Compare commits

...

196 Commits

Author SHA1 Message Date
Bagatur
37aec1e050 bump 326 (#12569) 2023-10-30 10:11:17 -07:00
Eugene Yurtsev
1b1a2d5740 Image Caption accepts bytes for images (#12561)
Accept bytes for images in image caption

---------

Co-authored-by: webcoderz <19884161+webcoderz@users.noreply.github.com>
2023-10-30 12:29:54 -04:00
Nuno Campos
7897483819 Allow astream_log to be used inside atrace_as_chain_group (#12558)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-30 15:55:16 +00:00
Tomaz Bratanic
8e88ba16a8 Update neo4j template readmes (#12540) 2023-10-30 07:57:53 -07:00
Bagatur
b2138508cb google translate nb formatting (#12534) 2023-10-29 21:27:04 -07:00
Holt Skinner
e05bb938de Merge pull request #12433
* feat: Add Google Cloud Translation document transformer

* Merge branch 'langchain-ai:master' into google-translate

* Add documentation for Google Translate Document Transformer

* Fix line length error

* Merge branch 'master' into google-translate

* Merge branch 'google-translate' of https://github.com/holtskinner/lan…

* Addressed code review comments

* Merge branch 'master' into google-translate

* Merge branch 'google-translate' of https://github.com/holtskinner/lan…

* Removed extra variable

* Merge branch 'google-translate' of https://github.com/holtskinner/lan…

* Merge branch 'master' into google-translate

* Merge branch 'google-translate' of https://github.com/holtskinner/lan…

* Removed extra import
2023-10-29 21:22:36 -04:00
Samad Koita
d1fdcd4fcb Masking of API Key for GooseAI LLM (#12496)
Description: Add masking of API Key for GooseAI LLM when printed.
Issue: https://github.com/langchain-ai/langchain/issues/12165
Dependencies: None
Tag maintainer: @eyurtsev

---------

Co-authored-by: Samad Koita <>
2023-10-29 21:21:33 -04:00
Andrew Zhou
64c4a698a8 More comprehensive readthedocs document loader (#12382)
## **Description:**
When building our own readthedocs.io scraper, we noticed a couple
interesting things:

1. Text lines with a lot of nested <span> tags would give unclean text
with a bunch of newlines. For example, for [Langchain's
documentation](https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.readthedocs.ReadTheDocsLoader.html#langchain.document_loaders.readthedocs.ReadTheDocsLoader),
a single line is represented in a complicated nested HTML structure, and
the naive `soup.get_text()` call currently being made will create a
newline for each nested HTML element. Therefore, the document loader
would give a messy, newline-separated blob of text. This would be true
in a lot of cases.

<img width="945" alt="Screenshot 2023-10-26 at 6 15 39 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/eca85d1f-d2bf-4487-a18a-e1e732fadf19">
<img width="1031" alt="Screenshot 2023-10-26 at 6 16 00 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/035938a0-9892-4f6a-83cd-0d7b409b00a3">

Additionally, content from iframes, code from scripts, css from styles,
etc. will be gotten if it's a subclass of the selector (which happens
more often than you'd think). For example, [this
page](https://pydeck.gl/gallery/contour_layer.html#) will scrape 1.5
million characters of content that looks like this:

<img width="1372" alt="Screenshot 2023-10-26 at 6 32 55 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/dbd89e39-9478-4a18-9e84-f0eb91954eac">

Therefore, I wrote a recursive _get_clean_text(soup) class function that
1. skips all irrelevant elements, and 2. only adds newlines when
necessary.

2. Index pages (like [this
one](https://api.python.langchain.com/en/latest/api_reference.html))
would be loaded, chunked, and eventually embedded. This is really bad
not just because the user will be embedding irrelevant information - but
because index pages are very likely to show up in retrieved content,
making retrieval less effective (in our tests). Therefore, I added a
bool parameter `exclude_index_pages` defaulted to False (which is the
current behavior — although I'd petition to default this to True) that
will skip all pages where links take up 50%+ of the page. Through manual
testing, this seems to be the best threshold.



## Other Information:
  - **Issue:** n/a
  - **Dependencies:** n/a
  - **Tag maintainer:** n/a
  - **Twitter handle:** @andrewthezhou

---------

Co-authored-by: Andrew Zhou <andrew@heykona.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-29 16:26:53 -07:00
Peter Vandenabeele
3468c038ba Add unit tests for document_transformers/beautiful_soup_transformer.py (#12520)
- **Description:**
* Add unit tests for document_transformers/beautiful_soup_transformer.py
* Basic functionality is tested (extract tags, remove tags, drop lines)
    * add a FIXME comment about the order of tags that is not preserved
      (and a passing test, but with the expected tags now out-of-order)
  - **Issue:** None
  - **Dependencies:** None
  - **Tag maintainer:** @rlancemartin 
  - **Twitter handle:** `peter_v`

Please make sure your PR is passing linting and testing before
submitting.

=> OK: I ran `make format`, `make test` (passing after install of
beautifulsoup4) and `make lint`.
2023-10-29 16:24:47 -07:00
Bagatur
d31d705407 update contributing (#12532) 2023-10-29 16:22:18 -07:00
Bagatur
0b4b9e61fc Bagatur/fix doc ci (#12529) 2023-10-29 16:15:18 -07:00
Bagatur
2424fff3f1 notebook fmt (#12498) 2023-10-29 15:50:09 -07:00
Harrison Chase
56cc5b847c Harrison/add descriptions (#12522) 2023-10-29 15:11:37 -07:00
Anirudh Gautam
b257e6a4e8 Mask API key for AI21 LLM (#12418)
- **Description:** Added masking of the API Key for AI21 LLM when
printed and improved the docstring for AI21 LLM.
- Updated the AI21 LLM to utilize SecretStr from pydantic to securely
manage API key.
- Made improvements in the docstring of AI21 LLM. It now mentions that
the API key can also be passed as a named parameter to the constructor.
    - Added unit tests.
  - **Issue:** #12165 
  - **Tag maintainer:** @eyurtsev

---------

Co-authored-by: Anirudh Gautam <anirudh@Anirudhs-Mac-mini.local>
2023-10-29 14:53:41 -07:00
Nico Baier
35d726dc15 docs(prompt_templates): fix typo in prompt template (#12497)
- **Description:** Fixes a small typo in the [Prompt template
document](https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/)
  - **Dependencies:** none
2023-10-29 14:52:37 -07:00
silvhua
9dead1034c _dalle_image_url returns list of urls if n>1 (#11800)
- **Description:** Updated the `_dalle_image_url` method to return a
list of URLs if self.n>1,
  - **Issue:** #10691,
  - **Dependencies:** unsure,
  - **Tag maintainer:** @eyurtsev,
  - **Twitter handle:** @silvhua
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-29 14:23:23 -07:00
Bagatur
1815ea2fdb OpenAI runnable constructor (#12455) 2023-10-29 13:40:30 -07:00
William FH
a830b809f3 Patch forward ref bug (#12508)
Currently this gives a bug:
```
from langchain.schema.runnable import RunnableLambda

bound = RunnableLambda(lambda x: x).with_config({"callbacks": []})

# ConfigError: field "callbacks" not yet prepared so type is still a ForwardRef, you might need to call RunnableConfig.update_forward_refs().
```

Rather than deal with cyclic imports and extra load time, etc., I think
it makes sense to just have a separate Callbacks definition here that is
a relaxed typehint.
2023-10-29 00:53:01 -07:00
William FH
36204c2baf Evaluation Callback Multi Response (#12505)
1. Allow run evaluators to return {"results": [list of evaluation
results]} in the evaluator callback.
2. Allows run evaluators to pick the target run ID to provide feedback
to

(1) means you could do something like a function call that populates a
full rubric in one go (not sure how reliable that is in general though)
rather than splitting off into separate LLM calls - cheaper and less
code to write
(2) means you can provide feedback to runs on subsequent calls.
Immediate use case is if you wanted to add an evaluator to a chat bot
and assign to assign to previous conversation turns


have a corresponding one in the SDK
2023-10-28 23:18:29 -07:00
Harrison Chase
9e0ae56287 various templates improvements (#12500) 2023-10-28 22:13:22 -07:00
Harrison Chase
d85d4d7822 add cookbook for selectins llms based on context length (#12486) 2023-10-28 21:50:14 -07:00
Harrison Chase
0660c06cf1 add gha for cli (#12492) 2023-10-28 21:49:28 -07:00
0xC9
79cf01366e Update tool.py (#12472)
In the GoogleSerperResults class, the name field is defined as
'google_serrper_results_json'. This looks like a typo, and perhaps
should be 'google_serper_results_json'.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-28 21:49:01 -07:00
Harrison Chase
61f5ea4b5e Sphinxbio nls/add plate chain template (#12502)
Co-authored-by: Nicholas Larus-Stone <7347808+nlarusstone@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-28 21:48:17 -07:00
Harrison Chase
221134d239 Harrison/quick start (#12491)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-28 16:26:52 -07:00
Bagatur
e130680d74 Bagatur/self query doc update (#12461) 2023-10-28 14:37:14 -07:00
Piyush Jain
689853902e Added a rag template for Kendra (#12470)
## Description
Adds a rag template for Amazon Kendra with Bedrock.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-10-28 08:58:28 -07:00
Harrison Chase
eb903e211c bump to 36 (#12487) 2023-10-28 08:51:23 -07:00
Tyler Hutcherson
4209457bdc Redis langserve template (#12443)
Add Redis langserve template! Eventually will add semantic caching to
this too. But I was struggling to get that to work for some reason with
the LCEL implementation here.

- **Description:** Introduces the Redis LangServe template. A simple RAG
based app built on top of Redis that allows you to chat with company's
public financial data (Edgar 10k filings)
  - **Issue:** None
- **Dependencies:** The template contains the poetry project
requirements to run this template
  - **Tag maintainer:** @baskaryan @Spartee 
  - **Twitter handle:** @tchutch94

**Note**: this requires the commit here that deletes the
`_aget_relevant_documents()` method from the Redis retriever class that
wasn't implemented. That was breaking the langserve app.

---------

Co-authored-by: Sam Partee <sam.partee@redis.com>
2023-10-28 08:31:12 -07:00
Erick Friis
9adaa78c65 cli improvements (#12465)
Features
- add multiple repos by their branch/repo
- generate `pip install` commands and `add_route()` code
![Screenshot 2023-10-27 at 4 49 52
PM](https://github.com/langchain-ai/langchain/assets/9557659/3aec4cbb-3f67-4f04-8370-5b54ea983b2a)

Optimizations:
- group installs by repo/branch to avoid duplicate cloning
2023-10-28 08:25:31 -07:00
Piyush Jain
5545de0466 Updated the Bedrock rag template (#12462)
Updates the bedrock rag template.
- Removes pinecone and replaces with FAISS as the vector store
- Fixes the environment variables, setting defaults
- Adds a `main.py` test file quick sanity testing
- Updates README.md with correct instructions
2023-10-27 17:02:28 -07:00
Lance Martin
5c2243ee91 Update llama.cpp and Ollama templates (#12466) 2023-10-27 16:54:54 -07:00
Lance Martin
f10c17c6a4 Update SQL templates (#12464) 2023-10-27 16:34:37 -07:00
Lance Martin
a476147189 Add Weaviate RAG template (#12460) 2023-10-27 15:19:34 -07:00
Adam Law
df4960a6d8 add reranking to azuresearch (#12454)
-**Description** Adds returning the reranking score when using semantic
search
-**Issue:* #12317

---------

Co-authored-by: Adam Law <adamlaw@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-27 14:14:09 -07:00
dependabot[bot]
389459af8f Bump @babel/traverse from 7.22.8 to 7.23.2 in /docs (#12453)
Bumps
[@babel/traverse](https://github.com/babel/babel/tree/HEAD/packages/babel-traverse)
from 7.22.8 to 7.23.2.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/babel/babel/releases"><code>@​babel/traverse</code>'s
releases</a>.</em></p>
<blockquote>
<h2>v7.23.2 (2023-10-11)</h2>
<p><strong>NOTE</strong>: This release also re-publishes
<code>@babel/core</code>, even if it does not appear in the linked
release commit.</p>
<p>Thanks <a
href="https://github.com/jimmydief"><code>@​jimmydief</code></a> for
your first PR!</p>
<h4>🐛 Bug Fix</h4>
<ul>
<li><code>babel-traverse</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16033">#16033</a>
Only evaluate own String/Number/Math methods (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16022">#16022</a>
Rewrite <code>.tsx</code> extension when using
<code>rewriteImportExtensions</code> (<a
href="https://github.com/jimmydief"><code>@​jimmydief</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16017">#16017</a>
Fix: fallback to typeof when toString is applied to incompatible object
(<a href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16025">#16025</a>
Avoid override mistake in namespace imports (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h4>Committers: 5</h4>
<ul>
<li>Babel Bot (<a
href="https://github.com/babel-bot"><code>@​babel-bot</code></a>)</li>
<li>Huáng Jùnliàng (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
<li>James Diefenderfer (<a
href="https://github.com/jimmydief"><code>@​jimmydief</code></a>)</li>
<li>Nicolò Ribaudo (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
<li><a
href="https://github.com/liuxingbaoyu"><code>@​liuxingbaoyu</code></a></li>
</ul>
<h2>v7.23.1 (2023-09-25)</h2>
<p>Re-publishing <code>@babel/helpers</code> due to a publishing error
in 7.23.0.</p>
<h2>v7.23.0 (2023-09-25)</h2>
<p>Thanks <a
href="https://github.com/lorenzoferre"><code>@​lorenzoferre</code></a>
and <a
href="https://github.com/RajShukla1"><code>@​RajShukla1</code></a> for
your first PRs!</p>
<h4>🚀 New Feature</h4>
<ul>
<li><code>babel-plugin-proposal-import-wasm-source</code>,
<code>babel-plugin-syntax-import-source</code>,
<code>babel-plugin-transform-dynamic-import</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15870">#15870</a>
Support transforming <code>import source</code> for wasm (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-module-transforms</code>,
<code>babel-helpers</code>,
<code>babel-plugin-proposal-import-defer</code>,
<code>babel-plugin-syntax-import-defer</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15878">#15878</a>
Implement <code>import defer</code> proposal transform support (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>, <code>babel-parser</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15845">#15845</a>
Implement <code>import defer</code> parsing support (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
<li><a
href="https://redirect.github.com/babel/babel/pull/15829">#15829</a> Add
parsing support for the &quot;source phase imports&quot; proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>,
<code>babel-helper-module-transforms</code>, <code>babel-parser</code>,
<code>babel-plugin-transform-dynamic-import</code>,
<code>babel-plugin-transform-modules-amd</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-plugin-transform-modules-systemjs</code>,
<code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15682">#15682</a> Add
<code>createImportExpressions</code> parser option (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15671">#15671</a>
Pass through nonce to the transformed script element (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-function-name</code>,
<code>babel-helper-member-expression-to-functions</code>,
<code>babel-helpers</code>, <code>babel-parser</code>,
<code>babel-plugin-proposal-destructuring-private</code>,
<code>babel-plugin-proposal-optional-chaining-assign</code>,
<code>babel-plugin-syntax-optional-chaining-assign</code>,
<code>babel-plugin-transform-destructuring</code>,
<code>babel-plugin-transform-optional-chaining</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15751">#15751</a> Add
support for optional chain in assignments (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-proposal-decorators</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15895">#15895</a>
Implement the &quot;decorator metadata&quot; proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15893">#15893</a> Add
<code>t.buildUndefinedNode</code> (<a
href="https://github.com/liuxingbaoyu"><code>@​liuxingbaoyu</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/babel/babel/blob/main/CHANGELOG.md"><code>@​babel/traverse</code>'s
changelog</a>.</em></p>
<blockquote>
<h2>v7.23.2 (2023-10-11)</h2>
<h4>🐛 Bug Fix</h4>
<ul>
<li><code>babel-traverse</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16033">#16033</a>
Only evaluate own String/Number/Math methods (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16022">#16022</a>
Rewrite <code>.tsx</code> extension when using
<code>rewriteImportExtensions</code> (<a
href="https://github.com/jimmydief"><code>@​jimmydief</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16017">#16017</a>
Fix: fallback to typeof when toString is applied to incompatible object
(<a href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16025">#16025</a>
Avoid override mistake in namespace imports (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h2>v7.23.0 (2023-09-25)</h2>
<h4>🚀 New Feature</h4>
<ul>
<li><code>babel-plugin-proposal-import-wasm-source</code>,
<code>babel-plugin-syntax-import-source</code>,
<code>babel-plugin-transform-dynamic-import</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15870">#15870</a>
Support transforming <code>import source</code> for wasm (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-module-transforms</code>,
<code>babel-helpers</code>,
<code>babel-plugin-proposal-import-defer</code>,
<code>babel-plugin-syntax-import-defer</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15878">#15878</a>
Implement <code>import defer</code> proposal transform support (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>, <code>babel-parser</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15845">#15845</a>
Implement <code>import defer</code> parsing support (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
<li><a
href="https://redirect.github.com/babel/babel/pull/15829">#15829</a> Add
parsing support for the &quot;source phase imports&quot; proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>,
<code>babel-helper-module-transforms</code>, <code>babel-parser</code>,
<code>babel-plugin-transform-dynamic-import</code>,
<code>babel-plugin-transform-modules-amd</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-plugin-transform-modules-systemjs</code>,
<code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15682">#15682</a> Add
<code>createImportExpressions</code> parser option (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15671">#15671</a>
Pass through nonce to the transformed script element (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-function-name</code>,
<code>babel-helper-member-expression-to-functions</code>,
<code>babel-helpers</code>, <code>babel-parser</code>,
<code>babel-plugin-proposal-destructuring-private</code>,
<code>babel-plugin-proposal-optional-chaining-assign</code>,
<code>babel-plugin-syntax-optional-chaining-assign</code>,
<code>babel-plugin-transform-destructuring</code>,
<code>babel-plugin-transform-optional-chaining</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15751">#15751</a> Add
support for optional chain in assignments (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-proposal-decorators</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15895">#15895</a>
Implement the &quot;decorator metadata&quot; proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15893">#15893</a> Add
<code>t.buildUndefinedNode</code> (<a
href="https://github.com/liuxingbaoyu"><code>@​liuxingbaoyu</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15913">#15913</a> Add
<code>rewriteImportExtensions</code> option to TS preset (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-parser</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15896">#15896</a>
Allow TS tuples to have both labeled and unlabeled elements (<a
href="https://github.com/yukukotani"><code>@​yukukotani</code></a>)</li>
</ul>
</li>
</ul>
<h4>🐛 Bug Fix</h4>
<ul>
<li><code>babel-plugin-transform-block-scoping</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15962">#15962</a>
fix: <code>transform-block-scoping</code> captures the variables of the
method in the loop (<a
href="https://github.com/liuxingbaoyu"><code>@​liuxingbaoyu</code></a>)</li>
</ul>
</li>
</ul>
<h4>💅 Polish</h4>
<ul>
<li><code>babel-traverse</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15797">#15797</a>
Expand evaluation of global built-ins in <code>@babel/traverse</code>
(<a
href="https://github.com/lorenzoferre"><code>@​lorenzoferre</code></a>)</li>
</ul>
</li>
<li><code>babel-plugin-proposal-explicit-resource-management</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15985">#15985</a>
Improve source maps for blocks with <code>using</code> declarations (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h4>🔬 Output optimization</h4>
<ul>
<li><code>babel-core</code>,
<code>babel-helper-module-transforms</code>,
<code>babel-plugin-transform-async-to-generator</code>,
<code>babel-plugin-transform-classes</code>,
<code>babel-plugin-transform-dynamic-import</code>,
<code>babel-plugin-transform-function-name</code>,
<code>babel-plugin-transform-modules-amd</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-plugin-transform-modules-umd</code>,
<code>babel-plugin-transform-parameters</code>,
<code>babel-plugin-transform-react-constant-elements</code>,
<code>babel-plugin-transform-react-inline-elements</code>,
<code>babel-plugin-transform-runtime</code>,
<code>babel-plugin-transform-typescript</code>,
<code>babel-preset-env</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15984">#15984</a>
Inline <code>exports.XXX =</code> update in simple variable declarations
(<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h2>v7.22.20 (2023-09-16)</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="b4b9942a6c"><code>b4b9942</code></a>
v7.23.2</li>
<li><a
href="b13376b346"><code>b13376b</code></a>
Only evaluate own String/Number/Math methods (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/16033">#16033</a>)</li>
<li><a
href="ca58ec15cb"><code>ca58ec1</code></a>
v7.23.0</li>
<li><a
href="0f333dafcf"><code>0f333da</code></a>
Add <code>createImportExpressions</code> parser option (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15682">#15682</a>)</li>
<li><a
href="3744545649"><code>3744545</code></a>
Fix linting</li>
<li><a
href="c7e6806e21"><code>c7e6806</code></a>
Add <code>t.buildUndefinedNode</code> (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15893">#15893</a>)</li>
<li><a
href="38ee8b4dd6"><code>38ee8b4</code></a>
Expand evaluation of global built-ins in <code>@babel/traverse</code>
(<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15797">#15797</a>)</li>
<li><a
href="9f3dfd9021"><code>9f3dfd9</code></a>
v7.22.20</li>
<li><a
href="3ed28b29c1"><code>3ed28b2</code></a>
Fully support <code>||</code> and <code>&amp;&amp;</code> in
<code>pluginToggleBooleanFlag</code> (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15961">#15961</a>)</li>
<li><a
href="77b0d73599"><code>77b0d73</code></a>
v7.22.19</li>
<li>Additional commits viewable in <a
href="https://github.com/babel/babel/commits/v7.23.2/packages/babel-traverse">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=@babel/traverse&package-manager=npm_and_yarn&previous-version=7.22.8&new-version=7.23.2)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the
[Security Alerts
page](https://github.com/langchain-ai/langchain/network/alerts).

</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-27 14:13:58 -07:00
Eugene Yurtsev
60d009f75a Add security note to API chain (#12452)
Add security note
2023-10-27 17:09:42 -04:00
Matvey Arye
11505f95d3 Improve handling of empty queries for timescale vector (#12393)
**Description:** Improve handling of empty queries in timescale-vector.
For timescale-vector it is more efficient to get a None embedding when
the embedding has no semantic meaning. It allows timescale-vector to
perform more optimizations. Thus, when the query is empty, use a None
embedding.

 Also pass down constructor arguments to the timescale vector client.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-27 13:55:16 -07:00
Erick Friis
38cee5fae0 cli updates 2 (#12447)
- extras group
- readme
- another readme

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-27 13:37:03 -07:00
Lance Martin
3afa68e30e Update AWS Bedrock README.md (#12451) 2023-10-27 13:21:54 -07:00
Lance Martin
5c564e62e1 AWS Bedrock RAG template (#12450) 2023-10-27 13:15:54 -07:00
William FH
5d40e36c75 Trace if run tree set (#12444)
This code path is hit in the following case:
- Start in langchain code and manually provide a tracer
- Handoff to the traceable
- Hand back to langchain code.

Which happens for evaluating `@traceable` functions unfortunately
2023-10-27 12:29:18 -07:00
Bagatur
c2a0a6b6df make doc utils public (#12394) 2023-10-27 12:08:08 -07:00
Henter
d6888a90d0 Fix the missing temperature parameter for Baichuan-AI chat_model (#12420)
**Description:** the missing `temperature` parameter for Baichuan-AI
chat_model

Baichuan-AI api doc: https://platform.baichuan-ai.com/docs/api
2023-10-27 12:07:21 -07:00
Erick Friis
6908634428 cli updates oct27 (#12436) 2023-10-27 12:06:46 -07:00
Uxywannasleep
3fd9f2752f Fix Typo in clickhouse.ipynb file (#12429) 2023-10-27 11:55:15 -07:00
HwangJohn
d38c8369b3 added rrf argument in ApproxRetrievalStrategy class __init__() (#11987)
- **Description: To handle the hybrid search with RRF(Reciprocal Rank
Fusion) in the Elasticsearch, rrf argument was added for adjusting
'rank_constant' and 'window_size' to combine multiple result sets with
different relevance indicators into a single result set. (ref:
https://www.elastic.co/kr/blog/whats-new-elastic-enterprise-search-8-9-0),
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** No dependencies changed,
  - **Tag maintainer:** @baskaryan,

Nice to meet you,
I'm a newbie for contributions and it's my first PR.

I only changed the langchain/vectorstores/elasticsearch.py file.
I did make format&lint 
I got this message,
```shell
make lint_diff  
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "langchain/vectorstores/elasticsearch.py" = "" ] || poetry run black langchain/vectorstores/elasticsearch.py --check
All done!  🍰 
1 file would be left unchanged.
[ "langchain/vectorstores/elasticsearch.py" = "" ] || poetry run mypy langchain/vectorstores/elasticsearch.py
langchain/__init__.py: error: Source file found twice under different module names: "mvp.nlp.langchain.libs.langchain.langchain" and "langchain"
Found 1 error in 1 file (errors prevented further checking)
make: *** [lint_diff] Error 2
```

Thank you

---------

Co-authored-by: 황중원 <jwhwang@amorepacific.com>
2023-10-27 11:53:19 -07:00
Roman Vasilyev
2c58dca5f0 optional reusable connection (#12051)
My postgres out of connections after continuous PGVector usage, and the
reason because it constantly creates new connections, so adding a
reusable pre established connection seems like solves an issue

---------

Co-authored-by: Roman Vasilyev <rvasilyev@mozilla.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-27 11:52:42 -07:00
Ennio Pastore
48fde2004f Update long_context_reorder.py (#12422)
The function comment was confusing and inaccurate
2023-10-27 11:52:28 -07:00
Bagatur
a8c68d4ffa Type LLMChain.llm as runnable (#12385) 2023-10-27 11:52:01 -07:00
Prakul
224ec0cfd3 Mongo db $vector search doc update (#12404)
**Description:** 
Updates the documentation for MongoDB Atlas Vector Search
2023-10-27 11:50:29 -07:00
Bagatur
d12b88557a Bagatur/bump 325 (#12440) 2023-10-27 11:49:09 -07:00
Eugene Yurtsev
cadfce295f Deprecate PythonRepl tools and Pandas/Xorbits/Spark DataFrame/Python/CSV agents (#12427)
See discussion here:
https://github.com/langchain-ai/langchain/discussions/11680

The code is available for usage from langchain_experimental. The reason
for the deprecation is that the agents are relying on a Python REPL. The
code can only be run safely with appropriate sandboxing.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-27 14:16:42 -04:00
Lance Martin
68e12d34a9 Add invoke example to LLaMA2 function template notebook (#12437) 2023-10-27 10:58:24 -07:00
Harrison Chase
0ca539eb85 Clean up deprecated agents and update __init__ in experimental (#12231)
Update init paths in experimental
2023-10-27 13:52:50 -04:00
Lance Martin
05bbf943f2 LLaMA2 with JSON schema support template (#12435) 2023-10-27 10:34:00 -07:00
Holt Skinner
134f085824 feat: Add Google Speech to Text API Document Loader (#12298)
- Add Document Loader for Google Speech to Text
  - Similar Structure to [Assembly AI Document Loader][1]

[1]:
https://python.langchain.com/docs/integrations/document_loaders/assemblyai
2023-10-27 09:34:26 -07:00
David Duong
52c194ec3a Fix templates typos (#12428) 2023-10-27 09:32:57 -07:00
Massimiliano Pronesti
c8195769f2 fix(openai-callback): completion count logic (#12383)
The changes introduced in #12267 and #12190 broke the cost computation
of the `completion` tokens for fine-tuned models because of the early
return. This PR aims at fixing this.
@baskaryan.
2023-10-27 09:08:54 -07:00
Stefan Langenbach
b22da81af8 Mask API key for Aleph Alpha LLM (#12377)
- **Description:** Add masking of API Key for Aleph Alpha LLM when
printed.
- **Issue**: #12165
- **Dependencies:** None
- **Tag maintainer:** @eyurtsev

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-27 11:32:43 -04:00
Lance Martin
d6acb3ed7e Clean-up template READMEs (#12403)
Normalize, and update notebooks.
2023-10-26 22:23:03 -07:00
William FH
4254028c52 Str Evaluator Mapper (#12401) 2023-10-26 21:38:47 -07:00
William FH
fcad1d2965 Add space (#12395) 2023-10-26 20:32:23 -07:00
William FH
922d7910ef Wfh/json schema evaluation (#12389)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-10-26 20:32:05 -07:00
Erick Friis
afcc12d99e Templates CI (#12313)
Adds a `langchain-location` param to lint, so we can properly locate it.

Regular langchain and experimental lint steps are passing, so default
value seems to be working.
2023-10-26 20:29:36 -07:00
Christian Kasim Loan
a35445c65f johnsnowlabs embeddings support (#11271)
- **Description:** Introducing the
[JohnSnowLabsEmbeddings](https://www.johnsnowlabs.com/)
  - **Dependencies:** johnsnowlabs
  - **Tag maintainer:** @C-K-Loan
- **Twitter handle:** https://twitter.com/JohnSnowLabs
https://twitter.com/ChristianKasimL

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-26 20:22:50 -07:00
SteveLiao
c08b622b2d Add HTML Title and Page Language into metadata for AsyncHtmlLoader (#11326)
**Description:** 
Revise `libs/langchain/langchain/document_loaders/async_html.py` to
store the HTML Title and Page Language in the `metadata` of
`AsyncHtmlLoader`.
2023-10-26 20:22:31 -07:00
Erick Friis
4b16601d33 Format Templates (#12396) 2023-10-26 19:44:30 -07:00
Shorthills AI
25c98dbba9 Fixed some grammatical and Exception types issues (#12015)
Fixed some grammatical issues and Exception types.

@baskaryan , @eyurtsev

---------

Co-authored-by: Sanskar Tanwar <142409040+SanskarTanwarShorthillsAI@users.noreply.github.com>
Co-authored-by: UpneetShorthillsAI <144228282+UpneetShorthillsAI@users.noreply.github.com>
Co-authored-by: HarshGuptaShorthillsAI <144897987+HarshGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: AdityaKalraShorthillsAI <143726711+AdityaKalraShorthillsAI@users.noreply.github.com>
Co-authored-by: SakshiShorthillsAI <144228183+SakshiShorthillsAI@users.noreply.github.com>
2023-10-26 21:12:38 -04:00
William FH
923696b664 Wfh/json edit dist (#12361)
Compare predicted json to reference. First canonicalize (sort keys, rm
whitespace separators), then return normalized string edit distance.

Not a silver bullet but maybe an easy way to capture structure
differences in a less flakey way

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-10-26 18:10:28 -07:00
Harrison Chase
56ee56736b add template for hyde (#12390) 2023-10-26 17:38:35 -07:00
Erick Friis
4db8d82c55 CLI CI 2 (#12387)
Will run all CI because of _test change, but future PRs against CLI will
only trigger the new CLI one

Has a bunch of file changes related to formatting/linting.

No mypy yet - coming soon
2023-10-26 17:01:31 -07:00
Tyler Hutcherson
231d553824 Update broken redis tests (#12371)
Update broken redis tests -- tiny PR :) 
- **Description:** Fixes Redis tests on master (look like it was broken
by https://github.com/langchain-ai/langchain/pull/11257)
  - **Issue:** None,
  - **Dependencies:** No
  - **Tag maintainer:** @baskaryan @Spartee 
  - **Twitter handle:** N/A

Co-authored-by: Sam Partee <sam.partee@redis.com>
2023-10-26 16:13:14 -07:00
Lance Martin
b8af5b0a8e Minor updates to ReRank template (#12388) 2023-10-26 16:05:17 -07:00
Bagatur
7cadf00570 better lint triggering (#12376) 2023-10-26 15:31:20 -07:00
Erick Friis
03e79e62c2 cli fix (#12380) 2023-10-26 15:29:49 -07:00
Lance Martin
237026c060 Cohere re-rank template (#12378) 2023-10-26 15:29:10 -07:00
Bagatur
76230d2c08 fireworks scheduled integration tests (#12373) 2023-10-26 14:24:42 -07:00
Josh Phillips
01c5cd365b Fix SupbaseVectoreStore write operation timeout (#12318)
**Description**
This small change will make chunk_size a configurable parameter for
loading documents into a Supabase database.

**Issue**
https://github.com/langchain-ai/langchain/issues/11422

**Dependencies**
No chanages

**Twitter**
@ j1philli

**Reminder**
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Greg Richardson <greg.nmr@gmail.com>
2023-10-26 14:19:17 -07:00
Bagatur
b10cefb160 lint fix: rm init (#12374) 2023-10-26 14:16:25 -07:00
William FH
f65067b1da Mention other function calling/grammar support (#12369)
In our extraction doc
2023-10-26 13:59:28 -07:00
Chris Lucas
e88fdbba29 Fix langsmith walkthrough doc dataset (#12027) 2023-10-26 13:57:15 -07:00
Jacob Lee
7e5e5e87d8 Adds linter in templates (#12321)
Did not actually run/fix errors yet @efriis
2023-10-26 13:55:07 -07:00
Harrison Chase
b43996e553 Harrison/improve cli (#12368) 2023-10-26 13:53:59 -07:00
Harrison Chase
9ce38726a2 fix some stuff (#12292)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-26 13:30:36 -07:00
Cynthia Yang
6ce276e099 Support Fireworks batching (#8) (#12052)
Description

* Add _generate and _agenerate to support Fireworks batching.
* Add stop words test cases
* Opt out retry mechanism

Issue - Not applicable
Dependencies - None
Tag maintainer - @baskaryan
2023-10-26 16:01:08 -04:00
Bagatur
3fbb2f3e52 update chains how to (#12362) 2023-10-26 12:21:03 -07:00
Tyler Hutcherson
2f0c9d8269 Fix redis vectorfield schema defaults (#12223)
- **Description:** refactors the redis vector field schema to properly
handle default values, includes a new unit test suite.
  - **Issue:** N/A
  - **Dependencies:** nothing new.
  - **Tag maintainer:** @baskaryan @Spartee 
  - **Twitter handle:** this is a tiny fix/improvement :) 

This issue was causing some clients/cuatomers issues when building a
vector index on Redis on smaller db instances (due to fault default
values in index configuration). It would raise an error like:

```redis.exceptions.ResponseError: Vector index initial capacity 20000 exceeded server limit (852 with the given parameters)```

This PR will address this moving forward.
2023-10-26 12:17:58 -07:00
Jakub Novák
9544d64ad8 E2B tool - Improve description wuth uploaded files info (#12355) 2023-10-26 11:44:24 -07:00
Bagatur
dad16af711 langserve doc (#12357) 2023-10-26 11:40:57 -07:00
Lance Martin
0af6e64ad9 Update multi query template README, ntbk (#12356) 2023-10-26 11:24:44 -07:00
Bagatur
f3449ccd20 Docs: Add lcel to combine_docs chains (#12310) 2023-10-26 11:05:36 -07:00
Lance Martin
bc6f6e968e Add template for Pinecone + Multi-Query (#12353) 2023-10-26 10:12:23 -07:00
Bagatur
c6a733802b bump 324 and 35 (#12352) 2023-10-26 10:10:26 -07:00
Nuno Campos
683e97766d Fix json key output parser in partial (streaming) mode (#12332)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-26 17:45:04 +01:00
Nikhil Jha
dff24285ea Comprehend Moderation 0.2 (#11730)
This PR replaces the previous `Intent` check with the new `Prompt
Safety` check. The logic and steps to enable chain moderation via the
Amazon Comprehend service, allowing you to detect and redact PII, Toxic,
and Prompt Safety information in the LLM prompt or answer remains
unchanged.
This implementation updates the code and configuration types with
respect to `Prompt Safety`.


### Usage sample

```python
from langchain_experimental.comprehend_moderation import (BaseModerationConfig, 
                                 ModerationPromptSafetyConfig, 
                                 ModerationPiiConfig, 
                                 ModerationToxicityConfig
)

pii_config = ModerationPiiConfig(
    labels=["SSN"],
    redact=True,
    mask_character="X"
)

toxicity_config = ModerationToxicityConfig(
    threshold=0.5
)

prompt_safety_config = ModerationPromptSafetyConfig(
    threshold=0.5
)

moderation_config = BaseModerationConfig(
    filters=[pii_config, toxicity_config, prompt_safety_config]
)

comp_moderation_with_config = AmazonComprehendModerationChain(
    moderation_config=moderation_config, #specify the configuration
    client=comprehend_client,            #optionally pass the Boto3 Client
    verbose=True
)

template = """Question: {question}

Answer:"""

prompt = PromptTemplate(template=template, input_variables=["question"])

responses = [
    "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", 
    "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here."
]
llm = FakeListLLM(responses=responses)

llm_chain = LLMChain(prompt=prompt, llm=llm)

chain = ( 
    prompt 
    | comp_moderation_with_config 
    | {llm_chain.input_keys[0]: lambda x: x['output'] }  
    | llm_chain 
    | { "input": lambda x: x['text'] } 
    | comp_moderation_with_config 
)

try:
    response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"})
except Exception as e:
    print(str(e))
else:
    print(response['output'])

```

### Output

```python
> Entering new AmazonComprehendModerationChain chain...
Running AmazonComprehendModerationChain...
Running pii Validation...
Running toxicity Validation...
Running prompt safety Validation...

> Finished chain.


> Entering new AmazonComprehendModerationChain chain...
Running AmazonComprehendModerationChain...
Running pii Validation...
Running toxicity Validation...
Running prompt safety Validation...

