Compare commits
2 Commits
wfh/memory
...
harrison/p
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
56f663e92e | ||
|
|
618e271c14 |
@@ -1,37 +0,0 @@
|
||||
# Dev container
|
||||
|
||||
This project includes a [dev container](https://containers.dev/), which lets you use a container as a full-featured dev environment.
|
||||
|
||||
You can use the dev container configuration in this folder to build and run the app without needing to install any of its tools locally! You can use it in [GitHub Codespaces](https://github.com/features/codespaces) or the [VS Code Dev Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers).
|
||||
|
||||
## GitHub Codespaces
|
||||
[](https://codespaces.new/hwchase17/langchain)
|
||||
|
||||
You may use the button above, or follow these steps to open this repo in a Codespace:
|
||||
1. Click the **Code** drop-down menu at the top of https://github.com/hwchase17/langchain.
|
||||
1. Click on the **Codespaces** tab.
|
||||
1. Click **Create codespace on master** .
|
||||
|
||||
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
|
||||
|
||||
## VS Code Dev Containers
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
|
||||
|
||||
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
|
||||
|
||||
You can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
|
||||
|
||||
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in the [getting started steps](https://aka.ms/vscode-remote/containers/getting-started).
|
||||
|
||||
2. Open a locally cloned copy of the code:
|
||||
|
||||
- Clone this repository to your local filesystem.
|
||||
- Press <kbd>F1</kbd> and select the **Dev Containers: Open Folder in Container...** command.
|
||||
- Select the cloned copy of this folder, wait for the container to start, and try things out!
|
||||
|
||||
You can learn more in the [Dev Containers documentation](https://code.visualstudio.com/docs/devcontainers/containers).
|
||||
|
||||
## Tips and tricks
|
||||
|
||||
* If you are working with the same repository folder in a container and Windows, you'll want consistent line endings (otherwise you may see hundreds of changes in the SCM view). The `.gitattributes` file in the root of this repo will disable line ending conversion and should prevent this. See [tips and tricks](https://code.visualstudio.com/docs/devcontainers/tips-and-tricks#_resolving-git-line-ending-issues-in-containers-resulting-in-many-modified-files) for more info.
|
||||
* If you'd like to review the contents of the image used in this dev container, you can check it out in the [devcontainers/images](https://github.com/devcontainers/images/tree/main/src/python) repo.
|
||||
@@ -1,36 +0,0 @@
|
||||
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
|
||||
// README at: https://github.com/devcontainers/templates/tree/main/src/docker-existing-docker-compose
|
||||
{
|
||||
// Name for the dev container
|
||||
"name": "langchain",
|
||||
|
||||
// Point to a Docker Compose file
|
||||
"dockerComposeFile": "./docker-compose.yaml",
|
||||
|
||||
// Required when using Docker Compose. The name of the service to connect to once running
|
||||
"service": "langchain",
|
||||
|
||||
// The optional 'workspaceFolder' property is the path VS Code should open by default when
|
||||
// connected. This is typically a file mount in .devcontainer/docker-compose.yml
|
||||
"workspaceFolder": "/workspaces/${localWorkspaceFolderBasename}",
|
||||
|
||||
// Prevent the container from shutting down
|
||||
"overrideCommand": true
|
||||
|
||||
// Features to add to the dev container. More info: https://containers.dev/features
|
||||
// "features": {
|
||||
// "ghcr.io/devcontainers-contrib/features/poetry:2": {}
|
||||
// }
|
||||
|
||||
// Use 'forwardPorts' to make a list of ports inside the container available locally.
|
||||
// "forwardPorts": [],
|
||||
|
||||
// Uncomment the next line to run commands after the container is created.
|
||||
// "postCreateCommand": "cat /etc/os-release",
|
||||
|
||||
// Configure tool-specific properties.
|
||||
// "customizations": {},
|
||||
|
||||
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
|
||||
// "remoteUser": "root"
|
||||
}
|
||||
@@ -1,32 +0,0 @@
|
||||
version: '3'
|
||||
services:
|
||||
langchain:
|
||||
build:
|
||||
dockerfile: libs/langchain/dev.Dockerfile
|
||||
context: ..
|
||||
volumes:
|
||||
# Update this to wherever you want VS Code to mount the folder of your project
|
||||
- ..:/workspaces:cached
|
||||
networks:
|
||||
- langchain-network
|
||||
# environment:
|
||||
# MONGO_ROOT_USERNAME: root
|
||||
# MONGO_ROOT_PASSWORD: example123
|
||||
# depends_on:
|
||||
# - mongo
|
||||
# mongo:
|
||||
# image: mongo
|
||||
# restart: unless-stopped
|
||||
# environment:
|
||||
# MONGO_INITDB_ROOT_USERNAME: root
|
||||
# MONGO_INITDB_ROOT_PASSWORD: example123
|
||||
# ports:
|
||||
# - "27017:27017"
|
||||
# networks:
|
||||
# - langchain-network
|
||||
|
||||
networks:
|
||||
langchain-network:
|
||||
driver: bridge
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
[flake8]
|
||||
exclude =
|
||||
venv
|
||||
.venv
|
||||
__pycache__
|
||||
notebooks
|
||||
3
.gitattributes
vendored
@@ -1,3 +0,0 @@
|
||||
* text=auto eol=lf
|
||||
*.{cmd,[cC][mM][dD]} text eol=crlf
|
||||
*.{bat,[bB][aA][tT]} text eol=crlf
|
||||
310
.github/CONTRIBUTING.md
vendored
@@ -1,310 +0,0 @@
|
||||
# Contributing to LangChain
|
||||
|
||||
Hi there! Thank you for even being interested in contributing to LangChain.
|
||||
As an open source project in a rapidly developing field, we are extremely open
|
||||
to contributions, whether they be in the form of new features, improved infra, better documentation, or bug fixes.
|
||||
|
||||
## 🗺️ Guidelines
|
||||
|
||||
### 👩💻 Contributing Code
|
||||
|
||||
To contribute to this project, please follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
|
||||
Please do not try to push directly to this repo unless you are maintainer.
|
||||
|
||||
Please follow the checked-in pull request template when opening pull requests. Note related issues and tag relevant
|
||||
maintainers.
|
||||
|
||||
Pull requests cannot land without passing the formatting, linting and testing checks first. See
|
||||
[Common Tasks](#-common-tasks) for how to run these checks locally.
|
||||
|
||||
It's essential that we maintain great documentation and testing. If you:
|
||||
- Fix a bug
|
||||
- Add a relevant unit or integration test when possible. These live in `tests/unit_tests` and `tests/integration_tests`.
|
||||
- Make an improvement
|
||||
- Update any affected example notebooks and documentation. These lives in `docs`.
|
||||
- Update unit and integration tests when relevant.
|
||||
- Add a feature
|
||||
- Add a demo notebook in `docs/modules`.
|
||||
- Add unit and integration tests.
|
||||
|
||||
We're a small, building-oriented team. If there's something you'd like to add or change, opening a pull request is the
|
||||
best way to get our attention.
|
||||
|
||||
### 🚩GitHub Issues
|
||||
|
||||
Our [issues](https://github.com/hwchase17/langchain/issues) page is kept up to date
|
||||
with bugs, improvements, and feature requests.
|
||||
|
||||
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help
|
||||
organize issues.
|
||||
|
||||
If you start working on an issue, please assign it to yourself.
|
||||
|
||||
If you are adding an issue, please try to keep it focused on a single, modular bug/improvement/feature.
|
||||
If two issues are related, or blocking, please link them rather than combining them.
|
||||
|
||||
We will try to keep these issues as up to date as possible, though
|
||||
with the rapid rate of develop in this field some may get out of date.
|
||||
If you notice this happening, please let us know.
|
||||
|
||||
### 🙋Getting Help
|
||||
|
||||
Our goal is to have the simplest developer setup possible. Should you experience any difficulty getting setup, please
|
||||
contact a maintainer! Not only do we want to help get you unblocked, but we also want to make sure that the process is
|
||||
smooth for future contributors.
|
||||
|
||||
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
|
||||
If you are finding these difficult (or even just annoying) to work with, feel free to contact a maintainer for help -
|
||||
we do not want these to get in the way of getting good code into the codebase.
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
||||
> **Note:** You can run this repository locally (which is described below) or in a [development container](https://containers.dev/) (which is described in the [.devcontainer folder](https://github.com/hwchase17/langchain/tree/master/.devcontainer)).
|
||||
|
||||
This project uses [Poetry](https://python-poetry.org/) as a dependency manager. Check out Poetry's [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
|
||||
|
||||
❗Note: If you use `Conda` or `Pyenv` as your environment / package manager, avoid dependency conflicts by doing the following first:
|
||||
1. *Before installing Poetry*, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
|
||||
2. Install Poetry (see above)
|
||||
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
|
||||
4. Continue with the following steps.
|
||||
|
||||
There are two separate projects in this repository:
|
||||
- `langchain`: core langchain code, abstractions, and use cases
|
||||
- `langchain.experimental`: more experimental code
|
||||
|
||||
Each of these has their OWN development environment.
|
||||
In order to run any of the commands below, please move into their respective directories.
|
||||
For example, to contribute to `langchain` run `cd libs/langchain` before getting started with the below.
|
||||
|
||||
To install requirements:
|
||||
|
||||
```bash
|
||||
poetry install -E all
|
||||
```
|
||||
|
||||
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage. Note the `-E all` flag will install all optional dependencies necessary for integration testing.
|
||||
|
||||
❗Note: If you're running Poetry 1.4.1 and receive a `WheelFileValidationError` for `debugpy` during installation, you can try either downgrading to Poetry 1.4.0 or disabling "modern installation" (`poetry config installer.modern-installation false`) and re-install requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
|
||||
|
||||
Now, you should be able to run the common tasks in the following section. To double check, run `make test`, all tests should pass. If they don't you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
|
||||
|
||||
## ✅ Common Tasks
|
||||
|
||||
Type `make` for a list of common tasks.
|
||||
|
||||
### Code Formatting
|
||||
|
||||
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
|
||||
|
||||
To run formatting for this project:
|
||||
|
||||
```bash
|
||||
make format
|
||||
```
|
||||
|
||||
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
|
||||
|
||||
```bash
|
||||
make format_diff
|
||||
```
|
||||
|
||||
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
|
||||
|
||||
### Linting
|
||||
|
||||
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
|
||||
|
||||
To run linting for this project:
|
||||
|
||||
```bash
|
||||
make lint
|
||||
```
|
||||
|
||||
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
|
||||
|
||||
```bash
|
||||
make lint_diff
|
||||
```
|
||||
|
||||
This can be very helpful when you've made changes to only certain parts of the project and want to ensure your changes meet the linting standards without having to check the entire codebase.
|
||||
|
||||
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
|
||||
|
||||
### Spellcheck
|
||||
|
||||
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
|
||||
Note that `codespell` finds common typos, so could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
|
||||
|
||||
To check spelling for this project:
|
||||
|
||||
```bash
|
||||
make spell_check
|
||||
```
|
||||
|
||||
To fix spelling in place:
|
||||
|
||||
```bash
|
||||
make spell_fix
|
||||
```
|
||||
|
||||
If codespell is incorrectly flagging a word, you can skip spellcheck for that word by adding it to the codespell config in the `pyproject.toml` file.
|
||||
|
||||
```python
|
||||
[tool.codespell]
|
||||
...
|
||||
# Add here:
|
||||
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure'
|
||||
```
|
||||
|
||||
### Coverage
|
||||
|
||||
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
|
||||
|
||||
To get a report of current coverage, run the following:
|
||||
|
||||
```bash
|
||||
make coverage
|
||||
```
|
||||
|
||||
### Working with Optional Dependencies
|
||||
|
||||
Langchain relies heavily on optional dependencies to keep the Langchain package lightweight.
|
||||
|
||||
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
|
||||
that most users won't have it installed.
|
||||
|
||||
Users that do not have the dependency installed should be able to **import** your code without
|
||||
any side effects (no warnings, no errors, no exceptions).
|
||||
|
||||
To introduce the dependency to the pyproject.toml file correctly, please do the following:
|
||||
|
||||
1. Add the dependency to the main group as an optional dependency
|
||||
```bash
|
||||
poetry add --optional [package_name]
|
||||
```
|
||||
2. Open pyproject.toml and add the dependency to the `extended_testing` extra
|
||||
3. Relock the poetry file to update the extra.
|
||||
```bash
|
||||
poetry lock --no-update
|
||||
```
|
||||
4. Add a unit test that the very least attempts to import the new code. Ideally the unit
|
||||
test makes use of lightweight fixtures to test the logic of the code.
|
||||
5. Please use the `@pytest.mark.requires(package_name)` decorator for any tests that require the dependency.
|
||||
|
||||
### Testing
|
||||
|
||||
See section about optional dependencies.
|
||||
|
||||
#### Unit Tests
|
||||
|
||||
Unit tests cover modular logic that does not require calls to outside APIs.
|
||||
|
||||
To run unit tests:
|
||||
|
||||
```bash
|
||||
make test
|
||||
```
|
||||
|
||||
To run unit tests in Docker:
|
||||
|
||||
```bash
|
||||
make docker_tests
|
||||
```
|
||||
|
||||
If you add new logic, please add a unit test.
|
||||
|
||||
|
||||
|
||||
#### Integration Tests
|
||||
|
||||
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
|
||||
|
||||
**warning** Almost no tests should be integration tests.
|
||||
|
||||
Tests that require making network connections make it difficult for other
|
||||
developers to test the code.
|
||||
|
||||
Instead favor relying on `responses` library and/or mock.patch to mock
|
||||
requests using small fixtures.
|
||||
|
||||
To run integration tests:
|
||||
|
||||
```bash
|
||||
make integration_tests
|
||||
```
|
||||
|
||||
If you add support for a new external API, please add a new integration test.
|
||||
|
||||
### Adding a Jupyter Notebook
|
||||
|
||||
If you are adding a Jupyter notebook example, you'll want to install the optional `dev` dependencies.
|
||||
|
||||
To install dev dependencies:
|
||||
|
||||
```bash
|
||||
poetry install --with dev
|
||||
```
|
||||
|
||||
Launch a notebook:
|
||||
|
||||
```bash
|
||||
poetry run jupyter notebook
|
||||
```
|
||||
|
||||
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
|
||||
|
||||
## Documentation
|
||||
|
||||
While the code is split between `langchain` and `langchain.experimental`, the documentation is one holistic thing.
