Compare commits

...

26 Commits

Author SHA1 Message Date
Erick Friis
7bc4a5964c wip 2023-12-15 17:46:48 -08:00
William FH
65091ebe50 Update propositional-retrieval template (#14766)
More descriptive name. Add parser in ingest. Update image link
2023-12-15 07:57:45 -08:00
William FH
4855964332 Fix OAI Tool Message (#14746)
See format here:
https://platform.openai.com/docs/guides/function-calling/parallel-function-calling


It expects a "name" argument, which we aren't providing by default.


![image](https://github.com/langchain-ai/langchain/assets/13333726/7cd82978-337c-40a1-b099-3bb25cd57eb4)


Alternative is to add the 'name' field directly to the message if people
prefer.
2023-12-15 06:45:09 -08:00
William FH
e3132a7efc [Evals] End project (#14324)
Also does some cleanup.

Now that we support updating/ending projects, do this automatically.
Then you can edit the name of the project in the app.
2023-12-15 00:05:34 -08:00
William FH
93c7eb4e6b [Tracing] String Stacktrace (#14131)
Add full stacktrace
2023-12-14 22:15:07 -08:00
Leonid Kuligin
7f42811e14 google-genai[patch], community[patch]: Added support for new Google GenerativeAI models (#14530)
Replace this entire comment with:
  - **Description:** added support for new Google GenerativeAI models
  - **Twitter handle:** lkuligin

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-14 20:56:46 -08:00
William C Grisaitis
6bbf0797f7 docs: Remove trailing "`" in pip install command (#14730)
hi! just a simple typo fix in the local LLM python docs

- **Description:** removing a trailing "\`" character in a `!pip install
...` command
  - **Issue:** n/a
  - **Dependencies:** n/a
  - **Tag maintainer:** n/a
  - **Twitter handle:** n/a
2023-12-14 17:04:19 -08:00
Bagatur
c7b5dbe8ec infra: fix pre-release integration test and add unit test (#14742) 2023-12-14 16:57:41 -08:00
Erick Friis
480821da59 infra: docs build install community editable (#14739) 2023-12-14 16:13:09 -08:00
Bagatur
b802dd96f2 core[patch]: Release 0.1.1 (#14738) 2023-12-14 16:02:19 -08:00
William FH
9d4100f915 Revert "[Hub|tracing] Tag hub prompts" (#14735)
Reverts langchain-ai/langchain#14720
2023-12-14 14:39:58 -08:00
Bagatur
b9975fac89 infra: add action checkout to pre-release-checks (#14732) 2023-12-14 13:28:13 -08:00
Erick Friis
9fb26a2a71 community[patch]: fix pgvector sqlalchemy (#14726)
Fixes #14699
2023-12-14 13:27:30 -08:00
Bagatur
1cec0afc62 google-genai[patch]: add google-genai integration deps and extras (#14731) 2023-12-14 13:20:10 -08:00
Bagatur
ba897fc04c infra: Pre-release integration tests for partner pkgs (#14687) 2023-12-14 13:11:19 -08:00
Bagatur
74211aa02e infra: add integration test workflow (#14688) 2023-12-14 12:46:45 -08:00
Leonid Kuligin
c5c64aa863 docs: updated branding for Google AI (#14728)
Replace this entire comment with:
  - **Description:** a small fix in branding
2023-12-14 12:31:19 -08:00
Erick Friis
a86065c536 docs[patch]: fix databricks metadata (#14727) 2023-12-14 11:47:34 -08:00
Bob Lin
ff206ae30d Update google_generative_ai.ipynb (#14704) 2023-12-14 10:58:25 -08:00
William FH
852b9ca494 [Hub|tracing] Tag hub prompts (#14720)
If you're using the hub, you'll likely be interested in tracking the
commit/object when tracing. This PR adds it to the config
2023-12-14 10:04:18 -08:00
William FH
79ae6c2a9e Add dense proposals (#14719)
Indexing strategy based on decomposing candidate propositions while
indexing.
2023-12-14 09:21:45 -08:00
William FH
bc3ec78a38 [Workflows] Add nvidia-aiplay to _release.yml (#14722)
As the title says.
In the future will want to have a script to automate this
2023-12-14 09:16:40 -08:00
William FH
451c5d1d8c [Integration] NVIDIA AI Playground (#14648)
Description: Added NVIDIA AI Playground Initial support for a selection of models (Llama models, Mistral, etc.)

Dependencies: These models do depend on the AI Playground services in NVIDIA NGC. API keys with a significant amount of trial compute are available (10K queries as of the time of writing).

H/t to @VKudlay
2023-12-13 19:46:37 -08:00
William FH
1e21a3f7ed [Partner] Gemini Embeddings (#14690)
Add support for Gemini embeddings in the langchain-google-genai package
2023-12-13 17:05:31 -08:00
Lance Martin
3449fce273 Gemini multi-modal RAG template (#14678)
![Screenshot 2023-12-13 at 12 53 39
PM](https://github.com/langchain-ai/langchain/assets/122662504/a6bc3b0b-f177-4367-b9c8-b8862c847026)
2023-12-13 16:43:47 -08:00
Lance Martin
7234335a9a Template for multi-modal w/ multi-vector (#14618)
Results - 

![image](https://github.com/langchain-ai/langchain/assets/122662504/16bac14d-74d7-47b1-aed0-72ae25a81f39)
2023-12-13 16:43:14 -08:00
102 changed files with 17382 additions and 760 deletions

57
.github/workflows/_integration_test.yml vendored Normal file
View File

@@ -0,0 +1,57 @@
name: Integration tests
on:
workflow_dispatch:
inputs:
working-directory:
required: true
type: string
env:
POETRY_VERSION: "1.6.1"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.11"
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
- name: Install dependencies
shell: bash
run: poetry install --with test,test_integration
- name: Run integration tests
shell: bash
env:
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
run: |
make integration_tests
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -19,6 +19,7 @@ on:
- libs/experimental
- libs/community
- libs/partners/google-genai
- libs/partners/nvidia-aiplay
env:
PYTHON_VERSION: "3.10"
@@ -88,6 +89,8 @@ jobs:
- test-pypi-publish
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
# We explicitly *don't* set up caching here. This ensures our tests are
# maximally sensitive to catching breakage.
#
@@ -100,12 +103,17 @@ jobs:
# - Tests pass, because the dependency is present even though it wasn't specified.
# - The package is published, and it breaks on the missing dependency when
# used in the real world.
- uses: actions/setup-python@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
- name: Test published package
- name: Import published package
shell: bash
working-directory: ${{ inputs.working-directory }}
env:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
@@ -117,9 +125,8 @@ jobs:
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
# package because VERSION will not have been uploaded to regular PyPI yet.
#
# TODO: add more in-depth pre-publish tests after testing that importing works
run: |
pip install \
poetry run pip install \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION"
@@ -127,7 +134,35 @@ jobs:
# since that's how Python imports packages with dashes in the name.
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g)"
python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
poetry run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
- name: Import test dependencies
run: poetry install --with test,test_integration
working-directory: ${{ inputs.working-directory }}
# Overwrite the local version of the package with the test PyPI version.
- name: Import published package (again)
working-directory: ${{ inputs.working-directory }}
shell: bash
env:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
run: |
poetry run pip install \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION"
- name: Run unit tests
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: Run integration tests
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
env:
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
publish:
needs:

View File

@@ -277,7 +277,7 @@
"source": [
"%env CMAKE_ARGS=\"-DLLAMA_METAL=on\"\n",
"%env FORCE_CMAKE=1\n",
"%pip install -U llama-cpp-python --no-cache-dirclear`"
"%pip install -U llama-cpp-python --no-cache-dirclear"
]
},
{

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"---\n",
"sidebar_label: Google Generative AI\n",
"sidebar_label: Google AI\n",
"---"
]
},
@@ -15,9 +15,9 @@
"id": "bb9e152f-a1dc-45df-a50c-60a8d7ecdf69",
"metadata": {},
"source": [
"# ChatGoogleGenerativeAI\n",
"# Google AI chat models\n",
"\n",
"Access Google's `gemini` and `gemini-vision` models, as well as other generative models through `ChatGoogleGenerativeAI` class in the [langchain-google-genai](https://pypi.org/project/langchain-google-genai/) integration package."
"Access Google AI's `gemini` and `gemini-vision` models, as well as other generative models through `ChatGoogleGenerativeAI` class in the [langchain-google-genai](https://pypi.org/project/langchain-google-genai/) integration package."
]
},
{
@@ -41,7 +41,7 @@
"import os\n",
"\n",
"if \"GOOGLE_API_KEY\" not in os.environ:\n",
" os.environ[\"GOOGLE_API_KEY\"] = getpass(\"Provide your Google API Key\")"
" os.environ[\"GOOGLE_API_KEY\"] = getpass.getpass(\"Provide your Google API Key\")"
]
},
{
@@ -285,7 +285,7 @@
"source": [
"## Gemini Prompting FAQs\n",
"\n",
"As of the time this doc was written (2024/12/12), Gemini has some restrictions on the types and structure of prompts it accepts. Specifically:\n",
"As of the time this doc was written (2023/12/12), Gemini has some restrictions on the types and structure of prompts it accepts. Specifically:\n",
"\n",
"1. When providing multimodal (image) inputs, you are restricted to at most 1 message of \"human\" (user) type. You cannot pass multiple messages (though the single human message may have multiple content entries)\n",
"2. System messages are not accepted.\n",
@@ -295,6 +295,7 @@
},
{
"cell_type": "markdown",
"id": "92b5aca5",
"metadata": {},
"source": []
}
@@ -315,7 +316,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.11.5"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -3,15 +3,7 @@
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "5147e458-3b83-449e-9c2f-e7e1972e43fc",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"# Databricks\n",
"\n",
@@ -145,15 +137,7 @@
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "94f6540e-40cd-4d9b-95d3-33d36f061dcc",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"## Wrapping a serving endpoint: Custom model\n",
"\n",
@@ -173,18 +157,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "7496dc7a-8a1a-4ce6-9648-4f69ed25275b",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [
{
"data": {
@@ -211,18 +184,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "0c86d952-4236-4a5e-bdac-cf4e3ccf3a16",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [
{
"data": {
@@ -242,18 +204,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "5f2507a2-addd-431d-9da5-dc2ae33783f6",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [
{
"data": {
@@ -288,18 +239,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "9b54f8ce-ffe5-4c47-a3f0-b4ebde524a6a",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [
{
"data": {
@@ -323,18 +263,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "50f172f5-ea1f-4ceb-8cf1-20289848de7b",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [
{
"data": {
@@ -370,13 +299,6 @@
"attachments": {},
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "8ea49319-a041-494d-afcd-87bcf00d5efb",
"showTitle": false,
"title": ""
}
},
"source": [
"## Wrapping a cluster driver proxy app\n",
@@ -448,18 +370,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "e3330a01-e738-4170-a176-9954aff56442",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [
{
"data": {
@@ -483,18 +394,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "39c121cf-0e44-4e31-91db-37fcac459677",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [
{
"data": {
@@ -519,18 +419,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "3d3de599-82fd-45e4-8d8b-bacfc49dc9ce",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [
{
"data": {
@@ -554,18 +443,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "853fae8e-8df4-41e6-9d45-7769f883fe80",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [
{
"data": {
@@ -607,15 +485,6 @@
}
],
"metadata": {
"application/vnd.databricks.v1+notebook": {
"dashboards": [],
"language": "python",
"notebookMetadata": {
"pythonIndentUnit": 2
},
"notebookName": "databricks",
"widgets": {}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",

