66 Commits

Author SHA1 Message Date
imartinez
829f42909c Update twitter account 2024-04-09 15:18:03 +02:00
Pablo Orgaz
347be643f7 fix(llm): special tokens and leading space (#1831) 2024-04-04 14:37:29 +02:00
imartinez
08c4ab175e Fix version in poetry 2024-04-03 10:59:35 +02:00
imartinez
f469b4619d Add required Ollama setting 2024-04-02 18:27:57 +02:00
github-actions[bot]
94ef38cbba chore(main): release 0.5.0 (#1708)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2024-04-02 17:45:15 +02:00
Иван
8a836e4651 feat(docs): Add guide Llama-CPP Linux AMD GPU support (#1782) 2024-04-02 16:55:05 +02:00
Ingrid Stevens
f0b174c097 feat(ui): Add Model Information to ChatInterface label 2024-04-02 16:52:27 +02:00
igeni
bac818add5 feat(code): improve concat of strings in ui (#1785) 2024-04-02 16:42:40 +02:00
Brett England
ea153fb92f feat(scripts): Wipe qdrant and obtain db Stats command (#1783) 2024-04-02 16:41:42 +02:00
Robin Boone
b3b0140e24 feat(llm): Ollama LLM-Embeddings decouple + longer keep_alive settings (#1800) 2024-04-02 16:23:10 +02:00
machatschek
83adc12a8e feat(RAG): Introduce SentenceTransformer Reranker (#1810) 2024-04-02 10:29:51 +02:00
Marco Repetto
f83abff8bc feat(docker): set default Docker to use Ollama (#1812) 2024-04-01 13:08:48 +02:00
icsy7867
087cb0b7b7 feat(rag): expose similarity_top_k and similarity_score to settings (#1771)
* Added RAG settings to settings.py, vector_store and chat_service to add similarity_top_k and similarity_score

* Updated settings in vector and chat service per Ivans request

* Updated code for mypy
2024-03-20 22:25:26 +01:00
Marco Repetto
774e256052 fix: Fixed docker-compose (#1758)
* Fixed docker-compose

* Update docker-compose.yaml
2024-03-20 21:36:45 +01:00
Iván Martínez
6f6c785dac feat(llm): Ollama timeout setting (#1773)
* added request_timeout to ollama, default set to 30.0 in settings.yaml and settings-ollama.yaml

* Update settings-ollama.yaml

* Update settings.yaml

* updated settings.py and tidied up settings-ollama-yaml

* feat(UI): Faster startup and document listing (#1763)

* fix(ingest): update script label (#1770)

huggingface -> Hugging Face

* Fix lint errors

---------

Co-authored-by: Stephen Gresham <steve@gresham.id.au>
Co-authored-by: Ikko Eltociear Ashimine <eltociear@gmail.com>
2024-03-20 21:33:46 +01:00
Brett England
c2d694852b feat: wipe per storage type (#1772) 2024-03-20 21:31:44 +01:00
Ikko Eltociear Ashimine
7d2de5c96f fix(ingest): update script label (#1770)
huggingface -> Hugging Face
2024-03-20 20:23:08 +01:00
Iván Martínez
348df781b5 feat(UI): Faster startup and document listing (#1763) 2024-03-20 19:11:44 +01:00
Iván Martínez
572518143a feat(docs): Feature/upgrade docs (#1741)
* Upgrade fern version

* Add info about SDKs
2024-03-19 21:26:53 +01:00
Brett England
134fc54d7d feat(ingest): Created a faster ingestion mode - pipeline (#1750)
* Unify pgvector and postgres connection settings

* Remove local changes

* Update file pgvector->postgres

* postgresql should be postgres

* Adding pipeline ingestion mode

* disable hugging face parallelism.  Continue on file to doc transform failure

* Semaphore to limit docq async workers. ETA reporting
2024-03-19 21:24:46 +01:00
Otto L
1efac6a3fe feat(llm - embed): Add support for Azure OpenAI (#1698)
* Add support for Azure OpenAI

* fix: wrong default api_version

Should be dashes instead of underscores.
see: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference

* fix: code styling

applied "make check" changes

* refactor: extend documentation

* mention azopenai as available option and extras
* add recommended section
* include settings-azopenai.yaml configuration file

* fix: documentation
2024-03-15 16:49:50 +01:00
Brett England
258d02d87c fix(docs): Minor documentation amendment (#1739)
* Unify pgvector and postgres connection settings

* Remove local changes

* Update file pgvector->postgres

* postgresql should be postgres
2024-03-15 16:36:32 +01:00
Brett England
63de7e4930 feat: unify settings for vector and nodestore connections to PostgreSQL (#1730)
* Unify pgvector and postgres connection settings

* Remove local changes

* Update file pgvector->postgres
2024-03-15 09:55:17 +01:00
Brett England
68b3a34b03 feat(nodestore): add Postgres for the doc and index store (#1706)
* Adding Postgres for the doc and index store

* Adding documentation.  Rename postgres database local->simple.  Postgres storage dependencies

* Update documentation for postgres storage

* Renaming feature to nodestore

* update docstore -> nodestore in doc

* missed some docstore changes in doc

* Updated poetry.lock

* Formatting updates to pass ruff/black checks

* Correction to unreachable code!

* Format adjustment to pass black test

* Adjust extra inclusion name for vector pg

* extra dep change for pg vector

* storage-postgres -> storage-nodestore-postgres

* Hash change on poetry lock
2024-03-14 17:12:33 +01:00
Iván Martínez
d17c34e81a fix(settings): set default tokenizer to avoid running make setup fail (#1709) 2024-03-13 09:53:40 +01:00
Andrew Jiang
84ad16af80 feat(docs): upgrade fern (#1596) 2024-03-11 23:02:56 +01:00
Arun Yadav
821bca32e9 feat(local): tiktoken cache within repo for offline (#1467) 2024-03-11 22:55:13 +01:00
icsy7867
02dc83e8e9 feat(llm): adds serveral settings for llamacpp and ollama (#1703) 2024-03-11 22:51:05 +01:00
Hoffelhas
410bf7a71f feat(ui): maintain score order when curating sources (#1643)
* Update ui.py

Changed 'curated_sources' from a list, in order to maintain score order when returning the curated sources.

* Maintain score order after curating sources
2024-03-11 22:27:30 +01:00
icsy7867
290b9fb084 feat(ui): add sources check to not repeat identical sources (#1705) 2024-03-11 22:24:18 +01:00
github-actions[bot]
1b03b369c0 chore(main): release 0.4.0 (#1628)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2024-03-06 17:53:35 +01:00
Iván Martínez
45f05711eb feat: Upgrade to LlamaIndex to 0.10 (#1663)
* Extract optional dependencies

* Separate local mode into llms-llama-cpp and embeddings-huggingface for clarity

* Support Ollama embeddings

* Upgrade to llamaindex 0.10.14. Remove legacy use of ServiceContext in ContextChatEngine

* Fix vector retriever filters
2024-03-06 17:51:30 +01:00
Daniel Gallego Vico
12f3a39e8a Update x handle to zylon private gpt (#1644) 2024-02-23 15:51:35 +01:00
TQ
cd40e3982b feat(Vector): support pgvector (#1624) 2024-02-20 15:29:26 +01:00
github-actions[bot]
066ea5bf28 chore(main): release 0.3.0 (#1413)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2024-02-16 17:42:39 +01:00
Iván Martínez
aa13afde07 feat(UI): Select file to Query or Delete + Delete ALL (#1612)
---------

Co-authored-by: Robin Boone <rboone@sofics.com>
2024-02-16 17:36:09 +01:00
icsy7867
24fb80ca38 fix(UI): Updated ui.py. Frees up the CPU to not be bottlenecked.
Updated ui.py to include a small sleep timer while building the stream deltas.  This recursive function fires off so quickly to eats up too much of the CPU.  This small sleep frees up the CPU to not be bottlenecked.  This value can go lower/shorter.  But 0.02 or 0.025 seems to work well. (#1589)

Co-authored-by: root <root@wesgitlabdemo.icl.gtri.org>
2024-02-16 12:52:14 +01:00
Ygal Blum
6bbec79583 feat(llm): Add support for Ollama LLM (#1526) 2024-02-09 15:50:50 +01:00
Nick Smirnov
b178b51451 feat(bulk-ingest): Add --ignored Flag to Exclude Specific Files and Directories During Ingestion (#1432) 2024-02-07 19:59:32 +01:00
Iván Martínez
24fae660e6 feat: Add stream information to generate SDKs (#1569) 2024-02-02 16:14:22 +01:00
Pablo Orgaz
3e67e21d38 Add embedding mode config (#1541) 2024-01-25 10:55:32 +01:00
Naveen Kannan
869233f0e4 fix: Adding an LLM param to fix broken generator from llamacpp (#1519) 2024-01-17 18:10:45 +01:00
CognitiveTech
e326126d0d feat: add mistral + chatml prompts (#1426) 2024-01-16 22:51:14 +01:00
Robert Gay
6191bcdbd6 fix: minor bug in chat stream output - python error being serialized (#1449) 2024-01-16 16:41:20 +01:00
Iván Martínez
d3acd85fe3 fix(tests): load the test settings only when running tests
Previous implementation causes false positives with the last version of LlamaIndex
2024-01-09 12:03:16 +01:00
Guido Schulz
0a89d76cc5 fix(docs): Update quickstart doc and set version in pyproject.toml to 0.2.0 2023-12-26 13:09:31 +01:00
Matthew Hill
2d27a9f956 feat(llm): Add openailike llm mode (#1447)
This mode behaves the same as the openai mode, except that it allows setting custom models not
supported by OpenAI. It can be used with any tool that serves models from an OpenAI compatible API.

