Compare commits

..

73 Commits

Author SHA1 Message Date
Harrison Chase
df62837fb2 cr 2023-07-02 18:03:59 -07:00
Sergey Kozlov
6d15854cda Add JSON Lines support to JSONLoader (#6913)
**Description**:

The JSON Lines format is used by some services such as OpenAI and
HuggingFace. It's also a convenient alternative to CSV.

This PR adds JSON Lines support to `JSONLoader` and also updates related
tests.

**Tag maintainer**: @rlancemartin, @eyurtsev.

PS I was not able to build docs locally so didn't update related
section.
2023-07-02 12:32:41 -07:00
Ofer Mendelevitch
153b56d19b Vectara upd2 (#6506)
Update to Vectara integration 
- By user request added "add_files" to take advantage of Vectara
capabilities to process files on the backend, without the need for
separate loading of documents and chunking in the chain.
- Updated vectara.ipynb example notebook to be broader and added testing
of add_file()
 
  @hwchase17 - project lead

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
2023-07-02 12:15:50 -07:00
Leonid Ganeline
1feac83323 docstrings document_loaders 2 (#6890)
updated docstring for the `document_loaders`

Maintainer responsibilities:
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
2023-07-02 12:14:22 -07:00
Leonid Ganeline
77ae8084a0 docstrings document_loaders 1 (#6847)
- Updated docstrings in `document_loaders`
- several code fixes.
- added `docs/extras/ecosystem/integrations/airtable.md`

@rlancemartin, @eyurtsev
2023-07-02 12:13:04 -07:00
0xcha05
e41b382e1c Added filter and delete all option to delete function in Pinecone integration, updated base VectorStore's delete function (#6876)
### Description:
Updated the delete function in the Pinecone integration to allow for
deletion of vectors by specifying a filter condition, and to delete all
vectors in a namespace.

Made the ids parameter optional in the delete function in the base
VectorStore class and allowed for additional keyword arguments.

Updated the delete function in several classes (Redis, Chroma, Supabase,
Deeplake, Elastic, Weaviate, and Cassandra) to match the changes made in
the base VectorStore class. This involved making the ids parameter
optional and allowing for additional keyword arguments.
2023-07-02 11:46:19 -07:00
Bagatur
5a45363954 bump 221 (#7047) 2023-07-02 08:32:15 -06:00
Bagatur
7acd524210 Rm retriever kwargs (#7013)
Doesn't actually limit the Retriever interface but hopefully in practice
it does
2023-07-02 08:22:24 -06:00
Johnny Lim
9dc77614e3 Polish reference docs (#7045)
This PR fixes broken links in the reference docs.
2023-07-02 08:08:51 -06:00
skspark
e5f6f0ffc4 Support params on GoogleSearchApiWrapper (#6810) (#7014)
## Description
Support search params in GoogleSearchApiWrapper's result call, for the
extra filtering on search,
to support extra query parameters that google cse provides:

https://developers.google.com/custom-search/v1/reference/rest/v1/cse/list?hl=ko

## Issue
#6810
2023-07-02 01:18:38 -06:00
Johnny Lim
052c797429 Fix typo (#7023)
This PR fixes a typo.
2023-07-02 01:17:30 -06:00
Alex Iribarren
dc2264619a Fix openai multi functions agent docs (#7028) 2023-07-02 01:16:40 -06:00
William FH
6a64870ea0 Accept no 'reasoning' response in qa evaluator (#7030) 2023-07-01 12:46:19 -07:00
William FH
7ebb76a5fa Log Errors in Evaluator Callback (#7031) 2023-07-01 12:10:00 -07:00
Stefano Lottini
8d2281a8ca Second Attempt - Add concurrent insertion of vector rows in the Cassandra Vector Store (#7017)
Retrying with the same improvements as in #6772, this time trying not to
mess up with branches.

@rlancemartin doing a fresh new PR from a branch with a new name. This
should do. Thank you for your help!

---------

Co-authored-by: Jonathan Ellis <jbellis@datastax.com>
Co-authored-by: rlm <pexpresss31@gmail.com>
2023-07-01 11:09:52 -07:00
Harrison Chase
3bfe7cf467 Harrison/split schema dir (#7025)
should be no functional changes

also keep __init__ exposing a lot for backwards compat

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-01 13:39:19 -04:00
Harrison Chase
a93cdba936 cr 2023-07-01 10:27:01 -07:00
Harrison Chase
876eed53d0 cr 2023-07-01 10:24:08 -07:00
Harrison Chase
3860412365 cr 2023-07-01 09:47:15 -07:00
Davis Chase
556c425042 Improve docstrings for langchain.schema.py (#6802)
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-01 09:46:52 -07:00
Harrison Chase
8628c30b3e cr 2023-07-01 09:46:26 -07:00
Harrison Chase
9f1efe82c6 split schema directory 2023-07-01 09:45:43 -07:00
Harrison Chase
88c1ba3e18 Merge branch 'master' into dev2049/schema_docstrings 2023-07-01 09:29:41 -07:00
Matt Robinson
0498dad562 feat: enable UnstructuredEmailLoader to process attachments (#6977)
### Summary

Updates `UnstructuredEmailLoader` so that it can process attachments in
addition to the e-mail content. The loader will process attachments if
the `process_attachments` kwarg is passed when the loader is
instantiated.

### Testing

```python

file_path = "fake-email-attachment.eml"
loader = UnstructuredEmailLoader(
    file_path, mode="elements", process_attachments=True
)
docs = loader.load()
docs[-1]
```

### Reviewers

-  @rlancemartin 
-  @eyurtsev
- @hwchase17
2023-07-01 06:09:26 -07:00
Matthew Foster Walsh
59697b406d Fix typo in quickstart.mdx (#6985)
Removed an extra "to" from a sentence. @dev2049 very minor documentation
fix.
2023-07-01 02:53:52 -06:00
Paul Grillenberger
aa37b10b28 Fix: Correct typo (#6988)
Description: Correct a minor typo in the docs. @dev2049
2023-07-01 02:53:34 -06:00
Zander Chase
b0859c9b18 Add New Retriever Interface with Callbacks (#5962)
Handle the new retriever events in a way that (I think) is entirely
backwards compatible? Needs more testing for some of the chain changes
and all.

This creates an entire new run type, however. We could also just treat
this as an event within a chain run presumably (same with memory)

Adds a subclass initializer that upgrades old retriever implementations
to the new schema, along with tests to ensure they work.

First commit doesn't upgrade any of our retriever implementations (to
show that we can pass the tests along with additional ones testing the
upgrade logic).

Second commit upgrades the known universe of retrievers in langchain.

- [X] Add callback handling methods for retriever start/end/error (open
to renaming to 'retrieval' if you want that)
- [X] Update BaseRetriever schema to support callbacks
- [X] Tests for upgrading old "v1" retrievers for backwards
compatibility
- [X] Update existing retriever implementations to implement the new
interface
- [X] Update calls within chains to .{a]get_relevant_documents to pass
the child callback manager
- [X] Update the notebooks/docs to reflect the new interface
- [X] Test notebooks thoroughly


Not handled:
- Memory pass throughs: retrieval memory doesn't have a parent callback
manager passed through the method

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>
2023-06-30 14:44:03 -07:00
William FH
a5b206caf3 Remove Promptlayer Notebook (#6996)
It's breaking our docs build
2023-06-30 14:30:24 -07:00
Daniel Chalef
b26cca8008 Zep Authentication (#6728)
## Description: Add Zep API Key argument to ZepChatMessageHistory and
ZepRetriever
- correct docs site links
- add zep api_key auth to constructors

ZepChatMessageHistory: @hwchase17, 
ZepRetriever: @rlancemartin, @eyurtsev
2023-06-30 14:24:26 -07:00
William FH
e4625846e5 Add Flyte Callback Handler (#6139) (#6986)
Signed-off-by: Samhita Alla <aallasamhita@gmail.com>
Co-authored-by: Samhita Alla <aallasamhita@gmail.com>
2023-06-30 12:25:22 -07:00
Bagatur
b3bc8a18be fmt 2023-06-30 09:37:47 -07:00
Bagatur
f1b05317f2 nit 2023-06-30 09:35:03 -07:00
Bagatur
bc8cce90d2 Merge branch 'master' into dev2049/schema_docstrings 2023-06-30 09:32:30 -07:00
Bagatur
e3b7effc8f Beef up import test (#6979) 2023-06-30 09:26:05 -07:00
Bagatur
1ce9ef3828 Rm pytz dep (#6978) 2023-06-30 09:24:01 -07:00
Davis Chase
eb180e321f Page per class-style api reference (#6560)
can make it prettier, but what do we think of overall structure?

https://api.python.langchain.com/en/dev2049-page_per_class/api_ref.html

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-06-30 09:23:32 -07:00
William FH
64039b9f11 Promptlayer Callback (#6975)
Co-authored-by: Saleh Hindi <saleh.hindi.one@gmail.com>
Co-authored-by: jped <jonathanped@gmail.com>
2023-06-30 08:32:42 -07:00
William FH
13c62cf6b1 Arthur Callback (#6972)
Co-authored-by: Max Cembalest <115359769+arthuractivemodeling@users.noreply.github.com>
2023-06-30 07:48:02 -07:00
William FH
8c73037dff Simplify eval arg names (#6944)
It'll be easier to switch between these if the names of predictions are
consistent
2023-06-30 07:47:53 -07:00
Bagatur
8f5eca236f release v220 (#6962) 2023-06-30 06:52:09 -07:00
Bagatur
60b0d6ea35 Bagatur/openllm ensure available (#6960)
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
Co-authored-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-06-30 00:54:23 -07:00
Siraj Aizlewood
521c6f0233 Provided default values for tags and inheritable_tags args in BaseRun… (#6858)
when running AsyncCallbackManagerForChainRun (from
langchain.callbacks.manager import AsyncCallbackManagerForChainRun),
provided default values for tags and inheritable_tages of empty lists in
manager.py BaseRunManager.


- Description: In manager.py, `BaseRunManager`, default values were
provided for the `__init__` args `tags` and `inheritable_tags`. They
default to empty lists (`[]`).
- Issue: When trying to use Nvidia NeMo Guardrails with LangChain, the
following exception was raised:
2023-06-29 22:01:08 -07:00
Davis Chase
bd6a0ee9e9 Redirect vecstores (#6948) 2023-06-29 19:22:21 -07:00
Davis Chase
f780678910 Add back in clickhouse mongo vecstore notebooks (#6949) 2023-06-29 19:21:47 -07:00
Jacob Lee
73831ef3d8 Change code block color scheme (#6945)
Adds contrast, makes code blocks more readable.
2023-06-29 19:21:11 -07:00
Tahjyei Thompson
7d8830f707 Add OpenAIMultiFunctionsAgent to import list in agents directory (#6824)
- Added OpenAIMultiFunctionsAgent to the import list of the Agents
directory

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-29 18:34:26 -07:00
Matt Florence
0f6737735d Order messages in PostgresChatMessageHistory (#6830)
Fixes issue: https://github.com/hwchase17/langchain/issues/6829

This guarantees message history is in the correct order. 

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-29 18:10:28 -07:00
lucasiscovici
e9950392dd Add password to PyPDR loader and parser (#6908)
Add password to PyPDR loader and parser

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-29 17:35:50 -07:00
Zander Chase
429f4dbe4d Add Input Mapper in run_on_dataset (#6894)
If you create a dataset from runs and run the same chain or llm on it
later, it usually works great.

If you have an agent dataset and want to run a different agent on it, or
have more complex schema, it's hard for us to automatically map these
values every time. This PR lets you pass in an input_mapper function
that converts the example inputs to whatever format your model expects
2023-06-29 16:53:49 -07:00
Lei Pan
76d03f398d support max_chunk_bytes in OpensearchVectorSearch to pass down to bulk (#6855)
Support `max_chunk_bytes` kwargs to pass down to `buik` helper, in order
to support the request limits in Opensearch locally and in AWS.

@rlancemartin, @eyurtsev
2023-06-29 15:50:08 -07:00
Hashem Alsaket
5861770a53 Updated QA notebook (#6801)
Description: `all_metadatas` was not defined, `OpenAIEmbeddings` was not
imported,
Issue: #6723 the issue # it fixes (if applicable),
Dependencies: lark,
Tag maintainer: @vowelparrot , @dev2049

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
2023-06-29 15:41:53 -07:00
Kacper Łukawski
140ba682f1 Support named vectors in Qdrant (#6871)
# Description

This PR makes it possible to use named vectors from Qdrant in Langchain.
That was requested multiple times, as people want to reuse externally
created collections in Langchain. It doesn't change anything for the
existing applications. The changes were covered with some integration
tests and included in the docs.

## Example

```python
Qdrant.from_documents(
    docs,
    embeddings,
    location=":memory:",
    collection_name="my_documents",
    vector_name="custom_vector",
)
```

### Issue: #2594 

Tagging @rlancemartin & @eyurtsev. I'd appreciate your review.
2023-06-29 15:14:22 -07:00
bradcrossen
9ca1cf003c Re-add Support for SQLAlchemy <1.4 (#6895)
Support for SQLAlchemy 1.3 was removed in version 0.0.203 by change
#6086. Re-adding support.

- Description: Imports SQLAlchemy Row at class creation time instead of
at init to support SQLAlchemy <1.4. This is the only breaking change and
was introduced in version 0.0.203 #6086.
  
A similar change was merged before:
https://github.com/hwchase17/langchain/pull/4647
  
  - Dependencies: Reduces SQLAlchemy dependency to > 1.3
  - Tag maintainer: @rlancemartin, @eyurtsev, @hwchase17, @wangxuqi

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
2023-06-29 14:49:35 -07:00
corranmac
20c6ade2fc Grobid parser for Scientific Articles from PDF (#6729)
### Scientific Article PDF Parsing via Grobid

`Description:`
This change adds the GrobidParser class, which uses the Grobid library
to parse scientific articles into a universal XML format containing the
article title, references, sections, section text etc. The GrobidParser
uses a local Grobid server to return PDFs document as XML and parses the
XML to optionally produce documents of individual sentences or of whole
paragraphs. Metadata includes the text, paragraph number, pdf relative
bboxes, pages (text may overlap over two pages), section title
(Introduction, Methodology etc), section_number (i.e 1.1, 2.3), the
title of the paper and finally the file path.
      
Grobid parsing is useful beyond standard pdf parsing as it accurately
outputs sections and paragraphs within them. This allows for
post-fitering of results for specific sections i.e. limiting results to
the methodology section or results. While sections are split via
headings, ideally they could be classified specifically into
introduction, methodology, results, discussion, conclusion. I'm
currently experimenting with chatgpt-3.5 for this function, which could
later be implemented as a textsplitter.

`Dependencies:`
For use, the grobid repo must be cloned and Java must be installed, for
colab this is:

```
!apt-get install -y openjdk-11-jdk -q
!update-alternatives --set java /usr/lib/jvm/java-11-openjdk-amd64/bin/java
!git clone https://github.com/kermitt2/grobid.git
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-11-openjdk-amd64"
os.chdir('grobid')
!./gradlew clean install
```

Once installed the server is ran on localhost:8070 via
```
get_ipython().system_raw('nohup ./gradlew run > grobid.log 2>&1 &')
```

@rlancemartin, @eyurtsev

Twitter Handle: @Corranmac

Grobid Demo Notebook is
[here](https://colab.research.google.com/drive/1X-St_mQRmmm8YWtct_tcJNtoktbdGBmd?usp=sharing).

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
2023-06-29 14:29:29 -07:00
Baichuan Sun
6157bdf9d9 Add API Header for Amazon API Gateway Authentication (#6902)
Add API Headers support for Amazon API Gateway to enable Authentication
using DynamoDB.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-06-29 12:58:07 -07:00
Wey Gu
1c66aa6d56 chore: NebulaGraph prompt optmization (#6904)
Was preparing for a demo project of NebulaGraphQAChain to find out the
prompt needed to be optimized a little bit.

Please @hwchase17 kindly help review.

Thanks!
2023-06-29 12:57:39 -07:00
Harrison Chase
0ba175e13f move octo notebook (#6901) 2023-06-29 12:20:55 -07:00
Stefano Lottini
75fb9d2fdc Cassandra support for chat history using CassIO library (#6771)
### Overview

This PR aims at building on #4378, expanding the capabilities and
building on top of the `cassIO` library to interface with the database
(as opposed to using the core drivers directly).

Usage of `cassIO` (a library abstracting Cassandra access for
ML/GenAI-specific purposes) is already established since #6426 was
merged, so no new dependencies are introduced.

In the same spirit, we try to uniform the interface for using Cassandra
instances throughout LangChain: all our appreciation of the work by
@jj701 notwithstanding, who paved the way for this incremental work
(thank you!), we identified a few reasons for changing the way a
`CassandraChatMessageHistory` is instantiated. Advocating a syntax
change is something we don't take lighthearted way, so we add some
explanations about this below.

Additionally, this PR expands on integration testing, enables use of
Cassandra's native Time-to-Live (TTL) features and improves the phrasing
around the notebook example and the short "integrations" documentation
paragraph.

We would kindly request @hwchase to review (since this is an elaboration
and proposed improvement of #4378 who had the same reviewer).

### About the __init__ breaking changes

There are
[many](https://docs.datastax.com/en/developer/python-driver/3.28/api/cassandra/cluster/)
options when creating the `Cluster` object, and new ones might be added
at any time. Choosing some of them and exposing them as `__init__`
parameters `CassandraChatMessageHistory` will prove to be insufficient
for at least some users.

On the other hand, working through `kwargs` or adding a long, long list
of arguments to `__init__` is not a desirable option either. For this
reason, (as done in #6426), we propose that whoever instantiates the
Chat Message History class provide a Cassandra `Session` object, ready
to use. This also enables easier injection of mocks and usage of
Cassandra-compatible connections (such as those to the cloud database
DataStax Astra DB, obtained with a different set of init parameters than
`contact_points` and `port`).

We feel that a breaking change might still be acceptable since LangChain
is at `0.*`. However, while maintaining that the approach we propose
will be more flexible in the future, room could be made for a
"compatibility layer" that respects the current init method. Honestly,
we would to that only if there are strong reasons for it, as that would
entail an additional maintenance burden.

### Other changes

We propose to remove the keyspace creation from the class code for two
reasons: first, production Cassandra instances often employ RBAC so that
the database user reading/writing from tables does not necessarily (and
generally shouldn't) have permission to create keyspaces, and second
that programmatic keyspace creation is not a best practice (it should be
done more or less manually, with extra care about schema mismatched
among nodes, etc). Removing this (usually unnecessary) operation from
the `__init__` path would also improve initialization performance
(shorter time).

We suggest, likewise, to remove the `__del__` method (which would close
the database connection), for the following reason: it is the
recommended best practice to create a single Cassandra `Session` object
throughout an application (it is a resource-heavy object capable to
handle concurrency internally), so in case Cassandra is used in other
ways by the app there is the risk of truncating the connection for all
usages when the history instance is destroyed. Moreover, the `Session`
object, in typical applications, is best left to garbage-collect itself
automatically.

As mentioned above, we defer the actual database I/O to the `cassIO`
library, which is designed to encode practices optimized for LLM
applications (among other) without the need to expose LangChain
developers to the internals of CQL (Cassandra Query Language). CassIO is
already employed by the LangChain's Vector Store support for Cassandra.

We added a few more connection options in the companion notebook example
(most notably, Astra DB) to encourage usage by anyone who cannot run
their own Cassandra cluster.

We surface the `ttl_seconds` option for automatic handling of an
expiration time to chat history messages, a likely useful feature given
that very old messages generally may lose their importance.

We elaborated a bit more on the integration testing (Time-to-live,
separation of "session ids", ...).

### Remarks from linter & co.

We reinstated `cassio` as a dependency both in the "optional" group and
in the "integration testing" group of `pyproject.toml`. This might not
be the right thing do to, in which case the author of this PR offer his
apologies (lack of confidence with Poetry - happy to be pointed in the
right direction, though!).

During linter tests, we were hit by some errors which appear unrelated
to the code in the PR. We left them here and report on them here for
awareness:

```
langchain/vectorstores/mongodb_atlas.py:137: error: Argument 1 to "insert_many" of "Collection" has incompatible type "List[Dict[str, Sequence[object]]]"; expected "Iterable[Union[MongoDBDocumentType, RawBSONDocument]]"  [arg-type]
langchain/vectorstores/mongodb_atlas.py:186: error: Argument 1 to "aggregate" of "Collection" has incompatible type "List[object]"; expected "Sequence[Mapping[str, Any]]"  [arg-type]

langchain/vectorstores/qdrant.py:16: error: Name "grpc" is not defined  [name-defined]
langchain/vectorstores/qdrant.py:19: error: Name "grpc" is not defined  [name-defined]
langchain/vectorstores/qdrant.py:20: error: Name "grpc" is not defined  [name-defined]
langchain/vectorstores/qdrant.py:22: error: Name "grpc" is not defined  [name-defined]
langchain/vectorstores/qdrant.py:23: error: Name "grpc" is not defined  [name-defined]
```

In the same spirit, we observe that to even get `import langchain` run,
it seems that a `pip install bs4` is missing from the minimal package
installation path.

Thank you!
2023-06-29 10:50:34 -07:00
Zander Chase
f5663603cf Throw error if evaluation key not present (#6874) 2023-06-29 10:30:39 -07:00
Zander Chase
be164b20d8 Accept any single input (#6888)
If I upload a dataset with a single input and output column, we should
be able to let the chain prepare the input without having to maintain a
strict dataset format.
2023-06-29 10:29:16 -07:00
Harrison Chase
8502117f62 bump version to 219 (#6899) 2023-06-28 23:48:42 -07:00
Pablo
6370808d41 Adding support for async (_acall) for VertexAICommon LLM (#5588)
# Adding support for async (_acall) for VertexAICommon LLM

This PR implements the `_acall` method under `_VertexAICommon`. Because
VertexAI itself does not provide an async interface, I implemented it
via a ThreadPoolExecutor that can delegate execution of VertexAI calls
to other threads.

Twitter handle: @polecitoem : )


## Who can review?

Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:

fyi - @agola11 for async functionality
fyi - @Ark-kun from VertexAI
2023-06-28 23:07:41 -07:00
Mike Salvatore
cbd759aaeb Fix inconsistent logging_and_data_dir parameter in AwaDB (#6775)
## Description

Tag maintainer: @rlancemartin, @eyurtsev 

### log_and_data_dir
`AwaDB.__init__()` accepts a parameter named `log_and_data_dir`. But
`AwaDB.from_texts()` and `AwaDB.from_documents()` accept a parameter
named `logging_and_data_dir`. This inconsistency in this parameter name
can lead to confusion on the part of the caller.

This PR renames `logging_and_data_dir` to `log_and_data_dir` to make all
functions consistent with the constructor.

### embedding

`AwaDB.__init__()` accepts a parameter named `embedding_model`. But
`AwaDB.from_texts()` and `AwaDB.from_documents()` accept a parameter
named `embeddings`. This inconsistency in this parameter name can lead
to confusion on the part of the caller.

This PR renames `embedding_model` to `embeddings` to make AwaDB's
constructor consistent with the classmethod "constructors" as specified
by `VectorStore` abstract base class.
2023-06-28 23:06:52 -07:00
Harrison Chase
3ac08c3de4 Harrison/octo ml (#6897)
Co-authored-by: Bassem Yacoube <125713079+AI-Bassem@users.noreply.github.com>
Co-authored-by: Shotaro Kohama <khmshtr28@gmail.com>
Co-authored-by: Rian Dolphin <34861538+rian-dolphin@users.noreply.github.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Shashank Deshpande <shashankdeshpande18@gmail.com>
2023-06-28 23:04:11 -07:00
Jiří Moravčík
a6b40b73e5 Add call_actor_task to the Apify integration (#6862)
A user has been testing the Apify integration inside langchain and he
was not able to run saved Actor tasks.

This PR adds support for calling saved Actor tasks on the Apify platform
to the existing integration. The structure of very similar to the one of
calling Actors.
2023-06-28 22:13:47 -07:00
Shashank Deshpande
99cfe192da added example notebook - use custom functions with openai agent (#6865)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-06-28 22:07:33 -07:00
Rian Dolphin
2e39ede848 add with score option for max marginal relevance (#6867)
### Adding the functionality to return the scores with retrieved
documents when using the max marginal relevance
- Description: Add the method
`max_marginal_relevance_search_with_score_by_vector` to the FAISS
wrapper. Functionality operates the same as
`similarity_search_with_score_by_vector` except for using the max
marginal relevance retrieval framework like is used in the
`max_marginal_relevance_search_by_vector` method.
  - Dependencies: None
  - Tag maintainer: @rlancemartin @eyurtsev 
  - Twitter handle: @RianDolphin

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-28 22:00:34 -07:00
Shotaro Kohama
398e4cd2dc Update langchain.chains.create_extraction_chain_pydantic to parse results successfully (#6887)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
 
- Description: 
- The current code uses `PydanticSchema.schema()` and
`_get_extraction_function` at the same time. As a result, a response
from OpenAI has two nested `info`, and
`PydanticAttrOutputFunctionsParser` fails to parse it. This PR will use
the pydantic class given as an arg instead.
- Issue: no related issue yet
- Dependencies: no dependency change
- Tag maintainer: @dev2049
- Twitter handle: @shotarok28
2023-06-28 21:57:41 -07:00
Eduard van Valkenburg
57f370cde9 PowerBI Toolkit additional logs (#6881)
Added some additional logs to better be able to troubleshoot and
understand the performance of the call to PBI vs the rest of the work.
2023-06-28 18:16:41 -07:00
Robert Lewis
c9c8d2599e Update Zapier Jupyter notebook to include brief OAuth example (#6892)
Description: Adds a brief example of using an OAuth access token with
the Zapier wrapper. Also links to the Zapier documentation to learn more
about OAuth flows.