View File

@@ -0,0 +1,287 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "7aZWXpbf0Eph",
"metadata": {
"id": "7aZWXpbf0Eph"
},
"source": [
"# Google AI\n"
]
},
{
"cell_type": "markdown",
"id": "bead5ede-d9cc-44b9-b062-99c90a10cf40",
"metadata": {},
"source": [
"A guide on using [Google Generative AI](https://developers.generativeai.google/) models with Langchain. Note: It's separate from Google Cloud Vertex AI [integration](https://python.langchain.com/docs/integrations/llms/google_vertex_ai_palm)."
]
},
{
"cell_type": "markdown",
"id": "H4AjsqTswBCE",
"metadata": {
"id": "H4AjsqTswBCE"
},
"source": [
"## Setting up\n"
]
},
{
"cell_type": "markdown",
"id": "EFHNUieMwJrl",
"metadata": {
"id": "EFHNUieMwJrl"
},
"source": [
"To use Google Generative AI you must install the `langchain-google-genai` Python package and generate an API key. [Read more details](https://developers.generativeai.google/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8Qzm6SqKwgak",
"metadata": {},
"outputs": [],
"source": [
"# !pip install langchain-google-genai"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ONb7ZtOwjbo",
"metadata": {},
"outputs": [],
"source": [
"from langchain_google_genai import GoogleGenerativeAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "X3pjCW0i22gm",
"metadata": {},
"outputs": [],
"source": [
"from getpass import getpass\n",
"\n",
"api_key = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "GT50LgFP0j-w",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"**Pros of Python:**\n",
"\n",
"* **Easy to learn:** Python is a very easy-to-learn programming language, even for beginners. Its syntax is simple and straightforward, and there are a lot of resources available to help you get started.\n",
"* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, and machine learning. It's also a good choice for beginners because it can be used for a variety of projects, so you can learn the basics and then move on to more complex tasks.\n",
"* **High-level:** Python is a high-level programming language, which means that it's closer to human language than other programming languages. This makes it easier to read and understand, which can be a big advantage for beginners.\n",
"* **Open-source:** Python is an open-source programming language, which means that it's free to use and there are a lot of resources available to help you learn it.\n",
"* **Community:** Python has a large and active community of developers, which means that there are a lot of people who can help you if you get stuck.\n",
"\n",
"**Cons of Python:**\n",
"\n",
"* **Slow:** Python is a relatively slow programming language compared to some other languages, such as C++. This can be a disadvantage if you're working on computationally intensive tasks.\n",
"* **Not as performant:** Python is not as performant as some other programming languages, such as C++ or Java. This can be a disadvantage if you're working on projects that require high performance.\n",
"* **Dynamic typing:** Python is a dynamically typed programming language, which means that the type of a variable can change during runtime. This can be a disadvantage if you need to ensure that your code is type-safe.\n",
"* **Unmanaged memory:** Python uses a garbage collection system to manage memory. This can be a disadvantage if you need to have more control over memory management.\n",
"\n",
"Overall, Python is a very good programming language for beginners. It's easy to learn, versatile, and has a large community of developers. However, it's important to be aware of its limitations, such as its slow performance and lack of performance.\n"
]
}
],
"source": [
"llm = GoogleGenerativeAI(model=\"models/text-bison-001\", google_api_key=api_key)\n",
"print(\n",
" llm.invoke(\n",
" \"What are some of the pros and cons of Python as a programming language?\"\n",
" )\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "TSGdxkJtwl8-",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"**Pros:**\n",
"\n",
"* **Simplicity and Readability:** Python is known for its simple and easy-to-read syntax, which makes it accessible to beginners and reduces the chance of errors. It uses indentation to define blocks of code, making the code structure clear and visually appealing.\n",
"\n",
"* **Versatility:** Python is a general-purpose language, meaning it can be used for a wide range of tasks, including web development, data science, machine learning, and desktop applications. This versatility makes it a popular choice for various projects and industries.\n",
"\n",
"* **Large Community:** Python has a vast and active community of developers, which contributes to its growth and popularity. This community provides extensive documentation, tutorials, and open-source libraries, making it easy for Python developers to find support and resources.\n",
"\n",
"* **Extensive Libraries:** Python offers a rich collection of libraries and frameworks for various tasks, such as data analysis (NumPy, Pandas), web development (Django, Flask), machine learning (Scikit-learn, TensorFlow), and many more. These libraries provide pre-built functions and modules, allowing developers to quickly and efficiently solve common problems.\n",
"\n",
"* **Cross-Platform Support:** Python is cross-platform, meaning it can run on various operating systems, including Windows, macOS, and Linux. This allows developers to write code that can be easily shared and used across different platforms.\n",
"\n",
"**Cons:**\n",
"\n",
"* **Speed and Performance:** Python is generally slower than compiled languages like C++ or Java due to its interpreted nature. This can be a disadvantage for performance-intensive tasks, such as real-time systems or heavy numerical computations.\n",
"\n",
"* **Memory Usage:** Python programs tend to consume more memory compared to compiled languages. This is because Python uses a dynamic memory allocation system, which can lead to memory fragmentation and higher memory usage.\n",
"\n",
"* **Lack of Static Typing:** Python is a dynamically typed language, which means that data types are not explicitly defined for variables. This can make it challenging to detect type errors during development, which can lead to unexpected behavior or errors at runtime.\n",
"\n",
"* **GIL (Global Interpreter Lock):** Python uses a global interpreter lock (GIL) to ensure that only one thread can execute Python bytecode at a time. This can limit the scalability and parallelism of Python programs, especially in multi-threaded or multiprocessing scenarios.\n",
"\n",
"* **Package Management:** While Python has a vast ecosystem of libraries and packages, managing dependencies and package versions can be challenging. The Python Package Index (PyPI) is the official repository for Python packages, but it can be difficult to ensure compatibility and avoid conflicts between different versions of packages.\n"
]
}
],
"source": [
"llm = GoogleGenerativeAI(model=\"gemini-pro\", google_api_key=api_key)\n",
"print(\n",
" llm.invoke(\n",
" \"What are some of the pros and cons of Python as a programming language?\"\n",
" )\n",
")"
]
},
{
"cell_type": "markdown",
"id": "OQ_SlL0K1Cw6",
"metadata": {
"id": "OQ_SlL0K1Cw6"
},
"source": [
"## Using in a chain"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "Nwc9P5_ry79W",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "35856bf2-aa5e-436b-977a-9e5725b1a595",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n"
]
}
],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"chain = prompt | llm\n",
"\n",
"question = \"How much is 2+2?\"\n",
"print(chain.invoke({\"question\": question}))"
]
},
{
"cell_type": "markdown",
"id": "ueAin0xQzCqq",
"metadata": {
"id": "ueAin0xQzCqq"
},
"source": [
"## Streaming calls"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "WftL7x0A0hlF",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"In winter's embrace, a silent ballet,\n",
"Snowflakes descend, a celestial display.\n",
"Whispering secrets, they softly fall,\n",
"A blanket of white, covering all.\n",
"\n",
"With gentle grace, they paint the land,\n",
"Transforming the world into a winter wonderland.\n",
"Trees stand adorned in icy splendor,\n",
"A glistening spectacle, a sight to render.\n",
"\n",
"Snowflakes twirl, like dancers on a stage,\n",
"Creating a symphony, a winter montage.\n",
"Their silent whispers, a sweet serenade,\n",
"As they dance and twirl, a snowy cascade.\n",
"\n",
"In the hush of dawn, a frosty morn,\n",
"Snow sparkles bright, like diamonds reborn.\n",
"Each flake unique, in its own design,\n",
"A masterpiece crafted by the divine.\n",
"\n",
"So let us revel in this wintry bliss,\n",
"As snowflakes fall, with a gentle kiss.\n",
"For in their embrace, we find a peace profound,\n",
"A frozen world, with magic all around."
]
}
],
"source": [
"import sys\n",
"\n",
"for chunk in llm.stream(\"Tell me a short poem about snow\"):\n",
" sys.stdout.write(chunk)\n",
" sys.stdout.flush()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aefe6df7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -4,9 +4,9 @@ All functionality related to [Google Cloud Platform](https://cloud.google.com/)
## Chat models
### ChatGoogleGenerativeAI
### Google AI
Access `Gemini` models such as `gemini-pro` and `gemini-pro-vision` through the `ChatGoogleGenerativeAI` class.
Access GoogleAI `Gemini` models such as `gemini-pro` and `gemini-pro-vision` through the `ChatGoogleGenerativeAI` class.
```bash
pip install -U langchain-google-genai

View File

@@ -0,0 +1,39 @@
# NVIDIA AI Playground
> [NVIDIA AI Playground](https://www.nvidia.com/en-us/research/ai-playground/) gives users easy access to hosted endpoints for generative AI models like Llama-2, Mistral, etc. This example demonstrates how to use LangChain to interact with supported AI Playground models.
These models are provided via the `langchain-nvidia-aiplay` package.
## Installation
```bash
pip install -U langchain-nvidia-aiplay
```
## Setup and Authentication
- Create a free account at [NVIDIA GPU Cloud](https://catalog.ngc.nvidia.com/).
- Navigate to `Catalog > AI Foundation Models > (Model with API endpoint)`.
- Select `API` and generate the key `NVIDIA_API_KEY`.
```bash
export NVIDIA_API_KEY=nvapi-XXXXXXXXXXXXXXXXXXXXXXXXXX
```
```python
from langchain_nvidia_aiplay import ChatNVAIPlay
llm = ChatNVAIPlay(model="mixtral_8x7b")
result = llm.invoke("Write a ballad about LangChain.")
print(result.content)
```
## Using NVIDIA AI Playground Models
A selection of NVIDIA AI Playground models are supported directly in LangChain with familiar APIs.
The active models which are supported can be found [in NGC](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/). In addition, a selection of models can be retrieved from `langchain.<llms/chat_models>.nv_aiplay` which pull in default model options based on their use cases.
**The following may be useful examples to help you get started:**
- **[`ChatNVAIPlay` Model](/docs/integrations/chat/nv_aiplay).**
- **[`NVAIPlayEmbedding` Model for RAG Workflows](/docs/integrations/text_embeddings/nv_aiplay).**

View File

@@ -0,0 +1,220 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "afab8b36-10bb-4795-bc98-75ab2d2081bb",
"metadata": {},
"source": [
"# Google Generative AI Embeddings\n",
"\n",
"Connect to Google's generative AI embeddings service using the `GoogleGenerativeAIEmbeddings` class, found in the [langchain-google-genai](https://pypi.org/project/langchain-google-genai/) package."
]
},
{
"cell_type": "markdown",
"id": "63545b38-9d56-4312-8f61-8d4f1e7a3b1b",
"metadata": {},
"source": [
"## Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d2f6a3cd-379f-4dff-a449-d3a9f3196f2a",
"metadata": {},
"outputs": [],
"source": [
"%pip install -U langchain-google-genai"
]
},
{
"cell_type": "markdown",
"id": "25f3f88e-164e-400d-b371-9fa488baba19",
"metadata": {},
"source": [
"## Credentials"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ec89153f-8999-4aab-a21b-0bfba1cc3893",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if \"GOOGLE_API_KEY\" not in os.environ:\n",
" os.environ[\"GOOGLE_API_KEY\"] = getpass(\"Provide your Google API key here\")"
]
},
{
"cell_type": "markdown",
"id": "f2437b22-e364-418a-8c13-490a026cb7b5",
"metadata": {},
"source": [
"## Usage"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eedc551e-a1f3-4fd8-8d65-4e0784c4441b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[0.05636945, 0.0048285457, -0.0762591, -0.023642512, 0.05329321]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_google_genai import GoogleGenerativeAIEmbeddings\n",
"\n",
"embeddings = GoogleGenerativeAIEmbeddings(model=\"models/embedding-001\")\n",
"vector = embeddings.embed_query(\"hello, world!\")\n",
"vector[:5]"
]
},
{
"cell_type": "markdown",
"id": "2b2bed60-e7bd-4e48-83d6-1c87001f98bd",
"metadata": {},
"source": [
"## Batch\n",
"\n",
"You can also embed multiple strings at once for a processing speedup:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6ec53aba-404f-4778-acd9-5d6664e79ed2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(3, 768)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vectors = embeddings.embed_documents(\n",
" [\n",
" \"Today is Monday\",\n",
" \"Today is Tuesday\",\n",
" \"Today is April Fools day\",\n",
" ]\n",
")\n",
"len(vectors), len(vectors[0])"
]
},
{
"cell_type": "markdown",
"id": "1482486f-5617-498a-8a44-1974d3212dda",
"metadata": {},
"source": [
"## Task type\n",
"`GoogleGenerativeAIEmbeddings` optionally support a `task_type`, which currently must be one of:\n",
"\n",
"- task_type_unspecified\n",
"- retrieval_query\n",
"- retrieval_document\n",
"- semantic_similarity\n",
"- classification\n",
"- clustering\n",
"\n",
"By default, we use `retrieval_document` in the `embed_documents` method and `retrieval_query` in the `embed_query` method. If you provide a task type, we will use that for all methods."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "a223bb25-2b1b-418e-a570-2f543083132e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --quiet matplotlib scikit-learn"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "f1f077db-8eb4-49f7-8866-471a8528dcdb",
"metadata": {},
"outputs": [],
"source": [
"query_embeddings = GoogleGenerativeAIEmbeddings(\n",
" model=\"models/embedding-001\", task_type=\"retrieval_query\"\n",
")\n",
"doc_embeddings = GoogleGenerativeAIEmbeddings(\n",
" model=\"models/embedding-001\", task_type=\"retrieval_document\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "79bd4a5e-75ba-413c-befa-86167c938caf",
"metadata": {},
"source": [
"All of these will be embedded with the 'retrieval_query' task set\n",
"```python\n",
"query_vecs = [query_embeddings.embed_query(q) for q in [query, query_2, answer_1]]\n",
"```\n",
"All of these will be embedded with the 'retrieval_document' task set\n",
"```python\n",
"doc_vecs = [doc_embeddings.embed_query(q) for q in [query, query_2, answer_1]]\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "9e1fae5e-0f84-4812-89f5-7d4d71affbc1",
"metadata": {},
"source": [
"In retrieval, relative distance matters. In the image above, you can see the difference in similarity scores between the \"relevant doc\" and \"simil stronger delta between the similar query and relevant doc on the latter case."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@@ -2,15 +2,7 @@
"cells": [
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "5a8c5767-adfe-4b9d-a665-a898756d7a6c",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"# Databricks Vector Search\n",
"\n",
@@ -21,15 +13,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "746cfacd-fb30-48fd-96a5-bbcc0d15ae49",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"Install `databricks-vectorsearch` and related Python packages used in this notebook."
]
@@ -37,15 +21,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "9258a3e7-e050-4390-9d3f-9adff1460dab",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [],
"source": [
"!pip install langchain-core databricks-vectorsearch openai tiktoken"
@@ -53,15 +29,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "f4f09d6d-002d-4cb0-a664-0a83bd2a13da",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"Use `OpenAIEmbeddings` for the embeddings."
]
@@ -69,15 +37,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "f11b902d-a772-45e0-bbd9-526218b717cc",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
@@ -88,15 +48,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "59b568f3-8db2-427e-9a4a-1df6fa7a1739",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"Split documents and get embeddings."
]
@@ -104,15 +56,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "b28e1c7b-eae4-4be8-abbd-8433c7557dc2",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
@@ -130,15 +74,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "e8fcdda1-208a-45c9-816e-ff0d2c8f59d6",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"## Setup Databricks Vector Search client"
]
@@ -146,15 +82,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "9b87fff1-99e5-4d9f-aba3-d21a7ccc498e",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [],
"source": [
"from databricks.vector_search.client import VectorSearchClient\n",
@@ -181,15 +109,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "81090f87-3efd-4c1e-9f58-8d6adba7553d",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"## Create Direct Vector Access Index\n",
"Direct Vector Access Index supports direct read and write of embedding vectors and metadata through a REST API or an SDK. For this index, you manage embedding vectors and index updates yourself."
@@ -198,15 +118,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "9389ec6b-5885-411f-a26e-1a4b03651f5c",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [],
"source": [
"vector_search_endpoint_name = \"vector_search_demo_endpoint\"\n",
@@ -232,15 +144,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "047a14c9-2f06-4f74-883d-815b2c69786c",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import DatabricksVectorSearch\n",
@@ -252,15 +156,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "951bd581-2ced-497f-9c70-4fda902fd3a1",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"## Add docs to the index"
]
@@ -268,15 +164,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "1e85f235-901f-4cf5-845f-5dbf4ce42078",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [],
"source": [
"dvs.add_documents(docs)"
@@ -284,15 +172,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "8bea6f0a-b305-455a-acba-99cc8c9350b5",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"## Similarity search"
]
@@ -300,15 +180,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "25c5a044-a61a-4929-9e65-a0f0462925df",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
@@ -318,15 +190,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "46e3f41b-dac2-4bed-91cb-a3914c25d275",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"source": [
"## Work with Delta Sync Index\n",
"\n",
@@ -336,15 +200,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "0c1f448e-77ca-41ce-887c-15948e866a0e",
"showTitle": false,
"title": ""
}
},
"metadata": {},
"outputs": [],
"source": [
"dvs_delta_sync = DatabricksVectorSearch(\"catalog_name.schema_name.delta_sync_index\")\n",
@@ -353,15 +209,6 @@
}
],
"metadata": {
"application/vnd.databricks.v1+notebook": {
"dashboards": [],
"language": "python",
"notebookMetadata": {
"pythonIndentUnit": 2
},
"notebookName": "databricks_vector_search",
"widgets": {}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",

View File

@@ -0,0 +1,69 @@
# based on outerbounds/nbdoc
from nbdev.export import nbglob
from nbconvert import MarkdownExporter
from nbconvert.preprocessors import Preprocessor
from pathlib import Path
import re
class WriteTitle(Preprocessor):
"""Modify the code-fence with the filename upon %%writefile cell magic."""
pattern = r"(^[\S\s]*%%writefile\s)(\S+)\n"
def preprocess_cell(self, cell, resources, index):
print("here")
m = re.match(self.pattern, cell.source)
if m:
filename = m.group(2)
ext = filename.split(".")[-1]
cell.metadata.magics_language = f'{ext} title="{filename}"'
cell.metadata.script = True
cell.metadata.file_ext = ext
cell.metadata.filename = filename
cell.outputs = []
return cell, resources
def get_exporter():
# c = Config()
# c.MarkdownExporter.preprocessors = [WriteTitle]
exporter = MarkdownExporter(
config={"MarkdownExporter": {"preprocessors": [WriteTitle]}}
)
return exporter
def process_file(fname: Path, force: bool = False) -> None:
fname_rel = fname.relative_to(basedir)
fname_out_ipynb = outdir / fname_rel
fname_out = fname_out_ipynb.with_suffix(".md")
if (
force
or not fname_out.exists()
or fname.stat().st_mtime > fname_out.stat().st_mtime
):
print(f"Converting {fname_rel} to markdown")
exporter = get_exporter()
output, _ = exporter.from_filename(fname)
fname_out.write_text(output)
print(fname_out)
if __name__ == "__main__":
# parallel process
basedir = Path(__file__).parent.parent / "docs"
outdir = Path(__file__).parent.parent.parent.parent / "_dist" / "docs"
files = nbglob(basedir, recursive=True)
fname = files[0]
process_file(fname, True)
# for fname in files:
# process_file(fname)
# print(fname_out)
# for fname in files:
# fname_out = fname.with_suffix('.md')

View File

@@ -1,3 +1,4 @@
-e ../libs/langchain
-e ../libs/community
-e ../libs/core
urllib3==1.26.18

View File

@@ -89,7 +89,14 @@ def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
elif role == "function":
return FunctionMessage(content=_dict["content"], name=_dict["name"])
elif role == "tool":
return ToolMessage(content=_dict["content"], tool_call_id=_dict["tool_call_id"])
additional_kwargs = {}
if "name" in _dict:
additional_kwargs["name"] = _dict["name"]
return ToolMessage(
content=_dict["content"],
tool_call_id=_dict["tool_call_id"],
additional_kwargs=additional_kwargs,
)
else:
return ChatMessage(content=_dict["content"], role=role)

View File

@@ -1,10 +1,12 @@
from __future__ import annotations
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Iterator, List, Optional
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import BaseModel, root_validator
from langchain_core.language_models import LanguageModelInput
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator
from langchain_core.utils import get_from_dict_or_env
from langchain_community.llms import BaseLLM
@@ -13,7 +15,9 @@ from langchain_community.utilities.vertexai import create_retry_decorator
def completion_with_retry(
llm: GooglePalm,
*args: Any,
prompt: LanguageModelInput,
is_gemini: bool = False,
stream: bool = False,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
@@ -23,10 +27,23 @@ def completion_with_retry(
)
@retry_decorator
def _completion_with_retry(*args: Any, **kwargs: Any) -> Any:
return llm.client.generate_text(*args, **kwargs)
def _completion_with_retry(
prompt: LanguageModelInput, is_gemini: bool, stream: bool, **kwargs: Any
) -> Any:
generation_config = kwargs.get("generation_config", {})
if is_gemini:
return llm.client.generate_content(
contents=prompt, stream=stream, generation_config=generation_config
)
return llm.client.generate_text(prompt=prompt, **kwargs)
return _completion_with_retry(*args, **kwargs)
return _completion_with_retry(
prompt=prompt, is_gemini=is_gemini, stream=stream, **kwargs
)
def _is_gemini_model(model_name: str) -> bool:
return "gemini" in model_name
def _strip_erroneous_leading_spaces(text: str) -> str:
@@ -42,11 +59,16 @@ def _strip_erroneous_leading_spaces(text: str) -> str:
return text
@deprecated("0.0.351", alternative="langchain_google_genai.GoogleGenerativeAI")
class GooglePalm(BaseLLM, BaseModel):
"""Google PaLM models."""
"""
DEPRECATED: Use `langchain_google_genai.GoogleGenerativeAI` instead.
Google PaLM models.
"""
client: Any #: :meta private:
google_api_key: Optional[str]
google_api_key: Optional[SecretStr]
model_name: str = "models/text-bison-001"
"""Model name to use."""
temperature: float = 0.7
@@ -67,6 +89,11 @@ class GooglePalm(BaseLLM, BaseModel):
max_retries: int = 6
"""The maximum number of retries to make when generating."""
@property
def is_gemini(self) -> bool:
"""Returns whether a model is belongs to a Gemini family or not."""
return _is_gemini_model(self.model_name)
@property
def lc_secrets(self) -> Dict[str, str]:
return {"google_api_key": "GOOGLE_API_KEY"}
@@ -86,18 +113,25 @@ class GooglePalm(BaseLLM, BaseModel):
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
model_name = values["model_name"]
try:
import google.generativeai as genai
if isinstance(google_api_key, SecretStr):
google_api_key = google_api_key.get_secret_value()
genai.configure(api_key=google_api_key)
if _is_gemini_model(model_name):
values["client"] = genai.GenerativeModel(model_name=model_name)
else:
values["client"] = genai
except ImportError:
raise ImportError(
"Could not import google-generativeai python package. "
"Please install it with `pip install google-generativeai`."
)
values["client"] = genai
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
@@ -119,30 +153,76 @@ class GooglePalm(BaseLLM, BaseModel):
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations = []
generations: List[List[Generation]] = []
generation_config = {
"stop_sequences": stop,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"max_output_tokens": self.max_output_tokens,
"candidate_count": self.n,
}
for prompt in prompts:
completion = completion_with_retry(
self,
model=self.model_name,
prompt=prompt,
stop_sequences=stop,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
max_output_tokens=self.max_output_tokens,
candidate_count=self.n,
**kwargs,
)
prompt_generations = []
for candidate in completion.candidates:
raw_text = candidate["output"]
stripped_text = _strip_erroneous_leading_spaces(raw_text)
prompt_generations.append(Generation(text=stripped_text))
generations.append(prompt_generations)
if self.is_gemini:
res = completion_with_retry(
self,
prompt=prompt,
stream=False,
is_gemini=True,
run_manager=run_manager,
generation_config=generation_config,
)
candidates = [
"".join([p.text for p in c.content.parts]) for c in res.candidates
]
generations.append([Generation(text=c) for c in candidates])
else:
res = completion_with_retry(
self,
model=self.model_name,
prompt=prompt,
stream=False,
is_gemini=False,
run_manager=run_manager,
**generation_config,
)
prompt_generations = []
for candidate in res.candidates:
raw_text = candidate["output"]
stripped_text = _strip_erroneous_leading_spaces(raw_text)
prompt_generations.append(Generation(text=stripped_text))
generations.append(prompt_generations)
return LLMResult(generations=generations)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
generation_config = kwargs.get("generation_config", {})
if stop:
generation_config["stop_sequences"] = stop
for stream_resp in completion_with_retry(
self,
prompt,
stream=True,
is_gemini=True,
run_manager=run_manager,
generation_config=generation_config,
**kwargs,
):
chunk = GenerationChunk(text=stream_resp.text)
yield chunk
if run_manager:
run_manager.on_llm_new_token(
stream_resp.text,
chunk=chunk,
verbose=self.verbose,
)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
@@ -159,5 +239,7 @@ class GooglePalm(BaseLLM, BaseModel):
Returns:
The integer number of tokens in the text.
"""
if self.is_gemini:
raise ValueError("Counting tokens is not yet supported!")
result = self.client.count_text_tokens(model=self.model_name, prompt=text)
return result["token_count"]

View File

@@ -60,7 +60,14 @@ class BaseModel(Base):
uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
_classes: Any = None
def _get_embedding_collection_store() -> Any:
global _classes
if _classes is not None:
return _classes
from pgvector.sqlalchemy import Vector
class CollectionStore(BaseModel):
@@ -126,7 +133,9 @@ def _get_embedding_collection_store() -> Any:
# custom_id : any user defined id
custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
return EmbeddingStore, CollectionStore
_classes = (EmbeddingStore, CollectionStore)
return _classes
def _results_to_docs(docs_and_scores: Any) -> List[Document]:

View File

@@ -1,4 +1,4 @@
"""Test Google PaLM Text API wrapper.
"""Test Google GenerativeAI API wrapper.
Note: This test must be run with the GOOGLE_API_KEY environment variable set to a
valid API key.
@@ -6,35 +6,68 @@ Note: This test must be run with the GOOGLE_API_KEY environment variable set to
from pathlib import Path
import pytest
from langchain_core.outputs import LLMResult
from langchain_community.llms.google_palm import GooglePalm
from langchain_community.llms.loading import load_llm
model_names = [None, "models/text-bison-001", "gemini-pro"]
def test_google_palm_call() -> None:
"""Test valid call to Google PaLM text API."""
llm = GooglePalm(max_output_tokens=10)
@pytest.mark.parametrize(
"model_name",
model_names,
)
def test_google_generativeai_call(model_name: str) -> None:
"""Test valid call to Google GenerativeAI text API."""
if model_name:
llm = GooglePalm(max_output_tokens=10, model_name=model_name)
else:
llm = GooglePalm(max_output_tokens=10)
output = llm("Say foo:")
assert isinstance(output, str)
assert llm._llm_type == "google_palm"
assert llm.model_name == "models/text-bison-001"
if model_name and "gemini" in model_name:
assert llm.client.model_name == "models/gemini-pro"
else:
assert llm.model_name == "models/text-bison-001"
def test_google_palm_generate() -> None:
llm = GooglePalm(temperature=0.3, n=2)
@pytest.mark.parametrize(
"model_name",
model_names,
)
def test_google_generativeai_generate(model_name: str) -> None:
n = 1 if model_name == "gemini-pro" else 2
if model_name:
llm = GooglePalm(temperature=0.3, n=n, model_name=model_name)
else:
llm = GooglePalm(temperature=0.3, n=n)
output = llm.generate(["Say foo:"])
assert isinstance(output, LLMResult)
assert len(output.generations) == 1
assert len(output.generations[0]) == 2
assert len(output.generations[0]) == n
def test_google_palm_get_num_tokens() -> None:
def test_google_generativeai_get_num_tokens() -> None:
llm = GooglePalm()
output = llm.get_num_tokens("How are you?")
assert output == 4
async def test_google_generativeai_agenerate() -> None:
llm = GooglePalm(temperature=0, model_name="gemini-pro")
output = await llm.agenerate(["Please say foo:"])
assert isinstance(output, LLMResult)
def test_generativeai_stream() -> None:
llm = GooglePalm(temperature=0, model_name="gemini-pro")
outputs = list(llm.stream("Please say foo:"))
assert isinstance(outputs[0], str)
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading a Google PaLM LLM."""
llm = GooglePalm(max_output_tokens=10)

View File

@@ -30,6 +30,24 @@ class FakeTracer(BaseTracer):
self.runs.append(run)
def _compare_run_with_error(run: Run, expected_run: Run) -> None:
if run.child_runs:
assert len(expected_run.child_runs) == len(run.child_runs)
for received, expected in zip(run.child_runs, expected_run.child_runs):
_compare_run_with_error(received, expected)
received = run.dict(exclude={"child_runs"})
received_err = received.pop("error")
expected = expected_run.dict(exclude={"child_runs"})
expected_err = expected.pop("error")
assert received == expected
if expected_err is not None:
assert received_err is not None
assert expected_err in received_err
else:
assert received_err is None
@freeze_time("2023-01-01")
def test_tracer_llm_run() -> None:
"""Test tracer on an LLM run."""
@@ -328,7 +346,8 @@ def test_tracer_llm_run_on_error() -> None:
tracer.on_llm_start(serialized=SERIALIZED, prompts=[], run_id=uuid)
tracer.on_llm_error(exception, run_id=uuid)
assert tracer.runs == [compare_run]
assert len(tracer.runs) == 1
_compare_run_with_error(tracer.runs[0], compare_run)
@freeze_time("2023-01-01")
@@ -364,7 +383,7 @@ def test_tracer_llm_run_on_error_callback() -> None:
tracer = FakeTracerWithLlmErrorCallback()
tracer.on_llm_start(serialized=SERIALIZED, prompts=[], run_id=uuid)
tracer.on_llm_error(exception, run_id=uuid)
assert tracer.error_run == compare_run
_compare_run_with_error(tracer.error_run, compare_run)
@freeze_time("2023-01-01")
@@ -394,7 +413,7 @@ def test_tracer_chain_run_on_error() -> None:
tracer.on_chain_start(serialized={"name": "chain"}, inputs={}, run_id=uuid)
tracer.on_chain_error(exception, run_id=uuid)
assert tracer.runs == [compare_run]
_compare_run_with_error(tracer.runs[0], compare_run)
@freeze_time("2023-01-01")
@@ -425,7 +444,7 @@ def test_tracer_tool_run_on_error() -> None:
tracer.on_tool_start(serialized={"name": "tool"}, input_str="test", run_id=uuid)
tracer.on_tool_error(exception, run_id=uuid)
assert tracer.runs == [compare_run]
_compare_run_with_error(tracer.runs[0], compare_run)
@freeze_time("2023-01-01")
@@ -568,4 +587,6 @@ def test_tracer_nested_runs_on_error() -> None:
),
],
)
assert tracer.runs == [compare_run] * 3
assert len(tracer.runs) == 3