Implements #1424
2023-12-26 10:26:08 +01:00
imartinez
fee9f08ef3 Move back to 3900 for the context window to avoid melting local machines 2023-12-22 18:21:43 +01:00
Iván Martínez
fde2b942bc fix(deploy): fix local and external dockerfiles 2023-12-22 14:16:46 +01:00
Iván Martínez
4c69c458ab Improve ingest logs (#1438) 2023-12-21 17:13:46 +01:00
Iván Martínez
4780540870 feat(settings): Configurable context_window and tokenizer (#1437) 2023-12-21 14:49:35 +01:00
Iván Martínez
6eeb95ec7f feat(API): Ingest plain text (#1417)
* Add ingest/text route to ingest plain text

* Add new ingest text test and adapt ingest/file ones

* Include new API in docs

* Remove duplicated logic
2023-12-18 21:47:05 +01:00
Pablo Orgaz
059f35840a fix(docker): docker broken copy (#1419) 2023-12-18 16:55:18 +01:00
Iván Martínez
8ec7cf49f4 feat(settings): Update default model to TheBloke/Mistral-7B-Instruct-v0.2-GGUF (#1415)
* Update LlamaCPP dependency

* Default to TheBloke/Mistral-7B-Instruct-v0.2-GGUF

* Fix API docs
2023-12-17 16:11:08 +01:00
Rohit Das
c71ae7cee9 feat(ui): make chat area stretch to fill the screen (#1397) 2023-12-17 12:02:13 +01:00
cognitivetech
2564f8d2bb fix(settings): correct yaml multiline string (#1403) 2023-12-16 19:02:46 +01:00
Eliott Bouhana
4e496e970a docs: remove misleading comment about pgpt working with python 3.12 (#1394)
I was misled into believing I could install using python 3.12 whereas the pyproject.toml explicitly states otherwise. This PR only removes this comment to make sure other people are not also trapped 😄
2023-12-15 21:35:02 +01:00
Federico Grandi
3582764801 ci: fix preview docs checkout ref (#1393) 2023-12-12 20:33:34 +01:00
Federico Grandi
1d28ae2915 docs: fix minor capitalization typo (#1392) 2023-12-12 20:31:38 +01:00
github-actions[bot]
e8ac51bba4 chore(main): release 0.2.0 (#1387)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-12-10 20:08:12 +01:00
3ly-13
145f3ec9f4 feat(ui): Allows User to Set System Prompt via "Additional Options" in Chat Interface (#1353) 2023-12-10 19:45:14 +01:00
3ly-13
a072a40a7c Allow setting OpenAI model in settings (#1386)
feat(settings): Allow setting openai model to be used. Default to GPT 3.5
2023-12-09 20:13:00 +01:00
Louis Melchior
a3ed14c58f feat(llm): drop default_system_prompt (#1385)
As discussed on Discord, the decision has been made to remove the system prompts by default, to better segregate the API and the UI usages.

A concurrent PR (#1353) is enabling the dynamic setting of a system prompt in the UI.

Therefore, if UI users want to use a custom system prompt, they can specify one directly in the UI.
If the API users want to use a custom prompt, they can pass it directly into their messages that they are passing to the API.

In the highlight of the two use case above, it becomes clear that default system_prompt does not need to exist.
2023-12-08 23:13:51 +01:00
Iván Martínez
f235c50be9 Delete old docs (#1384) 2023-12-08 22:39:23 +01:00
EEmlan
9302620eac Adding german speaking model to documentation (#1374) 2023-12-08 11:26:25 +01:00
Max Zangs
9cf972563e Add setup option to Makefile (#1368) 2023-12-08 10:34:12 +01:00
85 changed files with 5158 additions and 4491 deletions

View File

@@ -25,6 +25,6 @@ runs:
python-version: ${{ inputs.python_version }}
cache: "poetry"
- name: Install Dependencies
run: poetry install --with ui --no-root
run: poetry install --extras "ui vector-stores-qdrant" --no-root
shell: bash

View File

@@ -14,6 +14,8 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
ref: refs/pull/${{ github.event.pull_request.number }}/merge
- name: Setup Node.js
uses: actions/setup-node@v4

2
.gitignore vendored
View File

@@ -1,4 +1,6 @@
.venv
.env
venv
settings-me.yaml

View File

@@ -1,5 +1,84 @@
# Changelog
## [0.5.0](https://github.com/zylon-ai/private-gpt/compare/v0.4.0...v0.5.0) (2024-04-02)
### Features
* **code:** improve concat of strings in ui ([#1785](https://github.com/zylon-ai/private-gpt/issues/1785)) ([bac818a](https://github.com/zylon-ai/private-gpt/commit/bac818add51b104cda925b8f1f7b51448e935ca1))
* **docker:** set default Docker to use Ollama ([#1812](https://github.com/zylon-ai/private-gpt/issues/1812)) ([f83abff](https://github.com/zylon-ai/private-gpt/commit/f83abff8bc955a6952c92cc7bcb8985fcec93afa))
* **docs:** Add guide Llama-CPP Linux AMD GPU support ([#1782](https://github.com/zylon-ai/private-gpt/issues/1782)) ([8a836e4](https://github.com/zylon-ai/private-gpt/commit/8a836e4651543f099c59e2bf497ab8c55a7cd2e5))
* **docs:** Feature/upgrade docs ([#1741](https://github.com/zylon-ai/private-gpt/issues/1741)) ([5725181](https://github.com/zylon-ai/private-gpt/commit/572518143ac46532382db70bed6f73b5082302c1))
* **docs:** upgrade fern ([#1596](https://github.com/zylon-ai/private-gpt/issues/1596)) ([84ad16a](https://github.com/zylon-ai/private-gpt/commit/84ad16af80191597a953248ce66e963180e8ddec))
* **ingest:** Created a faster ingestion mode - pipeline ([#1750](https://github.com/zylon-ai/private-gpt/issues/1750)) ([134fc54](https://github.com/zylon-ai/private-gpt/commit/134fc54d7d636be91680dc531f5cbe2c5892ac56))
* **llm - embed:** Add support for Azure OpenAI ([#1698](https://github.com/zylon-ai/private-gpt/issues/1698)) ([1efac6a](https://github.com/zylon-ai/private-gpt/commit/1efac6a3fe19e4d62325e2c2915cd84ea277f04f))
* **llm:** adds serveral settings for llamacpp and ollama ([#1703](https://github.com/zylon-ai/private-gpt/issues/1703)) ([02dc83e](https://github.com/zylon-ai/private-gpt/commit/02dc83e8e9f7ada181ff813f25051bbdff7b7c6b))
* **llm:** Ollama LLM-Embeddings decouple + longer keep_alive settings ([#1800](https://github.com/zylon-ai/private-gpt/issues/1800)) ([b3b0140](https://github.com/zylon-ai/private-gpt/commit/b3b0140e244e7a313bfaf4ef10eb0f7e4192710e))
* **llm:** Ollama timeout setting ([#1773](https://github.com/zylon-ai/private-gpt/issues/1773)) ([6f6c785](https://github.com/zylon-ai/private-gpt/commit/6f6c785dac2bbad37d0b67fda215784298514d39))
* **local:** tiktoken cache within repo for offline ([#1467](https://github.com/zylon-ai/private-gpt/issues/1467)) ([821bca3](https://github.com/zylon-ai/private-gpt/commit/821bca32e9ee7c909fd6488445ff6a04463bf91b))
* **nodestore:** add Postgres for the doc and index store ([#1706](https://github.com/zylon-ai/private-gpt/issues/1706)) ([68b3a34](https://github.com/zylon-ai/private-gpt/commit/68b3a34b032a08ca073a687d2058f926032495b3))
* **rag:** expose similarity_top_k and similarity_score to settings ([#1771](https://github.com/zylon-ai/private-gpt/issues/1771)) ([087cb0b](https://github.com/zylon-ai/private-gpt/commit/087cb0b7b74c3eb80f4f60b47b3a021c81272ae1))
* **RAG:** Introduce SentenceTransformer Reranker ([#1810](https://github.com/zylon-ai/private-gpt/issues/1810)) ([83adc12](https://github.com/zylon-ai/private-gpt/commit/83adc12a8ef0fa0c13a0dec084fa596445fc9075))
* **scripts:** Wipe qdrant and obtain db Stats command ([#1783](https://github.com/zylon-ai/private-gpt/issues/1783)) ([ea153fb](https://github.com/zylon-ai/private-gpt/commit/ea153fb92f1f61f64c0d04fff0048d4d00b6f8d0))
* **ui:** Add Model Information to ChatInterface label ([f0b174c](https://github.com/zylon-ai/private-gpt/commit/f0b174c097c2d5e52deae8ef88de30a0d9013a38))
* **ui:** add sources check to not repeat identical sources ([#1705](https://github.com/zylon-ai/private-gpt/issues/1705)) ([290b9fb](https://github.com/zylon-ai/private-gpt/commit/290b9fb084632216300e89bdadbfeb0380724b12))
* **UI:** Faster startup and document listing ([#1763](https://github.com/zylon-ai/private-gpt/issues/1763)) ([348df78](https://github.com/zylon-ai/private-gpt/commit/348df781b51606b2f9810bcd46f850e54192fd16))
* **ui:** maintain score order when curating sources ([#1643](https://github.com/zylon-ai/private-gpt/issues/1643)) ([410bf7a](https://github.com/zylon-ai/private-gpt/commit/410bf7a71f17e77c4aec723ab80c233b53765964))
* unify settings for vector and nodestore connections to PostgreSQL ([#1730](https://github.com/zylon-ai/private-gpt/issues/1730)) ([63de7e4](https://github.com/zylon-ai/private-gpt/commit/63de7e4930ac90dd87620225112a22ffcbbb31ee))
* wipe per storage type ([#1772](https://github.com/zylon-ai/private-gpt/issues/1772)) ([c2d6948](https://github.com/zylon-ai/private-gpt/commit/c2d694852b4696834962a42fde047b728722ad74))
### Bug Fixes
* **docs:** Minor documentation amendment ([#1739](https://github.com/zylon-ai/private-gpt/issues/1739)) ([258d02d](https://github.com/zylon-ai/private-gpt/commit/258d02d87c5cb81d6c3a6f06aa69339b670dffa9))
* Fixed docker-compose ([#1758](https://github.com/zylon-ai/private-gpt/issues/1758)) ([774e256](https://github.com/zylon-ai/private-gpt/commit/774e2560520dc31146561d09a2eb464c68593871))
* **ingest:** update script label ([#1770](https://github.com/zylon-ai/private-gpt/issues/1770)) ([7d2de5c](https://github.com/zylon-ai/private-gpt/commit/7d2de5c96fd42e339b26269b3155791311ef1d08))
* **settings:** set default tokenizer to avoid running make setup fail ([#1709](https://github.com/zylon-ai/private-gpt/issues/1709)) ([d17c34e](https://github.com/zylon-ai/private-gpt/commit/d17c34e81a84518086b93605b15032e2482377f7))
## [0.4.0](https://github.com/imartinez/privateGPT/compare/v0.3.0...v0.4.0) (2024-03-06)
### Features
* Upgrade to LlamaIndex to 0.10 ([#1663](https://github.com/imartinez/privateGPT/issues/1663)) ([45f0571](https://github.com/imartinez/privateGPT/commit/45f05711eb71ffccdedb26f37e680ced55795d44))
* **Vector:** support pgvector ([#1624](https://github.com/imartinez/privateGPT/issues/1624)) ([cd40e39](https://github.com/imartinez/privateGPT/commit/cd40e3982b780b548b9eea6438c759f1c22743a8))
## [0.3.0](https://github.com/imartinez/privateGPT/compare/v0.2.0...v0.3.0) (2024-02-16)
### Features
* add mistral + chatml prompts ([#1426](https://github.com/imartinez/privateGPT/issues/1426)) ([e326126](https://github.com/imartinez/privateGPT/commit/e326126d0d4cd7e46a79f080c442c86f6dd4d24b))
* Add stream information to generate SDKs ([#1569](https://github.com/imartinez/privateGPT/issues/1569)) ([24fae66](https://github.com/imartinez/privateGPT/commit/24fae660e6913aac6b52745fb2c2fe128ba2eb79))
* **API:** Ingest plain text ([#1417](https://github.com/imartinez/privateGPT/issues/1417)) ([6eeb95e](https://github.com/imartinez/privateGPT/commit/6eeb95ec7f17a618aaa47f5034ee5bccae02b667))
* **bulk-ingest:** Add --ignored Flag to Exclude Specific Files and Directories During Ingestion ([#1432](https://github.com/imartinez/privateGPT/issues/1432)) ([b178b51](https://github.com/imartinez/privateGPT/commit/b178b514519550e355baf0f4f3f6beb73dca7df2))
* **llm:** Add openailike llm mode ([#1447](https://github.com/imartinez/privateGPT/issues/1447)) ([2d27a9f](https://github.com/imartinez/privateGPT/commit/2d27a9f956d672cb1fe715cf0acdd35c37f378a5)), closes [#1424](https://github.com/imartinez/privateGPT/issues/1424)
* **llm:** Add support for Ollama LLM ([#1526](https://github.com/imartinez/privateGPT/issues/1526)) ([6bbec79](https://github.com/imartinez/privateGPT/commit/6bbec79583b7f28d9bea4b39c099ebef149db843))
* **settings:** Configurable context_window and tokenizer ([#1437](https://github.com/imartinez/privateGPT/issues/1437)) ([4780540](https://github.com/imartinez/privateGPT/commit/47805408703c23f0fd5cab52338142c1886b450b))
* **settings:** Update default model to TheBloke/Mistral-7B-Instruct-v0.2-GGUF ([#1415](https://github.com/imartinez/privateGPT/issues/1415)) ([8ec7cf4](https://github.com/imartinez/privateGPT/commit/8ec7cf49f40701a4f2156c48eb2fad9fe6220629))
* **ui:** make chat area stretch to fill the screen ([#1397](https://github.com/imartinez/privateGPT/issues/1397)) ([c71ae7c](https://github.com/imartinez/privateGPT/commit/c71ae7cee92463bbc5ea9c434eab9f99166e1363))
* **UI:** Select file to Query or Delete + Delete ALL ([#1612](https://github.com/imartinez/privateGPT/issues/1612)) ([aa13afd](https://github.com/imartinez/privateGPT/commit/aa13afde07122f2ddda3942f630e5cadc7e4e1ee))
### Bug Fixes
* Adding an LLM param to fix broken generator from llamacpp ([#1519](https://github.com/imartinez/privateGPT/issues/1519)) ([869233f](https://github.com/imartinez/privateGPT/commit/869233f0e4f03dc23e5fae43cf7cb55350afdee9))
* **deploy:** fix local and external dockerfiles ([fde2b94](https://github.com/imartinez/privateGPT/commit/fde2b942bc03688701ed563be6d7d597c75e4e4e))
* **docker:** docker broken copy ([#1419](https://github.com/imartinez/privateGPT/issues/1419)) ([059f358](https://github.com/imartinez/privateGPT/commit/059f35840adbc3fb93d847d6decf6da32d08670c))
* **docs:** Update quickstart doc and set version in pyproject.toml to 0.2.0 ([0a89d76](https://github.com/imartinez/privateGPT/commit/0a89d76cc5ed4371ffe8068858f23dfbb5e8cc37))
* minor bug in chat stream output - python error being serialized ([#1449](https://github.com/imartinez/privateGPT/issues/1449)) ([6191bcd](https://github.com/imartinez/privateGPT/commit/6191bcdbd6e92b6f4d5995967dc196c9348c5954))
* **settings:** correct yaml multiline string ([#1403](https://github.com/imartinez/privateGPT/issues/1403)) ([2564f8d](https://github.com/imartinez/privateGPT/commit/2564f8d2bb8c4332a6a0ab6d722a2ac15006b85f))
* **tests:** load the test settings only when running tests ([d3acd85](https://github.com/imartinez/privateGPT/commit/d3acd85fe34030f8cfd7daf50b30c534087bdf2b))
* **UI:** Updated ui.py. Frees up the CPU to not be bottlenecked. ([24fb80c](https://github.com/imartinez/privateGPT/commit/24fb80ca38f21910fe4fd81505d14960e9ed4faa))
## [0.2.0](https://github.com/imartinez/privateGPT/compare/v0.1.0...v0.2.0) (2023-12-10)
### Features
* **llm:** drop default_system_prompt ([#1385](https://github.com/imartinez/privateGPT/issues/1385)) ([a3ed14c](https://github.com/imartinez/privateGPT/commit/a3ed14c58f77351dbd5f8f2d7868d1642a44f017))
* **ui:** Allows User to Set System Prompt via "Additional Options" in Chat Interface ([#1353](https://github.com/imartinez/privateGPT/issues/1353)) ([145f3ec](https://github.com/imartinez/privateGPT/commit/145f3ec9f41c4def5abf4065a06fb0786e2d992a))
## [0.1.0](https://github.com/imartinez/privateGPT/compare/v0.0.2...v0.1.0) (2023-11-30)

