mirror of
https://github.com/imartinez/privateGPT.git
synced 2025-09-25 14:46:58 +00:00
Next version of PrivateGPT (#1077)
* Dockerize private-gpt * Use port 8001 for local development * Add setup script * Add CUDA Dockerfile * Create README.md * Make the API use OpenAI response format * Truncate prompt * refactor: add models and __pycache__ to .gitignore * Better naming * Update readme * Move models ignore to it's folder * Add scaffolding * Apply formatting * Fix tests * Working sagemaker custom llm * Fix linting * Fix linting * Enable streaming * Allow all 3.11 python versions * Use llama 2 prompt format and fix completion * Restructure (#3) Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Fix Dockerfile * Use a specific build stage * Cleanup * Add FastAPI skeleton * Cleanup openai package * Fix DI and tests * Split tests and tests with coverage * Remove old scaffolding * Add settings logic (#4) * Add settings logic * Add settings for sagemaker --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Local LLM (#5) * Add settings logic * Add settings for sagemaker * Add settings-local-example.yaml * Delete terraform files * Refactor tests to use fixtures * Join deltas * Add local model support --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Update README.md * Fix tests * Version bump * Enable simple llamaindex observability (#6) * Enable simple llamaindex observability * Improve code through linting * Update README.md * Move to async (#7) * Migrate implementation to use asyncio * Formatting * Cleanup * Linting --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Query Docs and gradio UI * Remove unnecessary files * Git ignore chromadb folder * Async migration + DI Cleanup * Fix tests * Add integration test * Use fastapi responses * Retrieval service with partial implementation * Cleanup * Run formatter * Fix types * Fetch nodes asynchronously * Install local dependencies in tests * Install ui dependencies in tests * Install dependencies for llama-cpp * Fix sudo * Attempt to fix cuda issues * Attempt to fix cuda issues * Try to reclaim some space from ubuntu machine * Retrieval with context * Fix lint and imports * Fix mypy * Make retrieval API a POST * Make Completions body a dataclass * Fix LLM chat message order * Add Query Chunks to Gradio UI * Improve rag query prompt * Rollback CI Changes * Move to sync code * Using Llamaindex abstraction for query retrieval * Fix types * Default to CONDENSED chat mode for contextualized chat * Rename route function * Add Chat endpoint * Remove webhooks * Add IntelliJ run config to gitignore * .gitignore applied * Sync chat completion * Refactor total * Typo in context_files.py * Add embeddings component and service * Remove wrong dataclass from IngestService * Filter by context file id implementation * Fix typing * Implement context_filter and separate from the bool use_context in the API * Change chunks api to avoid conceptual class of the context concept * Deprecate completions and fix tests * Remove remaining dataclasses * Use embedding component in ingest service * Fix ingestion to have multipart and local upload * Fix ingestion API * Add chunk tests * Add configurable paths * Cleaning up * Add more docs * IngestResponse includes a list of IngestedDocs * Use IngestedDoc in the Chunk document reference * Rename ingest routes to ingest_router.py * Fix test working directory for intellij * Set testpaths for pytest * Remove unused as_chat_engine * Add .fleet ide to gitignore * Make LLM and Embedding model configurable * Fix imports and checks * Let local_data folder exist empty in the repository * Don't use certain metadata in LLM * Remove long lines * Fix windows installation * Typos * Update poetry.lock * Add TODO for linux * Script and first version of docs * No jekill build * Fix relative url to openapi json * Change default docs values * Move chromadb dependency to the general group * Fix tests to use separate local_data * Create CNAME * Update CNAME * Fix openapi.json relative path * PrivateGPT logo * WIP OpenAPI documentation metadata * Add ingest script (#11) * Add ingest script * Fix broken name refactor * Add ingest docs and Makefile script * Linting * Move transformers to main dependency * Move torch to main dependencies * Don't load HuggingFaceEmbedding in tests * Fix lint --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Rename file to camel_case * Commit settings-local.yaml * Move documentation to public docs * Fix docker image for linux * Installation and Running the Server documentation * Move back to docs folder, as it is the only supported by github pages * Delete CNAME * Create CNAME * Delete CNAME * Create CNAME * Improved API documentation * Fix lint * Completions documentation * Updated openapi scheme * Ingestion API doc * Minor doc changes * Updated openapi scheme * Chunks API documentation * Embeddings and Health API, and homogeneous responses * Revamp README with new skeleton of content * More docs * PrivateGPT logo * Improve UI * Update ingestion docu * Update README with new sections * Use context window in the retriever * Gradio Documentation * Add logo to UI * Include Contributing and Community sections to README * Update links to resources in the README * Small README.md updates * Wrap lines of README.md * Don't put health under /v1 * Add copy button to Chat * Architecture documentation * Updated openapi.json * Updated openapi.json * Updated openapi.json * Change UI label * Update documentation * Add releases link to README.md * Gradio avatar and stop debug * Readme update * Clean old files * Remove unused terraform checks * Update twitter link. * Disable minimum coverage * Clean install message in README.md --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> Co-authored-by: Iván Martínez <ivanmartit@gmail.com> Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com> Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
This commit is contained in:
1
private_gpt/server/__init__.py
Normal file
1
private_gpt/server/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
"""private-gpt server."""