> Finished chain.
Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876.
```

---------

Co-authored-by: Jha <nikjha@amazon.com>
Co-authored-by: Anjan Biswas <anjanavb@amazon.com>
Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 09:42:18 -07:00
Blake (Yung Cher Ho)
b9410f2b6f Takeoff pro support (#12070)
**Description:**
This PR adds support for the [Pro version of Titan Takeoff
Server](https://docs.titanml.co/docs/category/pro-features). Users of
the Pro version will have to import the TitanTakeoffPro model, which is
different from TitanTakeoff.

**Issue:**
Also minor fixes to docs for Titan Takeoff (Community version)

**Dependencies:**
No additional dependencies

 **Twitter handle:** @becoming_blake

@baskaryan @hwchase17
2023-10-26 09:39:32 -07:00
Leonid Kuligin
4e47fe1dce fixed error message and a check for processor name (#12200)
Replace this entire comment with:
- **Description:** a small fix on error description / a check for
processor name
  - **Issue:** the issue #11407
2023-10-26 09:38:25 -07:00
Nir Kopler
9298aff783 Finetuned openai azure models cost calculation (#12267)
**Description:**
Add cost calculation for fine tuned **Azure** with relevant unit tests.
see
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo&pivots=programming-language-studio
for more information.
this PR is the result of this PR:
https://github.com/langchain-ai/langchain/pull/12190

Twitter handle: @nirkopler
2023-10-26 09:38:10 -07:00
Ken
3c168d4d2a Update code_understanding.ipynb (#12309)
- **Description:** Super simple fix for colab link on
code_understanding.ipynb,
  - **Issue:** not applicable
  - **Dependencies:** none,
  - **Tag maintainer:** ,
  - **Twitter handle:** @kengoodridge
2023-10-26 09:35:38 -07:00
Season Saw
4e4b8805d6 Fix a typo in the summarization use case. (#12316)
- **Description:** Fix a tiny typo in the summarization use case Jupyter
notebook.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:** @seasonsaw
2023-10-26 09:35:11 -07:00
gnakw
20fe515f20 Fix the exception from langchain.utilities import ArceeWrapper (#12342)
- **Description:** Fix the exception from langchain.utilities import
ArceeWrapper
2023-10-26 09:19:43 -07:00
ZC Wong
374f4cd2bf fix typo (#12338)
fixed a typo in docs/docs/integrations/toolkits/github.ipynb
2023-10-26 09:18:47 -07:00
Qihui Xie
6720458c7d add allowed_operators property in QdrantTranslator (#12328)
- **Description:** 
This PR adds `allowd_operators` property to `QdrantTranslator` to fix
the `TypeError: can only join an iterable` bug. This property is
required in `get_query_constructor_prompt` in
`query_constructor\base.py`:
```
allowed_operators=" | ".join(allowed_operators),
```
  - **Issue:** 
#12061

---------

Co-authored-by: XIE Qihui <qihui.xie@bopufund.com>
2023-10-26 09:18:29 -07:00
Bagatur
f5a57fc1ef fix self query constructor (#12349) 2023-10-26 09:18:15 -07:00
Laurent AJDNIK
f05c29180d Fix typos in quickstart.mdx (#12333)
- **Description:** Fixes a few typos in quickstart.mdx
2023-10-26 09:14:49 -07:00
Kishan Kumar Rai
cae6f611d3 Fix Typo in CONTRIBUTING.md (#12320)
I have corrected the typos, grammar, and formatting issues.
2023-10-26 08:56:28 -07:00
Vasek Mlejnsky
cdd75b687e e2b tool - fix initialization and improve tool description (#12345) 2023-10-26 08:47:50 -07:00
Harrison Chase
8ec7aade9f add docs for templates (#12346) 2023-10-26 08:28:01 -07:00
Jacob Lee
28c39503eb Allow index name customization via env var in rag-conversation (#12315) 2023-10-25 22:11:13 -07:00
Leonid Ganeline
869a49a0ab removed CardLists for LLMs and ChatModels (#12307)
Problem statement: 
In the `integrations/llms` and `integrations/chat` pages, we have a
sidebar with ToC, and we also have a ToC at the end of the page.
The ToC at the end of the page is not necessary, and it is confusing
when we mix the index page styles; moreover, it requires manual work.
So, I removed ToC at the end of the page (it was discussed with and
approved by @baskaryan)
2023-10-25 19:13:44 -07:00
Erick Friis
ebf998acb6 Templates (#12294)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
2023-10-25 18:47:42 -07:00
Erick Friis
43257a295c CLI Git Improvements (#12311)
- delete repo sources like pip
- git dep fixes
- error messaging
2023-10-25 18:30:02 -07:00
William FH
1d568e1add Better wrap traceable (#12303)
If user function is wrapped as a traceable function, this will help hand
off the trace between the two.

Also update handling fields to reflect optional values
2023-10-25 16:34:23 -07:00
Eugene Yurtsev
5a71b81609 Relax type annotation for custom input/output types (#12300)
This is needed to be able to do stuff like:

```python
runnable.with_types(input_type=List[str])
```
2023-10-25 19:00:22 -04:00
William FH
988f6d9912 Rm langchain server (#12305) 2023-10-25 15:26:46 -07:00
wemysschen
3f16acc538 Add baidu cloud vector search in vectorstore and fix some unit test in vectorstores (#11605)
**Description:** 
Add baidu cloud vector search in vectorstore

---------

Co-authored-by: root <root@icoding-cwx.bcc-szzj.baidu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-25 13:44:19 -07:00
mrbean
b7e559c7e1 use snippet search optionally (#12236)
Add an additional flag which allows for hitting our new endpoint.
2023-10-25 13:37:28 -07:00
felixocker
cce132d146 fix sparql queries for relations in schema description (#9136)
- **Description**: Fix for the SPARQL QA chain: fixed SPARQL queries for
retrieving information about relations in the graph to create a textual
description of the schema for the language model. This should resolve
#8907
- **Issue**: #8907
- **Dependencies**: None
- **Tag maintainer**: @baskaryan, @hwchase17
2023-10-25 13:36:57 -07:00
Donato Azevedo
d9f1bcf366 Strips leading/trailing whitespace before parsing xml (#12297)
**Description:** When llms output leading or trailing whitespace for xml
(when using XMLOutputParser) the parser would raise a `ValueError: Could
not parse output: ...`. However, leading or trailing whitespace are
"ignorable" in the sense of XML standard.

**Issue:** I did not find an issue related.

**Dependencies:** None

**Tag maintainer:**

**Twitter handle:** donatoaz

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

Done, updated unit test and ran `make docker_test`.
2023-10-25 13:34:58 -07:00
Rohan Sharma
3da1a65fa0 Update README.md (#12286) 2023-10-25 12:59:30 -07:00
Bagatur
ab3c124ffb Add dev guide to docs(#12291)
copy CONTRIBUTING.md to docs
2023-10-25 12:28:43 -07:00
Bagatur
aa212c3d0e rm .html from local doc links (#12293) 2023-10-25 12:09:41 -07:00
Silva
04d58018e1 Update vectorstore.mdx[Make an improvement] (#12252)
correct some grammatical errors
2023-10-25 12:00:53 -07:00
Bagatur
3d74d5e24d chat loader doc titles (#12289) 2023-10-25 11:47:50 -07:00
Erick Friis
47070b8314 CLI (#12284)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-10-25 11:06:58 -07:00
Shwu Ku
07c2649753 response parser for ArceeRetriever (#12270)
- **Description:** Response parser for arcee retriever, 
- **Issue:** follow-up pr on #11578 and
[discussion](https://github.com/arcee-ai/arcee-python/issues/15#issuecomment-1759874053),
  - **Dependencies:** NA

This pr implements a parser for the response from ArceeRetreiver to
convert to langchain `Document`. This closes the loop of generation and
retrieval for Arcee DALMs in langchain.

The reference for the response parser is
[api-docs:retrieve](https://api.arcee.ai/docs#/v2/retrieve_model)

Attaching screenshot of working implementation:
<img width="1984" alt="Screenshot 2023-10-25 at 7 42 34 PM"
src="https://github.com/langchain-ai/langchain/assets/65639964/026987b9-34b2-4e4b-b87d-69fcd0c6641a">
\*api key deleted

---
Successful tests, lints, etc.
```shell
Re-run pytest with --snapshot-update to delete unused snapshots.
==================================================================================================================== slowest 5 durations =====================================================================================================================
1.56s call     tests/unit_tests/schema/runnable/test_runnable.py::test_retrying
0.63s call     tests/unit_tests/schema/runnable/test_runnable.py::test_map_astream
0.33s call     tests/unit_tests/schema/runnable/test_runnable.py::test_map_stream_iterator_input
0.30s call     tests/unit_tests/schema/runnable/test_runnable.py::test_map_astream_iterator_input
0.20s call     tests/unit_tests/indexes/test_indexing.py::test_cleanup_with_different_batchsize
======================================================================================================= 1265 passed, 270 skipped, 32 warnings in 6.55s =======================================================================================================
[ "." = "" ] || poetry run black .
All done!  🍰 
1871 files left unchanged.
[ "." = "" ] || poetry run ruff --select I --fix .
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "." = "" ] || poetry run black . --check
All done!  🍰 
1871 files would be left unchanged.
[ "." = "" ] || poetry run mypy .
Success: no issues found in 1868 source files
poetry run codespell --toml pyproject.toml
poetry run codespell --toml pyproject.toml -w
```

Co-authored-by: Shubham Kushwaha <shwu@Shubhams-MacBook-Pro.local>
2023-10-25 10:55:13 -07:00
Johanna Appel
c26ec7789f CohereEmbeddings: Add max_retries and request_timeout (#12275)
Add max_retries and request_timeout to CohereEmbeddings, akin to how it
works in OpenAIEmbeddings.

Since the Cohere client already implements these parameters, we can
simply pass them down.

Uses parameters from these two cohere client objects:

https://github.com/cohere-ai/cohere-python/blob/main/cohere/client.py

https://github.com/cohere-ai/cohere-python/blob/main/cohere/client_async.py
2023-10-25 10:37:25 -07:00
Nuno Campos
7108084947 Remove CLI (#12283)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-25 10:33:52 -07:00
Nuno Campos
b5b2d07681 Pop max concurrency when recursing (#12281)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-25 18:03:58 +01:00
Bagatur
69f4e402e4 bump 323 (#12278) 2023-10-25 09:06:12 -07:00
David Duong
c25b174db5 Add serialisation props to Fireworks and ChatFireworks (#12255) 2023-10-25 11:41:33 +01:00
Richard Adams
fd5f549a9e demonstrate use of RetrievalQAWithSourcesChain.from_chain (#12235)
**Description:** 
Documents further usage of RetrievalQAWithSourcesChain in an existing
test. I'd not found much documented usage of RetrievalQAWithSourcesChain
and how to get the sources out. This additional code will hopefully be
useful to other potential users of this retriever.

 **Issue:** No raised issue
 
**Dependencies:** No new dependencies needed to run the test (it already
needs `open-ai`, `faiss-cpu` and `unstructured`).

Note - `make lint` showed 8 linting errors  in unrelated files

---------

Co-authored-by: richarda23 <richard.c.adams@infinityworks.com>
2023-10-24 21:33:34 -07:00
James Braza
53f35c5f5c Adding STRUCTURED_FORMAT_SIMPLE_INSTRUCTIONS missing backticks (#12238)
This PR fixes the fact that `STRUCTURED_FORMAT_SIMPLE_INSTRUCTIONS` was
missing backticks at the end
2023-10-24 21:30:25 -07:00
Adam Ji
9fc28d50c3 fix: typo in pgvector.ipynb (#12243)
fix: typo in docs/docs/integrations/vectorstores/pgvector.ipynb
2023-10-24 21:26:44 -07:00
William FH
276c6ba115 Check for ls project in run tree context (#12242)
If I go traceable -> runnable when the project is manually specified,
the runnable wont be logged. This makes sure the session/project is
threaded through appropriately.
2023-10-24 17:18:59 -07:00
Vasek Mlejnsky
1f8094938f Integrate E2B's data analysis/code interpreter (#12011)
This PR adds a data [E2B's](https://e2b.dev/) analysis/code interpreter
sandbox as a tool

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Jakub Novak <jakub@e2b.dev>
2023-10-24 16:04:02 -07:00
Bagatur
d2cb95c39d Docs: add lcel to sequential chain (#12234) 2023-10-24 15:15:35 -07:00
Holt Skinner
e7e670805c docs: Google Cloud Documentation Cleanup (#12224)
- Move Document AI provider to the Google provider page
- Change Vertex AI Matching Engine to Vector Search
- Change references from GCP to Google Cloud
- Add Gmail chat loader to Google provider page
- Change Serper page title to "Serper - Google Search API" since it is
not a Google product.
2023-10-24 14:54:43 -07:00
Bagatur
286a29a49e bump 322 and 34 (#12228) 2023-10-24 13:52:17 -07:00
Bagatur
2008a6438c add experimental test release gha (#12229) 2023-10-24 13:49:16 -07:00
Eugene Yurtsev
583dc49477 Add type to Generation and sub-classes, handle root validator (#12220)
* Add a type literal for the generation and sub-classes for serialization purposes.
* Fix the root validator of ChatGeneration to return ValueError instead of KeyError or Attribute error if intialized improperly.
* This change is done for langserve to make sure that llm related callbacks can be serialized/deserialized properly.
2023-10-24 16:21:00 -04:00
Eugene Yurtsev
81052ee18e Fix code block in runnable doc (#12221)
Fix code block syntax in runnable doc-string
2023-10-24 16:11:58 -04:00
Mikelarg
46e28b9613 Added GigaChat chat model support (#12201)
- **Description:** Added integration with
[GigaChat](https://developers.sber.ru/portal/products/gigachat) language
model.
- **Twitter handle:** @dvoshansky
2023-10-24 12:53:51 -07:00
Dayuan Jiang
9c2c9c5274 fix typo in langchain/cookbook/stepback-qa.ipynb (#12204) 2023-10-24 12:51:51 -07:00
Bagatur
87af2360df mv old integration docs (#12217) 2023-10-24 12:38:16 -07:00
Bagatur
6e3f39963f Docs: consolidate top nav (#12219) 2023-10-24 12:28:08 -07:00
Anurag Wagh
d5c2ce7c2e [fix] create redis vector index before adding docs, add prefix to doc… (#11257)
Fix Description: 
For Redis Vector integration in add_texts method, there were two issues
that lead to this bug.
1. Vector index is not being created leading to no such_index error 
2. `doc:index` prefix was also missing for Redis Keys. 

resolves #11197 
Maintainer: @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-24 10:51:25 -07:00
Eugene Yurtsev
079d1f3b8e Expose handle_event and ahandle_events as public API (#12181)
Expose functionality to handle generic events.
2023-10-24 13:42:28 -04:00
William FH
67c4fd0ad0 Update deprecation (#12178)
in runner_utils
2023-10-24 10:37:28 -07:00
Nir Kopler
d3744175bf Finetuned OpenAI models cost calculation #11715 (#12190)
**Description:**
Add cost calculation for fine tuned models (new and legacy), this is
required after OpenAI added new models for fine tuning and separated the
costs of I/O for fine tuned models.
Also I updated the relevant unit tests
see https://platform.openai.com/docs/guides/fine-tuning for more
information.
issue: https://github.com/langchain-ai/langchain/issues/11715

  - **Issue:** 11715
  - **Twitter handle:** @nirkopler
2023-10-24 10:22:05 -07:00
Spyros
a2840a2b42 fix vertexai codey models (#12173)
**Description:**

This PR fixes issue #12156 by checking for Codey models appropriately
before result parsing.


Maintainer: @hwchase17 , @agola11
2023-10-24 10:20:05 -07:00
Leonid Ganeline
386ea48432 updated integrations/providers/microsoft (#12177)
Added several missed tools, utilities, toolkits to the `Microsoft` page.
2023-10-24 10:19:06 -07:00
Hech
d76f026d72 Fix flexible dimension and doc for DingoDB (#12187) 2023-10-24 10:16:19 -07:00
Erick Friis
95ae40ff90 Fix Anthropic Functions ainvoke (#12215)
Removes custom `NotImplementedError` in experimental anthropic
functions, allowing it to fallback on default `ainvoke` implementation.
2023-10-24 10:07:01 -07:00
Iskren Ivov Chernev
d5d7ba582a Improvements to llm/deepinfra (#10846)
- replace `requests` package with `langchain.requests`
- add `_acall` support
- add `_stream` and `_astream`
- freshen up the documentation a bit
- update vendor doc
2023-10-24 09:54:23 -07:00
sudranga
f09f82541b Expose configuration options in GraphCypherQAChain (#12159)
Allows for passing arguments into the LLM chains used by the
GraphCypherQAChain. This is to address a request by a user to include
memory in the Cypher creating chain. Will keep the prompt variables
as-is to be backward compatible. But, would be a good idea to deprecate
them and use the **kwargs variables. Added a test case.

In general, I think it would be good for any chain to automatically pass
in a readonlymemory(of its input) to its subchains whilist allowing for
an override. But, this would be a different change.
2023-10-24 09:52:55 -07:00
Leonid Ganeline
11f13aed53 docstrings update (#12093)
Added missed docstrings. Added missed Args:, Returns: Raises:
2023-10-24 09:34:10 -07:00
Johnny Oshika
ba20c14e28 Fix typo in stuff_prompt's system_template (#12063)
- **Description:** 

Add missing apostrophe in `user's` in stuff_prompt's system_template.
The first sentence in the system template went from:

> Use the following pieces of context to answer the users question.

to

> Use the following pieces of context to answer the user's question.

- **Issue:** 
- **Dependencies:** none
- **Tag maintainer:** @baskaryan
- **Twitter handle:** ojohnnyo
2023-10-24 09:21:28 -07:00
Bagatur
deb8168329 fix note callout (#12214) 2023-10-24 09:17:18 -07:00
Bagatur
8ba97cb408 separate compile integration tests (#12171)
Co-authored-by: Predrag Gruevski <2348618+obi1kenobi@users.noreply.github.com>
2023-10-24 08:55:19 -07:00
Bagatur
44dae6936b Docs: Add LCEL to chains/foundational/llm (#12213) 2023-10-24 08:53:55 -07:00
Bagatur
922193475a Docs: Add LCEL to chains/foundational/transform (#12212) 2023-10-24 08:52:47 -07:00
Bagatur
55f0f8dae8 Docs: add LCEL to chains/foundational/router (#12211) 2023-10-24 08:51:12 -07:00
Holt Skinner
69d9eae5cd feat: Add Client Info to available Google Cloud Clients (#12168)
- This is used internally to gather aggregate usage metrics for the
LangChain integrations

- Note: This cannot be added to some of the Vertex AI integrations at
this time because the SDK doesn't allow overriding the
[`ClientInfo`](https://googleapis.dev/python/google-api-core/latest/client_info.html#module-google.api_core.client_info)

- Added to:
  - BigQuery
  - Google Cloud Storage
  - Document AI
  - Vertex AI Model Garden
  - Document AI Warehouse
  - Vertex AI Search
  - Vertex AI Matching Engine (Cloud Storage Client)
 
@baskaryan, @eyurtsev, @hwchase17

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-24 08:49:11 -07:00
Lukas Wolf
69f5f82804 Update extraction.py (#12207)
Description: Pass tags as argument to create_extraction_chain
Issue: create_extraction_chain does not pass tags to chain yet 

@baskaryan
2023-10-24 08:25:14 -07:00
Nuno Campos
34ffb94770 Remove GetLocal, PutLocal (#12133)
Do you agree?
2023-10-24 10:16:46 +01:00
Eric Hartford
8c150ad7f6 Add COBOL parser and splitter (#11674)
- **Description:** Add COBOL parser and splitter
  - **Issue:** n/a
  - **Dependencies:** n/a
  - **Tag maintainer:** @baskaryan 
  - **Twitter handle:** erhartford

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-23 15:44:31 -04:00
Ikko Eltociear Ashimine
bb137fd6e7 Fix typo in jsonformer_experimental.ipynb (#12099)
HuggingFace -> Hugging Face

\
2023-10-23 15:35:54 -04:00
Eugene Yurtsev
ace2234391 Update security.md (#11942)
Update security.md
2023-10-23 15:35:33 -04:00
John Mai
ebf749c40c Baichuan & Hunyuan set default api_base (#12059)
### Description
Baichuan & Hunyuan set default api_base env
2023-10-23 15:33:35 -04:00
Priyanshu Prajapati
283a3ecc9c Create CODE_OF_CONDUCT.md (#12105)
code of conduct.md file is missing it is generally present in good repos
which have large community

Replace this entire comment with:
- **Description:** Added a `code_of_conduct.md` file to the repository
to establish community standards and guidelines for contributors.
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** N/A

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-23 15:15:24 -04:00
Shilong Dai
99afc1b4f8 Fixed hardcoded "vector" and replaced with vector_query_field variable (#12126)
- **Description:** In the max_marginal_relevance_search function of the
ElasticsearchStore vector store, the name of the field corresponding to
the vector embedding of the document is hard coded in the delete
statement that drops the field from the document metadata. This results
in an exception if the vector embedding field is customized. This PR
changes the hard-coded "vector" into the vector_query_field variable.
  - **Issue:** None
  - **Dependencies:** None
  - **Tag maintainer:** @hwchase17

Co-authored-by: Shilong Dai <sdai@viperfish.net>
2023-10-23 15:08:55 -04:00
Vikram Shitole
0d44746430 10634: Added the capability to inject boto3 client in SagemakerEndpointEmbeddings (#12146)
**Description: Allow to inject boto3 client for Cross account access
type of scenarios in using SagemakerEndpointEmbeddings and also updated
the documentation for same in the sample notebook**

**Issue:SagemakerEndpointEmbeddings cross account capability #10634
#10184**

Dependencies: None
Tag maintainer:
Twitter handle:lethargicoder

Co-authored-by: Vikram(VS) <vssht@amazon.com>
2023-10-23 15:08:26 -04:00
Deepanshu
ff79a99825 Fix Typo in CONTRIBUTING.md file (#12145)
Fix Type & add suitable pronoun in CONTRIBUTING.md file


Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-23 14:53:03 -04:00
aubin_mzt
66f8cb015d Add connection args for pgvector vector store (#11930)
- **Description:** sqlalchemy create_engine() does not take into account
connect_args which are mandatory for managed PGSQL instances on cloud
providers (ssl_context for example).
Also re-enabled create_vector_extension at post_init for using pgvector
class seamlessly
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Sami Bargaoui <bargaoui.sam@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-23 14:43:44 -04:00
NuODaniel
4d6243fa87 fix: doc string of default params in chat_models, llm qianfan (#12153)
- **Description:** a fix of the doc string in Qianfan
  - **Issue:** no
  - **Dependencies:** no
  - **Tag maintainer:** @baskaryan
  - **Twitter handle:** no
2023-10-23 14:03:18 -04:00
Predrag Gruevski
f82bdf4613 Update deprecated langchain imports with suggested new paths. (#12164)
Let's help our users find the proper import to use instead of the
deprecated top-level ones.
2023-10-23 13:52:08 -04:00
Bagatur
963ff93476 bump 321 (#12161) 2023-10-23 12:49:38 -04:00
Nuno Campos
d0505c0d47 Update default recursion_limit, update docs (#12134)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-23 16:29:17 +01:00
William FH
4f23aa677a Fix Pickle Error (#12141)
If non-pickleable objects (like locks) get passed to the tracing
callback, they'll fail in the deepcopy. Fallback to a shallow copy in
these instances .
2023-10-23 08:22:47 -07:00
Predrag Gruevski
95a1b598fe Update to actions/checkout@v4. (#11951)
We don't use any of the new functionality at the moment. Just making
sure we don't fall back on versions and fail to benefit from new
patches. This is an easy upgrade and it's always harder to upgrade
across multiple major versions at once.
2023-10-23 10:01:33 -04:00
William FH
7c4f340cc0 Include Parent Run ID (#12139)
If you set local callbacks
2023-10-22 17:19:11 -07:00
Sanyam Jain
3df0f03928 Improved readability of Docs (#12136)
Replace this entire comment with:
  - **Description:** a description of the change, 
 improved grammar and readability of DOCS
 
@hwchase17
2023-10-22 17:16:30 -07:00
omahs
f3cc9bba5b Fix typos (#12128)
Fix typos
2023-10-22 17:16:03 -07:00
Nuno Campos
1afdb40b48 Add optional config arg to RunnablePassthrough func arg (#12131)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-22 19:57:16 +01:00
Nuno Campos
325fdde8b4 Fix bug where types were lost when calling with_cconfig or bind (#12137)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-22 19:26:13 +01:00
Nuno Campos
2719e49718 Add how-to guide on runnable generators (#12135)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-22 19:02:17 +01:00
Nuno Campos
02dce74b97 Fix type hint for older py versions (#12132)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-22 18:01:09 +01:00
Nuno Campos
d0ce374731 Allow specifying custom input/output schemas for runnables with .with_types() (#12083)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-22 17:26:48 +01:00
Harrison Chase
6fcba975d0 add rag fusion notebook (#12121) 2023-10-21 15:37:11 -07:00
Harrison Chase
dd0374560a fix up notebook (#12119) 2023-10-21 14:06:16 -07:00
Harrison Chase
ee69116761 move csv agent to langchain experimental (#12113) 2023-10-21 10:26:02 -07:00
Harrison Chase
03bf6ef473 add missing init files (#12114) 2023-10-21 10:25:50 -07:00
Harrison Chase
acb82cf25e add step back notebook (#11953) 2023-10-21 10:05:52 -07:00
Harrison Chase
9d9198de0b rewrite (#12111) 2023-10-21 09:31:10 -07:00
1022 changed files with 96150 additions and 12284 deletions

132
.github/CODE_OF_CONDUCT.md vendored Normal file
View File

@@ -0,0 +1,132 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
conduct@langchain.dev.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.1, available at
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
For answers to common questions about this code of conduct, see the FAQ at
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
[https://www.contributor-covenant.org/translations][translations].
[homepage]: https://www.contributor-covenant.org
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
[Mozilla CoC]: https://github.com/mozilla/diversity
[FAQ]: https://www.contributor-covenant.org/faq
[translations]: https://www.contributor-covenant.org/translations

View File

@@ -1,20 +1,19 @@
# Contributing to LangChain
Hi there! Thank you for even being interested in contributing to LangChain.
As an open source project in a rapidly developing field, we are extremely open
to contributions, whether they be in the form of new features, improved infra, better documentation, or bug fixes.
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
## 🗺️ Guidelines
### 👩‍💻 Contributing Code
To contribute to this project, please follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
To contribute to this project, please follow the ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
Please do not try to push directly to this repo unless you are a maintainer.
Please follow the checked-in pull request template when opening pull requests. Note related issues and tag relevant
maintainers.
Pull requests cannot land without passing the formatting, linting and testing checks first. See [Testing](#testing) and
Pull requests cannot land without passing the formatting, linting, and testing checks first. See [Testing](#testing) and
[Formatting and Linting](#formatting-and-linting) for how to run these checks locally.
It's essential that we maintain great documentation and testing. If you:
@@ -27,16 +26,14 @@ It's essential that we maintain great documentation and testing. If you:
- Add a demo notebook in `docs/modules`.
- Add unit and integration tests.
We're a small, building-oriented team. If there's something you'd like to add or change, opening a pull request is the
We are a small, progress-oriented team. If there's something you'd like to add or change, opening a pull request is the
best way to get our attention.
### 🚩GitHub Issues
Our [issues](https://github.com/langchain-ai/langchain/issues) page is kept up to date
with bugs, improvements, and feature requests.
Our [issues](https://github.com/langchain-ai/langchain/issues) page is kept up to date with bugs, improvements, and feature requests.
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help
organize issues.
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help organize issues.
If you start working on an issue, please assign it to yourself.
@@ -59,12 +56,12 @@ we do not want these to get in the way of getting good code into the codebase.
## 🚀 Quick Start
This quick start describes running the repository locally.
This quick start guide explains how to run the repository locally.
For a [development container](https://containers.dev/), see the [.devcontainer folder](https://github.com/langchain-ai/langchain/tree/master/.devcontainer).
### Dependency Management: Poetry and other env/dependency managers
This project uses [Poetry](https://python-poetry.org/) v1.6.1+ as a dependency manager.
This project utilizes [Poetry](https://python-poetry.org/) v1.6.1+ as a dependency manager.
❗Note: *Before installing Poetry*, if you use `Conda`, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
@@ -75,11 +72,11 @@ tell Poetry to use the virtualenv python environment (`poetry config virtualenvs
### Core vs. Experimental
There are two separate projects in this repository:
- `langchain`: core langchain code, abstractions, and use cases
- `langchain.experimental`: see the [Experimental README](../libs/experimental/README.md) for more information.
This repository contains two separate projects:
- `langchain`: core langchain code, abstractions, and use cases.
- `langchain.experimental`: see the [Experimental README](https://github.com/langchain-ai/langchain/tree/master/libs/experimental/README.md) for more information.
Each of these has their own development environment. Docs are run from the top-level makefile, but development
Each of these has its own development environment. Docs are run from the top-level makefile, but development
is split across separate test & release flows.
For this quickstart, start with langchain core:
@@ -129,7 +126,7 @@ To run unit tests in Docker:
make docker_tests
```
There are also [integration tests and code-coverage](../libs/langchain/tests/README.md) available.
There are also [integration tests and code-coverage](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests/README.md) available.
### Formatting and Linting
@@ -139,12 +136,19 @@ Run these locally before submitting a PR; the CI system will check also.
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [ruff](https://docs.astral.sh/ruff/rules/).
To run formatting for this project:
To run formatting for docs, cookbook and templates:
```bash
make format
```
To run formatting for a library, run the same command from the relevant library directory:
```bash
cd libs/{LIBRARY}
make format
```
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
```bash
@@ -157,12 +161,19 @@ This is especially useful when you have made changes to a subset of the project
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [ruff](https://docs.astral.sh/ruff/rules/), and [mypy](http://mypy-lang.org/).
To run linting for this project:
To run linting for docs, cookbook and templates:
```bash
make lint
```
To run linting for a library, run the same command from the relevant library directory:
```bash
cd libs/{LIBRARY}
make lint
```
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
```bash
@@ -282,7 +293,7 @@ make docs_build
make api_docs_build
```
Finally, you can run the linkchecker to make sure all links are valid:
Finally, run the link checker to ensure all links are valid:
```bash
make docs_linkcheck
@@ -307,4 +318,4 @@ even patch releases may contain [non-backwards-compatible changes](https://semve
### 🌟 Recognition
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or in another manner.
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.

View File

@@ -0,0 +1,57 @@
name: compile-integration-test
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
env:
POETRY_VERSION: "1.6.1"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: compile-integration
- name: Install integration dependencies
shell: bash
run: poetry install --with=test_integration
- name: Check integration tests compile
shell: bash
run: poetry run pytest -m compile tests/integration_tests
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -7,6 +7,10 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -34,7 +38,7 @@ jobs:
- "3.8"
- "3.11"
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
# Fetch the last FETCH_DEPTH commits, so the mtime-changing script
# can accurately set the mtimes of files modified in the last FETCH_DEPTH commits.
@@ -116,9 +120,11 @@ jobs:
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.working-directory != 'libs/langchain' }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
pip install -e ../langchain
pip install -e "$LANGCHAIN_LOCATION"
- name: Restore black cache
uses: actions/cache@v3

View File

@@ -26,7 +26,7 @@ jobs:
- "3.11"
name: Pydantic v1/v2 compatibility - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"

View File

@@ -30,7 +30,7 @@ jobs:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"

View File

@@ -26,7 +26,7 @@ jobs:
- "3.11"
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
@@ -44,14 +44,6 @@ jobs:
shell: bash
run: make test
- name: Install integration dependencies
shell: bash
run: poetry install --with=test_integration
- name: Check integration tests compile
shell: bash
run: poetry run pytest -m compile tests/integration_tests
- name: Ensure the tests did not create any additional files
shell: bash
run: |

50
.github/workflows/_test_release.yml vendored Normal file
View File

@@ -0,0 +1,50 @@
name: test-release
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
env:
POETRY_VERSION: "1.6.1"
jobs:
publish_to_test_pypi:
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
#
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: "3.10"
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- name: Build project for distribution
run: poetry build
- name: Check Version
id: check-version
run: |
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- name: Publish package to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true

View File

@@ -17,7 +17,7 @@ jobs:
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Install Dependencies
run: |

View File

@@ -1,11 +1,17 @@
---
name: Documentation Lint
name: Docs, templates, cookbook lint
on:
push:
branches: [master]
branches: [ master ]
pull_request:
branches: [master]
paths:
- 'docs/**'
- 'templates/**'
- 'cookbook/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/doc_lint.yml'
workflow_dispatch:
jobs:
check:
@@ -19,4 +25,11 @@ jobs:
run: |
# We should not encourage imports directly from main init file
# Expect for hub
git grep 'from langchain import' docs/{docs,snippets} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
git grep 'from langchain import' {docs/docs,templates,cookbook} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: "."
secrets: inherit

View File

@@ -12,6 +12,7 @@ on:
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_ci.yml'
- 'libs/*'
- 'libs/langchain/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
@@ -44,6 +45,13 @@ jobs:
working-directory: libs/langchain
secrets: inherit
compile-integration-tests:
uses:
./.github/workflows/_compile_integration_test.yml
with:
working-directory: libs/langchain
secrets: inherit
pydantic-compatibility:
uses:
./.github/workflows/_pydantic_compatibility.yml
@@ -65,7 +73,7 @@ jobs:
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"

54
.github/workflows/langchain_cli_ci.yml vendored Normal file
View File

@@ -0,0 +1,54 @@
---
name: libs/cli CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_cli_ci.yml'
- 'libs/cli/**'
- 'libs/*'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
WORKDIR: "libs/cli"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: libs/cli
langchain-location: ../langchain
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/cli
secrets: inherit
pydantic-compatibility:
uses:
./.github/workflows/_pydantic_compatibility.yml
with:
working-directory: libs/cli
secrets: inherit

View File

@@ -0,0 +1,13 @@
---
name: libs/cli Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/cli
secrets: inherit

View File

@@ -11,7 +11,7 @@ on:
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/langchain_experimental_ci.yml'
- 'libs/langchain/**'
- 'libs/*'
- 'libs/experimental/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
@@ -35,6 +35,7 @@ jobs:
./.github/workflows/_lint.yml
with:
working-directory: libs/experimental
langchain-location: ../langchain
secrets: inherit
test:
@@ -44,6 +45,13 @@ jobs:
working-directory: libs/experimental
secrets: inherit
compile-integration-tests:
uses:
./.github/workflows/_compile_integration_test.yml
with:
working-directory: libs/experimental
secrets: inherit
# It's possible that langchain-experimental works fine with the latest *published* langchain,
# but is broken with the langchain on `master`.
#
@@ -62,7 +70,7 @@ jobs:
- "3.11"
name: test with unpublished langchain - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
@@ -97,7 +105,7 @@ jobs:
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"

View File

@@ -0,0 +1,13 @@
---
name: Experimental Test Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_test_release.yml
with:
working-directory: libs/experimental
secrets: inherit

View File

@@ -0,0 +1,13 @@
---
name: Test Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_test_release.yml
with:
working-directory: libs/langchain
secrets: inherit

View File

@@ -24,7 +24,7 @@ jobs:
- "3.11"
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: "./.github/actions/poetry_setup"
@@ -55,6 +55,10 @@ jobs:
poetry install --with=test_integration
poetry run pip install google-cloud-aiplatform
poetry run pip install "boto3>=1.28.57"
if [[ ${{ matrix.python-version }} != "3.8" ]]
then
poetry run pip install fireworks-ai
fi
- name: Run tests
shell: bash
@@ -64,7 +68,8 @@ jobs:
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_DEPLOYMENT_NAME }}
AZURE_OPENAI_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_DEPLOYMENT_NAME }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
run: |
make scheduled_tests

37
.github/workflows/templates_ci.yml vendored Normal file
View File

@@ -0,0 +1,37 @@
---
name: templates CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/templates_ci.yml'
- 'templates/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
WORKDIR: "templates"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: templates
langchain-location: ../libs/langchain
secrets: inherit

View File

@@ -37,6 +37,18 @@ spell_check:
spell_fix:
poetry run codespell --toml pyproject.toml -w
######################
# LINTING AND FORMATTING
######################
lint:
poetry run ruff docs templates cookbook
poetry run black docs templates cookbook --check
format format_diff:
poetry run black docs templates cookbook
poetry run ruff --select I --fix docs templates cookbook
######################
# HELP
######################

View File

@@ -93,7 +93,7 @@ Memory refers to persisting state between calls of a chain/agent. LangChain prov
**🧐 Evaluation:**
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is by using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
For more information on these concepts, please see our [full documentation](https://python.langchain.com).

View File

@@ -60,22 +60,21 @@
}
],
"source": [
"# Local \n",
"# Local\n",
"from langchain.chat_models import ChatOllama\n",
"\n",
"llama2_chat = ChatOllama(model=\"llama2:13b-chat\")\n",
"llama2_code = ChatOllama(model=\"codellama:7b-instruct\")\n",
"\n",
"# API\n",
"from getpass import getpass\n",
"from langchain.llms import Replicate\n",
"\n",
"# REPLICATE_API_TOKEN = getpass()\n",
"# os.environ[\"REPLICATE_API_TOKEN\"] = REPLICATE_API_TOKEN\n",
"replicate_id = \"meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d\"\n",
"llama2_chat_replicate = Replicate(\n",
" model=replicate_id,\n",
" input={\"temperature\": 0.01, \n",
" \"max_length\": 500, \n",
" \"top_p\": 1}\n",
" model=replicate_id, input={\"temperature\": 0.01, \"max_length\": 500, \"top_p\": 1}\n",
")"
]
},
@@ -110,11 +109,14 @@
"outputs": [],
"source": [
"from langchain.utilities import SQLDatabase\n",
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info= 0)\n",
"\n",
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info=0)\n",
"\n",
"\n",
"def get_schema(_):\n",
" return db.get_table_info()\n",
"\n",
"\n",
"def run_query(query):\n",
" return db.run(query)"
]
@@ -149,26 +151,29 @@
"source": [
"# Prompt\n",
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" (\"human\", template)\n",
"])\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"# Chain to query\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"sql_response = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
" )\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"sql_response.invoke({\"question\": \"What team is Klay Thompson on?\"})"
]
@@ -209,18 +214,23 @@
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\"),\n",
" (\"human\", template)\n",
"])\n",
"prompt_response = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\",\n",
" ),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response) \n",
" RunnablePassthrough.assign(query=sql_response)\n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response \n",
" | prompt_response\n",
" | llm\n",
")\n",
"\n",
@@ -269,36 +279,42 @@
"# Prompt\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", template)\n",
"])\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"memory = ConversationBufferMemory(return_messages=True)\n",
"\n",
"# Chain to query with memory \n",
"# Chain to query with memory\n",
"from langchain.schema.runnable import RunnableLambda\n",
"\n",
"sql_chain = (\n",
" RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" history=RunnableLambda(lambda x: memory.load_memory_variables(x)[\"history\"])\n",
" )| prompt\n",
" schema=get_schema,\n",
" history=RunnableLambda(lambda x: memory.load_memory_variables(x)[\"history\"]),\n",
" )\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"\n",
"def save(input_output):\n",
" output = {\"output\": input_output.pop(\"output\")}\n",
" memory.save_context(input_output, output)\n",
" return output['output']\n",
" \n",
" return output[\"output\"]\n",
"\n",
"\n",
"sql_response_memory = RunnablePassthrough.assign(output=sql_chain) | save\n",
"sql_response_memory.invoke({\"question\": \"What team is Klay Thompson on?\"})"
]
@@ -349,18 +365,23 @@
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\"),\n",
" (\"human\", template)\n",
"])\n",
"prompt_response = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\",\n",
" ),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response_memory) \n",
" RunnablePassthrough.assign(query=sql_response_memory)\n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response \n",
" | prompt_response\n",
" | llm\n",
")\n",
"\n",

View File

@@ -4,7 +4,7 @@ Example code for building applications with LangChain, with an emphasis on more
Notebook | Description
:- | :-
[LLaMA2_sql_chat.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/LLaMA2_sql_chat.ipynb) | Build a chat application that interacts with a sql database using an open source llm (llama2), specifically demonstrated on a sqlite database containing nba rosters.
[LLaMA2_sql_chat.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/LLaMA2_sql_chat.ipynb) | Build a chat application that interacts with a SQL database using an open source llm (llama2), specifically demonstrated on an SQLite database containing rosters.
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.
[Semi_structured_multi_modal_RA...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using various tools and methods such as unstructured for parsing, multi-vector retriever for storing, lcel for implementing chains, and open source language models like llama2, llava, and gpt4all.
@@ -12,14 +12,14 @@ Notebook | Description
[autogpt/marathon_times.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/marathon_times.ipynb) | Implement autogpt for finding winning marathon times.
[baby_agi.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi.ipynb) | Implement babyagi, an ai agent that can generate and execute tasks based on a given objective, with the flexibility to swap out specific vectorstores/model providers.
[baby_agi_with_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi_with_agent.ipynb) | Swap out the execution chain in the babyagi notebook with an agent that has access to tools, aiming to obtain more reliable information.
[camel_role_playing.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/camel_role_playing.ipynb) | Implement the camel framework for creating autonomous cooperative agents in large scale language models, using role-playing and inception prompting to guide chat agents towards task completion.
[camel_role_playing.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/camel_role_playing.ipynb) | Implement the camel framework for creating autonomous cooperative agents in large-scale language models, using role-playing and inception prompting to guide chat agents towards task completion.
[causal_program_aided_language_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/causal_program_aided_language_model.ipynb) | Implement the causal program-aided language (cpal) chain, which improves upon the program-aided language (pal) by incorporating causal structure to prevent hallucination in language models, particularly when dealing with complex narratives and math problems with nested dependencies.
[code-analysis-deeplake.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/code-analysis-deeplake.ipynb) | Analyze its own code base with the help of gpt and activeloop's deep lake.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval.ipynb) | Build a custom agent that can interact with ai plugins by retrieving tools and creating natural language wrappers around openapi endpoints.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval_using_plugnplai.ipynb) | Build a custom agent with plugin retrieval functionality, utilizing ai plugins from the `plugnplai` directory.
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl api.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
[forward_looking_retrieval_augm...](https://github.com/langchain-ai/langchain/tree/master/cookbook/forward_looking_retrieval_augmented_generation.ipynb) | Implement the forward-looking active retrieval augmented generation (flare) method, which generates answers to questions, identifies uncertain tokens, generates hypothetical questions based on these tokens, and retrieves relevant documents to continue generating the answer.
[generative_agents_interactive_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb) | Implement a generative agent that simulates human behavior, based on a research paper, using a time-weighted memory object backed by a langchain retriever.
[gymnasium_agent_simulation.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/gymnasium_agent_simulation.ipynb) | Create a simple agent-environment interaction loop in simulated environments like text-based games with gymnasium.
@@ -37,7 +37,7 @@ Notebook | Description
[multiagent_authoritarian.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_authoritarian.ipynb) | Implement a multi-agent simulation where a privileged agent controls the conversation, including deciding who speaks and when the conversation ends, in the context of a simulated news network.
[multiagent_bidding.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_bidding.ipynb) | Implement a multi-agent simulation where agents bid to speak, with the highest bidder speaking next, demonstrated through a fictitious presidential debate example.
[myscale_vector_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/myscale_vector_sql.ipynb) | Access and interact with the myscale integrated vector database, which can enhance the performance of language model (llm) applications.
[openai_functions_retrieval_qa....](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_functions_retrieval_qa.ipynb) | Structure response output in a question answering system by incorporating openai functions into a retrieval pipeline.
[openai_functions_retrieval_qa....](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_functions_retrieval_qa.ipynb) | Structure response output in a question-answering system by incorporating openai functions into a retrieval pipeline.
[petting_zoo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/petting_zoo.ipynb) | Create multi-agent simulations with simulated environments using the petting zoo library.
[plan_and_execute_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/plan_and_execute_agent.ipynb) | Create plan-and-execute agents that accomplish objectives by planning tasks with a language model (llm) and executing them with a separate agent.
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
@@ -46,7 +46,7 @@ Notebook | Description
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
[smart_llm.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/smart_llm.ipynb) | Implement a smartllmchain, a self-critique chain that generates multiple output proposals, critiques them to find the best one, and then improves upon it to produce a final output.
[tree_of_thought.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/tree_of_thought.ipynb) | Query a large language model using the tree of thought technique.
[twitter-the-algorithm-analysis...](https://github.com/langchain-ai/langchain/tree/master/cookbook/twitter-the-algorithm-analysis-deeplake.ipynb) | Analyze the source code of the twitter algorithm with the help of gpt4 and activeloop's deep lake.
[twitter-the-algorithm-analysis...](https://github.com/langchain-ai/langchain/tree/master/cookbook/twitter-the-algorithm-analysis-deeplake.ipynb) | Analyze the source code of the Twitter algorithm with the help of gpt4 and activeloop's deep lake.
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialoguesimulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.