View File

@@ -5,6 +5,7 @@ RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry
ENV PATH="/root/.local/bin:$PATH"
ENV PATH=".venv/bin/:$PATH"
# https://python-poetry.org/docs/configuration/#virtualenvsin-project
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
@@ -13,7 +14,7 @@ FROM base as dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
RUN poetry install --with ui
RUN poetry install --extras "ui vector-stores-qdrant llms-ollama embeddings-ollama"
FROM base as app
@@ -29,8 +30,11 @@ RUN mkdir local_data; chown worker local_data
RUN mkdir models; chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker docs/ docs
COPY --chown=worker fern/ fern
COPY --chown=worker *.yaml *.md ./
COPY --chown=worker scripts/ scripts
ENV PYTHONPATH="$PYTHONPATH:/private_gpt/"
USER worker
ENTRYPOINT .venv/bin/python -m private_gpt
ENTRYPOINT python -m private_gpt

View File

@@ -7,6 +7,7 @@ RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry
ENV PATH="/root/.local/bin:$PATH"
ENV PATH=".venv/bin/:$PATH"
# Dependencies to build llama-cpp
RUN apt update && apt install -y \
@@ -23,8 +24,7 @@ FROM base as dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
RUN poetry install --with local
RUN poetry install --with ui
RUN poetry install --extras "ui embeddings-huggingface llms-llama-cpp vector-stores-qdrant"
FROM base as app
@@ -40,8 +40,11 @@ RUN mkdir local_data; chown worker local_data
RUN mkdir models; chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker docs/ docs
COPY --chown=worker fern/ fern
COPY --chown=worker *.yaml *.md ./
COPY --chown=worker scripts/ scripts
ENV PYTHONPATH="$PYTHONPATH:/private_gpt/"
USER worker
ENTRYPOINT .venv/bin/python -m private_gpt
ENTRYPOINT python -m private_gpt

View File

@@ -51,5 +51,28 @@ api-docs:
ingest:
@poetry run python scripts/ingest_folder.py $(call args)
stats:
poetry run python scripts/utils.py stats
wipe:
poetry run python scripts/utils.py wipe
poetry run python scripts/utils.py wipe
setup:
poetry run python scripts/setup
list:
@echo "Available commands:"
@echo " test : Run tests using pytest"
@echo " test-coverage : Run tests with coverage report"
@echo " black : Check code format with black"
@echo " ruff : Check code with ruff"
@echo " format : Format code with black and ruff"
@echo " mypy : Run mypy for type checking"
@echo " check : Run format and mypy commands"
@echo " run : Run the application"
@echo " dev-windows : Run the application in development mode on Windows"
@echo " dev : Run the application in development mode"
@echo " api-docs : Generate API documentation"
@echo " ingest : Ingest data using specified script"
@echo " wipe : Wipe data using specified script"
@echo " setup : Setup the application"

View File

@@ -4,7 +4,7 @@
[![Website](https://img.shields.io/website?up_message=check%20it&down_message=down&url=https%3A%2F%2Fdocs.privategpt.dev%2F&label=Documentation)](https://docs.privategpt.dev/)
[![Discord](https://img.shields.io/discord/1164200432894234644?logo=discord&label=PrivateGPT)](https://discord.gg/bK6mRVpErU)
[![X (formerly Twitter) Follow](https://img.shields.io/twitter/follow/PrivateGPT_AI)](https://twitter.com/PrivateGPT_AI)
[![X (formerly Twitter) Follow](https://img.shields.io/twitter/follow/ZylonPrivateGPT)](https://twitter.com/ZylonPrivateGPT)
> Install & usage docs: https://docs.privategpt.dev/
@@ -117,7 +117,7 @@ Don't know what to contribute? Here is the public
[Project Board](https://github.com/users/imartinez/projects/3) with several ideas.
Head over to Discord
#contributors channel and ask for write permissions on that Github project.
#contributors channel and ask for write permissions on that GitHub project.
## 💬 Community
Join the conversation around PrivateGPT on our:
@@ -158,4 +158,4 @@ This project has been strongly influenced and supported by other amazing project
[GPT4All](https://github.com/nomic-ai/gpt4all),
[LlamaCpp](https://github.com/ggerganov/llama.cpp),
[Chroma](https://www.trychroma.com/)
and [SentenceTransformers](https://www.sbert.net/).
and [SentenceTransformers](https://www.sbert.net/).

