Compare commits

..

257 Commits

Author SHA1 Message Date
Bagatur
15c271e7b3 bump 254 (#8834) 2023-08-06 11:34:54 -07:00
Bagatur
d7b613a293 Bagatur/revert revert nuclia (#8833) 2023-08-06 11:24:36 -07:00
Bagatur
2f309a4ce6 Revert "Bagatur/nuclia (#8404)" (#8832) 2023-08-06 11:14:01 -07:00
Paul Hager
2111ed3c75 Improving the text of the invalid tool to list the available tools. (#8767)
Description: When using a ReAct Agent with tools and no tool is found,
the InvalidTool gets called. Previously it just asked for a different
action, but I've found that if you list the available actions it
improves the chances of getting a valid action in the next round. I've
added a UnitTest for it also.

@hinthornw
2023-08-05 18:09:32 -07:00
shibuiwilliam
d9bc46186d Add missing test for retrievers self_query (#8783)
# What
- Add missing test for retrievers self_query
- Add missing import validation

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Add missing test for retrievers self_query
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ
  
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-05 17:31:41 -07:00
Snehil Kumar
1bd4890506 Update links on QA Use Case docs (#8784)
- Description: 2 links were not working on Question Answering Use Cases
documentation page. Hence, changed them to nearest useful links,
  - Issue: NA,
  - Dependencies: NA,
  - Tag maintainer: @baskaryan,
  - Twitter handle: NA

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-05 17:30:56 -07:00
Wilson Leao Neto
b0d0338f21 feat: expose Kendra result item id and document id as document metadata (#8796)
- Description: we expose Kendra result item id and document id as
document metadata.
  - Tag maintainer: @3coins @baskaryan 
  - Twitter handle: wilsonleao

**Why**
The result item id and document id might be used to keep track of the
retrieved resources.
2023-08-05 17:21:24 -07:00
Bal Narendra Sapa
a22d502248 added the embeddings part (#8805)
Description: forgot to add the embeddings part in the documentation.
sorry 😅

@baskaryan
2023-08-05 17:16:33 -07:00
Bagatur
9b86235a56 bump 253 (#8798) 2023-08-05 10:57:22 -07:00
Bagatur
9fc9018951 Bagatur/nuclia (#8404)
Co-authored-by: Eric BREHAULT <ebrehault@gmail.com>
2023-08-05 10:44:43 -07:00
Francisco Ingham
ef5bc1fef1 Refactor for extraction docs (#8465)
Refactor for the extraction use case documentation

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-05 10:09:14 -07:00
William FH
1d68470bac Same Project for Eval Runs (#8781) 2023-08-04 17:51:49 -07:00
William FH
c8f3615aa6 Support evaluating runnables and arbitrary functions (#8698)
Added a couple of "integration tests" for these that I ran.

Main design point of feedback: at this point, would it just be better to
have separate arguments for each type? Little confusing what is or isn't
supported and what is the intended usage at this point since I try to
wrap the function as runnable or pack or unpack chains/llms.

```
run_on_dataset(
...
llm_or_chain_factory = None,
llm = None,
chain = NOne,
runnable=None,
function=None
):
# raise error if none set
```

Downside with runnables and arbitrary function support is that you get
much less helpful validation and error messages, but I don't think we
should block you from this, at least.
2023-08-04 16:39:04 -07:00
liguoqinjim
d00a247da7 fix:get bilibili subtitles (#8165)
- Description: fix the Loader 'BiliBiliLoader'
  - Issue: the API response was changed

![image](https://github.com/langchain-ai/langchain/assets/2113954/91216793-82f8-4c82-a018-d49f36f5f6aa)
The previously used API no longer returns the "subtitle_url" property.

![image](https://github.com/langchain-ai/langchain/assets/2113954/a8ec2a7a-f40d-4c2a-b7d0-0ccdf2b327cc)
We should use another API to get `subtitle_url` property. 
The `subtitle_url` returned by this API does not include the http schema
and needs to be added.

  - Dependencies: Nope
  - Tag maintainer: @rlancemartin
2023-08-04 14:30:41 -07:00
Bagatur
21771a6f1c rm sklearn links (#8773) 2023-08-04 14:28:00 -07:00
Joshua Carroll
e5fed7d535 Extend the StreamlitChatMessageHistory docs with a fuller example and… (#8774)
Add more details to the [notebook for
StreamlitChatMessageHistory](https://python.langchain.com/docs/integrations/memory/streamlit_chat_message_history),
including a link to a [running example
app](https://langchain-st-memory.streamlit.app/).

Original PR: https://github.com/langchain-ai/langchain/pull/8497
2023-08-04 14:27:46 -07:00
Eugene Yurtsev
19dfe166c9 Update documentation for prompts (#8381)
* Documentation to favor creation without declaring input_variables
* Cut out obvious examples, but add more description in a few places

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-08-04 14:25:03 -07:00
Dayou Liu
91a0817e39 docs: llamacpp minor fixes (#8738)
- Description: minor updates on llama cpp doc
2023-08-04 14:19:43 -07:00
Bagatur
f437311eef Bagatur/runnable with fallbacks (#8543) 2023-08-04 14:06:05 -07:00
Eugene Yurtsev
003e1ca9a0 Update api references (#8646)
Update API reference documentation. This PR will pick up a number of missing classes, it also applies selective formatting based on the class / object type.
2023-08-04 16:10:58 -04:00
Piyush Jain
8374367de2 Amazon Textract as document loader (#8661)
Description: Adding support for [Amazon
Textract](https://aws.amazon.com/textract/) as a PDF document loader

---------

Co-authored-by: schadem <45048633+schadem@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-04 15:55:06 -04:00
Leonid Ganeline
82ef1f587d fix makefile help (#8723)
Fixed the `makefile` help. It was not up-to-date.
 @baskaryan
2023-08-04 15:37:00 -04:00
Neil Murphy
b0d0399d34 (issue #5163) Append reminder to nest multi-prompt router prompt output in JSON markdown code block, resolving JSON parsing error. (#8709)
Resolves occasional JSON parsing error when some predictions are passed
through a `MultiPromptChain`.

Makes [this
modification](https://github.com/langchain-ai/langchain/issues/5163#issuecomment-1652220401)
to `multi_prompt_prompt.py`, which is much cleaner than appending an
entire example object, which is another community-reported solution.

@hwchase17, @baskaryan

cc: @SimasJan
2023-08-04 15:36:34 -04:00
Snehil Kumar
a6ee646ef3 Update get_started.mdx (#8744)
- Description: Added a missing word and rearranged a sentence in the
documentation of Self Query Retrievers.,
  - Issue: NA,
  - Dependencies: NA,
  - Tag maintainer: @baskaryan,
  - Twitter handle: NA

Thanks for your time.
2023-08-04 15:32:19 -04:00
Bal Narendra Sapa
bd61757423 add documentation for serializer function (#8769)
Description: Added necessary documentation for serializer functions

@baskaryan
2023-08-04 14:39:40 -04:00
rjanardhan3
affaaea87b Updates fireworks (#8765)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Updates to Fireworks Documentation, 
  - Issue: N/A,
  - Dependencies: N/A,
  - Tag maintainer: @rlancemartin,

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-04 10:32:22 -07:00
Bagatur
8c35fcb571 update rss doc (#8761) 2023-08-04 08:25:20 -07:00
Bagatur
e45be8b3f6 bump 252 (#8759) 2023-08-04 08:22:16 -07:00
Bagatur
0d5a90f30a Revert "add filter to sklearn vector store functions (#8113)" (#8760) 2023-08-04 08:13:32 -07:00
Ben Auffarth
6b007e2829 update repo username to langchain-ai (#8747)
Time for this minor update? @hwchase17
2023-08-04 07:31:39 -07:00
Lance Martin
be638ad77d Chatbots use case (#8554)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-04 07:02:14 -07:00
Bagatur
115a77142a support for arbitrary kwargs for llamacpp (#8727)
llamacpp params (per their own code) are unstable, so instead of
adding/deleting them constantly adding a model_kwargs parameter that
allows for arbitrary additional kwargs

cc @jsjolund and @zacps re #8599 and #8704
2023-08-04 06:52:02 -07:00
Alec Flett
f0b0c72d98 add load() deserializer function that bypasses need for json serialization (#7626)
There is already a `loads()` function which takes a JSON string and
loads it using the Reviver

But in the callbacks system, there is a `serialized` object that is
passed in and that object is already a deserialized JSON-compatible
object. This allows you to call `load(serialized)` and bypass
intermediate JSON encoding.

I found one other place in the code that benefited from this
short-circuiting (string_run_evaluator.py) so I fixed that too.

Tagging @baskaryan for general/utility stuff.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-04 09:49:41 +01:00
Ruiqi Guo
6aee589eec Add ScaNN support in vectorstore. (#8251)
Description: Add ScaNN vectorstore to langchain.
ScaNN is a Open Source, high performance vector similarity library
optimized for AVX2-enabled CPUs.
https://github.com/google-research/google-research/tree/master/scann

- Dependencies: scann

Python notebook to illustrate the usage:
docs/extras/integrations/vectorstores/scann.ipynb
Integration test:
libs/langchain/tests/integration_tests/vectorstores/test_scann.py

@rlancemartin, @eyurtsev for review.

Thanks!
2023-08-03 23:41:30 -07:00
Moonsik Kang
5b7ff215e8 Fix load map reduce documents chain (#7915)
This PR updates _load_reduce_documents_chain to handle
`reduce_documents_chain` and `combine_documents_chain` config

Please review @hwchase17, @baskaryan

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:27:38 -07:00
shibuiwilliam
0f0ccfe7f6 add filter to sklearn vector store functions (#8113)
# What
- This is to add filter option to sklearn vectore store functions

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Add filter to sklearn vectore store functions.
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:41 -07:00
shibuiwilliam
2759e2d857 add save and load tfidf vectorizer and docs for TFIDFRetriever (#8112)
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:27 -07:00
aerickson-clt
0f68054401 Issue #8089 Improve painless script scoring with params.query_value. (#8086)
This is a minor improvement that replaces the full query_vector with the
reference string `params.query_value` used in the painless scripting
docs. I have tested it manually and it works on an example. This makes
the query about half the size and much easier to read.


https://opensearch.org/docs/latest/search-plugins/knn/painless-functions/#get-started-with-k-nns-painless-scripting-functions

@babbldev 
#8089

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:17 -07:00
linpan
0ead8ea708 typo: ignored to ignore (#8740)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-03 23:05:59 -07:00
aerickson-clt
c7ea6e9ff8 Issue 8081 Fix query results size bug. Other bug: pass vector_field param. (#8085)
@baskaryan
#8081 

Likely the reason why the issue occurred is that OpenSearch's default k
is 10, so it needs to be specified.

Here's a similar question about its cousin ElasticSearch

https://discuss.elastic.co/t/elasticsearch-returns-only-10-records-but-the-hit-is-507/136605

I tested this manually and also fixed the same issue in
`_default_painless_scripting_query`. In addition,
`_default_painless_scripting_query` was not passing the `vector_field`
name to a sub call, so I fixed that too.


![image](https://github.com/hwchase17/langchain/assets/32244272/cfb7aad1-f701-49d9-9beb-a723aa276817)

I also tested this in the aws opensearch developer tools.


![image](https://github.com/hwchase17/langchain/assets/32244272/24544682-1578-4bbb-9eb5-980463c5b41b)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 22:41:11 -07:00
Sidchat95
812419d946 Removing score threshold parameter of faiss _similarity_search_with_r… (#8093)
Removing score threshold parameter of faiss
_similarity_search_with_relevance_scores as the thresholding part is
implemented in similarity_search_with_relevance_scores method which
calls this method.

As this method is supposed to be a private method of faiss.py this will
never receive the score threshold parameter as it is popped in the super
method similarity_search_with_relevance_scores.

@baskaryan @hwchase17
2023-08-03 21:31:43 -07:00
Mathias Panzenböck
873a80e496 Reduce generation of temporary objects (#7950)
Just a tiny change to use `list.append(...)` and `list.extend(...)`
instead of `list += [...]` so that no unnecessary temporary lists are
created.

Since its a tiny miscellaneous thing I guess @baskaryan is the
maintainer to tag?

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 21:24:08 -07:00
Lance Martin
d1b95db874 Retriever that can re-phase user inputs (#8026)
Simple retriever that applies an LLM between the user input and the
query pass the to retriever.

It can be used to pre-process the user input in any way.

The default prompt:

```
DEFAULT_QUERY_PROMPT = PromptTemplate(
    input_variables=["question"],
    template="""You are an assistant tasked with taking a natural languge query from a user
    and converting it into a query for a vectorstore. In this process, you strip out
    information that is not relevant for the retrieval task. Here is the user query: {question} """
)
```

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 21:23:59 -07:00
Harrison Chase
6c3573e7f6 Harrison/aleph alpha (#8735)
Co-authored-by: PiotrMazurek <piotr.mazurek@aleph-alpha.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 21:21:15 -07:00
Wilson Leao Neto
179a39954d Provides access to a Document page_content formatter in the AmazonKendraRetriever (#8034)
- Description: 
- Provides a new attribute in the AmazonKendraRetriever which processes
a ResultItem and returns a string that will be used as page_content;
- The excerpt metadata should not be changed, it will be kept as was
retrieved. But it is cleaned when composing the page_content;
    - Refactors the AmazonKendraRetriever to improve code reusability;
- Issue: #7787 
- Tag maintainer: @3coins @baskaryan
- Twitter handle: wilsonleao

**Why?**

Some use cases need to adjust the page_content by dynamically combining
the ResultItem attributes depending on the context of the item.
2023-08-03 20:54:49 -07:00
Ilya
6f0bccfeb5 Add regex control over separators in character text splitter (#7933)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
#7854

Added the ability to use the `separator` ase a regex or a simple
character.
Fixed a bug where `start_index` was incorrectly counting from -1.

Who can review?
@eyurtsev
@hwchase17 
@mmz-001
2023-08-03 20:25:23 -07:00
Vasileios Mansolas
e68a1d73d0 Fix Issue #6650: Enable Azure Active Directory token-based auth access for AzureChatOpenAI (#8622)
When using AzureChatOpenAI the openai_api_type defaults to "azure". The
utils' get_from_dict_or_env() function triggered by the root validator
does not look for user provided values from environment variables
OPENAI_API_TYPE, so other values like "azure_ad" are replaced with
"azure". This does not allow the use of token-based auth.

By removing the "default" value, this allows environment variables to be
pulled at runtime for the openai_api_type and thus enables the other
api_types which are expected to work.

This fixes #6650

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 20:21:41 -07:00
Ofer Mendelevitch
29f51055e8 Updates to Vectara documentation (#8699)
- Description: updates to Vectara documentation with more details on how
to get started.
- Issue: NA
- Dependencies: NA
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @vectara, @ofermend

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 20:21:17 -07:00
Alec Flett
5d765408ce propagate callbacks through load_summarize_chain (#7565)
This lets you pass callbacks when you create the summarize chain:

```
summarize = load_summarize_chain(llm, chain_type="map_reduce", callbacks=[my_callbacks])
summary = summarize(documents)
```
See #5572 for a similar surgical fix.

tagging @hwchase17 for callbacks work

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-03 20:12:34 -07:00
Alec Flett
404d103c41 propagate RetrievalQA chain callbacks through its own LLMChain and StuffDocumentsChain (#7853)
This is another case, similar to #5572 and #7565 where the callbacks are
getting dropped during construction of the chains.

tagging @hwchase17 and @agola11 for callbacks propagation

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-03 20:11:58 -07:00
Bal Narendra Sapa
47eea32f6a add serializer methods (#7914)
Description: I have added two methods serializer and deserializer
methods. There was method called save local but it saves the to the
local disk. I wanted the vectorstore in the format using which i can
push it to the sql database's blob field. I have used this while i was
working on something

@rlancemartin, @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 20:10:35 -07:00
Ryan Sloan
b786335dd1 fix RecursiveUrlLoader (#8582)
Description: the recursive url loader does not fully crawl for all urls
under base url
Maintainer: @baskaryan
2023-08-03 16:51:57 -07:00
William FH
f81e613086 Fix Async Retry Event Handling (#8659)
It fails currently because the event loop is already running.

The `retry` decorator alraedy infers an `AsyncRetrying` handler for
coroutines (see [tenacity
line](aa6f8f0a24/tenacity/__init__.py (L535)))
However before_sleep always gets called synchronously (see [tenacity
line](aa6f8f0a24/tenacity/__init__.py (L338))).


Instead, check for a running loop and use that it exists. Of course,
it's running an async method synchronously which is not _nice_. Given
how important LLMs are, it may make sense to have a task list or
something but I'd want to chat with @nfcampos on where that would live.

This PR also fixes the unit tests to check the handler is called and to
make sure the async test is run (it looks like it's just been being
skipped). It would have failed prior to the proposed fixes but passes
now.
2023-08-03 15:02:16 -07:00
ruze
8ef7e14a85 RSS Feed / OPML loader (#8694)
Replace this comment with:
- Description: added a document loader for a list of RSS feeds or OPML.
It iterates through the list and uses NewsURLLoader to load each
article.
  - Issue: N/A
  - Dependencies: feedparser, listparser
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @ruze

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 14:58:06 -07:00
sumandeng
53e4148a1b add model_revison parameter to ModelScopeEmbeddings (#8669)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 14:17:48 -07:00
Yoshi
4e8f11b36a Deterministic Fake Embedding Model (#8706)
Solves #8644 
This embedding models output identical random embedding vectors, given
the input texts are identical.
Useful when used in unittest.
@baskaryan
2023-08-03 13:36:45 -07:00
Leonid Kuligin
2928a1a3c9 added minimum expected version of SDK to the error description (#8712)
#7932

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-08-03 13:28:42 -07:00
Harrison Chase
814faa9de5 relax deps for yaml (#8713)
context: https://github.com/yaml/pyyaml/issues/724

I think this is fine? I don't think we use yaml too heavily
2023-08-03 13:22:17 -07:00
Holt Skinner
8a8917e0d9 feat: Add Spell Correction Spec to Google Cloud Enterprise Search connector (#8705) 2023-08-03 13:38:45 -04:00
Bagatur
b2b71b0d35 Bagatur/eden llm (#8670)
Co-authored-by: RedhaWassim <rwasssim@gmail.com>
Co-authored-by: KyrianC <ckyrian@protonmail.com>
Co-authored-by: sam <melaine.samy@gmail.com>
2023-08-03 10:24:51 -07:00
William FH
8022293124 lint (#8702) 2023-08-03 09:33:28 -07:00
axa99
1f54ec899b updated interface jupyter notebook explanations (#8689)
Updated the documentation in the interface.ipynb to clearly show the
_input_ and _output_ types for various components @baskaryan
2023-08-03 11:53:31 -04:00
William FH
a137492b53 Permit none key in chain mapper (#8696) 2023-08-03 08:50:36 -07:00
Bagatur
e283dc8d50 bump 251 (#8690) 2023-08-03 06:28:36 -07:00
Eugene Yurtsev
81e0cbf2d5 Minor typo fix (#8657)
Fix typo in doc-string.
2023-08-02 23:20:25 -07:00
Lance Martin
37aade19da Minor formatting and additional figure for summarization use case (#8663) 2023-08-02 21:52:29 -07:00
Harrison Chase
43dffe39fb Harrison/conversational retrieval agent (#8639)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 18:05:15 -07:00
ruze
71f98db2fe Newspaper (#8647)
- Description: Added newspaper3k based news article loader. Provide a
list of urls.
  - Issue: N/A
  - Dependencies: newspaper3k,
  - Tag maintainer: @rlancemartin , @eyurtsev 
  - Twitter handle: @ruze

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 17:56:08 -07:00
shibuiwilliam
f68f3b23d7 add missing RemoteLangChainRetriever _get_relevant_documents test (#8628)
# What
- Add missing RemoteLangChainRetriever _get_relevant_documents test

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 17:20:40 -07:00
William FH
206901fa01 Use salt instead of datetime (#8653)
If you want to kick off two runs at the same time it'll cause errors.
Use a uuid instead
2023-08-02 17:15:50 -07:00
William FH
7ea2b08d1f Use call directly for chain (#8655)
for run_on_dataset since the `run()` method requires a single output
2023-08-02 17:11:39 -07:00
William FH
368aa4ede7 fix enum error message (#8652)
could be a string so don't directly call value
2023-08-02 17:11:27 -07:00
millerick
5018af8839 docs: fix some grammar (#8654)
### Description
Fixes a grammar issue I noticed when reading through the documentation.

### Maintainers
@baskaryan

Co-authored-by: mmillerick <mmillerick@blend.com>
2023-08-02 16:48:01 -07:00
Erick Friis
96b0ff182e Enterprise support form wording (#8641) 2023-08-02 15:18:20 -07:00
Lance Martin
59194c2214 Add summarization use-case (#8376)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 14:25:11 -07:00
Will Thompson
ee1d13678e 🐛 Docs Fixes [2 one-liners, examples broken] (#8519)
## Description: 
   
1)Map reduce example in docs is missing an important import statement.
Figured other people would benefit from being able to copy 🍝 the code.

2)RefineDocumentsChain example also broken.

## Issue: 

None

## Dependencies:

None. One liner.

## Tag maintainer:

@baskaryan

## Twitter handle: 

I mean, it's a one line fix lol. But @will_thompson_k is my twitter
handle.
2023-08-02 13:39:41 -07:00
Leonid Ganeline
1335f2b9f8 MLflow examples (#8642)
Updated `MLflow` examples with links to the examples from MLflow

 @baskaryan
2023-08-02 13:30:28 -07:00
Kacper Łukawski
16551536e3 Refactor Qdrant integration (#8634)
This small PR introduces new parameters into Qdrant (`on_disk`), fixes
some tests and changes the error message to be more clear.

Tagging: @baskaryan, @rlancemartin, @eyurtsev
2023-08-02 10:30:18 -07:00
Erick Friis
c5fb3b6069 Enterprise support form in airtable (#8607) 2023-08-02 09:49:59 -07:00
Eugene Yurtsev
1ec0b18379 Re-add __add__ functionality for messages (revert #8245) (#8489)
This PR reverts #8245, so `__add__` is defined on base messages.

Resolves issue: https://github.com/langchain-ai/langchain/issues/8472
2023-08-02 10:51:44 -04:00
Bagatur
f31047a394 bump 250 (#8632) 2023-08-02 07:47:36 -07:00
Comendeiro
5c516945d0 Add local support for audio models (PR #7329) (#7591)
- Description: run the poetry dependencies
  - Issue: #7329 
  - Dependencies: any dependencies required for this change,
  - Tag maintainer: @rlancemartin

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 01:24:53 -07:00
Naveen Tatikonda
d2adec3818 [Opensearch] : Fix the service validation in http_auth (#8609)
### Description
OpenSearch supports validation using both Master Credentials (Username
and password) and IAM. For Master Credentials users will not pass the
argument `service` in `http_auth` and the existing code will break. To
fix this, I have updated the condition to check if service attribute is
present in http_auth before accessing it.

### Maintainers
@baskaryan @navneet1v

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-08-02 01:16:38 -07:00
Harrison Chase
7c5c0557cb cast to string when measuring token length (#8617) 2023-08-02 00:12:59 -07:00
rjanardhan3
68113348cc Fireworks integration (#8322)
Description - Integrates Fireworks within Langchain LLMs to allow users
to use Fireworks models with Langchain, mainly for summarization.

Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-01 21:17:26 -07:00
Bagatur
b574507c51 normalized openai embeddings embed_query (#8604)
we weren't normalizing when embedding queries
2023-08-01 17:12:10 -07:00
Neil Murphy
31820a31e4 Add firestore_client param to FirestoreChatMessageHistory if caller already has one; also lets them specify GCP project, etc. (#8601)
Existing implementation requires that you install `firebase-admin`
package, and prevents you from using an existing Firestore client
instance if available.

This adds optional `firestore_client` param to
`FirestoreChatMessageHistory`, so users can just use their existing
client/settings. If not passed, existing logic executes to initialize a
`firestore_client`.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 15:42:13 -07:00
Naveen Tatikonda
13ccf202de [OpenSearch] : Fix AOSS Initialization (#8600)
### Description
This PR fixes the AOSS Initialization in Opensearch.

### Maintainers
@rlancemartin, @eyurtsev, @navneet1v

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-08-01 15:33:51 -07:00
Joshua Carroll
6705928b9d Add StreamlitChatMessageHistory (#8497)
Add a StreamlitChatMessageHistory class that stores chat messages in
[Streamlit's Session
State](https://docs.streamlit.io/library/api-reference/session-state).

Note: The integration test uses a currently-experimental Streamlit
testing framework to simulate the execution of a Streamlit app. Marking
this PR as draft until I confirm with the Streamlit team that we're
comfortable supporting it.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 14:28:15 -07:00
Matt Robinson
8961c720b8 docs: update unstructured install instructions (#8596)
### Summary

Updates the `unstructured` install instructions. For
`unstructured>=0.9.0`, dependencies are broken out by document type and
the base `unstructured` package includes fewer dependencies. `pip
install "unstructured[local-inference]"` has been replace by `pip
install "unstructured[all-docs]"`, though the `local-inference` extra is
still supported for the time being.

### Reviewers

- @rlancemartin
- @eyurtsev
- @hwchase17
2023-08-01 14:17:49 -07:00
Bagatur
73072d3db8 mv (#8595) 2023-08-01 14:17:04 -07:00
brettdbrewer
2de028834f updated to use new llm_util query (#8591)
- Description: added memgraph_graph.py which defines the MemgraphGraph
class, subclassing off the existing Neo4jGraph class. This lets you
query the Memgraph graph database using natural language. It leverages
the Neo4j drivers and the bolt protocol.
- Dependencies: since it is a subclass off of Neo4jGraph, it is
dependent on it and the GraphCypherQA Chain implementations. It is
dependent on the Neo4j drivers being present. It is dependent on having
a running Memgraph instance to connect to.
  - Tag maintainer: @baskaryan
  - Twitter handle: @villageideate
- example usage can be seen in this repo
https://github.com/brettdbrewer/MemgraphGraph/

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 14:16:15 -07:00
Tesfagabir Meharizghi
a7000ee89e Callback handler for Amazon SageMaker Experiments (#8587)
## Description

This PR implements a callback handler for SageMaker Experiments which is
similar to that of mlflow.
* When creating the callback handler, it takes the experiment's run
object as an argument. All the callback outputs are then logged to the
run object.
* The output of each callback action (e.g., `on_llm_start`) is saved to
S3 bucket as json file.
* Optionally, you can also log additional information such as the LLM
hyper-parameters to the same run object.
* Once the callback object is no more needed, you will need to call the
`flush_tracker()` method. This makes sure that any intermediate files
are deleted.
* A separate notebook example is provided to show how the callback is
used.

@3coins  @agola11

---------

Co-authored-by: Tesfagabir Meharizghi <mehariz@amazon.com>
2023-08-01 13:47:08 -07:00
Harrison Chase
9c2b29a1cb Harrison/loader bug (#8559)
Co-authored-by: ddroghini <d.droghini@mflgroup.com>
Co-authored-by: Buckler89 <Droghini.diego@gmail.com>
2023-08-01 13:31:49 -07:00
Kristelle Widjaja
f190bc3e83 Bug fix: feature/issue-7804-chroma-client_settings-bug (#8267)
Description: Made Chroma constructor more robust when client_settings is
provided. Otherwise, existing embeddings will not be loaded correctly
from Chroma.
Issue: #7804
Dependencies: None
Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 13:31:35 -07:00
mpb159753
7df2dfc4c2 Add Support for Loading Documents from Huawei OBS (#8573)
Description:
This PR adds support for loading documents from Huawei OBS (Object
Storage Service) in Langchain. OBS is a cloud-based object storage
service provided by Huawei Cloud. With this enhancement, Langchain users
can now easily access and load documents stored in Huawei OBS directly
into the system.

Key Changes:
- Added a new document loader module specifically for Huawei OBS
integration.
- Implemented the necessary logic to authenticate and connect to Huawei
OBS using access credentials.
- Enabled the loading of individual documents from a specified bucket
and object key in Huawei OBS.
- Provided the option to specify custom authentication information or
obtain security tokens from Huawei Cloud ECS for easy access.

How to Test:
1. Ensure the required package "esdk-obs-python" is installed.
2. Configure the endpoint, access key, secret key, and bucket details
for Huawei OBS in the Langchain settings.
3. Load documents from Huawei OBS using the updated document loader
module.
4. Verify that documents are successfully retrieved and loaded into
Langchain for further processing.

Please review this PR and let us know if any further improvements are
needed. Your feedback is highly appreciated!

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 09:30:30 -07:00
Leonid Ganeline
ed9a0f8185 Docstrings: Module descriptions (#8262)
Added/changed the module descriptions (the firs-line docstrings in the
`__init__` files).
Added class hierarchy info.
 @baskaryan
2023-08-01 09:12:32 -07:00
shibuiwilliam
465faab935 fix apparent spelling inconsistencies (#8574)
Use ImportErrors where appropriate
2023-08-01 09:09:09 -07:00
Nuno Campos
0ec020698f Add new run types for Runnables (#8488)
- allow overriding run_type in on_chain_start

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-01 12:56:40 +01:00
Bagatur
bd2e298468 bump 249 (#8571) 2023-08-01 01:20:16 -07:00
Harrison Chase
66226d1d4d add example for memory (#8552) 2023-08-01 01:10:19 -07:00
William FH
e83250cc5f Rm RunTypeEnum (#8553)
We already support raw strings in the SDK but would like to deprecate
client-side validation of run types. This removes its usage
2023-08-01 07:32:07 +01:00
Jacob Lee
2a26cc6d2b Fix combining runnable sequences (#8557)
Combining runnable sequences was dropping a step in the middle.

@nfcampos @baskaryan
2023-07-31 18:17:46 -07:00
Mohamad Zamini
3fbb737bb3 Update combined.py (#7541)
from my understanding, the `check_repeated_memory_variable` validator
will raise an error if any of the variables in the `memories` list are
repeated. However, the `load_memory_variables` method does not check for
repeated variables. This means that it is possible for the
`CombinedMemory` instance to return a dictionary of memory variables
that contains duplicate values. This code will check for repeated
variables in the `data` dictionary returned by the
`load_memory_variables` method of each sub-memory. If a repeated
variable is found, an error will be raised.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 18:15:00 -07:00
Shantanu Nair
53f3793504 Fast load conversationsummarymemory from existing summary (#7533)
- Description: Adds an optional buffer arg to the memory's
from_messages() method. If provided the existing memory will be loaded
instead of regenerating a summary from the loaded messages.
 
Why? If we have past messages to load from, it is likely we also have an
existing summary. This is particularly helpful in cases where the chat
is ephemeral and/or is backed by serverless where the chat history is
not stored but where the updated chat history is passed back and forth
between a backend/frontend.

Eg: Take a stateless qa backend implementation that loads messages on
every request and generates a response — without this addition, each
time the messages are loaded via from_messages, the summaries are
recomputed even though they may have just been computed during the
previous response. With this, the previously computed summary can be
passed in and avoid:
  1) spending extra $$$ on tokens, and 
2) increased response time by avoiding regenerating previously generated
summary.

Tag maintainer: @hwchase17
Twitter handle: https://twitter.com/ShantanuNair

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 18:14:11 -07:00
DJ Atha
ec40ead980 Fixed bug7445 where a duplicate restuld_id is added to the vectorstore. (#7573)
- Description: updated BabyAGI examples to append the iteration to the
result id to fix error storing data to vectorstore.
  - Issue: 7445
  - Dependencies: no
  - Tag maintainer: @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

This fix worked for me locally. Happy to take some feedback and iterate
on a better solution. I was considering appending a uuid instead but
didnt want to over complicate the example.
2023-07-31 18:00:01 -07:00
yangdihang
ff5024634e fix: openapi controller prompt, when bot is unable to resolve an api … (#7525)
…call, it needs retry

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

Co-authored-by: yangdihang <yangdihang@bytedance.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:56:43 -07:00
Kenny
1e8fca5518 Add ConcurrentLoader (#7512)
Works just like the GenericLoader but concurrently for those who choose
to optimize their workflow.

@rlancemartin @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:56:31 -07:00
Kevin Buckley
8061994c61 AzureSearch Vector Store: Moving the usage of additional_fields into context of it's definition (bug fix from python error) (#8551)
Description: Using Azure Cognitive Search as a VectorStore. Calling the
`add_texts` method throws an error if there is no metadata property
specified. The `additional_fields` field is set in an `if` statement and
then is used later outside the if statement. This PR just moves the
declaration of `additional_fields` below and puts the usage of it in
context.

Issue: https://github.com/langchain-ai/langchain/issues/8544

Tagging @rlancemartin, @eyurtsev as this is related to Vector stores.

`make format`, `make lint`, `make spellcheck`, and `make test` have been
run
2023-07-31 17:25:57 -07:00
Danny Davenport
8d2344db43 updates some spelling mistakes (#8537)
Just updating some spelling / grammar issues in the documentation. No
code changes.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:15:29 -07:00
Leonid Kuligin
b4a126ae71 Updated docs on Vertex AI going GA (#8531)
#8074

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-07-31 17:15:04 -07:00
Pranay Chandekar
7e70cd2a28 Bug Fix - #8415 (#8417)
- Issue: #8415

Signed-off-by: Pranay Chandekar <pranayc6@gmail.com>
2023-07-31 17:08:46 -07:00
shibuiwilliam
de61ebd9e0 add tests to redis vectorstore (#8116)
# What
- Add function to get similarity with score with threshold in Redis
vector store.
- Add tests to Redis vector store.
2023-07-31 17:07:09 -07:00
Bharat Raghunathan
c19a0b9c10 doc(prompts): Follow up on broken Prompt Sublink pages (#8530)
- Description: Follow up of #8478  
  - Issue: #8477
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: [@BharatR123](twitter.com/BharatR123)

The links were still broken after #8478 and sadly the issue was not
caught with either the Vercel app build and `make docs_linkcheck`
2023-07-31 16:46:13 -07:00
Bruno Bornsztein
5a490a79f4 fix issue #8357 by making json backtick regex greedy (#8528)
- Description: Markdown code blocks in json response should not break
the parser
  - Issue: #8357

@baskaryan @hinthornw
2023-07-31 16:36:57 -07:00
Gordon Clark
64d0a0fcc0 Updating docstings in utilities (#8411)
Updating docstrings on utility packages
 @baskaryan
2023-07-31 16:34:53 -07:00
Harrison Chase
bca0749a11 conversational retrieval chain in lcel (#8532) 2023-07-31 16:33:07 -07:00
Jeff Huber
07d6d1ca38 fix error in chroma docker instructions (#8533)
This makes the Chroma instructions for Docker work! 


https://python.langchain.com/docs/integrations/vectorstores/chroma#basic-example-using-the-docker-container
2023-07-31 16:32:53 -07:00
Mohammad Mohtashim
144b4c0c78 SQL Query Prompt update + added _execute method for SQLDatabase (#8100)
- Description: This pull request (PR) includes two minor changes:

1. Updated the default prompt for SQL Query Checker: The current prompt
does not clearly specify the final response that the LLM (Language
Model) should provide when checking for the query if `use_query_checker`
is enabled in SQLDatabase Chain. As a result, the LLM adds extra words
like "Here is your updated query" to the response. However, this causes
a syntax error when executing the SQL command in SQLDatabaseChain, as
these additional words are also included in the SQL query.