|
0
private_gpt/server/chat/__init__.py
Normal file
0
private_gpt/server/chat/__init__.py
Normal file
82
private_gpt/server/chat/chat_router.py
Normal file
82
private_gpt/server/chat/chat_router.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from fastapi import APIRouter
|
||||
from llama_index.llms import ChatMessage, MessageRole
|
||||
from pydantic import BaseModel
|
||||
from starlette.responses import StreamingResponse
|
||||
|
||||
from private_gpt.di import root_injector
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.open_ai.openai_models import (
|
||||
OpenAICompletion,
|
||||
OpenAIMessage,
|
||||
to_openai_response,
|
||||
to_openai_sse_stream,
|
||||
)
|
||||
from private_gpt.server.chat.chat_service import ChatService
|
||||
|
||||
chat_router = APIRouter(prefix="/v1")
|
||||
|
||||
|
||||
class ChatBody(BaseModel):
|
||||
messages: list[OpenAIMessage]
|
||||
use_context: bool = False
|
||||
context_filter: ContextFilter | None = None
|
||||
stream: bool = False
|
||||
|
||||
model_config = {
|
||||
"json_schema_extra": {
|
||||
"examples": [
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "How do you fry an egg?",
|
||||
}
|
||||
],
|
||||
"stream": False,
|
||||
"use_context": True,
|
||||
"context_filter": {
|
||||
"docs_ids": ["c202d5e6-7b69-4869-81cc-dd574ee8ee11"]
|
||||
},
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@chat_router.post(
|
||||
"/chat/completions",
|
||||
response_model=None,
|
||||
responses={200: {"model": OpenAICompletion}},
|
||||
tags=["Contextual Completions"],
|
||||
)
|
||||
def chat_completion(body: ChatBody) -> OpenAICompletion | StreamingResponse:
|
||||
"""Given a list of messages comprising a conversation, return a response.
|
||||
|
||||
If `use_context` is set to `true`, the model will use context coming
|
||||
from the ingested documents to create the response. The documents being used can
|
||||
be filtered using the `context_filter` and passing the document IDs to be used.
|
||||
Ingested documents IDs can be found using `/ingest/list` endpoint. If you want
|
||||
all ingested documents to be used, remove `context_filter` altogether.
|
||||
|
||||
When using `'stream': true`, the API will return data chunks following [OpenAI's
|
||||
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
|
||||
```
|
||||
{"id":"12345","object":"completion.chunk","created":1694268190,
|
||||
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
|
||||
"finish_reason":null}]}
|
||||
```
|
||||
"""
|
||||
service = root_injector.get(ChatService)
|
||||
all_messages = [
|
||||
ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages
|
||||
]
|
||||
if body.stream:
|
||||
stream = service.stream_chat(
|
||||
all_messages, body.use_context, body.context_filter
|
||||
)
|
||||
return StreamingResponse(
|
||||
to_openai_sse_stream(stream), media_type="text/event-stream"
|
||||
)
|
||||
else:
|
||||
response = service.chat(all_messages, body.use_context, body.context_filter)
|
||||
return to_openai_response(response)
|
116
private_gpt/server/chat/chat_service.py
Normal file
116
private_gpt/server/chat/chat_service.py
Normal file
@@ -0,0 +1,116 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from injector import inject, singleton
|
||||
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
|
||||
from llama_index.chat_engine import ContextChatEngine
|
||||
from llama_index.indices.postprocessor import MetadataReplacementPostProcessor
|
||||
from llama_index.llm_predictor.utils import stream_chat_response_to_tokens
|
||||
from llama_index.llms import ChatMessage
|
||||
from llama_index.types import TokenGen
|
||||
|
||||
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
||||
from private_gpt.components.llm.llm_component import LLMComponent
|
||||
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
|
||||
from private_gpt.components.vector_store.vector_store_component import (
|
||||
VectorStoreComponent,
|
||||
)
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from llama_index.chat_engine.types import (
|
||||
AgentChatResponse,
|
||||
StreamingAgentChatResponse,
|
||||
)
|
||||
|
||||
|
||||
@singleton
|
||||
class ChatService:
|
||||
@inject
|
||||