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-28 18:06:22 -07:00
Zhicheng Geng
16b11bda83 Use getLogger instead of basicConfig in multi_query.py (#6891)
Remove `logging.basicConfig`, which turns on logging. Use `getLogger`
instead
2023-06-28 18:06:10 -07:00
Davis Chase
f07dd02b50 Docs /redirects (#6790)
Auto-generated a bunch of redirects from initial docs refactor commit
2023-06-28 17:07:53 -07:00
Dev 2049
ec6bdc16f8 add 2023-06-26 22:04:04 -07:00
336 changed files with 14548 additions and 2634 deletions

View File

@@ -9,6 +9,9 @@ build:
os: ubuntu-22.04
tools:
python: "3.11"
jobs:
pre_build:
- python docs/api_reference/create_api_rst.py
# Build documentation in the docs/ directory with Sphinx
sphinx:

View File

@@ -1,57 +0,0 @@
document.addEventListener('DOMContentLoaded', () => {
// Load the external dependencies
function loadScript(src, onLoadCallback) {
const script = document.createElement('script');
script.src = src;
script.onload = onLoadCallback;
document.head.appendChild(script);
}
function createRootElement() {
const rootElement = document.createElement('div');
rootElement.id = 'my-component-root';
document.body.appendChild(rootElement);
return rootElement;
}
function initializeMendable() {
const rootElement = createRootElement();
const { MendableFloatingButton } = Mendable;
const iconSpan1 = React.createElement('span', {
}, '🦜');
const iconSpan2 = React.createElement('span', {
}, '🔗');
const icon = React.createElement('p', {
style: { color: '#ffffff', fontSize: '22px',width: '48px', height: '48px', margin: '0px', padding: '0px', display: 'flex', alignItems: 'center', justifyContent: 'center', textAlign: 'center' },
}, [iconSpan1, iconSpan2]);
const mendableFloatingButton = React.createElement(
MendableFloatingButton,
{
style: { darkMode: false, accentColor: '#010810' },
floatingButtonStyle: { color: '#ffffff', backgroundColor: '#010810' },
anon_key: '82842b36-3ea6-49b2-9fb8-52cfc4bde6bf', // Mendable Search Public ANON key, ok to be public
cmdShortcutKey:'j',
messageSettings: {
openSourcesInNewTab: false,
prettySources: true // Prettify the sources displayed now
},
icon: icon,
}
);
ReactDOM.render(mendableFloatingButton, rootElement);
}
loadScript('https://unpkg.com/react@17/umd/react.production.min.js', () => {
loadScript('https://unpkg.com/react-dom@17/umd/react-dom.production.min.js', () => {
loadScript('https://unpkg.com/@mendable/search@0.0.102/dist/umd/mendable.min.js', initializeMendable);
});
});
});

View File

@@ -1,12 +0,0 @@
Agents
==============
Reference guide for Agents and associated abstractions.
.. toctree::
:maxdepth: 1
:glob:
modules/agents
modules/tools
modules/agent_toolkits

File diff suppressed because it is too large Load Diff

View File

@@ -11,12 +11,13 @@
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
import os
import sys
import toml
sys.path.insert(0, os.path.abspath("."))
with open("../../pyproject.toml") as f:
data = toml.load(f)
@@ -45,11 +46,9 @@ extensions = [
"sphinx.ext.napoleon",
"sphinx.ext.viewcode",
"sphinxcontrib.autodoc_pydantic",
"myst_nb",
"sphinx_copybutton",
"sphinx_panels",
"IPython.sphinxext.ipython_console_highlighting",
"sphinx_tabs.tabs",
]
source_suffix = [".rst"]
@@ -59,24 +58,22 @@ autodoc_pydantic_config_members = False
autodoc_pydantic_model_show_config_summary = False
autodoc_pydantic_model_show_validator_members = False
autodoc_pydantic_model_show_validator_summary = False
autodoc_pydantic_model_show_field_summary = False
autodoc_pydantic_model_members = False
autodoc_pydantic_model_undoc_members = False
autodoc_pydantic_model_hide_paramlist = False
autodoc_pydantic_model_signature_prefix = "class"
autodoc_pydantic_field_signature_prefix = "attribute"
autodoc_pydantic_model_summary_list_order = "bysource"
autodoc_member_order = "bysource"
autodoc_pydantic_field_signature_prefix = "param"
autodoc_member_order = "groupwise"
autoclass_content = "both"
autodoc_typehints_format = "short"
autodoc_default_options = {
"members": True,
"show-inheritance": True,
"undoc_members": True,
"inherited_members": "BaseModel",
"inherited-members": "BaseModel",
"undoc-members": True,
"special-members": "__call__",
}
autodoc_typehints = "description"
# autodoc_typehints = "description"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
templates_path = ["templates"]
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
@@ -89,14 +86,16 @@ exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
html_theme = "scikit-learn-modern"
html_theme_path = ["themes"]
html_theme_options = {
"path_to_docs": "docs",
"repository_url": "https://github.com/hwchase17/langchain",
"use_repository_button": True,
# "style_nav_header_background": "white"
# redirects dictionary maps from old links to new links
html_additional_pages = {}
redirects = {
"index": "api_reference",
}
for old_link in redirects:
html_additional_pages[old_link] = "redirects.html"
html_context = {
"display_github": True, # Integrate GitHub
@@ -104,6 +103,7 @@ html_context = {
"github_repo": "langchain", # Repo name
"github_version": "master", # Version
"conf_py_path": "/docs/api_reference", # Path in the checkout to the docs root
"redirects": redirects,
}
# Add any paths that contain custom static files (such as style sheets) here,
@@ -116,10 +116,9 @@ html_static_path = ["_static"]
html_css_files = [
"css/custom.css",
]
html_use_index = False
html_js_files = [
"js/mendablesearch.js",
]
nb_execution_mode = "off"
myst_enable_extensions = ["colon_fence"]
# generate autosummary even if no references
autosummary_generate = True

View File

@@ -0,0 +1,94 @@
"""Script for auto-generating api_reference.rst"""
import glob
import re
from pathlib import Path
ROOT_DIR = Path(__file__).parents[2].absolute()
PKG_DIR = ROOT_DIR / "langchain"
WRITE_FILE = Path(__file__).parent / "api_reference.rst"
def load_members() -> dict:
members: dict = {}
for py in glob.glob(str(PKG_DIR) + "/**/*.py", recursive=True):
module = py[len(str(PKG_DIR)) + 1 :].replace(".py", "").replace("/", ".")
top_level = module.split(".")[0]
if top_level not in members:
members[top_level] = {"classes": [], "functions": []}
with open(py, "r") as f:
for line in f.readlines():
cls = re.findall(r"^class ([^_].*)\(", line)
members[top_level]["classes"].extend([module + "." + c for c in cls])
func = re.findall(r"^def ([^_].*)\(", line)
members[top_level]["functions"].extend([module + "." + f for f in func])
return members
def construct_doc(members: dict) -> str:
full_doc = """\
.. _api_reference:
=============
API Reference
=============
"""
for module, _members in sorted(members.items(), key=lambda kv: kv[0]):
classes = _members["classes"]
functions = _members["functions"]
if not (classes or functions):
continue
module_title = module.replace("_", " ").title()
if module_title == "Llms":
module_title = "LLMs"
section = f":mod:`langchain.{module}`: {module_title}"
full_doc += f"""\
{section}
{'=' * (len(section) + 1)}
.. automodule:: langchain.{module}
:no-members:
:no-inherited-members:
"""
if classes:
cstring = "\n ".join(sorted(classes))
full_doc += f"""\
Classes
--------------
.. currentmodule:: langchain
.. autosummary::
:toctree: {module}
:template: class.rst
{cstring}
"""
if functions:
fstring = "\n ".join(sorted(functions))
full_doc += f"""\
Functions
--------------
.. currentmodule:: langchain
.. autosummary::
:toctree: {module}
{fstring}
"""
return full_doc
def main() -> None:
members = load_members()
full_doc = construct_doc(members)
with open(WRITE_FILE, "w") as f:
f.write(full_doc)
if __name__ == "__main__":
main()

View File

@@ -1,13 +0,0 @@
Data connection
==============
LangChain has a number of modules that help you load, structure, store, and retrieve documents.
.. toctree::
:maxdepth: 1
:glob:
modules/document_loaders
modules/document_transformers
modules/embeddings
modules/vectorstores
modules/retrievers

View File

@@ -1,29 +1,8 @@
API Reference
==========================
| Full documentation on all methods, classes, and APIs in the LangChain Python package.
=============
LangChain API
=============
.. toctree::
:maxdepth: 1
:caption: Abstractions
:maxdepth: 2
./modules/base_classes.rst
.. toctree::
:maxdepth: 1
:caption: Core
./model_io.rst
./data_connection.rst
./modules/chains.rst
./agents.rst
./modules/memory.rst
./modules/callbacks.rst
.. toctree::
:maxdepth: 1
:caption: Additional
./modules/utilities.rst
./modules/experimental.rst
api_reference.rst

View File

@@ -1,12 +0,0 @@
Model I/O
==============
LangChain provides interfaces and integrations for working with language models.
.. toctree::
:maxdepth: 1
:glob:
./prompts.rst
./models.rst
./modules/output_parsers.rst

View File

@@ -1,11 +0,0 @@
Models
==============
LangChain provides interfaces and integrations for a number of different types of models.
.. toctree::
:maxdepth: 1
:glob:
modules/llms
modules/chat_models

View File

@@ -1,7 +0,0 @@
Agent Toolkits
===============================
.. automodule:: langchain.agents.agent_toolkits
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Agents
===============================
.. automodule:: langchain.agents
:members:
:undoc-members:

View File

@@ -1,5 +0,0 @@
Base classes
========================
.. automodule:: langchain.schema
:inherited-members:

View File

@@ -1,7 +0,0 @@
Callbacks
=======================
.. automodule:: langchain.callbacks
:members:
:undoc-members:

View File

@@ -1,8 +0,0 @@
Chains
=======================
.. automodule:: langchain.chains
:members:
:undoc-members:
:inherited-members: BaseModel

View File

@@ -1,7 +0,0 @@
Chat Models
===============================
.. automodule:: langchain.chat_models
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Document Loaders
===============================
.. automodule:: langchain.document_loaders
:members:
:undoc-members:

View File

@@ -1,13 +0,0 @@
Document Transformers
===============================
.. automodule:: langchain.document_transformers
:members:
:undoc-members:
Text Splitters
------------------------------
.. automodule:: langchain.text_splitter
:members:
:undoc-members:

View File

@@ -1,5 +0,0 @@
Embeddings
===========================
.. automodule:: langchain.embeddings
:members:

View File

@@ -1,5 +0,0 @@
Example Selector
=========================================
.. automodule:: langchain.prompts.example_selector
:members:

View File

@@ -1,28 +0,0 @@
====================
Experimental
====================
This module contains experimental modules and reproductions of existing work using LangChain primitives.
Autonomous agents
------------------
Here, we document the BabyAGI and AutoGPT classes from the langchain.experimental module.
.. autoclass:: langchain.experimental.BabyAGI
:members:
.. autoclass:: langchain.experimental.AutoGPT
:members:
Generative agents
------------------
Here, we document the GenerativeAgent and GenerativeAgentMemory classes from the langchain.experimental module.
.. autoclass:: langchain.experimental.GenerativeAgent
:members:
.. autoclass:: langchain.experimental.GenerativeAgentMemory
:members:

View File

@@ -1,7 +0,0 @@
LLMs
=======================
.. automodule:: langchain.llms
:members:
:inherited-members:
:special-members: __call__

View File

@@ -1,7 +0,0 @@
Memory
===============================
.. automodule:: langchain.memory
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Output Parsers
===============================
.. automodule:: langchain.output_parsers
:members:
:undoc-members:

View File

@@ -1,6 +0,0 @@
Prompt Templates
========================
.. automodule:: langchain.prompts
:members:
:undoc-members:

View File

@@ -1,14 +0,0 @@
Retrievers
===============================
.. automodule:: langchain.retrievers
:members:
:undoc-members:
Document compressors
-------------------------------
.. automodule:: langchain.retrievers.document_compressors
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Tools
===============================
.. automodule:: langchain.tools
:members:
:undoc-members:

View File

@@ -1,7 +0,0 @@
Utilities
===============================
.. automodule:: langchain.utilities
:members:
:undoc-members:

View File

@@ -1,6 +0,0 @@
Vector Stores
=============================
.. automodule:: langchain.vectorstores
:members:
:undoc-members:

View File

@@ -1,11 +0,0 @@
Prompts
==============
The reference guides here all relate to objects for working with Prompts.
.. toctree::
:maxdepth: 1
:glob:
modules/prompts
modules/example_selector

View File

@@ -0,0 +1,27 @@
Copyright (c) 2007-2023 The scikit-learn developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -0,0 +1,28 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
~{{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}
{% block attributes %}
{% if attributes %}
.. rubric:: {{ _('Attributes') }}
.. autosummary::
{% for item in attributes %}
~{{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}

View File

@@ -0,0 +1,15 @@
{% set redirect = pathto(redirects[pagename]) %}
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="Refresh" content="0; url={{ redirect }}" />
<meta name="Description" content="scikit-learn: machine learning in Python">
<link rel="canonical" href="{{ redirect }}" />
<title>scikit-learn: machine learning in Python</title>
</head>
<body>
<p>You will be automatically redirected to the <a href="{{ redirect }}">new location of this page</a>.</p>
</body>
</html>

View File

@@ -0,0 +1,27 @@
Copyright (c) 2007-2023 The scikit-learn developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -0,0 +1,67 @@
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
var hide_text = 'Hide prompts and outputs';
var show_text = 'Show prompts and outputs';
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
if (jthis.find('.gp').length > 0) {
var button = $('<span class="copybutton">&gt;&gt;&gt;</span>');
button.attr('title', hide_text);
button.data('hidden', 'false');
jthis.prepend(button);
}
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
// define the behavior of the button when it's clicked
$('.copybutton').click(function(e){
e.preventDefault();
var button = $(this);
if (button.data('hidden') === 'false') {
// hide the code output
button.parent().find('.go, .gp, .gt').hide();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden');
button.css('text-decoration', 'line-through');
button.attr('title', show_text);
button.data('hidden', 'true');
} else {
// show the code output
button.parent().find('.go, .gp, .gt').show();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible');
button.css('text-decoration', 'none');
button.attr('title', hide_text);
button.data('hidden', 'false');
}
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
});
</script>
{%- if pagename != 'index' and pagename != 'documentation' %}
{% if theme_mathjax_path %}
<script id="MathJax-script" async src="{{ theme_mathjax_path }}"></script>
{% endif %}
{%- endif %}

View File

@@ -0,0 +1,142 @@
{# TEMPLATE VAR SETTINGS #}
{%- set url_root = pathto('', 1) %}
{%- if url_root == '#' %}{% set url_root = '' %}{% endif %}
{%- if not embedded and docstitle %}
{%- set titlesuffix = " &mdash; "|safe + docstitle|e %}
{%- else %}
{%- set titlesuffix = "" %}
{%- endif %}
{%- set lang_attr = 'en' %}
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="{{ lang_attr }}" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="{{ lang_attr }}" > <!--<![endif]-->
<head>
<meta charset="utf-8">
{{ metatags }}
<meta name="viewport" content="width=device-width, initial-scale=1.0">
{% block htmltitle %}
<title>{{ title|striptags|e }}{{ titlesuffix }}</title>
{% endblock %}
<link rel="canonical" href="http://scikit-learn.org/stable/{{pagename}}.html" />
{% if favicon_url %}
<link rel="shortcut icon" href="{{ favicon_url|e }}"/>
{% endif %}
<link rel="stylesheet" href="{{ pathto('_static/css/vendor/bootstrap.min.css', 1) }}" type="text/css" />
{%- for css in css_files %}
{%- if css|attr("rel") %}
<link rel="{{ css.rel }}" href="{{ pathto(css.filename, 1) }}" type="text/css"{% if css.title is not none %} title="{{ css.title }}"{% endif %} />
{%- else %}
<link rel="stylesheet" href="{{ pathto(css, 1) }}" type="text/css" />
{%- endif %}
{%- endfor %}
<link rel="stylesheet" href="{{ pathto('_static/' + style, 1) }}" type="text/css" />
<script id="documentation_options" data-url_root="{{ pathto('', 1) }}" src="{{ pathto('_static/documentation_options.js', 1) }}"></script>
<script src="{{ pathto('_static/jquery.js', 1) }}"></script>
{%- block extrahead %} {% endblock %}
</head>
<body>
{% include "nav.html" %}
{%- block content %}
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
{%- if prev %}
<a href="{{ prev.link|e }}" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="{{ prev.title|striptags }}">Prev</a>
{%- else %}
<a href="#" role="button" class="btn sk-btn-rellink py-1 disabled"">Prev</a>
{%- endif %}
{%- if parents -%}
<a href="{{ parents[-1].link|e }}" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="{{ parents[-1].title|striptags }}">Up</a>
{%- else %}
<a href="#" role="button" class="btn sk-btn-rellink disabled py-1">Up</a>
{%- endif %}
{%- if next %}
<a href="{{ next.link|e }}" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="{{ next.title|striptags }}">Next</a>
{%- else %}
<a href="#" role="button" class="btn sk-btn-rellink py-1 disabled"">Next</a>
{%- endif %}
</div>
{%- if pagename != "install" %}
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>LangChain {{ release }}</strong><br/>
</p>
</div>
{%- endif %}
{%- if meta and meta['parenttoc']|tobool %}
<div class="sk-sidebar-toc">
{% set nav = get_nav_object(maxdepth=3, collapse=True, numbered=True) %}
<ul>
{% for main_nav_item in nav %}
{% if main_nav_item.active %}
<li>
<a href="{{ main_nav_item.url }}" class="sk-toc-active">{{ main_nav_item.title }}</a>
</li>
<ul>
{% for nav_item in main_nav_item.children %}
<li>
<a href="{{ nav_item.url }}" class="{% if nav_item.active %}sk-toc-active{% endif %}">{{ nav_item.title }}</a>
{% if nav_item.children %}
<ul>
{% for inner_child in nav_item.children %}
<li class="sk-toctree-l3">
<a href="{{ inner_child.url }}">{{ inner_child.title }}</a>
</li>
{% endfor %}
</ul>
{% endif %}
</li>
{% endfor %}
</ul>
{% endif %}
{% endfor %}
</ul>
</div>
{%- elif meta and meta['globalsidebartoc']|tobool %}
<div class="sk-sidebar-toc sk-sidebar-global-toc">
{{ toctree(maxdepth=2, titles_only=True) }}
</div>
{%- else %}
<div class="sk-sidebar-toc">
{{ toc }}
</div>
{%- endif %}
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
{% block body %}{% endblock %}
</div>
<div class="container">
<footer class="sk-content-footer">
{%- if pagename != 'index' %}
{%- if show_copyright %}
{%- if hasdoc('copyright') %}
{% trans path=pathto('copyright'), copyright=copyright|e %}&copy; {{ copyright }}.{% endtrans %}
{%- else %}
{% trans copyright=copyright|e %}&copy; {{ copyright }}.{% endtrans %}
{%- endif %}
{%- endif %}
{%- if last_updated %}
{% trans last_updated=last_updated|e %}Last updated on {{ last_updated }}.{% endtrans %}
{%- endif %}
{%- if show_source and has_source and sourcename %}
<a href="{{ pathto('_sources/' + sourcename, true)|e }}" rel="nofollow">{{ _('Show this page source') }}</a>
{%- endif %}
{%- endif %}
</footer>
</div>
</div>
</div>
{%- endblock %}
<script src="{{ pathto('_static/js/vendor/bootstrap.min.js', 1) }}"></script>
{% include "javascript.html" %}
</body>
</html>

View File

@@ -0,0 +1,85 @@
{%- if pagename != 'index' and pagename != 'documentation' %}
{%- set nav_bar_class = "sk-docs-navbar" %}
{%- set top_container_cls = "sk-docs-container" %}
{%- else %}
{%- set nav_bar_class = "sk-landing-navbar" %}
{%- set top_container_cls = "sk-landing-container" %}
{%- endif %}
{% if theme_link_to_live_contributing_page|tobool %}
{# Link to development page for live builds #}
{%- set development_link = "https://scikit-learn.org/dev/developers/index.html" %}
{# Open on a new development page in new window/tab for live builds #}
{%- set development_attrs = 'target="_blank" rel="noopener noreferrer"' %}
{%- else %}
{%- set development_link = pathto('developers/index') %}
{%- set development_attrs = '' %}
{%- endif %}
{# title, link, link_attrs #}
{%- set drop_down_navigation = [
('Getting Started', pathto('getting_started'), ''),
('Tutorial', pathto('tutorial/index'), ''),
("What's new", pathto('whats_new/v' + version), ''),
('Glossary', pathto('glossary'), ''),
('Development', development_link, development_attrs),
('FAQ', pathto('faq'), ''),
('Support', pathto('support'), ''),
('Related packages', pathto('related_projects'), ''),
('Roadmap', pathto('roadmap'), ''),
('Governance', pathto('governance'), ''),
('About us', pathto('about'), ''),
('GitHub', 'https://github.com/scikit-learn/scikit-learn', ''),
('Other Versions and Download', 'https://scikit-learn.org/dev/versions.html', '')]
-%}
<nav id="navbar" class="{{ nav_bar_class }} navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid {{ top_container_cls }} px-0">
{%- if logo_url %}
<a class="navbar-brand py-0" href="{{ pathto('index') }}">
<img
class="sk-brand-img"
src="{{ logo_url|e }}"
alt="logo"/>
</a>
{%- endif %}
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('api_reference') }}">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://python.langchain.com/">Python Docs</a>
</li>
{%- for title, link, link_attrs in drop_down_navigation %}
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="{{ link }}" {{ link_attrs }}>{{ title }}</a>
</li>
{%- endfor %}
</ul>
{%- if pagename != "search"%}
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="{{ pathto('search') }}" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="{{ _('Go') }}" />
</form>
</div>
</div>
{%- endif %}
</div>
</div>
</nav>

View File

@@ -0,0 +1,16 @@
{%- extends "basic/search.html" %}
{% block extrahead %}
<script type="text/javascript" src="{{ pathto('_static/underscore.js', 1) }}"></script>
<script type="text/javascript" src="{{ pathto('searchindex.js', 1) }}" defer></script>
<script type="text/javascript" src="{{ pathto('_static/doctools.js', 1) }}"></script>
<script type="text/javascript" src="{{ pathto('_static/language_data.js', 1) }}"></script>
<script type="text/javascript" src="{{ pathto('_static/searchtools.js', 1) }}"></script>
<!-- <script type="text/javascript" src="{{ pathto('_static/sphinx_highlight.js', 1) }}"></script> -->
<script type="text/javascript">
$(document).ready(function() {
if (!Search.out) {
Search.init();
}
});
</script>
{% endblock %}

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,8 @@
[theme]
inherit = basic
pygments_style = default
stylesheet = css/theme.css
[options]
link_to_live_contributing_page = false
mathjax_path =

View File

@@ -47,7 +47,7 @@ import ChatModel from "@snippets/get_started/quickstart/chat_model.mdx"
## Prompt templates
Most LLM applications do not pass user input directly into to an LLM. Usually they will add the user input to a larger piece of text, called a prompt template, that provides additional context on the specific task at hand.
Most LLM applications do not pass user input directly into an LLM. Usually they will add the user input to a larger piece of text, called a prompt template, that provides additional context on the specific task at hand.
In the previous example, the text we passed to the model contained instructions to generate a company name. For our application, it'd be great if the user only had to provide the description of a company/product, without having to worry about giving the model instructions.
@@ -138,7 +138,7 @@ The chains and agents we've looked at so far have been stateless, but for many a
The Memory module gives you a way to maintain application state. The base Memory interface is simple: it lets you update state given the latest run inputs and outputs and it lets you modify (or contextualize) the next input using the stored state.
There are a number of built-in memory systems. The simplest of these are is a buffer memory which just prepends the last few inputs/outputs to the current input - we will use this in the example below.
There are a number of built-in memory systems. The simplest of these is a buffer memory which just prepends the last few inputs/outputs to the current input - we will use this in the example below.
import MemoryLLM from "@snippets/get_started/quickstart/memory_llms.mdx"
import MemoryChatModel from "@snippets/get_started/quickstart/memory_chat_models.mdx"
@@ -155,4 +155,4 @@ You can use Memory with chains and agents initialized with chat models. The main
<MemoryChatModel/>
</TabItem>
</Tabs>
</Tabs>

View File

@@ -2,6 +2,8 @@
>[JSON (JavaScript Object Notation)](https://en.wikipedia.org/wiki/JSON) is an open standard file format and data interchange format that uses human-readable text to store and transmit data objects consisting of attributevalue pairs and arrays (or other serializable values).
>[JSON Lines](https://jsonlines.org/) is a file format where each line is a valid JSON value.
import Example from "@snippets/modules/data_connection/document_loaders/how_to/json.mdx"
<Example/>

View File

@@ -10,7 +10,7 @@ for you.
## Get started
This walkthrough showcases basic functionality related to VectorStores. A key part of working with vector stores is creating the vector to put in them, which is usually created via embeddings. Therefore, it is recommended that you familiarize yourself with the [text embedding model](/docs/modules/model_io/models/embeddings.html) interfaces before diving into this.
This walkthrough showcases basic functionality related to VectorStores. A key part of working with vector stores is creating the vector to put in them, which is usually created via embeddings. Therefore, it is recommended that you familiarize yourself with the [text embedding model](/docs/modules/data_connection/text_embedding/) interfaces before diving into this.
import GetStarted from "@snippets/modules/data_connection/vectorstores/get_started.mdx"

View File

@@ -7,7 +7,10 @@ const { ProvidePlugin } = require("webpack");
const path = require("path");
const examplesPath = path.resolve(__dirname, "..", "examples", "src");
const snippetsPath = path.resolve(__dirname, "..", "snippets")
const snippetsPath = path.resolve(__dirname, "..", "snippets");
const baseLightCodeBlockTheme = require("prism-react-renderer/themes/vsLight");
const baseDarkCodeBlockTheme = require("prism-react-renderer/themes/vsDark");
/** @type {import('@docusaurus/types').Config} */
const config = {
@@ -127,8 +130,20 @@ const config = {
},
},
prism: {
theme: require("prism-react-renderer/themes/vsLight"),
darkTheme: require("prism-react-renderer/themes/vsDark"),
theme: {
...baseLightCodeBlockTheme,
plain: {
...baseLightCodeBlockTheme.plain,
backgroundColor: "#F5F5F5",
},
},
darkTheme: {
...baseDarkCodeBlockTheme,
plain: {
...baseDarkCodeBlockTheme.plain,
backgroundColor: "#222222",
},
},
},
image: "img/parrot-chainlink-icon.png",
navbar: {

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,28 @@
# Airtable
>[Airtable](https://en.wikipedia.org/wiki/Airtable) is a cloud collaboration service.
`Airtable` is a spreadsheet-database hybrid, with the features of a database but applied to a spreadsheet.
> The fields in an Airtable table are similar to cells in a spreadsheet, but have types such as 'checkbox',
> 'phone number', and 'drop-down list', and can reference file attachments like images.
>Users can create a database, set up column types, add records, link tables to one another, collaborate, sort records
> and publish views to external websites.
## Installation and Setup
```bash
pip install pyairtable
```
* Get your [API key](https://support.airtable.com/docs/creating-and-using-api-keys-and-access-tokens).
* Get the [ID of your base](https://airtable.com/developers/web/api/introduction).
* Get the [table ID from the table url](https://www.highviewapps.com/kb/where-can-i-find-the-airtable-base-id-and-table-id/#:~:text=Both%20the%20Airtable%20Base%20ID,URL%20that%20begins%20with%20tbl).
## Document Loader
```python
from langchain.document_loaders import AirtableLoader
```
See an [example](/docs/modules/data_connection/document_loaders/integrations/airtable.html).