for run in tracer.runs:
_compare_run_with_error(run, compare_run)

View File

@@ -98,6 +98,15 @@ class FakeTracer(BaseTracer):
return load_default_session()
def _compare_run_with_error(run: Run, expected_run: Run) -> None:
received = run.dict()
received_err = received.pop("error")
expected = expected_run.dict()
expected_err = expected.pop("error")
assert received == expected
assert expected_err in received_err
@freeze_time("2023-01-01")
def test_tracer_llm_run() -> None:
"""Test tracer on an LLM run."""
@@ -376,7 +385,7 @@ def test_tracer_llm_run_on_error() -> None:
tracer.new_session()
tracer.on_llm_start(serialized=SERIALIZED, prompts=[], run_id=uuid)
tracer.on_llm_error(exception, run_id=uuid)
assert tracer.runs == [compare_run]
_compare_run_with_error(tracer.runs[0], compare_run)
@freeze_time("2023-01-01")
@@ -404,7 +413,7 @@ def test_tracer_chain_run_on_error() -> None:
tracer.new_session()
tracer.on_chain_start(serialized={"name": "chain"}, inputs={}, run_id=uuid)
tracer.on_chain_error(exception, run_id=uuid)
assert tracer.runs == [compare_run]
_compare_run_with_error(tracer.runs[0], compare_run)
@freeze_time("2023-01-01")
@@ -433,136 +442,7 @@ def test_tracer_tool_run_on_error() -> None:
tracer.new_session()
tracer.on_tool_start(serialized={"name": "tool"}, input_str="test", run_id=uuid)
tracer.on_tool_error(exception, run_id=uuid)
assert tracer.runs == [compare_run]
@freeze_time("2023-01-01")
def test_tracer_nested_runs_on_error() -> None:
"""Test tracer on a nested run with an error."""
exception = Exception("test")
tracer = FakeTracer()
tracer.new_session()
chain_uuid = uuid4()
tool_uuid = uuid4()
llm_uuid1 = uuid4()
llm_uuid2 = uuid4()
llm_uuid3 = uuid4()
for _ in range(3):
tracer.on_chain_start(
serialized={"name": "chain"}, inputs={}, run_id=chain_uuid
)
tracer.on_llm_start(
serialized=SERIALIZED,
prompts=[],
run_id=llm_uuid1,
parent_run_id=chain_uuid,
)
tracer.on_llm_end(response=LLMResult(generations=[[]]), run_id=llm_uuid1)
tracer.on_llm_start(
serialized=SERIALIZED,
prompts=[],
run_id=llm_uuid2,
parent_run_id=chain_uuid,
)
tracer.on_llm_end(response=LLMResult(generations=[[]]), run_id=llm_uuid2)
tracer.on_tool_start(
serialized={"name": "tool"},
input_str="test",
run_id=tool_uuid,
parent_run_id=chain_uuid,
)
tracer.on_llm_start(
serialized=SERIALIZED,
prompts=[],
run_id=llm_uuid3,
parent_run_id=tool_uuid,
)
tracer.on_llm_error(exception, run_id=llm_uuid3)
tracer.on_tool_error(exception, run_id=tool_uuid)
tracer.on_chain_error(exception, run_id=chain_uuid)
compare_run = ChainRun(
uuid=str(chain_uuid),
start_time=datetime.utcnow(),
end_time=datetime.utcnow(),
extra={},
execution_order=1,
child_execution_order=5,
serialized={"name": "chain"},
session_id=TEST_SESSION_ID,
error=repr(exception),
inputs={},
outputs=None,
child_llm_runs=[
LLMRun(
uuid=str(llm_uuid1),
parent_uuid=str(chain_uuid),
start_time=datetime.utcnow(),
end_time=datetime.utcnow(),
extra={},
execution_order=2,
child_execution_order=2,
serialized=SERIALIZED,
session_id=TEST_SESSION_ID,
error=None,
prompts=[],
response=LLMResult(generations=[[]], llm_output=None),
),
LLMRun(
uuid=str(llm_uuid2),
parent_uuid=str(chain_uuid),
start_time=datetime.utcnow(),
end_time=datetime.utcnow(),
extra={},
execution_order=3,
child_execution_order=3,
serialized=SERIALIZED,
session_id=TEST_SESSION_ID,
error=None,
prompts=[],
response=LLMResult(generations=[[]], llm_output=None),
),
],
child_chain_runs=[],
child_tool_runs=[
ToolRun(
uuid=str(tool_uuid),
parent_uuid=str(chain_uuid),
start_time=datetime.utcnow(),
end_time=datetime.utcnow(),
extra={},
execution_order=4,
child_execution_order=5,
serialized={"name": "tool"},
session_id=TEST_SESSION_ID,
error=repr(exception),
tool_input="test",
output=None,
action="{'name': 'tool'}",
child_llm_runs=[
LLMRun(
uuid=str(llm_uuid3),
parent_uuid=str(tool_uuid),
start_time=datetime.utcnow(),
end_time=datetime.utcnow(),
extra={},
execution_order=5,
child_execution_order=5,
serialized=SERIALIZED,
session_id=TEST_SESSION_ID,
error=repr(exception),
prompts=[],
response=None,
)
],
child_chain_runs=[],
child_tool_runs=[],
),
],
)
assert tracer.runs == [compare_run] * 3
_compare_run_with_error(tracer.runs[0], compare_run)
@pytest.fixture

View File

@@ -2,9 +2,20 @@
from __future__ import annotations
import logging
import sys
import traceback
from abc import ABC, abstractmethod
from datetime import datetime
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union, cast
from typing import (
TYPE_CHECKING,
Any,
Dict,
List,
Optional,
Sequence,
Union,
cast,
)
from uuid import UUID
from tenacity import RetryCallState
@@ -45,6 +56,21 @@ class BaseTracer(BaseCallbackHandler, ABC):
def _persist_run(self, run: Run) -> None:
"""Persist a run."""
@staticmethod
def _get_stacktrace(error: BaseException) -> str:
"""Get the stacktrace of the parent error."""
msg = repr(error)
try:
if sys.version_info < (3, 10):
tb = traceback.format_exception(
error.__class__, error, error.__traceback__
)
else:
tb = traceback.format_exception(error)
return (msg + "\n\n".join(tb)).strip()
except: # noqa: E722
return msg
def _start_trace(self, run: Run) -> None:
"""Start a trace for a run."""
if run.parent_run_id:
@@ -220,7 +246,7 @@ class BaseTracer(BaseCallbackHandler, ABC):
) -> Run:
"""Handle an error for an LLM run."""
llm_run = self._get_run(run_id, run_type="llm")
llm_run.error = repr(error)
llm_run.error = self._get_stacktrace(error)
llm_run.end_time = datetime.utcnow()
llm_run.events.append({"name": "error", "time": llm_run.end_time})
self._end_trace(llm_run)
@@ -296,7 +322,7 @@ class BaseTracer(BaseCallbackHandler, ABC):
) -> Run:
"""Handle an error for a chain run."""
chain_run = self._get_run(run_id)
chain_run.error = repr(error)
chain_run.error = self._get_stacktrace(error)
chain_run.end_time = datetime.utcnow()
chain_run.events.append({"name": "error", "time": chain_run.end_time})
if inputs is not None:
@@ -361,7 +387,7 @@ class BaseTracer(BaseCallbackHandler, ABC):
) -> Run:
"""Handle an error for a tool run."""
tool_run = self._get_run(run_id, run_type="tool")
tool_run.error = repr(error)
tool_run.error = self._get_stacktrace(error)
tool_run.end_time = datetime.utcnow()
tool_run.events.append({"name": "error", "time": tool_run.end_time})
self._end_trace(tool_run)
@@ -414,7 +440,7 @@ class BaseTracer(BaseCallbackHandler, ABC):
) -> Run:
"""Run when Retriever errors."""
retrieval_run = self._get_run(run_id, run_type="retriever")
retrieval_run.error = repr(error)
retrieval_run.error = self._get_stacktrace(error)
retrieval_run.end_time = datetime.utcnow()
retrieval_run.events.append({"name": "error", "time": retrieval_run.end_time})
self._end_trace(retrieval_run)

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "langchain-core"
version = "0.1.0"
version = "0.1.1"
description = "Building applications with LLMs through composability"
authors = []
license = "MIT"

View File

@@ -630,13 +630,14 @@ def test_lambda_schemas() -> None:
}
second_lambda = lambda x, y: (x["hello"], x["bye"], y["bah"]) # noqa: E731
assert RunnableLambda(
second_lambda, # type: ignore[arg-type]
).input_schema.schema() == {
"title": "RunnableLambdaInput",
"type": "object",
"properties": {"hello": {"title": "Hello"}, "bye": {"title": "Bye"}},
}
assert (
RunnableLambda(second_lambda).input_schema.schema() # type: ignore[arg-type]
== {
"title": "RunnableLambdaInput",
"type": "object",
"properties": {"hello": {"title": "Hello"}, "bye": {"title": "Bye"}},
}
)
def get_value(input): # type: ignore[no-untyped-def]
return input["variable_name"]
@@ -3624,33 +3625,32 @@ def test_seq_batch_return_exceptions(mocker: MockerFixture) -> None:
parent_run_foo = parent_runs[0]
assert parent_run_foo.inputs["input"] == "foo"
assert parent_run_foo.error == repr(ValueError())
assert repr(ValueError()) in str(parent_run_foo.error)
assert len(parent_run_foo.child_runs) == 4
assert [r.error for r in parent_run_foo.child_runs] == [
assert [r.error for r in parent_run_foo.child_runs[:-1]] == [
None,
None,
None,
repr(ValueError()),
]
assert repr(ValueError()) in str(parent_run_foo.child_runs[-1].error)
parent_run_bar = parent_runs[1]
assert parent_run_bar.inputs["input"] == "bar"
assert parent_run_bar.error == repr(ValueError())
assert repr(ValueError()) in str(parent_run_bar.error)
assert len(parent_run_bar.child_runs) == 2
assert [r.error for r in parent_run_bar.child_runs] == [
None,
repr(ValueError()),
]
assert parent_run_bar.child_runs[0].error is None
assert repr(ValueError()) in str(parent_run_bar.child_runs[1].error)
parent_run_baz = parent_runs[2]
assert parent_run_baz.inputs["input"] == "baz"
assert parent_run_baz.error == repr(ValueError())
assert repr(ValueError()) in str(parent_run_baz.error)
assert len(parent_run_baz.child_runs) == 3
assert [r.error for r in parent_run_baz.child_runs] == [
assert [r.error for r in parent_run_baz.child_runs[:-1]] == [
None,
None,
repr(ValueError()),
]
assert repr(ValueError()) in str(parent_run_baz.child_runs[-1].error)
parent_run_qux = parent_runs[3]
assert parent_run_qux.inputs["input"] == "qux"
@@ -3746,33 +3746,31 @@ async def test_seq_abatch_return_exceptions(mocker: MockerFixture) -> None:
parent_run_foo = parent_runs[0]
assert parent_run_foo.inputs["input"] == "foo"
assert parent_run_foo.error == repr(ValueError())
assert repr(ValueError()) in str(parent_run_foo.error)
assert len(parent_run_foo.child_runs) == 4
assert [r.error for r in parent_run_foo.child_runs] == [
assert [r.error for r in parent_run_foo.child_runs[:-1]] == [
None,
None,
None,
repr(ValueError()),
]
assert repr(ValueError()) in str(parent_run_foo.child_runs[-1].error)
parent_run_bar = parent_runs[1]
assert parent_run_bar.inputs["input"] == "bar"
assert parent_run_bar.error == repr(ValueError())
assert repr(ValueError()) in str(parent_run_bar.error)
assert len(parent_run_bar.child_runs) == 2
assert [r.error for r in parent_run_bar.child_runs] == [
None,
repr(ValueError()),
]
assert parent_run_bar.child_runs[0].error is None
assert repr(ValueError()) in str(parent_run_bar.child_runs[1].error)
parent_run_baz = parent_runs[2]
assert parent_run_baz.inputs["input"] == "baz"
assert parent_run_baz.error == repr(ValueError())
assert repr(ValueError()) in str(parent_run_baz.error)
assert len(parent_run_baz.child_runs) == 3
assert [r.error for r in parent_run_baz.child_runs] == [
assert [r.error for r in parent_run_baz.child_runs[:-1]] == [
None,
None,
repr(ValueError()),
]
assert repr(ValueError()) in str(parent_run_baz.child_runs[-1].error)
parent_run_qux = parent_runs[3]
assert parent_run_qux.inputs["input"] == "qux"
@@ -3941,7 +3939,7 @@ def test_runnable_branch_invoke_callbacks() -> None:
branch.invoke(1000, config={"callbacks": [tracer]})
assert len(tracer.runs) == 2
assert tracer.runs[1].error == "ValueError('x is too large')"
assert "ValueError('x is too large')" in str(tracer.runs[1].error)
assert tracer.runs[1].outputs is None
@@ -3968,7 +3966,7 @@ async def test_runnable_branch_ainvoke_callbacks() -> None:
await branch.ainvoke(1000, config={"callbacks": [tracer]})
assert len(tracer.runs) == 2
assert tracer.runs[1].error == "ValueError('x is too large')"
assert "ValueError('x is too large')" in str(tracer.runs[1].error)
assert tracer.runs[1].outputs is None

View File

@@ -31,6 +31,7 @@ def _create_tool_message(
return ToolMessage(
tool_call_id=agent_action.tool_call_id,
content=content,
additional_kwargs={"name": agent_action.tool},
)

View File

@@ -2,10 +2,12 @@
from __future__ import annotations
import dataclasses
import functools
import inspect
import logging
import uuid
from datetime import datetime
from enum import Enum
from typing import (
TYPE_CHECKING,
@@ -32,11 +34,12 @@ from langchain_core.tracers.evaluation import (
)
from langchain_core.tracers.langchain import LangChainTracer
from langsmith.client import Client
from langsmith.evaluation import RunEvaluator
from langsmith.evaluation import EvaluationResult, RunEvaluator
from langsmith.run_helpers import as_runnable, is_traceable_function
from langsmith.schemas import Dataset, DataType, Example
from langsmith.schemas import Dataset, DataType, Example, TracerSession
from langsmith.utils import LangSmithError
from requests import HTTPError
from typing_extensions import TypedDict
from langchain.callbacks.manager import Callbacks
from langchain.chains.base import Chain
@@ -919,9 +922,12 @@ def _prepare_eval_run(
project_name: str,
project_metadata: Optional[Dict[str, Any]] = None,
tags: Optional[List[str]] = None,
) -> Tuple[MCF, str, Dataset, List[Example]]:
) -> Tuple[MCF, TracerSession, Dataset, List[Example]]:
wrapped_model = _wrap_in_chain_factory(llm_or_chain_factory, dataset_name)
dataset = client.read_dataset(dataset_name=dataset_name)
examples = list(client.list_examples(dataset_id=dataset.id))
if not examples:
raise ValueError(f"Dataset {dataset_name} has no example rows.")
try:
project_extra: dict = {"metadata": project_metadata} if project_metadata else {}
@@ -953,111 +959,159 @@ run_on_dataset(
f"View all tests for Dataset {dataset_name} at:\n{dataset.url}",
flush=True,
)
examples = list(client.list_examples(dataset_id=dataset.id))
if not examples:
raise ValueError(f"Dataset {dataset_name} has no example rows.")
return wrapped_model, project_name, dataset, examples
return wrapped_model, project, dataset, examples
def _prepare_run_on_dataset(
client: Client,
dataset_name: str,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
project_name: Optional[str],
evaluation: Optional[smith_eval.RunEvalConfig] = None,
tags: Optional[List[str]] = None,
input_mapper: Optional[Callable[[Dict], Any]] = None,
concurrency_level: int = 5,
project_metadata: Optional[Dict[str, Any]] = None,
) -> Tuple[MCF, str, List[Example], List[RunnableConfig]]:
project_name = project_name or name_generation.random_name()
wrapped_model, project_name, dataset, examples = _prepare_eval_run(
client,
dataset_name,
llm_or_chain_factory,
project_name,
project_metadata=project_metadata,
tags=tags,
)
wrapped_model = _wrap_in_chain_factory(llm_or_chain_factory)
run_evaluators = _setup_evaluation(
wrapped_model, examples, evaluation, dataset.data_type or DataType.kv
)
_validate_example_inputs(examples[0], wrapped_model, input_mapper)
progress_bar = progress.ProgressBarCallback(len(examples))
configs = [
RunnableConfig(
callbacks=[
LangChainTracer(
project_name=project_name,
client=client,
use_threading=False,
example_id=example.id,
),
EvaluatorCallbackHandler(
evaluators=run_evaluators or [],
client=client,
example_id=example.id,
max_concurrency=0,
),
progress_bar,
],
tags=tags or [],
max_concurrency=concurrency_level,
class _RowResult(TypedDict, total=False):
"""A dictionary of the results for a single example row."""
feedback: Optional[List[EvaluationResult]]
execution_time: Optional[float]
run_id: Optional[str]
@dataclasses.dataclass
class _DatasetRunContainer:
"""A container to help manage the state of a eval run."""
client: Client
project: TracerSession
wrapped_model: MCF
examples: List[Example]
configs: List[RunnableConfig]
def _merge_test_outputs(
self,
batch_results: list,
all_eval_results: Dict[str, _RowResult],
) -> dict:
results: dict = {}
for example, output in zip(self.examples, batch_results):
row_result = cast(_RowResult, all_eval_results.get(str(example.id), {}))
results[str(example.id)] = {
"input": example.inputs,
"feedback": row_result.get("feedback", []),
"execution_time": row_result.get("execution_time"),
"run_id": row_result.get("run_id"),
}
if isinstance(output, EvalError):
results[str(example.id)]["Error"] = output.Error
else:
results[str(example.id)]["output"] = output
if example.outputs:
results[str(example.id)]["reference"] = example.outputs
return results
def _collect_metrics(self) -> Dict[str, _RowResult]:
all_eval_results: dict = {}
for c in self.configs:
for callback in cast(list, c["callbacks"]):
if isinstance(callback, EvaluatorCallbackHandler):
eval_results = callback.logged_eval_results
for (_, example_id), v in eval_results.items():
all_eval_results.setdefault(str(example_id), {}).update(
{"feedback": v}
)
elif isinstance(callback, LangChainTracer):
run = callback.latest_run
execution_time = (
(run.end_time - run.start_time).total_seconds()
if run and run.end_time
else None
)
run_id = str(run.id) if run else None
all_eval_results.setdefault(str(callback.example_id), {}).update(
{
"execution_time": execution_time,
"run_id": run_id,
}
)
return cast(Dict[str, _RowResult], all_eval_results)
def _collect_test_results(
self,
batch_results: List[Union[dict, str, LLMResult, ChatResult]],
) -> TestResult:
wait_for_all_evaluators()
all_eval_results = self._collect_metrics()
results = self._merge_test_outputs(batch_results, all_eval_results)
return TestResult(
project_name=self.project.name,
results=results,
)
for example in examples
]
return wrapped_model, project_name, examples, configs
def finish(self, batch_results: list, verbose: bool = False) -> TestResult:
results = self._collect_test_results(batch_results)
if verbose:
try:
agg_feedback = results.get_aggregate_feedback()
_display_aggregate_results(agg_feedback)
except Exception as e:
logger.debug(f"Failed to print aggregate feedback: {repr(e)}")
try:
# Closing the project permits name changing and metric optimizations
self.client.update_project(self.project.id, end_time=datetime.utcnow())
except Exception as e:
logger.debug(f"Failed to close project: {repr(e)}")
return results
def _collect_test_results(
examples: List[Example],
batch_results: List[Union[dict, str, LLMResult, ChatResult]],
configs: List[RunnableConfig],
project_name: str,
) -> TestResult:
wait_for_all_evaluators()
all_eval_results = {}
all_execution_time = {}
all_run_ids = {}
for c in configs:
for callback in cast(list, c["callbacks"]):
if isinstance(callback, EvaluatorCallbackHandler):
eval_results = callback.logged_eval_results
all_eval_results.update(
{example_id: v for (_, example_id), v in eval_results.items()}
)
elif isinstance(callback, LangChainTracer):
run = callback.latest_run
example_id = callback.example_id
run_id = str(run.id) if run else None
execution_time = (
(run.end_time - run.start_time).total_seconds()
if run and run.end_time
else None
)
all_execution_time[str(example_id)] = execution_time
all_run_ids[str(example_id)] = run_id
results: dict = {}
for example, output in zip(examples, batch_results):
feedback = all_eval_results.get(str(example.id), [])
results[str(example.id)] = {
"input": example.inputs,
"feedback": feedback,
"execution_time": all_execution_time.get(str(example.id)),
"run_id": all_run_ids.get(str(example.id)),
}
if isinstance(output, EvalError):
results[str(example.id)]["Error"] = output.Error
else:
results[str(example.id)]["output"] = output
if example.outputs:
results[str(example.id)]["reference"] = example.outputs
return TestResult(
project_name=project_name,
results=results,
)
@classmethod
def prepare(
cls,
client: Client,
dataset_name: str,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
project_name: Optional[str],
evaluation: Optional[smith_eval.RunEvalConfig] = None,
tags: Optional[List[str]] = None,
input_mapper: Optional[Callable[[Dict], Any]] = None,
concurrency_level: int = 5,
project_metadata: Optional[Dict[str, Any]] = None,
) -> _DatasetRunContainer:
project_name = project_name or name_generation.random_name()
wrapped_model, project, dataset, examples = _prepare_eval_run(
client,
dataset_name,
llm_or_chain_factory,
project_name,
project_metadata=project_metadata,
tags=tags,
)
wrapped_model = _wrap_in_chain_factory(llm_or_chain_factory)
run_evaluators = _setup_evaluation(
wrapped_model, examples, evaluation, dataset.data_type or DataType.kv
)
_validate_example_inputs(examples[0], wrapped_model, input_mapper)
progress_bar = progress.ProgressBarCallback(len(examples))
configs = [
RunnableConfig(
callbacks=[
LangChainTracer(
project_name=project.name,
client=client,
use_threading=False,
example_id=example.id,
),
EvaluatorCallbackHandler(
evaluators=run_evaluators or [],
client=client,
example_id=example.id,
max_concurrency=0,
),
progress_bar,
],
tags=tags or [],
max_concurrency=concurrency_level,
)
for example in examples
]
return cls(
client=client,
project=project,
wrapped_model=wrapped_model,
examples=examples,
configs=configs,
)
def _is_jupyter_environment() -> bool:
@@ -1125,7 +1179,7 @@ async def arun_on_dataset(
removal="0.0.305",
)
client = client or Client()
wrapped_model, project_name, examples, configs = _prepare_run_on_dataset(
container = _DatasetRunContainer.prepare(
client,
dataset_name,
llm_or_chain_factory,
@@ -1137,26 +1191,18 @@ async def arun_on_dataset(
project_metadata=project_metadata,
)
batch_results = await runnable_utils.gather_with_concurrency(
configs[0].get("max_concurrency"),
container.configs[0].get("max_concurrency"),
*map(
functools.partial(
_arun_llm_or_chain,
llm_or_chain_factory=wrapped_model,
llm_or_chain_factory=container.wrapped_model,
input_mapper=input_mapper,
),
examples,
configs,
container.examples,
container.configs,
),
)
results = _collect_test_results(examples, batch_results, configs, project_name)
if verbose:
try:
agg_feedback = results.get_aggregate_feedback()
print("\n Eval quantiles:")
print(agg_feedback)
except Exception as e:
logger.debug(f"Failed to print aggregate feedback: {repr(e)}")
return results
return container.finish(batch_results, verbose=verbose)
def run_on_dataset(
@@ -1185,7 +1231,7 @@ def run_on_dataset(
removal="0.0.305",
)
client = client or Client()
wrapped_model, project_name, examples, configs = _prepare_run_on_dataset(
container = _DatasetRunContainer.prepare(
client,
dataset_name,
llm_or_chain_factory,
@@ -1201,33 +1247,26 @@ def run_on_dataset(
_run_llm_or_chain(
example,
config,
llm_or_chain_factory=wrapped_model,
llm_or_chain_factory=container.wrapped_model,
input_mapper=input_mapper,
)
for example, config in zip(examples, configs)
for example, config in zip(container.examples, container.configs)
]
else:
with runnable_config.get_executor_for_config(configs[0]) as executor:
with runnable_config.get_executor_for_config(container.configs[0]) as executor:
batch_results = list(
executor.map(
functools.partial(
_run_llm_or_chain,
llm_or_chain_factory=wrapped_model,
llm_or_chain_factory=container.wrapped_model,
input_mapper=input_mapper,
),
examples,
configs,
container.examples,
container.configs,
)
)
results = _collect_test_results(examples, batch_results, configs, project_name)
if verbose:
try:
agg_feedback = results.get_aggregate_feedback()
_display_aggregate_results(agg_feedback)
except Exception as e:
logger.debug(f"Failed to print aggregate feedback: {repr(e)}")
return results
return container.finish(batch_results, verbose=verbose)
_RUN_ON_DATASET_DOCSTRING = """

View File

@@ -3133,7 +3133,6 @@ optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*"
files = [
{file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"},
{file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"},
]
[[package]]
@@ -3447,7 +3446,7 @@ files = [
[[package]]
name = "langchain-community"
version = "0.0.2"
version = "0.0.3"
description = "Community contributed LangChain integrations."
optional = false
python-versions = ">=3.8.1,<4.0"
@@ -3475,7 +3474,7 @@ url = "../community"
[[package]]
name = "langchain-core"
version = "0.1.0"
version = "0.1.1"
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.8.1,<4.0"
@@ -3485,7 +3484,7 @@ develop = true
[package.dependencies]
anyio = ">=3,<5"
jsonpatch = "^1.33"
langsmith = "~0.0.63"
langsmith = "~0.0.70"
packaging = "^23.2"
pydantic = ">=1,<3"
PyYAML = ">=5.3"
@@ -3501,13 +3500,13 @@ url = "../core"
[[package]]
name = "langsmith"
version = "0.0.63"
version = "0.0.70"
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
{file = "langsmith-0.0.63-py3-none-any.whl", hash = "sha256:43a521dd10d8405ac21a0b959e3de33e2270e4abe6c73cc4036232a6990a0793"},
{file = "langsmith-0.0.63.tar.gz", hash = "sha256:ddb2dfadfad3e05151ed8ba1643d1c516024b80fbd0c6263024400ced06a3768"},
{file = "langsmith-0.0.70-py3-none-any.whl", hash = "sha256:a0d4cac3af94fe44c2ef3814c32b6740f92aebe267e395d62e62040bc5bad343"},
{file = "langsmith-0.0.70.tar.gz", hash = "sha256:3a546c45e67f6600d6669ef63f1f58b772e505703126338ad4f22fe0e2bbf677"},
]
[package.dependencies]
@@ -3727,16 +3726,6 @@ files = [
{file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"},
{file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc"},
{file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1"},
{file = "MarkupSafe-2.1.3-cp312-cp312-win32.whl", hash = "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007"},
{file = "MarkupSafe-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"},
@@ -5262,8 +5251,6 @@ files = [
{file = "psycopg2-2.9.9-cp310-cp310-win_amd64.whl", hash = "sha256:426f9f29bde126913a20a96ff8ce7d73fd8a216cfb323b1f04da402d452853c3"},
{file = "psycopg2-2.9.9-cp311-cp311-win32.whl", hash = "sha256:ade01303ccf7ae12c356a5e10911c9e1c51136003a9a1d92f7aa9d010fb98372"},
{file = "psycopg2-2.9.9-cp311-cp311-win_amd64.whl", hash = "sha256:121081ea2e76729acfb0673ff33755e8703d45e926e416cb59bae3a86c6a4981"},
{file = "psycopg2-2.9.9-cp312-cp312-win32.whl", hash = "sha256:d735786acc7dd25815e89cc4ad529a43af779db2e25aa7c626de864127e5a024"},
{file = "psycopg2-2.9.9-cp312-cp312-win_amd64.whl", hash = "sha256:a7653d00b732afb6fc597e29c50ad28087dcb4fbfb28e86092277a559ae4e693"},
{file = "psycopg2-2.9.9-cp37-cp37m-win32.whl", hash = "sha256:5e0d98cade4f0e0304d7d6f25bbfbc5bd186e07b38eac65379309c4ca3193efa"},
{file = "psycopg2-2.9.9-cp37-cp37m-win_amd64.whl", hash = "sha256:7e2dacf8b009a1c1e843b5213a87f7c544b2b042476ed7755be813eaf4e8347a"},
{file = "psycopg2-2.9.9-cp38-cp38-win32.whl", hash = "sha256:ff432630e510709564c01dafdbe996cb552e0b9f3f065eb89bdce5bd31fabf4c"},
@@ -5306,7 +5293,6 @@ files = [
{file = "psycopg2_binary-2.9.9-cp311-cp311-win32.whl", hash = "sha256:dc4926288b2a3e9fd7b50dc6a1909a13bbdadfc67d93f3374d984e56f885579d"},
{file = "psycopg2_binary-2.9.9-cp311-cp311-win_amd64.whl", hash = "sha256:b76bedd166805480ab069612119ea636f5ab8f8771e640ae103e05a4aae3e417"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8532fd6e6e2dc57bcb3bc90b079c60de896d2128c5d9d6f24a63875a95a088cf"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b0605eaed3eb239e87df0d5e3c6489daae3f7388d455d0c0b4df899519c6a38d"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f8544b092a29a6ddd72f3556a9fcf249ec412e10ad28be6a0c0d948924f2212"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2d423c8d8a3c82d08fe8af900ad5b613ce3632a1249fd6a223941d0735fce493"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2e5afae772c00980525f6d6ecf7cbca55676296b580c0e6abb407f15f3706996"},
@@ -5315,8 +5301,6 @@ files = [
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:cb16c65dcb648d0a43a2521f2f0a2300f40639f6f8c1ecbc662141e4e3e1ee07"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:911dda9c487075abd54e644ccdf5e5c16773470a6a5d3826fda76699410066fb"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:57fede879f08d23c85140a360c6a77709113efd1c993923c59fde17aa27599fe"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-win32.whl", hash = "sha256:64cf30263844fa208851ebb13b0732ce674d8ec6a0c86a4e160495d299ba3c93"},
{file = "psycopg2_binary-2.9.9-cp312-cp312-win_amd64.whl", hash = "sha256:81ff62668af011f9a48787564ab7eded4e9fb17a4a6a74af5ffa6a457400d2ab"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:2293b001e319ab0d869d660a704942c9e2cce19745262a8aba2115ef41a0a42a"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03ef7df18daf2c4c07e2695e8cfd5ee7f748a1d54d802330985a78d2a5a6dca9"},
{file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a602ea5aff39bb9fac6308e9c9d82b9a35c2bf288e184a816002c9fae930b77"},
@@ -6305,7 +6289,6 @@ files = [
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"},
{file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"},
{file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"},
{file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"},
{file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"},
@@ -6313,15 +6296,8 @@ files = [
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"},
{file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"},
{file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"},
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
{file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"},
{file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"},
@@ -6338,7 +6314,6 @@ files = [
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"},
{file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"},
{file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"},
{file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"},
{file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"},
@@ -6346,7 +6321,6 @@ files = [
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"},
{file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"},
{file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"},
{file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"},
{file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
@@ -9103,4 +9077,4 @@ text-helpers = ["chardet"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "0b232a037505cefcdf2203edc9d750e70e2e52a297475490022402994c3036a3"
content-hash = "e93141191088db7b4aec1a976ebd8cb20075e26d4a987bf97c0495ad865b7460"

View File

@@ -80,7 +80,7 @@ cassio = {version = "^0.1.0", optional = true}
sympy = {version = "^1.12", optional = true}
rapidfuzz = {version = "^3.1.1", optional = true}
jsonschema = {version = ">1", optional = true}
langsmith = "~0.0.63"
langsmith = "~0.0.70"
rank-bm25 = {version = "^0.2.2", optional = true}
geopandas = {version = "^0.13.1", optional = true}
gitpython = {version = "^3.1.32", optional = true}

View File

@@ -0,0 +1,94 @@
from langchain_core.messages import AIMessage, ToolMessage
from langchain.agents.format_scratchpad.openai_tools import (
format_to_openai_tool_messages,
)
from langchain.agents.output_parsers.openai_tools import (
parse_ai_message_to_openai_tool_action,
)
def test_calls_convert_agent_action_to_messages() -> None:
additional_kwargs1 = {
"tool_calls": [
{
"id": "call_abcd12345",
"function": {"arguments": '{"a": 3, "b": 5}', "name": "add"},
"type": "function",
}
],
}
message1 = AIMessage(content="", additional_kwargs=additional_kwargs1)
actions1 = parse_ai_message_to_openai_tool_action(message1)
additional_kwargs2 = {
"tool_calls": [
{
"id": "call_abcd54321",
"function": {"arguments": '{"a": 3, "b": 5}', "name": "subtract"},
"type": "function",
}
],
}
message2 = AIMessage(content="", additional_kwargs=additional_kwargs2)
actions2 = parse_ai_message_to_openai_tool_action(message2)
additional_kwargs3 = {
"tool_calls": [
{
"id": "call_abcd67890",
"function": {"arguments": '{"a": 3, "b": 5}', "name": "multiply"},
"type": "function",
},
{
"id": "call_abcd09876",
"function": {"arguments": '{"a": 3, "b": 5}', "name": "divide"},
"type": "function",
},
],
}
message3 = AIMessage(content="", additional_kwargs=additional_kwargs3)
actions3 = parse_ai_message_to_openai_tool_action(message3)
# for mypy
assert isinstance(actions1, list)
assert isinstance(actions2, list)
assert isinstance(actions3, list)
intermediate_steps = [
(actions1[0], "observation1"),
(actions2[0], "observation2"),
(actions3[0], "observation3"),
(actions3[1], "observation4"),
]
expected_messages = [
message1,
ToolMessage(
tool_call_id="call_abcd12345",
content="observation1",
additional_kwargs={"name": "add"},
),
message2,
ToolMessage(
tool_call_id="call_abcd54321",
content="observation2",
additional_kwargs={"name": "subtract"},
),
message3,
ToolMessage(
tool_call_id="call_abcd67890",
content="observation3",
additional_kwargs={"name": "multiply"},
),
ToolMessage(
tool_call_id="call_abcd09876",
content="observation4",
additional_kwargs={"name": "divide"},
),
]
output = format_to_openai_tool_messages(intermediate_steps)
assert output == expected_messages
def test_handles_empty_input_list() -> None:
output = format_to_openai_tool_messages([])
assert output == []

View File

@@ -4,10 +4,17 @@ This package contains the LangChain integrations for Gemini through their genera
## Installation
```python
```bash
pip install -U langchain-google-genai
```
### Image utilities
To use image utility methods, like loading images from GCS urls, install with extras group 'images':
```bash
pip install -e "langchain-google-genai[images]"
```
## Chat Models
This package contains the `ChatGoogleGenerativeAI` class, which is the recommended way to interface with the Google Gemini series of models.
@@ -56,3 +63,16 @@ The value of `image_url` can be any of the following:
- A local file path
- A base64 encoded image (e.g., ``)
- A PIL image
## Embeddings
This package also adds support for google's embeddings models.
```
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("hello, world!")
```

