This bugfix PR adds kwargs support to Baseten model invocations so that
e.g. the following script works properly:
```python
chatgpt_chain = LLMChain(
llm=Baseten(model="MODEL_ID"),
prompt=prompt,
verbose=False,
memory=ConversationBufferWindowMemory(k=2),
llm_kwargs={"max_length": 4096}
)
```
Unexpectedly changed at
6792a3557d
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
I guess `allowed_search_types` is unexpectedly changed in
6792a3557d,
so that we cannot specify `similarity_score_threshold` here.
```python
class VectorStoreRetriever(BaseRetriever):
...
allowed_search_types: ClassVar[Collection[str]] = (
"similarity",
"similarityatscore_threshold",
"mmr",
)
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
search_type = values["search_type"]
if search_type not in cls.allowed_search_types:
raise ValueError(...)
if search_type == "similarity_score_threshold":
... # UNREACHABLE CODE
```
VectorStores Maintainers: @rlancemartin @eyurtsev
- Description: Get SQL Cmd directly generated by SQL-Database Chain
without executing it in the DB engine.
- Issue: #4853
- Tag maintainer: @hinthornw,@baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
New HTML loader that asynchronously loader a list of urls.
New transformer using [HTML2Text](https://github.com/Alir3z4/html2text/)
for HTML to clean, easy-to-read plain ASCII text (valid Markdown).
In certain 0-shot scenarios, the existing stateful language model can
unintentionally send/accumulate the .history.
This commit adds the "with_history" option to chatglm, allowing users to
control the behavior of .history and prevent unintended accumulation.
Possible reviewers @hwchase17 @baskaryan @mlot
Refer to discussion over this thread:
https://twitter.com/wey_gu/status/1681996149543276545?s=20
The `sql_database.py` is unnecessarily placed in the root code folder.
A similar code is usually placed in the `utilities/`.
As a byproduct of this placement, the sql_database is [placed on the top
level of classes in the API
Reference](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.sql_database)
which is confusing and not correct.
- moved the `sql_database.py` from the root code folder to the
`utilities/`
@baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixed the bug causing: `TypeError: generate() got multiple values for
keyword argument 'stop_sequences'`
```python
res = await self.async_client.generate(
prompt,
**self._default_params,
stop_sequences=stop,
**kwargs,
)
```
The above throws an error because stop_sequences is in also in the
self._default_params.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
I've extended the support of async API to local Qdrant mode. It is faked
but allows prototyping without spinning a container. The tests are
improved to test the in-memory case as well.
@baskaryan @rlancemartin @eyurtsev @agola11
Redis cache currently stores model outputs as strings. Chat generations
have Messages which contain more information than just a string. Until
Redis cache supports fully storing messages, cache should not interact
with chat generations.
Streaming support is useful if you are doing long-running completions or
need interactivity e.g. for chat... adding it to replicate, using a
similar pattern to other LLMs that support streaming.
Housekeeping: I ran `make format` and `make lint`, no issues reported in
the files I touched.
I did update the replicate integration test but ran into some issues,
specifically:
1. The original test was failing for me due to the model argument not
being specified... perhaps this test is not regularly run? I fixed it by
adding a call to the lightweight hello world model which should not be
burdensome for replicate infra.
2. I couldn't get the `make integration_tests` command to pass... a lot
of failures in other integration tests due to missing dependencies...
however I did make sure the particluar test file I updated does pass, by
running `poetry run pytest
tests/integration_tests/llms/test_replicate.py`
Finally, I am @tjaffri https://twitter.com/tjaffri for feature
announcement tweets... or if you could please tag @docugami
https://twitter.com/docugami we would really appreciate that :-)
Tagging model maintainers @hwchase17 @baskaryan
Thank for all the awesome work you folks are doing.
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
## Description
This PR adds a graph class and an openCypher QA chain to work with the
Amazon Neptune database.
## Dependencies
`requests` which is included in the LangChain dependencies.
## Maintainers for Review
@krlawrence
@baskaryan
### Twitter handle
pjain7
`math_utils.py` is in the root code folder. This creates the
`langchain.math_utils: Math Utils` group on the API Reference navigation
ToC, on the same level with `Chains` and `Agents` which is not correct.
Refactoring:
- created the `utils/` folder
- moved `math_utils.py` to `utils/math.py`
- moved `utils.py` to `utils/utils.py`
- split `utils.py` into `utils.py, env.py, strings.py`
- added module description
@baskaryan
- Description: fix to avoid rdflib warnings when concatenating URIs and
strings to create the text snippet for the knowledge graph's schema.
@marioscrock pointed this out in a comment related to #7165
- Issue: None, but the problem was mentioned as a comment in #7165
- Dependencies: None
- Tag maintainer: Related to memory -> @hwchase17, maybe @baskaryan as
it is a fix
Integrating Portkey, which adds production features like caching,
tracing, tagging, retries, etc. to langchain apps.
- Dependencies: None
- Twitter handle: https://twitter.com/portkeyai
- test_portkey.py added for tests
- example notebook added in new utilities folder in modules
Also fixed a bug with OpenAIEmbeddings where headers weren't passing.
cc @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: this change will add the google place ID of the found
location to the response of the GooglePlacesTool
- Issue: Not applicable
- Dependencies: no dependencies
- Tag maintainer: @hinthornw
- Twitter handle: Not applicable
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Jiří Moravčík <jiri.moravcik@gmail.com>
Co-authored-by: Jan Čurn <jan.curn@gmail.com>
- Description: Added the ability to define the open AI model.
- Issue: Currently the Doctran instance uses gpt-4 by default, this does
not work if the user has no access to gpt -4.
- rlancemartin, @eyurtsev, @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
BedrockEmbeddings does not have endpoint_url so that switching to custom
endpoint is not possible. I have access to Bedrock custom endpoint and
cannot use BedrockEmbeddings
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Added a parameter in VectorStoreRetrieverMemory which
filters the input given by the key when constructing the buffering the
document for Vector. This feature is helpful if you have certain inputs
apart from the VectorMemory's own memory_key that needs to be ignored
e.g when using combined memory, we might need to filter the memory_key
of the other memory, Please see the issue.
- Issue: #7695
- Tag maintainer: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Golden Query is a wrapper on top of the [Golden Query
API](https://docs.golden.com/reference/query-api) which enables
programmatic access to query results on entities across Golden's
Knowledge Base. For more information about Golden API, please see the
[Golden API Getting
Started](https://docs.golden.com/reference/getting-started) page.
**Issue:** None
**Dependencies:** requests(already present in project)
**Tag maintainer:** @hinthornw
Signed-off-by: Constantin Musca <constantin.musca@gmail.com>
- Description: Adding code to set pandas dataframe to display all the
columns. Otherwise, some data get truncated (it puts a "..." in the
middle and just shows the first 4 and last 4 columns) and the LLM
doesn't realize it isn't getting the full data. Default value is 8, so
this helps Dataframes larger than that.
- Issue: none
- Dependencies: none
- Tag maintainer: @hinthornw
- Twitter handle: none
## Background
With the addition on email and calendar tools, LangChain is continuing
to complete its functionality to automate business processes.
## Challenge
One of the pieces of business functionality that LangChain currently
doesn't have is the ability to search for flights and travel in order to
book business travel.
## Changes
This PR implements an integration with the
[Amadeus](https://developers.amadeus.com/) travel search API for
LangChain, enabling seamless search for flights with a single
authentication process.
## Who can review?
@hinthornw
## Appendix
@tsolakoua and @minjikarin, I utilized your
[amadeus-python](https://github.com/amadeus4dev/amadeus-python) library
extensively. Given the rising popularity of LangChain and similar AI
frameworks, the convergence of libraries like amadeus-python and tools
like this one is likely. So, I wanted to keep you updated on our
progress.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Add verbose support for the extraction_chain
- Issue: Fixes#7982
- Dependencies: NA
- Twitter handle: sheikirfanbasha
@hwchase17 and @agola11
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Added a doc about the [Datadog APM integration for
LangChain](https://github.com/DataDog/dd-trace-py/pull/6137).
Note that the integration is on `ddtrace`'s end and so no code is
introduced/required by this integration into the langchain library. For
that reason I've refrained from adding an example notebook (although
I've added setup instructions for enabling the integration in the doc)
as no code is technically required to enable the integration.
Tagging @baskaryan as reviewer on this PR, thank you very much!
## Dependencies
Datadog APM users will need to have `ddtrace` installed, but the
integration is on `ddtrace` end and so does not introduce any external
dependencies to the LangChain project.
Co-authored-by: Bagatur <baskaryan@gmail.com>
Work in Progress.
WIP
Not ready...
Adds Document Loader support for
[Geopandas.GeoDataFrames](https://geopandas.org/)
Example:
- [x] stub out `GeoDataFrameLoader` class
- [x] stub out integration tests
- [ ] Experiment with different geometry text representations
- [ ] Verify CRS is successfully added in metadata
- [ ] Test effectiveness of searches on geometries
- [ ] Test with different geometry types (point, line, polygon with
multi-variants).
- [ ] Add documentation
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com>
Removing **kwargs argument from add_texts method in DeepLake vectorstore
as it confuses users and doesn't fail when user is typing incorrect
parameters.
Also added small test to ensure the change is applies correctly.
Guys could pls take a look: @rlancemartin, @eyurtsev, this is a small
PR.
Thx so much!
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Adds integration for MLflow AI Gateway (this will be shipped in MLflow
2.5 this week).
Manual testing:
```sh
# Move to mlflow repo
cd /path/to/mlflow
# install langchain
pip install git+https://github.com/harupy/langchain.git@gateway-integration
# launch gateway service
mlflow gateway start --config-path examples/gateway/openai/config.yaml
# Then, run the examples in this PR
```
Fixed missing "content" field in azure.
Added a check for "content" in _dict (missing for azure
api=2023-07-01-preview)
@baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: VectorStoreRetriever->similarity_score_threshold with
search_type of "similarity_score_threshold" not working with the
following two minor issues,
- Issue: 1. In line 237 of `vectorstores/base.py`, "score_threshold" is
passed to `_similarity_search_with_relevance_scores` as in the kwargs,
while score_threshold is not a valid argument of this method. As a fix,
before calling `_similarity_search_with_relevance_scores`,
score_threshold is popped from kwargs. 2. In line 596 to 607 of
`vectorstores/pgvector.py`, it's checking the distance_strategy against
the string in Enum. However, self.distance_strategy will get the
property of distance_strategy from line 316, where the callable function
is passed. To solve this issue, self.distance_strategy is changed to
self._distance_strategy to avoid calling the property method.,
- Dependencies: No,
- Tag maintainer: @rlancemartin, @eyurtsev,
- Twitter handle: No
---------
Co-authored-by: Bin Wang <bin@arcanum.ai>
- Description: exposes the ResultItem DocumentAttributes as document
metadata with key 'document_attributes' and refactors
AmazonKendraRetriever by providing a ResultItem base class in order to
avoid duplicate code;
- Tag maintainer: @3coins @hupe1980 @dev2049 @baskaryan
- Twitter handle: wilsonleao
### Why?
Some use cases depend on specific document attributes returned by the
retriever in order to improve the quality of the overall completion and
adjust what will be displayed to the user. For the sake of consistency,
we need to expose the DocumentAttributes as document metadata so we are
sure that we are using the values returned by the kendra request issued
by langchain.
I would appreciate your review @3coins @hupe1980 @dev2049. Thank you in
advance!
### References
- [Amazon Kendra
DocumentAttribute](https://docs.aws.amazon.com/kendra/latest/APIReference/API_DocumentAttribute.html)
- [Amazon Kendra
DocumentAttributeValue](https://docs.aws.amazon.com/kendra/latest/APIReference/API_DocumentAttributeValue.html)
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
- Description: check title and excerpt separately for page_content so
that if title is empty but excerpt is present, the page_content will
only contain the excerpt
- Issue: #7782
- Tag maintainer: @3coins @baskaryan
- Twitter handle: wilsonleao
** This should land Monday the 17th **
Chroma is upgrading from `0.3.29` to `0.4.0`. `0.4.0` is easier to
build, more durable, faster, smaller, and more extensible. This comes
with a few changes:
1. A simplified and improved client setup. Instead of having to remember
weird settings, users can just do `EphemeralClient`, `PersistentClient`
or `HttpClient` (the underlying direct `Client` implementation is also
still accessible)
2. We migrated data stores away from `duckdb` and `clickhouse`. This
changes the api for the `PersistentClient` that used to reference
`chroma_db_impl="duckdb+parquet"`. Now we simply set
`is_persistent=true`. `is_persistent` is set for you to `true` if you
use `PersistentClient`.
3. Because we migrated away from `duckdb` and `clickhouse` - this also
means that users need to migrate their data into the new layout and
schema. Chroma is committed to providing extension notification and
tooling around any schema and data migrations (for example - this PR!).
After upgrading to `0.4.0` - if users try to access their data that was
stored in the previous regime, the system will throw an `Exception` and
instruct them how to use the migration assistant to migrate their data.
The migration assitant is a pip installable CLI: `pip install
chroma_migrate`. And is runnable by calling `chroma_migrate`
-- TODO ADD here is a short video demonstrating how it works.
Please reference the readme at
[chroma-core/chroma-migrate](https://github.com/chroma-core/chroma-migrate)
to see a full write-up of our philosophy on migrations as well as more
details about this particular migration.
Please direct any users facing issues upgrading to our Discord channel
called
[#get-help](https://discord.com/channels/1073293645303795742/1129200523111841883).
We have also created a [email
listserv](https://airtable.com/shrHaErIs1j9F97BE) to notify developers
directly in the future about breaking changes.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: version check to make sure chromadb >=0.4.0 does not
throw an error, and uses the default sqlite persistence engine when the
directory is set,
- Issue: the issue #7887
For attention of
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR
- fixes the `similarity_search_by_vector` example, makes the code run
and adds the example to mirror `similarity_search`
- reverts back to chroma from faiss to remove sharp edges / create a
happy path for new developers. (1) real metadata filtering, (2) expected
functionality like `update`, `delete`, etc to serve beyond the most
trivial use cases
@hwchase17
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Replace this comment with:
- Description: Modified the code to return the document id from the
redis document search as metadata.
- Issue: the issue # it fixes retrieval of id as metadata as string
- Tag maintainer: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: This is an update to a previously published notebook.
Sales Agent now has access to tools, and this notebook shows how to use
a Product Knowledge base
to reduce hallucinations and act as a better sales person!
- Issue: N/A
- Dependencies: `chromadb openai tiktoken`
- Tag maintainer: @baskaryan @hinthornw
- Twitter handle: @FilipMichalsky
Moving to the latest non-preview Azure OpenAI API version=2023-05-15.
The previous 2023-03-15-preview doesn't have support, SLA etc. For
instance, OpenAI SDK has moved to this version
https://github.com/openai/openai-python/releases/tag/v0.27.7
@baskaryan
Description:
Currently, Zilliz only support dedicated clusters using a pair of
username and password for connection. Regarding serverless clusters,
they can connect to them by using API keys( [ see official note
detail](https://docs.zilliz.com/docs/manage-cluster-credentials)), so I
add API key(token) description in Zilliz docs to make it more obvious
and convenient for this group of users to better utilize Zilliz. No
changes done to code.
---------
Co-authored-by: Robin.Wang <3Jg$94sbQ@q1>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Azure GPT-4 models can't be accessed via LLM model. It's easy to miss
that and a lot of discussions about that are on the Internet. Therefore
I added a comment in Azure LLM docs that mentions that and points to
Azure Chat OpenAI docs.
@baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: This PR adds the option to retrieve scores and explanations
in the WeaviateHybridSearchRetriever. This feature improves the
usability of the retriever by allowing users to understand the scoring
logic behind the search results and further refine their search queries.
Issue: This PR is a solution to the issue #7855
Dependencies: This PR does not introduce any new dependencies.
Tag maintainer: @rlancemartin, @eyurtsev
I have included a unit test for the added feature, ensuring that it
retrieves scores and explanations correctly. I have also included an
example notebook demonstrating its use.
Here I am adding documentation for the `PromptLayerCallbackHandler`.
When we created the initial PR for the callback handler the docs were
causing issues, so we merged without the docs.
1. Add the metadata filter of documents.
2. Add the text page_content filter of documents
3. fix the bug of similarity_search_with_score
Improvement and fix bug of AwaDB
Fix the conflict https://github.com/hwchase17/langchain/pull/7840
@rlancemartin @eyurtsev Thanks!
---------
Co-authored-by: vincent <awadb.vincent@gmail.com>
Motivation, it seems that when dealing with a long context and "big"
number of relevant documents we must avoid using out of the box score
ordering from vector stores.
See: https://arxiv.org/pdf/2306.01150.pdf
So, I added an additional parameter that allows you to reorder the
retrieved documents so we can work around this performance degradation.
The relevance respect the original search score but accommodates the
lest relevant document in the middle of the context.
Extract from the paper (one image speaks 1000 tokens):

This seems to be common to all diff arquitectures. SO I think we need a
good generic way to implement this reordering and run some test in our
already running retrievers.
It could be that my approach is not the best one from the architecture
point of view, happy to have a discussion about that.
For me this was the best place to introduce the change and start
retesting diff implementations.
@rlancemartin, @eyurtsev
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Still don't have good "how to's", and the guides / examples section
could be further pruned and improved, but this PR adds a couple examples
for each of the common evaluator interfaces.
- [x] Example docs for each implemented evaluator
- [x] "how to make a custom evalutor" notebook for each low level APIs
(comparison, string, agent)
- [x] Move docs to modules area
- [x] Link to reference docs for more information
- [X] Still need to finish the evaluation index page
- ~[ ] Don't have good data generation section~
- ~[ ] Don't have good how to section for other common scenarios / FAQs
like regression testing, testing over similar inputs to measure
sensitivity, etc.~
This new version fixes the"Verified Sources" display that got broken.
Instead of displaying the full URL, it shows the title of the page the
source is from.
- Description: Add a BM25 Retriever that do not need Elastic search
- Dependencies: rank_bm25(if it is not installed it will be install by
using pip, just like TFIDFRetriever do)
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: DayuanJian21687
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description:
Add LLM for ChatGLM-6B & ChatGLM2-6B API
Related Issue:
Will the langchain support ChatGLM? #4766
Add support for selfhost models like ChatGLM or transformer models #1780
Dependencies:
No extra library install required.
It wraps api call to a ChatGLM(2)-6B server(start with api.py), so api
endpoint is required to run.
Tag maintainer: @mlot
Any comments on this PR would be appreciated.
---------
Co-authored-by: mlot <limpo2000@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Support Redis Sentinel database connections
This PR adds the support to connect not only to Redis standalone servers
but High Availability Replication sets too
(https://redis.io/docs/management/sentinel/)
Redis Replica Sets have on Master allowing to write data and 2+ replicas
with read-only access to the data. The additional Redis Sentinel
instances monitor all server and reconfigure the RW-Master on the fly if
it comes unavailable.
Therefore all connections must be made through the Sentinels the query
the current master for a read-write connection. This PR adds basic
support to also allow a redis connection url specifying a Sentinel as
Redis connection.
Redis documentation and Jupyter notebook with Redis examples are updated
to mention how to connect to a redis Replica Set with Sentinels
-
Remark - i did not found test cases for Redis server connections to add
new cases here. Therefor i tests the new utility class locally with
different kind of setups to make sure different connection urls are
working as expected. But no test case here as part of this PR.
- [Xorbits](https://doc.xorbits.io/en/latest/) is an open-source
computing framework that makes it easy to scale data science and machine
learning workloads in parallel. Xorbits can leverage multi cores or GPUs
to accelerate computation on a single machine, or scale out up to
thousands of machines to support processing terabytes of data.
- This PR added support for the Xorbits agent, which allows langchain to
interact with Xorbits Pandas dataframe and Xorbits Numpy array.
- Dependencies: This change requires the Xorbits library to be installed
in order to be used.
`pip install xorbits`
- Request for review: @hinthornw
- Twitter handle: https://twitter.com/Xorbitsio
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Update the negative criterion descriptions to prevent bad predictions
- Add support for normalizing the string distance
- Fix potential json deserializing into float issues in the example
mapper
Starting over from #5654 because I utterly borked the poetry.lock file.
Adds new paramerters for to the MWDumpLoader class:
* skip_redirecst (bool) Tells the loader to skip articles that redirect
to other articles. False by default.
* stop_on_error (bool) Tells the parser to skip any page that causes a
parse error. True by default.
* namespaces (List[int]) Tells the parser which namespaces to parse.
Contains namespaces from -2 to 15 by default.
Default values are chosen to preserve backwards compatibility.
Sample dump XML and full unit test coverage (with extended tests that
pass!) also included!
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Issue**
When I use conda to install langchain, a dependency error throwed -
"ModuleNotFoundError: No module named 'langsmith'"
**Updated**
Run `pip install langsmith` when install langchain with conda
Co-authored-by: xaver.xu <xavier.xu@batechworks.com>
- New pin-to-side (button). This functionality allows you to search the
docs while asking the AI for questions
- Fixed the search bar in Firefox that won't detect a mouse click
- Fixes and improvements overall in the model's performance
Description: Added debugging output in DirectoryLoader to identify the
file being processed.
Issue: [Need a trace or debug feature in Lanchain DirectoryLoader
#7725](https://github.com/hwchase17/langchain/issues/7725)
Dependencies: No additional dependencies are required.
