1 Commits

Author SHA1 Message Date
imartinez
829f42909c Update twitter account 2024-04-09 15:18:03 +02:00
42 changed files with 807 additions and 2251 deletions

View File

@@ -1,105 +0,0 @@
name: Bug Report
description: Report a bug or issue with the project.
title: "[BUG] "
labels: ["bug"]
body:
- type: markdown
attributes:
value: |
**Please describe the bug you encountered.**
- type: checkboxes
id: pre-check
attributes:
label: Pre-check
description: Please confirm that you have searched for duplicate issues before creating this one.
options:
- label: I have searched the existing issues and none cover this bug.
required: true
- type: textarea
id: description
attributes:
label: Description
description: Provide a detailed description of the bug.
placeholder: "Detailed description of the bug"
validations:
required: true
- type: textarea
id: steps
attributes:
label: Steps to Reproduce
description: Provide the steps to reproduce the bug.
placeholder: "1. Step one\n2. Step two\n3. Step three"
validations:
required: true
- type: input
id: expected
attributes:
label: Expected Behavior
description: Describe what you expected to happen.
placeholder: "Expected behavior"
validations:
required: true
- type: input
id: actual
attributes:
label: Actual Behavior
description: Describe what actually happened.
placeholder: "Actual behavior"
validations:
required: true
- type: input
id: environment
attributes:
label: Environment
description: Provide details about your environment (e.g., OS, GPU, profile, etc.).
placeholder: "Environment details"
validations:
required: true
- type: input
id: additional
attributes:
label: Additional Information
description: Provide any additional information that may be relevant (e.g., logs, screenshots).
placeholder: "Any additional information that may be relevant"
- type: input
id: version
attributes:
label: Version
description: Provide the version of the project where you encountered the bug.
placeholder: "Version number"
- type: markdown
attributes:
value: |
**Please ensure the following setup checklist has been reviewed before submitting the bug report.**
- type: checkboxes
id: general-setup-checklist
attributes:
label: Setup Checklist
description: Verify the following general aspects of your setup.
options:
- label: Confirm that you have followed the installation instructions in the projects documentation.
- label: Check that you are using the latest version of the project.
- label: Verify disk space availability for model storage and data processing.
- label: Ensure that you have the necessary permissions to run the project.
- type: checkboxes
id: nvidia-setup-checklist
attributes:
label: NVIDIA GPU Setup Checklist
description: Verify the following aspects of your NVIDIA GPU setup.
options:
- label: Check that the all CUDA dependencies are installed and are compatible with your GPU (refer to [CUDA's documentation](https://docs.nvidia.com/deploy/cuda-compatibility/#frequently-asked-questions))
- label: Ensure an NVIDIA GPU is installed and recognized by the system (run `nvidia-smi` to verify).
- label: Ensure proper permissions are set for accessing GPU resources.
- label: Docker users - Verify that the NVIDIA Container Toolkit is configured correctly (e.g. run `sudo docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi`)

View File

@@ -1,8 +0,0 @@
blank_issues_enabled: false
contact_links:
- name: Documentation
url: https://docs.privategpt.dev
about: Please refer to our documentation for more details and guidance.
- name: Discord
url: https://discord.gg/bK6mRVpErU
about: Join our Discord community to ask questions and get help.

View File

@@ -1,19 +0,0 @@
name: Documentation
description: Suggest a change or addition to the documentation.
title: "[DOCS] "
labels: ["documentation"]
body:
- type: markdown
attributes:
value: |
**Please describe the documentation change or addition you would like to suggest.**
- type: textarea
id: description
attributes:
label: Description
description: Provide a detailed description of the documentation change.
placeholder: "Detailed description of the documentation change"
validations:
required: true

View File

@@ -1,37 +0,0 @@
name: Enhancement
description: Suggest an enhancement or improvement to the project.
title: "[FEATURE] "
labels: ["enhancement"]
body:
- type: markdown
attributes:
value: |
**Please describe the enhancement or improvement you would like to suggest.**
- type: textarea
id: feature_description
attributes:
label: Feature Description
description: Provide a detailed description of the enhancement.
placeholder: "Detailed description of the enhancement"
validations:
required: true
- type: textarea
id: reason
attributes:
label: Reason
description: Explain the reason for this enhancement.
placeholder: "Reason for the enhancement"
validations:
required: true
- type: textarea
id: value
attributes:
label: Value of Feature
description: Describe the value or benefits this feature will bring.
placeholder: "Value or benefits of the feature"
validations:
required: true

View File

@@ -1,19 +0,0 @@
name: Question
description: Ask a question about the project.
title: "[QUESTION] "
labels: ["question"]
body:
- type: markdown
attributes:
value: |
**Please describe your question in detail.**
- type: textarea
id: question
attributes:
label: Question
description: Provide a detailed description of your question.
placeholder: "Detailed description of the question"
validations:
required: true

View File

@@ -1,37 +0,0 @@
# Description
Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. List any dependencies that are required for this change.
## Type of Change
Please delete options that are not relevant.
- [ ] Bug fix (non-breaking change which fixes an issue)
- [ ] New feature (non-breaking change which adds functionality)
- [ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)
- [ ] This change requires a documentation update
## How Has This Been Tested?
Please describe the tests that you ran to verify your changes. Provide instructions so we can reproduce. Please also list any relevant details for your test configuration
- [ ] Added new unit/integration tests
- [ ] I stared at the code and made sure it makes sense
**Test Configuration**:
* Firmware version:
* Hardware:
* Toolchain:
* SDK:
## Checklist:
- [ ] My code follows the style guidelines of this project
- [ ] I have performed a self-review of my code
- [ ] I have commented my code, particularly in hard-to-understand areas
- [ ] I have made corresponding changes to the documentation
- [ ] My changes generate no new warnings
- [ ] I have added tests that prove my fix is effective or that my feature works
- [ ] New and existing unit tests pass locally with my changes
- [ ] Any dependent changes have been merged and published in downstream modules
- [ ] I ran `make check; make test` to ensure mypy and tests pass

View File

@@ -11,17 +11,13 @@ jobs:
preview-docs:
runs-on: ubuntu-latest
permissions:
contents: read
pull-requests: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
ref: refs/pull/${{ github.event.pull_request.number }}/merge
- name: Setup Node.js
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "18"
@@ -41,14 +37,14 @@ jobs:
# Set the output for the step
echo "::set-output name=preview_url::$preview_url"
- name: Comment PR with URL using github-actions bot
uses: actions/github-script@v7
uses: actions/github-script@v4
if: ${{ steps.generate_docs.outputs.preview_url }}
with:
script: |
const preview_url = '${{ steps.generate_docs.outputs.preview_url }}';
github.rest.issues.createComment({
issue_number: context.issue.number,
owner: context.repo.owner,
repo: context.repo.repo,
const issue_number = context.issue.number;
github.issues.createComment({
...context.repo,
issue_number: issue_number,
body: `Published docs preview URL: ${preview_url}`
})

View File

@@ -8,9 +8,18 @@ message: >-
metadata from this file.
type: software
authors:
- name: Zylon by PrivateGPT
address: hello@zylon.ai
website: 'https://www.zylon.ai/'
repository-code: 'https://github.com/zylon-ai/private-gpt'
- given-names: Iván
family-names: Martínez Toro
email: ivanmartit@gmail.com
orcid: 'https://orcid.org/0009-0004-5065-2311'
- family-names: Gallego Vico
given-names: Daniel
email: danielgallegovico@gmail.com
orcid: 'https://orcid.org/0009-0006-8582-4384'
- given-names: Pablo
family-names: Orgaz
email: pabloogc+gh@gmail.com
orcid: 'https://orcid.org/0009-0008-0080-1437'
repository-code: 'https://github.com/imartinez/privateGPT'
license: Apache-2.0
date-released: '2023-05-02'

View File

@@ -33,8 +33,7 @@ ENV PORT=8080
EXPOSE 8080
# Prepare a non-root user
RUN adduser --group worker
RUN adduser --system --ingroup worker worker
RUN adduser --system worker
WORKDIR /home/worker/app
RUN mkdir local_data; chown worker local_data