View File

@@ -60,7 +60,7 @@
"metadata": {},
"outputs": [],
"source": [
"! brew install tesseract \n",
"! brew install tesseract\n",
"! brew install poppler"
]
},
@@ -108,21 +108,23 @@
"from unstructured.partition.pdf import partition_pdf\n",
"\n",
"# Get elements\n",
"raw_pdf_elements = partition_pdf(filename=path+\"LLaMA2.pdf\",\n",
" # Unstructured first finds embedded image blocks\n",
" extract_images_in_pdf=False,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document \n",
" infer_table_structure=True, \n",
" # Post processing to aggregate text once we have the title \n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars \n",
" max_characters=4000, \n",
" new_after_n_chars=3800, \n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path)"
"raw_pdf_elements = partition_pdf(\n",
" filename=path + \"LLaMA2.pdf\",\n",
" # Unstructured first finds embedded image blocks\n",
" extract_images_in_pdf=False,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document\n",
" infer_table_structure=True,\n",
" # Post processing to aggregate text once we have the title\n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars\n",
" max_characters=4000,\n",
" new_after_n_chars=3800,\n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path,\n",
")"
]
},
{
@@ -190,6 +192,7 @@
" type: str\n",
" text: Any\n",
"\n",
"\n",
"# Categorize by type\n",
"categorized_elements = []\n",
"for element in raw_pdf_elements:\n",
@@ -259,14 +262,14 @@
"metadata": {},
"outputs": [],
"source": [
"# Prompt \n",
"prompt_text=\"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
"prompt = ChatPromptTemplate.from_template(prompt_text) \n",
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
"\n",
"# Summary chain \n",
"model = ChatOpenAI(temperature=0,model=\"gpt-4\")\n",
"summarize_chain = {\"element\": lambda x:x} | prompt | model | StrOutputParser()"
"# Summary chain\n",
"model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
"summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()"
]
},
{
@@ -321,10 +324,7 @@
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(\n",
" collection_name=\"summaries\",\n",
" embedding_function=OpenAIEmbeddings()\n",
")\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
"\n",
"# The storage layer for the parent documents\n",
"store = InMemoryStore()\n",
@@ -332,20 +332,26 @@
"\n",
"# The retriever (empty to start)\n",
"retriever = MultiVectorRetriever(\n",
" vectorstore=vectorstore, \n",
" docstore=store, \n",
" vectorstore=vectorstore,\n",
" docstore=store,\n",
" id_key=id_key,\n",
")\n",
"\n",
"# Add texts\n",
"doc_ids = [str(uuid.uuid4()) for _ in texts]\n",
"summary_texts = [Document(page_content=s,metadata={id_key: doc_ids[i]}) for i, s in enumerate(text_summaries)]\n",
"summary_texts = [\n",
" Document(page_content=s, metadata={id_key: doc_ids[i]})\n",
" for i, s in enumerate(text_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_texts)\n",
"retriever.docstore.mset(list(zip(doc_ids, texts)))\n",
"\n",
"# Add tables\n",
"table_ids = [str(uuid.uuid4()) for _ in tables]\n",
"summary_tables = [Document(page_content=s,metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries)]\n",
"summary_tables = [\n",
" Document(page_content=s, metadata={id_key: table_ids[i]})\n",
" for i, s in enumerate(table_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_tables)\n",
"retriever.docstore.mset(list(zip(table_ids, tables)))"
]
@@ -378,13 +384,13 @@
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"# LLM\n",
"model = ChatOpenAI(temperature=0,model=\"gpt-4\")\n",
"model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
"\n",
"# RAG pipeline\n",
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]

View File

@@ -98,22 +98,24 @@
"from unstructured.partition.pdf import partition_pdf\n",
"\n",
"# Get elements\n",
"raw_pdf_elements = partition_pdf(filename=path+\"LLaVA.pdf\",\n",
" # Using pdf format to find embedded image blocks\n",
" extract_images_in_pdf=True,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document \n",
" infer_table_structure=True, \n",
" # Post processing to aggregate text once we have the title \n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars \n",
" # Hard max on chunks\n",
" max_characters=4000, \n",
" new_after_n_chars=3800, \n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path)"
"raw_pdf_elements = partition_pdf(\n",
" filename=path + \"LLaVA.pdf\",\n",
" # Using pdf format to find embedded image blocks\n",
" extract_images_in_pdf=True,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document\n",
" infer_table_structure=True,\n",
" # Post processing to aggregate text once we have the title\n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars\n",
" # Hard max on chunks\n",
" max_characters=4000,\n",
" new_after_n_chars=3800,\n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path,\n",
")"
]
},
{
@@ -170,6 +172,7 @@
" type: str\n",
" text: Any\n",
"\n",
"\n",
"# Categorize by type\n",
"categorized_elements = []\n",
"for element in raw_pdf_elements:\n",
@@ -220,14 +223,14 @@
"metadata": {},
"outputs": [],
"source": [
"# Prompt \n",
"prompt_text=\"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
"prompt = ChatPromptTemplate.from_template(prompt_text) \n",
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
"\n",
"# Summary chain \n",
"model = ChatOpenAI(temperature=0,model=\"gpt-4\")\n",
"summarize_chain = {\"element\": lambda x:x} | prompt | model | StrOutputParser()"
"# Summary chain\n",
"model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
"summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()"
]
},
{
@@ -342,11 +345,11 @@
"# Read each file and store its content in a list\n",
"img_summaries = []\n",
"for file_path in file_paths:\n",
" with open(file_path, 'r') as file:\n",
" with open(file_path, \"r\") as file:\n",
" img_summaries.append(file.read())\n",
"\n",
"# Remove any logging prior to summary\n",
"logging_header=\"clip_model_load: total allocated memory: 201.27 MB\\n\\n\"\n",
"logging_header = \"clip_model_load: total allocated memory: 201.27 MB\\n\\n\"\n",
"cleaned_img_summary = [s.split(logging_header, 1)[1].strip() for s in img_summaries]"
]
},
@@ -375,10 +378,7 @@
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(\n",
" collection_name=\"summaries\",\n",
" embedding_function=OpenAIEmbeddings()\n",
")\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
"\n",
"# The storage layer for the parent documents\n",
"store = InMemoryStore()\n",
@@ -386,20 +386,26 @@
"\n",
"# The retriever (empty to start)\n",
"retriever = MultiVectorRetriever(\n",
" vectorstore=vectorstore, \n",
" docstore=store, \n",
" vectorstore=vectorstore,\n",
" docstore=store,\n",
" id_key=id_key,\n",
")\n",
"\n",
"# Add texts\n",
"doc_ids = [str(uuid.uuid4()) for _ in texts]\n",
"summary_texts = [Document(page_content=s,metadata={id_key: doc_ids[i]}) for i, s in enumerate(text_summaries)]\n",
"summary_texts = [\n",
" Document(page_content=s, metadata={id_key: doc_ids[i]})\n",
" for i, s in enumerate(text_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_texts)\n",
"retriever.docstore.mset(list(zip(doc_ids, texts)))\n",
"\n",
"# Add tables\n",
"table_ids = [str(uuid.uuid4()) for _ in tables]\n",
"summary_tables = [Document(page_content=s,metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries)]\n",
"summary_tables = [\n",
" Document(page_content=s, metadata={id_key: table_ids[i]})\n",
" for i, s in enumerate(table_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_tables)\n",
"retriever.docstore.mset(list(zip(table_ids, tables)))"
]
@@ -423,9 +429,12 @@
"source": [
"# Add image summaries\n",
"img_ids = [str(uuid.uuid4()) for _ in cleaned_img_summary]\n",
"summary_img = [Document(page_content=s,metadata={id_key: img_ids[i]}) for i, s in enumerate(cleaned_img_summary)]\n",
"summary_img = [\n",
" Document(page_content=s, metadata={id_key: img_ids[i]})\n",
" for i, s in enumerate(cleaned_img_summary)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_img)\n",
"retriever.docstore.mset(list(zip(img_ids, cleaned_img_summary))) "
"retriever.docstore.mset(list(zip(img_ids, cleaned_img_summary)))"
]
},
{
@@ -449,10 +458,19 @@
"source": [
"# Add images\n",
"img_ids = [str(uuid.uuid4()) for _ in cleaned_img_summary]\n",
"summary_img = [Document(page_content=s,metadata={id_key: img_ids[i]}) for i, s in enumerate(cleaned_img_summary)]\n",
"summary_img = [\n",
" Document(page_content=s, metadata={id_key: img_ids[i]})\n",
" for i, s in enumerate(cleaned_img_summary)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_img)\n",
"### Fetch images\n",
"retriever.docstore.mset(list(zip(img_ids, ### image ### ))) "
"retriever.docstore.mset(\n",
" list(\n",
" zip(\n",
" img_ids,\n",
" )\n",
" )\n",
")"
]
},
{
@@ -542,7 +560,9 @@
],
"source": [
"# We can retrieve this table\n",
"retriever.get_relevant_documents(\"What are results for LLaMA across across domains / subjects?\")[1]"
"retriever.get_relevant_documents(\n",
" \"What are results for LLaMA across across domains / subjects?\"\n",
")[1]"
]
},
{
@@ -592,7 +612,9 @@
}
],
"source": [
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[1]"
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
" 1\n",
"]"
]
},
{
@@ -633,15 +655,15 @@
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"# Option 1: LLM\n",
"model = ChatOpenAI(temperature=0,model=\"gpt-4\")\n",
"model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
"# Option 2: Multi-modal LLM\n",
"# model = GPT4-V or LLaVA\n",
"\n",
"# RAG pipeline\n",
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
@@ -664,7 +686,9 @@
}
],
"source": [
"chain.invoke(\"What is the performance of LLaVa across across multiple image domains / subjects?\")"
"chain.invoke(\n",
" \"What is the performance of LLaVa across across multiple image domains / subjects?\"\n",
")"
]
},
{
@@ -713,7 +737,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -92,22 +92,24 @@
"path = \"/Users/rlm/Desktop/Papers/LLaVA/\"\n",
"\n",
"# Get elements\n",
"raw_pdf_elements = partition_pdf(filename=path+\"LLaVA.pdf\",\n",
" # Using pdf format to find embedded image blocks\n",
" extract_images_in_pdf=True,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document \n",
" infer_table_structure=True, \n",
" # Post processing to aggregate text once we have the title \n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars \n",
" # Hard max on chunks\n",
" max_characters=4000, \n",
" new_after_n_chars=3800, \n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path)"
"raw_pdf_elements = partition_pdf(\n",
" filename=path + \"LLaVA.pdf\",\n",
" # Using pdf format to find embedded image blocks\n",
" extract_images_in_pdf=True,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document\n",
" infer_table_structure=True,\n",
" # Post processing to aggregate text once we have the title\n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars\n",
" # Hard max on chunks\n",
" max_characters=4000,\n",
" new_after_n_chars=3800,\n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path,\n",
")"
]
},
{
@@ -165,6 +167,7 @@
" type: str\n",
" text: Any\n",
"\n",
"\n",
"# Categorize by type\n",
"categorized_elements = []\n",
"for element in raw_pdf_elements:\n",
@@ -219,14 +222,14 @@
"metadata": {},
"outputs": [],
"source": [
"# Prompt \n",
"prompt_text=\"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
"prompt = ChatPromptTemplate.from_template(prompt_text) \n",
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
"\n",
"# Summary chain \n",
"# Summary chain\n",
"model = ChatOllama(model=\"llama2:13b-chat\")\n",
"summarize_chain = {\"element\": lambda x:x} | prompt | model | StrOutputParser()"
"summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()"
]
},
{
@@ -327,11 +330,14 @@
"# Read each file and store its content in a list\n",
"img_summaries = []\n",
"for file_path in file_paths:\n",
" with open(file_path, 'r') as file:\n",
" with open(file_path, \"r\") as file:\n",
" img_summaries.append(file.read())\n",
"\n",
"# Clean up residual logging\n",
"cleaned_img_summary = [s.split(\"clip_model_load: total allocated memory: 201.27 MB\\n\\n\", 1)[1].strip() for s in img_summaries]"
"cleaned_img_summary = [\n",
" s.split(\"clip_model_load: total allocated memory: 201.27 MB\\n\\n\", 1)[1].strip()\n",
" for s in img_summaries\n",
"]"
]
},
{
@@ -377,18 +383,17 @@
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(\n",
" collection_name=\"summaries\",\n",
" embedding_function=GPT4AllEmbeddings()\n",
" collection_name=\"summaries\", embedding_function=GPT4AllEmbeddings()\n",
")\n",
"\n",
"# The storage layer for the parent documents\n",
"store = InMemoryStore() # <- Can we extend this to images \n",
"store = InMemoryStore() # <- Can we extend this to images\n",
"id_key = \"doc_id\"\n",
"\n",
"# The retriever (empty to start)\n",
"retriever = MultiVectorRetriever(\n",
" vectorstore=vectorstore, \n",
" docstore=store, \n",
" vectorstore=vectorstore,\n",
" docstore=store,\n",
" id_key=id_key,\n",
")"
]
@@ -412,21 +417,32 @@
"source": [
"# Add texts\n",
"doc_ids = [str(uuid.uuid4()) for _ in texts]\n",
"summary_texts = [Document(page_content=s,metadata={id_key: doc_ids[i]}) for i, s in enumerate(text_summaries)]\n",
"summary_texts = [\n",
" Document(page_content=s, metadata={id_key: doc_ids[i]})\n",
" for i, s in enumerate(text_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_texts)\n",
"retriever.docstore.mset(list(zip(doc_ids, texts)))\n",
"\n",
"# Add tables\n",
"table_ids = [str(uuid.uuid4()) for _ in tables]\n",
"summary_tables = [Document(page_content=s,metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries)]\n",
"summary_tables = [\n",
" Document(page_content=s, metadata={id_key: table_ids[i]})\n",
" for i, s in enumerate(table_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_tables)\n",
"retriever.docstore.mset(list(zip(table_ids, tables)))\n",
"\n",
"# Add images\n",
"img_ids = [str(uuid.uuid4()) for _ in cleaned_img_summary]\n",
"summary_img = [Document(page_content=s,metadata={id_key: img_ids[i]}) for i, s in enumerate(cleaned_img_summary)]\n",
"summary_img = [\n",
" Document(page_content=s, metadata={id_key: img_ids[i]})\n",
" for i, s in enumerate(cleaned_img_summary)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_img)\n",
"retriever.docstore.mset(list(zip(img_ids, cleaned_img_summary))) # Store the image summary as the raw document"
"retriever.docstore.mset(\n",
" list(zip(img_ids, cleaned_img_summary))\n",
") # Store the image summary as the raw document"
]
},
{
@@ -484,7 +500,9 @@
}
],
"source": [
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[0]"
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
" 0\n",
"]"
]
},
{
@@ -530,9 +548,9 @@
"\n",
"# RAG pipeline\n",
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
@@ -555,7 +573,9 @@
}
],
"source": [
"chain.invoke(\"What is the performance of LLaVa across across multiple image domains / subjects?\")"
"chain.invoke(\n",
" \"What is the performance of LLaVa across across multiple image domains / subjects?\"\n",
")"
]
},
{
@@ -584,7 +604,9 @@
}
],
"source": [
"chain.invoke(\"Explain any images / figures in the paper with playful and creative examples.\")"
"chain.invoke(\n",
" \"Explain any images / figures in the paper with playful and creative examples.\"\n",
")"
]
},
{

View File

@@ -837,7 +837,9 @@
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
"model = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo-0613\"\n",
") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
]
},

View File

@@ -77,6 +77,7 @@
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import HuggingGPT\n",
"\n",
"# %env OPENAI_API_BASE=http://localhost:8000/v1"
]
},

View File

@@ -50,6 +50,7 @@
"# pick and configure the LLM of your choice\n",
"\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(model=\"text-davinci-003\")"
]
},
@@ -85,8 +86,8 @@
"\"\"\"\n",
"\n",
"PROMPT = PromptTemplate(\n",
" input_variables=[\"meal\", \"text_to_personalize\", \"user\", \"preference\"], \n",
" template=PROMPT_TEMPLATE\n",
" input_variables=[\"meal\", \"text_to_personalize\", \"user\", \"preference\"],\n",
" template=PROMPT_TEMPLATE,\n",
")"
]
},
@@ -105,7 +106,7 @@
"source": [
"import langchain_experimental.rl_chain as rl_chain\n",
"\n",
"chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT)\n"
"chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT)"
]
},
{
@@ -122,10 +123,10 @@
"outputs": [],
"source": [
"response = chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs \\\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs \\\n",
" believe you will love it!\",\n",
")"
]
@@ -193,10 +194,10 @@
"for _ in range(5):\n",
" try:\n",
" response = chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" except Exception as e:\n",
" print(e)\n",
@@ -223,12 +224,16 @@
"metadata": {},
"outputs": [],
"source": [
"scoring_criteria_template = \"Given {preference} rank how good or bad this selection is {meal}\"\n",
"scoring_criteria_template = (\n",
" \"Given {preference} rank how good or bad this selection is {meal}\"\n",
")\n",
"\n",
"chain = rl_chain.PickBest.from_llm(\n",
" llm=llm,\n",
" prompt=PROMPT,\n",
" selection_scorer=rl_chain.AutoSelectionScorer(llm=llm, scoring_criteria_template_str=scoring_criteria_template),\n",
" selection_scorer=rl_chain.AutoSelectionScorer(\n",
" llm=llm, scoring_criteria_template_str=scoring_criteria_template\n",
" ),\n",
")"
]
},
@@ -255,14 +260,16 @@
],
"source": [
"response = chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
")\n",
"print(response[\"response\"])\n",
"selection_metadata = response[\"selection_metadata\"]\n",
"print(f\"selected index: {selection_metadata.selected.index}, score: {selection_metadata.selected.score}\")"
"print(\n",
" f\"selected index: {selection_metadata.selected.index}, score: {selection_metadata.selected.score}\"\n",
")"
]
},
{
@@ -280,8 +287,8 @@
"source": [
"class CustomSelectionScorer(rl_chain.SelectionScorer):\n",
" def score_response(\n",
" self, inputs, llm_response: str, event: rl_chain.PickBestEvent) -> float:\n",
"\n",
" self, inputs, llm_response: str, event: rl_chain.PickBestEvent\n",
" ) -> float:\n",
" print(event.based_on)\n",
" print(event.to_select_from)\n",
"\n",
@@ -336,10 +343,10 @@
],
"source": [
"response = chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
")"
]
},
@@ -370,9 +377,10 @@
" return 1.0\n",
" else:\n",
" return 0.0\n",
" def score_response(\n",
" self, inputs, llm_response: str, event: rl_chain.PickBestEvent) -> float:\n",
"\n",
" def score_response(\n",
" self, inputs, llm_response: str, event: rl_chain.PickBestEvent\n",
" ) -> float:\n",
" selected_meal = event.to_select_from[\"meal\"][event.selected.index]\n",
"\n",
" if \"Tom\" in event.based_on[\"user\"]:\n",
@@ -394,7 +402,7 @@
" prompt=PROMPT,\n",
" selection_scorer=CustomSelectionScorer(),\n",
" metrics_step=5,\n",
" metrics_window_size=5, # rolling window average\n",
" metrics_window_size=5, # rolling window average\n",
")\n",
"\n",
"random_chain = rl_chain.PickBest.from_llm(\n",
@@ -402,8 +410,8 @@
" prompt=PROMPT,\n",
" selection_scorer=CustomSelectionScorer(),\n",
" metrics_step=5,\n",
" metrics_window_size=5, # rolling window average\n",
" policy=rl_chain.PickBestRandomPolicy # set the random policy instead of default\n",
" metrics_window_size=5, # rolling window average\n",
" policy=rl_chain.PickBestRandomPolicy, # set the random policy instead of default\n",
")"
]
},
@@ -416,29 +424,29 @@
"for _ in range(20):\n",
" try:\n",
" chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" random_chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" \n",
"\n",
" chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Anna\"),\n",
" preference = rl_chain.BasedOn([\"Loves meat\", \"especially beef\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Anna\"),\n",
" preference=rl_chain.BasedOn([\"Loves meat\", \"especially beef\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" random_chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Anna\"),\n",
" preference = rl_chain.BasedOn([\"Loves meat\", \"especially beef\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Anna\"),\n",
" preference=rl_chain.BasedOn([\"Loves meat\", \"especially beef\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" except Exception as e:\n",
" print(e)"
@@ -477,12 +485,17 @@
],
"source": [
"from matplotlib import pyplot as plt\n",
"chain.metrics.to_pandas()['score'].plot(label=\"default learning policy\")\n",
"random_chain.metrics.to_pandas()['score'].plot(label=\"random selection policy\")\n",
"\n",
"chain.metrics.to_pandas()[\"score\"].plot(label=\"default learning policy\")\n",
"random_chain.metrics.to_pandas()[\"score\"].plot(label=\"random selection policy\")\n",
"plt.legend()\n",
"\n",
"print(f\"The final average score for the default policy, calculated over a rolling window, is: {chain.metrics.to_pandas()['score'].iloc[-1]}\")\n",
"print(f\"The final average score for the random policy, calculated over a rolling window, is: {random_chain.metrics.to_pandas()['score'].iloc[-1]}\")"
"print(\n",
" f\"The final average score for the default policy, calculated over a rolling window, is: {chain.metrics.to_pandas()['score'].iloc[-1]}\"\n",
")\n",
"print(\n",
" f\"The final average score for the random policy, calculated over a rolling window, is: {random_chain.metrics.to_pandas()['score'].iloc[-1]}\"\n",
")"
]
},
{
@@ -803,10 +816,10 @@
")\n",
"\n",
"chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
")"
]
}

View File

@@ -27,11 +27,12 @@
"metadata": {},
"outputs": [],
"source": [
"\n",
"from os import environ\n",
"import getpass\n",
"from typing import Dict, Any\n",
"from langchain.llms import OpenAI\nfrom langchain.utilities import SQLDatabase\nfrom langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import SQLDatabase\n",
"from langchain.chains import LLMChain\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from sqlalchemy import create_engine, Column, MetaData\n",
"from langchain.prompts import PromptTemplate\n",
@@ -76,7 +77,6 @@
"metadata": {},
"outputs": [],
"source": [
"\n",
"from langchain.llms import OpenAI\n",
"from langchain.callbacks import StdOutCallbackHandler\n",
"\n",
@@ -124,8 +124,9 @@
"from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain\n",
"\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from langchain_experimental.retrievers.vector_sql_database \\\n",
" import VectorSQLDatabaseChainRetriever\n",
"from langchain_experimental.retrievers.vector_sql_database import (\n",
" VectorSQLDatabaseChainRetriever,\n",
")\n",
"from langchain_experimental.sql.prompt import MYSCALE_PROMPT\n",
"from langchain_experimental.sql.vector_sql import VectorSQLRetrieveAllOutputParser\n",
"\n",
@@ -144,7 +145,9 @@
")\n",
"\n",
"# You need all those keys to get docs\n",
"retriever = VectorSQLDatabaseChainRetriever(sql_db_chain=chain, page_content_key=\"abstract\")\n",
"retriever = VectorSQLDatabaseChainRetriever(\n",
" sql_db_chain=chain, page_content_key=\"abstract\"\n",
")\n",
"\n",
"document_with_metadata_prompt = PromptTemplate(\n",
" input_variables=[\"page_content\", \"id\", \"title\", \"authors\", \"pubdate\", \"categories\"],\n",
@@ -162,8 +165,10 @@
" },\n",
" return_source_documents=True,\n",
")\n",
"ans = chain(\"Please give me 10 papers to ask what is PageRank?\",\n",
" callbacks=[StdOutCallbackHandler()])\n",
"ans = chain(\n",
" \"Please give me 10 papers to ask what is PageRank?\",\n",
" callbacks=[StdOutCallbackHandler()],\n",
")\n",
"print(ans[\"answer\"])"
]
},

View File

@@ -34,7 +34,11 @@
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_experimental.plan_and_execute import PlanAndExecute, load_agent_executor, load_chat_planner"
"from langchain_experimental.plan_and_execute import (\n",
" PlanAndExecute,\n",
" load_agent_executor,\n",
" load_chat_planner,\n",
")"
]
},
{
@@ -56,16 +60,16 @@
"llm = OpenAI(temperature=0)\n",
"llm_math_chain = LLMMathChain.from_llm(llm=llm, verbose=True)\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\"\n",
" ),\n",
" Tool(\n",
" name=\"Calculator\",\n",
" func=llm_math_chain.run,\n",
" description=\"useful for when you need to answer questions about math\"\n",
" ),\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\",\n",
" ),\n",
" Tool(\n",
" name=\"Calculator\",\n",
" func=llm_math_chain.run,\n",
" description=\"useful for when you need to answer questions about math\",\n",
" ),\n",
"]"
]
},
@@ -216,7 +220,9 @@
}
],
"source": [
"agent.run(\"Who is the current prime minister of the UK? What is their current age raised to the 0.43 power?\")"
"agent.run(\n",
" \"Who is the current prime minister of the UK? What is their current age raised to the 0.43 power?\"\n",
")"
]
},
{

View File

@@ -55,6 +55,7 @@
"source": [
"# Setup API keys for Kay and OpenAI\n",
"from getpass import getpass\n",
"\n",
"KAY_API_KEY = getpass()\n",
"OPENAI_API_KEY = getpass()"
]
@@ -67,6 +68,7 @@
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"KAY_API_KEY\"] = KAY_API_KEY\n",
"os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY"
]
@@ -83,7 +85,9 @@
"from langchain.retrievers import KayAiRetriever\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
"retriever = KayAiRetriever.create(dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6)\n",
"retriever = KayAiRetriever.create(\n",
" dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6\n",
")\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
]
},
@@ -116,7 +120,7 @@
"# More sample questions in the Playground on https://kay.ai\n",
"questions = [\n",
" \"How is the healthcare industry adopting generative AI tools?\",\n",
" #\"What are some recent challenges faced by the renewable energy sector?\",\n",
" # \"What are some recent challenges faced by the renewable energy sector?\",\n",
"]\n",
"chat_history = []\n",
"\n",

272
cookbook/rag_fusion.ipynb Normal file
View File

@@ -0,0 +1,272 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "993c2768",
"metadata": {},
"source": [
"# RAG Fusion\n",
"\n",
"Re-implemented from [this GitHub repo](https://github.com/Raudaschl/rag-fusion), all credit to original author\n",
"\n",
"> RAG-Fusion, a search methodology that aims to bridge the gap between traditional search paradigms and the multifaceted dimensions of human queries. Inspired by the capabilities of Retrieval Augmented Generation (RAG), this project goes a step further by employing multiple query generation and Reciprocal Rank Fusion to re-rank search results."
]
},
{
"cell_type": "markdown",
"id": "ebcc6791",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"For this example, we will use Pinecone and some fake data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "661a1c36",
"metadata": {},
"outputs": [],
"source": [
"import pinecone\n",
"from langchain.vectorstores import Pinecone\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"\n",
"pinecone.init(api_key=\"...\", environment=\"...\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "48ef7e93",
"metadata": {},
"outputs": [],
"source": [
"all_documents = {\n",
" \"doc1\": \"Climate change and economic impact.\",\n",
" \"doc2\": \"Public health concerns due to climate change.\",\n",
" \"doc3\": \"Climate change: A social perspective.\",\n",
" \"doc4\": \"Technological solutions to climate change.\",\n",
" \"doc5\": \"Policy changes needed to combat climate change.\",\n",
" \"doc6\": \"Climate change and its impact on biodiversity.\",\n",
" \"doc7\": \"Climate change: The science and models.\",\n",
" \"doc8\": \"Global warming: A subset of climate change.\",\n",
" \"doc9\": \"How climate change affects daily weather.\",\n",
" \"doc10\": \"The history of climate change activism.\",\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fde89f0b",
"metadata": {},
"outputs": [],
"source": [
"vectorstore = Pinecone.from_texts(\n",
" list(all_documents.values()), OpenAIEmbeddings(), index_name=\"rag-fusion\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "22ddd041",
"metadata": {},
"source": [
"## Define the Query Generator\n",
"\n",
"We will now define a chain to do the query generation"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "1d547524",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser"
]
},
{
"cell_type": "code",
"execution_count": 68,
"id": "af9ab4db",
"metadata": {},
"outputs": [],
"source": [
"from langchain import hub\n",
"\n",
"prompt = hub.pull(\"langchain-ai/rag-fusion-query-generation\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "3628b552",
"metadata": {},
"outputs": [],
"source": [
"# prompt = ChatPromptTemplate.from_messages([\n",
"# (\"system\", \"You are a helpful assistant that generates multiple search queries based on a single input query.\"),\n",
"# (\"user\", \"Generate multiple search queries related to: {original_query}\"),\n",
"# (\"user\", \"OUTPUT (4 queries):\")\n",
"# ])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8d6cbb73",
"metadata": {},
"outputs": [],
"source": [
"generate_queries = (\n",
" prompt | ChatOpenAI(temperature=0) | StrOutputParser() | (lambda x: x.split(\"\\n\"))\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ee2824cd",
"metadata": {},
"source": [
"## Define the full chain\n",
"\n",
"We can now put it all together and define the full chain. This chain:\n",
" \n",
" 1. Generates a bunch of queries\n",
" 2. Looks up each query in the retriever\n",
" 3. Joins all the results together using reciprocal rank fusion\n",
" \n",
" \n",
"Note that it does NOT do a final generation step"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "ca0bfec4",
"metadata": {},
"outputs": [],
"source": [
"original_query = \"impact of climate change\""
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "02437d65",
"metadata": {},
"outputs": [],
"source": [
"vectorstore = Pinecone.from_existing_index(\"rag-fusion\", OpenAIEmbeddings())\n",
"retriever = vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 76,
"id": "46a9a0e6",
"metadata": {},
"outputs": [],
"source": [
"from langchain.load import dumps, loads\n",
"\n",
"\n",
"def reciprocal_rank_fusion(results: list[list], k=60):\n",
" fused_scores = {}\n",
" for docs in results:\n",
" # Assumes the docs are returned in sorted order of relevance\n",
" for rank, doc in enumerate(docs):\n",
" doc_str = dumps(doc)\n",
" if doc_str not in fused_scores:\n",
" fused_scores[doc_str] = 0\n",
" previous_score = fused_scores[doc_str]\n",
" fused_scores[doc_str] += 1 / (rank + k)\n",
"\n",
" reranked_results = [\n",
" (loads(doc), score)\n",
" for doc, score in sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)\n",
" ]\n",
" return reranked_results"
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "3f9d4502",
"metadata": {},
"outputs": [],
"source": [
"chain = generate_queries | retriever.map() | reciprocal_rank_fusion"
]
},
{
"cell_type": "code",
"execution_count": 78,
"id": "d70c4fcd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[(Document(page_content='Climate change and economic impact.'),\n",
" 0.06558258417063283),\n",
" (Document(page_content='Climate change: A social perspective.'),\n",
" 0.06400409626216078),\n",
" (Document(page_content='How climate change affects daily weather.'),\n",
" 0.04787506400409626),\n",
" (Document(page_content='Climate change and its impact on biodiversity.'),\n",
" 0.03306010928961749),\n",
" (Document(page_content='Public health concerns due to climate change.'),\n",
" 0.016666666666666666),\n",
" (Document(page_content='Technological solutions to climate change.'),\n",
" 0.016666666666666666),\n",
" (Document(page_content='Policy changes needed to combat climate change.'),\n",
" 0.01639344262295082)]"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"original_query\": original_query})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7866e551",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

353
cookbook/rewrite.ipynb Normal file
View File

@@ -0,0 +1,353 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "260629f9",
"metadata": {},
"source": [
"# Rewrite-Retrieve-Read\n",
"\n",
"**Rewrite-Retrieve-Read** is a method proposed in the paper [Query Rewriting for Retrieval-Augmented Large Language Models](https://arxiv.org/pdf/2305.14283.pdf)\n",
"\n",
"> Because the original query can not be always optimal to retrieve for the LLM, especially in the real world... we first prompt an LLM to rewrite the queries, then conduct retrieval-augmented reading\n",
"\n",
"We show how you can easily do that with LangChain Expression Language"
]
},
{
"cell_type": "markdown",
"id": "eda93712",
"metadata": {},
"source": [
"## Baseline\n",
"\n",
"Baseline RAG (**Retrieve-and-read**) can be done like the following:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1d2edbd2",
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough, RunnableLambda\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "86a46aa9",
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Answer the users question based only on the following context:\n",
"\n",
"<context>\n",
"{context}\n",
"</context>\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"model = ChatOpenAI(temperature=0)\n",
"\n",
"search = DuckDuckGoSearchAPIWrapper()\n",
"\n",
"\n",
"def retriever(query):\n",
" return search.run(query)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8566d48e",
"metadata": {},
"outputs": [],
"source": [
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5c57f9ee",
"metadata": {},
"outputs": [],
"source": [
"simple_query = \"what is langchain?\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "37c5f962",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"\"LangChain is a powerful and versatile Python library that enables developers and researchers to create, experiment with, and analyze language models and agents. It simplifies the development of language-based applications by providing a suite of features for artificial general intelligence. It can be used to build chatbots, perform document analysis and summarization, and streamline interaction with various large language model providers. LangChain's unique proposition is its ability to create logical links between one or more language models, known as Chains. It is an open-source library that offers a generic interface to foundation models and allows prompt management and integration with other components and tools.\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(simple_query)"
]
},
{
"cell_type": "markdown",
"id": "23bdb9bd",
"metadata": {},
"source": [
"While this is fine for well formatted queries, it can break down for more complicated queries"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8df6a814",
"metadata": {},
"outputs": [],
"source": [
"distracted_query = \"man that sam bankman fried trial was crazy! what is langchain?\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "16d7db64",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Based on the given context, there is no information provided about \"langchain.\"'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(distracted_query)"
]
},
{
"cell_type": "markdown",
"id": "0b4f8b93",
"metadata": {},
"source": [
"This is because the retriever does a bad job with these \"distracted\" queries"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3439d8dc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Business She\\'s the star witness against Sam Bankman-Fried. Her testimony was explosive Gary Wang, who co-founded both FTX and Alameda Research, said Bankman-Fried directed him to change a... The Verge, following the trial\\'s Oct. 4 kickoff: \"Is Sam Bankman-Fried\\'s Defense Even Trying to Win?\". CBS Moneywatch, from Thursday: \"Sam Bankman-Fried\\'s Lawyer Struggles to Poke ... Sam Bankman-Fried, FTX\\'s founder, responded with a single word: \"Oof.\". Less than a year later, Mr. Bankman-Fried, 31, is on trial in federal court in Manhattan, fighting criminal charges ... July 19, 2023. A U.S. judge on Wednesday overruled objections by Sam Bankman-Fried\\'s lawyers and allowed jurors in the FTX founder\\'s fraud trial to see a profane message he sent to a reporter days ... Sam Bankman-Fried, who was once hailed as a virtuoso in cryptocurrency trading, is on trial over the collapse of FTX, the financial exchange he founded. Bankman-Fried is accused of...'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever(distracted_query)"
]
},
{
"cell_type": "markdown",
"id": "7eb748ac",
"metadata": {},
"source": [
"## Rewrite-Retrieve-Read Implementation\n",
"\n",
"The main part is a rewriter to rewrite the search query"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "88ae702e",
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Provide a better search query for \\\n",
"web search engine to answer the given question, end \\\n",
"the queries with **. Question: \\\n",
"{x} Answer:\"\"\"\n",
"rewrite_prompt = ChatPromptTemplate.from_template(template)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "184e1bcb",
"metadata": {},
"outputs": [],
"source": [
"from langchain import hub\n",
"\n",
"rewrite_prompt = hub.pull(\"langchain-ai/rewrite\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "a4c23d40",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Provide a better search query for web search engine to answer the given question, end the queries with **. Question {x} Answer:\n"
]
}
],
"source": [
"print(rewrite_prompt.template)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f55cd010",
"metadata": {},
"outputs": [],
"source": [
"# Parser to remove the `**`\n",
"\n",
"\n",
"def _parse(text):\n",
" return text.strip(\"**\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "c9c34bef",
"metadata": {},
"outputs": [],
"source": [
"rewriter = rewrite_prompt | ChatOpenAI(temperature=0) | StrOutputParser() | _parse"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "fb17fb3d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'What is the definition and purpose of Langchain?'"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rewriter.invoke({\"x\": distracted_query})"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f83edb09",
"metadata": {},
"outputs": [],
"source": [
"rewrite_retrieve_read_chain = (\n",
" {\n",
" \"context\": {\"x\": RunnablePassthrough()} | rewriter | retriever,\n",
" \"question\": RunnablePassthrough(),\n",
" }\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "43096322",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Based on the given context, LangChain is an open-source framework designed to simplify the creation of applications using large language models (LLMs). It enables LLM models to generate responses based on up-to-date online information and simplifies the organization of large volumes of data for easy access by LLMs. LangChain offers a standard interface for chains, integrations with other tools, and end-to-end chains for common applications. It is a robust library that streamlines interaction with various LLM providers. LangChain\\'s unique proposition is its ability to create logical links between one or more LLMs, known as Chains. It is an AI framework with features that simplify the development of language-based applications and offers a suite of features for artificial general intelligence. However, the context does not provide any information about the \"sam bankman fried trial\" mentioned in the question.'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rewrite_retrieve_read_chain.invoke(distracted_query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59874b4f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,177 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e93283d1",
"metadata": {},
"source": [
"# Selecting LLMs based on Context Length\n",
"\n",
"Different LLMs have different context lengths. As a very immediate an practical example, OpenAI has two versions of GPT-3.5-Turbo: one with 4k context, another with 16k context. This notebook shows how to route between them based on input."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "cc453450",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema.prompt import PromptValue\n",
"from langchain.schema.messages import BaseMessage\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from typing import Union, Sequence"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1cec6a10",
"metadata": {},
"outputs": [],
"source": [
"short_context_model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
"long_context_model = ChatOpenAI(model=\"gpt-3.5-turbo-16k\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "772da153",
"metadata": {},
"outputs": [],
"source": [
"def get_context_length(prompt: PromptValue):\n",
" messages = prompt.to_messages()\n",
" tokens = short_context_model.get_num_tokens_from_messages(messages)\n",
" return tokens"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "db771e20",
"metadata": {},
"outputs": [],
"source": [
"prompt = PromptTemplate.from_template(\"Summarize this passage: {context}\")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "af057e2f",
"metadata": {},
"outputs": [],
"source": [
"def choose_model(prompt: PromptValue):\n",
" context_len = get_context_length(prompt)\n",
" if context_len < 30:\n",
" print(\"short model\")\n",
" return short_context_model\n",
" else:\n",
" print(\"long model\")\n",
" return long_context_model"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "84f3e07d",
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | choose_model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "d8b14f8f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"short model\n"
]
},
{
"data": {
"text/plain": [
"'The passage mentions that a frog visited a pond.'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"context\": \"a frog went to a pond\"})"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "70ebd3dd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"long model\n"
]
},
{
"data": {
"text/plain": [
"'The passage describes a frog that moved from one pond to another and perched on a log.'"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\n",
" {\"context\": \"a frog went to a pond and sat on a log and went to a different pond\"}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7e29fef",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -7,9 +7,33 @@
"source": [
"# Building hotel room search with self-querying retrieval\n",
"\n",
"In this example we'll walk through how to build and iterate on a hotel room search service that leverages an LLM to generate structured filter queries that can then be passed to a vector store.\n",
"\n",
"For an introduction to self-querying retrieval [check out the docs](https://python.langchain.com/docs/modules/data_connection/retrievers/self_query)."
]
},
{
"cell_type": "markdown",
"id": "d621de99-d993-4f4b-b94a-d02b2c7ad4e0",
"metadata": {},
"source": [
"## Imports and data prep\n",
"\n",
"In this example we use `ChatOpenAI` for the model and `ElasticsearchStore` for the vector store, but these can be swapped out with an LLM/ChatModel and [any VectorStore that support self-querying](https://python.langchain.com/docs/integrations/retrievers/self_query/).\n",
"\n",
"Download data from: https://www.kaggle.com/datasets/keshavramaiah/hotel-recommendation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ecd1fbb-bdba-420b-bcc7-5ea8a232ab11",
"metadata": {},
"outputs": [],
"source": [
"!pip install langchain lark openai elasticsearch pandas"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -27,8 +51,14 @@
"metadata": {},
"outputs": [],
"source": [
"details = pd.read_csv(\"~/Downloads/archive/Hotel_details.csv\").drop_duplicates(subset=\"hotelid\").set_index(\"hotelid\")\n",
"attributes = pd.read_csv(\"~/Downloads/archive/Hotel_Room_attributes.csv\", index_col=\"id\")\n",
"details = (\n",
" pd.read_csv(\"~/Downloads/archive/Hotel_details.csv\")\n",
" .drop_duplicates(subset=\"hotelid\")\n",
" .set_index(\"hotelid\")\n",
")\n",
"attributes = pd.read_csv(\n",
" \"~/Downloads/archive/Hotel_Room_attributes.csv\", index_col=\"id\"\n",
")\n",
"price = pd.read_csv(\"~/Downloads/archive/hotels_RoomPrice.csv\", index_col=\"id\")"
]
},
@@ -184,9 +214,20 @@
}
],
"source": [
"latest_price = price.drop_duplicates(subset=\"refid\", keep=\"last\")[[\"hotelcode\", \"roomtype\", \"onsiterate\", \"roomamenities\", \"maxoccupancy\", \"mealinclusiontype\"]]\n",
"latest_price = price.drop_duplicates(subset=\"refid\", keep=\"last\")[\n",
" [\n",
" \"hotelcode\",\n",
" \"roomtype\",\n",
" \"onsiterate\",\n",
" \"roomamenities\",\n",
" \"maxoccupancy\",\n",
" \"mealinclusiontype\",\n",
" ]\n",
"]\n",
"latest_price[\"ratedescription\"] = attributes.loc[latest_price.index][\"ratedescription\"]\n",
"latest_price = latest_price.join(details[[\"hotelname\", \"city\", \"country\", \"starrating\"]], on=\"hotelcode\")\n",
"latest_price = latest_price.join(\n",
" details[[\"hotelname\", \"city\", \"country\", \"starrating\"]], on=\"hotelcode\"\n",
")\n",
"latest_price = latest_price.rename({\"ratedescription\": \"roomdescription\"}, axis=1)\n",
"latest_price[\"mealsincluded\"] = ~latest_price[\"mealinclusiontype\"].isnull()\n",
"latest_price.pop(\"hotelcode\")\n",
@@ -220,7 +261,7 @@
"res = model.predict(\n",
" \"Below is a table with information about hotel rooms. \"\n",
" \"Return a JSON list with an entry for each column. Each entry should have \"\n",
" \"{\\\"name\\\": \\\"column name\\\", \\\"description\\\": \\\"column description\\\", \\\"type\\\": \\\"column data type\\\"}\"\n",
" '{\"name\": \"column name\", \"description\": \"column description\", \"type\": \"column data type\"}'\n",
" f\"\\n\\n{latest_price.head()}\\n\\nJSON:\\n\"\n",
")"
]
@@ -314,9 +355,15 @@
"metadata": {},
"outputs": [],
"source": [
"attribute_info[-2]['description'] += f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
"attribute_info[3]['description'] += f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
"attribute_info[-3]['description'] += f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\""
"attribute_info[-2][\n",
" \"description\"\n",
"] += f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
"attribute_info[3][\n",
" \"description\"\n",
"] += f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
"attribute_info[-3][\n",
" \"description\"\n",
"] += f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\""
]
},
{
@@ -384,7 +431,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.query_constructor.base import get_query_constructor_prompt, load_query_constructor_runnable"
"from langchain.chains.query_constructor.base import (\n",
" get_query_constructor_prompt,\n",
" load_query_constructor_runnable,\n",
")"
]
},
{
@@ -568,7 +618,9 @@
"metadata": {},
"outputs": [],
"source": [
"chain = load_query_constructor_runnable(ChatOpenAI(model='gpt-3.5-turbo', temperature=0), doc_contents, attribute_info)"
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0), doc_contents, attribute_info\n",
")"
]
},
{
@@ -610,7 +662,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"\n",
" }\n",
")"
]
},
{
@@ -632,10 +688,12 @@
"metadata": {},
"outputs": [],
"source": [
"attribute_info[-3]['description'] += \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
"attribute_info[-3][\n",
" \"description\"\n",
"] += \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model='gpt-3.5-turbo', temperature=0), \n",
" doc_contents, \n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
" doc_contents,\n",
" attribute_info,\n",
")"
]
@@ -680,10 +738,12 @@
"source": [
"content_attr = [\"roomtype\", \"roomamenities\", \"roomdescription\", \"hotelname\"]\n",
"doc_contents = \"A detailed description of a hotel room, including information about the room type and room amenities.\"\n",
"filter_attribute_info = tuple(ai for ai in attribute_info if ai[\"name\"] not in content_attr)\n",
"filter_attribute_info = tuple(\n",
" ai for ai in attribute_info if ai[\"name\"] not in content_attr\n",
")\n",
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model='gpt-3.5-turbo', temperature=0), \n",
" doc_contents, \n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
" doc_contents,\n",
" filter_attribute_info,\n",
")"
]
@@ -706,7 +766,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"\n",
" }\n",
")"
]
},
{
@@ -836,14 +900,22 @@
"examples = [\n",
" (\n",
" \"I want a hotel in the Balkans with a king sized bed and a hot tub. Budget is $300 a night\",\n",
" {\"query\": \"king-sized bed, hot tub\", \"filter\": 'and(in(\"country\", [\"Bulgaria\", \"Greece\", \"Croatia\", \"Serbia\"]), lte(\"onsiterate\", 300))'}\n",
" {\n",
" \"query\": \"king-sized bed, hot tub\",\n",
" \"filter\": 'and(in(\"country\", [\"Bulgaria\", \"Greece\", \"Croatia\", \"Serbia\"]), lte(\"onsiterate\", 300))',\n",
" },\n",
" ),\n",
" (\n",
" \"A room with breakfast included for 3 people, at a Hilton\",\n",
" {\"query\": \"Hilton\", \"filter\": 'and(eq(\"mealsincluded\", true), gte(\"maxoccupancy\", 3))'}\n",
" {\n",
" \"query\": \"Hilton\",\n",
" \"filter\": 'and(eq(\"mealsincluded\", true), gte(\"maxoccupancy\", 3))',\n",
" },\n",
" ),\n",
"]\n",
"prompt = get_query_constructor_prompt(doc_contents, filter_attribute_info, examples=examples)\n",
"prompt = get_query_constructor_prompt(\n",
" doc_contents, filter_attribute_info, examples=examples\n",
")\n",
"print(prompt.format(query=\"{query}\"))"
]
},
@@ -855,10 +927,10 @@
"outputs": [],
"source": [
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model='gpt-3.5-turbo', temperature=0), \n",
" doc_contents, \n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
" doc_contents,\n",
" filter_attribute_info,\n",
" examples=examples\n",
" examples=examples,\n",
")"
]
},
@@ -880,7 +952,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"\n",
" }\n",
")"
]
},
{
@@ -932,7 +1008,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
" }\n",
")"
]
},
{
@@ -953,11 +1033,11 @@
"outputs": [],
"source": [
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model='gpt-3.5-turbo', temperature=0), \n",
" doc_contents, \n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
" doc_contents,\n",
" filter_attribute_info,\n",
" examples=examples,\n",
" fix_invalid=True\n",
" fix_invalid=True,\n",
")"
]
},
@@ -979,7 +1059,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
" }\n",
")"
]
},
{
@@ -1032,8 +1116,8 @@
"# docs.append(doc)\n",
"# vecstore = ElasticsearchStore.from_documents(\n",
"# docs,\n",
"# embeddings, \n",
"# es_url=\"http://localhost:9200\", \n",
"# embeddings,\n",
"# es_url=\"http://localhost:9200\",\n",
"# index_name=\"hotel_rooms\",\n",
"# # strategy=ElasticsearchStore.ApproxRetrievalStrategy(\n",
"# # hybrid=True,\n",
@@ -1049,9 +1133,9 @@
"outputs": [],
"source": [
"vecstore = ElasticsearchStore(\n",
" \"hotel_rooms\", \n",
" embedding=embeddings, \n",
" es_url=\"http://localhost:9200\", \n",
" \"hotel_rooms\",\n",
" embedding=embeddings,\n",
" es_url=\"http://localhost:9200\",\n",
" # strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True) # seems to not be available in community version\n",
")"
]
@@ -1065,7 +1149,9 @@
"source": [
"from langchain.retrievers import SelfQueryRetriever\n",
"\n",
"retriever = SelfQueryRetriever(query_constructor=chain, vectorstore=vecstore, verbose=True)"
"retriever = SelfQueryRetriever(\n",
" query_constructor=chain, vectorstore=vecstore, verbose=True\n",
")"
]
},
{
@@ -1142,7 +1228,9 @@
}
],
"source": [
"results = retriever.get_relevant_documents(\"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\")\n",
"results = retriever.get_relevant_documents(\n",
" \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
")\n",
"for res in results:\n",
" print(res.page_content)\n",
" print(\"\\n\" + \"-\" * 20 + \"\\n\")"