Tag maintainer: @rlancemartin, @eyurtsev
This PR enhances the DirectoryLoader with debugging output to help
diagnose issues when loading documents. This new feature does not add
any dependencies and has been tested on a local machine.
Inspired by #5550, I implemented full async API support in Qdrant. The
docs were extended to mention the existence of asynchronous operations
in Langchain. I also used that chance to restructure the tests of Qdrant
and provided a suite of tests for the async version. Async API requires
the GRPC protocol to be enabled. Thus, it doesn't work on local mode
yet, but we're considering including the support to be consistent.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Integrate [Rockset](https://rockset.com/docs/) as a document loader.
Issue: None
Dependencies: Nothing new (rockset's dependency was already added
[here](https://github.com/hwchase17/langchain/pull/6216))
Tag maintainer: @rlancemartin
I have added a test for the integration and an example notebook showing
its use. I ran `make lint` and everything looks good.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This pull request adds a ElasticsearchDatabaseChain chain for
interacting with analytics database, in the manner of the
SQLDatabaseChain.
Maintainer: @samber
Twitter handler: samuelberthe
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: This allows passing auth objects in request wrappers.
Currently, we can handle auth by editing headers in the
RequestsWrappers, but more complex auth methods, such as Kerberos, could
be handled better by using existing functionality within the requests
library. There are many authentication options supported both natively
and by extensions, such as requests-kerberos or requests-ntlm.
- Issue: Fixes#7542
- Dependencies: none
Co-authored-by: eric.speidel@de.bosch.com <eric.speidel@de.bosch.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Add langchain.llms.Tonyi for text completion, in examples into the
Tonyi Text API,
- Add system tests.
Note async completion for the Text API is not yet supported and will be
included in a future PR.
Dependencies: dashscope. It will be installed manually cause it is not
need by everyone.
Happy for feedback on any aspect of this PR @hwchase17 @baskaryan.
Multiple people have asked in #5081 for a way to limit the documents
returned from an AzureCognitiveSearchRetriever. This PR adds the `top_n`
parameter to allow that.
Twitter handle:
[@UmerHAdil](twitter.com/umerHAdil)
Fix for Serializable class to include name, used in FileCallbackHandler
as same issue #7524
Description: Fixes the Serializable class to include 'name' attribute
(class_name) in the dict created,
This is used in Callbacks, specifically the StdOutCallbackHandler,
FileCallbackHandler.
Issue: As described in issue #7524
Dependencies: None
Tag maintainer: SInce this is related to the callback module, tagging
@agola11 @idoru
Comments:
Glad to see issue #7524 fixed in pull #6124, but you forget to change
the same place in FileCallbackHandler
When a custom Embeddings object is set, embed all given texts in a batch
instead of passing them through individually. Any code calling add_texts
can then appropriately size the chunks of texts that are passed through
to take full advantage of the hardware it's running on.
Fixes#6198
ElasticKnnSearch.from_texts is actually ElasticVectorSearch.from_texts
and throws because it calls ElasticKnnSearch constructor with the wrong
arguments.
Now ElasticKnnSearch has its own from_texts, which constructs a proper
ElasticKnnSearch.
---------
Co-authored-by: Charles Parker <charlesparker@FiltaMacbook.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description:
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Description
This PR addresses a bug in the RecursiveUrlLoader class where absolute
URLs were being treated as relative URLs, causing malformed URLs to be
produced. The fix involves using the urljoin function from the
urllib.parse module to correctly handle both absolute and relative URLs.
@rlancemartin @eyurtsev
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Fixes # (issue)
The existing PlaywrightURLLoader load() function uses a synchronous
browser which is not compatible with jupyter.
This PR adds a sister function aload() which can be run insisde a
notebook.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Mainline the tracer to avoid calling feedback before run is posted.
Chose a bool over `max_workers` arg for configuring since we don't want
to support > 1 for now anyway. At some point may want to manage the pool
ourselves (ordering only really matters within a run and with parent
runs)
# Browserless
Added support for Browserless' `/content` endpoint as a document loader.
### About Browserless
Browserless is a cloud service that provides access to headless Chrome
browsers via a REST API. It allows developers to automate Chromium in a
serverless fashion without having to configure and maintain their own
Chrome infrastructure.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
With AzureOpenAI openai_api_type defaulted to "azure" the logic in
utils' get_from_dict_or_env() function triggered by the root validator
never looks to environment for the user's runtime openai_api_type
values. This inhibits folks using token-based auth, or really any auth
model other than "azure."
By removing the "default" value, this allows environment variables to be
pulled at runtime for the openai_api_type and thus enables the other
api_types which are expected to work.
---------
Co-authored-by: Ebo <mebstyne@microsoft.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR is aimed at enhancing the clarity of the documentation in the
langchain project.
**Description**:
In the graphql.ipynb file, I have removed the unnecessary 'llm' argument
from the initialization process of the GraphQL tool (of type
_EXTRA_OPTIONAL_TOOLS). The 'llm' argument is not required for this
process. Its presence could potentially confuse users. This modification
simplifies the understanding of tool initialization and minimizes
potential confusion.
**Issue**: Not applicable, as this is a documentation improvement.
**Dependencies**: None.
**I kindly request a review from the following maintainer**: @hinthornw,
who is responsible for Agents / Tools / Toolkits.
No new integration is being added in this PR, hence no need for a test
or an example notebook.
Please see the changes for more detail and let me know if any further
modification is necessary.
- Migrate from deprecated langchainplus_sdk to `langsmith` package
- Update the `run_on_dataset()` API to use an eval config
- Update a number of evaluators, as well as the loading logic
- Update docstrings / reference docs
- Update tracer to share single HTTP session
Sometimes the score responded by chatgpt would be like 'Respone
example\nScore: 90 (fully answers the question, but could provide more
detail on the specific error message)'
For the score contains not only numbers, it raise a ValueError like
Update the RegexParser from `.*` to `\d*` would help us to ignore the
text after number.
Co-authored-by: Bagatur <baskaryan@gmail.com>
Fixed#6768.
This is a workaround only. I think a better longer-term solution is for
chains to declare how many input variables they *actually* need (as
opposed to ones that are in the prompt, where some may be satisfied by
the memory). Then, a wrapping chain can check the input match against
the actual input variables.
@hwchase17
Added fix to avoid irrelevant attributes being returned plus an example
of extracting unrelated entities and an exampe of using an 'extra_info'
attribute to extract unstructured data for an entity.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added an option to trim intermediate steps to last N steps. This is
especially useful for long-running agents. Users can explicitly specify
N or provide a function that does custom trimming/manipulation on
intermediate steps. I've mimicked the API of the `handle_parsing_errors`
parameter.
Converting the Similarity obtained in the
similarity_search_with_score_by_vector method whilst comparing to the
passed
threshold. This is because the passed threshold is a number between 0 to
1 and is already in the relevance_score_fn format.
As of now, the function is comparing two different scoring parameters
and that wouldn't work.
Dependencies
None
Issue:
Different scores being compared in
similarity_search_with_score_by_vector method in FAISS.
Tag maintainer
@hwchase17
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Adds a new document transformer that automatically extracts metadata for
a document based on an input schema. I also moved
`document_transformers.py` to `document_transformers/__init__.py` to
group it with this new transformer - it didn't seem to cause issues in
the notebook, but let me know if I've done something wrong there.
Also had a linter issue I couldn't figure out:
```
MacBook-Pro:langchain jacoblee$ make lint
poetry run mypy .
docs/dist/conf.py: error: Duplicate module named "conf" (also at "./docs/api_reference/conf.py")
docs/dist/conf.py: note: See https://mypy.readthedocs.io/en/stable/running_mypy.html#mapping-file-paths-to-modules for more info
docs/dist/conf.py: note: Common resolutions include: a) using `--exclude` to avoid checking one of them, b) adding `__init__.py` somewhere, c) using `--explicit-package-bases` or adjusting MYPYPATH
Found 1 error in 1 file (errors prevented further checking)
make: *** [lint] Error 2
```
@rlancemartin @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Add two new document transformers that translates
documents into different languages and converts documents into q&a
format to improve vector search results. Uses OpenAI function calling
via the [doctran](https://github.com/psychic-api/doctran/tree/main)
library.
- Issue: N/A
- Dependencies: `doctran = "^0.0.5"`
- Tag maintainer: @rlancemartin @eyurtsev @hwchase17
- Twitter handle: @psychicapi or @jfan001
Notes
- Adheres to the `DocumentTransformer` abstraction set by @dev2049 in
#3182
- refactored `EmbeddingsRedundantFilter` to put it in a file under a new
`document_transformers` module
- Added basic docs for `DocumentInterrogator`, `DocumentTransformer` as
well as the existing `EmbeddingsRedundantFilter`
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Summary
This PR corrects the checks for credentials_profile_name, and
region_name attributes. This was causing validation exceptions when
either of these values were missing during creation of the retriever
class.
Fixes#7571
#### Requested reviewers:
@baskaryan
Updates to the WhyLabsCallbackHandler and example notebook
- Update dependency to langkit 0.0.6 which defines new helper methods
for callback integrations
- Update WhyLabsCallbackHandler to use the new `get_callback_instance`
so that the callback is mostly defined in langkit
- Remove much of the implementation of the WhyLabsCallbackHandler here
in favor of the callback instance
This does not change the behavior of the whylabs callback handler
implementation but is a reorganization that moves some of the
implementation externally to our optional dependency package, and should
make future updates easier.
@agola11
- Description: Adds a new chain that acts as a wrapper around Sympy to
give LLMs the ability to do some symbolic math.
- Dependencies: SymPy
---------
Co-authored-by: sreiswig <sreiswig@github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Description
This PR adds model architecture to the `WandbTracer` from the Serialized
Run kwargs. This allows visualization of the calling parameters of an
Agent, LLM and Tool in Weights & Biases.
1. Safely serialize the run objects to WBTraceTree model_dict
2. Refactors the run processing logic to be more organized.
- Twitter handle: @parambharat
---------
Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: I wanted to be able to redirect debug output to a function,
but it wasn't very easy. I figured it would make sense to implement a
`FunctionCallbackHandler`, and reimplement `ConsoleCallbackHandler` as a
subclass that calls the `print` function. Now I can create a simple
subclass in my project that calls `logging.info` or whatever I need.
Tag maintainer: @agola11
Twitter handle: `@andandaraalex`
Added an _endpoint_url_ attribute to Bedrock(LLM) class - I have access
to Bedrock only via us-west-2 endpoint and needed to change the endpoint
url, this could be useful to other users
This change makes the ecosystem integrations cnosdb documentation more
realistic and easy to understand.
- change examples of question and table
- modify typo and format
When using callbacks, there are times when callbacks can be added
redundantly: for instance sometimes you might need to create an llm with
specific callbacks, but then also create and agent that uses a chain
that has those callbacks already set. This means that "callbacks" might
get passed down again to the llm at predict() time, resulting in
duplicate calls to the `on_llm_start` callback.
For the sake of simplicity, I made it so that langchain never adds an
exact handler/callbacks object in `add_handler`, thus avoiding the
duplicate handler issue.
Tagging @hwchase17 for callback review
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: add wrapper that lets you use KoboldAI api in langchain
- Issue: n/a
- Dependencies: none extra, just what exists in lanchain
- Tag maintainer: @baskaryan
- Twitter handle: @zanzibased
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description**: Current implementation assumes that the length of
`texts` and `ids` should be same but if the passed `ids` length is not
equal to the passed length of `texts`, current code
`dict(zip(index_to_id.values(), documents))` is not failing or giving
any warning and silently creating docstores only for the passed `ids`
i.e. if `ids = ['A']` and `texts=["I love Open Source","I love
langchain"]` then only one `docstore` will be created. But either two
docstores should be created assuming same id value for all the elements
of `texts` or an error should be raised.
- **Issue**: My change fixes this by using dictionary comprehension
instead of `zip`. This was if lengths of `ids` and `texts` mismatches an
explicit `IndexError` will be raised.
@rlancemartin, @eyurtsev
fix#7569
add following properties for Notion DB document loader's metadata
- `unique_id`
- `status`
- `people`
@rlancemartin, @eyurtsev (Since this is a change related to
`DataLoaders`)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Currently `ChatOutputParser` extracts actions by splitting the text on
"```", and then load the second part as a json string.
But sometimes the LLM will wrap the action in markdown code block like:
````markdown
```json
{
"action": "foo",
"action_input": "bar"
}
```
````
Splitting text on "```" will cause `OutputParserException` in such case.
This PR changes the behaviour to extract the `$JSON_BLOB` by regex, so
that it can handle both ` ``` ``` ` and ` ```json ``` `
@hinthornw
---------
Co-authored-by: Junlin Zhou <jlzhou@zjuici.com>
**Description: a description of the change**
Fixed `make docs_build` and related scripts which caused errors. There
are several changes.
First, I made the build of the documentation and the API Reference into
two separate commands. This is because it takes less time to build. The
commands for documents are `make docs_build`, `make docs_clean`, and
`make docs_linkcheck`. The commands for API Reference are `make
api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`.
It looked like `docs/.local_build.sh` could be used to build the
documentation, so I used that. Since `.local_build.sh` was also building
API Rerefence internally, I removed that process. `.local_build.sh` also
added some Bash options to stop in error or so. Futher more added `cd
"${SCRIPT_DIR}"` at the beginning so that the script will work no matter
which directory it is executed in.
`docs/api_reference/api_reference.rst` is removed, because which is
generated by `docs/api_reference/create_api_rst.py`, and added it to
.gitignore.
Finally, the description of CONTRIBUTING.md was modified.
**Issue: the issue # it fixes (if applicable)**
https://github.com/hwchase17/langchain/issues/6413
**Dependencies: any dependencies required for this change**
`nbdoc` was missing in group docs so it was added. I installed it with
the `poetry add --group docs nbdoc` command. I am concerned if any
modifications are needed to poetry.lock. I would greatly appreciate it
if you could pay close attention to this file during the review.
**Tag maintainer**
- General / Misc / if you don't know who to tag: @baskaryan
If this PR needs any additional changes, I'll be happy to make them!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Refactor the upsert method in the Pinecone class to allow
for additional keyword arguments. This change adds flexibility and
extensibility to the method, allowing for future modifications or
enhancements. The upsert method now accepts the `**kwargs` parameter,
which can be used to pass any additional arguments to the Pinecone
index. This change has been made in both the `upsert` method in the
`Pinecone` class and the `upsert` method in the
`similarity_search_with_score` class method. Falls in line with the
usage of the upsert method in
[Pinecone-Python-Client](4640c4cf27/pinecone/index.py (L73))
Issue: [This feature request in Pinecone
Repo](https://github.com/pinecone-io/pinecone-python-client/issues/184)
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- Memory: @hwchase17
---------
Co-authored-by: kwesi <22204443+yankskwesi@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com>
### Description:
This PR introduces a new option format_diff to the existing Makefile.
This option allows us to apply the formatting tools (Black and isort)
only to the changed Python and ipynb files since the last commit. This
will make our development process more efficient as we only format the
codes that we modify. Along with this change, comments were added to
make the Makefile more understandable and maintainable.
### Issue:
N/A
### Dependencies:
Add dependency to black.
### Tag maintainer:
@baskaryan
### Twitter handle:
[kzk_maeda](https://twitter.com/kzk_maeda)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: I added an example of how to reference the OpenAI API
Organization ID, because I couldn't find it before. In the example, it
is mentioned how to achieve this using environment variables as well as
parameters for the OpenAI()-class
Issue: -
Dependencies: -
Twitter @schop-rob
This simply awaits `AsyncRunManager`'s method call in `MulitRouteChain`.
Noticed this while playing around with Langchain's implementation of
`MultiPromptChain`. @baskaryan
cheers
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: ChatOpenAI model does not return finish_reason in
generation_info.
Issue: #2702
Dependencies: None
Tag maintainer: @baskaryan
Thank you
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Currently there are 4 tools in SQL agent-toolkits, and 2 of them have
reference to the other 2.
This PR change the reference from hard coded string to `{tool.name}`
Co-authored-by: Junlin Zhou <jlzhou@zjuici.com>
Small fix to a link from the Marqo page in the ecosystem.
The link was not updated correctly when the documentation structure
changed to html pages instead of links to notebooks.
I found it unclear, where to get the API keys for JinaChat. Mentioning
this in the docstring should be helpful.
#7490
Twitter handle: benji1a
@delgermurun
@svlandeg gave me a tip for how to improve a bit on
https://github.com/hwchase17/langchain/pull/7442 for some extra speed
and memory gains. The tagger isn't needed for sentencization, so can be
disabled too.
This PR changes the behavior of `Qdrant.from_texts` so the collection is
reused if not requested to recreate it. Previously, calling
`Qdrant.from_texts` or `Qdrant.from_documents` resulted in removing the
old data which was confusing for many.
- Description: Added notebook to LangChain docs that explains how to use
Lemon AI NLP Workflow Automation tool with Langchain
- Issue: not applicable
- Dependencies: not applicable
- Tag maintainer: @agola11
- Twitter handle: felixbrockm
# Causal program-aided language (CPAL) chain
## Motivation
This builds on the recent [PAL](https://arxiv.org/abs/2211.10435) to
stop LLM hallucination. The problem with the
[PAL](https://arxiv.org/abs/2211.10435) approach is that it hallucinates
on a math problem with a nested chain of dependence. The innovation here
is that this new CPAL approach includes causal structure to fix
hallucination.
For example, using the below word problem, PAL answers with 5, and CPAL
answers with 13.
"Tim buys the same number of pets as Cindy and Boris."
"Cindy buys the same number of pets as Bill plus Bob."
"Boris buys the same number of pets as Ben plus Beth."
"Bill buys the same number of pets as Obama."
"Bob buys the same number of pets as Obama."
"Ben buys the same number of pets as Obama."
"Beth buys the same number of pets as Obama."
"If Obama buys one pet, how many pets total does everyone buy?"
The CPAL chain represents the causal structure of the above narrative as
a causal graph or DAG, which it can also plot, as shown below.

.
The two major sections below are:
1. Technical overview
2. Future application
Also see [this jupyter
notebook](https://github.com/borisdev/langchain/blob/master/docs/extras/modules/chains/additional/cpal.ipynb)
doc.
## 1. Technical overview
### CPAL versus PAL
Like [PAL](https://arxiv.org/abs/2211.10435), CPAL intends to reduce
large language model (LLM) hallucination.
The CPAL chain is different from the PAL chain for a couple of reasons.
* CPAL adds a causal structure (or DAG) to link entity actions (or math
expressions).
* The CPAL math expressions are modeling a chain of cause and effect
relations, which can be intervened upon, whereas for the PAL chain math
expressions are projected math identities.
PAL's generated python code is wrong. It hallucinates when complexity
increases.
```python
def solution():
"""Tim buys the same number of pets as Cindy and Boris.Cindy buys the same number of pets as Bill plus Bob.Boris buys the same number of pets as Ben plus Beth.Bill buys the same number of pets as Obama.Bob buys the same number of pets as Obama.Ben buys the same number of pets as Obama.Beth buys the same number of pets as Obama.If Obama buys one pet, how many pets total does everyone buy?"""
obama_pets = 1
tim_pets = obama_pets
cindy_pets = obama_pets + obama_pets
boris_pets = obama_pets + obama_pets
total_pets = tim_pets + cindy_pets + boris_pets
result = total_pets
return result # math result is 5
```
CPAL's generated python code is correct.
```python
story outcome data
name code value depends_on
0 obama pass 1.0 []
1 bill bill.value = obama.value 1.0 [obama]
2 bob bob.value = obama.value 1.0 [obama]
3 ben ben.value = obama.value 1.0 [obama]
4 beth beth.value = obama.value 1.0 [obama]
5 cindy cindy.value = bill.value + bob.value 2.0 [bill, bob]
6 boris boris.value = ben.value + beth.value 2.0 [ben, beth]
7 tim tim.value = cindy.value + boris.value 4.0 [cindy, boris]
query data
{
"question": "how many pets total does everyone buy?",
"expression": "SELECT SUM(value) FROM df",
"llm_error_msg": ""
}
# query result is 13
```
Based on the comments below, CPAL's intended location in the library is
`experimental/chains/cpal` and PAL's location is`chains/pal`.
### CPAL vs Graph QA
Both the CPAL chain and the Graph QA chain extract entity-action-entity
relations into a DAG.
The CPAL chain is different from the Graph QA chain for a few reasons.
* Graph QA does not connect entities to math expressions
* Graph QA does not associate actions in a sequence of dependence.
* Graph QA does not decompose the narrative into these three parts:
1. Story plot or causal model
4. Hypothetical question
5. Hypothetical condition
### Evaluation
Preliminary evaluation on simple math word problems shows that this CPAL
chain generates less hallucination than the PAL chain on answering
questions about a causal narrative. Two examples are in [this jupyter
notebook](https://github.com/borisdev/langchain/blob/master/docs/extras/modules/chains/additional/cpal.ipynb)
doc.
## 2. Future application
### "Describe as Narrative, Test as Code"
The thesis here is that the Describe as Narrative, Test as Code approach
allows you to represent a causal mental model both as code and as a
narrative, giving you the best of both worlds.
#### Why describe a causal mental mode as a narrative?
The narrative form is quick. At a consensus building meeting, people use
narratives to persuade others of their causal mental model, aka. plan.
You can share, version control and index a narrative.
#### Why test a causal mental model as a code?
Code is testable, complex narratives are not. Though fast, narratives
are problematic as their complexity increases. The problem is LLMs and
humans are prone to hallucination when predicting the outcomes of a
narrative. The cost of building a consensus around the validity of a
narrative outcome grows as its narrative complexity increases. Code does
not require tribal knowledge or social power to validate.