View File

@@ -0,0 +1,464 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "944e4194",
"metadata": {},
"source": [
"# Arthur LangChain integration"
]
},
{
"cell_type": "markdown",
"id": "b1ccdfe8",
"metadata": {},
"source": [
"[Arthur](https://www.arthur.ai/) is a model monitoring and observability platform.\n",
"\n",
"This notebook shows how to register LLMs (chat and non-chat) as models with the Arthur platform. Then we show how to set up langchain LLMs with an Arthur callback that will automatically log model inferences to Arthur.\n",
"\n",
"For more information about how to use the Arthur SDK, visit our [docs](http://docs.arthur.ai), in particular our [model onboarding guide](https://docs.arthur.ai/user-guide/walkthroughs/model-onboarding/index.html)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "961c6691",
"metadata": {},
"outputs": [],
"source": [
"from langchain.callbacks import ArthurCallbackHandler\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"from langchain.chat_models import ChatOpenAI, ChatAnthropic\n",
"from langchain.schema import HumanMessage\n",
"from langchain.llms import OpenAI, Cohere, HuggingFacePipeline"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a23d1963",
"metadata": {},
"outputs": [],
"source": [
"from arthurai import ArthurAI\n",
"from arthurai.common.constants import InputType, OutputType, Stage, ValueType\n",
"from arthurai.core.attributes import ArthurAttribute, AttributeCategory"
]
},
{
"cell_type": "markdown",
"id": "4d1b90c0",
"metadata": {},
"source": [
"# ArthurModel for chatbot with only input text and output text attributes"
]
},
{
"cell_type": "markdown",
"id": "1a4a4a8a",
"metadata": {},
"source": [
"Connect to Arthur client"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f49e9b79",
"metadata": {},
"outputs": [],
"source": [
"arthur_url = \"https://app.arthur.ai\"\n",
"arthur_login = \"your-username-here\"\n",
"arthur = ArthurAI(url=arthur_url, login=arthur_login)"
]
},
{
"cell_type": "markdown",
"id": "c6e063bf",
"metadata": {},
"source": [
"Before you can register model inferences to Arthur, you must have a registered model with an ID in the Arthur platform. We will provide this ID to the ArthurCallbackHandler.\n",
"\n",
"You can register a model with Arthur here in the notebook using this `register_chat_llm()` function. This function returns the ID of the model saved to the platform. To use the function, uncomment `arthur_model_chatbot_id = register_chat_llm()` in the cell below."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "31b17b5e",
"metadata": {},
"outputs": [],
"source": [
"def register_chat_llm():\n",
"\n",
" arthur_model = arthur.model(\n",
" display_name=\"LangChainChat\",\n",
" input_type=InputType.NLP,\n",
" output_type=OutputType.TokenSequence\n",
" )\n",
"\n",
" arthur_model._add_attribute_to_model(ArthurAttribute(\n",
" name=\"my_input_text\",\n",
" stage=Stage.ModelPipelineInput,\n",
" value_type=ValueType.Unstructured_Text,\n",
" categorical=True,\n",
" is_unique=True\n",
" ))\n",
" arthur_model._add_attribute_to_model(ArthurAttribute(\n",
" name=\"my_output_text\",\n",
" stage=Stage.PredictedValue,\n",
" value_type=ValueType.Unstructured_Text,\n",
" categorical=True,\n",
" is_unique=False,\n",
" ))\n",
" \n",
" return arthur_model.save()\n",
"# arthur_model_chatbot_id = register_chat_llm()"
]
},
{
"cell_type": "markdown",
"id": "0d1d1e60",
"metadata": {},
"source": [
"Alternatively, you can set the `arthur_model_chatbot_id` variable to be the ID of your model on your [model dashboard](https://app.arthur.ai/)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "cdfa02c8",
"metadata": {},
"outputs": [],
"source": [
"arthur_model_chatbot_id = \"your-model-id-here\""
]
},
{
"cell_type": "markdown",
"id": "58be5234",
"metadata": {},
"source": [
"This function creates a Langchain chat LLM with the ArthurCallbackHandler to log inferences to Arthur. We provide our `arthur_model_chatbot_id`, as well as the Arthur url and login we are using."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "448a8fee",
"metadata": {},
"outputs": [],
"source": [
"def make_langchain_chat_llm(chat_model=ChatOpenAI):\n",
" if chat_model not in [ChatOpenAI, ChatAnthropic]:\n",
" raise ValueError(\"For this notebook, use one of the chat models imported from langchain.chat_models\")\n",
" return chat_model(\n",
" streaming=True, \n",
" temperature=0.1,\n",
" callbacks=[\n",
" StreamingStdOutCallbackHandler(), \n",
" ArthurCallbackHandler.from_credentials(arthur_model_chatbot_id, arthur_url=arthur_url, arthur_login=arthur_login)\n",
" ])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "17c182da",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2dfc00ed",
"metadata": {},
"outputs": [],
"source": [
"chat_llm = make_langchain_chat_llm()"
]
},
{
"cell_type": "markdown",
"id": "139291f2",
"metadata": {},
"source": [
"Run the chatbot (it will save the chat history in the `history` list so that the conversation can reference earlier messages)\n",
"\n",
"Type `q` to quit"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7480a443",
"metadata": {},
"outputs": [],
"source": [
"def run_langchain_chat_llm(llm):\n",
" history = []\n",
" while True:\n",
" user_input = input(\"\\n>>> input >>>\\n>>>: \")\n",
" if user_input == 'q': break\n",
" history.append(HumanMessage(content=user_input))\n",
" history.append(llm(history))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "6868ce71",
"metadata": {},
"outputs": [],
"source": [
"run_langchain_chat_llm(chat_llm)"
]
},
{
"cell_type": "markdown",
"id": "a0be7d01",
"metadata": {},
"source": [
"# ArthurModel with input text, output text, token likelihoods, finish reason, and amount of token usage attributes"
]
},
{
"cell_type": "markdown",
"id": "1ee4b741",
"metadata": {},
"source": [
"This function registers an LLM with additional metadata attributes to log to Arthur with each inference\n",
"\n",
"As above, you can register your callback handler for an LLM using this function here in the notebook or by pasting the ID of an already-registered model from your [model dashboard](https://app.arthur.ai/)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "e671836c",
"metadata": {},
"outputs": [],
"source": [
"def register_llm():\n",
"\n",
" arthur_model = arthur.model(\n",
" display_name=\"LangChainLLM\",\n",
" input_type=InputType.NLP,\n",
" output_type=OutputType.TokenSequence\n",
" )\n",
" arthur_model._add_attribute_to_model(ArthurAttribute(\n",
" name=\"my_input_text\",\n",
" stage=Stage.ModelPipelineInput,\n",
" value_type=ValueType.Unstructured_Text,\n",
" categorical=True,\n",
" is_unique=True\n",
" ))\n",
" arthur_model._add_attribute_to_model(ArthurAttribute(\n",
" name=\"my_output_text\",\n",
" stage=Stage.PredictedValue,\n",
" value_type=ValueType.Unstructured_Text,\n",
" categorical=True,\n",
" is_unique=False,\n",
" token_attribute_link=\"my_output_likelihoods\"\n",
" ))\n",
" arthur_model._add_attribute_to_model(ArthurAttribute(\n",
" name=\"my_output_likelihoods\",\n",
" stage=Stage.PredictedValue,\n",
" value_type=ValueType.TokenLikelihoods,\n",
" token_attribute_link=\"my_output_text\"\n",
" ))\n",
" arthur_model._add_attribute_to_model(ArthurAttribute(\n",
" name=\"finish_reason\",\n",
" stage=Stage.NonInputData,\n",
" value_type=ValueType.String,\n",
" categorical=True,\n",
" categories=[\n",
" AttributeCategory(value='stop'),\n",
" AttributeCategory(value='length'),\n",
" AttributeCategory(value='content_filter'),\n",
" AttributeCategory(value='null')\n",
" ]\n",
" ))\n",
" arthur_model._add_attribute_to_model(ArthurAttribute(\n",
" name=\"prompt_tokens\",\n",
" stage=Stage.NonInputData,\n",
" value_type=ValueType.Integer\n",
" ))\n",
" arthur_model._add_attribute_to_model(ArthurAttribute(\n",
" name=\"completion_tokens\",\n",
" stage=Stage.NonInputData,\n",
" value_type=ValueType.Integer\n",
" ))\n",
" arthur_model._add_attribute_to_model(ArthurAttribute(\n",
" name=\"duration\",\n",
" stage=Stage.NonInputData,\n",
" value_type=ValueType.Float\n",
" ))\n",
" \n",
" return arthur_model.save()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "2a6686f7",
"metadata": {},
"outputs": [],
"source": [
"arthur_model_llm_id = \"your-model-id-here\""
]
},
{
"cell_type": "markdown",
"id": "2dcacb96",
"metadata": {},
"source": [
"These functions create Langchain LLMs with the ArthurCallbackHandler to log inferences to Arthur.\n",
"\n",
"There are small differences in the underlying Langchain integrations with these libraries and the available metadata for model inputs & outputs"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "34cf0072",
"metadata": {},
"outputs": [],
"source": [
"def make_langchain_openai_llm():\n",
" return OpenAI(\n",
" temperature=0.1,\n",
" model_kwargs = {'logprobs': 3},\n",
" callbacks=[\n",
" ArthurCallbackHandler.from_credentials(arthur_model_llm_id, arthur_url=arthur_url, arthur_login=arthur_login)\n",
" ])\n",
"\n",
"def make_langchain_cohere_llm():\n",
" return Cohere(\n",
" temperature=0.1,\n",
" callbacks=[\n",
" ArthurCallbackHandler.from_credentials(arthur_model_chatbot_id, arthur_url=arthur_url, arthur_login=arthur_login)\n",
" ])\n",
"\n",
"def make_langchain_huggingface_llm():\n",
" llm = HuggingFacePipeline.from_model_id(\n",
" model_id=\"bert-base-uncased\", \n",
" task=\"text-generation\", \n",
" model_kwargs={\"temperature\":2.5, \"max_length\":64})\n",
" llm.callbacks = [\n",
" ArthurCallbackHandler.from_credentials(arthur_model_chatbot_id, arthur_url=arthur_url, arthur_login=arthur_login)\n",
" ]\n",
" return llm"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "f40c3ce0",
"metadata": {},
"outputs": [],
"source": [
"openai_llm = make_langchain_openai_llm()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "8476d531",
"metadata": {},
"outputs": [],
"source": [
"cohere_llm = make_langchain_cohere_llm()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7483b9d3",
"metadata": {},
"outputs": [],
"source": [
"huggingface_llm = make_langchain_huggingface_llm()"
]
},
{
"cell_type": "markdown",
"id": "c17d8e86",
"metadata": {},
"source": [
"Run the LLM (each completion is independent, no chat history is saved as we were doing above with the chat llms)\n",
"\n",
"Type `q` to quit"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "72ee0790",
"metadata": {},
"outputs": [],
"source": [
"def run_langchain_llm(llm):\n",
" while True:\n",
" print(\"Type your text for completion:\\n\")\n",
" user_input = input(\"\\n>>> input >>>\\n>>>: \")\n",
" if user_input == 'q': break\n",
" print(llm(user_input), \"\\n================\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "fb864057",
"metadata": {},
"outputs": [],
"source": [
"run_langchain_llm(openai_llm)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "e6673769",
"metadata": {},
"outputs": [],
"source": [
"run_langchain_llm(cohere_llm)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "85541f1c",
"metadata": {},
"outputs": [],
"source": [
"run_langchain_llm(huggingface_llm)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,19 +1,31 @@
# Cassandra
>[Cassandra](https://en.wikipedia.org/wiki/Apache_Cassandra) is a free and open-source, distributed, wide-column
>[Apache Cassandra®](https://cassandra.apache.org/) is a free and open-source, distributed, wide-column
> store, NoSQL database management system designed to handle large amounts of data across many commodity servers,
> providing high availability with no single point of failure. `Cassandra` offers support for clusters spanning
> providing high availability with no single point of failure. Cassandra offers support for clusters spanning
> multiple datacenters, with asynchronous masterless replication allowing low latency operations for all clients.
> `Cassandra` was designed to implement a combination of `Amazon's Dynamo` distributed storage and replication
> techniques combined with `Google's Bigtable` data and storage engine model.
> Cassandra was designed to implement a combination of _Amazon's Dynamo_ distributed storage and replication
> techniques combined with _Google's Bigtable_ data and storage engine model.
## Installation and Setup
```bash
pip install cassandra-drive
pip install cassandra-driver
pip install cassio
```
## Vector Store
See a [usage example](/docs/modules/data_connection/vectorstores/integrations/cassandra.html).
```python
from langchain.memory import CassandraChatMessageHistory
```
## Memory
See a [usage example](/docs/modules/memory/integrations/cassandra_chat_message_history.html).

View File

@@ -0,0 +1,153 @@
# Flyte
> [Flyte](https://github.com/flyteorg/flyte) is an open-source orchestrator that facilitates building production-grade data and ML pipelines.
> It is built for scalability and reproducibility, leveraging Kubernetes as its underlying platform.
The purpose of this notebook is to demonstrate the integration of a `FlyteCallback` into your Flyte task, enabling you to effectively monitor and track your LangChain experiments.
## Installation & Setup
- Install the Flytekit library by running the command `pip install flytekit`.
- Install the Flytekit-Envd plugin by running the command `pip install flytekitplugins-envd`.
- Install LangChain by running the command `pip install langchain`.
- Install [Docker](https://docs.docker.com/engine/install/) on your system.
## Flyte Tasks
A Flyte [task](https://docs.flyte.org/projects/cookbook/en/latest/auto/core/flyte_basics/task.html) serves as the foundational building block of Flyte.
To execute LangChain experiments, you need to write Flyte tasks that define the specific steps and operations involved.
NOTE: The [getting started guide](https://docs.flyte.org/projects/cookbook/en/latest/index.html) offers detailed, step-by-step instructions on installing Flyte locally and running your initial Flyte pipeline.
First, import the necessary dependencies to support your LangChain experiments.
```python
import os
from flytekit import ImageSpec, task
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import FlyteCallbackHandler
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.schema import HumanMessage
```
Set up the necessary environment variables to utilize the OpenAI API and Serp API:
```python
# Set OpenAI API key
os.environ["OPENAI_API_KEY"] = "<your_openai_api_key>"
# Set Serp API key
os.environ["SERPAPI_API_KEY"] = "<your_serp_api_key>"
```
Replace `<your_openai_api_key>` and `<your_serp_api_key>` with your respective API keys obtained from OpenAI and Serp API.
To guarantee reproducibility of your pipelines, Flyte tasks are containerized.
Each Flyte task must be associated with an image, which can either be shared across the entire Flyte [workflow](https://docs.flyte.org/projects/cookbook/en/latest/auto/core/flyte_basics/basic_workflow.html) or provided separately for each task.
To streamline the process of supplying the required dependencies for each Flyte task, you can initialize an [`ImageSpec`](https://docs.flyte.org/projects/cookbook/en/latest/auto/core/image_spec/image_spec.html) object.
This approach automatically triggers a Docker build, alleviating the need for users to manually create a Docker image.
```python
custom_image = ImageSpec(
name="langchain-flyte",
packages=[
"langchain",
"openai",
"spacy",
"https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0.tar.gz",
"textstat",
"google-search-results",
],
registry="<your-registry>",
)
```
You have the flexibility to push the Docker image to a registry of your preference.
[Docker Hub](https://hub.docker.com/) or [GitHub Container Registry (GHCR)](https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry) is a convenient option to begin with.
Once you have selected a registry, you can proceed to create Flyte tasks that log the LangChain metrics to Flyte Deck.
The following examples demonstrate tasks related to OpenAI LLM, chains and agent with tools:
### LLM
```python
@task(disable_deck=False, container_image=custom_image)
def langchain_llm() -> str:
llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.2,
callbacks=[FlyteCallbackHandler()],
)
return llm([HumanMessage(content="Tell me a joke")]).content
```
### Chain
```python
@task(disable_deck=False, container_image=custom_image)
def langchain_chain() -> list[dict[str, str]]:
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0,
callbacks=[FlyteCallbackHandler()],
)
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(
llm=llm, prompt=prompt_template, callbacks=[FlyteCallbackHandler()]
)
test_prompts = [
{
"title": "documentary about good video games that push the boundary of game design"
},
]
return synopsis_chain.apply(test_prompts)
```
### Agent
```python
@task(disable_deck=False, container_image=custom_image)
def langchain_agent() -> str:
llm = OpenAI(
model_name="gpt-3.5-turbo",
temperature=0,
callbacks=[FlyteCallbackHandler()],
)
tools = load_tools(
["serpapi", "llm-math"], llm=llm, callbacks=[FlyteCallbackHandler()]
)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
callbacks=[FlyteCallbackHandler()],
verbose=True,
)
return agent.run(
"Who is Leonardo DiCaprio's girlfriend? Could you calculate her current age and raise it to the power of 0.43?"
)
```
These tasks serve as a starting point for running your LangChain experiments within Flyte.
## Execute the Flyte Tasks on Kubernetes
To execute the Flyte tasks on the configured Flyte backend, use the following command:
```bash
pyflyte run --image <your-image> langchain_flyte.py langchain_llm
```
This command will initiate the execution of the `langchain_llm` task on the Flyte backend. You can trigger the remaining two tasks in a similar manner.
The metrics will be displayed on the Flyte UI as follows:
![LangChain LLM](https://ik.imagekit.io/c8zl7irwkdda/Screenshot_2023-06-20_at_1.23.29_PM_MZYeG0dKa.png?updatedAt=1687247642993)

View File

@@ -0,0 +1,44 @@
# Grobid
This page covers how to use the Grobid to parse articles for LangChain.
It is seperated into two parts: installation and running the server
## Installation and Setup
#Ensure You have Java installed
!apt-get install -y openjdk-11-jdk -q
!update-alternatives --set java /usr/lib/jvm/java-11-openjdk-amd64/bin/java
#Clone and install the Grobid Repo
import os
!git clone https://github.com/kermitt2/grobid.git
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-11-openjdk-amd64"
os.chdir('grobid')
!./gradlew clean install
#Run the server,
get_ipython().system_raw('nohup ./gradlew run > grobid.log 2>&1 &')
You can now use the GrobidParser to produce documents
```python
from langchain.document_loaders.parsers import GrobidParser
from langchain.document_loaders.generic import GenericLoader
#Produce chunks from article paragraphs
loader = GenericLoader.from_filesystem(
"/Users/31treehaus/Desktop/Papers/",
glob="*",
suffixes=[".pdf"],
parser= GrobidParser(segment_sentences=False)
)
docs = loader.load()
#Produce chunks from article sentences
loader = GenericLoader.from_filesystem(
"/Users/31treehaus/Desktop/Papers/",
glob="*",
suffixes=[".pdf"],
parser= GrobidParser(segment_sentences=True)
)
docs = loader.load()
```
Chunk metadata will include bboxes although these are a bit funky to parse, see https://grobid.readthedocs.io/en/latest/Coordinates-in-PDF/

View File

@@ -39,6 +39,21 @@ vectara = Vectara(
```
The customer_id, corpus_id and api_key are optional, and if they are not supplied will be read from the environment variables `VECTARA_CUSTOMER_ID`, `VECTARA_CORPUS_ID` and `VECTARA_API_KEY`, respectively.
Afer you have the vectorstore, you can `add_texts` or `add_documents` as per the standard `VectorStore` interface, for example:
```python
vectara.add_texts(["to be or not to be", "that is the question"])
```
Since Vectara supports file-upload, we also added the ability to upload files (PDF, TXT, HTML, PPT, DOC, etc) directly as file. When using this method, the file is uploaded directly to the Vectara backend, processed and chunked optimally there, so you don't have to use the LangChain document loader or chunking mechanism.
As an example:
```python
vectara.add_files(["path/to/file1.pdf", "path/to/file2.pdf",...])
```
To query the vectorstore, you can use the `similarity_search` method (or `similarity_search_with_score`), which takes a query string and returns a list of results:
```python
results = vectara.similarity_score("what is LangChain?")