|
||||
This covers how to get started contributing to documentation.
|
||||
|
||||
### Contribute Documentation
|
||||
|
||||
The docs directory contains Documentation and API Reference.
|
||||
|
||||
Documentation is built using [Docusaurus 2](https://docusaurus.io/).
|
||||
|
||||
API Reference are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
|
||||
For that reason, we ask that you add good documentation to all classes and methods.
|
||||
|
||||
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
|
||||
|
||||
### Build Documentation Locally
|
||||
|
||||
In the following commands, the prefix `api_` indicates that those are operations for the API Reference.
|
||||
|
||||
Before building the documentation, it is always a good idea to clean the build directory:
|
||||
|
||||
```bash
|
||||
make docs_clean
|
||||
make api_docs_clean
|
||||
```
|
||||
|
||||
Next, you can build the documentation as outlined below:
|
||||
|
||||
```bash
|
||||
make docs_build
|
||||
make api_docs_build
|
||||
```
|
||||
|
||||
Finally, you can run the linkchecker to make sure all links are valid:
|
||||
|
||||
```bash
|
||||
make docs_linkcheck
|
||||
make api_docs_linkcheck
|
||||
```
|
||||
|
||||
## 🏭 Release Process
|
||||
|
||||
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
|
||||
a developer and published to [PyPI](https://pypi.org/project/langchain/).
|
||||
|
||||
LangChain follows the [semver](https://semver.org/) versioning standard. However, as pre-1.0 software,
|
||||
even patch releases may contain [non-backwards-compatible changes](https://semver.org/#spec-item-4).
|
||||
|
||||
### 🌟 Recognition
|
||||
|
||||
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
|
||||
If you have a Twitter account you would like us to mention, please let us know in the PR or in another manner.
|
||||
|
||||
106
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -1,106 +0,0 @@
|
||||
name: "\U0001F41B Bug Report"
|
||||
description: Submit a bug report to help us improve LangChain
|
||||
labels: ["02 Bug Report"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thank you for taking the time to file a bug report. Before creating a new
|
||||
issue, please make sure to take a few moments to check the issue tracker
|
||||
for existing issues about the bug.
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: Please share your system info with us.
|
||||
placeholder: LangChain version, platform, python version, ...
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: who-can-help
|
||||
attributes:
|
||||
label: Who can help?
|
||||
description: |
|
||||
Your issue will be replied to more quickly if you can figure out the right person to tag with @
|
||||
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
|
||||
|
||||
The core maintainers strive to read all issues, but tagging them will help them prioritize.
|
||||
|
||||
Please tag fewer than 3 people.
|
||||
|
||||
@hwchase17 - project lead
|
||||
|
||||
Tracing / Callbacks
|
||||
- @agola11
|
||||
|
||||
Async
|
||||
- @agola11
|
||||
|
||||
DataLoader Abstractions
|
||||
- @eyurtsev
|
||||
|
||||
LLM/Chat Wrappers
|
||||
- @hwchase17
|
||||
- @agola11
|
||||
|
||||
Tools / Toolkits
|
||||
- ...
|
||||
|
||||
placeholder: "@Username ..."
|
||||
|
||||
- type: checkboxes
|
||||
id: information-scripts-examples
|
||||
attributes:
|
||||
label: Information
|
||||
description: "The problem arises when using:"
|
||||
options:
|
||||
- label: "The official example notebooks/scripts"
|
||||
- label: "My own modified scripts"
|
||||
|
||||
- type: checkboxes
|
||||
id: related-components
|
||||
attributes:
|
||||
label: Related Components
|
||||
description: "Select the components related to the issue (if applicable):"
|
||||
options:
|
||||
- label: "LLMs/Chat Models"
|
||||
- label: "Embedding Models"
|
||||
- label: "Prompts / Prompt Templates / Prompt Selectors"
|
||||
- label: "Output Parsers"
|
||||
- label: "Document Loaders"
|
||||
- label: "Vector Stores / Retrievers"
|
||||
- label: "Memory"
|
||||
- label: "Agents / Agent Executors"
|
||||
- label: "Tools / Toolkits"
|
||||
- label: "Chains"
|
||||
- label: "Callbacks/Tracing"
|
||||
- label: "Async"
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please provide a [code sample](https://stackoverflow.com/help/minimal-reproducible-example) that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
|
||||
If you have code snippets, error messages, stack traces please provide them here as well.
|
||||
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
|
||||
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
|
||||
placeholder: |
|
||||
Steps to reproduce the behavior:
|
||||
|
||||
1.
|
||||
2.
|
||||
3.
|
||||
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: "A clear and concise description of what you would expect to happen."
|
||||
6
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,6 +0,0 @@
|
||||
blank_issues_enabled: true
|
||||
version: 2.1
|
||||
contact_links:
|
||||
- name: Discord
|
||||
url: https://discord.gg/6adMQxSpJS
|
||||
about: General community discussions
|
||||
19
.github/ISSUE_TEMPLATE/documentation.yml
vendored
@@ -1,19 +0,0 @@
|
||||
name: Documentation
|
||||
description: Report an issue related to the LangChain documentation.
|
||||
title: "DOC: <Please write a comprehensive title after the 'DOC: ' prefix>"
|
||||
labels: [03 - Documentation]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Issue with current documentation:"
|
||||
description: >
|
||||
Please make sure to leave a reference to the document/code you're
|
||||
referring to.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Idea or request for content:"
|
||||
description: >
|
||||
Please describe as clearly as possible what topics you think are missing
|
||||
from the current documentation.
|
||||
30
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
@@ -1,30 +0,0 @@
|
||||
name: "\U0001F680 Feature request"
|
||||
description: Submit a proposal/request for a new LangChain feature
|
||||
labels: ["02 Feature Request"]
|
||||
body:
|
||||
- type: textarea
|
||||
id: feature-request
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Feature request
|
||||
description: |
|
||||
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
|
||||
|
||||
- type: textarea
|
||||
id: motivation
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Motivation
|
||||
description: |
|
||||
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
|
||||
|
||||
- type: textarea
|
||||
id: contribution
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Your contribution
|
||||
description: |
|
||||
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md)
|
||||
18
.github/ISSUE_TEMPLATE/other.yml
vendored
@@ -1,18 +0,0 @@
|
||||
name: Other Issue
|
||||
description: Raise an issue that wouldn't be covered by the other templates.
|
||||
title: "Issue: <Please write a comprehensive title after the 'Issue: ' prefix>"
|
||||
labels: [04 - Other]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Issue you'd like to raise."
|
||||
description: >
|
||||
Please describe the issue you'd like to raise as clearly as possible.
|
||||
Make sure to include any relevant links or references.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Suggestion:"
|
||||
description: >
|
||||
Please outline a suggestion to improve the issue here.
|
||||
28
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -1,28 +0,0 @@
|
||||
<!-- Thank you for contributing to LangChain!
|
||||
|
||||
Replace this comment with:
|
||||
- Description: a description of the change,
|
||||
- Issue: the issue # it fixes (if applicable),
|
||||
- Dependencies: any dependencies required for this change,
|
||||
- Tag maintainer: for a quicker response, tag the relevant maintainer (see below),
|
||||
- Twitter handle: we announce bigger features on Twitter. If your PR gets announced and you'd like a mention, we'll gladly shout you out!
|
||||
|
||||
Please make sure you're PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally.
|
||||
|
||||
If you're adding a new integration, please include:
|
||||
1. a test for the integration, preferably unit tests that do not rely on network access,
|
||||
2. an example notebook showing its use.
|
||||
|
||||
Maintainer responsibilities:
|
||||
- General / Misc / if you don't know who to tag: @baskaryan
|
||||
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
|
||||
- Models / Prompts: @hwchase17, @baskaryan
|
||||
- Memory: @hwchase17
|
||||
- Agents / Tools / Toolkits: @hinthornw
|
||||
- Tracing / Callbacks: @agola11
|
||||
- Async: @agola11
|
||||
|
||||
If no one reviews your PR within a few days, feel free to @-mention the same people again.
|
||||
|
||||
See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
|
||||
-->
|
||||
78
.github/actions/poetry_setup/action.yml
vendored
@@ -1,78 +0,0 @@
|
||||
# An action for setting up poetry install with caching.
|
||||
# Using a custom action since the default action does not
|
||||
# take poetry install groups into account.
|
||||
# Action code from:
|
||||
# https://github.com/actions/setup-python/issues/505#issuecomment-1273013236
|
||||
name: poetry-install-with-caching
|
||||
description: Poetry install with support for caching of dependency groups.
|
||||
|
||||
inputs:
|
||||
python-version:
|
||||
description: Python version, supporting MAJOR.MINOR only
|
||||
required: true
|
||||
|
||||
poetry-version:
|
||||
description: Poetry version
|
||||
required: true
|
||||
|
||||
install-command:
|
||||
description: Command run for installing dependencies
|
||||
required: false
|
||||
default: poetry install
|
||||
|
||||
cache-key:
|
||||
description: Cache key to use for manual handling of caching
|
||||
required: true
|
||||
|
||||
working-directory:
|
||||
description: Directory to run install-command in
|
||||
required: false
|
||||
default: ""
|
||||
|
||||
runs:
|
||||
using: composite
|
||||
steps:
|
||||
- uses: actions/setup-python@v4
|
||||
name: Setup python $${ inputs.python-version }}
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- uses: actions/cache@v3
|
||||
id: cache-pip
|
||||
name: Cache Pip ${{ inputs.python-version }}
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
|
||||
with:
|
||||
path: |
|
||||
~/.cache/pip
|
||||
key: pip-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}
|
||||
|
||||
- run: pipx install poetry==${{ inputs.poetry-version }} --python python${{ inputs.python-version }}
|
||||
shell: bash
|
||||
|
||||
- name: Check Poetry File
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry check
|
||||
|
||||
- name: Check lock file
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry lock --check
|
||||
|
||||
- uses: actions/cache@v3
|
||||
id: cache-poetry
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
|
||||
with:
|
||||
path: |
|
||||
~/.cache/pypoetry/virtualenvs
|
||||
~/.cache/pypoetry/cache
|
||||
~/.cache/pypoetry/artifacts
|
||||
key: poetry-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-poetry-${{ inputs.poetry-version }}-${{ inputs.cache-key }}-${{ hashFiles('poetry.lock') }}
|
||||
|
||||
- run: ${{ inputs.install-command }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
shell: bash
|
||||
46
.github/workflows/_lint.yml
vendored
@@ -1,46 +0,0 @@
|
||||
name: lint
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.4.2"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install poetry
|
||||
run: |
|
||||
pipx install poetry==$POETRY_VERSION
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: poetry
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
poetry install
|
||||
- name: Install langchain editable
|
||||
if: ${{ inputs.working-directory != 'langchain' }}
|
||||
run: |
|
||||
pip install -e ../langchain
|
||||
- name: Analysing the code with our lint
|
||||
run: |
|
||||
make lint
|
||||
51
.github/workflows/_release.yml
vendored
@@ -1,51 +0,0 @@
|
||||
name: release
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.4.2"
|
||||
|
||||
jobs:
|
||||
if_release:
|
||||
if: |
|
||||
${{ github.event.pull_request.merged == true }}
|
||||
&& ${{ contains(github.event.pull_request.labels.*.name, 'release') }}
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install poetry
|
||||
run: pipx install poetry==$POETRY_VERSION
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.10"
|
||||
cache: "poetry"
|
||||
- name: Build project for distribution
|
||||
run: poetry build
|
||||
- name: Check Version
|
||||
id: check-version
|
||||
run: |
|
||||
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
|
||||
- name: Create Release
|
||||
uses: ncipollo/release-action@v1
|
||||
with:
|
||||
artifacts: "dist/*"
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
draft: false
|
||||
generateReleaseNotes: true
|
||||
tag: v${{ steps.check-version.outputs.version }}
|
||||
commit: master
|
||||
- name: Publish to PyPI
|
||||
env:
|
||||
POETRY_PYPI_TOKEN_PYPI: ${{ secrets.PYPI_API_TOKEN }}
|
||||
run: |
|
||||
poetry publish
|
||||
61
.github/workflows/_test.yml
vendored
@@ -1,61 +0,0 @@
|
||||
name: test
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
test_type:
|
||||
type: string
|
||||
description: "Test types to run"
|
||||
default: '["core", "extended"]'
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.4.2"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
test_type: ${{ fromJSON(inputs.test_type) }}
|
||||
name: Python ${{ matrix.python-version }} ${{ matrix.test_type }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
poetry-version: "1.4.2"
|
||||
cache-key: ${{ matrix.test_type }}
|
||||
install-command: |
|
||||
if [ "${{ matrix.test_type }}" == "core" ]; then
|
||||
echo "Running core tests, installing dependencies with poetry..."