Code is composable, complex narratives are not. The answer of one CPAL
chain can be the hypothetical conditions of another CPAL Chain. For
stochastic simulations, a composable plan can be integrated with the
[DoWhy library](https://github.com/py-why/dowhy). Lastly, for the
futuristic folk, a composable plan as code allows ordinary community
folk to design a plan that can be integrated with a blockchain for
funding.
An explanation of a dependency planning application is
[here.](https://github.com/borisdev/cpal-llm-chain-demo)
---
Twitter handle: @boris_dev
---------
Co-authored-by: Boris Dev <borisdev@Boriss-MacBook-Air.local>
This PR proposes an implementation to support `generate` as an
`early_stopping_method` for the new `OpenAIFunctionsAgent` class.
The motivation behind is to facilitate the user to set a maximum number
of actions the agent can take with `max_iterations` and force a final
response with this new agent (as with the `Agent` class).
The following changes were made:
- The `OpenAIFunctionsAgent.return_stopped_response` method was
overwritten to support `generate` as an `early_stopping_method`
- A boolean `with_functions` parameter was added to the
`OpenAIFunctionsAgent.plan` method
This way the `OpenAIFunctionsAgent.return_stopped_response` method can
call the `OpenAIFunctionsAgent.plan` method with `with_function=False`
when the `early_stopping_method` is set to `generate`, making a call to
the LLM with no functions and forcing a final response from the
`"assistant"`.
- Relevant maintainer: @hinthornw
- Twitter handle: @aledelunap
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Current `_call` function in the
`langchain.llms.HuggingFaceEndpoint` class truncates response when
`task=text-generation`. Same error discussed a few days ago on Hugging
Face: https://huggingface.co/tiiuae/falcon-40b-instruct/discussions/51
Issue: Fixes#7353
Tag maintainer: @hwchase17 @baskaryan @hinthornw
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: This pull request aims to support generating the correct
generic relevancy scores for different vector stores by refactoring the
relevance score functions and their selection in the base class and
subclasses of VectorStore. This is especially relevant with VectorStores
that require a distance metric upon initialization. Note many of the
current implenetations of `_similarity_search_with_relevance_scores` are
not technically correct, as they just return
`self.similarity_search_with_score(query, k, **kwargs)` without applying
the relevant score function
Also includes changes associated with:
https://github.com/hwchase17/langchain/pull/6564 and
https://github.com/hwchase17/langchain/pull/6494
See more indepth discussion in thread in #6494
Issue:
https://github.com/hwchase17/langchain/issues/6526https://github.com/hwchase17/langchain/issues/6481https://github.com/hwchase17/langchain/issues/6346
Dependencies: None
The changes include:
- Properly handling score thresholding in FAISS
`similarity_search_with_score_by_vector` for the corresponding distance
metric.
- Refactoring the `_similarity_search_with_relevance_scores` method in
the base class and removing it from the subclasses for incorrectly
implemented subclasses.
- Adding a `_select_relevance_score_fn` method in the base class and
implementing it in the subclasses to select the appropriate relevance
score function based on the distance strategy.
- Updating the `__init__` methods of the subclasses to set the
`relevance_score_fn` attribute.
- Removing the `_default_relevance_score_fn` function from the FAISS
class and using the base class's `_euclidean_relevance_score_fn`
instead.
- Adding the `DistanceStrategy` enum to the `utils.py` file and updating
the imports in the vector store classes.
- Updating the tests to import the `DistanceStrategy` enum from the
`utils.py` file.
---------
Co-authored-by: Hanit <37485638+hanit-com@users.noreply.github.com>
Improve documentation for a central use-case, qa / chat over documents.
This will be merged as an update to `index.mdx`
[here](https://python.langchain.com/docs/use_cases/question_answering/).
Testing w/ local Docusaurus server:
```
From `docs` directory:
mkdir _dist
cp -r {docs_skeleton,snippets} _dist
cp -r extras/* _dist/docs_skeleton/docs
cd _dist/docs_skeleton
yarn install
yarn start
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
1. Added use cases of the new features
2. Done some code refactoring
---------
Co-authored-by: Ivo Stranic <istranic@gmail.com>
### Description
Created a Loader to get a list of specific logs from Datadog Logs.
### Dependencies
`datadog_api_client` is required.
### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [Xorbits](https://doc.xorbits.io/en/latest/) is an open-source
computing framework that makes it easy to scale data science and machine
learning workloads in parallel. Xorbits can leverage multi cores or GPUs
to accelerate computation on a single machine, or scale out up to
thousands of machines to support processing terabytes of data.
- This PR added support for the Xorbits document loader, which allows
langchain to leverage Xorbits to parallelize and distribute the loading
of data.
- Dependencies: This change requires the Xorbits library to be installed
in order to be used.
`pip install xorbits`
- Request for review: @rlancemartin, @eyurtsev
- Twitter handle: https://twitter.com/Xorbitsio
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Adding async method for CTransformers
- Issue: I've found impossible without this code to run Websockets
inside a FastAPI micro service and a CTransformers model.
- Tag maintainer: Not necessary yet, I don't like to mention directly
- Twitter handle: @_semoal
Adding a maximal_marginal_relevance method to the
MongoDBAtlasVectorSearch vectorstore enhances the user experience by
providing more diverse search results
Issue: #7304
### Summary
Adds an `UnstructuredTSVLoader` for TSV files. Also updates the doc
strings for `UnstructuredCSV` and `UnstructuredExcel` loaders.
### Testing
```python
from langchain.document_loaders.tsv import UnstructuredTSVLoader
loader = UnstructuredTSVLoader(
file_path="example_data/mlb_teams_2012.csv", mode="elements"
)
docs = loader.load()
```
### Description
argument variable client is marked as required in commit
81e5b1ad36 which breaks the default way of
initialization providing only index_id. This commit avoid KeyError
exception when it is initialized without a client variable
### Dependencies
no dependency required
`SpacyTextSplitter` currently uses spacy's statistics-based
`en_core_web_sm` model for sentence splitting. This is a good splitter,
but it's also pretty slow, and in this case it's doing a lot of work
that's not needed given that the spacy parse is then just thrown away.
However, there is also a simple rules-based spacy sentencizer. Using
this is at least an order of magnitude faster than using
`en_core_web_sm` according to my local tests.
Also, spacy sentence tokenization based on `en_core_web_sm` can be sped
up in this case by not doing the NER stage. This shaves some cycles too,
both when loading the model and when parsing the text.
Consequently, this PR adds the option to use the basic spacy
sentencizer, and it disables the NER stage for the current approach,
*which is kept as the default*.
Lastly, when extracting the tokenized sentences, the `text` attribute is
called directly instead of doing the string conversion, which is IMO a
bit more idiomatic.
Hey @hwchase17 -
This PR adds a `ZepMemory` class, improves handling of Zep's message
metadata, and makes it easier for folks building custom chains to
persist metadata alongside their chat history.
We've had plenty confused users unfamiliar with ChatMessageHistory
classes and how to wrap the `ZepChatMessageHistory` in a
`ConversationBufferMemory`. So we've created the `ZepMemory` class as a
light wrapper for `ZepChatMessageHistory`.
Details:
- add ZepMemory, modify notebook to demo use of ZepMemory
- Modify summary to be SystemMessage
- add metadata argument to add_message; add Zep metadata to
Message.additional_kwargs
- support passing in metadata
- Description: Tiny documentation fix. In Python, when defining function
parameters or providing arguments to a function or class constructor, we
do not use the `:` character.
- Issue: N/A
- Dependencies: N/A,
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @mogaal
I just added a parameter to the method get_format_instructions, to
return directly the JSON instructions without the leading instruction
sentence. I'm planning to use it to define the structure of a JSON
object passed in input, the get_format_instructions().
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Have noticed transient ref example misalignment. I believe this is
caused by the logic of assigning an example within the thread executor
rather than before.
Current problems:
1. Evaluating LLMs or Chat models isn't smooth. Even specifying
'generations' as the output inserts a redundant list into the eval
template
2. Configuring input / prediction / reference keys in the
`get_qa_evaluator` function is confusing. Unless you are using a chain
with the default keys, you have to specify all the variables and need to
reason about whether the key corresponds to the traced run's inputs,
outputs or the examples inputs or outputs.
Proposal:
- Configure the run evaluator according to a model. Use the model type
and input/output keys to assert compatibility where possible. Only need
to specify a reference_key for certain evaluators (which is less
confusing than specifying input keys)
When does this work:
- If you have your langchain model available (assumed always for
run_on_dataset flow)
- If you are evaluating an LLM, Chat model, or chain
- If the LLM or chat models are traced by langchain (wouldn't work if
you add an incompatible schema via the REST API)
When would this fail:
- Currently if you directly create an example from an LLM run, the
outputs are generations with all the extra metadata present. A simple
`example_key` and dumping all to the template could make the evaluations
unreliable
- Doesn't help if you're not using the low level API
- If you want to instantiate the evaluator without instantiating your
chain or LLM (maybe common for monitoring, for instance) -> could also
load from run or run type though
What's ugly:
- Personally think it's better to load evaluators one by one since
passing a config down is pretty confusing.
- Lots of testing needs to be added
- Inconsistent in that it makes a separate run and example input mapper
instead of the original `RunEvaluatorInputMapper`, which maps a run and
example to a single input.
Example usage running the for an LLM, Chat Model, and Agent.
```
# Test running for the string evaluators
evaluator_names = ["qa", "criteria"]
model = ChatOpenAI()
configured_evaluators = load_run_evaluators_for_model(evaluator_names, model=model, reference_key="answer")
run_on_dataset(ds_name, model, run_evaluators=configured_evaluators)
```
<details>
<summary>Full code with dataset upload</summary>
```
## Create dataset
from langchain.evaluation.run_evaluators.loading import load_run_evaluators_for_model
from langchain.evaluation import load_dataset
import pandas as pd
lcds = load_dataset("llm-math")
df = pd.DataFrame(lcds)
from uuid import uuid4
from langsmith import Client
client = Client()
ds_name = "llm-math - " + str(uuid4())[0:8]
ds = client.upload_dataframe(df, name=ds_name, input_keys=["question"], output_keys=["answer"])
## Define the models we'll test over
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from langchain.tools import tool
llm = OpenAI(temperature=0)
chat_model = ChatOpenAI(temperature=0)
@tool
def sum(a: float, b: float) -> float:
"""Add two numbers"""
return a + b
def construct_agent():
return initialize_agent(
llm=chat_model,
tools=[sum],
agent=AgentType.OPENAI_MULTI_FUNCTIONS,
)
agent = construct_agent()
# Test running for the string evaluators
evaluator_names = ["qa", "criteria"]
models = [llm, chat_model, agent]
run_evaluators = []
for model in models:
run_evaluators.append(load_run_evaluators_for_model(evaluator_names, model=model, reference_key="answer"))
# Run on LLM, Chat Model, and Agent
from langchain.client.runner_utils import run_on_dataset
to_test = [llm, chat_model, construct_agent]
for model, configured_evaluators in zip(to_test, run_evaluators):
run_on_dataset(ds_name, model, run_evaluators=configured_evaluators, verbose=True)
```
</details>
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
fixes https://github.com/hwchase17/langchain/issues/7289
A simple fix of the buggy output of `graph_qa`. If we have several
entities with triplets then the last entry of `triplets` for a given
entity merges with the first entry of the `triplets` of the next entity.
### Description
Adding a callback handler for Context. Context is a product analytics
platform for AI chat experiences to help you understand how users are
interacting with your product.
I've added the callback library + an example notebook showing its use.
### Dependencies
Requires the user to install the `context-python` library. The library
is lazily-loaded when the callback is instantiated.
### Announcing the feature
We spoke with Harrison a few weeks ago about also doing a blog post
announcing our integration, so will coordinate this with him. Our
Twitter handle for the company is @getcontextai, and the founders are
@_agamble and @HenrySG.
Thanks in advance!
**Title:** Add verbose parameter for llamacpp
**Description:**
This pull request adds a 'verbose' parameter to the llamacpp module. The
'verbose' parameter, when set to True, will enable the output of
detailed logs during the execution of the Llama model. This added
parameter can aid in debugging and understanding the internal processes
of the module.
The verbose parameter is a boolean that prints verbose output to stderr
when set to True. By default, the verbose parameter is set to True but
can be toggled off if less output is desired. This new parameter has
been added to the `validate_environment` method of the `LlamaCpp` class
which initializes the `llama_cpp.Llama` API:
```python
class LlamaCpp(LLM):
...
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
...
model_param_names = [
...
"verbose", # New verbose parameter added
]
...
values["client"] = Llama(model_path, **model_params)
...
```
---------
Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
At the moment, pinecone vectorStore does not support filters and
namespaces when using similarity_score_threshold search type.
In this PR, I've implemented that. It passes all the kwargs except
"score_threshold" as that is not a supported argument for method
"similarity_search_with_score".
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Changes
- [X] Fill the `llm_output` param when there is an output parsing error
in a Pydantic schema so that we can get the original text that failed to
parse when handling the exception
## Background
With this change, we could do something like this:
```
output_parser = PydanticOutputParser(pydantic_object=pydantic_obj)
chain = ConversationChain(..., output_parser=output_parser)
try:
response: PydanticSchema = chain.predict(input=input)
except OutputParserException as exc:
logger.error(
'OutputParserException while parsing chatbot response: %s', exc.llm_output,
)
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
hi @rlancemartin ,
We had a new deployment and the `pg_extension` creation command was
updated from `CREATE EXTENSION pg_embedding` to `CREATE EXTENSION
embedding`.
https://github.com/neondatabase/neon/pull/4646
The extension not made public yet. No users will be affected by this.
Will be public next week.
Please let me know if you have any questions.
Thank you in advance 🙏
Continuing with Tolkien inspired series of langchain tools. I bring to
you:
**The Fellowship of the Vectors**, AKA EmbeddingsClusteringFilter.
This document filter uses embeddings to group vectors together into
clusters, then allows you to pick an arbitrary number of documents
vector based on proximity to the cluster centers. That's a
representative sample of the cluster.
The original idea is from [Greg Kamradt](https://github.com/gkamradt)
from this video (Level4):
https://www.youtube.com/watch?v=qaPMdcCqtWk&t=365s
I added few tricks to make it a bit more versatile, so you can
parametrize what to do with duplicate documents in case of cluster
overlap: replace the duplicates with the next closest document or remove
it. This allow you to use it as an special kind of redundant filter too.
Additionally you can choose 2 diff orders: grouped by cluster or
respecting the original retriever scores.
In my use case I was using the docs grouped by cluster to run refine
chains per cluster to generate summarization over a large corpus of
documents.
Let me know if you want to change anything!
@rlancemartin, @eyurtsev, @hwchase17,
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
Change details:
- Description: When calling db.persist(), a check prevents from it
proceeding as the constructor only sets member `_persist_directory` from
parameters. But the ChromaDB client settings also has this parameter,
and if the client_settings parameter is used without passing the
persist_directory (which is optional), the `persist` method raises
`ValueError` for not setting `_persist_directory`. This change fixes it
by setting the member `_persist_directory` variable from client_settings
if it is set, else uses the constructor parameter.
- Issue: I didn't find any github issue of this, but I discovered it
after calling the persist method
- Dependencies: None
- Tag maintainer: vectorstore related change - @rlancemartin, @eyurtsev
- Twitter handle: Don't have one :(
*Additional discussion*: We may need to discuss the way I implemented
the fallback using `or`.
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
This PR improves the example notebook for the Marqo vectorstore
implementation by adding a new RetrievalQAWithSourcesChain example. The
`embedding` parameter in `from_documents` has its type updated to
`Union[Embeddings, None]` and a default parameter of None because this
is ignored in Marqo.
This PR also upgrades the Marqo version to 0.11.0 to remove the device
parameter after a breaking change to the API.
Related to #7068 @tomhamer @hwchase17
---------
Co-authored-by: Tom Hamer <tom@marqo.ai>
Description: Pack of small fixes and refactorings that don't affect
functionality, just making code prettier & fixing some misspelling
(hand-filtered improvements proposed by SeniorAi.online, prototype of
code improving tool based on gpt4), agents and callbacks folders was
covered.
Dependencies: Nothing changed
Twitter: https://twitter.com/nayjest
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR improves upon the Clarifai LangChain integration with improved docs, errors, args and the addition of embedding model support in LancChain for Clarifai's embedding models and an overview of the various ways you can integrate with Clarifai added to the docs.
---------
Co-authored-by: Matthew Zeiler <zeiler@clarifai.com>
Description: Added number_of_head_rows as a parameter to pandas agent.
number_of_head_rows allows the user to select the number of rows to pass
with the prompt when include_df_in_prompt is True. This gives the
ability to control the token length and can be helpful in dealing with
large dataframe.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Solving, anthropic packaging version issue by clearing
the mixup from package.version that is being confused with version from
- importlib.metadata.version.
- Issue: it fixes the issue #7283
- Maintainer: @hwchase17
The following change has been explained in the comment -
https://github.com/hwchase17/langchain/issues/7283#issuecomment-1624328978
- Description: pydantic's `ModelField.type_` only exposes the native
data type but not complex type hints like `List`. Thus, generating a
Tool with `from_function` through function signature produces incorrect
argument schemas (e.g., `str` instead of `List[str]`)
- Issue: N/A
- Dependencies: N/A
- Tag maintainer: @hinthornw
- Twitter handle: `mapped`
All the unittest (with an additional one in this PR) passed, though I
didn't try integration tests...
- Description: Sometimes there are csv attachments with the media type
"application/vnd.ms-excel". These files failed to be loaded via the xlrd
library. It throws a corrupted file error. I fixed it by separately
processing excel files using pandas. Excel files will be processed just
like before.
- Dependencies: pandas, os, io
---------
Co-authored-by: Chathura <chathurar@yaalalabs.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
In some cases, the OpenAI response is missing the `finish_reason`
attribute. It seems to happen when using Ada or Babbage and
`stream=true`, but I can't always reproduce it. This change just
gracefully handles the missing key.
Introduction of newest function calling feature doesn't work properly
with PromptLayerChatOpenAI model since on the `_generate` method,
functions argument are not even getting passed to the `ChatOpenAI` base
class which results in empty `ai_message.additional_kwargs`
Fixes #6365
updated `tutorials.mdx`:
- added a link to new `Deeplearning AI` course on LangChain
- added links to other tutorial videos
- fixed format
@baskaryan, @hwchase17
#### Description
refactor BedrockEmbeddings class to clean code as below:
1. inline content type and accept
2. rewrite input_body as a dictionary literal
3. no need to declare embeddings variable, so remove it
- Description: Adding to Chroma integration the option to run a
similarity search by a vector with relevance scores. Fixing two minor
typos.
- Issue: The "lambda_mult" typo is related to #4861
- Maintainer: @rlancemartin, @eyurtsev
Based on user feedback, we have improved the Alibaba Cloud OpenSearch
vector store documentation.
Co-authored-by: zhaoshengbo <shengbo.zsb@alibaba-inc.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Several updates for the PowerBI tools:
- Handle 0 records returned by requesting redo with different filtering
- Handle too large results by optionally tokenizing the result and
comparing against a max (change in signature, non-breaking)
- Implemented LLMChain with Chat for chat models for the tools.
- Updates to the main prompt including tables
- Update to Tool prompt with TOPN function
- Split the tool prompt to allow the LLMChain with ChatPromptTemplate
Smaller fixes for stability.
For visibility: @hinthornw
Replace this comment with:
- Description: added documentation for a template repo that helps
dockerizing and deploying a LangChain using a Cloud Build CI/CD pipeline
to Google Cloud build serverless
- Issue: None,
- Dependencies: None,
- Tag maintainer: @baskaryan,
- Twitter handle: EdenEmarco177
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
- Description:
- When `keep_separator` is `True` the `_split_text_with_regex()` method
in `text_splitter` uses regex to split, but when `keep_separator` is
`False` it uses `str.split()`. This causes problems when the separator
is a special regex character like `.` or `*`. This PR fixes that by
using `re.split()` in both cases.
- Issue: #7262
- Tag maintainer: @baskaryan
**Description**
In the following page, "Wikipedia" tool is explained.
https://python.langchain.com/docs/modules/agents/tools/integrations/wikipedia
However, the WikipediaAPIWrapper being used is not a tool. This PR
updated the documentation to use a tool WikipediaQueryRun.
**Issue**
None
**Tag maintainer**
Agents / Tools / Toolkits: @hinthornw
- Description: This is a chat model equivalent of HumanInputLLM. An
example notebook is also added.
- Tag maintainer: @hwchase17, @baskaryan
- Twitter handle: N/A
- Description: I have added a `show_progress_bar` parameter (defaults.to
`False`) to the `OpenAIEmbeddings`. If the user sets `show_progress_bar`
to `True`, a progress bar will be displayed.
- Issue: #7246
- Dependencies: N/A
- Tag maintainer: @hwchase17, @baskaryan
- Twitter handle: N/A
Description: `flan-t5-xl` hangs, updated to `flan-t5-xxl`. Tested all
stabilityai LLMs- all hang so removed from tutorial. Temperature > 0 to
prevent unintended determinism.
