected path
RUN echo "Poetry version:" && $POETRY_HOME/bin/poetry --version
# Set the working directory for the app
WORKDIR /app
# Use a multi-stage build to install dependencies
FROM builder AS dependencies
# Copy only the dependency files for installation
COPY pyproject.toml poetry.lock poetry.toml ./
# Install the Poetry dependencies (this layer will be cached as long as the dependencies don't change)
RUN $POETRY_HOME/bin/poetry install --no-interaction --no-ansi --with test
# Use a multi-stage build to run tests
FROM dependencies AS tests
# Copy the rest of the app source code (this layer will be invalidated and rebuilt whenever the source code changes)
COPY . .
RUN /opt/poetry/bin/poetry install --no-interaction --no-ansi --with test
# Set the entrypoint to run tests using Poetry
ENTRYPOINT ["/opt/poetry/bin/poetry", "run", "pytest"]
# Set the default command to run all unit tests
CMD ["tests/unit_tests"]

3
MANIFEST.in Normal file
View File

@@ -0,0 +1,3 @@
include langchain/py.typed
include langchain/VERSION
include LICENSE

View File

@@ -1,62 +1,17 @@
.PHONY: all clean format lint test tests test_watch integration_tests docker_tests help
all: help
coverage:
poetry run pytest --cov \
--cov-config=.coveragerc \
--cov-report xml \
--cov-report term-missing:skip-covered
clean: docs_clean
docs_build:
cd docs && poetry run make html
docs_clean:
cd docs && poetry run make clean
docs_linkcheck:
poetry run linkchecker docs/_build/html/index.html
.PHONY: format lint tests integration_tests
format:
poetry run black .
poetry run ruff --select I --fix .
black .
isort .
PYTHON_FILES=.
lint: PYTHON_FILES=.
lint_diff: PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$')
lint lint_diff:
poetry run mypy $(PYTHON_FILES)
poetry run black $(PYTHON_FILES) --check
poetry run ruff .
test:
poetry run pytest tests/unit_tests
lint:
mypy .
black . --check
isort . --check
flake8 .
tests:
poetry run pytest tests/unit_tests
test_watch:
poetry run ptw --now . -- tests/unit_tests
pytest tests/unit_tests
integration_tests:
poetry run pytest tests/integration_tests
docker_tests:
docker build -t my-langchain-image:test .
docker run --rm my-langchain-image:test
help:
@echo '----'
@echo 'coverage - run unit tests and generate coverage report'
@echo 'docs_build - build the documentation'
@echo 'docs_clean - clean the documentation build artifacts'
@echo 'docs_linkcheck - run linkchecker on the documentation'
@echo 'format - run code formatters'
@echo 'lint - run linters'
@echo 'test - run unit tests'
@echo 'test_watch - run unit tests in watch mode'
@echo 'integration_tests - run integration tests'
@echo 'docker_tests - run unit tests in docker'
pytest tests/integration_tests

134
README.md
View File

@@ -2,10 +2,7 @@
⚡ Building applications with LLMs through composability ⚡
[![lint](https://github.com/hwchase17/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [![test](https://github.com/hwchase17/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [![linkcheck](https://github.com/hwchase17/langchain/actions/workflows/linkcheck.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/linkcheck.yml) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai) [![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
**Production Support:** As you move your LangChains into production, we'd love to offer more comprehensive support.
Please fill out [this form](https://forms.gle/57d8AmXBYp8PP8tZA) and we'll set up a dedicated support Slack channel.
[![lint](https://github.com/hwchase17/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [![test](https://github.com/hwchase17/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai) [![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
## Quick Install
@@ -16,67 +13,120 @@ Please fill out [this form](https://forms.gle/57d8AmXBYp8PP8tZA) and we'll set u
Large language models (LLMs) are emerging as a transformative technology, enabling
developers to build applications that they previously could not.
But using these LLMs in isolation is often not enough to
create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
create a truly powerful app - the real power comes when you are able to
combine them with other sources of computation or knowledge.
This library is aimed at assisting in the development of those types of applications. Common examples of these types of applications include:
This library is aimed at assisting in the development of those types of applications.
It aims to create:
**❓ Question Answering over specific documents**
- [Documentation](https://langchain.readthedocs.io/en/latest/use_cases/question_answering.html)
- End-to-end Example: [Question Answering over Notion Database](https://github.com/hwchase17/notion-qa)
**💬 Chatbots**
- [Documentation](https://langchain.readthedocs.io/en/latest/use_cases/chatbots.html)
- End-to-end Example: [Chat-LangChain](https://github.com/hwchase17/chat-langchain)
**🤖 Agents**
- [Documentation](https://langchain.readthedocs.io/en/latest/modules/agents.html)
- End-to-end Example: [GPT+WolframAlpha](https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain)
1. a comprehensive collection of pieces you would ever want to combine
2. a flexible interface for combining pieces into a single comprehensive "chain"
3. a schema for easily saving and sharing those chains
## 📖 Documentation
Please see [here](https://langchain.readthedocs.io/en/latest/?) for full documentation on:
- Getting started (installation, setting up the environment, simple examples)
- Getting started (installation, setting up environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs)
- Resources (high-level explanation of core concepts)
- Resources (high level explanation of core concepts)
## 🚀 What can this help with?
## 🚀 What can I do with this
There are six main areas that LangChain is designed to help with.
These are, in increasing order of complexity:
This project was largely inspired by a few projects seen on Twitter for which we thought it would make sense to have more explicit tooling. A lot of the initial functionality was done in an attempt to recreate those. Those are:
**📃 LLMs and Prompts:**
**[Self-ask-with-search](https://ofir.io/self-ask.pdf)**
This includes prompt management, prompt optimization, generic interface for all LLMs, and common utilities for working with LLMs.
To recreate this paper, use the following code snippet or checkout the [example notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/demos/self_ask_with_search.ipynb).
**🔗 Chains:**
```python
from langchain import SelfAskWithSearchChain, OpenAI, SerpAPIChain
Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
llm = OpenAI(temperature=0)
search = SerpAPIChain()
**📚 Data Augmented Generation:**
self_ask_with_search = SelfAskWithSearchChain(llm=llm, search_chain=search)
Data Augmented Generation involves specific types of chains that first interact with an external datasource to fetch data to use in the generation step. Examples of this include summarization of long pieces of text and question/answering over specific data sources.
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
```
**🤖 Agents:**
**[LLM Math](https://twitter.com/amasad/status/1568824744367259648?s=20&t=-7wxpXBJinPgDuyHLouP1w)**
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.
To recreate this example, use the following code snippet or check out the [example notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/demos/llm_math.ipynb).
**🧠 Memory:**
```python
from langchain import OpenAI, LLMMathChain
Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
llm = OpenAI(temperature=0)
llm_math = LLMMathChain(llm=llm)
**🧐 Evaluation:**
llm_math.run("How many of the integers between 0 and 99 inclusive are divisible by 8?")
```
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
**Generic Prompting**
For more information on these concepts, please see our [full documentation](https://langchain.readthedocs.io/en/latest/?).
You can also use this for simple prompting pipelines, as in the below example and this [example notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/demos/simple_prompts.ipynb).
## 💁 Contributing
```python
from langchain import Prompt, OpenAI, LLMChain
As an open source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infra, or better documentation.
template = """Question: {question}
For detailed information on how to contribute, see [here](.github/CONTRIBUTING.md).
Answer: Let's think step by step."""
prompt = Prompt(template=template, input_variables=["question"])
llm = OpenAI(temperature=0)
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
llm_chain.predict(question=question)
```
**Embed & Search Documents**
We support two vector databases to store and search embeddings -- FAISS and Elasticsearch. Here's a code snippet showing how to use FAISS to store embeddings and search for text similar to a query. Both database backends are featured in this [example notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/integrations/embeddings.ipynb).
```python
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.faiss import FAISS
from langchain.text_splitter import CharacterTextSplitter
with open('state_of_the_union.txt') as f:
state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)
embeddings = OpenAIEmbeddings()
docsearch = FAISS.from_texts(texts, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)
```
## 🤖 Developer Guide
To begin developing on this project, first clone to the repo locally.
To install requirements, run `pip install -r requirements.txt`.
This will install all requirements for running the package, examples, linting, formatting, and tests.
Formatting for this project is a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
To run formatting for this project, run `make format`.
Linting for this project is a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
To run linting for this project, run `make lint`.
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.
Unit tests cover modular logic that does not require calls to outside apis.
To run unit tests, run `make tests`.
If you add new logic, please add a unit test.
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
To run integration tests, run `make integration_tests`.
If you add support for a new external API, please add a new integration test.
If you are adding a Jupyter notebook example, you can run `pip install -e .` to build the langchain package from your local changes, so your new logic can be imported into the notebook.
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.

View File

@@ -3,7 +3,7 @@
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SPHINXAUTOBUILD ?= sphinx-autobuild
SOURCEDIR = .

Binary file not shown.

Before

Width:  |  Height:  |  Size: 559 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 235 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

View File

@@ -1,13 +0,0 @@
pre {
white-space: break-spaces;
}
@media (min-width: 1200px) {
.container,
.container-lg,
.container-md,
.container-sm,
.container-xl {
max-width: 2560px !important;
}
}

View File

@@ -15,22 +15,16 @@
# import sys
# sys.path.insert(0, os.path.abspath('.'))
import toml
with open("../pyproject.toml") as f:
data = toml.load(f)
import langchain
# -- Project information -----------------------------------------------------
project = "🦜🔗 LangChain"
copyright = "2023, Harrison Chase"
project = "LangChain"
copyright = "2022, Harrison Chase"
author = "Harrison Chase"
version = data["tool"]["poetry"]["version"]
release = version
html_title = project + " " + version
html_last_updated_fmt = "%b %d, %Y"
version = langchain.__version__
release = langchain.__version__
# -- General configuration ---------------------------------------------------
@@ -45,12 +39,11 @@ extensions = [
"sphinx.ext.napoleon",
"sphinx.ext.viewcode",
"sphinxcontrib.autodoc_pydantic",
"myst_nb",
"sphinx_copybutton",
"myst_parser",
"nbsphinx",
"sphinx_panels",
"IPython.sphinxext.ipython_console_highlighting",
]
source_suffix = [".ipynb", ".html", ".md", ".rst"]
autodoc_pydantic_model_show_json = False
autodoc_pydantic_field_list_validators = False
@@ -77,13 +70,8 @@ exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_book_theme"
html_theme_options = {
"path_to_docs": "docs",
"repository_url": "https://github.com/hwchase17/langchain",
"use_repository_button": True,
}
html_theme = "sphinx_rtd_theme"
# html_theme = "sphinx_typlog_theme"
html_context = {
"display_github": True, # Integrate GitHub
@@ -96,12 +84,4 @@ html_context = {
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
# These paths are either relative to html_static_path
# or fully qualified paths (eg. https://...)
html_css_files = [
"css/custom.css",
]
nb_execution_mode = "off"
myst_enable_extensions = ["colon_fence"]
html_static_path: list = []

25
docs/core_concepts.md Normal file
View File

@@ -0,0 +1,25 @@
# Core Concepts
This section goes over the core concepts of LangChain.
Understanding these will go a long way in helping you understand the codebase and how to construct chains.
## Prompts
Prompts generically have a `format` method that takes in variables and returns a formatted string.
The most simple implementation of this is to have a template string with some variables in it, and then format it with the incoming variables.
More complex iterations dynamically construct the template string from few shot examples, etc.
## LLMs
Wrappers around Large Language Models (in particular, the `generate` ability of large language models) are some of the core functionality of LangChain.
These wrappers are classes that are callable: they take in an input string, and return the generated output string.
## Embeddings
These classes are very similar to the LLM classes in that they are wrappers around models,
but rather than return a string they return an embedding (list of floats). This are particularly useful when
implementing semantic search functionality. They expose separate methods for embedding queries versus embedding documents.
## Vectorstores
These are datastores that store documents. They expose a method for passing in a string and finding similar documents.
## Chains
These are pipelines that combine multiple of the above ideas.
They vary greatly in complexity and are combination of generic, highly configurable pipelines and more narrow (but usually more complex) pipelines.

View File

@@ -1,42 +0,0 @@
# Deployments
So you've made a really cool chain - now what? How do you deploy it and make it easily sharable with the world?
This section covers several options for that.
Note that these are meant as quick deployment options for prototypes and demos, and not for production systems.
If you are looking for help with deployment of a production system, please contact us directly.
What follows is a list of template GitHub repositories aimed that are intended to be
very easy to fork and modify to use your chain.
This is far from an exhaustive list of options, and we are EXTREMELY open to contributions here.
## [Streamlit](https://github.com/hwchase17/langchain-streamlit-template)
This repo serves as a template for how to deploy a LangChain with Streamlit.
It implements a chatbot interface.
It also contains instructions for how to deploy this app on the Streamlit platform.
## [Gradio (on Hugging Face)](https://github.com/hwchase17/langchain-gradio-template)
This repo serves as a template for how deploy a LangChain with Gradio.
It implements a chatbot interface, with a "Bring-Your-Own-Token" approach (nice for not wracking up big bills).
It also contains instructions for how to deploy this app on the Hugging Face platform.
This is heavily influenced by James Weaver's [excellent examples](https://huggingface.co/JavaFXpert).
## [Beam](https://github.com/slai-labs/get-beam/tree/main/examples/langchain-question-answering)
This repo serves as a template for how deploy a LangChain with [Beam](https://beam.cloud).
It implements a Question Answering app and contains instructions for deploying the app as a serverless REST API.
## [Vercel](https://github.com/homanp/vercel-langchain)
A minimal example on how to run LangChain on Vercel using Flask.
## [SteamShip](https://github.com/steamship-core/steamship-langchain/)
This repository contains LangChain adapters for Steamship, enabling LangChain developers to rapidly deploy their apps on Steamship.
This includes: production ready endpoints, horizontal scaling across dependencies, persistant storage of app state, multi-tenancy support, etc.
## [Langchain-serve](https://github.com/jina-ai/langchain-serve)
This repository allows users to serve local chains and agents as RESTful, gRPC, or Websocket APIs thanks to [Jina](https://docs.jina.ai/). Deploy your chains & agents with ease and enjoy independent scaling, serverless and autoscaling APIs, as well as a Streamlit playground on Jina AI Cloud.

View File

@@ -1,10 +0,0 @@
LangChain Ecosystem
===================
Guides for how other companies/products can be used with LangChain
.. toctree::
:maxdepth: 1
:glob:
ecosystem/*

View File

@@ -1,16 +0,0 @@
# AI21 Labs
This page covers how to use the AI21 ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific AI21 wrappers.
## Installation and Setup
- Get an AI21 api key and set it as an environment variable (`AI21_API_KEY`)
## Wrappers
### LLM
There exists an AI21 LLM wrapper, which you can access with
```python
from langchain.llms import AI21
```

View File

@@ -1,293 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Aim\n",
"\n",
"Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. \n",
"\n",
"With Aim, you can easily debug and examine an individual execution:\n",
"\n",
"![](https://user-images.githubusercontent.com/13848158/227784778-06b806c7-74a1-4d15-ab85-9ece09b458aa.png)\n",
"\n",
"Additionally, you have the option to compare multiple executions side by side:\n",
"\n",
"![](https://user-images.githubusercontent.com/13848158/227784994-699b24b7-e69b-48f9-9ffa-e6a6142fd719.png)\n",
"\n",
"Aim is fully open source, [learn more](https://github.com/aimhubio/aim) about Aim on GitHub.\n",
"\n",
"Let's move forward and see how to enable and configure Aim callback."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Tracking LangChain Executions with Aim</h3>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this notebook we will explore three usage scenarios. To start off, we will install the necessary packages and import certain modules. Subsequently, we will configure two environment variables that can be established either within the Python script or through the terminal."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "mf88kuCJhbVu"
},
"outputs": [],
"source": [
"!pip install aim\n",
"!pip install langchain\n",
"!pip install openai\n",
"!pip install google-search-results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "g4eTuajwfl6L"
},
"outputs": [],
"source": [
"import os\n",
"from datetime import datetime\n",
"\n",
"from langchain.llms import OpenAI\n",
"from langchain.callbacks.base import CallbackManager\n",
"from langchain.callbacks import AimCallbackHandler, StdOutCallbackHandler"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our examples use a GPT model as the LLM, and OpenAI offers an API for this purpose. You can obtain the key from the following link: https://platform.openai.com/account/api-keys .\n",
"\n",
"We will use the SerpApi to retrieve search results from Google. To acquire the SerpApi key, please go to https://serpapi.com/manage-api-key ."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "T1bSmKd6V2If"
},
"outputs": [],
"source": [
"os.environ[\"OPENAI_API_KEY\"] = \"...\"\n",
"os.environ[\"SERPAPI_API_KEY\"] = \"...\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QenUYuBZjIzc"
},
"source": [
"The event methods of `AimCallbackHandler` accept the LangChain module or agent as input and log at least the prompts and generated results, as well as the serialized version of the LangChain module, to the designated Aim run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "KAz8weWuUeXF"
},
"outputs": [],
"source": [
"session_group = datetime.now().strftime(\"%m.%d.%Y_%H.%M.%S\")\n",
"aim_callback = AimCallbackHandler(\n",
" repo=\".\",\n",
" experiment_name=\"scenario 1: OpenAI LLM\",\n",
")\n",
"\n",
"manager = CallbackManager([StdOutCallbackHandler(), aim_callback])\n",
"llm = OpenAI(temperature=0, callback_manager=manager, verbose=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "b8WfByB4fl6N"
},
"source": [
"The `flush_tracker` function is used to record LangChain assets on Aim. By default, the session is reset rather than being terminated outright."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Scenario 1</h3> In the first scenario, we will use OpenAI LLM."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "o_VmneyIUyx8"
},
"outputs": [],
"source": [
"# scenario 1 - LLM\n",
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n",
"aim_callback.flush_tracker(\n",
" langchain_asset=llm,\n",
" experiment_name=\"scenario 2: Chain with multiple SubChains on multiple generations\",\n",
")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Scenario 2</h3> Scenario two involves chaining with multiple SubChains across multiple generations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "trxslyb1U28Y"
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "uauQk10SUzF6"
},
"outputs": [],
"source": [
"# scenario 2 - Chain\n",
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
"Title: {title}\n",
"Playwright: This is a synopsis for the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callback_manager=manager)\n",
"\n",
"test_prompts = [\n",
" {\"title\": \"documentary about good video games that push the boundary of game design\"},\n",
" {\"title\": \"the phenomenon behind the remarkable speed of cheetahs\"},\n",
" {\"title\": \"the best in class mlops tooling\"},\n",
"]\n",
"synopsis_chain.apply(test_prompts)\n",
"aim_callback.flush_tracker(\n",
" langchain_asset=synopsis_chain, experiment_name=\"scenario 3: Agent with Tools\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Scenario 3</h3> The third scenario involves an agent with tools."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_jN73xcPVEpI"
},
"outputs": [],
"source": [
"from langchain.agents import initialize_agent, load_tools\n",
"from langchain.agents import AgentType"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Gpq4rk6VT9cu",
"outputId": "68ae261e-d0a2-4229-83c4-762562263b66"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.\n",
"Action: Search\n",
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mLeonardo DiCaprio seemed to prove a long-held theory about his love life right after splitting from girlfriend Camila Morrone just months ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Camila Morrone's age\n",
"Action: Search\n",
"Action Input: \"Camila Morrone age\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m25 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 25 raised to the 0.43 power\n",
"Action: Calculator\n",
"Action Input: 25^0.43\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mAnswer: 3.991298452658078\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Camila Morrone is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is 3.991298452658078.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
}
],
"source": [
"# scenario 3 - Agent with Tools\n",
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n",
"agent = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
" callback_manager=manager,\n",
" verbose=True,\n",
")\n",
"agent.run(\n",
" \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
")\n",
"aim_callback.flush_tracker(langchain_asset=agent, reset=False, finish=True)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,46 +0,0 @@
# Apify
This page covers how to use [Apify](https://apify.com) within LangChain.
## Overview
Apify is a cloud platform for web scraping and data extraction,
which provides an [ecosystem](https://apify.com/store) of more than a thousand
ready-made apps called *Actors* for various scraping, crawling, and extraction use cases.
[![Apify Actors](../_static/ApifyActors.png)](https://apify.com/store)
This integration enables you run Actors on the Apify platform and load their results into LangChain to feed your vector
indexes with documents and data from the web, e.g. to generate answers from websites with documentation,
blogs, or knowledge bases.
## Installation and Setup
- Install the Apify API client for Python with `pip install apify-client`
- Get your [Apify API token](https://console.apify.com/account/integrations) and either set it as
an environment variable (`APIFY_API_TOKEN`) or pass it to the `ApifyWrapper` as `apify_api_token` in the constructor.
## Wrappers
### Utility
You can use the `ApifyWrapper` to run Actors on the Apify platform.
```python
from langchain.utilities import ApifyWrapper
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/apify.ipynb).
### Loader
You can also use our `ApifyDatasetLoader` to get data from Apify dataset.
```python
from langchain.document_loaders import ApifyDatasetLoader
```
For a more detailed walkthrough of this loader, see [this notebook](../modules/indexes/document_loaders/examples/apify_dataset.ipynb).

View File

@@ -1,27 +0,0 @@
# AtlasDB
This page covers how to use Nomic's Atlas ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Atlas wrappers.
## Installation and Setup
- Install the Python package with `pip install nomic`
- Nomic is also included in langchains poetry extras `poetry install -E all`
## Wrappers
### VectorStore
There exists a wrapper around the Atlas neural database, allowing you to use it as a vectorstore.
This vectorstore also gives you full access to the underlying AtlasProject object, which will allow you to use the full range of Atlas map interactions, such as bulk tagging and automatic topic modeling.
Please see [the Atlas docs](https://docs.nomic.ai/atlas_api.html) for more detailed information.
To import this vectorstore:
```python
from langchain.vectorstores import AtlasDB
```
For a more detailed walkthrough of the AtlasDB wrapper, see [this notebook](../modules/indexes/vectorstores/examples/atlas.ipynb)

View File

@@ -1,79 +0,0 @@
# Banana
This page covers how to use the Banana ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Banana wrappers.
## Installation and Setup
- Install with `pip install banana-dev`
- Get an Banana api key and set it as an environment variable (`BANANA_API_KEY`)
## Define your Banana Template
If you want to use an available language model template you can find one [here](https://app.banana.dev/templates/conceptofmind/serverless-template-palmyra-base).
This template uses the Palmyra-Base model by [Writer](https://writer.com/product/api/).
You can check out an example Banana repository [here](https://github.com/conceptofmind/serverless-template-palmyra-base).
## Build the Banana app
Banana Apps must include the "output" key in the return json.
There is a rigid response structure.
```python
# Return the results as a dictionary
result = {'output': result}
```
An example inference function would be:
```python
def inference(model_inputs:dict) -> dict:
global model
global tokenizer
# Parse out your arguments
prompt = model_inputs.get('prompt', None)
if prompt == None:
return {'message': "No prompt provided"}
# Run the model
input_ids = tokenizer.encode(prompt, return_tensors='pt').cuda()
output = model.generate(
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
temperature=0.9,
early_stopping=True,
no_repeat_ngram_size=3,
num_beams=5,
length_penalty=1.5,
repetition_penalty=1.5,
bad_words_ids=[[tokenizer.encode(' ', add_prefix_space=True)[0]]]
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
# Return the results as a dictionary
result = {'output': result}
return result
```
You can find a full example of a Banana app [here](https://github.com/conceptofmind/serverless-template-palmyra-base/blob/main/app.py).
## Wrappers
### LLM
There exists an Banana LLM wrapper, which you can access with
```python
from langchain.llms import Banana
```
You need to provide a model key located in the dashboard:
```python
llm = Banana(model_key="YOUR_MODEL_KEY")
```

View File

@@ -1,17 +0,0 @@
# CerebriumAI
This page covers how to use the CerebriumAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific CerebriumAI wrappers.
## Installation and Setup
- Install with `pip install cerebrium`
- Get an CerebriumAI api key and set it as an environment variable (`CEREBRIUMAI_API_KEY`)
## Wrappers
### LLM
There exists an CerebriumAI LLM wrapper, which you can access with
```python
from langchain.llms import CerebriumAI
```

View File

@@ -1,20 +0,0 @@
# Chroma
This page covers how to use the Chroma ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.
## Installation and Setup
- Install the Python package with `pip install chromadb`
## Wrappers
### VectorStore
There exists a wrapper around Chroma vector databases, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Chroma
```
For a more detailed walkthrough of the Chroma wrapper, see [this notebook](../modules/indexes/vectorstores/getting_started.ipynb)