View File

@@ -243,8 +243,8 @@
" pred_a, pred_b = res_b, res_a\n",
" a, b = \"b\", \"a\"\n",
" eval_res = eval_chain.evaluate_string_pairs(\n",
" output_a=pred_a['output'] if isinstance(pred_a, dict) else str(pred_a),\n",
" output_b=pred_b['output'] if isinstance(pred_b, dict) else str(pred_b),\n",
" prediction=pred_a['output'] if isinstance(pred_a, dict) else str(pred_a),\n",
" prediction_b=pred_b['output'] if isinstance(pred_b, dict) else str(pred_b),\n",
" input=input_\n",
" )\n",
" if eval_res[\"value\"] == \"A\":\n",

View File

@@ -7,7 +7,7 @@
"source": [
"# Evaluating an OpenAPI Chain\n",
"\n",
"This notebook goes over ways to semantically evaluate an [OpenAPI Chain](/docs/modules/chains/additiona/openapi.html), which calls an endpoint defined by the OpenAPI specification using purely natural language."
"This notebook goes over ways to semantically evaluate an [OpenAPI Chain](/docs/modules/chains/additional/openapi.html), which calls an endpoint defined by the OpenAPI specification using purely natural language."
]
},
{

View File

@@ -0,0 +1,386 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "g9EmNu5DD9YI"
},
"source": [
"# Custom functions with OpenAI Functions Agent\n",
"\n",
"This notebook goes through how to integrate custom functions with OpenAI Functions agent."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LFKylC3CPtTl"
},
"source": [
"Install libraries which are required to run this example notebook\n",
"\n",
"`pip install -q openai langchain yfinance`"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E2DqzmEGDPak"
},
"source": [
"## Define custom functions"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "SiucthMs6SIK"
},
"outputs": [],
"source": [
"import yfinance as yf\n",
"from datetime import datetime, timedelta\n",
"\n",
"def get_current_stock_price(ticker):\n",
" \"\"\"Method to get current stock price\"\"\"\n",
"\n",
" ticker_data = yf.Ticker(ticker)\n",
" recent = ticker_data.history(period='1d')\n",
" return {\n",
" 'price': recent.iloc[0]['Close'],\n",
" 'currency': ticker_data.info['currency']\n",
" }\n",
"\n",
"def get_stock_performance(ticker, days):\n",
" \"\"\"Method to get stock price change in percentage\"\"\"\n",
"\n",
" past_date = datetime.today() - timedelta(days=days)\n",
" ticker_data = yf.Ticker(ticker)\n",
" history = ticker_data.history(start=past_date)\n",
" old_price = history.iloc[0]['Close']\n",
" current_price = history.iloc[-1]['Close']\n",
" return {\n",
" 'percent_change': ((current_price - old_price)/old_price)*100\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vRLINGvQR1rO",
"outputId": "68230a4b-dda2-4273-b956-7439661e3785"
},
"outputs": [
{
"data": {
"text/plain": [
"{'price': 334.57000732421875, 'currency': 'USD'}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_current_stock_price('MSFT')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "57T190q235mD",
"outputId": "c6ee66ec-0659-4632-85d1-263b08826e68"
},
"outputs": [
{
"data": {
"text/plain": [
"{'percent_change': 1.014466941163018}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_stock_performance('MSFT', 30)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MT8QsdyBDhwg"
},
"source": [
"## Make custom tools"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "NvLOUv-XP3Ap"
},
"outputs": [],
"source": [
"from typing import Type\n",
"from pydantic import BaseModel, Field\n",
"from langchain.tools import BaseTool\n",
"\n",
"class CurrentStockPriceInput(BaseModel):\n",
" \"\"\"Inputs for get_current_stock_price\"\"\"\n",
" ticker: str = Field(description=\"Ticker symbol of the stock\")\n",
"\n",
"class CurrentStockPriceTool(BaseTool):\n",
" name = \"get_current_stock_price\"\n",
" description = \"\"\"\n",
" Useful when you want to get current stock price.\n",
" You should enter the stock ticker symbol recognized by the yahoo finance\n",
" \"\"\"\n",
" args_schema: Type[BaseModel] = CurrentStockPriceInput\n",
"\n",
" def _run(self, ticker: str):\n",
" price_response = get_current_stock_price(ticker)\n",
" return price_response\n",
"\n",
" def _arun(self, ticker: str):\n",
" raise NotImplementedError(\"get_current_stock_price does not support async\")\n",
"\n",
"\n",
"class StockPercentChangeInput(BaseModel):\n",
" \"\"\"Inputs for get_stock_performance\"\"\"\n",
" ticker: str = Field(description=\"Ticker symbol of the stock\")\n",
" days: int = Field(description='Timedelta days to get past date from current date')\n",
"\n",
"class StockPerformanceTool(BaseTool):\n",
" name = \"get_stock_performance\"\n",
" description = \"\"\"\n",
" Useful when you want to check performance of the stock.\n",
" You should enter the stock ticker symbol recognized by the yahoo finance.\n",
" You should enter days as number of days from today from which performance needs to be check.\n",
" output will be the change in the stock price represented as a percentage.\n",
" \"\"\"\n",
" args_schema: Type[BaseModel] = StockPercentChangeInput\n",
"\n",
" def _run(self, ticker: str, days: int):\n",
" response = get_stock_performance(ticker, days)\n",
" return response\n",
"\n",
" def _arun(self, ticker: str):\n",
" raise NotImplementedError(\"get_stock_performance does not support async\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PVKoqeCyFKHF"
},
"source": [
"## Create Agent"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "yY7qNB7vSQGh"
},
"outputs": [],
"source": [
"from langchain.agents import AgentType\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.agents import initialize_agent\n",
"\n",
"llm = ChatOpenAI(\n",
" model=\"gpt-3.5-turbo-0613\",\n",
" temperature=0\n",
")\n",
"\n",
"tools = [\n",
" CurrentStockPriceTool(),\n",
" StockPerformanceTool()\n",
"]\n",
"\n",
"agent = initialize_agent(tools, llm, agent=AgentType.OPENAI_FUNCTIONS, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 321
},
"id": "4X96xmgwRkcC",
"outputId": "a91b13ef-9643-4f60-d067-c4341e0b285e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\n",
"Invoking: `get_current_stock_price` with `{'ticker': 'MSFT'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3m{'price': 334.57000732421875, 'currency': 'USD'}\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Invoking: `get_stock_performance` with `{'ticker': 'MSFT', 'days': 180}`\n",
"\n",
"\n",
"\u001b[0m\u001b[33;1m\u001b[1;3m{'percent_change': 40.163963297187905}\u001b[0m\u001b[32;1m\u001b[1;3mThe current price of Microsoft stock is $334.57 USD. \n",
"\n",
"Over the past 6 months, Microsoft stock has performed well with a 40.16% increase in its price.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The current price of Microsoft stock is $334.57 USD. \\n\\nOver the past 6 months, Microsoft stock has performed well with a 40.16% increase in its price.'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"What is the current price of Microsoft stock? How it has performed over past 6 months?\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 285
},
"id": "nkZ_vmAcT7Al",
"outputId": "092ebc55-4d28-4a4b-aa2a-98ae47ceec20"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\n",
"Invoking: `get_current_stock_price` with `{'ticker': 'GOOGL'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3m{'price': 118.33000183105469, 'currency': 'USD'}\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Invoking: `get_current_stock_price` with `{'ticker': 'META'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3m{'price': 287.04998779296875, 'currency': 'USD'}\u001b[0m\u001b[32;1m\u001b[1;3mThe recent stock price of Google (GOOGL) is $118.33 USD and the recent stock price of Meta (META) is $287.05 USD.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The recent stock price of Google (GOOGL) is $118.33 USD and the recent stock price of Meta (META) is $287.05 USD.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"Give me recent stock prices of Google and Meta?\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 466
},
"id": "jLU-HjMq7n1o",
"outputId": "a42194dd-26ed-4b5a-d4a2-1038420045c4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\n",
"Invoking: `get_stock_performance` with `{'ticker': 'MSFT', 'days': 90}`\n",
"\n",
"\n",
"\u001b[0m\u001b[33;1m\u001b[1;3m{'percent_change': 18.043096235165596}\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Invoking: `get_stock_performance` with `{'ticker': 'GOOGL', 'days': 90}`\n",
"\n",
"\n",
"\u001b[0m\u001b[33;1m\u001b[1;3m{'percent_change': 17.286155760642853}\u001b[0m\u001b[32;1m\u001b[1;3mIn the past 3 months, Microsoft (MSFT) has performed better than Google (GOOGL). Microsoft's stock price has increased by 18.04% while Google's stock price has increased by 17.29%.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"In the past 3 months, Microsoft (MSFT) has performed better than Google (GOOGL). Microsoft's stock price has increased by 18.04% while Google's stock price has increased by 17.29%.\""
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run('In the past 3 months, which stock between Microsoft and Google has performed the best?')"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -21,7 +21,7 @@
"\n",
"2. User-facing (Oauth): for production scenarios where you are deploying an end-user facing application and LangChain needs access to end-user's exposed actions and connected accounts on Zapier.com\n",
"\n",
"This quick start will focus on the server-side use case for brevity. Review [full docs](https://nla.zapier.com/start/) for user-facing oauth developer support.\n",
"This quick start will focus mostly on the server-side use case for brevity. Jump to [Example Using OAuth Access Token](#oauth) to see a short example how to set up Zapier for user-facing situations. Review [full docs](https://nla.zapier.com/start/) for full user-facing oauth developer support.\n",
"\n",
"This example goes over how to use the Zapier integration with a `SimpleSequentialChain`, then an `Agent`.\n",
"In code, below:"
@@ -149,7 +149,7 @@
"id": "bcdea831",
"metadata": {},
"source": [
"# Example with SimpleSequentialChain\n",
"## Example with SimpleSequentialChain\n",
"If you need more explicit control, use a chain, like below."
]
},
@@ -323,12 +323,34 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"cell_type": "markdown",
"id": "09ff954e-45f2-4595-92ea-91627abde4a0",
"metadata": {},
"source": [
"## <a id=\"oauth\">Example Using OAuth Access Token</a>\n",
"The below snippet shows how to initialize the wrapper with a procured OAuth access token. Note the argument being passed in as opposed to setting an environment variable. Review the [authentication docs](https://nla.zapier.com/docs/authentication/#oauth-credentials) for full user-facing oauth developer support.\n",
"\n",
"The developer is tasked with handling the OAuth handshaking to procure and refresh the access token."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c6835c8",
"metadata": {},
"outputs": [],
"source": []
"source": [
"llm = OpenAI(temperature=0)\n",
"zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token='<fill in access token here>')\n",
"toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)\n",
"agent = initialize_agent(\n",
" toolkit.get_tools(), llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
")\n",
"\n",
"agent.run(\n",
" \"Summarize the last email I received regarding Silicon Valley Bank. Send the summary to the #test-zapier channel in slack.\"\n",
")"
]
}
],
"metadata": {

View File

@@ -71,11 +71,13 @@
"import numpy as np\n",
"\n",
"from langchain.schema import BaseRetriever\n",
"from langchain.callbacks.manager import AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun\n",
"from langchain.utilities import GoogleSerperAPIWrapper\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.schema import Document"
"from langchain.schema import Document\n",
"from typing import Any"
]
},
{
@@ -97,11 +99,16 @@
" def __init__(self, search):\n",
" self.search = search\n",
"\n",
" def get_relevant_documents(self, query: str):\n",
" def _get_relevant_documents(self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any) -> List[Document]:\n",
" return [Document(page_content=self.search.run(query))]\n",
"\n",
" async def aget_relevant_documents(self, query: str):\n",
" raise NotImplemented\n",
" async def _aget_relevant_documents(self,\n",
" query: str,\n",
" *,\n",
" run_manager: AsyncCallbackManagerForRetrieverRun,\n",
" **kwargs: Any,\n",
" ) -> List[Document]:\n",
" raise NotImplementedError()\n",
"\n",
"\n",
"retriever = SerperSearchRetriever(GoogleSerperAPIWrapper())"

View File

@@ -134,7 +134,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.10.6"
}
},
"nbformat": 4,

View File

@@ -32,7 +32,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 1,
"id": "40cd9806",
"metadata": {
"tags": []
@@ -44,7 +44,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 2,
"id": "2d20b852",
"metadata": {
"tags": []
@@ -56,7 +56,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "579fa702",
"metadata": {
"tags": []
@@ -68,7 +68,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 4,
"id": "90c1d899",
"metadata": {
"tags": []
@@ -80,7 +80,7 @@
"[Document(page_content='This is a test email to use for unit tests.\\n\\nImportant points:\\n\\nRoses are red\\n\\nViolets are blue', metadata={'source': 'example_data/fake-email.eml'})]"
]
},
"execution_count": 8,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -128,7 +128,7 @@
{
"data": {
"text/plain": [
"Document(page_content='This is a test email to use for unit tests.', lookup_str='', metadata={'source': 'example_data/fake-email.eml'}, lookup_index=0)"
"Document(page_content='This is a test email to use for unit tests.', metadata={'source': 'example_data/fake-email.eml', 'filename': 'fake-email.eml', 'file_directory': 'example_data', 'date': '2022-12-16T17:04:16-05:00', 'filetype': 'message/rfc822', 'sent_from': ['Matthew Robinson <mrobinson@unstructured.io>'], 'sent_to': ['Matthew Robinson <mrobinson@unstructured.io>'], 'subject': 'Test Email', 'category': 'NarrativeText'})"
]
},
"execution_count": 7,
@@ -140,6 +140,61 @@
"data[0]"
]
},
{
"cell_type": "markdown",
"id": "5021f20a",
"metadata": {},
"source": [
"### Processing Attachments\n",
"\n",
"You can process attachments with `UnstructuredEmailLoader` by setting `process_attachments=True` in the constructor. By default, attachments will be partitioned using the `partition` function from `unstructured`. You can use a different partitioning function by passing the function to the `attachment_partitioner` kwarg."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6539f166",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredEmailLoader(\n",
" \"example_data/fake-email.eml\",\n",
" mode=\"elements\",\n",
" process_attachments=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "aebead38",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ddeb60f4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='This is a test email to use for unit tests.', metadata={'source': 'example_data/fake-email.eml', 'filename': 'fake-email.eml', 'file_directory': 'example_data', 'date': '2022-12-16T17:04:16-05:00', 'filetype': 'message/rfc822', 'sent_from': ['Matthew Robinson <mrobinson@unstructured.io>'], 'sent_to': ['Matthew Robinson <mrobinson@unstructured.io>'], 'subject': 'Test Email', 'category': 'NarrativeText'})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[0]"
]
},
{
"cell_type": "markdown",
"id": "6a074515",
@@ -234,7 +289,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.8.13"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,3 @@
{"sender_name": "User 2", "timestamp_ms": 1675597571851, "content": "Bye!"}
{"sender_name": "User 1", "timestamp_ms": 1675597435669, "content": "Oh no worries! Bye"}
{"sender_name": "User 2", "timestamp_ms": 1675596277579, "content": "No Im sorry it was my mistake, the blue one is not for sale"}

View File

@@ -0,0 +1,50 @@
MIME-Version: 1.0
Date: Fri, 23 Dec 2022 12:08:48 -0600
Message-ID: <CAPgNNXSzLVJ-d1OCX_TjFgJU7ugtQrjFybPtAMmmYZzphxNFYg@mail.gmail.com>
Subject: Fake email with attachment
From: Mallori Harrell <mallori@unstructured.io>
To: Mallori Harrell <mallori@unstructured.io>
Content-Type: multipart/mixed; boundary="0000000000005d654405f082adb7"
--0000000000005d654405f082adb7
Content-Type: multipart/alternative; boundary="0000000000005d654205f082adb5"
--0000000000005d654205f082adb5
Content-Type: text/plain; charset="UTF-8"
Hello!
Here's the attachments!
It includes:
- Lots of whitespace
- Little to no content
- and is a quick read
Best,
Mallori
--0000000000005d654205f082adb5
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr">Hello!=C2=A0<div><br></div><div>Here&#39;s the attachments=
!</div><div><br></div><div>It includes:</div><div><ul><li style=3D"margin-l=
eft:15px">Lots of whitespace</li><li style=3D"margin-left:15px">Little=C2=
=A0to no content</li><li style=3D"margin-left:15px">and is a quick read</li=
></ul><div>Best,</div></div><div><br></div><div>Mallori</div><div dir=3D"lt=
r" class=3D"gmail_signature" data-smartmail=3D"gmail_signature"><div dir=3D=
"ltr"><div><div><br></div></div></div></div></div>
--0000000000005d654205f082adb5--
--0000000000005d654405f082adb7
Content-Type: text/plain; charset="US-ASCII"; name="fake-attachment.txt"
Content-Disposition: attachment; filename="fake-attachment.txt"
Content-Transfer-Encoding: base64
X-Attachment-Id: f_lc0tto5j0
Content-ID: <f_lc0tto5j0>
SGV5IHRoaXMgaXMgYSBmYWtlIGF0dGFjaG1lbnQh
--0000000000005d654405f082adb7--

View File

@@ -0,0 +1,180 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "bdccb278",
"metadata": {},
"source": [
"# Grobid\n",
"\n",
"GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents.\n",
"\n",
"It is particularly good for sturctured PDFs, like academic papers.\n",
"\n",
"This loader uses GROBIB to parse PDFs into `Documents` that retain metadata associated with the section of text.\n",
"\n",
"---\n",
"\n",
"For users on `Mac` - \n",
"\n",
"(Note: additional instructions can be found [here](https://python.langchain.com/docs/ecosystem/integrations/grobid.mdx).)\n",
"\n",
"Install Java (Apple Silicon):\n",
"```\n",
"$ arch -arm64 brew install openjdk@11\n",
"$ brew --prefix openjdk@11\n",
"/opt/homebrew/opt/openjdk@ 11\n",
"```\n",
"\n",
"In `~/.zshrc`:\n",
"```\n",
"export JAVA_HOME=/opt/homebrew/opt/openjdk@11\n",
"export PATH=$JAVA_HOME/bin:$PATH\n",
"```\n",
"\n",
"Then, in Terminal:\n",
"```\n",
"$ source ~/.zshrc\n",
"```\n",
"\n",
"Confirm install:\n",
"```\n",
"$ which java\n",
"/opt/homebrew/opt/openjdk@11/bin/java\n",
"$ java -version \n",
"openjdk version \"11.0.19\" 2023-04-18\n",
"OpenJDK Runtime Environment Homebrew (build 11.0.19+0)\n",
"OpenJDK 64-Bit Server VM Homebrew (build 11.0.19+0, mixed mode)\n",
"```\n",
"\n",
"Then, get [Grobid](https://grobid.readthedocs.io/en/latest/Install-Grobid/#getting-grobid):\n",
"```\n",
"$ curl -LO https://github.com/kermitt2/grobid/archive/0.7.3.zip\n",
"$ unzip 0.7.3.zip\n",
"```\n",
" \n",
"Build\n",
"```\n",
"$ ./gradlew clean install\n",
"```\n",
"\n",
"Then, run the server:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "2d8992fc",
"metadata": {},
"outputs": [],
"source": [
"! get_ipython().system_raw('nohup ./gradlew run > grobid.log 2>&1 &')"
]
},
{
"cell_type": "markdown",
"id": "4b41bfb1",
"metadata": {},
"source": [
"Now, we can use the data loader."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "640e9a4b",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders.parsers import GrobidParser\n",
"from langchain.document_loaders.generic import GenericLoader"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ecdc1fb9",
"metadata": {},
"outputs": [],
"source": [
"loader = GenericLoader.from_filesystem(\n",
" \"../Papers/\",\n",
" glob=\"*\",\n",
" suffixes=[\".pdf\"],\n",
" parser= GrobidParser(segment_sentences=False)\n",
")\n",
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "efe9e356",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Unlike Chinchilla, PaLM, or GPT-3, we only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g.\"Books -2TB\" or \"Social media conversations\").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[3].page_content"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "5be03d17",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'text': 'Unlike Chinchilla, PaLM, or GPT-3, we only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g.\"Books -2TB\" or \"Social media conversations\").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.',\n",
" 'para': '2',\n",
" 'bboxes': \"[[{'page': '1', 'x': '317.05', 'y': '509.17', 'h': '207.73', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '522.72', 'h': '220.08', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '536.27', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '549.82', 'h': '218.65', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '563.37', 'h': '136.98', 'w': '9.46'}], [{'page': '1', 'x': '446.49', 'y': '563.37', 'h': '78.11', 'w': '9.46'}, {'page': '1', 'x': '304.69', 'y': '576.92', 'h': '138.32', 'w': '9.46'}], [{'page': '1', 'x': '447.75', 'y': '576.92', 'h': '76.66', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '590.47', 'h': '219.63', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '604.02', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '617.56', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '631.11', 'h': '220.18', 'w': '9.46'}]]\",\n",
" 'pages': \"('1', '1')\",\n",
" 'section_title': 'Introduction',\n",
" 'section_number': '1',\n",
" 'paper_title': 'LLaMA: Open and Efficient Foundation Language Models',\n",
" 'file_path': '/Users/31treehaus/Desktop/Papers/2302.13971.pdf'}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[3].metadata"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -58,6 +58,7 @@
"from langchain.memory.chat_message_histories import ZepChatMessageHistory\n",
"from langchain.schema import HumanMessage, AIMessage\n",
"from uuid import uuid4\n",
"import getpass\n",
"\n",
"# Set this to your Zep server URL\n",
"ZEP_API_URL = \"http://localhost:8000\""
@@ -75,6 +76,25 @@
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" ········\n"
]
}
],
"source": [
"# Provide your Zep API key. Note that this is optional. See https://docs.getzep.com/deployment/auth\n",
"\n",
"zep_api_key = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:03:29.118416Z",
@@ -93,12 +113,13 @@
"zep_chat_history = ZepChatMessageHistory(\n",
" session_id=session_id,\n",
" url=ZEP_API_URL,\n",
" api_key=zep_api_key\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:03:30.271181Z",
@@ -172,7 +193,7 @@
"]\n",
"\n",
"for msg in test_history:\n",
" zep_chat_history.append(\n",
" zep_chat_history.add_message(\n",
" HumanMessage(content=msg[\"content\"])\n",
" if msg[\"role\"] == \"human\"\n",
" else AIMessage(content=msg[\"content\"])\n",
@@ -192,7 +213,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:03:32.979155Z",
@@ -207,14 +228,14 @@
{
"data": {
"text/plain": [
"[Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759001673780126, 'uuid': '3a82a02f-056e-4c6a-b960-67ebdf3b2b93', 'created_at': '2023-05-25T15:03:30.2041Z', 'role': 'human', 'token_count': 8}),\n",
" Document(page_content=\"Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.\", metadata={'score': 0.7602262941130749, 'uuid': 'a2fc9c21-0897-46c8-bef7-6f5c0f71b04a', 'created_at': '2023-05-25T15:03:30.248065Z', 'role': 'ai', 'token_count': 27}),\n",
" Document(page_content='Who were her contemporaries?', metadata={'score': 0.757553366415519, 'uuid': '41f9c41a-a205-41e1-b48b-a0a4cd943fc8', 'created_at': '2023-05-25T15:03:30.243995Z', 'role': 'human', 'token_count': 8}),\n",
" Document(page_content='Octavia Estelle Butler (June 22, 1947 February 24, 2006) was an American science fiction author.', metadata={'score': 0.7546211059317948, 'uuid': '34678311-0098-4f1a-8fd4-5615ac692deb', 'created_at': '2023-05-25T15:03:30.231427Z', 'role': 'ai', 'token_count': 31}),\n",
" Document(page_content='Which books of hers were made into movies?', metadata={'score': 0.7496714959247069, 'uuid': '18046c3a-9666-4d3e-b4f0-43d1394732b7', 'created_at': '2023-05-25T15:03:30.236837Z', 'role': 'human', 'token_count': 11})]"
"[Document(page_content='Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence.', metadata={'score': 0.8897116216176073, 'uuid': 'db60ff57-f259-4ec4-8a81-178ed4c6e54f', 'created_at': '2023-06-26T23:40:22.816214Z', 'role': 'ai', 'metadata': {'system': {'entities': [{'Label': 'GPE', 'Matches': [{'End': 20, 'Start': 15, 'Text': 'Sower'}], 'Name': 'Sower'}, {'Label': 'PERSON', 'Matches': [{'End': 65, 'Start': 51, 'Text': 'Octavia Butler'}], 'Name': 'Octavia Butler'}, {'Label': 'DATE', 'Matches': [{'End': 84, 'Start': 80, 'Text': '1993'}], 'Name': '1993'}, {'Label': 'PERSON', 'Matches': [{'End': 124, 'Start': 110, 'Text': 'Lauren Olamina'}], 'Name': 'Lauren Olamina'}]}}, 'token_count': 56}),\n",
" Document(page_content=\"Write a short synopsis of Butler's book, Parable of the Sower. What is it about?\", metadata={'score': 0.8856661080361157, 'uuid': 'f1a5981a-8f6d-4168-a548-6e9c32f35fa1', 'created_at': '2023-06-26T23:40:22.809621Z', 'role': 'human', 'metadata': {'system': {'entities': [{'Label': 'ORG', 'Matches': [{'End': 32, 'Start': 26, 'Text': 'Butler'}], 'Name': 'Butler'}, {'Label': 'WORK_OF_ART', 'Matches': [{'End': 61, 'Start': 41, 'Text': 'Parable of the Sower'}], 'Name': 'Parable of the Sower'}]}}, 'token_count': 23}),\n",
" Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7757595298492976, 'uuid': '361d0043-1009-4e13-a7f0-8aea8b1ee869', 'created_at': '2023-06-26T23:40:22.709886Z', 'role': 'human', 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 22, 'Start': 8, 'Text': 'Octavia Butler'}], 'Name': 'Octavia Butler'}], 'intent': 'The subject wants to know about the identity or background of an individual named Octavia Butler.'}}, 'token_count': 8}),\n",
" Document(page_content=\"Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.\", metadata={'score': 0.7601242516059306, 'uuid': '56c45e8a-0f65-45f0-bc46-d9e65164b563', 'created_at': '2023-06-26T23:40:22.778836Z', 'role': 'ai', 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 16, 'Start': 0, 'Text': \"Octavia Butler's\"}], 'Name': \"Octavia Butler's\"}, {'Label': 'ORG', 'Matches': [{'End': 58, 'Start': 41, 'Text': 'Ursula K. Le Guin'}], 'Name': 'Ursula K. Le Guin'}, {'Label': 'PERSON', 'Matches': [{'End': 76, 'Start': 60, 'Text': 'Samuel R. Delany'}], 'Name': 'Samuel R. Delany'}, {'Label': 'PERSON', 'Matches': [{'End': 93, 'Start': 82, 'Text': 'Joanna Russ'}], 'Name': 'Joanna Russ'}], 'intent': \"The subject is providing information about Octavia Butler's contemporaries.\"}}, 'token_count': 27}),\n",
" Document(page_content='You might want to read Ursula K. Le Guin or Joanna Russ.', metadata={'score': 0.7594731095320668, 'uuid': '6951f2fd-dfa4-4e05-9380-f322ef8f72f8', 'created_at': '2023-06-26T23:40:22.80464Z', 'role': 'ai', 'metadata': {'system': {'entities': [{'Label': 'ORG', 'Matches': [{'End': 40, 'Start': 23, 'Text': 'Ursula K. Le Guin'}], 'Name': 'Ursula K. Le Guin'}, {'Label': 'PERSON', 'Matches': [{'End': 55, 'Start': 44, 'Text': 'Joanna Russ'}], 'Name': 'Joanna Russ'}]}}, 'token_count': 18})]"
]
},
"execution_count": 4,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -226,6 +247,7 @@
" session_id=session_id, # Ensure that you provide the session_id when instantiating the Retriever\n",
" url=ZEP_API_URL,\n",
" top_k=5,\n",
" api_key=zep_api_key\n",
")\n",
"\n",
"await zep_retriever.aget_relevant_documents(\"Who wrote Parable of the Sower?\")"
@@ -240,7 +262,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:03:34.713354Z",
@@ -255,14 +277,14 @@
{
"data": {
"text/plain": [
"[Document(page_content='Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence.', metadata={'score': 0.8897321402776546, 'uuid': '1c09603a-52c1-40d7-9d69-29f26256029c', 'created_at': '2023-05-25T15:03:30.268257Z', 'role': 'ai', 'token_count': 56}),\n",
" Document(page_content=\"Write a short synopsis of Butler's book, Parable of the Sower. What is it about?\", metadata={'score': 0.8857628682610436, 'uuid': 'f6706e8c-6c91-452f-8c1b-9559fd924657', 'created_at': '2023-05-25T15:03:30.265302Z', 'role': 'human', 'token_count': 23}),\n",
" Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759670375149477, 'uuid': '3a82a02f-056e-4c6a-b960-67ebdf3b2b93', 'created_at': '2023-05-25T15:03:30.2041Z', 'role': 'human', 'token_count': 8}),\n",
" Document(page_content=\"Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.\", metadata={'score': 0.7602854653476563, 'uuid': 'a2fc9c21-0897-46c8-bef7-6f5c0f71b04a', 'created_at': '2023-05-25T15:03:30.248065Z', 'role': 'ai', 'token_count': 27}),\n",
" Document(page_content='You might want to read Ursula K. Le Guin or Joanna Russ.', metadata={'score': 0.7595293992240313, 'uuid': 'f22f2498-6118-4c74-8718-aa89ccd7e3d6', 'created_at': '2023-05-25T15:03:30.261198Z', 'role': 'ai', 'token_count': 18})]"
"[Document(page_content='Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence.', metadata={'score': 0.889661105796371, 'uuid': 'db60ff57-f259-4ec4-8a81-178ed4c6e54f', 'created_at': '2023-06-26T23:40:22.816214Z', 'role': 'ai', 'metadata': {'system': {'entities': [{'Label': 'GPE', 'Matches': [{'End': 20, 'Start': 15, 'Text': 'Sower'}], 'Name': 'Sower'}, {'Label': 'PERSON', 'Matches': [{'End': 65, 'Start': 51, 'Text': 'Octavia Butler'}], 'Name': 'Octavia Butler'}, {'Label': 'DATE', 'Matches': [{'End': 84, 'Start': 80, 'Text': '1993'}], 'Name': '1993'}, {'Label': 'PERSON', 'Matches': [{'End': 124, 'Start': 110, 'Text': 'Lauren Olamina'}], 'Name': 'Lauren Olamina'}]}}, 'token_count': 56}),\n",
" Document(page_content=\"Write a short synopsis of Butler's book, Parable of the Sower. What is it about?\", metadata={'score': 0.885754241595424, 'uuid': 'f1a5981a-8f6d-4168-a548-6e9c32f35fa1', 'created_at': '2023-06-26T23:40:22.809621Z', 'role': 'human', 'metadata': {'system': {'entities': [{'Label': 'ORG', 'Matches': [{'End': 32, 'Start': 26, 'Text': 'Butler'}], 'Name': 'Butler'}, {'Label': 'WORK_OF_ART', 'Matches': [{'End': 61, 'Start': 41, 'Text': 'Parable of the Sower'}], 'Name': 'Parable of the Sower'}]}}, 'token_count': 23}),\n",
" Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7758688965570713, 'uuid': '361d0043-1009-4e13-a7f0-8aea8b1ee869', 'created_at': '2023-06-26T23:40:22.709886Z', 'role': 'human', 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 22, 'Start': 8, 'Text': 'Octavia Butler'}], 'Name': 'Octavia Butler'}], 'intent': 'The subject wants to know about the identity or background of an individual named Octavia Butler.'}}, 'token_count': 8}),\n",
" Document(page_content=\"Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.\", metadata={'score': 0.7602672137411663, 'uuid': '56c45e8a-0f65-45f0-bc46-d9e65164b563', 'created_at': '2023-06-26T23:40:22.778836Z', 'role': 'ai', 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 16, 'Start': 0, 'Text': \"Octavia Butler's\"}], 'Name': \"Octavia Butler's\"}, {'Label': 'ORG', 'Matches': [{'End': 58, 'Start': 41, 'Text': 'Ursula K. Le Guin'}], 'Name': 'Ursula K. Le Guin'}, {'Label': 'PERSON', 'Matches': [{'End': 76, 'Start': 60, 'Text': 'Samuel R. Delany'}], 'Name': 'Samuel R. Delany'}, {'Label': 'PERSON', 'Matches': [{'End': 93, 'Start': 82, 'Text': 'Joanna Russ'}], 'Name': 'Joanna Russ'}], 'intent': \"The subject is providing information about Octavia Butler's contemporaries.\"}}, 'token_count': 27}),\n",
" Document(page_content='You might want to read Ursula K. Le Guin or Joanna Russ.', metadata={'score': 0.7596040989115522, 'uuid': '6951f2fd-dfa4-4e05-9380-f322ef8f72f8', 'created_at': '2023-06-26T23:40:22.80464Z', 'role': 'ai', 'metadata': {'system': {'entities': [{'Label': 'ORG', 'Matches': [{'End': 40, 'Start': 23, 'Text': 'Ursula K. Le Guin'}], 'Name': 'Ursula K. Le Guin'}, {'Label': 'PERSON', 'Matches': [{'End': 55, 'Start': 44, 'Text': 'Joanna Russ'}], 'Name': 'Joanna Russ'}]}}, 'token_count': 18})]"
]
},
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -304,7 +326,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@@ -43,7 +43,6 @@
"import openai\n",
"from dotenv import load_dotenv\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.schema import BaseRetriever\n",
"from langchain.vectorstores.azuresearch import AzureSearch"
]
},