def __init__(
|
||||
self,
|
||||
llm_component: LLMComponent,
|
||||
vector_store_component: VectorStoreComponent,
|
||||
embedding_component: EmbeddingComponent,
|
||||
node_store_component: NodeStoreComponent,
|
||||
) -> None:
|
||||
self.llm_service = llm_component
|
||||
self.vector_store_component = vector_store_component
|
||||
self.storage_context = StorageContext.from_defaults(
|
||||
vector_store=vector_store_component.vector_store,
|
||||
docstore=node_store_component.doc_store,
|
||||
index_store=node_store_component.index_store,
|
||||
)
|
||||
self.service_context = ServiceContext.from_defaults(
|
||||
llm=llm_component.llm, embed_model=embedding_component.embedding_model
|
||||
)
|
||||
self.index = VectorStoreIndex.from_vector_store(
|
||||
vector_store_component.vector_store,
|
||||
storage_context=self.storage_context,
|
||||
service_context=self.service_context,
|
||||
show_progress=True,
|
||||
)
|
||||
|
||||
def _chat_with_contex(
|
||||
self,
|
||||
message: str,
|
||||
context_filter: ContextFilter | None = None,
|
||||
chat_history: Sequence[ChatMessage] | None = None,
|
||||
streaming: bool = False,
|
||||
) -> Any:
|
||||
vector_index_retriever = self.vector_store_component.get_retriever(
|
||||
index=self.index, context_filter=context_filter
|
||||
)
|
||||
chat_engine = ContextChatEngine.from_defaults(
|
||||
retriever=vector_index_retriever,
|
||||
service_context=self.service_context,
|
||||
node_postprocessors=[
|
||||
MetadataReplacementPostProcessor(target_metadata_key="window"),
|
||||
],
|
||||
)
|
||||
if streaming:
|
||||
result = chat_engine.stream_chat(message, chat_history)
|
||||
else:
|
||||
result = chat_engine.chat(message, chat_history)
|
||||
return result
|
||||
|
||||
def stream_chat(
|
||||
self,
|
||||
messages: list[ChatMessage],
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> TokenGen:
|
||||
if use_context:
|
||||
last_message = messages[-1].content
|
||||
response: StreamingAgentChatResponse = self._chat_with_contex(
|
||||
message=last_message if last_message is not None else "",
|
||||
chat_history=messages[:-1],
|
||||
context_filter=context_filter,
|
||||
streaming=True,
|
||||
)
|
||||
response_gen = response.response_gen
|
||||
else:
|
||||
stream = self.llm_service.llm.stream_chat(messages)
|
||||
response_gen = stream_chat_response_to_tokens(stream)
|
||||
return response_gen
|
||||
|
||||
def chat(
|
||||
self,
|
||||
messages: list[ChatMessage],
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> str:
|
||||
if use_context:
|
||||
last_message = messages[-1].content
|
||||
wrapped_response: AgentChatResponse = self._chat_with_contex(
|
||||
message=last_message if last_message is not None else "",
|
||||
chat_history=messages[:-1],
|
||||
context_filter=context_filter,
|
||||
streaming=False,
|
||||
)
|
||||
response = wrapped_response.response
|
||||
else:
|
||||
chat_response = self.llm_service.llm.chat(messages)
|
||||
response_content = chat_response.message.content
|
||||
response = response_content if response_content is not None else ""
|
||||
return response
|
0
private_gpt/server/chunks/__init__.py
Normal file
0
private_gpt/server/chunks/__init__.py
Normal file
53
private_gpt/server/chunks/chunks_router.py
Normal file
53
private_gpt/server/chunks/chunks_router.py
Normal file
@@ -0,0 +1,53 @@
|
||||
from fastapi import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from private_gpt.di import root_injector
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
|
||||
|
||||
chunks_router = APIRouter(prefix="/v1")
|
||||
|
||||
|
||||
class ChunksBody(BaseModel):
|
||||
text: str = Field(examples=["Q3 2023 sales"])
|
||||
context_filter: ContextFilter | None = None
|
||||
limit: int = 10
|
||||
prev_next_chunks: int = Field(default=0, examples=[2])
|
||||
|
||||
|
||||
class ChunksResponse(BaseModel):
|
||||
object: str = Field(enum=["list"])
|
||||
model: str = Field(enum=["private-gpt"])
|
||||
data: list[Chunk]
|
||||
|
||||
|
||||
@chunks_router.post("/chunks", tags=["Context Chunks"])
|
||||
def chunks_retrieval(body: ChunksBody) -> ChunksResponse:
|
||||
"""Given a `text`, returns the most relevant chunks from the ingested documents.