View File

@@ -1,589 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# ClearML Integration\n",
"\n",
"In order to properly keep track of your langchain experiments and their results, you can enable the ClearML integration. ClearML is an experiment manager that neatly tracks and organizes all your experiment runs.\n",
"\n",
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/ecosystem/clearml_tracking.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting API Credentials\n",
"\n",
"We'll be using quite some APIs in this notebook, here is a list and where to get them:\n",
"\n",
"- ClearML: https://app.clear.ml/settings/workspace-configuration\n",
"- OpenAI: https://platform.openai.com/account/api-keys\n",
"- SerpAPI (google search): https://serpapi.com/dashboard"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.environ[\"CLEARML_API_ACCESS_KEY\"] = \"\"\n",
"os.environ[\"CLEARML_API_SECRET_KEY\"] = \"\"\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
"os.environ[\"SERPAPI_API_KEY\"] = \"\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setting Up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install clearml\n",
"!pip install pandas\n",
"!pip install textstat\n",
"!pip install spacy\n",
"!python -m spacy download en_core_web_sm"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The clearml callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/allegroai/clearml/issues with the tag `langchain`.\n"
]
}
],
"source": [
"from datetime import datetime\n",
"from langchain.callbacks import ClearMLCallbackHandler, StdOutCallbackHandler\n",
"from langchain.callbacks.base import CallbackManager\n",
"from langchain.llms import OpenAI\n",
"\n",
"# Setup and use the ClearML Callback\n",
"clearml_callback = ClearMLCallbackHandler(\n",
" task_type=\"inference\",\n",
" project_name=\"langchain_callback_demo\",\n",
" task_name=\"llm\",\n",
" tags=[\"test\"],\n",
" # Change the following parameters based on the amount of detail you want tracked\n",
" visualize=True,\n",
" complexity_metrics=True,\n",
" stream_logs=True\n",
")\n",
"manager = CallbackManager([StdOutCallbackHandler(), clearml_callback])\n",
"# Get the OpenAI model ready to go\n",
"llm = OpenAI(temperature=0, callback_manager=manager, verbose=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Scenario 1: Just an LLM\n",
"\n",
"First, let's just run a single LLM a few times and capture the resulting prompt-answer conversation in ClearML"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nRoses are red,\\nViolets are blue,\\nSugar is sweet,\\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nRoses are red,\\nViolets are blue,\\nSugar is sweet,\\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nRoses are red,\\nViolets are blue,\\nSugar is sweet,\\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}\n",
"{'action_records': action name step starts ends errors text_ctr chain_starts \\\n",
"0 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"1 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"2 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"3 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"4 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"5 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"6 on_llm_end NaN 2 1 1 0 0 0 \n",
"7 on_llm_end NaN 2 1 1 0 0 0 \n",
"8 on_llm_end NaN 2 1 1 0 0 0 \n",
"9 on_llm_end NaN 2 1 1 0 0 0 \n",
"10 on_llm_end NaN 2 1 1 0 0 0 \n",
"11 on_llm_end NaN 2 1 1 0 0 0 \n",
"12 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"13 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"14 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"15 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"16 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"17 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"18 on_llm_end NaN 4 2 2 0 0 0 \n",
"19 on_llm_end NaN 4 2 2 0 0 0 \n",
"20 on_llm_end NaN 4 2 2 0 0 0 \n",
"21 on_llm_end NaN 4 2 2 0 0 0 \n",
"22 on_llm_end NaN 4 2 2 0 0 0 \n",
"23 on_llm_end NaN 4 2 2 0 0 0 \n",
"\n",
" chain_ends llm_starts ... difficult_words linsear_write_formula \\\n",
"0 0 1 ... NaN NaN \n",
"1 0 1 ... NaN NaN \n",
"2 0 1 ... NaN NaN \n",
"3 0 1 ... NaN NaN \n",
"4 0 1 ... NaN NaN \n",
"5 0 1 ... NaN NaN \n",
"6 0 1 ... 0.0 5.5 \n",
"7 0 1 ... 2.0 6.5 \n",
"8 0 1 ... 0.0 5.5 \n",
"9 0 1 ... 2.0 6.5 \n",
"10 0 1 ... 0.0 5.5 \n",
"11 0 1 ... 2.0 6.5 \n",
"12 0 2 ... NaN NaN \n",
"13 0 2 ... NaN NaN \n",
"14 0 2 ... NaN NaN \n",
"15 0 2 ... NaN NaN \n",
"16 0 2 ... NaN NaN \n",
"17 0 2 ... NaN NaN \n",
"18 0 2 ... 0.0 5.5 \n",
"19 0 2 ... 2.0 6.5 \n",
"20 0 2 ... 0.0 5.5 \n",
"21 0 2 ... 2.0 6.5 \n",
"22 0 2 ... 0.0 5.5 \n",
"23 0 2 ... 2.0 6.5 \n",
"\n",
" gunning_fog text_standard fernandez_huerta szigriszt_pazos \\\n",
"0 NaN NaN NaN NaN \n",
"1 NaN NaN NaN NaN \n",
"2 NaN NaN NaN NaN \n",
"3 NaN NaN NaN NaN \n",
"4 NaN NaN NaN NaN \n",
"5 NaN NaN NaN NaN \n",
"6 5.20 5th and 6th grade 133.58 131.54 \n",
"7 8.28 6th and 7th grade 115.58 112.37 \n",
"8 5.20 5th and 6th grade 133.58 131.54 \n",
"9 8.28 6th and 7th grade 115.58 112.37 \n",
"10 5.20 5th and 6th grade 133.58 131.54 \n",
"11 8.28 6th and 7th grade 115.58 112.37 \n",
"12 NaN NaN NaN NaN \n",
"13 NaN NaN NaN NaN \n",
"14 NaN NaN NaN NaN \n",
"15 NaN NaN NaN NaN \n",
"16 NaN NaN NaN NaN \n",
"17 NaN NaN NaN NaN \n",
"18 5.20 5th and 6th grade 133.58 131.54 \n",
"19 8.28 6th and 7th grade 115.58 112.37 \n",
"20 5.20 5th and 6th grade 133.58 131.54 \n",
"21 8.28 6th and 7th grade 115.58 112.37 \n",
"22 5.20 5th and 6th grade 133.58 131.54 \n",
"23 8.28 6th and 7th grade 115.58 112.37 \n",
"\n",
" gutierrez_polini crawford gulpease_index osman \n",
"0 NaN NaN NaN NaN \n",
"1 NaN NaN NaN NaN \n",
"2 NaN NaN NaN NaN \n",
"3 NaN NaN NaN NaN \n",
"4 NaN NaN NaN NaN \n",
"5 NaN NaN NaN NaN \n",
"6 62.30 -0.2 79.8 116.91 \n",
"7 54.83 1.4 72.1 100.17 \n",
"8 62.30 -0.2 79.8 116.91 \n",
"9 54.83 1.4 72.1 100.17 \n",
"10 62.30 -0.2 79.8 116.91 \n",
"11 54.83 1.4 72.1 100.17 \n",
"12 NaN NaN NaN NaN \n",
"13 NaN NaN NaN NaN \n",
"14 NaN NaN NaN NaN \n",
"15 NaN NaN NaN NaN \n",
"16 NaN NaN NaN NaN \n",
"17 NaN NaN NaN NaN \n",
"18 62.30 -0.2 79.8 116.91 \n",
"19 54.83 1.4 72.1 100.17 \n",
"20 62.30 -0.2 79.8 116.91 \n",
"21 54.83 1.4 72.1 100.17 \n",
"22 62.30 -0.2 79.8 116.91 \n",
"23 54.83 1.4 72.1 100.17 \n",
"\n",
"[24 rows x 39 columns], 'session_analysis': prompt_step prompts name output_step \\\n",
"0 1 Tell me a joke OpenAI 2 \n",
"1 1 Tell me a poem OpenAI 2 \n",
"2 1 Tell me a joke OpenAI 2 \n",
"3 1 Tell me a poem OpenAI 2 \n",
"4 1 Tell me a joke OpenAI 2 \n",
"5 1 Tell me a poem OpenAI 2 \n",
"6 3 Tell me a joke OpenAI 4 \n",
"7 3 Tell me a poem OpenAI 4 \n",
"8 3 Tell me a joke OpenAI 4 \n",
"9 3 Tell me a poem OpenAI 4 \n",
"10 3 Tell me a joke OpenAI 4 \n",
"11 3 Tell me a poem OpenAI 4 \n",
"\n",
" output \\\n",
"0 \\n\\nQ: What did the fish say when it hit the w... \n",
"1 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"2 \\n\\nQ: What did the fish say when it hit the w... \n",
"3 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"4 \\n\\nQ: What did the fish say when it hit the w... \n",
"5 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"6 \\n\\nQ: What did the fish say when it hit the w... \n",
"7 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"8 \\n\\nQ: What did the fish say when it hit the w... \n",
"9 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"10 \\n\\nQ: What did the fish say when it hit the w... \n",
"11 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"\n",
" token_usage_total_tokens token_usage_prompt_tokens \\\n",
"0 162 24 \n",
"1 162 24 \n",
"2 162 24 \n",
"3 162 24 \n",
"4 162 24 \n",
"5 162 24 \n",
"6 162 24 \n",
"7 162 24 \n",
"8 162 24 \n",
"9 162 24 \n",
"10 162 24 \n",
"11 162 24 \n",
"\n",
" token_usage_completion_tokens flesch_reading_ease flesch_kincaid_grade \\\n",
"0 138 109.04 1.3 \n",
"1 138 83.66 4.8 \n",
"2 138 109.04 1.3 \n",
"3 138 83.66 4.8 \n",
"4 138 109.04 1.3 \n",
"5 138 83.66 4.8 \n",
"6 138 109.04 1.3 \n",
"7 138 83.66 4.8 \n",
"8 138 109.04 1.3 \n",
"9 138 83.66 4.8 \n",
"10 138 109.04 1.3 \n",
"11 138 83.66 4.8 \n",
"\n",
" ... difficult_words linsear_write_formula gunning_fog \\\n",
"0 ... 0 5.5 5.20 \n",
"1 ... 2 6.5 8.28 \n",
"2 ... 0 5.5 5.20 \n",
"3 ... 2 6.5 8.28 \n",
"4 ... 0 5.5 5.20 \n",
"5 ... 2 6.5 8.28 \n",
"6 ... 0 5.5 5.20 \n",
"7 ... 2 6.5 8.28 \n",
"8 ... 0 5.5 5.20 \n",
"9 ... 2 6.5 8.28 \n",
"10 ... 0 5.5 5.20 \n",
"11 ... 2 6.5 8.28 \n",
"\n",
" text_standard fernandez_huerta szigriszt_pazos gutierrez_polini \\\n",
"0 5th and 6th grade 133.58 131.54 62.30 \n",
"1 6th and 7th grade 115.58 112.37 54.83 \n",
"2 5th and 6th grade 133.58 131.54 62.30 \n",
"3 6th and 7th grade 115.58 112.37 54.83 \n",
"4 5th and 6th grade 133.58 131.54 62.30 \n",
"5 6th and 7th grade 115.58 112.37 54.83 \n",
"6 5th and 6th grade 133.58 131.54 62.30 \n",
"7 6th and 7th grade 115.58 112.37 54.83 \n",
"8 5th and 6th grade 133.58 131.54 62.30 \n",
"9 6th and 7th grade 115.58 112.37 54.83 \n",
"10 5th and 6th grade 133.58 131.54 62.30 \n",
"11 6th and 7th grade 115.58 112.37 54.83 \n",
"\n",
" crawford gulpease_index osman \n",
"0 -0.2 79.8 116.91 \n",
"1 1.4 72.1 100.17 \n",
"2 -0.2 79.8 116.91 \n",
"3 1.4 72.1 100.17 \n",
"4 -0.2 79.8 116.91 \n",
"5 1.4 72.1 100.17 \n",
"6 -0.2 79.8 116.91 \n",
"7 1.4 72.1 100.17 \n",
"8 -0.2 79.8 116.91 \n",
"9 1.4 72.1 100.17 \n",
"10 -0.2 79.8 116.91 \n",
"11 1.4 72.1 100.17 \n",
"\n",
"[12 rows x 24 columns]}\n",
"2023-03-29 14:00:25,948 - clearml.Task - INFO - Completed model upload to https://files.clear.ml/langchain_callback_demo/llm.988bd727b0e94a29a3ac0ee526813545/models/simple_sequential\n"
]
}
],
"source": [
"# SCENARIO 1 - LLM\n",
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n",
"# After every generation run, use flush to make sure all the metrics\n",
"# prompts and other output are properly saved separately\n",
"clearml_callback.flush_tracker(langchain_asset=llm, name=\"simple_sequential\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"At this point you can already go to https://app.clear.ml and take a look at the resulting ClearML Task that was created.\n",
"\n",
"Among others, you should see that this notebook is saved along with any git information. The model JSON that contains the used parameters is saved as an artifact, there are also console logs and under the plots section, you'll find tables that represent the flow of the chain.\n",
"\n",
"Finally, if you enabled visualizations, these are stored as HTML files under debug samples."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Scenario 2: Creating a agent with tools\n",
"\n",
"To show a more advanced workflow, let's create an agent with access to tools. The way ClearML tracks the results is not different though, only the table will look slightly different as there are other types of actions taken when compared to the earlier, simpler example.\n",
"\n",
"You can now also see the use of the `finish=True` keyword, which will fully close the ClearML Task, instead of just resetting the parameters and prompts for a new conversation."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"{'action': 'on_chain_start', 'name': 'AgentExecutor', 'step': 1, 'starts': 1, 'ends': 0, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 0, 'llm_ends': 0, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'input': 'Who is the wife of the person who sang summer of 69?'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 2, 'starts': 2, 'ends': 0, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 0, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\\n\\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\\nCalculator: Useful for when you need to answer questions about math.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Search, Calculator]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: Who is the wife of the person who sang summer of 69?\\nThought:'}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 189, 'token_usage_completion_tokens': 34, 'token_usage_total_tokens': 223, 'model_name': 'text-davinci-003', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': ' I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 91.61, 'flesch_kincaid_grade': 3.8, 'smog_index': 0.0, 'coleman_liau_index': 3.41, 'automated_readability_index': 3.5, 'dale_chall_readability_score': 6.06, 'difficult_words': 2, 'linsear_write_formula': 5.75, 'gunning_fog': 5.4, 'text_standard': '3rd and 4th grade', 'fernandez_huerta': 121.07, 'szigriszt_pazos': 119.5, 'gutierrez_polini': 54.91, 'crawford': 0.9, 'gulpease_index': 72.7, 'osman': 92.16}\n",
"\u001b[32;1m\u001b[1;3m I need to find out who sang summer of 69 and then find out who their wife is.\n",
"Action: Search\n",
"Action Input: \"Who sang summer of 69\"\u001b[0m{'action': 'on_agent_action', 'tool': 'Search', 'tool_input': 'Who sang summer of 69', 'log': ' I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"', 'step': 4, 'starts': 3, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 1, 'tool_ends': 0, 'agent_ends': 0}\n",
"{'action': 'on_tool_start', 'input_str': 'Who sang summer of 69', 'name': 'Search', 'description': 'A search engine. Useful for when you need to answer questions about current events. Input should be a search query.', 'step': 5, 'starts': 4, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 0, 'agent_ends': 0}\n",
"\n",
"Observation: \u001b[36;1m\u001b[1;3mBryan Adams - Summer Of 69 (Official Music Video).\u001b[0m\n",
"Thought:{'action': 'on_tool_end', 'output': 'Bryan Adams - Summer Of 69 (Official Music Video).', 'step': 6, 'starts': 4, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 7, 'starts': 5, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\\n\\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\\nCalculator: Useful for when you need to answer questions about math.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Search, Calculator]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: Who is the wife of the person who sang summer of 69?\\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"\\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\\nThought:'}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 242, 'token_usage_completion_tokens': 28, 'token_usage_total_tokens': 270, 'model_name': 'text-davinci-003', 'step': 8, 'starts': 5, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'text': ' I need to find out who Bryan Adams is married to.\\nAction: Search\\nAction Input: \"Who is Bryan Adams married to\"', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 94.66, 'flesch_kincaid_grade': 2.7, 'smog_index': 0.0, 'coleman_liau_index': 4.73, 'automated_readability_index': 4.0, 'dale_chall_readability_score': 7.16, 'difficult_words': 2, 'linsear_write_formula': 4.25, 'gunning_fog': 4.2, 'text_standard': '4th and 5th grade', 'fernandez_huerta': 124.13, 'szigriszt_pazos': 119.2, 'gutierrez_polini': 52.26, 'crawford': 0.7, 'gulpease_index': 74.7, 'osman': 84.2}\n",
"\u001b[32;1m\u001b[1;3m I need to find out who Bryan Adams is married to.\n",
"Action: Search\n",
"Action Input: \"Who is Bryan Adams married to\"\u001b[0m{'action': 'on_agent_action', 'tool': 'Search', 'tool_input': 'Who is Bryan Adams married to', 'log': ' I need to find out who Bryan Adams is married to.\\nAction: Search\\nAction Input: \"Who is Bryan Adams married to\"', 'step': 9, 'starts': 6, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 3, 'tool_ends': 1, 'agent_ends': 0}\n",
"{'action': 'on_tool_start', 'input_str': 'Who is Bryan Adams married to', 'name': 'Search', 'description': 'A search engine. Useful for when you need to answer questions about current events. Input should be a search query.', 'step': 10, 'starts': 7, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 1, 'agent_ends': 0}\n",
"\n",
"Observation: \u001b[36;1m\u001b[1;3mBryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...\u001b[0m\n",
"Thought:{'action': 'on_tool_end', 'output': 'Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...', 'step': 11, 'starts': 7, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 12, 'starts': 8, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\\n\\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\\nCalculator: Useful for when you need to answer questions about math.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Search, Calculator]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: Who is the wife of the person who sang summer of 69?\\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"\\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\\nThought: I need to find out who Bryan Adams is married to.\\nAction: Search\\nAction Input: \"Who is Bryan Adams married to\"\\nObservation: Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...\\nThought:'}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 314, 'token_usage_completion_tokens': 18, 'token_usage_total_tokens': 332, 'model_name': 'text-davinci-003', 'step': 13, 'starts': 8, 'ends': 5, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'text': ' I now know the final answer.\\nFinal Answer: Bryan Adams has never been married.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 81.29, 'flesch_kincaid_grade': 3.7, 'smog_index': 0.0, 'coleman_liau_index': 5.75, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 7.37, 'difficult_words': 1, 'linsear_write_formula': 2.5, 'gunning_fog': 2.8, 'text_standard': '3rd and 4th grade', 'fernandez_huerta': 115.7, 'szigriszt_pazos': 110.84, 'gutierrez_polini': 49.79, 'crawford': 0.7, 'gulpease_index': 85.4, 'osman': 83.14}\n",
"\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: Bryan Adams has never been married.\u001b[0m\n",
"{'action': 'on_agent_finish', 'output': 'Bryan Adams has never been married.', 'log': ' I now know the final answer.\\nFinal Answer: Bryan Adams has never been married.', 'step': 14, 'starts': 8, 'ends': 6, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"{'action': 'on_chain_end', 'outputs': 'Bryan Adams has never been married.', 'step': 15, 'starts': 8, 'ends': 7, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 1, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}\n",
"{'action_records': action name step starts ends errors text_ctr \\\n",
"0 on_llm_start OpenAI 1 1 0 0 0 \n",
"1 on_llm_start OpenAI 1 1 0 0 0 \n",
"2 on_llm_start OpenAI 1 1 0 0 0 \n",
"3 on_llm_start OpenAI 1 1 0 0 0 \n",
"4 on_llm_start OpenAI 1 1 0 0 0 \n",
".. ... ... ... ... ... ... ... \n",
"66 on_tool_end NaN 11 7 4 0 0 \n",
"67 on_llm_start OpenAI 12 8 4 0 0 \n",
"68 on_llm_end NaN 13 8 5 0 0 \n",
"69 on_agent_finish NaN 14 8 6 0 0 \n",
"70 on_chain_end NaN 15 8 7 0 0 \n",
"\n",
" chain_starts chain_ends llm_starts ... gulpease_index osman input \\\n",
"0 0 0 1 ... NaN NaN NaN \n",
"1 0 0 1 ... NaN NaN NaN \n",
"2 0 0 1 ... NaN NaN NaN \n",
"3 0 0 1 ... NaN NaN NaN \n",
"4 0 0 1 ... NaN NaN NaN \n",
".. ... ... ... ... ... ... ... \n",
"66 1 0 2 ... NaN NaN NaN \n",
"67 1 0 3 ... NaN NaN NaN \n",
"68 1 0 3 ... 85.4 83.14 NaN \n",
"69 1 0 3 ... NaN NaN NaN \n",
"70 1 1 3 ... NaN NaN NaN \n",
"\n",
" tool tool_input log \\\n",
"0 NaN NaN NaN \n",
"1 NaN NaN NaN \n",
"2 NaN NaN NaN \n",
"3 NaN NaN NaN \n",
"4 NaN NaN NaN \n",
".. ... ... ... \n",
"66 NaN NaN NaN \n",
"67 NaN NaN NaN \n",
"68 NaN NaN NaN \n",
"69 NaN NaN I now know the final answer.\\nFinal Answer: B... \n",
"70 NaN NaN NaN \n",
"\n",
" input_str description output \\\n",
"0 NaN NaN NaN \n",
"1 NaN NaN NaN \n",
"2 NaN NaN NaN \n",
"3 NaN NaN NaN \n",
"4 NaN NaN NaN \n",
".. ... ... ... \n",
"66 NaN NaN Bryan Adams has never married. In the 1990s, h... \n",
"67 NaN NaN NaN \n",
"68 NaN NaN NaN \n",
"69 NaN NaN Bryan Adams has never been married. \n",
"70 NaN NaN NaN \n",
"\n",
" outputs \n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
".. ... \n",
"66 NaN \n",
"67 NaN \n",
"68 NaN \n",
"69 NaN \n",
"70 Bryan Adams has never been married. \n",
"\n",
"[71 rows x 47 columns], 'session_analysis': prompt_step prompts name \\\n",
"0 2 Answer the following questions as best you can... OpenAI \n",
"1 7 Answer the following questions as best you can... OpenAI \n",
"2 12 Answer the following questions as best you can... OpenAI \n",
"\n",
" output_step output \\\n",
"0 3 I need to find out who sang summer of 69 and ... \n",
"1 8 I need to find out who Bryan Adams is married... \n",
"2 13 I now know the final answer.\\nFinal Answer: B... \n",
"\n",
" token_usage_total_tokens token_usage_prompt_tokens \\\n",
"0 223 189 \n",
"1 270 242 \n",
"2 332 314 \n",
"\n",
" token_usage_completion_tokens flesch_reading_ease flesch_kincaid_grade \\\n",
"0 34 91.61 3.8 \n",
"1 28 94.66 2.7 \n",
"2 18 81.29 3.7 \n",
"\n",
" ... difficult_words linsear_write_formula gunning_fog \\\n",
"0 ... 2 5.75 5.4 \n",
"1 ... 2 4.25 4.2 \n",
"2 ... 1 2.50 2.8 \n",
"\n",
" text_standard fernandez_huerta szigriszt_pazos gutierrez_polini \\\n",
"0 3rd and 4th grade 121.07 119.50 54.91 \n",
"1 4th and 5th grade 124.13 119.20 52.26 \n",
"2 3rd and 4th grade 115.70 110.84 49.79 \n",
"\n",
" crawford gulpease_index osman \n",
"0 0.9 72.7 92.16 \n",
"1 0.7 74.7 84.20 \n",
"2 0.7 85.4 83.14 \n",
"\n",
"[3 rows x 24 columns]}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Could not update last created model in Task 988bd727b0e94a29a3ac0ee526813545, Task status 'completed' cannot be updated\n"
]
}
],
"source": [
"from langchain.agents import initialize_agent, load_tools\n",
"from langchain.agents import AgentType\n",
"\n",
"# SCENARIO 2 - Agent with Tools\n",
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n",
"agent = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
" callback_manager=manager,\n",
" verbose=True,\n",
")\n",
"agent.run(\n",
" \"Who is the wife of the person who sang summer of 69?\"\n",
")\n",
"clearml_callback.flush_tracker(langchain_asset=agent, name=\"Agent with Tools\", finish=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tips and Next Steps\n",
"\n",
"- Make sure you always use a unique `name` argument for the `clearml_callback.flush_tracker` function. If not, the model parameters used for a run will override the previous run!\n",
"\n",
"- If you close the ClearML Callback using `clearml_callback.flush_tracker(..., finish=True)` the Callback cannot be used anymore. Make a new one if you want to keep logging.\n",
"\n",
"- Check out the rest of the open source ClearML ecosystem, there is a data version manager, a remote execution agent, automated pipelines and much more!\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "a53ebf4a859167383b364e7e7521d0add3c2dbbdecce4edf676e8c4634ff3fbb"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,25 +0,0 @@
# Cohere
This page covers how to use the Cohere ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Cohere wrappers.
## Installation and Setup
- Install the Python SDK with `pip install cohere`
- Get an Cohere api key and set it as an environment variable (`COHERE_API_KEY`)
## Wrappers
### LLM
There exists an Cohere LLM wrapper, which you can access with
```python
from langchain.llms import Cohere
```
### Embeddings
There exists an Cohere Embeddings wrapper, which you can access with
```python
from langchain.embeddings import CohereEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/cohere.ipynb)

View File

@@ -1,17 +0,0 @@
# DeepInfra
This page covers how to use the DeepInfra ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific DeepInfra wrappers.
## Installation and Setup
- Get your DeepInfra api key from this link [here](https://deepinfra.com/).
- Get an DeepInfra api key and set it as an environment variable (`DEEPINFRA_API_TOKEN`)
## Wrappers
### LLM
There exists an DeepInfra LLM wrapper, which you can access with
```python
from langchain.llms import DeepInfra
```

View File

@@ -1,29 +0,0 @@
# Deep Lake
This page covers how to use the Deep Lake ecosystem within LangChain.
## Why Deep Lake?
- More than just a (multi-modal) vector store. You can later use the dataset to fine-tune your own LLM models.
- Not only stores embeddings, but also the original data with automatic version control.
- Truly serverless. Doesn't require another service and can be used with major cloud providers (AWS S3, GCS, etc.)
## More Resources
1. [Ultimate Guide to LangChain & Deep Lake: Build ChatGPT to Answer Questions on Your Financial Data](https://www.activeloop.ai/resources/ultimate-guide-to-lang-chain-deep-lake-build-chat-gpt-to-answer-questions-on-your-financial-data/)
1. Here is [whitepaper](https://www.deeplake.ai/whitepaper) and [academic paper](https://arxiv.org/pdf/2209.10785.pdf) for Deep Lake
2. Here is a set of additional resources available for review: [Deep Lake](https://github.com/activeloopai/deeplake), [Getting Started](https://docs.activeloop.ai/getting-started) and [Tutorials](https://docs.activeloop.ai/hub-tutorials)
## Installation and Setup
- Install the Python package with `pip install deeplake`
## Wrappers
### VectorStore
There exists a wrapper around Deep Lake, a data lake for Deep Learning applications, allowing you to use it as a vector store (for now), whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import DeepLake
```
For a more detailed walkthrough of the Deep Lake wrapper, see [this notebook](../modules/indexes/vectorstores/examples/deeplake.ipynb)