|
||||
poetry install
|
||||
else
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install -E extended_testing
|
||||
fi
|
||||
- name: Install langchain editable
|
||||
if: ${{ inputs.working-directory != 'langchain' }}
|
||||
run: |
|
||||
pip install -e ../langchain
|
||||
- name: Run ${{matrix.test_type}} tests
|
||||
run: |
|
||||
if [ "${{ matrix.test_type }}" == "core" ]; then
|
||||
make test
|
||||
else
|
||||
make extended_tests
|
||||
fi
|
||||
shell: bash
|
||||
22
.github/workflows/codespell.yml
vendored
@@ -1,22 +0,0 @@
|
||||
---
|
||||
name: Codespell
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
branches: [master]
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
codespell:
|
||||
name: Check for spelling errors
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Codespell
|
||||
uses: codespell-project/actions-codespell@v2
|
||||
27
.github/workflows/langchain_ci.yml
vendored
@@ -1,27 +0,0 @@
|
||||
---
|
||||
name: libs/langchain CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/_test.yml'
|
||||
- '.github/workflows/langchain_ci.yml'
|
||||
- 'libs/langchain/**'
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
test:
|
||||
uses:
|
||||
./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
29
.github/workflows/langchain_experimental_ci.yml
vendored
@@ -1,29 +0,0 @@
|
||||
---
|
||||
name: libs/langchain-experimental CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/_test.yml'
|
||||
- '.github/workflows/langchain_experimental_ci.yml'
|
||||
- 'libs/langchain/**'
|
||||
- 'libs/experimental/**'
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
secrets: inherit
|
||||
test:
|
||||
uses:
|
||||
./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
test_type: '["core"]'
|
||||
secrets: inherit
|
||||
@@ -1,20 +0,0 @@
|
||||
---
|
||||
name: libs/langchain-experimental Release
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types:
|
||||
- closed
|
||||
branches:
|
||||
- master
|
||||
paths:
|
||||
- 'libs/experimental/pyproject.toml'
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
secrets: inherit
|
||||
20
.github/workflows/langchain_release.yml
vendored
@@ -1,20 +0,0 @@
|
||||
---
|
||||
name: libs/langchain Release
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types:
|
||||
- closed
|
||||
branches:
|
||||
- master
|
||||
paths:
|
||||
- 'libs/langchain/pyproject.toml'
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
23
.github/workflows/lint.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: lint
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.7"]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v3
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r test_requirements.txt
|
||||
- name: Analysing the code with our lint
|
||||
run: |
|
||||
make lint
|
||||
23
.github/workflows/test.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: test
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.7"]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v3
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r test_requirements.txt
|
||||
- name: Run unit tests
|
||||
run: |
|
||||
make tests
|
||||
41
.gitignore
vendored
@@ -1,6 +1,4 @@
|
||||
.vs/
|
||||
.vscode/
|
||||
.idea/
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
@@ -73,7 +71,6 @@ instance/
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
docs/docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
@@ -108,9 +105,7 @@ celerybeat.pid
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.envrc
|
||||
.venv
|
||||
.venvs
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
@@ -134,39 +129,3 @@ dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# macOS display setting files
|
||||
.DS_Store
|
||||
|
||||
# Wandb directory
|
||||
wandb/
|
||||
|
||||
# asdf tool versions
|
||||
.tool-versions
|
||||
/.ruff_cache/
|
||||
|
||||
*.pkl
|
||||
*.bin
|
||||
|
||||
# integration test artifacts
|
||||
data_map*
|
||||
\[('_type', 'fake'), ('stop', None)]
|
||||
|
||||
# Replit files
|
||||
*replit*
|
||||
|
||||
node_modules
|
||||
docs/.yarn/
|
||||
docs/node_modules/
|
||||
docs/.docusaurus/
|
||||
docs/.cache-loader/
|
||||
docs/_dist
|
||||
docs/api_reference/api_reference.rst
|
||||
docs/api_reference/_build
|
||||
docs/api_reference/*/
|
||||
!docs/api_reference/_static/
|
||||
!docs/api_reference/templates/
|
||||
!docs/api_reference/themes/
|
||||
docs/docs_skeleton/build
|
||||
docs/docs_skeleton/node_modules
|
||||
docs/docs_skeleton/yarn.lock
|
||||
|
||||
4
.gitmodules
vendored
@@ -1,4 +0,0 @@
|
||||
[submodule "docs/_docs_skeleton"]
|
||||
path = docs/_docs_skeleton
|
||||
url = https://github.com/langchain-ai/langchain-shared-docs
|
||||
branch = main
|
||||
@@ -1,29 +0,0 @@
|
||||
# Read the Docs configuration file
|
||||
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
|
||||
|
||||
# Required
|
||||
version: 2
|
||||
|
||||
# Set the version of Python and other tools you might need
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.11"
|
||||
jobs:
|
||||
pre_build:
|
||||
- python docs/api_reference/create_api_rst.py
|
||||
|
||||
# Build documentation in the docs/ directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/api_reference/conf.py
|
||||
|
||||
# If using Sphinx, optionally build your docs in additional formats such as PDF
|
||||
# formats:
|
||||
# - pdf
|
||||
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
install:
|
||||
- requirements: docs/api_reference/requirements.txt
|
||||
- method: pip
|
||||
path: .
|
||||
@@ -1,8 +0,0 @@
|
||||
cff-version: 1.2.0
|
||||
message: "If you use this software, please cite it as below."
|
||||
authors:
|
||||
- family-names: "Chase"
|
||||
given-names: "Harrison"
|
||||
title: "LangChain"
|
||||
date-released: 2022-10-17
|
||||
url: "https://github.com/hwchase17/langchain"
|
||||
3
MANIFEST.in
Normal file
@@ -0,0 +1,3 @@
|
||||
include langchain/py.typed
|
||||
include langchain/VERSION
|
||||
include LICENSE
|
||||
57
MIGRATE.md
@@ -1,57 +0,0 @@
|
||||
# Migrating to `langchain_experimental`
|
||||
|
||||
We are moving any experimental components of LangChain, or components with vulnerability issues, into `langchain_experimental`.
|
||||
This guide covers how to migrate.
|
||||
|
||||
## Installation
|
||||
|
||||
Previously:
|
||||
|
||||
`pip install -U langchain`
|
||||
|
||||
Now (only if you want to access things in experimental):
|
||||
|
||||
`pip install -U langchain langchain_experimental`
|
||||
|
||||
## Things in `langchain.experimental`
|
||||
|
||||
Previously:
|
||||
|
||||
`from langchain.experimental import ...`
|
||||
|
||||
Now:
|
||||
|
||||
`from langchain_experimental import ...`
|
||||
|
||||
## PALChain
|
||||
|
||||
Previously:
|
||||
|
||||
`from langchain.chains import PALChain`
|
||||
|
||||
Now:
|
||||
|
||||
`from langchain_experimental.pal_chain import PALChain`
|
||||
|
||||
## SQLDatabaseChain
|
||||
|
||||
Previously:
|
||||
|
||||
`from langchain.chains import SQLDatabaseChain`
|
||||
|
||||
Now:
|
||||
|
||||
`from langchain_experimental.sql import SQLDatabaseChain`
|
||||
|
||||
## `load_prompt` for Python files
|
||||
|
||||
Note: this only applies if you want to load Python files as prompts.
|
||||
If you want to load json/yaml files, no change is needed.
|
||||
|
||||
Previously:
|
||||
|
||||
`from langchain.prompts import load_prompt`
|
||||
|
||||
Now:
|
||||
|
||||
`from langchain_experimental.prompts import load_prompt`
|
||||
58
Makefile
@@ -1,49 +1,17 @@
|
||||
.PHONY: all clean docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck
|
||||
.PHONY: format lint tests integration_tests
|
||||
|
||||
# Default target executed when no arguments are given to make.
|
||||
all: help
|
||||
format:
|
||||
black .
|
||||
isort .
|
||||
|
||||
lint:
|
||||
mypy .
|
||||
black . --check
|
||||
isort . --check
|
||||
flake8 .
|
||||
|
||||
######################
|
||||
# DOCUMENTATION
|
||||
######################
|
||||
tests:
|
||||
pytest tests/unit_tests
|
||||
|
||||
clean: docs_clean api_docs_clean
|
||||
|
||||
|
||||
docs_build:
|
||||
docs/.local_build.sh
|
||||
|
||||
docs_clean:
|
||||
rm -r docs/_dist
|
||||
|
||||
docs_linkcheck:
|
||||
poetry run linkchecker docs/_dist/docs_skeleton/ --ignore-url node_modules
|
||||
|
||||
api_docs_build:
|
||||
poetry run python docs/api_reference/create_api_rst.py
|
||||
cd docs/api_reference && poetry run make html
|
||||
|
||||
api_docs_clean:
|
||||
rm -f docs/api_reference/api_reference.rst
|
||||
cd docs/api_reference && poetry run make clean
|
||||
|
||||
api_docs_linkcheck:
|
||||
poetry run linkchecker docs/api_reference/_build/html/index.html
|
||||
|
||||
spell_check:
|
||||
poetry run codespell --toml pyproject.toml
|
||||
|
||||
spell_fix:
|
||||
poetry run codespell --toml pyproject.toml -w
|
||||
|
||||
######################
|
||||
# HELP
|
||||
######################
|
||||
|
||||
help:
|
||||
@echo '----'
|
||||
@echo 'coverage - run unit tests and generate coverage report'
|
||||
@echo 'docs_build - build the documentation'
|
||||
@echo 'docs_clean - clean the documentation build artifacts'
|
||||
@echo 'docs_linkcheck - run linkchecker on the documentation'
|
||||
integration_tests:
|
||||
pytest tests/integration_tests
|
||||
|
||||
163
README.md
@@ -2,102 +2,131 @@
|
||||
|
||||
⚡ Building applications with LLMs through composability ⚡
|
||||
|
||||
[](https://github.com/hwchase17/langchain/releases)
|
||||
[](https://github.com/hwchase17/langchain/actions/workflows/langchain_ci.yml)
|
||||
[](https://github.com/hwchase17/langchain/actions/workflows/langchain_experimental_ci.yml)
|
||||
[](https://pepy.tech/project/langchain)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://twitter.com/langchainai)
|
||||
[](https://discord.gg/6adMQxSpJS)
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
|
||||
[](https://codespaces.new/hwchase17/langchain)
|
||||
[](https://star-history.com/#hwchase17/langchain)
|
||||
[](https://libraries.io/github/hwchase17/langchain)
|
||||
[](https://github.com/hwchase17/langchain/issues)
|
||||
|
||||
|
||||
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/hwchase17/langchainjs).
|
||||
|
||||
**Production Support:** As you move your LangChains into production, we'd love to offer more comprehensive support.
|
||||
Please fill out [this form](https://forms.gle/57d8AmXBYp8PP8tZA) and we'll set up a dedicated support Slack channel.
|
||||
|
||||
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28
|
||||
|
||||
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
|
||||
This migration has already started, but we are remaining backwards compatible until 7/28.
|
||||
On that date, we will remove functionality from `langchain`.
|
||||
Read more about the motivation and the progress [here](https://github.com/hwchase17/langchain/discussions/8043).
|
||||
Read how to migrate your code [here](MIGRATE.md).
|
||||
[](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [](https://opensource.org/licenses/MIT) [](https://twitter.com/langchainai) [](https://discord.gg/6adMQxSpJS)
|
||||
|
||||
## Quick Install
|
||||
|
||||
`pip install langchain`
|
||||
or
|
||||
`pip install langsmith && conda install langchain -c conda-forge`
|
||||
|
||||
## 🤔 What is this?
|
||||
|
||||
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
|
||||
Large language models (LLMs) are emerging as a transformative technology, enabling
|
||||
developers to build applications that they previously could not.
|
||||
But using these LLMs in isolation is often not enough to
|
||||
create a truly powerful app - the real power comes when you are able to
|
||||
combine them with other sources of computation or knowledge.
|
||||
|
||||
This library aims to assist in the development of those types of applications. Common examples of these applications include:
|
||||
This library is aimed at assisting in the development of those types of applications.
|
||||
It aims to create:
|
||||
|
||||
**❓ Question Answering over specific documents**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/)
|
||||
- End-to-end Example: [Question Answering over Notion Database](https://github.com/hwchase17/notion-qa)
|
||||
|
||||
**💬 Chatbots**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/chatbots/)
|
||||
- End-to-end Example: [Chat-LangChain](https://github.com/hwchase17/chat-langchain)
|
||||
|
||||
**🤖 Agents**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/modules/agents/)
|
||||
- End-to-end Example: [GPT+WolframAlpha](https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain)
|
||||
1. a comprehensive collection of pieces you would ever want to combine
|
||||
2. a flexible interface for combining pieces into a single comprehensive "chain"
|
||||
3. a schema for easily saving and sharing those chains
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
Please see [here](https://python.langchain.com) for full documentation on:
|
||||
|
||||
- Getting started (installation, setting up the environment, simple examples)
|
||||
Please see [here](https://langchain.readthedocs.io/en/latest/?) for full documentation on:
|
||||
- Getting started (installation, setting up environment, simple examples)
|
||||
- How-To examples (demos, integrations, helper functions)
|
||||
- Reference (full API docs)
|
||||
- Resources (high-level explanation of core concepts)
|
||||
- Resources (high level explanation of core concepts)
|
||||
|
||||
## 🚀 What can this help with?
|
||||
## 🚀 What can I do with this
|
||||
|
||||
There are six main areas that LangChain is designed to help with.
|
||||
These are, in increasing order of complexity:
|
||||
This project was largely inspired by a few projects seen on Twitter for which we thought it would make sense to have more explicit tooling. A lot of the initial functionality was done in an attempt to recreate those. Those are:
|
||||
|
||||
**📃 LLMs and Prompts:**
|
||||
**[Self-ask-with-search](https://ofir.io/self-ask.pdf)**
|
||||
|
||||
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
|
||||
To recreate this paper, use the following code snippet or checkout the [example notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/demos/self_ask_with_search.ipynb).
|
||||
|
||||
**🔗 Chains:**
|
||||
```python
|
||||
from langchain import SelfAskWithSearchChain, OpenAI, SerpAPIChain
|
||||
|
||||
Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
|
||||
llm = OpenAI(temperature=0)
|
||||
search = SerpAPIChain()
|
||||
|
||||
**📚 Data Augmented Generation:**
|
||||
self_ask_with_search = SelfAskWithSearchChain(llm=llm, search_chain=search)
|
||||
|
||||
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
|
||||
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
|
||||
```
|
||||
|
||||
**🤖 Agents:**
|
||||
**[LLM Math](https://twitter.com/amasad/status/1568824744367259648?s=20&t=-7wxpXBJinPgDuyHLouP1w)**
|
||||
|
||||
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
|
||||
To recreate this example, use the following code snippet or check out the [example notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/demos/llm_math.ipynb).
|
||||
|
||||
**🧠 Memory:**
|
||||
```python
|
||||
from langchain import OpenAI, LLMMathChain
|
||||
|
||||
Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
|
||||
llm = OpenAI(temperature=0)
|
||||
llm_math = LLMMathChain(llm=llm)
|
||||
|
||||
**🧐 Evaluation:**
|
||||
llm_math.run("How many of the integers between 0 and 99 inclusive are divisible by 8?")
|
||||
```
|
||||
|
||||
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
|
||||
**Generic Prompting**
|
||||
|
||||
For more information on these concepts, please see our [full documentation](https://python.langchain.com).
|
||||
You can also use this for simple prompting pipelines, as in the below example and this [example notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/demos/simple_prompts.ipynb).