View File

@@ -1,3 +1,65 @@
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
"""**LangChain Google Generative AI Integration**
__all__ = ["ChatGoogleGenerativeAI"]
This module integrates Google's Generative AI models, specifically the Gemini series, with the LangChain framework. It provides classes for interacting with chat models and generating embeddings, leveraging Google's advanced AI capabilities.
**Chat Models**
The `ChatGoogleGenerativeAI` class is the primary interface for interacting with Google's Gemini chat models. It allows users to send and receive messages using a specified Gemini model, suitable for various conversational AI applications.
**LLMs**
The `GoogleGenerativeAI` class is the primary interface for interacting with Google's Gemini LLMs. It allows users to generate text using a specified Gemini model.
**Embeddings**
The `GoogleGenerativeAIEmbeddings` class provides functionalities to generate embeddings using Google's models.
These embeddings can be used for a range of NLP tasks, including semantic analysis, similarity comparisons, and more.
**Installation**
To install the package, use pip:
```python
pip install -U langchain-google-genai
```
## Using Chat Models
After setting up your environment with the required API key, you can interact with the Google Gemini models.
```python
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")
```
## Using LLMs
The package also supports generating text with Google's models.
```python
from langchain_google_genai import GoogleGenerativeAI
llm = GoogleGenerativeAI(model="gemini-pro")
llm.invoke("Once upon a time, a library called LangChain")
```
## Embedding Generation
The package also supports creating embeddings with Google's models, useful for textual similarity and other NLP applications.
```python
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("hello, world!")
```
""" # noqa: E501
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
from langchain_google_genai.embeddings import GoogleGenerativeAIEmbeddings
from langchain_google_genai.llms import GoogleGenerativeAI
__all__ = [
"ChatGoogleGenerativeAI",
"GoogleGenerativeAIEmbeddings",
"GoogleGenerativeAI",
]

View File

@@ -0,0 +1,4 @@
class GoogleGenerativeAIError(Exception):
"""
Custom exception class for errors associated with the `Google GenAI` API.
"""

View File

@@ -5,7 +5,6 @@ import logging
import os
from io import BytesIO
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Callable,
@@ -22,6 +21,8 @@ from typing import (
)
from urllib.parse import urlparse
# TODO: remove ignore once the google package is published with types
import google.generativeai as genai # type: ignore[import]
import requests
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
@@ -38,7 +39,7 @@ from langchain_core.messages import (
HumanMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import get_from_dict_or_env
from tenacity import (
before_sleep_log,
@@ -48,11 +49,8 @@ from tenacity import (
wait_exponential,
)
logger = logging.getLogger(__name__)
from langchain_google_genai._common import GoogleGenerativeAIError
if TYPE_CHECKING:
# TODO: remove ignore once the google package is published with types
import google.generativeai as genai # type: ignore[import]
IMAGE_TYPES: Tuple = ()
try:
import PIL
@@ -63,8 +61,10 @@ except ImportError:
PIL = None # type: ignore
Image = None # type: ignore
logger = logging.getLogger(__name__)
class ChatGoogleGenerativeAIError(Exception):
class ChatGoogleGenerativeAIError(GoogleGenerativeAIError):
"""
Custom exception class for errors associated with the `Google GenAI` API.
@@ -106,7 +106,7 @@ def _create_retry_decorator() -> Callable[[Any], Any]:
)
def chat_with_retry(*, generation_method: Callable, **kwargs: Any) -> Any:
def _chat_with_retry(*, generation_method: Callable, **kwargs: Any) -> Any:
"""
Executes a chat generation method with retry logic using tenacity.
@@ -139,7 +139,7 @@ def chat_with_retry(*, generation_method: Callable, **kwargs: Any) -> Any:
return _chat_with_retry(**kwargs)
async def achat_with_retry(*, generation_method: Callable, **kwargs: Any) -> Any:
async def _achat_with_retry(*, generation_method: Callable, **kwargs: Any) -> Any:
"""
Executes a chat generation method with retry logic using tenacity.
@@ -269,8 +269,6 @@ def _convert_to_parts(
content: Sequence[Union[str, dict]],
) -> List[genai.types.PartType]:
"""Converts a list of LangChain messages into a google parts."""
import google.generativeai as genai
parts = []
for part in content:
if isinstance(part, str):
@@ -410,8 +408,7 @@ def _response_to_result(
class ChatGoogleGenerativeAI(BaseChatModel):
"""`Google Generative AI` Chat models API.
To use you must have the google.generativeai Python package installed and
either:
To use, you must have either:
1. The ``GOOGLE_API_KEY``` environment variable set with your API key, or
2. Pass your API key using the google_api_key kwarg to the ChatGoogle
@@ -435,7 +432,7 @@ Supported examples:
max_output_tokens: int = Field(default=None, description="Max output tokens")
client: Any #: :meta private:
google_api_key: Optional[str] = None
google_api_key: Optional[SecretStr] = None
temperature: Optional[float] = None
"""Run inference with this temperature. Must by in the closed
interval [0.0, 1.0]."""
@@ -487,17 +484,9 @@ Supported examples:
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
try:
import google.generativeai as genai
genai.configure(api_key=google_api_key)
except ImportError:
raise ChatGoogleGenerativeAIError(
"Could not import google.generativeai python package. "
"Please install it with `pip install google-generativeai`"
)
values["client"] = genai
if isinstance(google_api_key, SecretStr):
google_api_key = google_api_key.get_secret_value()
genai.configure(api_key=google_api_key)
if (
values.get("temperature") is not None
and not 0 <= values["temperature"] <= 1
@@ -560,7 +549,7 @@ Supported examples:
**kwargs: Any,
) -> ChatResult:
params = self._prepare_params(messages, stop, **kwargs)
response: genai.types.GenerateContentResponse = chat_with_retry(
response: genai.types.GenerateContentResponse = _chat_with_retry(
**params,
generation_method=self._generation_method,
)
@@ -574,7 +563,7 @@ Supported examples:
**kwargs: Any,
) -> ChatResult:
params = self._prepare_params(messages, stop, **kwargs)
response: genai.types.GenerateContentResponse = await achat_with_retry(
response: genai.types.GenerateContentResponse = await _achat_with_retry(
**params,
generation_method=self._async_generation_method,
)
@@ -588,7 +577,7 @@ Supported examples:
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
params = self._prepare_params(messages, stop, **kwargs)
response: genai.types.GenerateContentResponse = chat_with_retry(
response: genai.types.GenerateContentResponse = _chat_with_retry(
**params,
generation_method=self._generation_method,
stream=True,
@@ -614,7 +603,7 @@ Supported examples:
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
params = self._prepare_params(messages, stop, **kwargs)
async for chunk in await achat_with_retry(
async for chunk in await _achat_with_retry(
**params,
generation_method=self._async_generation_method,
stream=True,

View File

@@ -0,0 +1,99 @@
from typing import Dict, List, Optional
# TODO: remove ignore once the google package is published with types
import google.generativeai as genai # type: ignore[import]
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.utils import get_from_dict_or_env
from langchain_google_genai._common import GoogleGenerativeAIError
class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
"""`Google Generative AI Embeddings`.
To use, you must have either:
1. The ``GOOGLE_API_KEY``` environment variable set with your API key, or
2. Pass your API key using the google_api_key kwarg to the ChatGoogle
constructor.
Example:
.. code-block:: python
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("What's our Q1 revenue?")
"""
model: str = Field(
...,
description="The name of the embedding model to use. "
"Example: models/embedding-001",
)
task_type: Optional[str] = Field(
None,
description="The task type. Valid options include: "
"task_type_unspecified, retrieval_query, retrieval_document, "
"semantic_similarity, classification, and clustering",
)
google_api_key: Optional[SecretStr] = Field(
None,
description="The Google API key to use. If not provided, "
"the GOOGLE_API_KEY environment variable will be used.",
)
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validates that the python package exists in environment."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
if isinstance(google_api_key, SecretStr):
google_api_key = google_api_key.get_secret_value()
genai.configure(api_key=google_api_key)
return values
def _embed(
self, texts: List[str], task_type: str, title: Optional[str] = None
) -> List[List[float]]:
task_type = self.task_type or "retrieval_document"
try:
result = genai.embed_content(
model=self.model,
content=texts,
task_type=task_type,
title=title,
)
except Exception as e:
raise GoogleGenerativeAIError(f"Error embedding content: {e}") from e
return result["embedding"]
def embed_documents(
self, texts: List[str], batch_size: int = 5
) -> List[List[float]]:
"""Embed a list of strings. Vertex AI currently
sets a max batch size of 5 strings.
Args:
texts: List[str] The list of strings to embed.
batch_size: [int] The batch size of embeddings to send to the model
Returns:
List of embeddings, one for each text.
"""
task_type = self.task_type or "retrieval_document"
return self._embed(texts, task_type=task_type)
def embed_query(self, text: str) -> List[float]:
"""Embed a text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
task_type = self.task_type or "retrieval_query"
return self._embed([text], task_type=task_type)[0]

View File

@@ -0,0 +1,262 @@
from __future__ import annotations
from typing import Any, Callable, Dict, Iterator, List, Optional, Union
import google.api_core
import google.generativeai as genai # type: ignore[import]
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.llms import BaseLLM, create_base_retry_decorator
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.utils import get_from_dict_or_env
def _create_retry_decorator(
llm: BaseLLM,
*,
max_retries: int = 1,
run_manager: Optional[
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
] = None,
) -> Callable[[Any], Any]:
"""Creates a retry decorator for Vertex / Palm LLMs."""
errors = [
google.api_core.exceptions.ResourceExhausted,
google.api_core.exceptions.ServiceUnavailable,
google.api_core.exceptions.Aborted,
google.api_core.exceptions.DeadlineExceeded,
google.api_core.exceptions.GoogleAPIError,
]
decorator = create_base_retry_decorator(
error_types=errors, max_retries=max_retries, run_manager=run_manager
)
return decorator
def _completion_with_retry(
llm: GoogleGenerativeAI,
prompt: LanguageModelInput,
is_gemini: bool = False,
stream: bool = False,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(
llm, max_retries=llm.max_retries, run_manager=run_manager
)
@retry_decorator
def _completion_with_retry(
prompt: LanguageModelInput, is_gemini: bool, stream: bool, **kwargs: Any
) -> Any:
generation_config = kwargs.get("generation_config", {})
if is_gemini:
return llm.client.generate_content(
contents=prompt, stream=stream, generation_config=generation_config
)
return llm.client.generate_text(prompt=prompt, **kwargs)
return _completion_with_retry(
prompt=prompt, is_gemini=is_gemini, stream=stream, **kwargs
)
def _is_gemini_model(model_name: str) -> bool:
return "gemini" in model_name
def _strip_erroneous_leading_spaces(text: str) -> str:
"""Strip erroneous leading spaces from text.
The PaLM API will sometimes erroneously return a single leading space in all
lines > 1. This function strips that space.
"""
has_leading_space = all(not line or line[0] == " " for line in text.split("\n")[1:])
if has_leading_space:
return text.replace("\n ", "\n")
else:
return text
class GoogleGenerativeAI(BaseLLM, BaseModel):
"""Google GenerativeAI models.
Example:
.. code-block:: python
from langchain_google_genai import GoogleGenerativeAI
llm = GoogleGenerativeAI(model="gemini-pro")
"""
client: Any #: :meta private:
model: str = Field(
...,
description="""The name of the model to use.
Supported examples:
- gemini-pro
- models/text-bison-001""",
)
"""Model name to use."""
google_api_key: Optional[SecretStr] = None
temperature: float = 0.7
"""Run inference with this temperature. Must by in the closed interval
[0.0, 1.0]."""
top_p: Optional[float] = None
"""Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
top_k: Optional[int] = None
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
Must be positive."""
max_output_tokens: Optional[int] = None
"""Maximum number of tokens to include in a candidate. Must be greater than zero.
If unset, will default to 64."""
n: int = 1
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated."""
max_retries: int = 6
"""The maximum number of retries to make when generating."""
@property
def is_gemini(self) -> bool:
"""Returns whether a model is belongs to a Gemini family or not."""
return _is_gemini_model(self.model)
@property
def lc_secrets(self) -> Dict[str, str]:
return {"google_api_key": "GOOGLE_API_KEY"}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
model_name = values["model"]
if isinstance(google_api_key, SecretStr):
google_api_key = google_api_key.get_secret_value()
genai.configure(api_key=google_api_key)
if _is_gemini_model(model_name):
values["client"] = genai.GenerativeModel(model_name=model_name)
else:
values["client"] = genai
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
if values["top_k"] is not None and values["top_k"] <= 0:
raise ValueError("top_k must be positive")
if values["max_output_tokens"] is not None and values["max_output_tokens"] <= 0:
raise ValueError("max_output_tokens must be greater than zero")
return values
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations: List[List[Generation]] = []
generation_config = {
"stop_sequences": stop,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"max_output_tokens": self.max_output_tokens,
"candidate_count": self.n,
}
for prompt in prompts:
if self.is_gemini:
res = _completion_with_retry(
self,
prompt=prompt,
stream=False,
is_gemini=True,
run_manager=run_manager,
generation_config=generation_config,
)
candidates = [
"".join([p.text for p in c.content.parts]) for c in res.candidates
]
generations.append([Generation(text=c) for c in candidates])
else:
res = _completion_with_retry(
self,
model=self.model,
prompt=prompt,
stream=False,
is_gemini=False,
run_manager=run_manager,
**generation_config,
)
prompt_generations = []
for candidate in res.candidates:
raw_text = candidate["output"]
stripped_text = _strip_erroneous_leading_spaces(raw_text)
prompt_generations.append(Generation(text=stripped_text))
generations.append(prompt_generations)
return LLMResult(generations=generations)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
generation_config = kwargs.get("generation_config", {})
if stop:
generation_config["stop_sequences"] = stop
for stream_resp in _completion_with_retry(
self,
prompt,
stream=True,
is_gemini=True,
run_manager=run_manager,
generation_config=generation_config,
**kwargs,
):
chunk = GenerationChunk(text=stream_resp.text)
yield chunk
if run_manager:
run_manager.on_llm_new_token(
stream_resp.text,
chunk=chunk,
verbose=self.verbose,
)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "google_palm"
def get_num_tokens(self, text: str) -> int:
"""Get the number of tokens present in the text.
Useful for checking if an input will fit in a model's context window.
Args:
text: The string input to tokenize.
Returns:
The integer number of tokens in the text.
"""
if self.is_gemini:
raise ValueError("Counting tokens is not yet supported!")
result = self.client.count_text_tokens(model=self.model, prompt=text)
return result["token_count"]