|
||||
|
||||
The returned information can be used to generate prompts that can be
|
||||
passed to `/completions` or `/chat/completions` APIs. Note: it is usually a very
|
||||
fast API, because only the Embeddings model is involved, not the LLM. The
|
||||
returned information contains the relevant chunk `text` together with the source
|
||||
`document` it is coming from. It also contains a score that can be used to
|
||||
compare different results.
|
||||
|
||||
The max number of chunks to be returned is set using the `limit` param.
|
||||
|
||||
Previous and next chunks (pieces of text that appear right before or after in the
|
||||
document) can be fetched by using the `prev_next_chunks` field.
|
||||
|
||||
The documents being used can be filtered using the `context_filter` and passing
|
||||
the document IDs to be used. Ingested documents IDs can be found using
|
||||
`/ingest/list` endpoint. If you want all ingested documents to be used,
|
||||
remove `context_filter` altogether.
|
||||
"""
|
||||
service = root_injector.get(ChunksService)
|
||||
results = service.retrieve_relevant(
|
||||
body.text, body.context_filter, body.limit, body.prev_next_chunks
|
||||
)
|
||||
return ChunksResponse(
|
||||
object="list",
|
||||
model="private-gpt",
|
||||
data=results,
|
||||
)
|
119
private_gpt/server/chunks/chunks_service.py
Normal file
119
private_gpt/server/chunks/chunks_service.py
Normal file
@@ -0,0 +1,119 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from injector import inject, singleton
|
||||
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
|
||||
from llama_index.schema import NodeWithScore
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
||||
from private_gpt.components.llm.llm_component import LLMComponent
|
||||
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
|
||||
from private_gpt.components.vector_store.vector_store_component import (
|
||||
VectorStoreComponent,
|
||||
)
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.server.ingest.ingest_service import IngestedDoc
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from llama_index.schema import RelatedNodeInfo
|
||||
|
||||
|
||||
class Chunk(BaseModel):
|
||||
object: str = Field(enum=["context.chunk"])
|
||||
score: float = Field(examples=[0.023])
|
||||
document: IngestedDoc
|
||||
text: str = Field(examples=["Outbound sales increased 20%, driven by new leads."])
|
||||
previous_texts: list[str] | None = Field(
|
||||
examples=[["SALES REPORT 2023", "Inbound didn't show major changes."]]
|
||||
)
|
||||
next_texts: list[str] | None = Field(
|
||||
examples=[
|
||||
[
|
||||
"New leads came from Google Ads campaign.",
|
||||
"The campaign was run by the Marketing Department",
|
||||
]
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@singleton
|
||||
class ChunksService:
|
||||
@inject
|
||||
def __init__(
|
||||
self,
|
||||
llm_component: LLMComponent,
|
||||
vector_store_component: VectorStoreComponent,
|
||||
embedding_component: EmbeddingComponent,
|
||||
node_store_component: NodeStoreComponent,
|
||||
) -> None:
|
||||
self.vector_store_component = vector_store_component
|
||||
self.storage_context = StorageContext.from_defaults(
|
||||
vector_store=vector_store_component.vector_store,
|
||||
docstore=node_store_component.doc_store,
|
||||
index_store=node_store_component.index_store,
|
||||
)
|
||||
self.query_service_context = ServiceContext.from_defaults(
|
||||
llm=llm_component.llm, embed_model=embedding_component.embedding_model
|
||||
)
|
||||
|
||||
def _get_sibling_nodes_text(
|
||||
self, node_with_score: NodeWithScore, related_number: int, forward: bool = True
|
||||
) -> list[str]:
|
||||
explored_nodes_texts = []
|
||||
current_node = node_with_score.node
|
||||
for _ in range(related_number):
|
||||
explored_node_info: RelatedNodeInfo | None = (
|
||||
current_node.next_node if forward else current_node.prev_node
|
||||
)
|
||||
if explored_node_info is None:
|
||||
break
|
||||
|
||||
explored_node = self.storage_context.docstore.get_node(
|
||||
explored_node_info.node_id
|
||||
)
|
||||
|
||||
explored_nodes_texts.append(explored_node.get_content())
|
||||
current_node = explored_node
|
||||
|
||||
return explored_nodes_texts
|
||||
|
||||
def retrieve_relevant(
|
||||
self,
|
||||
text: str,
|
||||
context_filter: ContextFilter | None = None,
|
||||
limit: int = 10,
|
||||
prev_next_chunks: int = 0,
|
||||
) -> list[Chunk]:
|
||||
index = VectorStoreIndex.from_vector_store(
|
||||
self.vector_store_component.vector_store,
|
||||
storage_context=self.storage_context,
|
||||
service_context=self.query_service_context,
|
||||
show_progress=True,