|
||||
|
||||
## 💁 Contributing
|
||||
```python
|
||||
from langchain import Prompt, OpenAI, LLMChain
|
||||
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
|
||||
template = """Question: {question}
|
||||
|
||||
For detailed information on how to contribute, see [here](.github/CONTRIBUTING.md).
|
||||
Answer: Let's think step by step."""
|
||||
prompt = Prompt(template=template, input_variables=["question"])
|
||||
llm = OpenAI(temperature=0)
|
||||
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
||||
|
||||
question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
|
||||
|
||||
llm_chain.predict(question=question)
|
||||
```
|
||||
|
||||
**Embed & Search Documents**
|
||||
|
||||
We support two vector databases to store and search embeddings -- FAISS and Elasticsearch. Here's a code snippet showing how to use FAISS to store embeddings and search for text similar to a query. Both database backends are featured in this [example notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/integrations/embeddings.ipynb).
|
||||
|
||||
```python
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.faiss import FAISS
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
|
||||
with open('state_of_the_union.txt') as f:
|
||||
state_of_the_union = f.read()
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||||
texts = text_splitter.split_text(state_of_the_union)
|
||||
|
||||
embeddings = OpenAIEmbeddings()
|
||||
|
||||
docsearch = FAISS.from_texts(texts, embeddings)
|
||||
|
||||
query = "What did the president say about Ketanji Brown Jackson"
|
||||
docs = docsearch.similarity_search(query)
|
||||
```
|
||||
|
||||
## 🤖 Developer Guide
|
||||
|
||||
To begin developing on this project, first clone to the repo locally.
|
||||
To install requirements, run `pip install -r requirements.txt`.
|
||||
This will install all requirements for running the package, examples, linting, formatting, and tests.
|
||||
|
||||
Formatting for this project is a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
|
||||
To run formatting for this project, run `make format`.
|
||||
|
||||
Linting for this project is a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
|
||||
To run linting for this project, run `make lint`.
|
||||
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.
|
||||
|
||||
Unit tests cover modular logic that does not require calls to outside apis.
|
||||
To run unit tests, run `make tests`.
|
||||
If you add new logic, please add a unit test.
|
||||
|
||||
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
|
||||
To run integration tests, run `make integration_tests`.
|
||||
If you add support for a new external API, please add a new integration test.
|
||||
|
||||
If you are adding a Jupyter notebook example, you can run `pip install -e .` to build the langchain package from your local changes, so your new logic can be imported into the notebook.
|
||||
|
||||
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
|
||||
For that reason, we ask that you add good documentation to all classes and methods.
|
||||
Similar to linting, we recognize documentation can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.
|
||||
|
||||
@@ -1,17 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -o errexit
|
||||
set -o nounset
|
||||
set -o pipefail
|
||||
set -o xtrace
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "$0")"; pwd)"
|
||||
cd "${SCRIPT_DIR}"
|
||||
|
||||
mkdir -p _dist/docs_skeleton
|
||||
cp -r {docs_skeleton,snippets} _dist
|
||||
cp -r extras/* _dist/docs_skeleton/docs
|
||||
cd _dist/docs_skeleton
|
||||
poetry run nbdoc_build
|
||||
yarn install
|
||||
yarn start
|
||||
@@ -3,7 +3,7 @@
|
||||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
SPHINXOPTS ?=
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SPHINXAUTOBUILD ?= sphinx-autobuild
|
||||
SOURCEDIR = .
|
||||
@@ -1,17 +0,0 @@
|
||||
pre {
|
||||
white-space: break-spaces;
|
||||
}
|
||||
|
||||
@media (min-width: 1200px) {
|
||||
.container,
|
||||
.container-lg,
|
||||
.container-md,
|
||||
.container-sm,
|
||||
.container-xl {
|
||||
max-width: 2560px !important;
|
||||
}
|
||||
}
|
||||
|
||||
#my-component-root *, #headlessui-portal-root * {
|
||||
z-index: 10000;
|
||||
}
|
||||
@@ -1,96 +0,0 @@
|
||||
"""Script for auto-generating api_reference.rst"""
|
||||
import glob
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
ROOT_DIR = Path(__file__).parents[2].absolute()
|
||||
PKG_DIR = ROOT_DIR / "libs" / "langchain" / "langchain"
|
||||
WRITE_FILE = Path(__file__).parent / "api_reference.rst"
|
||||
|
||||
|
||||
def load_members() -> dict:
|
||||
members: dict = {}
|
||||
for py in glob.glob(str(PKG_DIR) + "/**/*.py", recursive=True):
|
||||
module = py[len(str(PKG_DIR)) + 1 :].replace(".py", "").replace("/", ".")
|
||||
top_level = module.split(".")[0]
|
||||
if top_level not in members:
|
||||
members[top_level] = {"classes": [], "functions": []}
|
||||
with open(py, "r") as f:
|
||||
for line in f.readlines():
|
||||
cls = re.findall(r"^class ([^_].*)\(", line)
|
||||
members[top_level]["classes"].extend([module + "." + c for c in cls])
|
||||
func = re.findall(r"^def ([^_].*)\(", line)
|
||||
afunc = re.findall(r"^async def ([^_].*)\(", line)
|
||||
func_strings = [module + "." + f for f in func + afunc]
|
||||
members[top_level]["functions"].extend(func_strings)
|
||||
return members
|
||||
|
||||
|
||||
def construct_doc(members: dict) -> str:
|
||||
full_doc = """\
|
||||
.. _api_reference:
|
||||
|
||||
=============
|
||||
API Reference
|
||||
=============
|
||||
|
||||
"""
|
||||
for module, _members in sorted(members.items(), key=lambda kv: kv[0]):
|
||||
classes = _members["classes"]
|
||||
functions = _members["functions"]
|
||||
if not (classes or functions):
|
||||
continue
|
||||
|
||||
module_title = module.replace("_", " ").title()
|
||||
if module_title == "Llms":
|
||||
module_title = "LLMs"
|
||||
section = f":mod:`langchain.{module}`: {module_title}"
|
||||
full_doc += f"""\
|
||||
{section}
|
||||
{'=' * (len(section) + 1)}
|
||||
|
||||
.. automodule:: langchain.{module}
|
||||
:no-members:
|
||||
:no-inherited-members:
|
||||
|
||||
"""
|
||||
|
||||
if classes:
|
||||
cstring = "\n ".join(sorted(classes))
|
||||
full_doc += f"""\
|
||||
Classes
|
||||
--------------
|
||||
.. currentmodule:: langchain
|
||||
|
||||
.. autosummary::
|
||||
:toctree: {module}
|
||||
:template: class.rst
|
||||
|
||||
{cstring}
|
||||
|
||||
"""
|
||||
if functions:
|
||||
fstring = "\n ".join(sorted(functions))
|
||||
full_doc += f"""\
|
||||
Functions
|
||||
--------------
|
||||
.. currentmodule:: langchain
|
||||
|
||||
.. autosummary::
|
||||
:toctree: {module}
|
||||
|
||||
{fstring}
|
||||
|
||||
"""
|
||||
return full_doc
|
||||
|
||||
|
||||
def main() -> None:
|
||||
members = load_members()
|
||||
full_doc = construct_doc(members)
|
||||
with open(WRITE_FILE, "w") as f:
|
||||
f.write(full_doc)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,8 +0,0 @@
|
||||
=============
|
||||
LangChain API
|
||||
=============
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
api_reference.rst
|
||||
@@ -1,9 +0,0 @@
|
||||
Evaluation
|
||||
=======================
|
||||
|
||||
LangChain has a number of convenient evaluation chains you can use off the shelf to grade your models' oupputs.
|
||||
|
||||
.. automodule:: langchain.evaluation
|
||||
:members:
|
||||
:undoc-members:
|
||||
:inherited-members:
|
||||
@@ -1,27 +0,0 @@
|
||||
Copyright (c) 2007-2023 The scikit-learn developers.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
@@ -1,28 +0,0 @@
|
||||
:mod:`{{module}}`.{{objname}}
|
||||
{{ underline }}==============
|
||||
|
||||
.. currentmodule:: {{ module }}
|
||||
|
||||
.. autoclass:: {{ objname }}
|
||||
|
||||
{% block methods %}
|
||||
{% if methods %}
|
||||
.. rubric:: {{ _('Methods') }}
|
||||
|
||||
.. autosummary::
|
||||
{% for item in methods %}
|
||||
~{{ name }}.{{ item }}
|
||||
{%- endfor %}
|
||||
{% endif %}
|
||||
{% endblock %}
|
||||
|
||||
{% block attributes %}
|
||||
{% if attributes %}
|
||||
.. rubric:: {{ _('Attributes') }}
|
||||
|
||||
.. autosummary::
|
||||
{% for item in attributes %}
|
||||
~{{ name }}.{{ item }}
|
||||
{%- endfor %}
|
||||
{% endif %}
|
||||
{% endblock %}
|
||||
@@ -1,15 +0,0 @@
|
||||
{% set redirect = pathto(redirects[pagename]) %}
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta http-equiv="Refresh" content="0; url={{ redirect }}" />
|
||||
<meta name="Description" content="scikit-learn: machine learning in Python">
|
||||
<link rel="canonical" href="{{ redirect }}" />
|
||||
<title>scikit-learn: machine learning in Python</title>
|
||||
</head>
|
||||
<body>
|
||||
<p>You will be automatically redirected to the <a href="{{ redirect }}">new location of this page</a>.</p>
|
||||
</body>
|
||||
</html>
|
||||
@@ -1,27 +0,0 @@
|
||||
Copyright (c) 2007-2023 The scikit-learn developers.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
@@ -1,67 +0,0 @@
|
||||
<script>
|
||||
$(document).ready(function() {
|
||||
/* Add a [>>>] button on the top-right corner of code samples to hide
|
||||
* the >>> and ... prompts and the output and thus make the code
|
||||
* copyable. */
|
||||
var div = $('.highlight-python .highlight,' +
|
||||
'.highlight-python3 .highlight,' +
|
||||
'.highlight-pycon .highlight,' +
|
||||
'.highlight-default .highlight')
|
||||
var pre = div.find('pre');
|
||||
|
||||
// get the styles from the current theme
|
||||
pre.parent().parent().css('position', 'relative');
|
||||
var hide_text = 'Hide prompts and outputs';
|
||||
var show_text = 'Show prompts and outputs';
|
||||
|
||||
// create and add the button to all the code blocks that contain >>>
|
||||
div.each(function(index) {
|
||||
var jthis = $(this);
|
||||
if (jthis.find('.gp').length > 0) {
|
||||
var button = $('<span class="copybutton">>>></span>');
|
||||
button.attr('title', hide_text);
|
||||
button.data('hidden', 'false');
|
||||
jthis.prepend(button);
|
||||
}
|
||||
// tracebacks (.gt) contain bare text elements that need to be
|
||||
// wrapped in a span to work with .nextUntil() (see later)
|
||||
jthis.find('pre:has(.gt)').contents().filter(function() {
|
||||
return ((this.nodeType == 3) && (this.data.trim().length > 0));
|
||||
}).wrap('<span>');
|
||||
});
|
||||
|
||||
// define the behavior of the button when it's clicked
|
||||
$('.copybutton').click(function(e){
|
||||
e.preventDefault();
|
||||
var button = $(this);
|
||||
if (button.data('hidden') === 'false') {
|
||||
// hide the code output
|
||||
button.parent().find('.go, .gp, .gt').hide();
|
||||
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden');
|
||||
button.css('text-decoration', 'line-through');
|
||||
button.attr('title', show_text);
|
||||
button.data('hidden', 'true');
|
||||
} else {
|
||||
// show the code output
|
||||
button.parent().find('.go, .gp, .gt').show();
|
||||
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible');
|
||||
button.css('text-decoration', 'none');
|
||||
button.attr('title', hide_text);
|
||||
button.data('hidden', 'false');
|
||||
}
|
||||
});
|
||||
|
||||
/*** Add permalink buttons next to glossary terms ***/
|
||||
$('dl.glossary > dt[id]').append(function() {
|
||||
return ('<a class="headerlink" href="#' +
|
||||
this.getAttribute('id') +
|
||||
'" title="Permalink to this term">¶</a>');
|
||||
});
|
||||
});
|
||||
|
||||
</script>
|
||||
{%- if pagename != 'index' and pagename != 'documentation' %}
|
||||
{% if theme_mathjax_path %}
|
||||
<script id="MathJax-script" async src="{{ theme_mathjax_path }}"></script>
|
||||
{% endif %}
|
||||
{%- endif %}
|
||||
@@ -1,142 +0,0 @@
|
||||
{# TEMPLATE VAR SETTINGS #}
|
||||
{%- set url_root = pathto('', 1) %}
|
||||
{%- if url_root == '#' %}{% set url_root = '' %}{% endif %}
|
||||
{%- if not embedded and docstitle %}
|
||||
{%- set titlesuffix = " — "|safe + docstitle|e %}
|
||||
{%- else %}
|
||||
{%- set titlesuffix = "" %}
|
||||
{%- endif %}
|
||||
{%- set lang_attr = 'en' %}
|
||||
|
||||
<!DOCTYPE html>
|
||||
<!--[if IE 8]><html class="no-js lt-ie9" lang="{{ lang_attr }}" > <![endif]-->
|
||||
<!--[if gt IE 8]><!--> <html class="no-js" lang="{{ lang_attr }}" > <!--<![endif]-->
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
{{ metatags }}
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
|
||||
{% block htmltitle %}
|
||||
<title>{{ title|striptags|e }}{{ titlesuffix }}</title>
|
||||
{% endblock %}
|
||||
<link rel="canonical" href="http://scikit-learn.org/stable/{{pagename}}.html" />
|
||||
|
||||
{% if favicon_url %}
|
||||