View File

@@ -546,6 +546,51 @@ files = [
{file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"},
]
[[package]]
name = "numpy"
version = "1.26.2"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f"},
{file = "numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440"},
{file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75"},
{file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00"},
{file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe"},
{file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523"},
{file = "numpy-1.26.2-cp310-cp310-win32.whl", hash = "sha256:22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9"},
{file = "numpy-1.26.2-cp310-cp310-win_amd64.whl", hash = "sha256:26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919"},
{file = "numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841"},
{file = "numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1"},
{file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a"},
{file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b"},
{file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7"},
{file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8"},
{file = "numpy-1.26.2-cp311-cp311-win32.whl", hash = "sha256:a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186"},
{file = "numpy-1.26.2-cp311-cp311-win_amd64.whl", hash = "sha256:2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d"},
{file = "numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0"},
{file = "numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75"},
{file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7"},
{file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6"},
{file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6"},
{file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec"},
{file = "numpy-1.26.2-cp312-cp312-win32.whl", hash = "sha256:4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167"},
{file = "numpy-1.26.2-cp312-cp312-win_amd64.whl", hash = "sha256:b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e"},
{file = "numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef"},
{file = "numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2"},
{file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3"},
{file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818"},
{file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210"},
{file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36"},
{file = "numpy-1.26.2-cp39-cp39-win32.whl", hash = "sha256:bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80"},
{file = "numpy-1.26.2-cp39-cp39-win_amd64.whl", hash = "sha256:2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060"},
{file = "numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79"},
{file = "numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d"},
{file = "numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841"},
{file = "numpy-1.26.2.tar.gz", hash = "sha256:f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea"},
]
[[package]]
name = "packaging"
version = "23.2"
@@ -1226,7 +1271,10 @@ files = [
[package.extras]
watchmedo = ["PyYAML (>=3.10)"]
[extras]
images = ["pillow"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.9,<4.0"
content-hash = "7753b9e2cb62c5b4dac124f0ff43027232c45138dbf07fdacc3c320b82367dad"
content-hash = "f3b43f02c7300c3003347dbdfa9c07ddba988aab1387eda3efa02b2351c868d9"

View File

@@ -1,14 +1,19 @@
[tool.poetry]
name = "langchain-google-genai"
version = "0.0.2"
version = "0.0.4"
description = "An integration package connecting Google's genai package and LangChain"
authors = []
readme = "README.md"
repository = "https://github.com/langchain-ai/langchain/blob/master/libs/partners/google-genai"
[tool.poetry.dependencies]
python = ">=3.9,<4.0"
langchain-core = "^0.1"
google-generativeai = "^0.3.1"
pillow = { version = "^10.1.0", optional = true }
[tool.poetry.extras]
images = ["pillow"]
[tool.poetry.group.test]
optional = true
@@ -16,11 +21,12 @@ optional = true
[tool.poetry.group.test.dependencies]
pytest = "^7.3.0"
freezegun = "^1.2.2"
pytest-mock = "^3.10.0"
pytest-mock = "^3.10.0"
syrupy = "^4.0.2"
pytest-watcher = "^0.3.4"
pytest-asyncio = "^0.21.1"
langchain-core = {path = "../../core", develop = true}
langchain-core = { path = "../../core", develop = true }
numpy = "^1.26.2"
[tool.poetry.group.codespell]
optional = true
@@ -32,6 +38,8 @@ codespell = "^2.2.0"
optional = true
[tool.poetry.group.test_integration.dependencies]
pillow = "^10.1.0"
[tool.poetry.group.lint]
optional = true
@@ -41,7 +49,7 @@ ruff = "^0.1.5"
[tool.poetry.group.typing.dependencies]
mypy = "^0.991"
langchain-core = {path = "../../core", develop = true}
langchain-core = { path = "../../core", develop = true }
types-requests = "^2.28.11.5"
types-google-cloud-ndb = "^2.2.0.1"
types-pillow = "^10.1.0.2"
@@ -50,7 +58,7 @@ types-pillow = "^10.1.0.2"
optional = true
[tool.poetry.group.dev.dependencies]
langchain-core = {path = "../../core", develop = true}
langchain-core = { path = "../../core", develop = true }
pillow = "^10.1.0"
types-requests = "^2.31.0.10"
types-pillow = "^10.1.0.2"
@@ -58,19 +66,16 @@ types-google-cloud-ndb = "^2.2.0.1"
[tool.ruff]
select = [
"E", # pycodestyle
"F", # pyflakes
"I", # isort
"E", # pycodestyle
"F", # pyflakes
"I", # isort
]
[tool.mypy]
disallow_untyped_defs = "True"
exclude = ["notebooks", "examples", "example_data", "langchain_core/pydantic"]
[tool.coverage.run]
omit = [
"tests/*",
]
omit = ["tests/*"]
[build-system]
requires = ["poetry-core>=1.0.0"]

View File

@@ -0,0 +1,98 @@
import numpy as np
import pytest
from langchain_google_genai._common import GoogleGenerativeAIError
from langchain_google_genai.embeddings import GoogleGenerativeAIEmbeddings
_MODEL = "models/embedding-001"
@pytest.mark.parametrize(
"query",
[
"Hi",
"This is a longer query string to test the embedding functionality of the"
" model against the pickle rick?",
],
)
def test_embed_query_different_lengths(query: str) -> None:
"""Test embedding queries of different lengths."""
model = GoogleGenerativeAIEmbeddings(model=_MODEL)
result = model.embed_query(query)
assert len(result) == 768
@pytest.mark.parametrize(
"query",
[
"Hi",
"This is a longer query string to test the embedding functionality of the"
" model against the pickle rick?",
],
)
async def test_aembed_query_different_lengths(query: str) -> None:
"""Test embedding queries of different lengths."""
model = GoogleGenerativeAIEmbeddings(model=_MODEL)
result = await model.aembed_query(query)
assert len(result) == 768
def test_embed_documents() -> None:
"""Test embedding a query."""
model = GoogleGenerativeAIEmbeddings(
model=_MODEL,
)
result = model.embed_documents(["Hello world", "Good day, world"])
assert len(result) == 2
assert len(result[0]) == 768
assert len(result[1]) == 768
async def test_aembed_documents() -> None:
"""Test embedding a query."""
model = GoogleGenerativeAIEmbeddings(
model=_MODEL,
)
result = await model.aembed_documents(["Hello world", "Good day, world"])
assert len(result) == 2
assert len(result[0]) == 768
assert len(result[1]) == 768
def test_invalid_model_error_handling() -> None:
"""Test error handling with an invalid model name."""
with pytest.raises(GoogleGenerativeAIError):
GoogleGenerativeAIEmbeddings(model="invalid_model").embed_query("Hello world")
def test_invalid_api_key_error_handling() -> None:
"""Test error handling with an invalid API key."""
with pytest.raises(GoogleGenerativeAIError):
GoogleGenerativeAIEmbeddings(
model=_MODEL, google_api_key="invalid_key"
).embed_query("Hello world")
def test_embed_documents_consistency() -> None:
"""Test embedding consistency for the same document."""
model = GoogleGenerativeAIEmbeddings(model=_MODEL)
doc = "Consistent document for testing"
result1 = model.embed_documents([doc])
result2 = model.embed_documents([doc])
assert result1 == result2
def test_embed_documents_quality() -> None:
"""Smoke test embedding quality by comparing similar and dissimilar documents."""
model = GoogleGenerativeAIEmbeddings(model=_MODEL)
similar_docs = ["Document A", "Similar Document A"]
dissimilar_docs = ["Document A", "Completely Different Zebra"]
similar_embeddings = model.embed_documents(similar_docs)
dissimilar_embeddings = model.embed_documents(dissimilar_docs)
similar_distance = np.linalg.norm(
np.array(similar_embeddings[0]) - np.array(similar_embeddings[1])
)
dissimilar_distance = np.linalg.norm(
np.array(dissimilar_embeddings[0]) - np.array(dissimilar_embeddings[1])
)
assert similar_distance < dissimilar_distance

View File

@@ -0,0 +1,65 @@
"""Test Google GenerativeAI API wrapper.
Note: This test must be run with the GOOGLE_API_KEY environment variable set to a
valid API key.
"""
import pytest
from langchain_core.outputs import LLMResult
from langchain_google_genai.llms import GoogleGenerativeAI
model_names = [None, "models/text-bison-001", "gemini-pro"]
@pytest.mark.parametrize(
"model_name",
model_names,
)
def test_google_generativeai_call(model_name: str) -> None:
"""Test valid call to Google GenerativeAI text API."""
if model_name:
llm = GoogleGenerativeAI(max_output_tokens=10, model=model_name)
else:
llm = GoogleGenerativeAI(max_output_tokens=10)
output = llm("Say foo:")
assert isinstance(output, str)
assert llm._llm_type == "google_palm"
if model_name and "gemini" in model_name:
assert llm.client.model_name == "models/gemini-pro"
else:
assert llm.model == "models/text-bison-001"
@pytest.mark.parametrize(
"model_name",
model_names,
)
def test_google_generativeai_generate(model_name: str) -> None:
n = 1 if model_name == "gemini-pro" else 2
if model_name:
llm = GoogleGenerativeAI(temperature=0.3, n=n, model=model_name)
else:
llm = GoogleGenerativeAI(temperature=0.3, n=n)
output = llm.generate(["Say foo:"])
assert isinstance(output, LLMResult)
assert len(output.generations) == 1
assert len(output.generations[0]) == n
def test_google_generativeai_get_num_tokens() -> None:
llm = GoogleGenerativeAI()
output = llm.get_num_tokens("How are you?")
assert output == 4
async def test_google_generativeai_agenerate() -> None:
llm = GoogleGenerativeAI(temperature=0, model="gemini-pro")
output = await llm.agenerate(["Please say foo:"])
assert isinstance(output, LLMResult)
def test_generativeai_stream() -> None:
llm = GoogleGenerativeAI(temperature=0, model="gemini-pro")
outputs = list(llm.stream("Please say foo:"))
assert isinstance(outputs[0], str)

View File

@@ -1,5 +1,6 @@
"""Test chat model integration."""
from langchain_core.pydantic_v1 import SecretStr
from pytest import CaptureFixture
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
@@ -22,3 +23,16 @@ def test_integration_initialization() -> None:
temperature=0.7,
candidate_count=2,
)
def test_api_key_is_string() -> None:
chat = ChatGoogleGenerativeAI(model="gemini-nano", google_api_key="secret-api-key")
assert isinstance(chat.google_api_key, SecretStr)
def test_api_key_masked_when_passed_via_constructor(capsys: CaptureFixture) -> None:
chat = ChatGoogleGenerativeAI(model="gemini-nano", google_api_key="secret-api-key")
print(chat.google_api_key, end="")
captured = capsys.readouterr()
assert captured.out == "**********"

View File

@@ -0,0 +1,37 @@
"""Test embeddings model integration."""
from langchain_core.pydantic_v1 import SecretStr
from pytest import CaptureFixture
from langchain_google_genai.embeddings import GoogleGenerativeAIEmbeddings
def test_integration_initialization() -> None:
"""Test chat model initialization."""
GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key="...",
)
GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key="...",
task_type="retrieval_document",
)
def test_api_key_is_string() -> None:
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key="secret-api-key",
)
assert isinstance(embeddings.google_api_key, SecretStr)
def test_api_key_masked_when_passed_via_constructor(capsys: CaptureFixture) -> None:
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key="secret-api-key",
)
print(embeddings.google_api_key, end="")
captured = capsys.readouterr()
assert captured.out == "**********"

View File

@@ -2,6 +2,8 @@ from langchain_google_genai import __all__
EXPECTED_ALL = [
"ChatGoogleGenerativeAI",
"GoogleGenerativeAIEmbeddings",
"GoogleGenerativeAI",
]

View File

@@ -0,0 +1 @@
__pycache__

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023 LangChain, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,62 @@
.PHONY: all format lint test tests integration_tests help
# Default target executed when no arguments are given to make.
all: help
# Define a variable for the test file path.
TEST_FILE ?= tests/unit_tests/
test:
poetry run pytest $(TEST_FILE)
tests:
poetry run pytest $(TEST_FILE)
check_imports: $(shell find langchain_nvidia_aiplay -name '*.py')
poetry run python ./scripts/check_imports.py $^
integration_tests:
poetry run pytest tests/integration_tests
######################
# LINTING AND FORMATTING
######################
# Define a variable for Python and notebook files.
PYTHON_FILES=.
MYPY_CACHE=.mypy_cache
lint format: PYTHON_FILES=.
lint_diff format_diff: PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$')
lint_package: PYTHON_FILES=langchain_nvidia_aiplay
lint_tests: PYTHON_FILES=tests
lint_tests: MYPY_CACHE=.mypy_cache_test
lint lint_diff lint_package lint_tests:
./scripts/check_pydantic.sh .
./scripts/lint_imports.sh
poetry run ruff .
[ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) --diff
[ "$(PYTHON_FILES)" = "" ] || poetry run mypy $(PYTHON_FILES)
format format_diff:
poetry run ruff format $(PYTHON_FILES)
poetry run ruff --select I --fix $(PYTHON_FILES)
spell_check:
poetry run codespell --toml pyproject.toml
spell_fix:
poetry run codespell --toml pyproject.toml -w
######################
# HELP
######################
help:
@echo '----'
@echo 'format - run code formatters'
@echo 'lint - run linters'
@echo 'test - run unit tests'
@echo 'tests - run unit tests'
@echo 'test TEST_FILE=<test_file> - run all tests in file'

View File

@@ -0,0 +1,358 @@
# langchain-nvidia-aiplay
The `langchain-nvidia-aiplay` package contains LangChain integrations for chat models and embeddings powered by the NVIDIA AI Playground.
>[NVIDIA AI Playground](https://www.nvidia.com/en-us/research/ai-playground/) gives users easy access to hosted endpoints for generative AI models like Llama-2, SteerLM, Mistral, etc. Using the API, you can query NVCR (NVIDIA Container Registry) function endpoints and get quick results from a DGX-hosted cloud compute environment. All models are source-accessible and can be deployed on your own compute cluster.
Below is an example on how to use some common chat model functionality.
## Installation
```python
%pip install -U --quiet langchain-nvidia-aiplay
```
## Setup
**To get started:**
1. Create a free account with the [NVIDIA GPU Cloud](https://catalog.ngc.nvidia.com/) service, which hosts AI solution catalogs, containers, models, etc.
2. Navigate to `Catalog > AI Foundation Models > (Model with API endpoint)`.
3. Select the `API` option and click `Generate Key`.
4. Save the generated key as `NVIDIA_API_KEY`. From there, you should have access to the endpoints.
```python
import getpass
import os
if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"):
nvidia_api_key = getpass.getpass("Enter your NVIDIA AIPLAY API key: ")
assert nvidia_api_key.startswith("nvapi-"), f"{nvidia_api_key[:5]}... is not a valid key"
os.environ["NVIDIA_API_KEY"] = nvidia_api_key
```
```python
## Core LC Chat Interface
from langchain_nvidia_aiplay import ChatNVAIPlay
llm = ChatNVAIPlay(model="mixtral_8x7b")
result = llm.invoke("Write a ballad about LangChain.")
print(result.content)
```
## Stream, Batch, and Async
These models natively support streaming, and as is the case with all LangChain LLMs they expose a batch method to handle concurrent requests, as well as async methods for invoke, stream, and batch. Below are a few examples.
```python
print(llm.batch(["What's 2*3?", "What's 2*6?"]))
# Or via the async API
# await llm.abatch(["What's 2*3?", "What's 2*6?"])
```
```python
for chunk in llm.stream("How far can a seagull fly in one day?"):
# Show the token separations
print(chunk.content, end="|")
```
```python
async for chunk in llm.astream("How long does it take for monarch butterflies to migrate?"):
print(chunk.content, end="|")
```
## Supported models
Querying `available_models` will still give you all of the other models offered by your API credentials.
The `playground_` prefix is optional.
```python
list(llm.available_models)
# ['playground_llama2_13b',
# 'playground_llama2_code_13b',
# 'playground_clip',
# 'playground_fuyu_8b',
# 'playground_mistral_7b',
# 'playground_nvolveqa_40k',
# 'playground_yi_34b',
# 'playground_nemotron_steerlm_8b',
# 'playground_nv_llama2_rlhf_70b',
# 'playground_llama2_code_34b',
# 'playground_mixtral_8x7b',
# 'playground_neva_22b',
# 'playground_steerlm_llama_70b',
# 'playground_nemotron_qa_8b',
# 'playground_sdxl']
```
## Model types
All of these models above are supported and can be accessed via `ChatNVAIPlay`.
Some model types support unique prompting techniques and chat messages. We will review a few important ones below.
**To find out more about a specific model, please navigate to the API section of an AI Playground model [as linked here](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/codellama-13b/api).**
### General Chat
Models such as `llama2_13b` and `mixtral_8x7b` are good all-around models that you can use for with any LangChain chat messages. Example below.
```python
from langchain_nvidia_aiplay import ChatNVAIPlay
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful AI assistant named Fred."),
("user", "{input}")
]
)
chain = (
prompt
| ChatNVAIPlay(model="llama2_13b")
| StrOutputParser()
)
for txt in chain.stream({"input": "What's your name?"}):
print(txt, end="")
```
### Code Generation
These models accept the same arguments and input structure as regular chat models, but they tend to perform better on code-genreation and structured code tasks. An example of this is `llama2_code_13b`.
```python
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are an expert coding AI. Respond only in valid python; no narration whatsoever."),
("user", "{input}")
]
)
chain = (
prompt
| ChatNVAIPlay(model="llama2_code_13b")
| StrOutputParser()
)
for txt in chain.stream({"input": "How do I solve this fizz buzz problem?"}):
print(txt, end="")
```
## Steering LLMs
> [SteerLM-optimized models](https://developer.nvidia.com/blog/announcing-steerlm-a-simple-and-practical-technique-to-customize-llms-during-inference/) supports "dynamic steering" of model outputs at inference time.
This lets you "control" the complexity, verbosity, and creativity of the model via integer labels on a scale from 0 to 9. Under the hood, these are passed as a special type of assistant message to the model.
The "steer" models support this type of input, such as `steerlm_llama_70b`
```python
from langchain_nvidia_aiplay import ChatNVAIPlay
llm = ChatNVAIPlay(model="steerlm_llama_70b")
# Try making it uncreative and not verbose
complex_result = llm.invoke(
"What's a PB&J?",
labels={"creativity": 0, "complexity": 3, "verbosity": 0}
)
print("Un-creative\n")
print(complex_result.content)
# Try making it very creative and verbose
print("\n\nCreative\n")
creative_result = llm.invoke(
"What's a PB&J?",
labels={"creativity": 9, "complexity": 3, "verbosity": 9}
)
print(creative_result.content)
```
#### Use within LCEL
The labels are passed as invocation params. You can `bind` these to the LLM using the `bind` method on the LLM to include it within a declarative, functional chain. Below is an example.
```python
from langchain_nvidia_aiplay import ChatNVAIPlay
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful AI assistant named Fred."),
("user", "{input}")
]
)
chain = (
prompt
| ChatNVAIPlay(model="steerlm_llama_70b").bind(labels={"creativity": 9, "complexity": 0, "verbosity": 9})
| StrOutputParser()
)
for txt in chain.stream({"input": "Why is a PB&J?"}):
print(txt, end="")
```
## Multimodal
NVidia also supports multimodal inputs, meaning you can provide both images and text for the model to reason over.
These models also accept `labels`, similar to the Steering LLMs above. In addition to `creativity`, `complexity`, and `verbosity`, these models support a `quality` toggle.
An example model supporting multimodal inputs is `playground_neva_22b`.
These models accept LangChain's standard image formats. Below are examples.
```python
import requests
image_url = "https://picsum.photos/seed/kitten/300/200"
image_content = requests.get(image_url).content
```
Initialize the model like so:
```python
from langchain_nvidia_aiplay import ChatNVAIPlay
llm = ChatNVAIPlay(model="playground_neva_22b")
```
#### Passing an image as a URL
```python
from langchain_core.messages import HumanMessage
llm.invoke(
[
HumanMessage(content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
])
])
```
```python
### You can specify the labels for steering here as well. You can try setting a low verbosity, for instance
from langchain_core.messages import HumanMessage
llm.invoke(
[
HumanMessage(content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
])
],
labels={
"creativity": 0,
"quality": 9,
"complexity": 0,
"verbosity": 0
}
)
```
#### Passing an image as a base64 encoded string
```python
import base64
b64_string = base64.b64encode(image_content).decode('utf-8')
llm.invoke(
[
HumanMessage(content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64_string}"}},
])
])
```
#### Directly within the string
The NVIDIA API uniquely accepts images as base64 images inlined within <img> HTML tags. While this isn't interoperable with other LLMs, you can directly prompt the model accordingly.
```python
base64_with_mime_type = f"data:image/png;base64,{b64_string}"
llm.invoke(
f'What\'s in this image?\n<img src="{base64_with_mime_type}" />'
)
```
## RAG: Context models
NVIDIA also has Q&A models that support a special "context" chat message containing retrieved context (such as documents within a RAG chain). This is useful to avoid prompt-injecting the model.
**Note:** Only "user" (human) and "context" chat messages are supported for these models, not system or AI messages useful in conversational flows.
The `_qa_` models like `nemotron_qa_8b` support this.
```python
from langchain_nvidia_aiplay import ChatNVAIPlay
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.messages import ChatMessage
prompt = ChatPromptTemplate.from_messages(
[
ChatMessage(role="context", content="Parrots and Cats have signed the peace accord."),
("user", "{input}")
]
)
llm = ChatNVAIPlay(model="nemotron_qa_8b")
chain = (
prompt
| llm
| StrOutputParser()
)
chain.invoke({"input": "What was signed?"})
```
## Embeddings
You can also connect to embeddings models through this package. Below is an example:
```
from langchain_nvidia_aiplay import NVAIPlayEmbeddings
embedder = NVAIPlayEmbeddings(model="nvolveqa_40k")
embedder.embed_query("What's the temperature today?")
embedder.embed_documents([
"The temperature is 42 degrees.",
"Class is dismissed at 9 PM."
])
```
By default the embedding model will use the "passage" type for documents and "query" type for queries, but you can fix this on the instance.
```python
query_embedder = NVAIPlayEmbeddings(model="nvolveqa_40k", model_type="query")
doc_embeddder = NVAIPlayEmbeddings(model="nvolveqa_40k", model_type="passage")
```