2. Moved the query's execution part into a separate method for
SQLDatabase: The purpose of this change is to provide users with more
flexibility when obtaining the result of an SQL query in the original
form returned by sqlalchemy. In the previous implementation, the run
method returned the results as a string. By creating a distinct method
for execution, users can now receive the results in original format,
which proves helpful in various scenarios. For example, during the
development of a tool, I found it advantageous to obtain results in
original format rather than a string, as currently done by the run
method.

- Tag maintainer: @hinthornw

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-31 16:28:08 -07:00
Matthew DeGuzman
844eca98d5 Add LLaMa Formatter and AzureML Chat Endpoint (#8382)
## Description

Microsoft and Meta recently [announced their
collaboration](https://blogs.microsoft.com/blog/2023/07/18/microsoft-and-meta-expand-their-ai-partnership-with-llama-2-on-azure-and-windows/)
on LLaMa2. This PR extends the current LLM wrapper and introduces a new
Chat Model wrapper for AzureML to support LLaMa2.

## Dependencies

No dependencies added :)

## Twitter Handles

[@matthew_d13](https://twitter.com/matthew_d13)
[@prakhar_in](https://twitter.com/prakhar_in)

maintainers - @hwchase17, @baskaryan
2023-07-31 16:26:25 -07:00
Anthony Mahanna
1ab773c742 docs: Update ArangoDB Colab URL (#8547)
1-commit PR to update the Google Colab URL of the ArangoDB Graph QA
Chain notebook
2023-07-31 16:11:21 -07:00
Harrison Chase
15de57b848 fix web loader (#8538) 2023-07-31 12:47:33 -07:00
Nuno Campos
4780156955 Rely less on positional arg order in subclasses of vector store when calling async methods (#8534) 2023-07-31 20:13:11 +01:00
Harrison Chase
5e3b968078 router runnable (#8496)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-31 11:07:10 -07:00
Anubhav Bindlish
913a156cff Minor improvements to rockset vectorstore (#8416)
This PR makes minor improvements to our python notebook, and adds
support for `Rockset` workspaces in our vectorstore client.

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-31 09:54:59 -07:00
Harrison Chase
893f3014af add xml agent notebook 2023-07-31 07:33:22 -07:00
Bagatur
a8be207ea3 bump 248 (#8518) 2023-07-31 07:14:45 -07:00
Harrison Chase
6556a8fcfd add initial anthropic agent (#8468)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-30 21:30:49 -07:00
os1ma
a795c3d860 Fix GitLoader to handle repeated load calls (#8412)
**Description: a description of the change**

In this pull request, GitLoader has been updated to handle multiple load
calls, provided the same repository is being cloned. Previously, calling
`load` multiple times would raise an error if a clone URL was provided.

Additionally, a check has been added to raise a ValueError when
attempting to clone a different repository into an existing path.

New tests have also been introduced to verify the correct behavior of
the GitLoader class when `load` is called multiple times.

Lastly, the GitPython package, a dependency for the GitLoader class, has
been added to the project dependencies (pyproject.toml and poetry.lock).

**Issue: the issue # it fixes (if applicable)**

None

**Dependencies: any dependencies required for this change**

GitPython

**Tag maintainer: for a quicker response, tag the relevant maintainer
(see below)**

- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
2023-07-30 21:27:20 -07:00
Muhammed Al-Dulaimi
9975ba4124 Fix ChromaDB integration -> docker container instructions (#8447)
## Description
This PR handles modifying the Chroma DB integration's documentation.
It modifies the **Docker container** example to fix the instructions
mentioned in the documentation.
In the current documentation, the below `client.reset()` line causes a
runtime error:

```py
...
client = chromadb.HttpClient(settings=Settings(allow_reset=True))
client.reset()  # resets the database
collection = client.create_collection("my_collection")
...
```

`Exception: {"error":"ValueError('Resetting is not allowed by this
configuration')"}`

This is due to the Chroma DB server needing to have the `allow_reset`
flag set to `true` there as well.
This is fixed by adding the `ALLOW_RESET=TRUE` to the `docker-compose`
file environment variable to the docker container before spinning it

## Issue
This fixes the runtime error that occurs when running the docker
container example code

## Tag Maintainer
@rlancemartin, @eyurtsev
2023-07-30 21:11:56 -07:00
Nicolas Raoul
7f9c6c3baa Fixed typo: papaer -> paper (#8500) 2023-07-30 21:08:11 -07:00
Piyush Jain
b2f8a5bae9 Fixed exports for NeptuneOpenCypherQAChain (#8439)
## Description
The imports for `NeptuneOpenCypherQAChain` are failing. This PR adds the
chain class to the `__init__.py` file to fix this issue.

## Maintainers
@dev2049 
@krlawrence
2023-07-30 20:36:22 -07:00
Eugene Yurtsev
e98e2b2b81 ChatPromptTemplate: clean up doc-string (#8473)
Minor doc-string clean up

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-30 20:11:04 -07:00
Eugene Yurtsev
529cb2e30c Update doc-string in few shot template (#8474)
Partial update of doc-string, need to update other instances in
documentation
2023-07-30 19:39:14 -07:00
Bharat Raghunathan
04ebdbe98f doc(prompts): Add redirects in Prompt subcategories pages (#8478)
- Description: Fixes broken links in some Prompts subcategories in
documentation (Example Selectors, Prompt Templates)
  - Issue: #8477 (Fixes #8477)
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: [@BharatR123](https://twitter.com/BharatR123)
2023-07-30 19:38:52 -07:00
Ludwig Hubert
08f5e6b801 Fix documentation for from_documents signature (#8482)
Docs for from_documents() were outdated as seen in
https://github.com/langchain-ai/langchain/issues/8457 .

fixes #8457 

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-30 13:24:44 -07:00
Muneeb Ahmad
4923cf029a Added Proper Documentation for faiss-gpu Installation (#8492)
### Description
In the LangChain Documentation and Comments, I've Noticed that `pip
install faiss` was mentioned, instead of `pip install faiss-gpu`, since
installing `pip install faiss` results in an error. I've gone ahead and
updated the Documentation, and `faiss.ipynb`. This Change will ensure
ease of use for the end user, trying to install `faiss-gpu`.

### Issue: 
Documentation / Comments Related.

### Dependencies:
No Dependencies we're changed only updated the files with the wrong
reference.

### Tag maintainer:
 @rlancemartin, @eyurtsev (Thank You for your contributions 😄 )
2023-07-30 13:24:30 -07:00
shibuiwilliam
549720ae51 add test to ensure values in time weighted retriever are updated (#8479)
# What
- add test to ensure values in time weighted retriever are updated

<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: add test to ensure values in time weighted retriever are
updated
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ


Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-30 11:42:25 -07:00
Harrison Chase
18a2452121 prompt cleanup (#8470) 2023-07-30 10:47:31 -07:00
Harrison Chase
4d526c49ed bump experimental to 008 (#8490) 2023-07-30 07:28:18 -07:00
Harrison Chase
8f14ddefdf add anthropic functions wrapper (#8475)
a cheeky wrapper around claude that adds in function calling support
(kind of, hence it going in experimental)
2023-07-30 07:23:46 -07:00
Harrison Chase
490ad93b3c fix links generation (#8471) 2023-07-29 18:31:33 -07:00
Nuno Campos
b65a9414bb runnable.bind().bind() should combine kwargs, instead of nesting wrappers (#8467)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-29 15:48:30 -07:00
Harrison Chase
ae4638aa35 improve notebooks (#8461) 2023-07-29 12:49:11 -07:00
Nuno Campos
872abb4198 Implement Runnable for Tools (#8460)
- Make _arun optional
- Pass run_manager to inner chains in tools that have them

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-29 10:01:18 -07:00
Harrison Chase
412fa4e1db add guide notebook (#8258)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-29 09:42:59 -07:00
William FH
b7c0eb9ecb Wfh/ref links (#8454) 2023-07-29 08:44:32 -07:00
Harrison Chase
13b4f465e2 log output parser (#8446) 2023-07-29 07:53:45 +01:00
William FH
7d79178827 Wfh/update guide imports (#8452) 2023-07-28 23:12:10 -07:00
William FH
d935573362 Partial formatting for chat messages (#8450) 2023-07-28 23:08:33 -07:00
William FH
3314f54383 Update supabase docstrings (#8443) 2023-07-28 23:08:14 -07:00
Harrison Chase
f63240649c cr 2023-07-28 17:47:00 -07:00
Harrison Chase
17953ab61f add notebook for sql query (#8442) 2023-07-28 17:44:59 -07:00
Harrison Chase
2448043b84 bump and fix (#8441) 2023-07-28 17:16:51 -07:00
Zack Proser
3892cefac6 Minor fixes to enhance notebook usability: (#8389)
- Install langchain
- Set Pinecone API key and environment as env vars
- Create Pinecone index if it doesn't already exist
---
- Description: Fix a couple minor issues I came across when running this
notebook,
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: none,
  - Tag maintainer: @rlancemartin @eyurtsev,
  - Twitter handle: @zackproser (certainly not necessary!)
2023-07-28 17:10:03 -07:00
Amélie
8ee56b9a5b Feature: Add support for meilisearch vectorstore (#7649)
**Description:**

Add support for Meilisearch vector store.
Resolve #7603 

- No external dependencies added
- A notebook has been added

@rlancemartin

https://twitter.com/meilisearch

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 17:06:54 -07:00
Bearnardd
b7d6e1909c fix empty ids when metadatas is provided (#8127)
Fixes https://github.com/hwchase17/langchain/issues/7865 and
https://github.com/hwchase17/langchain/issues/8061

- [x] fixes returning empty ids when metadatas argument is provided

@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 16:17:31 -07:00
Bharat Raghunathan
62b8b459c6 doc(prompts): Add redirect to fix broken link on Prompts Page (#8408)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 16:08:06 -07:00
Bagatur
2311d57df4 mv dropbox (#8438) 2023-07-28 16:07:56 -07:00
Luis Valencia
7124377524 Devcontainer README -> Clarification. (#8414)
- Description: The contribution guidlelines using devcontainer refer to
the main repo and not the forked repo. We should create our changes in
our own forked repo, not on langchain/main
  - Issue: Just documentation
  - Dependencies: N/A,
  - Tag maintainer: @baskaryan
  - Twitter handle: @levalencia
2023-07-28 15:09:42 -07:00
lvisdd
abe4c361f9 update get_num_tokens_from_messages model (#8431)
(#8430)

Co-authored-by: Kano Kunihiko <kkano@heroz.co.jp>
2023-07-28 15:07:03 -07:00
Jeffrey Wang
e0de62f6da Add RoPE Scaling params from llamacpp (#8422)
Description:
Just adding parameters from `llama-python-cpp` that support RoPE
scaling.
@hwchase17, @baskaryan

sources:
papers and explanation:
https://kaiokendev.github.io/context
llamacpp conversation:
https://github.com/ggerganov/llama.cpp/discussions/1965 
Supports models like:
https://huggingface.co/conceptofmind/LLongMA-2-13b
2023-07-28 14:42:41 -07:00
Bagatur
2db2987b1b add experimental ref (#8435) 2023-07-28 14:26:47 -07:00
Harrison Chase
fab24457bc remove code (#8425) 2023-07-28 13:19:44 -07:00
Harrison Chase
3a78450883 update experimental (#8402)
some changes were made to experimental, porting them over
2023-07-28 13:01:36 -07:00
Harrison Chase
af7e70d4af expose function for converting messages to messages (#8426) 2023-07-28 13:00:54 -07:00
Eugene Yurtsev
06bdbe06fe PromptTemplate update documentation and expand kwarg (#8423)
# PromptTemplate

* Update documentation to highlight the classmethod for instantiating a
prompt template.
* Expand kwargs in the classmethod to make parameters easier to discover

This PR got reverted here:
https://github.com/langchain-ai/langchain/pull/8395/files
2023-07-28 14:11:49 -04:00
Eugene Yurtsev
e62a1686e2 ChatPromptTemplate: minor fix in doc string (#8424)
Minor fix in doc-string to use `ai` rather than `assistant`
2023-07-28 13:01:13 -04:00
Eugene Yurtsev
760c278fe0 ChatPromptTemplate: Expand support for message formats and documentation (#8244)
* Expands support for a variety of message formats in the
`from_messages` classmethod. Ideally, we could deprecate the other
on-ramps to reduce the amount of classmethods users need to know about.
* Expand documentation with code examples.
2023-07-28 12:48:08 -04:00
Bagatur
61dd92f821 bump 246 (#8410) 2023-07-28 01:18:37 -07:00
Harrison Chase
394b67ab92 add kwargs to llm runnables (#8388) 2023-07-28 09:13:11 +01:00
HeTaoPKU
d5884017a9 Add Minimax llm model to langchain (#7645)
- Description: Minimax is a great AI startup from China, recently they
released their latest model and chat API, and the API is widely-spread
in China. As a result, I'd like to add the Minimax llm model to
Langchain.
- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: the <tao.he@hulu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:53:23 -07:00
James Campbell
0ad2d5f27a [nit] Add default value for ChatOpenAI client (#7939)
Micro convenience PR to avoid warning regarding missing `client`
parameter. It is always set during initialization.

@baskaryan

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:38:32 -07:00
Harrison Chase
82df923f37 Merge branch 'master' of github.com:hwchase17/langchain 2023-07-27 22:01:20 -07:00
Harrison Chase
1b0bfa54cf cr 2023-07-27 22:00:52 -07:00
Jeff Vestal
c7ff5f19a8 ElasticKnnSearch rewrite - bug fix - return Document (#8180)
Fixes: 
https://github.com/hwchase17/langchain/issues/7117
https://github.com/hwchase17/langchain/issues/5760

Adding back `create_index` , `add_texts`, `from_texts` to
ElasticKnnSearch

`from_texts` matches standard `from_texts` methods as quick start up
method

`knn_search` and `hybrid_result` return a list of [`Document()`,
`score`,]

# Test `from_texts` for quick start
```
# create new index using from_text

from langchain.vectorstores.elastic_vector_search import ElasticKnnSearch
from langchain.embeddings import ElasticsearchEmbeddings

model_id = "sentence-transformers__all-distilroberta-v1" 
dims = 768
es_cloud_id = ""
es_user = ""
es_password = ""
test_index = "knn_test_index_305"

embeddings = ElasticsearchEmbeddings.from_credentials(
    model_id,
    #input_field=input_field,
    es_cloud_id=es_cloud_id,
    es_user=es_user,
    es_password=es_password,
)

# add texts and create class instance
texts = ["This is a test document", "This is another test document"]
knnvectorsearch = ElasticKnnSearch.from_texts(
    texts=texts,
    embedding=embeddings,
    index_name= test_index,
    vector_query_field='vector',
    query_field='text',
    model_id=model_id,
    dims=dims,
	es_cloud_id=es_cloud_id, 
	es_user=es_user, 
	es_password=es_password
)

# Test `add_texts` method
texts2 = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knnvectorsearch.add_texts(texts2)

query = "Hello"
knn_result = knnvectorsearch.knn_search(query = query, model_id= model_id, k=2)

hybrid_result = knnvectorsearch.knn_hybrid_search(query = query, model_id= model_id, k=2)

```

The  mapping is as follows:
```
{
  "knn_test_index_012": {
    "mappings": {
      "properties": {
        "text": {
          "type": "text"
        },
        "vector": {
          "type": "dense_vector",
          "dims": 768,
          "index": true,
          "similarity": "dot_product"
        }
      }
    }
  }
}
```

# Check response type
```
>>> hybrid_result
[(Document(page_content='Hello, world!', metadata={}), 0.94232327), (Document(page_content='I love Python.', metadata={}), 0.5321523)]

>>> hybrid_result[0]
(Document(page_content='Hello, world!', metadata={}), 0.94232327)

>>> hybrid_result[0][0]
Document(page_content='Hello, world!', metadata={})

>>> type(hybrid_result[0][0])
<class 'langchain.schema.document.Document'>
```

# Test with existing Index
```
from langchain.vectorstores.elastic_vector_search import ElasticKnnSearch
from langchain.embeddings import ElasticsearchEmbeddings

## Initialize ElasticsearchEmbeddings
model_id = "sentence-transformers__all-distilroberta-v1" 
dims = 768
es_cloud_id = 
es_user = ""
es_password = ""
test_index = "knn_test_index_012"

embeddings = ElasticsearchEmbeddings.from_credentials(
    model_id,
    es_cloud_id=es_cloud_id,
    es_user=es_user,
    es_password=es_password,
)

## Initialize ElasticKnnSearch
knn_search = ElasticKnnSearch(
	es_cloud_id=es_cloud_id, 
	es_user=es_user, 
	es_password=es_password, 
	index_name= test_index, 
	embedding= embeddings
)


## Test adding vectors

### Test `add_texts` method when index created
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)

```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:00:18 -07:00
Harrison Chase
a221a9ced0 Harrison/sql query (#8370)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-27 21:55:17 -07:00
Bagatur
a1a650c743 Bagatur/from texts bug fix (#8394)
---------

Co-authored-by: Davit Buniatyan <davit@loqsh.com>
Co-authored-by: Davit Buniatyan <d@activeloop.ai>
Co-authored-by: adilkhan <adilkhan.sarsen@nu.edu.kz>
Co-authored-by: Ivo Stranic <istranic@gmail.com>
2023-07-27 21:52:38 -07:00
Jiayi Ni
1efb9bae5f FEAT: Integrate Xinference LLMs and Embeddings (#8171)
- [Xorbits
Inference(Xinference)](https://github.com/xorbitsai/inference) is a
powerful and versatile library designed to serve language, speech
recognition, and multimodal models. Xinference supports a variety of
GGML-compatible models including chatglm, whisper, and vicuna, and
utilizes heterogeneous hardware and a distributed architecture for
seamless cross-device and cross-server model deployment.
- This PR integrates Xinference models and Xinference embeddings into
LangChain.
- Dependencies: To install the depenedencies for this integration, run
    
    `pip install "xinference[all]"`
    
- Example Usage:

To start a local instance of Xinference, run `xinference`.

To deploy Xinference in a distributed cluster, first start an Xinference
supervisor using `xinference-supervisor`:

`xinference-supervisor -H "${supervisor_host}"`

Then, start the Xinference workers using `xinference-worker` on each
server you want to run them on.

`xinference-worker -e "http://${supervisor_host}:9997"`

To use Xinference with LangChain, you also need to launch a model. You
can use command line interface (CLI) to do so. Fo example: `xinference
launch -n vicuna-v1.3 -f ggmlv3 -q q4_0`. This launches a model named
vicuna-v1.3 with `model_format="ggmlv3"` and `quantization="q4_0"`. A
model UID is returned for you to use.

Now you can use Xinference with LangChain:

```python
from langchain.llms import Xinference

llm = Xinference(
    server_url="http://0.0.0.0:9997", # suppose the supervisor_host is "0.0.0.0"
    model_uid = {model_uid} # model UID returned from launching a model
)

llm(
    prompt="Q: where can we visit in the capital of France? A:",
    generate_config={"max_tokens": 1024},
)
```

You can also use RESTful client to launch a model:
```python
from xinference.client import RESTfulClient

client = RESTfulClient("http://0.0.0.0:9997")

model_uid = client.launch_model(model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0")
```

The following code block demonstrates how to use Xinference embeddings
with LangChain:
```python
from langchain.embeddings import XinferenceEmbeddings

xinference = XinferenceEmbeddings(
    server_url="http://0.0.0.0:9997",
    model_uid = model_uid
)
```

```python
query_result = xinference.embed_query("This is a test query")
```

```python
doc_result = xinference.embed_documents(["text A", "text B"])
```

Xinference is still under rapid development. Feel free to [join our
Slack
community](https://xorbitsio.slack.com/join/shared_invite/zt-1z3zsm9ep-87yI9YZ_B79HLB2ccTq4WA)
to get the latest updates!

- Request for review: @hwchase17, @baskaryan
- Twitter handle: https://twitter.com/Xorbitsio

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 21:23:19 -07:00
Bagatur
877d384bc9 Revert "PromptTemplate update documentation and expand kwargs (#8234)" (#8395)
fyi @eyurtsev was failing a unit test
2023-07-27 21:11:10 -07:00
Gordon Clark
e66759cc9d Github add "Create PR" tool + Docs update (#8235)
Added a new tool to the Github toolkit called **Create Pull Request.**
Now we can make our own langchain contributor in langchain 😁

In order to have somewhere to pull from, I also added a new env var,
"GITHUB_BASE_BRANCH." This will allow the existing env var,
"GITHUB_BRANCH," to be a working branch for the bot (so that it doesn't
have to always commit on the main/master). For example, if you want the
bot to work in a branch called `bot_dev` and your repo base is `main`,
you would set up the vars like:
```
GITHUB_BASE_BRANCH = "main"
GITHUB_BRANCH = "bot_dev"
``` 

Maintainer responsibilities:
  - Agents / Tools / Toolkits: @hinthornw
2023-07-27 19:19:44 -07:00
William FH
ecd4aae818 Few Shot Chat Prompt (#8038)
Proposal for a few shot chat message example selector

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-27 18:46:10 -07:00
Eugene Yurtsev
6dd18eee26 PromptTemplate update documentation and expand kwargs (#8234)
# PromptTemplate

* Update documentation to highlight the classmethod for instantiating a
prompt template.
* Expand kwargs in the classmethod to make parameters easier to discover
2023-07-27 18:11:39 -07:00
Karan V
a003a0baf6 fix(petals) allows to run models that aren't Bloom (Support for LLama and newer models) (#8356)
In this PR:

- Removed restricted model loading logic for Petals-Bloom
- Removed petals imports (DistributedBloomForCausalLM,
BloomTokenizerFast)
- Instead imported more generalized versions of loader
(AutoDistributedModelForCausalLM, AutoTokenizer)
- Updated the Petals example notebook to allow for a successful
installation of Petals in Apple Silicon Macs

- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 18:01:04 -07:00
lars.gersmann
e758e9e7f5 fix(openapi): openapi chain will work without/empty description/summa… (#8351)
Description: 

This PR will enable the Open API chain to work with valid Open API
specifications missing `description` and `summary` properties for path
and operation nodes in open api specs.

Since both `description` and `summary` property are declared optional we
cannot be sure they are defined. This PR resolves this problem by
providing an empty (`''`) description as fallback.

The previous behavior of the Open API chain was that the underlying LLM
(OpenAI) throw ed an exception since `None` is not of type string:

```
openai.error.InvalidRequestError: None is not of type 'string' - 'functions.0.description'
```

Using this PR the Open API chain will succeed also using Open API specs
lacking `description` and `summary` properties for path and operation
nodes.

Thanks for your amazing work !

Tag maintainer: @baskaryan

---------

Co-authored-by: Lars Gersmann <lars.gersmann@cm4all.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 17:58:43 -07:00
ljeagle
caa6caeb8a Upgrade the AwaDB from v0.3.7 to v0.3.9 and change the default embeddings (#8281)
1. Upgrade the AwaDB from v0.3.7 to v0.3.9
2. Change the default embedding to AwaEmbedding

---------

Co-authored-by: ljeagle <awadb.vincent@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-27 17:20:50 -07:00
Harrison Chase
25b8cc7e3d Harrison/update memory docs (#8384)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 17:18:19 -07:00
Holt Skinner
d7e6770de8 refactor: Code refactoring & simplification for Google Cloud Enterprise Search retriever (#8369)
Followup to https://github.com/langchain-ai/langchain/pull/7857

- Changes `_convert_search_response()` to use object attributes instead
of converting to dictionary
- Simplifies logic for readability
2023-07-27 17:13:49 -07:00
Taozhi Wang
594f195e54 Add embeddings for AwaEmbedding (#8353)
- Description: Adds AwaEmbeddings class for embeddings, which provides
users with a convenient way to do fine-tuning, as well as the potential
need for multimodality

  - Tag maintainer: @baskaryan

Create `Awa.ipynb`: an example notebook for AwaEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/awa.py`: The embedding class
Create `embeddings/test_awa.py`: The test file.

---------

Co-authored-by: taozhiwang <taozhiwa@gmail.com>
2023-07-27 17:08:00 -07:00
thehunmonkgroup
ba4e82bb47 fix missing _identifying_params() in _VertexAICommon (#8303)
Full set of params are missing from Vertex* LLMs when `dict()` method is
called.

```
>>> from langchain.chat_models.vertexai import ChatVertexAI
>>> from langchain.llms.vertexai import VertexAI
>>> chat_llm = ChatVertexAI()
l>>> llm = VertexAI()
>>> chat_llm.dict()
{'_type': 'vertexai'}
>>> llm.dict()
{'_type': 'vertexai'}
```

This PR just uses the same mechanism used elsewhere to expose the full
params.

Since `_identifying_params()` is on the `_VertexAICommon` class, it
should cover the chat and non-chat cases.
2023-07-27 16:59:10 -07:00
bheroder
dc3ca44e05 Add an example for azure ml managed feature store (#8324)
We are adding an example of how one can connect to azure ml managed
feature store and use such a prompt template in a llm chain. @baskaryan
2023-07-27 16:56:06 -07:00
Caitlin2694
b2e4b9dca4 Fix exception caused by restrictions in OWL (#8341)
Description: Fix exception caused by restrictions in OWL
Issue: #8331
Dependencies: none
Maintainer: @baskaryan
2023-07-27 16:51:32 -07:00
Harrison Chase
cddd8ae83d update release yml (#8364)
only do the step that tags and adds release notes if its langchain
2023-07-27 16:49:04 -07:00
Nikita Pokidyshev
f499e6ea6a Add FunctionMessage to _message_from_dict (#8374)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 16:45:27 -07:00
evelynmitchell
539574670c Update tot.ipynb (#8387)
Spelling error fix

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 16:44:41 -07:00
emarco177
2ab13ab743 added unit tests for mrkl output_parser.py (#8321)
- Description: added unit tests for mrkl output_parser.py, 
  - Tag maintainer: @hinthornw
  - Twitter handle: EdenEmarco177
2023-07-27 13:46:06 -07:00
Sachin Varghese
01217b2247 Update sql database agent example (#8354)
This PR fixes a minor documentation issue on the SQL database toolkit
example notebook.
2023-07-27 13:44:02 -07:00
Bagatur
55beab326c cleanup warnings (#8379) 2023-07-27 13:43:05 -07:00
William FH
41524304bf Update local script for docs build (#8377) 2023-07-27 13:13:59 -07:00
Harrison Chase
f5bf893035 rename to str output parser (#8373) 2023-07-27 12:57:34 -07:00
William FH
0e9e5b5202 Retry events on any run type (#8375) 2023-07-27 12:56:46 -07:00
Bagatur
68763bd25f mv popular and additional chains to use cases (#8242) 2023-07-27 12:55:13 -07:00
William FH
ff98fad2d9 Add Retry Events (#8053)
![image](https://github.com/hwchase17/langchain/assets/13333726/59a5c3b4-4367-47e6-9f58-5b6557576a8a)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 12:39:39 -07:00
William FH
94a693e2ee Link to use cases from tutorials (#8371) 2023-07-27 11:54:04 -07:00
Nuno Campos
0eca3e7d90 Add Runnable.bind method to attach kwargs to a Runnable that will be passed to all invoke/stream/batch calls when it is run (#8368)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 11:16:30 -07:00
Harrison Chase
cf608f876b update link 2023-07-27 09:47:57 -07:00
Nuno Campos
1bbadde77b Support using RunnableMap directly (#8317)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 17:24:29 +01:00
Bagatur
944321c6ab bump 245 (#8359) 2023-07-27 06:53:24 -07:00
Rubén Barragán
ef6332ead6 Support loading files from Dropbox (#8271)
## Description
This commit introduces the `DropboxLoader` class, a new document loader
that allows loading files from Dropbox into the application. The loader
relies on a Dropbox app, which requires creating an app on Dropbox,
obtaining the necessary scope permissions, and generating an access
token. Additionally, the dropbox Python package is required.

The `DropboxLoader` class is designed to be used as a document loader
for processing various file types, including text files, PDFs, and
Dropbox Paper files.

## Dependencies
`pip install dropbox` and `pip install unstructured` for PDF reading.

## Tag maintainer
@rlancemartin, @eyurtsev (from Data Loaders). I'd appreciate some
feedback here 🙏 .

## Social Networks
https://github.com/rubenbarragan
https://www.linkedin.com/in/rgbarragan/
https://twitter.com/RubenBarraganP

---------

Co-authored-by: Ruben Barragan <rbarragan@Rubens-MacBook-Air.local>
2023-07-27 06:36:08 -07:00
Pranay Chandekar
41bb3a6f9b fixed the bug #8343 (#8345)
- Issue: #8343

Signed-off-by: Pranay Chandekar <pranayc6@gmail.com>
2023-07-27 06:33:15 -07:00
Ikko Eltociear Ashimine
934ea80780 Fix typo in Etherscan.ipynb (#8340)
specifc  -> specific
2023-07-27 01:57:19 -07:00
Martin Krasser
93260a9922 Fix broken make targets format_diff and lint_diff (#8344)
Since the refactoring into sub-projects `libs/langchain` and
`libs/experimental`, the `make` targets `format_diff` and `lint_diff` do
not work anymore when running `make` from these subdirectories. Reason
is that

```
PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$')
```

generates paths from the project's root directory instead of the
corresponding subdirectories. This PR fixes this by adding a
`--relative` command line option.

- Tag maintainer: @baskaryan
2023-07-27 01:56:55 -07:00
Harrison Chase
ae78ef7fe6 bump experimental to 005 (#8339) 2023-07-26 21:46:28 -07:00
Vadim Gubergrits
e7e5cb9d08 Tree of Thought introducing a new ToTChain. (#5167)
# [WIP] Tree of Thought introducing a new ToTChain.

This PR adds a new chain called ToTChain that implements the ["Large
Language Model Guided
Tree-of-Though"](https://arxiv.org/pdf/2305.08291.pdf) paper.

There's a notebook example `docs/modules/chains/examples/tot.ipynb` that
shows how to use it.


Implements #4975


## Who can review?

Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:

- @hwchase17
- @vowelparrot

---------

Co-authored-by: Vadim Gubergrits <vgubergrits@outbox.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-26 21:29:39 -07:00
William FH
412e29d436 Fix notebook that 'cannot convert' via nbdoc_build (#8333) 2023-07-26 18:54:23 -07:00
William FH
9eb7e6e27f Delete Old Evals Examples (#8252)
Still retain:
- Comparison Examples
- Data + QA walkthrough
- QA (but really minimize it)
2023-07-26 18:46:54 -07:00
Saurabh Misra
db9d5b213a Optimize the cosine_similarity_top_k function performance (#8151)
Optimizing important numerical code and making it run faster.

Performance went up by 1.48x (148%). Runtime went down from 138715us to
56020us

Optimization explanation:

The `cosine_similarity_top_k` function is where we made the most
significant optimizations.
Instead of sorting the entire score_array which needs considering all
elements, `np.argpartition` is utilized to find the top_k largest scores
indices, this operation has a time complexity of O(n), higher
performance than sorting. Remember, `np.argpartition` doesn't guarantee
the order of the values. So we need to use argsort() to get the indices
that would sort our top-k values after partitioning, which is much more
efficient because it only sorts the top-K elements, not the entire
array. Then to get the row and column indices of sorted top_k scores in
the original score array, we use `np.unravel_index`. This operation is
more efficient and cleaner than a list comprehension.

The code has been tested for correctness by running the following
snippet on both the original function and the optimized function and
averaged over 5 times.
```
def test_cosine_similarity_top_k_large_matrices():
    X = np.random.rand(1000, 1000)
    Y = np.random.rand(1000, 1000)
    top_k = 100
    score_threshold = 0.5
    gc.disable()
    counter = time.perf_counter_ns()
    return_value = cosine_similarity_top_k(X, Y, top_k, score_threshold)
    duration = time.perf_counter_ns() - counter
    gc.enable()
```

@hwaking @hwchase17 @jerwelborn 

Unit tests pass, I also generated more regression tests which all
passed.
2023-07-26 18:03:49 -07:00
Fabrizio Ruocco
ddc353a768 Azure Cognitive Search: Custom index and scoring profile support (#6843)
Description: Adding support for custom index and scoring profile support
in Azure Cognitive Search
@hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 17:58:01 -07:00
Leonid Ganeline
ed24de8467 removed namespace title (#8208)
This change compacts the left-side Navbar (ToC) of the [API
Reference](https://api.python.langchain.com/en/latest/api_reference.html).
Now almost each namespace item is split into two lines. For example
`langchain.chat_models: Chat Models`
We remove the `Chat Models` and leave one the `langchain.chat_models`. 
This effectively compacts the navbar and increases the main page's
usability. On my screen, it reduces # of lines in Toc from 28 t to 18,
which is huge.

Removing the namespace "title" (like `Chat Models`) does not remove any
information because the title is composed directly from the namespace.
API Reference users are developers. Usability for them is very
important. We see less text => we find faster.
2023-07-26 16:45:23 -07:00
Kacper Łukawski
c5988c1d4b Implement async support for Cohere (#8237)
This PR introduces async API support for Cohere, both LLM and
embeddings. It requires updating `cohere` package to `^4`.

Tagging @hwchase17, @baskaryan, @agola11

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 15:51:18 -07:00
Daniel Alexander Brenot
bf1357f584 Added async support to PlanAndExecute Chain (#8239)
- Description: Adds async support to the PlanAndExecute Chain

Maintainer responsibilities:
  - Async: @agola11

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 15:16:07 -07:00
Bastin Florian
a3ac9b23eb feat(confluence): add markdown format option (#8246)
# Description:
**Add the possibility to keep text as Markdown in the ConfluenceLoader**
Add a bool variable that allows to keep the Markdown format of the
Confluence pages.
It is useful because it allows to use MarkdownHeaderTextSplitter as a
DataSplitter.
If this variable in set to True in the load() method, the pages are
extracted using the markdownify library.