View File

@@ -23,7 +23,7 @@
},
"outputs": [],
"source": [
"!pip install \"cassio>=0.0.5\""
"!pip install \"cassio>=0.0.7\""
]
},
{
@@ -44,14 +44,16 @@
"import os\n",
"import getpass\n",
"\n",
"database_mode = (input('\\n(L)ocal Cassandra or (A)stra DB? ')).upper()\n",
"database_mode = (input('\\n(C)assandra or (A)stra DB? ')).upper()\n",
"\n",
"keyspace_name = input('\\nKeyspace name? ')\n",
"\n",
"if database_mode == 'A':\n",
" ASTRA_DB_APPLICATION_TOKEN = getpass.getpass('\\nAstra DB Token (\"AstraCS:...\") ')\n",
" #\n",
" ASTRA_DB_SECURE_BUNDLE_PATH = input('Full path to your Secure Connect Bundle? ')"
" ASTRA_DB_SECURE_BUNDLE_PATH = input('Full path to your Secure Connect Bundle? ')\n",
"elif database_mode == 'C':\n",
" CASSANDRA_CONTACT_POINTS = input('Contact points? (comma-separated, empty for localhost) ').strip()"
]
},
{
@@ -72,8 +74,15 @@
"from cassandra.cluster import Cluster\n",
"from cassandra.auth import PlainTextAuthProvider\n",
"\n",
"if database_mode == 'L':\n",
" cluster = Cluster()\n",
"if database_mode == 'C':\n",
" if CASSANDRA_CONTACT_POINTS:\n",
" cluster = Cluster([\n",
" cp.strip()\n",
" for cp in CASSANDRA_CONTACT_POINTS.split(',')\n",
" if cp.strip()\n",
" ])\n",
" else:\n",
" cluster = Cluster()\n",
" session = cluster.connect()\n",
"elif database_mode == 'A':\n",
" ASTRA_DB_CLIENT_ID = \"token\"\n",
@@ -261,7 +270,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
"version": "3.10.6"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,399 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# ClickHouse Vector Search\n",
"\n",
"> [ClickHouse](https://clickhouse.com/) is the fastest and most resource efficient open-source database for real-time apps and analytics with full SQL support and a wide range of functions to assist users in writing analytical queries. Lately added data structures and distance search functions (like `L2Distance`) as well as [approximate nearest neighbor search indexes](https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/annindexes) enable ClickHouse to be used as a high performance and scalable vector database to store and search vectors with SQL.\n",
"\n",
"This notebook shows how to use functionality related to the `ClickHouse` vector search."
]
},
{
"cell_type": "markdown",
"id": "43ead5d5-2c1f-4dce-a69a-cb00e4f9d6f0",
"metadata": {},
"source": [
"## Setting up envrionments"
]
},
{
"cell_type": "markdown",
"id": "b2c434bc",
"metadata": {},
"source": [
"Setting up local clickhouse server with docker (optional)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "249a7751",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:43:43.035606Z",
"start_time": "2023-06-03T08:43:42.618531Z"
}
},
"outputs": [],
"source": [
"! docker run -d -p 8123:8123 -p9000:9000 --name langchain-clickhouse-server --ulimit nofile=262144:262144 clickhouse/clickhouse-server:23.4.2.11"
]
},
{
"cell_type": "markdown",
"id": "7bd3c1c0",
"metadata": {},
"source": [
"Setup up clickhouse client driver"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9d614bf8",
"metadata": {},
"outputs": [],
"source": [
"!pip install clickhouse-connect"
]
},
{
"cell_type": "markdown",
"id": "15a1d477-9cdb-4d82-b019-96951ecb2b72",
"metadata": {},
"source": [
"We want to use OpenAIEmbeddings so we have to get the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "91003ea5-0c8c-436c-a5de-aaeaeef2f458",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:49:35.383673Z",
"start_time": "2023-06-03T08:49:33.984547Z"
}
},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"\n",
"if not os.environ['OPENAI_API_KEY']:\n",
" os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "aac9563e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:33:31.554934Z",
"start_time": "2023-06-03T08:33:31.549590Z"
},
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Clickhouse, ClickhouseSettings"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a3c3999a",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:33:32.527387Z",
"start_time": "2023-06-03T08:33:32.501312Z"
},
"tags": []
},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader('../../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6e104aee",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:33:35.503823Z",
"start_time": "2023-06-03T08:33:33.745832Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Inserting data...: 100%|██████████| 42/42 [00:00<00:00, 2801.49it/s]\n"
]
}
],
"source": [
"for d in docs:\n",
" d.metadata = {'some': 'metadata'}\n",
"settings = ClickhouseSettings(table=\"clickhouse_vector_search_example\")\n",
"docsearch = Clickhouse.from_documents(docs, embeddings, config=settings)\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9c608226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.\n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "e3a8b105",
"metadata": {},
"source": [
"## Get connection info and data schema"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "69996818",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:28:58.252991Z",
"start_time": "2023-06-03T08:28:58.197560Z"
},
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[92m\u001b[1mdefault.clickhouse_vector_search_example @ localhost:8123\u001b[0m\n",
"\n",
"\u001b[1musername: None\u001b[0m\n",
"\n",
"Table Schema:\n",
"---------------------------------------------------\n",
"|\u001b[94mid \u001b[0m|\u001b[96mNullable(String) \u001b[0m|\n",
"|\u001b[94mdocument \u001b[0m|\u001b[96mNullable(String) \u001b[0m|\n",
"|\u001b[94membedding \u001b[0m|\u001b[96mArray(Float32) \u001b[0m|\n",
"|\u001b[94mmetadata \u001b[0m|\u001b[96mObject('json') \u001b[0m|\n",
"|\u001b[94muuid \u001b[0m|\u001b[96mUUID \u001b[0m|\n",
"---------------------------------------------------\n",
"\n"
]
}
],
"source": [
"print(str(docsearch))"
]
},
{
"cell_type": "markdown",
"id": "324ac147",
"metadata": {},
"source": [
"### Clickhouse table schema"
]
},
{
"cell_type": "markdown",
"id": "b5bd7c5b",
"metadata": {},
"source": [
"> Clickhouse table will be automatically created if not exist by default. Advanced users could pre-create the table with optimized settings. For distributed Clickhouse cluster with sharding, table engine should be configured as `Distributed`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "54f4f561",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clickhouse Table DDL:\n",
"\n",
"CREATE TABLE IF NOT EXISTS default.clickhouse_vector_search_example(\n",
" id Nullable(String),\n",
" document Nullable(String),\n",
" embedding Array(Float32),\n",
" metadata JSON,\n",
" uuid UUID DEFAULT generateUUIDv4(),\n",
" CONSTRAINT cons_vec_len CHECK length(embedding) = 1536,\n",
" INDEX vec_idx embedding TYPE annoy(100,'L2Distance') GRANULARITY 1000\n",
") ENGINE = MergeTree ORDER BY uuid SETTINGS index_granularity = 8192\n"
]
}
],
"source": [
"print(f\"Clickhouse Table DDL:\\n\\n{docsearch.schema}\")"
]
},
{
"cell_type": "markdown",
"id": "f59360c0",
"metadata": {},
"source": [
"## Filtering\n",
"\n",
"You can have direct access to ClickHouse SQL where statement. You can write `WHERE` clause following standard SQL.\n",
"\n",
"**NOTE**: Please be aware of SQL injection, this interface must not be directly called by end-user.\n",
"\n",
"If you custimized your `column_map` under your setting, you search with filter like this:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "232055f6",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:29:36.680805Z",
"start_time": "2023-06-03T08:29:34.963676Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Inserting data...: 100%|██████████| 42/42 [00:00<00:00, 6939.56it/s]\n"
]
}
],
"source": [
"from langchain.vectorstores import Clickhouse, ClickhouseSettings\n",
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader('../../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"for i, d in enumerate(docs):\n",
" d.metadata = {'doc_id': i}\n",
"\n",
"docsearch = Clickhouse.from_documents(docs, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ddbcee77",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:29:43.487436Z",
"start_time": "2023-06-03T08:29:43.040831Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.6779101415357189 {'doc_id': 0} Madam Speaker, Madam...\n",
"0.6997970363474885 {'doc_id': 8} And so many families...\n",
"0.7044504914336727 {'doc_id': 1} Groups of citizens b...\n",
"0.7053558702165094 {'doc_id': 6} And Im taking robus...\n"
]
}
],
"source": [
"meta = docsearch.metadata_column\n",
"output = docsearch.similarity_search_with_relevance_scores('What did the president say about Ketanji Brown Jackson?', \n",
" k=4, where_str=f\"{meta}.doc_id<10\")\n",
"for d, dist in output:\n",
" print(dist, d.metadata, d.page_content[:20] + '...')"
]
},
{
"cell_type": "markdown",
"id": "a359ed74",
"metadata": {},
"source": [
"## Deleting your data"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "fb6a9d36",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:30:24.822384Z",
"start_time": "2023-06-03T08:30:24.798571Z"
}
},
"outputs": [],
"source": [
"docsearch.drop()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,169 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# MongoDB Atlas Vector Search\n",
"\n",
">[MongoDB Atlas](https://www.mongodb.com/docs/atlas/) is a document database managed in the cloud. It also enables Lucene and its vector search feature.\n",
"\n",
"This notebook shows how to use the functionality related to the `MongoDB Atlas Vector Search` feature where you can store your embeddings in MongoDB documents and create a Lucene vector index to perform a KNN search.\n",
"\n",
"It uses the [knnBeta Operator](https://www.mongodb.com/docs/atlas/atlas-search/knn-beta) available in MongoDB Atlas Search. This feature is in early access and available only for evaluation purposes, to validate functionality, and to gather feedback from a small closed group of early access users. It is not recommended for production deployments as we may introduce breaking changes.\n",
"\n",
"To use MongoDB Atlas, you must have first deployed a cluster. Free clusters are available. \n",
"Here is the MongoDB Atlas [quick start](https://www.mongodb.com/docs/atlas/getting-started/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b4c41cad-08ef-4f72-a545-2151e4598efe",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install pymongo"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1e38361-c1fe-4ac6-86e9-c90ebaf7ae87",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"MONGODB_ATLAS_URI = os.environ['MONGODB_ATLAS_URI']"
]
},
{
"cell_type": "markdown",
"id": "320af802-9271-46ee-948f-d2453933d44b",
"metadata": {},
"source": [
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key. Make sure the environment variable `OPENAI_API_KEY` is set up before proceeding."
]
},
{
"cell_type": "markdown",
"id": "1f3ecc42",
"metadata": {},
"source": [
"Now, let's create a Lucene vector index on your cluster. In the below example, `embedding` is the name of the field that contains the embedding vector. Please refer to the [documentation](https://www.mongodb.com/docs/atlas/atlas-search/define-field-mappings-for-vector-search) to get more details on how to define an Atlas Search index.\n",
"You can name the index `langchain_demo` and create the index on the namespace `lanchain_db.langchain_col`. Finally, write the following definition in the JSON editor:\n",
"\n",
"```json\n",
"{\n",
" \"mappings\": {\n",
" \"dynamic\": true,\n",
" \"fields\": {\n",
" \"embedding\": {\n",
" \"dimensions\": 1536,\n",
" \"similarity\": \"cosine\",\n",
" \"type\": \"knnVector\"\n",
" }\n",
" }\n",
" }\n",
"}\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "aac9563e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import MongoDBAtlasVectorSearch\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a3c3999a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader('../../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e104aee",
"metadata": {},
"outputs": [],
"source": [
"from pymongo import MongoClient\n",
"\n",
"# initialize MongoDB python client\n",
"client = MongoClient(MONGODB_ATLAS_CONNECTION_STRING)\n",
"\n",
"db_name = \"lanchain_db\"\n",
"collection_name = \"langchain_col\"\n",
"collection = client[db_name][collection_name]\n",
"index_name = \"langchain_demo\"\n",
"\n",
"# insert the documents in MongoDB Atlas with their embedding\n",
"docsearch = MongoDBAtlasVectorSearch.from_documents(\n",
" docs,\n",
" embeddings,\n",
" collection=collection,\n",
" index_name=index_name\n",
")\n",
"\n",
"# perform a similarity search between the embedding of the query and the embeddings of the documents\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9c608226",
"metadata": {},
"outputs": [],
"source": [
"print(docs[0].page_content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -626,6 +626,44 @@
"source": [
"## Customizing Qdrant\n",
"\n",
"There are some options to use an existing Qdrant collection within your Langchain application. In such cases you may need to define how to map Qdrant point into the Langchain `Document`.\n",
"\n",
"### Named vectors\n",
"\n",
"Qdrant supports [multiple vectors per point](https://qdrant.tech/documentation/concepts/collections/#collection-with-multiple-vectors) by named vectors. Langchain requires just a single embedding per document and, by default, uses a single vector. However, if you work with a collection created externally or want to have the named vector used, you can configure it by providing its name.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"Qdrant.from_documents(\n",
" docs,\n",
" embeddings,\n",
" location=\":memory:\",\n",
" collection_name=\"my_documents_2\",\n",
" vector_name=\"custom_vector\",\n",
")"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"As a Langchain user, you won't see any difference whether you use named vectors or not. Qdrant integration will handle the conversion under the hood."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"### Metadata\n",
"\n",
"Qdrant stores your vector embeddings along with the optional JSON-like payload. Payloads are optional, but since LangChain assumes the embeddings are generated from the documents, we keep the context data, so you can extract the original texts as well.\n",
"\n",
"By default, your document is going to be stored in the following payload structure:\n",
@@ -639,8 +677,11 @@
"}\n",
"```\n",
"\n",
"You can, however, decide to use different keys for the page content and metadata. That's useful if you already have a collection that you'd like to reuse. You can always change the "
]
"You can, however, decide to use different keys for the page content and metadata. That's useful if you already have a collection that you'd like to reuse."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",

View File

@@ -11,43 +11,11 @@
">[Vectara](https://vectara.com/) is a API platform for building LLM-powered applications. It provides a simple to use API for document indexing and query that is managed by Vectara and is optimized for performance and accuracy. \n",
"\n",
"\n",
"This notebook shows how to use functionality related to the `Vectara` vector database. \n",
"This notebook shows how to use functionality related to the `Vectara` vector database or the `Vectara` retriever. \n",
"\n",
"See the [Vectara API documentation ](https://docs.vectara.com/docs/) for more information on how to use the API."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7b2f111b-357a-4f42-9730-ef0603bdc1b5",
"metadata": {},
"source": [
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "082e7e8b-ac52-430c-98d6-8f0924457642",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OpenAI API Key:········\n"
]
}
],
"source": [
"import os\n",
"import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -61,33 +29,13 @@
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"import os\n",
"from langchain.embeddings import FakeEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Vectara\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a3c3999a",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:22.520144Z",
"start_time": "2023-04-04T10:51:22.285826Z"
},
"tags": []
},
"outputs": [],
"source": [
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"attachments": {},
"cell_type": "markdown",
@@ -96,7 +44,21 @@
"source": [
"## Connecting to Vectara from LangChain\n",
"\n",
"The Vectara API provides simple API endpoints for indexing and querying."
"The Vectara API provides simple API endpoints for indexing and querying, which is encapsulated in the Vectara integration.\n",
"First let's ingest the documents using the from_documents() method:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "be0a4973",
"metadata": {},
"outputs": [],
"source": [
"loader = TextLoader('../../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n"
]
},
{
@@ -112,7 +74,50 @@
},
"outputs": [],
"source": [
"vectara = Vectara.from_documents(docs, embedding=None)"
"vectara = Vectara.from_documents(docs, \n",
" embedding=FakeEmbeddings(size=768), \n",
" doc_metadata = {\"speech\": \"state-of-the-union\"})"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "90dbf3e7",
"metadata": {},
"source": [
"Vectara's indexing API provides a file upload API where the file is handled directly by Vectara - pre-processed, chunked optimally and added to the Vectara vector store.\n",
"To use this, we added the add_files() method (and from_files()). \n",
"\n",
"Let's see this in action. We pick two PDF documents to upload: \n",
"1. The \"I have a dream\" speech by Dr. King\n",
"2. Churchill's \"We Shall Fight on the Beaches\" speech"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "85ef3468",
"metadata": {},
"outputs": [],
"source": [
"import tempfile\n",
"import urllib.request\n",
"\n",
"urls = [\n",
" ['https://www.gilderlehrman.org/sites/default/files/inline-pdfs/king.dreamspeech.excerpts.pdf', 'I-have-a-dream'],\n",
" ['https://www.parkwayschools.net/cms/lib/MO01931486/Centricity/Domain/1578/Churchill_Beaches_Speech.pdf', 'we shall fight on the beaches'],\n",
"]\n",
"files_list = []\n",
"for url,_ in urls:\n",
" name = tempfile.NamedTemporaryFile().name\n",
" urllib.request.urlretrieve(url, name)\n",
" files_list.append(name)\n",
"\n",
"docsearch: Vectara = Vectara.from_files(\n",
" files=files_list,\n",
" embedding=FakeEmbeddings(size=768),\n",
" metadatas=[{\"url\": url, \"speech\": title} for url,title in urls],\n",
")"
]
},
{
@@ -133,7 +138,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"id": "a8c513ab",
"metadata": {
"ExecuteTime": {
@@ -145,12 +150,12 @@
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"found_docs = vectara.similarity_search(query, n_sentence_context=0)"
"found_docs = vectara.similarity_search(query, n_sentence_context=0, filter=\"doc.speech = 'state-of-the-union'\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"id": "fc516993",
"metadata": {
"ExecuteTime": {
@@ -191,7 +196,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"id": "8804a21d",
"metadata": {
"ExecuteTime": {
@@ -202,12 +207,12 @@
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"found_docs = vectara.similarity_search_with_score(query)"
"found_docs = vectara.similarity_search_with_score(query, filter=\"doc.speech = 'state-of-the-union'\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 9,
"id": "756a6887",
"metadata": {
"ExecuteTime": {
@@ -228,7 +233,7 @@
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.\n",
"\n",
"Score: 0.7129974\n"
"Score: 0.4917977\n"
]
}
],
@@ -238,6 +243,37 @@
"print(f\"\\nScore: {score}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "1f9876a8",
"metadata": {},
"source": [
"Now let's do similar search for content in the files we uploaded"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "47784de5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(Document(page_content='We must forever conduct our struggle on the high plane of dignity and discipline.', metadata={'section': '1'}), 0.7962591)\n",
"(Document(page_content='We must not allow our\\ncreative protests to degenerate into physical violence. . . .', metadata={'section': '1'}), 0.25983918)\n"
]
}
],
"source": [
"query = \"We must forever conduct our struggle\"\n",
"found_docs = vectara.similarity_search_with_score(query, filter=\"doc.speech = 'I-have-a-dream'\")\n",
"print(found_docs[0])\n",
"print(found_docs[1])"
]
},
{
"attachments": {},
"cell_type": "markdown",
@@ -246,12 +282,12 @@
"source": [
"## Vectara as a Retriever\n",
"\n",
"Vectara, as all the other vector stores, is a LangChain Retriever, by using cosine similarity. "
"Vectara, as all the other vector stores, can be used also as a LangChain Retriever:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 11,
"id": "9427195f",
"metadata": {
"ExecuteTime": {
@@ -263,10 +299,10 @@
{
"data": {
"text/plain": [
"VectaraRetriever(vectorstore=<langchain.vectorstores.vectara.Vectara object at 0x122db2830>, search_type='similarity', search_kwargs={'lambda_val': 0.025, 'k': 5, 'filter': '', 'n_sentence_context': '0'})"
"VectaraRetriever(vectorstore=<langchain.vectorstores.vectara.Vectara object at 0x12772caf0>, search_type='similarity', search_kwargs={'lambda_val': 0.025, 'k': 5, 'filter': '', 'n_sentence_context': '0'})"
]
},
"execution_count": 9,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -278,7 +314,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 12,
"id": "f3c70c31",
"metadata": {
"ExecuteTime": {
@@ -293,7 +329,7 @@
"Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})"
]
},
"execution_count": 10,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}