View File

@@ -1,14 +1,16 @@
services:
private-gpt:
build:
dockerfile: Dockerfile.local
dockerfile: Dockerfile.external
volumes:
- ./local_data/:/home/worker/app/local_data
- ./models/:/home/worker/app/models
ports:
- 8001:8080
environment:
PORT: 8080
PGPT_PROFILES: docker
PGPT_MODE: local
PGPT_MODE: ollama
ollama:
image: ollama/ollama:latest
volumes:
- ./models:/root/.ollama

View File

View File

@@ -1,474 +0,0 @@
## Introduction
PrivateGPT provides an **API** containing all the building blocks required to build
**private, context-aware AI applications**. The API follows and extends OpenAI API standard, and supports
both normal and streaming responses.
The API is divided in two logical blocks:
- High-level API, abstracting all the complexity of a RAG (Retrieval Augmented Generation) pipeline implementation:
- Ingestion of documents: internally managing document parsing, splitting, metadata extraction,
embedding generation and storage.
- Chat & Completions using context from ingested documents: abstracting the retrieval of context, the prompt
engineering and the response generation.
- Low-level API, allowing advanced users to implement their own complex pipelines:
- Embeddings generation: based on a piece of text.
- Contextual chunks retrieval: given a query, returns the most relevant chunks of text from the ingested
documents.
> A working **Gradio UI client** is provided to test the API, together with a set of
> useful tools such as bulk model download script, ingestion script, documents folder
> watch, etc.
## Quick Local Installation steps
The steps in `Installation and Settings` section are better explained and cover more
setup scenarios. But if you are looking for a quick setup guide, here it is:
```
# Clone the repo
git clone https://github.com/imartinez/privateGPT
cd privateGPT
# Install Python 3.11
pyenv install 3.11
pyenv local 3.11
# Install dependencies
poetry install --with ui,local
# Download Embedding and LLM models
poetry run python scripts/setup
# (Optional) For Mac with Metal GPU, enable it. Check Installation and Settings section
to know how to enable GPU on other platforms
CMAKE_ARGS="-DLLAMA_METAL=on" pip install --force-reinstall --no-cache-dir llama-cpp-python
# Run the local server
PGPT_PROFILES=local make run
# Note: on Mac with Metal you should see a ggml_metal_add_buffer log, stating GPU is
being used
# Navigate to the UI and try it out!
http://localhost:8001/
```
## Installation and Settings
### Base requirements to run PrivateGPT
* Git clone PrivateGPT repository, and navigate to it:
```
git clone https://github.com/imartinez/privateGPT
cd privateGPT
```
* Install Python 3.11. Ideally through a python version manager like `pyenv`.
Python 3.12
should work too. Earlier python versions are not supported.
* osx/linux: [pyenv](https://github.com/pyenv/pyenv)
* windows: [pyenv-win](https://github.com/pyenv-win/pyenv-win)
```
pyenv install 3.11
pyenv local 3.11
```
* Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
* Have a valid C++ compiler like gcc. See [Troubleshooting: C++ Compiler](#troubleshooting-c-compiler) for more details.
* Install `make` for scripts:
* osx: (Using homebrew): `brew install make`
* windows: (Using chocolatey) `choco install make`
### Install dependencies
Install the dependencies:
```bash
poetry install --with ui
```
Verify everything is working by running `make run` (or `poetry run python -m private_gpt`) and navigate to
http://localhost:8001. You should see a [Gradio UI](https://gradio.app/) **configured with a mock LLM** that will
echo back the input. Later we'll see how to configure a real LLM.
### Settings
> Note: the default settings of PrivateGPT work out-of-the-box for a 100% local setup. Skip this section if you just
> want to test PrivateGPT locally, and come back later to learn about more configuration options.
PrivateGPT is configured through *profiles* that are defined using yaml files, and selected through env variables.
The full list of properties configurable can be found in `settings.yaml`
#### env var `PGPT_SETTINGS_FOLDER`
The location of the settings folder. Defaults to the root of the project.
Should contain the default `settings.yaml` and any other `settings-{profile}.yaml`.
#### env var `PGPT_PROFILES`
By default, the profile definition in `settings.yaml` is loaded.
Using this env var you can load additional profiles; format is a comma separated list of profile names.
This will merge `settings-{profile}.yaml` on top of the base settings file.
For example:
`PGPT_PROFILES=local,cuda` will load `settings-local.yaml`
and `settings-cuda.yaml`, their contents will be merged with
later profiles properties overriding values of earlier ones like `settings.yaml`.
During testing, the `test` profile will be active along with the default, therefore `settings-test.yaml`
file is required.
#### Environment variables expansion
Configuration files can contain environment variables,
they will be expanded at runtime.
Expansion must follow the pattern `${VARIABLE_NAME:default_value}`.
For example, the following configuration will use the value of the `PORT`
environment variable or `8001` if it's not set.
Missing variables with no default will produce an error.
```yaml
server:
port: ${PORT:8001}
```
### Local LLM requirements
Install extra dependencies for local execution:
```bash
poetry install --with local
```
For PrivateGPT to run fully locally GPU acceleration is required
(CPU execution is possible, but very slow), however,
typical Macbook laptops or window desktops with mid-range GPUs lack VRAM to run
even the smallest LLMs. For that reason
**local execution is only supported for models compatible with [llama.cpp](https://github.com/ggerganov/llama.cpp)**
These two models are known to work well:
* https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF
* https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF (recommended)
To ease the installation process, use the `setup` script that will download both
the embedding and the LLM model and place them in the correct location (under `models` folder):
```bash
poetry run python scripts/setup
```
If you are ok with CPU execution, you can skip the rest of this section.
As stated before, llama.cpp is required and in
particular [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
is used.
> It's highly encouraged that you fully read llama-cpp and llama-cpp-python documentation relevant to your platform.
> Running into installation issues is very likely, and you'll need to troubleshoot them yourself.
#### Customizing low level parameters
Currently not all the parameters of llama-cpp and llama-cpp-python are available at PrivateGPT's `settings.yaml` file. In case you need to customize parameters such as the number of layers loaded into the GPU, you might change these at the `llm_component.py` file under the `private_gpt/components/llm/llm_component.py`. If you are getting an out of memory error, you might also try a smaller model or stick to the proposed recommended models, instead of custom tuning the parameters.
#### OSX GPU support
You will need to build [llama.cpp](https://github.com/ggerganov/llama.cpp) with
metal support. To do that run:
```bash
CMAKE_ARGS="-DLLAMA_METAL=on" pip install --force-reinstall --no-cache-dir llama-cpp-python
```
#### Windows NVIDIA GPU support
Windows GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
dependencies.
Some tips to get it working with an NVIDIA card and CUDA (Tested on Windows 10 with CUDA 11.5 RTX 3070):
* Install latest VS2022 (and build tools) https://visualstudio.microsoft.com/vs/community/
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
* [Optional] Install CMake to troubleshoot building issues by compiling llama.cpp directly https://cmake.org/download/
If you have all required dependencies properly configured running the
following powershell command should succeed.
```powershell
$env:CMAKE_ARGS='-DLLAMA_CUBLAS=on'; poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
```
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
```
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
```
Note that llama.cpp offloads matrix calculations to the GPU but the performance is
still hit heavily due to latency between CPU and GPU communication. You might need to tweak
batch sizes and other parameters to get the best performance for your particular system.
#### Linux NVIDIA GPU support and Windows-WSL
Linux GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
external
dependencies.
Some tips:
* Make sure you have an up-to-date C++ compiler
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
After that running the following command in the repository will install llama.cpp with GPU support:
`
CMAKE_ARGS='-DLLAMA_CUBLAS=on' poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
`
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
```
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
```
#### Vectorstores
PrivateGPT supports [Chroma](https://www.trychroma.com/), [Qdrant](https://qdrant.tech/) as vectorstore providers. Chroma being the default.
To enable Qdrant, set the `vectorstore.database` property in the `settings.yaml` file to `qdrant` and install the `qdrant` extra.
```bash
poetry install --extras qdrant
```
By default Qdrant tries to connect to an instance at `http://localhost:3000`.
Qdrant settings can be configured by setting values to the `qdrant` property in the `settings.yaml` file.
The available configuration options are:
| Field | Description |
|--------------|-------------|
| location | If `:memory:` - use in-memory Qdrant instance.<br>If `str` - use it as a `url` parameter.|
| url | Either host or str of 'Optional[scheme], host, Optional[port], Optional[prefix]'.<br> Eg. `http://localhost:6333` |
| port | Port of the REST API interface. Default: `6333` |
| grpc_port | Port of the gRPC interface. Default: `6334` |
| prefer_grpc | If `true` - use gRPC interface whenever possible in custom methods. |
| https | If `true` - use HTTPS(SSL) protocol.|
| api_key | API key for authentication in Qdrant Cloud.|
| prefix | If set, add `prefix` to the REST URL path.<br>Example: `service/v1` will result in `http://localhost:6333/service/v1/{qdrant-endpoint}` for REST API.|
| timeout | Timeout for REST and gRPC API requests.<br>Default: 5.0 seconds for REST and unlimited for gRPC |
| host | Host name of Qdrant service. If url and host are not set, defaults to 'localhost'.|
| path | Persistence path for QdrantLocal. Eg. `local_data/private_gpt/qdrant`|
| force_disable_check_same_thread | Force disable check_same_thread for QdrantLocal sqlite connection.|
#### Known issues and Troubleshooting
Execution of LLMs locally still has a lot of sharp edges, specially when running on non Linux platforms.
You might encounter several issues:
* Performance: RAM or VRAM usage is very high, your computer might experience slowdowns or even crashes.
* GPU Virtualization on Windows and OSX: Simply not possible with docker desktop, you have to run the server directly on
the host.
* Building errors: Some of PrivateGPT dependencies need to build native code, and they might fail on some platforms.
Most likely you are missing some dev tools in your machine (updated C++ compiler, CUDA is not on PATH, etc.).
If you encounter any of these issues, please open an issue and we'll try to help.
#### Troubleshooting: C++ Compiler
If you encounter an error while building a wheel during the `pip install` process, you may need to install a C++
compiler on your computer.
**For Windows 10/11**
To install a C++ compiler on Windows 10/11, follow these steps:
1. Install Visual Studio 2022.
2. Make sure the following components are selected:
* Universal Windows Platform development
* C++ CMake tools for Windows
3. Download the MinGW installer from the [MinGW website](https://sourceforge.net/projects/mingw/).
4. Run the installer and select the `gcc` component.
** For OSX **
1. Check if you have a C++ compiler installed, Xcode might have done it for you. for example running `gcc`.
2. If not, you can install clang or gcc with homebrew `brew install gcc`
#### Troubleshooting: Mac Running Intel
When running a Mac with Intel hardware (not M1), you may run into _clang: error: the clang compiler does not support '
-march=native'_ during pip install.
If so set your archflags during pip install. eg: _ARCHFLAGS="-arch x86_64" pip3 install -r requirements.txt_
## Running the Server
After following the installation steps you should be ready to go. Here are some common run setups:
### Running 100% locally
Make sure you have followed the *Local LLM requirements* section before moving on.
This command will start PrivateGPT using the `settings.yaml` (default profile) together with the `settings-local.yaml`
configuration files. By default, it will enable both the API and the Gradio UI. Run:
```
PGPT_PROFILES=local make run
```
or
```
PGPT_PROFILES=local poetry run python -m private_gpt
```
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API
using Swagger UI.
### Local server using OpenAI as LLM
If you cannot run a local model (because you don't have a GPU, for example) or for testing purposes, you may
decide to run PrivateGPT using OpenAI as the LLM.
In order to do so, create a profile `settings-openai.yaml` with the following contents:
```yaml
llm:
mode: openai
openai:
api_key: <your_openai_api_key> # You could skip this configuration and use the OPENAI_API_KEY env var instead
```
And run PrivateGPT loading that profile you just created:
```PGPT_PROFILES=openai make run```
or
```PGPT_PROFILES=openai poetry run python -m private_gpt```
> Note this will still use the local Embeddings model, as it is ok to use it on a CPU.
> We'll support using OpenAI embeddings in a future release.
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.
You'll notice the speed and quality of response is higher, given you are using OpenAI's servers for the heavy
computations.
### Use AWS's Sagemaker
🚧 Under construction 🚧
## Gradio UI user manual
Gradio UI is a ready to use way of testing most of PrivateGPT API functionalities.
![Gradio PrivateGPT](https://lh3.googleusercontent.com/drive-viewer/AK7aPaD_Hc-A8A9ooMe-hPgm_eImgsbxAjb__8nFYj8b_WwzvL1Gy90oAnp1DfhPaN6yGiEHCOXs0r77W1bYHtPzlVwbV7fMsA=s1600)
### Execution Modes
It has 3 modes of execution (you can select in the top-left):
* Query Docs: uses the context from the
ingested documents to answer the questions posted in the chat. It also takes
into account previous chat messages as context.
* Makes use of `/chat/completions` API with `use_context=true` and no
`context_filter`.
* Search in Docs: fast search that returns the 4 most related text
chunks, together with their source document and page.
* Makes use of `/chunks` API with no `context_filter`, `limit=4` and
`prev_next_chunks=0`.
* LLM Chat: simple, non-contextual chat with the LLM. The ingested documents won't
be taken into account, only the previous messages.
* Makes use of `/chat/completions` API with `use_context=false`.
### Document Ingestion
Ingest documents by using the `Upload a File` button. You can check the progress of
the ingestion in the console logs of the server.
The list of ingested files is shown below the button.
If you want to delete the ingested documents, refer to *Reset Local documents
database* section in the documentation.
### Chat
Normal chat interface, self-explanatory ;)
You can check the actual prompt being passed to the LLM by looking at the logs of
the server. We'll add better observability in future releases.
## Deployment options
🚧 We are working on Dockerized deployment guidelines 🚧
## Observability
Basic logs are enabled using LlamaIndex
basic logging (for example ingestion progress or LLM prompts and answers).
🚧 We are working on improved Observability. 🚧
## Ingesting & Managing Documents
🚧 Document Update and Delete are still WIP. 🚧
The ingestion of documents can be done in different ways:
* Using the `/ingest` API
* Using the Gradio UI
* Using the Bulk Local Ingestion functionality (check next section)
### Bulk Local Ingestion
When you are running PrivateGPT in a fully local setup, you can ingest a complete folder for convenience (containing
pdf, text files, etc.)
and optionally watch changes on it with the command:
```bash
make ingest /path/to/folder -- --watch
```
To log the processed and failed files to an additional file, use:
```bash
make ingest /path/to/folder -- --watch --log-file /path/to/log/file.log
```
After ingestion is complete, you should be able to chat with your documents
by navigating to http://localhost:8001 and using the option `Query documents`,
or using the completions / chat API.
### Reset Local documents database
When running in a local setup, you can remove all ingested documents by simply
deleting all contents of `local_data` folder (except .gitignore).
To simplify this process, you can use the command:
```bash
make wipe
```
## API
As explained in the introduction, the API contains high level APIs (ingestion and chat/completions) and low level APIs
(embeddings and chunk retrieval). In this section the different specific API calls are explained.