Issue: #3275
Tag maintainer: @baskaryan
Fix for bug in SitemapLoader
`aiohttp` `get` does not accept `verify` argument, and currently throws
error, so SitemapLoader is not working
This PR fixes it by removing `verify` param for `get` function call
Fixes#6107
#### Who can review?
Tag maintainers/contributors who might be interested:
@eyurtsev
---------
Co-authored-by: techcenary <127699216+techcenary@users.noreply.github.com>
### Description
This pull request introduces the "Cube Semantic Layer" document loader,
which demonstrates the retrieval of Cube's data model metadata in a
format suitable for passing to LLMs as embeddings. This enhancement aims
to provide contextual information and improve the understanding of data.
Twitter handle:
@the_cube_dev
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
This PR brings in a vectorstore interface for
[Marqo](https://www.marqo.ai/).
The Marqo vectorstore exposes some of Marqo's functionality in addition
the the VectorStore base class. The Marqo vectorstore also makes the
embedding parameter optional because inference for embeddings is an
inherent part of Marqo.
Docs, notebook examples and integration tests included.
Related PR:
https://github.com/hwchase17/langchain/pull/2807
---------
Co-authored-by: Tom Hamer <tom@marqo.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
### Summary
Updates the docstrings for the unstructured base loaders so more useful
information appears on the integrations page. If these look good, will
add similar docstrings to the other loaders.
### Reviewers
- @rlancemartin
- @eyurtsev
- @hwchase17
- Description: Allow `InMemoryDocstore` to be created without passing a
dict to the constructor; the constructor can create a dict at runtime if
one isn't provided.
- Tag maintainer: @dev2049
- Description: At the moment, inserting new embeddings to pgvector is
querying all embeddings every time as the defined `embeddings`
relationship is using the default params, which sets `lazy="select"`.
This change drastically improves the performance and adds a few
additional cleanups:
* remove `collection.embeddings.append` as it was querying all
embeddings on insert, replace with `collection_id` param
* centralize storing logic in add_embeddings function to reduce
duplication
* remove boilerplate
- Issue: No issue was opened.
- Dependencies: None.
- Tag maintainer: this is a vectorstore update, so I think
@rlancemartin, @eyurtsev
- Twitter handle: @falmannaa
Hi, there
This pull request contains two commit:
**1. Implement delete interface with optional ids parameter on
AnalyticDB.**
**2. Allow customization of database connection behavior by exposing
engine_args parameter in interfaces.**
- This commit adds the `engine_args` parameter to the interfaces,
allowing users to customize the behavior of the database connection. The
`engine_args` parameter accepts a dictionary of additional arguments
that will be passed to the create_engine function. Users can now modify
various aspects of the database connection, such as connection pool size
and recycle time. This enhancement provides more flexibility and control
to users when interacting with the database through the exposed
interfaces.
This commit is related to VectorStores @rlancemartin @eyurtsev
Thank you for your attention and consideration.
- Description: This allows parameters such as `relevance_score_fn` to be
passed to the `FAISS` constructor via the `load_local()` class method.
- Tag maintainer: @rlancemartin @eyurtsev
This fixes#4833 and the critical vulnerability
https://nvd.nist.gov/vuln/detail/CVE-2023-34540
Previously, the JIRA API Wrapper had a mode that simply pipelined user
input into an `exec()` function.
[The intended use of the 'other' mode is to cover any of Atlassian's API
that don't have an existing
interface](cc33bde74f/langchain/tools/jira/prompt.py (L24))
Fortunately all of the [Atlassian JIRA API methods are subfunctions of
their `Jira`
class](https://atlassian-python-api.readthedocs.io/jira.html), so this
implementation calls these subfunctions directly.
As well as passing a string representation of the function to call, the
implementation flexibly allows for optionally passing args and/or
keyword-args. These are given as part of the dictionary input. Example:
```
{
"function": "update_issue_field", #function to execute
"args": [ #list of ordered args similar to other examples in this JiraAPIWrapper
"key",
{"summary": "New summary"}
],
"kwargs": {} #dict of key value keyword-args pairs
}
```
the above is equivalent to `self.jira.update_issue_field("key",
{"summary": "New summary"})`
Alternate query schema designs are welcome to make querying easier
without passing and evaluating arbitrary python code. I considered
parsing (without evaluating) input python code and extracting the
function, args, and kwargs from there and then pipelining them into the
callable function via `*f(args, **kwargs)` - but this seemed more
direct.
@vowelparrot @dev2049
---------
Co-authored-by: Jamal Rahman <jamal.rahman@builder.ai>
added tutorials.mdx; updated youtube.mdx
Rationale: the Tutorials section in the documentation is top-priority.
(for example, https://pytorch.org/docs/stable/index.html) Not every
project has resources to make tutorials. We have such a privilege.
Community experts created several tutorials on YouTube. But the tutorial
links are now hidden on the YouTube page and not easily discovered by
first-time visitors.
- Added new videos and tutorials that were created since the last
update.
- Made some reprioritization between videos on the base of the view
numbers.
#### Who can review?
- @hwchase17
- @dev2049
## Description
Added Office365 tool modules to `__init__.py` files
## Issue
As described in Issue
https://github.com/hwchase17/langchain/issues/6936, the Office365
toolkit can't be loaded easily because it is not included in the
`__init__.py` files.
## Reviewer
@dev2049
Description:
The OpenAI "embeddings" API intermittently falls into a failure state
where an embedding is returned as [ Nan ], rather than the expected 1536
floats. This patch checks for that state (specifically, for an embedding
of length 1) and if it occurs, throws an ApiError, which will cause the
chunk to be retried.
Issue:
I have been unable to find an official langchain issue for this problem,
but it is discussed (by another user) at
https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
Maintainer: @dev2049
Testing:
Since this is an intermittent OpenAI issue, I have not provided a unit
or integration test. The provided code has, though, been run
successfully over several million tokens.
---------
Co-authored-by: William Webber <william@williamwebber.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- [x] wire up tools
- [x] wire up retrievers
- [x] add integration test
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Description: Fix steamship import error
When running multi_modal_output_agent:
field "steamship" not yet prepared so type is still a ForwardRef, you
might need to call SteamshipImageGenerationTool.update_forward_refs().
Tag maintainer: @hinthornw
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Description: If their are missing or extra variables when validating
Jinja 2 template then a warning is issued rather than raising an
exception. This allows for better flexibility for the developer as
described in #7044. Also changed the relevant test so pytest is checking
for raised warnings rather than exceptions.
- Issue: #7044
- Tag maintainer: @hwchase17, @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
This PR makes the `textstat` library optional in the Flyte callback
handler.
@hinthornw, would you mind reviewing this PR since you merged the flyte
callback handler code previously?
---------
Signed-off-by: Samhita Alla <aallasamhita@gmail.com>
- Description: added some documentation to the Pinecone vector store
docs page.
- Issue: #7126
- Dependencies: None
- Tag maintainer: @baskaryan
I can add more documentation on the Pinecone integration functions as I
am going to go in great depth into this area. Just wanted to check with
the maintainers is if this is all good.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Replace this comment with:
- Description: Replace `if var is not None:` with `if var:`, a concise
and pythonic alternative
- Issue: N/A
- Dependencies: None
- Tag maintainer: Unsure
- Twitter handle: N/A
Signed-off-by: serhatgktp <efkan@ibm.com>
- Description: Modify the code for
AsyncIteratorCallbackHandler.on_llm_new_token to ensure that it does not
add an empty string to the result queue.
- Tag maintainer: @agola11
When using AsyncIteratorCallbackHandler with OpenAIFunctionsAgent, if
the LLM response function_call instead of direct answer, the
AsyncIteratorCallbackHandler.on_llm_new_token would be called with empty
string.
see also: langchain.chat_models.openai.ChatOpenAI._generate
An alternative solution is to modify the
langchain.chat_models.openai.ChatOpenAI._generate and do not call the
run_manager.on_llm_new_token when the token is empty string.
I am not sure which solution is better.
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# [SPARQL](https://www.w3.org/TR/rdf-sparql-query/) for
[LangChain](https://github.com/hwchase17/langchain)
## Description
LangChain support for knowledge graphs relying on W3C standards using
RDFlib: SPARQL/ RDF(S)/ OWL with special focus on RDF \
* Works with local files, files from the web, and SPARQL endpoints
* Supports both SELECT and UPDATE queries
* Includes both a Jupyter notebook with an example and integration tests
## Contribution compared to related PRs and discussions
* [Wikibase agent](https://github.com/hwchase17/langchain/pull/2690) -
uses SPARQL, but specifically for wikibase querying
* [Cypher qa](https://github.com/hwchase17/langchain/pull/5078) - graph
DB question answering for Neo4J via Cypher
* [PR 6050](https://github.com/hwchase17/langchain/pull/6050) - tries
something similar, but does not cover UPDATE queries and supports only
RDF
* Discussions on [w3c mailing list](mailto:semantic-web@w3.org) related
to the combination of LLMs (specifically ChatGPT) and knowledge graphs
## Dependencies
* [RDFlib](https://github.com/RDFLib/rdflib)
## Tag maintainer
Graph database related to memory -> @hwchase17
Update in_memory.py to fix "TypeError: keywords must be strings" on
certain dictionaries
Simple fix to prevent a "TypeError: keywords must be strings" error I
encountered in my use case.
@baskaryan
Thanks! Hope useful!
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fix for typos in MongoDB Atlas Vector Search documentation
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Description: rename the invalid function name of GoogleSerperResults
Tool for OpenAIFunctionCall
- Tag maintainer: @hinthornw
When I use the GoogleSerperResults in OpenAIFunctionCall agent, the
following error occurs:
```shell
openai.error.InvalidRequestError: 'Google Serrper Results JSON' does not match '^[a-zA-Z0-9_-]{1,64}$' - 'functions.0.name'
```
So I rename the GoogleSerperResults's property "name" from "Google
Serrper Results JSON" to "google_serrper_results_json" just like
GoogleSerperRun's name: "google_serper", and it works.
I guess this should be reasonable.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
@hinthornw
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Hi @rlancemartin, @eyurtsev!
- Description: Adding HNSW extension support for Postgres. Similar to
pgvector vectorstore, with 3 differences
1. it uses HNSW extension for exact and ANN searches,
2. Vectors are of type array of real
3. Only supports L2
- Dependencies: [HNSW](https://github.com/knizhnik/hnsw) extension for
Postgres
- Example:
```python
db = HNSWVectoreStore.from_documents(
embedding=embeddings,
documents=docs,
collection_name=collection_name,
connection_string=connection_string
)
query = "What did the president say about Ketanji Brown Jackson"
docs_with_score: List[Tuple[Document, float]] =
db.similarity_search_with_score(query)
```
The example notebook is in the PR too.
- correct `endpoint_name` to `api_url`
- add `headers`
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Minor change to the SingleStoreVectorStore:
Updated connection attributes names according to the SingleStoreDB
recommendations
@rlancemartin, @eyurtsev
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Description: doc string suggests `from langchain.llms import
LlamaCppEmbeddings` under `LlamaCpp()` class example but
`LlamaCppEmbeddings` is not in `langchain.llms`
Issue: None open
Tag maintainer: @baskaryan
Documentation update for [Jina
ecosystem](https://python.langchain.com/docs/ecosystem/integrations/jina)
and `langchain-serve` in the deployments section to latest features.
@hwchase17
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
[Apache HugeGraph](https://github.com/apache/incubator-hugegraph) is a
convenient, efficient, and adaptable graph database, compatible with the
Apache TinkerPop3 framework and the Gremlin query language.
In this PR, the HugeGraph and HugeGraphQAChain provide the same
functionality as the existing integration with Neo4j and enables query
generation and question answering over HugeGraph database. The
difference is that the graph query language supported by HugeGraph is
not cypher but another very popular graph query language
[Gremlin](https://tinkerpop.apache.org/gremlin.html).
A notebook example and a simple test case have also been added.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
This PR introduces a new Mendable UI tailored to a better search
experience.
We're more closely integrating our traditional search with our AI
generation.
With this change, you won't have to tab back and forth between the
mendable bot and the keyword search. Both types of search are handled in
the same bar. This should make the docs easier to navigate. while still
letting users get code generations or AI-summarized answers if they so
wish. Also, it should reduce the cost.
Would love to hear your feedback :)
Cc: @dev2049 @hwchase17
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Description
The type hint for `FAISS.__init__()`'s `relevance_score_fn` parameter
allowed the parameter to be set to `None`. However, a default function
is provided by the constructor. This led to an unnecessary check in the
code, as well as a test to verify this check.
**ASSUMPTION**: There's no reason to ever set `relevance_score_fn` to
`None`.
This PR changes the type hint and removes the unnecessary code.
- Description: Added a new SpacyEmbeddings class for generating
embeddings using the Spacy library.
- Issue: Sentencebert/Bert/Spacy/Doc2vec embedding support #6952
- Dependencies: This change requires the Spacy library and the
'en_core_web_sm' Spacy model.
- Tag maintainer: @dev2049
- Twitter handle: N/A
This change includes a new SpacyEmbeddings class, but does not include a
test or an example notebook.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**:
The JSON Lines format is used by some services such as OpenAI and
HuggingFace. It's also a convenient alternative to CSV.
This PR adds JSON Lines support to `JSONLoader` and also updates related
tests.
**Tag maintainer**: @rlancemartin, @eyurtsev.
PS I was not able to build docs locally so didn't update related
section.
Update to Vectara integration
- By user request added "add_files" to take advantage of Vectara
capabilities to process files on the backend, without the need for
separate loading of documents and chunking in the chain.
- Updated vectara.ipynb example notebook to be broader and added testing
of add_file()
@hwchase17 - project lead
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
### Description:
Updated the delete function in the Pinecone integration to allow for
deletion of vectors by specifying a filter condition, and to delete all
vectors in a namespace.
Made the ids parameter optional in the delete function in the base
VectorStore class and allowed for additional keyword arguments.
Updated the delete function in several classes (Redis, Chroma, Supabase,
Deeplake, Elastic, Weaviate, and Cassandra) to match the changes made in
the base VectorStore class. This involved making the ids parameter
optional and allowing for additional keyword arguments.
Retrying with the same improvements as in #6772, this time trying not to
mess up with branches.
@rlancemartin doing a fresh new PR from a branch with a new name. This
should do. Thank you for your help!
---------
Co-authored-by: Jonathan Ellis <jbellis@datastax.com>
Co-authored-by: rlm <pexpresss31@gmail.com>
should be no functional changes
also keep __init__ exposing a lot for backwards compat
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Summary
Updates `UnstructuredEmailLoader` so that it can process attachments in
addition to the e-mail content. The loader will process attachments if
the `process_attachments` kwarg is passed when the loader is
instantiated.
### Testing
```python
file_path = "fake-email-attachment.eml"
loader = UnstructuredEmailLoader(
file_path, mode="elements", process_attachments=True
)
docs = loader.load()
docs[-1]
```
### Reviewers
- @rlancemartin
- @eyurtsev
- @hwchase17
Handle the new retriever events in a way that (I think) is entirely
backwards compatible? Needs more testing for some of the chain changes
and all.
This creates an entire new run type, however. We could also just treat
this as an event within a chain run presumably (same with memory)
Adds a subclass initializer that upgrades old retriever implementations
to the new schema, along with tests to ensure they work.
First commit doesn't upgrade any of our retriever implementations (to
show that we can pass the tests along with additional ones testing the
upgrade logic).
Second commit upgrades the known universe of retrievers in langchain.
- [X] Add callback handling methods for retriever start/end/error (open
to renaming to 'retrieval' if you want that)
- [X] Update BaseRetriever schema to support callbacks
- [X] Tests for upgrading old "v1" retrievers for backwards
compatibility
- [X] Update existing retriever implementations to implement the new
interface
- [X] Update calls within chains to .{a]get_relevant_documents to pass
the child callback manager
- [X] Update the notebooks/docs to reflect the new interface
- [X] Test notebooks thoroughly
Not handled:
- Memory pass throughs: retrieval memory doesn't have a parent callback
manager passed through the method
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>
when running AsyncCallbackManagerForChainRun (from
langchain.callbacks.manager import AsyncCallbackManagerForChainRun),
provided default values for tags and inheritable_tages of empty lists in
manager.py BaseRunManager.
- Description: In manager.py, `BaseRunManager`, default values were
provided for the `__init__` args `tags` and `inheritable_tags`. They
default to empty lists (`[]`).
- Issue: When trying to use Nvidia NeMo Guardrails with LangChain, the
following exception was raised:
If you create a dataset from runs and run the same chain or llm on it
later, it usually works great.
If you have an agent dataset and want to run a different agent on it, or
have more complex schema, it's hard for us to automatically map these
values every time. This PR lets you pass in an input_mapper function
that converts the example inputs to whatever format your model expects
Support `max_chunk_bytes` kwargs to pass down to `buik` helper, in order
to support the request limits in Opensearch locally and in AWS.
@rlancemartin, @eyurtsev
Description: `all_metadatas` was not defined, `OpenAIEmbeddings` was not
imported,
Issue: #6723 the issue # it fixes (if applicable),
Dependencies: lark,
Tag maintainer: @vowelparrot , @dev2049
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
# Description
This PR makes it possible to use named vectors from Qdrant in Langchain.
That was requested multiple times, as people want to reuse externally
created collections in Langchain. It doesn't change anything for the
existing applications. The changes were covered with some integration
tests and included in the docs.
## Example
```python
Qdrant.from_documents(
docs,
embeddings,
location=":memory:",
collection_name="my_documents",
vector_name="custom_vector",
)
```
### Issue: #2594
Tagging @rlancemartin & @eyurtsev. I'd appreciate your review.
Support for SQLAlchemy 1.3 was removed in version 0.0.203 by change
#6086. Re-adding support.
- Description: Imports SQLAlchemy Row at class creation time instead of
at init to support SQLAlchemy <1.4. This is the only breaking change and
was introduced in version 0.0.203 #6086.
A similar change was merged before:
https://github.com/hwchase17/langchain/pull/4647
- Dependencies: Reduces SQLAlchemy dependency to > 1.3
- Tag maintainer: @rlancemartin, @eyurtsev, @hwchase17, @wangxuqi
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
### Scientific Article PDF Parsing via Grobid
`Description:`
This change adds the GrobidParser class, which uses the Grobid library
to parse scientific articles into a universal XML format containing the
article title, references, sections, section text etc. The GrobidParser
uses a local Grobid server to return PDFs document as XML and parses the
XML to optionally produce documents of individual sentences or of whole
paragraphs. Metadata includes the text, paragraph number, pdf relative
bboxes, pages (text may overlap over two pages), section title
(Introduction, Methodology etc), section_number (i.e 1.1, 2.3), the
title of the paper and finally the file path.
Grobid parsing is useful beyond standard pdf parsing as it accurately
outputs sections and paragraphs within them. This allows for
post-fitering of results for specific sections i.e. limiting results to
the methodology section or results. While sections are split via
headings, ideally they could be classified specifically into
introduction, methodology, results, discussion, conclusion. I'm
currently experimenting with chatgpt-3.5 for this function, which could
later be implemented as a textsplitter.
`Dependencies:`
For use, the grobid repo must be cloned and Java must be installed, for
colab this is:
```
!apt-get install -y openjdk-11-jdk -q
!update-alternatives --set java /usr/lib/jvm/java-11-openjdk-amd64/bin/java
!git clone https://github.com/kermitt2/grobid.git
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-11-openjdk-amd64"
os.chdir('grobid')
!./gradlew clean install
```
Once installed the server is ran on localhost:8070 via
```
get_ipython().system_raw('nohup ./gradlew run > grobid.log 2>&1 &')
```
@rlancemartin, @eyurtsev
Twitter Handle: @Corranmac
Grobid Demo Notebook is
[here](https://colab.research.google.com/drive/1X-St_mQRmmm8YWtct_tcJNtoktbdGBmd?usp=sharing).
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
Add API Headers support for Amazon API Gateway to enable Authentication
using DynamoDB.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Was preparing for a demo project of NebulaGraphQAChain to find out the
prompt needed to be optimized a little bit.
Please @hwchase17 kindly help review.
Thanks!
### Overview
This PR aims at building on #4378, expanding the capabilities and
building on top of the `cassIO` library to interface with the database
(as opposed to using the core drivers directly).
Usage of `cassIO` (a library abstracting Cassandra access for
ML/GenAI-specific purposes) is already established since #6426 was
merged, so no new dependencies are introduced.
In the same spirit, we try to uniform the interface for using Cassandra
instances throughout LangChain: all our appreciation of the work by
@jj701 notwithstanding, who paved the way for this incremental work
(thank you!), we identified a few reasons for changing the way a
`CassandraChatMessageHistory` is instantiated. Advocating a syntax
change is something we don't take lighthearted way, so we add some
explanations about this below.
Additionally, this PR expands on integration testing, enables use of
Cassandra's native Time-to-Live (TTL) features and improves the phrasing
around the notebook example and the short "integrations" documentation
paragraph.
We would kindly request @hwchase to review (since this is an elaboration
and proposed improvement of #4378 who had the same reviewer).
### About the __init__ breaking changes
There are
[many](https://docs.datastax.com/en/developer/python-driver/3.28/api/cassandra/cluster/)
options when creating the `Cluster` object, and new ones might be added
at any time. Choosing some of them and exposing them as `__init__`
parameters `CassandraChatMessageHistory` will prove to be insufficient
for at least some users.
On the other hand, working through `kwargs` or adding a long, long list
of arguments to `__init__` is not a desirable option either. For this
reason, (as done in #6426), we propose that whoever instantiates the
Chat Message History class provide a Cassandra `Session` object, ready
to use. This also enables easier injection of mocks and usage of
Cassandra-compatible connections (such as those to the cloud database
DataStax Astra DB, obtained with a different set of init parameters than
`contact_points` and `port`).