<link rel="shortcut icon" href="{{ favicon_url|e }}"/>
|
||||
{% endif %}
|
||||
|
||||
<link rel="stylesheet" href="{{ pathto('_static/css/vendor/bootstrap.min.css', 1) }}" type="text/css" />
|
||||
{%- for css in css_files %}
|
||||
{%- if css|attr("rel") %}
|
||||
<link rel="{{ css.rel }}" href="{{ pathto(css.filename, 1) }}" type="text/css"{% if css.title is not none %} title="{{ css.title }}"{% endif %} />
|
||||
{%- else %}
|
||||
<link rel="stylesheet" href="{{ pathto(css, 1) }}" type="text/css" />
|
||||
{%- endif %}
|
||||
{%- endfor %}
|
||||
<link rel="stylesheet" href="{{ pathto('_static/' + style, 1) }}" type="text/css" />
|
||||
<script id="documentation_options" data-url_root="{{ pathto('', 1) }}" src="{{ pathto('_static/documentation_options.js', 1) }}"></script>
|
||||
<script src="{{ pathto('_static/jquery.js', 1) }}"></script>
|
||||
{%- block extrahead %} {% endblock %}
|
||||
</head>
|
||||
<body>
|
||||
{% include "nav.html" %}
|
||||
{%- block content %}
|
||||
<div class="d-flex" id="sk-doc-wrapper">
|
||||
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
|
||||
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
|
||||
<div id="sk-sidebar-wrapper" class="border-right">
|
||||
<div class="sk-sidebar-toc-wrapper">
|
||||
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
|
||||
{%- if prev %}
|
||||
<a href="{{ prev.link|e }}" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="{{ prev.title|striptags }}">Prev</a>
|
||||
{%- else %}
|
||||
<a href="#" role="button" class="btn sk-btn-rellink py-1 disabled"">Prev</a>
|
||||
{%- endif %}
|
||||
{%- if parents -%}
|
||||
<a href="{{ parents[-1].link|e }}" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="{{ parents[-1].title|striptags }}">Up</a>
|
||||
{%- else %}
|
||||
<a href="#" role="button" class="btn sk-btn-rellink disabled py-1">Up</a>
|
||||
{%- endif %}
|
||||
{%- if next %}
|
||||
<a href="{{ next.link|e }}" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="{{ next.title|striptags }}">Next</a>
|
||||
{%- else %}
|
||||
<a href="#" role="button" class="btn sk-btn-rellink py-1 disabled"">Next</a>
|
||||
{%- endif %}
|
||||
</div>
|
||||
{%- if pagename != "install" %}
|
||||
<div class="alert alert-warning p-1 mb-2" role="alert">
|
||||
<p class="text-center mb-0">
|
||||
<strong>LangChain {{ release }}</strong><br/>
|
||||
</p>
|
||||
</div>
|
||||
{%- endif %}
|
||||
{%- if meta and meta['parenttoc']|tobool %}
|
||||
<div class="sk-sidebar-toc">
|
||||
{% set nav = get_nav_object(maxdepth=3, collapse=True, numbered=True) %}
|
||||
<ul>
|
||||
{% for main_nav_item in nav %}
|
||||
{% if main_nav_item.active %}
|
||||
<li>
|
||||
<a href="{{ main_nav_item.url }}" class="sk-toc-active">{{ main_nav_item.title }}</a>
|
||||
</li>
|
||||
<ul>
|
||||
{% for nav_item in main_nav_item.children %}
|
||||
<li>
|
||||
<a href="{{ nav_item.url }}" class="{% if nav_item.active %}sk-toc-active{% endif %}">{{ nav_item.title }}</a>
|
||||
{% if nav_item.children %}
|
||||
<ul>
|
||||
{% for inner_child in nav_item.children %}
|
||||
<li class="sk-toctree-l3">
|
||||
<a href="{{ inner_child.url }}">{{ inner_child.title }}</a>
|
||||
</li>
|
||||
{% endfor %}
|
||||
</ul>
|
||||
{% endif %}
|
||||
</li>
|
||||
{% endfor %}
|
||||
</ul>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
</ul>
|
||||
</div>
|
||||
{%- elif meta and meta['globalsidebartoc']|tobool %}
|
||||
<div class="sk-sidebar-toc sk-sidebar-global-toc">
|
||||
{{ toctree(maxdepth=2, titles_only=True) }}
|
||||
</div>
|
||||
{%- else %}
|
||||
<div class="sk-sidebar-toc">
|
||||
{{ toc }}
|
||||
</div>
|
||||
{%- endif %}
|
||||
</div>
|
||||
</div>
|
||||
<div id="sk-page-content-wrapper">
|
||||
<div class="sk-page-content container-fluid body px-md-3" role="main">
|
||||
{% block body %}{% endblock %}
|
||||
</div>
|
||||
<div class="container">
|
||||
<footer class="sk-content-footer">
|
||||
{%- if pagename != 'index' %}
|
||||
{%- if show_copyright %}
|
||||
{%- if hasdoc('copyright') %}
|
||||
{% trans path=pathto('copyright'), copyright=copyright|e %}© {{ copyright }}.{% endtrans %}
|
||||
{%- else %}
|
||||
{% trans copyright=copyright|e %}© {{ copyright }}.{% endtrans %}
|
||||
{%- endif %}
|
||||
{%- endif %}
|
||||
{%- if last_updated %}
|
||||
{% trans last_updated=last_updated|e %}Last updated on {{ last_updated }}.{% endtrans %}
|
||||
{%- endif %}
|
||||
{%- if show_source and has_source and sourcename %}
|
||||
<a href="{{ pathto('_sources/' + sourcename, true)|e }}" rel="nofollow">{{ _('Show this page source') }}</a>
|
||||
{%- endif %}
|
||||
{%- endif %}
|
||||
</footer>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
{%- endblock %}
|
||||
<script src="{{ pathto('_static/js/vendor/bootstrap.min.js', 1) }}"></script>
|
||||
{% include "javascript.html" %}
|
||||
</body>
|
||||
</html>
|
||||
@@ -1,69 +0,0 @@
|
||||
{%- if pagename != 'index' and pagename != 'documentation' %}
|
||||
{%- set nav_bar_class = "sk-docs-navbar" %}
|
||||
{%- set top_container_cls = "sk-docs-container" %}
|
||||
{%- else %}
|
||||
{%- set nav_bar_class = "sk-landing-navbar" %}
|
||||
{%- set top_container_cls = "sk-landing-container" %}
|
||||
{%- endif %}
|
||||
|
||||
{% if theme_link_to_live_contributing_page|tobool %}
|
||||
{# Link to development page for live builds #}
|
||||
{%- set development_link = "https://scikit-learn.org/dev/developers/index.html" %}
|
||||
{# Open on a new development page in new window/tab for live builds #}
|
||||
{%- set development_attrs = 'target="_blank" rel="noopener noreferrer"' %}
|
||||
{%- else %}
|
||||
{%- set development_link = pathto('developers/index') %}
|
||||
{%- set development_attrs = '' %}
|
||||
{%- endif %}
|
||||
|
||||
|
||||
<nav id="navbar" class="{{ nav_bar_class }} navbar navbar-expand-md navbar-light bg-light py-0">
|
||||
<div class="container-fluid {{ top_container_cls }} px-0">
|
||||
{%- if logo_url %}
|
||||
<a class="navbar-brand py-0" href="{{ pathto('index') }}">
|
||||
<img
|
||||
class="sk-brand-img"
|
||||
src="{{ logo_url|e }}"
|
||||
alt="logo"/>
|
||||
</a>
|
||||
{%- endif %}
|
||||
<button
|
||||
id="sk-navbar-toggler"
|
||||
class="navbar-toggler"
|
||||
type="button"
|
||||
data-toggle="collapse"
|
||||
data-target="#navbarSupportedContent"
|
||||
aria-controls="navbarSupportedContent"
|
||||
aria-expanded="false"
|
||||
aria-label="Toggle navigation"
|
||||
>
|
||||
<span class="navbar-toggler-icon"></span>
|
||||
</button>
|
||||
|
||||
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
|
||||
<ul class="navbar-nav mr-auto">
|
||||
<li class="nav-item">
|
||||
<a class="sk-nav-link nav-link" href="{{ pathto('api_reference') }}">API</a>
|
||||
</li>
|
||||
<li class="nav-item">
|
||||
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://python.langchain.com/">Python Docs</a>
|
||||
</li>
|
||||
{%- for title, link, link_attrs in drop_down_navigation %}
|
||||
<li class="nav-item">
|
||||
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="{{ link }}" {{ link_attrs }}>{{ title }}</a>
|
||||
</li>
|
||||
{%- endfor %}
|
||||
</ul>
|
||||
{%- if pagename != "search"%}
|
||||
<div id="searchbox" role="search">
|
||||
<div class="searchformwrapper">
|
||||
<form class="search" action="{{ pathto('search') }}" method="get">
|
||||
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
|
||||
<input class="sk-search-text-btn" type="submit" value="{{ _('Go') }}" />
|
||||
</form>
|
||||
</div>
|
||||
</div>
|
||||
{%- endif %}
|
||||
</div>
|
||||
</div>
|
||||
</nav>
|
||||
@@ -1,16 +0,0 @@
|
||||
{%- extends "basic/search.html" %}
|
||||
{% block extrahead %}
|
||||
<script type="text/javascript" src="{{ pathto('_static/underscore.js', 1) }}"></script>
|
||||
<script type="text/javascript" src="{{ pathto('searchindex.js', 1) }}" defer></script>
|
||||
<script type="text/javascript" src="{{ pathto('_static/doctools.js', 1) }}"></script>
|
||||
<script type="text/javascript" src="{{ pathto('_static/language_data.js', 1) }}"></script>
|
||||
<script type="text/javascript" src="{{ pathto('_static/searchtools.js', 1) }}"></script>
|
||||
<!-- <script type="text/javascript" src="{{ pathto('_static/sphinx_highlight.js', 1) }}"></script> -->
|
||||
<script type="text/javascript">
|
||||
$(document).ready(function() {
|
||||
if (!Search.out) {
|
||||
Search.init();
|
||||
}
|
||||
});
|
||||
</script>
|
||||
{% endblock %}
|
||||
@@ -1,8 +0,0 @@
|
||||
[theme]
|
||||
inherit = basic
|
||||
pygments_style = default
|
||||
stylesheet = css/theme.css
|
||||
|
||||
[options]
|
||||
link_to_live_contributing_page = false
|
||||
mathjax_path =
|
||||
@@ -11,28 +11,20 @@
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#
|
||||
import os
|
||||
import sys
|
||||
# import os
|
||||
# import sys
|
||||
# sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
import toml
|
||||
|
||||
sys.path.insert(0, os.path.abspath("."))
|
||||
sys.path.insert(0, os.path.abspath("../../libs/langchain"))
|
||||
|
||||
with open("../../libs/langchain/pyproject.toml") as f:
|
||||
data = toml.load(f)
|
||||
import langchain
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = "🦜🔗 LangChain"
|
||||
copyright = "2023, Harrison Chase"
|
||||
project = "LangChain"
|
||||
copyright = "2022, Harrison Chase"
|
||||
author = "Harrison Chase"
|
||||
|
||||
version = data["tool"]["poetry"]["version"]
|
||||
release = version
|
||||
|
||||
html_title = project + " " + version
|
||||
html_last_updated_fmt = "%b %d, %Y"
|
||||
version = langchain.__version__
|
||||
release = langchain.__version__
|
||||
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
@@ -47,34 +39,25 @@ extensions = [
|
||||
"sphinx.ext.napoleon",
|
||||
"sphinx.ext.viewcode",
|
||||
"sphinxcontrib.autodoc_pydantic",
|
||||
"sphinx_copybutton",
|
||||
"myst_parser",
|
||||
"nbsphinx",
|
||||
"sphinx_panels",
|
||||
"IPython.sphinxext.ipython_console_highlighting",
|
||||
]
|
||||
source_suffix = [".rst"]
|
||||
|
||||
|
||||
autodoc_pydantic_model_show_json = False
|
||||
autodoc_pydantic_field_list_validators = False
|
||||
autodoc_pydantic_config_members = False
|
||||
autodoc_pydantic_model_show_config_summary = False
|
||||
autodoc_pydantic_model_show_validator_members = False
|
||||
autodoc_pydantic_model_show_validator_summary = False
|
||||
autodoc_pydantic_model_signature_prefix = "class"
|
||||
autodoc_pydantic_field_signature_prefix = "param"
|
||||
autodoc_member_order = "groupwise"
|
||||
autoclass_content = "both"
|
||||
autodoc_typehints_format = "short"
|
||||
|
||||
autodoc_default_options = {
|
||||
"members": True,
|
||||
"show-inheritance": True,
|
||||
"inherited-members": "BaseModel",
|
||||
"undoc-members": True,
|
||||
"special-members": "__call__",
|
||||
}
|
||||
autodoc_pydantic_model_show_field_summary = False
|
||||
autodoc_pydantic_model_members = False
|
||||
autodoc_pydantic_model_undoc_members = False
|
||||
# autodoc_typehints = "signature"
|
||||
# autodoc_typehints = "description"
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ["templates"]
|
||||
templates_path = ["_templates"]
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
@@ -87,39 +70,18 @@ exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_theme = "scikit-learn-modern"
|
||||
html_theme_path = ["themes"]
|
||||
|
||||
# redirects dictionary maps from old links to new links
|
||||
html_additional_pages = {}
|
||||
redirects = {
|
||||
"index": "api_reference",
|
||||
}
|
||||
for old_link in redirects:
|
||||
html_additional_pages[old_link] = "redirects.html"
|
||||
html_theme = "sphinx_rtd_theme"
|
||||
# html_theme = "sphinx_typlog_theme"
|
||||
|
||||
html_context = {
|
||||
"display_github": True, # Integrate GitHub
|
||||
"github_user": "hwchase17", # Username
|
||||
"github_repo": "langchain", # Repo name
|
||||
"github_version": "master", # Version
|
||||
"conf_py_path": "/docs/api_reference", # Path in the checkout to the docs root
|
||||
"redirects": redirects,
|
||||
"conf_py_path": "/docs/", # Path in the checkout to the docs root
|
||||
}
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ["_static"]
|
||||
|
||||
# These paths are either relative to html_static_path
|
||||
# or fully qualified paths (eg. https://...)
|
||||
html_css_files = [
|
||||
"css/custom.css",
|
||||
]
|
||||
html_use_index = False
|
||||
|
||||
myst_enable_extensions = ["colon_fence"]
|
||||
|
||||
# generate autosummary even if no references
|
||||
autosummary_generate = True
|
||||
html_static_path: list = []
|
||||
25
docs/core_concepts.md
Normal file
@@ -0,0 +1,25 @@
|
||||
# Core Concepts
|
||||
|
||||
This section goes over the core concepts of LangChain.