View File

@@ -1,6 +1,6 @@
# 🔒 PrivateGPT 📑
[![Tests](https://github.com/zylon-ai/private-gpt/actions/workflows/tests.yml/badge.svg)](https://github.com/zylon-ai/private-gpt/actions/workflows/tests.yml?query=branch%3Amain)
[![Tests](https://github.com/imartinez/privateGPT/actions/workflows/tests.yml/badge.svg)](https://github.com/imartinez/privateGPT/actions/workflows/tests.yml?query=branch%3Amain)
[![Website](https://img.shields.io/website?up_message=check%20it&down_message=down&url=https%3A%2F%2Fdocs.privategpt.dev%2F&label=Documentation)](https://docs.privategpt.dev/)
[![Discord](https://img.shields.io/discord/1164200432894234644?logo=discord&label=PrivateGPT)](https://discord.gg/bK6mRVpErU)
@@ -9,7 +9,7 @@
> Install & usage docs: https://docs.privategpt.dev/
>
> Join the community: [Twitter](https://twitter.com/ZylonPrivateGPT) & [Discord](https://discord.gg/bK6mRVpErU)
> Join the community: [Twitter](https://twitter.com/PrivateGPT_AI) & [Discord](https://discord.gg/bK6mRVpErU)
![Gradio UI](/fern/docs/assets/ui.png?raw=true)
@@ -38,10 +38,9 @@ In addition to this, a working [Gradio UI](https://www.gradio.app/)
client is provided to test the API, together with a set of useful tools such as bulk model
download script, ingestion script, documents folder watch, etc.
> 💡 If you are looking for an **enterprise-ready, fully private AI workspace**
> check out [Zylon's website](https://zylon.ai) or [request a demo](https://cal.com/zylon/demo?source=pgpt-readme).
> Crafted by the team behind PrivateGPT, Zylon is a best-in-class AI collaborative
> workspace that can be easily deployed on-premise (data center, bare metal...) or in your private cloud (AWS, GCP, Azure...).
> 👂 **Need help applying PrivateGPT to your specific use case?**
> [Let us know more about it](https://forms.gle/4cSDmH13RZBHV9at7)
> and we'll try to help! We are refining PrivateGPT through your feedback.
## 🎞️ Overview
DISCLAIMER: This README is not updated as frequently as the [documentation](https://docs.privategpt.dev/).
@@ -63,7 +62,7 @@ thus a simpler and more educational implementation to understand the basic conce
to build a fully local -and therefore, private- chatGPT-like tool.
If you want to keep experimenting with it, we have saved it in the
[primordial branch](https://github.com/zylon-ai/private-gpt/tree/primordial) of the project.
[primordial branch](https://github.com/imartinez/privateGPT/tree/primordial) of the project.
> It is strongly recommended to do a clean clone and install of this new version of
PrivateGPT if you come from the previous, primordial version.
@@ -74,7 +73,7 @@ completions, document ingestion, RAG pipelines and other low-level building bloc
We want to make it easier for any developer to build AI applications and experiences, as well as provide
a suitable extensive architecture for the community to keep contributing.
Stay tuned to our [releases](https://github.com/zylon-ai/private-gpt/releases) to check out all the new features and changes included.
Stay tuned to our [releases](https://github.com/imartinez/privateGPT/releases) to check out all the new features and changes included.
## 📄 Documentation
Full documentation on installation, dependencies, configuration, running the server, deployment options,
@@ -133,19 +132,19 @@ Here are a couple of examples:
#### BibTeX
```bibtex
@software{Zylon_PrivateGPT_2023,
author = {Zylon by PrivateGPT},
@software{Martinez_Toro_PrivateGPT_2023,
author = {Martínez Toro, Iván and Gallego Vico, Daniel and Orgaz, Pablo},
license = {Apache-2.0},
month = may,
title = {{PrivateGPT}},
url = {https://github.com/zylon-ai/private-gpt},
url = {https://github.com/imartinez/privateGPT},
year = {2023}
}
```
#### APA
```
Zylon by PrivateGPT (2023). PrivateGPT [Computer software]. https://github.com/zylon-ai/private-gpt
Martínez Toro, I., Gallego Vico, D., & Orgaz, P. (2023). PrivateGPT [Computer software]. https://github.com/imartinez/privateGPT
```
## 🤗 Partners & Supporters

View File

@@ -1,4 +1,4 @@
# Documentation of PrivateGPT
# Documentation of privateGPT
The documentation of this project is being rendered thanks to [fern](https://github.com/fern-api/fern).

View File

@@ -32,7 +32,7 @@ navigation:
contents:
- page: Introduction
path: ./docs/pages/overview/welcome.mdx
# How to install PrivateGPT, with FAQ and troubleshooting
# How to install privateGPT, with FAQ and troubleshooting
- tab: installation
layout:
- section: Getting started
@@ -41,9 +41,7 @@ navigation:
path: ./docs/pages/installation/concepts.mdx
- page: Installation
path: ./docs/pages/installation/installation.mdx
- page: Troubleshooting
path: ./docs/pages/installation/troubleshooting.mdx
# Manual of PrivateGPT: how to use it and configure it
# Manual of privateGPT: how to use it and configure it
- tab: manual
layout:
- section: General configuration
@@ -70,10 +68,8 @@ navigation:
path: ./docs/pages/manual/reranker.mdx
- section: User Interface
contents:
- page: Gradio Manual
path: ./docs/pages/ui/gradio.mdx
- page: Alternatives
path: ./docs/pages/ui/alternatives.mdx
- page: User interface (Gradio) Manual
path: ./docs/pages/manual/ui.mdx
# Small code snippet or example of usage to help users
- tab: recipes
layout:
@@ -82,7 +78,7 @@ navigation:
# TODO: add recipes
- page: List of LLMs
path: ./docs/pages/recipes/list-llm.mdx
# More advanced usage of PrivateGPT, by API
# More advanced usage of privateGPT, by API
- tab: api-reference
layout:
- section: Overview
@@ -96,11 +92,12 @@ navigation:
# Definition of the navbar, will be displayed in the top right corner.
# `type:primary` is always displayed at the most right side of the navbar
navbar-links:
- type: secondary
text: GitHub
url: "https://github.com/imartinez/privateGPT"
- type: secondary
text: Contact us
url: "mailto:hello@zylon.ai"
- type: github
value: "https://github.com/zylon-ai/private-gpt"
- type: primary
text: Join the Discord
url: https://discord.com/invite/bK6mRVpErU

View File

@@ -8,14 +8,14 @@ The clients are kept up to date automatically, so we encourage you to use the la
<Cards>
<Card
title="TypeScript"
title="Node.js/TypeScript - WIP"
icon="fa-brands fa-node"
href="https://github.com/zylon-ai/privategpt-ts"
href="https://github.com/imartinez/privateGPT-typescript"
/>
<Card
title="Python"
title="Python - Ready!"
icon="fa-brands fa-python"
href="https://github.com/zylon-ai/pgpt-python"
href="https://github.com/imartinez/pgpt_python"
/>
<br />
</Cards>
@@ -26,12 +26,12 @@ The clients are kept up to date automatically, so we encourage you to use the la
<Card
title="Java - WIP"
icon="fa-brands fa-java"
href="https://github.com/zylon-ai/private-gpt-java"
href="https://github.com/imartinez/privateGPT-java"
/>
<Card
title="Go - WIP"
icon="fa-brands fa-golang"
href="https://github.com/zylon-ai/private-gpt-go"
href="https://github.com/imartinez/privateGPT-go"
/>
</Cards>

View File

@@ -8,27 +8,20 @@ It supports a variety of LLM providers, embeddings providers, and vector stores,
## Setup configurations available
You get to decide the setup for these 3 main components:
- **LLM**: the large language model provider used for inference. It can be local, or remote, or even OpenAI.
- **Embeddings**: the embeddings provider used to encode the input, the documents and the users' queries. Same as the LLM, it can be local, or remote, or even OpenAI.
- **Vector store**: the store used to index and retrieve the documents.
- LLM: the large language model provider used for inference. It can be local, or remote, or even OpenAI.
- Embeddings: the embeddings provider used to encode the input, the documents and the users' queries. Same as the LLM, it can be local, or remote, or even OpenAI.
- Vector store: the store used to index and retrieve the documents.
There is an extra component that can be enabled or disabled: the UI. It is a Gradio UI that allows to interact with the API in a more user-friendly way.
<Callout intent = "warning">
A working **Gradio UI client** is provided to test the API, together with a set of useful tools such as bulk
model download script, ingestion script, documents folder watch, etc. Please refer to the [UI alternatives](/manual/user-interface/alternatives) page for more UI alternatives.
</Callout>
### Setups and Dependencies
Your setup will be the combination of the different options available. You'll find recommended setups in the [installation](./installation) section.
Your setup will be the combination of the different options available. You'll find recommended setups in the [installation](/installation) section.
PrivateGPT uses poetry to manage its dependencies. You can install the dependencies for the different setups by running `poetry install --extras "<extra1> <extra2>..."`.
Extras are the different options available for each component. For example, to install the dependencies for a a local setup with UI and qdrant as vector database, Ollama as LLM and local embeddings, you would run:
Extras are the different options available for each component. For example, to install the dependencies for a a local setup with UI and qdrant as vector database, Ollama as LLM and HuggingFace as local embeddings, you would run
```bash
poetry install --extras "ui vector-stores-qdrant llms-ollama embeddings-ollama"
```
`poetry install --extras "ui vector-stores-qdrant llms-ollama embeddings-huggingface"`.
Refer to the [installation](./installation) section for more details.
Refer to the [installation](/installation) section for more details.
### Setups and Configuration
PrivateGPT uses yaml to define its configuration in files named `settings-<profile>.yaml`.
@@ -44,16 +37,8 @@ will load the configuration from `settings.yaml` and `settings-ollama.yaml`.
## About Fully Local Setups
In order to run PrivateGPT in a fully local setup, you will need to run the LLM, Embeddings and Vector Store locally.
### LLM
For local LLM there are two options:
* (Recommended) You can use the 'ollama' option in PrivateGPT, which will connect to your local Ollama instance. Ollama simplifies a lot the installation of local LLMs.
* You can use the 'llms-llama-cpp' option in PrivateGPT, which will use LlamaCPP. It works great on Mac with Metal most of the times (leverages Metal GPU), but it can be tricky in certain Linux and Windows distributions, depending on the GPU. In the installation document you'll find guides and troubleshooting.
In order for LlamaCPP powered LLM to work (the second option), you need to download the LLM model to the `models` folder. You can do so by running the `setup` script:
```bash
poetry run python scripts/setup
```
### Vector stores
The vector stores supported (Qdrant, ChromaDB and Postgres) run locally by default.
### Embeddings
For local Embeddings there are two options:
* (Recommended) You can use the 'ollama' option in PrivateGPT, which will connect to your local Ollama instance. Ollama simplifies a lot the installation of local LLMs.
@@ -63,5 +48,13 @@ In order for HuggingFace LLM to work (the second option), you need to download t
```bash
poetry run python scripts/setup
```
### Vector stores
The vector stores supported (Qdrant, Milvus, ChromaDB and Postgres) run locally by default.
### LLM
For local LLM there are two options:
* (Recommended) You can use the 'ollama' option in PrivateGPT, which will connect to your local Ollama instance. Ollama simplifies a lot the installation of local LLMs.
* You can use the 'llms-llama-cpp' option in PrivateGPT, which will use LlamaCPP. It works great on Mac with Metal most of the times (leverages Metal GPU), but it can be tricky in certain Linux and Windows distributions, depending on the GPU. In the installation document you'll find guides and troubleshooting.
In order for LlamaCPP powered LLM to work (the second option), you need to download the LLM model to the `models` folder. You can do so by running the `setup` script:
```bash
poetry run python scripts/setup
```