We feel that a breaking change might still be acceptable since LangChain
is at `0.*`. However, while maintaining that the approach we propose
will be more flexible in the future, room could be made for a
"compatibility layer" that respects the current init method. Honestly,
we would to that only if there are strong reasons for it, as that would
entail an additional maintenance burden.
### Other changes
We propose to remove the keyspace creation from the class code for two
reasons: first, production Cassandra instances often employ RBAC so that
the database user reading/writing from tables does not necessarily (and
generally shouldn't) have permission to create keyspaces, and second
that programmatic keyspace creation is not a best practice (it should be
done more or less manually, with extra care about schema mismatched
among nodes, etc). Removing this (usually unnecessary) operation from
the `__init__` path would also improve initialization performance
(shorter time).
We suggest, likewise, to remove the `__del__` method (which would close
the database connection), for the following reason: it is the
recommended best practice to create a single Cassandra `Session` object
throughout an application (it is a resource-heavy object capable to
handle concurrency internally), so in case Cassandra is used in other
ways by the app there is the risk of truncating the connection for all
usages when the history instance is destroyed. Moreover, the `Session`
object, in typical applications, is best left to garbage-collect itself
automatically.
As mentioned above, we defer the actual database I/O to the `cassIO`
library, which is designed to encode practices optimized for LLM
applications (among other) without the need to expose LangChain
developers to the internals of CQL (Cassandra Query Language). CassIO is
already employed by the LangChain's Vector Store support for Cassandra.
We added a few more connection options in the companion notebook example
(most notably, Astra DB) to encourage usage by anyone who cannot run
their own Cassandra cluster.
We surface the `ttl_seconds` option for automatic handling of an
expiration time to chat history messages, a likely useful feature given
that very old messages generally may lose their importance.
We elaborated a bit more on the integration testing (Time-to-live,
separation of "session ids", ...).
### Remarks from linter & co.
We reinstated `cassio` as a dependency both in the "optional" group and
in the "integration testing" group of `pyproject.toml`. This might not
be the right thing do to, in which case the author of this PR offer his
apologies (lack of confidence with Poetry - happy to be pointed in the
right direction, though!).
During linter tests, we were hit by some errors which appear unrelated
to the code in the PR. We left them here and report on them here for
awareness:
```
langchain/vectorstores/mongodb_atlas.py:137: error: Argument 1 to "insert_many" of "Collection" has incompatible type "List[Dict[str, Sequence[object]]]"; expected "Iterable[Union[MongoDBDocumentType, RawBSONDocument]]" [arg-type]
langchain/vectorstores/mongodb_atlas.py:186: error: Argument 1 to "aggregate" of "Collection" has incompatible type "List[object]"; expected "Sequence[Mapping[str, Any]]" [arg-type]
langchain/vectorstores/qdrant.py:16: error: Name "grpc" is not defined [name-defined]
langchain/vectorstores/qdrant.py:19: error: Name "grpc" is not defined [name-defined]
langchain/vectorstores/qdrant.py:20: error: Name "grpc" is not defined [name-defined]
langchain/vectorstores/qdrant.py:22: error: Name "grpc" is not defined [name-defined]
langchain/vectorstores/qdrant.py:23: error: Name "grpc" is not defined [name-defined]
```
In the same spirit, we observe that to even get `import langchain` run,
it seems that a `pip install bs4` is missing from the minimal package
installation path.
Thank you!
If I upload a dataset with a single input and output column, we should
be able to let the chain prepare the input without having to maintain a
strict dataset format.
# Adding support for async (_acall) for VertexAICommon LLM
This PR implements the `_acall` method under `_VertexAICommon`. Because
VertexAI itself does not provide an async interface, I implemented it
via a ThreadPoolExecutor that can delegate execution of VertexAI calls
to other threads.
Twitter handle: @polecitoem : )
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
fyi - @agola11 for async functionality
fyi - @Ark-kun from VertexAI
## Description
Tag maintainer: @rlancemartin, @eyurtsev
### log_and_data_dir
`AwaDB.__init__()` accepts a parameter named `log_and_data_dir`. But
`AwaDB.from_texts()` and `AwaDB.from_documents()` accept a parameter
named `logging_and_data_dir`. This inconsistency in this parameter name
can lead to confusion on the part of the caller.
This PR renames `logging_and_data_dir` to `log_and_data_dir` to make all
functions consistent with the constructor.
### embedding
`AwaDB.__init__()` accepts a parameter named `embedding_model`. But
`AwaDB.from_texts()` and `AwaDB.from_documents()` accept a parameter
named `embeddings`. This inconsistency in this parameter name can lead
to confusion on the part of the caller.
This PR renames `embedding_model` to `embeddings` to make AwaDB's
constructor consistent with the classmethod "constructors" as specified
by `VectorStore` abstract base class.
A user has been testing the Apify integration inside langchain and he
was not able to run saved Actor tasks.
This PR adds support for calling saved Actor tasks on the Apify platform
to the existing integration. The structure of very similar to the one of
calling Actors.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
### Adding the functionality to return the scores with retrieved
documents when using the max marginal relevance
- Description: Add the method
`max_marginal_relevance_search_with_score_by_vector` to the FAISS
wrapper. Functionality operates the same as
`similarity_search_with_score_by_vector` except for using the max
marginal relevance retrieval framework like is used in the
`max_marginal_relevance_search_by_vector` method.
- Dependencies: None
- Tag maintainer: @rlancemartin @eyurtsev
- Twitter handle: @RianDolphin
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Description:
- The current code uses `PydanticSchema.schema()` and
`_get_extraction_function` at the same time. As a result, a response
from OpenAI has two nested `info`, and
`PydanticAttrOutputFunctionsParser` fails to parse it. This PR will use
the pydantic class given as an arg instead.
- Issue: no related issue yet
- Dependencies: no dependency change
- Tag maintainer: @dev2049
- Twitter handle: @shotarok28
Description: Adds a brief example of using an OAuth access token with
the Zapier wrapper. Also links to the Zapier documentation to learn more
about OAuth flows.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
### Summary
This PR adds a LarkSuite (FeiShu) document loader.
> [LarkSuite](https://www.larksuite.com/) is an enterprise collaboration
platform developed by ByteDance.
### Tests
- an integration test case is added
- an example notebook showing usage is added. [Notebook
preview](https://github.com/yaohui-wyh/langchain/blob/master/docs/extras/modules/data_connection/document_loaders/integrations/larksuite.ipynb)
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
### Who can review?
- PTAL @eyurtsev @hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Yaohui Wang <wangyaohui.01@bytedance.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
- add tencent cos directory and file support for document-loader
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
@eyurtsev
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
#### Add streaming only final async iterator of agent
This callback returns an async iterator and only streams the final
output of an agent.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested: @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Distance-based vector database retrieval embeds (represents) queries in
high-dimensional space and finds similar embedded documents based on
"distance". But, retrieval may produce difference results with subtle
changes in query wording or if the embeddings do not capture the
semantics of the data well. Prompt engineering / tuning is sometimes
done to manually address these problems, but can be tedious.
The `MultiQueryRetriever` automates the process of prompt tuning by
using an LLM to generate multiple queries from different perspectives
for a given user input query. For each query, it retrieves a set of
relevant documents and takes the unique union across all queries to get
a larger set of potentially relevant documents. By generating multiple
perspectives on the same question, the `MultiQueryRetriever` might be
able to overcome some of the limitations of the distance-based retrieval
and get a richer set of results.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Proxies are helpful, especially when you start querying against more
anti-bot websites.
[Proxy
services](https://developers.oxylabs.io/advanced-proxy-solutions/web-unblocker/making-requests)
(of which there are many) and `requests` make it easy to rotate IPs to
prevent banning by just passing along a simple dict to `requests`.
CC @rlancemartin, @eyurtsev
### Summary
The Unstructured API will soon begin requiring API keys. This PR updates
the Unstructured integrations docs with instructions on how to generate
Unstructured API keys.
### Reviewers
@rlancemartin
@eyurtsev
@hwchase17
Replace this comment with:
- Description: Add Async functionality to Zapier NLA Tools
- Issue: n/a
- Dependencies: n/a
- Tag maintainer:
Maintainer responsibilities:
- Agents / Tools / Toolkits: @vowelparrot
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
Added parentheses to ensure the division operation is performed before
multiplication. This now correctly calculates the cost by dividing the
number of tokens by 1000 first (to get the cost per token), and then
multiplies it with the model's cost per 1k tokens @agola11
- **Description**: this PR adds the possibility to raise an exception in
the case the http request did not return a 2xx status code. This is
particularly useful in the situation when the url points to a
non-existent web page, the server returns a http status of 404 NOT
FOUND, but WebBaseLoader anyway parses and returns the http body of the
error message.
- **Dependencies**: none,
- **Tag maintainer**: @rlancemartin, @eyurtsev,
- **Twitter handle**: jtolgyesi
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Adds a way to create the guardrails output parser from a pydantic model.
Description: When a 401 response is given back by Zapier, hint to the
end user why that may have occurred
- If an API Key was initialized with the wrapper, ask them to check
their API Key value
- if an access token was initialized with the wrapper, ask them to check
their access token or verify that it doesn't need to be refreshed.
Tag maintainer: @dev2049
#### Summary
A new approach to loading source code is implemented:
Each top-level function and class in the code is loaded into separate
documents. Then, an additional document is created with the top-level
code, but without the already loaded functions and classes.
This could improve the accuracy of QA chains over source code.
For instance, having this script:
```
class MyClass:
def __init__(self, name):
self.name = name
def greet(self):
print(f"Hello, {self.name}!")
def main():
name = input("Enter your name: ")
obj = MyClass(name)
obj.greet()
if __name__ == '__main__':
main()
```
The loader will create three documents with this content:
First document:
```
class MyClass:
def __init__(self, name):
self.name = name
def greet(self):
print(f"Hello, {self.name}!")
```
Second document:
```
def main():
name = input("Enter your name: ")
obj = MyClass(name)
obj.greet()
```
Third document:
```
# Code for: class MyClass:
# Code for: def main():
if __name__ == '__main__':
main()
```
A threshold parameter is added to control whether small scripts are
split in this way or not.
At this moment, only Python and JavaScript are supported. The
appropriate parser is determined by examining the file extension.
#### Tests
This PR adds:
- Unit tests
- Integration tests
#### Dependencies
Only one dependency was added as optional (needed for the JavaScript
parser).
#### Documentation
A notebook is added showing how the loader can be used.
#### Who can review?
@eyurtsev @hwchase17
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
Description: Update documentation to
1) point to updated documentation links at Zapier.com (we've revamped
our help docs and paths), and
2) To provide clarity how to use the wrapper with an access token for
OAuth support
Demo:
Initializing the Zapier Wrapper with an OAuth Access Token
`ZapierNLAWrapper(zapier_nla_oauth_access_token="<redacted>")`
Using LangChain to resolve the current weather in Vancouver BC
leveraging Zapier NLA to lookup weather by coords.
```
> Entering new chain...
I need to use a tool to get the current weather.
Action: The Weather: Get Current Weather
Action Input: Get the current weather for Vancouver BC
Observation: {"coord__lon": -123.1207, "coord__lat": 49.2827, "weather": [{"id": 802, "main": "Clouds", "description": "scattered clouds", "icon": "03d", "icon_url": "http://openweathermap.org/img/wn/03d@2x.png"}], "weather[]icon_url": ["http://openweathermap.org/img/wn/03d@2x.png"], "weather[]icon": ["03d"], "weather[]id": [802], "weather[]description": ["scattered clouds"], "weather[]main": ["Clouds"], "base": "stations", "main__temp": 71.69, "main__feels_like": 71.56, "main__temp_min": 67.64, "main__temp_max": 76.39, "main__pressure": 1015, "main__humidity": 64, "visibility": 10000, "wind__speed": 3, "wind__deg": 155, "wind__gust": 11.01, "clouds__all": 41, "dt": 1687806607, "sys__type": 2, "sys__id": 2011597, "sys__country": "CA", "sys__sunrise": 1687781297, "sys__sunset": 1687839730, "timezone": -25200, "id": 6173331, "name": "Vancouver", "cod": 200, "summary": "scattered clouds", "_zap_search_was_found_status": true}
Thought: I now know the current weather in Vancouver BC.
Final Answer: The current weather in Vancouver BC is scattered clouds with a temperature of 71.69 and wind speed of 3
```
**Description:** Add a documentation page for the Streamlit Callback
Handler integration (#6315)
Notes:
- Implemented as a markdown file instead of a notebook since example
code runs in a Streamlit app (happy to discuss / consider alternatives
now or later)
- Contains an embedded Streamlit app ->
https://mrkl-minimal.streamlit.app/ Currently this app is hosted out of
a Streamlit repo but we're working to migrate the code to a LangChain
owned repo

cc @dev2049 @tconkling
Notebook shows preference scoring between two chains and reports wilson
score interval + p value
I think I'll add the option to insert ground truth labels but doesn't
have to be in this PR
- Description: Bug Fix - Added a step variable to keep track of prompts
- Issue: Bug from internal Arize testing - The prompts and responses
that are ingested were not mapped correctly
- Dependencies: N/A
fix the Chinese characters in the solution content will be converted to
ascii encoding, resulting in an abnormally long number of tokens
Co-authored-by: qixin <qixin@fintec.ai>
allows for where filtering on collection via get
- Description: aligns langchain chroma vectorstore get with underlying
[chromadb collection
get](https://github.com/chroma-core/chroma/blob/main/chromadb/api/models/Collection.py#L103)
allowing for where filtering, etc.
- Issue: NA
- Dependencies: none
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @pappanaka
#### Background
With the development of [structured
tools](https://blog.langchain.dev/structured-tools/), the LangChain team
expanded the platform's functionality to meet the needs of new
applications. The GMail tool, empowered by structured tools, now
supports multiple arguments and powerful search capabilities,
demonstrating LangChain's ability to interact with dynamic data sources
like email servers.
#### Challenge
The current GMail tool only supports GMail, while users often utilize
other email services like Outlook in Office365. Additionally, the
proposed calendar tool in PR
https://github.com/hwchase17/langchain/pull/652 only works with Google
Calendar, not Outlook.
#### Changes
This PR implements an Office365 integration for LangChain, enabling
seamless email and calendar functionality with a single authentication
process.
#### Future Work
With the core Office365 integration complete, future work could include
integrating other Office365 tools such as Tasks and Address Book.
#### Who can review?
@hwchase17 or @vowelparrot can review this PR
#### Appendix
@janscas, I utilized your [O365](https://github.com/O365/python-o365)
library extensively. Given the rising popularity of LangChain and
similar AI frameworks, the convergence of libraries like O365 and tools
like this one is likely. So, I wanted to keep you updated on our
progress.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
When the tool requires no input, the LLM often gives something like
this:
```json
{
"action": "just_do_it"
}
```
I have attempted to enhance the prompt, but it doesn't appear to be
functioning effectively. Therefore, I believe we should consider easing
the check a little bit.
Signed-off-by: Xiaochao Dong (@damnever) <the.xcdong@gmail.com>
Adding Confluence to Jira tool. Can create a page in Confluence with
this PR. If accepted, will extend functionality to Bitbucket and
additional Confluence features.
---------
Co-authored-by: Ethan Bowen <ethan.bowen@slalom.com>
Since this model name is not there in the list MODEL_COST_PER_1K_TOKENS,
when we use get_openai_callback(), for gpt 3.5 model in Azure AI, we do
not get the cost of the tokens. This will fix this issue
#### Who can review?
@hwchase17
@agola11
Co-authored-by: rajib76 <rajib76@yahoo.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
- Fixed an issue where some caching types check the wrong types, hence
not allowing caching to work
Maintainer responsibilities:
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
MHTML is a very interesting format since it's used both for emails but
also for archived webpages. Some scraping projects want to store pages
in disk to process them later, mhtml is perfect for that use case.
This is heavily inspired from the beautifulsoup html loader, but
extracting the html part from the mhtml file.
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
# beautifulsoup get_text kwargs in WebBaseLoader
- Description: this PR introduces an optional `bs_get_text_kwargs`
parameter to `WebBaseLoader` constructor. It can be used to pass kwargs
to the downstream BeautifulSoup.get_text call. The most common usage
might be to pass a custom text separator, as seen also in
`BSHTMLLoader`.
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: jtolgyesi
- Description: Adds a simple progress bar with tqdm when using
UnstructuredURLLoader. Exposes new paramater `show_progress_bar`. Very
simple PR.
- Issue: N/A
- Dependencies: N/A
- Tag maintainer: @rlancemartin @eyurtsev
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
- Description: Updated regex to support a new format that was observed
when whatsapp chat was exported.
- Issue: #6654
- Dependencies: No new dependencies
- Tag maintainer: @rlancemartin, @eyurtsev
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Description: Fix Typo in LangChain MyScale Integration Doc
@hwchase17
# Add caching to BaseChatModel
Fixes#1644
(Sidenote: While testing, I noticed we have multiple implementations of
Fake LLMs, used for testing. I consolidated them.)
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
Models
- @hwchase17
- @agola11
Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord:
RicChilligerDude#7589
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Motorhead Memory module didn't support deletion of a session. Added a
method to enable deletion.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR adds a new LLM class for the Amazon API Gateway hosted LLM. The
PR also includes example notebooks for using the LLM class in an Agent
chain.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
### Just corrected a small inconsistency on a doc page (not exactly a
typo, per se)
- Description: There was inconsistency due to the use of single quotes
at one place on the [Squential
Chains](https://python.langchain.com/docs/modules/chains/foundational/sequential_chains)
page of the docs,
- Issue: NA,
- Dependencies: NA,
- Tag maintainer: @dev2049,
- Twitter handle: kambleakash0
This PR targets the `API Reference` documentation.
- Several classes and functions missed `docstrings`. These docstrings
were created.
- In several places this
```
except ImportError:
raise ValueError(
```
was replaced to
```
except ImportError:
raise ImportError(
```
# Description
It adds a new initialization param in `WikipediaLoader` so we can
override the `doc_content_chars_max` param used in `WikipediaAPIWrapper`
under the hood, e.g:
```python
from langchain.document_loaders import WikipediaLoader
# doc_content_chars_max is the new init param
loader = WikipediaLoader(query="python", doc_content_chars_max=90000)
```
## Decisions
`doc_content_chars_max` default value will be 4000, because it's the
current value
I have added pycode comments
# Issue
#6639
# Dependencies
None
# Twitter handle
[@elafo](https://twitter.com/elafo)
- Description: The aviary integration has changed url link. This PR
provide fix for those changes and also it makes providing the input URL
optional to the API (since they can be set via env variables).
- Issue: N/A
- Dependencies: N/A
- Twitter handle: N/A
---------
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>
Fix a typo in
`langchain/experimental/plan_and_execute/planners/base.py`, by changing
"Given input, decided what to do." to "Given input, decide what to do."
This is in the docstring for functions running LLM chains which shall
create a plan, "decided" does not make any sense in this context.
This link for the notebook of OpenLLM is not migrated to the new format
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
vertex Ai chat is broken right now. That is because context is in params
and chat.send_message doesn't accept that as a params.
- Closes issue [ChatVertexAI Error: _ChatSessionBase.send_message() got
an unexpected keyword argument 'context'
#6610](https://github.com/hwchase17/langchain/issues/6610)
We may want to process load all URLs under a root directory.
For example, let's look at the [LangChain JS
documentation](https://js.langchain.com/docs/).
This has many interesting child pages that we may want to read in bulk.
Of course, the `WebBaseLoader` can load a list of pages.
But, the challenge is traversing the tree of child pages and actually
assembling that list!
We do this using the `RecusiveUrlLoader`.
This also gives us the flexibility to exclude some children (e.g., the
`api` directory with > 800 child pages).
## Goal
We want to ensure consistency across vectordbs:
1/ add `delete` by ID method to the base vectorstore class
2/ ensure `add_texts` performs `upsert` with ID optionally passed
## Testing
- [x] Pinecone: notebook test w/ `langchain_test` vectorstore.
- [x] Chroma: Review by @jeffchuber, notebook test w/ in memory
vectorstore.
- [x] Supabase: Review by @copple, notebook test w/ `langchain_test`
table.
- [x] Weaviate: Notebook test w/ `langchain_test` index.
- [x] Elastic: Revied by @vestal. Notebook test w/ `langchain_test`
table.
- [ ] Redis: Asked for review from owner of recent `delete` method
https://github.com/hwchase17/langchain/pull/6222
Fixes#5456
This PR removes the `callbacks` argument from a tool's schema when
creating a `Tool` or `StructuredTool` with the `from_function` method
and `infer_schema` is set to `True`. The `callbacks` argument is now
removed in the `create_schema_from_function` and `_get_filtered_args`
methods. As suggested by @vowelparrot, this fix provides a
straightforward solution that minimally affects the existing
implementation.
A test was added to verify that this change enables the expected use of
`Tool` and `StructuredTool` when using a `CallbackManager` and inferring
the tool's schema.
- @hwchase17
Many cities have open data portals for events like crime, traffic, etc.
Socrata provides an API for many, including SF (e.g., see
[here](https://dev.socrata.com/foundry/data.sfgov.org/tmnf-yvry)).
This is a new data loader for city data that uses Socrata API.
A new implementation of `StreamlitCallbackHandler`. It formats Agent
thoughts into Streamlit expanders.