|
||||
Understanding these will go a long way in helping you understand the codebase and how to construct chains.
|
||||
|
||||
## Prompts
|
||||
Prompts generically have a `format` method that takes in variables and returns a formatted string.
|
||||
The most simple implementation of this is to have a template string with some variables in it, and then format it with the incoming variables.
|
||||
More complex iterations dynamically construct the template string from few shot examples, etc.
|
||||
|
||||
## LLMs
|
||||
Wrappers around Large Language Models (in particular, the `generate` ability of large language models) are some of the core functionality of LangChain.
|
||||
These wrappers are classes that are callable: they take in an input string, and return the generated output string.
|
||||
|
||||
## Embeddings
|
||||
These classes are very similar to the LLM classes in that they are wrappers around models,
|
||||
but rather than return a string they return an embedding (list of floats). This are particularly useful when
|
||||
implementing semantic search functionality. They expose separate methods for embedding queries versus embedding documents.
|
||||
|
||||
## Vectorstores
|
||||
These are datastores that store documents. They expose a method for passing in a string and finding similar documents.
|
||||
|
||||
## Chains
|
||||
These are pipelines that combine multiple of the above ideas.
|
||||
They vary greatly in complexity and are combination of generic, highly configurable pipelines and more narrow (but usually more complex) pipelines.
|
||||
7
docs/docs_skeleton/.gitignore
vendored
@@ -1,7 +0,0 @@
|
||||
.yarn/
|
||||
|
||||
node_modules/
|
||||
|
||||
.docusaurus
|
||||
.cache-loader
|
||||
docs/api
|
||||
@@ -1,49 +0,0 @@
|
||||
# Website
|
||||
|
||||
This website is built using [Docusaurus 2](https://docusaurus.io/), a modern static website generator.
|
||||
|
||||
### Installation
|
||||
|
||||
```
|
||||
$ yarn
|
||||
```
|
||||
|
||||
### Local Development
|
||||
|
||||
```
|
||||
$ yarn start
|
||||
```
|
||||
|
||||
This command starts a local development server and opens up a browser window. Most changes are reflected live without having to restart the server.
|
||||
|
||||
### Build
|
||||
|
||||
```
|
||||
$ yarn build
|
||||
```
|
||||
|
||||
This command generates static content into the `build` directory and can be served using any static contents hosting service.
|
||||
|
||||
### Deployment
|
||||
|
||||
Using SSH:
|
||||
|
||||
```
|
||||
$ USE_SSH=true yarn deploy
|
||||
```
|
||||
|
||||
Not using SSH:
|
||||
|
||||
```
|
||||
$ GIT_USER=<Your GitHub username> yarn deploy
|
||||
```
|
||||
|
||||
If you are using GitHub pages for hosting, this command is a convenient way to build the website and push to the `gh-pages` branch.
|
||||
|
||||
### Continuous Integration
|
||||
|
||||
Some common defaults for linting/formatting have been set for you. If you integrate your project with an open source Continuous Integration system (e.g. Travis CI, CircleCI), you may check for issues using the following command.
|
||||
|
||||
```
|
||||
$ yarn ci
|
||||
```
|
||||
@@ -1,12 +0,0 @@
|
||||
/**
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* This source code is licensed under the MIT license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*
|
||||
* @format
|
||||
*/
|
||||
|
||||
module.exports = {
|
||||
presets: [require.resolve("@docusaurus/core/lib/babel/preset")],
|
||||
};
|
||||
@@ -1,76 +0,0 @@
|
||||
/* eslint-disable prefer-template */
|
||||
/* eslint-disable no-param-reassign */
|
||||
// eslint-disable-next-line import/no-extraneous-dependencies
|
||||
const babel = require("@babel/core");
|
||||
const path = require("path");
|
||||
const fs = require("fs");
|
||||
|
||||
/**
|
||||
*
|
||||
* @param {string|Buffer} content Content of the resource file
|
||||
* @param {object} [map] SourceMap data consumable by https://github.com/mozilla/source-map
|
||||
* @param {any} [meta] Meta data, could be anything
|
||||
*/
|
||||
async function webpackLoader(content, map, meta) {
|
||||
const cb = this.async();
|
||||
|
||||
if (!this.resourcePath.endsWith(".ts")) {
|
||||
cb(null, JSON.stringify({ content, imports: [] }), map, meta);
|
||||
return;
|
||||
}
|
||||
|
||||
try {
|
||||
const result = await babel.parseAsync(content, {
|
||||
sourceType: "module",
|
||||
filename: this.resourcePath,
|
||||
});
|
||||
|
||||
const imports = [];
|
||||
|
||||
result.program.body.forEach((node) => {
|
||||
if (node.type === "ImportDeclaration") {
|
||||
const source = node.source.value;
|
||||
|
||||
if (!source.startsWith("langchain")) {
|
||||
return;
|
||||
}
|
||||
|
||||
node.specifiers.forEach((specifier) => {
|
||||
if (specifier.type === "ImportSpecifier") {
|
||||
const local = specifier.local.name;
|
||||
const imported = specifier.imported.name;
|
||||
imports.push({ local, imported, source });
|
||||
} else {
|
||||
throw new Error("Unsupported import type");
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
imports.forEach((imp) => {
|
||||
const { imported, source } = imp;
|
||||
const moduleName = source.split("/").slice(1).join("_");
|
||||
const docsPath = path.resolve(__dirname, "docs", "api", moduleName);
|
||||
const available = fs.readdirSync(docsPath, { withFileTypes: true });
|
||||
const found = available.find(
|
||||
(dirent) =>
|
||||
dirent.isDirectory() &&
|
||||
fs.existsSync(path.resolve(docsPath, dirent.name, imported + ".md"))
|
||||
);
|
||||
if (found) {
|
||||
imp.docs =
|
||||
"/" + path.join("docs", "api", moduleName, found.name, imported);
|
||||
} else {
|
||||
throw new Error(
|
||||
`Could not find docs for ${source}.${imported} in docs/api/`
|
||||
);
|
||||
}
|
||||
});
|
||||
|
||||
cb(null, JSON.stringify({ content, imports }), map, meta);
|
||||
} catch (err) {
|
||||
cb(err);
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = webpackLoader;
|
||||
BIN
docs/docs_skeleton/docs/_static/ApifyActors.png
vendored
|
Before Width: | Height: | Size: 559 KiB |
|
Before Width: | Height: | Size: 157 KiB |
|
Before Width: | Height: | Size: 235 KiB |
BIN
docs/docs_skeleton/docs/_static/HeliconeKeys.png
vendored
|
Before Width: | Height: | Size: 148 KiB |
BIN
docs/docs_skeleton/docs/_static/MetalDash.png
vendored
|
Before Width: | Height: | Size: 3.5 MiB |
|
Before Width: | Height: | Size: 18 KiB |
|
Before Width: | Height: | Size: 85 KiB |
BIN
docs/docs_skeleton/docs/_static/apple-touch-icon.png
vendored
|
Before Width: | Height: | Size: 16 KiB |
21
docs/docs_skeleton/docs/_static/css/custom.css
vendored
@@ -1,21 +0,0 @@
|
||||
pre {
|
||||
white-space: break-spaces;
|
||||
}
|
||||
|
||||
@media (min-width: 1200px) {
|
||||
.container,
|
||||
.container-lg,
|
||||
.container-md,
|
||||
.container-sm,
|
||||
.container-xl {
|
||||
max-width: 2560px !important;
|
||||
}
|
||||
}
|
||||
|
||||
#my-component-root *, #headlessui-portal-root * {
|
||||
z-index: 10000;
|
||||
}
|
||||
|
||||
.content-container p {
|
||||
margin: revert;
|
||||
}
|
||||
BIN
docs/docs_skeleton/docs/_static/favicon-16x16.png
vendored
|
Before Width: | Height: | Size: 542 B |
BIN
docs/docs_skeleton/docs/_static/favicon-32x32.png
vendored
|
Before Width: | Height: | Size: 1.2 KiB |
BIN
docs/docs_skeleton/docs/_static/favicon.ico
vendored
|
Before Width: | Height: | Size: 15 KiB |
@@ -1,56 +0,0 @@
|
||||
document.addEventListener('DOMContentLoaded', () => {
|
||||
// Load the external dependencies
|
||||
function loadScript(src, onLoadCallback) {
|
||||
const script = document.createElement('script');
|
||||
script.src = src;
|
||||
script.onload = onLoadCallback;
|
||||
document.head.appendChild(script);
|
||||
}
|
||||
|
||||
function createRootElement() {
|
||||
const rootElement = document.createElement('div');
|
||||
rootElement.id = 'my-component-root';
|
||||
document.body.appendChild(rootElement);
|
||||
return rootElement;
|
||||
}
|
||||
|
||||
|
||||
|
||||
function initializeMendable() {
|
||||
const rootElement = createRootElement();
|
||||
const { MendableFloatingButton } = Mendable;
|
||||
|
||||
|
||||
const iconSpan1 = React.createElement('span', {
|
||||
}, '🦜');
|
||||
|
||||
const iconSpan2 = React.createElement('span', {
|
||||
}, '🔗');
|
||||
|
||||
const icon = React.createElement('p', {
|
||||
style: { color: '#ffffff', fontSize: '22px',width: '48px', height: '48px', margin: '0px', padding: '0px', display: 'flex', alignItems: 'center', justifyContent: 'center', textAlign: 'center' },
|
||||
}, [iconSpan1, iconSpan2]);
|
||||
|
||||
const mendableFloatingButton = React.createElement(
|
||||
MendableFloatingButton,
|
||||
{
|
||||
style: { darkMode: false, accentColor: '#010810' },
|
||||
floatingButtonStyle: { color: '#ffffff', backgroundColor: '#010810' },
|
||||
anon_key: '82842b36-3ea6-49b2-9fb8-52cfc4bde6bf', // Mendable Search Public ANON key, ok to be public
|
||||
messageSettings: {
|
||||
openSourcesInNewTab: false,
|
||||
prettySources: true // Prettify the sources displayed now
|
||||
},
|
||||
icon: icon,
|
||||
}
|
||||
);
|
||||
|
||||
ReactDOM.render(mendableFloatingButton, rootElement);
|
||||
}
|
||||
|
||||
loadScript('https://unpkg.com/react@17/umd/react.production.min.js', () => {
|
||||
loadScript('https://unpkg.com/react-dom@17/umd/react-dom.production.min.js', () => {
|
||||
loadScript('https://unpkg.com/@mendable/search@0.0.102/dist/umd/mendable.min.js', initializeMendable);
|
||||
});
|
||||
});
|
||||
});
|
||||
BIN
docs/docs_skeleton/docs/_static/lc_modules.jpg
vendored
|
Before Width: | Height: | Size: 103 KiB |
|
Before Width: | Height: | Size: 136 KiB |
BIN
docs/docs_skeleton/docs/_static/parrot-icon.png
vendored
|
Before Width: | Height: | Size: 34 KiB |
@@ -1,5 +0,0 @@
|
||||
# Installation
|
||||
|
||||
import Installation from "@snippets/get_started/installation.mdx"
|
||||
|
||||
<Installation/>
|
||||
@@ -1,65 +0,0 @@
|
||||
---
|
||||
sidebar_position: 0
|
||||
---
|
||||
|
||||
# Introduction
|
||||
|
||||
**LangChain** is a framework for developing applications powered by language models. It enables applications that are:
|
||||
- **Data-aware**: connect a language model to other sources of data
|
||||
- **Agentic**: allow a language model to interact with its environment
|
||||
|
||||
The main value props of LangChain are:
|
||||
1. **Components**: abstractions for working with language models, along with a collection of implementations for each abstraction. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
|
||||
2. **Off-the-shelf chains**: a structured assembly of components for accomplishing specific higher-level tasks
|
||||
|
||||
Off-the-shelf chains make it easy to get started. For more complex applications and nuanced use-cases, components make it easy to customize existing chains or build new ones.
|
||||
|
||||
## Get started
|
||||
|
||||
[Here’s](/docs/get_started/installation.html) how to install LangChain, set up your environment, and start building.
|
||||
|
||||
We recommend following our [Quickstart](/docs/get_started/quickstart.html) guide to familiarize yourself with the framework by building your first LangChain application.
|
||||
|
||||
_**Note**: These docs are for the LangChain [Python package](https://github.com/hwchase17/langchain). For documentation on [LangChain.js](https://github.com/hwchase17/langchainjs), the JS/TS version, [head here](https://js.langchain.com/docs)._
|
||||
|
||||
## Modules
|
||||
|
||||
LangChain provides standard, extendable interfaces and external integrations for the following modules, listed from least to most complex:
|
||||
|
||||
#### [Model I/O](/docs/modules/model_io/)
|
||||
Interface with language models
|
||||
#### [Data connection](/docs/modules/data_connection/)
|
||||
Interface with application-specific data
|
||||
#### [Chains](/docs/modules/chains/)
|
||||
Construct sequences of calls
|
||||
#### [Agents](/docs/modules/agents/)
|
||||
Let chains choose which tools to use given high-level directives
|
||||
#### [Memory](/docs/modules/memory/)
|
||||
Persist application state between runs of a chain
|
||||
#### [Callbacks](/docs/modules/callbacks/)
|
||||
Log and stream intermediate steps of any chain
|
||||
|
||||
## Examples, ecosystem, and resources
|
||||
### [Use cases](/docs/use_cases/)
|
||||
Walkthroughs and best-practices for common end-to-end use cases, like:
|
||||
- [Chatbots](/docs/use_cases/chatbots/)
|
||||
- [Answering questions using sources](/docs/use_cases/question_answering/)
|
||||
- [Analyzing structured data](/docs/use_cases/tabular.html)
|
||||
- and much more...
|
||||
|
||||
### [Guides](/docs/guides/)
|
||||
Learn best practices for developing with LangChain.
|
||||
|
||||
### [Ecosystem](/docs/ecosystem/)
|
||||
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/integrations/) and [dependent repos](/docs/ecosystem/dependents).
|
||||
|
||||
### [Additional resources](/docs/additional_resources/)
|
||||
Our community is full of prolific developers, creative builders, and fantastic teachers. Check out [YouTube tutorials](/docs/additional_resources/youtube.html) for great tutorials from folks in the community, and [Gallery](https://github.com/kyrolabs/awesome-langchain) for a list of awesome LangChain projects, compiled by the folks at [KyroLabs](https://kyrolabs.com).