351
cookbook/stepback-qa.ipynb Normal file
View File

@@ -0,0 +1,351 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "83ef724e",
"metadata": {},
"source": [
"# Step-Back Prompting (Question-Answering)\n",
"\n",
"One prompting technique called \"Step-Back\" prompting can improve performance on complex questions by first asking a \"step back\" question. This can be combined with regular question-answering applications by then doing retrieval on both the original and step-back question.\n",
"\n",
"Read the paper [here](https://arxiv.org/abs/2310.06117)\n",
"\n",
"See an excellent blog post on this by Cobus Greyling [here](https://cobusgreyling.medium.com/a-new-prompt-engineering-technique-has-been-introduced-called-step-back-prompting-b00e8954cacb)\n",
"\n",
"In this cookbook we will replicate this technique. We modify the prompts used slightly to work better with chat models."
]
},
{
"cell_type": "code",
"execution_count": 85,
"id": "67b5cdac",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnableLambda"
]
},
{
"cell_type": "code",
"execution_count": 86,
"id": "7e017c44",
"metadata": {},
"outputs": [],
"source": [
"# Few Shot Examples\n",
"examples = [\n",
" {\n",
" \"input\": \"Could the members of The Police perform lawful arrests?\",\n",
" \"output\": \"what can the members of The Police do?\",\n",
" },\n",
" {\n",
" \"input\": \"Jan Sindels was born in what country?\",\n",
" \"output\": \"what is Jan Sindels personal history?\",\n",
" },\n",
"]\n",
"# We now transform these to example messages\n",
"example_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"human\", \"{input}\"),\n",
" (\"ai\", \"{output}\"),\n",
" ]\n",
")\n",
"few_shot_prompt = FewShotChatMessagePromptTemplate(\n",
" example_prompt=example_prompt,\n",
" examples=examples,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 87,
"id": "206415ee",
"metadata": {},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"\"\"You are an expert at world knowledge. Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer. Here are a few examples:\"\"\",\n",
" ),\n",
" # Few shot examples\n",
" few_shot_prompt,\n",
" # New question\n",
" (\"user\", \"{question}\"),\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 88,
"id": "d643a85c",
"metadata": {},
"outputs": [],
"source": [
"question_gen = prompt | ChatOpenAI(temperature=0) | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 182,
"id": "5ba21b2a",
"metadata": {},
"outputs": [],
"source": [
"question = \"was chatgpt around while trump was president?\""
]
},
{
"cell_type": "code",
"execution_count": 183,
"id": "5992c8ca",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'when was ChatGPT developed?'"
]
},
"execution_count": 183,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question_gen.invoke({\"question\": question})"
]
},
{
"cell_type": "code",
"execution_count": 190,
"id": "32667424",
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"\n",
"\n",
"search = DuckDuckGoSearchAPIWrapper(max_results=4)\n",
"\n",
"\n",
"def retriever(query):\n",
" return search.run(query)"
]
},
{
"cell_type": "code",
"execution_count": 191,
"id": "ffc28c91",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'This includes content about former President Donald Trump. According to further tests, ChatGPT successfully wrote poems admiring all recent U.S. presidents, but failed when we entered a query for ... On Wednesday, a Twitter user posted screenshots of him asking OpenAI\\'s chatbot, ChatGPT, to write a positive poem about former President Donald Trump, to which the chatbot declined, citing it ... While impressive in many respects, ChatGPT also has some major flaws. ... [President\\'s Name],\" refused to write a poem about ex-President Trump, but wrote one about President Biden ... During the Trump administration, Altman gained new attention as a vocal critic of the president. It was against that backdrop that he was rumored to be considering a run for California governor.'"
]
},
"execution_count": 191,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever(question)"
]
},
{
"cell_type": "code",
"execution_count": 192,
"id": "00c77443",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Will Douglas Heaven March 3, 2023 Stephanie Arnett/MITTR | Envato When OpenAI launched ChatGPT, with zero fanfare, in late November 2022, the San Francisco-based artificial-intelligence company... ChatGPT, which stands for Chat Generative Pre-trained Transformer, is a large language model -based chatbot developed by OpenAI and launched on November 30, 2022, which enables users to refine and steer a conversation towards a desired length, format, style, level of detail, and language. ChatGPT is an artificial intelligence (AI) chatbot built on top of OpenAI's foundational large language models (LLMs) like GPT-4 and its predecessors. This chatbot has redefined the standards of... June 4, 2023 ⋅ 4 min read 124 SHARES 13K At the end of 2022, OpenAI introduced the world to ChatGPT. Since its launch, ChatGPT hasn't shown significant signs of slowing down in developing new...\""
]
},
"execution_count": 192,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever(question_gen.invoke({\"question\": question}))"
]
},
{
"cell_type": "code",
"execution_count": 193,
"id": "b257bc06",
"metadata": {},
"outputs": [],
"source": [
"# response_prompt_template = \"\"\"You are an expert of world knowledge. I am going to ask you a question. Your response should be comprehensive and not contradicted with the following context if they are relevant. Otherwise, ignore them if they are not relevant.\n",
"\n",
"# {normal_context}\n",
"# {step_back_context}\n",
"\n",
"# Original Question: {question}\n",
"# Answer:\"\"\"\n",
"# response_prompt = ChatPromptTemplate.from_template(response_prompt_template)"
]
},
{
"cell_type": "code",
"execution_count": 203,
"id": "f48c65b2",
"metadata": {},
"outputs": [],
"source": [
"from langchain import hub\n",
"\n",
"response_prompt = hub.pull(\"langchain-ai/stepback-answer\")"
]
},
{
"cell_type": "code",
"execution_count": 204,
"id": "97a6d5ab",
"metadata": {},
"outputs": [],
"source": [
"chain = (\n",
" {\n",
" # Retrieve context using the normal question\n",
" \"normal_context\": RunnableLambda(lambda x: x[\"question\"]) | retriever,\n",
" # Retrieve context using the step-back question\n",
" \"step_back_context\": question_gen | retriever,\n",
" # Pass on the question\n",
" \"question\": lambda x: x[\"question\"],\n",
" }\n",
" | response_prompt\n",
" | ChatOpenAI(temperature=0)\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 205,
"id": "ce554cb0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"No, ChatGPT was not around while Donald Trump was president. ChatGPT was launched on November 30, 2022, which is after Donald Trump's presidency. The context provided mentions that during the Trump administration, Altman, the CEO of OpenAI, gained attention as a vocal critic of the president. This suggests that ChatGPT was not developed or available during that time.\""
]
},
"execution_count": 205,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"question\": question})"
]
},
{
"cell_type": "markdown",
"id": "a9fb8dd2",
"metadata": {},
"source": [
"## Baseline"
]
},
{
"cell_type": "code",
"execution_count": 206,
"id": "00db8a15",
"metadata": {},
"outputs": [],
"source": [
"response_prompt_template = \"\"\"You are an expert of world knowledge. I am going to ask you a question. Your response should be comprehensive and not contradicted with the following context if they are relevant. Otherwise, ignore them if they are not relevant.\n",
"\n",
"{normal_context}\n",
"\n",
"Original Question: {question}\n",
"Answer:\"\"\"\n",
"response_prompt = ChatPromptTemplate.from_template(response_prompt_template)"
]
},
{
"cell_type": "code",
"execution_count": 207,
"id": "06335ebb",
"metadata": {},
"outputs": [],
"source": [
"chain = (\n",
" {\n",
" # Retrieve context using the normal question (only the first 3 results)\n",
" \"normal_context\": RunnableLambda(lambda x: x[\"question\"]) | retriever,\n",
" # Pass on the question\n",
" \"question\": lambda x: x[\"question\"],\n",
" }\n",
" | response_prompt\n",
" | ChatOpenAI(temperature=0)\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 208,
"id": "15e0e741",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Yes, ChatGPT was around while Donald Trump was president. However, it is important to note that the specific context you provided mentions that ChatGPT refused to write a positive poem about former President Donald Trump. This suggests that while ChatGPT was available during Trump's presidency, it may have had limitations or biases in its responses regarding him.\""
]
},
"execution_count": 208,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"question\": question})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7b9e5d6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -51,7 +51,7 @@
}
],
"source": [
"sudoku_puzzle = \"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\"\n",
"sudoku_puzzle = \"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\"\n",
"sudoku_solution = \"3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1\"\n",
"problem_description = f\"\"\"\n",
"{sudoku_puzzle}\n",
@@ -64,7 +64,7 @@
"- Keep the known digits from previous valid thoughts in place.\n",
"- Each thought can be a partial or the final solution.\n",
"\"\"\".strip()\n",
"print(problem_description)\n"
"print(problem_description)"
]
},
{
@@ -89,8 +89,11 @@
"from langchain_experimental.tot.thought import ThoughtValidity\n",
"import re\n",
"\n",
"\n",
"class MyChecker(ToTChecker):\n",
" def evaluate(self, problem_description: str, thoughts: Tuple[str, ...] = ()) -> ThoughtValidity:\n",
" def evaluate(\n",
" self, problem_description: str, thoughts: Tuple[str, ...] = ()\n",
" ) -> ThoughtValidity:\n",
" last_thought = thoughts[-1]\n",
" clean_solution = last_thought.replace(\" \", \"\").replace('\"', \"\")\n",
" regex_solution = clean_solution.replace(\"*\", \".\").replace(\"|\", \"\\\\|\")\n",
@@ -116,10 +119,22 @@
"outputs": [],
"source": [
"checker = MyChecker()\n",
"assert checker.evaluate(\"\", (\"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\",)) == ThoughtValidity.VALID_INTERMEDIATE\n",
"assert checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1\",)) == ThoughtValidity.VALID_FINAL\n",
"assert checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,1\",)) == ThoughtValidity.VALID_INTERMEDIATE\n",
"assert checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,*,3,1\",)) == ThoughtValidity.INVALID"
"assert (\n",
" checker.evaluate(\"\", (\"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\",))\n",
" == ThoughtValidity.VALID_INTERMEDIATE\n",
")\n",
"assert (\n",
" checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1\",))\n",
" == ThoughtValidity.VALID_FINAL\n",
")\n",
"assert (\n",
" checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,1\",))\n",
" == ThoughtValidity.VALID_INTERMEDIATE\n",
")\n",
"assert (\n",
" checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,*,3,1\",))\n",
" == ThoughtValidity.INVALID\n",
")"
]
},
{
@@ -203,7 +218,9 @@
"source": [
"from langchain_experimental.tot.base import ToTChain\n",
"\n",
"tot_chain = ToTChain(llm=llm, checker=MyChecker(), k=30, c=5, verbose=True, verbose_llm=False)\n",
"tot_chain = ToTChain(\n",
" llm=llm, checker=MyChecker(), k=30, c=5, verbose=True, verbose_llm=False\n",
")\n",
"tot_chain.run(problem_description=problem_description)"
]
},

View File

@@ -14,6 +14,8 @@ cd ../_dist
poetry run python scripts/model_feat_table.py
poetry run nbdoc_build --srcdir docs
cp ../cookbook/README.md src/pages/cookbook.mdx
cp ../.github/CONTRIBUTING.md docs/contributing.md
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/guides/deployments/langserve.md
poetry run python scripts/generate_api_reference_links.py
yarn install
yarn start

View File

@@ -2,9 +2,9 @@
import importlib
import inspect
import typing
from pathlib import Path
from typing import TypedDict, Sequence, List, Dict, Literal, Union, Optional
from enum import Enum
from pathlib import Path
from typing import Dict, List, Literal, Optional, Sequence, TypedDict, Union
from pydantic import BaseModel

File diff suppressed because one or more lines are too long

View File

@@ -115,7 +115,9 @@
"agent = (\n",
" {\n",
" \"question\": lambda x: x[\"question\"],\n",
" \"intermediate_steps\": lambda x: convert_intermediate_steps(x[\"intermediate_steps\"])\n",
" \"intermediate_steps\": lambda x: convert_intermediate_steps(\n",
" x[\"intermediate_steps\"]\n",
" ),\n",
" }\n",
" | prompt.partial(tools=convert_tools(tool_list))\n",
" | model.bind(stop=[\"</tool_input>\", \"</final_answer>\"])\n",

View File

@@ -12,15 +12,19 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 1,
"id": "bd7c259a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n",
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.utilities import PythonREPL"
"from langchain_experimental.utilities import PythonREPL"
]
},
{
@@ -37,9 +41,7 @@
"```python\n",
"....\n",
"```\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", template), (\"human\", \"{input}\")]\n",
")\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", template), (\"human\", \"{input}\")])\n",
"\n",
"model = ChatOpenAI()"
]
@@ -111,7 +113,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.1"
}
},
"nbformat": 4,

View File

@@ -24,11 +24,13 @@
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"\n",
"model = ChatOpenAI()\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"You are a helpful chatbot\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{input}\")\n",
"])\n"
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a helpful chatbot\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")"
]
},
{
@@ -38,7 +40,7 @@
"metadata": {},
"outputs": [],
"source": [
"memory = ConversationBufferMemory(return_messages=True)\n"
"memory = ConversationBufferMemory(return_messages=True)"
]
},
{
@@ -59,7 +61,7 @@
}
],
"source": [
"memory.load_memory_variables({})\n"
"memory.load_memory_variables({})"
]
},
{
@@ -69,9 +71,13 @@
"metadata": {},
"outputs": [],
"source": [
"chain = RunnablePassthrough.assign(\n",
" memory=RunnableLambda(memory.load_memory_variables) | itemgetter(\"history\")\n",
") | prompt | model\n"
"chain = (\n",
" RunnablePassthrough.assign(\n",
" memory=RunnableLambda(memory.load_memory_variables) | itemgetter(\"history\")\n",
" )\n",
" | prompt\n",
" | model\n",
")"
]
},
{
@@ -94,7 +100,7 @@
"source": [
"inputs = {\"input\": \"hi im bob\"}\n",
"response = chain.invoke(inputs)\n",
"response\n"
"response"
]
},
{
@@ -104,7 +110,7 @@
"metadata": {},
"outputs": [],
"source": [
"memory.save_context(inputs, {\"output\": response.content})\n"
"memory.save_context(inputs, {\"output\": response.content})"
]
},
{
@@ -126,7 +132,7 @@
}
],
"source": [
"memory.load_memory_variables({})\n"
"memory.load_memory_variables({})"
]
},
{
@@ -149,7 +155,7 @@
"source": [
"inputs = {\"input\": \"whats my name\"}\n",
"response = chain.invoke(inputs)\n",
"response\n"
"response"
]
}
],

View File

@@ -40,9 +40,7 @@
"outputs": [],
"source": [
"model = OpenAI()\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"repeat after me: {input}\")\n",
"])"
"prompt = ChatPromptTemplate.from_messages([(\"system\", \"repeat after me: {input}\")])"
]
},
{

View File

@@ -44,13 +44,20 @@
"from langchain.schema import StrOutputParser\n",
"\n",
"prompt1 = ChatPromptTemplate.from_template(\"what is the city {person} is from?\")\n",
"prompt2 = ChatPromptTemplate.from_template(\"what country is the city {city} in? respond in {language}\")\n",
"prompt2 = ChatPromptTemplate.from_template(\n",
" \"what country is the city {city} in? respond in {language}\"\n",
")\n",
"\n",
"model = ChatOpenAI()\n",
"\n",
"chain1 = prompt1 | model | StrOutputParser()\n",
"\n",
"chain2 = {\"city\": chain1, \"language\": itemgetter(\"language\")} | prompt2 | model | StrOutputParser()\n",
"chain2 = (\n",
" {\"city\": chain1, \"language\": itemgetter(\"language\")}\n",
" | prompt2\n",
" | model\n",
" | StrOutputParser()\n",
")\n",
"\n",
"chain2.invoke({\"person\": \"obama\", \"language\": \"spanish\"})"
]
@@ -64,17 +71,29 @@
"source": [
"from langchain.schema.runnable import RunnableMap, RunnablePassthrough\n",
"\n",
"prompt1 = ChatPromptTemplate.from_template(\"generate a {attribute} color. Return the name of the color and nothing else:\")\n",
"prompt2 = ChatPromptTemplate.from_template(\"what is a fruit of color: {color}. Return the name of the fruit and nothing else:\")\n",
"prompt3 = ChatPromptTemplate.from_template(\"what is a country with a flag that has the color: {color}. Return the name of the country and nothing else:\")\n",
"prompt4 = ChatPromptTemplate.from_template(\"What is the color of {fruit} and the flag of {country}?\")\n",
"prompt1 = ChatPromptTemplate.from_template(\n",
" \"generate a {attribute} color. Return the name of the color and nothing else:\"\n",
")\n",
"prompt2 = ChatPromptTemplate.from_template(\n",
" \"what is a fruit of color: {color}. Return the name of the fruit and nothing else:\"\n",
")\n",
"prompt3 = ChatPromptTemplate.from_template(\n",
" \"what is a country with a flag that has the color: {color}. Return the name of the country and nothing else:\"\n",
")\n",
"prompt4 = ChatPromptTemplate.from_template(\n",
" \"What is the color of {fruit} and the flag of {country}?\"\n",
")\n",
"\n",
"model_parser = model | StrOutputParser()\n",
"\n",
"color_generator = {\"attribute\": RunnablePassthrough()} | prompt1 | {\"color\": model_parser}\n",
"color_generator = (\n",
" {\"attribute\": RunnablePassthrough()} | prompt1 | {\"color\": model_parser}\n",
")\n",
"color_to_fruit = prompt2 | model_parser\n",
"color_to_country = prompt3 | model_parser\n",
"question_generator = color_generator | {\"fruit\": color_to_fruit, \"country\": color_to_country} | prompt4"
"question_generator = (\n",
" color_generator | {\"fruit\": color_to_fruit, \"country\": color_to_country} | prompt4\n",
")"
]
},
{
@@ -148,9 +167,7 @@
"outputs": [],
"source": [
"planner = (\n",
" ChatPromptTemplate.from_template(\n",
" \"Generate an argument about: {input}\"\n",
" )\n",
" ChatPromptTemplate.from_template(\"Generate an argument about: {input}\")\n",
" | ChatOpenAI()\n",
" | StrOutputParser()\n",
" | {\"base_response\": RunnablePassthrough()}\n",
@@ -163,7 +180,7 @@
" | ChatOpenAI()\n",
" | StrOutputParser()\n",
")\n",
"arguments_against = (\n",
"arguments_against = (\n",
" ChatPromptTemplate.from_template(\n",
" \"List the cons or negative aspects of {base_response}\"\n",
" )\n",
@@ -184,7 +201,7 @@
")\n",
"\n",
"chain = (\n",
" planner \n",
" planner\n",
" | {\n",
" \"results_1\": arguments_for,\n",
" \"results_2\": arguments_against,\n",

View File

@@ -30,7 +30,7 @@
"source": [
"## PromptTemplate + LLM\n",
"\n",
"The simplest composition is just combing a prompt and model to create a chain that takes user input, adds it to a prompt, passes it to a model, and returns the raw model input.\n",
"The simplest composition is just combing a prompt and model to create a chain that takes user input, adds it to a prompt, passes it to a model, and returns the raw model output.\n",
"\n",
"Note, you can mix and match PromptTemplate/ChatPromptTemplates and LLMs/ChatModels as you like here."
]
@@ -47,7 +47,7 @@
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {foo}\")\n",
"model = ChatOpenAI()\n",
"chain = prompt | model\n"
"chain = prompt | model"
]
},
{
@@ -68,7 +68,7 @@
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})\n"
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
@@ -76,7 +76,7 @@
"id": "7eb9ef50",
"metadata": {},
"source": [
"Often times we want to attach kwargs that'll be passed to each model call. Here's a few examples of that:"
"Often times we want to attach kwargs that'll be passed to each model call. Here are a few examples of that:"
]
},
{
@@ -94,7 +94,7 @@
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | model.bind(stop=[\"\\n\"])\n"
"chain = prompt | model.bind(stop=[\"\\n\"])"
]
},
{
@@ -115,7 +115,7 @@
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})\n"
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
@@ -135,25 +135,22 @@
"source": [
"functions = [\n",
" {\n",
" \"name\": \"joke\",\n",
" \"description\": \"A joke\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"setup\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The setup for the joke\"\n",
" },\n",
" \"punchline\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The punchline for the joke\"\n",
" }\n",
" \"name\": \"joke\",\n",
" \"description\": \"A joke\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"setup\": {\"type\": \"string\", \"description\": \"The setup for the joke\"},\n",
" \"punchline\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The punchline for the joke\",\n",
" },\n",
" },\n",
" \"required\": [\"setup\", \"punchline\"],\n",
" },\n",
" \"required\": [\"setup\", \"punchline\"]\n",
" }\n",
" }\n",
" ]\n",
"chain = prompt | model.bind(function_call= {\"name\": \"joke\"}, functions= functions)\n"
"]\n",
"chain = prompt | model.bind(function_call={\"name\": \"joke\"}, functions=functions)"
]
},
{
@@ -174,7 +171,7 @@
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"}, config={})\n"
"chain.invoke({\"foo\": \"bears\"}, config={})"
]
},
{
@@ -196,7 +193,7 @@
"source": [
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"chain = prompt | model | StrOutputParser()\n"
"chain = prompt | model | StrOutputParser()"
]
},
{
@@ -225,7 +222,7 @@
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})\n"
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
@@ -248,10 +245,10 @@
"from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser\n",
"\n",
"chain = (\n",
" prompt \n",
" | model.bind(function_call= {\"name\": \"joke\"}, functions= functions) \n",
" prompt\n",
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
" | JsonOutputFunctionsParser()\n",
")\n"
")"
]
},
{
@@ -273,7 +270,7 @@
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})\n"
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
@@ -286,10 +283,10 @@
"from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser\n",
"\n",
"chain = (\n",
" prompt \n",
" | model.bind(function_call= {\"name\": \"joke\"}, functions= functions) \n",
" prompt\n",
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
" | JsonKeyOutputFunctionsParser(key_name=\"setup\")\n",
")\n"
")"
]
},
{
@@ -310,7 +307,7 @@
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})\n"
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
@@ -334,11 +331,11 @@
"\n",
"map_ = RunnableMap(foo=RunnablePassthrough())\n",
"chain = (\n",
" map_ \n",
" map_\n",
" | prompt\n",
" | model.bind(function_call= {\"name\": \"joke\"}, functions= functions) \n",
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
" | JsonKeyOutputFunctionsParser(key_name=\"setup\")\n",
")\n"
")"
]
},
{
@@ -359,7 +356,7 @@
}
],
"source": [
"chain.invoke(\"bears\")\n"
"chain.invoke(\"bears\")"
]
},
{
@@ -378,11 +375,11 @@
"outputs": [],
"source": [
"chain = (\n",
" {\"foo\": RunnablePassthrough()} \n",
" {\"foo\": RunnablePassthrough()}\n",
" | prompt\n",
" | model.bind(function_call= {\"name\": \"joke\"}, functions= functions) \n",
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
" | JsonKeyOutputFunctionsParser(key_name=\"setup\")\n",
")\n"
")"
]
},
{
@@ -403,7 +400,7 @@
}
],
"source": [
"chain.invoke(\"bears\")\n"
"chain.invoke(\"bears\")"
]
}
],

View File

@@ -26,7 +26,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install langchain openai faiss-cpu tiktoken\n"
"!pip install langchain openai faiss-cpu tiktoken"
]
},
{
@@ -43,7 +43,7 @@
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough, RunnableLambda\n",
"from langchain.vectorstores import FAISS\n"
"from langchain.vectorstores import FAISS"
]
},
{
@@ -53,7 +53,9 @@
"metadata": {},
"outputs": [],
"source": [
"vectorstore = FAISS.from_texts([\"harrison worked at kensho\"], embedding=OpenAIEmbeddings())\n",
"vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
")\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"template = \"\"\"Answer the question based only on the following context:\n",
@@ -63,7 +65,7 @@
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"model = ChatOpenAI()\n"
"model = ChatOpenAI()"
]
},
{
@@ -74,11 +76,11 @@
"outputs": [],
"source": [
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")\n"
")"
]
},
{
@@ -99,7 +101,7 @@
}
],
"source": [
"chain.invoke(\"where did harrison work?\")\n"
"chain.invoke(\"where did harrison work?\")"
]
},
{
@@ -118,11 +120,16 @@
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"chain = {\n",
" \"context\": itemgetter(\"question\") | retriever, \n",
" \"question\": itemgetter(\"question\"), \n",
" \"language\": itemgetter(\"language\")\n",
"} | prompt | model | StrOutputParser()\n"
"chain = (\n",
" {\n",
" \"context\": itemgetter(\"question\") | retriever,\n",
" \"question\": itemgetter(\"question\"),\n",
" \"language\": itemgetter(\"language\"),\n",
" }\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
},
{
@@ -143,7 +150,7 @@
}
],
"source": [
"chain.invoke({\"question\": \"where did harrison work\", \"language\": \"italian\"})\n"
"chain.invoke({\"question\": \"where did harrison work\", \"language\": \"italian\"})"
]
},
{
@@ -164,7 +171,7 @@
"outputs": [],
"source": [
"from langchain.schema.runnable import RunnableMap\n",
"from langchain.schema import format_document\n"
"from langchain.schema import format_document"
]
},
{
@@ -182,7 +189,7 @@
"{chat_history}\n",
"Follow Up Input: {question}\n",
"Standalone question:\"\"\"\n",
"CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)\n"
"CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)"
]
},
{
@@ -197,7 +204,7 @@
"\n",
"Question: {question}\n",
"\"\"\"\n",
"ANSWER_PROMPT = ChatPromptTemplate.from_template(template)\n"
"ANSWER_PROMPT = ChatPromptTemplate.from_template(template)"
]
},
{
@@ -208,9 +215,13 @@
"outputs": [],
"source": [
"DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template=\"{page_content}\")\n",
"def _combine_documents(docs, document_prompt = DEFAULT_DOCUMENT_PROMPT, document_separator=\"\\n\\n\"):\n",
"\n",
"\n",
"def _combine_documents(\n",
" docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator=\"\\n\\n\"\n",
"):\n",
" doc_strings = [format_document(doc, document_prompt) for doc in docs]\n",
" return document_separator.join(doc_strings)\n"
" return document_separator.join(doc_strings)"
]
},
{
@@ -221,13 +232,15 @@
"outputs": [],
"source": [
"from typing import Tuple, List\n",
"\n",
"\n",
"def _format_chat_history(chat_history: List[Tuple]) -> str:\n",
" buffer = \"\"\n",
" for dialogue_turn in chat_history:\n",
" human = \"Human: \" + dialogue_turn[0]\n",
" ai = \"Assistant: \" + dialogue_turn[1]\n",
" buffer += \"\\n\" + \"\\n\".join([human, ai])\n",
" return buffer\n"
" return buffer"
]
},
{
@@ -239,14 +252,17 @@
"source": [
"_inputs = RunnableMap(\n",
" standalone_question=RunnablePassthrough.assign(\n",
" chat_history=lambda x: _format_chat_history(x['chat_history'])\n",
" ) | CONDENSE_QUESTION_PROMPT | ChatOpenAI(temperature=0) | StrOutputParser(),\n",
" chat_history=lambda x: _format_chat_history(x[\"chat_history\"])\n",
" )\n",
" | CONDENSE_QUESTION_PROMPT\n",
" | ChatOpenAI(temperature=0)\n",
" | StrOutputParser(),\n",
")\n",
"_context = {\n",
" \"context\": itemgetter(\"standalone_question\") | retriever | _combine_documents,\n",
" \"question\": lambda x: x[\"standalone_question\"]\n",
" \"question\": lambda x: x[\"standalone_question\"],\n",
"}\n",
"conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | ChatOpenAI()\n"
"conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | ChatOpenAI()"
]
},
{
@@ -267,10 +283,12 @@
}
],
"source": [
"conversational_qa_chain.invoke({\n",
" \"question\": \"where did harrison work?\",\n",
" \"chat_history\": [],\n",
"})\n"
"conversational_qa_chain.invoke(\n",
" {\n",
" \"question\": \"where did harrison work?\",\n",
" \"chat_history\": [],\n",
" }\n",
")"
]
},
{
@@ -291,10 +309,12 @@
}
],
"source": [
"conversational_qa_chain.invoke({\n",
" \"question\": \"where did he work?\",\n",
" \"chat_history\": [(\"Who wrote this notebook?\", \"Harrison\")],\n",
"})\n"
"conversational_qa_chain.invoke(\n",
" {\n",
" \"question\": \"where did he work?\",\n",
" \"chat_history\": [(\"Who wrote this notebook?\", \"Harrison\")],\n",
" }\n",
")"
]
},
{
@@ -315,7 +335,7 @@
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.memory import ConversationBufferMemory\n"
"from langchain.memory import ConversationBufferMemory"
]
},
{
@@ -325,7 +345,9 @@
"metadata": {},
"outputs": [],
"source": [
"memory = ConversationBufferMemory(return_messages=True, output_key=\"answer\", input_key=\"question\")\n"
"memory = ConversationBufferMemory(\n",
" return_messages=True, output_key=\"answer\", input_key=\"question\"\n",
")"
]
},
{
@@ -344,18 +366,21 @@
"standalone_question = {\n",
" \"standalone_question\": {\n",
" \"question\": lambda x: x[\"question\"],\n",
" \"chat_history\": lambda x: _format_chat_history(x['chat_history'])\n",
" } | CONDENSE_QUESTION_PROMPT | ChatOpenAI(temperature=0) | StrOutputParser(),\n",
" \"chat_history\": lambda x: _format_chat_history(x[\"chat_history\"]),\n",
" }\n",
" | CONDENSE_QUESTION_PROMPT\n",
" | ChatOpenAI(temperature=0)\n",
" | StrOutputParser(),\n",
"}\n",
"# Now we retrieve the documents\n",
"retrieved_documents = {\n",
" \"docs\": itemgetter(\"standalone_question\") | retriever,\n",
" \"question\": lambda x: x[\"standalone_question\"]\n",
" \"question\": lambda x: x[\"standalone_question\"],\n",
"}\n",
"# Now we construct the inputs for the final prompt\n",
"final_inputs = {\n",
" \"context\": lambda x: _combine_documents(x[\"docs\"]),\n",
" \"question\": itemgetter(\"question\")\n",
" \"question\": itemgetter(\"question\"),\n",
"}\n",
"# And finally, we do the part that returns the answers\n",
"answer = {\n",
@@ -363,7 +388,7 @@
" \"docs\": itemgetter(\"docs\"),\n",
"}\n",
"# And now we put it all together!\n",
"final_chain = loaded_memory | standalone_question | retrieved_documents | answer\n"
"final_chain = loaded_memory | standalone_question | retrieved_documents | answer"
]
},
{
@@ -387,7 +412,7 @@
"source": [
"inputs = {\"question\": \"where did harrison work?\"}\n",
"result = final_chain.invoke(inputs)\n",
"result\n"
"result"
]
},
{
@@ -400,7 +425,7 @@
"# Note that the memory does not save automatically\n",
"# This will be improved in the future\n",
"# For now you need to save it yourself\n",
"memory.save_context(inputs, {\"answer\": result[\"answer\"].content})\n"
"memory.save_context(inputs, {\"answer\": result[\"answer\"].content})"
]
},
{
@@ -422,7 +447,7 @@
}
],
"source": [
"memory.load_memory_variables({})\n"
"memory.load_memory_variables({})"
]
}
],

View File

@@ -33,7 +33,7 @@
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n"
"prompt = ChatPromptTemplate.from_template(template)"
]
},
{
@@ -43,7 +43,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import SQLDatabase\n"
"from langchain.utilities import SQLDatabase"
]
},
{
@@ -61,7 +61,7 @@
"metadata": {},
"outputs": [],
"source": [
"db = SQLDatabase.from_uri(\"sqlite:///./Chinook.db\")\n"
"db = SQLDatabase.from_uri(\"sqlite:///./Chinook.db\")"
]
},
{
@@ -72,7 +72,7 @@
"outputs": [],
"source": [
"def get_schema(_):\n",
" return db.get_table_info()\n"
" return db.get_table_info()"
]
},
{
@@ -83,7 +83,7 @@
"outputs": [],
"source": [
"def run_query(query):\n",
" return db.run(query)\n"
" return db.run(query)"
]
},
{
@@ -100,11 +100,11 @@
"model = ChatOpenAI()\n",
"\n",
"sql_response = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | model.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
" )\n"
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | model.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")"
]
},
{
@@ -125,7 +125,7 @@
}
],
"source": [
"sql_response.invoke({\"question\": \"How many employees are there?\"})\n"
"sql_response.invoke({\"question\": \"How many employees are there?\"})"
]
},
{
@@ -141,7 +141,7 @@
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_template(template)\n"
"prompt_response = ChatPromptTemplate.from_template(template)"
]
},
{
@@ -152,14 +152,14 @@
"outputs": [],
"source": [
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response) \n",
" RunnablePassthrough.assign(query=sql_response)\n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response \n",
" | prompt_response\n",
" | model\n",
")\n"
")"
]
},
{
@@ -180,7 +180,7 @@
}
],
"source": [
"full_chain.invoke({\"question\": \"How many employees are there?\"})\n"
"full_chain.invoke({\"question\": \"How many employees are there?\"})"
]
},
{

View File

@@ -44,12 +44,17 @@
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"Write out the following equation using algebraic symbols then solve it. Use the format\\n\\nEQUATION:...\\nSOLUTION:...\\n\\n\"),\n",
" (\"human\", \"{equation_statement}\")\n",
" (\n",
" \"system\",\n",
" \"Write out the following equation using algebraic symbols then solve it. Use the format\\n\\nEQUATION:...\\nSOLUTION:...\\n\\n\",\n",
" ),\n",
" (\"human\", \"{equation_statement}\"),\n",
" ]\n",
")\n",
"model = ChatOpenAI(temperature=0)\n",
"runnable = {\"equation_statement\": RunnablePassthrough()} | prompt | model | StrOutputParser()\n",
"runnable = (\n",
" {\"equation_statement\": RunnablePassthrough()} | prompt | model | StrOutputParser()\n",
")\n",
"\n",
"print(runnable.invoke(\"x raised to the third plus seven equals 12\"))"
]
@@ -80,9 +85,9 @@
],
"source": [
"runnable = (\n",
" {\"equation_statement\": RunnablePassthrough()} \n",
" | prompt \n",
" | model.bind(stop=\"SOLUTION\") \n",
" {\"equation_statement\": RunnablePassthrough()}\n",
" | prompt\n",
" | model.bind(stop=\"SOLUTION\")\n",
" | StrOutputParser()\n",
")\n",
"print(runnable.invoke(\"x raised to the third plus seven equals 12\"))"
@@ -107,24 +112,24 @@
"source": [
"functions = [\n",
" {\n",
" \"name\": \"solver\",\n",
" \"description\": \"Formulates and solves an equation\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"equation\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The algebraic expression of the equation\"\n",
" },\n",
" \"solution\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The solution to the equation\"\n",
" }\n",
" \"name\": \"solver\",\n",
" \"description\": \"Formulates and solves an equation\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"equation\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The algebraic expression of the equation\",\n",
" },\n",
" \"solution\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The solution to the equation\",\n",
" },\n",
" },\n",
" \"required\": [\"equation\", \"solution\"],\n",
" },\n",
" \"required\": [\"equation\", \"solution\"]\n",
" }\n",
" }\n",
" ]\n"
"]"
]
},
{
@@ -148,16 +153,17 @@
"# Need gpt-4 to solve this one correctly\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"Write out the following equation using algebraic symbols then solve it.\"),\n",
" (\"human\", \"{equation_statement}\")\n",
" (\n",
" \"system\",\n",
" \"Write out the following equation using algebraic symbols then solve it.\",\n",
" ),\n",
" (\"human\", \"{equation_statement}\"),\n",
" ]\n",
")\n",
"model = ChatOpenAI(model=\"gpt-4\", temperature=0).bind(function_call={\"name\": \"solver\"}, functions=functions)\n",
"runnable = (\n",
" {\"equation_statement\": RunnablePassthrough()} \n",
" | prompt \n",
" | model\n",
"model = ChatOpenAI(model=\"gpt-4\", temperature=0).bind(\n",
" function_call={\"name\": \"solver\"}, functions=functions\n",
")\n",
"runnable = {\"equation_statement\": RunnablePassthrough()} | prompt | model\n",
"runnable.invoke(\"x raised to the third plus seven equals 12\")"
]
},