|
||||
)
|
||||
vector_index_retriever = self.vector_store_component.get_retriever(
|
||||
index=index, context_filter=context_filter, similarity_top_k=limit
|
||||
)
|
||||
nodes = vector_index_retriever.retrieve(text)
|
||||
nodes.sort(key=lambda n: n.score or 0.0, reverse=True)
|
||||
|
||||
retrieved_nodes = []
|
||||
for node in nodes:
|
||||
doc_id = node.node.ref_doc_id if node.node.ref_doc_id is not None else "-"
|
||||
retrieved_nodes.append(
|
||||
Chunk(
|
||||
object="context.chunk",
|
||||
score=node.score or 0.0,
|
||||
document=IngestedDoc(
|
||||
object="ingest.document",
|
||||
doc_id=doc_id,
|
||||
doc_metadata=node.metadata,
|
||||
),
|
||||
text=node.get_content(),
|
||||
previous_texts=self._get_sibling_nodes_text(
|
||||
node, prev_next_chunks, False
|
||||
),
|
||||
next_texts=self._get_sibling_nodes_text(node, prev_next_chunks),
|
||||
)
|
||||
)
|
||||
|
||||
return retrieved_nodes
|
1
private_gpt/server/completions/__init__.py
Normal file
1
private_gpt/server/completions/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
"""Deprecated Openai compatibility endpoint."""
|
66
private_gpt/server/completions/completions_router.py
Normal file
66
private_gpt/server/completions/completions_router.py
Normal file
@@ -0,0 +1,66 @@
|
||||
from fastapi import APIRouter
|
||||
from pydantic import BaseModel
|
||||
from starlette.responses import StreamingResponse
|
||||
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.open_ai.openai_models import (
|
||||
OpenAICompletion,
|
||||
OpenAIMessage,
|
||||
)
|
||||
from private_gpt.server.chat.chat_router import ChatBody, chat_completion
|
||||
|
||||
completions_router = APIRouter(prefix="/v1")
|
||||
|
||||
|
||||
class CompletionsBody(BaseModel):
|
||||
prompt: str
|
||||
use_context: bool = False
|
||||
context_filter: ContextFilter | None = None
|
||||
stream: bool = False
|
||||
|
||||
model_config = {
|
||||
"json_schema_extra": {
|
||||
"examples": [
|
||||
{
|
||||
"prompt": "How do you fry an egg?",
|
||||
"stream": False,
|
||||
"use_context": False,
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@completions_router.post(
|
||||
"/completions",
|
||||
response_model=None,
|
||||
summary="Completion",
|
||||
responses={200: {"model": OpenAICompletion}},
|
||||
tags=["Contextual Completions"],
|
||||
)
|
||||
def prompt_completion(body: CompletionsBody) -> OpenAICompletion | StreamingResponse:
|
||||
"""We recommend most users use our Chat completions API.
|
||||
|
||||
Given a prompt, the model will return one predicted completion. If `use_context`
|
||||
is set to `true`, the model will use context coming from the ingested documents
|
||||
to create the response. The documents being used can be filtered using the
|
||||
`context_filter` and passing the document IDs to be used. Ingested documents IDs
|
||||
can be found using `/ingest/list` endpoint. If you want all ingested documents to
|
||||
be used, remove `context_filter` altogether.
|
||||
|
||||
When using `'stream': true`, the API will return data chunks following [OpenAI's
|
||||
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
|
||||
```
|
||||
{"id":"12345","object":"completion.chunk","created":1694268190,
|
||||
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
|
||||
"finish_reason":null}]}
|
||||
```
|
||||
"""
|
||||
message = OpenAIMessage(content=body.prompt, role="user")
|
||||
chat_body = ChatBody(
|
||||
messages=[message],
|
||||
use_context=body.use_context,
|
||||
stream=body.stream,
|
||||
context_filter=body.context_filter,
|
||||
)
|
||||
return chat_completion(chat_body)
|
0
private_gpt/server/embeddings/__init__.py
Normal file
0
private_gpt/server/embeddings/__init__.py
Normal file
33
private_gpt/server/embeddings/embeddings_router.py
Normal file
33
private_gpt/server/embeddings/embeddings_router.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from fastapi import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from private_gpt.di import root_injector
|
||||
from private_gpt.server.embeddings.embeddings_service import (
|
||||
Embedding,
|
||||
EmbeddingsService,
|
||||
)
|
||||
|
||||
embeddings_router = APIRouter(prefix="/v1")
|
||||
|
||||
|
||||
class EmbeddingsBody(BaseModel):
|
||||
input: str | list[str]
|
||||
|
||||
|
||||
class EmbeddingsResponse(BaseModel):
|
||||
object: str = Field(enum=["list"])
|
||||
model: str = Field(enum=["private-gpt"])
|
||||
data: list[Embedding]
|
||||
|
||||
|
||||
@embeddings_router.post("/embeddings", tags=["Embeddings"])
|
||||
def embeddings_generation(body: EmbeddingsBody) -> EmbeddingsResponse:
|
||||
"""Get a vector representation of a given input.