|
||||
|
||||
<h3><span style={{color:"#2e8555"}}> Support </span></h3>
|
||||
|
||||
Join us on [GitHub](https://github.com/hwchase17/langchain) or [Discord](https://discord.gg/6adMQxSpJS) to ask questions, share feedback, meet other developers building with LangChain, and dream about the future of LLM’s.
|
||||
|
||||
## API reference
|
||||
|
||||
Head to the [reference](https://api.python.langchain.com) section for full documentation of all classes and methods in the LangChain Python package.
|
||||
@@ -1,162 +0,0 @@
|
||||
# Quickstart
|
||||
|
||||
## Installation
|
||||
|
||||
To install LangChain run:
|
||||
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
import Install from "@snippets/get_started/quickstart/installation.mdx"
|
||||
|
||||
<Install/>
|
||||
|
||||
For more details, see our [Installation guide](/docs/get_started/installation.html).
|
||||
|
||||
## Environment setup
|
||||
|
||||
Using LangChain will usually require integrations with one or more model providers, data stores, APIs, etc. For this example, we'll use OpenAI's model APIs.
|
||||
|
||||
import OpenAISetup from "@snippets/get_started/quickstart/openai_setup.mdx"
|
||||
|
||||
<OpenAISetup/>
|
||||
|
||||
## Building an application
|
||||
|
||||
Now we can start building our language model application. LangChain provides many modules that can be used to build language model applications.
|
||||
Modules can be used as stand-alones in simple applications and they can be combined for more complex use cases.
|
||||
|
||||
The core building block of LangChain applications is the LLMChain.
|
||||
This combines three things:
|
||||
- LLM: The language model is the core reasoning engine here. In order to work with LangChain, you need to understand the different types of language models and how to work with them.
|
||||
- Prompt Templates: This provides instructions to the language model. This controls what the language model outputs, so understanding how to construct prompts and different prompting strategies is crucial.
|
||||
- Output Parsers: These translate the raw response from the LLM to a more workable format, making it easy to use the output downstream.
|
||||
|
||||
In this getting started guide we will cover those three components by themselves, and then cover the LLMChain which combines all of them.
|
||||
Understanding these concepts will set you up well for being able to use and customize LangChain applications.
|
||||
Most LangChain applications allow you to configure the LLM and/or the prompt used, so knowing how to take advantage of this will be a big enabler.
|
||||
|
||||
## LLMs
|
||||
|
||||
There are two types of language models, which in LangChain are called:
|
||||
|
||||
- LLMs: this is a language model which takes a string as input and returns a string
|
||||
- ChatModels: this is a language model which takes a list of messages as input and returns a message
|
||||
|
||||
The input/output for LLMs is simple and easy to understand - a string.
|
||||
But what about ChatModels? The input there is a list of `ChatMessage`s, and the output is a single `ChatMessage`.
|
||||
A `ChatMessage` has two required components:
|
||||
|
||||
- `content`: This is the content of the message.
|
||||
- `role`: This is the role of the entity from which the `ChatMessage` is coming from.
|
||||
|
||||
LangChain provides several objects to easily distinguish between different roles:
|
||||
|
||||
- `HumanMessage`: A `ChatMessage` coming from a human/user.
|
||||
- `AIMessage`: A `ChatMessage` coming from an AI/assistant.
|
||||
- `SystemMessage`: A `ChatMessage` coming from the system.
|
||||
- `FunctionMessage`: A `ChatMessage` coming from a function call.
|
||||
|
||||
If none of those roles sound right, there is also a `ChatMessage` class where you can specify the role manually.
|
||||
For more information on how to use these different messages most effectively, see our prompting guide.
|
||||
|
||||
LangChain exposes a standard interface for both, but it's useful to understand this difference in order to construct prompts for a given language model.
|
||||
The standard interface that LangChain exposes has two methods:
|
||||
- `predict`: Takes in a string, returns a string
|
||||
- `predict_messages`: Takes in a list of messages, returns a message.
|
||||
|
||||
Let's see how to work with these different types of models and these different types of inputs.
|
||||
First, let's import an LLM and a ChatModel.
|
||||
|
||||
import ImportLLMs from "@snippets/get_started/quickstart/import_llms.mdx"
|
||||
|
||||
<ImportLLMs/>
|
||||
|
||||
The `OpenAI` and `ChatOpenAI` objects are basically just configuration objects.
|
||||
You can initialize them with parameters like `temperature` and others, and pass them around.
|
||||
|
||||
Next, let's use the `predict` method to run over a string input.
|
||||
|
||||
import InputString from "@snippets/get_started/quickstart/input_string.mdx"
|
||||
|
||||
<InputString/>
|
||||
|
||||
Finally, let's use the `predict_messages` method to run over a list of messages.
|
||||
|
||||
import InputMessages from "@snippets/get_started/quickstart/input_messages.mdx"
|
||||
|
||||
<InputMessages/>
|
||||
|
||||
For both these methods, you can also pass in parameters as key word arguments.
|
||||
For example, you could pass in `temperature=0` to adjust the temperature that is used from what the object was configured with.
|
||||
Whatever values are passed in during run time will always override what the object was configured with.
|
||||
|
||||
|
||||
## Prompt templates
|
||||
|
||||
Most LLM applications do not pass user input directly into an LLM. Usually they will add the user input to a larger piece of text, called a prompt template, that provides additional context on the specific task at hand.
|
||||
|
||||
In the previous example, the text we passed to the model contained instructions to generate a company name. For our application, it'd be great if the user only had to provide the description of a company/product, without having to worry about giving the model instructions.
|
||||
|
||||
PromptTemplates help with exactly this!
|
||||
They bundle up all the logic for going from user input into a fully formatted prompt.
|
||||
This can start off very simple - for example, a prompt to produce the above string would just be:
|
||||
|
||||
import PromptTemplateLLM from "@snippets/get_started/quickstart/prompt_templates_llms.mdx"
|
||||
import PromptTemplateChatModel from "@snippets/get_started/quickstart/prompt_templates_chat_models.mdx"
|
||||
|
||||
<PromptTemplateLLM/>
|
||||
|
||||
However, the advantages of using these over raw string formatting are several.
|
||||
You can "partial" out variables - eg you can format only some of the variables at a time.
|
||||
You can compose them together, easily combining different templates into a single prompt.
|
||||
For explanations of these functionalities, see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
|
||||
|
||||
PromptTemplates can also be used to produce a list of messages.
|
||||
In this case, the prompt not only contains information about the content, but also each message (its role, its position in the list, etc)
|
||||
Here, what happens most often is a ChatPromptTemplate is a list of ChatMessageTemplates.
|
||||
Each ChatMessageTemplate contains instructions for how to format that ChatMessage - its role, and then also its content.
|
||||
Let's take a look at this below:
|
||||
|
||||
<PromptTemplateChatModel/>
|
||||
|
||||
ChatPromptTemplates can also include other things besides ChatMessageTemplates - see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
|
||||
|
||||
## Output Parsers
|
||||
|
||||
OutputParsers convert the raw output of an LLM into a format that can be used downstream.
|
||||
There are few main type of OutputParsers, including:
|
||||
|
||||
- Convert text from LLM -> structured information (eg JSON)
|
||||
- Convert a ChatMessage into just a string
|
||||
- Convert the extra information returned from a call besides the message (like OpenAI function invocation) into a string.
|
||||
|
||||
For full information on this, see the [section on output parsers](/docs/modules/model_io/output_parsers)
|
||||
|
||||
In this getting started guide, we will write our own output parser - one that converts a comma separated list into a list.
|
||||
|
||||
import OutputParser from "@snippets/get_started/quickstart/output_parser.mdx"
|
||||
|
||||
<OutputParser/>
|
||||
|
||||
## LLMChain
|
||||
|
||||
We can now combine all these into one chain.
|
||||
This chain will take input variables, pass those to a prompt template to create a prompt, pass the prompt to an LLM, and then pass the output through an (optional) output parser.
|
||||
This is a convenient way to bundle up a modular piece of logic.
|
||||
Let's see it in action!
|
||||
|
||||
import LLMChain from "@snippets/get_started/quickstart/llm_chain.mdx"
|
||||
|
||||
<LLMChain/>
|
||||
|
||||
## Next Steps
|
||||
|
||||
This is it!
|
||||
We've now gone over how to create the core building block of LangChain applications - the LLMChains.
|
||||
There is a lot more nuance in all these components (LLMs, prompts, output parsers) and a lot more different components to learn about as well.
|
||||
To continue on your journey:
|
||||
|
||||
- [Dive deeper](/docs/modules/model_io) into LLMs, prompts, and output parsers
|
||||
- Learn the other [key components](/docs/modules)
|
||||
- Check out our [helpful guides](/docs/guides) for detailed walkthroughs on particular topics
|
||||
- Explore [end-to-end use cases](/docs/use_cases)
|
||||
@@ -1,12 +0,0 @@
|
||||
# LangSmith
|
||||
|
||||
import DocCardList from "@theme/DocCardList";
|
||||
|
||||
LangSmith helps you trace and evaluate your language model applications and intelligent agents to help you
|
||||
move from prototype to production.
|
||||
|
||||
Check out the [interactive walkthrough](walkthrough) below to get started.
|
||||
|
||||
For more information, please refer to the [LangSmith documentation](https://docs.smith.langchain.com/)
|
||||
|
||||
<DocCardList />
|
||||
@@ -1,13 +0,0 @@
|
||||
# Conversational
|
||||
|
||||
This walkthrough demonstrates how to use an agent optimized for conversation. Other agents are often optimized for using tools to figure out the best response, which is not ideal in a conversational setting where you may want the agent to be able to chat with the user as well.
|
||||
|
||||
import Example from "@snippets/modules/agents/agent_types/conversational_agent.mdx"
|
||||
|
||||
<Example/>
|
||||
|
||||
import ChatExample from "@snippets/modules/agents/agent_types/chat_conversation_agent.mdx"
|
||||
|
||||
## Using a chat model
|
||||
|
||||
<ChatExample/>
|
||||
@@ -1,57 +0,0 @@
|
||||
---
|
||||
sidebar_position: 0
|
||||
---
|
||||
|
||||
# Agent types
|
||||
|
||||
## Action agents
|
||||
|
||||
Agents use an LLM to determine which actions to take and in what order.
|
||||
An action can either be using a tool and observing its output, or returning a response to the user.
|
||||
Here are the agents available in LangChain.
|
||||
|
||||
### [Zero-shot ReAct](/docs/modules/agents/agent_types/react.html)
|
||||
|
||||
This agent uses the [ReAct](https://arxiv.org/pdf/2205.00445.pdf) framework to determine which tool to use
|
||||
based solely on the tool's description. Any number of tools can be provided.
|
||||
This agent requires that a description is provided for each tool.
|
||||
|
||||
**Note**: This is the most general purpose action agent.
|
||||
|
||||
### [Structured input ReAct](/docs/modules/agents/agent_types/structured_chat.html)
|
||||
|
||||
The structured tool chat agent is capable of using multi-input tools.
|
||||
Older agents are configured to specify an action input as a single string, but this agent can use a tools' argument
|
||||
schema to create a structured action input. This is useful for more complex tool usage, like precisely
|
||||
navigating around a browser.
|
||||
|
||||
### [OpenAI Functions](/docs/modules/agents/agent_types/openai_functions_agent.html)
|
||||
|
||||
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been explicitly fine-tuned to detect when a
|
||||
function should to be called and respond with the inputs that should be passed to the function.
|
||||
The OpenAI Functions Agent is designed to work with these models.
|
||||
|
||||
### [Conversational](/docs/modules/agents/agent_types/chat_conversation_agent.html)
|
||||
|
||||
This agent is designed to be used in conversational settings.
|
||||
The prompt is designed to make the agent helpful and conversational.
|
||||
It uses the ReAct framework to decide which tool to use, and uses memory to remember the previous conversation interactions.
|
||||
|
||||
### [Self ask with search](/docs/modules/agents/agent_types/self_ask_with_search.html)
|
||||
|
||||
This agent utilizes a single tool that should be named `Intermediate Answer`.
|
||||
This tool should be able to lookup factual answers to questions. This agent
|
||||
is equivalent to the original [self ask with search paper](https://ofir.io/self-ask.pdf),
|
||||
where a Google search API was provided as the tool.
|
||||
|
||||
### [ReAct document store](/docs/modules/agents/agent_types/react_docstore.html)
|
||||
|
||||
This agent uses the ReAct framework to interact with a docstore. Two tools must
|
||||
be provided: a `Search` tool and a `Lookup` tool (they must be named exactly as so).
|
||||
The `Search` tool should search for a document, while the `Lookup` tool should lookup
|
||||
a term in the most recently found document.
|
||||
This agent is equivalent to the
|
||||
original [ReAct paper](https://arxiv.org/pdf/2210.03629.pdf), specifically the Wikipedia example.
|
||||
|
||||
## [Plan-and-execute agents](/docs/modules/agents/agent_types/plan_and_execute.html)
|
||||
Plan and execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).
|
||||
@@ -1,11 +0,0 @@
|
||||
# OpenAI functions
|
||||
|
||||
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should to be called and respond with the inputs that should be passed to the function.
|
||||
In an API call, you can describe functions and have the model intelligently choose to output a JSON object containing arguments to call those functions.
|
||||
The goal of the OpenAI Function APIs is to more reliably return valid and useful function calls than a generic text completion or chat API.
|
||||
|
||||
The OpenAI Functions Agent is designed to work with these models.
|
||||
|
||||
import Example from "@snippets/modules/agents/agent_types/openai_functions_agent.mdx";
|
||||
|
||||
<Example/>
|
||||
@@ -1,11 +0,0 @@
|
||||
# Plan and execute
|
||||
|
||||
Plan and execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).
|
||||
|
||||
The planning is almost always done by an LLM.
|
||||
|
||||
The execution is usually done by a separate agent (equipped with tools).
|
||||
|
||||
import Example from "@snippets/modules/agents/agent_types/plan_and_execute.mdx"
|
||||
|
||||
<Example/>
|
||||
@@ -1,15 +0,0 @@
|
||||
# ReAct
|
||||
|
||||
This walkthrough showcases using an agent to implement the [ReAct](https://react-lm.github.io/) logic.