View File

@@ -1,16 +0,0 @@
# ForefrontAI
This page covers how to use the ForefrontAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific ForefrontAI wrappers.
## Installation and Setup
- Get an ForefrontAI api key and set it as an environment variable (`FOREFRONTAI_API_KEY`)
## Wrappers
### LLM
There exists an ForefrontAI LLM wrapper, which you can access with
```python
from langchain.llms import ForefrontAI
```

View File

@@ -1,32 +0,0 @@
# Google Search Wrapper
This page covers how to use the Google Search API within LangChain.
It is broken into two parts: installation and setup, and then references to the specific Google Search wrapper.
## Installation and Setup
- Install requirements with `pip install google-api-python-client`
- Set up a Custom Search Engine, following [these instructions](https://stackoverflow.com/questions/37083058/programmatically-searching-google-in-python-using-custom-search)
- Get an API Key and Custom Search Engine ID from the previous step, and set them as environment variables `GOOGLE_API_KEY` and `GOOGLE_CSE_ID` respectively
## Wrappers
### Utility
There exists a GoogleSearchAPIWrapper utility which wraps this API. To import this utility:
```python
from langchain.utilities import GoogleSearchAPIWrapper
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/google_search.ipynb).
### Tool
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["google-search"])
```
For more information on this, see [this page](../modules/agents/tools/getting_started.md)

View File

@@ -1,73 +0,0 @@
# Google Serper Wrapper
This page covers how to use the [Serper](https://serper.dev) Google Search API within LangChain. Serper is a low-cost Google Search API that can be used to add answer box, knowledge graph, and organic results data from Google Search.
It is broken into two parts: setup, and then references to the specific Google Serper wrapper.
## Setup
- Go to [serper.dev](https://serper.dev) to sign up for a free account
- Get the api key and set it as an environment variable (`SERPER_API_KEY`)
## Wrappers
### Utility
There exists a GoogleSerperAPIWrapper utility which wraps this API. To import this utility:
```python
from langchain.utilities import GoogleSerperAPIWrapper
```
You can use it as part of a Self Ask chain:
```python
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.llms.openai import OpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
import os
os.environ["SERPER_API_KEY"] = ""
os.environ['OPENAI_API_KEY'] = ""
llm = OpenAI(temperature=0)
search = GoogleSerperAPIWrapper()
tools = [
Tool(
name="Intermediate Answer",
func=search.run,
description="useful for when you need to ask with search"
)
]
self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
```
#### Output
```
Entering new AgentExecutor chain...
Yes.
Follow up: Who is the reigning men's U.S. Open champion?
Intermediate answer: Current champions Carlos Alcaraz, 2022 men's singles champion.
Follow up: Where is Carlos Alcaraz from?
Intermediate answer: El Palmar, Spain
So the final answer is: El Palmar, Spain
> Finished chain.
'El Palmar, Spain'
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/google_serper.ipynb).
### Tool
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["google-serper"])
```
For more information on this, see [this page](../modules/agents/tools/getting_started.md)

View File

@@ -1,23 +0,0 @@
# GooseAI
This page covers how to use the GooseAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific GooseAI wrappers.
## Installation and Setup
- Install the Python SDK with `pip install openai`
- Get your GooseAI api key from this link [here](https://goose.ai/).
- Set the environment variable (`GOOSEAI_API_KEY`).
```python
import os
os.environ["GOOSEAI_API_KEY"] = "YOUR_API_KEY"
```
## Wrappers
### LLM
There exists an GooseAI LLM wrapper, which you can access with:
```python
from langchain.llms import GooseAI
```

View File

@@ -1,37 +0,0 @@
# GPT4All
This page covers how to use the `GPT4All` wrapper within LangChain.
It is broken into two parts: installation and setup, and then usage with an example.
## Installation and Setup
- Install the Python package with `pip install pyllamacpp`
- Download a [GPT4All model](https://github.com/nomic-ai/gpt4all) and place it in your desired directory
## Usage
### GPT4All
To use the GPT4All wrapper, you need to provide the path to the pre-trained model file and the model's configuration.
```python
from langchain.llms import GPT4All
# Instantiate the model
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
# Generate text
response = model("Once upon a time, ")
```
You can also customize the generation parameters, such as n_predict, temp, top_p, top_k, and others.
Example:
```python
model = GPT4All(model="./models/gpt4all-model.bin", n_predict=55, temp=0)
response = model("Once upon a time, ")
```
## Model File
You can find links to model file downloads at the [GPT4all](https://github.com/nomic-ai/gpt4all) repository. They will need to be converted to `ggml` format to work, as specified in the [pyllamacpp](https://github.com/nomic-ai/pyllamacpp) repository.
For a more detailed walkthrough of this, see [this notebook](../modules/models/llms/integrations/gpt4all.ipynb)

View File

@@ -1,38 +0,0 @@
# Graphsignal
This page covers how to use the Graphsignal ecosystem to trace and monitor LangChain.
## Installation and Setup
- Install the Python library with `pip install graphsignal`
- Create free Graphsignal account [here](https://graphsignal.com)
- Get an API key and set it as an environment variable (`GRAPHSIGNAL_API_KEY`)
## Tracing and Monitoring
Graphsignal automatically instruments and starts tracing and monitoring chains. Traces, metrics and errors are then available in your [Graphsignal dashboard](https://app.graphsignal.com/). No prompts or other sensitive data are sent to Graphsignal cloud, only statistics and metadata.
Initialize the tracer by providing a deployment name:
```python
import graphsignal
graphsignal.configure(deployment='my-langchain-app-prod')
```
In order to trace full runs and see a breakdown by chains and tools, you can wrap the calling routine or use a decorator:
```python
with graphsignal.start_trace('my-chain'):
chain.run("some initial text")
```
Optionally, enable profiling to record function-level statistics for each trace.
```python
with graphsignal.start_trace(
'my-chain', options=graphsignal.TraceOptions(enable_profiling=True)):
chain.run("some initial text")
```
See the [Quick Start](https://graphsignal.com/docs/guides/quick-start/) guide for complete setup instructions.

View File

@@ -1,19 +0,0 @@
# Hazy Research
This page covers how to use the Hazy Research ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Hazy Research wrappers.
## Installation and Setup
- To use the `manifest`, install it with `pip install manifest-ml`
## Wrappers
### LLM
There exists an LLM wrapper around Hazy Research's `manifest` library.
`manifest` is a python library which is itself a wrapper around many model providers, and adds in caching, history, and more.
To use this wrapper:
```python
from langchain.llms.manifest import ManifestWrapper
```

View File

@@ -1,53 +0,0 @@
# Helicone
This page covers how to use the [Helicone](https://helicone.ai) ecosystem within LangChain.
## What is Helicone?
Helicone is an [open source](https://github.com/Helicone/helicone) observability platform that proxies your OpenAI traffic and provides you key insights into your spend, latency and usage.
![Helicone](../_static/HeliconeDashboard.png)
## Quick start
With your LangChain environment you can just add the following parameter.
```bash
export OPENAI_API_BASE="https://oai.hconeai.com/v1"
```
Now head over to [helicone.ai](https://helicone.ai/onboarding?step=2) to create your account, and add your OpenAI API key within our dashboard to view your logs.
![Helicone](../_static/HeliconeKeys.png)
## How to enable Helicone caching
```python
from langchain.llms import OpenAI
import openai
openai.api_base = "https://oai.hconeai.com/v1"
llm = OpenAI(temperature=0.9, headers={"Helicone-Cache-Enabled": "true"})
text = "What is a helicone?"
print(llm(text))
```
[Helicone caching docs](https://docs.helicone.ai/advanced-usage/caching)
## How to use Helicone custom properties
```python
from langchain.llms import OpenAI
import openai
openai.api_base = "https://oai.hconeai.com/v1"
llm = OpenAI(temperature=0.9, headers={
"Helicone-Property-Session": "24",
"Helicone-Property-Conversation": "support_issue_2",
"Helicone-Property-App": "mobile",
})
text = "What is a helicone?"
print(llm(text))
```
[Helicone property docs](https://docs.helicone.ai/advanced-usage/custom-properties)

View File

@@ -1,69 +0,0 @@
# Hugging Face
This page covers how to use the Hugging Face ecosystem (including the [Hugging Face Hub](https://huggingface.co)) within LangChain.
It is broken into two parts: installation and setup, and then references to specific Hugging Face wrappers.
## Installation and Setup
If you want to work with the Hugging Face Hub:
- Install the Hub client library with `pip install huggingface_hub`
- Create a Hugging Face account (it's free!)
- Create an [access token](https://huggingface.co/docs/hub/security-tokens) and set it as an environment variable (`HUGGINGFACEHUB_API_TOKEN`)
If you want work with the Hugging Face Python libraries:
- Install `pip install transformers` for working with models and tokenizers
- Install `pip install datasets` for working with datasets
## Wrappers
### LLM
There exists two Hugging Face LLM wrappers, one for a local pipeline and one for a model hosted on Hugging Face Hub.
Note that these wrappers only work for models that support the following tasks: [`text2text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text2text-generation&sort=downloads), [`text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text-classification&sort=downloads)
To use the local pipeline wrapper:
```python
from langchain.llms import HuggingFacePipeline
```
To use a the wrapper for a model hosted on Hugging Face Hub:
```python
from langchain.llms import HuggingFaceHub
```
For a more detailed walkthrough of the Hugging Face Hub wrapper, see [this notebook](../modules/models/llms/integrations/huggingface_hub.ipynb)
### Embeddings
There exists two Hugging Face Embeddings wrappers, one for a local model and one for a model hosted on Hugging Face Hub.
Note that these wrappers only work for [`sentence-transformers` models](https://huggingface.co/models?library=sentence-transformers&sort=downloads).
To use the local pipeline wrapper:
```python
from langchain.embeddings import HuggingFaceEmbeddings
```
To use a the wrapper for a model hosted on Hugging Face Hub:
```python
from langchain.embeddings import HuggingFaceHubEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/huggingfacehub.ipynb)
### Tokenizer
There are several places you can use tokenizers available through the `transformers` package.
By default, it is used to count tokens for all LLMs.
You can also use it to count tokens when splitting documents with
```python
from langchain.text_splitter import CharacterTextSplitter
CharacterTextSplitter.from_huggingface_tokenizer(...)
```
For a more detailed walkthrough of this, see [this notebook](../modules/indexes/text_splitters/examples/huggingface_length_function.ipynb)
### Datasets
The Hugging Face Hub has lots of great [datasets](https://huggingface.co/datasets) that can be used to evaluate your LLM chains.
For a detailed walkthrough of how to use them to do so, see [this notebook](../use_cases/evaluation/huggingface_datasets.ipynb)

View File

@@ -1,18 +0,0 @@
# Jina
This page covers how to use the Jina ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Jina wrappers.
## Installation and Setup
- Install the Python SDK with `pip install jina`
- Get a Jina AI Cloud auth token from [here](https://cloud.jina.ai/settings/tokens) and set it as an environment variable (`JINA_AUTH_TOKEN`)
## Wrappers
### Embeddings
There exists a Jina Embeddings wrapper, which you can access with
```python
from langchain.embeddings import JinaEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/jina.ipynb)

View File

@@ -1,26 +0,0 @@
# Llama.cpp
This page covers how to use [llama.cpp](https://github.com/ggerganov/llama.cpp) within LangChain.
It is broken into two parts: installation and setup, and then references to specific Llama-cpp wrappers.
## Installation and Setup
- Install the Python package with `pip install llama-cpp-python`
- Download one of the [supported models](https://github.com/ggerganov/llama.cpp#description) and convert them to the llama.cpp format per the [instructions](https://github.com/ggerganov/llama.cpp)
## Wrappers
### LLM
There exists a LlamaCpp LLM wrapper, which you can access with
```python
from langchain.llms import LlamaCpp
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/llms/integrations/llamacpp.ipynb)
### Embeddings
There exists a LlamaCpp Embeddings wrapper, which you can access with
```python
from langchain.embeddings import LlamaCppEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/llamacpp.ipynb)

View File

@@ -1,20 +0,0 @@
# Milvus
This page covers how to use the Milvus ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Milvus wrappers.
## Installation and Setup
- Install the Python SDK with `pip install pymilvus`
## Wrappers
### VectorStore
There exists a wrapper around Milvus indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Milvus
```
For a more detailed walkthrough of the Miluvs wrapper, see [this notebook](../modules/indexes/vectorstores/examples/milvus.ipynb)

View File

@@ -1,66 +0,0 @@
# Modal
This page covers how to use the Modal ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Modal wrappers.
## Installation and Setup
- Install with `pip install modal-client`
- Run `modal token new`
## Define your Modal Functions and Webhooks
You must include a prompt. There is a rigid response structure.
```python
class Item(BaseModel):
prompt: str
@stub.webhook(method="POST")
def my_webhook(item: Item):
return {"prompt": my_function.call(item.prompt)}
```
An example with GPT2:
```python
from pydantic import BaseModel
import modal
stub = modal.Stub("example-get-started")
volume = modal.SharedVolume().persist("gpt2_model_vol")
CACHE_PATH = "/root/model_cache"
@stub.function(
gpu="any",
image=modal.Image.debian_slim().pip_install(
"tokenizers", "transformers", "torch", "accelerate"
),
shared_volumes={CACHE_PATH: volume},
retries=3,
)
def run_gpt2(text: str):
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
encoded_input = tokenizer(text, return_tensors='pt').input_ids
output = model.generate(encoded_input, max_length=50, do_sample=True)
return tokenizer.decode(output[0], skip_special_tokens=True)
class Item(BaseModel):
prompt: str
@stub.webhook(method="POST")
def get_text(item: Item):
return {"prompt": run_gpt2.call(item.prompt)}
```
## Wrappers
### LLM
There exists an Modal LLM wrapper, which you can access with
```python
from langchain.llms import Modal
```

View File

@@ -1,17 +0,0 @@
# NLPCloud
This page covers how to use the NLPCloud ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific NLPCloud wrappers.
## Installation and Setup
- Install the Python SDK with `pip install nlpcloud`
- Get an NLPCloud api key and set it as an environment variable (`NLPCLOUD_API_KEY`)
## Wrappers
### LLM
There exists an NLPCloud LLM wrapper, which you can access with
```python
from langchain.llms import NLPCloud
```

View File

@@ -1,55 +0,0 @@
# OpenAI
This page covers how to use the OpenAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific OpenAI wrappers.
## Installation and Setup
- Install the Python SDK with `pip install openai`
- Get an OpenAI api key and set it as an environment variable (`OPENAI_API_KEY`)
- If you want to use OpenAI's tokenizer (only available for Python 3.9+), install it with `pip install tiktoken`
## Wrappers
### LLM
There exists an OpenAI LLM wrapper, which you can access with
```python
from langchain.llms import OpenAI
```
If you are using a model hosted on Azure, you should use different wrapper for that:
```python
from langchain.llms import AzureOpenAI
```
For a more detailed walkthrough of the Azure wrapper, see [this notebook](../modules/models/llms/integrations/azure_openai_example.ipynb)
### Embeddings
There exists an OpenAI Embeddings wrapper, which you can access with
```python
from langchain.embeddings import OpenAIEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/openai.ipynb)
### Tokenizer
There are several places you can use the `tiktoken` tokenizer. By default, it is used to count tokens
for OpenAI LLMs.
You can also use it to count tokens when splitting documents with
```python
from langchain.text_splitter import CharacterTextSplitter
CharacterTextSplitter.from_tiktoken_encoder(...)
```
For a more detailed walkthrough of this, see [this notebook](../modules/indexes/text_splitters/examples/tiktoken.ipynb)
### Moderation
You can also access the OpenAI content moderation endpoint with
```python
from langchain.chains import OpenAIModerationChain
```
For a more detailed walkthrough of this, see [this notebook](../modules/chains/examples/moderation.ipynb)

View File

@@ -1,21 +0,0 @@
# OpenSearch
This page covers how to use the OpenSearch ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific OpenSearch wrappers.
## Installation and Setup
- Install the Python package with `pip install opensearch-py`
## Wrappers
### VectorStore
There exists a wrapper around OpenSearch vector databases, allowing you to use it as a vectorstore
for semantic search using approximate vector search powered by lucene, nmslib and faiss engines
or using painless scripting and script scoring functions for bruteforce vector search.
To import this vectorstore:
```python
from langchain.vectorstores import OpenSearchVectorSearch
```
For a more detailed walkthrough of the OpenSearch wrapper, see [this notebook](../modules/indexes/vectorstores/examples/opensearch.ipynb)

View File

@@ -1,17 +0,0 @@
# Petals
This page covers how to use the Petals ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Petals wrappers.
## Installation and Setup
- Install with `pip install petals`
- Get a Hugging Face api key and set it as an environment variable (`HUGGINGFACE_API_KEY`)
## Wrappers
### LLM
There exists an Petals LLM wrapper, which you can access with
```python
from langchain.llms import Petals
```