View File

@@ -1,34 +1,116 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "91c6a7ef",
"id": "90cd3ded",
"metadata": {},
"source": [
"# Cassandra Chat Message History\n",
"\n",
">[Apache Cassandra®](https://cassandra.apache.org) is a NoSQL, row-oriented, highly scalable and highly available database, well suited for storing large amounts of data.\n",
"\n",
"Cassandra is a good choice for storing chat message history because it is easy to scale and can handle a large number of writes.\n",
"\n",
"This notebook goes over how to use Cassandra to store chat message history.\n",
"\n",
"Cassandra is a distributed database that is well suited for storing large amounts of data. \n",
"\n",
"It is a good choice for storing chat message history because it is easy to scale and can handle a large number of writes.\n"
"To run this notebook you need either a running Cassandra cluster or a DataStax Astra DB instance running in the cloud (you can get one for free at [datastax.com](https://astra.datastax.com)). Check [cassio.org](https://cassio.org/start_here/) for more information."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "47a601d2",
"execution_count": null,
"id": "d7092199",
"metadata": {},
"outputs": [],
"source": [
"# List of contact points to try connecting to Cassandra cluster.\n",
"contact_points = [\"cassandra\"]"
"!pip install \"cassio>=0.0.6\""
]
},
{
"cell_type": "markdown",
"id": "e3d97b65",
"metadata": {},
"source": [
"### Please provide database connection parameters and secrets:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "163d97f0",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"\n",
"database_mode = (input('\\n(C)assandra or (A)stra DB? ')).upper()\n",
"\n",
"keyspace_name = input('\\nKeyspace name? ')\n",
"\n",
"if database_mode == 'A':\n",
" ASTRA_DB_APPLICATION_TOKEN = getpass.getpass('\\nAstra DB Token (\"AstraCS:...\") ')\n",
" #\n",
" ASTRA_DB_SECURE_BUNDLE_PATH = input('Full path to your Secure Connect Bundle? ')\n",
"elif database_mode == 'C':\n",
" CASSANDRA_CONTACT_POINTS = input('Contact points? (comma-separated, empty for localhost) ').strip()"
]
},
{
"cell_type": "markdown",
"id": "55860b2d",
"metadata": {},
"source": [
"#### depending on whether local or cloud-based Astra DB, create the corresponding database connection \"Session\" object"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8dff2798",
"metadata": {},
"outputs": [],
"source": [
"from cassandra.cluster import Cluster\n",
"from cassandra.auth import PlainTextAuthProvider\n",
"\n",
"if database_mode == 'C':\n",
" if CASSANDRA_CONTACT_POINTS:\n",
" cluster = Cluster([\n",
" cp.strip()\n",
" for cp in CASSANDRA_CONTACT_POINTS.split(',')\n",
" if cp.strip()\n",
" ])\n",
" else:\n",
" cluster = Cluster()\n",
" session = cluster.connect()\n",
"elif database_mode == 'A':\n",
" ASTRA_DB_CLIENT_ID = \"token\"\n",
" cluster = Cluster(\n",
" cloud={\n",
" \"secure_connect_bundle\": ASTRA_DB_SECURE_BUNDLE_PATH,\n",
" },\n",
" auth_provider=PlainTextAuthProvider(\n",
" ASTRA_DB_CLIENT_ID,\n",
" ASTRA_DB_APPLICATION_TOKEN,\n",
" ),\n",
" )\n",
" session = cluster.connect()\n",
"else:\n",
" raise NotImplementedError"
]
},
{
"cell_type": "markdown",
"id": "36c163e8",
"metadata": {},
"source": [
"### Creation and usage of the Chat Message History"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d15e3302",
"metadata": {},
"outputs": [],
@@ -36,7 +118,9 @@
"from langchain.memory import CassandraChatMessageHistory\n",
"\n",
"message_history = CassandraChatMessageHistory(\n",
" contact_points=contact_points, session_id=\"test-session\"\n",
" session_id=\"test-session\",\n",
" session=session,\n",
" keyspace=keyspace_name,\n",
")\n",
"\n",
"message_history.add_user_message(\"hi!\")\n",
@@ -46,22 +130,10 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"id": "64fc465e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='hi!', additional_kwargs={}, example=False),\n",
" AIMessage(content='whats up?', additional_kwargs={}, example=False)]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"message_history.messages"
]
@@ -83,7 +155,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.10.6"
}
},
"nbformat": 4,

View File

@@ -40,10 +40,7 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:09:41.754535Z",
"start_time": "2023-05-25T15:09:40.897232Z"
}
"is_executing": true
},
"outputs": [],
"source": [
@@ -51,8 +48,8 @@
"from langchain.memory import ConversationBufferMemory\n",
"from langchain import OpenAI\n",
"from langchain.schema import HumanMessage, AIMessage\n",
"from langchain.tools import DuckDuckGoSearchRun\n",
"from langchain.agents import initialize_agent, AgentType\n",
"from langchain.utilities import WikipediaAPIWrapper\n",
"from langchain.agents import initialize_agent, AgentType, Tool\n",
"from uuid import uuid4\n",
"\n",
"\n",
@@ -73,19 +70,37 @@
},
"outputs": [
{
"data": {
"text/plain": "True"
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
"name": "stdin",
"output_type": "stream",
"text": [
" ········\n"
]
}
],
"source": [
"# Load your OpenAI key from a .env file\n",
"from dotenv import load_dotenv\n",
"# Provide your OpenAI key\n",
"import getpass\n",
"\n",
"load_dotenv()"
"openai_key = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" ········\n"
]
}
],
"source": [
"# Provide your Zep API key. Note that this is optional. See https://docs.getzep.com/deployment/auth\n",
"\n",
"zep_api_key = getpass.getpass()"
]
},
{
@@ -98,7 +113,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:09:41.840440Z",
@@ -107,13 +122,20 @@
},
"outputs": [],
"source": [
"ddg = DuckDuckGoSearchRun()\n",
"tools = [ddg]\n",
"search = WikipediaAPIWrapper()\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to search online for answers. You should ask targeted questions\",\n",
" ),\n",
"]\n",
"\n",
"# Set up Zep Chat History\n",
"zep_chat_history = ZepChatMessageHistory(\n",
" session_id=session_id,\n",
" url=ZEP_API_URL,\n",
" api_key=zep_api_key\n",
")\n",
"\n",
"# Use a standard ConversationBufferMemory to encapsulate the Zep chat history\n",
@@ -122,7 +144,7 @@
")\n",
"\n",
"# Initialize the agent\n",
"llm = OpenAI(temperature=0)\n",
"llm = OpenAI(temperature=0, openai_api_key=openai_key)\n",
"agent_chain = initialize_agent(\n",
" tools,\n",
" llm,\n",
@@ -142,7 +164,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:09:41.960661Z",
@@ -212,7 +234,7 @@
"]\n",
"\n",
"for msg in test_history:\n",
" zep_chat_history.append(\n",
" zep_chat_history.add_message(\n",
" HumanMessage(content=msg[\"content\"])\n",
" if msg[\"role\"] == \"human\"\n",
" else AIMessage(content=msg[\"content\"])\n",
@@ -231,7 +253,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:09:50.485377Z",
@@ -245,18 +267,20 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: Do I need to use a tool? No\n",
"AI: Parable of the Sower is a prescient novel that speaks to the challenges facing contemporary society, such as climate change, economic inequality, and the rise of authoritarianism. It is a cautionary tale that warns of the dangers of ignoring these issues and the importance of taking action to address them.\u001b[0m\n",
"\u001B[1m> Entering new chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: Do I need to use a tool? No\n",
"AI: Parable of the Sower is a prescient novel that speaks to the challenges facing contemporary society, such as climate change, economic inequality, and the rise of authoritarianism. It is a cautionary tale that warns of the dangers of ignoring these issues and the importance of taking action to address them.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
"data": {
"text/plain": "'Parable of the Sower is a prescient novel that speaks to the challenges facing contemporary society, such as climate change, economic inequality, and the rise of authoritarianism. It is a cautionary tale that warns of the dangers of ignoring these issues and the importance of taking action to address them.'"
"text/plain": [
"'Parable of the Sower is a prescient novel that speaks to the challenges facing contemporary society, such as climate change, economic inequality, and the rise of authoritarianism. It is a cautionary tale that warns of the dangers of ignoring these issues and the importance of taking action to address them.'"
]
},
"execution_count": 5,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -281,7 +305,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:09:50.493438Z",
@@ -293,19 +317,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"The conversation is about Octavia Butler. The AI describes her as an American science fiction author and mentions the\n",
"FX series Kindred as a well-known adaptation of her work. The human then asks about her contemporaries, and the AI lists \n",
"Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.\n",
"The human asks about Octavia Butler and the AI identifies her as an American science fiction author. They continue to discuss her works and the fact that the FX series Kindred is based on one of her novels. The AI also lists Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ as Butler's contemporaries.\n",
"\n",
"\n",
"{'role': 'human', 'content': 'What awards did she win?', 'uuid': '9fa75c3c-edae-41e3-b9bc-9fcf16b523c9', 'created_at': '2023-05-25T15:09:41.91662Z', 'token_count': 8}\n",
"{'role': 'ai', 'content': 'Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur Fellowship.', 'uuid': 'def4636c-32cb-49ed-b671-32035a034712', 'created_at': '2023-05-25T15:09:41.919874Z', 'token_count': 21}\n",
"{'role': 'human', 'content': 'Which other women sci-fi writers might I want to read?', 'uuid': '6e87bd4a-bc23-451e-ae36-05a140415270', 'created_at': '2023-05-25T15:09:41.923771Z', 'token_count': 14}\n",
"{'role': 'ai', 'content': 'You might want to read Ursula K. Le Guin or Joanna Russ.', 'uuid': 'f65d8dde-9ee8-4983-9da6-ba789b7e8aa4', 'created_at': '2023-05-25T15:09:41.935254Z', 'token_count': 18}\n",
"{'role': 'human', 'content': \"Write a short synopsis of Butler's book, Parable of the Sower. What is it about?\", 'uuid': '5678d056-7f05-4e70-b8e5-f85efa56db01', 'created_at': '2023-05-25T15:09:41.938974Z', 'token_count': 23}\n",
"{'role': 'ai', 'content': 'Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence.', 'uuid': '50d64946-9239-4327-83e6-71dcbdd16198', 'created_at': '2023-05-25T15:09:41.957437Z', 'token_count': 56}\n",
"{'role': 'human', 'content': \"WWhat is the book's relevance to the challenges facing contemporary society?\", 'uuid': 'a39cfc07-8858-480a-9026-fc47a8ef7001', 'created_at': '2023-05-25T15:09:50.469533Z', 'token_count': 16}\n",
"{'role': 'ai', 'content': 'Parable of the Sower is a prescient novel that speaks to the challenges facing contemporary society, such as climate change, economic inequality, and the rise of authoritarianism. It is a cautionary tale that warns of the dangers of ignoring these issues and the importance of taking action to address them.', 'uuid': 'a4ecf0fe-fdd0-4aad-b72b-efde2e6830cc', 'created_at': '2023-05-25T15:09:50.473793Z', 'token_count': 62}\n"
"{'role': 'human', 'content': 'What awards did she win?', 'uuid': 'a4bdc592-71a5-47d0-9c64-230b882aab48', 'created_at': '2023-06-26T23:37:56.383953Z', 'token_count': 8, 'metadata': {'system': {'entities': [], 'intent': 'The subject is asking about the awards someone won, likely referring to a specific individual.'}}}\n",
"{'role': 'ai', 'content': 'Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur Fellowship.', 'uuid': '60cc6e6b-7cd4-4a81-aebc-72ef997286b4', 'created_at': '2023-06-26T23:37:56.389935Z', 'token_count': 21, 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 14, 'Start': 0, 'Text': 'Octavia Butler'}], 'Name': 'Octavia Butler'}, {'Label': 'WORK_OF_ART', 'Matches': [{'End': 33, 'Start': 19, 'Text': 'the Hugo Award'}], 'Name': 'the Hugo Award'}, {'Label': 'EVENT', 'Matches': [{'End': 81, 'Start': 57, 'Text': 'the MacArthur Fellowship'}], 'Name': 'the MacArthur Fellowship'}], 'intent': 'The subject is stating the accomplishments and awards received by Octavia Butler.'}}}\n",
"{'role': 'human', 'content': 'Which other women sci-fi writers might I want to read?', 'uuid': 'b189fc60-1510-4a4b-a503-899481d652de', 'created_at': '2023-06-26T23:37:56.395722Z', 'token_count': 14, 'metadata': {'system': {'entities': [], 'intent': 'The subject is looking for recommendations on women science fiction writers to read.'}}}\n",
"{'role': 'ai', 'content': 'You might want to read Ursula K. Le Guin or Joanna Russ.', 'uuid': '4be1ccbb-a915-45d6-9f18-7a0c1cbd9907', 'created_at': '2023-06-26T23:37:56.403596Z', 'token_count': 18, 'metadata': {'system': {'entities': [{'Label': 'ORG', 'Matches': [{'End': 40, 'Start': 23, 'Text': 'Ursula K. Le Guin'}], 'Name': 'Ursula K. Le Guin'}, {'Label': 'PERSON', 'Matches': [{'End': 55, 'Start': 44, 'Text': 'Joanna Russ'}], 'Name': 'Joanna Russ'}], 'intent': 'The subject is suggesting reading material and making a literary recommendation.'}}}\n",
"{'role': 'human', 'content': \"Write a short synopsis of Butler's book, Parable of the Sower. What is it about?\", 'uuid': 'ac3c5e3e-26a7-4f3b-aeb0-bba084e22753', 'created_at': '2023-06-26T23:37:56.410662Z', 'token_count': 23, 'metadata': {'system': {'entities': [{'Label': 'ORG', 'Matches': [{'End': 32, 'Start': 26, 'Text': 'Butler'}], 'Name': 'Butler'}, {'Label': 'WORK_OF_ART', 'Matches': [{'End': 61, 'Start': 41, 'Text': 'Parable of the Sower'}], 'Name': 'Parable of the Sower'}], 'intent': 'The subject is asking for a brief overview or summary of the book \"Parable of the Sower\" written by Butler.'}}}\n",
"{'role': 'ai', 'content': 'Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence.', 'uuid': '4a463b4c-bcab-473c-bed1-fc56a7a20ae2', 'created_at': '2023-06-26T23:37:56.41764Z', 'token_count': 56, 'metadata': {'system': {'entities': [{'Label': 'GPE', 'Matches': [{'End': 20, 'Start': 15, 'Text': 'Sower'}], 'Name': 'Sower'}, {'Label': 'PERSON', 'Matches': [{'End': 65, 'Start': 51, 'Text': 'Octavia Butler'}], 'Name': 'Octavia Butler'}, {'Label': 'DATE', 'Matches': [{'End': 84, 'Start': 80, 'Text': '1993'}], 'Name': '1993'}, {'Label': 'PERSON', 'Matches': [{'End': 124, 'Start': 110, 'Text': 'Lauren Olamina'}], 'Name': 'Lauren Olamina'}]}}}\n",
"{'role': 'human', 'content': \"WWhat is the book's relevance to the challenges facing contemporary society?\", 'uuid': '41bab0c7-5e20-40a4-9303-f82069977c91', 'created_at': '2023-06-26T23:38:03.559642Z', 'token_count': 16, 'metadata': {'system': {'entities': [{'Label': 'ORG', 'Matches': [{'End': 5, 'Start': 0, 'Text': 'WWhat'}], 'Name': 'WWhat'}]}}}\n",
"{'role': 'ai', 'content': 'Parable of the Sower is a prescient novel that speaks to the challenges facing contemporary society, such as climate change, economic inequality, and the rise of authoritarianism. It is a cautionary tale that warns of the dangers of ignoring these issues and the importance of taking action to address them.', 'uuid': 'bfd8146a-4632-4c8c-98b6-9468bb624339', 'created_at': '2023-06-26T23:38:03.589312Z', 'token_count': 62, 'metadata': {'system': {'entities': [{'Label': 'GPE', 'Matches': [{'End': 20, 'Start': 15, 'Text': 'Sower'}], 'Name': 'Sower'}]}}}\n"
]
}
],
@@ -332,7 +354,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-25T15:09:50.751203Z",
@@ -344,16 +366,16 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'uuid': '6e87bd4a-bc23-451e-ae36-05a140415270', 'created_at': '2023-05-25T15:09:41.923771Z', 'role': 'human', 'content': 'Which other women sci-fi writers might I want to read?', 'token_count': 14} 0.9118298949424545\n",
"{'uuid': 'f65d8dde-9ee8-4983-9da6-ba789b7e8aa4', 'created_at': '2023-05-25T15:09:41.935254Z', 'role': 'ai', 'content': 'You might want to read Ursula K. Le Guin or Joanna Russ.', 'token_count': 18} 0.8533024416448016\n",
"{'uuid': '52cfe3e8-b800-4dd8-a7dd-8e9e4764dfc8', 'created_at': '2023-05-25T15:09:41.913856Z', 'role': 'ai', 'content': \"Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.\", 'token_count': 27} 0.852352466457884\n",
"{'uuid': 'd40da612-0867-4a43-92ec-778b86490a39', 'created_at': '2023-05-25T15:09:41.858543Z', 'role': 'human', 'content': 'Who was Octavia Butler?', 'token_count': 8} 0.8235468913583194\n",
"{'uuid': '4fcfbce4-7bfa-44bd-879a-8cbf265bdcf9', 'created_at': '2023-05-25T15:09:41.893848Z', 'role': 'ai', 'content': 'Octavia Estelle Butler (June 22, 1947 February 24, 2006) was an American science fiction author.', 'token_count': 31} 0.8204317130595353\n",
"{'uuid': 'def4636c-32cb-49ed-b671-32035a034712', 'created_at': '2023-05-25T15:09:41.919874Z', 'role': 'ai', 'content': 'Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur Fellowship.', 'token_count': 21} 0.8196714827228725\n",
"{'uuid': '862107de-8f6f-43c0-91fa-4441f01b2b3a', 'created_at': '2023-05-25T15:09:41.898149Z', 'role': 'human', 'content': 'Which books of hers were made into movies?', 'token_count': 11} 0.7954322970428519\n",
"{'uuid': '97164506-90fe-4c71-9539-69ebcd1d90a2', 'created_at': '2023-05-25T15:09:41.90887Z', 'role': 'human', 'content': 'Who were her contemporaries?', 'token_count': 8} 0.7942531405021976\n",
"{'uuid': '50d64946-9239-4327-83e6-71dcbdd16198', 'created_at': '2023-05-25T15:09:41.957437Z', 'role': 'ai', 'content': 'Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence.', 'token_count': 56} 0.78144769172694\n",
"{'uuid': 'c460ffd4-0715-4c69-b793-1092054973e6', 'created_at': '2023-05-25T15:09:41.903082Z', 'role': 'ai', 'content': \"The most well-known adaptation of Octavia Butler's work is the FX series Kindred, based on her novel of the same name.\", 'token_count': 29} 0.7811962820699464\n"
"{'uuid': 'b189fc60-1510-4a4b-a503-899481d652de', 'created_at': '2023-06-26T23:37:56.395722Z', 'role': 'human', 'content': 'Which other women sci-fi writers might I want to read?', 'metadata': {'system': {'entities': [], 'intent': 'The subject is looking for recommendations on women science fiction writers to read.'}}, 'token_count': 14} 0.9119619869747062\n",
"{'uuid': '4be1ccbb-a915-45d6-9f18-7a0c1cbd9907', 'created_at': '2023-06-26T23:37:56.403596Z', 'role': 'ai', 'content': 'You might want to read Ursula K. Le Guin or Joanna Russ.', 'metadata': {'system': {'entities': [{'Label': 'ORG', 'Matches': [{'End': 40, 'Start': 23, 'Text': 'Ursula K. Le Guin'}], 'Name': 'Ursula K. Le Guin'}, {'Label': 'PERSON', 'Matches': [{'End': 55, 'Start': 44, 'Text': 'Joanna Russ'}], 'Name': 'Joanna Russ'}], 'intent': 'The subject is suggesting reading material and making a literary recommendation.'}}, 'token_count': 18} 0.8534346954749745\n",
"{'uuid': '76ec2a3d-b908-4c23-a55d-71ff92865a7a', 'created_at': '2023-06-26T23:37:56.378345Z', 'role': 'ai', 'content': \"Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R. Delany, and Joanna Russ.\", 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 16, 'Start': 0, 'Text': \"Octavia Butler's\"}], 'Name': \"Octavia Butler's\"}, {'Label': 'ORG', 'Matches': [{'End': 58, 'Start': 41, 'Text': 'Ursula K. Le Guin'}], 'Name': 'Ursula K. Le Guin'}, {'Label': 'PERSON', 'Matches': [{'End': 76, 'Start': 60, 'Text': 'Samuel R. Delany'}], 'Name': 'Samuel R. Delany'}, {'Label': 'PERSON', 'Matches': [{'End': 93, 'Start': 82, 'Text': 'Joanna Russ'}], 'Name': 'Joanna Russ'}], 'intent': 'The subject is stating the contemporaries of Octavia Butler, who are also science fiction writers.'}}, 'token_count': 27} 0.8523930955780226\n",
"{'uuid': '1feb02c7-63c9-4616-854d-0d97fb590ea5', 'created_at': '2023-06-26T23:37:56.313009Z', 'role': 'human', 'content': 'Who was Octavia Butler?', 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 22, 'Start': 8, 'Text': 'Octavia Butler'}], 'Name': 'Octavia Butler'}], 'intent': 'The subject is asking about the identity of Octavia Butler, likely seeking information about her background or accomplishments.'}}, 'token_count': 8} 0.8236355436055457\n",
"{'uuid': 'ebe4696d-b5fa-4ca0-88c9-da794d9611ab', 'created_at': '2023-06-26T23:37:56.332247Z', 'role': 'ai', 'content': 'Octavia Estelle Butler (June 22, 1947 February 24, 2006) was an American science fiction author.', 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 22, 'Start': 0, 'Text': 'Octavia Estelle Butler'}], 'Name': 'Octavia Estelle Butler'}, {'Label': 'DATE', 'Matches': [{'End': 37, 'Start': 24, 'Text': 'June 22, 1947'}], 'Name': 'June 22, 1947'}, {'Label': 'DATE', 'Matches': [{'End': 57, 'Start': 40, 'Text': 'February 24, 2006'}], 'Name': 'February 24, 2006'}, {'Label': 'NORP', 'Matches': [{'End': 74, 'Start': 66, 'Text': 'American'}], 'Name': 'American'}], 'intent': 'The subject is making a statement about the background and profession of Octavia Estelle Butler, an American author.'}}, 'token_count': 31} 0.8206687242257686\n",
"{'uuid': '60cc6e6b-7cd4-4a81-aebc-72ef997286b4', 'created_at': '2023-06-26T23:37:56.389935Z', 'role': 'ai', 'content': 'Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur Fellowship.', 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 14, 'Start': 0, 'Text': 'Octavia Butler'}], 'Name': 'Octavia Butler'}, {'Label': 'WORK_OF_ART', 'Matches': [{'End': 33, 'Start': 19, 'Text': 'the Hugo Award'}], 'Name': 'the Hugo Award'}, {'Label': 'EVENT', 'Matches': [{'End': 81, 'Start': 57, 'Text': 'the MacArthur Fellowship'}], 'Name': 'the MacArthur Fellowship'}], 'intent': 'The subject is stating the accomplishments and awards received by Octavia Butler.'}}, 'token_count': 21} 0.8194249796585193\n",
"{'uuid': '0fa4f336-909d-4880-b01a-8e80e91fa8f2', 'created_at': '2023-06-26T23:37:56.344552Z', 'role': 'human', 'content': 'Which books of hers were made into movies?', 'metadata': {'system': {'entities': [], 'intent': 'The subject is inquiring about which books written by an unknown female author were adapted into movies.'}}, 'token_count': 11} 0.7955105671310818\n",
"{'uuid': 'f91de7f2-4b84-4c5a-8a33-a71f38f3a59c', 'created_at': '2023-06-26T23:37:56.368146Z', 'role': 'human', 'content': 'Who were her contemporaries?', 'metadata': {'system': {'entities': [], 'intent': 'The subject is asking about the people who lived during the same time period as a specific individual.'}}, 'token_count': 8} 0.7942358617914813\n",
"{'uuid': '4a463b4c-bcab-473c-bed1-fc56a7a20ae2', 'created_at': '2023-06-26T23:37:56.41764Z', 'role': 'ai', 'content': 'Parable of the Sower is a science fiction novel by Octavia Butler, published in 1993. It follows the story of Lauren Olamina, a young woman living in a dystopian future where society has collapsed due to environmental disasters, poverty, and violence.', 'metadata': {'system': {'entities': [{'Label': 'GPE', 'Matches': [{'End': 20, 'Start': 15, 'Text': 'Sower'}], 'Name': 'Sower'}, {'Label': 'PERSON', 'Matches': [{'End': 65, 'Start': 51, 'Text': 'Octavia Butler'}], 'Name': 'Octavia Butler'}, {'Label': 'DATE', 'Matches': [{'End': 84, 'Start': 80, 'Text': '1993'}], 'Name': '1993'}, {'Label': 'PERSON', 'Matches': [{'End': 124, 'Start': 110, 'Text': 'Lauren Olamina'}], 'Name': 'Lauren Olamina'}]}}, 'token_count': 56} 0.7816448549236643\n",
"{'uuid': '6161d934-a629-4ba2-8bba-0b0996c93964', 'created_at': '2023-06-26T23:37:56.358632Z', 'role': 'ai', 'content': \"The most well-known adaptation of Octavia Butler's work is the FX series Kindred, based on her novel of the same name.\", 'metadata': {'system': {'entities': [{'Label': 'PERSON', 'Matches': [{'End': 50, 'Start': 34, 'Text': \"Octavia Butler's\"}], 'Name': \"Octavia Butler's\"}, {'Label': 'ORG', 'Matches': [{'End': 65, 'Start': 63, 'Text': 'FX'}], 'Name': 'FX'}, {'Label': 'GPE', 'Matches': [{'End': 80, 'Start': 73, 'Text': 'Kindred'}], 'Name': 'Kindred'}], 'intent': \"The subject is discussing Octavia Butler's work being adapted into a TV series called Kindred.\"}}, 'token_count': 29} 0.7815841371388998\n"
]
}
],
@@ -362,11 +384,25 @@
"for r in search_results:\n",
" print(r.message, r.dist)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -380,10 +416,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"orig_nbformat": 4
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -0,0 +1,126 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## OctoAI Compute Service\n",
"This example goes over how to use LangChain to interact with `OctoAI` [LLM endpoints](https://octoai.cloud/templates)\n",
"## Environment setup\n",
"\n",
"To run our example app, there are four simple steps to take:\n",
"\n",
"1. Clone the MPT-7B demo template to your OctoAI account by visiting <https://octoai.cloud/templates/mpt-7b-demo> then clicking \"Clone Template.\" \n",
" 1. If you want to use a different LLM model, you can also containerize the model and make a custom OctoAI endpoint yourself, by following [Build a Container from Python](doc:create-custom-endpoints-from-python-code) and [Create a Custom Endpoint from a Container](doc:create-custom-endpoints-from-a-container)\n",
" \n",
"2. Paste your Endpoint URL in the code cell below\n",
"\n",
"3. Get an API Token from [your OctoAI account page](https://octoai.cloud/settings).\n",
" \n",
"4. Paste your API key in in the code cell below"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OCTOAI_API_TOKEN\"] = \"OCTOAI_API_TOKEN\"\n",
"os.environ[\"ENDPOINT_URL\"] = \"https://mpt-7b-demo-kk0powt97tmb.octoai.cloud/generate\""
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms.octoai_endpoint import OctoAIEndpoint\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Below is an instruction that describes a task. Write a response that appropriately completes the request.\\n Instruction:\\n{question}\\n Response: \"\"\"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"llm = OctoAIEndpoint(\n",
" model_kwargs={\n",
" \"max_new_tokens\": 200,\n",
" \"temperature\": 0.75,\n",
" \"top_p\": 0.95,\n",
" \"repetition_penalty\": 1,\n",
" \"seed\": None,\n",
" \"stop\": [],\n",
" },\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nLeonardo da Vinci was an Italian polymath and painter regarded by many as one of the greatest painters of all time. He is best known for his masterpieces including Mona Lisa, The Last Supper, and The Virgin of the Rocks. He was a draftsman, sculptor, architect, and one of the most important figures in the history of science. Da Vinci flew gliders, experimented with water turbines and windmills, and invented the catapult and a joystick-type human-powered aircraft control. He may have pioneered helicopters. As a scholar, he was interested in anatomy, geology, botany, engineering, mathematics, and astronomy.\\nOther painters and patrons claimed to be more talented, but Leonardo da Vinci was an incredibly productive artist, sculptor, engineer, anatomist, and scientist.'"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question = \"Who was leonardo davinci?\"\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "97697b63fdcee0a640856f91cb41326ad601964008c341809e43189d1cab1047"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -30,14 +30,14 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 14,
"id": "2e587f65",
"metadata": {},
"outputs": [],
"source": [
"# Load Notion page as a markdownfile file\n",
"from langchain.document_loaders import NotionDirectoryLoader\n",
"path='.../Notion_Folder_With_Markdown_File'\n",
"path='../Notion_DB/'\n",
"loader = NotionDirectoryLoader(path)\n",
"docs = loader.load()\n",
"md_file=docs[0].page_content"
@@ -45,7 +45,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 15,
"id": "1cd3fd7e",
"metadata": {},
"outputs": [],
@@ -69,7 +69,7 @@
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 26,
"id": "7fbff95f",
"metadata": {},
"outputs": [],
@@ -110,8 +110,10 @@
"outputs": [],
"source": [
"# Build vectorstore and keep the metadata\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma\n",
"vectorstore = Chroma.from_documents(texts=all_splits,metadatas=all_metadatas,embedding=OpenAIEmbeddings())"
"vectorstore = Chroma.from_documents(documents=all_splits,\n",
" embedding=OpenAIEmbeddings())"
]
},
{
@@ -157,6 +159,37 @@
"We can see that we can query *only for texts* in the `Introduction` of the document!"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "d688db6e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"query='Introduction' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='Section', value='Introduction') limit=None\n"
]
},
{
"data": {
"text/plain": [
"[Document(page_content='![Untitled](Auto-Evaluation%20of%20Metadata%20Filtering%2018502448c85240828f33716740f9574b/Untitled.png)', metadata={'Section': 'Introduction'}),\n",
" Document(page_content='Q+A systems often use a two-step approach: retrieve relevant text chunks and then synthesize them into an answer. There many ways to approach this. For example, we recently [discussed](https://blog.langchain.dev/auto-evaluation-of-anthropic-100k-context-window/) the Retriever-Less option (at bottom in the below diagram), highlighting the Anthropic 100k context window model. Metadata filtering is an alternative approach that pre-filters chunks based on a user-defined criteria in a VectorDB using', metadata={'Section': 'Introduction'}),\n",
" Document(page_content='metadata tags prior to semantic search.', metadata={'Section': 'Introduction'})]"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Test\n",
"retriever.get_relevant_documents(\"Summarize the Introduction section of the document\")"
]
},
{
"cell_type": "code",
"execution_count": 29,
@@ -287,6 +320,11 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"vscode": {
"interpreter": {
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
}
}
},
"nbformat": 4,