You can see the handler in action here:
https://langchain-mrkl.streamlit.app/
Per a discussion with Harrison, we'll be adding a
`StreamlitCallbackHandler` implementation to an upcoming
[Streamlit](https://github.com/streamlit/streamlit) release as well, and
will be updating it as we add new LLM- and LangChain-specific features
to Streamlit.
The idea with this PR is that the LangChain `StreamlitCallbackHandler`
will "auto-update" in a way that keeps it forward- (and backward-)
compatible with Streamlit. If the user has an older Streamlit version
installed, the LangChain `StreamlitCallbackHandler` will be used; if
they have a newer Streamlit version that has an updated
`StreamlitCallbackHandler`, that implementation will be used instead.
(I'm opening this as a draft to get the conversation going and make sure
we're on the same page. We're really excited to land this into
LangChain!)
#### Who can review?
@agola11, @hwchase17
# Changes
This PR adds [Clarifai](https://www.clarifai.com/) integration to
Langchain. Clarifai is an end-to-end AI Platform. Clarifai offers user
the ability to use many types of LLM (OpenAI, cohere, ect and other open
source models). As well, a clarifai app can be treated as a vector
database to upload and retrieve data. The integrations includes:
- Clarifai LLM integration: Clarifai supports many types of language
model that users can utilize for their application
- Clarifai VectorDB: A Clarifai application can hold data and
embeddings. You can run semantic search with the embeddings
#### Before submitting
- [x] Added integration test for LLM
- [x] Added integration test for VectorDB
- [x] Added notebook for LLM
- [x] Added notebook for VectorDB
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
### Description
We have added a new LLM integration `azureml_endpoint` that allows users
to leverage models from the AzureML platform. Microsoft recently
announced the release of [Azure Foundation
Models](https://learn.microsoft.com/en-us/azure/machine-learning/concept-foundation-models?view=azureml-api-2)
which users can find in the AzureML Model Catalog. The Model Catalog
contains a variety of open source and Hugging Face models that users can
deploy on AzureML. The `azureml_endpoint` allows LangChain users to use
the deployed Azure Foundation Models.
### Dependencies
No added dependencies were required for the change.
### Tests
Integration tests were added in
`tests/integration_tests/llms/test_azureml_endpoint.py`.
### Notebook
A Jupyter notebook demonstrating how to use `azureml_endpoint` was added
to `docs/modules/llms/integrations/azureml_endpoint_example.ipynb`.
### Twitters
[Prakhar Gupta](https://twitter.com/prakhar_in)
[Matthew DeGuzman](https://twitter.com/matthew_d13)
---------
Co-authored-by: Matthew DeGuzman <91019033+matthewdeguzman@users.noreply.github.com>
Co-authored-by: prakharg-msft <75808410+prakharg-msft@users.noreply.github.com>
Since it seems like #6111 will be blocked for a bit, I've forked
@tyree731's fork and implemented the requested changes.
This change adds support to the base Embeddings class for two methods,
aembed_query and aembed_documents, those two methods supporting async
equivalents of embed_query and
embed_documents respectively. This ever so slightly rounds out async
support within langchain, with an initial implementation of this
functionality being implemented for openai.
Implements https://github.com/hwchase17/langchain/issues/6109
---------
Co-authored-by: Stephen Tyree <tyree731@gmail.com>
1. upgrade the version of AwaDB
2. add some new interfaces
3. fix bug of packing page content error
@dev2049 please review, thanks!
---------
Co-authored-by: vincent <awadb.vincent@gmail.com>
Everything needed to support sending messages over WhatsApp Business
Platform (GA), Facebook Messenger (Public Beta) and Google Business
Messages (Private Beta) was present. Just added some details on
leveraging it.
Description:
Update the artifact name of the xml file and the namespaces. Co-authored
with @tjaffri
Co-authored-by: Kenzie Mihardja <kenzie@docugami.com>
### Feature
Using FAISS on a retrievalQA task, I found myself wanting to allow in
multiple sources. From what I understood, the filter feature takes in a
dict of form {key: value} which then will check in the metadata for the
exact value linked to that key.
I added some logic to be able to pass a list which will be checked
against instead of an exact value. Passing an exact value will also
work.
Here's an example of how I could then use it in my own project:
```
pdfs_to_filter_in = ["file_A", "file_B"]
filter_dict = {
"source": [f"source_pdfs/{pdf_name}.pdf" for pdf_name in pdfs_to_filter_in]
}
retriever = db.as_retriever()
retriever.search_kwargs = {"filter": filter_dict}
```
I added an integration test based on the other ones I found in
`tests/integration_tests/vectorstores/test_faiss.py` under
`test_faiss_with_metadatas_and_list_filter()`.
It doesn't feel like this is worthy of its own notebook or doc, but I'm
open to suggestions if needed.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Just some grammar fixes: I found "retriver" instead of "retriever" in
several comments across the documentation and in the comments. I fixed
it.
Co-authored-by: andrey.vedishchev <andrey.vedishchev@rgigroup.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Here are some examples to use StarRocks as vectordb
```
from langchain.vectorstores import StarRocks
from langchain.vectorstores.starrocks import StarRocksSettings
embeddings = OpenAIEmbeddings()
# conifgure starrocks settings
settings = StarRocksSettings()
settings.port = 41003
settings.host = '127.0.0.1'
settings.username = 'root'
settings.password = ''
settings.database = 'zya'
# to fill new embeddings
docsearch = StarRocks.from_documents(split_docs, embeddings, config = settings)
# or to use already-built embeddings in database.
docsearch = StarRocks(embeddings, settings)
```
#### Who can review?
Tag maintainers/contributors who might be interested:
@dev2049
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
### Integration of Infino with LangChain for Enhanced Observability
This PR aims to integrate [Infino](https://github.com/infinohq/infino),
an open source observability platform written in rust for storing
metrics and logs at scale, with LangChain, providing users with a
streamlined and efficient method of tracking and recording LangChain
experiments. By incorporating Infino into LangChain, users will be able
to gain valuable insights and easily analyze the behavior of their
language models.
#### Please refer to the following files related to integration:
- `InfinoCallbackHandler`: A [callback
handler](https://github.com/naman-modi/langchain/blob/feature/infino-integration/langchain/callbacks/infino_callback.py)
specifically designed for storing chain responses within Infino.
- Example `infino.ipynb` file: A comprehensive notebook named
[infino.ipynb](https://github.com/naman-modi/langchain/blob/feature/infino-integration/docs/extras/modules/callbacks/integrations/infino.ipynb)
has been included to guide users on effectively leveraging Infino for
tracking LangChain requests.
- [Integration
Doc](https://github.com/naman-modi/langchain/blob/feature/infino-integration/docs/extras/ecosystem/integrations/infino.mdx)
for Infino integration.
By integrating Infino, LangChain users will gain access to powerful
visualization and debugging capabilities. Infino enables easy tracking
of inputs, outputs, token usage, execution time of LLMs. This
comprehensive observability ensures a deeper understanding of individual
executions and facilitates effective debugging.
Co-authors: @vinaykakade @savannahar68
---------
Co-authored-by: Vinay Kakade <vinaykakade@gmail.com>
This PR adds Rockset as a vectorstore for langchain.
[Rockset](https://rockset.com/blog/introducing-vector-search-on-rockset/)
is a real time OLAP database which provides a fast and efficient vector
search functionality. Further since it is entirely schemaless, it can
store metadata in separate columns thereby allowing fast metadata
filters during vector similarity search (as opposed to storing the
entire metadata in a single JSON column). It currently supports three
distance functions: `COSINE_SIMILARITY`, `EUCLIDEAN_DISTANCE`, and
`DOT_PRODUCT`.
This PR adds `rockset` client as an optional dependency.
We would love a twitter shoutout, our handle is
https://twitter.com/RocksetCloud
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This pull request introduces a new feature to the LangChain QA Retrieval
Chains with Structures. The change involves adding a prompt template as
an optional parameter for the RetrievalQA chains that utilize the
recently implemented OpenAI Functions.
The main purpose of this enhancement is to provide users with the
ability to input a more customizable prompt to the chain. By introducing
a prompt template as an optional parameter, users can tailor the prompt
to their specific needs and context, thereby improving the flexibility
and effectiveness of the RetrievalQA chains.
## Changes Made
- Created a new optional parameter, "prompt", for the RetrievalQA with
structure chains.
- Added an example to the RetrievalQA with sources notebook.
My twitter handle is @El_Rey_Zero
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Added the functionality to leverage 3 new Codey models from Vertex AI:
- code-bison - Code generation using the existing LLM integration
- code-gecko - Code completion using the existing LLM integration
- codechat-bison - Code chat using the existing chat_model integration
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR adds `KuzuGraph` and `KuzuQAChain` for interacting with [Kùzu
database](https://github.com/kuzudb/kuzu). Kùzu is an in-process
property graph database management system (GDBMS) built for query speed
and scalability. The `KuzuGraph` and `KuzuQAChain` provide the same
functionality as the existing integration with NebulaGraph and Neo4j and
enables query generation and question answering over Kùzu database.
A notebook example and a simple test case have also been added.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
#### Fix
Added the mention of "store" amongst the tasks that the data connection
module can perform aside from the existing 3 (load, transform and
query). Particularly, this implies the generation of embeddings vectors
and the creation of vector stores.
This addresses #6291 adding support for using Cassandra (and compatible
databases, such as DataStax Astra DB) as a [Vector
Store](https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-30%3A+Approximate+Nearest+Neighbor(ANN)+Vector+Search+via+Storage-Attached+Indexes).
A new class `Cassandra` is introduced, which complies with the contract
and interface for a vector store, along with the corresponding
integration test, a sample notebook and modified dependency toml.
Dependencies: the implementation relies on the library `cassio`, which
simplifies interacting with Cassandra for ML- and LLM-oriented
workloads. CassIO, in turn, uses the `cassandra-driver` low-lever
drivers to communicate with the database. The former is added as
optional dependency (+ in `extended_testing`), the latter was already in
the project.
Integration testing relies on a locally-running instance of Cassandra.
[Here](https://cassio.org/more_info/#use-a-local-vector-capable-cassandra)
a detailed description can be found on how to compile and run it (at the
time of writing the feature has not made it yet to a release).
During development of the integration tests, I added a new "fake
embedding" class for what I consider a more controlled way of testing
the MMR search method. Likewise, I had to amend what looked like a
glitch in the behaviour of `ConsistentFakeEmbeddings` whereby an
`embed_query` call would have bypassed storage of the requested text in
the class cache for use in later repeated invocations.
@dev2049 might be the right person to tag here for a review. Thank you!
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
@@ -69,6 +69,14 @@ This project uses [Poetry](https://python-poetry.org/) as a dependency manager.
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
4. Continue with the following steps.
There are two separate projects in this repository:
-`langchain`: core langchain code, abstractions, and use cases
-`langchain.experimental`: more experimental code
Each of these has their OWN development environment.
In order to run any of the commands below, please move into their respective directories.
For example, to contribute to `langchain` run `cd libs/langchain` before getting started with the below.
To install requirements:
```bash
@@ -95,6 +103,14 @@ To run formatting for this project:
make format
```
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
```bash
make format_diff
```
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
### Linting
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
@@ -105,8 +121,42 @@ To run linting for this project:
make lint
```
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
```bash
make lint_diff
```
This can be very helpful when you've made changes to only certain parts of the project and want to ensure your changes meet the linting standards without having to check the entire codebase.
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
To check spelling for this project:
```bash
make spell_check
```
To fix spelling in place:
```bash
make spell_fix
```
If codespell is incorrectly flagging a word, you can skip spellcheck for that word by adding it to the codespell config in the `pyproject.toml` file.
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
@@ -206,32 +256,43 @@ When you run `poetry install`, the `langchain` package is installed as editable
## Documentation
While the code is split between `langchain` and `langchain.experimental`, the documentation is one holistic thing.
This covers how to get started contributing to documentation.
### Contribute Documentation
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
The docs directory contains Documentation and API Reference.
Documentation is built using [Docusaurus 2](https://docusaurus.io/).
API Reference are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Build Documentation Locally
In the following commands, the prefix `api_` indicates that those are operations for the API Reference.
Before building the documentation, it is always a good idea to clean the build directory:
```bash
make docs_clean
make api_docs_clean
```
Next, you can run the linkchecker to make sure all links are valid:
```bash
make docs_linkcheck
```
Finally, you can build the documentation as outlined below:
Next, you can build the documentation as outlined below:
```bash
make docs_build
make api_docs_build
```
Finally, you can run the linkchecker to make sure all links are valid:
Thank you for contributing to LangChain! Your PR will appear in our release under the title you set. Please make sure it highlights your valuable contribution.
<!-- Thank you for contributing to LangChain!
Replace this with a description of the change, the issue it fixes (if applicable), and relevant context. List any dependencies required for this change.
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer (see below),
- Twitter handle: we announce bigger features on Twitter. If your PR gets announced and you'd like a mention, we'll gladly shout you out!
After you're done, someone will review your PR. They may suggest improvements. If no one reviews your PR within a few days, feel free to @-mention the same people again, as notifications can get lost.
Please make sure you're PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally.
Finally, we'd love to show appreciation for your contribution - if you'd like us to shout you out on Twitter, please also include your handle!
-->
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on network access,
2. an example notebook showing its use.
<!-- Remove if not applicable -->
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
-@agola11
Async
-@agola11
DataLoaders
-@eyurtsev
Models
-@hwchase17
-@agola11
Agents / Tools / Toolkits
-@hwchase17
VectorStores / Retrievers / Memory
-@dev2049
If no one reviews your PR within a few days, feel free to @-mention the same people again.
See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
@@ -54,7 +54,7 @@ Learn best practices for developing with LangChain.
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/ecosystem/integrations/) and [dependent repos](/docs/ecosystem/dependents.html).
Our community is full of prolific developers, creative builders, and fantastic teachers. Check out [YouTube tutorials](/docs/ecosystem/youtube.html) for great tutorials from folks in the community, and [Gallery](https://github.com/kyrolabs/awesome-langchain) for a list of awesome LangChain projects, compiled by the folks at [KyroLabs](https://kyrolabs.com).
Our community is full of prolific developers, creative builders, and fantastic teachers. Check out [YouTube tutorials](/docs/additional_resources/youtube.html) for great tutorials from folks in the community, and [Gallery](https://github.com/kyrolabs/awesome-langchain) for a list of awesome LangChain projects, compiled by the folks at [KyroLabs](https://kyrolabs.com).
<h3><span style={{color:"#2e8555"}}> Support </span></h3>
@@ -47,7 +47,7 @@ import ChatModel from "@snippets/get_started/quickstart/chat_model.mdx"
## Prompt templates
Most LLM applications do not pass user input directly into to an LLM. Usually they will add the user input to a larger piece of text, called a prompt template, that provides additional context on the specific task at hand.
Most LLM applications do not pass user input directly into an LLM. Usually they will add the user input to a larger piece of text, called a prompt template, that provides additional context on the specific task at hand.
In the previous example, the text we passed to the model contained instructions to generate a company name. For our application, it'd be great if the user only had to provide the description of a company/product, without having to worry about giving the model instructions.
@@ -138,7 +138,7 @@ The chains and agents we've looked at so far have been stateless, but for many a
The Memory module gives you a way to maintain application state. The base Memory interface is simple: it lets you update state given the latest run inputs and outputs and it lets you modify (or contextualize) the next input using the stored state.
There are a number of built-in memory systems. The simplest of these are is a buffer memory which just prepends the last few inputs/outputs to the current input - we will use this in the example below.
There are a number of built-in memory systems. The simplest of these is a buffer memory which just prepends the last few inputs/outputs to the current input - we will use this in the example below.
import MemoryLLM from "@snippets/get_started/quickstart/memory_llms.mdx"
import MemoryChatModel from "@snippets/get_started/quickstart/memory_chat_models.mdx"
@@ -155,4 +155,4 @@ You can use Memory with chains and agents initialized with chat models. The main
Here we walk through how to use LangChain for question answering over a list of documents. Under the hood we'll be using our [Document chains](../document.html).
Here we walk through how to use LangChain for question answering over a list of documents. Under the hood we'll be using our [Document chains](/docs/modules/chains/document/).
import Example from "@snippets/modules/chains/additional/question_answering.mdx"
>[JSON (JavaScript Object Notation)](https://en.wikipedia.org/wiki/JSON) is an open standard file format and data interchange format that uses human-readable text to store and transmit data objects consisting of attribute–value pairs and arrays (or other serializable values).
>[JSON Lines](https://jsonlines.org/) is a file format where each line is a valid JSON value.
import Example from "@snippets/modules/data_connection/document_loaders/how_to/json.mdx"
Many LLM applications require user-specific data that is not part of the model's training set. LangChain gives you the
building blocks to load, transform, and query your data via:
building blocks to load, transform, store and query your data via:
- [Document loaders](/docs/modules/data_connection/document_loaders/): Load documents from many different sources
- [Document transformers](/docs/modules/data_connection/document_transformers/): Split documents, drop redundant documents, and more
- [Document transformers](/docs/modules/data_connection/document_transformers/): Split documents, convert documents into Q&A format, drop redundant documents, and more
- [Text embedding models](/docs/modules/data_connection/text_embedding/): Take unstructured text and turn it into a list of floating point numbers
- [Vector stores](/docs/modules/data_connection/vectorstores/): Store and search over embedded data
- [Retrievers](/docs/modules/data_connection/retrievers/): Query your data
@@ -8,10 +8,20 @@ vectors, and then at query time to embed the unstructured query and retrieve the
'most similar' to the embedded query. A vector store takes care of storing embedded data and performing vector search
for you.

## Get started
This walkthrough showcases basic functionality related to VectorStores. A key part of working with vector stores is creating the vector to put in them, which is usually created via embeddings. Therefore, it is recommended that you familiarize yourself with the [text embedding model](/docs/modules/model_io/models/embeddings.html) interfaces before diving into this.
This walkthrough showcases basic functionality related to VectorStores. A key part of working with vector stores is creating the vector to put in them, which is usually created via embeddings. Therefore, it is recommended that you familiarize yourself with the [text embedding model](/docs/modules/data_connection/text_embedding/) interfaces before diving into this.
import GetStarted from "@snippets/modules/data_connection/vectorstores/get_started.mdx"
<GetStarted/>
## Asynchronous operations
Vector stores are usually run as a separate service that requires some IO operations, and therefore they might be called asynchronously. That gives performance benefits as you don't waste time waiting for responses from external services. That might also be important if you work with an asynchronous framework, such as [FastAPI](https://fastapi.tiangolo.com/).
import AsyncVectorStore from "@snippets/modules/data_connection/vectorstores/async.mdx"
Language models can be unpredictable. This makes it challenging to ship reliable applications to production, where repeatable, useful outcomes across diverse inputs are a minimum requirement. Tests help demonstrate each component in an LLM application can produce the required or expected functionality. These tests also safeguard against regressions while you improve interconnected pieces of an integrated system. However, measuring the quality of generated text can be challenging. It can be hard to agree on the right set of metrics for your application, and it can be difficult to translate those into better performance. Furthermore, it's common to lack sufficient evaluation data adequately test the range of inputs and expected outputs for each component when you're just getting started. The LangChain community is building open source tools and guides to help address these challenges.
LangChain exposes different types of evaluators for common types of evaluation. Each type has off-the-shelf implementations you can use to get started, as well as an
extensible API so you can create your own or contribute improvements for everyone to use. The following sections have example notebooks for you to get started.
- [String Evaluators](/docs/modules/evaluation/string/): Evaluate the predicted string for a given input, usually against a reference string
- [Trajectory Evaluators](/docs/modules/evaluation/trajectory/): Evaluate the whole trajectory of agent actions
- [Comparison Evaluators](/docs/modules/evaluation/comparison/): Compare predictions from two runs on a common input
This section also provides some additional examples of how you could use these evaluators for different scenarios or apply to different chain implementations in the LangChain library. Some examples include:
- [Preference Scoring Chain Outputs](/docs/modules/evaluation/examples/comparisons): An example using a comparison evaluator on different models or prompts to select statistically significant differences in aggregate preference scores
## Reference Docs
For detailed information of the available evaluators, including how to instantiate, configure, and customize them. Check out the [reference documentation](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.evaluation) directly.