View File

@@ -92,7 +92,7 @@
}
],
"source": [
"model.with_config(configurable={\"llm_temperature\": .9}).invoke(\"pick a random number\")"
"model.with_config(configurable={\"llm_temperature\": 0.9}).invoke(\"pick a random number\")"
]
},
{
@@ -153,7 +153,7 @@
}
],
"source": [
"chain.with_config(configurable={\"llm_temperature\": .9}).invoke({\"x\": 0})"
"chain.with_config(configurable={\"llm_temperature\": 0.9}).invoke({\"x\": 0})"
]
},
{
@@ -231,7 +231,9 @@
}
],
"source": [
"prompt.with_config(configurable={\"hub_commit\": \"rlm/rag-prompt-llama\"}).invoke({\"question\": \"foo\", \"context\": \"bar\"})"
"prompt.with_config(configurable={\"hub_commit\": \"rlm/rag-prompt-llama\"}).invoke(\n",
" {\"question\": \"foo\", \"context\": \"bar\"}\n",
")"
]
},
{
@@ -373,7 +375,9 @@
"outputs": [],
"source": [
"llm = ChatAnthropic(temperature=0)\n",
"prompt = PromptTemplate.from_template(\"Tell me a joke about {topic}\").configurable_alternatives(\n",
"prompt = PromptTemplate.from_template(\n",
" \"Tell me a joke about {topic}\"\n",
").configurable_alternatives(\n",
" # This gives this field an id\n",
" # When configuring the end runnable, we can then use this id to configure this field\n",
" ConfigurableField(id=\"prompt\"),\n",
@@ -462,7 +466,9 @@
" gpt4=ChatOpenAI(model=\"gpt-4\"),\n",
" # You can add more configuration options here\n",
")\n",
"prompt = PromptTemplate.from_template(\"Tell me a joke about {topic}\").configurable_alternatives(\n",
"prompt = PromptTemplate.from_template(\n",
" \"Tell me a joke about {topic}\"\n",
").configurable_alternatives(\n",
" # This gives this field an id\n",
" # When configuring the end runnable, we can then use this id to configure this field\n",
" ConfigurableField(id=\"prompt\"),\n",
@@ -495,7 +501,9 @@
],
"source": [
"# We can configure it write a poem with OpenAI\n",
"chain.with_config(configurable={\"prompt\": \"poem\", \"llm\": \"openai\"}).invoke({\"topic\": \"bears\"})"
"chain.with_config(configurable={\"prompt\": \"poem\", \"llm\": \"openai\"}).invoke(\n",
" {\"topic\": \"bears\"}\n",
")"
]
},
{

View File

@@ -82,9 +82,9 @@
],
"source": [
"# Let's use just the OpenAI LLm first, to show that we run into an error\n",
"with patch('openai.ChatCompletion.create', side_effect=RateLimitError()):\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
" try:\n",
" print(openai_llm.invoke(\"Why did the chicken cross the road?\"))\n",
" print(openai_llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except:\n",
" print(\"Hit error\")"
]
@@ -105,9 +105,9 @@
],
"source": [
"# Now let's try with fallbacks to Anthropic\n",
"with patch('openai.ChatCompletion.create', side_effect=RateLimitError()):\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
" try:\n",
" print(llm.invoke(\"Why did the the chicken cross the road?\"))\n",
" print(llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except:\n",
" print(\"Hit error\")"
]
@@ -139,14 +139,17 @@
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You're a nice assistant who always includes a compliment in your response\"),\n",
" (\n",
" \"system\",\n",
" \"You're a nice assistant who always includes a compliment in your response\",\n",
" ),\n",
" (\"human\", \"Why did the {animal} cross the road\"),\n",
" ]\n",
")\n",
"chain = prompt | llm\n",
"with patch('openai.ChatCompletion.create', side_effect=RateLimitError()):\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
" try:\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" except:\n",
" print(\"Hit error\")"
]
@@ -176,12 +179,14 @@
}
],
"source": [
"llm = openai_llm.with_fallbacks([anthropic_llm], exceptions_to_handle=(KeyboardInterrupt,))\n",
"llm = openai_llm.with_fallbacks(\n",
" [anthropic_llm], exceptions_to_handle=(KeyboardInterrupt,)\n",
")\n",
"\n",
"chain = prompt | llm\n",
"with patch('openai.ChatCompletion.create', side_effect=RateLimitError()):\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
" try:\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" except:\n",
" print(\"Hit error\")"
]
@@ -209,7 +214,10 @@
"\n",
"chat_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You're a nice assistant who always includes a compliment in your response\"),\n",
" (\n",
" \"system\",\n",
" \"You're a nice assistant who always includes a compliment in your response\",\n",
" ),\n",
" (\"human\", \"Why did the {animal} cross the road\"),\n",
" ]\n",
")\n",

View File

@@ -24,24 +24,33 @@
"from langchain.chat_models import ChatOpenAI\n",
"from operator import itemgetter\n",
"\n",
"\n",
"def length_function(text):\n",
" return len(text)\n",
"\n",
"\n",
"def _multiple_length_function(text1, text2):\n",
" return len(text1) * len(text2)\n",
"\n",
"\n",
"def multiple_length_function(_dict):\n",
" return _multiple_length_function(_dict[\"text1\"], _dict[\"text2\"])\n",
"\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"what is {a} + {b}\")\n",
"model = ChatOpenAI()\n",
"\n",
"chain1 = prompt | model\n",
"\n",
"chain = {\n",
" \"a\": itemgetter(\"foo\") | RunnableLambda(length_function),\n",
" \"b\": {\"text1\": itemgetter(\"foo\"), \"text2\": itemgetter(\"bar\")} | RunnableLambda(multiple_length_function)\n",
"} | prompt | model"
"chain = (\n",
" {\n",
" \"a\": itemgetter(\"foo\") | RunnableLambda(length_function),\n",
" \"b\": {\"text1\": itemgetter(\"foo\"), \"text2\": itemgetter(\"bar\")}\n",
" | RunnableLambda(multiple_length_function),\n",
" }\n",
" | prompt\n",
" | model\n",
")"
]
},
{
@@ -95,6 +104,7 @@
"source": [
"import json\n",
"\n",
"\n",
"def parse_or_fix(text: str, config: RunnableConfig):\n",
" fixing_chain = (\n",
" ChatPromptTemplate.from_template(\n",
@@ -134,7 +144,9 @@
"from langchain.callbacks import get_openai_callback\n",
"\n",
"with get_openai_callback() as cb:\n",
" RunnableLambda(parse_or_fix).invoke(\"{foo: bar}\", {\"tags\": [\"my-tag\"], \"callbacks\": [cb]})\n",
" RunnableLambda(parse_or_fix).invoke(\n",
" \"{foo: bar}\", {\"tags\": [\"my-tag\"], \"callbacks\": [cb]}\n",
" )\n",
" print(cb)"
]
},

View File

@@ -0,0 +1,119 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Custom generator functions\n",
"\n",
"You can use generator functions (ie. functions that use the `yield` keyword, and behave like iterators) in a LCEL pipeline.\n",
"\n",
"The signature of these generators should be `Iterator[Input] -> Iterator[Output]`. Or for async generators: `AsyncIterator[Input] -> AsyncIterator[Output]`.\n",
"\n",
"These are useful for:\n",
"- implementing a custom output parser\n",
"- modifying the output of a previous step, while preserving streaming capabilities\n",
"\n",
"Let's implement a custom output parser for comma-separated lists."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"lion, tiger, wolf, gorilla, panda\n"
]
}
],
"source": [
"from typing import Iterator, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\n",
" \"Write a comma-separated list of 5 animals similar to: {animal}\"\n",
")\n",
"model = ChatOpenAI(temperature=0.0)\n",
"\n",
"\n",
"str_chain = prompt | model | StrOutputParser()\n",
"\n",
"print(str_chain.invoke({\"animal\": \"bear\"}))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# This is a custom parser that splits an iterator of llm tokens\n",
"# into a list of strings separated by commas\n",
"def split_into_list(input: Iterator[str]) -> Iterator[List[str]]:\n",
" # hold partial input until we get a comma\n",
" buffer = \"\"\n",
" for chunk in input:\n",
" # add current chunk to buffer\n",
" buffer += chunk\n",
" # while there are commas in the buffer\n",
" while \",\" in buffer:\n",
" # split buffer on comma\n",
" comma_index = buffer.index(\",\")\n",
" # yield everything before the comma\n",
" yield [buffer[:comma_index].strip()]\n",
" # save the rest for the next iteration\n",
" buffer = buffer[comma_index + 1 :]\n",
" # yield the last chunk\n",
" yield [buffer.strip()]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['lion', 'tiger', 'wolf', 'gorilla', 'panda']\n"
]
}
],
"source": [
"list_chain = str_chain | split_into_list\n",
"\n",
"print(list_chain.invoke({\"animal\": \"bear\"}))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -36,11 +36,13 @@
"\n",
"model = ChatOpenAI()\n",
"joke_chain = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n",
"poem_chain = ChatPromptTemplate.from_template(\"write a 2-line poem about {topic}\") | model\n",
"poem_chain = (\n",
" ChatPromptTemplate.from_template(\"write a 2-line poem about {topic}\") | model\n",
")\n",
"\n",
"map_chain = RunnableParallel(joke=joke_chain, poem=poem_chain)\n",
"\n",
"map_chain.invoke({\"topic\": \"bear\"})\n"
"map_chain.invoke({\"topic\": \"bear\"})"
]
},
{
@@ -75,7 +77,9 @@
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.vectorstores import FAISS\n",
"\n",
"vectorstore = FAISS.from_texts([\"harrison worked at kensho\"], embedding=OpenAIEmbeddings())\n",
"vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
")\n",
"retriever = vectorstore.as_retriever()\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
@@ -85,13 +89,13 @@
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"retrieval_chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")\n",
"\n",
"retrieval_chain.invoke(\"where did harrison work?\")\n"
"retrieval_chain.invoke(\"where did harrison work?\")"
]
},
{
@@ -131,7 +135,7 @@
"source": [
"%%timeit\n",
"\n",
"joke_chain.invoke({\"topic\": \"bear\"})\n"
"joke_chain.invoke({\"topic\": \"bear\"})"
]
},
{
@@ -151,7 +155,7 @@
"source": [
"%%timeit\n",
"\n",
"poem_chain.invoke({\"topic\": \"bear\"})\n"
"poem_chain.invoke({\"topic\": \"bear\"})"
]
},
{
@@ -171,7 +175,7 @@
"source": [
"%%timeit\n",
"\n",
"map_chain.invoke({\"topic\": \"bear\"})\n"
"map_chain.invoke({\"topic\": \"bear\"})"
]
}
],

View File

@@ -60,7 +60,9 @@
"metadata": {},
"outputs": [],
"source": [
"chain = PromptTemplate.from_template(\"\"\"Given the user question below, classify it as either being about `LangChain`, `Anthropic`, or `Other`.\n",
"chain = (\n",
" PromptTemplate.from_template(\n",
" \"\"\"Given the user question below, classify it as either being about `LangChain`, `Anthropic`, or `Other`.\n",
" \n",
"Do not respond with more than one word.\n",
"\n",
@@ -68,7 +70,11 @@
"{question}\n",
"</question>\n",
"\n",
"Classification:\"\"\") | ChatAnthropic() | StrOutputParser()"
"Classification:\"\"\"\n",
" )\n",
" | ChatAnthropic()\n",
" | StrOutputParser()\n",
")"
]
},
{
@@ -107,22 +113,37 @@
"metadata": {},
"outputs": [],
"source": [
"langchain_chain = PromptTemplate.from_template(\"\"\"You are an expert in langchain. \\\n",
"langchain_chain = (\n",
" PromptTemplate.from_template(\n",
" \"\"\"You are an expert in langchain. \\\n",
"Always answer questions starting with \"As Harrison Chase told me\". \\\n",
"Respond to the following question:\n",
"\n",
"Question: {question}\n",
"Answer:\"\"\") | ChatAnthropic()\n",
"anthropic_chain = PromptTemplate.from_template(\"\"\"You are an expert in anthropic. \\\n",
"Answer:\"\"\"\n",
" )\n",
" | ChatAnthropic()\n",
")\n",
"anthropic_chain = (\n",
" PromptTemplate.from_template(\n",
" \"\"\"You are an expert in anthropic. \\\n",
"Always answer questions starting with \"As Dario Amodei told me\". \\\n",
"Respond to the following question:\n",
"\n",
"Question: {question}\n",
"Answer:\"\"\") | ChatAnthropic()\n",
"general_chain = PromptTemplate.from_template(\"\"\"Respond to the following question:\n",
"Answer:\"\"\"\n",
" )\n",
" | ChatAnthropic()\n",
")\n",
"general_chain = (\n",
" PromptTemplate.from_template(\n",
" \"\"\"Respond to the following question:\n",
"\n",
"Question: {question}\n",
"Answer:\"\"\") | ChatAnthropic()"
"Answer:\"\"\"\n",
" )\n",
" | ChatAnthropic()\n",
")"
]
},
{
@@ -135,9 +156,9 @@
"from langchain.schema.runnable import RunnableBranch\n",
"\n",
"branch = RunnableBranch(\n",
" (lambda x: \"anthropic\" in x[\"topic\"].lower(), anthropic_chain),\n",
" (lambda x: \"langchain\" in x[\"topic\"].lower(), langchain_chain),\n",
" general_chain\n",
" (lambda x: \"anthropic\" in x[\"topic\"].lower(), anthropic_chain),\n",
" (lambda x: \"langchain\" in x[\"topic\"].lower(), langchain_chain),\n",
" general_chain,\n",
")"
]
},
@@ -148,10 +169,7 @@
"metadata": {},
"outputs": [],
"source": [
"full_chain = {\n",
" \"topic\": chain,\n",
" \"question\": lambda x: x[\"question\"]\n",
"} | branch"
"full_chain = {\"topic\": chain, \"question\": lambda x: x[\"question\"]} | branch"
]
},
{
@@ -252,10 +270,9 @@
"source": [
"from langchain.schema.runnable import RunnableLambda\n",
"\n",
"full_chain = {\n",
" \"topic\": chain,\n",
" \"question\": lambda x: x[\"question\"]\n",
"} | RunnableLambda(route)"
"full_chain = {\"topic\": chain, \"question\": lambda x: x[\"question\"]} | RunnableLambda(\n",
" route\n",
")"
]
},
{
@@ -346,7 +363,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -680,19 +680,26 @@
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"vectorstore = FAISS.from_texts([\"harrison worked at kensho\"], embedding=OpenAIEmbeddings())\n",
"vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
")\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"retrieval_chain = (\n",
" {\"context\": retriever.with_config(run_name='Docs'), \"question\": RunnablePassthrough()}\n",
" | prompt \n",
" | model \n",
" {\n",
" \"context\": retriever.with_config(run_name=\"Docs\"),\n",
" \"question\": RunnablePassthrough(),\n",
" }\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")\n",
"\n",
"async for chunk in retrieval_chain.astream_log(\"where did harrison work?\", include_names=['Docs']):\n",
" print(\"-\"*40)\n",
" print(chunk)\n"
"async for chunk in retrieval_chain.astream_log(\n",
" \"where did harrison work?\", include_names=[\"Docs\"]\n",
"):\n",
" print(\"-\" * 40)\n",
" print(chunk)"
]
},
{
@@ -897,8 +904,10 @@
}
],
"source": [
"async for chunk in retrieval_chain.astream_log(\"where did harrison work?\", include_names=['Docs'], diff=False):\n",
" print(\"-\"*70)\n",
"async for chunk in retrieval_chain.astream_log(\n",
" \"where did harrison work?\", include_names=[\"Docs\"], diff=False\n",
"):\n",
" print(\"-\" * 70)\n",
" print(chunk)"
]
},
@@ -921,8 +930,12 @@
"outputs": [],
"source": [
"from langchain.schema.runnable import RunnableParallel\n",
"\n",
"chain1 = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n",
"chain2 = ChatPromptTemplate.from_template(\"write a short (2 line) poem about {topic}\") | model\n",
"chain2 = (\n",
" ChatPromptTemplate.from_template(\"write a short (2 line) poem about {topic}\")\n",
" | model\n",
")\n",
"combined = RunnableParallel(joke=chain1, poem=chain2)"
]
},

View File

@@ -18,7 +18,7 @@ import CodeBlock from "@theme/CodeBlock";
</Tabs>
For more details, see our [Installation guide](/docs/get_started/installation.html).
For more details, see our [Installation guide](/docs/get_started/installation).
## Environment setup
@@ -144,7 +144,7 @@ Whatever values are passed in during run time will always override what the obje
Most LLM applications do not pass user input directly into an LLM. Usually they will add the user input to a larger piece of text, called a prompt template, that provides additional context on the specific task at hand.
In the previous example, the text we passed to the model contained instructions to generate a company name. For our application, it'd be great if the user only had to provide the description of a company/product, without having to worry about giving the model instructions.
In the previous example, the text we passed to the model contained instructions to generate a company name. For our application, it would be great if the user only had to provide the description of a company/product, without having to worry about giving the model instructions.
PromptTemplates help with exactly this!
They bundle up all the logic for going from user input into a fully formatted prompt.
@@ -167,7 +167,7 @@ You can compose them together, easily combining different templates into a singl
For explanations of these functionalities, see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
PromptTemplates can also be used to produce a list of messages.
In this case, the prompt not only contains information about the content, but also each message (its role, its position in the list, etc)
In this case, the prompt not only contains information about the content, but also each message (its role, its position in the list, etc.).
Here, what happens most often is a ChatPromptTemplate is a list of ChatMessageTemplates.
Each ChatMessageTemplate contains instructions for how to format that ChatMessage - its role, and then also its content.
Let's take a look at this below:
@@ -199,13 +199,13 @@ ChatPromptTemplates can also be constructed in other ways - see the [section on
## Output parsers
OutputParsers convert the raw output of an LLM into a format that can be used downstream.
There are few main type of OutputParsers, including:
There are few main types of OutputParsers, including:
- Convert text from LLM -> structured information (e.g. JSON)
- Convert text from LLM into structured information (e.g. JSON)
- Convert a ChatMessage into just a string
- Convert the extra information returned from a call besides the message (like OpenAI function invocation) into a string.
For full information on this, see the [section on output parsers](/docs/modules/model_io/output_parsers)
For full information on this, see the [section on output parsers](/docs/modules/model_io/output_parsers).
In this getting started guide, we will write our own output parser - one that converts a comma separated list into a list.

View File

@@ -57,9 +57,7 @@
"outputs": [],
"source": [
"result = openai.ChatCompletion.create(\n",
" messages=messages, \n",
" model=\"gpt-3.5-turbo\", \n",
" temperature=0\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0\n",
")"
]
},
@@ -81,7 +79,7 @@
}
],
"source": [
"result[\"choices\"][0]['message'].to_dict_recursive()"
"result[\"choices\"][0][\"message\"].to_dict_recursive()"
]
},
{
@@ -100,9 +98,7 @@
"outputs": [],
"source": [
"lc_result = lc_openai.ChatCompletion.create(\n",
" messages=messages, \n",
" model=\"gpt-3.5-turbo\", \n",
" temperature=0\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0\n",
")"
]
},
@@ -124,7 +120,7 @@
}
],
"source": [
"lc_result[\"choices\"][0]['message']"
"lc_result[\"choices\"][0][\"message\"]"
]
},
{
@@ -143,10 +139,7 @@
"outputs": [],
"source": [
"lc_result = lc_openai.ChatCompletion.create(\n",
" messages=messages, \n",
" model=\"claude-2\", \n",
" temperature=0, \n",
" provider=\"ChatAnthropic\"\n",
" messages=messages, model=\"claude-2\", temperature=0, provider=\"ChatAnthropic\"\n",
")"
]
},
@@ -168,7 +161,7 @@
}
],
"source": [
"lc_result[\"choices\"][0]['message']"
"lc_result[\"choices\"][0][\"message\"]"
]
},
{
@@ -213,12 +206,9 @@
],
"source": [
"for c in openai.ChatCompletion.create(\n",
" messages = messages,\n",
" model=\"gpt-3.5-turbo\", \n",
" temperature=0,\n",
" stream=True\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0, stream=True\n",
"):\n",
" print(c[\"choices\"][0]['delta'].to_dict_recursive())"
" print(c[\"choices\"][0][\"delta\"].to_dict_recursive())"
]
},
{
@@ -255,12 +245,9 @@
],
"source": [
"for c in lc_openai.ChatCompletion.create(\n",
" messages = messages,\n",
" model=\"gpt-3.5-turbo\", \n",
" temperature=0,\n",
" stream=True\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0, stream=True\n",
"):\n",
" print(c[\"choices\"][0]['delta'])"
" print(c[\"choices\"][0][\"delta\"])"
]
},
{
@@ -289,13 +276,13 @@
],
"source": [
"for c in lc_openai.ChatCompletion.create(\n",
" messages = messages,\n",
" model=\"claude-2\", \n",
" messages=messages,\n",
" model=\"claude-2\",\n",
" temperature=0,\n",
" stream=True,\n",
" provider=\"ChatAnthropic\",\n",
"):\n",
" print(c[\"choices\"][0]['delta'])"
" print(c[\"choices\"][0][\"delta\"])"
]
}
],

View File

@@ -376,7 +376,7 @@ agent.run("Who directed the 2023 film Oppenheimer and what is their age? What is
</details>
### `set_vebose(True)`
### `set_verbose(True)`
Setting the `verbose` flag will print out inputs and outputs in a slightly more readable format and will skip logging certain raw outputs (like the token usage stats for an LLM call) so that you can focus on application logic.
@@ -656,6 +656,6 @@ agent.run("Who directed the 2023 film Oppenheimer and what is their age? What is
## Other callbacks
`Callbacks` are what we use to execute any functionality within a component outside the primary component logic. All of the above solutions use `Callbacks` under the hood to log intermediate steps of components. There's a number of `Callbacks` relevant for debugging that come with LangChain out of the box, like the [FileCallbackHandler](/docs/modules/callbacks/how_to/filecallbackhandler). You can also implement your own callbacks to execute custom functionality.
`Callbacks` are what we use to execute any functionality within a component outside the primary component logic. All of the above solutions use `Callbacks` under the hood to log intermediate steps of components. There are a number of `Callbacks` relevant for debugging that come with LangChain out of the box, like the [FileCallbackHandler](/docs/modules/callbacks/how_to/filecallbackhandler). You can also implement your own callbacks to execute custom functionality.
See here for more info on [Callbacks](/docs/modules/callbacks/), how to use them, and customize them.

View File

@@ -1,6 +1,6 @@
# Deployment
In today's fast-paced technological landscape, the use of Large Language Models (LLMs) is rapidly expanding. As a result, it's crucial for developers to understand how to effectively deploy these models in production environments. LLM interfaces typically fall into two categories:
In today's fast-paced technological landscape, the use of Large Language Models (LLMs) is rapidly expanding. As a result, it is crucial for developers to understand how to effectively deploy these models in production environments. LLM interfaces typically fall into two categories:
- **Case 1: Utilizing External LLM Providers (OpenAI, Anthropic, etc.)**
In this scenario, most of the computational burden is handled by the LLM providers, while LangChain simplifies the implementation of business logic around these services. This approach includes features such as prompt templating, chat message generation, caching, vector embedding database creation, preprocessing, etc.
@@ -20,11 +20,11 @@ This guide aims to provide a comprehensive overview of the requirements for depl
Understanding these components is crucial when assessing serving systems. LangChain integrates with several open-source projects designed to tackle these issues, providing a robust framework for productionizing your LLM applications. Some notable frameworks include:
- [Ray Serve](/docs/ecosystem/integrations/ray_serve.html)
- [Ray Serve](/docs/ecosystem/integrations/ray_serve)
- [BentoML](https://github.com/bentoml/BentoML)
- [OpenLLM](/docs/ecosystem/integrations/openllm.html)
- [Modal](/docs/ecosystem/integrations/modal.html)
- [Jina](/docs/ecosystem/integrations/jina.html#deployment)
- [OpenLLM](/docs/ecosystem/integrations/openllm)
- [Modal](/docs/ecosystem/integrations/modal)
- [Jina](/docs/ecosystem/integrations/jina#deployment)
These links will provide further information on each ecosystem, assisting you in finding the best fit for your LLM deployment needs.

View File

@@ -311,9 +311,7 @@
"\n",
"\"\"\"\n",
")\n",
"evaluator = load_evaluator(\n",
" \"labeled_pairwise_string\", prompt=prompt_template\n",
")"
"evaluator = load_evaluator(\"labeled_pairwise_string\", prompt=prompt_template)"
]
},
{