View File

@@ -1,22 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>PrivateGPT Docs</title>
<!-- needed for adaptive design -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="https://fonts.googleapis.com/css?family=Montserrat:300,400,700|Roboto:300,400,700" rel="stylesheet">
<link rel="shortcut icon" href="https://fastapi.tiangolo.com/img/favicon.png">
<!-- ReDoc doesn't change outer page styles -->
<style>
body {
margin: 0;
padding: 0;
}
</style>
</head>
<body>
<noscript> ReDoc requires Javascript to function. Please enable it to browse the documentation. </noscript>
<redoc spec-url="/openapi.json"></redoc>
<script src="https://cdn.jsdelivr.net/npm/redoc@next/bundles/redoc.standalone.js"></script>
</body>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 KiB

File diff suppressed because one or more lines are too long

View File

@@ -30,15 +30,15 @@ navigation:
layout:
- section: Welcome
contents:
- page: Welcome
- page: Introduction
path: ./docs/pages/overview/welcome.mdx
- page: Quickstart
path: ./docs/pages/overview/quickstart.mdx
# How to install privateGPT, with FAQ and troubleshooting
- tab: installation
layout:
- section: Getting started
contents:
- page: Main Concepts
path: ./docs/pages/installation/concepts.mdx
- page: Installation
path: ./docs/pages/installation/installation.mdx
# Manual of privateGPT: how to use it and configure it
@@ -58,10 +58,14 @@ navigation:
contents:
- page: Vector Stores
path: ./docs/pages/manual/vectordb.mdx
- page: Node Stores
path: ./docs/pages/manual/nodestore.mdx
- section: Advanced Setup
contents:
- page: LLM Backends
path: ./docs/pages/manual/llms.mdx
- page: Reranking
path: ./docs/pages/manual/reranker.mdx
- section: User Interface
contents:
- page: User interface (Gradio) Manual
@@ -89,7 +93,7 @@ navigation:
# `type:primary` is always displayed at the most right side of the navbar
navbar-links:
- type: secondary
text: Github
text: GitHub
url: "https://github.com/imartinez/privateGPT"
- type: secondary
text: Contact us

View File

@@ -1 +1,14 @@
# API Reference
The API is divided in two logical blocks:
1. High-level API, abstracting all the complexity of a RAG (Retrieval Augmented Generation) pipeline implementation:
- Ingestion of documents: internally managing document parsing, splitting, metadata extraction,
embedding generation and storage.
- Chat & Completions using context from ingested documents: abstracting the retrieval of context, the prompt
engineering and the response generation.
2. Low-level API, allowing advanced users to implement their own complex pipelines:
- Embeddings generation: based on a piece of text.
- Contextual chunks retrieval: given a query, returns the most relevant chunks of text from the ingested
documents.

View File

@@ -8,14 +8,14 @@ The clients are kept up to date automatically, so we encourage you to use the la
<Cards>
<Card
title="Node.js/TypeScript"
title="Node.js/TypeScript - WIP"
icon="fa-brands fa-node"
href="https://github.com/imartinez/privateGPT-typescript"
/>
<Card
title="Python"
title="Python - Ready!"
icon="fa-brands fa-python"
href="https://github.com/imartinez/privateGPT-python"
href="https://github.com/imartinez/pgpt_python"
/>
<br />
</Cards>
@@ -24,12 +24,12 @@ The clients are kept up to date automatically, so we encourage you to use the la
<Cards>
<Card
title="Java"
title="Java - WIP"
icon="fa-brands fa-java"
href="https://github.com/imartinez/privateGPT-java"
/>
<Card
title="Go"
title="Go - WIP"
icon="fa-brands fa-golang"
href="https://github.com/imartinez/privateGPT-go"
/>

View File

@@ -0,0 +1,60 @@
PrivateGPT is a service that wraps a set of AI RAG primitives in a comprehensive set of APIs providing a private, secure, customizable and easy to use GenAI development framework.
It uses FastAPI and LLamaIndex as its core frameworks. Those can be customized by changing the codebase itself.
It supports a variety of LLM providers, embeddings providers, and vector stores, both local and remote. Those can be easily changed without changing the codebase.
# Different Setups support
## Setup configurations available
You get to decide the setup for these 3 main components:
- LLM: the large language model provider used for inference. It can be local, or remote, or even OpenAI.
- Embeddings: the embeddings provider used to encode the input, the documents and the users' queries. Same as the LLM, it can be local, or remote, or even OpenAI.
- Vector store: the store used to index and retrieve the documents.
There is an extra component that can be enabled or disabled: the UI. It is a Gradio UI that allows to interact with the API in a more user-friendly way.
### Setups and Dependencies
Your setup will be the combination of the different options available. You'll find recommended setups in the [installation](/installation) section.
PrivateGPT uses poetry to manage its dependencies. You can install the dependencies for the different setups by running `poetry install --extras "<extra1> <extra2>..."`.
Extras are the different options available for each component. For example, to install the dependencies for a a local setup with UI and qdrant as vector database, Ollama as LLM and HuggingFace as local embeddings, you would run
`poetry install --extras "ui vector-stores-qdrant llms-ollama embeddings-huggingface"`.
Refer to the [installation](/installation) section for more details.
### Setups and Configuration
PrivateGPT uses yaml to define its configuration in files named `settings-<profile>.yaml`.
Different configuration files can be created in the root directory of the project.
PrivateGPT will load the configuration at startup from the profile specified in the `PGPT_PROFILES` environment variable.
For example, running:
```bash
PGPT_PROFILES=ollama make run
```
will load the configuration from `settings.yaml` and `settings-ollama.yaml`.
- `settings.yaml` is always loaded and contains the default configuration.
- `settings-ollama.yaml` is loaded if the `ollama` profile is specified in the `PGPT_PROFILES` environment variable. It can override configuration from the default `settings.yaml`
## About Fully Local Setups
In order to run PrivateGPT in a fully local setup, you will need to run the LLM, Embeddings and Vector Store locally.
### Vector stores
The vector stores supported (Qdrant, ChromaDB and Postgres) run locally by default.
### Embeddings
For local Embeddings there are two options:
* (Recommended) You can use the 'ollama' option in PrivateGPT, which will connect to your local Ollama instance. Ollama simplifies a lot the installation of local LLMs.
* You can use the 'embeddings-huggingface' option in PrivateGPT, which will use HuggingFace.
In order for HuggingFace LLM to work (the second option), you need to download the embeddings model to the `models` folder. You can do so by running the `setup` script:
```bash
poetry run python scripts/setup
```
### LLM
For local LLM there are two options:
* (Recommended) You can use the 'ollama' option in PrivateGPT, which will connect to your local Ollama instance. Ollama simplifies a lot the installation of local LLMs.
* You can use the 'llms-llama-cpp' option in PrivateGPT, which will use LlamaCPP. It works great on Mac with Metal most of the times (leverages Metal GPU), but it can be tricky in certain Linux and Windows distributions, depending on the GPU. In the installation document you'll find guides and troubleshooting.
In order for LlamaCPP powered LLM to work (the second option), you need to download the LLM model to the `models` folder. You can do so by running the `setup` script:
```bash
poetry run python scripts/setup
```