|
||||
|
||||
That vector representation can be easily consumed
|
||||
by machine learning models and algorithms.
|
||||
"""
|
||||
service = root_injector.get(EmbeddingsService)
|
||||
input_texts = body.input if isinstance(body.input, list) else [body.input]
|
||||
embeddings = service.texts_embeddings(input_texts)
|
||||
return EmbeddingsResponse(object="list", model="private-gpt", data=embeddings)
|
28
private_gpt/server/embeddings/embeddings_service.py
Normal file
28
private_gpt/server/embeddings/embeddings_service.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from injector import inject, singleton
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
||||
|
||||
|
||||
class Embedding(BaseModel):
|
||||
index: int
|
||||
object: str = Field(enum=["embedding"])
|
||||
embedding: list[float] = Field(examples=[[0.0023064255, -0.009327292]])
|
||||
|
||||
|
||||
@singleton
|
||||
class EmbeddingsService:
|
||||
@inject
|
||||
def __init__(self, embedding_component: EmbeddingComponent) -> None:
|
||||
self.embedding_model = embedding_component.embedding_model
|
||||
|
||||
def texts_embeddings(self, texts: list[str]) -> list[Embedding]:
|
||||
texts_embeddings = self.embedding_model.get_text_embedding_batch(texts)
|
||||
return [
|
||||
Embedding(
|
||||
index=texts_embeddings.index(embedding),
|
||||
object="embedding",
|
||||
embedding=embedding,
|
||||
)
|
||||
for embedding in texts_embeddings
|
||||
]
|
0
private_gpt/server/health/__init__.py
Normal file
0
private_gpt/server/health/__init__.py
Normal file
14
private_gpt/server/health/health_router.py
Normal file
14
private_gpt/server/health/health_router.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from fastapi import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
health_router = APIRouter()
|
||||
|
||||
|
||||
class HealthResponse(BaseModel):
|
||||
status: str = Field(enum=["ok"])
|
||||
|
||||
|
||||
@health_router.get("/health", tags=["Health"])
|
||||
def health() -> HealthResponse:
|
||||
"""Return ok if the system is up."""
|
||||
return HealthResponse(status="ok")
|
0
private_gpt/server/ingest/__init__.py
Normal file
0
private_gpt/server/ingest/__init__.py
Normal file
49
private_gpt/server/ingest/ingest_router.py
Normal file
49
private_gpt/server/ingest/ingest_router.py
Normal file
@@ -0,0 +1,49 @@
|
||||
from fastapi import APIRouter, HTTPException, UploadFile
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from private_gpt.di import root_injector
|
||||
from private_gpt.server.ingest.ingest_service import IngestedDoc, IngestService
|
||||
|
||||
ingest_router = APIRouter(prefix="/v1")
|
||||
|
||||
|
||||
class IngestResponse(BaseModel):
|
||||
object: str = Field(enum=["list"])
|
||||
model: str = Field(enum=["private-gpt"])
|
||||
data: list[IngestedDoc]
|
||||
|
||||
|
||||
@ingest_router.post("/ingest", tags=["Ingestion"])
|
||||
def ingest(file: UploadFile) -> IngestResponse:
|
||||
"""Ingests and processes a file, storing its chunks to be used as context.
|
||||
|
||||
The context obtained from files is later used in
|
||||
`/chat/completions`, `/completions`, and `/chunks` APIs.
|
||||
|
||||
Most common document
|
||||
formats are supported, but you may be prompted to install an extra dependency to
|
||||
manage a specific file type.
|
||||
|
||||
A file can generate different Documents (for example a PDF generates one Document
|
||||
per page). All Documents IDs are returned in the response, together with the
|
||||
extracted Metadata (which is later used to improve context retrieval). Those IDs
|
||||
can be used to filter the context used to create responses in
|
||||
`/chat/completions`, `/completions`, and `/chunks` APIs.
|
||||
"""
|
||||
service = root_injector.get(IngestService)
|
||||
if file.filename is None:
|
||||
raise HTTPException(400, "No file name provided")
|
||||
ingested_documents = service.ingest(file.filename, file.file.read())
|
||||
return IngestResponse(object="list", model="private-gpt", data=ingested_documents)
|
||||
|
||||
|
||||
@ingest_router.get("/ingest/list", tags=["Ingestion"])
|
||||
def list_ingested() -> IngestResponse:
|
||||
"""Lists already ingested Documents including their Document ID and metadata.