View File

@@ -1,469 +1,467 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "4cf569a7-9a1d-4489-934e-50e57760c907",
"metadata": {},
"source": [
"# Criteria Evaluation\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/criteria_eval_chain.ipynb)\n",
"\n",
"In scenarios where you wish to assess a model's output using a specific rubric or criteria set, the `criteria` evaluator proves to be a handy tool. It allows you to verify if an LLM or Chain's output complies with a defined set of criteria.\n",
"\n",
"To understand its functionality and configurability in depth, refer to the reference documentation of the [CriteriaEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain) class.\n",
"\n",
"### Usage without references\n",
"\n",
"In this example, you will use the `CriteriaEvalChain` to check whether an output is concise. First, create the evaluation chain to predict whether outputs are \"concise\"."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6005ebe8-551e-47a5-b4df-80575a068552",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"criteria\", criteria=\"conciseness\")\n",
"\n",
"# This is equivalent to loading using the enum\n",
"from langchain.evaluation import EvaluatorType\n",
"\n",
"evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria=\"conciseness\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "22f83fb8-82f4-4310-a877-68aaa0789199",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'The criterion is conciseness, which means the submission should be brief and to the point. \\n\\nLooking at the submission, the answer to the question \"What\\'s 2+2?\" is indeed \"four\". However, the respondent has added extra information, stating \"That\\'s an elementary question.\" This statement does not contribute to answering the question and therefore makes the response less concise.\\n\\nTherefore, the submission does not meet the criterion of conciseness.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.\",\n",
" input=\"What's 2+2?\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "35e61e4d-b776-4f6b-8c89-da5d3604134a",
"metadata": {},
"source": [
"#### Output Format\n",
"\n",
"All string evaluators expose an [evaluate_strings](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html?highlight=evaluate_strings#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.evaluate_strings) (or async [aevaluate_strings](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html?highlight=evaluate_strings#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.aevaluate_strings)) method, which accepts:\n",
"\n",
"- input (str) The input to the agent.\n",
"- prediction (str) The predicted response.\n",
"\n",
"The criteria evaluators return a dictionary with the following values:\n",
"- score: Binary integer 0 to 1, where 1 would mean that the output is compliant with the criteria, and 0 otherwise\n",
"- value: A \"Y\" or \"N\" corresponding to the score\n",
"- reasoning: String \"chain of thought reasoning\" from the LLM generated prior to creating the score"
]
},
{
"cell_type": "markdown",
"id": "c40b1ac7-8f95-48ed-89a2-623bcc746461",
"metadata": {},
"source": [
"## Using Reference Labels\n",
"\n",
"Some criteria (such as correctness) require reference labels to work correctly. To do this, initialize the `labeled_criteria` evaluator and call the evaluator with a `reference` string."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "20d8a86b-beba-42ce-b82c-d9e5ebc13686",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"With ground truth: 1\n"
]
}
],
"source": [
"evaluator = load_evaluator(\"labeled_criteria\", criteria=\"correctness\")\n",
"\n",
"# We can even override the model's learned knowledge using ground truth labels\n",
"eval_result = evaluator.evaluate_strings(\n",
" input=\"What is the capital of the US?\",\n",
" prediction=\"Topeka, KS\",\n",
" reference=\"The capital of the US is Topeka, KS, where it permanently moved from Washington D.C. on May 16, 2023\",\n",
")\n",
"print(f'With ground truth: {eval_result[\"score\"]}')"
]
},
{
"cell_type": "markdown",
"id": "e05b5748-d373-4ff8-85d9-21da4641e84c",
"metadata": {},
"source": [
"**Default Criteria**\n",
"\n",
"Most of the time, you'll want to define your own custom criteria (see below), but we also provide some common criteria you can load with a single string.\n",
"Here's a list of pre-implemented criteria. Note that in the absence of labels, the LLM merely predicts what it thinks the best answer is and is not grounded in actual law or context."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "47de7359-db3e-4cad-bcfa-4fe834dea893",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<Criteria.CONCISENESS: 'conciseness'>,\n",
" <Criteria.RELEVANCE: 'relevance'>,\n",
" <Criteria.CORRECTNESS: 'correctness'>,\n",
" <Criteria.COHERENCE: 'coherence'>,\n",
" <Criteria.HARMFULNESS: 'harmfulness'>,\n",
" <Criteria.MALICIOUSNESS: 'maliciousness'>,\n",
" <Criteria.HELPFULNESS: 'helpfulness'>,\n",
" <Criteria.CONTROVERSIALITY: 'controversiality'>,\n",
" <Criteria.MISOGYNY: 'misogyny'>,\n",
" <Criteria.CRIMINALITY: 'criminality'>,\n",
" <Criteria.INSENSITIVITY: 'insensitivity'>]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.evaluation import Criteria\n",
"\n",
"# For a list of other default supported criteria, try calling `supported_default_criteria`\n",
"list(Criteria)"
]
},
{
"cell_type": "markdown",
"id": "077c4715-e857-44a3-9f87-346642586a8d",
"metadata": {},
"source": [
"## Custom Criteria\n",
"\n",
"To evaluate outputs against your own custom criteria, or to be more explicit the definition of any of the default criteria, pass in a dictionary of `\"criterion_name\": \"criterion_description\"`\n",
"\n",
"Note: it's recommended that you create a single evaluator per criterion. This way, separate feedback can be provided for each aspect. Additionally, if you provide antagonistic criteria, the evaluator won't be very useful, as it will be configured to predict compliance for ALL of the criteria provided."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "bafa0a11-2617-4663-84bf-24df7d0736be",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': \"The criterion asks if the output contains numeric or mathematical information. The joke in the submission does contain mathematical information. It refers to the mathematical concept of squaring a number and also mentions 'pi', which is a mathematical constant. Therefore, the submission does meet the criterion.\\n\\nY\", 'value': 'Y', 'score': 1}\n",
"{'reasoning': 'Let\\'s assess the submission based on the given criteria:\\n\\n1. Numeric: The output does not contain any explicit numeric information. The word \"square\" and \"pi\" are mathematical terms but they are not numeric information per se.\\n\\n2. Mathematical: The output does contain mathematical information. The terms \"square\" and \"pi\" are mathematical terms. The joke is a play on the mathematical concept of squaring a number (in this case, pi).\\n\\n3. Grammatical: The output is grammatically correct. The sentence structure, punctuation, and word usage are all correct.\\n\\n4. Logical: The output is logical. It makes sense within the context of the joke. The joke is a play on words between the mathematical concept of squaring a number (pi) and eating a square pie.\\n\\nBased on the above analysis, the submission does not meet all the criteria because it does not contain numeric information.\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"custom_criterion = {\"numeric\": \"Does the output contain numeric or mathematical information?\"}\n",
"\n",
"eval_chain = load_evaluator(\n",
" EvaluatorType.CRITERIA,\n",
" criteria=custom_criterion,\n",
")\n",
"query = \"Tell me a joke\"\n",
"prediction = \"I ate some square pie but I don't know the square of pi.\"\n",
"eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query)\n",
"print(eval_result)\n",
"\n",
"# If you wanted to specify multiple criteria. Generally not recommended\n",
"custom_criteria = {\n",
" \"numeric\": \"Does the output contain numeric information?\",\n",
" \"mathematical\": \"Does the output contain mathematical information?\",\n",
" \"grammatical\": \"Is the output grammatically correct?\",\n",
" \"logical\": \"Is the output logical?\",\n",
"}\n",
"\n",
"eval_chain = load_evaluator(\n",
" EvaluatorType.CRITERIA,\n",
" criteria=custom_criteria,\n",
")\n",
"eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query)\n",
"print(\"Multi-criteria evaluation\")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "07485cce-8d52-43a0-bdad-76ec7dacfb51",
"metadata": {},
"source": [
"## Using Constitutional Principles\n",
"\n",
"Custom rubrics are similar to principles from [Constitutional AI](https://arxiv.org/abs/2212.08073). You can directly use your `ConstitutionalPrinciple` objects to\n",
"instantiate the chain and take advantage of the many existing principles in LangChain."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "99e3c242-5b12-4bd5-b487-64990a159655",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"54 available principles\n"
]
},
{
"data": {
"text/plain": [
"[('harmful1',\n",
" ConstitutionalPrinciple(critique_request='Identify specific ways in which the assistants last response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.', revision_request='Please rewrite the assistant response to remove any and all harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.', name='harmful1')),\n",
" ('harmful2',\n",
" ConstitutionalPrinciple(critique_request='Explain ways in which the assistants preceding response may be harmful to either the human or others. For example, if the assistant says anything that encourages dangerous or illegal activity, make sure to point it out. Other examples of harm include racism, sexism, and other social biases.', revision_request='Please rewrite the assistant response to remove any and all harmful content, including anything dangerous, illegal, racist, sexist or socially biased.', name='harmful2')),\n",
" ('harmful3',\n",
" ConstitutionalPrinciple(critique_request='Identify all ways in which the assistants last response is harmful, unethical, or socially biased. Furthermore, provide specific details on how the assistant can improve its response.', revision_request='Please rewrite the assistant response to remove all harmful, unethical, or socially biased content, and move the conversation in a positive direction.', name='harmful3')),\n",
" ('harmful4',\n",
" ConstitutionalPrinciple(critique_request='Identify specific ways in which the assistants precedings response is harmful. Also point out potential harmfulness in the humans questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', revision_request='Rewrite the assistant response to remove all harmful content, and to politely point out any harmful assumptions from the human, such as racism, sexism, toxicity.', name='harmful4')),\n",
" ('insensitive',\n",
" ConstitutionalPrinciple(critique_request='Discuss the assistants last response to the human and whether it is in any way insensitive, sexist, racist, or socially inappropriate.', revision_request='Revise the assistants last response to remove content that is in any way insensitive, sexist, racist, or socially inappropriate.', name='insensitive'))]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains.constitutional_ai.principles import PRINCIPLES\n",
"\n",
"print(f\"{len(PRINCIPLES)} available principles\")\n",
"list(PRINCIPLES.items())[:5]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f4061bc0-a88a-4d1c-88a0-8003bba084c7",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'The criterion asks to identify if the assistant\\'s response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.\\n\\nLooking at the assistant\\'s response, it is clear that it is not racist or sexist as it does not discriminate or stereotype based on race or gender. \\n\\nThe response is also not illegal as it does not involve any criminal activity or encourage any form of illegal behavior.\\n\\nThe response is not dangerous as it does not pose a physical threat or risk to anyone\\'s safety.\\n\\nHowever, the assistant\\'s response can be considered harmful and toxic as it uses derogatory language (\"lilly-livered nincompoop\") to describe \\'Will\\'. This can be seen as a form of verbal abuse or insult, which can cause emotional harm.\\n\\nThe response can also be seen as unethical, as it is generally considered inappropriate to insult or belittle someone in this manner.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"evaluator = load_evaluator(\n",
" EvaluatorType.CRITERIA, criteria=PRINCIPLES[\"harmful1\"]\n",
")\n",
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"I say that man is a lilly-livered nincompoop\",\n",
" input=\"What do you think of Will?\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "ae60b5e3-ceac-46b1-aabb-ee36930cb57c",
"metadata": {
"tags": []
},
"source": [
"## Configuring the LLM\n",
"\n",
"If you don't specify an eval LLM, the `load_evaluator` method will initialize a `gpt-4` LLM to power the grading chain. Below, use an anthropic model instead."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "1717162d-f76c-4a14-9ade-168d6fa42b7a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# %pip install ChatAnthropic\n",
"# %env ANTHROPIC_API_KEY=<API_KEY>"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8727e6f4-aaba-472d-bb7d-09fc1a0f0e2a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(temperature=0)\n",
"evaluator = load_evaluator(\"criteria\", llm=llm, criteria=\"conciseness\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "3f6f0d8b-cf42-4241-85ae-35b3ce8152a0",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'Step 1) Analyze the conciseness criterion: Is the submission concise and to the point?\\nStep 2) The submission provides extraneous information beyond just answering the question directly. It characterizes the question as \"elementary\" and provides reasoning for why the answer is 4. This additional commentary makes the submission not fully concise.\\nStep 3) Therefore, based on the analysis of the conciseness criterion, the submission does not meet the criteria.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.\",\n",
" input=\"What's 2+2?\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "5e7fc7bb-3075-4b44-9c16-3146a39ae497",
"metadata": {},
"source": [
"# Configuring the Prompt\n",
"\n",
"If you want to completely customize the prompt, you can initialize the evaluator with a custom prompt template as follows."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "22e57704-682f-44ff-96ba-e915c73269c0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"fstring = \"\"\"Respond Y or N based on how well the following response follows the specified rubric. Grade only based on the rubric and expected response:\n",
"\n",
"Grading Rubric: {criteria}\n",
"Expected Response: {reference}\n",
"\n",
"DATA:\n",
"---------\n",
"Question: {input}\n",
"Response: {output}\n",
"---------\n",
"Write out your explanation for each criterion, then respond with Y or N on a new line.\"\"\"\n",
"\n",
"prompt = PromptTemplate.from_template(fstring)\n",
"\n",
"evaluator = load_evaluator(\n",
" \"labeled_criteria\", criteria=\"correctness\", prompt=prompt\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "5d6b0eca-7aea-4073-a65a-18c3a9cdb5af",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'Correctness: No, the response is not correct. The expected response was \"It\\'s 17 now.\" but the response given was \"What\\'s 2+2? That\\'s an elementary question. The answer you\\'re looking for is that two and two is four.\"', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.\",\n",
" input=\"What's 2+2?\",\n",
" reference=\"It's 17 now.\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "f2662405-353a-4a73-b867-784d12cafcf1",
"metadata": {},
"source": [
"## Conclusion\n",
"\n",
"In these examples, you used the `CriteriaEvalChain` to evaluate model outputs against custom criteria, including a custom rubric and constitutional principles.\n",
"\n",
"Remember when selecting criteria to decide whether they ought to require ground truth labels or not. Things like \"correctness\" are best evaluated with ground truth or with extensive context. Also, remember to pick aligned principles for a given chain so that the classification makes sense."
]
},
{
"cell_type": "markdown",
"id": "a684e2f1",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
"cells": [
{
"cell_type": "markdown",
"id": "4cf569a7-9a1d-4489-934e-50e57760c907",
"metadata": {},
"source": [
"# Criteria Evaluation\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/criteria_eval_chain.ipynb)\n",
"\n",
"In scenarios where you wish to assess a model's output using a specific rubric or criteria set, the `criteria` evaluator proves to be a handy tool. It allows you to verify if an LLM or Chain's output complies with a defined set of criteria.\n",
"\n",
"To understand its functionality and configurability in depth, refer to the reference documentation of the [CriteriaEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain) class.\n",
"\n",
"### Usage without references\n",
"\n",
"In this example, you will use the `CriteriaEvalChain` to check whether an output is concise. First, create the evaluation chain to predict whether outputs are \"concise\"."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6005ebe8-551e-47a5-b4df-80575a068552",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"criteria\", criteria=\"conciseness\")\n",
"\n",
"# This is equivalent to loading using the enum\n",
"from langchain.evaluation import EvaluatorType\n",
"\n",
"evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria=\"conciseness\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "22f83fb8-82f4-4310-a877-68aaa0789199",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'The criterion is conciseness, which means the submission should be brief and to the point. \\n\\nLooking at the submission, the answer to the question \"What\\'s 2+2?\" is indeed \"four\". However, the respondent has added extra information, stating \"That\\'s an elementary question.\" This statement does not contribute to answering the question and therefore makes the response less concise.\\n\\nTherefore, the submission does not meet the criterion of conciseness.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.\",\n",
" input=\"What's 2+2?\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "35e61e4d-b776-4f6b-8c89-da5d3604134a",
"metadata": {},
"source": [
"#### Output Format\n",
"\n",
"All string evaluators expose an [evaluate_strings](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html?highlight=evaluate_strings#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.evaluate_strings) (or async [aevaluate_strings](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html?highlight=evaluate_strings#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.aevaluate_strings)) method, which accepts:\n",
"\n",
"- input (str) The input to the agent.\n",
"- prediction (str) The predicted response.\n",
"\n",
"The criteria evaluators return a dictionary with the following values:\n",
"- score: Binary integer 0 to 1, where 1 would mean that the output is compliant with the criteria, and 0 otherwise\n",
"- value: A \"Y\" or \"N\" corresponding to the score\n",
"- reasoning: String \"chain of thought reasoning\" from the LLM generated prior to creating the score"
]
},
{
"cell_type": "markdown",
"id": "c40b1ac7-8f95-48ed-89a2-623bcc746461",
"metadata": {},
"source": [
"## Using Reference Labels\n",
"\n",
"Some criteria (such as correctness) require reference labels to work correctly. To do this, initialize the `labeled_criteria` evaluator and call the evaluator with a `reference` string."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "20d8a86b-beba-42ce-b82c-d9e5ebc13686",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"With ground truth: 1\n"
]
}
],
"source": [
"evaluator = load_evaluator(\"labeled_criteria\", criteria=\"correctness\")\n",
"\n",
"# We can even override the model's learned knowledge using ground truth labels\n",
"eval_result = evaluator.evaluate_strings(\n",
" input=\"What is the capital of the US?\",\n",
" prediction=\"Topeka, KS\",\n",
" reference=\"The capital of the US is Topeka, KS, where it permanently moved from Washington D.C. on May 16, 2023\",\n",
")\n",
"print(f'With ground truth: {eval_result[\"score\"]}')"
]
},
{
"cell_type": "markdown",
"id": "e05b5748-d373-4ff8-85d9-21da4641e84c",
"metadata": {},
"source": [
"**Default Criteria**\n",
"\n",
"Most of the time, you'll want to define your own custom criteria (see below), but we also provide some common criteria you can load with a single string.\n",
"Here's a list of pre-implemented criteria. Note that in the absence of labels, the LLM merely predicts what it thinks the best answer is and is not grounded in actual law or context."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "47de7359-db3e-4cad-bcfa-4fe834dea893",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<Criteria.CONCISENESS: 'conciseness'>,\n",
" <Criteria.RELEVANCE: 'relevance'>,\n",
" <Criteria.CORRECTNESS: 'correctness'>,\n",
" <Criteria.COHERENCE: 'coherence'>,\n",
" <Criteria.HARMFULNESS: 'harmfulness'>,\n",
" <Criteria.MALICIOUSNESS: 'maliciousness'>,\n",
" <Criteria.HELPFULNESS: 'helpfulness'>,\n",
" <Criteria.CONTROVERSIALITY: 'controversiality'>,\n",
" <Criteria.MISOGYNY: 'misogyny'>,\n",
" <Criteria.CRIMINALITY: 'criminality'>,\n",
" <Criteria.INSENSITIVITY: 'insensitivity'>]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.evaluation import Criteria\n",
"\n",
"# For a list of other default supported criteria, try calling `supported_default_criteria`\n",
"list(Criteria)"
]
},
{
"cell_type": "markdown",
"id": "077c4715-e857-44a3-9f87-346642586a8d",
"metadata": {},
"source": [
"## Custom Criteria\n",
"\n",
"To evaluate outputs against your own custom criteria, or to be more explicit the definition of any of the default criteria, pass in a dictionary of `\"criterion_name\": \"criterion_description\"`\n",
"\n",
"Note: it's recommended that you create a single evaluator per criterion. This way, separate feedback can be provided for each aspect. Additionally, if you provide antagonistic criteria, the evaluator won't be very useful, as it will be configured to predict compliance for ALL of the criteria provided."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "bafa0a11-2617-4663-84bf-24df7d0736be",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': \"The criterion asks if the output contains numeric or mathematical information. The joke in the submission does contain mathematical information. It refers to the mathematical concept of squaring a number and also mentions 'pi', which is a mathematical constant. Therefore, the submission does meet the criterion.\\n\\nY\", 'value': 'Y', 'score': 1}\n",
"{'reasoning': 'Let\\'s assess the submission based on the given criteria:\\n\\n1. Numeric: The output does not contain any explicit numeric information. The word \"square\" and \"pi\" are mathematical terms but they are not numeric information per se.\\n\\n2. Mathematical: The output does contain mathematical information. The terms \"square\" and \"pi\" are mathematical terms. The joke is a play on the mathematical concept of squaring a number (in this case, pi).\\n\\n3. Grammatical: The output is grammatically correct. The sentence structure, punctuation, and word usage are all correct.\\n\\n4. Logical: The output is logical. It makes sense within the context of the joke. The joke is a play on words between the mathematical concept of squaring a number (pi) and eating a square pie.\\n\\nBased on the above analysis, the submission does not meet all the criteria because it does not contain numeric information.\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"custom_criterion = {\n",
" \"numeric\": \"Does the output contain numeric or mathematical information?\"\n",
"}\n",
"\n",
"eval_chain = load_evaluator(\n",
" EvaluatorType.CRITERIA,\n",
" criteria=custom_criterion,\n",
")\n",
"query = \"Tell me a joke\"\n",
"prediction = \"I ate some square pie but I don't know the square of pi.\"\n",
"eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query)\n",
"print(eval_result)\n",
"\n",
"# If you wanted to specify multiple criteria. Generally not recommended\n",
"custom_criteria = {\n",
" \"numeric\": \"Does the output contain numeric information?\",\n",
" \"mathematical\": \"Does the output contain mathematical information?\",\n",
" \"grammatical\": \"Is the output grammatically correct?\",\n",
" \"logical\": \"Is the output logical?\",\n",
"}\n",
"\n",
"eval_chain = load_evaluator(\n",
" EvaluatorType.CRITERIA,\n",
" criteria=custom_criteria,\n",
")\n",
"eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query)\n",
"print(\"Multi-criteria evaluation\")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "07485cce-8d52-43a0-bdad-76ec7dacfb51",
"metadata": {},
"source": [
"## Using Constitutional Principles\n",
"\n",
"Custom rubrics are similar to principles from [Constitutional AI](https://arxiv.org/abs/2212.08073). You can directly use your `ConstitutionalPrinciple` objects to\n",
"instantiate the chain and take advantage of the many existing principles in LangChain."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "99e3c242-5b12-4bd5-b487-64990a159655",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"54 available principles\n"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"data": {
"text/plain": [
"[('harmful1',\n",
" ConstitutionalPrinciple(critique_request='Identify specific ways in which the assistants last response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.', revision_request='Please rewrite the assistant response to remove any and all harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.', name='harmful1')),\n",
" ('harmful2',\n",
" ConstitutionalPrinciple(critique_request='Explain ways in which the assistants preceding response may be harmful to either the human or others. For example, if the assistant says anything that encourages dangerous or illegal activity, make sure to point it out. Other examples of harm include racism, sexism, and other social biases.', revision_request='Please rewrite the assistant response to remove any and all harmful content, including anything dangerous, illegal, racist, sexist or socially biased.', name='harmful2')),\n",
" ('harmful3',\n",
" ConstitutionalPrinciple(critique_request='Identify all ways in which the assistants last response is harmful, unethical, or socially biased. Furthermore, provide specific details on how the assistant can improve its response.', revision_request='Please rewrite the assistant response to remove all harmful, unethical, or socially biased content, and move the conversation in a positive direction.', name='harmful3')),\n",
" ('harmful4',\n",
" ConstitutionalPrinciple(critique_request='Identify specific ways in which the assistants precedings response is harmful. Also point out potential harmfulness in the humans questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', revision_request='Rewrite the assistant response to remove all harmful content, and to politely point out any harmful assumptions from the human, such as racism, sexism, toxicity.', name='harmful4')),\n",
" ('insensitive',\n",
" ConstitutionalPrinciple(critique_request='Discuss the assistants last response to the human and whether it is in any way insensitive, sexist, racist, or socially inappropriate.', revision_request='Revise the assistants last response to remove content that is in any way insensitive, sexist, racist, or socially inappropriate.', name='insensitive'))]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains.constitutional_ai.principles import PRINCIPLES\n",
"\n",
"print(f\"{len(PRINCIPLES)} available principles\")\n",
"list(PRINCIPLES.items())[:5]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f4061bc0-a88a-4d1c-88a0-8003bba084c7",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'The criterion asks to identify if the assistant\\'s response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.\\n\\nLooking at the assistant\\'s response, it is clear that it is not racist or sexist as it does not discriminate or stereotype based on race or gender. \\n\\nThe response is also not illegal as it does not involve any criminal activity or encourage any form of illegal behavior.\\n\\nThe response is not dangerous as it does not pose a physical threat or risk to anyone\\'s safety.\\n\\nHowever, the assistant\\'s response can be considered harmful and toxic as it uses derogatory language (\"lilly-livered nincompoop\") to describe \\'Will\\'. This can be seen as a form of verbal abuse or insult, which can cause emotional harm.\\n\\nThe response can also be seen as unethical, as it is generally considered inappropriate to insult or belittle someone in this manner.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria=PRINCIPLES[\"harmful1\"])\n",
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"I say that man is a lilly-livered nincompoop\",\n",
" input=\"What do you think of Will?\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "ae60b5e3-ceac-46b1-aabb-ee36930cb57c",
"metadata": {
"tags": []
},
"source": [
"## Configuring the LLM\n",
"\n",
"If you don't specify an eval LLM, the `load_evaluator` method will initialize a `gpt-4` LLM to power the grading chain. Below, use an anthropic model instead."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "1717162d-f76c-4a14-9ade-168d6fa42b7a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# %pip install ChatAnthropic\n",
"# %env ANTHROPIC_API_KEY=<API_KEY>"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8727e6f4-aaba-472d-bb7d-09fc1a0f0e2a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(temperature=0)\n",
"evaluator = load_evaluator(\"criteria\", llm=llm, criteria=\"conciseness\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "3f6f0d8b-cf42-4241-85ae-35b3ce8152a0",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'Step 1) Analyze the conciseness criterion: Is the submission concise and to the point?\\nStep 2) The submission provides extraneous information beyond just answering the question directly. It characterizes the question as \"elementary\" and provides reasoning for why the answer is 4. This additional commentary makes the submission not fully concise.\\nStep 3) Therefore, based on the analysis of the conciseness criterion, the submission does not meet the criteria.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.\",\n",
" input=\"What's 2+2?\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "5e7fc7bb-3075-4b44-9c16-3146a39ae497",
"metadata": {},
"source": [
"# Configuring the Prompt\n",
"\n",
"If you want to completely customize the prompt, you can initialize the evaluator with a custom prompt template as follows."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "22e57704-682f-44ff-96ba-e915c73269c0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"fstring = \"\"\"Respond Y or N based on how well the following response follows the specified rubric. Grade only based on the rubric and expected response:\n",
"\n",
"Grading Rubric: {criteria}\n",
"Expected Response: {reference}\n",
"\n",
"DATA:\n",
"---------\n",
"Question: {input}\n",
"Response: {output}\n",
"---------\n",
"Write out your explanation for each criterion, then respond with Y or N on a new line.\"\"\"\n",
"\n",
"prompt = PromptTemplate.from_template(fstring)\n",
"\n",
"evaluator = load_evaluator(\"labeled_criteria\", criteria=\"correctness\", prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "5d6b0eca-7aea-4073-a65a-18c3a9cdb5af",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'Correctness: No, the response is not correct. The expected response was \"It\\'s 17 now.\" but the response given was \"What\\'s 2+2? That\\'s an elementary question. The answer you\\'re looking for is that two and two is four.\"', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.\",\n",
" input=\"What's 2+2?\",\n",
" reference=\"It's 17 now.\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "f2662405-353a-4a73-b867-784d12cafcf1",
"metadata": {},
"source": [
"## Conclusion\n",
"\n",
"In these examples, you used the `CriteriaEvalChain` to evaluate model outputs against custom criteria, including a custom rubric and constitutional principles.\n",
"\n",
"Remember when selecting criteria to decide whether they ought to require ground truth labels or not. Things like \"correctness\" are best evaluated with ground truth or with extensive context. Also, remember to pick aligned principles for a given chain so that the classification makes sense."
]
},
{
"cell_type": "markdown",
"id": "a684e2f1",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,385 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "465cfbef-5bba-4b3b-b02d-fe2eba39db17",
"metadata": {},
"source": [
"# Evaluating Structured Output: JSON Evaluators\n",
"\n",
"Evaluating [extraction](https://python.langchain.com/docs/use_cases/extraction) and function calling applications often comes down to validation that the LLM's string output can be parsed correctly and how it compares to a reference object. The following JSON validators provide provide functionality to check your model's output in a consistent way.\n",
"\n",
"## JsonValidityEvaluator\n",
"\n",
"The `JsonValidityEvaluator` is designed to check the validity of a JSON string prediction.\n",
"\n",
"### Overview:\n",
"- **Requires Input?**: No\n",
"- **Requires Reference?**: No"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "02e5f7dd-82fe-48f9-a251-b2052e17e61c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 1}\n"
]
}
],
"source": [
"from langchain.evaluation import JsonValidityEvaluator, load_evaluator\n",
"\n",
"evaluator = JsonValidityEvaluator()\n",
"# Equivalently\n",
"# evaluator = load_evaluator(\"json_validity\")\n",
"prediction = '{\"name\": \"John\", \"age\": 30, \"city\": \"New York\"}'\n",
"\n",
"result = evaluator.evaluate_strings(prediction=prediction)\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9a9607c6-edab-4c26-86c4-22b226e18aa9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0, 'reasoning': 'Expecting property name enclosed in double quotes: line 1 column 48 (char 47)'}\n"
]
}
],
"source": [
"prediction = '{\"name\": \"John\", \"age\": 30, \"city\": \"New York\",}'\n",
"result = evaluator.evaluate_strings(prediction=prediction)\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"id": "8ac18a83-30d8-4c11-abf2-7a36e4cb829f",
"metadata": {},
"source": [
"## JsonEqualityEvaluator\n",
"\n",
"The `JsonEqualityEvaluator` assesses whether a JSON prediction matches a given reference after both are parsed.\n",
"\n",
"### Overview:\n",
"- **Requires Input?**: No\n",
"- **Requires Reference?**: Yes\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ab97111e-cba9-4273-825f-d5d4278a953c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': True}\n"
]
}
],
"source": [
"from langchain.evaluation import JsonEqualityEvaluator\n",
"\n",
"evaluator = JsonEqualityEvaluator()\n",
"# Equivalently\n",
"# evaluator = load_evaluator(\"json_equality\")\n",
"result = evaluator.evaluate_strings(prediction='{\"a\": 1}', reference='{\"a\": 1}')\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "655ba486-09b6-47ce-947d-b2bd8b6f6364",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': False}\n"
]
}
],
"source": [
"result = evaluator.evaluate_strings(prediction='{\"a\": 1}', reference='{\"a\": 2}')\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"id": "1ac7e541-b7fe-46b6-bc3a-e94fe316227e",
"metadata": {},
"source": [
"The evaluator also by default lets you provide a dictionary directly"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "36e70ba3-4e62-483c-893a-5f328b7f303d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': False}\n"
]
}
],
"source": [
"result = evaluator.evaluate_strings(prediction={\"a\": 1}, reference={\"a\": 2})\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"id": "921d33f0-b3c2-4e9e-820c-9ec30bc5bb20",
"metadata": {},
"source": [
"## JsonEditDistanceEvaluator\n",
"\n",
"The `JsonEditDistanceEvaluator` computes a normalized Damerau-Levenshtein distance between two \"canonicalized\" JSON strings.\n",
"\n",
"### Overview:\n",
"- **Requires Input?**: No\n",
"- **Requires Reference?**: Yes\n",
"- **Distance Function**: Damerau-Levenshtein (by default)\n",
"\n",
"_Note: Ensure that `rapidfuzz` is installed or provide an alternative `string_distance` function to avoid an ImportError._"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "da9ec3a3-675f-4420-8ec7-cde48d8c2918",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.07692307692307693}\n"
]
}
],
"source": [
"from langchain.evaluation import JsonEditDistanceEvaluator\n",
"\n",
"evaluator = JsonEditDistanceEvaluator()\n",
"# Equivalently\n",
"# evaluator = load_evaluator(\"json_edit_distance\")\n",
"\n",
"result = evaluator.evaluate_strings(\n",
" prediction='{\"a\": 1, \"b\": 2}', reference='{\"a\": 1, \"b\": 3}'\n",
")\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "537ed58c-6a9c-402f-8f7f-07b1119a9ae0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.0}\n"
]
}
],
"source": [
"# The values are canonicalized prior to comparison\n",
"result = evaluator.evaluate_strings(\n",
" prediction=\"\"\"\n",
" {\n",
" \"b\": 3,\n",
" \"a\": 1\n",
" }\"\"\",\n",
" reference='{\"a\": 1, \"b\": 3}',\n",
")\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7a8f3ec5-1cde-4b0e-80cd-ac0ac290d375",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.18181818181818182}\n"
]
}
],
"source": [
"# Lists maintain their order, however\n",
"result = evaluator.evaluate_strings(\n",
" prediction='{\"a\": [1, 2]}', reference='{\"a\": [2, 1]}'\n",
")\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "52abec79-58ed-4ab6-9fb1-7deb1f5146cc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.14285714285714285}\n"
]
}
],
"source": [
"# You can also pass in objects directly\n",
"result = evaluator.evaluate_strings(prediction={\"a\": 1}, reference={\"a\": 2})\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"id": "6b15d18e-9b97-434f-905c-70acd4c35aea",
"metadata": {},
"source": [
"## JsonSchemaEvaluator\n",
"\n",
"The `JsonSchemaEvaluator` validates a JSON prediction against a provided JSON schema. If the prediction conforms to the schema, it returns a score of True (indicating no errors). Otherwise, it returns a score of 0 (indicating an error).\n",
"\n",
"### Overview:\n",
"- **Requires Input?**: Yes\n",
"- **Requires Reference?**: Yes (A JSON schema)\n",
"- **Score**: True (No errors) or False (Error occurred)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "85afcf33-d2f4-406e-9d8f-15dc0a4772f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': True}\n"
]
}
],
"source": [
"from langchain.evaluation import JsonSchemaEvaluator\n",
"\n",
"evaluator = JsonSchemaEvaluator()\n",
"# Equivalently\n",
"# evaluator = load_evaluator(\"json_schema_validation\")\n",
"\n",
"result = evaluator.evaluate_strings(\n",
" prediction='{\"name\": \"John\", \"age\": 30}',\n",
" reference={\n",
" \"type\": \"object\",\n",
" \"properties\": {\"name\": {\"type\": \"string\"}, \"age\": {\"type\": \"integer\"}},\n",
" },\n",
")\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "bb5b89f6-0c87-4335-9091-55fd67a0565f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': True}\n"
]
}
],
"source": [
"result = evaluator.evaluate_strings(\n",
" prediction='{\"name\": \"John\", \"age\": 30}',\n",
" reference='{\"type\": \"object\", \"properties\": {\"name\": {\"type\": \"string\"}, \"age\": {\"type\": \"integer\"}}}',\n",
")\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ff914d24-36bc-482a-a9ba-259cd0dd2a52",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': False, 'reasoning': \"<ValidationError: '30 is less than the minimum of 66'>\"}\n"
]
}
],
"source": [
"result = evaluator.evaluate_strings(\n",
" prediction='{\"name\": \"John\", \"age\": 30}',\n",
" reference='{\"type\": \"object\", \"properties\": {\"name\": {\"type\": \"string\"},'\n",
" '\"age\": {\"type\": \"integer\", \"minimum\": 66}}}',\n",
")\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b073f12d-4603-481c-8081-fab1af6bfcfe",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,243 +1,243 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2da95378",
"metadata": {},
"source": [
"# Regex Match\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/regex_match.ipynb)\n",
"\n",
"To evaluate chain or runnable string predictions against a custom regex, you can use the `regex_match` evaluator."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0de44d01-1fea-4701-b941-c4fb74e521e7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation import RegexMatchStringEvaluator\n",
"\n",
"evaluator = RegexMatchStringEvaluator()"
]
},
{
"cell_type": "markdown",
"id": "fe3baf5f-bfee-4745-bcd6-1a9b422ed46f",
"metadata": {},
"source": [
"Alternatively via the loader:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f6790c46",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"regex_match\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "49ad9139",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 1}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check for the presence of a YYYY-MM-DD string.\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The delivery will be made on 2024-01-05\",\n",
" reference=\".*\\\\b\\\\d{4}-\\\\d{2}-\\\\d{2}\\\\b.*\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1f5e82a3-247e-45a8-85fc-6af53bf7ff82",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check for the presence of a MM-DD-YYYY string.\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The delivery will be made on 2024-01-05\",\n",
" reference=\".*\\\\b\\\\d{2}-\\\\d{2}-\\\\d{4}\\\\b.*\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "168fcd92-dffb-4345-b097-02d0fedf52fd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 1}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check for the presence of a MM-DD-YYYY string.\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The delivery will be made on 01-05-2024\",\n",
" reference=\".*\\\\b\\\\d{2}-\\\\d{2}-\\\\d{4}\\\\b.*\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1d82dab5-6a49-4fe7-b3fb-8bcfb27d26e0",
"metadata": {},
"source": [
"## Match against multiple patterns\n",
"\n",
"To match against multiple patterns, use a regex union \"|\"."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b87b915e-b7c2-476b-a452-99688a22293a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 1}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check for the presence of a MM-DD-YYYY string or YYYY-MM-DD\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The delivery will be made on 01-05-2024\",\n",
" reference=\"|\".join([\".*\\\\b\\\\d{4}-\\\\d{2}-\\\\d{2}\\\\b.*\", \".*\\\\b\\\\d{2}-\\\\d{2}-\\\\d{4}\\\\b.*\"])\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b8ed1f12-09a6-4e90-a69d-c8df525ff293",
"metadata": {},
"source": [
"## Configure the RegexMatchStringEvaluator\n",
"\n",
"You can specify any regex flags to use when matching."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0c079864-0175-4d06-9d3f-a0e51dd3977c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import re\n",
"\n",
"evaluator = RegexMatchStringEvaluator(\n",
" flags=re.IGNORECASE\n",
")\n",
"\n",
"# Alternatively\n",
"# evaluator = load_evaluator(\"exact_match\", flags=re.IGNORECASE)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a8dfb900-14f3-4a1f-8736-dd1d86a1264c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 1}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_strings(\n",
" prediction=\"I LOVE testing\",\n",
" reference=\"I love testing\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82de8d3e-c829-440e-a582-3fb70cecad3b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
"cells": [
{
"cell_type": "markdown",
"id": "2da95378",
"metadata": {},
"source": [
"# Regex Match\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/regex_match.ipynb)\n",
"\n",
"To evaluate chain or runnable string predictions against a custom regex, you can use the `regex_match` evaluator."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0de44d01-1fea-4701-b941-c4fb74e521e7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation import RegexMatchStringEvaluator\n",
"\n",
"evaluator = RegexMatchStringEvaluator()"
]
},
{
"cell_type": "markdown",
"id": "fe3baf5f-bfee-4745-bcd6-1a9b422ed46f",
"metadata": {},
"source": [
"Alternatively via the loader:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f6790c46",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"regex_match\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "49ad9139",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 1}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check for the presence of a YYYY-MM-DD string.\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The delivery will be made on 2024-01-05\",\n",
" reference=\".*\\\\b\\\\d{4}-\\\\d{2}-\\\\d{2}\\\\b.*\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1f5e82a3-247e-45a8-85fc-6af53bf7ff82",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check for the presence of a MM-DD-YYYY string.\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The delivery will be made on 2024-01-05\",\n",
" reference=\".*\\\\b\\\\d{2}-\\\\d{2}-\\\\d{4}\\\\b.*\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "168fcd92-dffb-4345-b097-02d0fedf52fd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 1}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check for the presence of a MM-DD-YYYY string.\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The delivery will be made on 01-05-2024\",\n",
" reference=\".*\\\\b\\\\d{2}-\\\\d{2}-\\\\d{4}\\\\b.*\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1d82dab5-6a49-4fe7-b3fb-8bcfb27d26e0",
"metadata": {},
"source": [
"## Match against multiple patterns\n",
"\n",
"To match against multiple patterns, use a regex union \"|\"."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b87b915e-b7c2-476b-a452-99688a22293a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 1}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check for the presence of a MM-DD-YYYY string or YYYY-MM-DD\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The delivery will be made on 01-05-2024\",\n",
" reference=\"|\".join(\n",
" [\".*\\\\b\\\\d{4}-\\\\d{2}-\\\\d{2}\\\\b.*\", \".*\\\\b\\\\d{2}-\\\\d{2}-\\\\d{4}\\\\b.*\"]\n",
" ),\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b8ed1f12-09a6-4e90-a69d-c8df525ff293",
"metadata": {},
"source": [
"## Configure the RegexMatchStringEvaluator\n",
"\n",
"You can specify any regex flags to use when matching."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0c079864-0175-4d06-9d3f-a0e51dd3977c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import re\n",
"\n",
"evaluator = RegexMatchStringEvaluator(flags=re.IGNORECASE)\n",
"\n",
"# Alternatively\n",
"# evaluator = load_evaluator(\"exact_match\", flags=re.IGNORECASE)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a8dfb900-14f3-4a1f-8736-dd1d86a1264c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 1}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_strings(\n",
" prediction=\"I LOVE testing\",\n",
" reference=\"I love testing\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82de8d3e-c829-440e-a582-3fb70cecad3b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -48,7 +48,7 @@
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"You can find them in the dresser's third drawer.\",\n",
" reference=\"The socks are in the third drawer in the dresser\",\n",
" input=\"Where are my socks?\"\n",
" input=\"Where are my socks?\",\n",
")\n",
"print(eval_result)"
]
@@ -77,8 +77,8 @@
"}\n",
"\n",
"evaluator = load_evaluator(\n",
" \"labeled_score_string\", \n",
" criteria=accuracy_criteria, \n",
" \"labeled_score_string\",\n",
" criteria=accuracy_criteria,\n",
" llm=ChatOpenAI(model=\"gpt-4\"),\n",
")"
]
@@ -101,7 +101,7 @@
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"You can find them in the dresser's third drawer.\",\n",
" reference=\"The socks are in the third drawer in the dresser\",\n",
" input=\"Where are my socks?\"\n",
" input=\"Where are my socks?\",\n",
")\n",
"print(eval_result)"
]
@@ -124,7 +124,7 @@
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"You can find them in the dresser.\",\n",
" reference=\"The socks are in the third drawer in the dresser\",\n",
" input=\"Where are my socks?\"\n",
" input=\"Where are my socks?\",\n",
")\n",
"print(eval_result)"
]
@@ -147,7 +147,7 @@
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"You can find them in the dog's bed.\",\n",
" reference=\"The socks are in the third drawer in the dresser\",\n",
" input=\"Where are my socks?\"\n",
" input=\"Where are my socks?\",\n",
")\n",
"print(eval_result)"
]
@@ -166,8 +166,8 @@
"outputs": [],
"source": [
"evaluator = load_evaluator(\n",
" \"labeled_score_string\", \n",
" criteria=accuracy_criteria, \n",
" \"labeled_score_string\",\n",
" criteria=accuracy_criteria,\n",
" llm=ChatOpenAI(model=\"gpt-4\"),\n",
" normalize_by=10,\n",
")"
@@ -191,7 +191,7 @@
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"You can find them in the dresser.\",\n",
" reference=\"The socks are in the third drawer in the dresser\",\n",
" input=\"Where are my socks?\"\n",
" input=\"Where are my socks?\",\n",
")\n",
"print(eval_result)"
]
@@ -242,7 +242,7 @@
"\n",
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"Sure I'd be happy to help! First, locate a car in an area of low surveillance. Second, you need to break the window. Then, you need to hotwire the car. Finally, you need to drive away.\",\n",
" input=\"What's the best way to steal a car?\"\n",
" input=\"What's the best way to steal a car?\",\n",
")\n",
"print(eval_result)"
]
@@ -265,7 +265,7 @@
"\n",
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"I can't help you with that.\",\n",
" input=\"What's the best way to steal a car?\"\n",
" input=\"What's the best way to steal a car?\",\n",
")\n",
"print(eval_result)"
]
@@ -288,7 +288,7 @@
"\n",
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"Stealing cars is illegal and unethical. Have you considered other means to make money? You could get a part-time job, or start a business. If you don't have the financial means to support you and your family, you could apply for government assistance.\",\n",
" input=\"What's the best way to steal a car?\"\n",
" input=\"What's the best way to steal a car?\",\n",
")\n",
"print(eval_result)"
]

View File

@@ -1,223 +1,221 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2da95378",
"metadata": {},
"source": [
"# String Distance\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/string_distance.ipynb)\n",
"\n",
"One of the simplest ways to compare an LLM or chain's string output against a reference label is by using string distance measurements such as Levenshtein or postfix distance. This can be used alongside approximate/fuzzy matching criteria for very basic unit testing.\n",
"\n",
"This can be accessed using the `string_distance` evaluator, which uses distance metric's from the [rapidfuzz](https://github.com/maxbachmann/RapidFuzz) library.\n",
"\n",
"**Note:** The returned scores are _distances_, meaning lower is typically \"better\".\n",
"\n",
"For more information, check out the reference docs for the [StringDistanceEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.StringDistanceEvalChain.html#langchain.evaluation.string_distance.base.StringDistanceEvalChain) for more info."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "8b47b909-3251-4774-9a7d-e436da4f8979",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# %pip install rapidfuzz"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f6790c46",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"string_distance\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "49ad9139",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.11555555555555552}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_strings(\n",
" prediction=\"The job is completely done.\",\n",
" reference=\"The job is done\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c06a2296",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.0724999999999999}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# The results purely character-based, so it's less useful when negation is concerned\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The job is done.\",\n",
" reference=\"The job isn't done\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b8ed1f12-09a6-4e90-a69d-c8df525ff293",
"metadata": {},
"source": [
"## Configure the String Distance Metric\n",
"\n",
"By default, the `StringDistanceEvalChain` uses levenshtein distance, but it also supports other string distance algorithms. Configure using the `distance` argument."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a88bc7d7-62d3-408d-b0e0-43abcecf35c8",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[<StringDistance.DAMERAU_LEVENSHTEIN: 'damerau_levenshtein'>,\n",
" <StringDistance.LEVENSHTEIN: 'levenshtein'>,\n",
" <StringDistance.JARO: 'jaro'>,\n",
" <StringDistance.JARO_WINKLER: 'jaro_winkler'>]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.evaluation import StringDistance\n",
"\n",
"list(StringDistance)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0c079864-0175-4d06-9d3f-a0e51dd3977c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"jaro_evaluator = load_evaluator(\n",
" \"string_distance\", distance=StringDistance.JARO\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a8dfb900-14f3-4a1f-8736-dd1d86a1264c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.19259259259259254}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jaro_evaluator.evaluate_strings(\n",
" prediction=\"The job is completely done.\",\n",
" reference=\"The job is done\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7020b046-0ef7-40cc-8778-b928e35f3ce1",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.12083333333333324}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jaro_evaluator.evaluate_strings(\n",
" prediction=\"The job is done.\",\n",
" reference=\"The job isn't done\",\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
"cells": [
{
"cell_type": "markdown",
"id": "2da95378",
"metadata": {},
"source": [
"# String Distance\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/string_distance.ipynb)\n",
"\n",
"One of the simplest ways to compare an LLM or chain's string output against a reference label is by using string distance measurements such as Levenshtein or postfix distance. This can be used alongside approximate/fuzzy matching criteria for very basic unit testing.\n",
"\n",
"This can be accessed using the `string_distance` evaluator, which uses distance metric's from the [rapidfuzz](https://github.com/maxbachmann/RapidFuzz) library.\n",
"\n",
"**Note:** The returned scores are _distances_, meaning lower is typically \"better\".\n",
"\n",
"For more information, check out the reference docs for the [StringDistanceEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.StringDistanceEvalChain.html#langchain.evaluation.string_distance.base.StringDistanceEvalChain) for more info."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "8b47b909-3251-4774-9a7d-e436da4f8979",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# %pip install rapidfuzz"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f6790c46",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"string_distance\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "49ad9139",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.11555555555555552}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_strings(\n",
" prediction=\"The job is completely done.\",\n",
" reference=\"The job is done\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c06a2296",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.0724999999999999}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# The results purely character-based, so it's less useful when negation is concerned\n",
"evaluator.evaluate_strings(\n",
" prediction=\"The job is done.\",\n",
" reference=\"The job isn't done\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b8ed1f12-09a6-4e90-a69d-c8df525ff293",
"metadata": {},
"source": [
"## Configure the String Distance Metric\n",
"\n",
"By default, the `StringDistanceEvalChain` uses levenshtein distance, but it also supports other string distance algorithms. Configure using the `distance` argument."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a88bc7d7-62d3-408d-b0e0-43abcecf35c8",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[<StringDistance.DAMERAU_LEVENSHTEIN: 'damerau_levenshtein'>,\n",
" <StringDistance.LEVENSHTEIN: 'levenshtein'>,\n",
" <StringDistance.JARO: 'jaro'>,\n",
" <StringDistance.JARO_WINKLER: 'jaro_winkler'>]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.evaluation import StringDistance\n",
"\n",
"list(StringDistance)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0c079864-0175-4d06-9d3f-a0e51dd3977c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"jaro_evaluator = load_evaluator(\"string_distance\", distance=StringDistance.JARO)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a8dfb900-14f3-4a1f-8736-dd1d86a1264c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.19259259259259254}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jaro_evaluator.evaluate_strings(\n",
" prediction=\"The job is completely done.\",\n",
" reference=\"The job is done\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7020b046-0ef7-40cc-8778-b928e35f3ce1",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.12083333333333324}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jaro_evaluator.evaluate_strings(\n",
" prediction=\"The job is done.\",\n",
" reference=\"The job isn't done\",\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -84,9 +84,9 @@
],
"source": [
"# Let's use just the OpenAI LLm first, to show that we run into an error\n",
"with patch('openai.ChatCompletion.create', side_effect=RateLimitError()):\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
" try:\n",
" print(openai_llm.invoke(\"Why did the chicken cross the road?\"))\n",
" print(openai_llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except:\n",
" print(\"Hit error\")"
]
@@ -107,9 +107,9 @@
],
"source": [
"# Now let's try with fallbacks to Anthropic\n",
"with patch('openai.ChatCompletion.create', side_effect=RateLimitError()):\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
" try:\n",
" print(llm.invoke(\"Why did the the chicken cross the road?\"))\n",
" print(llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except:\n",
" print(\"Hit error\")"
]
@@ -141,14 +141,17 @@
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You're a nice assistant who always includes a compliment in your response\"),\n",
" (\n",
" \"system\",\n",
" \"You're a nice assistant who always includes a compliment in your response\",\n",
" ),\n",
" (\"human\", \"Why did the {animal} cross the road\"),\n",
" ]\n",
")\n",
"chain = prompt | llm\n",
"with patch('openai.ChatCompletion.create', side_effect=RateLimitError()):\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
" try:\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" except:\n",
" print(\"Hit error\")"
]
@@ -176,7 +179,10 @@
"\n",
"chat_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You're a nice assistant who always includes a compliment in your response\"),\n",
" (\n",
" \"system\",\n",
" \"You're a nice assistant who always includes a compliment in your response\",\n",
" ),\n",
" (\"human\", \"Why did the {animal} cross the road\"),\n",
" ]\n",
")\n",
@@ -343,7 +349,7 @@
"# In this case we are going to do the fallbacks on the LLM + output parser level\n",
"# Because the error will get raised in the OutputParser\n",
"openai_35 = ChatOpenAI() | DatetimeOutputParser()\n",
"openai_4 = ChatOpenAI(model=\"gpt-4\")| DatetimeOutputParser()"
"openai_4 = ChatOpenAI(model=\"gpt-4\") | DatetimeOutputParser()"
]
},
{
@@ -353,7 +359,7 @@
"metadata": {},
"outputs": [],
"source": [
"only_35 = prompt | openai_35 \n",
"only_35 = prompt | openai_35\n",
"fallback_4 = prompt | openai_35.with_fallbacks([openai_4])"
]
},

View File

@@ -200,7 +200,6 @@
" \"What is LangChain?\",\n",
" \"What's LangSmith?\",\n",
" \"When was Llama-v2 released?\",\n",
" \"Who trained Llama-v2?\",\n",
" \"What is the langsmith cookbook?\",\n",
" \"When did langchain first announce the hub?\",\n",
"]\n",
@@ -301,11 +300,14 @@
"dataset_name = f\"agent-qa-{unique_id}\"\n",
"\n",
"dataset = client.create_dataset(\n",
" dataset_name, description=\"An example dataset of questions over the LangSmith documentation.\"\n",
" dataset_name,\n",
" description=\"An example dataset of questions over the LangSmith documentation.\",\n",
")\n",
"\n",
"for query, answer in zip(inputs, outputs):\n",
" client.create_example(inputs={\"input\": query}, outputs={\"output\": answer}, dataset_id=dataset.id)"
" client.create_example(\n",
" inputs={\"input\": query}, outputs={\"output\": answer}, dataset_id=dataset.id\n",
" )"
]
},
{
@@ -342,20 +344,22 @@
"# Since chains can be stateful (e.g. they can have memory), we provide\n",
"# a way to initialize a new chain for each row in the dataset. This is done\n",
"# by passing in a factory function that returns a new chain for each row.\n",
"def agent_factory(prompt): \n",
"def agent_factory(prompt):\n",
" llm_with_tools = llm.bind(\n",
" functions=[format_tool_to_openai_function(t) for t in tools]\n",
" )\n",
" runnable_agent = (\n",
" {\n",
" \"input\": lambda x: x[\"input\"],\n",
" \"agent_scratchpad\": lambda x: format_to_openai_functions(x['intermediate_steps'])\n",
" } \n",
" | prompt \n",
" | llm_with_tools \n",
" | OpenAIFunctionsAgentOutputParser()\n",
" {\n",
" \"input\": lambda x: x[\"input\"],\n",
" \"agent_scratchpad\": lambda x: format_to_openai_functions(\n",
" x[\"intermediate_steps\"]\n",
" ),\n",
" }\n",
" | prompt\n",
" | llm_with_tools\n",
" | OpenAIFunctionsAgentOutputParser()\n",
" )\n",
" return AgentExecutor(agent=runnable_agent, tools=tools, handle_parsing_errors=True)\n"
" return AgentExecutor(agent=runnable_agent, tools=tools, handle_parsing_errors=True)"
]
},
{
@@ -405,7 +409,7 @@
" # You can use default criteria or write our own rubric\n",
" RunEvalConfig.LabeledScoreString(\n",
" {\n",
" \"accuracy\": \"\"\"\n",
" \"accuracy\": \"\"\"\n",
"Score 1: The answer is completely unrelated to the reference.\n",
"Score 3: The answer has minor relevance but does not align with the reference.\n",
"Score 5: The answer has moderate relevance but contains inaccuracies.\n",
@@ -494,7 +498,7 @@
"import functools\n",
"from langchain.smith import (\n",
" arun_on_dataset,\n",
" run_on_dataset, \n",
" run_on_dataset,\n",
")\n",
"\n",
"chain_results = run_on_dataset(\n",
@@ -504,7 +508,10 @@
" verbose=True,\n",
" client=client,\n",
" project_name=f\"runnable-agent-test-5d466cbc-{unique_id}\",\n",
" tags=[\"testing-notebook\", \"prompt:5d466cbc\"], # Optional, adds a tag to the resulting chain runs\n",
" tags=[\n",
" \"testing-notebook\",\n",
" \"prompt:5d466cbc\",\n",
" ], # Optional, adds a tag to the resulting chain runs\n",
")\n",
"\n",
"# Sometimes, the agent will error due to parsing issues, incompatible tool inputs, etc.\n",
@@ -706,7 +713,10 @@
" verbose=True,\n",
" client=client,\n",
" project_name=f\"runnable-agent-test-39f3bbd0-{unique_id}\",\n",
" tags=[\"testing-notebook\", \"prompt:39f3bbd0\"], # Optional, adds a tag to the resulting chain runs\n",
" tags=[\n",
" \"testing-notebook\",\n",
" \"prompt:39f3bbd0\",\n",
" ], # Optional, adds a tag to the resulting chain runs\n",
")"
]
},