View File

@@ -1,29 +0,0 @@
# PGVector
This page covers how to use the Postgres [PGVector](https://github.com/pgvector/pgvector) ecosystem within LangChain
It is broken into two parts: installation and setup, and then references to specific PGVector wrappers.
## Installation
- Install the Python package with `pip install pgvector`
## Setup
1. The first step is to create a database with the `pgvector` extension installed.
Follow the steps at [PGVector Installation Steps](https://github.com/pgvector/pgvector#installation) to install the database and the extension. The docker image is the easiest way to get started.
## Wrappers
### VectorStore
There exists a wrapper around Postgres vector databases, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores.pgvector import PGVector
```
### Usage
For a more detailed walkthrough of the PGVector Wrapper, see [this notebook](../modules/indexes/vectorstores/examples/pgvector.ipynb)

View File

@@ -1,20 +0,0 @@
# Pinecone
This page covers how to use the Pinecone ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Pinecone wrappers.
## Installation and Setup
- Install the Python SDK with `pip install pinecone-client`
## Wrappers
### VectorStore
There exists a wrapper around Pinecone indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Pinecone
```
For a more detailed walkthrough of the Pinecone wrapper, see [this notebook](../modules/indexes/vectorstores/examples/pinecone.ipynb)

View File

@@ -1,49 +0,0 @@
# PromptLayer
This page covers how to use [PromptLayer](https://www.promptlayer.com) within LangChain.
It is broken into two parts: installation and setup, and then references to specific PromptLayer wrappers.
## Installation and Setup
If you want to work with PromptLayer:
- Install the promptlayer python library `pip install promptlayer`
- Create a PromptLayer account
- Create an api token and set it as an environment variable (`PROMPTLAYER_API_KEY`)
## Wrappers
### LLM
There exists an PromptLayer OpenAI LLM wrapper, which you can access with
```python
from langchain.llms import PromptLayerOpenAI
```
To tag your requests, use the argument `pl_tags` when instanializing the LLM
```python
from langchain.llms import PromptLayerOpenAI
llm = PromptLayerOpenAI(pl_tags=["langchain-requests", "chatbot"])
```
To get the PromptLayer request id, use the argument `return_pl_id` when instanializing the LLM
```python
from langchain.llms import PromptLayerOpenAI
llm = PromptLayerOpenAI(return_pl_id=True)
```
This will add the PromptLayer request ID in the `generation_info` field of the `Generation` returned when using `.generate` or `.agenerate`
For example:
```python
llm_results = llm.generate(["hello world"])
for res in llm_results.generations:
print("pl request id: ", res[0].generation_info["pl_request_id"])
```
You can use the PromptLayer request ID to add a prompt, score, or other metadata to your request. [Read more about it here](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9).
This LLM is identical to the [OpenAI LLM](./openai.md), except that
- all your requests will be logged to your PromptLayer account
- you can add `pl_tags` when instantializing to tag your requests on PromptLayer
- you can add `return_pl_id` when instantializing to return a PromptLayer request id to use [while tracking requests](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9).
PromptLayer also provides native wrappers for [`PromptLayerChatOpenAI`](../modules/models/chat/integrations/promptlayer_chatopenai.ipynb) and `PromptLayerOpenAIChat`

View File

@@ -1,20 +0,0 @@
# Qdrant
This page covers how to use the Qdrant ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Qdrant wrappers.
## Installation and Setup
- Install the Python SDK with `pip install qdrant-client`
## Wrappers
### VectorStore
There exists a wrapper around Qdrant indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Qdrant
```
For a more detailed walkthrough of the Qdrant wrapper, see [this notebook](../modules/indexes/vectorstores/examples/qdrant.ipynb)

View File

@@ -1,47 +0,0 @@
# Replicate
This page covers how to run models on Replicate within LangChain.
## Installation and Setup
- Create a [Replicate](https://replicate.com) account. Get your API key and set it as an environment variable (`REPLICATE_API_TOKEN`)
- Install the [Replicate python client](https://github.com/replicate/replicate-python) with `pip install replicate`
## Calling a model
Find a model on the [Replicate explore page](https://replicate.com/explore), and then paste in the model name and version in this format: `owner-name/model-name:version`
For example, for this [flan-t5 model](https://replicate.com/daanelson/flan-t5), click on the API tab. The model name/version would be: `daanelson/flan-t5:04e422a9b85baed86a4f24981d7f9953e20c5fd82f6103b74ebc431588e1cec8`
Only the `model` param is required, but any other model parameters can also be passed in with the format `input={model_param: value, ...}`
For example, if we were running stable diffusion and wanted to change the image dimensions:
```
Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions': '512x512'})
```
*Note that only the first output of a model will be returned.*
From here, we can initialize our model:
```python
llm = Replicate(model="daanelson/flan-t5:04e422a9b85baed86a4f24981d7f9953e20c5fd82f6103b74ebc431588e1cec8")
```
And run it:
```python
prompt = """
Answer the following yes/no question by reasoning step by step.
Can a dog drive a car?
"""
llm(prompt)
```
We can call any Replicate model (not just LLMs) using this syntax. For example, we can call [Stable Diffusion](https://replicate.com/stability-ai/stable-diffusion):
```python
text2image = Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf",
input={'image_dimensions'='512x512'}
image_output = text2image("A cat riding a motorcycle by Picasso")
```

View File

@@ -1,29 +0,0 @@
# Runhouse
This page covers how to use the [Runhouse](https://github.com/run-house/runhouse) ecosystem within LangChain.
It is broken into three parts: installation and setup, LLMs, and Embeddings.
## Installation and Setup
- Install the Python SDK with `pip install runhouse`
- If you'd like to use on-demand cluster, check your cloud credentials with `sky check`
## Self-hosted LLMs
For a basic self-hosted LLM, you can use the `SelfHostedHuggingFaceLLM` class. For more
custom LLMs, you can use the `SelfHostedPipeline` parent class.
```python
from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
```
For a more detailed walkthrough of the Self-hosted LLMs, see [this notebook](../modules/models/llms/integrations/self_hosted_examples.ipynb)
## Self-hosted Embeddings
There are several ways to use self-hosted embeddings with LangChain via Runhouse.
For a basic self-hosted embedding from a Hugging Face Transformers model, you can use
the `SelfHostedEmbedding` class.
```python
from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
```
For a more detailed walkthrough of the Self-hosted Embeddings, see [this notebook](../modules/models/text_embedding/examples/self-hosted.ipynb)

View File

@@ -1,65 +0,0 @@
# RWKV-4
This page covers how to use the `RWKV-4` wrapper within LangChain.
It is broken into two parts: installation and setup, and then usage with an example.
## Installation and Setup
- Install the Python package with `pip install rwkv`
- Install the tokenizer Python package with `pip install tokenizer`
- Download a [RWKV model](https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main) and place it in your desired directory
- Download the [tokens file](https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/20B_tokenizer.json)
## Usage
### RWKV
To use the RWKV wrapper, you need to provide the path to the pre-trained model file and the tokenizer's configuration.
```python
from langchain.llms import RWKV
# Test the model
```python
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Input:
{input}
# Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Response:
"""
model = RWKV(model="./models/RWKV-4-Raven-3B-v7-Eng-20230404-ctx4096.pth", strategy="cpu fp32", tokens_path="./rwkv/20B_tokenizer.json")
response = model(generate_prompt("Once upon a time, "))
```
## Model File
You can find links to model file downloads at the [RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main) repository.
### Rwkv-4 models -> recommended VRAM
```
RWKV VRAM
Model | 8bit | bf16/fp16 | fp32
14B | 16GB | 28GB | >50GB
7B | 8GB | 14GB | 28GB
3B | 2.8GB| 6GB | 12GB
1b5 | 1.3GB| 3GB | 6GB
```
See the [rwkv pip](https://pypi.org/project/rwkv/) page for more information about strategies, including streaming and cuda support.

View File

@@ -1,70 +0,0 @@
# SearxNG Search API
This page covers how to use the SearxNG search API within LangChain.
It is broken into two parts: installation and setup, and then references to the specific SearxNG API wrapper.
## Installation and Setup
While it is possible to utilize the wrapper in conjunction with [public searx
instances](https://searx.space/) these instances frequently do not permit API
access (see note on output format below) and have limitations on the frequency
of requests. It is recommended to opt for a self-hosted instance instead.
### Self Hosted Instance:
See [this page](https://searxng.github.io/searxng/admin/installation.html) for installation instructions.
When you install SearxNG, the only active output format by default is the HTML format.
You need to activate the `json` format to use the API. This can be done by adding the following line to the `settings.yml` file:
```yaml
search:
formats:
- html
- json
```
You can make sure that the API is working by issuing a curl request to the API endpoint:
`curl -kLX GET --data-urlencode q='langchain' -d format=json http://localhost:8888`
This should return a JSON object with the results.
## Wrappers
### Utility
To use the wrapper we need to pass the host of the SearxNG instance to the wrapper with:
1. the named parameter `searx_host` when creating the instance.
2. exporting the environment variable `SEARXNG_HOST`.
You can use the wrapper to get results from a SearxNG instance.
```python
from langchain.utilities import SearxSearchWrapper
s = SearxSearchWrapper(searx_host="http://localhost:8888")
s.run("what is a large language model?")
```
### Tool
You can also load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["searx-search"],
searx_host="http://localhost:8888",
engines=["github"])
```
Note that we could _optionally_ pass custom engines to use.
If you want to obtain results with metadata as *json* you can use:
```python
tools = load_tools(["searx-search-results-json"],
searx_host="http://localhost:8888",
num_results=5)
```
For more information on tools, see [this page](../modules/agents/tools/getting_started.md)

View File

@@ -1,31 +0,0 @@
# SerpAPI
This page covers how to use the SerpAPI search APIs within LangChain.
It is broken into two parts: installation and setup, and then references to the specific SerpAPI wrapper.
## Installation and Setup
- Install requirements with `pip install google-search-results`
- Get a SerpAPI api key and either set it as an environment variable (`SERPAPI_API_KEY`)
## Wrappers
### Utility
There exists a SerpAPI utility which wraps this API. To import this utility:
```python
from langchain.utilities import SerpAPIWrapper
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/serpapi.ipynb).
### Tool
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["serpapi"])
```
For more information on this, see [this page](../modules/agents/tools/getting_started.md)

View File

@@ -1,17 +0,0 @@
# StochasticAI
This page covers how to use the StochasticAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific StochasticAI wrappers.
## Installation and Setup
- Install with `pip install stochasticx`
- Get an StochasticAI api key and set it as an environment variable (`STOCHASTICAI_API_KEY`)
## Wrappers
### LLM
There exists an StochasticAI LLM wrapper, which you can access with
```python
from langchain.llms import StochasticAI
```

View File

@@ -1,45 +0,0 @@
# Unstructured
This page covers how to use the [`unstructured`](https://github.com/Unstructured-IO/unstructured)
ecosystem within LangChain. The `unstructured` package from
[Unstructured.IO](https://www.unstructured.io/) extracts clean text from raw source documents like
PDFs and Word documents.
This page is broken into two parts: installation and setup, and then references to specific
`unstructured` wrappers.
## Installation and Setup
- Install the Python SDK with `pip install "unstructured[local-inference]"`
- Install the following system dependencies if they are not already available on your system.
Depending on what document types you're parsing, you may not need all of these.
- `libmagic-dev` (filetype detection)
- `poppler-utils` (images and PDFs)
- `tesseract-ocr`(images and PDFs)
- `libreoffice` (MS Office docs)
- `pandoc` (EPUBs)
- If you are parsing PDFs using the `"hi_res"` strategy, run the following to install the `detectron2` model, which
`unstructured` uses for layout detection:
- `pip install "detectron2@git+https://github.com/facebookresearch/detectron2.git@e2ce8dc#egg=detectron2"`
- If `detectron2` is not installed, `unstructured` will fallback to processing PDFs
using the `"fast"` strategy, which uses `pdfminer` directly and doesn't require
`detectron2`.
## Wrappers
### Data Loaders
The primary `unstructured` wrappers within `langchain` are data loaders. The following
shows how to use the most basic unstructured data loader. There are other file-specific
data loaders available in the `langchain.document_loaders` module.
```python
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("state_of_the_union.txt")
loader.load()
```
If you instantiate the loader with `UnstructuredFileLoader(mode="elements")`, the loader
will track additional metadata like the page number and text type (i.e. title, narrative text)
when that information is available.

View File

@@ -1,626 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Weights & Biases\n",
"\n",
"This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see.\n",
"\n",
"Run in Colab: https://colab.research.google.com/drive/1DXH4beT4HFaRKy_Vm4PoxhXVDRf7Ym8L?usp=sharing\n",
"\n",
"View Report: https://wandb.ai/a-sh0ts/langchain_callback_demo/reports/Prompt-Engineering-LLMs-with-LangChain-and-W-B--VmlldzozNjk1NTUw#👋-how-to-build-a-callback-in-langchain-for-better-prompt-engineering"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install wandb\n",
"!pip install pandas\n",
"!pip install textstat\n",
"!pip install spacy\n",
"!python -m spacy download en_core_web_sm"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "T1bSmKd6V2If"
},
"outputs": [],
"source": [
"import os\n",
"os.environ[\"WANDB_API_KEY\"] = \"\"\n",
"# os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
"# os.environ[\"SERPAPI_API_KEY\"] = \"\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "8WAGnTWpUUnD"
},
"outputs": [],
"source": [
"from datetime import datetime\n",
"from langchain.callbacks import WandbCallbackHandler, StdOutCallbackHandler\n",
"from langchain.callbacks.base import CallbackManager\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"Callback Handler that logs to Weights and Biases.\n",
"\n",
"Parameters:\n",
" job_type (str): The type of job.\n",
" project (str): The project to log to.\n",
" entity (str): The entity to log to.\n",
" tags (list): The tags to log.\n",
" group (str): The group to log to.\n",
" name (str): The name of the run.\n",
" notes (str): The notes to log.\n",
" visualize (bool): Whether to visualize the run.\n",
" complexity_metrics (bool): Whether to log complexity metrics.\n",
" stream_logs (bool): Whether to stream callback actions to W&B\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cxBFfZR8d9FC"
},
"source": [
"```\n",
"Default values for WandbCallbackHandler(...)\n",
"\n",
"visualize: bool = False,\n",
"complexity_metrics: bool = False,\n",
"stream_logs: bool = False,\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"NOTE: For beta workflows we have made the default analysis based on textstat and the visualizations based on spacy"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "KAz8weWuUeXF"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mharrison-chase\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150408-e47j1914</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target=\"_blank\">llm</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m The wandb callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/wandb/wandb/issues with the tag `langchain`.\n"
]
}
],
"source": [
"\"\"\"Main function.\n",
"\n",
"This function is used to try the callback handler.\n",
"Scenarios:\n",
"1. OpenAI LLM\n",
"2. Chain with multiple SubChains on multiple generations\n",
"3. Agent with Tools\n",
"\"\"\"\n",
"session_group = datetime.now().strftime(\"%m.%d.%Y_%H.%M.%S\")\n",
"wandb_callback = WandbCallbackHandler(\n",
" job_type=\"inference\",\n",
" project=\"langchain_callback_demo\",\n",
" group=f\"minimal_{session_group}\",\n",
" name=\"llm\",\n",
" tags=[\"test\"],\n",
")\n",
"manager = CallbackManager([StdOutCallbackHandler(), wandb_callback])\n",
"llm = OpenAI(temperature=0, callback_manager=manager, verbose=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Q-65jwrDeK6w"
},
"source": [
"\n",
"\n",
"```\n",
"# Defaults for WandbCallbackHandler.flush_tracker(...)\n",
"\n",
"reset: bool = True,\n",
"finish: bool = False,\n",
"```\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `flush_tracker` function is used to log LangChain sessions to Weights & Biases. It takes in the LangChain module or agent, and logs at minimum the prompts and generations alongside the serialized form of the LangChain module to the specified Weights & Biases project. By default we reset the session as opposed to concluding the session outright."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "o_VmneyIUyx8"
},
"outputs": [
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">llm</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a><br/>Synced 5 W&B file(s), 2 media file(s), 5 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230318_150408-e47j1914/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0d7b4307ccdb450ea631497174fca2d1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.016745895149999985, max=1.0…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150534-jyxma7hu</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target=\"_blank\">simple_sequential</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# SCENARIO 1 - LLM\n",
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n",
"wandb_callback.flush_tracker(llm, name=\"simple_sequential\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "trxslyb1U28Y"
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "uauQk10SUzF6"
},
"outputs": [
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">simple_sequential</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a><br/>Synced 4 W&B file(s), 2 media file(s), 6 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230318_150534-jyxma7hu/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dbdbf28fb8ed40a3a60218d2e6d1a987",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.016736786816666675, max=1.0…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150550-wzy59zjq</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target=\"_blank\">agent</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# SCENARIO 2 - Chain\n",
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
"Title: {title}\n",
"Playwright: This is a synopsis for the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callback_manager=manager)\n",
"\n",
"test_prompts = [\n",
" {\n",
" \"title\": \"documentary about good video games that push the boundary of game design\"\n",
" },\n",
" {\"title\": \"cocaine bear vs heroin wolf\"},\n",
" {\"title\": \"the best in class mlops tooling\"},\n",
"]\n",
"synopsis_chain.apply(test_prompts)\n",
"wandb_callback.flush_tracker(synopsis_chain, name=\"agent\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "_jN73xcPVEpI"
},
"outputs": [],
"source": [
"from langchain.agents import initialize_agent, load_tools\n",
"from langchain.agents import AgentType"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "Gpq4rk6VT9cu"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.\n",
"Action: Search\n",
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mDiCaprio had a steady girlfriend in Camila Morrone. He had been with the model turned actress for nearly five years, as they were first said to be dating at the end of 2017. And the now 26-year-old Morrone is no stranger to Hollywood.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate her age raised to the 0.43 power.\n",
"Action: Calculator\n",
"Action Input: 26^0.43\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mAnswer: 4.059182145592686\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: Leo DiCaprio's girlfriend is Camila Morrone and her current age raised to the 0.43 power is 4.059182145592686.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">agent</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a><br/>Synced 5 W&B file(s), 2 media file(s), 7 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230318_150550-wzy59zjq/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# SCENARIO 3 - Agent with Tools\n",
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n",
"agent = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
" callback_manager=manager,\n",
" verbose=True,\n",
")\n",
"agent.run(\n",
" \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
")\n",
"wandb_callback.flush_tracker(agent, reset=False, finish=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,33 +0,0 @@
# Weaviate
This page covers how to use the Weaviate ecosystem within LangChain.
What is Weaviate?
**Weaviate in a nutshell:**
- Weaviate is an open-source database of the type vector search engine.
- Weaviate allows you to store JSON documents in a class property-like fashion while attaching machine learning vectors to these documents to represent them in vector space.
- Weaviate can be used stand-alone (aka bring your vectors) or with a variety of modules that can do the vectorization for you and extend the core capabilities.
- Weaviate has a GraphQL-API to access your data easily.
- We aim to bring your vector search set up to production to query in mere milliseconds (check our [open source benchmarks](https://weaviate.io/developers/weaviate/current/benchmarks/) to see if Weaviate fits your use case).
- Get to know Weaviate in the [basics getting started guide](https://weaviate.io/developers/weaviate/current/core-knowledge/basics.html) in under five minutes.
**Weaviate in detail:**
Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), etc. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering and the fault tolerance of a cloud-native database. It is all accessible through GraphQL, REST, and various client-side programming languages.
## Installation and Setup
- Install the Python SDK with `pip install weaviate-client`
## Wrappers
### VectorStore
There exists a wrapper around Weaviate indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Weaviate
```
For a more detailed walkthrough of the Weaviate wrapper, see [this notebook](../modules/indexes/vectorstores/getting_started.ipynb)

View File

@@ -1,34 +0,0 @@
# Wolfram Alpha Wrapper
This page covers how to use the Wolfram Alpha API within LangChain.
It is broken into two parts: installation and setup, and then references to specific Wolfram Alpha wrappers.
## Installation and Setup
- Install requirements with `pip install wolframalpha`
- Go to wolfram alpha and sign up for a developer account [here](https://developer.wolframalpha.com/)
- Create an app and get your APP ID
- Set your APP ID as an environment variable `WOLFRAM_ALPHA_APPID`
## Wrappers
### Utility
There exists a WolframAlphaAPIWrapper utility which wraps this API. To import this utility:
```python
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/wolfram_alpha.ipynb).
### Tool
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["wolfram-alpha"])
```
For more information on this, see [this page](../modules/agents/tools/getting_started.md)

View File

@@ -1,16 +0,0 @@
# Writer
This page covers how to use the Writer ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Writer wrappers.
## Installation and Setup
- Get an Writer api key and set it as an environment variable (`WRITER_API_KEY`)
## Wrappers
### LLM
There exists an Writer LLM wrapper, which you can access with
```python
from langchain.llms import Writer
```

10
docs/examples/demos.rst Normal file
View File

@@ -0,0 +1,10 @@
Demos
=====
The examples here are all end-to-end chains of specific applications.
.. toctree::
:maxdepth: 1
:glob:
demos/*