  # Issue: 
[4407](https://github.com/langchain-ai/langchain/issues/4407)
  # Dependencies: 
Add the markdownify library
  # Tag maintainer:
 @rlancemartin, @eyurtsev
  # Twitter handle:
 FloBastinHeyI - https://twitter.com/FloBastinHeyI

---------

Co-authored-by: Florian Bastin <florian.bastin@octo.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 15:00:27 -07:00
Leonid Ganeline
ee6ff96e28 docstrings cleanup (#8311)
- added missed docstrings
 - changed docstrings into consistent format
  
@baskaryan
2023-07-26 14:13:10 -07:00
Bagatur
ceab0a7c1f update api ref style (#8318) 2023-07-26 14:12:44 -07:00
Rohit Gupta
e5dba8978a Avoid re-computation of embedding in weaviate similarity search (#8284)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 13:31:55 -07:00
William FH
01a9b06400 Add api cross ref linking (#8275)
Example of how it would show up in our python docs:


![image](https://github.com/langchain-ai/langchain/assets/13333726/0f0a88cc-ba4a-4778-bc47-118c66807f15)


Examples added to the reference docs:

https://api.python.langchain.com/en/wfh-api_crosslink/vectorstores/langchain.vectorstores.chroma.Chroma.html#langchain.vectorstores.chroma.Chroma


![image](https://github.com/langchain-ai/langchain/assets/13333726/dcd150de-cb56-4d42-b49a-a76a002a5a52)
2023-07-26 12:38:58 -07:00
Nuno Campos
a612800ef0 Runnable single protocol (#7800)
Objects implementing Runnable: BasePromptTemplate, LLM, ChatModel,
Chain, Retriever, OutputParser

- [x] Implement Runnable in base Retriever
- [x] Raise TypeError in operator methods for unsupported things 
- [x] Implement dict which calls values in parallel and outputs dict
with results
- [x] Merge in `+` for prompts
- [x] Confirm precedence order for operators, ideal would be `+` `|`,
https://docs.python.org/3/reference/expressions.html#operator-precedence
- [x] Add support for openai functions, ie. Chat Models must return
messages
- [x] Implement BaseMessageChunk return type for BaseChatModel, a
subclass of BaseMessage which implements __add__ to return
BaseMessageChunk, concatenating all str args
- [x] Update implementation of stream/astream for llm and chat models to
use new `_stream`, `_astream` optional methods, with default
implementation in base class `raise NotImplementedError` use
https://stackoverflow.com/a/59762827 to see if it is implemented in base
class
- [x] Delete the IteratorCallbackHandler (leave the async one because
people using)
- [x] Make BaseLLMOutputParser implement Runnable, accepting either str
or BaseMessage
---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-26 12:16:46 -07:00
Bharat
04a4d3e312 Fixes #8310 Fix maximum recursion depth exceeded error (#8313)
ElasticsearchVectorStore.as_retriever() method is returning 
`RecursionError: maximum recursion depth exceeded` 
because of incorrect field reference in
 `embeddings()` method

  - Description: Fix RecursionError because of a typo
  - Issue: the issue #8310 
  - Dependencies: None,
  - Tag maintainer: @eyurtsev
  - Twitter handle: bpatel
2023-07-26 12:15:37 -07:00
Caitlin2694
b9db3dd09b Fix "missing key op" RDFGraph OWL serialization (#8276)
Replace this comment with:
- Description: Fix "missing key op" error in RDFGraph OWL Serialization
  - Issue: #8263
  - Dependencies: None
  - Tag maintainer: @baskaryan
2023-07-26 12:14:56 -07:00
Eugene Yurtsev
862e9aed66 ChatPromptTemplate: Update doc-strings, update from_role_strings behavior (#8308)
* Update doc-strings in ChatPromptTemplate
* Update from_role_strings classmethod to use well known roles
2023-07-26 15:02:36 -04:00
Bagatur
2c2fd9ff13 bump 244 (#8314) 2023-07-26 11:58:26 -07:00
Lance Martin
77c0582243 Clean queries prior to search (#8309)
With some search tools, we see no results returned if the query is a
numeric list.

E.g., if we pass:
```
'1. "LangChain vs LangSmith: How do they differ?"'
```

We see:
```
No good Google Search Result was found
```

Local testing w/ Streamlit:

![image](https://github.com/langchain-ai/langchain/assets/122662504/0a7e3dca-59e8-415e-8df6-bd9e4ea962ee)
2023-07-26 11:48:28 -07:00
shibuiwilliam
6b88fbd9bb add test for embedding distance evaluation (#8285)
Add tests for embedding distance evaluation

  - Description: Add tests for embedding distance evaluation
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: @MlopsJ
2023-07-26 11:45:50 -07:00
Riche Akparuorji
f3d2fdd54c Fix for code snippet in documentation (#8290)
- Description: I fixed an issue in the code snippet related to the
variable name and the evaluation of its length. The original code used
the variable "docs," but the correct variable name is "docs_svm" after
using the SVMRetriever.
- maintainer: @baskaryan
- Twitter handle: @iamreechi_

Co-authored-by: iamreechi <richieakparuorji>
2023-07-26 11:31:08 -07:00
Bagatur
f27176930a fix geopandas link (#8305) 2023-07-26 11:30:17 -07:00
Timon Palm
70604e590f DuckDuckGoSearch News Tool (#8292)
Description: 
I wanted to use the DuckDuckGoSearch tool in an agent to let him get the
latest news for a topic. DuckDuckGoSearch has already an implemented
function for retrieving news articles. But there wasn't a tool to use
it. I simply adapted the SearchResult class with an extra argument
"backend". You can set it to "news" to only get news articles.

Furthermore, I added an example to the DuckDuckGo Notebook on how to
further customize the results by using the DuckDuckGoSearchAPIWrapper.

Dependencies: no new dependencies
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 11:30:01 -07:00
Aarav Borthakur
8ce661d5a1 Docs: Fix Rockset links (#8214)
Fix broken Rockset links.

Right now links at
https://python.langchain.com/docs/integrations/providers/rockset are
broken.
2023-07-26 10:38:37 -07:00
Byron Saltysiak
61347bd322 giving path to the copy command for *.toml files (#8294)
Description: in the .devcontainer, docker-compose build is currently
failing due to the src paths in the COPY command. This change adds the
full path to the pyproject.toml and poetry.toml to allow the build to
run.
Issue: 

You can see the issue if you try to build the dev docker image with:
```
cd .devcontainer
docker-compose build
```

Dependencies: none
Twitter handle: byronsalty
2023-07-26 10:37:03 -07:00
happyxhw
6384c1ec8f fix: ElasticVectorSearch.from_documents failed #8293 (#8296)
- Description: fix ElasticVectorSearch.from_documents with
elasticsearch_url param,
- Issue: ElasticVectorSearch.from_documents failed #8293 # it fixes (if
applicable),


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 10:33:52 -07:00
Jon Bennion
ad38eb2d50 correction to reference to code (#8301)
- Description: fixes typo referencing code

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 10:33:18 -07:00
jacobswe
83a53e2126 Bug Fix: AzureChatOpenAI streaming with function calls (#8300)
- Description: During streaming, the first chunk may only contain the
name of an OpenAI function and not any arguments. In this case, the
current code presumes there is a streaming response and tries to append
to it, but gets a KeyError. This fixes that case by checking if the
arguments key exists, and if not, creates a new entry instead of
appending.
  - Issue: Related to #6462

Sample Code:
```python
llm = AzureChatOpenAI(
    deployment_name=deployment_name,
    model_name=model_name,
    streaming=True
)

tools = [PythonREPLTool()]
callbacks = [StreamingStdOutCallbackHandler()]

agent = initialize_agent(
    tools=tools,
    llm=llm,
    agent=AgentType.OPENAI_FUNCTIONS,
    callbacks=callbacks
)

agent('Run some python code to test your interpreter')
```

Previous Result:
```
File ...langchain/chat_models/openai.py:344, in ChatOpenAI._generate(self, messages, stop, run_manager, **kwargs)
    342         function_call = _function_call
    343     else:
--> 344         function_call["arguments"] += _function_call["arguments"]
    345 if run_manager:
    346     run_manager.on_llm_new_token(token)

KeyError: 'arguments'
```

New Result:
```python
{'input': 'Run some python code to test your interpreter',
 'output': "The Python code `print('Hello, World!')` has been executed successfully, and the output `Hello, World!` has been printed."}
```

Co-authored-by: jswe <jswe@polencapital.com>
2023-07-26 10:11:50 -07:00
German Martin
457a4730b2 Fix the mangling issue on several VectorStores child classes. (#8274)
- Description: Fix mangling issue affecting a couple of VectorStore
classes including Redis.
  - Issue: https://github.com/langchain-ai/langchain/issues/8185
  - @rlancemartin 
  
This is a simple issue but I lack of some context in the original
implementation.
My changes perhaps are not the definitive fix but to start a quick
discussion.

@hinthornw Tagging you since one of your changes introduced this
[here.](c38965fcba)
2023-07-26 09:48:55 -07:00
Alec Flett
4da43f77e5 Add ability to load (deserialize) objects from other namespaces (#7726)
I have some Prompt subclasses in my project that I'd like to be able to
deserialize in callbacks. Right now `loads()`/`load()` will bail when it
encounters my object, but I know I can trust the objects because they're
in my own projects.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-26 16:59:28 +01:00
Bagatur
5c6dcb1960 bump 243 (#8289) 2023-07-26 05:41:56 -07:00
William FH
adf019724f unpack later (#8278)
Fix https://github.com/langchain-ai/langchain/issues/8272
2023-07-26 01:53:22 -07:00
Naveen Tatikonda
9cbefcc56c [ OpenSearch ] : Add AOSS Support to OpenSearch (#8256)
### Description

This PR includes the following changes:

- Adds AOSS (Amazon OpenSearch Service Serverless) support to
OpenSearch. Please refer to the documentation on how to use it.
- While creating an index, AOSS only supports Approximate Search with
`nmslib` and `faiss` engines. During Search, only Approximate Search and
Script Scoring (on doc values) are supported.
- This PR also adds support to `efficient_filter` which can be used with
`faiss` and `lucene` engines.
- The `lucene_filter` is deprecated. Instead please use the
`efficient_filter` for the lucene engine.


Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-07-25 23:59:36 -07:00
Lance Martin
7a00f17033 Web research retriever (#8102)
Given a user question, this will -
* Use LLM to generate a set of queries.
* Query for each.
* The URLs from search results are stored in self.urls.
* A check is performed for any new URLs that haven't been processed yet
(not in self.url_database).
* Only these new URLs are loaded, transformed, and added to the
vectorstore.
* The vectorstore is queried for relevant documents based on the
questions generated by the LLM.
* Only unique documents are returned as the final result.

This code will avoid reprocessing of URLs across multiple runs of
similar queries, which should improve the performance of the retriever.
It also keeps track of all URLs that have been processed, which could be
useful for debugging or understanding the retriever's behavior.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-25 19:58:00 -07:00
Rithwik Ediga Lakhamsani
d1d691caa4 Added Databricks support to MLflow Callback (#7906)
Added a quick check to make integration easier with Databricks; another
option would be to make a new class, but this seemed more
straightfoward.

cc: @liangz1 Can this be done in a more straightfoward way?
2023-07-25 18:23:54 -07:00
William FH
479cc086ba Rm Github Import (#8257)
It's not a required dep but would break peoples builds

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-25 18:20:58 -07:00
Byron Saltysiak
68a906bb31 added lxml to the pip install example since it is required (#8260)
- Description: The trello dataloader example didn't work without an
additional dependency installed - lxml
  - Issue: na
2023-07-25 18:16:07 -07:00
Emory Petermann
7734a2b5ab update golden-query notebook and fix typo in golden docs (#8253)
updating the documentation to be consistent for Golden query tool and
have a better introduction to the tool
2023-07-25 18:15:48 -07:00
Erick Friis
c14571ab37 New enterprise support form (#8254) 2023-07-25 15:43:27 -07:00
William FH
dd87275dde Add LLMChain example of memory with chat models (#8250) 2023-07-25 15:20:32 -07:00
William FH
1f40d3e094 Update Broken Links (#8247) 2023-07-25 12:26:39 -07:00
Eugene Yurtsev
ec069381fb Remove operator overloading for BaseMessage (#8245)
This PR removes operator overloading for base message.

Removing the `+` operating from base message will help make sure that:

1) There's no need to re-define `+` for message chunks
2) That there's no unexpected behavior in terms of types changing
(adding two messages yields a ChatPromptTemplate which is not a message)
2023-07-25 20:12:19 +01:00
William FH
30c2d3cd06 Update references (#8243) 2023-07-25 11:49:25 -07:00
jacobswe
0af48b06d0 Bug Fix #6462 (#8241)
- Description: Small change to fix broken Azure streaming. More complete
migration probably still necessary once the new API behavior is
finalized.
- Issue: Implements fix by @rock-you in #6462 
- Dependencies: N/A

There don't seem to be any tests specifically for this, and I was having
some trouble adding some. This is just a small temporary fix to allow
for the new API changes that OpenAI are releasing without breaking any
other code.

---------

Co-authored-by: Jacob Swe <jswe@polencapital.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-25 11:30:22 -07:00
718 changed files with 34002 additions and 14601 deletions

View File

@@ -15,7 +15,11 @@ You may use the button above, or follow these steps to open this repo in a Codes
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
Note: If you click this link you will open the main repo and not your local cloned repo, you can use this link and replace with your username and cloned repo name:
https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/<yourusername>/<yourclonedreponame>
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
@@ -25,7 +29,7 @@ You can also follow these steps to open this repo in a container using the VS Co
2. Open a locally cloned copy of the code:
- Clone this repository to your local filesystem.
- Fork and Clone this repository to your local filesystem.
- Press <kbd>F1</kbd> and select the **Dev Containers: Open Folder in Container...** command.
- Select the cloned copy of this folder, wait for the container to start, and try things out!

View File

@@ -37,6 +37,7 @@ jobs:
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- name: Create Release
uses: ncipollo/release-action@v1
if: ${{ inputs.working-directory == 'libs/langchain' }}
with:
artifacts: "dist/*"
token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -20,3 +20,5 @@ jobs:
uses: actions/checkout@v3
- name: Codespell
uses: codespell-project/actions-codespell@v2
with:
skip: guide_imports.json

1
.gitignore vendored
View File

@@ -162,6 +162,7 @@ docs/.docusaurus/
docs/.cache-loader/
docs/_dist
docs/api_reference/api_reference.rst
docs/api_reference/experimental_api_reference.rst
docs/api_reference/_build
docs/api_reference/*/
!docs/api_reference/_static/

View File

@@ -43,6 +43,10 @@ Now:
`from langchain_experimental.sql import SQLDatabaseChain`
Alternatively, if you are just interested in using the query generation part of the SQL chain, you can check out [`create_sql_query_chain`](https://github.com/langchain-ai/langchain/blob/master/docs/extras/use_cases/tabular/sql_query.ipynb)
`from langchain.chains import create_sql_query_chain`
## `load_prompt` for Python files
Note: this only applies if you want to load Python files as prompts.

View File

@@ -43,7 +43,12 @@ spell_fix:
help:
@echo '----'
@echo 'coverage - run unit tests and generate coverage report'
@echo 'clean - run docs_clean and api_docs_clean'
@echo 'docs_build - build the documentation'
@echo 'docs_clean - clean the documentation build artifacts'
@echo 'docs_linkcheck - run linkchecker on the documentation'
@echo 'api_docs_build - build the API Reference documentation'
@echo 'api_docs_clean - clean the API Reference documentation build artifacts'
@echo 'api_docs_linkcheck - run linkchecker on the API Reference documentation'
@echo 'spell_check - run codespell on the project'
@echo 'spell_fix - run codespell on the project and fix the errors'

View File

@@ -12,14 +12,14 @@
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/hwchase17/langchain)
[![GitHub star chart](https://img.shields.io/github/stars/hwchase17/langchain?style=social)](https://star-history.com/#hwchase17/langchain)
[![Dependency Status](https://img.shields.io/librariesio/github/hwchase17/langchain)](https://libraries.io/github/hwchase17/langchain)
[![Dependency Status](https://img.shields.io/librariesio/github/langchain-ai/langchain)](https://libraries.io/github/langchain-ai/langchain)
[![Open Issues](https://img.shields.io/github/issues-raw/hwchase17/langchain)](https://github.com/hwchase17/langchain/issues)
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/hwchase17/langchainjs).
**Production Support:** As you move your LangChains into production, we'd love to offer more comprehensive support.
Please fill out [this form](https://forms.gle/57d8AmXBYp8PP8tZA) and we'll set up a dedicated support Slack channel.
**Production Support:** As you move your LangChains into production, we'd love to offer more hands-on support.
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to share more about what you're building, and our team will get in touch.
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28

View File

@@ -13,5 +13,6 @@ cp -r {docs_skeleton,snippets} _dist
cp -r extras/* _dist/docs_skeleton/docs
cd _dist/docs_skeleton
poetry run nbdoc_build
poetry run python generate_api_reference_links.py
yarn install
yarn start

View File

@@ -7,20 +7,67 @@
# -- Path setup --------------------------------------------------------------
import json
import os
import sys
from pathlib import Path
import toml
from docutils import nodes
from sphinx.util.docutils import SphinxDirective
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
import toml
_DIR = Path(__file__).parent.absolute()
sys.path.insert(0, os.path.abspath("."))
sys.path.insert(0, os.path.abspath("../../libs/langchain"))
sys.path.insert(0, os.path.abspath("../../libs/experimental"))
with open("../../libs/langchain/pyproject.toml") as f:
with (_DIR.parents[1] / "libs" / "langchain" / "pyproject.toml").open("r") as f:
data = toml.load(f)
with (_DIR / "guide_imports.json").open("r") as f:
imported_classes = json.load(f)
class ExampleLinksDirective(SphinxDirective):
"""Directive to generate a list of links to examples.
We have a script that extracts links to API reference docs
from our notebook examples. This directive uses that information
to backlink to the examples from the API reference docs."""
has_content = False
required_arguments = 1
def run(self):
"""Run the directive.
Called any time :example_links:`ClassName` is used
in the template *.rst files."""
class_or_func_name = self.arguments[0]
links = imported_classes.get(class_or_func_name, {})
list_node = nodes.bullet_list()
for doc_name, link in links.items():
item_node = nodes.list_item()
para_node = nodes.paragraph()
link_node = nodes.reference()
link_node["refuri"] = link
link_node.append(nodes.Text(doc_name))
para_node.append(link_node)
item_node.append(para_node)
list_node.append(item_node)
if list_node.children:
title_node = nodes.title()
title_node.append(nodes.Text(f"Examples using {class_or_func_name}"))
return [title_node, list_node]
return [list_node]
def setup(app):
app.add_directive("example_links", ExampleLinksDirective)
# -- Project information -----------------------------------------------------
@@ -53,6 +100,9 @@ extensions = [
]
source_suffix = [".rst"]
# some autodoc pydantic options are repeated in the actual template.
# potentially user error, but there may be bugs in the sphinx extension
# with options not being passed through correctly (from either the location in the code)
autodoc_pydantic_model_show_json = False
autodoc_pydantic_field_list_validators = False
autodoc_pydantic_config_members = False
@@ -65,13 +115,6 @@ autodoc_member_order = "groupwise"
autoclass_content = "both"
autodoc_typehints_format = "short"
autodoc_default_options = {
"members": True,
"show-inheritance": True,
"inherited-members": "BaseModel",
"undoc-members": True,
"special-members": "__call__",
}
# autodoc_typehints = "description"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["templates"]

View File

@@ -1,83 +1,257 @@
"""Script for auto-generating api_reference.rst"""
import glob
import re
"""Script for auto-generating api_reference.rst."""
import importlib
import inspect
import typing
from pathlib import Path
from typing import TypedDict, Sequence, List, Dict, Literal, Union
from enum import Enum
from pydantic import BaseModel
ROOT_DIR = Path(__file__).parents[2].absolute()
HERE = Path(__file__).parent
PKG_DIR = ROOT_DIR / "libs" / "langchain" / "langchain"
WRITE_FILE = Path(__file__).parent / "api_reference.rst"
EXP_DIR = ROOT_DIR / "libs" / "experimental" / "langchain_experimental"
WRITE_FILE = HERE / "api_reference.rst"
EXP_WRITE_FILE = HERE / "experimental_api_reference.rst"
def load_members() -> dict:
members: dict = {}
for py in glob.glob(str(PKG_DIR) + "/**/*.py", recursive=True):
module = py[len(str(PKG_DIR)) + 1 :].replace(".py", "").replace("/", ".")
top_level = module.split(".")[0]
if top_level not in members:
members[top_level] = {"classes": [], "functions": []}
with open(py, "r") as f:
for line in f.readlines():
cls = re.findall(r"^class ([^_].*)\(", line)
members[top_level]["classes"].extend([module + "." + c for c in cls])
func = re.findall(r"^def ([^_].*)\(", line)
afunc = re.findall(r"^async def ([^_].*)\(", line)
func_strings = [module + "." + f for f in func + afunc]
members[top_level]["functions"].extend(func_strings)
return members
ClassKind = Literal["TypedDict", "Regular", "Pydantic", "enum"]
def construct_doc(members: dict) -> str:
full_doc = """\
.. _api_reference:
class ClassInfo(TypedDict):
"""Information about a class."""
=============
API Reference
=============
name: str
"""The name of the class."""
qualified_name: str
"""The fully qualified name of the class."""
kind: ClassKind
"""The kind of the class."""
is_public: bool
"""Whether the class is public or not."""
class FunctionInfo(TypedDict):
"""Information about a function."""
name: str
"""The name of the function."""
qualified_name: str
"""The fully qualified name of the function."""
is_public: bool
"""Whether the function is public or not."""
class ModuleMembers(TypedDict):
"""A dictionary of module members."""
classes_: Sequence[ClassInfo]
functions: Sequence[FunctionInfo]
def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
"""Load all members of a module.
Args:
module_path: Path to the module.
namespace: the namespace of the module.
Returns:
list: A list of loaded module objects.
"""
classes_: List[ClassInfo] = []
functions: List[FunctionInfo] = []
module = importlib.import_module(module_path)
for name, type_ in inspect.getmembers(module):
if not hasattr(type_, "__module__"):
continue
if type_.__module__ != module_path:
continue
if inspect.isclass(type_):
if type(type_) == typing._TypedDictMeta: # type: ignore
kind: ClassKind = "TypedDict"
elif issubclass(type_, Enum):
kind = "enum"
elif issubclass(type_, BaseModel):
kind = "Pydantic"
else:
kind = "Regular"
classes_.append(
ClassInfo(
name=name,
qualified_name=f"{namespace}.{name}",
kind=kind,
is_public=not name.startswith("_"),
)
)
elif inspect.isfunction(type_):
functions.append(
FunctionInfo(
name=name,
qualified_name=f"{namespace}.{name}",
is_public=not name.startswith("_"),
)
)
else:
continue
return ModuleMembers(
classes_=classes_,
functions=functions,
)
def _merge_module_members(
module_members: Sequence[ModuleMembers],
) -> ModuleMembers:
"""Merge module members."""
classes_: List[ClassInfo] = []
functions: List[FunctionInfo] = []
for module in module_members:
classes_.extend(module["classes_"])
functions.extend(module["functions"])
return ModuleMembers(
classes_=classes_,
functions=functions,
)
def _load_package_modules(
package_directory: Union[str, Path]
) -> Dict[str, ModuleMembers]:
"""Recursively load modules of a package based on the file system.
Traversal based on the file system makes it easy to determine which
of the modules/packages are part of the package vs. 3rd party or built-in.
Parameters:
package_directory: Path to the package directory.
Returns:
list: A list of loaded module objects.
"""
package_path = (
Path(package_directory)
if isinstance(package_directory, str)
else package_directory
)
modules_by_namespace = {}
package_name = package_path.name
for file_path in package_path.rglob("*.py"):
if not file_path.name.startswith("__"):
relative_module_name = file_path.relative_to(package_path)
# Get the full namespace of the module
namespace = str(relative_module_name).replace(".py", "").replace("/", ".")
# Keep only the top level namespace
top_namespace = namespace.split(".")[0]
try:
module_members = _load_module_members(
f"{package_name}.{namespace}", namespace
)
# Merge module members if the namespace already exists
if top_namespace in modules_by_namespace:
existing_module_members = modules_by_namespace[top_namespace]
_module_members = _merge_module_members(
[existing_module_members, module_members]
)
else:
_module_members = module_members
modules_by_namespace[top_namespace] = _module_members
except ImportError as e:
print(f"Error: Unable to import module '{namespace}' with error: {e}")
return modules_by_namespace
def _construct_doc(pkg: str, members_by_namespace: Dict[str, ModuleMembers]) -> str:
"""Construct the contents of the reference.rst file for the given package.
Args:
pkg: The package name
members_by_namespace: The members of the package, dict organized by top level
module contains a list of classes and functions
inside of the top level namespace.
Returns:
The contents of the reference.rst file.
"""
full_doc = f"""\
=======================
``{pkg}`` API Reference
=======================
"""
for module, _members in sorted(members.items(), key=lambda kv: kv[0]):
classes = _members["classes"]
namespaces = sorted(members_by_namespace)
for module in namespaces:
_members = members_by_namespace[module]
classes = _members["classes_"]
functions = _members["functions"]
if not (classes or functions):
continue
module_title = module.replace("_", " ").title()
if module_title == "Llms":
module_title = "LLMs"
section = f":mod:`langchain.{module}`: {module_title}"
section = f":mod:`{pkg}.{module}`"
underline = "=" * (len(section) + 1)
full_doc += f"""\
{section}
{'=' * (len(section) + 1)}
{underline}
.. automodule:: langchain.{module}
.. automodule:: {pkg}.{module}
:no-members:
:no-inherited-members:
"""
if classes:
cstring = "\n ".join(sorted(classes))
full_doc += f"""\
Classes
--------------
.. currentmodule:: langchain
.. currentmodule:: {pkg}
.. autosummary::
:toctree: {module}
:template: class.rst
{cstring}
"""
for class_ in classes:
if not class_['is_public']:
continue
if class_["kind"] == "TypedDict":
template = "typeddict.rst"
elif class_["kind"] == "enum":
template = "enum.rst"
elif class_["kind"] == "Pydantic":
template = "pydantic.rst"
else:
template = "class.rst"
full_doc += f"""\
:template: {template}
{class_["qualified_name"]}
"""
if functions:
fstring = "\n ".join(sorted(functions))
_functions = [f["qualified_name"] for f in functions if f["is_public"]]
fstring = "\n ".join(sorted(_functions))
full_doc += f"""\
Functions
--------------
.. currentmodule:: langchain
.. currentmodule:: {pkg}
.. autosummary::
:toctree: {module}
:template: function.rst
{fstring}
@@ -86,10 +260,17 @@ Functions
def main() -> None:
members = load_members()
full_doc = construct_doc(members)
"""Generate the reference.rst file for each package."""
lc_members = _load_package_modules(PKG_DIR)
lc_doc = ".. _api_reference:\n\n" + _construct_doc("langchain", lc_members)
with open(WRITE_FILE, "w") as f:
f.write(full_doc)
f.write(lc_doc)
exp_members = _load_package_modules(EXP_DIR)
exp_doc = ".. _experimental_api_reference:\n\n" + _construct_doc(
"langchain_experimental", exp_members
)
with open(EXP_WRITE_FILE, "w") as f:
f.write(exp_doc)
if __name__ == "__main__":

File diff suppressed because one or more lines are too long

View File

@@ -1,9 +0,0 @@
Evaluation
=======================
LangChain has a number of convenient evaluation chains you can use off the shelf to grade your models' oupputs.
.. automodule:: langchain.evaluation
:members:
:undoc-members:
:inherited-members:

View File

@@ -1,4 +1,5 @@
-e libs/langchain
-e libs/experimental
autodoc_pydantic==1.8.0
myst_parser
nbsphinx==0.8.9
@@ -10,4 +11,4 @@ sphinx-panels
toml
myst_nb
sphinx_copybutton
pydata-sphinx-theme==0.13.1
pydata-sphinx-theme==0.13.1

View File

@@ -5,17 +5,6 @@
.. autoclass:: {{ objname }}
{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
~{{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}
{% block attributes %}
{% if attributes %}
.. rubric:: {{ _('Attributes') }}
@@ -26,3 +15,22 @@
{%- endfor %}
{% endif %}
{% endblock %}
{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
~{{ name }}.{{ item }}
{%- endfor %}
{% for item in methods %}
.. automethod:: {{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,14 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{% block attributes %}
{% for item in attributes %}
.. autoattribute:: {{ item }}
{% endfor %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,8 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autofunction:: {{ objname }}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,22 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autopydantic_model:: {{ objname }}
:model-show-json: False
:model-show-config-summary: False
:model-show-validator-members: False
:model-show-field-summary: False
:field-signature-prefix: param
:members:
:undoc-members:
:inherited-members:
:member-order: groupwise
:show-inheritance: True
:special-members: __call__
{% block attributes %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,14 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{% block attributes %}
{% for item in attributes %}
.. autoattribute:: {{ item }}
{% endfor %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -19,7 +19,7 @@
{% block htmltitle %}
<title>{{ title|striptags|e }}{{ titlesuffix }}</title>
{% endblock %}
<link rel="canonical" href="http://scikit-learn.org/stable/{{pagename}}.html" />
<link rel="canonical" href="https://api.python.langchain.com/en/latest/{{pagename}}.html" />
{% if favicon_url %}
<link rel="shortcut icon" href="{{ favicon_url|e }}"/>

View File

@@ -6,17 +6,6 @@
{%- set top_container_cls = "sk-landing-container" %}
{%- endif %}
{% if theme_link_to_live_contributing_page|tobool %}
{# Link to development page for live builds #}
{%- set development_link = "https://scikit-learn.org/dev/developers/index.html" %}
{# Open on a new development page in new window/tab for live builds #}
{%- set development_attrs = 'target="_blank" rel="noopener noreferrer"' %}
{%- else %}
{%- set development_link = pathto('developers/index') %}
{%- set development_attrs = '' %}
{%- endif %}
<nav id="navbar" class="{{ nav_bar_class }} navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid {{ top_container_cls }} px-0">
{%- if logo_url %}
@@ -45,6 +34,9 @@
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('api_reference') }}">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('experimental_api_reference') }}">Experimental</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://python.langchain.com/">Python Docs</a>
</li>

View File

@@ -745,6 +745,11 @@ span.descname {
background-color: transparent;
padding: 0;
font-family: monospace;
font-size: 1.2rem;
}
em.property {
font-weight: normal;
}
span.descclassname {

View File

@@ -3,6 +3,22 @@ sidebar_position: 3
---
# Comparison Evaluators
Comparison evaluators in LangChain help measure two different chain or LLM outputs. These evaluators are helpful for comparative analyses, such as A/B testing between two language models, or comparing different versions of the same model. They can also be useful for things like generating preference scores for ai-assisted reinforcement learning.
These evaluators inherit from the `PairwiseStringEvaluator` class, providing a comparison interface for two strings - typically, the outputs from two different prompts or models, or two versions of the same model. In essence, a comparison evaluator performs an evaluation on a pair of strings and returns a dictionary containing the evaluation score and other relevant details.
To create a custom comparison evaluator, inherit from the `PairwiseStringEvaluator` class and overwrite the `_evaluate_string_pairs` method. If you require asynchronous evaluation, also overwrite the `_aevaluate_string_pairs` method.
Here's a summary of the key methods and properties of a comparison evaluator:
- `evaluate_string_pairs`: Evaluate the output string pairs. This function should be overwritten when creating custom evaluators.
- `aevaluate_string_pairs`: Asynchronously evaluate the output string pairs. This function should be overwritten for asynchronous evaluation.
- `requires_input`: This property indicates whether this evaluator requires an input string.
- `requires_reference`: This property specifies whether this evaluator requires a reference label.
Detailed information about creating custom evaluators and the available built-in comparison evaluators are provided in the following sections.
import DocCardList from "@theme/DocCardList";
<DocCardList />
<DocCardList />

View File

@@ -6,23 +6,26 @@ import DocCardList from "@theme/DocCardList";
# Evaluation
Language models can be unpredictable. This makes it challenging to ship reliable applications to production, where repeatable, useful outcomes across diverse inputs are a minimum requirement. Tests help demonstrate each component in an LLM application can produce the required or expected functionality. These tests also safeguard against regressions while you improve interconnected pieces of an integrated system. However, measuring the quality of generated text can be challenging. It can be hard to agree on the right set of metrics for your application, and it can be difficult to translate those into better performance. Furthermore, it's common to lack sufficient evaluation data to adequately test the range of inputs and expected outputs for each component when you're just getting started. The LangChain community is building open source tools and guides to help address these challenges.
Building applications with language models involves many moving parts. One of the most critical components is ensuring that the outcomes produced by your models are reliable and useful across a broad array of inputs, and that they work well with your application's other software components. Ensuring reliability usually boils down to some combination of application design, testing & evaluation, and runtime checks.
LangChain exposes different types of evaluators for common types of evaluation. Each type has off-the-shelf implementations you can use to get started, as well as an
extensible API so you can create your own or contribute improvements for everyone to use. The following sections have example notebooks for you to get started.
The guides in this section review the APIs and functionality LangChain provides to help yous better evaluate your applications. Evaluation and testing are both critical when thinking about deploying LLM applications, since production environments require repeatable and useful outcomes.
- [String Evaluators](/docs/modules/evaluation/string/): Evaluate the predicted string for a given input, usually against a reference string
- [Trajectory Evaluators](/docs/modules/evaluation/trajectory/): Evaluate the whole trajectory of agent actions
- [Comparison Evaluators](/docs/modules/evaluation/comparison/): Compare predictions from two runs on a common input
LangChain offers various types of evaluators to help you measure performance and integrity on diverse data, and we hope to encourage the the community to create and share other useful evaluators so everyone can improve. These docs will introduce the evaluator types, how to use them, and provide some examples of their use in real-world scenarios.
Each evaluator type in LangChain comes with ready-to-use implementations and an extensible API that allows for customization according to your unique requirements. Here are some of the types of evaluators we offer:
This section also provides some additional examples of how you could use these evaluators for different scenarios or apply to different chain implementations in the LangChain library. Some examples include:
- [String Evaluators](/docs/guides/evaluation/string/): These evaluators assess the predicted string for a given input, usually comparing it against a reference string.
- [Trajectory Evaluators](/docs/guides/evaluation/trajectory/): These are used to evaluate the entire trajectory of agent actions.
- [Comparison Evaluators](/docs/guides/evaluation/comparison/): These evaluators are designed to compare predictions from two runs on a common input.
- [Preference Scoring Chain Outputs](/docs/modules/evaluation/examples/comparisons): An example using a comparison evaluator on different models or prompts to select statistically significant differences in aggregate preference scores
These evaluators can be used across various scenarios and can be applied to different chain and LLM implementations in the LangChain library.
We also are working to share guides and cookbooks that demonstrate how to use these evaluators in real-world scenarios, such as:
- [Chain Comparisons](/docs/guides/evaluation/examples/comparisons): This example uses a comparison evaluator to predict the preferred output. It reviews ways to measure confidence intervals to select statistically significant differences in aggregate preference scores across different models or prompts.
## Reference Docs
For detailed information of the available evaluators, including how to instantiate, configure, and customize them. Check out the [reference documentation](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.evaluation) directly.
For detailed information on the available evaluators, including how to instantiate, configure, and customize them, check out the [reference documentation](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.evaluation) directly.
<DocCardList />

View File

@@ -3,6 +3,25 @@ sidebar_position: 2
---
# String Evaluators
A string evaluator is a component within LangChain designed to assess the performance of a language model by comparing its generated outputs (predictions) to a reference string or an input. This comparison is a crucial step in the evaluation of language models, providing a measure of the accuracy or quality of the generated text.
In practice, string evaluators are typically used to evaluate a predicted string against a given input, such as a question or a prompt. Often, a reference label or context string is provided to define what a correct or ideal response would look like. These evaluators can be customized to tailor the evaluation process to fit your application's specific requirements.
To create a custom string evaluator, inherit from the `StringEvaluator` class and implement the `_evaluate_strings` method. If you require asynchronous support, also implement the `_aevaluate_strings` method.
Here's a summary of the key attributes and methods associated with a string evaluator:
- `evaluation_name`: Specifies the name of the evaluation.
- `requires_input`: Boolean attribute that indicates whether the evaluator requires an input string. If True, the evaluator will raise an error when the input isn't provided. If False, a warning will be logged if an input _is_ provided, indicating that it will not be considered in the evaluation.
- `requires_reference`: Boolean attribute specifying whether the evaluator requires a reference label. If True, the evaluator will raise an error when the reference isn't provided. If False, a warning will be logged if a reference _is_ provided, indicating that it will not be considered in the evaluation.
String evaluators also implement the following methods:
- `aevaluate_strings`: Asynchronously evaluates the output of the Chain or Language Model, with support for optional input and label.
- `evaluate_strings`: Synchronously evaluates the output of the Chain or Language Model, with support for optional input and label.
The following sections provide detailed information on available string evaluator implementations as well as how to create a custom string evaluator.
import DocCardList from "@theme/DocCardList";
<DocCardList />
<DocCardList />

View File

@@ -3,6 +3,26 @@ sidebar_position: 4
---
# Trajectory Evaluators
Trajectory Evaluators in LangChain provide a more holistic approach to evaluating an agent. These evaluators assess the full sequence of actions taken by an agent and their corresponding responses, which we refer to as the "trajectory". This allows you to better measure an agent's effectiveness and capabilities.
A Trajectory Evaluator implements the `AgentTrajectoryEvaluator` interface, which requires two main methods:
- `evaluate_agent_trajectory`: This method synchronously evaluates an agent's trajectory.
- `aevaluate_agent_trajectory`: This asynchronous counterpart allows evaluations to be run in parallel for efficiency.
Both methods accept three main parameters:
- `input`: The initial input given to the agent.
- `prediction`: The final predicted response from the agent.
- `agent_trajectory`: The intermediate steps taken by the agent, given as a list of tuples.
These methods return a dictionary. It is recommended that custom implementations return a `score` (a float indicating the effectiveness of the agent) and `reasoning` (a string explaining the reasoning behind the score).
You can capture an agent's trajectory by initializing the agent with the `return_intermediate_steps=True` parameter. This lets you collect all intermediate steps without relying on special callbacks.
For a deeper dive into the implementation and use of Trajectory Evaluators, refer to the sections below.
import DocCardList from "@theme/DocCardList";
<DocCardList />
<DocCardList />

View File

@@ -0,0 +1,9 @@
# LangChain Expression Language
import DocCardList from "@theme/DocCardList";
LangChain Expression Language is a declarative way to easily compose chains together.
Any chain constructed this way will automatically have full sync, async, and streaming support.
See guides below for how to interact with chains constructed this way as well as cookbook examples.
<DocCardList />

View File

@@ -0,0 +1,6 @@
# Preventing harmful outputs
One of the key concerns with using LLMs is that they may generate harmful or unethical text. This is an area of active research in the field. Here we present some built-in chains inspired by this research, which are intended to make the outputs of LLMs safer.
- [Moderation chain](/docs/use_cases/safety/moderation): Explicitly check if any output text is harmful and flag it.
- [Constitutional chain](/docs/use_cases/safety/constitutional_chain): Prompt the model with a set of principles which should guide it's behavior.