⛓ icon marks a new addition [last update 2023-07-05]
---------------------
### DeepLearning.AI courses
by [Harrison Chase](https://github.com/hwchase17) and [Andrew Ng](https://en.wikipedia.org/wiki/Andrew_Ng)
- [LangChain for LLM Application Development](https://learn.deeplearning.ai/langchain)
- ⛓ [LangChain Chat with Your Data](https://learn.deeplearning.ai/langchain-chat-with-your-data)
### Handbook
[LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
### Short Tutorials
[LangChain Crash Course - Build apps with language models](https://youtu.be/LbT1yp6quS8) by [Patrick Loeber](https://www.youtube.com/@patloeber)
[LangChain Crash Course: Build an AutoGPT app in 25 minutes](https://youtu.be/MlK6SIjcjE8) by [Nicholas Renotte](https://www.youtube.com/@NicholasRenotte)
[LangChain Explained in 13 Minutes | QuickStart Tutorial for Beginners](https://youtu.be/aywZrzNaKjs) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
## Tutorials
### [LangChain for Gen AI and LLMs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F) by [James Briggs](https://www.youtube.com/@jamesbriggs)
- #1 [Getting Started with `GPT-3` vs. Open Source LLMs](https://youtu.be/nE2skSRWTTs)
- #2 [Prompt Templates for `GPT 3.5` and other LLMs](https://youtu.be/RflBcK0oDH0)
- #3 [LLM Chains using `GPT 3.5` and other LLMs](https://youtu.be/S8j9Tk0lZHU)
- [LangChain Data Loaders, Tokenizers, Chunking, and Datasets - Data Prep 101](https://youtu.be/eqOfr4AGLk8)
- #4 [Chatbot Memory for `Chat-GPT`, `Davinci` + other LLMs](https://youtu.be/X05uK0TZozM)
- #5 [Chat with OpenAI in LangChain](https://youtu.be/CnAgB3A5OlU)
- #6 [Fixing LLM Hallucinations with Retrieval Augmentation in LangChain](https://youtu.be/kvdVduIJsc8)
- #7 [LangChain Agents Deep Dive with `GPT 3.5`](https://youtu.be/jSP-gSEyVeI)
- #8 [Create Custom Tools for Chatbots in LangChain](https://youtu.be/q-HNphrWsDE)
- #9 [Build Conversational Agents with Vector DBs](https://youtu.be/H6bCqqw9xyI)
- [Using NEW `MPT-7B` in Hugging Face and LangChain](https://youtu.be/DXpk9K7DgMo)
- ⛓ [`MPT-30B` Chatbot with LangChain](https://youtu.be/pnem-EhT6VI)
### [LangChain 101](https://www.youtube.com/playlist?list=PLqZXAkvF1bPNQER9mLmDbntNfSpzdDIU5) by [Greg Kamradt (Data Indy)](https://www.youtube.com/@DataIndependent)
- [What Is LangChain? - LangChain + `ChatGPT` Overview](https://youtu.be/_v_fgW2SkkQ)
- [Question A 300 Page Book (w/ `OpenAI` + `Pinecone`)](https://youtu.be/h0DHDp1FbmQ)
- [Workaround `OpenAI's` Token Limit With Chain Types](https://youtu.be/f9_BWhCI4Zo)
- [Build Your Own OpenAI + LangChain Web App in 23 Minutes](https://youtu.be/U_eV8wfMkXU)
- [Working With The New `ChatGPT API`](https://youtu.be/e9P7FLi5Zy8)
- [OpenAI + LangChain Wrote Me 100 Custom Sales Emails](https://youtu.be/y1pyAQM-3Bo)
- [Structured Output From `OpenAI` (Clean Dirty Data)](https://youtu.be/KwAXfey-xQk)
- [Connect `OpenAI` To +5,000 Tools (LangChain + `Zapier`)](https://youtu.be/7tNm0yiDigU)
- [Use LLMs To Extract Data From Text (Expert Mode)](https://youtu.be/xZzvwR9jdPA)
- [Extract Insights From Interview Transcripts Using LLMs](https://youtu.be/shkMOHwJ4SM)
- [5 Levels Of LLM Summarizing: Novice to Expert](https://youtu.be/qaPMdcCqtWk)
- [Control Tone & Writing Style Of Your LLM Output](https://youtu.be/miBG-a3FuhU)
- [Build Your Own `AI Twitter Bot` Using LLMs](https://youtu.be/yLWLDjT01q8)
- [ChatGPT made my interview questions for me (`Streamlit` + LangChain)](https://youtu.be/zvoAMx0WKkw)
- [Function Calling via ChatGPT API - First Look With LangChain](https://youtu.be/0-zlUy7VUjg)
- ⛓ [Extract Topics From Video/Audio With LLMs (Topic Modeling w/ LangChain)](https://youtu.be/pEkxRQFNAs4)
### [LangChain How to and guides](https://www.youtube.com/playlist?list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ) by [Sam Witteveen](https://www.youtube.com/@samwitteveenai)
- [LangChain Basics - LLMs & PromptTemplates with Colab](https://youtu.be/J_0qvRt4LNk)
- [LangChain Basics - Tools and Chains](https://youtu.be/hI2BY7yl_Ac)
- [`ChatGPT API` Announcement & Code Walkthrough with LangChain](https://youtu.be/phHqvLHCwH4)
- [Conversations with Memory (explanation & code walkthrough)](https://youtu.be/X550Zbz_ROE)
- [Chat with `Flan20B`](https://youtu.be/VW5LBavIfY4)
- [Using `Hugging Face Models` locally (code walkthrough)](https://youtu.be/Kn7SX2Mx_Jk)
- [`PAL` : Program-aided Language Models with LangChain code](https://youtu.be/dy7-LvDu-3s)
- [Building a Summarization System with LangChain and `GPT-3` - Part 1](https://youtu.be/LNq_2s_H01Y)
- [Building a Summarization System with LangChain and `GPT-3` - Part 2](https://youtu.be/d-yeHDLgKHw)
- [Microsoft's `Visual ChatGPT` using LangChain](https://youtu.be/7YEiEyfPF5U)
- [LangChain Agents - Joining Tools and Chains with Decisions](https://youtu.be/ziu87EXZVUE)
- [Comparing LLMs with LangChain](https://youtu.be/rFNG0MIEuW0)
- [Using `Constitutional AI` in LangChain](https://youtu.be/uoVqNFDwpX4)
- [Talking to `Alpaca` with LangChain - Creating an Alpaca Chatbot](https://youtu.be/v6sF8Ed3nTE)
- [Talk to your `CSV` & `Excel` with LangChain](https://youtu.be/xQ3mZhw69bc)
- [`BabyAGI`: Discover the Power of Task-Driven Autonomous Agents!](https://youtu.be/QBcDLSE2ERA)
- [Improve your `BabyAGI` with LangChain](https://youtu.be/DRgPyOXZ-oE)
- [Master `PDF` Chat with LangChain - Your essential guide to queries on documents](https://youtu.be/ZzgUqFtxgXI)
- [Using LangChain with `DuckDuckGO` `Wikipedia` & `PythonREPL` Tools](https://youtu.be/KerHlb8nuVc)
- [Building Custom Tools and Agents with LangChain (gpt-3.5-turbo)](https://youtu.be/biS8G8x8DdA)
- [LangChain Retrieval QA Over Multiple Files with `ChromaDB`](https://youtu.be/3yPBVii7Ct0)
- [LangChain Retrieval QA with Instructor Embeddings & `ChromaDB` for PDFs](https://youtu.be/cFCGUjc33aU)
- [LangChain + Retrieval Local LLMs for Retrieval QA - No OpenAI!!!](https://youtu.be/9ISVjh8mdlA)
- [`Camel` + LangChain for Synthetic Data & Market Research](https://youtu.be/GldMMK6-_-g)
- [Information Extraction with LangChain & `Kor`](https://youtu.be/SW1ZdqH0rRQ)
- [Converting a LangChain App from OpenAI to OpenSource](https://youtu.be/KUDn7bVyIfc)
- [Using LangChain `Output Parsers` to get what you want out of LLMs](https://youtu.be/UVn2NroKQCw)
- [Building a LangChain Custom Medical Agent with Memory](https://youtu.be/6UFtRwWnHws)
- [Understanding `ReACT` with LangChain](https://youtu.be/Eug2clsLtFs)
- [`OpenAI Functions` + LangChain : Building a Multi Tool Agent](https://youtu.be/4KXK6c6TVXQ)
- [What can you do with 16K tokens in LangChain?](https://youtu.be/z2aCZBAtWXs)
- [Tagging and Extraction - Classification using `OpenAI Functions`](https://youtu.be/a8hMgIcUEnE)
- ⛓ [HOW to Make Conversational Form with LangChain](https://youtu.be/IT93On2LB5k)
### [LangChain](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr) by [Prompt Engineering](https://www.youtube.com/@engineerprompt)
- [LangChain Crash Course — All You Need to Know to Build Powerful Apps with LLMs](https://youtu.be/5-fc4Tlgmro)
- [Working with MULTIPLE `PDF` Files in LangChain: `ChatGPT` for your Data](https://youtu.be/s5LhRdh5fu4)
- [`ChatGPT` for YOUR OWN `PDF` files with LangChain](https://youtu.be/TLf90ipMzfE)
- [Talk to YOUR DATA without OpenAI APIs: LangChain](https://youtu.be/wrD-fZvT6UI)
- [Langchain: PDF Chat App (GUI) | ChatGPT for Your PDF FILES](https://youtu.be/RIWbalZ7sTo)
- [LangFlow: Build Chatbots without Writing Code](https://youtu.be/KJ-ux3hre4s)
- [LangChain: Giving Memory to LLMs](https://youtu.be/dxO6pzlgJiY)
- [BEST OPEN Alternative to `OPENAI's EMBEDDINGs` for Retrieval QA: LangChain](https://youtu.be/ogEalPMUCSY)
### LangChain by [Chat with data](https://www.youtube.com/@chatwithdata)
- [LangChain Beginner's Tutorial for `Typescript`/`Javascript`](https://youtu.be/bH722QgRlhQ)
- [`GPT-4` Tutorial: How to Chat With Multiple `PDF` Files (~1000 pages of Tesla's 10-K Annual Reports)](https://youtu.be/Ix9WIZpArm0)
- [`GPT-4` & LangChain Tutorial: How to Chat With A 56-Page `PDF` Document (w/`Pinecone`)](https://youtu.be/ih9PBGVVOO4)
- [LangChain & Supabase Tutorial: How to Build a ChatGPT Chatbot For Your Website](https://youtu.be/R2FMzcsmQY8)
- [LangChain Agents: Build Personal Assistants For Your Data (Q&A with Harrison Chase and Mayo Oshin)](https://youtu.be/gVkF8cwfBLI)
---------------------
⛓ icon marks a new addition [last update 2023-07-05]
@@ -9,7 +9,6 @@ This is a collection of `LangChain` videos on `YouTube`.
- [LangChain and Weaviate with Harrison Chase and Bob van Luijt - Weaviate Podcast #36](https://youtu.be/lhby7Ql7hbk) by [Weaviate • Vector Database](https://www.youtube.com/@Weaviate)
- [LangChain Demo + Q&A with Harrison Chase](https://youtu.be/zaYTXQFR0_s?t=788) by [Full Stack Deep Learning](https://www.youtube.com/@FullStackDeepLearning)
- [LangChain Agents: Build Personal Assistants For Your Data (Q&A with Harrison Chase and Mayo Oshin)](https://youtu.be/gVkF8cwfBLI) by [Chat with data](https://www.youtube.com/@chatwithdata)
- ⛓️ [LangChain "Agents in Production" Webinar](https://youtu.be/k8GNCCs16F4) by [LangChain](https://www.youtube.com/@LangChain)
## Videos (sorted by views)
@@ -31,6 +30,9 @@ This is a collection of `LangChain` videos on `YouTube`.
- [`Weaviate` + LangChain for LLM apps presented by Erika Cardenas](https://youtu.be/7AGj4Td5Lgw) by [`Weaviate` • Vector Database](https://www.youtube.com/@Weaviate)
- [Langchain Overview — How to Use Langchain & `ChatGPT`](https://youtu.be/oYVYIq0lOtI) by [Python In Office](https://www.youtube.com/@pythoninoffice6568)
- [Langchain Overview - How to Use Langchain & `ChatGPT`](https://youtu.be/oYVYIq0lOtI) by [Python In Office](https://www.youtube.com/@pythoninoffice6568)
- [LangChain Tutorials](https://www.youtube.com/watch?v=FuqdVNB_8c0&list=PL9V0lbeJ69brU-ojMpU1Y7Ic58Tap0Cw6) by [Edrick](https://www.youtube.com/@edrickdch):
- [LangChain, Chroma DB, OpenAI Beginner Guide | ChatGPT with your PDF](https://youtu.be/FuqdVNB_8c0)
- [LangChain 101: The Complete Beginner's Guide](https://youtu.be/P3MAbZ2eMUI)
- [Custom langchain Agent & Tools with memory. Turn any `Python function` into langchain tool with Gpt 3](https://youtu.be/NIG8lXk0ULg) by [echohive](https://www.youtube.com/@echohive)
- [LangChain: Run Language Models Locally - `Hugging Face Models`](https://youtu.be/Xxxuw4_iCzw) by [Prompt Engineering](https://www.youtube.com/@engineerprompt)
- [`ChatGPT` with any `YouTube` video using langchain and `chromadb`](https://youtu.be/TQZfB2bzVwU) by [echohive](https://www.youtube.com/@echohive)
@@ -46,154 +48,68 @@ This is a collection of `LangChain` videos on `YouTube`.
- [Langchain + `Zapier` Agent](https://youtu.be/yribLAb-pxA) by [Merk](https://www.youtube.com/@merksworld)
- [Connecting the Internet with `ChatGPT` (LLMs) using Langchain And Answers Your Questions](https://youtu.be/9Y0TBC63yZg) by [Kamalraj M M](https://www.youtube.com/@insightbuilder)
- [Build More Powerful LLM Applications for Business’s with LangChain (Beginners Guide)](https://youtu.be/sp3-WLKEcBg) by[ No Code Blackbox](https://www.youtube.com/@nocodeblackbox)
- ⛓️ [LangFlow LLM Agent Demo for 🦜🔗LangChain](https://youtu.be/zJxDHaWt-6o) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
- ⛓️ [Chatbot Factory: Streamline Python Chatbot Creation with LLMs and Langchain](https://youtu.be/eYer3uzrcuM) by [Finxter](https://www.youtube.com/@CobusGreylingZA)
- ⛓️ [LangChain Tutorial - ChatGPT mit eigenen Daten](https://youtu.be/0XDLyY90E2c) by [Coding Crashkurse](https://www.youtube.com/@codingcrashkurse6429)
- ⛓️ [Chat with a `CSV` | LangChain Agents Tutorial (Beginners)](https://youtu.be/tjeti5vXWOU) by [GoDataProf](https://www.youtube.com/@godataprof)
- ⛓️ [Introdução ao Langchain - #Cortes - Live DataHackers](https://youtu.be/fw8y5VRei5Y) by [Prof. João Gabriel Lima](https://www.youtube.com/@profjoaogabriellima)
- ⛓️ [LangChain: Level up `ChatGPT` !? | LangChain Tutorial Part 1](https://youtu.be/vxUGx8aZpDE) by [Code Affinity](https://www.youtube.com/@codeaffinitydev)
- ⛓️ [Chat with Audio: Langchain, `Chroma DB`, OpenAI, and `Assembly AI`](https://youtu.be/Kjy7cx1r75g) by [AI Anytime](https://www.youtube.com/@AIAnytime)
- ⛓️ [QA over documents with Auto vector index selection with Langchain router chains](https://youtu.be/9G05qybShv8) by [echohive](https://www.youtube.com/@echohive)
- ⛓️ [Build your own custom LLM application with `Bubble.io` & Langchain (No Code & Beginner friendly)](https://youtu.be/O7NhQGu1m6c) by [No Code Blackbox](https://www.youtube.com/@nocodeblackbox)
- ⛓️ [Simple App to Question Your Docs: Leveraging `Streamlit`, `Hugging Face Spaces`, LangChain, and `Claude`!](https://youtu.be/X4YbNECRr7o) by [Chris Alexiuk](https://www.youtube.com/@chrisalexiuk)
- ⛓️ [LANGCHAIN AI- `ConstitutionalChainAI` + Databutton AI ASSISTANT Web App](https://youtu.be/5zIU6_rdJCU) by [Avra](https://www.youtube.com/@Avra_b)
- ⛓️ [LANGCHAIN AI AUTONOMOUS AGENT WEB APP - 👶 `BABY AGI` 🤖 with EMAIL AUTOMATION using `DATABUTTON`](https://youtu.be/cvAwOGfeHgw) by [Avra](https://www.youtube.com/@Avra_b)
- ⛓️ [The Future of Data Analysis: Using A.I. Models in Data Analysis (LangChain)](https://youtu.be/v_LIcVyg5dk) by [Absent Data](https://www.youtube.com/@absentdata)
- ⛓️ [Memory in LangChain | Deep dive (python)](https://youtu.be/70lqvTFh_Yg) by [Eden Marco](https://www.youtube.com/@EdenMarco)
- ⛓️ [Use Large Language Models in Jupyter Notebook | LangChain | Agents & Indexes](https://youtu.be/JSe11L1a_QQ) by [Abhinaw Tiwari](https://www.youtube.com/@AbhinawTiwariAT)
- ⛓️ [How to Talk to Your Langchain Agent | `11 Labs` + `Whisper`](https://youtu.be/N4k459Zw2PU) by [VRSEN](https://www.youtube.com/@vrsen)
- ⛓️ [LangChain Deep Dive: 5 FUN AI App Ideas To Build Quickly and Easily](https://youtu.be/mPYEPzLkeks) by [James NoCode](https://www.youtube.com/@jamesnocode)
- ⛓️ [BEST OPEN Alternative to OPENAI's EMBEDDINGs for Retrieval QA: LangChain](https://youtu.be/ogEalPMUCSY) by [Prompt Engineering](https://www.youtube.com/@engineerprompt)
- ⛓️ [LangChain 101: Models](https://youtu.be/T6c_XsyaNSQ) by [Mckay Wrigley](https://www.youtube.com/@realmckaywrigley)
- ⛓️ [LangChain with JavaScript Tutorial #1 | Setup & Using LLMs](https://youtu.be/W3AoeMrg27o) by [Leon van Zyl](https://www.youtube.com/@leonvanzyl)
- ⛓️ [LangChain Overview & Tutorial for Beginners: Build Powerful AI Apps Quickly & Easily (ZERO CODE)](https://youtu.be/iI84yym473Q) by [James NoCode](https://www.youtube.com/@jamesnocode)
- ⛓️ [LangChain In Action: Real-World Use Case With Step-by-Step Tutorial](https://youtu.be/UO699Szp82M) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
- ⛓️ [Summarizing and Querying Multiple Papers with LangChain](https://youtu.be/p_MQRWH5Y6k) by [Automata Learning Lab](https://www.youtube.com/@automatalearninglab)
- ⛓️ [Using Langchain (and `Replit`) through `Tana`, ask `Google`/`Wikipedia`/`Wolfram Alpha` to fill out a table](https://youtu.be/Webau9lEzoI) by [Stian Håklev](https://www.youtube.com/@StianHaklev)
- ⛓️ [Langchain PDF App (GUI) | Create a ChatGPT For Your `PDF` in Python](https://youtu.be/wUAUdEw5oxM) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- ⛓️ [Auto-GPT with LangChain 🔥 | Create Your Own Personal AI Assistant](https://youtu.be/imDfPmMKEjM) by [Data Science Basics](https://www.youtube.com/@datasciencebasics)
- ⛓️ [Create Your OWN Slack AI Assistant with Python & LangChain](https://youtu.be/3jFXRNn2Bu8) by [Dave Ebbelaar](https://www.youtube.com/@daveebbelaar)
- ⛓️ [How to Create LOCAL Chatbots with GPT4All and LangChain [Full Guide]](https://youtu.be/4p1Fojur8Zw) by [Liam Ottley](https://www.youtube.com/@LiamOttley)
- ⛓️ [Build a `Multilingual PDF` Search App with LangChain, `Cohere` and `Bubble`](https://youtu.be/hOrtuumOrv8) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- ⛓️ [Building a LangChain Agent (code-free!) Using `Bubble` and `Flowise`](https://youtu.be/jDJIIVWTZDE) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- ⛓️ [Build a LangChain-based Semantic PDF Search App with No-Code Tools Bubble and Flowise](https://youtu.be/s33v5cIeqA4) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- ⛓️ [LangChain Memory Tutorial | Building a ChatGPT Clone in Python](https://youtu.be/Cwq91cj2Pnc) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- ⛓️ [ChatGPT For Your DATA | Chat with Multiple Documents Using LangChain](https://youtu.be/TeDgIDqQmzs) by [Data Science Basics](https://www.youtube.com/@datasciencebasics)
- ⛓️ [`Llama Index`: Chat with Documentation using URL Loader](https://youtu.be/XJRoDEctAwA) by [Merk](https://www.youtube.com/@merksworld)
- ⛓️ [Using OpenAI, LangChain, and `Gradio` to Build Custom GenAI Applications](https://youtu.be/1MsmqMg3yUc) by [David Hundley](https://www.youtube.com/@dkhundley)
- ⛓️ [LangChain, Chroma DB, OpenAI Beginner Guide | ChatGPT with your PDF](https://youtu.be/FuqdVNB_8c0)
- [LangChain Crash Course: Build an AutoGPT app in 25 minutes](https://youtu.be/MlK6SIjcjE8) by [Nicholas Renotte](https://www.youtube.com/@NicholasRenotte)
- [LangChain Crash Course - Build apps with language models](https://youtu.be/LbT1yp6quS8) by [Patrick Loeber](https://www.youtube.com/@patloeber)
- [LangChain Explained in 13 Minutes | QuickStart Tutorial for Beginners](https://youtu.be/aywZrzNaKjs) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
- [LangFlow LLM Agent Demo for 🦜🔗LangChain](https://youtu.be/zJxDHaWt-6o) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
- [Chatbot Factory: Streamline Python Chatbot Creation with LLMs and Langchain](https://youtu.be/eYer3uzrcuM) by [Finxter](https://www.youtube.com/@CobusGreylingZA)
- [LangChain Tutorial - ChatGPT mit eigenen Daten](https://youtu.be/0XDLyY90E2c) by [Coding Crashkurse](https://www.youtube.com/@codingcrashkurse6429)
- [Chat with a `CSV` | LangChain Agents Tutorial (Beginners)](https://youtu.be/tjeti5vXWOU) by [GoDataProf](https://www.youtube.com/@godataprof)
- [Introdução ao Langchain - #Cortes - Live DataHackers](https://youtu.be/fw8y5VRei5Y) by [Prof. João Gabriel Lima](https://www.youtube.com/@profjoaogabriellima)
- [LangChain: Level up `ChatGPT` !? | LangChain Tutorial Part 1](https://youtu.be/vxUGx8aZpDE) by [Code Affinity](https://www.youtube.com/@codeaffinitydev)