View File

@@ -0,0 +1,91 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e71e720f",
"metadata": {},
"source": [
"# LLM Math\n",
"\n",
"This notebook showcases using LLMs and Python REPLs to do complex word math problems."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "44e9ba31",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"How many of the integers between 0 and 99 inclusive are divisible by 8?\u001b[102m\n",
"\n",
"```python\n",
"count = 0\n",
"for i in range(100):\n",
" if i % 8 == 0:\n",
" count += 1\n",
"print(count)\n",
"```\n",
"\u001b[0m\n",
"Answer: \u001b[103m13\n",
"\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 13\\n'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import OpenAI, LLMMathChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_math = LLMMathChain(llm=llm, verbose=True)\n",
"\n",
"llm_math.run(\"How many of the integers between 0 and 99 inclusive are divisible by 8?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f62f0c75",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,93 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d9a0131f",
"metadata": {},
"source": [
"# Map Reduce\n",
"\n",
"This notebok showcases an example of map-reduce chains: recursive summarization."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e9db25f3",
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, Prompt, LLMChain\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.chains.mapreduce import MapReduceChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",
"_prompt = \"\"\"Write a concise summary of the following:\n",
"\n",
"\n",
"{text}\n",
"\n",
"\n",
"CONCISE SUMMARY:\"\"\"\n",
"prompt = Prompt(template=_prompt, input_variables=[\"text\"])\n",
"\n",
"text_splitter = CharacterTextSplitter()\n",
"\n",
"mp_chain = MapReduceChain.from_params(llm, prompt, text_splitter)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "99bbe19b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"\\n\\nThe President discusses the recent aggression by Russia, and the response by the United States and its allies. He announces new sanctions against Russia, and says that the free world is united in holding Putin accountable. The President also discusses the American Rescue Plan, the Bipartisan Infrastructure Law, and the Bipartisan Innovation Act. Finally, the President addresses the need for women's rights and equality for LGBTQ+ Americans.\""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"mp_chain.run(state_of_the_union)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b581501e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,226 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f1390152",
"metadata": {},
"source": [
"# MRKL\n",
"\n",
"This notebook showcases using the MRKL chain to route between tasks"
]
},
{
"cell_type": "markdown",
"id": "39ea3638",
"metadata": {},
"source": [
"This uses the example Chinook database.\n",
"To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ac561cc4",
"metadata": {},
"outputs": [],
"source": [
"from langchain import LLMMathChain, OpenAI, SerpAPIChain, MRKLChain, SQLDatabase, SQLDatabaseChain\n",
"from langchain.chains.mrkl.base import ChainConfig"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "07e96d99",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"search = SerpAPIChain()\n",
"llm_math_chain = LLMMathChain(llm=llm, verbose=True)\n",
"db = SQLDatabase.from_uri(\"sqlite:///../../../notebooks/Chinook.db\")\n",
"db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)\n",
"chains = [\n",
" ChainConfig(\n",
" action_name = \"Search\",\n",
" action=search.run,\n",
" action_description=\"useful for when you need to answer questions about current events\"\n",
" ),\n",
" ChainConfig(\n",
" action_name=\"Calculator\",\n",
" action=llm_math_chain.run,\n",
" action_description=\"useful for when you need to answer questions about math\"\n",
" ),\n",
" \n",
" ChainConfig(\n",
" action_name=\"FooBar DB\",\n",
" action=db_chain.run,\n",
" action_description=\"useful for when you need to answer questions about FooBar. Input should be in the form of a question\"\n",
" )\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "a069c4b6",
"metadata": {},
"outputs": [],
"source": [
"mrkl = MRKLChain.from_chains(llm, chains, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e603cd7d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What is the age of Olivia Wilde's boyfriend raised to the 0.23 power?\n",
"Thought:\u001b[102m I need to find the age of Olivia Wilde's boyfriend\n",
"Action: Search\n",
"Action Input: \"Olivia Wilde's boyfriend\"\u001b[0m\n",
"Observation: \u001b[104mOlivia Wilde started dating Harry Styles after ending her years-long engagement to Jason Sudeikis — see their relationship timeline.\u001b[0m\n",
"Thought:\u001b[102m I need to find the age of Harry Styles\n",
"Action: Search\n",
"Action Input: \"Harry Styles age\"\u001b[0m\n",
"Observation: \u001b[104m28 years\u001b[0m\n",
"Thought:\u001b[102m I need to calculate 28 to the 0.23 power\n",
"Action: Calculator\n",
"Action Input: 28^0.23\u001b[0m\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"28^0.23\u001b[102m\n",
"\n",
"```python\n",
"print(28**0.23)\n",
"```\n",
"\u001b[0m\n",
"Answer: \u001b[103m2.1520202182226886\n",
"\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"Observation: \u001b[103mAnswer: 2.1520202182226886\n",
"\u001b[0m\n",
"Thought:\u001b[102m I now know the final answer\n",
"Final Answer: 2.1520202182226886\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'2.1520202182226886'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mrkl.run(\"What is the age of Olivia Wilde's boyfriend raised to the 0.23 power?\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "a5c07010",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Who recently released an album called 'The Storm Before the Calm' and are they in the FooBar database? If so, what albums of theirs are in the FooBar database?\n",
"Thought:\u001b[102m I need to find an album called 'The Storm Before the Calm'\n",
"Action: Search\n",
"Action Input: \"The Storm Before the Calm album\"\u001b[0m\n",
"Observation: \u001b[104mThe Storm Before the Calm (stylized in all lowercase) is the tenth (and eighth international) studio album by Canadian-American singer-songwriter Alanis ...\u001b[0m\n",
"Thought:\u001b[102m I need to check if Alanis is in the FooBar database\n",
"Action: FooBar DB\n",
"Action Input: \"Does Alanis Morissette exist in the FooBar database?\"\u001b[0m\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Does Alanis Morissette exist in the FooBar database?\n",
"SQLQuery:\u001b[102m SELECT * FROM Artist WHERE Name = 'Alanis Morissette'\u001b[0m\n",
"SQLResult: \u001b[103m[(4, 'Alanis Morissette')]\u001b[0m\n",
"Answer:\u001b[102m Yes\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"Observation: \u001b[101m Yes\u001b[0m\n",
"Thought:\u001b[102m I need to find out what albums of Alanis's are in the FooBar database\n",
"Action: FooBar DB\n",
"Action Input: \"What albums by Alanis Morissette are in the FooBar database?\"\u001b[0m\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What albums by Alanis Morissette are in the FooBar database?\n",
"SQLQuery:\u001b[102m SELECT Title FROM Album WHERE ArtistId = (SELECT ArtistId FROM Artist WHERE Name = 'Alanis Morissette')\u001b[0m\n",
"SQLResult: \u001b[103m[('Jagged Little Pill',)]\u001b[0m\n",
"Answer:\u001b[102m Jagged Little Pill\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"Observation: \u001b[101m Jagged Little Pill\u001b[0m\n",
"Thought:\u001b[102m I now know the final answer\n",
"Final Answer: The album is by Alanis Morissette and the albums in the FooBar database by her are Jagged Little Pill\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The album is by Alanis Morissette and the albums in the FooBar database by her are Jagged Little Pill'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mrkl.run(\"Who recently released an album called 'The Storm Before the Calm' and are they in the FooBar database? If so, what albums of theirs are in the FooBar database?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d7c2e6ac",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,88 @@
"""Run NatBot."""
import time
from langchain.chains.natbot.base import NatBotChain
from langchain.chains.natbot.crawler import Crawler # type: ignore
def run_cmd(cmd: str, _crawler: Crawler) -> None:
"""Run command."""
cmd = cmd.split("\n")[0]
if cmd.startswith("SCROLL UP"):
_crawler.scroll("up")
elif cmd.startswith("SCROLL DOWN"):
_crawler.scroll("down")
elif cmd.startswith("CLICK"):
commasplit = cmd.split(",")
id = commasplit[0].split(" ")[1]
_crawler.click(id)
elif cmd.startswith("TYPE"):
spacesplit = cmd.split(" ")
id = spacesplit[1]
text_pieces = spacesplit[2:]
text = " ".join(text_pieces)
# Strip leading and trailing double quotes
text = text[1:-1]
if cmd.startswith("TYPESUBMIT"):
text += "\n"
_crawler.type(id, text)
time.sleep(2)
if __name__ == "__main__":
objective = "Make a reservation for 2 at 7pm at bistro vida in menlo park"
print("\nWelcome to natbot! What is your objective?")
i = input()
if len(i) > 0:
objective = i
quiet = False
nat_bot_chain = NatBotChain.from_default(objective)
_crawler = Crawler()
_crawler.go_to_page("google.com")
try:
while True:
browser_content = "\n".join(_crawler.crawl())
llm_command = nat_bot_chain.execute(_crawler.page.url, browser_content)
if not quiet:
print("URL: " + _crawler.page.url)
print("Objective: " + objective)
print("----------------\n" + browser_content + "\n----------------\n")
if len(llm_command) > 0:
print("Suggested command: " + llm_command)
command = input()
if command == "r" or command == "":
run_cmd(llm_command, _crawler)
elif command == "g":
url = input("URL:")
_crawler.go_to_page(url)
elif command == "u":
_crawler.scroll("up")
time.sleep(1)
elif command == "d":
_crawler.scroll("down")
time.sleep(1)
elif command == "c":
id = input("id:")
_crawler.click(id)
time.sleep(1)
elif command == "t":
id = input("id:")
text = input("text:")
_crawler.type(id, text)
time.sleep(1)
elif command == "o":
objective = input("Objective:")
else:
print(
"(g) to visit url\n(u) scroll up\n(d) scroll down\n(c) to click"
"\n(t) to type\n(h) to view commands again"
"\n(r/enter) to run suggested command\n(o) change objective"
)
except KeyboardInterrupt:
print("\n[!] Ctrl+C detected, exiting gracefully.")
exit(0)

View File

@@ -0,0 +1,98 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "82140df0",
"metadata": {},
"source": [
"# ReAct\n",
"\n",
"This notebook showcases the implementation of the ReAct chain logic."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "4e272b47",
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, ReActChain, Wikipedia\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"react = ReActChain(llm=llm, docstore=Wikipedia(), verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8078c8f1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Author David Chanoff has collaborated with a U.S. Navy admiral who served as the ambassador to the United Kingdom under which President?\n",
"Thought 1:\u001b[102m I need to search David Chanoff and find the U.S. Navy admiral he\n",
"collaborated with.\n",
"Action 1: Search[David Chanoff]\u001b[0m\n",
"Observation 1: \u001b[103mDavid Chanoff is a noted author of non-fiction work. His work has typically involved collaborations with the principal protagonist of the work concerned. His collaborators have included; Augustus A. White, Joycelyn Elders, Đoàn Văn Toại, William J. Crowe, Ariel Sharon, Kenneth Good and Felix Zandman. He has also written about a wide range of subjects including literary history, education and foreign for The Washington Post, The New Republic and The New York Times Magazine. He has published more than twelve books.\u001b[0m\n",
"Thought 2:\u001b[102m The U.S. Navy admiral David Chanoff collaborated with is William J. Crowe.\n",
"Action 2: Search[William J. Crowe]\u001b[0m\n",
"Observation 2: \u001b[103mWilliam James Crowe Jr. (January 2, 1925 October 18, 2007) was a United States Navy admiral and diplomat who served as the 11th chairman of the Joint Chiefs of Staff under Presidents Ronald Reagan and George H. W. Bush, and as the ambassador to the United Kingdom and Chair of the Intelligence Oversight Board under President Bill Clinton.\u001b[0m\n",
"Thought 3:\u001b[102m William J. Crowe served as the ambassador to the United Kingdom under President Bill Clinton. So the answer is Bill Clinton.\n",
"Action 3: Finish[Bill Clinton]\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Bill Clinton'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question = \"Author David Chanoff has collaborated with a U.S. Navy admiral who served as the ambassador to the United Kingdom under which President?\"\n",
"react.run(question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a6bd3b4",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,88 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0c3f1df8",
"metadata": {},
"source": [
"# Self Ask With Search\n",
"\n",
"This notebook showcases the Self Ask With Search chain."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7e3b513e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What is the hometown of the reigning men's U.S. Open champion?\n",
"Are follow up questions needed here:\u001b[102m Yes.\n",
"Follow up: Who is the reigning men's U.S. Open champion?\u001b[0m\n",
"Intermediate answer: \u001b[103mCarlos Alcaraz won the 2022 Men's single title while Poland's Iga Swiatek won the Women's single title defeating Tunisian's Ons Jabeur..\u001b[0m\u001b[102m\n",
"Follow up: Where is Carlos Alcaraz from?\u001b[0m\n",
"Intermediate answer: \u001b[103mEl Palmar, Murcia, Spain.\u001b[0m\u001b[102m\n",
"So the final answer is: El Palmar, Murcia, Spain\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'\\nSo the final answer is: El Palmar, Murcia, Spain'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import SelfAskWithSearchChain, OpenAI, SerpAPIChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"search = SerpAPIChain()\n",
"\n",
"self_ask_with_search = SelfAskWithSearchChain(llm=llm, search_chain=search, verbose=True)\n",
"\n",
"self_ask_with_search.run(\"What is the hometown of the reigning men's U.S. Open champion?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "683d69e7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -2,56 +2,49 @@
"cells": [
{
"cell_type": "markdown",
"id": "91c6a7ef",
"id": "d8a5c5d4",
"metadata": {},
"source": [
"# Redis Chat Message History\n",
"# Simple Example\n",
"\n",
"This notebook goes over how to use Redis to store chat message history."
"This notebook showcases a simple chain."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d15e3302",
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import RedisChatMessageHistory\n",
"\n",
"history = RedisChatMessageHistory(\"foo\")\n",
"\n",
"history.add_user_message(\"hi!\")\n",
"\n",
"history.add_ai_message(\"whats up?\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "64fc465e",
"execution_count": 2,
"id": "51a54c4d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content='whats up?', additional_kwargs={}),\n",
" HumanMessage(content='hi!', additional_kwargs={})]"
"' The year Justin Beiber was born was 1994. In 1994, the Dallas Cowboys won the Super Bowl.'"
]
},
"execution_count": 10,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"history.messages"
"from langchain import Prompt, OpenAI, LLMChain\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = Prompt(template=template, input_variables=[\"question\"])\n",
"llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0))\n",
"\n",
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8af285f8",
"id": "03dd6918",
"metadata": {},
"outputs": [],
"source": []
@@ -73,7 +66,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.7.6"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,129 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0ed6aab1",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# SQLite example\n",
"\n",
"This example showcases hooking up an LLM to answer questions over a database."
]
},
{
"cell_type": "markdown",
"id": "b2f66479",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"This uses the example Chinook database.\n",
"To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d0e27d88",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain import OpenAI, SQLDatabase, SQLDatabaseChain"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "72ede462",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"db = SQLDatabase.from_uri(\"sqlite:///../../../notebooks/Chinook.db\")\n",
"llm = OpenAI(temperature=0)\n",
"db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "15ff81df",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"How many employees are there?\n",
"SQLQuery:\u001b[102m SELECT COUNT(*) FROM Employee\u001b[0m\n",
"SQLResult: \u001b[103m[(8,)]\u001b[0m\n",
"Answer:\u001b[102m 8\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' 8'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db_chain.run(\"How many employees are there?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "61d91b85",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -2,80 +2,79 @@
"cells": [
{
"cell_type": "markdown",
"id": "683953b3",
"id": "07c1e3b9",
"metadata": {},
"source": [
"# Pinecone\n",
"# Vector DB Question/Answering\n",
"\n",
"This notebook shows how to use functionality related to the Pinecone vector database."
"This example showcases question answering over a vector database."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "aac9563e",
"id": "82525493",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores.faiss import FAISS\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Pinecone\n",
"from langchain.document_loaders import TextLoader"
"from langchain import OpenAI, VectorDBQA"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a3c3999a",
"execution_count": 3,
"id": "5c7049db",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader('../../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"texts = text_splitter.split_text(state_of_the_union)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
"embeddings = OpenAIEmbeddings()\n",
"docsearch = FAISS.from_texts(texts, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e104aee",
"execution_count": 4,
"id": "3018f865",
"metadata": {},
"outputs": [],
"source": [
"import pinecone \n",
"\n",
"# initialize pinecone\n",
"pinecone.init(\n",
" api_key=\"YOUR_API_KEY\", # find at app.pinecone.io\n",
" environment=\"YOUR_ENV\" # next to api key in console\n",
")\n",
"\n",
"index_name = \"langchain-demo\"\n",
"\n",
"docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)\n",
"\n",
"qa = VectorDBQA(llm=OpenAI(), vectorstore=docsearch)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "032a47f8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' The President said that Ketanji Brown Jackson is a consensus builder and has received a broad range of support since she was nominated.'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
"qa.run(query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9c608226",
"metadata": {},
"outputs": [],
"source": [
"print(docs[0].page_content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a359ed74",
"id": "f0f20b92",
"metadata": {},
"outputs": [],
"source": []
@@ -97,7 +96,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.7.6"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,10 @@
Integrations
============
The examples here all highlight a specific type of integration.
.. toctree::
:maxdepth: 1
:glob:
integrations/*

View File

@@ -0,0 +1,177 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "7ef4d402-6662-4a26-b612-35b542066487",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Embeddings & VectorStores\n",
"\n",
"This notebook show cases how to use embeddings to create a VectorStore"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "965eecee",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch\n",
"from langchain.vectorstores.faiss import FAISS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "68481687",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "015f4ff5",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"docsearch = FAISS.from_texts(texts, embeddings)\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "67baf32e",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence. \n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "eea6e627",
"metadata": {},
"source": [
"## Requires having ElasticSearch setup"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4906b8a3",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"docsearch = ElasticVectorSearch.from_texts(texts, embeddings, elasticsearch_url=\"http://localhost:9200\")\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "95f9eee9",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence. \n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -5,14 +5,14 @@
"id": "959300d4",
"metadata": {},
"source": [
"# Hugging Face Hub\n",
"# HuggingFace Hub\n",
"\n",
"This example showcases how to connect to the Hugging Face Hub."
"This example showcases how to connect to the HuggingFace Hub."
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 1,
"id": "3acf0069",
"metadata": {},
"outputs": [
@@ -20,18 +20,18 @@
"name": "stdout",
"output_type": "stream",
"text": [
"The Seattle Seahawks won the Super Bowl in 2010. Justin Beiber was born in 2010. The final answer: Seattle Seahawks.\n"
"The Seattle Seahawks won the Super Bowl in 2010. Justin Beiber was born in 2010. The\n"
]
}
],
"source": [
"from langchain import PromptTemplate, HuggingFaceHub, LLMChain\n",
"from langchain import Prompt, HuggingFaceHub, LLMChain\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"llm_chain = LLMChain(prompt=prompt, llm=HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\":0, \"max_length\":64}))\n",
"prompt = Prompt(template=template, input_variables=[\"question\"])\n",
"llm_chain = LLMChain(prompt=prompt, llm=HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\":1e-10}))\n",
"\n",
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
@@ -63,7 +63,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
"version": "3.7.6"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,180 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "b118c9dc",
"metadata": {},
"source": [
"# HuggingFace Tokenizers\n",
"\n",
"This notebook show cases how to use HuggingFace tokenizers to split text."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e82c4685",
"metadata": {},
"outputs": [],
"source": [
"from langchain.text_splitter import CharacterTextSplitter"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a8ce51d5",
"metadata": {},
"outputs": [],
"source": [
"from transformers import GPT2TokenizerFast\n",
"\n",
"tokenizer = GPT2TokenizerFast.from_pretrained(\"gpt2\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ca5e72c0",
"metadata": {},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(tokenizer, chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "37cdfbeb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n",
"\n",
"Last year COVID-19 kept us apart. This year we are finally together again. \n",
"\n",
"Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n",
"\n",
"With a duty to one another to the American people to the Constitution. \n",
"\n",
"And with an unwavering resolve that freedom will always triumph over tyranny. \n",
"\n",
"Six days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n",
"\n",
"He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n",
"\n",
"He met the Ukrainian people. \n",
"\n",
"From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. \n",
"\n",
"Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. \n",
"\n",
"In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight. \n",
"\n",
"Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world. \n",
"\n",
"Please rise if you are able and show that, Yes, we the United States of America stand with the Ukrainian people. \n",
"\n",
"Throughout our history weve learned this lesson when dictators do not pay a price for their aggression they cause more chaos. \n",
"\n",
"They keep moving. \n",
"\n",
"And the costs and the threats to America and the world keep rising. \n",
"\n",
"Thats why the NATO Alliance was created to secure peace and stability in Europe after World War 2. \n",
"\n",
"The United States is a member along with 29 other nations. \n",
"\n",
"It matters. American diplomacy matters. American resolve matters. \n",
"\n",
"Putins latest attack on Ukraine was premeditated and unprovoked. \n",
"\n",
"He rejected repeated efforts at diplomacy. \n",
"\n",
"He thought the West and NATO wouldnt respond. And he thought he could divide us at home. Putin was wrong. We were ready. Here is what we did. \n",
"\n",
"We prepared extensively and carefully. \n",
"\n",
"We spent months building a coalition of other freedom-loving nations from Europe and the Americas to Asia and Africa to confront Putin. \n",
"\n",
"I spent countless hours unifying our European allies. We shared with the world in advance what we knew Putin was planning and precisely how he would try to falsely justify his aggression. \n",
"\n",
"We countered Russias lies with truth. \n",
"\n",
"And now that he has acted the free world is holding him accountable. \n",
"\n",
"Along with twenty-seven members of the European Union including France, Germany, Italy, as well as countries like the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland. \n",
"\n",
"We are inflicting pain on Russia and supporting the people of Ukraine. Putin is now isolated from the world more than ever. \n",
"\n",
"Together with our allies we are right now enforcing powerful economic sanctions. \n",
"\n",
"We are cutting off Russias largest banks from the international financial system. \n",
"\n",
"Preventing Russias central bank from defending the Russian Ruble making Putins $630 Billion “war fund” worthless. \n",
"\n",
"We are choking off Russias access to technology that will sap its economic strength and weaken its military for years to come. \n",
"\n",
"Tonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more. \n",
"\n",
"The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs. \n",
"\n",
"We are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains. \n",
"\n",
"And tonight I am announcing that we will join our allies in closing off American air space to all Russian flights further isolating Russia and adding an additional squeeze on their economy. The Ruble has lost 30% of its value. \n",
"\n",
"The Russian stock market has lost 40% of its value and trading remains suspended. Russias economy is reeling and Putin alone is to blame. \n",
"\n",
"Together with our allies we are providing support to the Ukrainians in their fight for freedom. Military assistance. Economic assistance. Humanitarian assistance. \n",
"\n",
"We are giving more than $1 Billion in direct assistance to Ukraine. \n",
"\n",
"And we will continue to aid the Ukrainian people as they defend their country and to help ease their suffering. \n",
"\n",
"Let me be clear, our forces are not engaged and will not engage in conflict with Russian forces in Ukraine. \n",
"\n",
"Our forces are not going to Europe to fight in Ukraine, but to defend our NATO Allies in the event that Putin decides to keep moving west. \n"
]
}
],
"source": [
"print(texts[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d214aec2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -69,7 +69,7 @@
"outputs": [],
"source": [
"# Map reduce example\n",
"from langchain import PromptTemplate\n",
"from langchain import Prompt\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.chains.mapreduce import MapReduceChain\n",
"\n",
@@ -81,7 +81,7 @@
"\n",
"\n",
"CONCISE SUMMARY:\"\"\"\n",
"prompt = PromptTemplate(template=_prompt, input_variables=[\"text\"])\n",
"prompt = Prompt(template=_prompt, input_variables=[\"text\"])\n",
"\n",
"text_splitter = CharacterTextSplitter()\n",
"\n",
@@ -106,7 +106,7 @@
}
],
"source": [
"with open('../../../state_of_the_union.txt') as f:\n",
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"mp_chain.run(state_of_the_union)"
]
@@ -202,7 +202,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.7.6"
},
"vscode": {
"interpreter": {

View File

@@ -0,0 +1,161 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "920a3c1a",
"metadata": {},
"source": [
"# Model Laboratory\n",
"\n",
"This example goes over basic functionality of how to use the ModelLaboratory to test out and try different models."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ab9e95ad",
"metadata": {},
"outputs": [],
"source": [
"from langchain import LLMChain, OpenAI, Cohere, HuggingFaceHub, Prompt\n",
"from langchain.model_laboratory import ModelLaboratory"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "32cb94e6",
"metadata": {},
"outputs": [],
"source": [
"llms = [\n",
" OpenAI(temperature=0), \n",
" Cohere(model=\"command-xlarge-20221108\", max_tokens=20, temperature=0), \n",
" HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\":1})\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "14cde09d",
"metadata": {},
"outputs": [],
"source": [
"model_lab = ModelLaboratory(llms)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f186c741",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"What color is a flamingo?\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\u001b[104m\n",
"\n",
"Flamingos are pink.\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\u001b[103m\n",
"\n",
"Pink\u001b[0m\n",
"\n",
"\u001b[1mHuggingFaceHub\u001b[0m\n",
"Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
"\u001b[101mpink\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab.compare(\"What color is a flamingo?\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "248b652a",
"metadata": {},
"outputs": [],
"source": [
"prompt = Prompt(template=\"What is the capital of {state}?\", input_variables=[\"state\"])\n",
"model_lab_with_prompt = ModelLaboratory(llms, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f64377ac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"New York\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\u001b[104m\n",
"\n",
"The capital of New York is Albany.\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\u001b[103m\n",
"\n",
"The capital of New York is Albany.\u001b[0m\n",
"\n",
"\u001b[1mHuggingFaceHub\u001b[0m\n",
"Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
"\u001b[101mst john s\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab_with_prompt.compare(\"New York\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "54336dbf",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