View File

@@ -1,102 +1,63 @@
It is important that you review the [Main Concepts](../concepts) section to understand the different components of PrivateGPT and how they interact with each other.
It is important that you review the Main Concepts before you start the installation process.
## Base requirements to run PrivateGPT
### 1. Clone the PrivateGPT Repository
Clone the repository and navigate to it:
* Clone PrivateGPT repository, and navigate to it:
```bash
git clone https://github.com/zylon-ai/private-gpt
cd private-gpt
git clone https://github.com/imartinez/privateGPT
cd privateGPT
```
### 2. Install Python 3.11
If you do not have Python 3.11 installed, install it using a Python version manager like `pyenv`. Earlier Python versions are not supported.
#### macOS/Linux
Install and set Python 3.11 using [pyenv](https://github.com/pyenv/pyenv):
```bash
pyenv install 3.11
pyenv local 3.11
```
#### Windows
Install and set Python 3.11 using [pyenv-win](https://github.com/pyenv-win/pyenv-win):
* Install Python `3.11` (*if you do not have it already*). Ideally through a python version manager like `pyenv`.
Earlier python versions are not supported.
* osx/linux: [pyenv](https://github.com/pyenv/pyenv)
* windows: [pyenv-win](https://github.com/pyenv-win/pyenv-win)
```bash
pyenv install 3.11
pyenv local 3.11
```
### 3. Install `Poetry`
Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
Follow the instructions on the official Poetry website to install it.
* Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
### 4. Optional: Install `make`
To run various scripts, you need to install `make`. Follow the instructions for your operating system:
#### macOS
(Using Homebrew):
```bash
brew install make
```
#### Windows
(Using Chocolatey):
```bash
choco install make
```
* Install `make` to be able to run the different scripts:
* osx: (Using homebrew): `brew install make`
* windows: (Using chocolatey) `choco install make`
## Install and Run Your Desired Setup
## Install and run your desired setup
PrivateGPT allows customization of the setup, from fully local to cloud-based, by deciding the modules to use. To install only the required dependencies, PrivateGPT offers different `extras` that can be combined during the installation process:
PrivateGPT allows to customize the setup -from fully local to cloud based- by deciding the modules to use.
Here are the different options available:
- LLM: "llama-cpp", "ollama", "sagemaker", "openai", "openailike", "azopenai"
- Embeddings: "huggingface", "openai", "sagemaker", "azopenai"
- Vector stores: "qdrant", "chroma", "postgres"
- UI: whether or not to enable UI (Gradio) or just go with the API
In order to only install the required dependencies, PrivateGPT offers different `extras` that can be combined during the installation process:
```bash
poetry install --extras "<extra1> <extra2>..."
```
Where `<extra>` can be any of the following options described below.
### Available Modules
Where `<extra>` can be any of the following:
You need to choose one option per category (LLM, Embeddings, Vector Stores, UI). Below are the tables listing the available options for each category.
#### LLM
| **Option** | **Description** | **Extra** |
|--------------|------------------------------------------------------------------------|---------------------|
| **ollama** | Adds support for Ollama LLM, requires Ollama running locally | llms-ollama |
| llama-cpp | Adds support for local LLM using LlamaCPP | llms-llama-cpp |
| sagemaker | Adds support for Amazon Sagemaker LLM, requires Sagemaker endpoints | llms-sagemaker |
| openai | Adds support for OpenAI LLM, requires OpenAI API key | llms-openai |
| openailike | Adds support for 3rd party LLM providers compatible with OpenAI's API | llms-openai-like |
| azopenai | Adds support for Azure OpenAI LLM, requires Azure endpoints | llms-azopenai |
| gemini | Adds support for Gemini LLM, requires Gemini API key | llms-gemini |
#### Embeddings
| **Option** | **Description** | **Extra** |
|------------------|--------------------------------------------------------------------------------|-------------------------|
| **ollama** | Adds support for Ollama Embeddings, requires Ollama running locally | embeddings-ollama |
| huggingface | Adds support for local Embeddings using HuggingFace | embeddings-huggingface |
| openai | Adds support for OpenAI Embeddings, requires OpenAI API key | embeddings-openai |
| sagemaker | Adds support for Amazon Sagemaker Embeddings, requires Sagemaker endpoints | embeddings-sagemaker |
| azopenai | Adds support for Azure OpenAI Embeddings, requires Azure endpoints | embeddings-azopenai |
| gemini | Adds support for Gemini Embeddings, requires Gemini API key | embeddings-gemini |
#### Vector Stores
| **Option** | **Description** | **Extra** |
|------------------|-----------------------------------------|-------------------------|
| **qdrant** | Adds support for Qdrant vector store | vector-stores-qdrant |
| milvus | Adds support for Milvus vector store | vector-stores-milvus |
| chroma | Adds support for Chroma DB vector store | vector-stores-chroma |
| postgres | Adds support for Postgres vector store | vector-stores-postgres |
| clickhouse | Adds support for Clickhouse vector store| vector-stores-clickhouse|
#### UI
| **Option** | **Description** | **Extra** |
|--------------|------------------------------------------|-----------|
| Gradio | Adds support for UI using Gradio | ui |
<Callout intent = "warning">
A working **Gradio UI client** is provided to test the API, together with a set of useful tools such as bulk
model download script, ingestion script, documents folder watch, etc. Please refer to the [UI alternatives](/manual/user-interface/alternatives) page for more UI alternatives.
</Callout>
- ui: adds support for UI using Gradio
- llms-ollama: adds support for Ollama LLM, the easiest way to get a local LLM running, requires Ollama running locally
- llms-llama-cpp: adds support for local LLM using LlamaCPP - expect a messy installation process on some platforms
- llms-sagemaker: adds support for Amazon Sagemaker LLM, requires Sagemaker inference endpoints
- llms-openai: adds support for OpenAI LLM, requires OpenAI API key
- llms-openai-like: adds support for 3rd party LLM providers that are compatible with OpenAI's API
- llms-azopenai: adds support for Azure OpenAI LLM, requires Azure OpenAI inference endpoints
- embeddings-ollama: adds support for Ollama Embeddings, requires Ollama running locally
- embeddings-huggingface: adds support for local Embeddings using HuggingFace
- embeddings-sagemaker: adds support for Amazon Sagemaker Embeddings, requires Sagemaker inference endpoints
- embeddings-openai = adds support for OpenAI Embeddings, requires OpenAI API key
- embeddings-azopenai = adds support for Azure OpenAI Embeddings, requires Azure OpenAI inference endpoints
- vector-stores-qdrant: adds support for Qdrant vector store
- vector-stores-chroma: adds support for Chroma DB vector store
- vector-stores-postgres: adds support for Postgres vector store
## Recommended Setups
@@ -120,8 +81,6 @@ set PGPT_PROFILES=ollama
make run
```
Refer to the [troubleshooting](./troubleshooting) section for specific issues you might encounter.
### Local, Ollama-powered setup - RECOMMENDED
**The easiest way to run PrivateGPT fully locally** is to depend on Ollama for the LLM. Ollama provides local LLM and Embeddings super easy to install and use, abstracting the complexity of GPU support. It's the recommended setup for local development.
@@ -130,22 +89,18 @@ Go to [ollama.ai](https://ollama.ai/) and follow the instructions to install Oll
After the installation, make sure the Ollama desktop app is closed.
Now, start Ollama service (it will start a local inference server, serving both the LLM and the Embeddings):
```bash
ollama serve
```
Install the models to be used, the default settings-ollama.yaml is configured to user mistral 7b LLM (~4GB) and nomic-embed-text Embeddings (~275MB)
By default, PGPT will automatically pull models as needed. This behavior can be changed by modifying the `ollama.autopull_models` property.
In any case, if you want to manually pull models, run the following commands:
Install the models to be used, the default settings-ollama.yaml is configured to user `mistral 7b` LLM (~4GB) and `nomic-embed-text` Embeddings (~275MB). Therefore:
```bash
ollama pull mistral
ollama pull nomic-embed-text
```
Now, start Ollama service (it will start a local inference server, serving both the LLM and the Embeddings):
```bash
ollama serve
```
Once done, on a different terminal, you can install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-ollama embeddings-ollama vector-stores-qdrant"

View File

@@ -1,31 +0,0 @@
# Downloading Gated and Private Models
Many models are gated or private, requiring special access to use them. Follow these steps to gain access and set up your environment for using these models.
## Accessing Gated Models
1. **Request Access:**
Follow the instructions provided [here](https://huggingface.co/docs/hub/en/models-gated) to request access to the gated model.
2. **Generate a Token:**
Once you have access, generate a token by following the instructions [here](https://huggingface.co/docs/hub/en/security-tokens).
3. **Set the Token:**
Add the generated token to your `settings.yaml` file:
```yaml
huggingface:
access_token: <your-token>
```
Alternatively, set the `HF_TOKEN` environment variable:
```bash
export HF_TOKEN=<your-token>
```
# Tokenizer Setup
PrivateGPT uses the `AutoTokenizer` library to tokenize input text accurately. It connects to HuggingFace's API to download the appropriate tokenizer for the specified model.
## Configuring the Tokenizer
1. **Specify the Model:**
In your `settings.yaml` file, specify the model you want to use:
```yaml
llm:
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
```
2. **Set Access Token for Gated Models:**
If you are using a gated model, ensure the `access_token` is set as mentioned in the previous section.
This configuration ensures that PrivateGPT can download and use the correct tokenizer for the model you are working with.

View File

@@ -93,7 +93,7 @@ time PGPT_PROFILES=mock python ./scripts/ingest_folder.py ~/my-dir/to-ingest/
## Supported file formats
PrivateGPT by default supports all the file formats that contains clear text (for example, `.txt` files, `.html`, etc.).
privateGPT by default supports all the file formats that contains clear text (for example, `.txt` files, `.html`, etc.).
However, these text based file formats as only considered as text files, and are not pre-processed in any other way.
It also supports the following file formats:
@@ -115,15 +115,11 @@ It also supports the following file formats:
* `.ipynb`
* `.json`
<Callout intent = "info">
While `PrivateGPT` supports these file formats, it **might** require additional
**Please note the following nuance**: while `privateGPT` supports these file formats, it **might** require additional
dependencies to be installed in your python's virtual environment.
For example, if you try to ingest `.epub` files, `PrivateGPT` might fail to do it, and will instead display an
For example, if you try to ingest `.epub` files, `privateGPT` might fail to do it, and will instead display an
explanatory error asking you to download the necessary dependencies to install this file format.
</Callout>
<Callout intent = "info">
**Other file formats might work**, but they will be considered as plain text
files (in other words, they will be ingested as `.txt` files).
</Callout>
files (in other words, they will be ingested as `.txt` files).

View File

@@ -193,42 +193,3 @@ or
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.
### Using IPEX-LLM
For a fully private setup on Intel GPUs (such as a local PC with an iGPU, or discrete GPUs like Arc, Flex, and Max), you can use [IPEX-LLM](https://github.com/intel-analytics/ipex-llm).
To deploy Ollama and pull models using IPEX-LLM, please refer to [this guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html). Then, follow the same steps outlined in the [Using Ollama](#using-ollama) section to create a `settings-ollama.yaml` profile and run the private-GPT server.
### Using Gemini
If you cannot run a local model (because you don't have a GPU, for example) or for testing purposes, you may
decide to run PrivateGPT using Gemini as the LLM and Embeddings model. In addition, you will benefit from
multimodal inputs, such as text and images, in a very large contextual window.
In order to do so, create a profile `settings-gemini.yaml` with the following contents:
```yaml
llm:
mode: gemini
embedding:
mode: gemini
gemini:
api_key: <your_gemini_api_key> # You could skip this configuration and use the GEMINI_API_KEY env var instead
model: <gemini_model_to_use> # Optional model to use. Default is models/gemini-pro"
embedding_model: <gemini_embeddings_to_use> # Optional model to use. Default is "models/embedding-001"
```
And run PrivateGPT loading that profile you just created:
`PGPT_PROFILES=gemini make run`
or
`PGPT_PROFILES=gemini poetry run python -m private_gpt`
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.

View File

@@ -3,8 +3,8 @@
The configuration of your private GPT server is done thanks to `settings` files (more precisely `settings.yaml`).
These text files are written using the [YAML](https://en.wikipedia.org/wiki/YAML) syntax.
While PrivateGPT is distributing safe and universal configuration files, you might want to quickly customize your
PrivateGPT, and this can be done using the `settings` files.
While privateGPT is distributing safe and universal configuration files, you might want to quickly customize your
privateGPT, and this can be done using the `settings` files.
This project is defining the concept of **profiles** (or configuration profiles).
This mechanism, using your environment variables, is giving you the ability to easily switch between
@@ -30,20 +30,15 @@ For example, on **linux and macOS**, this gives:
export PGPT_PROFILES=my_profile_name_here
```
Windows Command Prompt (cmd) has a different syntax:
Windows Powershell(s) have a different syntax, one of them being:
```shell
set PGPT_PROFILES=my_profile_name_here
```
Windows Powershell has a different syntax:
```shell
$env:PGPT_PROFILES="my_profile_name_here"
```
If the above is not working, you might want to try other ways to set an env variable in your window's terminal.
---
Once you've set this environment variable to the desired profile, you can simply launch your PrivateGPT,
Once you've set this environment variable to the desired profile, you can simply launch your privateGPT,
and it will run using your profile on top of the default configuration.
## Reference