View File

@@ -11,5 +11,4 @@ myst_nb
sphinx_copybutton
pydata-sphinx-theme==0.13.1
nbdoc
urllib3<2
sphinx_tabs
urllib3<2

View File

@@ -78,11 +78,14 @@ pprint(data)
</CodeOutputBlock>
## Using `JSONLoader`
Suppose we are interested in extracting the values under the `content` field within the `messages` key of the JSON data. This can easily be done through the `JSONLoader` as shown below.
### JSON file
```python
loader = JSONLoader(
file_path='./example_data/facebook_chat.json',
@@ -114,6 +117,81 @@ pprint(data)
</CodeOutputBlock>
### JSON Lines file
If you want to load documents from a JSON Lines file, you pass `json_lines=True`
and specify `jq_schema` to extract `page_content` from a single JSON object.
```python
file_path = './example_data/facebook_chat_messages.jsonl'
pprint(Path(file_path).read_text())
```
<CodeOutputBlock lang="python">
```
('{"sender_name": "User 2", "timestamp_ms": 1675597571851, "content": "Bye!"}\n'
'{"sender_name": "User 1", "timestamp_ms": 1675597435669, "content": "Oh no '
'worries! Bye"}\n'
'{"sender_name": "User 2", "timestamp_ms": 1675596277579, "content": "No Im '
'sorry it was my mistake, the blue one is not for sale"}\n')
```
</CodeOutputBlock>
```python
loader = JSONLoader(
file_path='./example_data/facebook_chat_messages.jsonl',
jq_schema='.content',
json_lines=True)
data = loader.load()
```
```python
pprint(data)
```
<CodeOutputBlock lang="python">
```
[Document(page_content='Bye!', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 1}),
Document(page_content='Oh no worries! Bye', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 2}),
Document(page_content='No Im sorry it was my mistake, the blue one is not for sale', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 3})]
```
</CodeOutputBlock>
Another option is set `jq_schema='.'` and provide `content_key`:
```python
loader = JSONLoader(
file_path='./example_data/facebook_chat_messages.jsonl',
jq_schema='.',
content_key='sender_name',
json_lines=True)
data = loader.load()
```
```python
pprint(data)
```
<CodeOutputBlock lang="python">
```
[Document(page_content='User 2', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 1}),
Document(page_content='User 1', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 2}),
Document(page_content='User 2', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 3})]
```
</CodeOutputBlock>
## Extracting metadata
Generally, we want to include metadata available in the JSON file into the documents that we create from the content.

View File

@@ -1,24 +1,40 @@
The `BaseRetriever` class in LangChain is as follows:
The public API of the `BaseRetriever` class in LangChain is as follows:
```python
from abc import ABC, abstractmethod
from typing import List
from typing import Any, List
from langchain.schema import Document
from langchain.callbacks.manager import Callbacks
class BaseRetriever(ABC):
@abstractmethod
def get_relevant_documents(self, query: str) -> List[Document]:
"""Get texts relevant for a query.
...
def get_relevant_documents(
self, query: str, *, callbacks: Callbacks = None, **kwargs: Any
) -> List[Document]:
"""Retrieve documents relevant to a query.
Args:
query: string to find relevant texts for
query: string to find relevant documents for
callbacks: Callback manager or list of callbacks
Returns:
List of relevant documents
"""
...
async def aget_relevant_documents(
self, query: str, *, callbacks: Callbacks = None, **kwargs: Any
) -> List[Document]:
"""Asynchronously get documents relevant to a query.
Args:
query: string to find relevant documents for
callbacks: Callback manager or list of callbacks
Returns:
List of relevant documents
"""
...
```
It's that simple! The `get_relevant_documents` method can be implemented however you see fit.
It's that simple! You can call `get_relevant_documents` or the async `get_relevant_documents` methods to retrieve documents relevant to a query, where "relevance" is defined by
the specific retriever object you are calling.
Of course, we also help construct what we think useful Retrievers are. The main type of Retriever that we focus on is a Vectorstore retriever. We will focus on that for the rest of this guide.

View File

@@ -0,0 +1,161 @@
# Implement a Custom Retriever
In this walkthrough, you will implement a simple custom retriever in LangChain using a simple dot product distance lookup.
All retrievers inherit from the `BaseRetriever` class and override the following abstract methods:
```python
from abc import ABC, abstractmethod
from typing import Any, List
from langchain.schema import Document
from langchain.callbacks.manager import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
class BaseRetriever(ABC):
@abstractmethod
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""Get documents relevant to a query.
Args:
query: string to find relevant documents for
run_manager: The callbacks handler to use
Returns:
List of relevant documents
"""
@abstractmethod
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: AsyncCallbackManagerForRetrieverRun,
) -> List[Document]:
"""Asynchronously get documents relevant to a query.
Args:
query: string to find relevant documents for
run_manager: The callbacks handler to use
Returns:
List of relevant documents
"""
```
The `_get_relevant_documents` and async `_get_relevant_documents` methods can be implemented however you see fit. The `run_manager` is useful if your retriever calls other traceable LangChain primitives like LLMs, chains, or tools.
Below, implement an example that fetches the most similar documents from a list of documents using a numpy array of embeddings.
```python
from typing import Any, List, Optional
import numpy as np
from langchain.callbacks.manager import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain.embeddings import OpenAIEmbeddings
from langchain.embeddings.base import Embeddings
from langchain.schema import BaseRetriever, Document
class NumpyRetriever(BaseRetriever):
"""Retrieves documents from a numpy array."""
def __init__(
self,
texts: List[str],
vectors: np.ndarray,
embeddings: Optional[Embeddings] = None,
num_to_return: int = 1,
) -> None:
super().__init__()
self.embeddings = embeddings or OpenAIEmbeddings()
self.texts = texts
self.vectors = vectors
self.num_to_return = num_to_return
@classmethod
def from_texts(
cls,
texts: List[str],
embeddings: Optional[Embeddings] = None,
**kwargs: Any,
) -> "NumpyRetriever":
embeddings = embeddings or OpenAIEmbeddings()
vectors = np.array(embeddings.embed_documents(texts))
return cls(texts, vectors, embeddings)
def _get_relevant_documents_from_query_vector(
self, vector_query: np.ndarray
) -> List[Document]:
dot_product = np.dot(self.vectors, vector_query)
# Get the indices of the min 5 documents
indices = np.argpartition(
dot_product, -min(self.num_to_return, len(self.vectors))
)[-self.num_to_return :]
# Sort indices by distance
indices = indices[np.argsort(dot_product[indices])]
return [
Document(
page_content=self.texts[idx],
metadata={"index": idx},
)
for idx in indices
]
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""Get documents relevant to a query.
Args:
query: string to find relevant documents for
run_manager: The callbacks handler to use
Returns:
List of relevant documents
"""
vector_query = np.array(self.embeddings.embed_query(query))
return self._get_relevant_documents_from_query_vector(vector_query)
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: AsyncCallbackManagerForRetrieverRun,
) -> List[Document]:
"""Asynchronously get documents relevant to a query.
Args:
query: string to find relevant documents for
run_manager: The callbacks handler to use
Returns:
List of relevant documents
"""
query_emb = await self.embeddings.aembed_query(query)
return self._get_relevant_documents_from_query_vector(np.array(query_emb))
```
The retriever can be instantiated through the class method `from_texts`. It embeds the texts and stores them in a numpy array. To look up documents, it embeds the query and finds the most similar documents using a simple dot product distance.
Once the retriever is implemented, you can use it like any other retriever in LangChain.
```python
retriever = NumpyRetriever.from_texts(texts= ["hello world", "goodbye world"])
```
You can then use the retriever to get relevant documents.
```python
retriever.get_relevant_documents("Hi there!")
# [Document(page_content='hello world', metadata={'index': 0})]
```
```python
retriever.get_relevant_documents("Bye!")
# [Document(page_content='goodbye world', metadata={'index': 1})]
```

View File

@@ -31,7 +31,7 @@ embeddings_model = OpenAIEmbeddings()
#### Embed list of texts
```python
embeddings = embedding_model.embed_documents(
embeddings = embeddings_model.embed_documents(
[
"Hi there!",
"Oh, hello!",
@@ -56,7 +56,7 @@ len(embeddings), len(embeddings[0])
Embed a single piece of text for the purpose of comparing to other embedded pieces of texts.
```python
embedded_query = embedding_model.embed_query("What was the name mentioned in the conversation?")
embedded_query = embeddings_model.embed_query("What was the name mentioned in the conversation?")
embedded_query[:5]
```

View File

@@ -26,7 +26,8 @@ raw_documents = TextLoader('../../../state_of_the_union.txt').load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
db = FAISS.from_documents(documents, OpenAIEmbeddings())
embeddings = OpenAIEmbeddings()
db = FAISS.from_documents(documents, embeddings)
```
### Similarity search

View File

@@ -65,7 +65,7 @@ pipeline_prompt.input_variables
print(pipeline_prompt.format(
person="Elon Musk",
example_q="What's your favorite car?",
example_a="Telsa",
example_a="Tesla",
input="What's your favorite social media site?"
))
```
@@ -77,7 +77,7 @@ print(pipeline_prompt.format(
Here's an example of an interaction:
Q: What's your favorite car?
A: Telsa
A: Tesla
Now, do this for real!
Q: What's your favorite social media site?

View File

@@ -32,6 +32,7 @@ from langchain.agents.load_tools import (
from langchain.agents.loading import load_agent
from langchain.agents.mrkl.base import MRKLChain, ZeroShotAgent
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.agents.openai_functions_multi_agent.base import OpenAIMultiFunctionsAgent
from langchain.agents.react.base import ReActChain, ReActTextWorldAgent
from langchain.agents.self_ask_with_search.base import SelfAskWithSearchChain
from langchain.agents.structured_chat.base import StructuredChatAgent
@@ -49,6 +50,7 @@ __all__ = [
"LLMSingleActionAgent",
"MRKLChain",
"OpenAIFunctionsAgent",
"OpenAIMultiFunctionsAgent",
"ReActChain",
"ReActTextWorldAgent",
"SelfAskWithSearchChain",

View File

@@ -32,10 +32,10 @@ from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
AgentAction,
AgentFinish,
BaseMessage,
BaseOutputParser,
OutputParserException,
)
from langchain.schema.messages import BaseMessage
from langchain.tools.base import BaseTool
from langchain.utilities.asyncio import asyncio_timeout

View File

@@ -20,7 +20,7 @@ from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import SystemMessage
from langchain.schema.messages import SystemMessage
from langchain.tools.python.tool import PythonAstREPLTool

View File

@@ -10,7 +10,7 @@ from langchain.agents.types import AgentType
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.schema import SystemMessage
from langchain.schema.messages import SystemMessage
from langchain.tools.python.tool import PythonREPLTool

View File

@@ -20,7 +20,7 @@ from langchain.prompts.chat import (
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain.schema import AIMessage, SystemMessage
from langchain.schema.messages import AIMessage, SystemMessage
def create_sql_agent(

View File

@@ -25,11 +25,9 @@ from langchain.prompts.chat import (
)
from langchain.schema import (
AgentAction,
AIMessage,
BaseMessage,
BaseOutputParser,
HumanMessage,
)
from langchain.schema.messages import AIMessage, BaseMessage, HumanMessage
from langchain.tools.base import BaseTool

View File

@@ -21,10 +21,12 @@ from langchain.prompts.chat import (
from langchain.schema import (
AgentAction,
AgentFinish,
OutputParserException,
)
from langchain.schema.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
OutputParserException,
SystemMessage,
)
from langchain.tools import BaseTool

View File

@@ -21,10 +21,12 @@ from langchain.prompts.chat import (
from langchain.schema import (
AgentAction,
AgentFinish,
OutputParserException,
)
from langchain.schema.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
OutputParserException,
SystemMessage,
)
from langchain.tools import BaseTool
@@ -152,7 +154,7 @@ class OpenAIMultiFunctionsAgent(BaseMultiActionAgent):
tools: The tools this agent has access to.
prompt: The prompt for this agent, should support agent_scratchpad as one
of the variables. For an easy way to construct this prompt, use
`OpenAIFunctionsAgent.create_prompt(...)`
`OpenAIMultiFunctionsAgent.create_prompt(...)`
"""
llm: BaseLanguageModel

View File

@@ -6,7 +6,8 @@ from typing import Any, List, Optional, Sequence, Set
from langchain.callbacks.manager import Callbacks
from langchain.load.serializable import Serializable
from langchain.schema import BaseMessage, LLMResult, PromptValue, get_buffer_string
from langchain.schema import LLMResult, PromptValue
from langchain.schema.messages import BaseMessage, get_buffer_string
def _get_token_ids_default_method(text: str) -> List[int]:

View File

@@ -262,7 +262,9 @@ class RedisSemanticCache(BaseCache):
score_threshold (float, 0.2):
Example:
.. code-block:: python
import langchain
from langchain.cache import RedisSemanticCache

View File

@@ -3,9 +3,11 @@
from langchain.callbacks.aim_callback import AimCallbackHandler
from langchain.callbacks.argilla_callback import ArgillaCallbackHandler
from langchain.callbacks.arize_callback import ArizeCallbackHandler
from langchain.callbacks.arthur_callback import ArthurCallbackHandler
from langchain.callbacks.clearml_callback import ClearMLCallbackHandler
from langchain.callbacks.comet_ml_callback import CometCallbackHandler
from langchain.callbacks.file import FileCallbackHandler
from langchain.callbacks.flyte_callback import FlyteCallbackHandler
from langchain.callbacks.human import HumanApprovalCallbackHandler
from langchain.callbacks.infino_callback import InfinoCallbackHandler
from langchain.callbacks.manager import (
@@ -15,6 +17,7 @@ from langchain.callbacks.manager import (
)
from langchain.callbacks.mlflow_callback import MlflowCallbackHandler
from langchain.callbacks.openai_info import OpenAICallbackHandler
from langchain.callbacks.promptlayer_callback import PromptLayerCallbackHandler
from langchain.callbacks.stdout import StdOutCallbackHandler
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
@@ -29,22 +32,25 @@ __all__ = [
"AimCallbackHandler",
"ArgillaCallbackHandler",
"ArizeCallbackHandler",
"AsyncIteratorCallbackHandler",
"PromptLayerCallbackHandler",
"ArthurCallbackHandler",
"ClearMLCallbackHandler",
"CometCallbackHandler",
"FileCallbackHandler",
"FinalStreamingStdOutCallbackHandler",
"HumanApprovalCallbackHandler",
"InfinoCallbackHandler",
"MlflowCallbackHandler",
"OpenAICallbackHandler",
"StdOutCallbackHandler",
"AsyncIteratorCallbackHandler",
"StreamingStdOutCallbackHandler",
"StreamlitCallbackHandler",
"FinalStreamingStdOutCallbackHandler",
"LLMThoughtLabeler",
"StreamlitCallbackHandler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",
"tracing_enabled",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
]

View File

@@ -30,6 +30,7 @@ class BaseMetadataCallbackHandler:
ignore_llm_ (bool): Whether to ignore llm callbacks.
ignore_chain_ (bool): Whether to ignore chain callbacks.
ignore_agent_ (bool): Whether to ignore agent callbacks.
ignore_retriever_ (bool): Whether to ignore retriever callbacks.
always_verbose_ (bool): Whether to always be verbose.
chain_starts (int): The number of times the chain start method has been called.
chain_ends (int): The number of times the chain end method has been called.
@@ -52,6 +53,7 @@ class BaseMetadataCallbackHandler:
self.ignore_llm_ = False
self.ignore_chain_ = False
self.ignore_agent_ = False
self.ignore_retriever_ = False
self.always_verbose_ = False
self.chain_starts = 0
@@ -86,6 +88,11 @@ class BaseMetadataCallbackHandler:
"""Whether to ignore agent callbacks."""
return self.ignore_agent_
@property
def ignore_retriever(self) -> bool:
"""Whether to ignore retriever callbacks."""
return self.ignore_retriever_
def get_custom_callback_meta(self) -> Dict[str, Any]:
return {
"step": self.step,