10
docs/examples/prompts.rst Normal file
View File

@@ -0,0 +1,10 @@
Prompts
=======
The examples here all highlight how to work with prompts.
.. toctree::
:maxdepth: 1
:glob:
prompts/*

View File

@@ -0,0 +1,142 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f5d249ee",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Generate Examples\n",
"\n",
"This notebook shows how to use LangChain to generate more examples similar to the ones you already have."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1685fa2f",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.chains.react.prompt import EXAMPLES\n",
"from langchain.llms.openai import OpenAI\n",
"from langchain.example_generator import generate_example, generate_example_from_dynamic_prompt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "334ef4f7",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/plain": [
"'Question: What is the elevation range for the area that the eastern sector of the\\nColorado orogeny extends into?\\nThought 1: I need to search Colorado orogeny, find the area that the eastern sector\\nof the Colorado orogeny extends into, then find the elevation range of the\\narea.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\\nColorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern\\nsector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\\nthe Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\\nneed to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the\\nHigh Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\\nm).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\\nis 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# print initial example for visibility\n",
"EXAMPLES[0]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a7bd36bc",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"new_example = generate_example(EXAMPLES, OpenAI())"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e1efb008",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/plain": [
"['',\n",
" '',\n",
" 'Question: Which ocean is the worlds smallest?',\n",
" '',\n",
" 'Thought 1: I need to search for oceans and find which one is the worlds smallest.',\n",
" '',\n",
" 'Action 1: Search[oceans]',\n",
" '',\n",
" 'Observation 1: There are five oceans: the Pacific, Atlantic, Indian, Southern, and Arctic.',\n",
" '',\n",
" 'Thought 2: I need to compare the sizes of the oceans and find which one is the smallest.',\n",
" '',\n",
" 'Action 2: Compare[Pacific, Atlantic, Indian, Southern, Arctic]',\n",
" '',\n",
" 'Observation 2: The Arctic is the smallest ocean.']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"new_example.split('\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ed01ba2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,179 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d7467b67",
"metadata": {},
"source": [
"# Optimized Prompts\n",
"\n",
"This example showcases how using the OptimizedPrompt class enables selection of the most relevant examples to include as few-shot examples in the prompt."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e9e2b50b",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.react.prompt import EXAMPLES, SUFFIX\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.example_generator import generate_example, generate_example_from_dynamic_prompt\n",
"from langchain.llms.openai import OpenAI\n",
"from langchain.prompts.optimized import OptimizedPrompt\n",
"from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch\n",
"from langchain.vectorstores.faiss_search import FAISS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cb069606",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Question: What is the elevation range for the area that the eastern sector of the\\nColorado orogeny extends into?\\nThought 1: I need to search Colorado orogeny, find the area that the eastern sector\\nof the Colorado orogeny extends into, then find the elevation range of the\\narea.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\\nColorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern\\nsector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\\nthe Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\\nneed to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the\\nHigh Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\\nm).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\\nis 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"EXAMPLES[0]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5fda75a4",
"metadata": {},
"outputs": [],
"source": [
"prompt = OptimizedPrompt.from_examples(\n",
" examples=EXAMPLES, \n",
" suffix=SUFFIX, \n",
" input_variables=[\"input\"],\n",
" embeddings=OpenAIEmbeddings(),\n",
" vectorstore_cls=FAISS\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7a601df8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Question: What is the elevation range for the area that the eastern sector of the\n",
"Colorado orogeny extends into?\n",
"Thought 1: I need to search Colorado orogeny, find the area that the eastern sector\n",
"of the Colorado orogeny extends into, then find the elevation range of the\n",
"area.\n",
"Action 1: Search[Colorado orogeny]\n",
"Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\n",
"Colorado and surrounding areas.\n",
"Thought 2: It does not mention the eastern sector. So I need to look up eastern\n",
"sector.\n",
"Action 2: Lookup[eastern sector]\n",
"Observation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\n",
"the Central Plains orogeny.\n",
"Thought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\n",
"need to search High Plains and find its elevation range.\n",
"Action 3: Search[High Plains]\n",
"Observation 3: High Plains refers to one of two distinct land regions\n",
"Thought 4: I need to instead search High Plains (United States).\n",
"Action 4: Search[High Plains (United States)]\n",
"Observation 4: The High Plains are a subregion of the Great Plains. From east to west, the\n",
"High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\n",
"m).[3]\n",
"Thought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\n",
"is 1,800 to 7,000 ft.\n",
"Action 5: Finish[1,800 to 7,000 ft]\n",
"\n",
"\n",
"\n",
"Question: What is the highest mountain peak in Asia?\n"
]
}
],
"source": [
"print(prompt.format(k=1, input=\"What is the highest mountain peak in Asia?\"))"
]
},
{
"cell_type": "markdown",
"id": "a5dc3525",
"metadata": {},
"source": [
"## Requires having ElasticSearch setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bbd92d08",
"metadata": {},
"outputs": [],
"source": [
"prompt = OptimizedPrompt.from_examples(\n",
" examples=EXAMPLES, \n",
" suffix=SUFFIX, \n",
" input_variables=[\"input\"],\n",
" embeddings=OpenAIEmbeddings(),\n",
" vectorstore_cls=ElasticVectorSearch,\n",
" elasticsearch_url=\"http://localhost:9200\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bd91f408",
"metadata": {},
"outputs": [],
"source": [
"print(prompt.format(k=1, input=\"What is the highest mountain peak in Asia?\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "716165c2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,335 +0,0 @@
LangChain Gallery
=============
Lots of people have built some pretty awesome stuff with LangChain.
This is a collection of our favorites.
If you see any other demos that you think we should highlight, be sure to let us know!
Open Source
-----------
.. panels::
:body: text-center
---
.. link-button:: https://github.com/bborn/howdoi.ai
:type: url
:text: HowDoI.ai
:classes: stretched-link btn-lg
+++
This is an experiment in building a large-language-model-backed chatbot. It can hold a conversation, remember previous comments/questions,
and answer all types of queries (history, web search, movie data, weather, news, and more).
---
.. link-button:: https://colab.research.google.com/drive/1sKSTjt9cPstl_WMZ86JsgEqFG-aSAwkn?usp=sharing
:type: url
:text: YouTube Transcription QA with Sources
:classes: stretched-link btn-lg
+++
An end-to-end example of doing question answering on YouTube transcripts, returning the timestamps as sources to legitimize the answer.
---
.. link-button:: https://github.com/normandmickey/MrsStax
:type: url
:text: QA Slack Bot
:classes: stretched-link btn-lg
+++
This application is a Slack Bot that uses Langchain and OpenAI's GPT3 language model to provide domain specific answers. You provide the documents.
---
.. link-button:: https://github.com/OpenBioLink/ThoughtSource
:type: url
:text: ThoughtSource
:classes: stretched-link btn-lg
+++
A central, open resource and community around data and tools related to chain-of-thought reasoning in large language models.
---
.. link-button:: https://github.com/blackhc/llm-strategy
:type: url
:text: LLM Strategy
:classes: stretched-link btn-lg
+++
This Python package adds a decorator llm_strategy that connects to an LLM (such as OpenAIs GPT-3) and uses the LLM to "implement" abstract methods in interface classes. It does this by forwarding requests to the LLM and converting the responses back to Python data using Python's @dataclasses.
---
.. link-button:: https://github.com/JohnNay/llm-lobbyist
:type: url
:text: Zero-Shot Corporate Lobbyist
:classes: stretched-link btn-lg
+++
A notebook showing how to use GPT to help with the work of a corporate lobbyist.
---
.. link-button:: https://dagster.io/blog/chatgpt-langchain
:type: url
:text: Dagster Documentation ChatBot
:classes: stretched-link btn-lg
+++
A jupyter notebook demonstrating how you could create a semantic search engine on documents in one of your Google Folders
---
.. link-button:: https://github.com/venuv/langchain_semantic_search
:type: url
:text: Google Folder Semantic Search
:classes: stretched-link btn-lg
+++
Build a GitHub support bot with GPT3, LangChain, and Python.
---
.. link-button:: https://huggingface.co/spaces/team7/talk_with_wind
:type: url
:text: Talk With Wind
:classes: stretched-link btn-lg
+++
Record sounds of anything (birds, wind, fire, train station) and chat with it.
---
.. link-button:: https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain
:type: url
:text: ChatGPT LangChain
:classes: stretched-link btn-lg
+++
This simple application demonstrates a conversational agent implemented with OpenAI GPT-3.5 and LangChain. When necessary, it leverages tools for complex math, searching the internet, and accessing news and weather.
---
.. link-button:: https://huggingface.co/spaces/JavaFXpert/gpt-math-techniques
:type: url
:text: GPT Math Techniques
:classes: stretched-link btn-lg
+++
A Hugging Face spaces project showing off the benefits of using PAL for math problems.
---
.. link-button:: https://colab.research.google.com/drive/1xt2IsFPGYMEQdoJFNgWNAjWGxa60VXdV
:type: url
:text: GPT Political Compass
:classes: stretched-link btn-lg
+++
Measure the political compass of GPT.
---
.. link-button:: https://github.com/hwchase17/notion-qa
:type: url
:text: Notion Database Question-Answering Bot
:classes: stretched-link btn-lg
+++
Open source GitHub project shows how to use LangChain to create a chatbot that can answer questions about an arbitrary Notion database.
---
.. link-button:: https://github.com/jerryjliu/llama_index
:type: url
:text: LlamaIndex
:classes: stretched-link btn-lg
+++
LlamaIndex (formerly GPT Index) is a project consisting of a set of data structures that are created using GPT-3 and can be traversed using GPT-3 in order to answer queries.
---
.. link-button:: https://github.com/JavaFXpert/llm-grovers-search-party
:type: url
:text: Grover's Algorithm
:classes: stretched-link btn-lg
+++
Leveraging Qiskit, OpenAI and LangChain to demonstrate Grover's algorithm
---
.. link-button:: https://huggingface.co/spaces/rituthombre/QNim
:type: url
:text: QNimGPT
:classes: stretched-link btn-lg
+++
A chat UI to play Nim, where a player can select an opponent, either a quantum computer or an AI
---
.. link-button:: https://colab.research.google.com/drive/19WTIWC3prw5LDMHmRMvqNV2loD9FHls6?usp=sharing
:type: url
:text: ReAct TextWorld
:classes: stretched-link btn-lg
+++
Leveraging the ReActTextWorldAgent to play TextWorld with an LLM!
---
.. link-button:: https://github.com/jagilley/fact-checker
:type: url
:text: Fact Checker
:classes: stretched-link btn-lg
+++
This repo is a simple demonstration of using LangChain to do fact-checking with prompt chaining.
---
.. link-button:: https://github.com/arc53/docsgpt
:type: url
:text: DocsGPT
:classes: stretched-link btn-lg
+++
Answer questions about the documentation of any project
Misc. Colab Notebooks
~~~~~~~~~~~~~~~
.. panels::
:body: text-center
---
.. link-button:: https://colab.research.google.com/drive/1AAyEdTz-Z6ShKvewbt1ZHUICqak0MiwR?usp=sharing
:type: url
:text: Wolfram Alpha in Conversational Agent
:classes: stretched-link btn-lg
+++
Give ChatGPT a WolframAlpha neural implant
---
.. link-button:: https://colab.research.google.com/drive/1UsCLcPy8q5PMNQ5ytgrAAAHa124dzLJg?usp=sharing
:type: url
:text: Tool Updates in Agents
:classes: stretched-link btn-lg
+++
Agent improvements (6th Jan 2023)
---
.. link-button:: https://colab.research.google.com/drive/1UsCLcPy8q5PMNQ5ytgrAAAHa124dzLJg?usp=sharing
:type: url
:text: Conversational Agent with Tools (Langchain AGI)
:classes: stretched-link btn-lg
+++
Langchain AGI (23rd Dec 2022)
Proprietary
-----------
.. panels::
:body: text-center
---
.. link-button:: https://twitter.com/sjwhitmore/status/1580593217153531908?s=20&t=neQvtZZTlp623U3LZwz3bQ
:type: url
:text: Daimon
:classes: stretched-link btn-lg
+++
A chat-based AI personal assistant with long-term memory about you.
---
.. link-button:: https://twitter.com/dory111111/status/1608406234646052870?s=20&t=XYlrbKM0ornJsrtGa0br-g
:type: url
:text: AI Assisted SQL Query Generator
:classes: stretched-link btn-lg
+++
An app to write SQL using natural language, and execute against real DB.
---
.. link-button:: https://twitter.com/krrish_dh/status/1581028925618106368?s=20&t=neQvtZZTlp623U3LZwz3bQ
:type: url
:text: Clerkie
:classes: stretched-link btn-lg
+++
Stack Tracing QA Bot to help debug complex stack tracing (especially the ones that go multi-function/file deep).
---
.. link-button:: https://twitter.com/Raza_Habib496/status/1596880140490838017?s=20&t=6MqEQYWfSqmJwsKahjCVOA
:type: url
:text: Sales Email Writer
:classes: stretched-link btn-lg
+++
By Raza Habib, this demo utilizes LangChain + SerpAPI + HumanLoop to write sales emails. Give it a company name and a person, this application will use Google Search (via SerpAPI) to get more information on the company and the person, and then write them a sales message.
---
.. link-button:: https://twitter.com/chillzaza_/status/1592961099384905730?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ
:type: url
:text: Question-Answering on a Web Browser
:classes: stretched-link btn-lg
+++
By Zahid Khawaja, this demo utilizes question answering to answer questions about a given website. A followup added this for `YouTube videos <https://twitter.com/chillzaza_/status/1593739682013220865?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ>`_, and then another followup added it for `Wikipedia <https://twitter.com/chillzaza_/status/1594847151238037505?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ>`_.
---
.. link-button:: https://mynd.so
:type: url
:text: Mynd
:classes: stretched-link btn-lg
+++
A journaling app for self-care that uses AI to uncover insights and patterns over time.

View File

@@ -0,0 +1,38 @@
# Using Chains
Calling an LLM is a great first step, but it's just the beginning.
Normally when you use an LLM in an application, you are not sending user input directly to the LLM.
Instead, you are probably taking user input and constructing a prompt, and then sending that to the LLM.
For example, in the previous example, the text we passed in was hardcoded to ask for a name for a company that made colorful socks.
In this imaginary service, what we would want to do is take only the user input describing what the company does, and then format the prompt with that information.
This is easy to do with LangChain!
First lets define the prompt:
```python
from langchain.prompts import Prompt
prompt = Prompt(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
```
We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM:
```python
from langchain.chains import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
```
Now we can run that can only specifying the product!
```python
chain.run("colorful socks")
```
There we go! There's the first chain.
That is it for the Getting Started example.
As a next step, we would suggest checking out the more complex chains in the [Demos section](/examples/demos.rst)

View File

@@ -0,0 +1,37 @@
# Setting up your environment
Using LangChain will usually require integrations with one or more model providers, data stores, apis, etc.
There are two components to setting this up, installing the correct python packages and setting the right environment variables.
## Python packages
The python package needed varies based on the integration. See the list of integrations for details.
There should also be helpful error messages raised if you try to run an integration and are missing any required python packages.
## Environment Variables
The environment variable needed varies based on the integration. See the list of integrations for details.
There should also be helpful error messages raised if you try to run an integration and are missing any required environment variables.
You can set the environment variable in a few ways.
If you are trying to set the environment variable `FOO` to value `bar`, here are the ways you could do so:
- From the command line:
```
export FOO=bar
```
- From the python notebook/script:
```python
import os
os.environ["FOO"] = "bar"
```
For the Getting Started example, we will be using OpenAI's APIs, so we will first need to install their SDK:
```
pip install openai
```
We will then need to set the environment variable. Let's do this from inside the Jupyter notebook (or Python script).
```python
import os
os.environ["OPENAI_API_KEY"] = "..."
```

View File

@@ -1,502 +0,0 @@
# Quickstart Guide
This tutorial gives you a quick walkthrough about building an end-to-end language model application with LangChain.
## Installation
To get started, install LangChain with the following command:
```bash
pip install langchain
```
## Environment Setup
Using LangChain will usually require integrations with one or more model providers, data stores, apis, etc.
For this example, we will be using OpenAI's APIs, so we will first need to install their SDK:
```bash
pip install openai
```
We will then need to set the environment variable in the terminal.
```bash
export OPENAI_API_KEY="..."
```
Alternatively, you could do this from inside the Jupyter notebook (or Python script):
```python
import os
os.environ["OPENAI_API_KEY"] = "..."
```
## Building a Language Model Application: LLMs
Now that we have installed LangChain and set up our environment, we can start building our language model application.
LangChain provides many modules that can be used to build language model applications. Modules can be combined to create more complex applications, or be used individually for simple applications.
`````{dropdown} LLMs: Get predictions from a language model
The most basic building block of LangChain is calling an LLM on some input.
Let's walk through a simple example of how to do this.
For this purpose, let's pretend we are building a service that generates a company name based on what the company makes.
In order to do this, we first need to import the LLM wrapper.
```python
from langchain.llms import OpenAI
```
We can then initialize the wrapper with any arguments.
In this example, we probably want the outputs to be MORE random, so we'll initialize it with a HIGH temperature.
```python
llm = OpenAI(temperature=0.9)
```
We can now call it on some input!
```python
text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))
```
```pycon
Feetful of Fun
```
For more details on how to use LLMs within LangChain, see the [LLM getting started guide](../modules/models/llms/getting_started.ipynb).
`````
`````{dropdown} Prompt Templates: Manage prompts for LLMs
Calling an LLM is a great first step, but it's just the beginning.
Normally when you use an LLM in an application, you are not sending user input directly to the LLM.
Instead, you are probably taking user input and constructing a prompt, and then sending that to the LLM.
For example, in the previous example, the text we passed in was hardcoded to ask for a name for a company that made colorful socks.
In this imaginary service, what we would want to do is take only the user input describing what the company does, and then format the prompt with that information.
This is easy to do with LangChain!
First lets define the prompt template:
```python
from langchain.prompts import PromptTemplate
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
```
Let's now see how this works! We can call the `.format` method to format it.
```python
print(prompt.format(product="colorful socks"))
```
```pycon
What is a good name for a company that makes colorful socks?
```
[For more details, check out the getting started guide for prompts.](../modules/prompts/chat_prompt_template.ipynb)
`````
`````{dropdown} Chains: Combine LLMs and prompts in multi-step workflows
Up until now, we've worked with the PromptTemplate and LLM primitives by themselves. But of course, a real application is not just one primitive, but rather a combination of them.
A chain in LangChain is made up of links, which can be either primitives like LLMs or other chains.
The most core type of chain is an LLMChain, which consists of a PromptTemplate and an LLM.
Extending the previous example, we can construct an LLMChain which takes user input, formats it with a PromptTemplate, and then passes the formatted response to an LLM.
```python
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
```
We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM:
```python
from langchain.chains import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
```
Now we can run that chain only specifying the product!
```python
chain.run("colorful socks")
# -> '\n\nSocktastic!'
```
There we go! There's the first chain - an LLM Chain.
This is one of the simpler types of chains, but understanding how it works will set you up well for working with more complex chains.
[For more details, check out the getting started guide for chains.](../modules/chains/getting_started.ipynb)
`````
`````{dropdown} Agents: Dynamically Call Chains Based on User Input
So far the chains we've looked at run in a predetermined order.
Agents no longer do: they use an LLM to determine which actions to take and in what order. An action can either be using a tool and observing its output, or returning to the user.
When used correctly agents can be extremely powerful. In this tutorial, we show you how to easily use agents through the simplest, highest level API.
In order to load agents, you should understand the following concepts:
- Tool: A function that performs a specific duty. This can be things like: Google Search, Database lookup, Python REPL, other chains. The interface for a tool is currently a function that is expected to have a string as an input, with a string as an output.
- LLM: The language model powering the agent.
- Agent: The agent to use. This should be a string that references a support agent class. Because this notebook focuses on the simplest, highest level API, this only covers using the standard supported agents. If you want to implement a custom agent, see the documentation for custom agents (coming soon).
**Agents**: For a list of supported agents and their specifications, see [here](../modules/agents/agents.md).
**Tools**: For a list of predefined tools and their specifications, see [here](../modules/agents/tools.md).
For this example, you will also need to install the SerpAPI Python package.
```bash
pip install google-search-results
```
And set the appropriate environment variables.
```python
import os
os.environ["SERPAPI_API_KEY"] = "..."
```
Now we can get started!
```python
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI
# First, let's load the language model we're going to use to control the agent.
llm = OpenAI(temperature=0)
# Next, let's load some tools to use. Note that the `llm-math` tool uses an LLM, so we need to pass that in.
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# Finally, let's initialize an agent with the tools, the language model, and the type of agent we want to use.
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
# Now let's test it out!
agent.run("What was the high temperature in SF yesterday in Fahrenheit? What is that number raised to the .023 power?")
```
```pycon
> Entering new AgentExecutor chain...
I need to find the temperature first, then use the calculator to raise it to the .023 power.
Action: Search
Action Input: "High temperature in SF yesterday"
Observation: San Francisco Temperature Yesterday. Maximum temperature yesterday: 57 °F (at 1:56 pm) Minimum temperature yesterday: 49 °F (at 1:56 am) Average temperature ...
Thought: I now have the temperature, so I can use the calculator to raise it to the .023 power.
Action: Calculator
Action Input: 57^.023
Observation: Answer: 1.0974509573251117
Thought: I now know the final answer
Final Answer: The high temperature in SF yesterday in Fahrenheit raised to the .023 power is 1.0974509573251117.
> Finished chain.
```
`````
`````{dropdown} Memory: Add State to Chains and Agents
So far, all the chains and agents we've gone through have been stateless. But often, you may want a chain or agent to have some concept of "memory" so that it may remember information about its previous interactions. The clearest and simple example of this is when designing a chatbot - you want it to remember previous messages so it can use context from that to have a better conversation. This would be a type of "short-term memory". On the more complex side, you could imagine a chain/agent remembering key pieces of information over time - this would be a form of "long-term memory". For more concrete ideas on the latter, see this [awesome paper](https://memprompt.com/).
LangChain provides several specially created chains just for this purpose. This notebook walks through using one of those chains (the `ConversationChain`) with two different types of memory.
By default, the `ConversationChain` has a simple type of memory that remembers all previous inputs/outputs and adds them to the context that is passed. Let's take a look at using this chain (setting `verbose=True` so we can see the prompt).
```python
from langchain import OpenAI, ConversationChain
llm = OpenAI(temperature=0)
conversation = ConversationChain(llm=llm, verbose=True)
conversation.predict(input="Hi there!")
```
```pycon
> Entering new chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI:
> Finished chain.
' Hello! How are you today?'
```
```python
conversation.predict(input="I'm doing well! Just having a conversation with an AI.")
```
```pycon
> Entering new chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI: Hello! How are you today?
Human: I'm doing well! Just having a conversation with an AI.
AI:
> Finished chain.
" That's great! What would you like to talk about?"
```
`````
## Building a Language Model Application: Chat Models
Similarly, you can use chat models instead of LLMs. Chat models are a variation on language models. While chat models use language models under the hood, the interface they expose is a bit different: rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs.
Chat model APIs are fairly new, so we are still figuring out the correct abstractions.
`````{dropdown} Get Message Completions from a Chat Model
You can get chat completions by passing one or more messages to the chat model. The response will be a message. The types of messages currently supported in LangChain are `AIMessage`, `HumanMessage`, `SystemMessage`, and `ChatMessage` -- `ChatMessage` takes in an arbitrary role parameter. Most of the time, you'll just be dealing with `HumanMessage`, `AIMessage`, and `SystemMessage`.
```python
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
chat = ChatOpenAI(temperature=0)
```
You can get completions by passing in a single message.
```python
chat([HumanMessage(content="Translate this sentence from English to French. I love programming.")])
# -> AIMessage(content="J'aime programmer.", additional_kwargs={})
```
You can also pass in multiple messages for OpenAI's gpt-3.5-turbo and gpt-4 models.
```python
messages = [
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="Translate this sentence from English to French. I love programming.")
]
chat(messages)
# -> AIMessage(content="J'aime programmer.", additional_kwargs={})
```
You can go one step further and generate completions for multiple sets of messages using `generate`. This returns an `LLMResult` with an additional `message` parameter:
```python
batch_messages = [
[
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="Translate this sentence from English to French. I love programming.")
],
[
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="Translate this sentence from English to French. I love artificial intelligence.")
],
]
result = chat.generate(batch_messages)
result
# -> LLMResult(generations=[[ChatGeneration(text="J'aime programmer.", generation_info=None, message=AIMessage(content="J'aime programmer.", additional_kwargs={}))], [ChatGeneration(text="J'aime l'intelligence artificielle.", generation_info=None, message=AIMessage(content="J'aime l'intelligence artificielle.", additional_kwargs={}))]], llm_output={'token_usage': {'prompt_tokens': 71, 'completion_tokens': 18, 'total_tokens': 89}})
```
You can recover things like token usage from this LLMResult:
```
result.llm_output['token_usage']
# -> {'prompt_tokens': 71, 'completion_tokens': 18, 'total_tokens': 89}
```
`````
`````{dropdown} Chat Prompt Templates
Similar to LLMs, you can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplate`s. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or `Message` object, depending on whether you want to use the formatted value as input to an llm or chat model.
For convience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
chat = ChatOpenAI(temperature=0)
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
# get a chat completion from the formatted messages
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
# -> AIMessage(content="J'aime programmer.", additional_kwargs={})
```
`````
`````{dropdown} Chains with Chat Models
The `LLMChain` discussed in the above section can be used with chat models as well:
```python
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
chat = ChatOpenAI(temperature=0)
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
chain.run(input_language="English", output_language="French", text="I love programming.")
# -> "J'aime programmer."
```
`````
`````{dropdown} Agents with Chat Models
Agents can also be used with chat models, you can initialize one using `AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION` as the agent type.
```python
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
# First, let's load the language model we're going to use to control the agent.
chat = ChatOpenAI(temperature=0)
# Next, let's load some tools to use. Note that the `llm-math` tool uses an LLM, so we need to pass that in.
llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# Finally, let's initialize an agent with the tools, the language model, and the type of agent we want to use.
agent = initialize_agent(tools, chat, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
# Now let's test it out!
agent.run("Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?")
```
```pycon
> Entering new AgentExecutor chain...
Thought: I need to use a search engine to find Olivia Wilde's boyfriend and a calculator to raise his age to the 0.23 power.
Action:
{
"action": "Search",
"action_input": "Olivia Wilde boyfriend"
}
Observation: Sudeikis and Wilde's relationship ended in November 2020. Wilde was publicly served with court documents regarding child custody while she was presenting Don't Worry Darling at CinemaCon 2022. In January 2021, Wilde began dating singer Harry Styles after meeting during the filming of Don't Worry Darling.
Thought:I need to use a search engine to find Harry Styles' current age.
Action:
{
"action": "Search",
"action_input": "Harry Styles age"
}
Observation: 29 years
Thought:Now I need to calculate 29 raised to the 0.23 power.
Action:
{
"action": "Calculator",
"action_input": "29^0.23"
}
Observation: Answer: 2.169459462491557
Thought:I now know the final answer.
Final Answer: 2.169459462491557
> Finished chain.
'2.169459462491557'
```
`````
`````{dropdown} Memory: Add State to Chains and Agents
You can use Memory with chains and agents initialized with chat models. The main difference between this and Memory for LLMs is that rather than trying to condense all previous messages into a string, we can keep them as their own unique memory object.
```python
from langchain.prompts import (
ChatPromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate
)
from langchain.chains import ConversationChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
prompt = ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template("The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know."),
MessagesPlaceholder(variable_name="history"),
HumanMessagePromptTemplate.from_template("{input}")
])
llm = ChatOpenAI(temperature=0)
memory = ConversationBufferMemory(return_messages=True)
conversation = ConversationChain(memory=memory, prompt=prompt, llm=llm)
conversation.predict(input="Hi there!")
# -> 'Hello! How can I assist you today?'
conversation.predict(input="I'm doing well! Just having a conversation with an AI.")
# -> "That sounds like fun! I'm happy to chat with you. Is there anything specific you'd like to talk about?"
conversation.predict(input="Tell me about yourself.")
# -> "Sure! I am an AI language model created by OpenAI. I was trained on a large dataset of text from the internet, which allows me to understand and generate human-like language. I can answer questions, provide information, and even have conversations like this one. Is there anything else you'd like to know about me?"
```
`````