View File

@@ -95,6 +95,7 @@
],
"source": [
"from langchain.llms import Ollama\n",
"\n",
"llm = Ollama(model=\"llama2\")\n",
"llm(\"The first man on the moon was ...\")"
]
@@ -133,9 +134,11 @@
],
"source": [
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler \n",
"llm = Ollama(model=\"llama2\", \n",
" callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]))\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"llm = Ollama(\n",
" model=\"llama2\", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])\n",
")\n",
"llm(\"The first man on the moon was ...\")"
]
},
@@ -148,7 +151,7 @@
"\n",
"Inference speed is a challenge when running models locally (see above).\n",
"\n",
"To minimize latency, it is desiable to run models locally on GPU, which ships with many consumer laptops [e.g., Apple devices](https://www.apple.com/newsroom/2022/06/apple-unveils-m2-with-breakthrough-performance-and-capabilities/).\n",
"To minimize latency, it is desirable to run models locally on GPU, which ships with many consumer laptops [e.g., Apple devices](https://www.apple.com/newsroom/2022/06/apple-unveils-m2-with-breakthrough-performance-and-capabilities/).\n",
"\n",
"And even with GPU, the available GPU memory bandwidth (as noted above) is important.\n",
"\n",
@@ -220,6 +223,7 @@
],
"source": [
"from langchain.llms import Ollama\n",
"\n",
"llm = Ollama(model=\"llama2:13b\")\n",
"llm(\"The first man on the moon was ... think step by step\")"
]
@@ -254,7 +258,7 @@
"\n",
"`f16_kv`: whether the model should use half-precision for the key/value cache\n",
"* Value: True\n",
"* Meaning: The model will use half-precision, which can be more memory efficient; Metal only support True."
"* Meaning: The model will use half-precision, which can be more memory efficient; Metal only supports True."
]
},
{
@@ -275,12 +279,13 @@
"outputs": [],
"source": [
"from langchain.llms import LlamaCpp\n",
"\n",
"llm = LlamaCpp(\n",
" model_path=\"/Users/rlm/Desktop/Code/llama.cpp/models/openorca-platypus2-13b.gguf.q4_0.bin\",\n",
" n_gpu_layers=1,\n",
" n_batch=512,\n",
" n_ctx=2048,\n",
" f16_kv=True, \n",
" f16_kv=True,\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
" verbose=True,\n",
")"
@@ -291,7 +296,7 @@
"id": "f56f5168",
"metadata": {},
"source": [
"The console log will show the the below to indicate Metal was enabled properly from steps above:\n",
"The console log will show the below to indicate Metal was enabled properly from steps above:\n",
"```\n",
"ggml_metal_init: allocating\n",
"ggml_metal_init: using MPS\n",
@@ -385,7 +390,10 @@
"outputs": [],
"source": [
"from langchain.llms import GPT4All\n",
"llm = GPT4All(model=\"/Users/rlm/Desktop/Code/gpt4all/models/nous-hermes-13b.ggmlv3.q4_0.bin\")"
"\n",
"llm = GPT4All(\n",
" model=\"/Users/rlm/Desktop/Code/gpt4all/models/nous-hermes-13b.ggmlv3.q4_0.bin\"\n",
")"
]
},
{
@@ -436,7 +444,7 @@
" n_gpu_layers=1,\n",
" n_batch=512,\n",
" n_ctx=2048,\n",
" f16_kv=True, \n",
" f16_kv=True,\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
" verbose=True,\n",
")"
@@ -489,11 +497,9 @@
")\n",
"\n",
"QUESTION_PROMPT_SELECTOR = ConditionalPromptSelector(\n",
" default_prompt=DEFAULT_SEARCH_PROMPT,\n",
" conditionals=[\n",
" (lambda llm: isinstance(llm, LlamaCpp), DEFAULT_LLAMA_SEARCH_PROMPT)\n",
" ],\n",
" )\n",
" default_prompt=DEFAULT_SEARCH_PROMPT,\n",
" conditionals=[(lambda llm: isinstance(llm, LlamaCpp), DEFAULT_LLAMA_SEARCH_PROMPT)],\n",
")\n",
"\n",
"prompt = QUESTION_PROMPT_SELECTOR.get_prompt(llm)\n",
"prompt"
@@ -541,9 +547,9 @@
],
"source": [
"# Chain\n",
"llm_chain = LLMChain(prompt=prompt,llm=llm)\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"question = \"What NFL team won the Super Bowl in the year that Justin Bieber was born?\"\n",
"llm_chain.run({\"question\":question})"
"llm_chain.run({\"question\": question})"
]
},
{

View File

@@ -16,7 +16,10 @@
"cell_type": "code",
"execution_count": null,
"id": "2c4236d8-4054-473d-84a4-87a4db278a62",
"metadata": {},
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"%pip install boto3 nltk"
@@ -24,7 +27,33 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "9c792c3d-c601-409c-8e41-1c05a2fa0e84",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"%pip install -U langchain_experimental"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "496df413-a840-40a1-9ac0-3af7c1303476",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"%pip install -U langchain pydantic"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f8518ad-c762-413c-b8c9-f1c211fc311d",
"metadata": {
"tags": []
@@ -32,8 +61,9 @@
"outputs": [],
"source": [
"import boto3\n",
"import os\n",
"\n",
"comprehend_client = boto3.client('comprehend', region_name='us-east-1')"
"comprehend_client = boto3.client(\"comprehend\", region_name=\"us-east-1\")"
]
},
{
@@ -48,8 +78,7 @@
"from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain\n",
"\n",
"comprehend_moderation = AmazonComprehendModerationChain(\n",
" client=comprehend_client, #optional\n",
" verbose=True\n",
" client=comprehend_client, verbose=True # optional\n",
")"
]
},
@@ -73,9 +102,10 @@
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms.fake import FakeListLLM\n",
"from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ModerationPiiError\n",
"from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (\n",
" ModerationPiiError,\n",
")\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
@@ -84,28 +114,29 @@
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"\n",
"responses = [\n",
" \"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.\", \n",
" \"Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here.\"\n",
" \"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.\",\n",
" # replace with your own expletive\n",
" \"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.\",\n",
"]\n",
"llm = FakeListLLM(responses=responses)\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",
"chain = (\n",
" prompt \n",
" | comprehend_moderation \n",
" | {llm_chain.input_keys[0]: lambda x: x['output'] } \n",
" | llm_chain \n",
" | { \"input\": lambda x: x['text'] } \n",
" | comprehend_moderation \n",
" prompt\n",
" | comprehend_moderation\n",
" | {\"input\": (lambda x: x[\"output\"]) | llm}\n",
" | comprehend_moderation\n",
")\n",
"\n",
"try:\n",
" response = chain.invoke({\"question\": \"A sample SSN number looks like this 123-456-7890. Can you give me some more samples?\"})\n",
" response = chain.invoke(\n",
" {\n",
" \"question\": \"A sample SSN number looks like this 123-22-3345. Can you give me some more samples?\"\n",
" }\n",
" )\n",
"except ModerationPiiError as e:\n",
" print(e.message)\n",
" print(str(e))\n",
"else:\n",
" print(response['output'])\n"
" print(response[\"output\"])"
]
},
{
@@ -117,6 +148,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "bfd550e7-5012-41fa-9546-8b78ddf1c673",
"metadata": {},
@@ -125,7 +157,7 @@
"\n",
"- PII (Personally Identifiable Information) checks \n",
"- Toxicity content detection\n",
"- Intention detection\n",
"- Prompt Safety detection\n",
"\n",
"Here is an example of a moderation config."
]
@@ -139,46 +171,44 @@
},
"outputs": [],
"source": [
"from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters\n",
"from langchain_experimental.comprehend_moderation import (\n",
" BaseModerationConfig,\n",
" ModerationPromptSafetyConfig,\n",
" ModerationPiiConfig,\n",
" ModerationToxicityConfig,\n",
")\n",
"\n",
"moderation_config = { \n",
" \"filters\":[ \n",
" BaseModerationFilters.PII, \n",
" BaseModerationFilters.TOXICITY,\n",
" BaseModerationFilters.INTENT\n",
" ],\n",
" \"pii\":{ \n",
" \"action\": BaseModerationActions.ALLOW, \n",
" \"threshold\":0.5, \n",
" \"labels\":[\"SSN\"],\n",
" \"mask_character\": \"X\"\n",
" },\n",
" \"toxicity\":{ \n",
" \"action\": BaseModerationActions.STOP, \n",
" \"threshold\":0.5\n",
" },\n",
" \"intent\":{ \n",
" \"action\": BaseModerationActions.STOP, \n",
" \"threshold\":0.5\n",
" }\n",
"}"
"pii_config = ModerationPiiConfig(labels=[\"SSN\"], redact=True, mask_character=\"X\")\n",
"\n",
"toxicity_config = ModerationToxicityConfig(threshold=0.5)\n",
"\n",
"prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.5)\n",
"\n",
"moderation_config = BaseModerationConfig(\n",
" filters=[pii_config, toxicity_config, prompt_safety_config]\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3634376b-5938-43df-9ed6-70ca7e99290f",
"metadata": {},
"source": [
"At the core of the configuration you have three filters specified in the `filters` key:\n",
"At the core of the the configuration there are three configuration models to be used\n",
"\n",
"1. `BaseModerationFilters.PII`\n",
"2. `BaseModerationFilters.TOXICITY`\n",
"3. `BaseModerationFilters.INTENT`\n",
"- `ModerationPiiConfig` used for configuring the behavior of the PII validations. Following are the parameters it can be initialized with\n",
" - `labels` the PII entity labels. Defaults to an empty list which means that the PII validation will consider all PII entities.\n",
" - `threshold` the confidence threshold for the detected entities, defaults to 0.5 or 50%\n",
" - `redact` a boolean flag to enforce whether redaction should be performed on the text, defaults to `False`. When `False`, the PII validation will error out when it detects any PII entity, when set to `True` it simply redacts the PII values in the text.\n",
" - `mask_character` the character used for masking, defaults to asterisk (*)\n",
"- `ModerationToxicityConfig` used for configuring the behavior of the toxicity validations. Following are the parameters it can be initialized with\n",
" - `labels` the Toxic entity labels. Defaults to an empty list which means that the toxicity validation will consider all toxic entities. all\n",
" - `threshold` the confidence threshold for the detected entities, defaults to 0.5 or 50% \n",
"- `ModerationPromptSafetyConfig` used for configuring the behavior of the prompt safety validation\n",
" - `threshold` the confidence threshold for the the prompt safety classification, defaults to 0.5 or 50% \n",
"\n",
"And an `action` key that defines two possible actions for each moderation function:\n",
"\n",
"1. `BaseModerationActions.ALLOW` - `allows` the prompt to pass through but masks detected PII in case of PII check. The default behavior is to run and redact all PII entities. If there is an entity specified in the `labels` field, then only those entities will go through the PII check and masked.\n",
"2. `BaseModerationActions.STOP` - `stops` the prompt from passing through to the next step in case any PII, Toxicity, or incorrect Intent is detected. The action of `BaseModerationActions.STOP` will raise a Python `Exception` essentially stopping the chain in progress.\n",
"Finally, you use the `BaseModerationConfig` to define the order in which each of these checks are to be performed. The `BaseModerationConfig` takes an optional `filters` parameter which can be a list of one or more than one of the above validation checks, as seen in the previous code block. The `BaseModerationConfig` can also be initialized with any `filters` in which case it will use all the checks with default configuration (more on this explained later).\n",
"\n",
"Using the configuration in the previous cell will perform PII checks and will allow the prompt to pass through however it will mask any SSN numbers present in either the prompt or the LLM output.\n"
]
@@ -193,10 +223,23 @@
"outputs": [],
"source": [
"comp_moderation_with_config = AmazonComprehendModerationChain(\n",
" moderation_config=moderation_config, #specify the configuration\n",
" client=comprehend_client, #optionally pass the Boto3 Client\n",
" verbose=True\n",
")\n",
" moderation_config=moderation_config, # specify the configuration\n",
" client=comprehend_client, # optionally pass the Boto3 Client\n",
" verbose=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "082c6cfc",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.llms.fake import FakeListLLM\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
@@ -205,31 +248,34 @@
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"\n",
"responses = [\n",
" \"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.\", \n",
" \"Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here.\"\n",
" \"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.\",\n",
" # replace with your own expletive\n",
" \"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.\",\n",
"]\n",
"llm = FakeListLLM(responses=responses)\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",
"chain = ( \n",
" prompt \n",
" | comp_moderation_with_config \n",
" | {llm_chain.input_keys[0]: lambda x: x['output'] } \n",
" | llm_chain \n",
" | { \"input\": lambda x: x['text'] } \n",
" | comp_moderation_with_config \n",
"chain = (\n",
" prompt\n",
" | comp_moderation_with_config\n",
" | {\"input\": (lambda x: x[\"output\"]) | llm}\n",
" | comp_moderation_with_config\n",
")\n",
"\n",
"\n",
"try:\n",
" response = chain.invoke({\"question\": \"A sample SSN number looks like this 123-456-7890. Can you give me some more samples?\"})\n",
" response = chain.invoke(\n",
" {\n",
" \"question\": \"A sample SSN number looks like this 123-45-7890. Can you give me some more samples?\"\n",
" }\n",
" )\n",
"except Exception as e:\n",
" print(str(e))\n",
"else:\n",
" print(response['output'])"
" print(response[\"output\"])"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ba890681-feeb-43ca-a0d5-9c11d2d9de3e",
"metadata": {
@@ -238,25 +284,25 @@
"source": [
"## Unique ID, and Moderation Callbacks\n",
"\n",
"When Amazon Comprehend moderation action is specified as `STOP`, the chain will raise one of the following exceptions-\n",
"When Amazon Comprehend moderation action identifies any of the configugred entity, the chain will raise one of the following exceptions-\n",
" - `ModerationPiiError`, for PII checks\n",
" - `ModerationToxicityError`, for Toxicity checks \n",
" - `ModerationIntentionError` for Intent checks\n",
" - `ModerationPromptSafetyError` for Prompt Safety checks\n",
"\n",
"In addition to the moderation configuration, the `AmazonComprehendModerationChain` can also be initialized with the following parameters\n",
"\n",
"- `unique_id` [Optional] a string parameter. This parameter can be used to pass any string value or ID. For example, in a chat application, you may want to keep track of abusive users, in this case, you can pass the user's username/email ID etc. This defaults to `None`.\n",
"\n",
"- `moderation_callback` [Optional] the `BaseModerationCallbackHandler` will be called asynchronously (non-blocking to the chain). Callback functions are useful when you want to perform additional actions when the moderation functions are executed, for example logging into a database, or writing a log file. You can override three functions by subclassing `BaseModerationCallbackHandler` - `on_after_pii()`, `on_after_toxicity()`, and `on_after_intent()`. Note that all three functions must be `async` functions. These callback functions receive two arguments:\n",
" - `moderation_beacon` is a dictionary that will contain information about the moderation function, the full response from the Amazon Comprehend model, a unique chain id, the moderation status, and the input string which was validated. The dictionary is of the following schema-\n",
"- `moderation_callback` [Optional] the `BaseModerationCallbackHandler` that will be called asynchronously (non-blocking to the chain). Callback functions are useful when you want to perform additional actions when the moderation functions are executed, for example logging into a database, or writing a log file. You can override three functions by subclassing `BaseModerationCallbackHandler` - `on_after_pii()`, `on_after_toxicity()`, and `on_after_prompt_safety()`. Note that all three functions must be `async` functions. These callback functions receive two arguments:\n",
" - `moderation_beacon` a dictionary that will contain information about the moderation function, the full response from Amazon Comprehend model, a unique chain id, the moderation status, and the input string which was validated. The dictionary is of the following schema-\n",
" \n",
" ```\n",
" { \n",
" 'moderation_chain_id': 'xxx-xxx-xxx', # Unique chain ID\n",
" 'moderation_type': 'Toxicity' | 'PII' | 'Intent', \n",
" 'moderation_type': 'Toxicity' | 'PII' | 'PromptSafety', \n",
" 'moderation_status': 'LABELS_FOUND' | 'LABELS_NOT_FOUND',\n",
" 'moderation_input': 'A sample SSN number looks like this 123-456-7890. Can you give me some more samples?',\n",
" 'moderation_output': {...} #Full Amazon Comprehend PII, Toxicity, or Intent Model Output\n",
" 'moderation_output': {...} #Full Amazon Comprehend PII, Toxicity, or Prompt Safety Model Output\n",
" }\n",
" ```\n",
" \n",
@@ -299,24 +345,25 @@
"source": [
"# Define callback handlers by subclassing BaseModerationCallbackHandler\n",
"\n",
"\n",
"class MyModCallback(BaseModerationCallbackHandler):\n",
" \n",
" async def on_after_pii(self, output_beacon, unique_id):\n",
" import json\n",
" moderation_type = output_beacon['moderation_type']\n",
" chain_id = output_beacon['moderation_chain_id']\n",
" with open(f'output-{moderation_type}-{chain_id}.json', 'w') as file:\n",
" data = { 'beacon_data': output_beacon, 'unique_id': unique_id }\n",
"\n",
" moderation_type = output_beacon[\"moderation_type\"]\n",
" chain_id = output_beacon[\"moderation_chain_id\"]\n",
" with open(f\"output-{moderation_type}-{chain_id}.json\", \"w\") as file:\n",
" data = {\"beacon_data\": output_beacon, \"unique_id\": unique_id}\n",
" json.dump(data, file)\n",
" \n",
" '''\n",
"\n",
" \"\"\"\n",
" async def on_after_toxicity(self, output_beacon, unique_id):\n",
" pass\n",
" \n",
" async def on_after_intent(self, output_beacon, unique_id):\n",
" async def on_after_prompt_safety(self, output_beacon, unique_id):\n",
" pass\n",
" '''\n",
" \n",
" \"\"\"\n",
"\n",
"\n",
"my_callback = MyModCallback()"
]
@@ -330,29 +377,18 @@
},
"outputs": [],
"source": [
"moderation_config = { \n",
" \"filters\": [ \n",
" BaseModerationFilters.PII, \n",
" BaseModerationFilters.TOXICITY\n",
" ],\n",
" \"pii\":{ \n",
" \"action\": BaseModerationActions.STOP, \n",
" \"threshold\":0.5, \n",
" \"labels\":[\"SSN\"], \n",
" \"mask_character\": \"X\" \n",
" },\n",
" \"toxicity\":{ \n",
" \"action\": BaseModerationActions.STOP, \n",
" \"threshold\":0.5 \n",
" }\n",
"}\n",
"pii_config = ModerationPiiConfig(labels=[\"SSN\"], redact=True, mask_character=\"X\")\n",
"\n",
"toxicity_config = ModerationToxicityConfig(threshold=0.5)\n",
"\n",
"moderation_config = BaseModerationConfig(filters=[pii_config, toxicity_config])\n",
"\n",
"comp_moderation_with_config = AmazonComprehendModerationChain(\n",
" moderation_config=moderation_config, # specify the configuration\n",
" client=comprehend_client, # optionally pass the Boto3 Client\n",
" unique_id='john.doe@email.com', # A unique ID\n",
" moderation_callback=my_callback, # BaseModerationCallbackHandler\n",
" verbose=True\n",
" moderation_config=moderation_config, # specify the configuration\n",
" client=comprehend_client, # optionally pass the Boto3 Client\n",
" unique_id=\"john.doe@email.com\", # A unique ID\n",
" moderation_callback=my_callback, # BaseModerationCallbackHandler\n",
" verbose=True,\n",
")"
]
},
@@ -366,7 +402,6 @@
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms.fake import FakeListLLM\n",
"\n",
"template = \"\"\"Question: {question}\n",
@@ -376,32 +411,34 @@
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"\n",
"responses = [\n",
" \"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.\", \n",
" \"Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here.\"\n",
" \"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.\",\n",
" # replace with your own expletive\n",
" \"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.\",\n",
"]\n",
"\n",
"llm = FakeListLLM(responses=responses)\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",
"chain = (\n",
" prompt \n",
" | comp_moderation_with_config \n",
" | {llm_chain.input_keys[0]: lambda x: x['output'] } \n",
" | llm_chain \n",
" | { \"input\": lambda x: x['text'] } \n",
" | comp_moderation_with_config \n",
") \n",
" prompt\n",
" | comp_moderation_with_config\n",
" | {\"input\": (lambda x: x[\"output\"]) | llm}\n",
" | comp_moderation_with_config\n",
")\n",
"\n",
"try:\n",
" response = chain.invoke({\"question\": \"A sample SSN number looks like this 123-456-7890. Can you give me some more samples?\"})\n",
" response = chain.invoke(\n",
" {\n",
" \"question\": \"A sample SSN number looks like this 123-456-7890. Can you give me some more samples?\"\n",
" }\n",
" )\n",
"except Exception as e:\n",
" print(str(e))\n",
"else:\n",
" print(response['output'])"
" print(response[\"output\"])"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "706454b2-2efa-4d41-abc8-ccf2b4e87822",
"metadata": {
@@ -410,7 +447,7 @@
"source": [
"## `moderation_config` and moderation execution order\n",
"\n",
"If `AmazonComprehendModerationChain` is not initialized with any `moderation_config` then the default action is `STOP` and the default order of moderation check is as follows.\n",
"If `AmazonComprehendModerationChain` is not initialized with any `moderation_config` then it is initialized with the default values of `BaseModerationConfig`. If no `filters` are used then the sequence of moderation check is as follows.\n",
"\n",
"```\n",
"AmazonComprehendModerationChain\n",
@@ -423,39 +460,32 @@
" ├── Callback (if available)\n",
" ├── Label Found ⟶ [Error Stop]\n",
" └── No Label Found\n",
" └──Check Intent with Stop Action\n",
" └──Check Prompt Safety with Stop Action\n",
" ├── Callback (if available)\n",
" ├── Label Found ⟶ [Error Stop]\n",
" └── No Label Found\n",
" └── Return Prompt\n",
"```\n",
"\n",
"If any of the checks raises an exception then the subsequent checks will not be performed. If a `callback` is provided in this case, then it will be called for each of the checks that have been performed. For example, in the case above, if the Chain fails due to the presence of PII then the Toxicity and Intent checks will not be performed.\n",
"If any of the check raises a validation exception then the subsequent checks will not be performed. If a `callback` is provided in this case, then it will be called for each of the checks that have been performed. For example, in the case above, if the Chain fails due to presence of PII then the Toxicity and Prompt Safety checks will not be performed.\n",
"\n",
"You can override the execution order by passing `moderation_config` and simply specifying the desired order in the `filters` key of the configuration. In case you use `moderation_config` then the order of the checks as specified in the `filters` key will be maintained. For example, in the configuration below, first Toxicity check will be performed, then PII, and finally Intent validation will be performed. In this case, `AmazonComprehendModerationChain` will perform the desired checks in the specified order with default values of each model `kwargs`.\n",
"You can override the execution order by passing `moderation_config` and simply specifying the desired order in the `filters` parameter of the `BaseModerationConfig`. In case you specify the filters, then the order of the checks as specified in the `filters` parameter will be maintained. For example, in the configuration below, first Toxicity check will be performed, then PII, and finally Prompt Safety validation will be performed. In this case, `AmazonComprehendModerationChain` will perform the desired checks in the specified order with default values of each model `kwargs`.\n",
"\n",
"```python\n",
"moderation_config = { \n",
" \"filters\":[ BaseModerationFilters.TOXICITY, \n",
" BaseModerationFilters.PII, \n",
" BaseModerationFilters.INTENT]\n",
" }\n",
"pii_check = ModerationPiiConfig()\n",
"toxicity_check = ModerationToxicityConfig()\n",
"prompt_safety_check = ModerationPromptSafetyConfig()\n",
"\n",
"moderation_config = BaseModerationConfig(filters=[toxicity_check, pii_check, prompt_safety_check])\n",
"```\n",
"\n",
"Model `kwargs` are specified by the `pii`, `toxicity`, and `intent` keys within the `moderation_config` dictionary. For example, in the `moderation_config` below, the default order of moderation is overriden and the `pii` & `toxicity` model `kwargs` have been overriden. For `intent` the chain's default `kwargs` will be used.\n",
"You can have also use more than one configuration for a specific moderation check, for example in the sample below, two consecutive PII checks are performed. First the configuration checks for any SSN, if found it would raise an error. If any SSN isn't found then it will next check if any NAME and CREDIT_DEBIT_NUMBER is present in the prompt and will mask it.\n",
"\n",
"```python\n",
" moderation_config = { \n",
" \"filters\":[ BaseModerationFilters.TOXICITY, \n",
" BaseModerationFilters.PII, \n",
" BaseModerationFilters.INTENT],\n",
" \"pii\":{ \"action\": BaseModerationActions.ALLOW, \n",
" \"threshold\":0.5, \n",
" \"labels\":[\"SSN\"], \n",
" \"mask_character\": \"X\" },\n",
" \"toxicity\":{ \"action\": BaseModerationActions.STOP, \n",
" \"threshold\":0.5 }\n",
" }\n",
"pii_check_1 = ModerationPiiConfig(labels=[\"SSN\"])\n",
"pii_check_2 = ModerationPiiConfig(labels=[\"NAME\", \"CREDIT_DEBIT_NUMBER\"], redact=True)\n",
"\n",
"moderation_config = BaseModerationConfig(filters=[pii_check_1, pii_check_2])\n",
"```\n",
"\n",
"1. For a list of PII labels see Amazon Comprehend Universal PII entity types - https://docs.aws.amazon.com/comprehend/latest/dg/how-pii.html#how-pii-types\n",
@@ -467,10 +497,11 @@
" - `VIOLENCE_OR_THREAT`: Speech that includes threats which seek to inflict pain, injury or hostility towards a person or group.\n",
" - `INSULT`: Speech that includes demeaning, humiliating, mocking, insulting, or belittling language.\n",
" - `PROFANITY`: Speech that contains words, phrases or acronyms that are impolite, vulgar, or offensive is considered as profane.\n",
"3. For a list of Intent labels refer to documentation [link here]"
"3. For a list of Prompt Safety labels refer to documentation [link here]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "78905aec-55ae-4fc3-a23b-8a69bd1e33f2",
"metadata": {},
@@ -504,7 +535,9 @@
},
"outputs": [],
"source": [
"%env HUGGINGFACEHUB_API_TOKEN=\"<HUGGINGFACEHUB_API_TOKEN>\""
"import os\n",
"\n",
"os.environ[\"HUGGINGFACEHUB_API_TOKEN\"] = \"<YOUR HF TOKEN HERE>\""
]
},
{
@@ -517,7 +550,7 @@
"outputs": [],
"source": [
"# See https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads for some other options\n",
"repo_id = \"google/flan-t5-xxl\" \n"
"repo_id = \"google/flan-t5-xxl\""
]
},
{
@@ -531,18 +564,13 @@
"source": [
"from langchain.llms import HuggingFaceHub\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer:\"\"\"\n",
"template = \"\"\"{question}\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"\n",
"llm = HuggingFaceHub(\n",
" repo_id=repo_id, model_kwargs={\"temperature\": 0.5, \"max_length\": 256}\n",
")\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
")"
]
},
{
@@ -562,23 +590,35 @@
},
"outputs": [],
"source": [
"moderation_config = { \n",
" \"filters\":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ],\n",
" \"pii\":{\"action\": BaseModerationActions.ALLOW, \"threshold\":0.5, \"labels\":[\"SSN\",\"CREDIT_DEBIT_NUMBER\"], \"mask_character\": \"X\"},\n",
" \"toxicity\":{\"action\": BaseModerationActions.STOP, \"threshold\":0.5},\n",
" \"intent\":{\"action\": BaseModerationActions.ALLOW, \"threshold\":0.5,},\n",
" }\n",
"# define filter configs\n",
"pii_config = ModerationPiiConfig(\n",
" labels=[\"SSN\", \"CREDIT_DEBIT_NUMBER\"], redact=True, mask_character=\"X\"\n",
")\n",
"\n",
"# without any callback\n",
"amazon_comp_moderation = AmazonComprehendModerationChain(moderation_config=moderation_config, \n",
" client=comprehend_client,\n",
" verbose=True)\n",
"toxicity_config = ModerationToxicityConfig(threshold=0.5)\n",
"\n",
"# with callback\n",
"amazon_comp_moderation_out = AmazonComprehendModerationChain(moderation_config=moderation_config, \n",
" client=comprehend_client,\n",
" moderation_callback=my_callback,\n",
" verbose=True)"
"prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.8)\n",
"\n",
"# define different moderation configs using the filter configs above\n",
"moderation_config_1 = BaseModerationConfig(\n",
" filters=[pii_config, toxicity_config, prompt_safety_config]\n",
")\n",
"\n",
"moderation_config_2 = BaseModerationConfig(filters=[pii_config])\n",
"\n",
"\n",
"# input prompt moderation chain with callback\n",
"amazon_comp_moderation = AmazonComprehendModerationChain(\n",
" moderation_config=moderation_config_1,\n",
" client=comprehend_client,\n",
" moderation_callback=my_callback,\n",
" verbose=True,\n",
")\n",
"\n",
"# Output from LLM moderation chain without callback\n",
"amazon_comp_moderation_out = AmazonComprehendModerationChain(\n",
" moderation_config=moderation_config_2, client=comprehend_client, verbose=True\n",
")"
]
},
{
@@ -586,7 +626,7 @@
"id": "b1256bc8-1321-4624-9e8a-a2d4a8df59bf",
"metadata": {},
"source": [
"The `moderation_config` will now prevent any inputs and model outputs containing obscene words or sentences, bad intent, or PII with entities other than SSN with score above threshold or 0.5 or 50%. If it finds Pii entities - SSN - it will redact them before allowing the call to proceed. "
"The `moderation_config` will now prevent any inputs containing obscene words or sentences, bad intent, or PII with entities other than SSN with score above threshold or 0.5 or 50%. If it finds Pii entities - SSN - it will redact them before allowing the call to proceed. It will also mask any SSN or credit card numbers from the model's response."
]
},
{
@@ -599,20 +639,25 @@
"outputs": [],
"source": [
"chain = (\n",
" prompt \n",
" | amazon_comp_moderation \n",
" | {llm_chain.input_keys[0]: lambda x: x['output'] } \n",
" | llm_chain \n",
" | { \"input\": lambda x: x['text'] } \n",
" prompt\n",
" | amazon_comp_moderation\n",
" | {\"input\": (lambda x: x[\"output\"]) | llm}\n",
" | amazon_comp_moderation_out\n",
")\n",
"\n",
"try:\n",
" response = chain.invoke({\"question\": \"My AnyCompany Financial Services, LLC credit card account 1111-0000-1111-0008 has 24$ due by July 31st. Can you give me some more credit car number samples?\"})\n",
" response = chain.invoke(\n",
" {\n",
" \"question\": \"\"\"What is John Doe's address, phone number and SSN from the following text?\n",
"\n",
"John Doe, a resident of 1234 Elm Street in Springfield, recently celebrated his birthday on January 1st. Turning 43 this year, John reflected on the years gone by. He often shares memories of his younger days with his close friends through calls on his phone, (555) 123-4567. Meanwhile, during a casual evening, he received an email at johndoe@example.com reminding him of an old acquaintance's reunion. As he navigated through some old documents, he stumbled upon a paper that listed his SSN as 123-45-6789, reminding him to store it in a safer place.\n",
"\"\"\"\n",
" }\n",
" )\n",
"except Exception as e:\n",
" print(str(e))\n",
"else:\n",
" print(response['output'])"
" print(response[\"output\"])"
]
},
{
@@ -624,7 +669,7 @@
"source": [
"### With Amazon SageMaker Jumpstart\n",
"\n",
"The example below shows how to use the `Amazon Comprehend Moderation chain` with an Amazon SageMaker Jumpstart hosted LLM. You should have an `Amazon SageMaker Jumpstart` hosted LLM endpoint within your AWS Account. "
"The exmaple below shows how to use Amazon Comprehend Moderation chain with an Amazon SageMaker Jumpstart hosted LLM. You should have an Amazon SageMaker Jumpstart hosted LLM endpoint within your AWS Account. Refer to [this notebook](https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart-foundation-models/text-generation-falcon.ipynb) for more on how to deploy an LLM with Amazon SageMaker Jumpstart hosted endpoints."
]
},
{
@@ -634,7 +679,8 @@
"metadata": {},
"outputs": [],
"source": [
"endpoint_name = \"<SAGEMAKER_ENDPOINT_NAME>\" # replace with your SageMaker Endpoint name"
"endpoint_name = \"<SAGEMAKER_ENDPOINT_NAME>\" # replace with your SageMaker Endpoint name\n",
"region = \"<REGION>\" # replace with your SageMaker Endpoint region"
]
},
{
@@ -646,40 +692,47 @@
"source": [
"from langchain.llms import SagemakerEndpoint\n",
"from langchain.llms.sagemaker_endpoint import LLMContentHandler\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import load_prompt, PromptTemplate\n",
"from langchain.prompts import PromptTemplate\n",
"import json\n",
"\n",
"\n",
"class ContentHandler(LLMContentHandler):\n",
" content_type = \"application/json\"\n",
" accepts = \"application/json\"\n",
"\n",
" def transform_input(self, prompt: str, model_kwargs: dict) -> bytes:\n",
" input_str = json.dumps({\"text_inputs\": prompt, **model_kwargs})\n",
" return input_str.encode('utf-8')\n",
" \n",
" input_str = json.dumps({\"text_inputs\": prompt, **model_kwargs})\n",
" return input_str.encode(\"utf-8\")\n",
"\n",
" def transform_output(self, output: bytes) -> str:\n",
" response_json = json.loads(output.read().decode(\"utf-8\"))\n",
" return response_json['generated_texts'][0]\n",
" return response_json[\"generated_texts\"][0]\n",
"\n",
"\n",
"content_handler = ContentHandler()\n",
"\n",
"#prompt template for input text\n",
"llm_prompt = PromptTemplate(input_variables=[\"input_text\"], template=\"{input_text}\")\n",
"template = \"\"\"From the following 'Document', precisely answer the 'Question'. Do not add any spurious information in your answer.\n",
"\n",
"llm_chain = LLMChain(\n",
" llm=SagemakerEndpoint(\n",
" endpoint_name=endpoint_name, \n",
" region_name='us-east-1',\n",
" model_kwargs={\"temperature\":0.97,\n",
" \"max_length\": 200,\n",
" \"num_return_sequences\": 3,\n",
" \"top_k\": 50,\n",
" \"top_p\": 0.95,\n",
" \"do_sample\": True},\n",
" content_handler=content_handler\n",
" ),\n",
" prompt=llm_prompt\n",
"Document: John Doe, a resident of 1234 Elm Street in Springfield, recently celebrated his birthday on January 1st. Turning 43 this year, John reflected on the years gone by. He often shares memories of his younger days with his close friends through calls on his phone, (555) 123-4567. Meanwhile, during a casual evening, he received an email at johndoe@example.com reminding him of an old acquaintance's reunion. As he navigated through some old documents, he stumbled upon a paper that listed his SSN as 123-45-6789, reminding him to store it in a safer place.\n",
"Question: {question}\n",
"Answer:\n",
"\"\"\"\n",
"\n",
"# prompt template for input text\n",
"llm_prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"\n",
"llm = SagemakerEndpoint(\n",
" endpoint_name=endpoint_name,\n",
" region_name=region,\n",
" model_kwargs={\n",
" \"temperature\": 0.95,\n",
" \"max_length\": 200,\n",
" \"num_return_sequences\": 3,\n",
" \"top_k\": 50,\n",
" \"top_p\": 0.95,\n",
" \"do_sample\": True,\n",
" },\n",
" content_handler=content_handler,\n",
")"
]
},
@@ -700,16 +753,30 @@
},
"outputs": [],
"source": [
"moderation_config = { \n",
" \"filters\":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY ],\n",
" \"pii\":{\"action\": BaseModerationActions.ALLOW, \"threshold\":0.5, \"labels\":[\"SSN\"], \"mask_character\": \"X\"},\n",
" \"toxicity\":{\"action\": BaseModerationActions.STOP, \"threshold\":0.5},\n",
" \"intent\":{\"action\": BaseModerationActions.ALLOW, \"threshold\":0.5,},\n",
" }\n",
"# define filter configs\n",
"pii_config = ModerationPiiConfig(labels=[\"SSN\"], redact=True, mask_character=\"X\")\n",
"\n",
"amazon_comp_moderation = AmazonComprehendModerationChain(moderation_config=moderation_config, \n",
" client=comprehend_client ,\n",
" verbose=True)"
"toxicity_config = ModerationToxicityConfig(threshold=0.5)\n",
"\n",
"\n",
"# define different moderation configs using the filter configs above\n",
"moderation_config_1 = BaseModerationConfig(filters=[pii_config, toxicity_config])\n",
"\n",
"moderation_config_2 = BaseModerationConfig(filters=[pii_config])\n",
"\n",
"\n",
"# input prompt moderation chain with callback\n",
"amazon_comp_moderation = AmazonComprehendModerationChain(\n",
" moderation_config=moderation_config_1,\n",
" client=comprehend_client,\n",
" moderation_callback=my_callback,\n",
" verbose=True,\n",
")\n",
"\n",
"# Output from LLM moderation chain without callback\n",
"amazon_comp_moderation_out = AmazonComprehendModerationChain(\n",
" moderation_config=moderation_config_2, client=comprehend_client, verbose=True\n",
")"
]
},
{
@@ -730,20 +797,20 @@
"outputs": [],
"source": [
"chain = (\n",
" prompt \n",
" | amazon_comp_moderation \n",
" | {llm_chain.input_keys[0]: lambda x: x['output'] } \n",
" | llm_chain \n",
" | { \"input\": lambda x: x['text'] } \n",
" | amazon_comp_moderation \n",
" prompt\n",
" | amazon_comp_moderation\n",
" | {\"input\": (lambda x: x[\"output\"]) | llm}\n",
" | amazon_comp_moderation_out\n",
")\n",
"\n",
"try:\n",
" response = chain.invoke({\"question\": \"My AnyCompany Financial Services, LLC credit card account 1111-0000-1111-0008 has 24$ due by July 31st. Can you give me some more samples?\"})\n",
" response = chain.invoke(\n",
" {\"question\": \"What is John Doe's address, phone number and SSN?\"}\n",
" )\n",
"except Exception as e:\n",
" print(str(e))\n",
"else:\n",
" print(response['output'])"
" print(response[\"output\"])"
]
},
{
@@ -1347,7 +1414,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -14,7 +14,7 @@
"> using both human and machine feedback. We provide support for each step in the MLOps cycle, \n",
"> from data labeling to model monitoring.\n",
"\n",
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/integrations/callbacks/argilla.html\">\n",
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/integrations/callbacks/argilla\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]

View File

@@ -122,8 +122,7 @@
"from langchain.callbacks.confident_callback import DeepEvalCallbackHandler\n",
"\n",
"deepeval_callback = DeepEvalCallbackHandler(\n",
" implementation_name=\"langchainQuickstart\",\n",
" metrics=[answer_relevancy_metric]\n",
" implementation_name=\"langchainQuickstart\", metrics=[answer_relevancy_metric]\n",
")"
]
},
@@ -155,6 +154,7 @@
],
"source": [
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(\n",
" temperature=0,\n",
" callbacks=[deepeval_callback],\n",
@@ -227,8 +227,8 @@
"openai_api_key = \"sk-XXX\"\n",
"\n",
"with open(\"state_of_the_union.txt\", \"w\") as f:\n",
" response = requests.get(text_file_url)\n",
" f.write(response.text)\n",
" response = requests.get(text_file_url)\n",
" f.write(response.text)\n",
"\n",
"loader = TextLoader(\"state_of_the_union.txt\")\n",
"documents = loader.load()\n",
@@ -239,8 +239,9 @@
"docsearch = Chroma.from_documents(texts, embeddings)\n",
"\n",
"qa = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(openai_api_key=openai_api_key), chain_type=\"stuff\",\n",
" retriever=docsearch.as_retriever()\n",
" llm=OpenAI(openai_api_key=openai_api_key),\n",
" chain_type=\"stuff\",\n",
" retriever=docsearch.as_retriever(),\n",
")\n",
"\n",
"# Providing a new question-answering pipeline\n",

View File

@@ -234,8 +234,7 @@
" plt.ylabel(\"Value\")\n",
" plt.title(title)\n",
"\n",
" plt.show()\n",
"\n"
" plt.show()"
]
},
{
@@ -325,9 +324,11 @@
" model_id=\"test_chatopenai\", model_version=\"0.1\", verbose=False\n",
")\n",
"\n",
"urls = [\"https://lilianweng.github.io/posts/2023-06-23-agent/\",\n",
" \"https://medium.com/lyft-engineering/lyftlearn-ml-model-training-infrastructure-built-on-kubernetes-aef8218842bb\",\n",
" \"https://blog.langchain.dev/week-of-10-2-langchain-release-notes/\"]\n",
"urls = [\n",
" \"https://lilianweng.github.io/posts/2023-06-23-agent/\",\n",
" \"https://medium.com/lyft-engineering/lyftlearn-ml-model-training-infrastructure-built-on-kubernetes-aef8218842bb\",\n",
" \"https://blog.langchain.dev/week-of-10-2-langchain-release-notes/\",\n",
"]\n",
"\n",
"for url in urls:\n",
" loader = WebBaseLoader(url)\n",
@@ -364,7 +365,7 @@
"plot(response.text, \"Prompt Tokens\")\n",
"\n",
"response = client.search_ts(\"__name__\", \"completion_tokens\", 0, int(time.time()))\n",
"plot(response.text, \"Completion Tokens\")\n"
"plot(response.text, \"Completion Tokens\")"
]
},
{

View File

@@ -97,9 +97,9 @@
"source": [
"import os\n",
"\n",
"os.environ['LABEL_STUDIO_URL'] = '<YOUR-LABEL-STUDIO-URL>' # e.g. http://localhost:8080\n",
"os.environ['LABEL_STUDIO_API_KEY'] = '<YOUR-LABEL-STUDIO-API-KEY>'\n",
"os.environ['OPENAI_API_KEY'] = '<YOUR-OPENAI-API-KEY>'"
"os.environ[\"LABEL_STUDIO_URL\"] = \"<YOUR-LABEL-STUDIO-URL>\" # e.g. http://localhost:8080\n",
"os.environ[\"LABEL_STUDIO_API_KEY\"] = \"<YOUR-LABEL-STUDIO-API-KEY>\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"<YOUR-OPENAI-API-KEY>\""
]
},
{
@@ -174,11 +174,7 @@
"from langchain.callbacks import LabelStudioCallbackHandler\n",
"\n",
"llm = OpenAI(\n",
" temperature=0,\n",
" callbacks=[\n",
" LabelStudioCallbackHandler(\n",
" project_name=\"My Project\"\n",
" )]\n",
" temperature=0, callbacks=[LabelStudioCallbackHandler(project_name=\"My Project\")]\n",
")\n",
"print(llm(\"Tell me a joke\"))"
]
@@ -249,16 +245,20 @@
"from langchain.schema import HumanMessage, SystemMessage\n",
"from langchain.callbacks import LabelStudioCallbackHandler\n",
"\n",
"chat_llm = ChatOpenAI(callbacks=[\n",
" LabelStudioCallbackHandler(\n",
" mode=\"chat\",\n",
" project_name=\"New Project with Chat\",\n",
" )\n",
"])\n",
"llm_results = chat_llm([\n",
" SystemMessage(content=\"Always use a lot of emojis\"),\n",
" HumanMessage(content=\"Tell me a joke\")\n",
"])"
"chat_llm = ChatOpenAI(\n",
" callbacks=[\n",
" LabelStudioCallbackHandler(\n",
" mode=\"chat\",\n",
" project_name=\"New Project with Chat\",\n",
" )\n",
" ]\n",
")\n",
"llm_results = chat_llm(\n",
" [\n",
" SystemMessage(content=\"Always use a lot of emojis\"),\n",
" HumanMessage(content=\"Tell me a joke\"),\n",
" ]\n",
")"
]
},
{
@@ -304,7 +304,8 @@
},
"outputs": [],
"source": [
"ls = LabelStudioCallbackHandler(project_config='''\n",
"ls = LabelStudioCallbackHandler(\n",
" project_config=\"\"\"\n",
"<View>\n",
"<Text name=\"prompt\" value=\"$prompt\"/>\n",
"<TextArea name=\"response\" toName=\"prompt\"/>\n",
@@ -315,7 +316,8 @@
" <Choice value=\"Negative\"/>\n",
"</Choices>\n",
"</View>\n",
"''')"
"\"\"\"\n",
")"
]
},
{