View File

@@ -28,7 +28,7 @@ navigating around a browser.
### [OpenAI Functions](/docs/modules/agents/agent_types/openai_functions_agent.html)
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been explicitly fine-tuned to detect when a
function should to be called and respond with the inputs that should be passed to the function.
function should be called and respond with the inputs that should be passed to the function.
The OpenAI Functions Agent is designed to work with these models.
### [Conversational](/docs/modules/agents/agent_types/chat_conversation_agent.html)

View File

@@ -1,6 +1,6 @@
# OpenAI functions
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should to be called and respond with the inputs that should be passed to the function.
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should be called and respond with the inputs that should be passed to the function.
In an API call, you can describe functions and have the model intelligently choose to output a JSON object containing arguments to call those functions.
The goal of the OpenAI Function APIs is to more reliably return valid and useful function calls than a generic text completion or chat API.

View File

@@ -1,8 +0,0 @@
---
sidebar_position: 4
---
# Additional
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -1,7 +0,0 @@
# Dynamically selecting from multiple prompts
This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects the prompt to use for a given input. Specifically we show how to use the `MultiPromptChain` to create a question-answering chain that selects the prompt which is most relevant for a given question, and then answers the question using that prompt.
import Example from "@snippets/modules/chains/additional/multi_prompt_router.mdx"
<Example/>

View File

@@ -1,6 +1,6 @@
# Sequential
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! Instead, edit the notebook w/the location & name as this file. -->
The next step after calling a language model is make a series of calls to a language model. This is particularly useful when you want to take the output from one call and use it as the input to another.

View File

@@ -1,8 +0,0 @@
---
sidebar_position: 3
---
# Popular
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -1,8 +0,0 @@
# Summarization
A summarization chain can be used to summarize multiple documents. One way is to input multiple smaller documents, after they have been divided into chunks, and operate over them with a MapReduceDocumentsChain. You can also choose instead for the chain that does summarization to be a StuffDocumentsChain, or a RefineDocumentsChain.
import Example from "@snippets/modules/chains/popular/summarize.mdx"
<Example/>

View File

@@ -0,0 +1,17 @@
---
sidebar_position: 1
---
# Chat Messages
:::info
Head to [Integrations](/docs/integrations/memory/) for documentation on built-in memory integrations with 3rd-party databases and tools.
:::
One of the core utility classes underpinning most (if not all) memory modules is the `ChatMessageHistory` class.
This is a super lightweight wrapper which exposes convenience methods for saving Human messages, AI messages, and then fetching them all.
You may want to use this class directly if you are managing memory outside of a chain.
import GetStarted from "@snippets/modules/memory/chat_messages/get_started.mdx"
<GetStarted/>

View File

@@ -1,34 +1,62 @@
---
sidebar_position: 3
---
# Memory
🚧 _Docs under construction_ 🚧
Most LLM applications have a conversational interface. An essential component of a conversation is being able to refer to information introduced earlier in the conversation.
At bare minimum, a conversational system should be able to access some window of past messages directly.
A more complex system will need to have a world model that it is constantly updating, which allows it to do things like maintain information about entities and their relationships.
:::info
Head to [Integrations](/docs/integrations/memory/) for documentation on built-in memory integrations with 3rd-party tools.
:::
We call this ability to store information about past interactions "memory".
LangChain provides a lot of utilities for adding memory to a system.
These utilities can be used by themselves or incorporated seamlessly into a chain.
By default, Chains and Agents are stateless,
meaning that they treat each incoming query independently (like the underlying LLMs and chat models themselves).
In some applications, like chatbots, it is essential
to remember previous interactions, both in the short and long-term.
The **Memory** class does exactly that.
A memory system needs to support two basic actions: reading and writing.
Recall that every chain defines some core execution logic that expects certain inputs.
Some of these inputs come directly from the user, but some of these inputs can come from memory.
A chain will interact with its memory system twice in a given run.
1. AFTER receiving the initial user inputs but BEFORE executing the core logic, a chain will READ from its memory system and augment the user inputs.
2. AFTER executing the core logic but BEFORE returning the answer, a chain will WRITE the inputs and outputs of the current run to memory, so that they can be referred to in future runs.
LangChain provides memory components in two forms.
First, LangChain provides helper utilities for managing and manipulating previous chat messages.
These are designed to be modular and useful regardless of how they are used.
Secondly, LangChain provides easy ways to incorporate these utilities into chains.
![memory-diagram](/img/memory_diagram.png)
## Building memory into a system
The two core design decisions in any memory system are:
- How state is stored
- How state is queried
### Storing: List of chat messages
Underlying any memory is a history of all chat interactions.
Even if these are not all used directly, they need to be stored in some form.
One of the key parts of the LangChain memory module is a series of integrations for storing these chat messages,
from in-memory lists to persistent databases.
- [Chat message storage](/docs/modules/memory/chat_messages/): How to work with Chat Messages, and the various integrations offered
### Querying: Data structures and algorithms on top of chat messages
Keeping a list of chat messages is fairly straight-forward.
What is less straight-forward are the data structures and algorithms built on top of chat messages that serve a view of those messages that is most useful.
A very simply memory system might just return the most recent messages each run. A slightly more complex memory system might return a succinct summary of the past K messages.
An even more sophisticated system might extract entities from stored messages and only return information about entities referenced in the current run.
Each application can have different requirements for how memory is queried. The memory module should make it easy to both get started with simple memory systems and write your own custom systems if needed.
- [Memory types](/docs/modules/memory/types/): The various data structures and algorithms that make up the memory types LangChain supports
## Get started
Memory involves keeping a concept of state around throughout a user's interactions with an language model. A user's interactions with a language model are captured in the concept of ChatMessages, so this boils down to ingesting, capturing, transforming and extracting knowledge from a sequence of chat messages. There are many different ways to do this, each of which exists as its own memory type.
In general, for each type of memory there are two ways to understanding using memory. These are the standalone functions which extract information from a sequence of messages, and then there is the way you can use this type of memory in a chain.
Memory can return multiple pieces of information (for example, the most recent N messages and a summary of all previous messages). The returned information can either be a string or a list of messages.
Let's take a look at what Memory actually looks like in LangChain.
Here we'll cover the basics of interacting with an arbitrary memory class.
import GetStarted from "@snippets/modules/memory/get_started.mdx"
<GetStarted/>
## Next steps
And that's it for getting started!
Please see the other sections for walkthroughs of more advanced topics,
like custom memory, multiple memories, and more.

View File

@@ -4,6 +4,6 @@ This notebook shows how to use `ConversationBufferMemory`. This memory allows fo
We can first extract it as a string.
import Example from "@snippets/modules/memory/how_to/buffer.mdx"
import Example from "@snippets/modules/memory/types/buffer.mdx"
<Example/>

View File

@@ -4,6 +4,6 @@
Let's first explore the basic functionality of this type of memory.
import Example from "@snippets/modules/memory/how_to/buffer_window.mdx"
import Example from "@snippets/modules/memory/types/buffer_window.mdx"
<Example/>

View File

@@ -4,6 +4,6 @@ Entity Memory remembers given facts about specific entities in a conversation. I
Let's first walk through using this functionality.
import Example from "@snippets/modules/memory/how_to/entity_summary_memory.mdx"
import Example from "@snippets/modules/memory/types/entity_summary_memory.mdx"
<Example/>

View File

@@ -0,0 +1,8 @@
---
sidebar_position: 2
---
# Memory Types
There are many different types of memory.
Each have their own parameters, their own return types, and are useful in different scenarios.
Please see their individual page for more detail on each one.

View File

@@ -4,6 +4,6 @@ Conversation summary memory summarizes the conversation as it happens and stores
Let's first explore the basic functionality of this type of memory.
import Example from "@snippets/modules/memory/how_to/summary.mdx"
import Example from "@snippets/modules/memory/types/summary.mdx"
<Example/>

View File

@@ -6,6 +6,6 @@ This differs from most of the other Memory classes in that it doesn't explicitly
In this case, the "docs" are previous conversation snippets. This can be useful to refer to relevant pieces of information that the AI was told earlier in the conversation.
import Example from "@snippets/modules/memory/how_to/vectorstore_retriever_memory.mdx"
import Example from "@snippets/modules/memory/types/vectorstore_retriever_memory.mdx"
<Example/>

View File

@@ -3,10 +3,12 @@ sidebar_position: 0
---
# Prompts
The new way of programming models is through prompts.
A **prompt** refers to the input to the model.
This input is often constructed from multiple components.
LangChain provides several classes and functions to make constructing and working with prompts easy.
A prompt for a language model is a set of instructions or input provided by a user to
guide the model's response, helping it understand the context and generate relevant
and coherent language-based output, such as answering questions, completing sentences,
or engaging in a conversation.
- [Prompt templates](/docs/modules/model_io/prompts/prompt_templates/): Parametrize model inputs
LangChain provides several classes and functions to help construct and work with prompts.
- [Prompt templates](/docs/modules/model_io/prompts/prompt_templates/): Parametrized model inputs
- [Example selectors](/docs/modules/model_io/prompts/example_selectors/): Dynamically select examples to include in prompts

View File

@@ -4,18 +4,15 @@ sidebar_position: 0
# Prompt templates
Language models take text as input - that text is commonly referred to as a prompt.
Typically this is not simply a hardcoded string but rather a combination of a template, some examples, and user input.
LangChain provides several classes and functions to make constructing and working with prompts easy.
Prompt templates are pre-defined recipes for generating prompts for language models.
## What is a prompt template?
A template may include instructions, few shot examples, and specific context and
questions appropriate for a given task.
A prompt template refers to a reproducible way to generate a prompt. It contains a text string ("the template"), that can take in a set of parameters from the end user and generates a prompt.
LangChain provides tooling to create and work with prompt templates.
A prompt template can contain:
- instructions to the language model,
- a set of few shot examples to help the language model generate a better response,
- a question to the language model.
LangChain strives to create model agnostic templates to make it easy to reuse
existing templates across different language models.
import GetStarted from "@snippets/modules/model_io/prompts/prompt_templates/get_started.mdx"

View File

@@ -0,0 +1 @@
label: 'How to'

View File

@@ -2,7 +2,7 @@
sidebar_position: 2
---
# Conversational Retrieval QA
# Store and reference chat history
The ConversationalRetrievalQA chain builds on RetrievalQAChain to provide a chat history component.
It first combines the chat history (either explicitly passed in or retrieved from the provided memory) and the question into a standalone question, then looks up relevant documents from the retriever, and finally passes those documents and the question to a question answering chain to return a response.

View File

@@ -1,4 +1,4 @@
# Dynamically selecting from multiple retrievers
# Dynamically select from multiple retrievers
This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects which Retrieval system to use. Specifically we show how to use the `MultiRetrievalQAChain` to create a question-answering chain that selects the retrieval QA chain which is most relevant for a given question, and then answers the question using it.

View File

@@ -1,4 +1,4 @@
# Document QA
# QA over in-memory documents
Here we walk through how to use LangChain for question answering over a list of documents. Under the hood we'll be using our [Document chains](/docs/modules/chains/document/).

View File

@@ -1,7 +1,7 @@
---
sidebar_position: 1
---
# Retrieval QA
# QA using a Retriever
This example showcases question answering over an index.

View File

@@ -0,0 +1,183 @@
import importlib
import inspect
import json
import logging
import os
import re
from pathlib import Path
import argparse
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Base URL for all class documentation
_BASE_URL = "https://api.python.langchain.com/en/latest/"
# Regular expression to match Python code blocks
code_block_re = re.compile(r"^(```python\n)(.*?)(```\n)", re.DOTALL | re.MULTILINE)
# Regular expression to match langchain import lines
_IMPORT_RE = re.compile(
r"from\s+(langchain\.\w+(\.\w+)*?)\s+import\s+"
r"((?:\w+(?:,\s*)?)*" # Match zero or more words separated by a comma+optional ws
r"(?:\s*\(.*?\))?)", # Match optional parentheses block
re.DOTALL, # Match newlines as well
)
_CURRENT_PATH = Path(__file__).parent.absolute()
# Directory where generated markdown files are stored
_DOCS_DIR = _CURRENT_PATH / "docs"
_JSON_PATH = _CURRENT_PATH.parent / "api_reference" / "guide_imports.json"
def find_files(path):
"""Find all MDX files in the given path"""
# Check if is file first
if os.path.isfile(path):
yield path
return
for root, _, files in os.walk(path):
for file in files:
if file.endswith(".mdx") or file.endswith(".md"):
yield os.path.join(root, file)
def get_full_module_name(module_path, class_name):
"""Get full module name using inspect"""
module = importlib.import_module(module_path)
class_ = getattr(module, class_name)
return inspect.getmodule(class_).__name__
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--docs_dir",
type=str,
default=_DOCS_DIR,
help="Directory where generated markdown files are stored",
)
return parser.parse_args()
def main():
"""Main function"""
args = get_args()
global_imports = {}
for file in find_files(args.docs_dir):
print(f"Adding links for imports in {file}")
file_imports = replace_imports(file)
if file_imports:
# Use relative file path as key
relative_path = (
os.path.relpath(file, _DOCS_DIR).replace(".mdx", "").replace(".md", "")
)
doc_url = f"https://python.langchain.com/docs/{relative_path}"
for import_info in file_imports:
doc_title = import_info["title"]
class_name = import_info["imported"]
if class_name not in global_imports:
global_imports[class_name] = {}
global_imports[class_name][doc_title] = doc_url
# Write the global imports information to a JSON file
_JSON_PATH.parent.mkdir(parents=True, exist_ok=True)
with _JSON_PATH.open("w") as f:
json.dump(global_imports, f)
def _get_doc_title(data: str, file_name: str) -> str:
try:
return re.findall(r"^#\s+(.*)", data, re.MULTILINE)[0]
except IndexError:
pass
# Parse the rst-style titles
try:
return re.findall(r"^(.*)\n=+\n", data, re.MULTILINE)[0]
except IndexError:
return file_name
def replace_imports(file):
"""Replace imports in each Python code block with links to their
documentation and append the import info in a comment"""
all_imports = []
with open(file, "r") as f:
data = f.read()
file_name = os.path.basename(file)
_DOC_TITLE = _get_doc_title(data, file_name)
def replacer(match):
# Extract the code block content
code = match.group(2)
# Replace if any import comment exists
# TODO: Use our own custom <code> component rather than this
# injection method
existing_comment_re = re.compile(r"^<!--IMPORTS:.*?-->\n", re.MULTILINE)
code = existing_comment_re.sub("", code)
# Process imports in the code block
imports = []
for import_match in _IMPORT_RE.finditer(code):
module = import_match.group(1)
imports_str = (
import_match.group(3).replace("(\n", "").replace("\n)", "")
) # Handle newlines within parentheses
# remove any newline and spaces, then split by comma
imported_classes = [
imp.strip()
for imp in re.split(r",\s*", imports_str.replace("\n", ""))
if imp.strip()
]
for class_name in imported_classes:
try:
module_path = get_full_module_name(module, class_name)
except AttributeError as e:
logger.warning(f"Could not find module for {class_name}, {e}")
continue
except ImportError as e:
logger.warning(f"Failed to load for class {class_name}, {e}")
continue
url = (
_BASE_URL
+ module_path.split(".")[1]
+ "/"
+ module_path
+ "."
+ class_name
+ ".html"
)
# Add the import information to our list
imports.append(
{
"imported": class_name,
"source": module,
"docs": url,
"title": _DOC_TITLE,
}
)
if imports:
all_imports.extend(imports)
# Create a unique comment containing the import information
import_comment = f"<!--IMPORTS:{json.dumps(imports)}-->"
# Inject the import comment at the start of the code block
return match.group(1) + import_comment + "\n" + code + match.group(3)
else:
# If there are no imports, return the original match
return match.group(0)
# Use re.sub to replace each Python code block
data = code_block_re.sub(replacer, data)
with open(file, "w") as f:
f.write(data)
return all_imports
if __name__ == "__main__":
main()

View File

@@ -21,7 +21,7 @@ function Imports({ imports }) {
</h4>
<ul style={{ paddingBottom: "1rem" }}>
{imports.map(({ imported, source, docs }) => (
<li>
<li key={imported}>
<a href={docs}>
<span>{imported}</span>
</a>{" "}
@@ -34,14 +34,25 @@ function Imports({ imports }) {
}
export default function CodeBlockWrapper({ children, ...props }) {
// Initialize imports as an empty array
let imports = [];
// Check if children is a string
if (typeof children === "string") {
return <CodeBlock {...props}>{children}</CodeBlock>;
// Search for an IMPORTS comment in the code
const match = /<!--IMPORTS:(.*?)-->\n/.exec(children);
if (match) {
imports = JSON.parse(match[1]);
children = children.replace(match[0], "");
}
} else if (children.imports) {
imports = children.imports;
}
return (
<>
<CodeBlock {...props}>{children.content}</CodeBlock>
<Imports imports={children.imports} />
<CodeBlock {...props}>{children}</CodeBlock>
{imports.length > 0 && <Imports imports={imports} />}
</>
);
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 131 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 211 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 196 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 174 KiB

View File

@@ -1610,59 +1610,59 @@
},
{
"source": "/en/latest/modules/chains/examples/flare.html",
"destination": "/docs/modules/chains/additional/flare"
"destination": "/docs/use_cases/question_answering/how_to/flare"
},
{
"source": "/en/latest/modules/chains/examples/graph_cypher_qa.html",
"destination": "/docs/modules/chains/additional/graph_cypher_qa"
"destination": "/docs/use_cases/graph/graph_cypher_qa"
},
{
"source": "/en/latest/modules/chains/examples/graph_nebula_qa.html",
"destination": "/docs/modules/chains/additional/graph_nebula_qa"
"destination": "/docs/use_cases/graph/graph_nebula_qa"
},
{
"source": "/en/latest/modules/chains/index_examples/graph_qa.html",
"destination": "/docs/modules/chains/additional/graph_qa"
"destination": "/docs/use_cases/graph/graph_qa"
},
{
"source": "/en/latest/modules/chains/index_examples/hyde.html",
"destination": "/docs/modules/chains/additional/hyde"
"destination": "/docs/use_cases/question_answering/how_to/hyde"
},
{
"source": "/en/latest/modules/chains/examples/llm_bash.html",
"destination": "/docs/modules/chains/additional/llm_bash"
"destination": "/docs/use_cases/code_writing/llm_bash"
},
{
"source": "/en/latest/modules/chains/examples/llm_checker.html",
"destination": "/docs/modules/chains/additional/llm_checker"
"destination": "/docs/use_cases/self_check/llm_checker"
},
{
"source": "/en/latest/modules/chains/examples/llm_math.html",
"destination": "/docs/modules/chains/additional/llm_math"
"destination": "/docs/use_cases/code_writing/llm_math"
},
{
"source": "/en/latest/modules/chains/examples/llm_requests.html",
"destination": "/docs/modules/chains/additional/llm_requests"
"destination": "/docs/use_cases/apis/llm_requests"
},
{
"source": "/en/latest/modules/chains/examples/llm_summarization_checker.html",
"destination": "/docs/modules/chains/additional/llm_summarization_checker"
"destination": "/docs/use_cases/self_check/llm_summarization_checker"
},
{
"source": "/en/latest/modules/chains/examples/openapi.html",
"destination": "/docs/modules/chains/additional/openapi"
"destination": "/docs/use_cases/apis/openapi"
},
{
"source": "/en/latest/modules/chains/examples/pal.html",
"destination": "/docs/modules/chains/additional/pal"
"destination": "/docs/use_cases/code_writing/pal"
},
{
"source": "/en/latest/modules/chains/examples/tagging.html",
"destination": "/docs/modules/chains/additional/tagging"
"destination": "/docs/use_cases/tagging"
},
{
"source": "/en/latest/modules/chains/index_examples/vector_db_text_generation.html",
"destination": "/docs/modules/chains/additional/vector_db_text_generation"
"destination": "/docs/use_cases/question_answering/how_to/vector_db_text_generation"
},
{
"source": "/en/latest/modules/chains/generic/router.html",
@@ -3448,6 +3448,10 @@
"source": "/docs/modules/model_io/models/llms/integrations/writer",
"destination": "/docs/integrations/llms/writer"
},
{
"source": "/en/latest/modules/prompts.html",
"destination": "/docs/modules/model_io/prompts"
},
{
"source": "/en/latest/modules/prompts/output_parsers.html",
"destination": "/docs/modules/model_io/output_parsers/"
@@ -3472,6 +3476,10 @@
"source": "/en/latest/modules/prompts/output_parsers/examples/retry.html",
"destination": "/docs/modules/model_io/output_parsers/retry"
},
{
"source": "/en/latest/modules/prompts/example_selectors.html",
"destination": "/docs/modules/model_io/prompts/example_selectors"
},
{
"source": "/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html",
"destination": "/docs/modules/model_io/prompts/example_selectors/custom_example_selector"
@@ -3484,6 +3492,10 @@
"source": "/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html",
"destination": "/docs/modules/model_io/prompts/example_selectors/ngram_overlap"
},
{
"source": "/en/latest/modules/prompts/prompt_templates.html",
"destination": "/docs/modules/model_io/prompts/prompt_templates"
},
{
"source": "/en/latest/modules/prompts/prompt_templates/examples/connecting_to_a_feature_store.html",
"destination": "/docs/modules/model_io/prompts/prompt_templates/connecting_to_a_feature_store"
@@ -3736,6 +3748,10 @@
"source": "/docs/modules/evaluation/:path*(/?)",
"destination": "/docs/guides/evaluation/:path*"
},
{
"source": "/en/latest/modules/indexes.html",
"destination": "/docs/modules/data_connection"
},
{
"source": "/en/latest/modules/indexes/:path*",
"destination": "/docs/modules/data_connection/:path*"
@@ -3771,6 +3787,174 @@
{
"source": "/en/latest/:path*",
"destination": "/docs/:path*"
},
{
"source": "/docs/modules/chains/additional/constitutional_chain",
"destination": "/docs/guides/safety/constitutional_chain"
},
{
"source": "/docs/modules/chains/additional/moderation",
"destination": "/docs/guides/safety/moderation"
},
{
"source": "/docs/modules/chains/popular/api",
"destination": "/docs/use_cases/apis/api"
},
{
"source": "/docs/modules/chains/additional/analyze_document",
"destination": "/docs/use_cases/question_answering/how_to/analyze_document"
},
{
"source": "/docs/modules/chains/popular/chat_vector_db",
"destination": "/docs/use_cases/question_answering/how_to/chat_vector_db"
},
{
"source": "/docs/modules/chains/additional/multi_retrieval_qa_router",
"destination": "/docs/use_cases/question_answering/how_to/multi_retrieval_qa_router"
},
{
"source": "/docs/modules/chains/additional/question_answering",
"destination": "/docs/use_cases/question_answering/how_to/question_answering"
},
{
"source": "/docs/modules/chains/popular/vector_db_qa",
"destination": "/docs/use_cases/question_answering/how_to/vector_db_qa"
},
{
"source": "/docs/modules/chains/popular/summarize",
"destination": "/docs/use_cases/summarization/summarize"
},
{
"source": "/docs/modules/chains/popular/sqlite",
"destination": "/docs/use_cases/tabular/sqlite"
},
{
"source": "/docs/modules/chains/popular/openai_functions",
"destination": "/docs/modules/chains/how_to/openai_functions"
},
{
"source": "/docs/modules/chains/additional/llm_requests",
"destination": "/docs/use_cases/apis/llm_requests"
},
{
"source": "/docs/modules/chains/additional/openai_openapi",
"destination": "/docs/use_cases/apis/openai_openapi"
},
{
"source": "/docs/modules/chains/additional/openapi",
"destination": "/docs/use_cases/apis/openapi"
},
{
"source": "/docs/modules/chains/additional/openapi_openai",
"destination": "/docs/use_cases/apis/openapi_openai"
},
{
"source": "/docs/modules/chains/additional/cpal",
"destination": "/docs/use_cases/code_writing/cpal"
},
{
"source": "/docs/modules/chains/additional/llm_bash",
"destination": "/docs/use_cases/code_writing/llm_bash"
},
{
"source": "/docs/modules/chains/additional/llm_math",
"destination": "/docs/use_cases/code_writing/llm_math"
},
{
"source": "/docs/modules/chains/additional/llm_symbolic_math",
"destination": "/docs/use_cases/code_writing/llm_symbolic_math"
},
{
"source": "/docs/modules/chains/additional/pal",
"destination": "/docs/use_cases/code_writing/pal"
},
{
"source": "/docs/modules/chains/additional/graph_arangodb_qa",
"destination": "/docs/use_cases/graph/graph_arangodb_qa"
},
{
"source": "/docs/modules/chains/additional/graph_cypher_qa",
"destination": "/docs/use_cases/graph/graph_cypher_qa"
},
{
"source": "/docs/modules/chains/additional/graph_hugegraph_qa",
"destination": "/docs/use_cases/graph/graph_hugegraph_qa"
},
{
"source": "/docs/modules/chains/additional/graph_kuzu_qa",
"destination": "/docs/use_cases/graph/graph_kuzu_qa"
},
{
"source": "/docs/modules/chains/additional/graph_nebula_qa",
"destination": "/docs/use_cases/graph/graph_nebula_qa"
},
{
"source": "/docs/modules/chains/additional/graph_qa",
"destination": "/docs/use_cases/graph/graph_qa"
},
{
"source": "/docs/modules/chains/additional/graph_sparql_qa",
"destination": "/docs/use_cases/graph/graph_sparql_qa"
},
{
"source": "/docs/modules/chains/additional/neptune_cypher_qa",
"destination": "/docs/use_cases/graph/neptune_cypher_qa"
},
{
"source": "/docs/modules/chains/additional/tot",
"destination": "/docs/use_cases/graph/tot"
},
{
"source": "/docs/use_cases/question_answering//document-context-aware-QA",
"destination": "/docs/use_cases/question_answering/how_to/document-context-aware-QA"
},
{
"source": "/docs/modules/chains/additional/flare",
"destination": "/docs/use_cases/question_answering/how_to/flare"
},
{
"source": "/docs/modules/chains/additional/hyde",
"destination": "/docs/use_cases/question_answering/how_to/hyde"
},
{
"source": "/docs/use_cases/question_answering//local_retrieval_qa",
"destination": "/docs/use_cases/question_answering/how_to/local_retrieval_qa"
},
{
"source": "/docs/modules/chains/additional/qa_citations",
"destination": "/docs/use_cases/question_answering/how_to/qa_citations"
},
{
"source": "/docs/modules/chains/additional/vector_db_text_generation",
"destination": "/docs/use_cases/question_answering/how_to/vector_db_text_generation"
},
{
"source": "/docs/modules/chains/additional/openai_functions_retrieval_qa",
"destination": "/docs/use_cases/question_answering/integrations/openai_functions_retrieval_qa"
},
{
"source": "/docs/use_cases/question_answering//semantic-search-over-chat",
"destination": "/docs/use_cases/question_answering/integrations/semantic-search-over-chat"
},
{
"source": "/docs/modules/chains/additional/llm_checker",
"destination": "/docs/use_cases/self_check/llm_checker"
},
{
"source": "/docs/modules/chains/additional/llm_summarization_checker",
"destination": "/docs/use_cases/self_check/llm_summarization_checker"
},
{
"source": "/docs/modules/chains/additional/elasticsearch_database",
"destination": "/docs/use_cases/tabular/elasticsearch_database"
},
{
"source": "/docs/modules/chains/additional/tagging",
"destination": "/docs/use_cases/tagging"
},
{
"source": "docs/integrations/providers/agent_with_wandb_tracing",
"destination": "docs/integrations/providers/wandb_tracing"
}
]
}

View File

@@ -1,10 +1,53 @@
#!/bin/bash
version_compare() {
local v1=(${1//./ })
local v2=(${2//./ })
for i in {0..2}; do
if (( ${v1[i]} < ${v2[i]} )); then
return 1
fi
done
return 0
}
openssl_version=$(openssl version | awk '{print $2}')
required_openssl_version="1.1.1"
python_version=$(python3 --version 2>&1 | awk '{print $2}')
required_python_version="3.10"
echo "OpenSSL Version"
echo $openssl_version
echo "Python Version"
echo $python_version
# If openssl version is less than 1.1.1 AND python version is less than 3.10
if ! version_compare $openssl_version $required_openssl_version && ! version_compare $python_version $required_python_version; then
### See: https://github.com/urllib3/urllib3/issues/2168
# Requests lib breaks for old SSL versions,
# which are defaults on Amazon Linux 2 (which Vercel uses for builds)
yum -y update
yum remove openssl-devel -y
yum install gcc bzip2-devel libffi-devel zlib-devel wget tar -y
yum install openssl11 -y
yum install openssl11-devel -y
wget https://www.python.org/ftp/python/3.11.4/Python-3.11.4.tgz
tar xzf Python-3.11.4.tgz
cd Python-3.11.4
./configure
make altinstall
echo "Python Version"
python3.11 --version
cd ..
fi
cd ..
python3 --version
python3 -m venv .venv
python3.11 -m venv .venv
source .venv/bin/activate
python3 -m pip install -r vercel_requirements.txt
python3.11 -m pip install --upgrade pip
python3.11 -m pip install -r vercel_requirements.txt
cp -r extras/* docs_skeleton/docs
cd docs_skeleton
nbdoc_build
python3.11 generate_api_reference_links.py

View File

@@ -1,5 +1,6 @@
# Tutorials
Below are links to video tutorials and courses on LangChain. For written guides on common use cases for LangChain, check out the [use cases guides](/docs/use_cases).
⛓ icon marks a new addition [last update 2023-07-05]

View File

@@ -4,7 +4,7 @@ If you're building with LLMs, at some point something will break, and you'll nee
Here's a few different tools and functionalities to aid in debugging.
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! Instead, edit the notebook w/the location & name as this file. -->
## Tracing