View File

@@ -2,12 +2,7 @@
Gradio UI is a ready to use way of testing most of PrivateGPT API functionalities.
![Gradio PrivateGPT](https://github.com/zylon-ai/private-gpt/raw/main/fern/docs/assets/ui.png?raw=true)
<Callout intent = "warning">
A working **Gradio UI client** is provided to test the API, together with a set of useful tools such as bulk
model download script, ingestion script, documents folder watch, etc. Please refer to the [UI alternatives](/manual/user-interface/alternatives) page for more UI alternatives.
</Callout>
![Gradio PrivateGPT](https://lh3.googleusercontent.com/drive-viewer/AK7aPaD_Hc-A8A9ooMe-hPgm_eImgsbxAjb__8nFYj8b_WwzvL1Gy90oAnp1DfhPaN6yGiEHCOXs0r77W1bYHtPzlVwbV7fMsA=s1600)
### Execution Modes

View File

@@ -1,7 +1,7 @@
## Vectorstores
PrivateGPT supports [Qdrant](https://qdrant.tech/), [Milvus](https://milvus.io/), [Chroma](https://www.trychroma.com/), [PGVector](https://github.com/pgvector/pgvector) and [ClickHouse](https://github.com/ClickHouse/ClickHouse) as vectorstore providers. Qdrant being the default.
PrivateGPT supports [Qdrant](https://qdrant.tech/), [Chroma](https://www.trychroma.com/) and [PGVector](https://github.com/pgvector/pgvector) as vectorstore providers. Qdrant being the default.
In order to select one or the other, set the `vectorstore.database` property in the `settings.yaml` file to `qdrant`, `milvus`, `chroma`, `postgres` and `clickhouse`.
In order to select one or the other, set the `vectorstore.database` property in the `settings.yaml` file to `qdrant`, `chroma` or `postgres`.
```yaml
vectorstore:
@@ -39,24 +39,6 @@ qdrant:
path: local_data/private_gpt/qdrant
```
### Milvus configuration
To enable Milvus, set the `vectorstore.database` property in the `settings.yaml` file to `milvus` and install the `milvus` extra.
```bash
poetry install --extras vector-stores-milvus
```
The available configuration options are:
| Field | Description |
|--------------|-------------|
| uri | Default is set to "local_data/private_gpt/milvus/milvus_local.db" as a local file; you can also set up a more performant Milvus server on docker or k8s e.g.http://localhost:19530, as your uri; To use Zilliz Cloud, adjust the uri and token to Endpoint and Api key in Zilliz Cloud.|
| token | Pair with Milvus server on docker or k8s or zilliz cloud api key.|
| collection_name | The name of the collection, set to default "milvus_db".|
| overwrite | Overwrite the data in collection if it existed, set to default as True. |
To obtain a local setup (disk-based database) without running a Milvus server, configure the uri value in settings.yaml, to store in local_data/private_gpt/milvus/milvus_local.db.
### Chroma configuration
To enable Chroma, set the `vectorstore.database` property in the `settings.yaml` file to `chroma` and install the `chroma` extra.
@@ -119,69 +101,3 @@ Indexes:
postgres=#
```
The dimensions of the embeddings columns will be set based on the `embedding.embed_dim` value. If the embedding model changes this table may need to be dropped and recreated to avoid a dimension mismatch.
### ClickHouse
To utilize ClickHouse as the vector store, a [ClickHouse](https://github.com/ClickHouse/ClickHouse) database must be employed.
To enable ClickHouse, set the `vectorstore.database` property in the `settings.yaml` file to `clickhouse` and install the `vector-stores-clickhouse` extra.
```bash
poetry install --extras vector-stores-clickhouse
```
ClickHouse settings can be configured by setting values to the `clickhouse` property in the `settings.yaml` file.
The available configuration options are:
| Field | Description |
|----------------------|----------------------------------------------------------------|
| **host** | The server hosting the ClickHouse database. Default is `localhost` |
| **port** | The port on which the ClickHouse database is accessible. Default is `8123` |
| **username** | The username for database access. Default is `default` |
| **password** | The password for database access. (Optional) |
| **database** | The specific database to connect to. Default is `__default__` |
| **secure** | Use https/TLS for secure connection to the server. Default is `false` |
| **interface** | The protocol used for the connection, either 'http' or 'https'. (Optional) |
| **settings** | Specific ClickHouse server settings to be used with the session. (Optional) |
| **connect_timeout** | Timeout in seconds for establishing a connection. (Optional) |
| **send_receive_timeout** | Read timeout in seconds for http connection. (Optional) |
| **verify** | Verify the server certificate in secure/https mode. (Optional) |
| **ca_cert** | Path to Certificate Authority root certificate (.pem format). (Optional) |
| **client_cert** | Path to TLS Client certificate (.pem format). (Optional) |
| **client_cert_key** | Path to the private key for the TLS Client certificate. (Optional) |
| **http_proxy** | HTTP proxy address. (Optional) |
| **https_proxy** | HTTPS proxy address. (Optional) |
| **server_host_name** | Server host name to be checked against the TLS certificate. (Optional) |
For example:
```yaml
vectorstore:
database: clickhouse
clickhouse:
host: localhost
port: 8443
username: admin
password: <PASSWORD>
database: embeddings
secure: false
```
The following table will be created in the database:
```
clickhouse-client
:) \d embeddings.llama_index
Table "llama_index"
№ | name | type | default_type | default_expression | comment | codec_expression | ttl_expression
----|-----------|----------------------------------------------|--------------|--------------------|---------|------------------|---------------
1 | id | String | | | | |
2 | doc_id | String | | | | |
3 | text | String | | | | |
4 | vector | Array(Float32) | | | | |
5 | node_info | Tuple(start Nullable(UInt64), end Nullable(UInt64)) | | | | |
6 | metadata | String | | | | |
clickhouse-client
```
The dimensions of the embeddings columns will be set based on the `embedding.embed_dim` value. If the embedding model changes, this table may need to be dropped and recreated to avoid a dimension mismatch.

View File

@@ -1,16 +1,8 @@
PrivateGPT provides an **API** containing all the building blocks required to
build **private, context-aware AI applications**.
<Callout intent = "tip">
If you are looking for an **enterprise-ready, fully private AI workspace**
check out [Zylon's website](https://zylon.ai) or [request a demo](https://cal.com/zylon/demo?source=pgpt-docs).
Crafted by the team behind PrivateGPT, Zylon is a best-in-class AI collaborative
workspace that can be easily deployed on-premise (data center, bare metal...) or in your private cloud (AWS, GCP, Azure...).
</Callout>
The API follows and extends OpenAI API standard, and supports both normal and streaming responses.
That means that, if you can use OpenAI API in one of your tools, you can use your own PrivateGPT API instead,
with no code changes, **and for free** if you are running PrivateGPT in a `local` setup.
with no code changes, **and for free** if you are running privateGPT in a `local` setup.
Get started by understanding the [Main Concepts and Installation](/installation) and then dive into the [API Reference](/api-reference).
@@ -30,7 +22,7 @@ Get started by understanding the [Main Concepts and Installation](/installation)
<Card
title="Twitter"
icon="fa-brands fa-twitter"
href="https://twitter.com/PrivateGPT_AI"
href="https://twitter.com/ZylonPrivateGPT"
/>
<Card
title="Discord Server"
@@ -39,4 +31,10 @@ Get started by understanding the [Main Concepts and Installation](/installation)
/>
</Cards>
<br />
<br />
<Callout intent = "info">
A working **Gradio UI client** is provided to test the API, together with a set of useful tools such as bulk
model download script, ingestion script, documents folder watch, etc.
</Callout>

View File

@@ -1,7 +1,6 @@
# List of working LLM
**Do you have any working combination of LLM and embeddings?**
Please open a PR to add it to the list, and come on our Discord to tell us about it!
## Prompt style

View File

@@ -1,21 +0,0 @@
This page aims to present different user interface (UI) alternatives for integrating and using PrivateGPT. These alternatives range from demo applications to fully customizable UI setups that can be adapted to your specific needs.