View File

@@ -1,8 +1,8 @@
## Installation and Settings
It is important that you review the Main Concepts before you start the installation process.
### Base requirements to run PrivateGPT
## Base requirements to run PrivateGPT
* Git clone PrivateGPT repository, and navigate to it:
* Clone PrivateGPT repository, and navigate to it:
```bash
git clone https://github.com/imartinez/privateGPT
@@ -10,7 +10,7 @@
```
* Install Python `3.11` (*if you do not have it already*). Ideally through a python version manager like `pyenv`.
Python 3.12 should work too. Earlier python versions are not supported.
Earlier python versions are not supported.
* osx/linux: [pyenv](https://github.com/pyenv/pyenv)
* windows: [pyenv-win](https://github.com/pyenv-win/pyenv-win)
@@ -21,93 +21,205 @@ pyenv local 3.11
* Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
* Have a valid C++ compiler like gcc. See [Troubleshooting: C++ Compiler](#troubleshooting-c-compiler) for more details.
* Install `make` for scripts:
* Install `make` to be able to run the different scripts:
* osx: (Using homebrew): `brew install make`
* windows: (Using chocolatey) `choco install make`
### Install dependencies
## Install and run your desired setup
Install the dependencies:
PrivateGPT allows to customize the setup -from fully local to cloud based- by deciding the modules to use.
Here are the different options available:
- LLM: "llama-cpp", "ollama", "sagemaker", "openai", "openailike", "azopenai"
- Embeddings: "huggingface", "openai", "sagemaker", "azopenai"
- Vector stores: "qdrant", "chroma", "postgres"
- UI: whether or not to enable UI (Gradio) or just go with the API
In order to only install the required dependencies, PrivateGPT offers different `extras` that can be combined during the installation process:
```bash
poetry install --with ui
poetry install --extras "<extra1> <extra2>..."
```
Verify everything is working by running `make run` (or `poetry run python -m private_gpt`) and navigate to
http://localhost:8001. You should see a [Gradio UI](https://gradio.app/) **configured with a mock LLM** that will
echo back the input. Below we'll see how to configure a real LLM.
Where `<extra>` can be any of the following:
### Settings
- ui: adds support for UI using Gradio
- llms-ollama: adds support for Ollama LLM, the easiest way to get a local LLM running, requires Ollama running locally
- llms-llama-cpp: adds support for local LLM using LlamaCPP - expect a messy installation process on some platforms
- llms-sagemaker: adds support for Amazon Sagemaker LLM, requires Sagemaker inference endpoints
- llms-openai: adds support for OpenAI LLM, requires OpenAI API key
- llms-openai-like: adds support for 3rd party LLM providers that are compatible with OpenAI's API
- llms-azopenai: adds support for Azure OpenAI LLM, requires Azure OpenAI inference endpoints
- embeddings-ollama: adds support for Ollama Embeddings, requires Ollama running locally
- embeddings-huggingface: adds support for local Embeddings using HuggingFace
- embeddings-sagemaker: adds support for Amazon Sagemaker Embeddings, requires Sagemaker inference endpoints
- embeddings-openai = adds support for OpenAI Embeddings, requires OpenAI API key
- embeddings-azopenai = adds support for Azure OpenAI Embeddings, requires Azure OpenAI inference endpoints
- vector-stores-qdrant: adds support for Qdrant vector store
- vector-stores-chroma: adds support for Chroma DB vector store
- vector-stores-postgres: adds support for Postgres vector store
<Callout intent="info">
The default settings of PrivateGPT should work out-of-the-box for a 100% local setup. **However**, as is, it runs exclusively on your CPU.
Skip this section if you just want to test PrivateGPT locally, and come back later to learn about more configuration options (and have better performances).
</Callout>
## Recommended Setups
<br />
There are just some examples of recommended setups. You can mix and match the different options to fit your needs.
You'll find more information in the Manual section of the documentation.
### Local LLM requirements
> **Important for Windows**: In the examples below or how to run PrivateGPT with `make run`, `PGPT_PROFILES` env var is being set inline following Unix command line syntax (works on MacOS and Linux).
If you are using Windows, you'll need to set the env var in a different way, for example:
Install extra dependencies for local execution:
```powershell
# Powershell
$env:PGPT_PROFILES="ollama"
make run
```
or
```cmd
# CMD
set PGPT_PROFILES=ollama
make run
```
### Local, Ollama-powered setup - RECOMMENDED
**The easiest way to run PrivateGPT fully locally** is to depend on Ollama for the LLM. Ollama provides local LLM and Embeddings super easy to install and use, abstracting the complexity of GPU support. It's the recommended setup for local development.
Go to [ollama.ai](https://ollama.ai/) and follow the instructions to install Ollama on your machine.
After the installation, make sure the Ollama desktop app is closed.
Install the models to be used, the default settings-ollama.yaml is configured to user `mistral 7b` LLM (~4GB) and `nomic-embed-text` Embeddings (~275MB). Therefore:
```bash
poetry install --with local
ollama pull mistral
ollama pull nomic-embed-text
```
For PrivateGPT to run fully locally GPU acceleration is required
(CPU execution is possible, but very slow), however,
typical Macbook laptops or window desktops with mid-range GPUs lack VRAM to run
even the smallest LLMs. For that reason
**local execution is only supported for models compatible with [llama.cpp](https://github.com/ggerganov/llama.cpp)**
Now, start Ollama service (it will start a local inference server, serving both the LLM and the Embeddings):
```bash
ollama serve
```
These two models are known to work well:
Once done, on a different terminal, you can install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-ollama embeddings-ollama vector-stores-qdrant"
```
* https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF
* https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF (recommended)
Once installed, you can run PrivateGPT. Make sure you have a working Ollama running locally before running the following command.
To ease the installation process, use the `setup` script that will download both
the embedding and the LLM model and place them in the correct location (under `models` folder):
```bash
PGPT_PROFILES=ollama make run
```
PrivateGPT will use the already existing `settings-ollama.yaml` settings file, which is already configured to use Ollama LLM and Embeddings, and Qdrant. Review it and adapt it to your needs (different models, different Ollama port, etc.)
The UI will be available at http://localhost:8001
### Private, Sagemaker-powered setup
If you need more performance, you can run a version of PrivateGPT that relies on powerful AWS Sagemaker machines to serve the LLM and Embeddings.
You need to have access to sagemaker inference endpoints for the LLM and / or the embeddings, and have AWS credentials properly configured.
Edit the `settings-sagemaker.yaml` file to include the correct Sagemaker endpoints.
Then, install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-sagemaker embeddings-sagemaker vector-stores-qdrant"
```
Once installed, you can run PrivateGPT. Make sure you have a working Ollama running locally before running the following command.
```bash
PGPT_PROFILES=sagemaker make run
```
PrivateGPT will use the already existing `settings-sagemaker.yaml` settings file, which is already configured to use Sagemaker LLM and Embeddings endpoints, and Qdrant.
The UI will be available at http://localhost:8001
### Non-Private, OpenAI-powered test setup
If you want to test PrivateGPT with OpenAI's LLM and Embeddings -taking into account your data is going to OpenAI!- you can run the following command:
You need an OPENAI API key to run this setup.
Edit the `settings-openai.yaml` file to include the correct API KEY. Never commit it! It's a secret! As an alternative to editing `settings-openai.yaml`, you can just set the env var OPENAI_API_KEY.
Then, install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-openai embeddings-openai vector-stores-qdrant"
```
Once installed, you can run PrivateGPT.
```bash
PGPT_PROFILES=openai make run
```
PrivateGPT will use the already existing `settings-openai.yaml` settings file, which is already configured to use OpenAI LLM and Embeddings endpoints, and Qdrant.
The UI will be available at http://localhost:8001
### Non-Private, Azure OpenAI-powered test setup
If you want to test PrivateGPT with Azure OpenAI's LLM and Embeddings -taking into account your data is going to Azure OpenAI!- you can run the following command:
You need to have access to Azure OpenAI inference endpoints for the LLM and / or the embeddings, and have Azure OpenAI credentials properly configured.
Edit the `settings-azopenai.yaml` file to include the correct Azure OpenAI endpoints.
Then, install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-azopenai embeddings-azopenai vector-stores-qdrant"
```
Once installed, you can run PrivateGPT.
```bash
PGPT_PROFILES=azopenai make run
```
PrivateGPT will use the already existing `settings-azopenai.yaml` settings file, which is already configured to use Azure OpenAI LLM and Embeddings endpoints, and Qdrant.
The UI will be available at http://localhost:8001
### Local, Llama-CPP powered setup
If you want to run PrivateGPT fully locally without relying on Ollama, you can run the following command:
```bash
poetry install --extras "ui llms-llama-cpp embeddings-huggingface vector-stores-qdrant"
```
In order for local LLM and embeddings to work, you need to download the models to the `models` folder. You can do so by running the `setup` script:
```bash
poetry run python scripts/setup
```
If you are ok with CPU execution, you can skip the rest of this section.
Once installed, you can run PrivateGPT with the following command:
As stated before, llama.cpp is required and in
```bash
PGPT_PROFILES=local make run
```
PrivateGPT will load the already existing `settings-local.yaml` file, which is already configured to use LlamaCPP LLM, HuggingFace embeddings and Qdrant.
The UI will be available at http://localhost:8001
#### Llama-CPP support
For PrivateGPT to run fully locally without Ollama, Llama.cpp is required and in
particular [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
is used.
You'll need to have a valid C++ compiler like gcc installed. See [Troubleshooting: C++ Compiler](#troubleshooting-c-compiler) for more details.
> It's highly encouraged that you fully read llama-cpp and llama-cpp-python documentation relevant to your platform.
> Running into installation issues is very likely, and you'll need to troubleshoot them yourself.