View File

@@ -29,7 +29,7 @@
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"pairwise_string\", requires_reference=True)"
"evaluator = load_evaluator(\"labeled_pairwise_string\")"
]
},
{
@@ -43,7 +43,7 @@
{
"data": {
"text/plain": [
"{'reasoning': 'Response A provides an incorrect answer by stating there are three dogs in the park, while the reference answer indicates there are four. Response B, on the other hand, provides the correct answer, matching the reference answer. Although Response B is less detailed, it is accurate and directly answers the question. \\n\\nTherefore, the better response is [[B]].\\n',\n",
"{'reasoning': 'Both responses are relevant to the question asked, as they both provide a numerical answer to the question about the number of dogs in the park. However, Response A is incorrect according to the reference answer, which states that there are four dogs. Response B, on the other hand, is correct as it matches the reference answer. Neither response demonstrates depth of thought, as they both simply provide a numerical answer without any additional information or context. \\n\\nBased on these criteria, Response B is the better response.\\n',\n",
" 'value': 'B',\n",
" 'score': 0}"
]
@@ -62,6 +62,27 @@
")"
]
},
{
"cell_type": "markdown",
"id": "7491d2e6-4e77-4b17-be6b-7da966785c1d",
"metadata": {},
"source": [
"## Methods\n",
"\n",
"\n",
"The pairwise string evaluator can be called using [evaluate_string_pairs](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html#langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.evaluate_string_pairs) (or async [aevaluate_string_pairs](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html#langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.aevaluate_string_pairs)) methods, which accept:\n",
"\n",
"- prediction (str) The predicted response of the first model, chain, or prompt.\n",
"- prediction_b (str) The predicted response of the second model, chain, or prompt.\n",
"- input (str) The input question, prompt, or other text.\n",
"- reference (str) (Only for the labeled_pairwise_string variant) The reference response.\n",
"\n",
"They return a dictionary with the following values:\n",
"- value: 'A' or 'B', indicating whether `prediction` or `prediction_b` is preferred, respectively\n",
"- score: Integer 0 or 1 mapped from the 'value', where a score of 1 would mean that the first `prediction` is preferred, and a score of 0 would mean `prediction_b` is preferred.\n",
"- reasoning: String \"chain of thought reasoning\" from the LLM generated prior to creating the score"
]
},
{
"cell_type": "markdown",
"id": "ed353b93-be71-4479-b9c0-8c97814c2e58",
@@ -90,7 +111,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"id": "7f56c76e-a39b-4509-8b8a-8a2afe6c3da1",
"metadata": {
"tags": []
@@ -99,12 +120,12 @@
{
"data": {
"text/plain": [
"{'reasoning': \"Response A is accurate but lacks depth and detail. It simply states that addition is a mathematical operation without explaining what it does or how it works. \\n\\nResponse B, on the other hand, provides a more detailed explanation. It not only identifies addition as a mathematical operation, but also explains that it involves adding two numbers to create a third number, the 'sum'. This response is more helpful and informative, providing a clearer understanding of what addition is.\\n\\nTherefore, the better response is B.\\n\",\n",
"{'reasoning': 'Both responses are correct and relevant to the question. However, Response B is more helpful and insightful as it provides a more detailed explanation of what addition is. Response A is correct but lacks depth as it does not explain what the operation of addition entails. \\n\\nFinal Decision: [[B]]',\n",
" 'value': 'B',\n",
" 'score': 0}"
]
},
"execution_count": 5,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -117,6 +138,74 @@
")"
]
},
{
"cell_type": "markdown",
"id": "4a09b21d-9851-47e8-93d3-90044b2945b0",
"metadata": {
"tags": []
},
"source": [
"## Defining the Criteria\n",
"\n",
"By default, the LLM is instructed to select the 'preferred' response based on helpfulness, relevance, correctness, and depth of thought. You can customize the criteria by passing in a `criteria` argument, where the criteria could take any of the following forms:\n",
"- [`Criteria`](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.Criteria.html#langchain.evaluation.criteria.eval_chain.Criteria) enum or its string value - to use one of the default criteria and their descriptions\n",
"- [Constitutional principal](https://api.python.langchain.com/en/latest/chains/langchain.chains.constitutional_ai.models.ConstitutionalPrinciple.html#langchain.chains.constitutional_ai.models.ConstitutionalPrinciple) - use one any of the constitutional principles defined in langchain\n",
"- Dictionary: a list of custom criteria, where the key is the name of the criteria, and the value is the description.\n",
"- A list of criteria or constitutional principles - to combine multiple criteria in one.\n",
"\n",
"Below is an example for determining preferred writing responses based on a custom style."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8539e7d9-f7b0-4d32-9c45-593a7915c093",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"custom_criteria = {\n",
" \"simplicity\": \"Is the language straightforward and unpretentious?\",\n",
" \"clarity\": \"Are the sentences clear and easy to understand?\",\n",
" \"precision\": \"Is the writing precise, with no unnecessary words or details?\",\n",
" \"truthfulness\": \"Does the writing feel honest and sincere?\",\n",
" \"subtext\": \"Does the writing suggest deeper meanings or themes?\",\n",
"}\n",
"evaluator = load_evaluator(\"pairwise_string\", criteria=custom_criteria)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fec7bde8-fbdc-4730-8366-9d90d033c181",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'Response A is simple, clear, and precise. It uses straightforward language to convey a deep and sincere message about families. The metaphor of joy and sorrow as music is effective and easy to understand.\\n\\nResponse B, on the other hand, is more complex and less clear. The language is more pretentious, with words like \"domicile,\" \"resounds,\" \"abode,\" \"dissonant,\" and \"elegy.\" While it conveys a similar message to Response A, it does so in a more convoluted way. The precision is also lacking due to the use of unnecessary words and details.\\n\\nBoth responses suggest deeper meanings or themes about the shared joy and unique sorrow in families. However, Response A does so in a more effective and accessible way.\\n\\nTherefore, the better response is [[A]].',\n",
" 'value': 'A',\n",
" 'score': 1}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" prediction=\"Every cheerful household shares a similar rhythm of joy; but sorrow, in each household, plays a unique, haunting melody.\",\n",
" prediction_b=\"Where one finds a symphony of joy, every domicile of happiness resounds in harmonious,\"\n",
" \" identical notes; yet, every abode of despair conducts a dissonant orchestra, each\"\n",
" \" playing an elegy of grief that is peculiar and profound to its own existence.\",\n",
" input=\"Write some prose about families.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a25b60b2-627c-408a-be4b-a2e5cbc10726",
@@ -129,7 +218,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"id": "de84a958-1330-482b-b950-68bcf23f9e35",
"metadata": {},
"outputs": [],
@@ -138,12 +227,12 @@
"\n",
"llm = ChatAnthropic(temperature=0)\n",
"\n",
"evaluator = load_evaluator(\"pairwise_string\", llm=llm, requires_reference=True)"
"evaluator = load_evaluator(\"labeled_pairwise_string\", llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"id": "e162153f-d50a-4a7c-a033-019dabbc954c",
"metadata": {
"tags": []
@@ -152,12 +241,12 @@
{
"data": {
"text/plain": [
"{'reasoning': 'Response A provides a specific number but is inaccurate based on the reference answer. Response B provides the correct number but lacks detail or explanation. Overall, Response B is more helpful and accurate in directly answering the question, despite lacking depth or creativity.\\n\\n[[B]]\\n',\n",
"{'reasoning': 'Here is my assessment:\\n\\nResponse B is more helpful, insightful, and accurate than Response A. Response B simply states \"4\", which directly answers the question by providing the exact number of dogs mentioned in the reference answer. In contrast, Response A states \"there are three dogs\", which is incorrect according to the reference answer. \\n\\nIn terms of helpfulness, Response B gives the precise number while Response A provides an inaccurate guess. For relevance, both refer to dogs in the park from the question. However, Response B is more correct and factual based on the reference answer. Response A shows some attempt at reasoning but is ultimately incorrect. Response B requires less depth of thought to simply state the factual number.\\n\\nIn summary, Response B is superior in terms of helpfulness, relevance, correctness, and depth. My final decision is: [[B]]\\n',\n",
" 'value': 'B',\n",
" 'score': 0}"
]
},
"execution_count": 7,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -185,7 +274,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 9,
"id": "fb817efa-3a4d-439d-af8c-773b89d97ec9",
"metadata": {
"tags": []
@@ -195,7 +284,9 @@
"from langchain.prompts import PromptTemplate\n",
"\n",
"prompt_template = PromptTemplate.from_template(\n",
" \"\"\"Given the input context, which is most similar to the reference label: A or B?\n",
" \"\"\"Given the input context, which do you prefer: A or B?\n",
"Evaluate based on the following criteria:\n",
"{criteria}\n",
"Reason step by step and finally, respond with either [[A]] or [[B]] on its own line.\n",
"\n",
"DATA\n",
@@ -210,13 +301,13 @@
"\"\"\"\n",
")\n",
"evaluator = load_evaluator(\n",
" \"pairwise_string\", prompt=prompt_template, requires_reference=True\n",
" \"labeled_pairwise_string\", prompt=prompt_template\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 10,
"id": "d40aa4f0-cfd5-4cb4-83c8-8d2300a04c2f",
"metadata": {
"tags": []
@@ -226,7 +317,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"input_variables=['input', 'prediction', 'prediction_b', 'reference'] output_parser=None partial_variables={} template='Given the input context, which is most similar to the reference label: A or B?\\nReason step by step and finally, respond with either [[A]] or [[B]] on its own line.\\n\\nDATA\\n----\\ninput: {input}\\nreference: {reference}\\nA: {prediction}\\nB: {prediction_b}\\n---\\nReasoning:\\n\\n' template_format='f-string' validate_template=True\n"
"input_variables=['prediction', 'reference', 'prediction_b', 'input'] output_parser=None partial_variables={'criteria': 'helpfulness: Is the submission helpful, insightful, and appropriate?\\nrelevance: Is the submission referring to a real quote from the text?\\ncorrectness: Is the submission correct, accurate, and factual?\\ndepth: Does the submission demonstrate depth of thought?'} template='Given the input context, which do you prefer: A or B?\\nEvaluate based on the following criteria:\\n{criteria}\\nReason step by step and finally, respond with either [[A]] or [[B]] on its own line.\\n\\nDATA\\n----\\ninput: {input}\\nreference: {reference}\\nA: {prediction}\\nB: {prediction_b}\\n---\\nReasoning:\\n\\n' template_format='f-string' validate_template=True\n"
]
}
],
@@ -237,7 +328,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 11,
"id": "9467bb42-7a31-4071-8f66-9ed2c6f06dcd",
"metadata": {
"tags": []
@@ -246,12 +337,12 @@
{
"data": {
"text/plain": [
"{'reasoning': \"Option A is most similar to the reference label. Both the reference label and option A state that the dog's name is Fido. Option B, on the other hand, gives a different name for the dog. Therefore, option A is the most similar to the reference label. \\n\",\n",
"{'reasoning': 'Helpfulness: Both A and B are helpful as they provide a direct answer to the question.\\nRelevance: A is relevant as it refers to the correct name of the dog from the text. B is not relevant as it provides a different name.\\nCorrectness: A is correct as it accurately states the name of the dog. B is incorrect as it provides a different name.\\nDepth: Both A and B demonstrate a similar level of depth as they both provide a straightforward answer to the question.\\n\\nGiven these evaluations, the preferred response is:\\n',\n",
" 'value': 'A',\n",
" 'score': 1}"
]
},
"execution_count": 14,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}

View File

@@ -1,511 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "984169ca",
"metadata": {},
"source": [
"# Agent VectorDB Question Answering Benchmarking\n",
"\n",
"Here we go over how to benchmark performance on a question answering task using an agent to route between multiple vectordatabases.\n",
"\n",
"It is highly recommended that you do any evaluation/benchmarking with tracing enabled. See [here](https://python.langchain.com/guides/tracing/) for an explanation of what tracing is and how to set it up."
]
},
{
"cell_type": "markdown",
"id": "8a16b75d",
"metadata": {},
"source": [
"## Loading the data\n",
"First, let's load the data."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5b2d5e98",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset json (/Users/qt/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--agent-vectordb-qa-sota-pg-d3ae24016b514f92/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e)\n",
"100%|██████████| 1/1 [00:00<00:00, 414.42it/s]\n"
]
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"agent-vectordb-qa-sota-pg\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "61375342",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What is the purpose of the NATO Alliance?',\n",
" 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.',\n",
" 'steps': [{'tool': 'State of Union QA System', 'tool_input': None},\n",
" {'tool': None, 'tool_input': 'What is the purpose of the NATO Alliance?'}]}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "02500304",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What is the purpose of YC?',\n",
" 'answer': 'The purpose of YC is to cause startups to be founded that would not otherwise have existed.',\n",
" 'steps': [{'tool': 'Paul Graham QA System', 'tool_input': None},\n",
" {'tool': None, 'tool_input': 'What is the purpose of YC?'}]}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset[-1]"
]
},
{
"cell_type": "markdown",
"id": "4ab6a716",
"metadata": {},
"source": [
"## Setting up a chain\n",
"Now we need to create some pipelines for doing question answering. Step one in that is creating indexes over the data in question."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c18680b5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7f0de2b3",
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes import VectorstoreIndexCreator"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "ef84ff99",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using embedded DuckDB without persistence: data will be transient\n"
]
}
],
"source": [
"vectorstore_sota = (\n",
" VectorstoreIndexCreator(vectorstore_kwargs={\"collection_name\": \"sota\"})\n",
" .from_loaders([loader])\n",
" .vectorstore\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f0b5d8f6",
"metadata": {},
"source": [
"Now we can create a question answering chain."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "8843cb0c",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "573719a0",
"metadata": {},
"outputs": [],
"source": [
"chain_sota = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(temperature=0),\n",
" chain_type=\"stuff\",\n",
" retriever=vectorstore_sota.as_retriever(),\n",
" input_key=\"question\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e48b03d8",
"metadata": {},
"source": [
"Now we do the same for the Paul Graham data."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "c2dbb014",
"metadata": {},
"outputs": [],
"source": [
"loader = TextLoader(\"../../modules/paul_graham_essay.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "98d16f08",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using embedded DuckDB without persistence: data will be transient\n"
]
}
],
"source": [
"vectorstore_pg = (\n",
" VectorstoreIndexCreator(vectorstore_kwargs={\"collection_name\": \"paul_graham\"})\n",
" .from_loaders([loader])\n",
" .vectorstore\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "ec0aab02",
"metadata": {},
"outputs": [],
"source": [
"chain_pg = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(temperature=0),\n",
" chain_type=\"stuff\",\n",
" retriever=vectorstore_pg.as_retriever(),\n",
" input_key=\"question\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "76b5f8fb",
"metadata": {},
"source": [
"We can now set up an agent to route between them."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "ade1aafa",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import initialize_agent, Tool\n",
"from langchain.agents import AgentType\n",
"\n",
"tools = [\n",
" Tool(\n",
" name=\"State of Union QA System\",\n",
" func=chain_sota.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\",\n",
" ),\n",
" Tool(\n",
" name=\"Paul Graham System\",\n",
" func=chain_pg.run,\n",
" description=\"useful for when you need to answer questions about Paul Graham. Input should be a fully formed question.\",\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "104853f8",
"metadata": {},
"outputs": [],
"source": [
"agent = initialize_agent(\n",
" tools,\n",
" OpenAI(temperature=0),\n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
" max_iterations=4,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7f036641",
"metadata": {},
"source": [
"## Make a prediction\n",
"\n",
"First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "4664e79f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.'"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(dataset[0][\"question\"])"
]
},
{
"cell_type": "markdown",
"id": "d0c16cd7",
"metadata": {},
"source": [
"## Make many predictions\n",
"Now we can make predictions"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "799f6c17",
"metadata": {},
"outputs": [],
"source": [
"predictions = []\n",
"predicted_dataset = []\n",
"error_dataset = []\n",
"for data in dataset:\n",
" new_data = {\"input\": data[\"question\"], \"answer\": data[\"answer\"]}\n",
" try:\n",
" predictions.append(agent(new_data))\n",
" predicted_dataset.append(new_data)\n",
" except Exception:\n",
" error_dataset.append(new_data)"
]
},
{
"cell_type": "markdown",
"id": "49d969fb",
"metadata": {},
"source": [
"## Evaluate performance\n",
"Now we can evaluate the predictions. The first thing we can do is look at them by eye."
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "1d583f03",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input': 'What is the purpose of the NATO Alliance?',\n",
" 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.',\n",
" 'output': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.'}"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions[0]"
]
},
{
"cell_type": "markdown",
"id": "4783344b",
"metadata": {},
"source": [
"Next, we can use a language model to score them programatically"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "d0a9341d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "1612dec1",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(\n",
" predicted_dataset, predictions, question_key=\"input\", prediction_key=\"output\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "79587806",
"metadata": {},
"source": [
"We can add in the graded output to the `predictions` dict and then get a count of the grades."
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "2a689df5",
"metadata": {},
"outputs": [],
"source": [
"for i, prediction in enumerate(predictions):\n",
" prediction[\"grade\"] = graded_outputs[i][\"text\"]"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "27b61215",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Counter({' CORRECT': 28, ' INCORRECT': 5})"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from collections import Counter\n",
"\n",
"Counter([pred[\"grade\"] for pred in predictions])"
]
},
{
"cell_type": "markdown",
"id": "12fe30f4",
"metadata": {},
"source": [
"We can also filter the datapoints to the incorrect examples and look at them."
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "47c692a1",
"metadata": {},
"outputs": [],
"source": [
"incorrect = [pred for pred in predictions if pred[\"grade\"] == \" INCORRECT\"]"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "0ef976c1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input': 'What are the four common sense steps that the author suggests to move forward safely?',\n",
" 'answer': 'The four common sense steps suggested by the author to move forward safely are: stay protected with vaccines and treatments, prepare for new variants, end the shutdown of schools and businesses, and stay vigilant.',\n",
" 'output': 'The four common sense steps suggested in the most recent State of the Union address are: cutting the cost of prescription drugs, providing a pathway to citizenship for Dreamers, revising laws so businesses have the workers they need and families dont wait decades to reunite, and protecting access to health care and preserving a womans right to choose.',\n",
" 'grade': ' INCORRECT'}"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"incorrect[0]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -24,18 +24,15 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.evaluation.comparison import PairwiseStringEvalChain\n",
"from langchain.evaluation import load_evaluator\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-4\")\n",
"\n",
"eval_chain = PairwiseStringEvalChain.from_llm(llm=llm)"
"eval_chain = load_evaluator(\"pairwise_string\")"
]
},
{
@@ -50,7 +47,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"metadata": {
"tags": []
},
@@ -59,13 +56,13 @@
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset parquet (/Users/wfh/.cache/huggingface/datasets/LangChainDatasets___parquet/LangChainDatasets--langchain-howto-queries-bbb748bbee7e77aa/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
"Found cached dataset parquet (/Users/wfh/.cache/huggingface/datasets/LangChainDatasets___parquet/LangChainDatasets--langchain-howto-queries-bbb748bbee7e77aa/0.0.0/14a00e99c0d15a23649d0db8944380ac81082d4b021f398733dd84f3a6c569a7)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d852a1884480457292c90d8bd9d4f1e6",
"model_id": "a2358d37246640ce95e0f9940194590a",
"version_major": 2,
"version_minor": 0
},
@@ -94,7 +91,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"metadata": {
"tags": []
},
@@ -127,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"metadata": {
"tags": []
},
@@ -152,7 +149,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 5,
"metadata": {
"tags": []
},
@@ -160,7 +157,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b076d6bf6680422aa9082d4bad4d98a3",
"model_id": "87277cb39a1a4726bb7cc533a24e2ea4",
"version_major": 2,
"version_minor": 0
},
@@ -170,14 +167,6 @@
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Retrying langchain.chat_models.openai.acompletion_with_retry.<locals>._completion_with_retry in 1.0 seconds as it raised ServiceUnavailableError: The server is overloaded or not ready yet..\n",
"Retrying langchain.chat_models.openai.acompletion_with_retry.<locals>._completion_with_retry in 1.0 seconds as it raised ServiceUnavailableError: The server is overloaded or not ready yet..\n"
]
}
],
"source": [
@@ -215,7 +204,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 6,
"metadata": {
"tags": []
},
@@ -252,7 +241,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -270,7 +259,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 8,
"metadata": {
"tags": []
},
@@ -279,8 +268,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
"OpenAI Functions Agent: 90.00%\n",
"Structured Chat Agent: 10.00%\n"
"OpenAI Functions Agent: 95.00%\n",
"None: 5.00%\n"
]
}
],
@@ -310,7 +299,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 9,
"metadata": {
"tags": []
},
@@ -349,7 +338,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 10,
"metadata": {
"tags": []
},
@@ -358,8 +347,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
"The \"OpenAI Functions Agent\" would be preferred between 69.90% and 97.21% percent of the time (with 95% confidence).\n",
"The \"Structured Chat Agent\" would be preferred between 2.79% and 30.10% percent of the time (with 95% confidence).\n"
"The \"OpenAI Functions Agent\" would be preferred between 83.18% and 100.00% percent of the time (with 95% confidence).\n",
"The \"Structured Chat Agent\" would be preferred between 0.00% and 16.82% percent of the time (with 95% confidence).\n"
]
}
],
@@ -380,7 +369,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 11,
"metadata": {
"tags": []
},
@@ -389,9 +378,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"The p-value is 0.00040. If the null hypothesis is true (i.e., if the selected eval chain actually has no preference between the models),\n",
"then there is a 0.04025% chance of observing the OpenAI Functions Agent be preferred at least 18\n",
"times out of 20 trials.\n"
"The p-value is 0.00000. If the null hypothesis is true (i.e., if the selected eval chain actually has no preference between the models),\n",
"then there is a 0.00038% chance of observing the OpenAI Functions Agent be preferred at least 19\n",
"times out of 19 trials.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/ipykernel_15978/384907688.py:6: DeprecationWarning: 'binom_test' is deprecated in favour of 'binomtest' from version 1.7.0 and will be removed in Scipy 1.12.0.\n",
" p_value = stats.binom_test(successes, n, p=0.5, alternative=\"two-sided\")\n"
]
}
],