**Do you have any working demo project using PrivateGPT?**
Please open a PR to add it to the list, and come on our Discord to tell us about it!
<Callout intent = "note">
WIP: This page provides an overview of one of the UI alternatives available for PrivateGPT. More alternatives will be added to this page as they become available.
</Callout>
## [PrivateGPT SDK Demo App](https://github.com/frgarciames/privategpt-react)
The PrivateGPT SDK demo app is a robust starting point for developers looking to integrate and customize PrivateGPT in their applications. Leveraging modern technologies like Tailwind, shadcn/ui, and Biomejs, it provides a smooth development experience and a highly customizable user interface. Refer to the [repository](https://github.com/frgarciames/privategpt-react) for more details and to get started.
**Tech Stack:**
- **Tailwind:** A utility-first CSS framework for rapid UI development.
- **shadcn/ui:** A set of high-quality, customizable UI components.
- **PrivateGPT Web SDK:** The core SDK for interacting with PrivateGPT.
- **Biomejs formatter/linter:** A tool for maintaining code quality and consistency.

View File

@@ -1,4 +1,4 @@
{
"organization": "privategpt",
"version": "0.31.17"
"version": "0.19.10"
}

1681
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -55,62 +55,23 @@ class EmbeddingComponent:
"OpenAI dependencies not found, install with `poetry install --extras embeddings-openai`"
) from e
api_base = (
settings.openai.embedding_api_base or settings.openai.api_base
)
api_key = settings.openai.embedding_api_key or settings.openai.api_key
model = settings.openai.embedding_model
self.embedding_model = OpenAIEmbedding(
api_base=api_base,
api_key=api_key,
model=model,
)
openai_settings = settings.openai.api_key
self.embedding_model = OpenAIEmbedding(api_key=openai_settings)
case "ollama":
try:
from llama_index.embeddings.ollama import ( # type: ignore
OllamaEmbedding,
)
from ollama import Client # type: ignore
except ImportError as e:
raise ImportError(
"Local dependencies not found, install with `poetry install --extras embeddings-ollama`"
) from e
ollama_settings = settings.ollama
# Calculate embedding model. If not provided tag, it will be use latest
model_name = (
ollama_settings.embedding_model + ":latest"
if ":" not in ollama_settings.embedding_model
else ollama_settings.embedding_model
)
self.embedding_model = OllamaEmbedding(
model_name=model_name,
model_name=ollama_settings.embedding_model,
base_url=ollama_settings.embedding_api_base,
)
if ollama_settings.autopull_models:
if ollama_settings.autopull_models:
from private_gpt.utils.ollama import (
check_connection,
pull_model,
)
# TODO: Reuse llama-index client when llama-index is updated
client = Client(
host=ollama_settings.embedding_api_base,
timeout=ollama_settings.request_timeout,
)
if not check_connection(client):
raise ValueError(
f"Failed to connect to Ollama, "
f"check if Ollama server is running on {ollama_settings.api_base}"
)
pull_model(client, model_name)
case "azopenai":
try:
from llama_index.embeddings.azure_openai import ( # type: ignore
@@ -129,20 +90,6 @@ class EmbeddingComponent:
azure_endpoint=azopenai_settings.azure_endpoint,
api_version=azopenai_settings.api_version,
)
case "gemini":
try:
from llama_index.embeddings.gemini import ( # type: ignore
GeminiEmbedding,
)
except ImportError as e:
raise ImportError(
"Gemini dependencies not found, install with `poetry install --extras embeddings-gemini`"
) from e
self.embedding_model = GeminiEmbedding(
api_key=settings.gemini.api_key,
model_name=settings.gemini.embedding_model,
)
case "mock":
# Not a random number, is the dimensionality used by
# the default embedding model

View File

@@ -218,7 +218,7 @@ class SagemakerLLM(CustomLLM):
response_body = resp["Body"]
response_str = response_body.read().decode("utf-8")
response_dict = json.loads(response_str)
response_dict = eval(response_str)
return CompletionResponse(
text=response_dict[0]["generated_text"][len(prompt) :], raw=resp

View File

@@ -22,24 +22,13 @@ class LLMComponent:
@inject
def __init__(self, settings: Settings) -> None:
llm_mode = settings.llm.mode
if settings.llm.tokenizer and settings.llm.mode != "mock":
# Try to download the tokenizer. If it fails, the LLM will still work
# using the default one, which is less accurate.
try:
set_global_tokenizer(
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=settings.llm.tokenizer,
cache_dir=str(models_cache_path),
token=settings.huggingface.access_token,
)
)
except Exception as e:
logger.warning(
f"Failed to download tokenizer {settings.llm.tokenizer}: {e!s}"
f"Please follow the instructions in the documentation to download it if needed: "
f"https://docs.privategpt.dev/installation/getting-started/troubleshooting#tokenizer-setup."
f"Falling back to default tokenizer."
if settings.llm.tokenizer:
set_global_tokenizer(
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=settings.llm.tokenizer,
cache_dir=str(models_cache_path),
)
)
logger.info("Initializing the LLM in mode=%s", llm_mode)
match settings.llm.mode:
@@ -51,7 +40,7 @@ class LLMComponent:
"Local dependencies not found, install with `poetry install --extras llms-llama-cpp`"
) from e
prompt_style = get_prompt_style(settings.llm.prompt_style)
prompt_style = get_prompt_style(settings.llamacpp.prompt_style)
settings_kwargs = {
"tfs_z": settings.llamacpp.tfs_z, # ollama and llama-cpp
"top_k": settings.llamacpp.top_k, # ollama and llama-cpp
@@ -109,23 +98,15 @@ class LLMComponent:
raise ImportError(
"OpenAILike dependencies not found, install with `poetry install --extras llms-openai-like`"
) from e
prompt_style = get_prompt_style(settings.llm.prompt_style)
openai_settings = settings.openai
self.llm = OpenAILike(
api_base=openai_settings.api_base,
api_key=openai_settings.api_key,
model=openai_settings.model,
is_chat_model=True,
max_tokens=settings.llm.max_new_tokens,
max_tokens=None,
api_version="",
temperature=settings.llm.temperature,
context_window=settings.llm.context_window,
max_new_tokens=settings.llm.max_new_tokens,
messages_to_prompt=prompt_style.messages_to_prompt,
completion_to_prompt=prompt_style.completion_to_prompt,
tokenizer=settings.llm.tokenizer,
timeout=openai_settings.request_timeout,
reuse_client=False,
)
case "ollama":
try:
@@ -146,15 +127,8 @@ class LLMComponent:
"repeat_penalty": ollama_settings.repeat_penalty, # ollama llama-cpp
}
# calculate llm model. If not provided tag, it will be use latest
model_name = (
ollama_settings.llm_model + ":latest"
if ":" not in ollama_settings.llm_model
else ollama_settings.llm_model
)
llm = Ollama(
model=model_name,
self.llm = Ollama(
model=ollama_settings.llm_model,
base_url=ollama_settings.api_base,
temperature=settings.llm.temperature,
context_window=settings.llm.context_window,
@@ -162,16 +136,6 @@ class LLMComponent:
request_timeout=ollama_settings.request_timeout,
)
if ollama_settings.autopull_models:
from private_gpt.utils.ollama import check_connection, pull_model
if not check_connection(llm.client):
raise ValueError(
f"Failed to connect to Ollama, "
f"check if Ollama server is running on {ollama_settings.api_base}"
)
pull_model(llm.client, model_name)
if (
ollama_settings.keep_alive
!= ollama_settings.model_fields["keep_alive"].default
@@ -189,8 +153,6 @@ class LLMComponent:
Ollama.complete = add_keep_alive(Ollama.complete)
Ollama.stream_complete = add_keep_alive(Ollama.stream_complete)
self.llm = llm
case "azopenai":
try:
from llama_index.llms.azure_openai import ( # type: ignore
@@ -209,18 +171,5 @@ class LLMComponent:
azure_endpoint=azopenai_settings.azure_endpoint,
api_version=azopenai_settings.api_version,
)
case "gemini":
try:
from llama_index.llms.gemini import ( # type: ignore
Gemini,
)
except ImportError as e:
raise ImportError(
"Google Gemini dependencies not found, install with `poetry install --extras llms-gemini`"
) from e
gemini_settings = settings.gemini
self.llm = Gemini(
model_name=gemini_settings.model, api_key=gemini_settings.api_key
)
case "mock":
self.llm = MockLLM()

View File

@@ -173,22 +173,18 @@ class TagPromptStyle(AbstractPromptStyle):
class MistralPromptStyle(AbstractPromptStyle):
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
inst_buffer = []
text = ""
prompt = "<s>"
for message in messages:
if message.role == MessageRole.SYSTEM or message.role == MessageRole.USER:
inst_buffer.append(str(message.content).strip())
elif message.role == MessageRole.ASSISTANT:
text += "<s>[INST] " + "\n".join(inst_buffer) + " [/INST]"
text += " " + str(message.content).strip() + "</s>"
inst_buffer.clear()
else:
raise ValueError(f"Unknown message role {message.role}")
if len(inst_buffer) > 0:
text += "<s>[INST] " + "\n".join(inst_buffer) + " [/INST]"
return text
role = message.role
content = message.content or ""
if role.lower() == "system":
message_from_user = f"[INST] {content.strip()} [/INST]"
prompt += message_from_user
elif role.lower() == "user":
prompt += "</s>"
message_from_user = f"[INST] {content.strip()} [/INST]"
prompt += message_from_user
return prompt
def _completion_to_prompt(self, completion: str) -> str:
return self._messages_to_prompt(

View File

@@ -4,10 +4,10 @@ import typing
from injector import inject, singleton
from llama_index.core.indices.vector_store import VectorIndexRetriever, VectorStoreIndex
from llama_index.core.vector_stores.types import (
BasePydanticVectorStore,
FilterCondition,
MetadataFilter,
MetadataFilters,
VectorStore,
)
from private_gpt.open_ai.extensions.context_filter import ContextFilter
@@ -32,7 +32,7 @@ def _doc_id_metadata_filter(
@singleton
class VectorStoreComponent:
settings: Settings
vector_store: BasePydanticVectorStore
vector_store: VectorStore
@inject
def __init__(self, settings: Settings) -> None:
@@ -54,7 +54,7 @@ class VectorStoreComponent:
)
self.vector_store = typing.cast(
BasePydanticVectorStore,
VectorStore,
PGVectorStore.from_params(
**settings.postgres.model_dump(exclude_none=True),
table_name="embeddings",
@@ -87,7 +87,7 @@ class VectorStoreComponent:
) # TODO
self.vector_store = typing.cast(
BasePydanticVectorStore,
VectorStore,
BatchedChromaVectorStore(
chroma_client=chroma_client, chroma_collection=chroma_collection
),
@@ -115,78 +115,12 @@ class VectorStoreComponent:
**settings.qdrant.model_dump(exclude_none=True)
)
self.vector_store = typing.cast(
BasePydanticVectorStore,
VectorStore,
QdrantVectorStore(
client=client,
collection_name="make_this_parameterizable_per_api_call",
), # TODO
)
case "milvus":
try:
from llama_index.vector_stores.milvus import ( # type: ignore
MilvusVectorStore,
)
except ImportError as e:
raise ImportError(
"Milvus dependencies not found, install with `poetry install --extras vector-stores-milvus`"
) from e
if settings.milvus is None:
logger.info(
"Milvus config not found. Using default settings.\n"
"Trying to connect to Milvus at local_data/private_gpt/milvus/milvus_local.db "
"with collection 'make_this_parameterizable_per_api_call'."
)
self.vector_store = typing.cast(
BasePydanticVectorStore,
MilvusVectorStore(
dim=settings.embedding.embed_dim,
collection_name="make_this_parameterizable_per_api_call",
overwrite=True,
),
)
else:
self.vector_store = typing.cast(
BasePydanticVectorStore,
MilvusVectorStore(
dim=settings.embedding.embed_dim,
uri=settings.milvus.uri,
token=settings.milvus.token,
collection_name=settings.milvus.collection_name,
overwrite=settings.milvus.overwrite,
),
)
case "clickhouse":
try:
from clickhouse_connect import ( # type: ignore
get_client,
)
from llama_index.vector_stores.clickhouse import ( # type: ignore
ClickHouseVectorStore,
)
except ImportError as e:
raise ImportError(
"ClickHouse dependencies not found, install with `poetry install --extras vector-stores-clickhouse`"
) from e
if settings.clickhouse is None:
raise ValueError(
"ClickHouse settings not found. Please provide settings."
)
clickhouse_client = get_client(
host=settings.clickhouse.host,
port=settings.clickhouse.port,
username=settings.clickhouse.username,
password=settings.clickhouse.password,
)
self.vector_store = ClickHouseVectorStore(
clickhouse_client=clickhouse_client
)
case _:
# Should be unreachable
# The settings validator should have caught this

View File

@@ -1,4 +1,4 @@
from typing import Any, Literal
from typing import Literal
from pydantic import BaseModel, Field
@@ -82,14 +82,7 @@ class DataSettings(BaseModel):
class LLMSettings(BaseModel):
mode: Literal[
"llamacpp",
"openai",
"openailike",
"azopenai",
"sagemaker",
"mock",
"ollama",
"gemini",
"llamacpp", "openai", "openailike", "azopenai", "sagemaker", "mock", "ollama"
]
max_new_tokens: int = Field(
256,
@@ -111,6 +104,19 @@ class LLMSettings(BaseModel):
0.1,
description="The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual.",
)
class VectorstoreSettings(BaseModel):
database: Literal["chroma", "qdrant", "postgres"]
class NodeStoreSettings(BaseModel):
database: Literal["simple", "postgres"]
class LlamaCPPSettings(BaseModel):
llm_hf_repo_id: str
llm_hf_model_file: str
prompt_style: Literal["default", "llama2", "tag", "mistral", "chatml"] = Field(
"llama2",
description=(
@@ -123,18 +129,6 @@ class LLMSettings(BaseModel):
),
)
class VectorstoreSettings(BaseModel):
database: Literal["chroma", "qdrant", "postgres", "clickhouse", "milvus"]
class NodeStoreSettings(BaseModel):
database: Literal["simple", "postgres"]
class LlamaCPPSettings(BaseModel):
llm_hf_repo_id: str
llm_hf_model_file: str
tfs_z: float = Field(
1.0,
description="Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.",
@@ -157,16 +151,10 @@ class HuggingFaceSettings(BaseModel):
embedding_hf_model_name: str = Field(
description="Name of the HuggingFace model to use for embeddings"
)
access_token: str = Field(
None,
description="Huggingface access token, required to download some models",
)
class EmbeddingSettings(BaseModel):
mode: Literal[
"huggingface", "openai", "azopenai", "sagemaker", "ollama", "mock", "gemini"
]
mode: Literal["huggingface", "openai", "azopenai", "sagemaker", "ollama", "mock"]
ingest_mode: Literal["simple", "batch", "parallel", "pipeline"] = Field(
"simple",
description=(
@@ -214,31 +202,6 @@ class OpenAISettings(BaseModel):
"gpt-3.5-turbo",
description="OpenAI Model to use. Example: 'gpt-4'.",
)
request_timeout: float = Field(
120.0,
description="Time elapsed until openailike server times out the request. Default is 120s. Format is float. ",
)
embedding_api_base: str = Field(
None,
description="Base URL of OpenAI API. Example: 'https://api.openai.com/v1'.",
)
embedding_api_key: str
embedding_model: str = Field(
"text-embedding-ada-002",
description="OpenAI embedding Model to use. Example: 'text-embedding-3-large'.",
)
class GeminiSettings(BaseModel):
api_key: str
model: str = Field(
"models/gemini-pro",
description="Google Model to use. Example: 'models/gemini-pro'.",
)
embedding_model: str = Field(
"models/embedding-001",
description="Google Embedding Model to use. Example: 'models/embedding-001'.",
)
class OllamaSettings(BaseModel):
@@ -290,10 +253,6 @@ class OllamaSettings(BaseModel):
120.0,
description="Time elapsed until ollama times out the request. Default is 120s. Format is float. ",
)
autopull_models: bool = Field(
False,
description="If set to True, the Ollama will automatically pull the models from the API base.",
)
class AzureOpenAISettings(BaseModel):
@@ -360,77 +319,6 @@ class RagSettings(BaseModel):
rerank: RerankSettings
class ClickHouseSettings(BaseModel):
host: str = Field(
"localhost",
description="The server hosting the ClickHouse database",
)
port: int = Field(
8443,
description="The port on which the ClickHouse database is accessible",
)
username: str = Field(
"default",
description="The username to use to connect to the ClickHouse database",
)
password: str = Field(
"",
description="The password to use to connect to the ClickHouse database",
)
database: str = Field(
"__default__",
description="The default database to use for connections",
)
secure: bool | str = Field(
False,
description="Use https/TLS for secure connection to the server",
)
interface: str | None = Field(
None,
description="Must be either 'http' or 'https'. Determines the protocol to use for the connection",
)
settings: dict[str, Any] | None = Field(
None,
description="Specific ClickHouse server settings to be used with the session",
)
connect_timeout: int | None = Field(
None,
description="Timeout in seconds for establishing a connection",
)
send_receive_timeout: int | None = Field(
None,
description="Read timeout in seconds for http connection",
)
verify: bool | None = Field(
None,
description="Verify the server certificate in secure/https mode",