View File

@@ -0,0 +1,302 @@
"""ArthurAI's Callback Handler."""
from __future__ import annotations
import os
import uuid
from collections import defaultdict
from datetime import datetime
from time import time
from typing import TYPE_CHECKING, Any, DefaultDict, Dict, List, Optional, Union
import numpy as np
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult
if TYPE_CHECKING:
import arthurai
from arthurai.core.models import ArthurModel
PROMPT_TOKENS = "prompt_tokens"
COMPLETION_TOKENS = "completion_tokens"
TOKEN_USAGE = "token_usage"
FINISH_REASON = "finish_reason"
DURATION = "duration"
def _lazy_load_arthur() -> arthurai:
"""Lazy load Arthur."""
try:
import arthurai
except ImportError as e:
raise ImportError(
"To use the ArthurCallbackHandler you need the"
" `arthurai` package. Please install it with"
" `pip install arthurai`.",
e,
)
return arthurai
class ArthurCallbackHandler(BaseCallbackHandler):
"""Callback Handler that logs to Arthur platform.
Arthur helps enterprise teams optimize model operations
and performance at scale. The Arthur API tracks model
performance, explainability, and fairness across tabular,
NLP, and CV models. Our API is model- and platform-agnostic,
and continuously scales with complex and dynamic enterprise needs.
To learn more about Arthur, visit our website at
https://www.arthur.ai/ or read the Arthur docs at
https://docs.arthur.ai/
"""
def __init__(
self,
arthur_model: ArthurModel,
) -> None:
"""Initialize callback handler."""
super().__init__()
arthurai = _lazy_load_arthur()
Stage = arthurai.common.constants.Stage
ValueType = arthurai.common.constants.ValueType
self.arthur_model = arthur_model
# save the attributes of this model to be used when preparing
# inferences to log to Arthur in on_llm_end()
self.attr_names = set([a.name for a in self.arthur_model.get_attributes()])
self.input_attr = [
x
for x in self.arthur_model.get_attributes()
if x.stage == Stage.ModelPipelineInput
and x.value_type == ValueType.Unstructured_Text
][0].name
self.output_attr = [
x
for x in self.arthur_model.get_attributes()
if x.stage == Stage.PredictedValue
and x.value_type == ValueType.Unstructured_Text
][0].name
self.token_likelihood_attr = None
if (
len(
[
x
for x in self.arthur_model.get_attributes()
if x.value_type == ValueType.TokenLikelihoods
]
)
> 0
):
self.token_likelihood_attr = [
x
for x in self.arthur_model.get_attributes()
if x.value_type == ValueType.TokenLikelihoods
][0].name
self.run_map: DefaultDict[str, Any] = defaultdict(dict)
@classmethod
def from_credentials(
cls,
model_id: str,
arthur_url: Optional[str] = "https://app.arthur.ai",
arthur_login: Optional[str] = None,
arthur_password: Optional[str] = None,
) -> ArthurCallbackHandler:
"""Initialize callback handler from Arthur credentials.
Args:
model_id (str): The ID of the arthur model to log to.
arthur_url (str, optional): The URL of the Arthur instance to log to.
Defaults to "https://app.arthur.ai".
arthur_login (str, optional): The login to use to connect to Arthur.
Defaults to None.
arthur_password (str, optional): The password to use to connect to
Arthur. Defaults to None.
Returns:
ArthurCallbackHandler: The initialized callback handler.
"""
arthurai = _lazy_load_arthur()
ArthurAI = arthurai.ArthurAI
ResponseClientError = arthurai.common.exceptions.ResponseClientError
# connect to Arthur
if arthur_login is None:
try:
arthur_api_key = os.environ["ARTHUR_API_KEY"]
except KeyError:
raise ValueError(
"No Arthur authentication provided. Either give"
" a login to the ArthurCallbackHandler"
" or set an ARTHUR_API_KEY as an environment variable."
)
arthur = ArthurAI(url=arthur_url, access_key=arthur_api_key)
else:
if arthur_password is None:
arthur = ArthurAI(url=arthur_url, login=arthur_login)
else:
arthur = ArthurAI(
url=arthur_url, login=arthur_login, password=arthur_password
)
# get model from Arthur by the provided model ID
try:
arthur_model = arthur.get_model(model_id)
except ResponseClientError:
raise ValueError(
f"Was unable to retrieve model with id {model_id} from Arthur."
" Make sure the ID corresponds to a model that is currently"
" registered with your Arthur account."
)
return cls(arthur_model)
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""On LLM start, save the input prompts"""
run_id = kwargs["run_id"]
self.run_map[run_id]["input_texts"] = prompts
self.run_map[run_id]["start_time"] = time()
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""On LLM end, send data to Arthur."""
try:
import pytz # type: ignore[import]
except ImportError as e:
raise ImportError(
"Could not import pytz. Please install it with 'pip install pytz'."
) from e
run_id = kwargs["run_id"]
# get the run params from this run ID,
# or raise an error if this run ID has no corresponding metadata in self.run_map
try:
run_map_data = self.run_map[run_id]
except KeyError as e:
raise KeyError(
"This function has been called with a run_id"
" that was never registered in on_llm_start()."
" Restart and try running the LLM again"
) from e
# mark the duration time between on_llm_start() and on_llm_end()
time_from_start_to_end = time() - run_map_data["start_time"]
# create inferences to log to Arthur
inferences = []
for i, generations in enumerate(response.generations):
for generation in generations:
inference = {
"partner_inference_id": str(uuid.uuid4()),
"inference_timestamp": datetime.now(tz=pytz.UTC),
self.input_attr: run_map_data["input_texts"][i],
self.output_attr: generation.text,
}
if generation.generation_info is not None:
# add finish reason to the inference
# if generation info contains a finish reason and
# if the ArthurModel was registered to monitor finish_reason
if (
FINISH_REASON in generation.generation_info
and FINISH_REASON in self.attr_names
):
inference[FINISH_REASON] = generation.generation_info[
FINISH_REASON
]
# add token likelihoods data to the inference if the ArthurModel
# was registered to monitor token likelihoods
logprobs_data = generation.generation_info["logprobs"]
if (
logprobs_data is not None
and self.token_likelihood_attr is not None
):
logprobs = logprobs_data["top_logprobs"]
likelihoods = [
{k: np.exp(v) for k, v in logprobs[i].items()}
for i in range(len(logprobs))
]
inference[self.token_likelihood_attr] = likelihoods
# add token usage counts to the inference if the
# ArthurModel was registered to monitor token usage
if (
isinstance(response.llm_output, dict)
and TOKEN_USAGE in response.llm_output
):
token_usage = response.llm_output[TOKEN_USAGE]
if (
PROMPT_TOKENS in token_usage
and PROMPT_TOKENS in self.attr_names
):
inference[PROMPT_TOKENS] = token_usage[PROMPT_TOKENS]
if (
COMPLETION_TOKENS in token_usage
and COMPLETION_TOKENS in self.attr_names
):
inference[COMPLETION_TOKENS] = token_usage[COMPLETION_TOKENS]
# add inference duration to the inference if the ArthurModel
# was registered to monitor inference duration
if DURATION in self.attr_names:
inference[DURATION] = time_from_start_to_end
inferences.append(inference)
# send inferences to arthur
self.arthur_model.send_inferences(inferences)
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""On chain start, do nothing."""
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""On chain end, do nothing."""
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing when LLM outputs an error."""
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""On new token, pass."""
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing when LLM chain outputs an error."""
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
"""Do nothing when tool starts."""
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Do nothing when agent takes a specific action."""
def on_tool_end(
self,
output: str,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""Do nothing when tool ends."""
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing when tool outputs an error."""
def on_text(self, text: str, **kwargs: Any) -> None:
"""Do nothing"""
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Do nothing"""

View File

@@ -1,15 +1,37 @@
"""Base callback handler that can be used to handle callbacks in langchain."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional, Sequence, Union
from uuid import UUID
from langchain.schema import (
AgentAction,
AgentFinish,
BaseMessage,
LLMResult,
)
from langchain.schema.agent import AgentAction, AgentFinish
from langchain.schema.document import Document
from langchain.schema.messages import BaseMessage
from langchain.schema.output import LLMResult
class RetrieverManagerMixin:
"""Mixin for Retriever callbacks."""
def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when Retriever errors."""
def on_retriever_end(
self,
documents: Sequence[Document],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when Retriever ends running."""
class LLMManagerMixin:
@@ -144,6 +166,16 @@ class CallbackManagerMixin:
f"{self.__class__.__name__} does not implement `on_chat_model_start`"
)
def on_retriever_start(
self,
query: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when Retriever starts running."""
def on_chain_start(
self,
serialized: Dict[str, Any],
@@ -187,6 +219,7 @@ class BaseCallbackHandler(
LLMManagerMixin,
ChainManagerMixin,
ToolManagerMixin,
RetrieverManagerMixin,
CallbackManagerMixin,
RunManagerMixin,
):
@@ -211,6 +244,11 @@ class BaseCallbackHandler(
"""Whether to ignore agent callbacks."""
return False
@property
def ignore_retriever(self) -> bool:
"""Whether to ignore retriever callbacks."""
return False
@property
def ignore_chat_model(self) -> bool:
"""Whether to ignore chat model callbacks."""
@@ -371,6 +409,36 @@ class AsyncCallbackHandler(BaseCallbackHandler):
) -> None:
"""Run on agent end."""
async def on_retriever_start(
self,
query: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> None:
"""Run on retriever start."""
async def on_retriever_end(
self,
documents: Sequence[Document],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> None:
"""Run on retriever end."""
async def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> None:
"""Run on retriever error."""
class BaseCallbackManager(CallbackManagerMixin):
"""Base callback manager that can be used to handle callbacks from LangChain."""

View File

@@ -0,0 +1,366 @@
"""FlyteKit callback handler."""
from __future__ import annotations
import logging
from copy import deepcopy
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.utils import (
BaseMetadataCallbackHandler,
flatten_dict,
import_pandas,
import_spacy,
import_textstat,
)
from langchain.schema import AgentAction, AgentFinish, LLMResult
if TYPE_CHECKING:
import flytekit
from flytekitplugins.deck import renderer
logger = logging.getLogger(__name__)
def import_flytekit() -> Tuple[flytekit, renderer]:
try:
import flytekit # noqa: F401
from flytekitplugins.deck import renderer # noqa: F401
except ImportError:
raise ImportError(
"To use the flyte callback manager you need"
"to have the `flytekit` and `flytekitplugins-deck-standard`"
"packages installed. Please install them with `pip install flytekit`"
"and `pip install flytekitplugins-deck-standard`."
)
return flytekit, renderer
def analyze_text(
text: str,
nlp: Any = None,
) -> dict:
"""Analyze text using textstat and spacy.
Parameters:
text (str): The text to analyze.
nlp (spacy.lang): The spacy language model to use for visualization.
Returns:
(dict): A dictionary containing the complexity metrics and visualization
files serialized to HTML string.
"""
resp: Dict[str, Any] = {}
textstat = import_textstat()
text_complexity_metrics = {
"flesch_reading_ease": textstat.flesch_reading_ease(text),
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
"smog_index": textstat.smog_index(text),
"coleman_liau_index": textstat.coleman_liau_index(text),
"automated_readability_index": textstat.automated_readability_index(text),
"dale_chall_readability_score": textstat.dale_chall_readability_score(text),
"difficult_words": textstat.difficult_words(text),
"linsear_write_formula": textstat.linsear_write_formula(text),
"gunning_fog": textstat.gunning_fog(text),
"fernandez_huerta": textstat.fernandez_huerta(text),
"szigriszt_pazos": textstat.szigriszt_pazos(text),
"gutierrez_polini": textstat.gutierrez_polini(text),
"crawford": textstat.crawford(text),
"gulpease_index": textstat.gulpease_index(text),
"osman": textstat.osman(text),
}
resp.update({"text_complexity_metrics": text_complexity_metrics})
resp.update(text_complexity_metrics)
if nlp is not None:
spacy = import_spacy()
doc = nlp(text)
dep_out = spacy.displacy.render( # type: ignore
doc, style="dep", jupyter=False, page=True
)
ent_out = spacy.displacy.render( # type: ignore
doc, style="ent", jupyter=False, page=True
)
text_visualizations = {
"dependency_tree": dep_out,
"entities": ent_out,
}
resp.update(text_visualizations)
return resp
class FlyteCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
"""This callback handler is designed specifically for usage within a Flyte task."""
def __init__(self) -> None:
"""Initialize callback handler."""
import_textstat() # Raise error since it is required
flytekit, renderer = import_flytekit()
self.pandas = import_pandas()
spacy = None
try:
spacy = import_spacy()
except ImportError:
logger.warning(
"Spacy library is not installed. \
It may result in the inability to log \
certain metrics that can be captured with Spacy."
)
super().__init__()
self.nlp = None
if spacy:
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
logger.warning(
"FlyteCallbackHandler uses spacy's en_core_web_sm model"
" for certain metrics. To download,"
" run the following command in your terminal:"
" `python -m spacy download en_core_web_sm` command."
)
self.table_renderer = renderer.TableRenderer
self.markdown_renderer = renderer.MarkdownRenderer
self.deck = flytekit.Deck(
"LangChain Metrics",
self.markdown_renderer().to_html("## LangChain Metrics"),
)
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts."""
self.step += 1
self.llm_starts += 1
self.starts += 1
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_start"})
resp.update(flatten_dict(serialized))
resp.update(self.get_custom_callback_meta())
prompt_responses = []
for prompt in prompts:
prompt_responses.append(prompt)
resp.update({"prompts": prompt_responses})
self.deck.append(self.markdown_renderer().to_html("### LLM Start"))
self.deck.append(
self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run when LLM generates a new token."""
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
self.step += 1
self.llm_ends += 1
self.ends += 1
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_end"})
resp.update(flatten_dict(response.llm_output or {}))
resp.update(self.get_custom_callback_meta())
self.deck.append(self.markdown_renderer().to_html("### LLM End"))
self.deck.append(self.table_renderer().to_html(self.pandas.DataFrame([resp])))
for generations in response.generations:
for generation in generations:
generation_resp = deepcopy(resp)
generation_resp.update(flatten_dict(generation.dict()))
if self.nlp:
generation_resp.update(
analyze_text(
generation.text,
nlp=self.nlp,
)
)
complexity_metrics: Dict[str, float] = generation_resp.pop("text_complexity_metrics") # type: ignore # noqa: E501
self.deck.append(
self.markdown_renderer().to_html("#### Text Complexity Metrics")
)
self.deck.append(
self.table_renderer().to_html(
self.pandas.DataFrame([complexity_metrics])
)
+ "\n"
)
dependency_tree = generation_resp["dependency_tree"]
self.deck.append(
self.markdown_renderer().to_html("#### Dependency Tree")
)
self.deck.append(dependency_tree)
entities = generation_resp["entities"]
self.deck.append(self.markdown_renderer().to_html("#### Entities"))
self.deck.append(entities)
else:
self.deck.append(
self.markdown_renderer().to_html("#### Generated Response")
)
self.deck.append(self.markdown_renderer().to_html(generation.text))
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when LLM errors."""
self.step += 1
self.errors += 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Run when chain starts running."""
self.step += 1
self.chain_starts += 1
self.starts += 1
resp: Dict[str, Any] = {}
resp.update({"action": "on_chain_start"})
resp.update(flatten_dict(serialized))
resp.update(self.get_custom_callback_meta())
chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()])
input_resp = deepcopy(resp)
input_resp["inputs"] = chain_input
self.deck.append(self.markdown_renderer().to_html("### Chain Start"))
self.deck.append(
self.table_renderer().to_html(self.pandas.DataFrame([input_resp])) + "\n"
)
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Run when chain ends running."""
self.step += 1
self.chain_ends += 1
self.ends += 1
resp: Dict[str, Any] = {}
chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()])
resp.update({"action": "on_chain_end", "outputs": chain_output})
resp.update(self.get_custom_callback_meta())
self.deck.append(self.markdown_renderer().to_html("### Chain End"))
self.deck.append(
self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
)
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when chain errors."""
self.step += 1
self.errors += 1
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
"""Run when tool starts running."""
self.step += 1
self.tool_starts += 1
self.starts += 1
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_start", "input_str": input_str})
resp.update(flatten_dict(serialized))
resp.update(self.get_custom_callback_meta())
self.deck.append(self.markdown_renderer().to_html("### Tool Start"))
self.deck.append(
self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
)
def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""Run when tool ends running."""
self.step += 1
self.tool_ends += 1
self.ends += 1
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_end", "output": output})
resp.update(self.get_custom_callback_meta())
self.deck.append(self.markdown_renderer().to_html("### Tool End"))
self.deck.append(
self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
)
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when tool errors."""
self.step += 1
self.errors += 1
def on_text(self, text: str, **kwargs: Any) -> None:
"""
Run when agent is ending.
"""
self.step += 1
self.text_ctr += 1
resp: Dict[str, Any] = {}
resp.update({"action": "on_text", "text": text})
resp.update(self.get_custom_callback_meta())
self.deck.append(self.markdown_renderer().to_html("### On Text"))
self.deck.append(
self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
)
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run when agent ends running."""
self.step += 1
self.agent_ends += 1
self.ends += 1
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_finish",
"output": finish.return_values["output"],
"log": finish.log,
}
)
resp.update(self.get_custom_callback_meta())
self.deck.append(self.markdown_renderer().to_html("### Agent Finish"))
self.deck.append(
self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
)
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action."""
self.step += 1
self.tool_starts += 1
self.starts += 1
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_action",
"tool": action.tool,
"tool_input": action.tool_input,
"log": action.log,
}
)
resp.update(self.get_custom_callback_meta())
self.deck.append(self.markdown_renderer().to_html("### Agent Action"))
self.deck.append(
self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
)

View File

@@ -14,6 +14,7 @@ from typing import (
Generator,
List,
Optional,
Sequence,
Type,
TypeVar,
Union,
@@ -27,6 +28,7 @@ from langchain.callbacks.base import (
BaseCallbackManager,
ChainManagerMixin,
LLMManagerMixin,
RetrieverManagerMixin,
RunManagerMixin,
ToolManagerMixin,
)
@@ -39,10 +41,10 @@ from langchain.callbacks.tracers.wandb import WandbTracer
from langchain.schema import (
AgentAction,
AgentFinish,
BaseMessage,
Document,
LLMResult,
get_buffer_string,
)
from langchain.schema.messages import BaseMessage, get_buffer_string
logger = logging.getLogger(__name__)
Callbacks = Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]
@@ -379,8 +381,8 @@ class BaseRunManager(RunManagerMixin):
handlers: List[BaseCallbackHandler],
inheritable_handlers: List[BaseCallbackHandler],
parent_run_id: Optional[UUID] = None,
tags: List[str],
inheritable_tags: List[str],
tags: Optional[List[str]] = None,
inheritable_tags: Optional[List[str]] = None,
) -> None:
"""Initialize the run manager.
@@ -391,15 +393,15 @@ class BaseRunManager(RunManagerMixin):
The list of inheritable handlers.
parent_run_id (UUID, optional): The ID of the parent run.
Defaults to None.
tags (List[str]): The list of tags.
inheritable_tags (List[str]): The list of inheritable tags.
tags (Optional[List[str]]): The list of tags.
inheritable_tags (Optional[List[str]]): The list of inheritable tags.
"""
self.run_id = run_id
self.handlers = handlers
self.inheritable_handlers = inheritable_handlers
self.tags = tags
self.inheritable_tags = inheritable_tags
self.parent_run_id = parent_run_id
self.tags = tags or []
self.inheritable_tags = inheritable_tags or []
@classmethod
def get_noop_manager(cls: Type[BRM]) -> BRM:
@@ -899,6 +901,97 @@ class AsyncCallbackManagerForToolRun(AsyncRunManager, ToolManagerMixin):
)
class CallbackManagerForRetrieverRun(RunManager, RetrieverManagerMixin):
"""Callback manager for retriever run."""
def get_child(self, tag: Optional[str] = None) -> CallbackManager:
"""Get a child callback manager."""
manager = CallbackManager([], parent_run_id=self.run_id)
manager.set_handlers(self.inheritable_handlers)
manager.add_tags(self.inheritable_tags)
if tag is not None:
manager.add_tags([tag], False)
return manager
def on_retriever_end(
self,
documents: Sequence[Document],
**kwargs: Any,
) -> None:
"""Run when retriever ends running."""
_handle_event(
self.handlers,
"on_retriever_end",
"ignore_retriever",
documents,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
**kwargs,
)
def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when retriever errors."""
_handle_event(
self.handlers,
"on_retriever_error",
"ignore_retriever",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
**kwargs,
)
class AsyncCallbackManagerForRetrieverRun(
AsyncRunManager,
RetrieverManagerMixin,
):
"""Async callback manager for retriever run."""
def get_child(self, tag: Optional[str] = None) -> AsyncCallbackManager:
"""Get a child callback manager."""
manager = AsyncCallbackManager([], parent_run_id=self.run_id)
manager.set_handlers(self.inheritable_handlers)
manager.add_tags(self.inheritable_tags)
if tag is not None:
manager.add_tags([tag], False)
return manager
async def on_retriever_end(
self, documents: Sequence[Document], **kwargs: Any
) -> None:
"""Run when retriever ends running."""
await _ahandle_event(
self.handlers,
"on_retriever_end",
"ignore_retriever",
documents,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
**kwargs,
)
async def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when retriever errors."""
await _ahandle_event(
self.handlers,
"on_retriever_error",
"ignore_retriever",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
**kwargs,
)
class CallbackManager(BaseCallbackManager):
"""Callback manager that can be used to handle callbacks from langchain."""
@@ -1077,6 +1170,36 @@ class CallbackManager(BaseCallbackManager):
inheritable_tags=self.inheritable_tags,
)
def on_retriever_start(
self,
query: str,
run_id: Optional[UUID] = None,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> CallbackManagerForRetrieverRun:
"""Run when retriever starts running."""
if run_id is None:
run_id = uuid4()
_handle_event(
self.handlers,
"on_retriever_start",
"ignore_retriever",
query,
run_id=run_id,
parent_run_id=self.parent_run_id,
**kwargs,
)
return CallbackManagerForRetrieverRun(
run_id=run_id,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
)
@classmethod
def configure(
cls,
@@ -1313,6 +1436,36 @@ class AsyncCallbackManager(BaseCallbackManager):
inheritable_tags=self.inheritable_tags,
)
async def on_retriever_start(
self,
query: str,
run_id: Optional[UUID] = None,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> AsyncCallbackManagerForRetrieverRun:
"""Run when retriever starts running."""
if run_id is None:
run_id = uuid4()
await _ahandle_event(
self.handlers,
"on_retriever_start",
"ignore_retriever",
query,
run_id=run_id,
parent_run_id=self.parent_run_id,
**kwargs,
)
return AsyncCallbackManagerForRetrieverRun(
run_id=run_id,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
)
@classmethod
def configure(
cls,

View File

@@ -0,0 +1,162 @@
"""Callback handler for promptlayer."""
from __future__ import annotations
import datetime
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
from uuid import UUID
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import (
ChatGeneration,
LLMResult,
)
from langchain.schema.messages import (
AIMessage,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
)
if TYPE_CHECKING:
import promptlayer
def _lazy_import_promptlayer() -> promptlayer:
"""Lazy import promptlayer to avoid circular imports."""
try:
import promptlayer
except ImportError:
raise ImportError(
"The PromptLayerCallbackHandler requires the promptlayer package. "
" Please install it with `pip install promptlayer`."
)
return promptlayer
class PromptLayerCallbackHandler(BaseCallbackHandler):
"""Callback handler for promptlayer."""
def __init__(
self,
pl_id_callback: Optional[Callable[..., Any]] = None,
pl_tags: Optional[List[str]] = [],
) -> None:
"""Initialize the PromptLayerCallbackHandler."""
_lazy_import_promptlayer()
self.pl_id_callback = pl_id_callback
self.pl_tags = pl_tags
self.runs: Dict[UUID, Dict[str, Any]] = {}
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> Any:
self.runs[run_id] = {
"messages": [self._create_message_dicts(m)[0] for m in messages],
"invocation_params": kwargs.get("invocation_params", {}),
"name": ".".join(serialized["id"]),
"request_start_time": datetime.datetime.now().timestamp(),
"tags": tags,
}
def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> Any:
self.runs[run_id] = {
"prompts": prompts,
"invocation_params": kwargs.get("invocation_params", {}),
"name": ".".join(serialized["id"]),
"request_start_time": datetime.datetime.now().timestamp(),
"tags": tags,
}
def on_llm_end(
self,
response: LLMResult,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> None:
from promptlayer.utils import get_api_key, promptlayer_api_request
run_info = self.runs.get(run_id, {})
if not run_info:
return
run_info["request_end_time"] = datetime.datetime.now().timestamp()
for i in range(len(response.generations)):
generation = response.generations[i][0]
resp = {
"text": generation.text,
"llm_output": response.llm_output,
}
model_params = run_info.get("invocation_params", {})
is_chat_model = run_info.get("messages", None) is not None
model_input = (
run_info.get("messages", [])[i]
if is_chat_model
else [run_info.get("prompts", [])[i]]
)
model_response = (
[self._convert_message_to_dict(generation.message)]
if is_chat_model and isinstance(generation, ChatGeneration)
else resp
)
pl_request_id = promptlayer_api_request(
run_info.get("name"),
"langchain",
model_input,
model_params,
self.pl_tags,
model_response,
run_info.get("request_start_time"),
run_info.get("request_end_time"),
get_api_key(),
return_pl_id=bool(self.pl_id_callback is not None),
metadata={
"_langchain_run_id": str(run_id),
"_langchain_parent_run_id": str(parent_run_id),
"_langchain_tags": str(run_info.get("tags", [])),
},
)
if self.pl_id_callback:
self.pl_id_callback(pl_request_id)
def _convert_message_to_dict(self, message: BaseMessage) -> Dict[str, Any]:
if isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
if "name" in message.additional_kwargs:
message_dict["name"] = message.additional_kwargs["name"]
return message_dict
def _create_message_dicts(
self, messages: List[BaseMessage]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params: Dict[str, Any] = {}
message_dicts = [self._convert_message_to_dict(m) for m in messages]
return message_dicts, params

View File

@@ -4,12 +4,12 @@ from __future__ import annotations
import logging
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional, Sequence, Union
from uuid import UUID
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.tracers.schemas import Run, RunTypeEnum
from langchain.schema import LLMResult
from langchain.schema import Document, LLMResult
logger = logging.getLogger(__name__)
@@ -265,6 +265,65 @@ class BaseTracer(BaseCallbackHandler, ABC):
self._end_trace(tool_run)
self._on_tool_error(tool_run)
def on_retriever_start(
self,
query: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> None:
"""Run when Retriever starts running."""
parent_run_id_ = str(parent_run_id) if parent_run_id else None
execution_order = self._get_execution_order(parent_run_id_)
retrieval_run = Run(
id=run_id,
name="Retriever",
parent_run_id=parent_run_id,
inputs={"query": query},
extra=kwargs,
start_time=datetime.utcnow(),
execution_order=execution_order,
child_execution_order=execution_order,
child_runs=[],
run_type=RunTypeEnum.retriever,
)
self._start_trace(retrieval_run)
self._on_retriever_start(retrieval_run)
def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
**kwargs: Any,
) -> None:
"""Run when Retriever errors."""
if not run_id:
raise TracerException("No run_id provided for on_retriever_error callback.")
retrieval_run = self.run_map.get(str(run_id))
if retrieval_run is None or retrieval_run.run_type != RunTypeEnum.retriever:
raise TracerException("No retriever Run found to be traced")
retrieval_run.error = repr(error)
retrieval_run.end_time = datetime.utcnow()
self._end_trace(retrieval_run)
self._on_retriever_error(retrieval_run)
def on_retriever_end(
self, documents: Sequence[Document], *, run_id: UUID, **kwargs: Any
) -> None:
"""Run when Retriever ends running."""
if not run_id:
raise TracerException("No run_id provided for on_retriever_end callback.")
retrieval_run = self.run_map.get(str(run_id))
if retrieval_run is None or retrieval_run.run_type != RunTypeEnum.retriever:
raise TracerException("No retriever Run found to be traced")
retrieval_run.outputs = {"documents": documents}
retrieval_run.end_time = datetime.utcnow()
self._end_trace(retrieval_run)
self._on_retriever_end(retrieval_run)
def __deepcopy__(self, memo: dict) -> BaseTracer:
"""Deepcopy the tracer."""
return self
@@ -302,3 +361,12 @@ class BaseTracer(BaseCallbackHandler, ABC):
def _on_chat_model_start(self, run: Run) -> None:
"""Process the Chat Model Run upon start."""
def _on_retriever_start(self, run: Run) -> None:
"""Process the Retriever Run upon start."""
def _on_retriever_end(self, run: Run) -> None:
"""Process the Retriever Run."""
def _on_retriever_error(self, run: Run) -> None:
"""Process the Retriever Run upon error."""

Some files were not shown because too many files have changed in this diff Show More