View File

@@ -0,0 +1,45 @@
"""
**LangChain NVIDIA AI Playground Integration**
This comprehensive module integrates NVIDIA's state-of-the-art AI Playground, featuring advanced models for conversational AI and semantic embeddings, into the LangChain framework. It provides robust classes for seamless interaction with NVIDIA's AI models, particularly tailored for enriching conversational experiences and enhancing semantic understanding in various applications.
**Features:**
1. **Chat Models (`ChatNVAIPlay`):** This class serves as the primary interface for interacting with NVIDIA AI Playground's chat models. Users can effortlessly utilize NVIDIA's advanced models like 'Mistral' to engage in rich, context-aware conversations, applicable across diverse domains from customer support to interactive storytelling.
2. **Semantic Embeddings (`NVAIPlayEmbeddings`):** The module offers capabilities to generate sophisticated embeddings using NVIDIA's AI models. These embeddings are instrumental for tasks like semantic analysis, text similarity assessments, and contextual understanding, significantly enhancing the depth of NLP applications.
**Installation:**
Install this module easily using pip:
```python
pip install langchain-nvidia-aiplay
```
## Utilizing Chat Models:
After setting up the environment, interact with NVIDIA AI Playground models:
```python
from langchain_nvidia_aiplay import ChatNVAIPlay
ai_chat_model = ChatNVAIPlay(model="llama2_13b")
response = ai_chat_model.invoke("Tell me about the LangChain integration.")
```
# Generating Semantic Embeddings:
Use NVIDIA's models for creating embeddings, useful in various NLP tasks:
```python
from langchain_nvidia_aiplay import NVAIPlayEmbeddings
embed_model = NVAIPlayEmbeddings(model="nvolveqa_40k")
embedding_output = embed_model.embed_query("Exploring AI capabilities.")
```
""" # noqa: E501
from langchain_nvidia_aiplay.chat_models import ChatNVAIPlay
from langchain_nvidia_aiplay.embeddings import NVAIPlayEmbeddings
__all__ = ["ChatNVAIPlay", "NVAIPlayEmbeddings"]

View File

@@ -0,0 +1,525 @@
from __future__ import annotations
import json
import logging
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Generator,
Iterator,
List,
Optional,
Sequence,
Tuple,
Union,
)
import aiohttp
import requests
from langchain_core.messages import BaseMessage
from langchain_core.pydantic_v1 import (
BaseModel,
Field,
PrivateAttr,
SecretStr,
root_validator,
)
from langchain_core.utils import get_from_dict_or_env
from requests.models import Response
logger = logging.getLogger(__name__)
class NVCRModel(BaseModel):
"""
Underlying Client for interacting with the AI Playground API.
Leveraged by the NVAIPlayBaseModel to provide a simple requests-oriented interface.
Direct abstraction over NGC-recommended streaming/non-streaming Python solutions.
NOTE: AI Playground does not currently support raw text continuation.
"""
## Core defaults. These probably should not be changed
fetch_url_format: str = Field("https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/")
call_invoke_base: str = Field("https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions")
get_session_fn: Callable = Field(requests.Session)
get_asession_fn: Callable = Field(aiohttp.ClientSession)
nvidia_api_key: SecretStr = Field(
...,
description="API key for NVIDIA AI Playground. Should start with `nvapi-`",
)
is_staging: bool = Field(False, description="Whether to use staging API")
## Generation arguments
max_tries: int = Field(5, ge=1)
headers_tmpl: dict = Field(
...,
description="Headers template for API calls."
" Should contain `call` and `stream` keys.",
)
_available_functions: Optional[List[dict]] = PrivateAttr(default=None)
_available_models: Optional[dict] = PrivateAttr(default=None)
@property
def headers(self) -> dict:
"""Return headers with API key injected"""
headers_ = self.headers_tmpl.copy()
for header in headers_.values():
if "{nvidia_api_key}" in header["Authorization"]:
header["Authorization"] = header["Authorization"].format(
nvidia_api_key=self.nvidia_api_key.get_secret_value(),
)
return headers_
@root_validator(pre=True)
def validate_model(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate and update model arguments, including API key and formatting"""
values["nvidia_api_key"] = get_from_dict_or_env(
values,
"nvidia_api_key",
"NVIDIA_API_KEY",
)
if "nvapi-" not in values.get("nvidia_api_key", ""):
raise ValueError("Invalid NVAPI key detected. Should start with `nvapi-`")
is_staging = "nvapi-stg-" in values["nvidia_api_key"]
values["is_staging"] = is_staging
if "headers_tmpl" not in values:
values["headers_tmpl"] = {
"call": {
"Authorization": "Bearer {nvidia_api_key}",
"Accept": "application/json",
},
"stream": {
"Authorization": "Bearer {nvidia_api_key}",
"Accept": "text/event-stream",
"content-type": "application/json",
},
}
values["fetch_url_format"] = cls._stagify(
is_staging,
values.get(
"fetch_url_format", "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/"
),
)
values["call_invoke_base"] = cls._stagify(
is_staging,
values.get(
"call_invoke_base",
"https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions",
),
)
return values
@property
def available_models(self) -> dict:
"""List the available models that can be invoked."""
if self._available_models is not None:
return self._available_models
live_fns = [v for v in self.available_functions if v.get("status") == "ACTIVE"]
self._available_models = {v["name"]: v["id"] for v in live_fns}
return self._available_models
@property
def available_functions(self) -> List[dict]:
"""List the available functions that can be invoked."""
if self._available_functions is not None:
return self._available_functions
invoke_url = self._stagify(
self.is_staging, "https://api.nvcf.nvidia.com/v2/nvcf/functions"
)
query_res = self.query(invoke_url)
if "functions" not in query_res:
raise ValueError(
f"Unexpected response when querying {invoke_url}\n{query_res}"
)
self._available_functions = query_res["functions"]
return self._available_functions
@classmethod
def _stagify(cls, is_staging: bool, path: str) -> str:
"""Helper method to switch between staging and production endpoints"""
if is_staging and "stg.api" not in path:
return path.replace("api.", "stg.api.")
if not is_staging and "stg.api" in path:
return path.replace("stg.api.", "api.")
return path
####################################################################################
## Core utilities for posting and getting from NVCR
def _post(self, invoke_url: str, payload: dict = {}) -> Tuple[Response, Any]:
"""Method for posting to the AI Playground API."""
call_inputs = {
"url": invoke_url,
"headers": self.headers["call"],
"json": payload,
"stream": False,
}
session = self.get_session_fn()
response = session.post(**call_inputs)
self._try_raise(response)
return response, session
def _get(self, invoke_url: str, payload: dict = {}) -> Tuple[Response, Any]:
"""Method for getting from the AI Playground API."""
last_inputs = {
"url": invoke_url,
"headers": self.headers["call"],
"json": payload,
"stream": False,
}
session = self.get_session_fn()
last_response = session.get(**last_inputs)
self._try_raise(last_response)
return last_response, session
def _wait(self, response: Response, session: Any) -> Response:
"""Wait for a response from API after an initial response is made."""
i = 1
while response.status_code == 202:
request_id = response.headers.get("NVCF-REQID", "")
response = session.get(
self.fetch_url_format + request_id,
headers=self.headers["call"],
)
if response.status_code == 202:
try:
body = response.json()
except ValueError:
body = str(response)
if i > self.max_tries:
raise ValueError(f"Failed to get response with {i} tries: {body}")
self._try_raise(response)
return response
def _try_raise(self, response: Response) -> None:
"""Try to raise an error from a response"""
try:
response.raise_for_status()
except requests.HTTPError as e:
try:
rd = response.json()
except json.JSONDecodeError:
rd = response.__dict__
rd = rd.get("_content", rd)
if isinstance(rd, bytes):
rd = rd.decode("utf-8")[5:] ## lop of data: prefix ??
try:
rd = json.loads(rd)
except Exception:
rd = {"detail": rd}
title = f"[{rd.get('status', '###')}] {rd.get('title', 'Unknown Error')}"
body = f"{rd.get('detail', rd.get('type', rd))}"
raise Exception(f"{title}\n{body}") from e
####################################################################################
## Simple query interface to show the set of model options
def query(self, invoke_url: str, payload: dict = {}) -> dict:
"""Simple method for an end-to-end get query. Returns result dictionary"""
response, session = self._get(invoke_url, payload)
response = self._wait(response, session)
output = self._process_response(response)[0]
return output
def _process_response(self, response: Union[str, Response]) -> List[dict]:
"""General-purpose response processing for single responses and streams"""
if hasattr(response, "json"): ## For single response (i.e. non-streaming)
try:
return [response.json()]
except json.JSONDecodeError:
response = str(response.__dict__)
if isinstance(response, str): ## For set of responses (i.e. streaming)
msg_list = []
for msg in response.split("\n\n"):
if "{" not in msg:
continue
msg_list += [json.loads(msg[msg.find("{") :])]
return msg_list
raise ValueError(f"Received ill-formed response: {response}")
def _get_invoke_url(
self, model_name: Optional[str] = None, invoke_url: Optional[str] = None
) -> str:
"""Helper method to get invoke URL from a model name, URL, or endpoint stub"""
if not invoke_url:
if not model_name:
raise ValueError("URL or model name must be specified to invoke")
if model_name in self.available_models:
invoke_url = self.available_models[model_name]
elif f"playground_{model_name}" in self.available_models:
invoke_url = self.available_models[f"playground_{model_name}"]
else:
available_models_str = "\n".join(
[f"{k} - {v}" for k, v in self.available_models.items()]
)
raise ValueError(
f"Unknown model name {model_name} specified."
"\nAvailable models are:\n"
f"{available_models_str}"
)
if not invoke_url:
# For mypy
raise ValueError("URL or model name must be specified to invoke")
# Why is this even needed?
if "http" not in invoke_url:
invoke_url = f"{self.call_invoke_base}/{invoke_url}"
return invoke_url
####################################################################################
## Generation interface to allow users to generate new values from endpoints
def get_req(
self,
model_name: Optional[str] = None,
payload: dict = {},
invoke_url: Optional[str] = None,
stop: Optional[Sequence[str]] = None,
) -> Response:
"""Post to the API."""
invoke_url = self._get_invoke_url(model_name, invoke_url)
if payload.get("stream", False) is True:
payload = {**payload, "stream": False}
response, session = self._post(invoke_url, payload)
return self._wait(response, session)
def get_req_generation(
self,
model_name: Optional[str] = None,
payload: dict = {},
invoke_url: Optional[str] = None,
stop: Optional[Sequence[str]] = None,
) -> dict:
"""Method for an end-to-end post query with NVCR post-processing."""
response = self.get_req(model_name, payload, invoke_url)
output, _ = self.postprocess(response, stop=stop)
return output
def postprocess(
self, response: Union[str, Response], stop: Optional[Sequence[str]] = None
) -> Tuple[dict, bool]:
"""Parses a response from the AI Playground API.
Strongly assumes that the API will return a single response.
"""
msg_list = self._process_response(response)
msg, is_stopped = self._aggregate_msgs(msg_list)
msg, is_stopped = self._early_stop_msg(msg, is_stopped, stop=stop)
return msg, is_stopped
def _aggregate_msgs(self, msg_list: Sequence[dict]) -> Tuple[dict, bool]:
"""Dig out relevant details of aggregated message"""
content_buffer: Dict[str, Any] = dict()
content_holder: Dict[Any, Any] = dict()
is_stopped = False
for msg in msg_list:
if "choices" in msg:
## Tease out ['choices'][0]...['delta'/'message']
msg = msg.get("choices", [{}])[0]
is_stopped = msg.get("finish_reason", "") == "stop"
msg = msg.get("delta", msg.get("message", {"content": ""}))
elif "data" in msg:
## Tease out ['data'][0]...['embedding']
msg = msg.get("data", [{}])[0]
content_holder = msg
for k, v in msg.items():
if k in ("content",) and k in content_buffer:
content_buffer[k] += v
else:
content_buffer[k] = v
if is_stopped:
break
content_holder = {**content_holder, **content_buffer}
return content_holder, is_stopped
def _early_stop_msg(
self, msg: dict, is_stopped: bool, stop: Optional[Sequence[str]] = None
) -> Tuple[dict, bool]:
"""Try to early-terminate streaming or generation by iterating over stop list"""
content = msg.get("content", "")
if content and stop:
for stop_str in stop:
if stop_str and stop_str in content:
msg["content"] = content[: content.find(stop_str) + 1]
is_stopped = True
return msg, is_stopped
####################################################################################
## Streaming interface to allow you to iterate through progressive generations
def get_req_stream(
self,
model: Optional[str] = None,
payload: dict = {},
invoke_url: Optional[str] = None,
stop: Optional[Sequence[str]] = None,
) -> Iterator:
invoke_url = self._get_invoke_url(model, invoke_url)
if payload.get("stream", True) is False:
payload = {**payload, "stream": True}
last_inputs = {
"url": invoke_url,
"headers": self.headers["stream"],
"json": payload,
"stream": True,
}
response = self.get_session_fn().post(**last_inputs)
self._try_raise(response)
call = self.copy()
def out_gen() -> Generator[dict, Any, Any]:
## Good for client, since it allows self.last_input
for line in response.iter_lines():
if line and line.strip() != b"data: [DONE]":
line = line.decode("utf-8")
msg, final_line = call.postprocess(line, stop=stop)
yield msg
if final_line:
break
self._try_raise(response)
return (r for r in out_gen())
####################################################################################
## Asynchronous streaming interface to allow multiple generations to happen at once.
async def get_req_astream(
self,
model: Optional[str] = None,
payload: dict = {},
invoke_url: Optional[str] = None,
stop: Optional[Sequence[str]] = None,
) -> AsyncIterator:
invoke_url = self._get_invoke_url(model, invoke_url)
if payload.get("stream", True) is False:
payload = {**payload, "stream": True}
last_inputs = {
"url": invoke_url,
"headers": self.headers["stream"],
"json": payload,
}
async with self.get_asession_fn() as session:
async with session.post(**last_inputs) as response:
self._try_raise(response)
async for line in response.content.iter_any():
if line and line.strip() != b"data: [DONE]":
line = line.decode("utf-8")
msg, final_line = self.postprocess(line, stop=stop)
yield msg
if final_line:
break
class _NVAIPlayClient(BaseModel):
"""
Higher-Level Client for interacting with AI Playground API with argument defaults.
Is subclassed by NVAIPlayLLM/ChatNVAIPlay to provide a simple LangChain interface.
"""
client: NVCRModel = Field(NVCRModel)
model: str = Field(..., description="Name of the model to invoke")
temperature: float = Field(0.2, le=1.0, gt=0.0)
top_p: float = Field(0.7, le=1.0, ge=0.0)
max_tokens: int = Field(1024, le=1024, ge=32)
####################################################################################
@root_validator(pre=True)
def validate_client(cls, values: Any) -> Any:
"""Validate and update client arguments, including API key and formatting"""
if not values.get("client"):
values["client"] = NVCRModel(**values)
return values
@classmethod
def is_lc_serializable(cls) -> bool:
return True
@property
def available_functions(self) -> List[dict]:
"""Map the available functions that can be invoked."""
return self.client.available_functions
@property
def available_models(self) -> dict:
"""Map the available models that can be invoked."""
return self.client.available_models
def get_model_details(self, model: Optional[str] = None) -> dict:
"""Get more meta-details about a model retrieved by a given name"""
if model is None:
model = self.model
model_key = self.client._get_invoke_url(model).split("/")[-1]
known_fns = self.client.available_functions
fn_spec = [f for f in known_fns if f.get("id") == model_key][0]
return fn_spec
def get_generation(
self,
inputs: Sequence[Dict],
labels: Optional[dict] = None,
stop: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> dict:
"""Call to client generate method with call scope"""
payload = self.get_payload(inputs=inputs, stream=False, labels=labels, **kwargs)
out = self.client.get_req_generation(self.model, stop=stop, payload=payload)
return out
def get_stream(
self,
inputs: Sequence[Dict],
labels: Optional[dict] = None,
stop: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Iterator:
"""Call to client stream method with call scope"""
payload = self.get_payload(inputs=inputs, stream=True, labels=labels, **kwargs)
return self.client.get_req_stream(self.model, stop=stop, payload=payload)
def get_astream(
self,
inputs: Sequence[Dict],
labels: Optional[dict] = None,
stop: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> AsyncIterator:
"""Call to client astream methods with call scope"""
payload = self.get_payload(inputs=inputs, stream=True, labels=labels, **kwargs)
return self.client.get_req_astream(self.model, stop=stop, payload=payload)
def get_payload(
self, inputs: Sequence[Dict], labels: Optional[dict] = None, **kwargs: Any
) -> dict:
"""Generates payload for the _NVAIPlayClient API to send to service."""
return {
**self.preprocess(inputs=inputs, labels=labels),
**kwargs,
}
def preprocess(self, inputs: Sequence[Dict], labels: Optional[dict] = None) -> dict:
"""Prepares a message or list of messages for the payload"""
messages = [self.prep_msg(m) for m in inputs]
if labels:
# (WFH) Labels are currently (?) always passed as an assistant
# suffix message, but this API seems less stable.
messages += [{"labels": labels, "role": "assistant"}]
return {"messages": messages}
def prep_msg(self, msg: Union[str, dict, BaseMessage]) -> dict:
"""Helper Method: Ensures a message is a dictionary with a role and content."""
if isinstance(msg, str):
# (WFH) this shouldn't ever be reached but leaving this here bcs
# it's a Chesterton's fence I'm unwilling to touch
return dict(role="user", content=msg)
if isinstance(msg, dict):
if msg.get("content", None) is None:
raise ValueError(f"Message {msg} has no content")
return msg
raise ValueError(f"Unknown message received: {msg} of type {type(msg)}")