- [Chat with Audio: Langchain, `Chroma DB`, OpenAI, and `Assembly AI`](https://youtu.be/Kjy7cx1r75g) by [AI Anytime](https://www.youtube.com/@AIAnytime)
- [QA over documents with Auto vector index selection with Langchain router chains](https://youtu.be/9G05qybShv8) by [echohive](https://www.youtube.com/@echohive)
- [Build your own custom LLM application with `Bubble.io` & Langchain (No Code & Beginner friendly)](https://youtu.be/O7NhQGu1m6c) by [No Code Blackbox](https://www.youtube.com/@nocodeblackbox)
- [Simple App to Question Your Docs: Leveraging `Streamlit`, `Hugging Face Spaces`, LangChain, and `Claude`!](https://youtu.be/X4YbNECRr7o) by [Chris Alexiuk](https://www.youtube.com/@chrisalexiuk)
- [LANGCHAIN AI- `ConstitutionalChainAI` + Databutton AI ASSISTANT Web App](https://youtu.be/5zIU6_rdJCU) by [Avra](https://www.youtube.com/@Avra_b)
- [LANGCHAIN AI AUTONOMOUS AGENT WEB APP - 👶 `BABY AGI` 🤖 with EMAIL AUTOMATION using `DATABUTTON`](https://youtu.be/cvAwOGfeHgw) by [Avra](https://www.youtube.com/@Avra_b)
- [The Future of Data Analysis: Using A.I. Models in Data Analysis (LangChain)](https://youtu.be/v_LIcVyg5dk) by [Absent Data](https://www.youtube.com/@absentdata)
- [Memory in LangChain | Deep dive (python)](https://youtu.be/70lqvTFh_Yg) by [Eden Marco](https://www.youtube.com/@EdenMarco)
- [Use Large Language Models in Jupyter Notebook | LangChain | Agents & Indexes](https://youtu.be/JSe11L1a_QQ) by [Abhinaw Tiwari](https://www.youtube.com/@AbhinawTiwariAT)
- [How to Talk to Your Langchain Agent | `11 Labs` + `Whisper`](https://youtu.be/N4k459Zw2PU) by [VRSEN](https://www.youtube.com/@vrsen)
- [LangChain Deep Dive: 5 FUN AI App Ideas To Build Quickly and Easily](https://youtu.be/mPYEPzLkeks) by [James NoCode](https://www.youtube.com/@jamesnocode)
- [BEST OPEN Alternative to OPENAI's EMBEDDINGs for Retrieval QA: LangChain](https://youtu.be/ogEalPMUCSY) by [Prompt Engineering](https://www.youtube.com/@engineerprompt)
- [LangChain 101: Models](https://youtu.be/T6c_XsyaNSQ) by [Mckay Wrigley](https://www.youtube.com/@realmckaywrigley)
- [LangChain with JavaScript Tutorial #1 | Setup & Using LLMs](https://youtu.be/W3AoeMrg27o) by [Leon van Zyl](https://www.youtube.com/@leonvanzyl)
- [LangChain Overview & Tutorial for Beginners: Build Powerful AI Apps Quickly & Easily (ZERO CODE)](https://youtu.be/iI84yym473Q) by [James NoCode](https://www.youtube.com/@jamesnocode)
- [LangChain In Action: Real-World Use Case With Step-by-Step Tutorial](https://youtu.be/UO699Szp82M) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
- [Summarizing and Querying Multiple Papers with LangChain](https://youtu.be/p_MQRWH5Y6k) by [Automata Learning Lab](https://www.youtube.com/@automatalearninglab)
- [Using Langchain (and `Replit`) through `Tana`, ask `Google`/`Wikipedia`/`Wolfram Alpha` to fill out a table](https://youtu.be/Webau9lEzoI) by [Stian Håklev](https://www.youtube.com/@StianHaklev)
- [Langchain PDF App (GUI) | Create a ChatGPT For Your `PDF` in Python](https://youtu.be/wUAUdEw5oxM) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- [Auto-GPT with LangChain 🔥 | Create Your Own Personal AI Assistant](https://youtu.be/imDfPmMKEjM) by [Data Science Basics](https://www.youtube.com/@datasciencebasics)
- [Create Your OWN Slack AI Assistant with Python & LangChain](https://youtu.be/3jFXRNn2Bu8) by [Dave Ebbelaar](https://www.youtube.com/@daveebbelaar)
- [How to Create LOCAL Chatbots with GPT4All and LangChain [Full Guide]](https://youtu.be/4p1Fojur8Zw) by [Liam Ottley](https://www.youtube.com/@LiamOttley)
- [Build a `Multilingual PDF` Search App with LangChain, `Cohere` and `Bubble`](https://youtu.be/hOrtuumOrv8) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- [Building a LangChain Agent (code-free!) Using `Bubble` and `Flowise`](https://youtu.be/jDJIIVWTZDE) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- [Build a LangChain-based Semantic PDF Search App with No-Code Tools Bubble and Flowise](https://youtu.be/s33v5cIeqA4) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- [LangChain Memory Tutorial | Building a ChatGPT Clone in Python](https://youtu.be/Cwq91cj2Pnc) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- [ChatGPT For Your DATA | Chat with Multiple Documents Using LangChain](https://youtu.be/TeDgIDqQmzs) by [Data Science Basics](https://www.youtube.com/@datasciencebasics)
- [`Llama Index`: Chat with Documentation using URL Loader](https://youtu.be/XJRoDEctAwA) by [Merk](https://www.youtube.com/@merksworld)
- [Using OpenAI, LangChain, and `Gradio` to Build Custom GenAI Applications](https://youtu.be/1MsmqMg3yUc) by [David Hundley](https://www.youtube.com/@dkhundley)
- [LangChain, Chroma DB, OpenAI Beginner Guide | ChatGPT with your PDF](https://youtu.be/FuqdVNB_8c0)
- ⛓ [Build AI chatbot with custom knowledge base using OpenAI API and GPT Index](https://youtu.be/vDZAZuaXf48) by [Irina Nik](https://www.youtube.com/@irina_nik)
- ⛓ [Build Your Own Auto-GPT Apps with LangChain (Python Tutorial)](https://youtu.be/NYSWn1ipbgg) by [Dave Ebbelaar](https://www.youtube.com/@daveebbelaar)
- ⛓ [Chat with Multiple `PDFs` | LangChain App Tutorial in Python (Free LLMs and Embeddings)](https://youtu.be/dXxQ0LR-3Hg) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- ⛓ [Chat with a `CSV` | `LangChain Agents` Tutorial (Beginners)](https://youtu.be/tjeti5vXWOU) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- ⛓ [Create Your Own ChatGPT with `PDF` Data in 5 Minutes (LangChain Tutorial)](https://youtu.be/au2WVVGUvc8) by [Liam Ottley](https://www.youtube.com/@LiamOttley)
- ⛓ [Using ChatGPT with YOUR OWN Data. This is magical. (LangChain OpenAI API)](https://youtu.be/9AXP7tCI9PI) by [TechLead](https://www.youtube.com/@TechLead)
- ⛓ [Build a Custom Chatbot with OpenAI: `GPT-Index` & LangChain | Step-by-Step Tutorial](https://youtu.be/FIDv6nc4CgU) by [Fabrikod](https://www.youtube.com/@fabrikod)
- ⛓ [`Flowise` is an open source no-code UI visual tool to build 🦜🔗LangChain applications](https://youtu.be/CovAPtQPU0k) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
- ⛓ [LangChain & GPT 4 For Data Analysis: The `Pandas` Dataframe Agent](https://youtu.be/rFQ5Kmkd4jc) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
- ⛓ [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw) by [Toolfinder AI](https://www.youtube.com/@toolfinderai)
- ⛓ [`PrivateGPT`: Chat to your FILES OFFLINE and FREE [Installation and Tutorial]](https://youtu.be/G7iLllmx4qc) by [Prompt Engineering](https://www.youtube.com/@engineerprompt)
- ⛓ [How to build with Langchain 10x easier | ⛓️ LangFlow & `Flowise`](https://youtu.be/Ya1oGL7ZTvU) by [AI Jason](https://www.youtube.com/@AIJasonZ)
- ⛓ [Getting Started With LangChain In 20 Minutes- Build Celebrity Search Application](https://youtu.be/_FpT1cwcSLg) by [Krish Naik](https://www.youtube.com/@krishnaik06)
## Tutorial Series
⛓ icon marks a new addition [last update 2023-05-15]
### DeepLearning.AI course
⛓[LangChain for LLM Application Development](https://learn.deeplearning.ai/langchain) by Harrison Chase presented by [Andrew Ng](https://en.wikipedia.org/wiki/Andrew_Ng)
### Handbook
[LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
### Tutorials
[LangChain Tutorials](https://www.youtube.com/watch?v=FuqdVNB_8c0&list=PL9V0lbeJ69brU-ojMpU1Y7Ic58Tap0Cw6) by [Edrick](https://www.youtube.com/@edrickdch):
- ⛓ [LangChain, Chroma DB, OpenAI Beginner Guide | ChatGPT with your PDF](https://youtu.be/FuqdVNB_8c0)
- ⛓ [LangChain 101: The Complete Beginner's Guide](https://youtu.be/P3MAbZ2eMUI)
[LangChain Crash Course: Build an AutoGPT app in 25 minutes](https://youtu.be/MlK6SIjcjE8) by [Nicholas Renotte](https://www.youtube.com/@NicholasRenotte)
[LangChain Crash Course - Build apps with language models](https://youtu.be/LbT1yp6quS8) by [Patrick Loeber](https://www.youtube.com/@patloeber)
[LangChain Explained in 13 Minutes | QuickStart Tutorial for Beginners](https://youtu.be/aywZrzNaKjs) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
### [LangChain for Gen AI and LLMs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F) by [James Briggs](https://www.youtube.com/@jamesbriggs):
- #1 [Getting Started with `GPT-3` vs. Open Source LLMs](https://youtu.be/nE2skSRWTTs)
- #2 [Prompt Templates for `GPT 3.5` and other LLMs](https://youtu.be/RflBcK0oDH0)
- #3 [LLM Chains using `GPT 3.5` and other LLMs](https://youtu.be/S8j9Tk0lZHU)
- #4 [Chatbot Memory for `Chat-GPT`, `Davinci` + other LLMs](https://youtu.be/X05uK0TZozM)
- #5 [Chat with OpenAI in LangChain](https://youtu.be/CnAgB3A5OlU)
- ⛓ #6 [Fixing LLM Hallucinations with Retrieval Augmentation in LangChain](https://youtu.be/kvdVduIJsc8)
- ⛓ #7 [LangChain Agents Deep Dive with GPT 3.5](https://youtu.be/jSP-gSEyVeI)
- ⛓ #8 [Create Custom Tools for Chatbots in LangChain](https://youtu.be/q-HNphrWsDE)
- ⛓ #9 [Build Conversational Agents with Vector DBs](https://youtu.be/H6bCqqw9xyI)
### [LangChain 101](https://www.youtube.com/playlist?list=PLqZXAkvF1bPNQER9mLmDbntNfSpzdDIU5) by [Data Independent](https://www.youtube.com/@DataIndependent):
- [What Is LangChain? - LangChain + `ChatGPT` Overview](https://youtu.be/_v_fgW2SkkQ)
- [Question A 300 Page Book (w/ `OpenAI` + `Pinecone`)](https://youtu.be/h0DHDp1FbmQ)
- [Workaround `OpenAI's` Token Limit With Chain Types](https://youtu.be/f9_BWhCI4Zo)
- [Build Your Own OpenAI + LangChain Web App in 23 Minutes](https://youtu.be/U_eV8wfMkXU)
- [Working With The New `ChatGPT API`](https://youtu.be/e9P7FLi5Zy8)
- [OpenAI + LangChain Wrote Me 100 Custom Sales Emails](https://youtu.be/y1pyAQM-3Bo)
- [Structured Output From `OpenAI` (Clean Dirty Data)](https://youtu.be/KwAXfey-xQk)
- [Connect `OpenAI` To +5,000 Tools (LangChain + `Zapier`)](https://youtu.be/7tNm0yiDigU)
- [Use LLMs To Extract Data From Text (Expert Mode)](https://youtu.be/xZzvwR9jdPA)
- ⛓ [Extract Insights From Interview Transcripts Using LLMs](https://youtu.be/shkMOHwJ4SM)
- ⛓ [5 Levels Of LLM Summarizing: Novice to Expert](https://youtu.be/qaPMdcCqtWk)
### [LangChain How to and guides](https://www.youtube.com/playlist?list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ) by [Sam Witteveen](https://www.youtube.com/@samwitteveenai):
- [LangChain Basics - LLMs & PromptTemplates with Colab](https://youtu.be/J_0qvRt4LNk)
- [LangChain Basics - Tools and Chains](https://youtu.be/hI2BY7yl_Ac)
- [`ChatGPT API` Announcement & Code Walkthrough with LangChain](https://youtu.be/phHqvLHCwH4)
- [Conversations with Memory (explanation & code walkthrough)](https://youtu.be/X550Zbz_ROE)
- [Chat with `Flan20B`](https://youtu.be/VW5LBavIfY4)
- [Using `Hugging Face Models` locally (code walkthrough)](https://youtu.be/Kn7SX2Mx_Jk)
- [`PAL` : Program-aided Language Models with LangChain code](https://youtu.be/dy7-LvDu-3s)
- [Building a Summarization System with LangChain and `GPT-3` - Part 1](https://youtu.be/LNq_2s_H01Y)
- [Building a Summarization System with LangChain and `GPT-3` - Part 2](https://youtu.be/d-yeHDLgKHw)
- [Microsoft's `Visual ChatGPT` using LangChain](https://youtu.be/7YEiEyfPF5U)
- [LangChain Agents - Joining Tools and Chains with Decisions](https://youtu.be/ziu87EXZVUE)
- [Comparing LLMs with LangChain](https://youtu.be/rFNG0MIEuW0)
- [Using `Constitutional AI` in LangChain](https://youtu.be/uoVqNFDwpX4)
- [Talking to `Alpaca` with LangChain - Creating an Alpaca Chatbot](https://youtu.be/v6sF8Ed3nTE)
- [Talk to your `CSV` & `Excel` with LangChain](https://youtu.be/xQ3mZhw69bc)
- [`BabyAGI`: Discover the Power of Task-Driven Autonomous Agents!](https://youtu.be/QBcDLSE2ERA)
- [Improve your `BabyAGI` with LangChain](https://youtu.be/DRgPyOXZ-oE)
- ⛓ [Master `PDF` Chat with LangChain - Your essential guide to queries on documents](https://youtu.be/ZzgUqFtxgXI)
- ⛓ [Using LangChain with `DuckDuckGO` `Wikipedia` & `PythonREPL` Tools](https://youtu.be/KerHlb8nuVc)
- ⛓ [Building Custom Tools and Agents with LangChain (gpt-3.5-turbo)](https://youtu.be/biS8G8x8DdA)
- ⛓ [LangChain Retrieval QA Over Multiple Files with `ChromaDB`](https://youtu.be/3yPBVii7Ct0)
- ⛓ [LangChain Retrieval QA with Instructor Embeddings & `ChromaDB` for PDFs](https://youtu.be/cFCGUjc33aU)
- ⛓ [LangChain + Retrieval Local LLMs for Retrieval QA - No OpenAI!!!](https://youtu.be/9ISVjh8mdlA)
### [LangChain](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr) by [Prompt Engineering](https://www.youtube.com/@engineerprompt):
- [LangChain Crash Course — All You Need to Know to Build Powerful Apps with LLMs](https://youtu.be/5-fc4Tlgmro)
- [Working with MULTIPLE `PDF` Files in LangChain: `ChatGPT` for your Data](https://youtu.be/s5LhRdh5fu4)
- [`ChatGPT` for YOUR OWN `PDF` files with LangChain](https://youtu.be/TLf90ipMzfE)
- [Talk to YOUR DATA without OpenAI APIs: LangChain](https://youtu.be/wrD-fZvT6UI)
- ⛓️ [CHATGPT For WEBSITES: Custom ChatBOT](https://youtu.be/RBnuhhmD21U)
### LangChain by [Chat with data](https://www.youtube.com/@chatwithdata)
- [LangChain Beginner's Tutorial for `Typescript`/`Javascript`](https://youtu.be/bH722QgRlhQ)
- [`GPT-4` Tutorial: How to Chat With Multiple `PDF` Files (~1000 pages of Tesla's 10-K Annual Reports)](https://youtu.be/Ix9WIZpArm0)
- [`GPT-4` & LangChain Tutorial: How to Chat With A 56-Page `PDF` Document (w/`Pinecone`)](https://youtu.be/ih9PBGVVOO4)
- ⛓ [LangChain & Supabase Tutorial: How to Build a ChatGPT Chatbot For Your Website](https://youtu.be/R2FMzcsmQY8)
### [Get SH\*T Done with Prompt Engineering and LangChain](https://www.youtube.com/watch?v=muXbPpG_ys4&list=PLEJK-H61Xlwzm5FYLDdKt_6yibO33zoMW) by [Venelin Valkov](https://www.youtube.com/@venelin_valkov)
### [Prompt Engineering and LangChain](https://www.youtube.com/watch?v=muXbPpG_ys4&list=PLEJK-H61Xlwzm5FYLDdKt_6yibO33zoMW) by [Venelin Valkov](https://www.youtube.com/@venelin_valkov)
- [Getting Started with LangChain: Load Custom Data, Run OpenAI Models, Embeddings and `ChatGPT`](https://www.youtube.com/watch?v=muXbPpG_ys4)
- [Loaders, Indexes & Vectorstores in LangChain: Question Answering on `PDF` files with `ChatGPT`](https://www.youtube.com/watch?v=FQnvfR8Dmr0)
"This notebook covers how to connect to the [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the SQLDatabase wrapper of LangChain.\n",
"It is broken into 3 parts: installation and setup, connecting to Databricks, and examples."
]
},
{
"cell_type": "markdown",
"id": "0076d072",
"metadata": {},
"source": [
"## Installation and Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "739b489b",
"metadata": {},
"outputs": [],
"source": [
"!pip install databricks-sql-connector"
]
},
{
"cell_type": "markdown",
"id": "73113163",
"metadata": {},
"source": [
"## Connecting to Databricks\n",
"\n",
"You can connect to [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the `SQLDatabase.from_databricks()` method.\n",
"\n",
"### Syntax\n",
"```python\n",
"SQLDatabase.from_databricks(\n",
" catalog: str,\n",
" schema: str,\n",
" host: Optional[str] = None,\n",
" api_token: Optional[str] = None,\n",
" warehouse_id: Optional[str] = None,\n",
" cluster_id: Optional[str] = None,\n",
" engine_args: Optional[dict] = None,\n",
" **kwargs: Any)\n",
"```\n",
"### Required Parameters\n",
"* `catalog`: The catalog name in the Databricks database.\n",
"* `schema`: The schema name in the catalog.\n",
"\n",
"### Optional Parameters\n",
"There following parameters are optional. When executing the method in a Databricks notebook, you don't need to provide them in most of the cases.\n",
"* `host`: The Databricks workspace hostname, excluding 'https://' part. Defaults to 'DATABRICKS_HOST' environment variable or current workspace if in a Databricks notebook.\n",
"* `api_token`: The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. Defaults to 'DATABRICKS_TOKEN' environment variable or a temporary one is generated if in a Databricks notebook.\n",
"* `warehouse_id`: The warehouse ID in the Databricks SQL.\n",
"* `cluster_id`: The cluster ID in the Databricks Runtime. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to.\n",
"* `engine_args`: The arguments to be used when connecting Databricks.\n",
"* `**kwargs`: Additional keyword arguments for the `SQLDatabase.from_uri` method."
]
},
{
"cell_type": "markdown",
"id": "b11c7e48",
"metadata": {},
"source": [
"## Examples"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8102bca0",
"metadata": {},
"outputs": [],
"source": [
"# Connecting to Databricks with SQLDatabase wrapper\n",
"This example demonstrates the use of the [SQL Chain](https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html) for answering a question over a Databricks database."
"Answer:\u001b[32;1m\u001b[1;3mThe average duration of taxi rides that start between midnight and 6am is 987.81 seconds.\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The average duration of taxi rides that start between midnight and 6am is 987.81 seconds.'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db_chain.run(\n",
" \"What is the average duration of taxi rides that start between midnight and 6am?\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e496d5e5",
"metadata": {},
"source": [
"### SQL Database Agent example\n",
"\n",
"This example demonstrates the use of the [SQL Database Agent](/docs/modules/agents/toolkits/sql_database.html) for answering questions over a Databricks database."
"Thought:\u001b[32;1m\u001b[1;3mI should check the schema of the trips table to see if it has the necessary columns for trip distance and duration.\n",
"Thought:\u001b[32;1m\u001b[1;3mThe trips table has the necessary columns for trip distance and duration. I will write a query to find the longest trip distance and its duration.\n",
"Action: query_checker_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Observation: \u001b[31;1m\u001b[1;3mSELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe query is correct. I will now execute it to find the longest trip distance and its duration.\n",
"Action: query_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
"Final Answer: The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"What is the longest trip distance and how long did it take?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.