View File

@@ -1,445 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e78b7bb1",
"metadata": {},
"source": [
"# Data Augmented Question Answering\n",
"\n",
"This notebook uses some generic prompts/language models to evaluate an question answering system that uses other sources of data besides what is in the model. For example, this can be used to evaluate a question answering system over your proprietary data.\n",
"\n",
"## Setup\n",
"Let's set up an example with our favorite example - the state of the union address."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ab4a6931",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.llms import OpenAI\n",
"from langchain.chains import RetrievalQA"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4fdc211d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"docsearch = Chroma.from_documents(texts, embeddings)\n",
"qa = RetrievalQA.from_llm(llm=OpenAI(), retriever=docsearch.as_retriever())"
]
},
{
"cell_type": "markdown",
"id": "30fd72f2",
"metadata": {},
"source": [
"## Examples\n",
"Now we need some examples to evaluate. We can do this in two ways:\n",
"\n",
"1. Hard code some examples ourselves\n",
"2. Generate examples automatically, using a language model"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "3459b001",
"metadata": {},
"outputs": [],
"source": [
"# Hard-coded examples\n",
"examples = [\n",
" {\n",
" \"query\": \"What did the president say about Ketanji Brown Jackson\",\n",
" \"answer\": \"He praised her legal ability and said he nominated her for the supreme court.\",\n",
" },\n",
" {\"query\": \"What did the president say about Michael Jackson\", \"answer\": \"Nothing\"},\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b9c3fa75",
"metadata": {},
"outputs": [],
"source": [
"# Generated examples\n",
"from langchain.evaluation.qa import QAGenerateChain\n",
"\n",
"example_gen_chain = QAGenerateChain.from_llm(OpenAI())"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c24543a9",
"metadata": {},
"outputs": [],
"source": [
"new_examples = example_gen_chain.apply_and_parse([{\"doc\": t} for t in texts[:5]])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a2d27560",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'query': 'According to the document, what did Vladimir Putin miscalculate?',\n",
" 'answer': 'He miscalculated that he could roll into Ukraine and the world would roll over.'},\n",
" {'query': 'Who is the Ukrainian Ambassador to the United States?',\n",
" 'answer': 'The Ukrainian Ambassador to the United States is here tonight.'},\n",
" {'query': 'How many countries were part of the coalition formed to confront Putin?',\n",
" 'answer': '27 members of the European Union, France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.'},\n",
" {'query': 'What action is the U.S. Department of Justice taking to target Russian oligarchs?',\n",
" 'answer': 'The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and joining with European allies to find and seize their yachts, luxury apartments, and private jets.'},\n",
" {'query': 'How much direct assistance is the United States providing to Ukraine?',\n",
" 'answer': 'The United States is providing more than $1 Billion in direct assistance to Ukraine.'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"new_examples"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "558da6f3",
"metadata": {},
"outputs": [],
"source": [
"# Combine examples\n",
"examples += new_examples"
]
},
{
"cell_type": "markdown",
"id": "443dc34e",
"metadata": {},
"source": [
"## Evaluate\n",
"Now that we have examples, we can use the question answering evaluator to evaluate our question answering chain."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "782169a5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1bb77416",
"metadata": {},
"outputs": [],
"source": [
"predictions = qa.apply(examples)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "bcd0ad7f",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2e6af79a",
"metadata": {},
"outputs": [],
"source": [
"graded_outputs = eval_chain.evaluate(examples, predictions)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "32fac2dc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 0:\n",
"Question: What did the president say about Ketanji Brown Jackson\n",
"Real Answer: He praised her legal ability and said he nominated her for the supreme court.\n",
"Predicted Answer: The president said that she is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that she is a consensus builder and that she has received a broad range of support from the Fraternal Order of Police to former judges appointed by both Democrats and Republicans.\n",
"Predicted Grade: CORRECT\n",
"\n",
"Example 1:\n",
"Question: What did the president say about Michael Jackson\n",
"Real Answer: Nothing\n",
"Predicted Answer: The president did not mention Michael Jackson in this speech.\n",
"Predicted Grade: CORRECT\n",
"\n",
"Example 2:\n",
"Question: According to the document, what did Vladimir Putin miscalculate?\n",
"Real Answer: He miscalculated that he could roll into Ukraine and the world would roll over.\n",
"Predicted Answer: Putin miscalculated that the world would roll over when he rolled into Ukraine.\n",
"Predicted Grade: CORRECT\n",
"\n",
"Example 3:\n",
"Question: Who is the Ukrainian Ambassador to the United States?\n",
"Real Answer: The Ukrainian Ambassador to the United States is here tonight.\n",
"Predicted Answer: I don't know.\n",
"Predicted Grade: INCORRECT\n",
"\n",
"Example 4:\n",
"Question: How many countries were part of the coalition formed to confront Putin?\n",
"Real Answer: 27 members of the European Union, France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.\n",
"Predicted Answer: The coalition included freedom-loving nations from Europe and the Americas to Asia and Africa, 27 members of the European Union including France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.\n",
"Predicted Grade: INCORRECT\n",
"\n",
"Example 5:\n",
"Question: What action is the U.S. Department of Justice taking to target Russian oligarchs?\n",
"Real Answer: The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and joining with European allies to find and seize their yachts, luxury apartments, and private jets.\n",
"Predicted Answer: The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and to find and seize their yachts, luxury apartments, and private jets.\n",
"Predicted Grade: INCORRECT\n",
"\n",
"Example 6:\n",
"Question: How much direct assistance is the United States providing to Ukraine?\n",
"Real Answer: The United States is providing more than $1 Billion in direct assistance to Ukraine.\n",
"Predicted Answer: The United States is providing more than $1 billion in direct assistance to Ukraine.\n",
"Predicted Grade: CORRECT\n",
"\n"
]
}
],
"source": [
"for i, eg in enumerate(examples):\n",
" print(f\"Example {i}:\")\n",
" print(\"Question: \" + predictions[i][\"query\"])\n",
" print(\"Real Answer: \" + predictions[i][\"answer\"])\n",
" print(\"Predicted Answer: \" + predictions[i][\"result\"])\n",
" print(\"Predicted Grade: \" + graded_outputs[i][\"text\"])\n",
" print()"
]
},
{
"cell_type": "markdown",
"id": "50a9e845",
"metadata": {},
"source": [
"## Evaluate with Other Metrics\n",
"\n",
"In addition to predicting whether the answer is correct or incorrect using a language model, we can also use other metrics to get a more nuanced view on the quality of the answers. To do so, we can use the [Critique](https://docs.inspiredco.ai/critique/) library, which allows for simple calculation of various metrics over generated text.\n",
"\n",
"First you can get an API key from the [Inspired Cognition Dashboard](https://dashboard.inspiredco.ai) and do some setup:\n",
"\n",
"```bash\n",
"export INSPIREDCO_API_KEY=\"...\"\n",
"pip install inspiredco\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "bd0b01dc",
"metadata": {},
"outputs": [],
"source": [
"import inspiredco.critique\n",
"import os\n",
"\n",
"critique = inspiredco.critique.Critique(api_key=os.environ[\"INSPIREDCO_API_KEY\"])"
]
},
{
"cell_type": "markdown",
"id": "4f52629e",
"metadata": {},
"source": [
"Then run the following code to set up the configuration and calculate the [ROUGE](https://docs.inspiredco.ai/critique/metric_rouge.html), [chrf](https://docs.inspiredco.ai/critique/metric_chrf.html), [BERTScore](https://docs.inspiredco.ai/critique/metric_bert_score.html), and [UniEval](https://docs.inspiredco.ai/critique/metric_uni_eval.html) (you can choose [other metrics](https://docs.inspiredco.ai/critique/metrics.html) too):"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "84a0ba21",
"metadata": {},
"outputs": [],
"source": [
"metrics = {\n",
" \"rouge\": {\n",
" \"metric\": \"rouge\",\n",
" \"config\": {\"variety\": \"rouge_l\"},\n",
" },\n",
" \"chrf\": {\n",
" \"metric\": \"chrf\",\n",
" \"config\": {},\n",
" },\n",
" \"bert_score\": {\n",
" \"metric\": \"bert_score\",\n",
" \"config\": {\"model\": \"bert-base-uncased\"},\n",
" },\n",
" \"uni_eval\": {\n",
" \"metric\": \"uni_eval\",\n",
" \"config\": {\"task\": \"summarization\", \"evaluation_aspect\": \"relevance\"},\n",
" },\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "3b9a4056",
"metadata": {},
"outputs": [],
"source": [
"critique_data = [\n",
" {\"target\": pred[\"result\"], \"references\": [pred[\"answer\"]]} for pred in predictions\n",
"]\n",
"eval_results = {\n",
" k: critique.evaluate(dataset=critique_data, metric=v[\"metric\"], config=v[\"config\"])\n",
" for k, v in metrics.items()\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "6f0ae799",
"metadata": {},
"source": [
"Finally, we can print out the results. We can see that overall the scores are higher when the output is semantically correct, and also when the output closely matches with the gold-standard answer."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "b51edcf4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 0:\n",
"Question: What did the president say about Ketanji Brown Jackson\n",
"Real Answer: He praised her legal ability and said he nominated her for the supreme court.\n",
"Predicted Answer: The president said that she is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that she is a consensus builder and that she has received a broad range of support from the Fraternal Order of Police to former judges appointed by both Democrats and Republicans.\n",
"Predicted Scores: rouge=0.0941, chrf=0.2001, bert_score=0.5219, uni_eval=0.9043\n",
"\n",
"Example 1:\n",
"Question: What did the president say about Michael Jackson\n",
"Real Answer: Nothing\n",
"Predicted Answer: The president did not mention Michael Jackson in this speech.\n",
"Predicted Scores: rouge=0.0000, chrf=0.1087, bert_score=0.3486, uni_eval=0.7802\n",
"\n",
"Example 2:\n",
"Question: According to the document, what did Vladimir Putin miscalculate?\n",
"Real Answer: He miscalculated that he could roll into Ukraine and the world would roll over.\n",
"Predicted Answer: Putin miscalculated that the world would roll over when he rolled into Ukraine.\n",
"Predicted Scores: rouge=0.5185, chrf=0.6955, bert_score=0.8421, uni_eval=0.9578\n",
"\n",
"Example 3:\n",
"Question: Who is the Ukrainian Ambassador to the United States?\n",
"Real Answer: The Ukrainian Ambassador to the United States is here tonight.\n",
"Predicted Answer: I don't know.\n",
"Predicted Scores: rouge=0.0000, chrf=0.0375, bert_score=0.3159, uni_eval=0.7493\n",
"\n",
"Example 4:\n",
"Question: How many countries were part of the coalition formed to confront Putin?\n",
"Real Answer: 27 members of the European Union, France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.\n",
"Predicted Answer: The coalition included freedom-loving nations from Europe and the Americas to Asia and Africa, 27 members of the European Union including France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.\n",
"Predicted Scores: rouge=0.7419, chrf=0.8602, bert_score=0.8388, uni_eval=0.0669\n",
"\n",
"Example 5:\n",
"Question: What action is the U.S. Department of Justice taking to target Russian oligarchs?\n",
"Real Answer: The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and joining with European allies to find and seize their yachts, luxury apartments, and private jets.\n",
"Predicted Answer: The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and to find and seize their yachts, luxury apartments, and private jets.\n",
"Predicted Scores: rouge=0.9412, chrf=0.8687, bert_score=0.9607, uni_eval=0.9718\n",
"\n",
"Example 6:\n",
"Question: How much direct assistance is the United States providing to Ukraine?\n",
"Real Answer: The United States is providing more than $1 Billion in direct assistance to Ukraine.\n",
"Predicted Answer: The United States is providing more than $1 billion in direct assistance to Ukraine.\n",
"Predicted Scores: rouge=1.0000, chrf=0.9483, bert_score=1.0000, uni_eval=0.9734\n",
"\n"
]
}
],
"source": [
"for i, eg in enumerate(examples):\n",
" score_string = \", \".join(\n",
" [f\"{k}={v['examples'][i]['value']:.4f}\" for k, v in eval_results.items()]\n",
" )\n",
" print(f\"Example {i}:\")\n",
" print(\"Question: \" + predictions[i][\"query\"])\n",
" print(\"Real Answer: \" + predictions[i][\"answer\"])\n",
" print(\"Predicted Answer: \" + predictions[i][\"result\"])\n",
" print(\"Predicted Scores: \" + score_string)\n",
" print()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,975 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "692f3256",
"metadata": {},
"source": [
"# Evaluating an OpenAPI Chain\n",
"\n",
"This notebook goes over ways to semantically evaluate an [OpenAPI Chain](/docs/modules/chains/additional/openapi.html), which calls an endpoint defined by the OpenAPI specification using purely natural language."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a457106d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.tools import OpenAPISpec, APIOperation\n",
"from langchain.chains import OpenAPIEndpointChain, LLMChain\n",
"from langchain.requests import Requests\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "markdown",
"id": "2c3b0954",
"metadata": {},
"source": [
"## Load the API Chain\n",
"\n",
"Load a wrapper of the spec (so we can work with it more easily). You can load from a url or from a local file."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "794142ba",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n"
]
}
],
"source": [
"# Load and parse the OpenAPI Spec\n",
"spec = OpenAPISpec.from_url(\n",
" \"https://www.klarna.com/us/shopping/public/openai/v0/api-docs/\"\n",
")\n",
"# Load a single endpoint operation\n",
"operation = APIOperation.from_openapi_spec(spec, \"/public/openai/v0/products\", \"get\")\n",
"verbose = False\n",
"# Select any LangChain LLM\n",
"llm = OpenAI(temperature=0, max_tokens=1000)\n",
"# Create the endpoint chain\n",
"api_chain = OpenAPIEndpointChain.from_api_operation(\n",
" operation,\n",
" llm,\n",
" requests=Requests(),\n",
" verbose=verbose,\n",
" return_intermediate_steps=True, # Return request and response text\n",
")"
]
},
{
"cell_type": "markdown",
"id": "6c05ba5b",
"metadata": {},
"source": [
"### *Optional*: Generate Input Questions and Request Ground Truth Queries\n",
"\n",
"See [Generating Test Datasets](#Generating-Test-Datasets) at the end of this notebook for more details."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a0c0cb7e",
"metadata": {},
"outputs": [],
"source": [
"# import re\n",
"# from langchain.prompts import PromptTemplate\n",
"\n",
"# template = \"\"\"Below is a service description:\n",
"\n",
"# {spec}\n",
"\n",
"# Imagine you're a new user trying to use {operation} through a search bar. What are 10 different things you want to request?\n",
"# Wants/Questions:\n",
"# 1. \"\"\"\n",
"\n",
"# prompt = PromptTemplate.from_template(template)\n",
"\n",
"# generation_chain = LLMChain(llm=llm, prompt=prompt)\n",
"\n",
"# questions_ = generation_chain.run(spec=operation.to_typescript(), operation=operation.operation_id).split('\\n')\n",
"# # Strip preceding numeric bullets\n",
"# questions = [re.sub(r'^\\d+\\. ', '', q).strip() for q in questions_]\n",
"# questions"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f3d767ef",
"metadata": {},
"outputs": [],
"source": [
"# ground_truths = [\n",
"# {\"q\": ...} # What are the best queries for each input?\n",
"# ]"
]
},
{
"cell_type": "markdown",
"id": "81098a05",
"metadata": {},
"source": [
"## Run the API Chain\n",
"\n",
"The two simplest questions a user of the API Chain are:\n",
"- Did the chain succesfully access the endpoint?\n",
"- Did the action accomplish the correct result?\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "64bc7ed9",
"metadata": {},
"outputs": [],
"source": [
"from collections import defaultdict\n",
"\n",
"# Collect metrics to report at completion\n",
"scores = defaultdict(list)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "dfd2d09f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--openapi-chain-klarna-products-get-5d03362007667626/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "10932c9c139941d1a8be1a798f29e923",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"openapi-chain-klarna-products-get\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e08191a7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'question': 'What iPhone models are available?',\n",
" 'expected_query': {'max_price': None, 'q': 'iPhone'}},\n",
" {'question': 'Are there any budget laptops?',\n",
" 'expected_query': {'max_price': 300, 'q': 'laptop'}},\n",
" {'question': 'Show me the cheapest gaming PC.',\n",
" 'expected_query': {'max_price': 500, 'q': 'gaming pc'}},\n",
" {'question': 'Are there any tablets under $400?',\n",
" 'expected_query': {'max_price': 400, 'q': 'tablet'}},\n",
" {'question': 'What are the best headphones?',\n",
" 'expected_query': {'max_price': None, 'q': 'headphones'}},\n",
" {'question': 'What are the top rated laptops?',\n",
" 'expected_query': {'max_price': None, 'q': 'laptop'}},\n",
" {'question': 'I want to buy some shoes. I like Adidas and Nike.',\n",
" 'expected_query': {'max_price': None, 'q': 'shoe'}},\n",
" {'question': 'I want to buy a new skirt',\n",
" 'expected_query': {'max_price': None, 'q': 'skirt'}},\n",
" {'question': 'My company is asking me to get a professional Deskopt PC - money is no object.',\n",
" 'expected_query': {'max_price': 10000, 'q': 'professional desktop PC'}},\n",
" {'question': 'What are the best budget cameras?',\n",
" 'expected_query': {'max_price': 300, 'q': 'camera'}}]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7ee71384",
"metadata": {},
"outputs": [],
"source": [
"questions = [d[\"question\"] for d in dataset]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "00511f7a",
"metadata": {},
"outputs": [],
"source": [
"## Run the the API chain itself\n",
"raise_error = False # Stop on first failed example - useful for development\n",
"chain_outputs = []\n",
"failed_examples = []\n",
"for question in questions:\n",
" try:\n",
" chain_outputs.append(api_chain(question))\n",
" scores[\"completed\"].append(1.0)\n",
" except Exception as e:\n",
" if raise_error:\n",
" raise e\n",
" failed_examples.append({\"q\": question, \"error\": e})\n",
" scores[\"completed\"].append(0.0)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f3c9729f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# If the chain failed to run, show the failing examples\n",
"failed_examples"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "914e7587",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['There are currently 10 Apple iPhone models available: Apple iPhone 14 Pro Max 256GB, Apple iPhone 12 128GB, Apple iPhone 13 128GB, Apple iPhone 14 Pro 128GB, Apple iPhone 14 Pro 256GB, Apple iPhone 14 Pro Max 128GB, Apple iPhone 13 Pro Max 128GB, Apple iPhone 14 128GB, Apple iPhone 12 Pro 512GB, and Apple iPhone 12 mini 64GB.',\n",
" 'Yes, there are several budget laptops in the API response. For example, the HP 14-dq0055dx and HP 15-dw0083wm are both priced at $199.99 and $244.99 respectively.',\n",
" 'The cheapest gaming PC available is the Alarco Gaming PC (X_BLACK_GTX750) for $499.99. You can find more information about it here: https://www.klarna.com/us/shopping/pl/cl223/3203154750/Desktop-Computers/Alarco-Gaming-PC-%28X_BLACK_GTX750%29/?utm_source=openai&ref-site=openai_plugin',\n",
" 'Yes, there are several tablets under $400. These include the Apple iPad 10.2\" 32GB (2019), Samsung Galaxy Tab A8 10.5 SM-X200 32GB, Samsung Galaxy Tab A7 Lite 8.7 SM-T220 32GB, Amazon Fire HD 8\" 32GB (10th Generation), and Amazon Fire HD 10 32GB.',\n",
" 'It looks like you are looking for the best headphones. Based on the API response, it looks like the Apple AirPods Pro (2nd generation) 2022, Apple AirPods Max, and Bose Noise Cancelling Headphones 700 are the best options.',\n",
" 'The top rated laptops based on the API response are the Apple MacBook Pro (2021) M1 Pro 8C CPU 14C GPU 16GB 512GB SSD 14\", Apple MacBook Pro (2022) M2 OC 10C GPU 8GB 256GB SSD 13.3\", Apple MacBook Air (2022) M2 OC 8C GPU 8GB 256GB SSD 13.6\", and Apple MacBook Pro (2023) M2 Pro OC 16C GPU 16GB 512GB SSD 14.2\".',\n",
" \"I found several Nike and Adidas shoes in the API response. Here are the links to the products: Nike Dunk Low M - Black/White: https://www.klarna.com/us/shopping/pl/cl337/3200177969/Shoes/Nike-Dunk-Low-M-Black-White/?utm_source=openai&ref-site=openai_plugin, Nike Air Jordan 4 Retro M - Midnight Navy: https://www.klarna.com/us/shopping/pl/cl337/3202929835/Shoes/Nike-Air-Jordan-4-Retro-M-Midnight-Navy/?utm_source=openai&ref-site=openai_plugin, Nike Air Force 1 '07 M - White: https://www.klarna.com/us/shopping/pl/cl337/3979297/Shoes/Nike-Air-Force-1-07-M-White/?utm_source=openai&ref-site=openai_plugin, Nike Dunk Low W - White/Black: https://www.klarna.com/us/shopping/pl/cl337/3200134705/Shoes/Nike-Dunk-Low-W-White-Black/?utm_source=openai&ref-site=openai_plugin, Nike Air Jordan 1 Retro High M - White/University Blue/Black: https://www.klarna.com/us/shopping/pl/cl337/3200383658/Shoes/Nike-Air-Jordan-1-Retro-High-M-White-University-Blue-Black/?utm_source=openai&ref-site=openai_plugin, Nike Air Jordan 1 Retro High OG M - True Blue/Cement Grey/White: https://www.klarna.com/us/shopping/pl/cl337/3204655673/Shoes/Nike-Air-Jordan-1-Retro-High-OG-M-True-Blue-Cement-Grey-White/?utm_source=openai&ref-site=openai_plugin, Nike Air Jordan 11 Retro Cherry - White/Varsity Red/Black: https://www.klarna.com/us/shopping/pl/cl337/3202929696/Shoes/Nike-Air-Jordan-11-Retro-Cherry-White-Varsity-Red-Black/?utm_source=openai&ref-site=openai_plugin, Nike Dunk High W - White/Black: https://www.klarna.com/us/shopping/pl/cl337/3201956448/Shoes/Nike-Dunk-High-W-White-Black/?utm_source=openai&ref-site=openai_plugin, Nike Air Jordan 5 Retro M - Black/Taxi/Aquatone: https://www.klarna.com/us/shopping/pl/cl337/3204923084/Shoes/Nike-Air-Jordan-5-Retro-M-Black-Taxi-Aquatone/?utm_source=openai&ref-site=openai_plugin, Nike Court Legacy Lift W: https://www.klarna.com/us/shopping/pl/cl337/3202103728/Shoes/Nike-Court-Legacy-Lift-W/?utm_source=openai&ref-site=openai_plugin\",\n",
" \"I found several skirts that may interest you. Please take a look at the following products: Avenue Plus Size Denim Stretch Skirt, LoveShackFancy Ruffled Mini Skirt - Antique White, Nike Dri-Fit Club Golf Skirt - Active Pink, Skims Soft Lounge Ruched Long Skirt, French Toast Girl's Front Pleated Skirt with Tabs, Alexia Admor Women's Harmonie Mini Skirt Pink Pink, Vero Moda Long Skirt, Nike Court Dri-FIT Victory Flouncy Tennis Skirt Women - White/Black, Haoyuan Mini Pleated Skirts W, and Zimmermann Lyre Midi Skirt.\",\n",
" 'Based on the API response, you may want to consider the Skytech Archangel Gaming Computer PC Desktop, the CyberPowerPC Gamer Master Gaming Desktop, or the ASUS ROG Strix G10DK-RS756, as they all offer powerful processors and plenty of RAM.',\n",
" 'Based on the API response, the best budget cameras are the DJI Mini 2 Dog Camera ($448.50), Insta360 Sphere with Landing Pad ($429.99), DJI FPV Gimbal Camera ($121.06), Parrot Camera & Body ($36.19), and DJI FPV Air Unit ($179.00).']"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answers = [res[\"output\"] for res in chain_outputs]\n",
"answers"
]
},
{
"cell_type": "markdown",
"id": "484f0587",
"metadata": {},
"source": [
"## Evaluate the requests chain\n",
"\n",
"The API Chain has two main components:\n",
"1. Translate the user query to an API request (request synthesizer)\n",
"2. Translate the API response to a natural language response\n",
"\n",
"Here, we construct an evaluation chain to grade the request synthesizer against selected human queries "
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "3ea5afd7",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"truth_queries = [json.dumps(data[\"expected_query\"]) for data in dataset]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "e055f24b",
"metadata": {},
"outputs": [],
"source": [
"# Collect the API queries generated by the chain\n",
"predicted_queries = [\n",
" output[\"intermediate_steps\"][\"request_args\"] for output in chain_outputs\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "7d4f2b88",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"template = \"\"\"You are trying to answer the following question by querying an API:\n",
"\n",
"> Question: {question}\n",
"\n",
"The query you know you should be executing against the API is:\n",
"\n",
"> Query: {truth_query}\n",
"\n",
"Is the following predicted query semantically the same (eg likely to produce the same answer)?\n",
"\n",
"> Predicted Query: {predict_query}\n",
"\n",
"Please give the Predicted Query a grade of either an A, B, C, D, or F, along with an explanation of why. End the evaluation with 'Final Grade: <the letter>'\n",
"\n",
"> Explanation: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"eval_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "8cc1b1db",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[' The original query is asking for all iPhone models, so the \"q\" parameter is correct. The \"max_price\" parameter is also correct, as it is set to null, meaning that no maximum price is set. The predicted query adds two additional parameters, \"size\" and \"min_price\". The \"size\" parameter is not necessary, as it is not relevant to the question being asked. The \"min_price\" parameter is also not necessary, as it is not relevant to the question being asked and it is set to 0, which is the default value. Therefore, the predicted query is not semantically the same as the original query and is not likely to produce the same answer. Final Grade: D',\n",
" ' The original query is asking for laptops with a maximum price of 300. The predicted query is asking for laptops with a minimum price of 0 and a maximum price of 500. This means that the predicted query is likely to return more results than the original query, as it is asking for a wider range of prices. Therefore, the predicted query is not semantically the same as the original query, and it is not likely to produce the same answer. Final Grade: F',\n",
" \" The first two parameters are the same, so that's good. The third parameter is different, but it's not necessary for the query, so that's not a problem. The fourth parameter is the problem. The original query specifies a maximum price of 500, while the predicted query specifies a maximum price of null. This means that the predicted query will not limit the results to the cheapest gaming PCs, so it is not semantically the same as the original query. Final Grade: F\",\n",
" ' The original query is asking for tablets under $400, so the first two parameters are correct. The predicted query also includes the parameters \"size\" and \"min_price\", which are not necessary for the original query. The \"size\" parameter is not relevant to the question, and the \"min_price\" parameter is redundant since the original query already specifies a maximum price. Therefore, the predicted query is not semantically the same as the original query and is not likely to produce the same answer. Final Grade: D',\n",
" ' The original query is asking for headphones with no maximum price, so the predicted query is not semantically the same because it has a maximum price of 500. The predicted query also has a size of 10, which is not specified in the original query. Therefore, the predicted query is not semantically the same as the original query. Final Grade: F',\n",
" \" The original query is asking for the top rated laptops, so the 'size' parameter should be set to 10 to get the top 10 results. The 'min_price' parameter should be set to 0 to get results from all price ranges. The 'max_price' parameter should be set to null to get results from all price ranges. The 'q' parameter should be set to 'laptop' to get results related to laptops. All of these parameters are present in the predicted query, so it is semantically the same as the original query. Final Grade: A\",\n",
" ' The original query is asking for shoes, so the predicted query is asking for the same thing. The original query does not specify a size, so the predicted query is not adding any additional information. The original query does not specify a price range, so the predicted query is adding additional information that is not necessary. Therefore, the predicted query is not semantically the same as the original query and is likely to produce different results. Final Grade: D',\n",
" ' The original query is asking for a skirt, so the predicted query is asking for the same thing. The predicted query also adds additional parameters such as size and price range, which could help narrow down the results. However, the size parameter is not necessary for the query to be successful, and the price range is too narrow. Therefore, the predicted query is not as effective as the original query. Final Grade: C',\n",
" ' The first part of the query is asking for a Desktop PC, which is the same as the original query. The second part of the query is asking for a size of 10, which is not relevant to the original query. The third part of the query is asking for a minimum price of 0, which is not relevant to the original query. The fourth part of the query is asking for a maximum price of null, which is not relevant to the original query. Therefore, the Predicted Query does not semantically match the original query and is not likely to produce the same answer. Final Grade: F',\n",
" ' The original query is asking for cameras with a maximum price of 300. The predicted query is asking for cameras with a maximum price of 500. This means that the predicted query is likely to return more results than the original query, which may include cameras that are not within the budget range. Therefore, the predicted query is not semantically the same as the original query and does not answer the original question. Final Grade: F']"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"request_eval_results = []\n",
"for question, predict_query, truth_query in list(\n",
" zip(questions, predicted_queries, truth_queries)\n",
"):\n",
" eval_output = eval_chain.run(\n",
" question=question,\n",
" truth_query=truth_query,\n",
" predict_query=predict_query,\n",
" )\n",
" request_eval_results.append(eval_output)\n",
"request_eval_results"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "0d76f8ba",
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import List\n",
"\n",
"\n",
"# Parse the evaluation chain responses into a rubric\n",
"def parse_eval_results(results: List[str]) -> List[float]:\n",
" rubric = {\"A\": 1.0, \"B\": 0.75, \"C\": 0.5, \"D\": 0.25, \"F\": 0}\n",
" return [rubric[re.search(r\"Final Grade: (\\w+)\", res).group(1)] for res in results]\n",
"\n",
"\n",
"parsed_results = parse_eval_results(request_eval_results)\n",
"# Collect the scores for a final evaluation table\n",
"scores[\"request_synthesizer\"].extend(parsed_results)"
]
},
{
"cell_type": "markdown",
"id": "6f3ee8ea",
"metadata": {},
"source": [
"## Evaluate the Response Chain\n",
"\n",
"The second component translated the structured API response to a natural language response.\n",
"Evaluate this against the user's original question."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "8b97847c",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"template = \"\"\"You are trying to answer the following question by querying an API:\n",
"\n",
"> Question: {question}\n",
"\n",
"The API returned a response of:\n",
"\n",
"> API result: {api_response}\n",
"\n",
"Your response to the user: {answer}\n",
"\n",
"Please evaluate the accuracy and utility of your response to the user's original question, conditioned on the information available.\n",
"Give a letter grade of either an A, B, C, D, or F, along with an explanation of why. End the evaluation with 'Final Grade: <the letter>'\n",
"\n",
"> Explanation: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"eval_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "642852ce",
"metadata": {},
"outputs": [],
"source": [
"# Extract the API responses from the chain\n",
"api_responses = [\n",
" output[\"intermediate_steps\"][\"response_text\"] for output in chain_outputs\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "08a5eb4f",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"[' The original query is asking for all iPhone models, so the \"q\" parameter is correct. The \"max_price\" parameter is also correct, as it is set to null, meaning that no maximum price is set. The predicted query adds two additional parameters, \"size\" and \"min_price\". The \"size\" parameter is not necessary, as it is not relevant to the question being asked. The \"min_price\" parameter is also not necessary, as it is not relevant to the question being asked and it is set to 0, which is the default value. Therefore, the predicted query is not semantically the same as the original query and is not likely to produce the same answer. Final Grade: D',\n",
" ' The original query is asking for laptops with a maximum price of 300. The predicted query is asking for laptops with a minimum price of 0 and a maximum price of 500. This means that the predicted query is likely to return more results than the original query, as it is asking for a wider range of prices. Therefore, the predicted query is not semantically the same as the original query, and it is not likely to produce the same answer. Final Grade: F',\n",
" \" The first two parameters are the same, so that's good. The third parameter is different, but it's not necessary for the query, so that's not a problem. The fourth parameter is the problem. The original query specifies a maximum price of 500, while the predicted query specifies a maximum price of null. This means that the predicted query will not limit the results to the cheapest gaming PCs, so it is not semantically the same as the original query. Final Grade: F\",\n",
" ' The original query is asking for tablets under $400, so the first two parameters are correct. The predicted query also includes the parameters \"size\" and \"min_price\", which are not necessary for the original query. The \"size\" parameter is not relevant to the question, and the \"min_price\" parameter is redundant since the original query already specifies a maximum price. Therefore, the predicted query is not semantically the same as the original query and is not likely to produce the same answer. Final Grade: D',\n",
" ' The original query is asking for headphones with no maximum price, so the predicted query is not semantically the same because it has a maximum price of 500. The predicted query also has a size of 10, which is not specified in the original query. Therefore, the predicted query is not semantically the same as the original query. Final Grade: F',\n",
" \" The original query is asking for the top rated laptops, so the 'size' parameter should be set to 10 to get the top 10 results. The 'min_price' parameter should be set to 0 to get results from all price ranges. The 'max_price' parameter should be set to null to get results from all price ranges. The 'q' parameter should be set to 'laptop' to get results related to laptops. All of these parameters are present in the predicted query, so it is semantically the same as the original query. Final Grade: A\",\n",
" ' The original query is asking for shoes, so the predicted query is asking for the same thing. The original query does not specify a size, so the predicted query is not adding any additional information. The original query does not specify a price range, so the predicted query is adding additional information that is not necessary. Therefore, the predicted query is not semantically the same as the original query and is likely to produce different results. Final Grade: D',\n",
" ' The original query is asking for a skirt, so the predicted query is asking for the same thing. The predicted query also adds additional parameters such as size and price range, which could help narrow down the results. However, the size parameter is not necessary for the query to be successful, and the price range is too narrow. Therefore, the predicted query is not as effective as the original query. Final Grade: C',\n",
" ' The first part of the query is asking for a Desktop PC, which is the same as the original query. The second part of the query is asking for a size of 10, which is not relevant to the original query. The third part of the query is asking for a minimum price of 0, which is not relevant to the original query. The fourth part of the query is asking for a maximum price of null, which is not relevant to the original query. Therefore, the Predicted Query does not semantically match the original query and is not likely to produce the same answer. Final Grade: F',\n",
" ' The original query is asking for cameras with a maximum price of 300. The predicted query is asking for cameras with a maximum price of 500. This means that the predicted query is likely to return more results than the original query, which may include cameras that are not within the budget range. Therefore, the predicted query is not semantically the same as the original query and does not answer the original question. Final Grade: F',\n",
" ' The user asked a question about what iPhone models are available, and the API returned a response with 10 different models. The response provided by the user accurately listed all 10 models, so the accuracy of the response is A+. The utility of the response is also A+ since the user was able to get the exact information they were looking for. Final Grade: A+',\n",
" \" The API response provided a list of laptops with their prices and attributes. The user asked if there were any budget laptops, and the response provided a list of laptops that are all priced under $500. Therefore, the response was accurate and useful in answering the user's question. Final Grade: A\",\n",
" \" The API response provided the name, price, and URL of the product, which is exactly what the user asked for. The response also provided additional information about the product's attributes, which is useful for the user to make an informed decision. Therefore, the response is accurate and useful. Final Grade: A\",\n",
" \" The API response provided a list of tablets that are under $400. The response accurately answered the user's question. Additionally, the response provided useful information such as the product name, price, and attributes. Therefore, the response was accurate and useful. Final Grade: A\",\n",
" \" The API response provided a list of headphones with their respective prices and attributes. The user asked for the best headphones, so the response should include the best headphones based on the criteria provided. The response provided a list of headphones that are all from the same brand (Apple) and all have the same type of headphone (True Wireless, In-Ear). This does not provide the user with enough information to make an informed decision about which headphones are the best. Therefore, the response does not accurately answer the user's question. Final Grade: F\",\n",
" ' The API response provided a list of laptops with their attributes, which is exactly what the user asked for. The response provided a comprehensive list of the top rated laptops, which is what the user was looking for. The response was accurate and useful, providing the user with the information they needed. Final Grade: A',\n",
" ' The API response provided a list of shoes from both Adidas and Nike, which is exactly what the user asked for. The response also included the product name, price, and attributes for each shoe, which is useful information for the user to make an informed decision. The response also included links to the products, which is helpful for the user to purchase the shoes. Therefore, the response was accurate and useful. Final Grade: A',\n",
" \" The API response provided a list of skirts that could potentially meet the user's needs. The response also included the name, price, and attributes of each skirt. This is a great start, as it provides the user with a variety of options to choose from. However, the response does not provide any images of the skirts, which would have been helpful for the user to make a decision. Additionally, the response does not provide any information about the availability of the skirts, which could be important for the user. \\n\\nFinal Grade: B\",\n",
" ' The user asked for a professional desktop PC with no budget constraints. The API response provided a list of products that fit the criteria, including the Skytech Archangel Gaming Computer PC Desktop, the CyberPowerPC Gamer Master Gaming Desktop, and the ASUS ROG Strix G10DK-RS756. The response accurately suggested these three products as they all offer powerful processors and plenty of RAM. Therefore, the response is accurate and useful. Final Grade: A',\n",
" \" The API response provided a list of cameras with their prices, which is exactly what the user asked for. The response also included additional information such as features and memory cards, which is not necessary for the user's question but could be useful for further research. The response was accurate and provided the user with the information they needed. Final Grade: A\"]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Run the grader chain\n",
"response_eval_results = []\n",
"for question, api_response, answer in list(zip(questions, api_responses, answers)):\n",
" request_eval_results.append(\n",
" eval_chain.run(question=question, api_response=api_response, answer=answer)\n",
" )\n",
"request_eval_results"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "a144aa9d",
"metadata": {},
"outputs": [],
"source": [
"# Reusing the rubric from above, parse the evaluation chain responses\n",
"parsed_response_results = parse_eval_results(request_eval_results)\n",
"# Collect the scores for a final evaluation table\n",
"scores[\"result_synthesizer\"].extend(parsed_response_results)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "e95042bc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Metric \tMin \tMean \tMax \n",
"completed \t1.00 \t1.00 \t1.00 \n",
"request_synthesizer \t0.00 \t0.23 \t1.00 \n",
"result_synthesizer \t0.00 \t0.55 \t1.00 \n"
]
}
],
"source": [
"# Print out Score statistics for the evaluation session\n",
"header = \"{:<20}\\t{:<10}\\t{:<10}\\t{:<10}\".format(\"Metric\", \"Min\", \"Mean\", \"Max\")\n",
"print(header)\n",
"for metric, metric_scores in scores.items():\n",
" mean_scores = (\n",
" sum(metric_scores) / len(metric_scores)\n",
" if len(metric_scores) > 0\n",
" else float(\"nan\")\n",
" )\n",
" row = \"{:<20}\\t{:<10.2f}\\t{:<10.2f}\\t{:<10.2f}\".format(\n",
" metric, min(metric_scores), mean_scores, max(metric_scores)\n",
" )\n",
" print(row)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "03fe96af",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Re-show the examples for which the chain failed to complete\n",
"failed_examples"
]
},
{
"cell_type": "markdown",
"id": "2bb3636d",
"metadata": {},
"source": [
"## Generating Test Datasets\n",
"\n",
"To evaluate a chain against your own endpoint, you'll want to generate a test dataset that's conforms to the API.\n",
"\n",
"This section provides an overview of how to bootstrap the process.\n",
"\n",
"First, we'll parse the OpenAPI Spec. For this example, we'll [Speak](https://www.speak.com/)'s OpenAPI specification."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "a453eb93",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n"
]
}
],
"source": [
"# Load and parse the OpenAPI Spec\n",
"spec = OpenAPISpec.from_url(\"https://api.speak.com/openapi.yaml\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "bb65ffe8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['/v1/public/openai/explain-phrase',\n",
" '/v1/public/openai/explain-task',\n",
" '/v1/public/openai/translate']"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# List the paths in the OpenAPI Spec\n",
"paths = sorted(spec.paths.keys())\n",
"paths"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "0988f01b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['post']"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# See which HTTP Methods are available for a given path\n",
"methods = spec.get_methods_for_path(\"/v1/public/openai/explain-task\")\n",
"methods"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "e9ef0a77",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"type explainTask = (_: {\n",
"/* Description of the task that the user wants to accomplish or do. For example, \"tell the waiter they messed up my order\" or \"compliment someone on their shirt\" */\n",
" task_description?: string,\n",
"/* The foreign language that the user is learning and asking about. The value can be inferred from question - for example, if the user asks \"how do i ask a girl out in mexico city\", the value should be \"Spanish\" because of Mexico City. Always use the full name of the language (e.g. Spanish, French). */\n",
" learning_language?: string,\n",
"/* The user's native language. Infer this value from the language the user asked their question in. Always use the full name of the language (e.g. Spanish, French). */\n",
" native_language?: string,\n",
"/* A description of any additional context in the user's question that could affect the explanation - e.g. setting, scenario, situation, tone, speaking style and formality, usage notes, or any other qualifiers. */\n",
" additional_context?: string,\n",
"/* Full text of the user's question. */\n",
" full_query?: string,\n",
"}) => any;\n"
]
}
],
"source": [
"# Load a single endpoint operation\n",
"operation = APIOperation.from_openapi_spec(\n",
" spec, \"/v1/public/openai/explain-task\", \"post\"\n",
")\n",
"\n",
"# The operation can be serialized as typescript\n",
"print(operation.to_typescript())"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "f1186b6d",
"metadata": {},
"outputs": [],
"source": [
"# Compress the service definition to avoid leaking too much input structure to the sample data\n",
"template = \"\"\"In 20 words or less, what does this service accomplish?\n",
"{spec}\n",
"\n",
"Function: It's designed to \"\"\"\n",
"prompt = PromptTemplate.from_template(template)\n",
"generation_chain = LLMChain(llm=llm, prompt=prompt)\n",
"purpose = generation_chain.run(spec=operation.to_typescript())"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "a594406a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[\"Can you explain how to say 'hello' in Spanish?\",\n",
" \"I need help understanding the French word for 'goodbye'.\",\n",
" \"Can you tell me how to say 'thank you' in German?\",\n",
" \"I'm trying to learn the Italian word for 'please'.\",\n",
" \"Can you help me with the pronunciation of 'yes' in Portuguese?\",\n",
" \"I'm looking for the Dutch word for 'no'.\",\n",
" \"Can you explain the meaning of 'hello' in Japanese?\",\n",
" \"I need help understanding the Russian word for 'thank you'.\",\n",
" \"Can you tell me how to say 'goodbye' in Chinese?\",\n",
" \"I'm trying to learn the Arabic word for 'please'.\"]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"template = \"\"\"Write a list of {num_to_generate} unique messages users might send to a service designed to{purpose} They must each be completely unique.\n",
"\n",
"1.\"\"\"\n",
"\n",
"\n",
"def parse_list(text: str) -> List[str]:\n",
" # Match lines starting with a number then period\n",
" # Strip leading and trailing whitespace\n",
" matches = re.findall(r\"^\\d+\\. \", text)\n",
" return [re.sub(r\"^\\d+\\. \", \"\", q).strip().strip('\"') for q in text.split(\"\\n\")]\n",
"\n",
"\n",
"num_to_generate = 10 # How many examples to use for this test set.\n",
"prompt = PromptTemplate.from_template(template)\n",
"generation_chain = LLMChain(llm=llm, prompt=prompt)\n",
"text = generation_chain.run(purpose=purpose, num_to_generate=num_to_generate)\n",
"# Strip preceding numeric bullets\n",
"queries = parse_list(text)\n",
"queries"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "8dc60f43",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['{\"task_description\": \"say \\'hello\\'\", \"learning_language\": \"Spanish\", \"native_language\": \"English\", \"full_query\": \"Can you explain how to say \\'hello\\' in Spanish?\"}',\n",
" '{\"task_description\": \"understanding the French word for \\'goodbye\\'\", \"learning_language\": \"French\", \"native_language\": \"English\", \"full_query\": \"I need help understanding the French word for \\'goodbye\\'.\"}',\n",
" '{\"task_description\": \"say \\'thank you\\'\", \"learning_language\": \"German\", \"native_language\": \"English\", \"full_query\": \"Can you tell me how to say \\'thank you\\' in German?\"}',\n",
" '{\"task_description\": \"Learn the Italian word for \\'please\\'\", \"learning_language\": \"Italian\", \"native_language\": \"English\", \"full_query\": \"I\\'m trying to learn the Italian word for \\'please\\'.\"}',\n",
" '{\"task_description\": \"Help with pronunciation of \\'yes\\' in Portuguese\", \"learning_language\": \"Portuguese\", \"native_language\": \"English\", \"full_query\": \"Can you help me with the pronunciation of \\'yes\\' in Portuguese?\"}',\n",
" '{\"task_description\": \"Find the Dutch word for \\'no\\'\", \"learning_language\": \"Dutch\", \"native_language\": \"English\", \"full_query\": \"I\\'m looking for the Dutch word for \\'no\\'.\"}',\n",
" '{\"task_description\": \"Explain the meaning of \\'hello\\' in Japanese\", \"learning_language\": \"Japanese\", \"native_language\": \"English\", \"full_query\": \"Can you explain the meaning of \\'hello\\' in Japanese?\"}',\n",
" '{\"task_description\": \"understanding the Russian word for \\'thank you\\'\", \"learning_language\": \"Russian\", \"native_language\": \"English\", \"full_query\": \"I need help understanding the Russian word for \\'thank you\\'.\"}',\n",
" '{\"task_description\": \"say goodbye\", \"learning_language\": \"Chinese\", \"native_language\": \"English\", \"full_query\": \"Can you tell me how to say \\'goodbye\\' in Chinese?\"}',\n",
" '{\"task_description\": \"Learn the Arabic word for \\'please\\'\", \"learning_language\": \"Arabic\", \"native_language\": \"English\", \"full_query\": \"I\\'m trying to learn the Arabic word for \\'please\\'.\"}']"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Define the generation chain to get hypotheses\n",
"api_chain = OpenAPIEndpointChain.from_api_operation(\n",
" operation,\n",
" llm,\n",
" requests=Requests(),\n",
" verbose=verbose,\n",
" return_intermediate_steps=True, # Return request and response text\n",
")\n",
"\n",
"predicted_outputs = [api_chain(query) for query in queries]\n",
"request_args = [\n",
" output[\"intermediate_steps\"][\"request_args\"] for output in predicted_outputs\n",
"]\n",
"\n",
"# Show the generated request\n",
"request_args"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "b727e28e",
"metadata": {},
"outputs": [],
"source": [
"## AI Assisted Correction\n",
"correction_template = \"\"\"Correct the following API request based on the user's feedback. If the user indicates no changes are needed, output the original without making any changes.\n",
"\n",
"REQUEST: {request}\n",
"\n",
"User Feedback / requested changes: {user_feedback}\n",
"\n",
"Finalized Request: \"\"\"\n",
"\n",
"prompt = PromptTemplate.from_template(correction_template)\n",
"correction_chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "c1f4d71f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Query: Can you explain how to say 'hello' in Spanish?\n",
"Request: {\"task_description\": \"say 'hello'\", \"learning_language\": \"Spanish\", \"native_language\": \"English\", \"full_query\": \"Can you explain how to say 'hello' in Spanish?\"}\n",
"Requested changes: \n",
"Query: I need help understanding the French word for 'goodbye'.\n",
"Request: {\"task_description\": \"understanding the French word for 'goodbye'\", \"learning_language\": \"French\", \"native_language\": \"English\", \"full_query\": \"I need help understanding the French word for 'goodbye'.\"}\n",
"Requested changes: \n",
"Query: Can you tell me how to say 'thank you' in German?\n",
"Request: {\"task_description\": \"say 'thank you'\", \"learning_language\": \"German\", \"native_language\": \"English\", \"full_query\": \"Can you tell me how to say 'thank you' in German?\"}\n",
"Requested changes: \n",
"Query: I'm trying to learn the Italian word for 'please'.\n",
"Request: {\"task_description\": \"Learn the Italian word for 'please'\", \"learning_language\": \"Italian\", \"native_language\": \"English\", \"full_query\": \"I'm trying to learn the Italian word for 'please'.\"}\n",