View File

@@ -0,0 +1,11 @@
# Installation
LangChain is available on PyPi, so to it is easily installable with:
```
pip install langchain
```
For more involved installation options, see the [Installation Reference](/installation.md) section.
That's it! LangChain is now installed. You can now use LangChain from a python script or Jupyter notebook.

View File

@@ -0,0 +1,25 @@
# Calling a LLM
The most basic building block of LangChain is calling an LLM on some input.
Let's walk through a simple example of how to do this.
For this purpose, let's pretend we are building a service that generates a company name based on what the company makes.
In order to do this, we first need to import the LLM wrapper.
```python
from langchain.llms import OpenAI
```
We can then initialize the wrapper with any arguments.
In this example, we probably want the outputs to be MORE random, so we'll initialize it with a HIGH temperature.
```python
llm = OpenAI(temperature=0.9)
```
We can now call it on some input!
```python
text = "What would be a good company name a company that makes colorful socks?"
llm(text)
```

View File

@@ -1,90 +1,74 @@
# Glossary
This is a collection of terminology commonly used when developing LLM applications.
It contains reference to external papers or sources where the concept was first introduced,
It contains reference to external papers or sources where the concept was first introduced,
as well as to places in LangChain where the concept is used.
## Chain of Thought Prompting
### Chain of Thought Prompting
A prompting technique used to encourage the model to generate a series of intermediate reasoning steps.
A prompting technique used to encourage the model to generate a series of intermediate reasoning steps.
A less formal way to induce this behavior is to include “Lets think step-by-step” in the prompt.
Resources:
- [Chain-of-Thought Paper](https://arxiv.org/pdf/2201.11903.pdf)
- [Step-by-Step Paper](https://arxiv.org/abs/2112.00114)
## Action Plan Generation
### Action Plan Generation
A prompt usage that uses a language model to generate actions to take.
A prompt usage that uses a language model to generate actions to take.
The results of these actions can then be fed back into the language model to generate a subsequent action.
Resources:
- [WebGPT Paper](https://arxiv.org/pdf/2112.09332.pdf)
- [SayCan Paper](https://say-can.github.io/assets/palm_saycan.pdf)
## ReAct Prompting
### ReAct Prompting
A prompting technique that combines Chain-of-Thought prompting with action plan generation.
This induces the to model to think about what action to take, then take it.
A prompting technique that combines Chain-of-Thought prompting with action plan generation.
This induces the to model to think about what action to take, then take it.
Resources:
- [Paper](https://arxiv.org/pdf/2210.03629.pdf)
- [LangChain Example](modules/agents/agents/examples/react.ipynb)
- [LangChain Example](https://github.com/hwchase17/langchain/blob/master/examples/react.ipynb)
## Self-ask
### Self-ask
A prompting method that builds on top of chain-of-thought prompting.
In this method, the model explicitly asks itself follow-up questions, which are then answered by an external search engine.
A prompting method that builds on top of chain-of-thought prompting.
In this method, the model explicitly asks itself follow-up questions, which are then answered by an external search engine.
Resources:
- [Paper](https://ofir.io/self-ask.pdf)
- [LangChain Example](modules/agents/agents/examples/self_ask_with_search.ipynb)
- [LangChain Example](https://github.com/hwchase17/langchain/blob/master/examples/self_ask_with_search.ipynb)
## Prompt Chaining
### Prompt Chaining
Combining multiple LLM calls together, with the output of one-step being the input to the next.
Resources:
Combining multiple LLM calls together, with the output of one step being the input to the next.
Resources:
- [PromptChainer Paper](https://arxiv.org/pdf/2203.06566.pdf)
- [Language Model Cascades](https://arxiv.org/abs/2207.10342)
- [ICE Primer Book](https://primer.ought.org/)
- [Socratic Models](https://socraticmodels.github.io/)
## Memetic Proxy
### Memetic Proxy
Encouraging the LLM to respond in a certain way framing the discussion in a context that the model knows of and that will result in that type of response. For example, as a conversation between a student and a teacher.
Encouraging the LLM to respond in a certain way framing the discussion in a context that the model knows of and that will result in that type of response. For example, as a conversation between a student and a teacher.
Resources:
- [Paper](https://arxiv.org/pdf/2102.07350.pdf)
## Self Consistency
### Self Consistency
A decoding strategy that samples a diverse set of reasoning paths and then selects the most consistent answer.
Is most effective when combined with Chain-of-thought prompting.
A decoding strategy that samples a diverse set of reasoning paths and then selects the most consistent answer.
Is most effective when combined with Chain-of-thought prompting.
Resources:
- [Paper](https://arxiv.org/pdf/2203.11171.pdf)
## Inception
### Inception
Also called “First Person Instruction”.
Encouraging the model to think a certain way by including the start of the models response in the prompt.
Also called “First Person Instruction”.
Encouraging the model to think a certain way by including the start of the models response in the prompt.
Resources:
- [Example](https://twitter.com/goodside/status/1583262455207460865?s=20&t=8Hz7XBnK1OF8siQrxxCIGQ)
## MemPrompt
MemPrompt maintains a memory of errors and user feedback, and uses them to prevent repetition of mistakes.
Resources:
- [Paper](https://memprompt.com/)

View File

@@ -1,169 +1,83 @@
Welcome to LangChain
==========================
LangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only call out to a language model via an API, but will also:
Large language models (LLMs) are emerging as a transformative technology, enabling
developers to build applications that they previously could not.
But using these LLMs in isolation is often not enough to
create a truly powerful app - the real power comes when you are able to
combine them with other sources of computation or knowledge.
- *Be data-aware*: connect a language model to other sources of data
- *Be agentic*: allow a language model to interact with its environment
This library is aimed at assisting in the development of those types of applications.
It aims to create:
The LangChain framework is designed with the above principles in mind.
1. a comprehensive collection of pieces you would ever want to combine
2. a flexible interface for combining pieces into a single comprehensive "chain"
3. a schema for easily saving and sharing those chains
This is the Python specific portion of the documentation. For a purely conceptual guide to LangChain, see `here <https://docs.langchain.com/docs/>`_. For the JavaScript documentation, see `here <https://js.langchain.com/docs/>`_.
The documentation is structured into the following sections:
Getting Started
----------------
Checkout the below guide for a walkthrough of how to get started using LangChain to create an Language Model application.
- `Getting Started Documentation <./getting_started/getting_started.html>`_
.. toctree::
:maxdepth: 1
:caption: Getting Started
:name: getting_started
:hidden:
getting_started/getting_started.md
getting_started/installation.md
getting_started/environment.md
getting_started/llm.md
getting_started/chains.md
Modules
-----------
There are several main modules that LangChain provides support for.
For each module we provide some examples to get started, how-to guides, reference docs, and conceptual guides.
These modules are, in increasing order of complexity:
- `Models <./modules/models.html>`_: The various model types and model integrations LangChain supports.
- `Prompts <./modules/prompts.html>`_: This includes prompt management, prompt optimization, and prompt serialization.
- `Memory <./modules/memory.html>`_: Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
- `Indexes <./modules/indexes.html>`_: Language models are often more powerful when combined with your own text data - this module covers best practices for doing exactly that.
- `Chains <./modules/chains.html>`_: Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
- `Agents <./modules/agents.html>`_: Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.
Goes over a simple walk through and tutorial for getting started setting up a simple chain that generates a company name based on what the company makes.
Covers installation, environment set up, calling LLMs, and using prompts.
Start here if you haven't used LangChain before.
.. toctree::
:maxdepth: 1
:caption: Modules
:name: modules
:hidden:
:caption: How-To Examples
:name: examples
./modules/models.rst
./modules/prompts.rst
./modules/indexes.md
./modules/memory.md
./modules/chains.md
./modules/agents.md
examples/demos.rst
examples/integrations.rst
examples/prompts.rst
examples/model_laboratory.ipynb
Use Cases
----------
The above modules can be used in a variety of ways. LangChain also provides guidance and assistance in this. Below are some of the common use cases LangChain supports.
- `Personal Assistants <./use_cases/personal_assistants.html>`_: The main LangChain use case. Personal assistants need to take actions, remember interactions, and have knowledge about your data.
- `Question Answering <./use_cases/question_answering.html>`_: The second big LangChain use case. Answering questions over specific documents, only utilizing the information in those documents to construct an answer.
- `Chatbots <./use_cases/chatbots.html>`_: Since language models are good at producing text, that makes them ideal for creating chatbots.
- `Querying Tabular Data <./use_cases/tabular.html>`_: If you want to understand how to use LLMs to query data that is stored in a tabular format (csvs, SQL, dataframes, etc) you should read this page.
- `Interacting with APIs <./use_cases/apis.html>`_: Enabling LLMs to interact with APIs is extremely powerful in order to give them more up-to-date information and allow them to take actions.
- `Extraction <./use_cases/extraction.html>`_: Extract structured information from text.
- `Summarization <./use_cases/summarization.html>`_: Summarizing longer documents into shorter, more condensed chunks of information. A type of Data Augmented Generation.
- `Evaluation <./use_cases/evaluation.html>`_: Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
More elaborate examples and walk-throughs of particular
integrations and use cases. This is the place to look if you have questions
about how to integrate certain pieces, or if you want to find examples of
common tasks or cool demos.
.. toctree::
:maxdepth: 1
:caption: Use Cases
:name: use_cases
:hidden:
./use_cases/personal_assistants.md
./use_cases/question_answering.md
./use_cases/chatbots.md
./use_cases/tabular.rst
./use_cases/apis.md
./use_cases/summarization.md
./use_cases/extraction.md
./use_cases/evaluation.rst
Reference Docs
---------------
All of LangChain's reference documentation, in one place. Full documentation on all methods, classes, installation methods, and integration setups for LangChain.
- `Reference Documentation <./reference.html>`_
.. toctree::
:maxdepth: 1
:caption: Reference
:name: reference
:hidden:
./reference/installation.md
./reference/integrations.md
./reference.rst
installation.md
integrations.md
modules/prompt
modules/llms
modules/embeddings
modules/text_splitter
modules/vectorstore
modules/chains
LangChain Ecosystem
-------------------
Guides for how other companies/products can be used with LangChain
- `LangChain Ecosystem <./ecosystem.html>`_
.. toctree::
:maxdepth: 1
:glob:
:caption: Ecosystem
:name: ecosystem
:hidden:
./ecosystem.rst
Additional Resources
---------------------
Additional collection of resources we think may be useful as you develop your application!
- `LangChainHub <https://github.com/hwchase17/langchain-hub>`_: The LangChainHub is a place to share and explore other prompts, chains, and agents.
- `Glossary <./glossary.html>`_: A glossary of all related terms, papers, methods, etc. Whether implemented in LangChain or not!
- `Gallery <./gallery.html>`_: A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.
- `Deployments <./deployments.html>`_: A collection of instructions, code snippets, and template repositories for deploying LangChain apps.
- `Tracing <./tracing.html>`_: A guide on using tracing in LangChain to visualize the execution of chains and agents.
- `Model Laboratory <./model_laboratory.html>`_: Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so.
- `Discord <https://discord.gg/6adMQxSpJS>`_: Join us on our Discord to discuss all things LangChain!
- `Production Support <https://forms.gle/57d8AmXBYp8PP8tZA>`_: As you move your LangChains into production, we'd love to offer more comprehensive support. Please fill out this form and we'll set up a dedicated support Slack channel.
Full API documentation. This is the place to look if you want to
see detailed information about the various classes, methods, and APIs.
.. toctree::
:maxdepth: 1
:caption: Additional Resources
:caption: Resources
:name: resources
:hidden:
LangChainHub <https://github.com/hwchase17/langchain-hub>
./glossary.md
./gallery.rst
./deployments.md
./tracing.md
./use_cases/model_laboratory.ipynb
core_concepts.md
prompts.md
glossary.md
Discord <https://discord.gg/6adMQxSpJS>
Production Support <https://forms.gle/57d8AmXBYp8PP8tZA>
Higher level, conceptual explanations of the LangChain components.
This is the place to go if you want to increase your high level understanding
of the problems LangChain is solving, and how we decided to go about do so.