)
ca_cert: str | None = Field(
None,
description="Path to Certificate Authority root certificate (.pem format)",
)
client_cert: str | None = Field(
None,
description="Path to TLS Client certificate (.pem format)",
)
client_cert_key: str | None = Field(
None,
description="Path to the private key for the TLS Client certificate",
)
http_proxy: str | None = Field(
None,
description="HTTP proxy address",
)
https_proxy: str | None = Field(
None,
description="HTTPS proxy address",
)
server_host_name: str | None = Field(
None,
description="Server host name to be checked against the TLS certificate",
)
class PostgresSettings(BaseModel):
host: str = Field(
"localhost",
@@ -512,27 +400,6 @@ class QdrantSettings(BaseModel):
)
class MilvusSettings(BaseModel):
uri: str = Field(
"local_data/private_gpt/milvus/milvus_local.db",
description="The URI of the Milvus instance. For example: 'local_data/private_gpt/milvus/milvus_local.db' for Milvus Lite.",
)
token: str = Field(
"",
description=(
"A valid access token to access the specified Milvus instance. "
"This can be used as a recommended alternative to setting user and password separately. "
),
)
collection_name: str = Field(
"make_this_parameterizable_per_api_call",
description="The name of the collection in Milvus. Default is 'make_this_parameterizable_per_api_call'.",
)
overwrite: bool = Field(
True, description="Overwrite the previous collection schema if it exists."
)
class Settings(BaseModel):
server: ServerSettings
data: DataSettings
@@ -543,7 +410,6 @@ class Settings(BaseModel):
huggingface: HuggingFaceSettings
sagemaker: SagemakerSettings
openai: OpenAISettings
gemini: GeminiSettings
ollama: OllamaSettings
azopenai: AzureOpenAISettings
vectorstore: VectorstoreSettings
@@ -551,8 +417,6 @@ class Settings(BaseModel):
rag: RagSettings
qdrant: QdrantSettings | None = None
postgres: PostgresSettings | None = None
clickhouse: ClickHouseSettings | None = None
milvus: MilvusSettings | None = None
"""

View File

@@ -1,5 +1,6 @@
"""This file should be imported if and only if you want to run the UI locally."""
import base64
import itertools
import logging
import time
from collections.abc import Iterable
@@ -30,7 +31,7 @@ AVATAR_BOT = THIS_DIRECTORY_RELATIVE / "avatar-bot.ico"
UI_TAB_TITLE = "My Private GPT"
SOURCES_SEPARATOR = "<hr>Sources: \n"
SOURCES_SEPARATOR = "\n\n Sources: \n"
MODES = ["Query Files", "Search Files", "LLM Chat (no context from files)"]
@@ -108,25 +109,25 @@ class PrivateGptUi:
+ f"{index}. {source.file} (page {source.page}) \n\n"
)
used_files.add(f"{source.file}-{source.page}")
sources_text += "<hr>\n\n"
full_response += sources_text
yield full_response
def build_history() -> list[ChatMessage]:
history_messages: list[ChatMessage] = []
for interaction in history:
history_messages.append(
ChatMessage(content=interaction[0], role=MessageRole.USER)
history_messages: list[ChatMessage] = list(
itertools.chain(
*[
[
ChatMessage(content=interaction[0], role=MessageRole.USER),
ChatMessage(
# Remove from history content the Sources information
content=interaction[1].split(SOURCES_SEPARATOR)[0],
role=MessageRole.ASSISTANT,
),
]
for interaction in history
]
)
if len(interaction) > 1 and interaction[1] is not None:
history_messages.append(
ChatMessage(
# Remove from history content the Sources information
content=interaction[1].split(SOURCES_SEPARATOR)[0],
role=MessageRole.ASSISTANT,
)
)
)
# max 20 messages to try to avoid context overflow
return history_messages[:20]
@@ -313,13 +314,7 @@ class PrivateGptUi:
".contain { display: flex !important; flex-direction: column !important; }"
"#component-0, #component-3, #component-10, #component-8 { height: 100% !important; }"
"#chatbot { flex-grow: 1 !important; overflow: auto !important;}"
"#col { height: calc(100vh - 112px - 16px) !important; }"
"hr { margin-top: 1em; margin-bottom: 1em; border: 0; border-top: 1px solid #FFF; }"
".avatar-image { background-color: antiquewhite; border-radius: 2px; }"
".footer { text-align: center; margin-top: 20px; font-size: 14px; display: flex; align-items: center; justify-content: center; }"
".footer-zylon-link { display:flex; margin-left: 5px; text-decoration: auto; color: #fff; }"
".footer-zylon-link:hover { color: #C7BAFF; }"
".footer-zylon-ico { height: 20px; margin-left: 5px; background-color: antiquewhite; border-radius: 2px; }",
"#col { height: calc(100vh - 112px - 16px) !important; }",
) as blocks:
with gr.Row():
gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div")
@@ -449,7 +444,6 @@ class PrivateGptUi:
"sagemaker": config_settings.sagemaker.llm_endpoint_name,
"mock": llm_mode,
"ollama": config_settings.ollama.llm_model,
"gemini": config_settings.gemini.model,
}
if llm_mode not in model_mapping:
@@ -482,14 +476,6 @@ class PrivateGptUi:
),
additional_inputs=[mode, upload_button, system_prompt_input],
)
with gr.Row():
avatar_byte = AVATAR_BOT.read_bytes()
f_base64 = f"data:image/png;base64,{base64.b64encode(avatar_byte).decode('utf-8')}"
gr.HTML(
f"<div class='footer'><a class='footer-zylon-link' href='https://zylon.ai/'>Maintained by Zylon <img class='footer-zylon-ico' src='{f_base64}' alt=Zylon></a></div>"
)
return blocks
def get_ui_blocks(self) -> gr.Blocks:
@@ -501,7 +487,7 @@ class PrivateGptUi:
blocks = self.get_ui_blocks()
blocks.queue()
logger.info("Mounting the gradio UI, at path=%s", path)
gr.mount_gradio_app(app, blocks, path=path, favicon_path=AVATAR_BOT)
gr.mount_gradio_app(app, blocks, path=path)
if __name__ == "__main__":

View File

@@ -1,32 +0,0 @@
import logging
try:
from ollama import Client # type: ignore
except ImportError as e:
raise ImportError(
"Ollama dependencies not found, install with `poetry install --extras llms-ollama or embeddings-ollama`"
) from e
logger = logging.getLogger(__name__)
def check_connection(client: Client) -> bool:
try:
client.list()
return True
except Exception as e:
logger.error(f"Failed to connect to Ollama: {e!s}")
return False
def pull_model(client: Client, model_name: str, raise_error: bool = True) -> None:
try:
installed_models = [model["name"] for model in client.list().get("models", {})]
if model_name not in installed_models:
logger.info(f"Pulling model {model_name}. Please wait...")
client.pull(model_name)
logger.info(f"Model {model_name} pulled successfully")
except Exception as e:
logger.error(f"Failed to pull model {model_name}: {e!s}")
if raise_error:
raise e

View File

@@ -7,84 +7,60 @@ authors = ["Zylon <hi@zylon.ai>"]
[tool.poetry.dependencies]
python = ">=3.11,<3.12"
# PrivateGPT
fastapi = { extras = ["all"], version = "^0.111.0" }
fastapi = { extras = ["all"], version = "^0.110.0" }
python-multipart = "^0.0.9"
injector = "^0.21.0"
pyyaml = "^6.0.1"
watchdog = "^4.0.1"
transformers = "^4.42.3"
docx2txt = "^0.8"
cryptography = "^3.1"
watchdog = "^4.0.0"
transformers = "^4.38.2"
# LlamaIndex core libs
llama-index-core = "^0.10.52"
llama-index-readers-file = "^0.1.27"
llama-index-core = "^0.10.14"
llama-index-readers-file = "^0.1.6"
# Optional LlamaIndex integration libs
llama-index-llms-llama-cpp = {version = "^0.1.4", optional = true}
llama-index-llms-openai = {version = "^0.1.25", optional = true}
llama-index-llms-llama-cpp = {version = "^0.1.3", optional = true}
llama-index-llms-openai = {version = "^0.1.6", optional = true}
llama-index-llms-openai-like = {version ="^0.1.3", optional = true}
llama-index-llms-ollama = {version ="^0.2.2", optional = true}
llama-index-llms-azure-openai = {version ="^0.1.8", optional = true}
llama-index-llms-gemini = {version ="^0.1.11", optional = true}
llama-index-llms-ollama = {version ="^0.1.2", optional = true}
llama-index-llms-azure-openai = {version ="^0.1.5", optional = true}
llama-index-embeddings-ollama = {version ="^0.1.2", optional = true}
llama-index-embeddings-huggingface = {version ="^0.2.2", optional = true}
llama-index-embeddings-openai = {version ="^0.1.10", optional = true}
llama-index-embeddings-azure-openai = {version ="^0.1.10", optional = true}
llama-index-embeddings-gemini = {version ="^0.1.8", optional = true}
llama-index-vector-stores-qdrant = {version ="^0.2.10", optional = true}
llama-index-vector-stores-milvus = {version ="^0.1.20", optional = true}
llama-index-vector-stores-chroma = {version ="^0.1.10", optional = true}