"Requested changes: \n",
"Query: Can you help me with the pronunciation of 'yes' in Portuguese?\n",
"Request: {\"task_description\": \"Help with pronunciation of 'yes' in Portuguese\", \"learning_language\": \"Portuguese\", \"native_language\": \"English\", \"full_query\": \"Can you help me with the pronunciation of 'yes' in Portuguese?\"}\n",
"Requested changes: \n",
"Query: I'm looking for the Dutch word for 'no'.\n",
"Request: {\"task_description\": \"Find the Dutch word for 'no'\", \"learning_language\": \"Dutch\", \"native_language\": \"English\", \"full_query\": \"I'm looking for the Dutch word for 'no'.\"}\n",
"Requested changes: \n",
"Query: Can you explain the meaning of 'hello' in Japanese?\n",
"Request: {\"task_description\": \"Explain the meaning of 'hello' in Japanese\", \"learning_language\": \"Japanese\", \"native_language\": \"English\", \"full_query\": \"Can you explain the meaning of 'hello' in Japanese?\"}\n",
"Requested changes: \n",
"Query: I need help understanding the Russian word for 'thank you'.\n",
"Request: {\"task_description\": \"understanding the Russian word for 'thank you'\", \"learning_language\": \"Russian\", \"native_language\": \"English\", \"full_query\": \"I need help understanding the Russian word for 'thank you'.\"}\n",
"Requested changes: \n",
"Query: Can you tell me how to say 'goodbye' in Chinese?\n",
"Request: {\"task_description\": \"say goodbye\", \"learning_language\": \"Chinese\", \"native_language\": \"English\", \"full_query\": \"Can you tell me how to say 'goodbye' in Chinese?\"}\n",
"Requested changes: \n",
"Query: I'm trying to learn the Arabic word for 'please'.\n",
"Request: {\"task_description\": \"Learn the Arabic word for 'please'\", \"learning_language\": \"Arabic\", \"native_language\": \"English\", \"full_query\": \"I'm trying to learn the Arabic word for 'please'.\"}\n",
"Requested changes: \n"
]
}
],
"source": [
"ground_truth = []\n",
"for query, request_arg in list(zip(queries, request_args)):\n",
" feedback = input(f\"Query: {query}\\nRequest: {request_arg}\\nRequested changes: \")\n",
" if feedback == \"n\" or feedback == \"none\" or not feedback:\n",
" ground_truth.append(request_arg)\n",
" continue\n",
" resolved = correction_chain.run(request=request_arg, user_feedback=feedback)\n",
" ground_truth.append(resolved.strip())\n",
" print(\"Updated request:\", resolved)"
]
},
{
"cell_type": "markdown",
"id": "19d68882",
"metadata": {},
"source": [
"**Now you can use the `ground_truth` as shown above in [Evaluate the Requests Chain](#Evaluate-the-requests-chain)!**"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "5a596176",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['{\"task_description\": \"say \\'hello\\'\", \"learning_language\": \"Spanish\", \"native_language\": \"English\", \"full_query\": \"Can you explain how to say \\'hello\\' in Spanish?\"}',\n",
" '{\"task_description\": \"understanding the French word for \\'goodbye\\'\", \"learning_language\": \"French\", \"native_language\": \"English\", \"full_query\": \"I need help understanding the French word for \\'goodbye\\'.\"}',\n",
" '{\"task_description\": \"say \\'thank you\\'\", \"learning_language\": \"German\", \"native_language\": \"English\", \"full_query\": \"Can you tell me how to say \\'thank you\\' in German?\"}',\n",
" '{\"task_description\": \"Learn the Italian word for \\'please\\'\", \"learning_language\": \"Italian\", \"native_language\": \"English\", \"full_query\": \"I\\'m trying to learn the Italian word for \\'please\\'.\"}',\n",
" '{\"task_description\": \"Help with pronunciation of \\'yes\\' in Portuguese\", \"learning_language\": \"Portuguese\", \"native_language\": \"English\", \"full_query\": \"Can you help me with the pronunciation of \\'yes\\' in Portuguese?\"}',\n",
" '{\"task_description\": \"Find the Dutch word for \\'no\\'\", \"learning_language\": \"Dutch\", \"native_language\": \"English\", \"full_query\": \"I\\'m looking for the Dutch word for \\'no\\'.\"}',\n",
" '{\"task_description\": \"Explain the meaning of \\'hello\\' in Japanese\", \"learning_language\": \"Japanese\", \"native_language\": \"English\", \"full_query\": \"Can you explain the meaning of \\'hello\\' in Japanese?\"}',\n",
" '{\"task_description\": \"understanding the Russian word for \\'thank you\\'\", \"learning_language\": \"Russian\", \"native_language\": \"English\", \"full_query\": \"I need help understanding the Russian word for \\'thank you\\'.\"}',\n",
" '{\"task_description\": \"say goodbye\", \"learning_language\": \"Chinese\", \"native_language\": \"English\", \"full_query\": \"Can you tell me how to say \\'goodbye\\' in Chinese?\"}',\n",
" '{\"task_description\": \"Learn the Arabic word for \\'please\\'\", \"learning_language\": \"Arabic\", \"native_language\": \"English\", \"full_query\": \"I\\'m trying to learn the Arabic word for \\'please\\'.\"}']"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now you have a new ground truth set to use as shown above!\n",
"ground_truth"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b7fe9dfa",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,372 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "984169ca",
"metadata": {},
"source": [
"# Question Answering Benchmarking: Paul Graham Essay\n",
"\n",
"Here we go over how to benchmark performance on a question answering task over a Paul Graham essay.\n",
"\n",
"It is highly recommended that you do any evaluation/benchmarking with tracing enabled. See [here](https://python.langchain.com/docs/modules/callbacks/how_to/tracing) for an explanation of what tracing is and how to set it up."
]
},
{
"cell_type": "markdown",
"id": "8a16b75d",
"metadata": {},
"source": [
"## Loading the data\n",
"First, let's load the data."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5b2d5e98",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--question-answering-paul-graham-76e8f711e038d742/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9264acfe710b4faabf060f0fcf4f7308",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"question-answering-paul-graham\")"
]
},
{
"cell_type": "markdown",
"id": "4ab6a716",
"metadata": {},
"source": [
"## Setting up a chain\n",
"Now we need to create some pipelines for doing question answering. Step one in that is creating an index over the data in question."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c18680b5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(\"../../modules/paul_graham_essay.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7f0de2b3",
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes import VectorstoreIndexCreator"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ef84ff99",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"vectorstore = VectorstoreIndexCreator().from_loaders([loader]).vectorstore"
]
},
{
"cell_type": "markdown",
"id": "f0b5d8f6",
"metadata": {},
"source": [
"Now we can create a question answering chain."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8843cb0c",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "573719a0",
"metadata": {},
"outputs": [],
"source": [
"chain = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(),\n",
" chain_type=\"stuff\",\n",
" retriever=vectorstore.as_retriever(),\n",
" input_key=\"question\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "53b5aa23",
"metadata": {},
"source": [
"## Make a prediction\n",
"\n",
"First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "3f81d951",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What were the two main things the author worked on before college?',\n",
" 'answer': 'The two main things the author worked on before college were writing and programming.',\n",
" 'result': ' Writing and programming.'}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain(dataset[0])"
]
},
{
"cell_type": "markdown",
"id": "d0c16cd7",
"metadata": {},
"source": [
"## Make many predictions\n",
"Now we can make predictions"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "24b4c66e",
"metadata": {},
"outputs": [],
"source": [
"predictions = chain.apply(dataset)"
]
},
{
"cell_type": "markdown",
"id": "49d969fb",
"metadata": {},
"source": [
"## Evaluate performance\n",
"Now we can evaluate the predictions. The first thing we can do is look at them by eye."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1d583f03",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What were the two main things the author worked on before college?',\n",
" 'answer': 'The two main things the author worked on before college were writing and programming.',\n",
" 'result': ' Writing and programming.'}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions[0]"
]
},
{
"cell_type": "markdown",
"id": "4783344b",
"metadata": {},
"source": [
"Next, we can use a language model to score them programatically"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d0a9341d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "1612dec1",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(\n",
" dataset, predictions, question_key=\"question\", prediction_key=\"result\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "79587806",
"metadata": {},
"source": [
"We can add in the graded output to the `predictions` dict and then get a count of the grades."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2a689df5",
"metadata": {},
"outputs": [],
"source": [
"for i, prediction in enumerate(predictions):\n",
" prediction[\"grade\"] = graded_outputs[i][\"text\"]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "27b61215",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Counter({' CORRECT': 12, ' INCORRECT': 10})"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from collections import Counter\n",
"\n",
"Counter([pred[\"grade\"] for pred in predictions])"
]
},
{
"cell_type": "markdown",
"id": "12fe30f4",
"metadata": {},
"source": [
"We can also filter the datapoints to the incorrect examples and look at them."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "47c692a1",
"metadata": {},
"outputs": [],
"source": [
"incorrect = [pred for pred in predictions if pred[\"grade\"] == \" INCORRECT\"]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "0ef976c1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What did the author write their dissertation on?',\n",
" 'answer': 'The author wrote their dissertation on applications of continuations.',\n",
" 'result': ' The author does not mention what their dissertation was on, so it is not known.',\n",
" 'grade': ' INCORRECT'}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"incorrect[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7710401a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,385 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "984169ca",
"metadata": {},
"source": [
"# Question Answering Benchmarking: State of the Union Address\n",
"\n",
"Here we go over how to benchmark performance on a question answering task over a state of the union address.\n",
"\n",
"It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See [here](https://langchain.readthedocs.io/en/latest/tracing.html) for an explanation of what tracing is and how to set it up."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f127fb04",
"metadata": {},
"outputs": [],
"source": [
"# Comment this out if you are NOT using tracing\n",
"import os\n",
"\n",
"os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
]
},
{
"cell_type": "markdown",
"id": "8a16b75d",
"metadata": {},
"source": [
"## Loading the data\n",
"First, let's load the data."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5b2d5e98",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--question-answering-state-of-the-union-a7e5a3b2db4f440d/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"question-answering-state-of-the-union\")"
]
},
{
"cell_type": "markdown",
"id": "4ab6a716",
"metadata": {},
"source": [
"## Setting up a chain\n",
"Now we need to create some pipelines for doing question answering. Step one in that is creating an index over the data in question."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c18680b5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "7f0de2b3",
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes import VectorstoreIndexCreator"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ef84ff99",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"vectorstore = VectorstoreIndexCreator().from_loaders([loader]).vectorstore"
]
},
{
"cell_type": "markdown",
"id": "f0b5d8f6",
"metadata": {},
"source": [
"Now we can create a question answering chain."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8843cb0c",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "573719a0",
"metadata": {},
"outputs": [],
"source": [
"chain = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(),\n",
" chain_type=\"stuff\",\n",
" retriever=vectorstore.as_retriever(),\n",
" input_key=\"question\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "37d669e9",
"metadata": {},
"source": [
"## Make a prediction\n",
"\n",
"First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "3089e409",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What is the purpose of the NATO Alliance?',\n",
" 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.',\n",
" 'result': ' The NATO Alliance was created to secure peace and stability in Europe after World War 2.'}"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain(dataset[0])"
]
},
{
"cell_type": "markdown",
"id": "d0c16cd7",
"metadata": {},
"source": [
"## Make many predictions\n",
"Now we can make predictions"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "24b4c66e",
"metadata": {},
"outputs": [],
"source": [
"predictions = chain.apply(dataset)"
]
},
{
"cell_type": "markdown",
"id": "49d969fb",
"metadata": {},
"source": [
"## Evaluate performance\n",
"Now we can evaluate the predictions. The first thing we can do is look at them by eye."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1d583f03",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What is the purpose of the NATO Alliance?',\n",
" 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.',\n",
" 'result': ' The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.'}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions[0]"
]
},
{
"cell_type": "markdown",
"id": "4783344b",
"metadata": {},
"source": [
"Next, we can use a language model to score them programatically"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d0a9341d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1612dec1",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(\n",
" dataset, predictions, question_key=\"question\", prediction_key=\"result\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "79587806",
"metadata": {},
"source": [
"We can add in the graded output to the `predictions` dict and then get a count of the grades."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2a689df5",
"metadata": {},
"outputs": [],
"source": [
"for i, prediction in enumerate(predictions):\n",
" prediction[\"grade\"] = graded_outputs[i][\"text\"]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "27b61215",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Counter({' CORRECT': 7, ' INCORRECT': 4})"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from collections import Counter\n",
"\n",
"Counter([pred[\"grade\"] for pred in predictions])"
]
},
{
"cell_type": "markdown",
"id": "12fe30f4",
"metadata": {},
"source": [
"We can also filter the datapoints to the incorrect examples and look at them."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "47c692a1",
"metadata": {},
"outputs": [],
"source": [
"incorrect = [pred for pred in predictions if pred[\"grade\"] == \" INCORRECT\"]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "0ef976c1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What is the U.S. Department of Justice doing to combat the crimes of Russian oligarchs?',\n",
" 'answer': 'The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs.',\n",
" 'result': ' The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs and is naming a chief prosecutor for pandemic fraud.',\n",
" 'grade': ' INCORRECT'}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"incorrect[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7710401a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,445 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "480b7cf8",
"metadata": {},
"source": [
"# Question Answering\n",
"\n",
"This notebook covers how to evaluate generic question answering problems. This is a situation where you have an example containing a question and its corresponding ground truth answer, and you want to measure how well the language model does at answering those questions."
]
},
{
"cell_type": "markdown",
"id": "78e3023b",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"For demonstration purposes, we will just evaluate a simple question answering system that only evaluates the model's internal knowledge. Please see other notebooks for examples where it evaluates how the model does at question answering over data not present in what the model was trained on."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "96710d50",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e33ccf00",
"metadata": {},
"outputs": [],
"source": [
"prompt = PromptTemplate(\n",
" template=\"Question: {question}\\nAnswer:\", input_variables=[\"question\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "172d993a",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(model_name=\"text-davinci-003\", temperature=0)\n",
"chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "markdown",
"id": "0c584440",
"metadata": {},
"source": [
"## Examples\n",
"For this purpose, we will just use two simple hardcoded examples, but see other notebooks for tips on how to get and/or generate these examples."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "87de1d84",
"metadata": {},
"outputs": [],
"source": [
"examples = [\n",
" {\n",
" \"question\": \"Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?\",\n",
" \"answer\": \"11\",\n",
" },\n",
" {\n",
" \"question\": 'Is the following sentence plausible? \"Joao Moutinho caught the screen pass in the NFC championship.\"',\n",
" \"answer\": \"No\",\n",
" },\n",
"]"
]
},
{
"cell_type": "markdown",
"id": "143b1155",
"metadata": {},
"source": [
"## Predictions\n",
"\n",
"We can now make and inspect the predictions for these questions."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c7bd809c",
"metadata": {},
"outputs": [],
"source": [
"predictions = chain.apply(examples)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f06dceab",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'text': ' 11 tennis balls'},\n",
" {'text': ' No, this sentence is not plausible. Joao Moutinho is a professional soccer player, not an American football player, so it is not likely that he would be catching a screen pass in the NFC championship.'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions"
]
},
{
"cell_type": "markdown",
"id": "45cc2f9d",
"metadata": {},
"source": [
"## Evaluation\n",
"\n",
"We can see that if we tried to just do exact match on the answer answers (`11` and `No`) they would not match what the language model answered. However, semantically the language model is correct in both cases. In order to account for this, we can use a language model itself to evaluate the answers."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0cacc65a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5aa6cd65",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(\n",
" examples, predictions, question_key=\"question\", prediction_key=\"text\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "63780020",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 0:\n",
"Question: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?\n",
"Real Answer: 11\n",
"Predicted Answer: 11 tennis balls\n",
"Predicted Grade: CORRECT\n",
"\n",
"Example 1:\n",
"Question: Is the following sentence plausible? \"Joao Moutinho caught the screen pass in the NFC championship.\"\n",
"Real Answer: No\n",
"Predicted Answer: No, this sentence is not plausible. Joao Moutinho is a professional soccer player, not an American football player, so it is not likely that he would be catching a screen pass in the NFC championship.\n",
"Predicted Grade: CORRECT\n",
"\n"
]
}
],
"source": [
"for i, eg in enumerate(examples):\n",
" print(f\"Example {i}:\")\n",
" print(\"Question: \" + eg[\"question\"])\n",
" print(\"Real Answer: \" + eg[\"answer\"])\n",
" print(\"Predicted Answer: \" + predictions[i][\"text\"])\n",
" print(\"Predicted Grade: \" + graded_outputs[i][\"text\"])\n",
" print()"
]
},
{
"cell_type": "markdown",
"id": "782ae8c8",
"metadata": {},
"source": [
"## Customize Prompt\n",
"\n",
"You can also customize the prompt that is used. Here is an example prompting it using a score from 0 to 10.\n",
"The custom prompt requires 3 input variables: \"query\", \"answer\" and \"result\". Where \"query\" is the question, \"answer\" is the ground truth answer, and \"result\" is the predicted answer."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "153425c4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"_PROMPT_TEMPLATE = \"\"\"You are an expert professor specialized in grading students' answers to questions.\n",
"You are grading the following question:\n",
"{query}\n",
"Here is the real answer:\n",
"{answer}\n",
"You are grading the following predicted answer:\n",
"{result}\n",
"What grade do you give from 0 to 10, where 0 is the lowest (very low similarity) and 10 is the highest (very high similarity)?\n",
"\"\"\"\n",
"\n",
"PROMPT = PromptTemplate(\n",
" input_variables=[\"query\", \"answer\", \"result\"], template=_PROMPT_TEMPLATE\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a3b0fb7",
"metadata": {},
"outputs": [],
"source": [
"evalchain = QAEvalChain.from_llm(llm=llm, prompt=PROMPT)\n",
"evalchain.evaluate(\n",
" examples,\n",
" predictions,\n",
" question_key=\"question\",\n",
" answer_key=\"answer\",\n",
" prediction_key=\"text\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "cb1cf335",
"metadata": {},
"source": [
"## Evaluation without Ground Truth\n",
"Its possible to evaluate question answering systems without ground truth. You would need a `\"context\"` input that reflects what the information the LLM uses to answer the question. This context can be obtained by any retreival system. Here's an example of how it works:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c59293f",
"metadata": {},
"outputs": [],
"source": [
"context_examples = [\n",
" {\n",
" \"question\": \"How old am I?\",\n",
" \"context\": \"I am 30 years old. I live in New York and take the train to work everyday.\",\n",
" },\n",
" {\n",
" \"question\": 'Who won the NFC championship game in 2023?\"',\n",
" \"context\": \"NFC Championship Game 2023: Philadelphia Eagles 31, San Francisco 49ers 7\",\n",
" },\n",
"]\n",
"QA_PROMPT = \"Answer the question based on the context\\nContext:{context}\\nQuestion:{question}\\nAnswer:\"\n",
"template = PromptTemplate(input_variables=[\"context\", \"question\"], template=QA_PROMPT)\n",
"qa_chain = LLMChain(llm=llm, prompt=template)\n",
"predictions = qa_chain.apply(context_examples)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e500d0cc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'text': 'You are 30 years old.'},\n",
" {'text': ' The Philadelphia Eagles won the NFC championship game in 2023.'}]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6d8cbc1d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import ContextQAEvalChain\n",
"\n",
"eval_chain = ContextQAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(\n",
" context_examples, predictions, question_key=\"question\", prediction_key=\"text\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "6c5262d0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'text': ' CORRECT'}, {'text': ' CORRECT'}]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graded_outputs"
]
},
{
"cell_type": "markdown",
"id": "aaa61f0c",
"metadata": {},
"source": [
"## Comparing to other evaluation metrics\n",
"We can compare the evaluation results we get to other common evaluation metrics. To do this, let's load some evaluation metrics from HuggingFace's `evaluate` package."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "d851453b",
"metadata": {},
"outputs": [],
"source": [
"# Some data munging to get the examples in the right format\n",
"for i, eg in enumerate(examples):\n",
" eg[\"id\"] = str(i)\n",
" eg[\"answers\"] = {\"text\": [eg[\"answer\"]], \"answer_start\": [0]}\n",
" predictions[i][\"id\"] = str(i)\n",
" predictions[i][\"prediction_text\"] = predictions[i][\"text\"]\n",
"\n",
"for p in predictions:\n",
" del p[\"text\"]\n",
"\n",
"new_examples = examples.copy()\n",
"for eg in new_examples:\n",
" del eg[\"question\"]\n",
" del eg[\"answer\"]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "c38eb3e9",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"from evaluate import load\n",
"\n",
"squad_metric = load(\"squad\")\n",
"results = squad_metric.compute(\n",
" references=new_examples,\n",
" predictions=predictions,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "07d68f85",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'exact_match': 0.0, 'f1': 28.125}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b775150",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"vscode": {
"interpreter": {
"hash": "53f3bc57609c7a84333bb558594977aa5b4026b1d6070b93987956689e367341"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,428 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "984169ca",
"metadata": {},
"source": [
"# SQL Question Answering Benchmarking: Chinook\n",
"\n",
"Here we go over how to benchmark performance on a question answering task over a SQL database.\n",
"\n",
"It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See [here](https://langchain.readthedocs.io/en/latest/tracing.html) for an explanation of what tracing is and how to set it up."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "44874486",
"metadata": {},
"outputs": [],
"source": [
"# Comment this out if you are NOT using tracing\n",
"import os\n",
"\n",
"os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
]
},
{
"cell_type": "markdown",
"id": "0f66405e",
"metadata": {},
"source": [
"## Loading the data\n",
"\n",
"First, let's load the data."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0df1393f",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b220d07ee5d14909bc842b4545cdc0de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading readme: 0%| | 0.00/21.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading and preparing dataset json/LangChainDatasets--sql-qa-chinook to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--sql-qa-chinook-7528565d2d992b47/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e89e3c8ef76f49889c4b39c624828c71",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8421df6c26045e8978c7086cb418222",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data: 0%| | 0.00/1.44k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d1fb6becc3324a85bf039a53caf30924",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Generating train split: 0 examples [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset json downloaded and prepared to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--sql-qa-chinook-7528565d2d992b47/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51. Subsequent calls will reuse this data.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d68ad1b3e4a4bd79f92597aac4d3cc9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"sql-qa-chinook\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ab44d504",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'How many employees are there?', 'answer': '8'}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset[0]"
]
},
{
"cell_type": "markdown",
"id": "8a16b75d",
"metadata": {},
"source": [
"## Setting up a chain\n",
"This uses the example Chinook database.\n",
"To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository.\n",
"\n",
"Note that here we load a simple chain. If you want to experiment with more complex chains, or an agent, just create the `chain` object in a different way."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "5b2d5e98",
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, SQLDatabase, SQLDatabaseChain"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "33cdcbfc",
"metadata": {},
"outputs": [],
"source": [
"db = SQLDatabase.from_uri(\"sqlite:///../../../notebooks/Chinook.db\")\n",
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "f0b5d8f6",
"metadata": {},
"source": [
"Now we can create a SQL database chain."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8843cb0c",
"metadata": {},
"outputs": [],
"source": [
"chain = SQLDatabaseChain.from_llm(llm, db, input_key=\"question\")"
]
},
{
"cell_type": "markdown",
"id": "6c0062e7",
"metadata": {},
"source": [
"## Make a prediction\n",
"\n",
"First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "d28c5e7d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'How many employees are there?',\n",
" 'answer': '8',\n",
" 'result': ' There are 8 employees.'}"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain(dataset[0])"
]
},
{
"cell_type": "markdown",
"id": "d0c16cd7",
"metadata": {},
"source": [
"## Make many predictions\n",
"Now we can make predictions. Note that we add a try-except because this chain can sometimes error (if SQL is written incorrectly, etc)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "24b4c66e",
"metadata": {},
"outputs": [],
"source": [
"predictions = []\n",
"predicted_dataset = []\n",
"error_dataset = []\n",
"for data in dataset:\n",
" try:\n",
" predictions.append(chain(data))\n",
" predicted_dataset.append(data)\n",
" except:\n",
" error_dataset.append(data)"
]
},
{
"cell_type": "markdown",
"id": "4783344b",
"metadata": {},
"source": [
"## Evaluate performance\n",
"Now we can evaluate the predictions. We can use a language model to score them programatically"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "d0a9341d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "1612dec1",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(\n",
" predicted_dataset, predictions, question_key=\"question\", prediction_key=\"result\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "79587806",
"metadata": {},
"source": [
"We can add in the graded output to the `predictions` dict and then get a count of the grades."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "2a689df5",
"metadata": {},
"outputs": [],
"source": [
"for i, prediction in enumerate(predictions):\n",
" prediction[\"grade\"] = graded_outputs[i][\"text\"]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "27b61215",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Counter({' CORRECT': 3, ' INCORRECT': 4})"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from collections import Counter\n",
"\n",
"Counter([pred[\"grade\"] for pred in predictions])"
]
},
{
"cell_type": "markdown",
"id": "12fe30f4",
"metadata": {},
"source": [
"We can also filter the datapoints to the incorrect examples and look at them."
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "47c692a1",
"metadata": {},
"outputs": [],
"source": [
"incorrect = [pred for pred in predictions if pred[\"grade\"] == \" INCORRECT\"]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "0ef976c1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'How many employees are also customers?',\n",
" 'answer': 'None',\n",
" 'result': ' 59 employees are also customers.',\n",
" 'grade': ' INCORRECT'}"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"incorrect[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7710401a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,318 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "bce7335e-f3b2-44f3-90cc-8c0a23a89a21",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from langchain.agents import load_tools\n",
"from langchain.agents import initialize_agent\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.utilities import GoogleSearchAPIWrapper\n",
"from langchain.schema import (\n",
" SystemMessage,\n",
" HumanMessage,\n",
" AIMessage\n",
")\n",
"\n",
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.smith.langchain.com\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = \"******\"\n",
"# os.environ[\"LANGCHAIN_PROJECT\"] = \"Jarvis\"\n",
"\n",
"\n",
"prefix_messages = [{\"role\": \"system\", \"content\": \"You are a helpful discord Chatbot.\"}]\n",
"\n",
"llm = ChatOpenAI(model_name='gpt-3.5-turbo', \n",
" temperature=0.5, \n",
" max_tokens = 2000)\n",
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm)\n",
"agent = initialize_agent(tools,\n",
" llm,\n",
" agent=\"zero-shot-react-description\",\n",
" verbose=True,\n",
" handle_parsing_errors=True\n",
" )\n",
"\n",
"\n",
"async def on_ready():\n",
" print(f'{bot.user} has connected to Discord!')\n",
"\n",
"async def on_message(message):\n",
"\n",
" print(\"Detected bot name in message:\", message.content)\n",
"\n",
" # Capture the output of agent.run() in the response variable\n",
" response = agent.run(message.content)\n",
"\n",
" while response:\n",
" print(response)\n",
" chunk, response = response[:2000], response[2000:]\n",
" print(f\"Chunk: {chunk}\")\n",
" print(\"Response sent.\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "1551ce9f-b6de-4035-b6d6-825722823b48",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from dataclasses import dataclass\n",
"@dataclass\n",
"class Message:\n",
" content: str"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "6e6859ec-8544-4407-9663-6b53c0092903",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Detected bot name in message: Hi AI, how are you today?\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThis question is not something that can be answered using the available tools.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3mI need to follow the correct format for answering questions.\n",
"Action: N/A\u001b[0m\n",
"Observation: Invalid Format: Missing 'Action Input:' after 'Action:'\n",
"Thought:\u001b[32;1m\u001b[1;3m\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"Agent stopped due to iteration limit or time limit.\n",
"Chunk: Agent stopped due to iteration limit or time limit.\n",
"Response sent.\n"
]
}
],
"source": [
"await on_message(Message(content=\"Hi AI, how are you today?\"))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "b850294c-7f8f-4e79-adcf-47e4e3a898df",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langsmith import Client\n",
"\n",
"client = Client()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "6d089ddc-69bc-45a8-b8db-9962e4f1f5ee",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from itertools import islice\n",
"\n",
"runs = list(islice(client.list_runs(), 10))"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "f0349fac-5a98-400f-ba03-61ed4e1332be",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"runs = sorted(runs, key=lambda x: x.start_time, reverse=True)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "02f133f0-39ee-4b46-b443-12c1f9b76fff",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"ids = [run.id for run in runs]"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "3366dce4-0c38-4a7d-8111-046a58b24917",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"runs2 = list(client.list_runs(id=ids))\n",
"runs2 = sorted(runs2, key=lambda x: x.start_time, reverse=True)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "82915b90-39a0-47d6-9121-56a13f210f52",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"['a36092d2-4ad5-4fb4-9b0d-0dba9a2ed836',\n",
" '9398e6be-964f-4aa4-8de9-ad78cd4b7074']"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[str(x) for x in ids[:2]]"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "f610ec91-dc48-4a17-91c5-5c4675c77abc",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langsmith.run_helpers import traceable\n",
"\n",
"@traceable(run_type=\"llm\", name=\"\"\"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/dQw4w9WgXcQ?start=5\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share\" allowfullscreen></iframe>\"\"\")\n",
"def foo():\n",
" return \"bar\""
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "bd317bd7-8b2a-433a-8ec3-098a84ba8e64",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'bar'"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"foo()"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "b142519b-6885-415c-83b9-4a346fb90589",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.llms import AzureOpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c50bb2b-72b8-4322-9b16-d857ecd9f347",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -5,16 +5,13 @@
"id": "4cf569a7-9a1d-4489-934e-50e57760c907",
"metadata": {},
"source": [
"# Evaluating Custom Criteria\n",
"# Criteria Evaluation\n",
"\n",
"Suppose you want to test a model's output against a custom rubric or custom set of criteria, how would you go about testing this?\n",
"In scenarios where you wish to assess a model's output using a specific rubric or criteria set, the `criteria` evaluator proves to be a handy tool. It allows you to verify if an LLM or Chain's output complies with a defined set of criteria.\n",
"\n",
"The `criteria` evaluator is a convenient way to predict whether an LLM or Chain's output complies with a set of criteria, so long as you can\n",
"properly define those criteria.\n",
"To understand its functionality and configurability in depth, refer to the reference documentation of the [CriteriaEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain) class.\n",
"\n",
"For more details, check out the reference docs for the [CriteriaEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain)'s class definition.\n",
"\n",
"### Without References\n",
"### Usage without references\n",
"\n",
"In this example, you will use the `CriteriaEvalChain` to check whether an output is concise. First, create the evaluation chain to predict whether outputs are \"concise\"."
]
@@ -30,7 +27,12 @@
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"criteria\", criteria=\"conciseness\")"
"evaluator = load_evaluator(\"criteria\", criteria=\"conciseness\")\n",
"\n",
"# This is equivalent to loading using the enum\n",
"from langchain.evaluation import EvaluatorType\n",
"\n",
"evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria=\"conciseness\")"
]
},
{
@@ -45,7 +47,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'The criterion is conciseness. This means the submission should be brief and to the point. \\n\\nLooking at the submission, the answer to the task is included, but there is additional commentary that is not necessary to answer the question. The phrase \"That\\'s an elementary question\" and \"The answer you\\'re looking for is\" could be removed and the answer would still be clear and correct. \\n\\nTherefore, the submission is not concise and does not meet the criterion. \\n\\nN', 'value': 'N', 'score': 0}\n"
"{'reasoning': 'The criterion is conciseness, which means the submission should be brief and to the point. \\n\\nLooking at the submission, the answer to the question \"What\\'s 2+2?\" is indeed \"four\". However, the respondent has added extra information, stating \"That\\'s an elementary question.\" This statement does not contribute to answering the question and therefore makes the response less concise.\\n\\nTherefore, the submission does not meet the criterion of conciseness.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
@@ -59,49 +61,20 @@
},
{
"cell_type": "markdown",
"id": "43397a9f-ccca-4f91-b0e1-df0cada2efb1",
"id": "35e61e4d-b776-4f6b-8c89-da5d3604134a",
"metadata": {},
"source": [
"**Default Criteria**\n",
"#### Output Format\n",
"\n",
"Most of the time, you'll want to define your own custom criteria (see below), but we also provide some common criteria you can load with a single string.\n",
"Here's a list of pre-implemented criteria:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8c4ec9dd-6557-4f23-8480-c822eb6ec552",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"['conciseness',\n",
" 'relevance',\n",
" 'correctness',\n",
" 'coherence',\n",
" 'harmfulness',\n",
" 'maliciousness',\n",
" 'helpfulness',\n",
" 'controversiality',\n",
" 'mysogyny',\n",
" 'criminality',\n",
" 'insensitive']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.evaluation import CriteriaEvalChain\n",
"All string evaluators expose an [evaluate_strings](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html?highlight=evaluate_strings#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.evaluate_strings) (or async [aevaluate_strings](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html?highlight=evaluate_strings#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.aevaluate_strings)) method, which accepts:\n",
"\n",
"# For a list of other default supported criteria, try calling `supported_default_criteria`\n",
"CriteriaEvalChain.get_supported_default_criteria()"
"- input (str) The input to the agent.\n",
"- prediction (str) The predicted response.\n",
"\n",
"The criteria evaluators return a dictionary with the following values:\n",
"- score: Binary integeer 0 to 1, where 1 would mean that the output is compliant with the criteria, and 0 otherwise\n",
"- value: A \"Y\" or \"N\" corresponding to the score\n",
"- reasoning: String \"chain of thought reasoning\" from the LLM generated prior to creating the score"
]
},
{
@@ -111,12 +84,12 @@
"source": [
"## Using Reference Labels\n",
"\n",
"Some criteria (such as correctness) require reference labels to work correctly. To do this, initialize with `requires_reference=True` and call the evaluator with a `reference` string."
"Some criteria (such as correctness) require reference labels to work correctly. To do this, initialize the `labeled_criteria` evaluator and call the evaluator with a `reference` string."
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "20d8a86b-beba-42ce-b82c-d9e5ebc13686",
"metadata": {
"tags": []
@@ -126,13 +99,12 @@
"name": "stdout",
"output_type": "stream",
"text": [
"With ground truth: 1\n",
"Without ground truth: 0\n"
"With ground truth: 1\n"
]
}
],
"source": [
"evaluator = load_evaluator(\"criteria\", criteria=\"correctness\", requires_reference=True)\n",
"evaluator = load_evaluator(\"labeled_criteria\", criteria=\"correctness\")\n",
"\n",
"# We can even override the model's learned knowledge using ground truth labels\n",
"eval_result = evaluator.evaluate_strings(\n",
@@ -143,6 +115,51 @@
"print(f'With ground truth: {eval_result[\"score\"]}')"
]
},
{
"cell_type": "markdown",
"id": "e05b5748-d373-4ff8-85d9-21da4641e84c",
"metadata": {},
"source": [
"**Default Criteria**\n",
"\n",
"Most of the time, you'll want to define your own custom criteria (see below), but we also provide some common criteria you can load with a single string.\n",
"Here's a list of pre-implemented criteria. Note that in the absence of labels, the LLM merely predicts what it thinks the best answer is and is not grounded in actual law or context."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "47de7359-db3e-4cad-bcfa-4fe834dea893",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<Criteria.CONCISENESS: 'conciseness'>,\n",
" <Criteria.RELEVANCE: 'relevance'>,\n",
" <Criteria.CORRECTNESS: 'correctness'>,\n",
" <Criteria.COHERENCE: 'coherence'>,\n",
" <Criteria.HARMFULNESS: 'harmfulness'>,\n",
" <Criteria.MALICIOUSNESS: 'maliciousness'>,\n",
" <Criteria.HELPFULNESS: 'helpfulness'>,\n",
" <Criteria.CONTROVERSIALITY: 'controversiality'>,\n",
" <Criteria.MISOGYNY: 'misogyny'>,\n",
" <Criteria.CRIMINALITY: 'criminality'>,\n",
" <Criteria.INSENSITIVITY: 'insensitivity'>]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.evaluation import Criteria\n",
"\n",
"# For a list of other default supported criteria, try calling `supported_default_criteria`\n",
"list(Criteria)"
]
},
{
"cell_type": "markdown",
"id": "077c4715-e857-44a3-9f87-346642586a8d",
@@ -152,32 +169,52 @@
"\n",
"To evaluate outputs against your own custom criteria, or to be more explicit the definition of any of the default criteria, pass in a dictionary of `\"criterion_name\": \"criterion_description\"`\n",
"\n",
"Note: the evaluator still predicts whether the output complies with ALL of the criteria provided. If you specify antagonistic criteria / antonyms, the evaluator won't be very useful."
"Note: it's recommended that you create a single evaluator per criterion. This way, separate feedback can be provided for each aspect. Additionally, if you provide antagonistic criteria, the evaluator won't be very useful, as it will be configured to predict compliance for ALL of the criteria provided."
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 19,
"id": "bafa0a11-2617-4663-84bf-24df7d0736be",
"metadata": {},
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'The criterion is asking if the output contains numeric information. The submission does mention the \"late 16th century,\" which is a numeric information. Therefore, the submission meets the criterion.\\n\\nY', 'value': 'Y', 'score': 1}\n"
"{'reasoning': \"The criterion asks if the output contains numeric or mathematical information. The joke in the submission does contain mathematical information. It refers to the mathematical concept of squaring a number and also mentions 'pi', which is a mathematical constant. Therefore, the submission does meet the criterion.\\n\\nY\", 'value': 'Y', 'score': 1}\n",
"{'reasoning': 'Let\\'s assess the submission based on the given criteria:\\n\\n1. Numeric: The output does not contain any explicit numeric information. The word \"square\" and \"pi\" are mathematical terms but they are not numeric information per se.\\n\\n2. Mathematical: The output does contain mathematical information. The terms \"square\" and \"pi\" are mathematical terms. The joke is a play on the mathematical concept of squaring a number (in this case, pi).\\n\\n3. Grammatical: The output is grammatically correct. The sentence structure, punctuation, and word usage are all correct.\\n\\n4. Logical: The output is logical. It makes sense within the context of the joke. The joke is a play on words between the mathematical concept of squaring a number (pi) and eating a square pie.\\n\\nBased on the above analysis, the submission does not meet all the criteria because it does not contain numeric information.\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"custom_criterion = {\"numeric\": \"Does the output contain numeric information?\"}\n",
"custom_criterion = {\"numeric\": \"Does the output contain numeric or mathematical information?\"}\n",
"\n",
"eval_chain = load_evaluator(\n",
" EvaluatorType.CRITERIA,\n",
" llm=eval_llm,\n",
" criteria=custom_criterion,\n",
")\n",
"query = \"Tell me a joke\"\n",
"prediction = \"I ate some square pie but I don't know the square of pi.\"\n",
"eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query)\n",
"print(eval_result)\n",
"\n",
"# If you wanted to specify multiple criteria. Generally not recommended\n",
"custom_criteria = {\n",
" \"numeric\": \"Does the output contain numeric information?\",\n",
" \"mathematical\": \"Does the output contain mathematical information?\",\n",
" \"grammatical\": \"Is the output grammatically correct?\",\n",
" \"logical\": \"Is the output logical?\",\n",
"}\n",
"\n",
"eval_chain = load_evaluator(\n",
" EvaluatorType.CRITERIA,\n",
" criteria=custom_criteria,\n",
")\n",
"eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query)\n",
"print(\"Multi-criteria evaluation\")\n",
"print(eval_result)"
]
},
@@ -194,7 +231,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 9,
"id": "99e3c242-5b12-4bd5-b487-64990a159655",
"metadata": {},
"outputs": [
@@ -220,7 +257,7 @@
" ConstitutionalPrinciple(critique_request='Discuss the assistants last response to the human and whether it is in any way insensitive, sexist, racist, or socially inappropriate.', revision_request='Revise the assistants last response to remove content that is in any way insensitive, sexist, racist, or socially inappropriate.', name='insensitive'))]"
]
},
"execution_count": 7,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -234,28 +271,23 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 12,
"id": "f4061bc0-a88a-4d1c-88a0-8003bba084c7",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'The criterion asks to identify if the assistant\\'s response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.\\n\\nThe assistant\\'s response is \"I say that man is a lilly-livered nincompoop\". This is a negative statement about a person named Will. \\n\\nThe term \"lilly-livered\" is an old-fashioned term meaning cowardly, and \"nincompoop\" is a term meaning a foolish or stupid person. \\n\\nWhile this is a negative and potentially insulting statement, it does not appear to be harmful in a physical sense, unethical, racist, sexist, toxic, dangerous, or illegal. \\n\\nIt could be argued that the statement is harmful in a psychological or emotional sense, as it is insulting. However, without further context, it\\'s hard to definitively say if this meets the criteria of being harmful.\\n\\nN',\n",
" 'value': 'N',\n",
" 'score': 0}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'The criterion asks to identify if the assistant\\'s response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.\\n\\nLooking at the assistant\\'s response, it is clear that it is not racist or sexist as it does not discriminate or stereotype based on race or gender. \\n\\nThe response is also not illegal as it does not involve any criminal activity or encourage any form of illegal behavior.\\n\\nThe response is not dangerous as it does not pose a physical threat or risk to anyone\\'s safety.\\n\\nHowever, the assistant\\'s response can be considered harmful and toxic as it uses derogatory language (\"lilly-livered nincompoop\") to describe \\'Will\\'. This can be seen as a form of verbal abuse or insult, which can cause emotional harm.\\n\\nThe response can also be seen as unethical, as it is generally considered inappropriate to insult or belittle someone in this manner.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_chain = load_evaluator(\n",
" EvaluatorType.CRITERIA, llm=eval_llm, criteria=PRINCIPLES[\"harmful1\"]\n",
"evaluator = load_evaluator(\n",
" EvaluatorType.CRITERIA, criteria=PRINCIPLES[\"harmful1\"]\n",
")\n",
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"I say that man is a lilly-livered nincompoop\",\n",
@@ -278,7 +310,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 13,
"id": "1717162d-f76c-4a14-9ade-168d6fa42b7a",
"metadata": {
"tags": []
@@ -291,7 +323,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 14,
"id": "8727e6f4-aaba-472d-bb7d-09fc1a0f0e2a",
"metadata": {
"tags": []
@@ -306,7 +338,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 15,
"id": "3f6f0d8b-cf42-4241-85ae-35b3ce8152a0",
"metadata": {
"tags": []
@@ -316,7 +348,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'Here is my step-by-step reasoning for each criterion:\\n\\nconciseness: The submission is not concise. It contains unnecessary words and phrases like \"That\\'s an elementary question\" and \"you\\'re looking for\". The answer could have simply been stated as \"4\" to be concise.\\n\\nN', 'value': 'N', 'score': 0}\n"
"{'reasoning': 'Step 1) Analyze the conciseness criterion: Is the submission concise and to the point?\\nStep 2) The submission provides extraneous information beyond just answering the question directly. It characterizes the question as \"elementary\" and provides reasoning for why the answer is 4. This additional commentary makes the submission not fully concise.\\nStep 3) Therefore, based on the analysis of the conciseness criterion, the submission does not meet the criteria.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
@@ -340,7 +372,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 16,
"id": "22e57704-682f-44ff-96ba-e915c73269c0",
"metadata": {
"tags": []
@@ -364,13 +396,13 @@
"prompt = PromptTemplate.from_template(fstring)\n",
"\n",
"evaluator = load_evaluator(\n",
" \"criteria\", criteria=\"correctness\", prompt=prompt, requires_reference=True\n",
" \"labeled_criteria\", criteria=\"correctness\", prompt=prompt\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 17,
"id": "5d6b0eca-7aea-4073-a65a-18c3a9cdb5af",
"metadata": {
"tags": []
@@ -380,7 +412,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'Correctness: No, the submission is not correct. The expected response was \"It\\'s 17 now.\" but the response given was \"What\\'s 2+2? That\\'s an elementary question. The answer you\\'re looking for is that two and two is four.\"', 'value': 'N', 'score': 0}\n"
"{'reasoning': 'Correctness: No, the response is not correct. The expected response was \"It\\'s 17 now.\" but the response given was \"What\\'s 2+2? That\\'s an elementary question. The answer you\\'re looking for is that two and two is four.\"', 'value': 'N', 'score': 0}\n"
]
}
],
@@ -404,6 +436,12 @@
"\n",
"Remember when selecting criteria to decide whether they ought to require ground truth labels or not. Things like \"correctness\" are best evaluated with ground truth or with extensive context. Also, remember to pick aligned principles for a given chain so that the classification makes sense."
]
},
{
"cell_type": "markdown",
"id": "a684e2f1",
"metadata": {},
"source": []
}
],
"metadata": {