View File

@@ -0,0 +1,207 @@
"""Chat Model Components Derived from ChatModel/NVAIPlay"""
from __future__ import annotations
import base64
import logging
import os
import urllib.parse
from typing import (
Any,
AsyncIterator,
Dict,
Iterator,
List,
Mapping,
Optional,
Sequence,
Union,
)
import requests
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import SimpleChatModel
from langchain_core.messages import BaseMessage, ChatMessage, ChatMessageChunk
from langchain_core.outputs import ChatGenerationChunk
from langchain_nvidia_aiplay import _common as nv_aiplay
logger = logging.getLogger(__name__)
def _is_openai_parts_format(part: dict) -> bool:
return "type" in part
def _is_url(s: str) -> bool:
try:
result = urllib.parse.urlparse(s)
return all([result.scheme, result.netloc])
except Exception as e:
logger.debug(f"Unable to parse URL: {e}")
return False
def _is_b64(s: str) -> bool:
return s.startswith("data:image")
def _url_to_b64_string(image_source: str) -> str:
b64_template = "data:image/png;base64,{b64_string}"
try:
if _is_url(image_source):
response = requests.get(image_source)
response.raise_for_status()
encoded = base64.b64encode(response.content).decode("utf-8")
return b64_template.format(b64_string=encoded)
elif _is_b64(image_source):
return image_source
elif os.path.exists(image_source):
with open(image_source, "rb") as f:
encoded = base64.b64encode(f.read()).decode("utf-8")
return b64_template.format(b64_string=encoded)
else:
raise ValueError(
"The provided string is not a valid URL, base64, or file path."
)
except Exception as e:
raise ValueError(f"Unable to process the provided image source: {e}")
class ChatNVAIPlay(nv_aiplay._NVAIPlayClient, SimpleChatModel):
"""NVAIPlay chat model.
Example:
.. code-block:: python
from langchain_nvidia_aiplay import ChatNVAIPlay
model = ChatNVAIPlay(model="llama2_13b")
response = model.invoke("Hello")
"""
@property
def _llm_type(self) -> str:
"""Return type of NVIDIA AI Playground Interface."""
return "chat-nvidia-ai-playground"
def _call(
self,
messages: List[BaseMessage],
stop: Optional[Sequence[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
labels: Optional[dict] = None,
**kwargs: Any,
) -> str:
"""Invoke on a single list of chat messages."""
inputs = self.custom_preprocess(messages)
responses = self.get_generation(
inputs=inputs, stop=stop, labels=labels, **kwargs
)
outputs = self.custom_postprocess(responses)
return outputs
def _get_filled_chunk(
self, text: str, role: Optional[str] = "assistant"
) -> ChatGenerationChunk:
"""Fill the generation chunk."""
return ChatGenerationChunk(message=ChatMessageChunk(content=text, role=role))
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[Sequence[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
labels: Optional[dict] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Allows streaming to model!"""
inputs = self.custom_preprocess(messages)
for response in self.get_stream(
inputs=inputs, stop=stop, labels=labels, **kwargs
):
chunk = self._get_filled_chunk(self.custom_postprocess(response))
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[Sequence[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
labels: Optional[dict] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
inputs = self.custom_preprocess(messages)
async for response in self.get_astream(
inputs=inputs, stop=stop, labels=labels, **kwargs
):
chunk = self._get_filled_chunk(self.custom_postprocess(response))
yield chunk
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
def custom_preprocess(
self, msg_list: Sequence[BaseMessage]
) -> List[Dict[str, str]]:
# The previous author had a lot of custom preprocessing here
# but I'm just going to assume it's a list
return [self.preprocess_msg(m) for m in msg_list]
def _process_content(self, content: Union[str, List[Union[dict, str]]]) -> str:
if isinstance(content, str):
return content
string_array: list = []
for part in content:
if isinstance(part, str):
string_array.append(part)
elif isinstance(part, Mapping):
# OpenAI Format
if _is_openai_parts_format(part):
if part["type"] == "text":
string_array.append(str(part["text"]))
elif part["type"] == "image_url":
img_url = part["image_url"]
if isinstance(img_url, dict):
if "url" not in img_url:
raise ValueError(
f"Unrecognized message image format: {img_url}"
)
img_url = img_url["url"]
b64_string = _url_to_b64_string(img_url)
string_array.append(f'<img src="{b64_string}" />')
else:
raise ValueError(
f"Unrecognized message part type: {part['type']}"
)
else:
raise ValueError(f"Unrecognized message part format: {part}")
return "".join(string_array)
def preprocess_msg(self, msg: BaseMessage) -> Dict[str, str]:
## (WFH): Previous author added a bunch of
# custom processing here, but I'm just going to support
# the LCEL api.
if isinstance(msg, BaseMessage):
role_convert = {"ai": "assistant", "human": "user"}
if isinstance(msg, ChatMessage):
role = msg.role
else:
role = msg.type
role = role_convert.get(role, role)
content = self._process_content(msg.content)
return {"role": role, "content": content}
raise ValueError(f"Invalid message: {repr(msg)} of type {type(msg)}")
def custom_postprocess(self, msg: dict) -> str:
if "content" in msg:
return msg["content"]
logger.warning(
f"Got ambiguous message in postprocessing; returning as-is: msg = {msg}"
)
return str(msg)

View File

@@ -0,0 +1,74 @@
"""Embeddings Components Derived from ChatModel/NVAIPlay"""
from typing import Any, List, Literal, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
import langchain_nvidia_aiplay._common as nvaiplay_common
class NVAIPlayEmbeddings(BaseModel, Embeddings):
"""NVIDIA's AI Playground NVOLVE Question-Answer Asymmetric Model."""
client: nvaiplay_common.NVCRModel = Field(nvaiplay_common.NVCRModel)
model: str = Field(
..., description="The embedding model to use. Example: nvolveqa_40k"
)
max_length: int = Field(2048, ge=1, le=2048)
max_batch_size: int = Field(default=50)
model_type: Optional[Literal["passage", "query"]] = Field(
"passage", description="The type of text to be embedded."
)
@root_validator(pre=True)
def _validate_client(cls, values: Any) -> Any:
if "client" not in values:
values["client"] = nvaiplay_common.NVCRModel()
return values
@property
def available_models(self) -> dict:
"""Map the available models that can be invoked."""
return self.client.available_models
def _embed(
self, texts: List[str], model_type: Literal["passage", "query"]
) -> List[List[float]]:
"""Embed a single text entry to either passage or query type"""
response = self.client.get_req(
model_name=self.model,
payload={
"input": texts,
"model": model_type,
"encoding_format": "float",
},
)
response.raise_for_status()
result = response.json()
data = result["data"]
if not isinstance(data, list):
raise ValueError(f"Expected a list of embeddings. Got: {data}")
embedding_list = [(res["embedding"], res["index"]) for res in data]
return [x[0] for x in sorted(embedding_list, key=lambda x: x[1])]
def embed_query(self, text: str) -> List[float]:
"""Input pathway for query embeddings."""
return self._embed([text], model_type=self.model_type or "query")[0]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Input pathway for document embeddings."""
# From https://catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/nvolve-40k/documentation
# The input must not exceed the 2048 max input characters and inputs above 512
# model tokens will be truncated. The input array must not exceed 50 input
# strings.
all_embeddings = []
for i in range(0, len(texts), self.max_batch_size):
batch = texts[i : i + self.max_batch_size]
truncated = [
text[: self.max_length] if len(text) > self.max_length else text
for text in batch
]
all_embeddings.extend(
self._embed(truncated, model_type=self.model_type or "passage")
)
return all_embeddings

1235
libs/partners/nvidia-aiplay/poetry.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,92 @@
[tool.poetry]
name = "langchain-nvidia-aiplay"
version = "0.0.1"
description = "An integration package connecting NVidia AIPlay and LangChain"
authors = []
readme = "README.md"
repository = "https://github.com/langchain-ai/langchain/tree/master/libs/partners/nvidia-aiplay"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain-core = "^0.1.0"
aiohttp = "^3.9.1"
[tool.poetry.group.test]
optional = true
[tool.poetry.group.test.dependencies]
pytest = "^7.3.0"
freezegun = "^1.2.2"
pytest-mock = "^3.10.0"
syrupy = "^4.0.2"
pytest-watcher = "^0.3.4"
pytest-asyncio = "^0.21.1"
langchain-core = {path = "../../core", develop = true}
[tool.poetry.group.codespell]
optional = true
[tool.poetry.group.codespell.dependencies]
codespell = "^2.2.0"
[tool.poetry.group.test_integration]
optional = true
[tool.poetry.group.test_integration.dependencies]
[tool.poetry.group.lint]
optional = true
[tool.poetry.group.lint.dependencies]
ruff = "^0.1.5"
[tool.poetry.group.typing.dependencies]
mypy = "^0.991"
langchain-core = {path = "../../core", develop = true}
types-requests = "^2.31.0.10"
[tool.poetry.group.dev]
optional = true
[tool.poetry.group.dev.dependencies]
langchain-core = {path = "../../core", develop = true}
[tool.ruff]
select = [
"E", # pycodestyle
"F", # pyflakes
"I", # isort
]
[tool.mypy]
disallow_untyped_defs = "True"
exclude = ["notebooks", "examples", "example_data", "langchain_core/pydantic"]
[tool.coverage.run]
omit = [
"tests/*",
]
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.pytest.ini_options]
# --strict-markers will raise errors on unknown marks.
# https://docs.pytest.org/en/7.1.x/how-to/mark.html#raising-errors-on-unknown-marks
#
# https://docs.pytest.org/en/7.1.x/reference/reference.html
# --strict-config any warnings encountered while parsing the `pytest`
# section of the configuration file raise errors.
#
# https://github.com/tophat/syrupy
# --snapshot-warn-unused Prints a warning on unused snapshots rather than fail the test suite.
addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5"
# Registering custom markers.
# https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers
markers = [
"requires: mark tests as requiring a specific library",
"asyncio: mark tests as requiring asyncio",
"compile: mark placeholder test used to compile integration tests without running them",
]
asyncio_mode = "auto"

View File

@@ -0,0 +1,17 @@
import sys
import traceback
from importlib.machinery import SourceFileLoader
if __name__ == "__main__":
files = sys.argv[1:]
has_failure = False
for file in files:
try:
SourceFileLoader("x", file).load_module()
except Exception:
has_faillure = True
print(file)
traceback.print_exc()
print()
sys.exit(1 if has_failure else 0)

View File

@@ -0,0 +1,27 @@
#!/bin/bash
#
# This script searches for lines starting with "import pydantic" or "from pydantic"
# in tracked files within a Git repository.
#
# Usage: ./scripts/check_pydantic.sh /path/to/repository
# Check if a path argument is provided
if [ $# -ne 1 ]; then
echo "Usage: $0 /path/to/repository"
exit 1
fi
repository_path="$1"
# Search for lines matching the pattern within the specified repository
result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic')
# Check if any matching lines were found
if [ -n "$result" ]; then
echo "ERROR: The following lines need to be updated:"
echo "$result"
echo "Please replace the code with an import from langchain_core.pydantic_v1."
echo "For example, replace 'from pydantic import BaseModel'"
echo "with 'from langchain_core.pydantic_v1 import BaseModel'"
exit 1
fi

View File

@@ -0,0 +1,17 @@
#!/bin/bash
set -eu
# Initialize a variable to keep track of errors
errors=0
# make sure not importing from langchain or langchain_experimental
git --no-pager grep '^from langchain\.' . && errors=$((errors+1))
git --no-pager grep '^from langchain_experimental\.' . && errors=$((errors+1))
# Decide on an exit status based on the errors
if [ "$errors" -gt 0 ]; then
exit 1
else
exit 0
fi

View File

@@ -0,0 +1,96 @@
"""Test ChatNVAIPlay chat model."""
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_nvidia_aiplay.chat_models import ChatNVAIPlay
def test_chat_aiplay() -> None:
"""Test ChatNVAIPlay wrapper."""
chat = ChatNVAIPlay(
model="llama2_13b",
temperature=0.7,
)
message = HumanMessage(content="Hello")
response = chat([message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_chat_aiplay_model() -> None:
"""Test GeneralChat wrapper handles model."""
chat = ChatNVAIPlay(model="mistral")
assert chat.model == "mistral"
def test_chat_aiplay_system_message() -> None:
"""Test GeneralChat wrapper with system message."""
chat = ChatNVAIPlay(model="llama2_13b", max_tokens=36)
system_message = SystemMessage(content="You are to chat with the user.")
human_message = HumanMessage(content="Hello")
response = chat([system_message, human_message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
## TODO: Not sure if we want to support the n syntax. Trash or keep test
def test_aiplay_streaming() -> None:
"""Test streaming tokens from aiplay."""
llm = ChatNVAIPlay(model="llama2_13b", max_tokens=36)
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_aiplay_astream() -> None:
"""Test streaming tokens from aiplay."""
llm = ChatNVAIPlay(model="llama2_13b", max_tokens=35)
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_aiplay_abatch() -> None:
"""Test streaming tokens from GeneralChat."""
llm = ChatNVAIPlay(model="llama2_13b", max_tokens=36)
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_aiplay_abatch_tags() -> None:
"""Test batch tokens from GeneralChat."""
llm = ChatNVAIPlay(model="llama2_13b", max_tokens=55)
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
def test_aiplay_batch() -> None:
"""Test batch tokens from GeneralChat."""
llm = ChatNVAIPlay(model="llama2_13b", max_tokens=60)
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_aiplay_ainvoke() -> None:
"""Test invoke tokens from GeneralChat."""
llm = ChatNVAIPlay(model="llama2_13b", max_tokens=60)
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
def test_aiplay_invoke() -> None:
"""Test invoke tokens from GeneralChat."""
llm = ChatNVAIPlay(model="llama2_13b", max_tokens=60)
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)

View File

@@ -0,0 +1,7 @@
import pytest
@pytest.mark.compile
def test_placeholder() -> None:
"""Used for compiling integration tests without running any real tests."""
pass

View File

@@ -0,0 +1,48 @@
"""Test NVIDIA AI Playground Embeddings.
Note: These tests are designed to validate the functionality of NVAIPlayEmbeddings.
"""
from langchain_nvidia_aiplay import NVAIPlayEmbeddings
def test_nvai_play_embedding_documents() -> None:
"""Test NVAIPlay embeddings for documents."""
documents = ["foo bar"]
embedding = NVAIPlayEmbeddings(model="nvolveqa_40k")
output = embedding.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) == 1024 # Assuming embedding size is 2048
def test_nvai_play_embedding_documents_multiple() -> None:
"""Test NVAIPlay embeddings for multiple documents."""
documents = ["foo bar", "bar foo", "foo"]
embedding = NVAIPlayEmbeddings(model="nvolveqa_40k")
output = embedding.embed_documents(documents)
assert len(output) == 3
assert all(len(doc) == 1024 for doc in output)
def test_nvai_play_embedding_query() -> None:
"""Test NVAIPlay embeddings for a single query."""
query = "foo bar"
embedding = NVAIPlayEmbeddings(model="nvolveqa_40k")
output = embedding.embed_query(query)
assert len(output) == 1024
async def test_nvai_play_embedding_async_query() -> None:
"""Test NVAIPlay async embeddings for a single query."""
query = "foo bar"
embedding = NVAIPlayEmbeddings(model="nvolveqa_40k")
output = await embedding.aembed_query(query)
assert len(output) == 1024
async def test_nvai_play_embedding_async_documents() -> None:
"""Test NVAIPlay async embeddings for multiple documents."""
documents = ["foo bar", "bar foo", "foo"]
embedding = NVAIPlayEmbeddings(model="nvolveqa_40k")
output = await embedding.aembed_documents(documents)
assert len(output) == 3
assert all(len(doc) == 1024 for doc in output)

View File

@@ -0,0 +1,16 @@
"""Test chat model integration."""
from langchain_nvidia_aiplay.chat_models import ChatNVAIPlay
def test_integration_initialization() -> None:
"""Test chat model initialization."""
ChatNVAIPlay(
model="llama2_13b",
nvidia_api_key="nvapi-...",
temperature=0.5,
top_p=0.9,
max_tokens=50,
)
ChatNVAIPlay(model="mistral", nvidia_api_key="nvapi-...")

View File

@@ -0,0 +1,7 @@
from langchain_nvidia_aiplay import __all__
EXPECTED_ALL = ["ChatNVAIPlay", "NVAIPlayEmbeddings"]
def test_all_imports() -> None:
assert sorted(EXPECTED_ALL) == sorted(__all__)

10
poetry.lock generated
View File

@@ -2119,13 +2119,13 @@ test = ["flaky", "ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "p
[[package]]
name = "nbconvert"
version = "7.8.0"
version = "7.12.0"
description = "Converting Jupyter Notebooks"
optional = false
python-versions = ">=3.8"
files = [
{file = "nbconvert-7.8.0-py3-none-any.whl", hash = "sha256:aec605e051fa682ccc7934ccc338ba1e8b626cfadbab0db592106b630f63f0f2"},
{file = "nbconvert-7.8.0.tar.gz", hash = "sha256:f5bc15a1247e14dd41ceef0c0a3bc70020e016576eb0578da62f1c5b4f950479"},
{file = "nbconvert-7.12.0-py3-none-any.whl", hash = "sha256:5b6c848194d270cc55fb691169202620d7b52a12fec259508d142ecbe4219310"},
{file = "nbconvert-7.12.0.tar.gz", hash = "sha256:b1564bd89f69a74cd6398b0362da94db07aafb991b7857216a766204a71612c0"},
]
[package.dependencies]
@@ -2152,7 +2152,7 @@ docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sp
qtpdf = ["nbconvert[qtpng]"]
qtpng = ["pyqtwebengine (>=5.15)"]
serve = ["tornado (>=6.1)"]
test = ["flaky", "ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"]
test = ["flaky", "ipykernel", "ipywidgets (>=7)", "pytest"]
webpdf = ["playwright"]
[[package]]
@@ -3971,4 +3971,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "581c178796dbb76589632e687d353a336ca23b3cdda7075720660b479dc85fa2"
content-hash = "01838f8ac4fb3d5ac59517aa5b24e55f7167736fba952ebaa1216991b3972512"

View File

@@ -27,6 +27,7 @@ myst-nb = "^0.17.1"
linkchecker = "^10.2.1"
sphinx-copybutton = "^0.5.1"
nbdoc = "^0.0.82"
nbconvert = "^7.12.0"
[tool.poetry.group.lint.dependencies]
ruff = "^0.1.5"

View File

@@ -0,0 +1,3 @@
docs/img_*.jpg
chroma_db_proposals
multi_vector_retriever_metadata

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023 LangChain, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,81 @@
# propositional-retrieval
This template demonstrates the multi-vector indexing strategy proposed by Chen, et. al.'s [Dense X Retrieval: What Retrieval Granularity Should We Use?](https://arxiv.org/abs/2312.06648). The prompt, which you can [try out on the hub](https://smith.langchain.com/hub/wfh/proposal-indexing), directs an LLM to generate de-contextualized "propositions" which can be vectorized to increase the retrieval accuracy. You can see the full definition in `proposal_chain.py`.
![Retriever Diagram](https://github.com/langchain-ai/langchain/raw/master/templates/propositional-retrieval/_images/retriever_diagram.png)
## Storage
For this demo, we index a simple academic paper using the RecursiveUrlLoader, and store all retriever information locally (using chroma and a bytestore stored on the local filesystem). You can modify the storage layer in `storage.py`.
## Environment Setup
Set the `OPENAI_API_KEY` environment variable to access `gpt-3.5` and the OpenAI Embeddings classes.
## Indexing
Create the index by running the following:
```python
poetry install
poetry run python propositional_retrieval/ingest.py
```
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package propositional-retrieval
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add propositional-retrieval
```
And add the following code to your `server.py` file:
```python
from propositional_retrieval import chain
add_routes(app, chain, path="/propositional-retrieval")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/propositional-retrieval/playground](http://127.0.0.1:8000/propositional-retrieval/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/propositional-retrieval")
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 375 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,68 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "681a5d1e",
"metadata": {},
"source": [
"## Run Template\n",
"\n",
"In `server.py`, set -\n",
"```\n",
"from fastapi import FastAPI\n",
"from langserve import add_routes\n",
"from propositional_retrieval import chain\n",
"\n",
"app = FastAPI(\n",
" title=\"LangChain Server\",\n",
" version=\"1.0\",\n",
" description=\"Retriever and Generator for RAG Chroma Dense Retrieval\",\n",
")\n",
"\n",
"add_routes(app, chain, path=\"/propositional-retrieval\")\n",
"\n",
"if __name__ == \"__main__\":\n",
" import uvicorn\n",
"\n",
" uvicorn.run(app, host=\"localhost\", port=8000)\n",
"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d774be2a",
"metadata": {},
"outputs": [],
"source": [
"from langserve.client import RemoteRunnable\n",
"\n",
"rag_app = RemoteRunnable(\"http://localhost:8001/propositional-retrieval\")\n",
"rag_app.invoke(\"How are transformers related to convolutional neural networks?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,4 @@
from propositional_retrieval.chain import chain
from propositional_retrieval.proposal_chain import proposition_chain
__all__ = ["chain", "proposition_chain"]

View File

@@ -0,0 +1,67 @@
from langchain_community.chat_models import ChatOpenAI
from langchain_core.load import load
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnablePassthrough
from propositional_retrieval.constants import DOCSTORE_ID_KEY
from propositional_retrieval.storage import get_multi_vector_retriever
def format_docs(docs: list) -> str:
loaded_docs = [load(doc) for doc in docs]
return "\n".join(
[
f"<Document id={i}>\n{doc.page_content}\n</Document>"
for i, doc in enumerate(loaded_docs)
]
)
def rag_chain(retriever):
"""
The RAG chain
:param retriever: A function that retrieves the necessary context for the model.
:return: A chain of functions representing the multi-modal RAG process.
"""
model = ChatOpenAI(temperature=0, model="gpt-4-1106-preview", max_tokens=1024)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an AI assistant. Answer based on the retrieved documents:"
"\n<Documents>\n{context}\n</Documents>",
),
("user", "{question}?"),
]
)
# Define the RAG pipeline
chain = (
{
"context": retriever | format_docs,
"question": RunnablePassthrough(),
}
| prompt
| model
| StrOutputParser()
)
return chain
# Create the multi-vector retriever
retriever = get_multi_vector_retriever(DOCSTORE_ID_KEY)
# Create RAG chain
chain = rag_chain(retriever)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)

View File

@@ -0,0 +1 @@
DOCSTORE_ID_KEY = "doc_id"

View File

@@ -0,0 +1,93 @@
import logging
import uuid
from typing import Sequence
from bs4 import BeautifulSoup as Soup
from langchain_core.documents import Document
from langchain_core.runnables import Runnable
from propositional_retrieval.constants import DOCSTORE_ID_KEY
from propositional_retrieval.proposal_chain import proposition_chain
from propositional_retrieval.storage import get_multi_vector_retriever
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def add_documents(
retriever,
propositions: Sequence[Sequence[str]],
docs: Sequence[Document],
id_key: str = DOCSTORE_ID_KEY,
):
doc_ids = [
str(uuid.uuid5(uuid.NAMESPACE_DNS, doc.metadata["source"])) for doc in docs
]
prop_docs = [
Document(page_content=prop, metadata={id_key: doc_ids[i]})
for i, props in enumerate(propositions)
for prop in props
if prop
]
retriever.vectorstore.add_documents(prop_docs)
retriever.docstore.mset(list(zip(doc_ids, docs)))
def create_index(
docs: Sequence[Document],
indexer: Runnable,
docstore_id_key: str = DOCSTORE_ID_KEY,
):
"""
Create retriever that indexes docs and their propositions
:param docs: Documents to index
:param indexer: Runnable creates additional propositions per doc
:param docstore_id_key: Key to use to store the docstore id
:return: Retriever
"""
logger.info("Creating multi-vector retriever")
retriever = get_multi_vector_retriever(docstore_id_key)
propositions = indexer.batch(
[{"input": doc.page_content} for doc in docs], {"max_concurrency": 10}
)
add_documents(
retriever,
propositions,
docs,
id_key=docstore_id_key,
)
return retriever
if __name__ == "__main__":
# For our example, we'll load docs from the web
from langchain.text_splitter import RecursiveCharacterTextSplitter # noqa
from langchain_community.document_loaders.recursive_url_loader import (
RecursiveUrlLoader,
) # noqa
# The attention is all you need paper
# Could add more parsing here, as it's very raw.
loader = RecursiveUrlLoader(
"https://ar5iv.labs.arxiv.org/html/1706.03762",
max_depth=2,
extractor=lambda x: Soup(x, "html.parser").text,
)
data = loader.load()
logger.info(f"Loaded {len(data)} documents")
# Split
text_splitter = RecursiveCharacterTextSplitter(chunk_size=8000, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
logger.info(f"Split into {len(all_splits)} documents")
# Create retriever
retriever_multi_vector_img = create_index(
all_splits,
proposition_chain,
DOCSTORE_ID_KEY,
)