llama-index-vector-stores-postgres = {version ="^0.1.11", optional = true}
llama-index-vector-stores-clickhouse = {version ="^0.1.3", optional = true}
llama-index-storage-docstore-postgres = {version ="^0.1.3", optional = true}
llama-index-storage-index-store-postgres = {version ="^0.1.4", optional = true}
llama-index-embeddings-huggingface = {version ="^0.1.4", optional = true}
llama-index-embeddings-openai = {version ="^0.1.6", optional = true}
llama-index-embeddings-azure-openai = {version ="^0.1.6", optional = true}
llama-index-vector-stores-qdrant = {version ="^0.1.3", optional = true}
llama-index-vector-stores-chroma = {version ="^0.1.4", optional = true}
llama-index-vector-stores-postgres = {version ="^0.1.2", optional = true}
llama-index-storage-docstore-postgres = {version ="^0.1.2", optional = true}
llama-index-storage-index-store-postgres = {version ="^0.1.2", optional = true}
# Postgres
psycopg2-binary = {version ="^2.9.9", optional = true}
asyncpg = {version="^0.29.0", optional = true}
# ClickHouse
clickhouse-connect = {version = "^0.7.15", optional = true}
# Optional Sagemaker dependency
boto3 = {version ="^1.34.139", optional = true}
# Optional Qdrant client
qdrant-client = {version ="^1.9.0", optional = true}
boto3 = {version ="^1.34.51", optional = true}
# Optional Reranker dependencies
torch = {version ="^2.3.1", optional = true}
sentence-transformers = {version ="^3.0.1", optional = true}
torch = {version ="^2.1.2", optional = true}
sentence-transformers = {version ="^2.6.1", optional = true}
# Optional UI
gradio = {version ="^4.37.2", optional = true}
# Fix: https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16289#issuecomment-2255106490
ffmpy = {git = "https://github.com/EuDs63/ffmpy.git", rev = "333a19ee4d21f32537c0508aa1942ef1aa7afe24", optional = true}
# Optional Google Gemini dependency
google-generativeai = {version ="^0.5.4", optional = true}
# Optional Ollama client
ollama = {version ="^0.3.0", optional = true}
gradio = {version ="^4.19.2", optional = true}
[tool.poetry.extras]
ui = ["gradio", "ffmpy"]
ui = ["gradio"]
llms-llama-cpp = ["llama-index-llms-llama-cpp"]
llms-openai = ["llama-index-llms-openai"]
llms-openai-like = ["llama-index-llms-openai-like"]
llms-ollama = ["llama-index-llms-ollama", "ollama"]
llms-ollama = ["llama-index-llms-ollama"]
llms-sagemaker = ["boto3"]
llms-azopenai = ["llama-index-llms-azure-openai"]
llms-gemini = ["llama-index-llms-gemini", "google-generativeai"]
embeddings-ollama = ["llama-index-embeddings-ollama", "ollama"]
embeddings-ollama = ["llama-index-embeddings-ollama"]
embeddings-huggingface = ["llama-index-embeddings-huggingface"]
embeddings-openai = ["llama-index-embeddings-openai"]
embeddings-sagemaker = ["boto3"]
embeddings-azopenai = ["llama-index-embeddings-azure-openai"]
embeddings-gemini = ["llama-index-embeddings-gemini"]
vector-stores-qdrant = ["llama-index-vector-stores-qdrant"]
vector-stores-clickhouse = ["llama-index-vector-stores-clickhouse", "clickhouse_connect"]
vector-stores-chroma = ["llama-index-vector-stores-chroma"]
vector-stores-postgres = ["llama-index-vector-stores-postgres"]
vector-stores-milvus = ["llama-index-vector-stores-milvus"]
storage-nodestore-postgres = ["llama-index-storage-docstore-postgres","llama-index-storage-index-store-postgres","psycopg2-binary","asyncpg"]
rerank-sentence-transformers = ["torch", "sentence-transformers"]

View File

@@ -24,7 +24,6 @@ snapshot_download(
repo_id=settings().huggingface.embedding_hf_model_name,
cache_dir=models_cache_path,
local_dir=embedding_path,
token=settings().huggingface.access_token,
)
print("Embedding model downloaded!")
@@ -36,18 +35,15 @@ hf_hub_download(
cache_dir=models_cache_path,
local_dir=models_path,
resume_download=resume_download,
token=settings().huggingface.access_token,
)
print("LLM model downloaded!")
# Download Tokenizer
if settings().llm.tokenizer:
print(f"Downloading tokenizer {settings().llm.tokenizer}")
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=settings().llm.tokenizer,
cache_dir=models_cache_path,
token=settings().huggingface.access_token,
)
print("Tokenizer downloaded!")
print(f"Downloading tokenizer {settings().llm.tokenizer}")
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=settings().llm.tokenizer,
cache_dir=models_cache_path,
)
print("Tokenizer downloaded!")
print("Setup done")

View File

@@ -23,7 +23,6 @@ ollama:
llm_model: ${PGPT_OLLAMA_LLM_MODEL:mistral}
embedding_model: ${PGPT_OLLAMA_EMBEDDING_MODEL:nomic-embed-text}
api_base: ${PGPT_OLLAMA_API_BASE:http://ollama:11434}
embedding_api_base: ${PGPT_OLLAMA_EMBEDDING_API_BASE:http://ollama:11434}
tfs_z: ${PGPT_OLLAMA_TFS_Z:1.0}
top_k: ${PGPT_OLLAMA_TOP_K:40}
top_p: ${PGPT_OLLAMA_TOP_P:0.9}

View File

@@ -1,10 +0,0 @@
llm:
mode: gemini
embedding:
mode: gemini
gemini:
api_key: ${GOOGLE_API_KEY:}
model: models/gemini-pro
embedding_model: models/embedding-001

View File

@@ -8,9 +8,9 @@ llm:
max_new_tokens: 512
context_window: 3900
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
prompt_style: "mistral"
llamacpp:
prompt_style: "mistral"
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
@@ -24,4 +24,4 @@ vectorstore:
database: qdrant
qdrant:
path: local_data/private_gpt/qdrant
path: local_data/private_gpt/qdrant

View File

@@ -3,9 +3,6 @@ server:
llm:
mode: openailike
max_new_tokens: 512
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
temperature: 0.1
embedding:
mode: huggingface
@@ -18,4 +15,3 @@ openai:
api_base: http://localhost:8000/v1
api_key: EMPTY
model: facebook/opt-125m
request_timeout: 600.0

View File

@@ -5,7 +5,7 @@ server:
env_name: ${APP_ENV:prod}
port: ${PORT:8001}
cors:
enabled: true
enabled: false
allow_origins: ["*"]
allow_methods: ["*"]
allow_headers: ["*"]
@@ -36,12 +36,10 @@ ui:
llm:
mode: llamacpp
prompt_style: "mistral"
# Should be matching the selected model
max_new_tokens: 512
context_window: 3900
# Select your tokenizer. Llama-index tokenizer is the default.
# tokenizer: mistralai/Mistral-7B-Instruct-v0.2
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
rag:
@@ -54,14 +52,8 @@ rag:
model: cross-encoder/ms-marco-MiniLM-L-2-v2
top_n: 1
clickhouse:
host: localhost
port: 8443
username: admin
password: clickhouse
database: embeddings
llamacpp:
prompt_style: "mistral"
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting
@@ -77,7 +69,6 @@ embedding:
huggingface:
embedding_hf_model_name: BAAI/bge-small-en-v1.5
access_token: ${HF_TOKEN:}
vectorstore:
database: qdrant
@@ -85,11 +76,6 @@ vectorstore:
nodestore:
database: simple
milvus:
uri: local_data/private_gpt/milvus/milvus_local.db
collection_name: milvus_db
overwrite: false
qdrant:
path: local_data/private_gpt/qdrant
@@ -108,7 +94,6 @@ sagemaker:
openai:
api_key: ${OPENAI_API_KEY:}
model: gpt-3.5-turbo
embedding_api_key: ${OPENAI_API_KEY:}
ollama:
llm_model: llama2
@@ -117,7 +102,6 @@ ollama:
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama
keep_alive: 5m
request_timeout: 120.0
autopull_models: true
azopenai:
api_key: ${AZ_OPENAI_API_KEY:}
@@ -127,8 +111,3 @@ azopenai:
api_version: "2023-05-15"
embedding_model: text-embedding-ada-002
llm_model: gpt-35-turbo
gemini:
api_key: ${GOOGLE_API_KEY:}
model: models/gemini-pro
embedding_model: models/embedding-001

View File

@@ -69,20 +69,16 @@ def test_tag_prompt_style_format_with_system_prompt():
def test_mistral_prompt_style_format():
prompt_style = MistralPromptStyle()
messages = [
ChatMessage(content="A", role=MessageRole.SYSTEM),
ChatMessage(content="B", role=MessageRole.USER),
ChatMessage(content="You are an AI assistant.", role=MessageRole.SYSTEM),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = "<s>[INST] A\nB [/INST]"
assert prompt_style.messages_to_prompt(messages) == expected_prompt
messages2 = [
ChatMessage(content="A", role=MessageRole.SYSTEM),
ChatMessage(content="B", role=MessageRole.USER),
ChatMessage(content="C", role=MessageRole.ASSISTANT),
ChatMessage(content="D", role=MessageRole.USER),
]
expected_prompt2 = "<s>[INST] A\nB [/INST] C</s><s>[INST] D [/INST]"
assert prompt_style.messages_to_prompt(messages2) == expected_prompt2
expected_prompt = (
"<s>[INST] You are an AI assistant. [/INST]</s>"
"[INST] Hello, how are you doing? [/INST]"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
def test_chatml_prompt_style_format():