|
||||
|
||||
import Example from "@snippets/modules/agents/agent_types/react.mdx"
|
||||
|
||||
<Example/>
|
||||
|
||||
## Using chat models
|
||||
|
||||
You can also create ReAct agents that use chat models instead of LLMs as the agent driver.
|
||||
|
||||
import ChatExample from "@snippets/modules/agents/agent_types/react_chat.mdx"
|
||||
|
||||
<ChatExample/>
|
||||
@@ -1,10 +0,0 @@
|
||||
# Structured tool chat
|
||||
|
||||
The structured tool chat agent is capable of using multi-input tools.
|
||||
|
||||
Older agents are configured to specify an action input as a single string, but this agent can use the provided tools' `args_schema` to populate the action input.
|
||||
|
||||
|
||||
import Example from "@snippets/modules/agents/agent_types/structured_chat.mdx"
|
||||
|
||||
<Example/>
|
||||
@@ -1,2 +0,0 @@
|
||||
label: 'How-to'
|
||||
position: 1
|
||||
@@ -1,14 +0,0 @@
|
||||
# Custom LLM Agent
|
||||
|
||||
This notebook goes through how to create your own custom LLM agent.
|
||||
|
||||
An LLM agent consists of three parts:
|
||||
|
||||
- PromptTemplate: This is the prompt template that can be used to instruct the language model on what to do
|
||||
- LLM: This is the language model that powers the agent
|
||||
- `stop` sequence: Instructs the LLM to stop generating as soon as this string is found
|
||||
- OutputParser: This determines how to parse the LLMOutput into an AgentAction or AgentFinish object
|
||||
|
||||
import Example from "@snippets/modules/agents/how_to/custom_llm_agent.mdx"
|
||||
|
||||
<Example/>
|
||||
@@ -1,14 +0,0 @@
|
||||
# Custom LLM Agent (with a ChatModel)
|
||||
|
||||
This notebook goes through how to create your own custom agent based on a chat model.
|
||||
|
||||
An LLM chat agent consists of three parts:
|
||||
|
||||
- PromptTemplate: This is the prompt template that can be used to instruct the language model on what to do
|
||||
- ChatModel: This is the language model that powers the agent
|
||||
- `stop` sequence: Instructs the LLM to stop generating as soon as this string is found
|
||||
- OutputParser: This determines how to parse the LLMOutput into an AgentAction or AgentFinish object
|
||||
|
||||
import Example from "@snippets/modules/agents/how_to/custom_llm_chat_agent.mdx"
|
||||
|
||||
<Example/>
|
||||
@@ -1,16 +0,0 @@
|
||||
# Replicating MRKL
|
||||
|
||||
This walkthrough demonstrates how to replicate the [MRKL](https://arxiv.org/pdf/2205.00445.pdf) system using agents.
|
||||
|
||||
This uses the example Chinook database.
|
||||
To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository.
|
||||
|
||||
import Example from "@snippets/modules/agents/how_to/mrkl.mdx"
|
||||
|
||||
<Example/>
|
||||
|
||||
## With a chat model
|
||||
|
||||
import ChatExample from "@snippets/modules/agents/how_to/mrkl_chat.mdx"
|
||||
|
||||
<ChatExample/>
|
||||
@@ -1,85 +0,0 @@
|
||||
---
|
||||
sidebar_position: 4
|
||||
---
|
||||
# Agents
|
||||
|
||||
The core idea of agents is to use an LLM to choose a sequence of actions to take.
|
||||
In chains, a sequence of actions is hardcoded (in code).
|
||||
In agents, a language model is used as a reasoning engine to determine which actions to take and in which order.
|
||||
|
||||
There are several key components here:
|
||||
|
||||
## Agent
|
||||
|
||||
This is the class responsible for deciding what step to take next.
|
||||
This is powered by a language model and a prompt.
|
||||
This prompt can include things like:
|
||||
|
||||
1. The personality of the agent (useful for having it respond in a certain way)
|
||||
2. Background context for the agent (useful for giving it more context on the types of tasks it's being asked to do)
|
||||
3. Prompting strategies to invoke better reasoning (the most famous/widely used being [ReAct](https://arxiv.org/abs/2210.03629))
|
||||
|
||||
LangChain provides a few different types of agents to get started.
|
||||
Even then, you will likely want to customize those agents with parts (1) and (2).
|
||||
For a full list of agent types see [agent types](/docs/modules/agents/agent_types/)
|
||||
|
||||
## Tools
|
||||
|
||||
Tools are functions that an agent calls.
|
||||
There are two important considerations here:
|
||||
|
||||
1. Giving the agent access to the right tools
|
||||
2. Describing the tools in a way that is most helpful to the agent
|
||||
|
||||
Without both, the agent you are trying to build will not work.
|
||||
If you don't give the agent access to a correct set of tools, it will never be able to accomplish the objective.
|
||||
If you don't describe the tools properly, the agent won't know how to properly use them.
|
||||
|
||||
LangChain provides a wide set of tools to get started, but also makes it easy to define your own (including custom descriptions).
|
||||
For a full list of tools, see [here](/docs/modules/agents/tools/)
|
||||
|
||||
## Toolkits
|
||||
|
||||
Often the set of tools an agent has access to is more important than a single tool.
|
||||
For this LangChain provides the concept of toolkits - groups of tools needed to accomplish specific objectives.
|
||||
There are generally around 3-5 tools in a toolkit.
|
||||
|
||||
LangChain provides a wide set of toolkits to get started.
|
||||
For a full list of toolkits, see [here](/docs/modules/agents/toolkits/)
|
||||
|
||||
## AgentExecutor
|
||||
|
||||
The agent executor is the runtime for an agent.
|
||||
This is what actually calls the agent and executes the actions it chooses.
|
||||
Pseudocode for this runtime is below:
|
||||
|
||||
```python
|
||||
next_action = agent.get_action(...)
|
||||
while next_action != AgentFinish:
|
||||
observation = run(next_action)
|
||||
next_action = agent.get_action(..., next_action, observation)
|
||||
return next_action
|
||||
```
|
||||
|
||||
While this may seem simple, there are several complexities this runtime handles for you, including:
|
||||
|
||||
1. Handling cases where the agent selects a non-existent tool
|
||||
2. Handling cases where the tool errors
|
||||
3. Handling cases where the agent produces output that cannot be parsed into a tool invocation
|
||||
4. Logging and observability at all levels (agent decisions, tool calls) either to stdout or [LangSmith](https://smith.langchain.com).
|
||||
|
||||
## Other types of agent runtimes
|
||||
|
||||
The `AgentExecutor` class is the main agent runtime supported by LangChain.
|
||||
However, there are other, more experimental runtimes we also support.
|
||||
These include:
|
||||
|
||||
- [Plan-and-execute Agent](/docs/modules/agents/agent_types/plan_and_execute.html)
|
||||
- [Baby AGI](/docs/use_cases/autonomous_agents/baby_agi.html)
|
||||
- [Auto GPT](/docs/use_cases/autonomous_agents/autogpt.html)
|
||||
|
||||
## Get started
|
||||
|
||||
import GetStarted from "@snippets/modules/agents/get_started.mdx"
|
||||
|
||||
<GetStarted/>
|
||||
@@ -1,10 +0,0 @@
|
||||
---
|
||||
sidebar_position: 3
|
||||
---
|
||||
# Toolkits
|
||||
|
||||
:::info
|
||||
Head to [Integrations](/docs/integrations/toolkits/) for documentation on built-in toolkit integrations.
|
||||
:::
|
||||
|
||||
Toolkits are collections of tools that are designed to be used together for specific tasks and have convenience loading methods.
|
||||
@@ -1,21 +0,0 @@
|
||||
---
|
||||
sidebar_position: 2
|
||||
---
|
||||
# Tools
|
||||
|
||||
:::info
|
||||
Head to [Integrations](/docs/integrations/tools/) for documentation on built-in tool integrations.
|
||||
:::
|
||||
|
||||
Tools are interfaces that an agent can use to interact with the world.
|
||||
|
||||
## Get started
|
||||
|
||||
Tools are functions that agents can use to interact with the world.
|
||||
These tools can be generic utilities (e.g. search), other chains, or even other agents.
|
||||
|
||||
Currently, tools can be loaded with the following snippet:
|
||||
|
||||
import GetStarted from "@snippets/modules/agents/tools/get_started.mdx"
|
||||
|
||||
<GetStarted/>
|
||||
@@ -1,14 +0,0 @@
|
||||
---
|
||||
sidebar_position: 5
|
||||
---
|
||||
# Callbacks
|
||||
|
||||
:::info
|
||||
Head to [Integrations](/docs/integrations/callbacks/) for documentation on built-in callbacks integrations with 3rd-party tools.
|
||||
:::
|
||||
|
||||
LangChain provides a callbacks system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
|
||||
|
||||
import GetStarted from "@snippets/modules/callbacks/get_started.mdx"
|
||||
|
||||
<GetStarted/>
|
||||
@@ -1,7 +0,0 @@
|
||||
# Analyze Document
|
||||
|
||||
The AnalyzeDocumentChain can be used as an end-to-end to chain. This chain takes in a single document, splits it up, and then runs it through a CombineDocumentsChain.
|
||||
|
||||
import Example from "@snippets/modules/chains/additional/analyze_document.mdx"
|
||||
|
||||
<Example/>
|
||||
@@ -1,7 +0,0 @@
|
||||
# Self-critique chain with constitutional AI
|
||||
The ConstitutionalChain is a chain that ensures the output of a language model adheres to a predefined set of constitutional principles. By incorporating specific rules and guidelines, the ConstitutionalChain filters and modifies the generated content to align with these principles, thus providing more controlled, ethical, and contextually appropriate responses. This mechanism helps maintain the integrity of the output while minimizing the risk of generating content that may violate guidelines, be offensive, or deviate from the desired context.
|
||||
|
||||
|
||||
import Example from "@snippets/modules/chains/additional/constitutional_chain.mdx"
|
||||
|
||||
<Example/>
|
||||
@@ -1,8 +0,0 @@
|
||||
---
|
||||
sidebar_position: 4
|
||||
---
|
||||
# Additional
|
||||
|
||||
import DocCardList from "@theme/DocCardList";
|
||||
|
||||
<DocCardList />
|
||||
@@ -1,8 +0,0 @@
|
||||
# Moderation
|
||||
This notebook walks through examples of how to use a moderation chain, and several common ways for doing so. Moderation chains are useful for detecting text that could be hateful, violent, etc. This can be useful to apply on both user input, but also on the output of a Language Model. Some API providers, like OpenAI, [specifically prohibit](https://beta.openai.com/docs/usage-policies/use-case-policy) you, or your end users, from generating some types of harmful content. To comply with this (and to just generally prevent your application from being harmful) you may often want to append a moderation chain to any LLMChains, in order to make sure any output the LLM generates is not harmful.
|
||||
|
||||
If the content passed into the moderation chain is harmful, there is not one best way to handle it, it probably depends on your application. Sometimes you may want to throw an error in the Chain (and have your application handle that). Other times, you may want to return something to the user explaining that the text was harmful. There could even be other ways to handle it! We will cover all these ways in this walkthrough.
|
||||
|
||||
import Example from "@snippets/modules/chains/additional/moderation.mdx"
|
||||
|
||||
<Example/>
|
||||
@@ -1,7 +0,0 @@
|
||||
# Dynamically selecting from multiple prompts
|
||||
|
||||
This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects the prompt to use for a given input. Specifically we show how to use the `MultiPromptChain` to create a question-answering chain that selects the prompt which is most relevant for a given question, and then answers the question using that prompt.
|
||||
|
||||
import Example from "@snippets/modules/chains/additional/multi_prompt_router.mdx"
|
||||
|
||||
<Example/>
|
||||
@@ -1,7 +0,0 @@
|
||||
# Dynamically selecting from multiple retrievers
|
||||
|
||||
This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects which Retrieval system to use. Specifically we show how to use the `MultiRetrievalQAChain` to create a question-answering chain that selects the retrieval QA chain which is most relevant for a given question, and then answers the question using it.
|
||||
|
||||
import Example from "@snippets/modules/chains/additional/multi_retrieval_qa_router.mdx"
|
||||
|
||||
<Example/>
|
||||
@@ -1,13 +0,0 @@
|
||||
# Document QA
|
||||
|
||||
Here we walk through how to use LangChain for question answering over a list of documents. Under the hood we'll be using our [Document chains](/docs/modules/chains/document/).
|
||||
|
||||
import Example from "@snippets/modules/chains/additional/question_answering.mdx"
|
||||
|
||||
<Example/>
|
||||
|
||||
## Document QA with sources
|
||||
|
||||
import ExampleWithSources from "@snippets/modules/chains/additional/qa_with_sources.mdx"
|
||||
|
||||
<ExampleWithSources/>
|
||||
@@ -1,16 +0,0 @@
|
||||
---
|
||||
sidebar_position: 2
|
||||
---
|
||||
# Documents
|
||||
|
||||
These are the core chains for working with Documents. They are useful for summarizing documents, answering questions over documents, extracting information from documents, and more.
|
||||
|
||||
These chains all implement a common interface:
|
||||
|
||||
import Interface from "@snippets/modules/chains/document/combine_docs.mdx"
|
||||
|
||||
<Interface/>
|
||||
|
||||
import DocCardList from "@theme/DocCardList";
|
||||
|
||||
<DocCardList />
|
||||
@@ -1,5 +0,0 @@
|
||||
# Map reduce
|
||||
|
||||
The map reduce documents chain first applies an LLM chain to each document individually (the Map step), treating the chain output as a new document. It then passes all the new documents to a separate combine documents chain to get a single output (the Reduce step). It can optionally first compress, or collapse, the mapped documents to make sure that they fit in the combine documents chain (which will often pass them to an LLM). This compression step is performed recursively if necessary.
|
||||
|
||||

|
||||
@@ -1,5 +0,0 @@
|
||||
# Map re-rank
|
||||
|
||||
The map re-rank documents chain runs an initial prompt on each document, that not only tries to complete a task but also gives a score for how certain it is in its answer. The highest scoring response is returned.
|
||||
|
||||

|
||||