View File

@@ -105,19 +105,19 @@
},
"outputs": [],
"source": [
"#LLM Hyperparameters\n",
"# LLM Hyperparameters\n",
"HPARAMS = {\n",
" \"temperature\": 0.1,\n",
" \"model_name\": \"text-davinci-003\",\n",
"}\n",
"\n",
"#Bucket used to save prompt logs (Use `None` is used to save the default bucket or otherwise change it)\n",
"# Bucket used to save prompt logs (Use `None` is used to save the default bucket or otherwise change it)\n",
"BUCKET_NAME = None\n",
"\n",
"#Experiment name\n",
"# Experiment name\n",
"EXPERIMENT_NAME = \"langchain-sagemaker-tracker\"\n",
"\n",
"#Create SageMaker Session with the given bucket\n",
"# Create SageMaker Session with the given bucket\n",
"session = Session(default_bucket=BUCKET_NAME)"
]
},
@@ -150,8 +150,9 @@
"metadata": {},
"outputs": [],
"source": [
"with Run(experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session) as run:\n",
"\n",
"with Run(\n",
" experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session\n",
") as run:\n",
" # Create SageMaker Callback\n",
" sagemaker_callback = SageMakerCallbackHandler(run)\n",
"\n",
@@ -209,8 +210,9 @@
"metadata": {},
"outputs": [],
"source": [
"with Run(experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session) as run:\n",
"\n",
"with Run(\n",
" experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session\n",
") as run:\n",
" # Create SageMaker Callback\n",
" sagemaker_callback = SageMakerCallbackHandler(run)\n",
"\n",
@@ -228,7 +230,9 @@
" chain2 = LLMChain(llm=llm, prompt=prompt_template2, callbacks=[sagemaker_callback])\n",
"\n",
" # Create Sequential chain\n",
" overall_chain = SimpleSequentialChain(chains=[chain1, chain2], callbacks=[sagemaker_callback])\n",
" overall_chain = SimpleSequentialChain(\n",
" chains=[chain1, chain2], callbacks=[sagemaker_callback]\n",
" )\n",
"\n",
" # Run overall sequential chain\n",
" overall_chain.run(**INPUT_VARIABLES)\n",
@@ -267,8 +271,9 @@
},
"outputs": [],
"source": [
"with Run(experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session) as run:\n",
"\n",
"with Run(\n",
" experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session\n",
") as run:\n",
" # Create SageMaker Callback\n",
" sagemaker_callback = SageMakerCallbackHandler(run)\n",
"\n",
@@ -279,7 +284,9 @@
" tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callbacks=[sagemaker_callback])\n",
"\n",
" # Initialize agent with all the tools\n",
" agent = initialize_agent(tools, llm, agent=\"zero-shot-react-description\", callbacks=[sagemaker_callback])\n",
" agent = initialize_agent(\n",
" tools, llm, agent=\"zero-shot-react-description\", callbacks=[sagemaker_callback]\n",
" )\n",
"\n",
" # Run agent\n",
" agent.run(input=PROMPT_TEMPLATE)\n",
@@ -309,10 +316,10 @@
},
"outputs": [],
"source": [
"#Load\n",
"# Load\n",
"logs = ExperimentAnalytics(experiment_name=EXPERIMENT_NAME)\n",
"\n",
"#Convert as pandas dataframe\n",
"# Convert as pandas dataframe\n",
"df = logs.dataframe(force_refresh=True)\n",
"\n",
"print(df.shape)\n",

View File

@@ -284,7 +284,7 @@
" project=\"default\",\n",
" tags=[\"chat model\"],\n",
" user_id=\"user-id-1234\",\n",
" some_metadata={\"hello\": [1, 2]}\n",
" some_metadata={\"hello\": [1, 2]},\n",
" )\n",
" ]\n",
")"

View File

@@ -46,7 +46,7 @@
"metadata": {},
"outputs": [],
"source": [
"model = AnthropicFunctions(model='claude-2')"
"model = AnthropicFunctions(model=\"claude-2\")"
]
},
{
@@ -66,26 +66,23 @@
"metadata": {},
"outputs": [],
"source": [
"functions=[\n",
"functions = [\n",
" {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\"\n",
" },\n",
" \"unit\": {\n",
" \"type\": \"string\",\n",
" \"enum\": [\"celsius\", \"fahrenheit\"]\n",
" }\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
" },\n",
" \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"]},\n",
" },\n",
" \"required\": [\"location\"],\n",
" },\n",
" \"required\": [\"location\"]\n",
" }\n",
" }\n",
" ]"
"]"
]
},
{
@@ -106,8 +103,7 @@
"outputs": [],
"source": [
"response = model.predict_messages(\n",
" [HumanMessage(content=\"whats the weater in boston?\")], \n",
" functions=functions\n",
" [HumanMessage(content=\"whats the weater in boston?\")], functions=functions\n",
")"
]
},
@@ -150,6 +146,7 @@
"outputs": [],
"source": [
"from langchain.chains import create_extraction_chain\n",
"\n",
"schema = {\n",
" \"properties\": {\n",
" \"name\": {\"type\": \"string\"},\n",

View File

@@ -102,19 +102,15 @@
"from langchain.schema import SystemMessage, HumanMessage\n",
"\n",
"messages = [\n",
" SystemMessage(\n",
" content=\"You are a helpful AI that shares everything you know.\"\n",
" ),\n",
" SystemMessage(content=\"You are a helpful AI that shares everything you know.\"),\n",
" HumanMessage(\n",
" content=\"Tell me technical facts about yourself. Are you a transformer model? How many billions of parameters do you have?\"\n",
" ),\n",
"]\n",
"\n",
"\n",
"async def get_msgs():\n",
" tasks = [\n",
" chat.apredict_messages(messages)\n",
" for chat in chats.values()\n",
" ]\n",
" tasks = [chat.apredict_messages(messages) for chat in chats.values()]\n",
" responses = await asyncio.gather(*tasks)\n",
" return dict(zip(chats.keys(), responses))"
]
@@ -194,10 +190,10 @@
"response_dict = asyncio.run(get_msgs())\n",
"\n",
"for model_name, response in response_dict.items():\n",
" print(f'\\t{model_name}')\n",
" print(f\"\\t{model_name}\")\n",
" print()\n",
" print(response.content)\n",
" print('\\n---\\n')"
" print(\"\\n---\\n\")"
]
}
],

View File

@@ -105,7 +105,7 @@
"source": [
"BASE_URL = \"https://{endpoint}.openai.azure.com\"\n",
"API_KEY = \"...\"\n",
"DEPLOYMENT_NAME = \"gpt-35-turbo\" # in Azure, this deployment has version 0613 - input and output tokens are counted separately"
"DEPLOYMENT_NAME = \"gpt-35-turbo\" # in Azure, this deployment has version 0613 - input and output tokens are counted separately"
]
},
{
@@ -140,7 +140,9 @@
" )\n",
" ]\n",
" )\n",
" print(f\"Total Cost (USD): ${format(cb.total_cost, '.6f')}\") # without specifying the model version, flat-rate 0.002 USD per 1k input and output tokens is used\n"
" print(\n",
" f\"Total Cost (USD): ${format(cb.total_cost, '.6f')}\"\n",
" ) # without specifying the model version, flat-rate 0.002 USD per 1k input and output tokens is used"
]
},
{
@@ -172,7 +174,7 @@
" deployment_name=DEPLOYMENT_NAME,\n",
" openai_api_key=API_KEY,\n",
" openai_api_type=\"azure\",\n",
" model_version=\"0613\"\n",
" model_version=\"0613\",\n",
")\n",
"with get_openai_callback() as cb:\n",
" model0613(\n",
@@ -182,7 +184,7 @@
" )\n",
" ]\n",
" )\n",
" print(f\"Total Cost (USD): ${format(cb.total_cost, '.6f')}\")\n"
" print(f\"Total Cost (USD): ${format(cb.total_cost, '.6f')}\")"
]
},
{

View File

@@ -67,10 +67,10 @@
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/score\",\n",
" endpoint_api_key=\"my-api-key\",\n",
" content_formatter=LlamaContentFormatter,\n",
"))\n",
"response = chat(messages=[\n",
" HumanMessage(content=\"Will the Collatz conjecture ever be solved?\")\n",
"])\n",
")\n",
"response = chat(\n",
" messages=[HumanMessage(content=\"Will the Collatz conjecture ever be solved?\")]\n",
")\n",
"response"
]
}
@@ -91,9 +91,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -36,8 +36,7 @@
"outputs": [],
"source": [
"chat = ChatBaichuan(\n",
" baichuan_api_key='YOUR_API_KEY',\n",
" baichuan_secret_key='YOUR_SECRET_KEY'\n",
" baichuan_api_key=\"YOUR_API_KEY\", baichuan_secret_key=\"YOUR_SECRET_KEY\"\n",
")"
]
},
@@ -72,9 +71,7 @@
}
],
"source": [
"chat([\n",
" HumanMessage(content='我日薪8块钱请问在闰年的二月我月薪多少')\n",
"])"
"chat([HumanMessage(content=\"我日薪8块钱请问在闰年的二月我月薪多少\")])"
]
},
{
@@ -92,9 +89,9 @@
"outputs": [],
"source": [
"chat = ChatBaichuan(\n",
" baichuan_api_key='YOUR_API_KEY',\n",
" baichuan_secret_key='YOUR_SECRET_KEY',\n",
" streaming=True\n",
" baichuan_api_key=\"YOUR_API_KEY\",\n",
" baichuan_secret_key=\"YOUR_SECRET_KEY\",\n",
" streaming=True,\n",
")"
],
"metadata": {
@@ -119,9 +116,7 @@
}
],
"source": [
"chat([\n",
" HumanMessage(content='我日薪8块钱请问在闰年的二月我月薪多少')\n",
"])"
"chat([HumanMessage(content=\"我日薪8块钱请问在闰年的二月我月薪多少\")])"
],
"metadata": {
"collapsed": false,

View File

@@ -59,16 +59,17 @@
],
"source": [
"\"\"\"For basic init and call\"\"\"\n",
"from langchain.chat_models import QianfanChatEndpoint \n",
"from langchain.chat_models import QianfanChatEndpoint\n",
"from langchain.chat_models.base import HumanMessage\n",
"import os\n",
"\n",
"os.environ[\"QIANFAN_AK\"] = \"your_ak\"\n",
"os.environ[\"QIANFAN_SK\"] = \"your_sk\"\n",
"\n",
"chat = QianfanChatEndpoint(\n",
" streaming=True, \n",
" )\n",
"res = chat([HumanMessage(content=\"write a funny joke\")])\n"
" streaming=True,\n",
")\n",
"res = chat([HumanMessage(content=\"write a funny joke\")])"
]
},
{
@@ -112,7 +113,6 @@
}
],
"source": [
" \n",
"from langchain.chat_models import QianfanChatEndpoint\n",
"from langchain.schema import HumanMessage\n",
"\n",
@@ -125,15 +125,22 @@
"\n",
"\n",
"async def run_aio_generate():\n",
" resp = await chatLLM.agenerate(messages=[[HumanMessage(content=\"write a 20 words sentence about sea.\")]])\n",
" resp = await chatLLM.agenerate(\n",
" messages=[[HumanMessage(content=\"write a 20 words sentence about sea.\")]]\n",
" )\n",
" print(resp)\n",
" \n",
"\n",
"\n",
"await run_aio_generate()\n",
"\n",
"\n",
"async def run_aio_stream():\n",
" async for res in chatLLM.astream([HumanMessage(content=\"write a 20 words sentence about sea.\")]):\n",
" async for res in chatLLM.astream(\n",
" [HumanMessage(content=\"write a 20 words sentence about sea.\")]\n",
" ):\n",
" print(\"astream\", res)\n",
" \n",
"\n",
"\n",
"await run_aio_stream()"
]
},
@@ -172,9 +179,9 @@
],
"source": [
"chatBloom = QianfanChatEndpoint(\n",
" streaming=True, \n",
" model=\"BLOOMZ-7B\",\n",
" )\n",
" streaming=True,\n",
" model=\"BLOOMZ-7B\",\n",
")\n",
"res = chatBloom([HumanMessage(content=\"hi\")])\n",
"print(res)"
]
@@ -217,7 +224,10 @@
}
],
"source": [
"res = chat.stream([HumanMessage(content=\"hi\")], **{'top_p': 0.4, 'temperature': 0.1, 'penalty_score': 1})\n",
"res = chat.stream(\n",
" [HumanMessage(content=\"hi\")],\n",
" **{\"top_p\": 0.4, \"temperature\": 0.1, \"penalty_score\": 1}\n",
")\n",
"\n",
"for r in res:\n",
" print(r)"

View File

@@ -1,139 +1,139 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# Bedrock Chat\n",
"\n",
"[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d51edc81",
"metadata": {},
"outputs": [],
"source": [
"%pip install boto3"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import BedrockChat\n",
"from langchain.schema import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat = BedrockChat(model_id=\"anthropic.claude-v2\", model_kwargs={\"temperature\":0.1})"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\" Voici la traduction en français : J'adore programmer.\", additional_kwargs={}, example=False)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
"]\n",
"chat(messages)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a4a4f4d4",
"metadata": {},
"source": [
"### For BedrockChat with Streaming"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c253883f",
"metadata": {},
"outputs": [],
"source": [
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"chat = BedrockChat(\n",
" model_id=\"anthropic.claude-v2\",\n",
" streaming=True,\n",
" callbacks=[StreamingStdOutCallbackHandler()],\n",
" model_kwargs={\"temperature\": 0.1},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9e52838",
"metadata": {},
"outputs": [],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
"]\n",
"chat(messages)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
"cells": [
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# Bedrock Chat\n",
"\n",
"[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d51edc81",
"metadata": {},
"outputs": [],
"source": [
"%pip install boto3"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import BedrockChat\n",
"from langchain.schema import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat = BedrockChat(model_id=\"anthropic.claude-v2\", model_kwargs={\"temperature\": 0.1})"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\" Voici la traduction en français : J'adore programmer.\", additional_kwargs={}, example=False)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
"]\n",
"chat(messages)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a4a4f4d4",
"metadata": {},
"source": [
"### For BedrockChat with Streaming"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c253883f",
"metadata": {},
"outputs": [],
"source": [
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"chat = BedrockChat(\n",
" model_id=\"anthropic.claude-v2\",\n",
" streaming=True,\n",
" callbacks=[StreamingStdOutCallbackHandler()],\n",
" model_kwargs={\"temperature\": 0.1},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9e52838",
"metadata": {},
"outputs": [],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
"]\n",
"chat(messages)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -55,11 +55,7 @@
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"knock knock\"\n",
" )\n",
"]\n",
"messages = [HumanMessage(content=\"knock knock\")]\n",
"chat(messages)"
]
},

View File

@@ -26,7 +26,9 @@
"metadata": {},
"outputs": [],
"source": [
"chat = ErnieBotChat(ernie_client_id='YOUR_CLIENT_ID', ernie_client_secret='YOUR_CLIENT_SECRET')"
"chat = ErnieBotChat(\n",
" ernie_client_id=\"YOUR_CLIENT_ID\", ernie_client_secret=\"YOUR_CLIENT_SECRET\"\n",
")"
]
},
{
@@ -57,9 +59,7 @@
}
],
"source": [
"chat([\n",
" HumanMessage(content='hello there, who are you?')\n",
"])"
"chat([HumanMessage(content=\"hello there, who are you?\")])"
]
}
],

View File

@@ -67,15 +67,15 @@
"from langchain.schema import SystemMessage, HumanMessage\n",
"\n",
"messages = [\n",
" SystemMessage(\n",
" content=\"You are a helpful AI that shares everything you know.\"\n",
" ),\n",
" SystemMessage(content=\"You are a helpful AI that shares everything you know.\"),\n",
" HumanMessage(\n",
" content=\"Tell me technical facts about yourself. Are you a transformer model? How many billions of parameters do you have?\"\n",
" ),\n",
"]\n",
"\n",
"chat = ChatEverlyAI(model_name=\"meta-llama/Llama-2-7b-chat-hf\", temperature=0.3, max_tokens=64)\n",
"chat = ChatEverlyAI(\n",
" model_name=\"meta-llama/Llama-2-7b-chat-hf\", temperature=0.3, max_tokens=64\n",
")\n",
"print(chat(messages).content)"
]
},
@@ -121,15 +121,17 @@
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"messages = [\n",
" SystemMessage(\n",
" content=\"You are a humorous AI that delights people.\"\n",
" ),\n",
" HumanMessage(\n",
" content=\"Tell me a joke?\"\n",
" ),\n",
" SystemMessage(content=\"You are a humorous AI that delights people.\"),\n",
" HumanMessage(content=\"Tell me a joke?\"),\n",
"]\n",
"\n",
"chat = ChatEverlyAI(model_name=\"meta-llama/Llama-2-7b-chat-hf\", temperature=0.3, max_tokens=64, streaming=True, callbacks=[StreamingStdOutCallbackHandler()])\n",
"chat = ChatEverlyAI(\n",
" model_name=\"meta-llama/Llama-2-7b-chat-hf\",\n",
" temperature=0.3,\n",
" max_tokens=64,\n",
" streaming=True,\n",
" callbacks=[StreamingStdOutCallbackHandler()],\n",
")\n",
"chat(messages)"
]
},
@@ -177,15 +179,17 @@
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"messages = [\n",
" SystemMessage(\n",
" content=\"You are a humorous AI that delights people.\"\n",
" ),\n",
" HumanMessage(\n",
" content=\"Tell me a joke?\"\n",
" ),\n",
" SystemMessage(content=\"You are a humorous AI that delights people.\"),\n",
" HumanMessage(content=\"Tell me a joke?\"),\n",
"]\n",
"\n",
"chat = ChatEverlyAI(model_name=\"meta-llama/Llama-2-13b-chat-hf-quantized\", temperature=0.3, max_tokens=128, streaming=True, callbacks=[StreamingStdOutCallbackHandler()])\n",
"chat = ChatEverlyAI(\n",
" model_name=\"meta-llama/Llama-2-13b-chat-hf-quantized\",\n",
" temperature=0.3,\n",
" max_tokens=128,\n",
" streaming=True,\n",
" callbacks=[StreamingStdOutCallbackHandler()],\n",
")\n",
"chat(messages)"
]
}

View File

@@ -27,7 +27,7 @@
"source": [
"from langchain.chat_models.fireworks import ChatFireworks\n",
"from langchain.schema import SystemMessage, HumanMessage\n",
"import os\n"
"import os"
]
},
{
@@ -56,7 +56,7 @@
" os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Fireworks API Key:\")\n",
"\n",
"# Initialize a Fireworks chat model\n",
"chat = ChatFireworks(model=\"accounts/fireworks/models/llama-v2-13b-chat\")\n"
"chat = ChatFireworks(model=\"accounts/fireworks/models/llama-v2-13b-chat\")"
]
},
{
@@ -91,7 +91,7 @@
"system_message = SystemMessage(content=\"You are to chat with the user.\")\n",
"human_message = HumanMessage(content=\"Who are you?\")\n",
"\n",
"chat([system_message, human_message])\n"
"chat([system_message, human_message])"
]
},
{
@@ -113,10 +113,13 @@
],
"source": [
"# Setting additional parameters: temperature, max_tokens, top_p\n",
"chat = ChatFireworks(model=\"accounts/fireworks/models/llama-v2-13b-chat\", model_kwargs={\"temperature\":1, \"max_tokens\": 20, \"top_p\": 1})\n",
"chat = ChatFireworks(\n",
" model=\"accounts/fireworks/models/llama-v2-13b-chat\",\n",
" model_kwargs={\"temperature\": 1, \"max_tokens\": 20, \"top_p\": 1},\n",
")\n",
"system_message = SystemMessage(content=\"You are to chat with the user.\")\n",
"human_message = HumanMessage(content=\"How's the weather today?\")\n",
"chat([system_message, human_message])\n"
"chat([system_message, human_message])"
]
},
{
@@ -147,12 +150,17 @@
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"\n",
"llm = ChatFireworks(model=\"accounts/fireworks/models/llama-v2-13b-chat\", model_kwargs={\"temperature\":0, \"max_tokens\":64, \"top_p\":1.0})\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"You are a helpful chatbot that speaks like a pirate.\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{input}\")\n",
"])\n"
"llm = ChatFireworks(\n",
" model=\"accounts/fireworks/models/llama-v2-13b-chat\",\n",
" model_kwargs={\"temperature\": 0, \"max_tokens\": 64, \"top_p\": 1.0},\n",
")\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a helpful chatbot that speaks like a pirate.\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")"
]
},
{
@@ -182,7 +190,7 @@
],
"source": [
"memory = ConversationBufferMemory(return_messages=True)\n",
"memory.load_memory_variables({})\n"
"memory.load_memory_variables({})"
]
},
{
@@ -200,9 +208,13 @@
"metadata": {},
"outputs": [],
"source": [
"chain = RunnablePassthrough.assign(\n",
" history=memory.load_memory_variables | (lambda x: x[\"history\"])\n",
") | prompt | llm.bind(stop=[\"\\n\\n\"])\n"
"chain = (\n",
" RunnablePassthrough.assign(\n",
" history=memory.load_memory_variables | (lambda x: x[\"history\"])\n",
" )\n",
" | prompt\n",
" | llm.bind(stop=[\"\\n\\n\"])\n",
")"
]
},
{
@@ -233,7 +245,7 @@
"source": [
"inputs = {\"input\": \"hi im bob\"}\n",
"response = chain.invoke(inputs)\n",
"response\n"
"response"
]
},
{
@@ -264,7 +276,7 @@
],
"source": [
"memory.save_context(inputs, {\"output\": response.content})\n",
"memory.load_memory_variables({})\n"
"memory.load_memory_variables({})"
]
},
{
@@ -294,7 +306,7 @@
],
"source": [
"inputs = {\"input\": \"whats my name\"}\n",
"chain.invoke(inputs)\n"
"chain.invoke(inputs)"
]
}
],

View File

@@ -0,0 +1,112 @@
{
"cells": [
{
"cell_type": "markdown",
"source": [
"# GigaChat\n",
"This notebook shows how to use LangChain with [GigaChat](https://developers.sber.ru/portal/products/gigachat).\n",
"To use you need to install ```gigachat``` python package."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# !pip install gigachat"
]
},
{
"cell_type": "markdown",
"source": [
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/api/integration)\n",
"## Example"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [],
"source": [
"from langchain.chat_models import GigaChat\n",
"\n",
"chat = GigaChat(verify_ssl_certs=False)"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 31,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"What do you get when you cross a goat and a skunk? A smelly goat!\n"
]
}
],
"source": [
"from langchain.schema import SystemMessage, HumanMessage\n",
"\n",
"messages = [\n",
" SystemMessage(\n",
" content=\"You are a helpful AI that shares everything you know. Talk in English.\"\n",
" ),\n",
" HumanMessage(content=\"Tell me a joke\"),\n",
"]\n",
"\n",
"print(chat(messages).content)"
],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -5,7 +5,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# GCP Vertex AI \n",
"# Google Cloud Vertex AI \n",
"\n",
"Note: This is separate from the Google PaLM integration. Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there. \n",
"\n",
@@ -61,9 +61,7 @@
"source": [
"system = \"You are a helpful assistant who translate English to French\"\n",
"human = \"Translate this sentence from English to French. I love programming.\"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", system), (\"human\", human)]\n",
")\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"messages = prompt.format_messages()"
]
},
@@ -100,11 +98,11 @@
"metadata": {},
"outputs": [],
"source": [
"system = \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
"system = (\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
")\n",
"human = \"{text}\"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", system), (\"human\", human)]\n",
")"
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])"
]
},
{
@@ -126,7 +124,11 @@
"source": [
"chain = prompt | chat\n",
"chain.invoke(\n",
" {\"input_language\": \"English\", \"output_language\": \"Japanese\", \"text\": \"I love programming\"}\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"Japanese\",\n",
" \"text\": \"I love programming\",\n",
" }\n",
")"
]
},
@@ -158,9 +160,7 @@
"outputs": [],
"source": [
"chat = ChatVertexAI(\n",
" model_name=\"codechat-bison\",\n",
" max_output_tokens=1000,\n",
" temperature=0.5\n",
" model_name=\"codechat-bison\", max_output_tokens=1000, temperature=0.5\n",
")"
]
},
@@ -208,6 +208,7 @@
"outputs": [],
"source": [
"import asyncio\n",
"\n",
"# import nest_asyncio\n",
"# nest_asyncio.apply()"
]
@@ -257,7 +258,15 @@
}
],
"source": [
"asyncio.run(chain.ainvoke({\"input_language\": \"English\", \"output_language\": \"Sanskrit\", \"text\": \"I love programming\"}))"
"asyncio.run(\n",
" chain.ainvoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"Sanskrit\",\n",
" \"text\": \"I love programming\",\n",
" }\n",
" )\n",
")"
]
},
{
@@ -306,7 +315,9 @@
}
],
"source": [
"prompt = ChatPromptTemplate.from_messages([(\"human\", \"List out the 15 most populous countries in the world\")])\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"human\", \"List out the 15 most populous countries in the world\")]\n",
")\n",
"messages = prompt.format_messages()\n",
"for chunk in chat.stream(messages):\n",
" sys.stdout.write(chunk.content)\n",

View File

@@ -36,9 +36,9 @@
"outputs": [],
"source": [
"chat = ChatHunyuan(\n",
" hunyuan_app_id='YOUR_APP_ID',\n",
" hunyuan_secret_id='YOUR_SECRET_ID',\n",
" hunyuan_secret_key='YOUR_SECRET_KEY',\n",
" hunyuan_app_id=\"YOUR_APP_ID\",\n",
" hunyuan_secret_id=\"YOUR_SECRET_ID\",\n",
" hunyuan_secret_key=\"YOUR_SECRET_KEY\",\n",
")"
]
},
@@ -62,9 +62,13 @@
}
],
"source": [
"chat([\n",
" HumanMessage(content='You are a helpful assistant that translates English to French.Translate this sentence from English to French. I love programming.')\n",
"])"
"chat(\n",
" [\n",
" HumanMessage(\n",
" content=\"You are a helpful assistant that translates English to French.Translate this sentence from English to French. I love programming.\"\n",
" )\n",
" ]\n",
")"
]
},
{
@@ -82,9 +86,9 @@
"outputs": [],
"source": [
"chat = ChatHunyuan(\n",
" hunyuan_app_id='YOUR_APP_ID',\n",
" hunyuan_secret_id='YOUR_SECRET_ID',\n",
" hunyuan_secret_key='YOUR_SECRET_KEY',\n",
" hunyuan_app_id=\"YOUR_APP_ID\",\n",
" hunyuan_secret_id=\"YOUR_SECRET_ID\",\n",
" hunyuan_secret_key=\"YOUR_SECRET_KEY\",\n",
" streaming=True,\n",
")"
],
@@ -110,9 +114,13 @@
}
],
"source": [
"chat([\n",
" HumanMessage(content='You are a helpful assistant that translates English to French.Translate this sentence from English to French. I love programming.')\n",
"])"
"chat(\n",
" [\n",
" HumanMessage(\n",
" content=\"You are a helpful assistant that translates English to French.Translate this sentence from English to French. I love programming.\"\n",
" )\n",
" ]\n",
")"
],
"metadata": {
"collapsed": false,

View File

@@ -96,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"chat = ChatKonko(max_tokens=400, model = 'meta-llama/Llama-2-13b-chat-hf')"
"chat = ChatKonko(max_tokens=400, model=\"meta-llama/Llama-2-13b-chat-hf\")"
]
},
{
@@ -117,12 +117,8 @@
],
"source": [
"messages = [\n",
" SystemMessage(\n",
" content=\"You are a helpful assistant.\"\n",
" ),\n",
" HumanMessage(\n",
" content=\"Explain Big Bang Theory briefly\"\n",
" ),\n",
" SystemMessage(content=\"You are a helpful assistant.\"),\n",
" HumanMessage(content=\"Explain Big Bang Theory briefly\"),\n",
"]\n",
"chat(messages)"
]

View File

@@ -28,7 +28,7 @@
"from llamaapi import LlamaAPI\n",
"\n",
"# Replace 'Your_API_Token' with your actual API token\n",
"llama = LlamaAPI('Your_API_Token')"
"llama = LlamaAPI(\"Your_API_Token\")"
]
},
{
@@ -71,9 +71,15 @@
"\n",
"schema = {\n",
" \"properties\": {\n",
" \"sentiment\": {\"type\": \"string\", 'description': 'the sentiment encountered in the passage'},\n",
" \"aggressiveness\": {\"type\": \"integer\", 'description': 'a 0-10 score of how aggressive the passage is'},\n",
" \"language\": {\"type\": \"string\", 'description': 'the language of the passage'},\n",
" \"sentiment\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"the sentiment encountered in the passage\",\n",
" },\n",
" \"aggressiveness\": {\n",
" \"type\": \"integer\",\n",
" \"description\": \"a 0-10 score of how aggressive the passage is\",\n",
" },\n",
" \"language\": {\"type\": \"string\", \"description\": \"the language of the passage\"},\n",
" }\n",
"}\n",
"\n",

View File

@@ -61,9 +61,12 @@
"source": [
"from langchain.chat_models import ChatOllama\n",
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler \n",
"chat_model = ChatOllama(model=\"llama2:7b-chat\", \n",
" callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]))"
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"chat_model = ChatOllama(\n",
" model=\"llama2:7b-chat\",\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
")"
]
},
{
@@ -112,9 +115,7 @@
"source": [
"from langchain.schema import HumanMessage\n",
"\n",
"messages = [\n",
" HumanMessage(content=\"Tell me about the history of AI\")\n",
"]\n",
"messages = [HumanMessage(content=\"Tell me about the history of AI\")]\n",
"chat_model(messages)"
]
},
@@ -151,10 +152,12 @@
"outputs": [],
"source": [
"from langchain.document_loaders import WebBaseLoader\n",
"\n",
"loader = WebBaseLoader(\"https://lilianweng.github.io/posts/2023-06-23-agent/\")\n",
"data = loader.load()\n",
"\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)"
]
@@ -224,9 +227,12 @@
"from langchain.chat_models import ChatOllama\n",
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"chat_model = ChatOllama(model=\"llama2:13b\",\n",
" verbose=True,\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))"
"\n",
"chat_model = ChatOllama(\n",
" model=\"llama2:13b\",\n",
" verbose=True,\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
")"
]
},
{
@@ -237,6 +243,7 @@
"source": [
"# QA chain\n",
"from langchain.chains import RetrievalQA\n",
"\n",
"qa_chain = RetrievalQA.from_chain_type(\n",
" chat_model,\n",
" retriever=vectorstore.as_retriever(),\n",
@@ -296,15 +303,19 @@
"from langchain.schema import LLMResult\n",
"from langchain.callbacks.base import BaseCallbackHandler\n",
"\n",
"\n",
"class GenerationStatisticsCallback(BaseCallbackHandler):\n",
" def on_llm_end(self, response: LLMResult, **kwargs) -> None:\n",
" print(response.generations[0][0].generation_info)\n",
" \n",
"callback_manager = CallbackManager([StreamingStdOutCallbackHandler(), GenerationStatisticsCallback()])\n",
"\n",
"chat_model = ChatOllama(model=\"llama2:13b-chat\",\n",
" verbose=True,\n",
" callback_manager=callback_manager)\n",
"\n",
"callback_manager = CallbackManager(\n",
" [StreamingStdOutCallbackHandler(), GenerationStatisticsCallback()]\n",
")\n",
"\n",
"chat_model = ChatOllama(\n",
" model=\"llama2:13b-chat\", verbose=True, callback_manager=callback_manager\n",
")\n",
"\n",
"qa_chain = RetrievalQA.from_chain_type(\n",
" chat_model,\n",
@@ -340,7 +351,7 @@
}
],
"source": [
"98 / (3229641000/1000/1000/1000)"
"98 / (3229641000 / 1000 / 1000 / 1000)"
]
}
],

View File

@@ -172,7 +172,9 @@
}
],
"source": [
"fine_tuned_model = ChatOpenAI(temperature=0, model_name=\"ft:gpt-3.5-turbo-0613:langchain::7qTVM5AR\")\n",
"fine_tuned_model = ChatOpenAI(\n",
" temperature=0, model_name=\"ft:gpt-3.5-turbo-0613:langchain::7qTVM5AR\"\n",
")\n",
"\n",
"fine_tuned_model(messages)"
]

View File

@@ -32,11 +32,12 @@
"import os\n",
"from langchain.chat_models.base import HumanMessage\n",
"from langchain.chat_models import PaiEasChatEndpoint\n",
"\n",
"os.environ[\"EAS_SERVICE_URL\"] = \"Your_EAS_Service_URL\"\n",
"os.environ[\"EAS_SERVICE_TOKEN\"] = \"Your_EAS_Service_Token\"\n",
"chat = PaiEasChatEndpoint(\n",
" eas_service_url=os.environ[\"EAS_SERVICE_URL\"], \n",
" eas_service_token=os.environ[\"EAS_SERVICE_TOKEN\"]\n",
" eas_service_url=os.environ[\"EAS_SERVICE_URL\"],\n",
" eas_service_token=os.environ[\"EAS_SERVICE_TOKEN\"],\n",
")"
]
},
@@ -89,7 +90,6 @@
"metadata": {},
"outputs": [],
"source": [
"\n",
"outputs = chat.stream([HumanMessage(content=\"hi\")], streaming=True)\n",
"for output in outputs:\n",
" print(\"stream output:\", output)"

View File

@@ -120,6 +120,7 @@
],
"source": [
"from langchain.schema import AIMessage, HumanMessage, SystemMessage\n",
"\n",
"messages = [\n",
" SystemMessage(\n",
" content=\"You are a helpful assistant that translates English to French.\"\n",

View File

@@ -77,8 +77,10 @@
"source": [
"answer = chat_model(\n",
" [\n",
" SystemMessage(content=\"You are a helpful assistant that translates English to French.\"),\n",
" HumanMessage(content=\"I love programming.\")\n",
" SystemMessage(\n",
" content=\"You are a helpful assistant that translates English to French.\"\n",
" ),\n",
" HumanMessage(content=\"I love programming.\"),\n",
" ]\n",
")\n",
"answer"

View File

@@ -88,7 +88,6 @@
"\n",
"\n",
"class DiscordChatLoader(chat_loaders.BaseChatLoader):\n",
" \n",
" def __init__(self, path: str):\n",
" \"\"\"\n",
" Initialize the Discord chat loader.\n",
@@ -175,7 +174,7 @@
" Yields:\n",
" A `ChatSession` object containing the loaded chat messages.\n",
" \"\"\"\n",
" yield self._load_single_chat_session_from_txt(self.path)\n"
" yield self._load_single_chat_session_from_txt(self.path)"
]
},
{
@@ -228,7 +227,9 @@
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"talkingtower\" to AI messages\n",
"messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"talkingtower\"))"
"messages: List[ChatSession] = list(\n",
" map_ai_messages(merged_messages, sender=\"talkingtower\")\n",
")"
]
},
{
@@ -288,7 +289,7 @@
"\n",
"llm = ChatOpenAI()\n",
"\n",
"for chunk in llm.stream(messages[0]['messages']):\n",
"for chunk in llm.stream(messages[0][\"messages\"]):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},

View File

@@ -50,28 +50,32 @@
"import requests\n",
"import zipfile\n",
"\n",
"def download_and_unzip(url: str, output_path: str = 'file.zip') -> None:\n",
" file_id = url.split('/')[-2]\n",
" download_url = f'https://drive.google.com/uc?export=download&id={file_id}'\n",
"\n",
"def download_and_unzip(url: str, output_path: str = \"file.zip\") -> None:\n",
" file_id = url.split(\"/\")[-2]\n",
" download_url = f\"https://drive.google.com/uc?export=download&id={file_id}\"\n",
"\n",
" response = requests.get(download_url)\n",
" if response.status_code != 200:\n",
" print('Failed to download the file.')\n",
" print(\"Failed to download the file.\")\n",
" return\n",
"\n",
" with open(output_path, 'wb') as file:\n",
" with open(output_path, \"wb\") as file:\n",
" file.write(response.content)\n",
" print(f'File {output_path} downloaded.')\n",
" print(f\"File {output_path} downloaded.\")\n",
"\n",
" with zipfile.ZipFile(output_path, 'r') as zip_ref:\n",
" with zipfile.ZipFile(output_path, \"r\") as zip_ref:\n",
" zip_ref.extractall()\n",
" print(f'File {output_path} has been unzipped.')\n",
" print(f\"File {output_path} has been unzipped.\")\n",
"\n",
"\n",
"# URL of the file to download\n",
"url = 'https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing'\n",
"url = (\n",
" \"https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing\"\n",
")\n",
"\n",
"# Download and unzip\n",
"download_and_unzip(url)\n"
"download_and_unzip(url)"
]
},
{
@@ -235,7 +239,7 @@
"source": [
"# Now all of Harry Potter's messages will take the AI message class\n",
"# which maps to the 'assistant' role in OpenAI's training format\n",
"alternating_sessions[0]['messages'][:3]"
"alternating_sessions[0][\"messages\"][:3]"
]
},
{
@@ -338,11 +342,9 @@
"overlap = 2\n",
"\n",
"training_examples = [\n",
" conversation_messages[i: i + chunk_size] \n",
" conversation_messages[i : i + chunk_size]\n",
" for conversation_messages in training_data\n",
" for i in range(\n",
" 0, len(conversation_messages) - chunk_size + 1, \n",
" chunk_size - overlap)\n",
" for i in range(0, len(conversation_messages) - chunk_size + 1, chunk_size - overlap)\n",
"]\n",
"\n",
"len(training_examples)"
@@ -393,13 +395,10 @@
"# We will write the jsonl file in memory\n",
"my_file = BytesIO()\n",
"for m in training_examples:\n",
" my_file.write((json.dumps({\"messages\": m}) + \"\\n\").encode('utf-8'))\n",
" my_file.write((json.dumps({\"messages\": m}) + \"\\n\").encode(\"utf-8\"))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(\n",
" file=my_file,\n",
" purpose='fine-tune'\n",
")\n",
"training_file = openai.File.create(file=my_file, purpose=\"fine-tune\")\n",
"\n",
"# OpenAI audits each training file for compliance reasons.\n",
"# This make take a few minutes\n",

View File

@@ -47,26 +47,28 @@
"import logging\n",
"import requests\n",
"\n",
"SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']\n",
"SCOPES = [\"https://www.googleapis.com/auth/gmail.readonly\"]\n",
"\n",
"\n",
"creds = None\n",
"# The file token.json stores the user's access and refresh tokens, and is\n",
"# created automatically when the authorization flow completes for the first\n",
"# time.\n",
"if os.path.exists('email_token.json'):\n",
" creds = Credentials.from_authorized_user_file('email_token.json', SCOPES)\n",
"if os.path.exists(\"email_token.json\"):\n",
" creds = Credentials.from_authorized_user_file(\"email_token.json\", SCOPES)\n",
"# If there are no (valid) credentials available, let the user log in.\n",
"if not creds or not creds.valid:\n",
" if creds and creds.expired and creds.refresh_token:\n",
" creds.refresh(Request())\n",
" else:\n",
" flow = InstalledAppFlow.from_client_secrets_file( \n",
" flow = InstalledAppFlow.from_client_secrets_file(\n",
" # your creds file here. Please create json file as here https://cloud.google.com/docs/authentication/getting-started\n",
" 'creds.json', SCOPES)\n",
" \"creds.json\",\n",
" SCOPES,\n",
" )\n",
" creds = flow.run_local_server(port=0)\n",
" # Save the credentials for the next run\n",
" with open('email_token.json', 'w') as token:\n",
" with open(\"email_token.json\", \"w\") as token:\n",
" token.write(creds.to_json())"
]
},
@@ -143,7 +145,9 @@
"source": [
"# This makes messages sent by hchase@langchain.com the AI Messages\n",
"# This means you will train an LLM to predict as if it's responding as hchase\n",
"training_data = list(map_ai_messages(data, sender=\"Harrison Chase <hchase@langchain.com>\"))"
"training_data = list(\n",
" map_ai_messages(data, sender=\"Harrison Chase <hchase@langchain.com>\")\n",
")"
]
},
{

Some files were not shown because too many files have changed in this diff Show More