#### Customizing low level parameters
Currently, not all the parameters of `llama.cpp` and `llama-cpp-python` are available at PrivateGPT's `settings.yaml` file.
In case you need to customize parameters such as the number of layers loaded into the GPU, you might change
these at the `llm_component.py` file under the `private_gpt/components/llm/llm_component.py`.
##### Available LLM config options
The `llm` section of the settings allows for the following configurations:
- `mode`: how to run your llm
- `max_new_tokens`: this lets you configure the number of new tokens the LLM will generate and add to the context window (by default Llama.cpp uses `256`)
Example:
```yaml
llm:
mode: local
max_new_tokens: 256
```
If you are getting an out of memory error, you might also try a smaller model or stick to the proposed
recommended models, instead of custom tuning the parameters.
#### OSX GPU support
##### Llama-CPP OSX GPU support
You will need to build [llama.cpp](https://github.com/ggerganov/llama.cpp) with metal support.
@@ -127,7 +239,7 @@ More information is available in the documentation of the libraries themselves:
* [llama-cpp-python's documentation](https://llama-cpp-python.readthedocs.io/en/latest/#installation-with-hardware-acceleration)
* [llama.cpp](https://github.com/ggerganov/llama.cpp#build)
#### Windows NVIDIA GPU support
##### Llama-CPP Windows NVIDIA GPU support
Windows GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
@@ -160,7 +272,7 @@ Note that llama.cpp offloads matrix calculations to the GPU but the performance
still hit heavily due to latency between CPU and GPU communication. You might need to tweak
batch sizes and other parameters to get the best performance for your particular system.
#### Linux NVIDIA GPU support and Windows-WSL
##### Llama-CPP Linux NVIDIA GPU support and Windows-WSL
Linux GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
@@ -188,7 +300,41 @@ llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, co
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
```
### Known issues and Troubleshooting
##### Llama-CPP Linux AMD GPU support
Linux GPU support is done through ROCm.
Some tips:
* Install ROCm from [quick-start install guide](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html)
* [Install PyTorch for ROCm](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/install/install-pytorch.html)
```bash
wget https://repo.radeon.com/rocm/manylinux/rocm-rel-6.0/torch-2.1.1%2Brocm6.0-cp311-cp311-linux_x86_64.whl
poetry run pip install --force-reinstall --no-cache-dir torch-2.1.1+rocm6.0-cp311-cp311-linux_x86_64.whl
```
* Install bitsandbytes for ROCm
```bash
PYTORCH_ROCM_ARCH=gfx900,gfx906,gfx908,gfx90a,gfx1030,gfx1100,gfx1101,gfx940,gfx941,gfx942
BITSANDBYTES_VERSION=62353b0200b8557026c176e74ac48b84b953a854
git clone https://github.com/arlo-phoenix/bitsandbytes-rocm-5.6
cd bitsandbytes-rocm-5.6
git checkout ${BITSANDBYTES_VERSION}
make hip ROCM_TARGET=${PYTORCH_ROCM_ARCH} ROCM_HOME=/opt/rocm/
pip install . --extra-index-url https://download.pytorch.org/whl/nightly
```
After that running the following command in the repository will install llama.cpp with GPU support:
```bash
LLAMA_CPP_PYTHON_VERSION=0.2.56
DAMDGPU_TARGETS=gfx900;gfx906;gfx908;gfx90a;gfx1030;gfx1100;gfx1101;gfx940;gfx941;gfx942
CMAKE_ARGS="-DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=/opt/rocm/llvm/bin/clang -DCMAKE_CXX_COMPILER=/opt/rocm/llvm/bin/clang++ -DAMDGPU_TARGETS=${DAMDGPU_TARGETS}" poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python==${LLAMA_CPP_PYTHON_VERSION}
```
If your installation was correct, you should see a message similar to the following next time you start the server `BLAS = 1`.
```
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 |
```
##### Llama-CPP Known issues and Troubleshooting
Execution of LLMs locally still has a lot of sharp edges, specially when running on non Linux platforms.
You might encounter several issues:
@@ -205,7 +351,7 @@ If, during your installation, something does not go as planned, retry in *verbos
For example, when installing packages with `pip install`, you can add the option `-vvv` to show the details of the installation.
#### Troubleshooting: C++ Compiler
##### Llama-CPP Troubleshooting: C++ Compiler
If you encounter an error while building a wheel during the `pip install` process, you may need to install a C++
compiler on your computer.
@@ -227,9 +373,9 @@ To install a C++ compiler on Windows 10/11, follow these steps:
Store and search for Xcode and install it. **Or** you can install the command line tools by running `xcode-select --install`.
2. If not, you can install clang or gcc with homebrew `brew install gcc`
#### Troubleshooting: Mac Running Intel
##### Llama-CPP Troubleshooting: Mac Running Intel
When running a Mac with Intel hardware (not M1), you may run into _clang: error: the clang compiler does not support '
-march=native'_ during pip install.
If so set your archflags during pip install. eg: _ARCHFLAGS="-arch x86_64" pip3 install -r requirements.txt_
If so set your archflags during pip install. eg: _ARCHFLAGS="-arch x86_64" pip3 install -r requirements.txt_

View File

@@ -62,6 +62,7 @@ The following ingestion mode exist:
* `simple`: historic behavior, ingest one document at a time, sequentially
* `batch`: read, parse, and embed multiple documents using batches (batch read, and then batch parse, and then batch embed)
* `parallel`: read, parse, and embed multiple documents in parallel. This is the fastest ingestion mode for local setup.
* `pipeline`: Alternative to parallel.
To change the ingestion mode, you can use the `embedding.ingest_mode` configuration value. The default value is `simple`.
To configure the number of workers used for parallel or batched ingestion, you can use

View File

@@ -25,6 +25,30 @@ When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API
using Swagger UI.
#### Customizing low level parameters
Currently, not all the parameters of `llama.cpp` and `llama-cpp-python` are available at PrivateGPT's `settings.yaml` file.
In case you need to customize parameters such as the number of layers loaded into the GPU, you might change
these at the `llm_component.py` file under the `private_gpt/components/llm/llm_component.py`.
##### Available LLM config options
The `llm` section of the settings allows for the following configurations:
- `mode`: how to run your llm
- `max_new_tokens`: this lets you configure the number of new tokens the LLM will generate and add to the context window (by default Llama.cpp uses `256`)
Example:
```yaml
llm:
mode: local
max_new_tokens: 256
```
If you are getting an out of memory error, you might also try a smaller model or stick to the proposed
recommended models, instead of custom tuning the parameters.
### Using OpenAI
If you cannot run a local model (because you don't have a GPU, for example) or for testing purposes, you may
@@ -37,7 +61,10 @@ llm:
mode: openai
openai:
api_base: <openai-api-base-url> # Defaults to https://api.openai.com/v1
api_key: <your_openai_api_key> # You could skip this configuration and use the OPENAI_API_KEY env var instead
model: <openai_model_to_use> # Optional model to use. Default is "gpt-3.5-turbo"
# Note: Open AI Models are listed here: https://platform.openai.com/docs/models
```
And run PrivateGPT loading that profile you just created:
@@ -53,6 +80,61 @@ Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:80
You'll notice the speed and quality of response is higher, given you are using OpenAI's servers for the heavy
computations.
### Using OpenAI compatible API
Many tools, including [LocalAI](https://localai.io/) and [vLLM](https://docs.vllm.ai/en/latest/),
support serving local models with an OpenAI compatible API. Even when overriding the `api_base`,
using the `openai` mode doesn't allow you to use custom models. Instead, you should use the `openailike` mode:
```yaml
llm:
mode: openailike
```
This mode uses the same settings as the `openai` mode.
As an example, you can follow the [vLLM quickstart guide](https://docs.vllm.ai/en/latest/getting_started/quickstart.html#openai-compatible-server)
to run an OpenAI compatible server. Then, you can run PrivateGPT using the `settings-vllm.yaml` profile:
`PGPT_PROFILES=vllm make run`
### Using Azure OpenAI
If you cannot run a local model (because you don't have a GPU, for example) or for testing purposes, you may
decide to run PrivateGPT using Azure OpenAI as the LLM and Embeddings model.
In order to do so, create a profile `settings-azopenai.yaml` with the following contents:
```yaml
llm:
mode: azopenai
embedding:
mode: azopenai
azopenai:
api_key: <your_azopenai_api_key> # You could skip this configuration and use the AZ_OPENAI_API_KEY env var instead
azure_endpoint: <your_azopenai_endpoint> # You could skip this configuration and use the AZ_OPENAI_ENDPOINT env var instead
api_version: <api_version> # The API version to use. Default is "2023_05_15"
embedding_deployment_name: <your_embedding_deployment_name> # You could skip this configuration and use the AZ_OPENAI_EMBEDDING_DEPLOYMENT_NAME env var instead
embedding_model: <openai_embeddings_to_use> # Optional model to use. Default is "text-embedding-ada-002"
llm_deployment_name: <your_model_deployment_name> # You could skip this configuration and use the AZ_OPENAI_LLM_DEPLOYMENT_NAME env var instead
llm_model: <openai_model_to_use> # Optional model to use. Default is "gpt-35-turbo"
```
And run PrivateGPT loading that profile you just created:
`PGPT_PROFILES=azopenai make run`
or
`PGPT_PROFILES=azopenai poetry run python -m private_gpt`
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.
You'll notice the speed and quality of response is higher, given you are using Azure OpenAI's servers for the heavy
computations.
### Using AWS Sagemaker
For a fully private & performant setup, you can choose to have both your LLM and Embeddings model deployed using Sagemaker.
@@ -80,4 +162,34 @@ or
`PGPT_PROFILES=sagemaker poetry run python -m private_gpt`
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.
### Using Ollama
Another option for a fully private setup is using [Ollama](https://ollama.ai/).
Note: how to deploy Ollama and pull models onto it is out of the scope of this documentation.
In order to do so, create a profile `settings-ollama.yaml` with the following contents:
```yaml
llm:
mode: ollama
ollama:
model: <ollama_model_to_use> # Required Model to use.
# Note: Ollama Models are listed here: https://ollama.ai/library
# Be sure to pull the model to your Ollama server
api_base: <ollama-api-base-url> # Defaults to http://localhost:11434
```
And run PrivateGPT loading that profile you just created:
`PGPT_PROFILES=ollama make run`
or
`PGPT_PROFILES=ollama poetry run python -m private_gpt`
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.