View File

@@ -1,227 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d63696a8-d035-4cf7-9605-c3210f0b551d",
"metadata": {
"tags": []
},
"source": [
"# QA Correctness\n",
"\n",
"When thinking about a QA system, one of the most important questions to ask is whether the final generated result is correct. The `\"qa\"` evaluator compares a question-answering model's response to a reference answer to provide this level of information. If you are able to annotate a test dataset, this evaluator will be useful.\n",
"\n",
"For more details, check out the reference docs for the [QAEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.qa.eval_chain.QAEvalChain.html#langchain.evaluation.qa.eval_chain.QAEvalChain)'s class definition."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9672fdb9-b53f-41e4-8f72-f21d11edbeac",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.evaluation import load_evaluator\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
"\n",
"# Note: the eval_llm is optional. A gpt-4 model will be provided by default if not specified\n",
"evaluator = load_evaluator(\"qa\", eval_llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b4db474a-9c9d-473f-81b1-55070ee584a6",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': None, 'value': 'CORRECT', 'score': 1}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_strings(\n",
" input=\"What's last quarter's sales numbers?\",\n",
" prediction=\"Last quarter we sold 600,000 total units of product.\",\n",
" reference=\"Last quarter we sold 100,000 units of product A, 210,000 units of product B, and 300,000 units of product C.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a5b345aa-7f45-4eea-bedf-9b0d5e824be3",
"metadata": {},
"source": [
"## SQL Correctness\n",
"\n",
"You can use an LLM to check the equivalence of a SQL query against a reference SQL query using the sql prompt."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6c803b8c-fe1f-4fb7-8ea0-d9c67b855eb3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation.qa.eval_prompt import SQL_PROMPT\n",
"\n",
"eval_chain = load_evaluator(\"qa\", eval_llm=llm, prompt=SQL_PROMPT)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e28b8d07-248f-405c-bcef-e0ebe3a05c3e",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'The expert answer and the submission are very similar in their structure and logic. Both queries are trying to calculate the sum of sales amounts for the last quarter. They both use the SUM function to add up the sale_amount from the sales table. They also both use the same WHERE clause to filter the sales data to only include sales from the last quarter. The WHERE clause uses the DATEADD function to subtract 1 quarter from the current date (GETDATE()) and only includes sales where the sale_date is greater than or equal to this date and less than the current date.\\n\\nThe main difference between the two queries is that the expert answer uses a subquery to first select the sale_amount from the sales table with the appropriate date filter, and then sums these amounts in the outer query. The submission, on the other hand, does not use a subquery and instead sums the sale_amount directly in the main query with the same date filter.\\n\\nHowever, this difference does not affect the result of the query. Both queries will return the same result, which is the sum of the sales amounts for the last quarter.\\n\\nCORRECT',\n",
" 'value': 'CORRECT',\n",
" 'score': 1}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eval_chain.evaluate_strings(\n",
" input=\"What's last quarter's sales numbers?\",\n",
" prediction=\"\"\"SELECT SUM(sale_amount) AS last_quarter_sales\n",
"FROM sales\n",
"WHERE sale_date >= DATEADD(quarter, -1, GETDATE()) AND sale_date < GETDATE();\n",
"\"\"\",\n",
" reference=\"\"\"SELECT SUM(sub.sale_amount) AS last_quarter_sales\n",
"FROM (\n",
" SELECT sale_amount\n",
" FROM sales\n",
" WHERE sale_date >= DATEADD(quarter, -1, GETDATE()) AND sale_date < GETDATE()\n",
") AS sub;\n",
"\"\"\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e0c3dcad-408e-4d26-9e25-848ebacac2c4",
"metadata": {},
"source": [
"## Using Context\n",
"\n",
"Sometimes, reference labels aren't all available, but you have additional knowledge as context from a retrieval system. Often there may be additional information that isn't available to the model you want to evaluate. For this type of scenario, you can use the [ContextQAEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.qa.eval_chain.ContextQAEvalChain.html#langchain.evaluation.qa.eval_chain.ContextQAEvalChain)."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9f3ae116-3a2f-461d-ba6f-7352b42c1b0c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': None, 'value': 'CORRECT', 'score': 1}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eval_chain = load_evaluator(\"context_qa\", eval_llm=llm)\n",
"\n",
"eval_chain.evaluate_strings(\n",
" input=\"Who won the NFC championship game in 2023?\",\n",
" prediction=\"Eagles\",\n",
" reference=\"NFC Championship Game 2023: Philadelphia Eagles 31, San Francisco 49ers 7\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ba5eac17-08b6-4e4f-a896-79e7fc637018",
"metadata": {},
"source": [
"## CoT With Context\n",
"\n",
"The same prompt strategies such as chain of thought can be used to make the evaluation results more reliable.\n",
"The [CotQAEvalChain's](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.qa.eval_chain.CotQAEvalChain.html#langchain.evaluation.qa.eval_chain.CotQAEvalChain) default prompt instructs the model to do this."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "26e3b686-98f4-45a5-9854-7071ec2893f1",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'The student\\'s answer is \"Eagles\". The context states that the Philadelphia Eagles won the NFC championship game in 2023. Therefore, the student\\'s answer matches the information provided in the context.',\n",
" 'value': 'GRADE: CORRECT',\n",
" 'score': 1}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eval_chain = load_evaluator(\"cot_qa\", eval_llm=llm)\n",
"\n",
"eval_chain.evaluate_strings(\n",
" input=\"Who won the NFC championship game in 2023?\",\n",
" prediction=\"Eagles\",\n",
" reference=\"NFC Championship Game 2023: Philadelphia Eagles 31, San Francisco 49ers 7\",\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -53,7 +53,7 @@
{
"data": {
"text/plain": [
"{'score': 12}"
"{'score': 0.11555555555555552}"
]
},
"execution_count": 3,
@@ -79,7 +79,7 @@
{
"data": {
"text/plain": [
"{'score': 4}"
"{'score': 0.0724999999999999}"
]
},
"execution_count": 4,
@@ -143,7 +143,7 @@
"outputs": [],
"source": [
"jaro_evaluator = load_evaluator(\n",
" \"string_distance\", distance=StringDistance.JARO, requires_reference=True\n",
" \"string_distance\", distance=StringDistance.JARO\n",
")"
]
},

View File

@@ -67,7 +67,7 @@
"id": "297dea4b-fb28-4292-b6e0-1c769cfb9cbd",
"metadata": {},
"source": [
"The example above will return a score of 1 if the language model predicts that any of the actions were unnecessary, and it returns a score of 0 if all of them were predicted to be necessary.\n",
"The example above will return a score of 1 if the language model predicts that any of the actions were unnecessary, and it returns a score of 0 if all of them were predicted to be necessary. It returns the string 'decision' as the 'value', and includes the rest of the generated text as 'reasoning' to let you audit the decision.\n",
"\n",
"You can call this evaluator to grade the intermediate steps of your agent's trajectory."
]

View File

@@ -30,6 +30,25 @@
"evaluator = load_evaluator(\"trajectory\")"
]
},
{
"cell_type": "markdown",
"id": "b1c64c1a",
"metadata": {},
"source": [
"## Methods\n",
"\n",
"\n",
"The Agent Trajectory Evaluators are used with the [evaluate_agent_trajectory](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.evaluate_agent_trajectory) (and async [aevaluate_agent_trajectory](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.aevaluate_agent_trajectory)) methods, which accept:\n",
"\n",
"- input (str) The input to the agent.\n",
"- prediction (str) The final predicted response.\n",
"- agent_trajectory (List[Tuple[AgentAction, str]]) The intermediate steps forming the agent trajectory\n",
"\n",
"They return a dictionary with the following values:\n",
"- score: Float from 0 to 1, where 1 would mean \"most effective\" and 0 would mean \"least effective\"\n",
"- reasoning: String \"chain of thought reasoning\" from the LLM generated prior to creating the score"
]
},
{
"cell_type": "markdown",
"id": "e733562c-4c17-4942-9647-acfc5ebfaca2",
@@ -52,11 +71,13 @@
"outputs": [],
"source": [
"import os\n",
"import subprocess\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.tools import tool\n",
"from langchain.agents import AgentType, initialize_agent\n",
"\n",
"from pydantic import HttpUrl\n",
"import subprocess\n",
"from urllib.parse import urlparse\n",
"\n",
"\n",
@@ -117,17 +138,11 @@
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Type <class 'langchain.agents.openai_functions_multi_agent.base._FunctionsAgentAction'> not serializable\n"
]
},
{
"data": {
"text/plain": [
"1.0"
"{'score': 1.0,\n",
" 'reasoning': \"i. The final answer is helpful. It directly answers the user's question about the latency for the website https://langchain.com.\\n\\nii. The AI language model uses a logical sequence of tools to answer the question. It uses the 'ping' tool to measure the latency of the website, which is the correct tool for this task.\\n\\niii. The AI language model uses the tool in a helpful way. It inputs the URL into the 'ping' tool and correctly interprets the output to provide the latency in milliseconds.\\n\\niv. The AI language model does not use too many steps to answer the question. It only uses one step, which is appropriate for this type of question.\\n\\nv. The appropriate tool is used to answer the question. The 'ping' tool is the correct tool to measure website latency.\\n\\nGiven these considerations, the AI language model's performance is excellent. It uses the correct tool, interprets the output correctly, and provides a helpful and direct answer to the user's question.\"}"
]
},
"execution_count": 3,
@@ -141,7 +156,7 @@
" input=result[\"input\"],\n",
" agent_trajectory=result[\"intermediate_steps\"],\n",
")\n",
"evaluation_result[\"score\"]"
"evaluation_result"
]
},
{
@@ -193,7 +208,8 @@
{
"data": {
"text/plain": [
"1.0"
"{'score': 1.0,\n",
" 'reasoning': \"Here is my detailed evaluation of the AI's response:\\n\\ni. The final answer is helpful, as it directly provides the latency measurement for the requested website.\\n\\nii. The sequence of using the ping tool to measure latency is logical for this question.\\n\\niii. The ping tool is used in a helpful way, with the website URL provided as input and the output latency measurement extracted.\\n\\niv. Only one step is used, which is appropriate for simply measuring latency. More steps are not needed.\\n\\nv. The ping tool is an appropriate choice to measure latency. \\n\\nIn summary, the AI uses an optimal single step approach with the right tool and extracts the needed output. The final answer directly answers the question in a helpful way.\\n\\nOverall\"}"
]
},
"execution_count": 6,
@@ -207,7 +223,7 @@
" input=result[\"input\"],\n",
" agent_trajectory=result[\"intermediate_steps\"],\n",
")\n",
"evaluation_result[\"score\"]"
"evaluation_result"
]
},
{
@@ -245,7 +261,8 @@
{
"data": {
"text/plain": [
"1.0"
"{'score': 1.0,\n",
" 'reasoning': \"i. The final answer is helpful. It directly answers the user's question about the latency for the specified website.\\n\\nii. The AI language model uses a logical sequence of tools to answer the question. In this case, only one tool was needed to answer the question, and the model chose the correct one.\\n\\niii. The AI language model uses the tool in a helpful way. The 'ping' tool was used to determine the latency of the website, which was the information the user was seeking.\\n\\niv. The AI language model does not use too many steps to answer the question. Only one step was needed and used.\\n\\nv. The appropriate tool was used to answer the question. The 'ping' tool is designed to measure latency, which was the information the user was seeking.\\n\\nGiven these considerations, the AI language model's performance in answering this question is excellent.\"}"
]
},
"execution_count": 8,
@@ -259,7 +276,7 @@
" input=result[\"input\"],\n",
" agent_trajectory=result[\"intermediate_steps\"],\n",
")\n",
"evaluation_result[\"score\"]"
"evaluation_result"
]
}
],

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,282 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "9a9acd2e",
"metadata": {},
"source": [
"# Interface\n",
"\n",
"In an effort to make it as easy as possible to create custom chains, we've implemented a [\"Runnable\"](https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.Runnable.html#langchain.schema.runnable.Runnable) protocol that most components implement. This is a standard interface with a few different methods, which makes it easy to define custom chains as well as making it possible to invoke them in a standard way. The standard interface exposed includes:\n",
"\n",
"- `stream`: stream back chunks of the response\n",
"- `invoke`: call the chain on an input\n",
"- `batch`: call the chain on a list of inputs\n",
"\n",
"These also have corresponding async methods:\n",
"\n",
"- `astream`: stream back chunks of the response async\n",
"- `ainvoke`: call the chain on an input async\n",
"- `abatch`: call the chain on a list of inputs async\n",
"\n",
"The type of the input varies by component:\n",
"\n",
"| Component | Input Type |\n",
"| --- | --- |\n",
"|Prompt|Dictionary|\n",
"|Retriever|Single string|\n",
"|Model| Single string, list of chat messages or a PromptValue|\n",
"\n",
"The output type also varies by component:\n",
"\n",
"| Component | Output Type |\n",
"| --- | --- |\n",
"| LLM | String |\n",
"| ChatModel | ChatMessage |\n",
"| Prompt | PromptValue |\n",
"| Retriever | List of documents |\n",
"\n",
"Let's take a look at these methods! To do so, we'll create a super simple PromptTemplate + ChatModel chain."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "466b65b3",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3c634ef0",
"metadata": {},
"outputs": [],
"source": [
"model = ChatOpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d1850a1f",
"metadata": {},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "56d0669f",
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | model"
]
},
{
"cell_type": "markdown",
"id": "daf2b2b2",
"metadata": {},
"source": [
"## Stream"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "bea9639d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sure, here's a bear-themed joke for you:\n",
"\n",
"Why don't bears wear shoes?\n",
"\n",
"Because they have bear feet!"
]
}
],
"source": [
"for s in chain.stream({\"topic\": \"bears\"}):\n",
" print(s.content, end=\"\")"
]
},
{
"cell_type": "markdown",
"id": "cbf1c782",
"metadata": {},
"source": [
"## Invoke"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "470e483f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Why don't bears wear shoes?\\n\\nBecause they already have bear feet!\", additional_kwargs={}, example=False)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"topic\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"id": "88f0c279",
"metadata": {},
"source": [
"## Batch"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "9685de67",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Why don't bears ever wear shoes?\\n\\nBecause they have bear feet!\", additional_kwargs={}, example=False),\n",
" AIMessage(content=\"Why don't cats play poker in the wild?\\n\\nToo many cheetahs!\", additional_kwargs={}, example=False)]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.batch([{\"topic\": \"bears\"}, {\"topic\": \"cats\"}])"
]
},
{
"cell_type": "markdown",
"id": "b960cbfe",
"metadata": {},
"source": [
"## Async Stream"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "ea35eee4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Why don't bears wear shoes?\n",
"\n",
"Because they have bear feet!"
]
}
],
"source": [
"async for s in chain.astream({\"topic\": \"bears\"}):\n",
" print(s.content, end=\"\")"
]
},
{
"cell_type": "markdown",
"id": "04cb3324",
"metadata": {},
"source": [
"## Async Invoke"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "ef8c9b20",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Sure, here you go:\\n\\nWhy don't bears wear shoes?\\n\\nBecause they have bear feet!\", additional_kwargs={}, example=False)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chain.ainvoke({\"topic\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"id": "3da288d5",
"metadata": {},
"source": [
"## Async Batch"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "eba2a103",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Why don't bears wear shoes?\\n\\nBecause they have bear feet!\", additional_kwargs={}, example=False)]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chain.abatch([{\"topic\": \"bears\"}])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -5,7 +5,7 @@
"id": "920a3c1a",
"metadata": {},
"source": [
"# Model Comparison\n",
"# Model comparison\n",
"\n",
"Constructing your language model application will likely involved choosing between many different options of prompts, models, and even chains to use. When doing so, you will want to compare these different options on different inputs in an easy, flexible, and intuitive way. \n",
"\n",
@@ -254,7 +254,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
"version": "3.11.3"
}
},
"nbformat": 4,

View File

@@ -14,7 +14,7 @@
"> using both human and machine feedback. We provide support for each step in the MLOps cycle, \n",
"> from data labeling to model monitoring.\n",
"\n",
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/modules/callbacks/integrations/argilla.html\">\n",
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/integrations/callbacks/argilla.html\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]

View File

@@ -71,3 +71,6 @@ or any other local ENV management tool.
Currently `StreamlitCallbackHandler` is geared towards use with a LangChain Agent Executor. Support for additional agent types,
use directly with Chains, etc will be added in the future.
You may also be interested in using
[StreamlitChatMessageHistory](/docs/integrations/memory/streamlit_chat_message_history) for LangChain.

View File

@@ -0,0 +1,287 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "5125a1e3",
"metadata": {},
"source": [
"# Anthropic Functions\n",
"\n",
"This notebook shows how to use an experimental wrapper around Anthropic that gives it the same API as OpenAI Functions."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "378be79b",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.14) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from langchain_experimental.llms.anthropic_functions import AnthropicFunctions"
]
},
{
"cell_type": "markdown",
"id": "65499965",
"metadata": {},
"source": [
"## Initialize Model\n",
"\n",
"You can initialize this wrapper the same way you'd initialize ChatAnthropic"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e1d535f6",
"metadata": {},
"outputs": [],
"source": [
"model = AnthropicFunctions(model='claude-2')"
]
},
{
"cell_type": "markdown",
"id": "fcc9eaf4",
"metadata": {},
"source": [
"## Passing in functions\n",
"\n",
"You can now pass in functions in a similar way"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0779c320",
"metadata": {},
"outputs": [],
"source": [
"functions=[\n",
" {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\"\n",
" },\n",
" \"unit\": {\n",
" \"type\": \"string\",\n",
" \"enum\": [\"celsius\", \"fahrenheit\"]\n",
" }\n",
" },\n",
" \"required\": [\"location\"]\n",
" }\n",
" }\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ad75a933",
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fc703085",
"metadata": {},
"outputs": [],
"source": [
"response = model.predict_messages(\n",
" [HumanMessage(content=\"whats the weater in boston?\")], \n",
" functions=functions\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "04d7936a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' ', additional_kwargs={'function_call': {'name': 'get_current_weather', 'arguments': '{\"location\": \"Boston, MA\", \"unit\": \"fahrenheit\"}'}}, example=False)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"response"
]
},
{
"cell_type": "markdown",
"id": "0072fdba",
"metadata": {},
"source": [
"## Using for extraction\n",
"\n",
"You can now use this for extraction."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7af5c567",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import create_extraction_chain\n",
"schema = {\n",
" \"properties\": {\n",
" \"name\": {\"type\": \"string\"},\n",
" \"height\": {\"type\": \"integer\"},\n",
" \"hair_color\": {\"type\": \"string\"},\n",
" },\n",
" \"required\": [\"name\", \"height\"],\n",
"}\n",
"inp = \"\"\"\n",
"Alex is 5 feet tall. Claudia is 1 feet taller Alex and jumps higher than him. Claudia is a brunette and Alex is blonde.\n",
" \"\"\""
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "bd01082a",
"metadata": {},
"outputs": [],
"source": [
"chain = create_extraction_chain(schema, model)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b5a23e9f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'Alex', 'height': '5', 'hair_color': 'blonde'},\n",
" {'name': 'Claudia', 'height': '6', 'hair_color': 'brunette'}]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(inp)"
]
},
{
"cell_type": "markdown",
"id": "90ec959e",
"metadata": {},
"source": [
"## Using for tagging\n",
"\n",
"You can now use this for tagging"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "03c1eb0d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import create_tagging_chain"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "581c0ece",
"metadata": {},
"outputs": [],
"source": [
"schema = {\n",
" \"properties\": {\n",
" \"sentiment\": {\"type\": \"string\"},\n",
" \"aggressiveness\": {\"type\": \"integer\"},\n",
" \"language\": {\"type\": \"string\"},\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d9a8570e",
"metadata": {},
"outputs": [],
"source": [
"chain = create_tagging_chain(schema, model)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "cf37d679",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'sentiment': 'positive', 'aggressiveness': '0', 'language': 'english'}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(\"this is really cool\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,95 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# AzureML Chat Online Endpoint\n",
"\n",
"[AzureML](https://azure.microsoft.com/en-us/products/machine-learning/) is a platform used to build, train, and deploy machine learning models. Users can explore the types of models to deploy in the Model Catalog, which provides Azure Foundation Models and OpenAI Models. Azure Foundation Models include various open-source models and popular Hugging Face models. Users can also import models of their liking into AzureML.\n",
"\n",
"This notebook goes over how to use a chat model hosted on an `AzureML online endpoint`"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models.azureml_endpoint import AzureMLChatOnlineEndpoint"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up\n",
"\n",
"To use the wrapper, you must [deploy a model on AzureML](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-foundation-models?view=azureml-api-2#deploying-foundation-models-to-endpoints-for-inferencing) and obtain the following parameters:\n",
"\n",
"* `endpoint_api_key`: The API key provided by the endpoint\n",
"* `endpoint_url`: The REST endpoint url provided by the endpoint"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Content Formatter\n",
"\n",
"The `content_formatter` parameter is a handler class for transforming the request and response of an AzureML endpoint to match with required schema. Since there are a wide range of models in the model catalog, each of which may process data differently from one another, a `ContentFormatterBase` class is provided to allow users to transform data to their liking. The following content formatters are provided:\n",
"\n",
"* `LLamaContentFormatter`: Formats request and response data for LLaMa2-chat"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' The Collatz Conjecture is one of the most famous unsolved problems in mathematics, and it has been the subject of much study and research for many years. While it is impossible to predict with certainty whether the conjecture will ever be solved, there are several reasons why it is considered a challenging and important problem:\\n\\n1. Simple yet elusive: The Collatz Conjecture is a deceptively simple statement that has proven to be extraordinarily difficult to prove or disprove. Despite its simplicity, the conjecture has eluded some of the brightest minds in mathematics, and it remains one of the most famous open problems in the field.\\n2. Wide-ranging implications: The Collatz Conjecture has far-reaching implications for many areas of mathematics, including number theory, algebra, and analysis. A solution to the conjecture could have significant impacts on these fields and potentially lead to new insights and discoveries.\\n3. Computational evidence: While the conjecture remains unproven, extensive computational evidence supports its validity. In fact, no counterexample to the conjecture has been found for any starting value up to 2^64 (a number', additional_kwargs={}, example=False)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chat_models.azureml_endpoint import LlamaContentFormatter\n",
"from langchain.schema import HumanMessage\n",
"\n",
"chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaContentFormatter())\n",
"response = chat(messages=[\n",
" HumanMessage(content=\"Will the Collatz conjecture ever be solved?\")\n",
"])\n",
"response"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,6 +1,7 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -8,11 +9,7 @@
"\n",
"Note: This is seperate from the Google PaLM integration. Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there. \n",
"\n",
"PaLM API on Vertex AI is a Preview offering, subject to the Pre-GA Offerings Terms of the [GCP Service Specific Terms](https://cloud.google.com/terms/service-terms). \n",
"\n",
"Pre-GA products and features may have limited support, and changes to pre-GA products and features may not be compatible with other pre-GA versions. For more information, see the [launch stage descriptions](https://cloud.google.com/products#product-launch-stages). Further, by using PaLM API on Vertex AI, you agree to the Generative AI Preview [terms and conditions](https://cloud.google.com/trustedtester/aitos) (Preview Terms).\n",
"\n",
"For PaLM API on Vertex AI, you can process personal data as outlined in the Cloud Data Processing Addendum, subject to applicable restrictions and obligations in the Agreement (as defined in the Preview Terms).\n",
"By default, Google Cloud [does not use](https://cloud.google.com/vertex-ai/docs/generative-ai/data-governance#foundation_model_development) Customer Data to train its foundation models as part of Google Cloud`s AI/ML Privacy Commitment. More details about how Google processes data can also be found in [Google's Customer Data Processing Addendum (CDPA)](https://cloud.google.com/terms/data-processing-addendum).\n",
"\n",
"To use Vertex AI PaLM you must have the `google-cloud-aiplatform` Python package installed and either:\n",
"- Have credentials configured for your environment (gcloud, workload identity, etc...)\n",
@@ -90,6 +87,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -142,6 +140,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"execution": {

View File

@@ -13,12 +13,12 @@
"You will need a Etherscan api key to proceed. The free api key has 5 calls per seconds quota.\n",
"\n",
"The loader supports the following six functinalities:\n",
"* Retrieve normal transactions under specifc account on Ethereum Mainet\n",
"* Retrieve internal transactions under specifc account on Ethereum Mainet\n",
"* Retrieve erc20 transactions under specifc account on Ethereum Mainet\n",
"* Retrieve erc721 transactions under specifc account on Ethereum Mainet\n",
"* Retrieve erc1155 transactions under specifc account on Ethereum Mainet\n",
"* Retrieve ethereum balance in wei under specifc account on Ethereum Mainet\n",
"* Retrieve normal transactions under specific account on Ethereum Mainet\n",
"* Retrieve internal transactions under specific account on Ethereum Mainet\n",
"* Retrieve erc20 transactions under specific account on Ethereum Mainet\n",
"* Retrieve erc721 transactions under specific account on Ethereum Mainet\n",
"* Retrieve erc1155 transactions under specific account on Ethereum Mainet\n",
"* Retrieve ethereum balance in wei under specific account on Ethereum Mainet\n",
"\n",
"\n",
"If the account does not have corresponding transactions, the loader will a list with one document. The content of document is ''.\n",

View File

@@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### ChatGPT Data\n",
"# ChatGPT Data\n",
"\n",
">[ChatGPT](https://chat.openai.com) is an artificial intelligence (AI) chatbot developed by OpenAI.\n",
"\n",

View File

@@ -0,0 +1,94 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "23c6e167",
"metadata": {},
"source": [
"# Concurrent Loader\n",
"\n",
"Works just like the GenericLoader but concurrently for those who choose to optimize their workflow.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6ff3fb1f",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import ConcurrentLoader"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ce96fa20",
"metadata": {},
"outputs": [],
"source": [
"loader = ConcurrentLoader.from_filesystem('example_data/', glob=\"**/*.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "06a6cf5d",
"metadata": {},
"outputs": [],
"source": [
"files = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "b87d3e58",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(files)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "668f1ee5",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@@ -2,7 +2,7 @@
This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain.
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! Instead, edit the notebook w/the location & name as this file. -->
```python

View File

@@ -0,0 +1,13 @@
<?xml version="1.0" encoding="UTF-8"?>
<opml version="1.0">
<head>
<title>Sample RSS feed subscriptions</title>
</head>
<body>
<outline text="Tech" title="Tech">
<outline type="rss" text="Engadget" title="Engadget" xmlUrl="http://www.engadget.com/rss-full.xml" htmlUrl="http://www.engadget.com"/>
<outline type="rss" text="Ars Technica - All content" title="Ars Technica - All content" xmlUrl="http://feeds.arstechnica.com/arstechnica/index/" htmlUrl="https://arstechnica.com"/>
</outline>
</body>
</opml>

Some files were not shown because too many files have changed in this diff Show More