View File

@@ -1,6 +1,4 @@
# Installation
## Official Releases
# Installation Options
LangChain is available on PyPi, so to it is easily installable with:
@@ -23,18 +21,4 @@ To install all modules needed for all integrations, run:
```
pip install langchain[all]
```
Note that if you are using `zsh`, you'll need to quote square brackets when passing them as an argument to a command, for example:
```
pip install 'langchain[all]'
```
## Installing from source
If you want to install from source, you can do so by cloning the repo and running:
```
pip install -e .
```
```

33
docs/integrations.md Normal file
View File

@@ -0,0 +1,33 @@
# Integration Reference
Besides the installation of this python package, you will also need to install packages and set environment variables depending on which chains you want to use.
Note: the reason these packages are not included in the dependencies by default is that as we imagine scaling this package, we do not want to force dependencies that are not needed.
The following use cases require specific installs and api keys:
- _OpenAI_:
- Install requirements with `pip install openai`
- Get an OpenAI api key and either set it as an environment variable (`OPENAI_API_KEY`) or pass it to the LLM constructor as `openai_api_key`.
- _Cohere_:
- Install requirements with `pip install cohere`
- Get a Cohere api key and either set it as an environment variable (`COHERE_API_KEY`) or pass it to the LLM constructor as `cohere_api_key`.
- _HuggingFace Hub_
- Install requirements with `pip install huggingface_hub`
- Get a HuggingFace Hub api token and either set it as an environment variable (`HUGGINGFACEHUB_API_TOKEN`) or pass it to the LLM constructor as `huggingfacehub_api_token`.
- _SerpAPI_:
- Install requirements with `pip install google-search-results`
- Get a SerpAPI api key and either set it as an environment variable (`SERPAPI_API_KEY`) or pass it to the LLM constructor as `serpapi_api_key`.
- _NatBot_:
- Install requirements with `pip install playwright`
- _Wikipedia_:
- Install requirements with `pip install wikipedia`
- _Elasticsearch_:
- Install requirements with `pip install elasticsearch`
- Set up Elasticsearch backend. If you want to do locally, [this](https://www.elastic.co/guide/en/elasticsearch/reference/7.17/getting-started.html) is a good guide.
- _FAISS_:
- Install requirements with `pip install faiss` for Python 3.7 and `pip install faiss-cpu` for Python 3.10+.
- _Manifest_:
- Install requirements with `pip install manifest-ml` (Note: this is only available in Python 3.8+ currently).
If you are using the `NLTKTextSplitter` or the `SpacyTextSplitter`, you will also need to install the appropriate models. For example, if you want to use the `SpacyTextSplitter`, you will need to install the `en_core_web_sm` model with `python -m spacy download en_core_web_sm`. Similarly, if you want to use the `NLTKTextSplitter`, you will need to install the `punkt` model with `python -m nltk.downloader punkt`.

View File

@@ -1,256 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "920a3c1a",
"metadata": {},
"source": [
"# Model Comparison\n",
"\n",
"Constructing your language model application will likely involved choosing between many different options of prompts, models, and even chains to use. When doing so, you will want to compare these different options on different inputs in an easy, flexible, and intuitive way. \n",
"\n",
"LangChain provides the concept of a ModelLaboratory to test out and try different models."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ab9e95ad",
"metadata": {},
"outputs": [],
"source": [
"from langchain import LLMChain, OpenAI, Cohere, HuggingFaceHub, PromptTemplate\n",
"from langchain.model_laboratory import ModelLaboratory"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "32cb94e6",
"metadata": {},
"outputs": [],
"source": [
"llms = [\n",
" OpenAI(temperature=0), \n",
" Cohere(model=\"command-xlarge-20221108\", max_tokens=20, temperature=0), \n",
" HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\":1})\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "14cde09d",
"metadata": {},
"outputs": [],
"source": [
"model_lab = ModelLaboratory.from_llms(llms)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f186c741",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"What color is a flamingo?\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\u001b[36;1m\u001b[1;3m\n",
"\n",
"Flamingos are pink.\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\u001b[33;1m\u001b[1;3m\n",
"\n",
"Pink\u001b[0m\n",
"\n",
"\u001b[1mHuggingFaceHub\u001b[0m\n",
"Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
"\u001b[38;5;200m\u001b[1;3mpink\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab.compare(\"What color is a flamingo?\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "248b652a",
"metadata": {},
"outputs": [],
"source": [
"prompt = PromptTemplate(template=\"What is the capital of {state}?\", input_variables=[\"state\"])\n",
"model_lab_with_prompt = ModelLaboratory.from_llms(llms, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f64377ac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"New York\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\u001b[36;1m\u001b[1;3m\n",
"\n",
"The capital of New York is Albany.\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\u001b[33;1m\u001b[1;3m\n",
"\n",
"The capital of New York is Albany.\u001b[0m\n",
"\n",
"\u001b[1mHuggingFaceHub\u001b[0m\n",
"Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
"\u001b[38;5;200m\u001b[1;3mst john s\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab_with_prompt.compare(\"New York\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "54336dbf",
"metadata": {},
"outputs": [],
"source": [
"from langchain import SelfAskWithSearchChain, SerpAPIWrapper\n",
"\n",
"open_ai_llm = OpenAI(temperature=0)\n",
"search = SerpAPIWrapper()\n",
"self_ask_with_search_openai = SelfAskWithSearchChain(llm=open_ai_llm, search_chain=search, verbose=True)\n",
"\n",
"cohere_llm = Cohere(temperature=0, model=\"command-xlarge-20221108\")\n",
"search = SerpAPIWrapper()\n",
"self_ask_with_search_cohere = SelfAskWithSearchChain(llm=cohere_llm, search_chain=search, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6a50a9f1",
"metadata": {},
"outputs": [],
"source": [
"chains = [self_ask_with_search_openai, self_ask_with_search_cohere]\n",
"names = [str(open_ai_llm), str(cohere_llm)]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d3549e99",
"metadata": {},
"outputs": [],
"source": [
"model_lab = ModelLaboratory(chains, names=names)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "362f7f57",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"What is the hometown of the reigning men's U.S. Open champion?\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What is the hometown of the reigning men's U.S. Open champion?\n",
"Are follow up questions needed here:\u001b[32;1m\u001b[1;3m Yes.\n",
"Follow up: Who is the reigning men's U.S. Open champion?\u001b[0m\n",
"Intermediate answer: \u001b[33;1m\u001b[1;3mCarlos Alcaraz.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Follow up: Where is Carlos Alcaraz from?\u001b[0m\n",
"Intermediate answer: \u001b[33;1m\u001b[1;3mEl Palmar, Spain.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"So the final answer is: El Palmar, Spain\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[36;1m\u001b[1;3m\n",
"So the final answer is: El Palmar, Spain\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 256, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What is the hometown of the reigning men's U.S. Open champion?\n",
"Are follow up questions needed here:\u001b[32;1m\u001b[1;3m Yes.\n",
"Follow up: Who is the reigning men's U.S. Open champion?\u001b[0m\n",
"Intermediate answer: \u001b[33;1m\u001b[1;3mCarlos Alcaraz.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"So the final answer is:\n",
"\n",
"Carlos Alcaraz\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3m\n",
"So the final answer is:\n",
"\n",
"Carlos Alcaraz\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab.compare(\"What is the hometown of the reigning men's U.S. Open champion?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "94159131",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,52 +0,0 @@
Agents
==========================
.. note::
`Conceptual Guide <https://docs.langchain.com/docs/components/agents>`_
Some applications will require not just a predetermined chain of calls to LLMs/other tools,
but potentially an unknown chain that depends on the user's input.
In these types of chains, there is a “agent” which has access to a suite of tools.
Depending on the user input, the agent can then decide which, if any, of these tools to call.
In this section of documentation, we first start with a Getting Started notebook to cover how to use all things related to agents in an end-to-end manner.
.. toctree::
:maxdepth: 1
:hidden:
./agents/getting_started.ipynb
We then split the documentation into the following sections:
**Tools**
An overview of the various tools LangChain supports.
**Agents**
An overview of the different agent types.
**Toolkits**
An overview of toolkits, and examples of the different ones LangChain supports.
**Agent Executor**
An overview of the Agent Executor class and examples of how to use it.
Go Deeper
---------
.. toctree::
:maxdepth: 1
./agents/tools.rst
./agents/agents.rst
./agents/toolkits.rst
./agents/agent_executors.rst

View File

@@ -1,17 +0,0 @@
Agent Executors
===============
.. note::
`Conceptual Guide <https://docs.langchain.com/docs/components/agents/agent-executor>`_
Agent executors take an agent and tools and use the agent to decide which tools to call and in what order.
In this part of the documentation we cover other related functionality to agent executors
.. toctree::
:maxdepth: 1
:glob:
./agent_executors/examples/*

View File

@@ -1,512 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "68b24990",
"metadata": {},
"source": [
"# How to combine agents and vectorstores\n",
"\n",
"This notebook covers how to combine agents and vectorstores. The use case for this is that you've ingested your data into a vectorstore and want to interact with it in an agentic manner.\n",
"\n",
"The reccomended method for doing so is to create a RetrievalQA and then use that as a tool in the overall agent. Let's take a look at doing this below. You can do this with multiple different vectordbs, and use the agent as a way to route between them. There are two different ways of doing this - you can either let the agent use the vectorstores as normal tools, or you can set `return_direct=True` to really just use the agent as a router."
]
},
{
"cell_type": "markdown",
"id": "9b22020a",
"metadata": {},
"source": [
"## Create the Vectorstore"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "2e87c10a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.llms import OpenAI\n",
"from langchain.chains import RetrievalQA\n",
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "0b7b772b",
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"relevant_parts = []\n",
"for p in Path(\".\").absolute().parts:\n",
" relevant_parts.append(p)\n",
" if relevant_parts[-3:] == [\"langchain\", \"docs\", \"modules\"]:\n",
" break\n",
"doc_path = str(Path(*relevant_parts) / \"state_of_the_union.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "f2675861",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader(doc_path)\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"docsearch = Chroma.from_documents(texts, embeddings, collection_name=\"state-of-union\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "bc5403d4",
"metadata": {},
"outputs": [],
"source": [
"state_of_union = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=docsearch.as_retriever())"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1431cded",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import WebBaseLoader"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "915d3ff3",
"metadata": {},
"outputs": [],
"source": [
"loader = WebBaseLoader(\"https://beta.ruff.rs/docs/faq/\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "96a2edf8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"docs = loader.load()\n",
"ruff_texts = text_splitter.split_documents(docs)\n",
"ruff_db = Chroma.from_documents(ruff_texts, embeddings, collection_name=\"ruff\")\n",
"ruff = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=ruff_db.as_retriever())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "71ecef90",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "c0a6c031",
"metadata": {},
"source": [
"## Create the Agent"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "eb142786",
"metadata": {},
"outputs": [],
"source": [
"# Import things that are needed generically\n",
"from langchain.agents import initialize_agent, Tool\n",
"from langchain.agents import AgentType\n",
"from langchain.tools import BaseTool\n",
"from langchain.llms import OpenAI\n",
"from langchain import LLMMathChain, SerpAPIWrapper"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "850bc4e9",
"metadata": {},
"outputs": [],
"source": [
"tools = [\n",
" Tool(\n",
" name = \"State of Union QA System\",\n",
" func=state_of_union.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\"\n",
" ),\n",
" Tool(\n",
" name = \"Ruff QA System\",\n",
" func=ruff.run,\n",
" description=\"useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.\"\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "fc47f230",
"metadata": {},
"outputs": [],
"source": [
"# Construct the agent. We will use the default agent type here.\n",
"# See documentation for a full list of options.\n",
"agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "10ca2db8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out what Biden said about Ketanji Brown Jackson in the State of the Union address.\n",
"Action: State of Union QA System\n",
"Action Input: What did Biden say about Ketanji Brown Jackson in the State of the Union address?\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\""
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"What did biden say about ketanji brown jackson is the state of the union address?\")"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "4e91b811",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out the advantages of using ruff over flake8\n",
"Action: Ruff QA System\n",
"Action Input: What are the advantages of using ruff over flake8?\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.'"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"Why use ruff over flake8?\")"
]
},
{
"cell_type": "markdown",
"id": "787a9b5e",
"metadata": {},
"source": [
"## Use the Agent solely as a router"
]
},
{
"cell_type": "markdown",
"id": "9161ba91",
"metadata": {},
"source": [
"You can also set `return_direct=True` if you intend to use the agent as a router and just want to directly return the result of the RetrievalQAChain.\n",
"\n",
"Notice that in the above examples the agent did some extra work after querying the RetrievalQAChain. You can avoid that and just return the result directly."
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "f59b377e",
"metadata": {},
"outputs": [],
"source": [
"tools = [\n",
" Tool(\n",
" name = \"State of Union QA System\",\n",
" func=state_of_union.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\",\n",
" return_direct=True\n",
" ),\n",
" Tool(\n",
" name = \"Ruff QA System\",\n",
" func=ruff.run,\n",
" description=\"useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.\",\n",
" return_direct=True\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "8615707a",
"metadata": {},
"outputs": [],
"source": [
"agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "36e718a9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out what Biden said about Ketanji Brown Jackson in the State of the Union address.\n",
"Action: State of Union QA System\n",
"Action Input: What did Biden say about Ketanji Brown Jackson in the State of the Union address?\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\" Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\""
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"What did biden say about ketanji brown jackson in the state of the union address?\")"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "edfd0a1a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out the advantages of using ruff over flake8\n",
"Action: Ruff QA System\n",
"Action Input: What are the advantages of using ruff over flake8?\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.'"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"Why use ruff over flake8?\")"
]
},
{
"cell_type": "markdown",
"id": "49a0cbbe",
"metadata": {},
"source": [
"## Multi-Hop vectorstore reasoning\n",
"\n",
"Because vectorstores are easily usable as tools in agents, it is easy to use answer multi-hop questions that depend on vectorstores using the existing agent framework"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "d397a233",
"metadata": {},
"outputs": [],
"source": [
"tools = [\n",
" Tool(\n",
" name = \"State of Union QA System\",\n",
" func=state_of_union.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question, not referencing any obscure pronouns from the conversation before.\"\n",
" ),\n",
" Tool(\n",
" name = \"Ruff QA System\",\n",
" func=ruff.run,\n",
" description=\"useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question, not referencing any obscure pronouns from the conversation before.\"\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "06157240",
"metadata": {},
"outputs": [],
"source": [
"# Construct the agent. We will use the default agent type here.\n",
"# See documentation for a full list of options.\n",
"agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "b492b520",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out what tool ruff uses to run over Jupyter Notebooks, and if the president mentioned it in the state of the union.\n",
"Action: Ruff QA System\n",
"Action Input: What tool does ruff use to run over Jupyter Notebooks?\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m Ruff is integrated into nbQA, a tool for running linters and code formatters over Jupyter Notebooks. After installing ruff and nbqa, you can run Ruff over a notebook like so: > nbqa ruff Untitled.ipynb\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now need to find out if the president mentioned this tool in the state of the union.\n",
"Action: State of Union QA System\n",
"Action Input: Did the president mention nbQA in the state of the union?\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m No, the president did not mention nbQA in the state of the union.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: No, the president did not mention nbQA in the state of the union.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'No, the president did not mention nbQA in the state of the union.'"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"What tool does ruff use to run over Jupyter Notebooks? Did the president mention that tool in the state of the union?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3b857d6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,412 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "6fb92deb-d89e-439b-855d-c7f2607d794b",
"metadata": {},
"source": [
"# How to use the async API for Agents\n",
"\n",
"LangChain provides async support for Agents by leveraging the [asyncio](https://docs.python.org/3/library/asyncio.html) library.\n",
"\n",
"Async methods are currently supported for the following `Tools`: [`SerpAPIWrapper`](https://github.com/hwchase17/langchain/blob/master/langchain/serpapi.py) and [`LLMMathChain`](https://github.com/hwchase17/langchain/blob/master/langchain/chains/llm_math/base.py). Async support for other agent tools are on the roadmap.\n",
"\n",
"For `Tool`s that have a `coroutine` implemented (the two mentioned above), the `AgentExecutor` will `await` them directly. Otherwise, the `AgentExecutor` will call the `Tool`'s `func` via `asyncio.get_event_loop().run_in_executor` to avoid blocking the main runloop.\n",
"\n",
"You can use `arun` to call an `AgentExecutor` asynchronously."
]
},
{
"cell_type": "markdown",
"id": "97800378-cc34-4283-9bd0-43f336bc914c",
"metadata": {},
"source": [
"## Serial vs. Concurrent Execution\n",
"\n",
"In this example, we kick off agents to answer some questions serially vs. concurrently. You can see that concurrent execution significantly speeds this up."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "da5df06c-af6f-4572-b9f5-0ab971c16487",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import asyncio\n",
"import time\n",
"\n",
"from langchain.agents import initialize_agent, load_tools\n",
"from langchain.agents import AgentType\n",
"from langchain.llms import OpenAI\n",
"from langchain.callbacks.stdout import StdOutCallbackHandler\n",
"from langchain.callbacks.base import CallbackManager\n",
"from langchain.callbacks.tracers import LangChainTracer\n",
"from aiohttp import ClientSession\n",
"\n",
"questions = [\n",
" \"Who won the US Open men's final in 2019? What is his age raised to the 0.334 power?\",\n",
" \"Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?\",\n",
" \"Who won the most recent formula 1 grand prix? What is their age raised to the 0.23 power?\",\n",
" \"Who won the US Open women's final in 2019? What is her age raised to the 0.34 power?\",\n",
" \"Who is Beyonce's husband? What is his age raised to the 0.19 power?\"\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fd4c294e-b1d6-44b8-b32e-2765c017e503",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who won the US Open men's final in 2019 and then calculate his age raised to the 0.334 power.\n",
"Action: Search\n",
"Action Input: \"US Open men's final 2019 winner\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mRafael Nadal\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Rafael Nadal's age\n",
"Action: Search\n",
"Action Input: \"Rafael Nadal age\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m36 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 36 raised to the 0.334 power\n",
"Action: Calculator\n",
"Action Input: 36^0.334\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 3.3098250249682484\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Rafael Nadal, aged 36, won the US Open men's final in 2019 and his age raised to the 0.334 power is 3.3098250249682484.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who Olivia Wilde's boyfriend is and then calculate his age raised to the 0.23 power.\n",
"Action: Search\n",
"Action Input: \"Olivia Wilde boyfriend\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mJason Sudeikis\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Jason Sudeikis' age\n",
"Action: Search\n",
"Action Input: \"Jason Sudeikis age\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m47 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 47 raised to the 0.23 power\n",
"Action: Calculator\n",
"Action Input: 47^0.23\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 2.4242784855673896\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Jason Sudeikis, Olivia Wilde's boyfriend, is 47 years old and his age raised to the 0.23 power is 2.4242784855673896.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who won the grand prix and then calculate their age raised to the 0.23 power.\n",
"Action: Search\n",
"Action Input: \"Formula 1 Grand Prix Winner\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mMax Verstappen\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Max Verstappen's age\n",
"Action: Search\n",
"Action Input: \"Max Verstappen Age\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m25 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 25 raised to the 0.23 power\n",
"Action: Calculator\n",
"Action Input: 25^0.23\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 1.84599359907945\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Max Verstappen, 25 years old, raised to the 0.23 power is 1.84599359907945.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who won the US Open women's final in 2019 and then calculate her age raised to the 0.34 power.\n",
"Action: Search\n",
"Action Input: \"US Open women's final 2019 winner\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mBianca Andreescu defeated Serena Williams in the final, 63, 75 to win the women's singles tennis title at the 2019 US Open. It was her first major title, and she became the first Canadian, as well as the first player born in the 2000s, to win a major singles title.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Bianca Andreescu's age.\n",
"Action: Search\n",
"Action Input: \"Bianca Andreescu age\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m22 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the age of Bianca Andreescu and can calculate her age raised to the 0.34 power.\n",
"Action: Calculator\n",
"Action Input: 22^0.34\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 2.8603798598506933\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: Bianca Andreescu won the US Open women's final in 2019 and her age raised to the 0.34 power is 2.8603798598506933.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who Beyonce's husband is and then calculate his age raised to the 0.19 power.\n",
"Action: Search\n",
"Action Input: \"Who is Beyonce's husband?\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mJay-Z\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Jay-Z's age\n",
"Action: Search\n",
"Action Input: \"How old is Jay-Z?\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m53 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 53 raised to the 0.19 power\n",
"Action: Calculator\n",
"Action Input: 53^0.19\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 2.12624064206896\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Jay-Z is Beyonce's husband and his age raised to the 0.19 power is 2.12624064206896.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"Serial executed in 65.11 seconds.\n"
]
}
],
"source": [
"def generate_serially():\n",
" for q in questions:\n",
" llm = OpenAI(temperature=0)\n",
" tools = load_tools([\"llm-math\", \"serpapi\"], llm=llm)\n",
" agent = initialize_agent(\n",
" tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION verbose=True\n",
" )\n",
" agent.run(q)\n",
"\n",
"s = time.perf_counter()\n",
"generate_serially()\n",
"elapsed = time.perf_counter() - s\n",
"print(f\"Serial executed in {elapsed:0.2f} seconds.\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "076d7b85-45ec-465d-8b31-c2ad119c3438",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who Olivia Wilde's boyfriend is and then calculate his age raised to the 0.23 power.\n",
"Action: Search\n",
"Action Input: \"Olivia Wilde boyfriend\"\u001b[0m\u001b[32;1m\u001b[1;3m I need to find out who Beyonce's husband is and then calculate his age raised to the 0.19 power.\n",
"Action: Search\n",
"Action Input: \"Who is Beyonce's husband?\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mJay-Z\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out who won the grand prix and then calculate their age raised to the 0.23 power.\n",
"Action: Search\n",
"Action Input: \"Formula 1 Grand Prix Winner\"\u001b[0m\u001b[32;1m\u001b[1;3m I need to find out who won the US Open women's final in 2019 and then calculate her age raised to the 0.34 power.\n",
"Action: Search\n",
"Action Input: \"US Open women's final 2019 winner\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mJason Sudeikis\u001b[0m\n",
"Thought:\n",
"Observation: \u001b[33;1m\u001b[1;3mMax Verstappen\u001b[0m\n",
"Thought:\n",
"Observation: \u001b[33;1m\u001b[1;3mBianca Andreescu defeated Serena Williams in the final, 63, 75 to win the women's singles tennis title at the 2019 US Open. It was her first major title, and she became the first Canadian, as well as the first player born in the 2000s, to win a major singles title.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Jason Sudeikis' age\n",
"Action: Search\n",
"Action Input: \"Jason Sudeikis age\"\u001b[0m\u001b[32;1m\u001b[1;3m I need to find out Jay-Z's age\n",
"Action: Search\n",
"Action Input: \"How old is Jay-Z?\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m53 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out who won the US Open men's final in 2019 and then calculate his age raised to the 0.334 power.\n",
"Action: Search\n",
"Action Input: \"US Open men's final 2019 winner\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mRafael Nadal defeated Daniil Medvedev in the final, 75, 63, 57, 46, 64 to win the men's singles tennis title at the 2019 US Open. It was his fourth US ...\u001b[0m\n",
"Thought:\n",
"Observation: \u001b[33;1m\u001b[1;3m47 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Max Verstappen's age\n",
"Action: Search\n",
"Action Input: \"Max Verstappen Age\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m25 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Bianca Andreescu's age.\n",
"Action: Search\n",
"Action Input: \"Bianca Andreescu age\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m22 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 53 raised to the 0.19 power\n",
"Action: Calculator\n",
"Action Input: 53^0.19\u001b[0m\u001b[32;1m\u001b[1;3m I need to find out the age of the winner\n",
"Action: Search\n",
"Action Input: \"Rafael Nadal age\"\u001b[0m\u001b[32;1m\u001b[1;3m I need to calculate 47 raised to the 0.23 power\n",
"Action: Calculator\n",
"Action Input: 47^0.23\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m36 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 25 raised to the 0.23 power\n",
"Action: Calculator\n",
"Action Input: 25^0.23\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 2.12624064206896\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the age of Bianca Andreescu and can calculate her age raised to the 0.34 power.\n",
"Action: Calculator\n",
"Action Input: 22^0.34\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 1.84599359907945\u001b[0m\n",
"Thought:\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 2.4242784855673896\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now need to calculate his age raised to the 0.334 power\n",
"Action: Calculator\n",
"Action Input: 36^0.334\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 2.8603798598506933\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Jay-Z is Beyonce's husband and his age raised to the 0.19 power is 2.12624064206896.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Max Verstappen, 25 years old, raised to the 0.23 power is 1.84599359907945.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 3.3098250249682484\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Jason Sudeikis, Olivia Wilde's boyfriend, is 47 years old and his age raised to the 0.23 power is 2.4242784855673896.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: Bianca Andreescu won the US Open women's final in 2019 and her age raised to the 0.34 power is 2.8603798598506933.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Rafael Nadal, aged 36, won the US Open men's final in 2019 and his age raised to the 0.334 power is 3.3098250249682484.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"Concurrent executed in 12.38 seconds.\n"
]
}
],
"source": [
"async def generate_concurrently():\n",
" agents = []\n",
" # To make async requests in Tools more efficient, you can pass in your own aiohttp.ClientSession, \n",
" # but you must manually close the client session at the end of your program/event loop\n",
" aiosession = ClientSession()\n",
" for _ in questions:\n",
" manager = CallbackManager([StdOutCallbackHandler()])\n",
" llm = OpenAI(temperature=0, callback_manager=manager)\n",
" async_tools = load_tools([\"llm-math\", \"serpapi\"], llm=llm, aiosession=aiosession, callback_manager=manager)\n",
" agents.append(\n",
" initialize_agent(async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager)\n",
" )\n",
" tasks = [async_agent.arun(q) for async_agent, q in zip(agents, questions)]\n",
" await asyncio.gather(*tasks)\n",
" await aiosession.close()\n",
"\n",
"s = time.perf_counter()\n",
"# If running this outside of Jupyter, use asyncio.run(generate_concurrently())\n",
"await generate_concurrently()\n",
"elapsed = time.perf_counter() - s\n",
"print(f\"Concurrent executed in {elapsed:0.2f} seconds.\")"
]
},
{
"cell_type": "markdown",
"id": "97ef285c-4a43-4a4e-9698-cd52a1bc56c9",
"metadata": {},
"source": [
"## Using Tracing with Asynchronous Agents\n",
"\n",
"To use tracing with async agents, you must pass in a custom `CallbackManager` with `LangChainTracer` to each agent running asynchronously. This way, you avoid collisions while the trace is being collected."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "44bda05a-d33e-4e91-9a71-a0f3f96aae95",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who won the US Open men's final in 2019 and then calculate his age raised to the 0.334 power.\n",
"Action: Search\n",
"Action Input: \"US Open men's final 2019 winner\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mRafael Nadal\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Rafael Nadal's age\n",
"Action: Search\n",
"Action Input: \"Rafael Nadal age\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m36 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 36 raised to the 0.334 power\n",
"Action: Calculator\n",
"Action Input: 36^0.334\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 3.3098250249682484\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Rafael Nadal, aged 36, won the US Open men's final in 2019 and his age raised to the 0.334 power is 3.3098250249682484.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
}
],
"source": [
"# To make async requests in Tools more efficient, you can pass in your own aiohttp.ClientSession, \n",
"# but you must manually close the client session at the end of your program/event loop\n",
"aiosession = ClientSession()\n",
"tracer = LangChainTracer()\n",
"tracer.load_default_session()\n",
"manager = CallbackManager([StdOutCallbackHandler(), tracer])\n",
"\n",
"# Pass the manager into the llm if you want llm calls traced.\n",
"llm = OpenAI(temperature=0, callback_manager=manager)\n",
"\n",
"async_tools = load_tools([\"llm-math\", \"serpapi\"], llm=llm, aiosession=aiosession)\n",
"async_agent = initialize_agent(async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager)\n",
"await async_agent.arun(questions[0])\n",
"await aiosession.close()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Some files were not shown because too many files have changed in this diff Show More