View File

@@ -0,0 +1,107 @@
import logging
from langchain.output_parsers.openai_tools import JsonOutputToolsParser
from langchain_community.chat_models import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableLambda
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Modified from the paper to be more robust to benign prompt injection
# https://arxiv.org/abs/2312.06648
# @misc{chen2023dense,
# title={Dense X Retrieval: What Retrieval Granularity Should We Use?},
# author={Tong Chen and Hongwei Wang and Sihao Chen and Wenhao Yu and Kaixin Ma
# and Xinran Zhao and Hongming Zhang and Dong Yu},
# year={2023},
# eprint={2312.06648},
# archivePrefix={arXiv},
# primaryClass={cs.CL}
# }
PROMPT = ChatPromptTemplate.from_messages(
[
(
"system",
"""Decompose the "Content" into clear and simple propositions, ensuring they are interpretable out of
context.
1. Split compound sentence into simple sentences. Maintain the original phrasing from the input
whenever possible.
2. For any named entity that is accompanied by additional descriptive information, separate this
information into its own distinct proposition.
3. Decontextualize the proposition by adding necessary modifier to nouns or entire sentences
and replacing pronouns (e.g., "it", "he", "she", "they", "this", "that") with the full name of the
entities they refer to.
4. Present the results as a list of strings, formatted in JSON.
Example:
Input: Title: ¯Eostre. Section: Theories and interpretations, Connection to Easter Hares. Content:
The earliest evidence for the Easter Hare (Osterhase) was recorded in south-west Germany in
1678 by the professor of medicine Georg Franck von Franckenau, but it remained unknown in
other parts of Germany until the 18th century. Scholar Richard Sermon writes that "hares were
frequently seen in gardens in spring, and thus may have served as a convenient explanation for the
origin of the colored eggs hidden there for children. Alternatively, there is a European tradition
that hares laid eggs, since a hares scratch or form and a lapwings nest look very similar, and
both occur on grassland and are first seen in the spring. In the nineteenth century the influence
of Easter cards, toys, and books was to make the Easter Hare/Rabbit popular throughout Europe.
German immigrants then exported the custom to Britain and America where it evolved into the
Easter Bunny."
Output: [ "The earliest evidence for the Easter Hare was recorded in south-west Germany in
1678 by Georg Franck von Franckenau.", "Georg Franck von Franckenau was a professor of
medicine.", "The evidence for the Easter Hare remained unknown in other parts of Germany until
the 18th century.", "Richard Sermon was a scholar.", "Richard Sermon writes a hypothesis about
the possible explanation for the connection between hares and the tradition during Easter", "Hares
were frequently seen in gardens in spring.", "Hares may have served as a convenient explanation
for the origin of the colored eggs hidden in gardens for children.", "There is a European tradition
that hares laid eggs.", "A hares scratch or form and a lapwings nest look very similar.", "Both
hares and lapwings nests occur on grassland and are first seen in the spring.", "In the nineteenth
century the influence of Easter cards, toys, and books was to make the Easter Hare/Rabbit popular
throughout Europe.", "German immigrants exported the custom of the Easter Hare/Rabbit to
Britain and America.", "The custom of the Easter Hare/Rabbit evolved into the Easter Bunny in
Britain and America."]""", # noqa
),
("user", "Decompose the following:\n{input}"),
]
)
def get_propositions(tool_calls: list) -> list:
if not tool_calls:
raise ValueError("No tool calls found")
return tool_calls[0]["args"]["propositions"]
def empty_proposals(x):
# Model couldn't generate proposals
return []
proposition_chain = (
PROMPT
| ChatOpenAI(model="gpt-3.5-turbo-16k").bind(
tools=[
{
"type": "function",
"function": {
"name": "decompose_content",
"description": "Return the decomposed propositions",
"parameters": {
"type": "object",
"properties": {
"propositions": {
"type": "array",
"items": {"type": "string"},
}
},
"required": ["propositions"],
},
},
}
],
tool_choice={"type": "function", "function": {"name": "decompose_content"}},
)
| JsonOutputToolsParser()
| get_propositions
).with_fallbacks([RunnableLambda(empty_proposals)])

View File

@@ -0,0 +1,38 @@
import logging
from pathlib import Path
from langchain.embeddings import OpenAIEmbeddings
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import LocalFileStore
from langchain_community.vectorstores import Chroma
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_multi_vector_retriever(docstore_id_key: str):
"""Create the composed retriever object."""
vectorstore = get_vectorstore()
store = get_docstore()
return MultiVectorRetriever(
vectorstore=vectorstore,
byte_store=store,
id_key=docstore_id_key,
)
def get_vectorstore(collection_name: str = "proposals"):
"""Get the vectorstore used for this example."""
return Chroma(
collection_name=collection_name,
persist_directory=str(Path(__file__).parent.parent / "chroma_db_proposals"),
embedding_function=OpenAIEmbeddings(),
)
def get_docstore():
"""Get the metadata store used for this example."""
return LocalFileStore(
str(Path(__file__).parent.parent / "multi_vector_retriever_metadata")
)

View File

@@ -0,0 +1,35 @@
[tool.poetry]
name = "propositional-retrieval"
version = "0.1.0"
description = "Dense retrieval using vectorized propositions."
authors = [
"William Fu-Hinthorn <will@langchain.dev>",
]
readme = "README.md"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain = ">=0.0.350"
openai = "<2"
tiktoken = ">=0.5.1"
chromadb = ">=0.4.14"
bs4 = "^0.0.1"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
[tool.langserve]
export_module = "rag_chroma_multi_modal_multi_vector"
export_attr = "chain"
[tool.templates-hub]
use-case = "rag"
author = "LangChain"
integrations = ["OpenAI", "Chroma"]
tags = ["vectordbs"]
[build-system]
requires = [
"poetry-core",
]
build-backend = "poetry.core.masonry.api"

View File

@@ -0,0 +1 @@
docs/img_*.jpg

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023 LangChain, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,108 @@
# rag-chroma-multi-modal-multi-vector
Presentations (slide decks, etc) contain visual content that challenges conventional RAG.
Multi-modal LLMs unlock new ways to build apps over visual content like presentations.
This template performs multi-modal RAG using Chroma with the multi-vector retriever (see [blog](https://blog.langchain.dev/multi-modal-rag-template/)):
* Extracts the slides as images
* Uses GPT-4V to summarize each image
* Embeds the image summaries with a link to the original images
* Retrieves relevant image based on similarity between the image summary and the user input
* Finally pass those images to GPT-4V for answer synthesis
## Storage
We will use Upstash to store the images, which offers Redis with a REST API.
Simply login [here](https://upstash.com/) and create a database.
This will give you a REST API with:
* UPSTASH_URL
* UPSTASH_TOKEN
Set `UPSTASH_URL` and `UPSTASH_TOKEN` as environment variables to access your database.
We will use Chroma to store and index the image summaries, which will be created locally in the template directory.
## Input
Supply a slide deck as pdf in the `/docs` directory.
Create your vectorstore (Chroma) and populae Upstash with:
```
poetry install
python ingest.py
```
## LLM
The app will retrieve images using multi-modal embeddings, and pass them to GPT-4V.
## Environment Setup
Set the `OPENAI_API_KEY` environment variable to access the OpenAI GPT-4V.
Set `UPSTASH_URL` and `UPSTASH_TOKEN` as environment variables to access your database.
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package rag-chroma-multi-modal-multi-vector
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add rag-chroma-multi-modal-multi-vector
```
And add the following code to your `server.py` file:
```python
from rag_chroma_multi_modal_multi_vector import chain as rag_chroma_multi_modal_chain_mv
add_routes(app, rag_chroma_multi_modal_chain_mv, path="/rag-chroma-multi-modal-multi-vector")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-chroma-multi-modal-multi-vector/playground](http://127.0.0.1:8000/rag-chroma-multi-modal-multi-vector/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-chroma-multi-modal-multi-vector")
```

View File

@@ -0,0 +1,197 @@
import base64
import io
import os
import uuid
from io import BytesIO
from pathlib import Path
import pypdfium2 as pdfium
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.schema.document import Document
from langchain.schema.messages import HumanMessage
from langchain.storage import UpstashRedisByteStore
from langchain.vectorstores import Chroma
from PIL import Image
def image_summarize(img_base64, prompt):
"""
Make image summary
:param img_base64: Base64 encoded string for image
:param prompt: Text prompt for summarizatiomn
:return: Image summarization prompt
"""
chat = ChatOpenAI(model="gpt-4-vision-preview", max_tokens=1024)
msg = chat.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
},
]
)
]
)
return msg.content
def generate_img_summaries(img_base64_list):
"""
Generate summaries for images
:param img_base64_list: Base64 encoded images
:return: List of image summaries and processed images
"""
# Store image summaries
image_summaries = []
processed_images = []
# Prompt
prompt = """You are an assistant tasked with summarizing images for retrieval. \
These summaries will be embedded and used to retrieve the raw image. \
Give a concise summary of the image that is well optimized for retrieval."""
# Apply summarization to images
for i, base64_image in enumerate(img_base64_list):
try:
image_summaries.append(image_summarize(base64_image, prompt))
processed_images.append(base64_image)
except Exception as e:
print(f"Error with image {i+1}: {e}")
return image_summaries, processed_images
def get_images_from_pdf(pdf_path):
"""
Extract images from each page of a PDF document and save as JPEG files.
:param pdf_path: A string representing the path to the PDF file.
"""
pdf = pdfium.PdfDocument(pdf_path)
n_pages = len(pdf)
pil_images = []
for page_number in range(n_pages):
page = pdf.get_page(page_number)
bitmap = page.render(scale=1, rotation=0, crop=(0, 0, 0, 0))
pil_image = bitmap.to_pil()
pil_images.append(pil_image)
return pil_images
def resize_base64_image(base64_string, size=(128, 128)):
"""
Resize an image encoded as a Base64 string
:param base64_string: Base64 string
:param size: Image size
:return: Re-sized Base64 string
"""
# Decode the Base64 string
img_data = base64.b64decode(base64_string)
img = Image.open(io.BytesIO(img_data))
# Resize the image
resized_img = img.resize(size, Image.LANCZOS)
# Save the resized image to a bytes buffer
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
# Encode the resized image to Base64
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def convert_to_base64(pil_image):
"""
Convert PIL images to Base64 encoded strings
:param pil_image: PIL image
:return: Re-sized Base64 string
"""
buffered = BytesIO()
pil_image.save(buffered, format="JPEG") # You can change the format if needed
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
img_str = resize_base64_image(img_str, size=(960, 540))
return img_str
def create_multi_vector_retriever(vectorstore, image_summaries, images):
"""
Create retriever that indexes summaries, but returns raw images or texts
:param vectorstore: Vectorstore to store embedded image sumamries
:param image_summaries: Image summaries
:param images: Base64 encoded images
:return: Retriever
"""
# Initialize the storage layer for images
UPSTASH_URL = os.getenv("UPSTASH_URL")
UPSTASH_TOKEN = os.getenv("UPSTASH_TOKEN")
store = UpstashRedisByteStore(url=UPSTASH_URL, token=UPSTASH_TOKEN)
id_key = "doc_id"
# Create the multi-vector retriever
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
byte_store=store,
id_key=id_key,
)
# Helper function to add documents to the vectorstore and docstore
def add_documents(retriever, doc_summaries, doc_contents):
doc_ids = [str(uuid.uuid4()) for _ in doc_contents]
summary_docs = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
for i, s in enumerate(doc_summaries)
]
retriever.vectorstore.add_documents(summary_docs)
retriever.docstore.mset(list(zip(doc_ids, doc_contents)))
add_documents(retriever, image_summaries, images)
return retriever
# Load PDF
doc_path = Path(__file__).parent / "docs/DDOG_Q3_earnings_deck.pdf"
rel_doc_path = doc_path.relative_to(Path.cwd())
print("Extract slides as images")
pil_images = get_images_from_pdf(rel_doc_path)
# Convert to b64
images_base_64 = [convert_to_base64(i) for i in pil_images]
# Image summaries
print("Generate image summaries")
image_summaries, images_base_64_processed = generate_img_summaries(images_base_64)
# The vectorstore to use to index the images summaries
vectorstore_mvr = Chroma(
collection_name="image_summaries",
persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"),
embedding_function=OpenAIEmbeddings(),
)
# Create documents
images_base_64_processed_documents = [
Document(page_content=i) for i in images_base_64_processed
]
# Create retriever
retriever_multi_vector_img = create_multi_vector_retriever(
vectorstore_mvr,
image_summaries,
images_base_64_processed_documents,
)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,38 @@
[tool.poetry]
name = "rag-chroma-multi-modal-multi-vector"
version = "0.1.0"
description = "Multi-modal RAG using Chroma and multi-vector retriever"
authors = [
"Lance Martin <lance@langchain.dev>",
]
readme = "README.md"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain = ">=0.0.350"
openai = "<2"
tiktoken = ">=0.5.1"
chromadb = ">=0.4.14"
pypdfium2 = ">=4.20.0"
langchain-experimental = "^0.0.43"
upstash-redis = ">=1.0.0"
pillow = ">=10.1.0"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
[tool.langserve]
export_module = "rag_chroma_multi_modal_multi_vector"
export_attr = "chain"
[tool.templates-hub]
use-case = "rag"
author = "LangChain"
integrations = ["OpenAI", "Chroma"]
tags = ["vectordbs"]
[build-system]
requires = [
"poetry-core",
]
build-backend = "poetry.core.masonry.api"

View File

@@ -0,0 +1,52 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "681a5d1e",
"metadata": {},
"source": [
"## Run Template\n",
"\n",
"In `server.py`, set -\n",
"```\n",
"add_routes(app, chain_rag_conv, path=\"/rag-chroma-multi-modal-multi-vector\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d774be2a",
"metadata": {},
"outputs": [],
"source": [
"from langserve.client import RemoteRunnable\n",
"\n",
"rag_app = RemoteRunnable(\"http://localhost:8001/rag-chroma-multi-modal-multi-vector\")\n",
"rag_app.invoke(\"What is the projected TAM for observability expected for each year through 2026?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,3 @@
from rag_chroma_multi_modal_multi_vector.chain import chain
__all__ = ["chain"]

View File

@@ -0,0 +1,133 @@
import base64
import io
import os
from pathlib import Path
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.pydantic_v1 import BaseModel
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.schema.document import Document
from langchain.schema.messages import HumanMessage
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
from langchain.storage import UpstashRedisByteStore
from langchain.vectorstores import Chroma
from PIL import Image
def resize_base64_image(base64_string, size=(128, 128)):
"""
Resize an image encoded as a Base64 string.
:param base64_string: A Base64 encoded string of the image to be resized.
:param size: A tuple representing the new size (width, height) for the image.
:return: A Base64 encoded string of the resized image.
"""
img_data = base64.b64decode(base64_string)
img = Image.open(io.BytesIO(img_data))
resized_img = img.resize(size, Image.LANCZOS)
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def get_resized_images(docs):
"""
Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings.
"""
b64_images = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
resized_image = resize_base64_image(doc, size=(1280, 720))
b64_images.append(resized_image)
return {"images": b64_images}
def img_prompt_func(data_dict, num_images=2):
"""
GPT-4V prompt for image analysis.
:param data_dict: A dict with images and a user-provided question.
:param num_images: Number of images to include in the prompt.
:return: A list containing message objects for each image and the text prompt.
"""
messages = []
if data_dict["context"]["images"]:
for image in data_dict["context"]["images"][:num_images]:
image_message = {
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image}"},
}
messages.append(image_message)
text_message = {
"type": "text",
"text": (
"You are an analyst tasked with answering questions about visual content.\n"
"You will be give a set of image(s) from a slide deck / presentation.\n"
"Use this information to answer the user question. \n"
f"User-provided question: {data_dict['question']}\n\n"
),
}
messages.append(text_message)
return [HumanMessage(content=messages)]
def multi_modal_rag_chain(retriever):
"""
Multi-modal RAG chain,
:param retriever: A function that retrieves the necessary context for the model.
:return: A chain of functions representing the multi-modal RAG process.
"""
# Initialize the multi-modal Large Language Model with specific parameters
model = ChatOpenAI(temperature=0, model="gpt-4-vision-preview", max_tokens=1024)
# Define the RAG pipeline
chain = (
{
"context": retriever | RunnableLambda(get_resized_images),
"question": RunnablePassthrough(),
}
| RunnableLambda(img_prompt_func)
| model
| StrOutputParser()
)
return chain
# Load chroma
vectorstore_mvr = Chroma(
collection_name="image_summaries",
persist_directory=str(Path(__file__).parent.parent / "chroma_db_multi_modal"),
embedding_function=OpenAIEmbeddings(),
)
# Load redis
UPSTASH_URL = os.getenv("UPSTASH_URL")
UPSTASH_TOKEN = os.getenv("UPSTASH_TOKEN")
store = UpstashRedisByteStore(url=UPSTASH_URL, token=UPSTASH_TOKEN)
id_key = "doc_id"
# Create the multi-vector retriever
retriever = MultiVectorRetriever(
vectorstore=vectorstore_mvr,
byte_store=store,
id_key=id_key,
)
# Create RAG chain
chain = multi_modal_rag_chain(retriever)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)

View File

@@ -0,0 +1 @@
docs/img_*.jpg

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023 LangChain, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,106 @@
# rag-gemini-multi-modal
Presentations (slide decks, etc) contain visual content that challenges conventional RAG.
Multi-modal LLMs unlock new ways to build apps over visual content like presentations.
This template performs multi-modal RAG using Chroma with multi-modal OpenCLIP embeddings and [Google Gemini](https://deepmind.google/technologies/gemini/#introduction).
## Input
Supply a slide deck as pdf in the `/docs` directory.
Create your vectorstore with:
```
poetry install
python ingest.py
```
## Embeddings
This template will use [OpenCLIP](https://github.com/mlfoundations/open_clip) multi-modal embeddings.
You can select different options (see results [here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv)).
The first time you run the app, it will automatically download the multimodal embedding model.
By default, LangChain will use an embedding model with reasonably strong performance, `ViT-H-14`.
You can choose alternative `OpenCLIPEmbeddings` models in `ingest.py`:
```
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory=str(re_vectorstore_path),
embedding_function=OpenCLIPEmbeddings(
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
),
)
```
## LLM
The app will retrieve images using multi-modal embeddings, and pass them to Google Gemini.
## Environment Setup
Set the `GOOGLE_API_KEY` environment variable to access Gemini.
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package rag-gemini-multi-modal
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add rag-gemini-multi-modal
```
And add the following code to your `server.py` file:
```python
from rag_gemini_multi_modal import chain as rag_gemini_multi_modal_chain
add_routes(app, rag_gemini_multi_modal_chain, path="/rag-gemini-multi-modal")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-gemini-multi-modal/playground](http://127.0.0.1:8000/rag-gemini-multi-modal/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-gemini-multi-modal")
```

View File

@@ -0,0 +1,58 @@
import os
from pathlib import Path
import pypdfium2 as pdfium
from langchain.vectorstores import Chroma
from langchain_experimental.open_clip import OpenCLIPEmbeddings
def get_images_from_pdf(pdf_path, img_dump_path):
"""
Extract images from each page of a PDF document and save as JPEG files.
:param pdf_path: A string representing the path to the PDF file.
:param img_dump_path: A string representing the path to dummp images.
"""
pdf = pdfium.PdfDocument(pdf_path)
n_pages = len(pdf)
for page_number in range(n_pages):
page = pdf.get_page(page_number)
bitmap = page.render(scale=1, rotation=0, crop=(0, 0, 0, 0))
pil_image = bitmap.to_pil()
pil_image.save(f"{img_dump_path}/img_{page_number + 1}.jpg", format="JPEG")
# Load PDF
doc_path = Path(__file__).parent / "docs/DDOG_Q3_earnings_deck.pdf"
img_dump_path = Path(__file__).parent / "docs/"
rel_doc_path = doc_path.relative_to(Path.cwd())
rel_img_dump_path = img_dump_path.relative_to(Path.cwd())
print("pdf index")
pil_images = get_images_from_pdf(rel_doc_path, rel_img_dump_path)
print("done")
vectorstore = Path(__file__).parent / "chroma_db_multi_modal"
re_vectorstore_path = vectorstore.relative_to(Path.cwd())
# Load embedding function
print("Loading embedding function")
embedding = OpenCLIPEmbeddings(model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k")
# Create chroma
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"),
embedding_function=embedding,
)
# Get image URIs
image_uris = sorted(
[
os.path.join(rel_img_dump_path, image_name)
for image_name in os.listdir(rel_img_dump_path)
if image_name.endswith(".jpg")
]
)
# Add images
print("Embedding images")
vectorstore_mmembd.add_images(uris=image_uris)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,39 @@
[tool.poetry]
name = "rag-gemini-multi-modal"
version = "0.1.0"
description = "Multi-modal RAG using Gemini and OpenCLIP embeddings"
authors = [
"Lance Martin <lance@langchain.dev>",
]
readme = "README.md"
[tool.poetry.dependencies]
python = ">=3.9,<4.0"
langchain = ">=0.0.350"
openai = "<2"
tiktoken = ">=0.5.1"
chromadb = ">=0.4.14"
open-clip-torch = ">=2.23.0"
torch = ">=2.1.0"
pypdfium2 = ">=4.20.0"
langchain-experimental = "^0.0.43"
langchain-google-genai = ">=0.0.1"
[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.15"
[tool.langserve]
export_module = "rag_gemini_multi_modal"
export_attr = "chain"
[tool.templates-hub]
use-case = "rag"
author = "LangChain"
integrations = ["OpenAI", "Chroma"]
tags = ["vectordbs"]
[build-system]
requires = [
"poetry-core",
]
build-backend = "poetry.core.masonry.api"

View File

@@ -0,0 +1,52 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "681a5d1e",
"metadata": {},
"source": [
"## Run Template\n",
"\n",
"In `server.py`, set -\n",
"```\n",
"add_routes(app, chain_rag_conv, path=\"/rag-gemini-multi-modal\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d774be2a",
"metadata": {},
"outputs": [],
"source": [
"from langserve.client import RemoteRunnable\n",
"\n",
"rag_app = RemoteRunnable(\"http://localhost:8001/rag-gemini-multi-modal\")\n",
"rag_app.invoke(\"What is the projected TAM for observability expected for each year through 2026?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,3 @@
from rag_gemini_multi_modal.chain import chain
__all__ = ["chain"]

Some files were not shown because too many files have changed in this diff Show More