|
||||
|
||||
Those IDs can be used to filter the context used to create responses
|
||||
in `/chat/completions`, `/completions`, and `/chunks` APIs.
|
||||
"""
|
||||
service = root_injector.get(IngestService)
|
||||
ingested_documents = service.list_ingested()
|
||||
return IngestResponse(object="list", model="private-gpt", data=ingested_documents)
|
159
private_gpt/server/ingest/ingest_service.py
Normal file
159
private_gpt/server/ingest/ingest_service.py
Normal file
@@ -0,0 +1,159 @@
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, AnyStr
|
||||
|
||||
from injector import inject, singleton
|
||||
from llama_index import (
|
||||
Document,
|
||||
ServiceContext,
|
||||
StorageContext,
|
||||
StringIterableReader,
|
||||
VectorStoreIndex,
|
||||
)
|
||||
from llama_index.node_parser import SentenceWindowNodeParser
|
||||
from llama_index.readers.file.base import DEFAULT_FILE_READER_CLS
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
||||
from private_gpt.components.llm.llm_component import LLMComponent
|
||||
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
|
||||
from private_gpt.components.vector_store.vector_store_component import (
|
||||
VectorStoreComponent,
|
||||
)
|
||||
from private_gpt.paths import local_data_path
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from llama_index.readers.base import BaseReader
|
||||
|
||||
|
||||
class IngestedDoc(BaseModel):
|
||||
object: str = Field(enum=["ingest.document"])
|
||||
doc_id: str = Field(examples=["c202d5e6-7b69-4869-81cc-dd574ee8ee11"])
|
||||
doc_metadata: dict[str, Any] | None = Field(
|
||||
examples=[
|
||||
{
|
||||
"page_label": "2",
|
||||
"file_name": "Sales Report Q3 2023.pdf",
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def curate_metadata(metadata: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Remove unwanted metadata keys."""
|
||||
metadata.pop("doc_id", None)
|
||||
metadata.pop("window", None)
|
||||
metadata.pop("original_text", None)
|
||||
return metadata
|
||||
|
||||
|
||||
@singleton
|
||||
class IngestService:
|
||||
@inject
|
||||
def __init__(
|
||||
self,
|
||||
llm_component: LLMComponent,
|
||||
vector_store_component: VectorStoreComponent,
|
||||
embedding_component: EmbeddingComponent,
|
||||
node_store_component: NodeStoreComponent,
|
||||
) -> None:
|
||||
self.llm_service = llm_component
|
||||
self.storage_context = StorageContext.from_defaults(
|
||||
vector_store=vector_store_component.vector_store,
|
||||
docstore=node_store_component.doc_store,
|
||||
index_store=node_store_component.index_store,
|
||||
)
|
||||
self.ingest_service_context = ServiceContext.from_defaults(
|
||||
llm=self.llm_service.llm,
|
||||
embed_model=embedding_component.embedding_model,
|
||||
node_parser=SentenceWindowNodeParser.from_defaults(),
|
||||
)
|
||||
|
||||
def ingest(self, file_name: str, file_data: AnyStr | Path) -> list[IngestedDoc]:
|
||||
extension = Path(file_name).suffix
|
||||
reader_cls = DEFAULT_FILE_READER_CLS.get(extension)
|
||||
documents: list[Document]
|
||||
if reader_cls is None:
|
||||
# Read as a plain text
|
||||
string_reader = StringIterableReader()
|
||||
if isinstance(file_data, Path):
|
||||
text = file_data.read_text()
|
||||
documents = string_reader.load_data([text])
|
||||
elif isinstance(file_data, bytes):
|
||||
documents = string_reader.load_data([file_data.decode("utf-8")])
|
||||
elif isinstance(file_data, str):
|
||||
documents = string_reader.load_data([file_data])
|
||||
else:
|
||||
raise ValueError(f"Unsupported data type {type(file_data)}")
|
||||
else:
|
||||
reader: BaseReader = reader_cls()
|
||||
if isinstance(file_data, Path):
|
||||
# Already a path, nothing to do
|
||||
documents = reader.load_data(file_data)
|
||||
else:
|
||||
# llama-index mainly supports reading from files, so
|
||||
# we have to create a tmp file to read for it to work
|
||||
with tempfile.NamedTemporaryFile() as tmp:
|
||||
path_to_tmp = Path(tmp.name)
|
||||
if isinstance(file_data, bytes):
|
||||
path_to_tmp.write_bytes(file_data)
|
||||
else:
|
||||
path_to_tmp.write_text(str(file_data))
|
||||
documents = reader.load_data(path_to_tmp)
|
||||
|
||||
for document in documents:
|
||||
document.metadata["file_name"] = file_name
|
||||
return self._save_docs(documents)
|
||||
|
||||
def _save_docs(self, documents: list[Document]) -> list[IngestedDoc]:
|
||||
for document in documents:
|
||||
document.metadata["doc_id"] = document.doc_id
|
||||
# We don't want the Embeddings search to receive this metadata
|
||||
document.excluded_embed_metadata_keys = ["doc_id"]
|
||||
# We don't want the LLM to receive these metadata in the context
|
||||
document.excluded_llm_metadata_keys = ["file_name", "doc_id", "page_label"]
|
||||
# create vectorStore index
|
||||
VectorStoreIndex.from_documents(
|
||||
documents,
|
||||
storage_context=self.storage_context,
|
||||
service_context=self.ingest_service_context,
|
||||
store_nodes_override=True, # Force store nodes in index and document stores
|
||||
show_progress=True,
|
||||
)
|
||||
# persist the index and nodes
|
||||
self.storage_context.persist(persist_dir=local_data_path)
|
||||
return [
|
||||
IngestedDoc(
|
||||
object="ingest.document",
|
||||
doc_id=document.doc_id,
|
||||
doc_metadata=IngestedDoc.curate_metadata(document.metadata),
|
||||
)
|
||||
for document in documents
|
||||
]
|
||||
|
||||
def list_ingested(self) -> list[IngestedDoc]:
|
||||
ingested_docs = []
|
||||
try:
|
||||
docstore = self.storage_context.docstore
|
||||
ingested_docs_ids: set[str] = set()
|
||||
|
||||
for node in docstore.docs.values():
|
||||
if node.ref_doc_id is not None:
|
||||
ingested_docs_ids.add(node.ref_doc_id)
|
||||
|
||||
for doc_id in ingested_docs_ids:
|
||||
ref_doc_info = docstore.get_ref_doc_info(ref_doc_id=doc_id)
|
||||
doc_metadata = None
|
||||
if ref_doc_info is not None and ref_doc_info.metadata is not None:
|
||||
doc_metadata = IngestedDoc.curate_metadata(ref_doc_info.metadata)
|
||||
ingested_docs.append(
|
||||
IngestedDoc(
|
||||
object="ingest.document",
|
||||
doc_id=doc_id,
|
||||
doc_metadata=doc_metadata,
|
||||
)
|
||||
)
|
||||
return ingested_docs
|
||||
except ValueError:
|
||||
pass
|
||||
return ingested_docs
|
46
private_gpt/server/ingest/ingest_watcher.py
Normal file
46
private_gpt/server/ingest/ingest_watcher.py
Normal file
@@ -0,0 +1,46 @@
|
||||
from collections.abc import Callable
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from watchdog.events import (
|
||||
DirCreatedEvent,
|
||||
DirModifiedEvent,
|
||||
FileCreatedEvent,
|
||||
FileModifiedEvent,
|
||||
FileSystemEventHandler,
|
||||
)
|
||||
from watchdog.observers import Observer
|
||||
|
||||
|
||||
class IngestWatcher:
|
||||
def __init__(
|
||||
self, watch_path: Path, on_file_changed: Callable[[Path], None]
|
||||
) -> None:
|
||||
self.watch_path = watch_path
|
||||
self.on_file_changed = on_file_changed
|
||||
|
||||
class Handler(FileSystemEventHandler):
|
||||
def on_modified(self, event: DirModifiedEvent | FileModifiedEvent) -> None:
|
||||
if isinstance(event, FileModifiedEvent):
|
||||
on_file_changed(Path(event.src_path))
|
||||
|
||||
def on_created(self, event: DirCreatedEvent | FileCreatedEvent) -> None:
|
||||
if isinstance(event, FileCreatedEvent):
|
||||
on_file_changed(Path(event.src_path))
|
||||
|
||||
event_handler = Handler()
|
||||
observer: Any = Observer()
|
||||
self._observer = observer
|
||||
self._observer.schedule(event_handler, str(watch_path), recursive=True)
|
||||
|
||||
def start(self) -> None:
|
||||
self._observer.start()
|
||||
while self._observer.is_alive():
|
||||
try:
|
||||
self._observer.join(1)
|
||||
except KeyboardInterrupt:
|
||||
break
|
||||
|
||||
def stop(self) -> None:
|
||||
self._observer.stop()
|
||||
self._observer.join()
|
Reference in New Issue
Block a user