View File

@@ -0,0 +1,66 @@
## NodeStores
PrivateGPT supports **Simple** and [Postgres](https://www.postgresql.org/) providers. Simple being the default.
In order to select one or the other, set the `nodestore.database` property in the `settings.yaml` file to `simple` or `postgres`.
```yaml
nodestore:
database: simple
```
### Simple Document Store
Setting up simple document store: Persist data with in-memory and disk storage.
Enabling the simple document store is an excellent choice for small projects or proofs of concept where you need to persist data while maintaining minimal setup complexity. To get started, set the nodestore.database property in your settings.yaml file as follows:
```yaml
nodestore:
database: simple
```
The beauty of the simple document store is its flexibility and ease of implementation. It provides a solid foundation for managing and retrieving data without the need for complex setup or configuration. The combination of in-memory processing and disk persistence ensures that you can efficiently handle small to medium-sized datasets while maintaining data consistency across runs.
### Postgres Document Store
To enable Postgres, set the `nodestore.database` property in the `settings.yaml` file to `postgres` and install the `storage-nodestore-postgres` extra. Note: Vector Embeddings Storage in Postgres is configured separately
```bash
poetry install --extras storage-nodestore-postgres
```
The available configuration options are:
| Field | Description |
|---------------|-----------------------------------------------------------|
| **host** | The server hosting the Postgres database. Default is `localhost` |
| **port** | The port on which the Postgres database is accessible. Default is `5432` |
| **database** | The specific database to connect to. Default is `postgres` |
| **user** | The username for database access. Default is `postgres` |
| **password** | The password for database access. (Required) |
| **schema_name** | The database schema to use. Default is `private_gpt` |
For example:
```yaml
nodestore:
database: postgres
postgres:
host: localhost
port: 5432
database: postgres
user: postgres
password: <PASSWORD>
schema_name: private_gpt
```
Given the above configuration, Two PostgreSQL tables will be created upon successful connection: one for storing metadata related to the index and another for document data itself.
```
postgres=# \dt private_gpt.*
List of relations
Schema | Name | Type | Owner
-------------+-----------------+-------+--------------
private_gpt | data_docstore | table | postgres
private_gpt | data_indexstore | table | postgres
postgres=#
```

View File

@@ -0,0 +1,36 @@
## Enhancing Response Quality with Reranking
PrivateGPT offers a reranking feature aimed at optimizing response generation by filtering out irrelevant documents, potentially leading to faster response times and enhanced relevance of answers generated by the LLM.
### Enabling Reranking
Document reranking can significantly improve the efficiency and quality of the responses by pre-selecting the most relevant documents before generating an answer. To leverage this feature, ensure that it is enabled in the RAG settings and consider adjusting the parameters to best fit your use case.
#### Additional Requirements
Before enabling reranking, you must install additional dependencies:
```bash
poetry install --extras rerank-sentence-transformers
```
This command installs dependencies for the cross-encoder reranker from sentence-transformers, which is currently the only supported method by PrivateGPT for document reranking.
#### Configuration
To enable and configure reranking, adjust the `rag` section within the `settings.yaml` file. Here are the key settings to consider:
- `similarity_top_k`: Determines the number of documents to initially retrieve and consider for reranking. This value should be larger than `top_n`.
- `rerank`:
- `enabled`: Set to `true` to activate the reranking feature.
- `top_n`: Specifies the number of documents to use in the final answer generation process, chosen from the top-ranked documents provided by `similarity_top_k`.
Example configuration snippet:
```yaml
rag:
similarity_top_k: 10 # Number of documents to retrieve and consider for reranking
rerank:
enabled: true
top_n: 3 # Number of top-ranked documents to use for generating the answer
```

View File

@@ -35,5 +35,32 @@ database* section in the documentation.
Normal chat interface, self-explanatory ;)
You can check the actual prompt being passed to the LLM by looking at the logs of
the server. We'll add better observability in future releases.
#### System Prompt
You can view and change the system prompt being passed to the LLM by clicking "Additional Inputs"
in the chat interface. The system prompt is also logged on the server.
By default, the `Query Docs` mode uses the setting value `ui.default_query_system_prompt`.
The `LLM Chat` mode attempts to use the optional settings value `ui.default_chat_system_prompt`.
If no system prompt is entered, the UI will display the default system prompt being used
for the active mode.
##### System Prompt Examples:
The system prompt can effectively provide your chat bot specialized roles, and results tailored to the prompt
you have given the model. Examples of system prompts can be be found
[here](https://www.w3schools.com/gen_ai/chatgpt-3-5/chatgpt-3-5_roles.php).
Some interesting examples to try include:
* You are -X-. You have all the knowledge and personality of -X-. Answer as if you were -X- using
their manner of speaking and vocabulary.
* Example: You are Shakespeare. You have all the knowledge and personality of Shakespeare.
Answer as if you were Shakespeare using their manner of speaking and vocabulary.
* You are an expert (at) -role-. Answer all questions using your expertise on -specific domain topic-.
* Example: You are an expert software engineer. Answer all questions using your expertise on Python.
* You are a -role- bot, respond with -response criteria needed-. If no -response criteria- is needed,
respond with -alternate response-.
* Example: You are a grammar checking bot, respond with any grammatical corrections needed. If no corrections
are needed, respond with "verified".

View File

@@ -1,7 +1,7 @@
## Vectorstores
PrivateGPT supports [Qdrant](https://qdrant.tech/) and [Chroma](https://www.trychroma.com/) as vectorstore providers. Qdrant being the default.
PrivateGPT supports [Qdrant](https://qdrant.tech/), [Chroma](https://www.trychroma.com/) and [PGVector](https://github.com/pgvector/pgvector) as vectorstore providers. Qdrant being the default.
In order to select one or the other, set the `vectorstore.database` property in the `settings.yaml` file to `qdrant` or `chroma`.
In order to select one or the other, set the `vectorstore.database` property in the `settings.yaml` file to `qdrant`, `chroma` or `postgres`.
```yaml
vectorstore:
@@ -47,4 +47,57 @@ To enable Chroma, set the `vectorstore.database` property in the `settings.yaml`
poetry install --extras chroma
```
By default `chroma` will use a disk-based database stored in local_data_path / "chroma_db" (being local_data_path defined in settings.yaml)
By default `chroma` will use a disk-based database stored in local_data_path / "chroma_db" (being local_data_path defined in settings.yaml)
### PGVector
To use the PGVector store a [postgreSQL](https://www.postgresql.org/) database with the PGVector extension must be used.
To enable PGVector, set the `vectorstore.database` property in the `settings.yaml` file to `postgres` and install the `vector-stores-postgres` extra.
```bash
poetry install --extras vector-stores-postgres
```
PGVector settings can be configured by setting values to the `postgres` property in the `settings.yaml` file.
The available configuration options are:
| Field | Description |
|---------------|-----------------------------------------------------------|
| **host** | The server hosting the Postgres database. Default is `localhost` |
| **port** | The port on which the Postgres database is accessible. Default is `5432` |
| **database** | The specific database to connect to. Default is `postgres` |
| **user** | The username for database access. Default is `postgres` |
| **password** | The password for database access. (Required) |
| **schema_name** | The database schema to use. Default is `private_gpt` |
For example:
```yaml
vectorstore:
database: postgres
postgres:
host: localhost
port: 5432
database: postgres
user: postgres
password: <PASSWORD>
schema_name: private_gpt
```
The following table will be created in the database
```
postgres=# \d private_gpt.data_embeddings
Table "private_gpt.data_embeddings"
Column | Type | Collation | Nullable | Default
-----------+-------------------+-----------+----------+---------------------------------------------------------
id | bigint | | not null | nextval('private_gpt.data_embeddings_id_seq'::regclass)
text | character varying | | not null |
metadata_ | json | | |
node_id | character varying | | |
embedding | vector(768) | | |
Indexes:
"data_embeddings_pkey" PRIMARY KEY, btree (id)
postgres=#
```
The dimensions of the embeddings columns will be set based on the `embedding.embed_dim` value. If the embedding model changes this table may need to be dropped and recreated to avoid a dimension mismatch.

View File

@@ -1,21 +0,0 @@
## Local Installation steps
The steps in [Installation](/installation) section are better explained and cover more
setup scenarios (macOS, Windows, Linux).
But if you like one-liners, have python3.11 installed, and you are running a UNIX (macOS or Linux)
system, you can get up and running on CPU in few lines:
```bash
git clone https://github.com/imartinez/privateGPT && cd privateGPT && \
python3.11 -m venv .venv && source .venv/bin/activate && \
pip install --upgrade pip poetry && poetry install --with ui,local && ./scripts/setup
# Launch the privateGPT API server **and** the gradio UI
python3.11 -m private_gpt
# In another terminal, create a new browser window on your private GPT!
open http:////127.0.0.1:8001/
```
The above is not working, or it is too slow, so **you want to run it on GPU(s)**?
Please check the more detailed [installation guide](/installation).

View File

@@ -1,20 +1,19 @@
## Introduction 👋
PrivateGPT provides an **API** containing all the building blocks required to
build **private, context-aware AI applications**.
The API follows and extends OpenAI API standard, and supports both normal and streaming responses.
That means that, if you can use OpenAI API in one of your tools, you can use your own PrivateGPT API instead,
with no code changes, **and for free** if you are running privateGPT in `local` mode.
Looking for the installation quickstart? [Quickstart installation guide for Linux and macOS](/overview/welcome/quickstart).
Do you want to install it on Windows? Or do you want to take full advantage of your hardware for better performances?
The installation guide will help you in the [Installation section](/installation).
with no code changes, **and for free** if you are running privateGPT in a `local` setup.
Get started by understanding the [Main Concepts and Installation](/installation) and then dive into the [API Reference](/api-reference).
## Frequently Visited Resources
<Cards>
<Card
title="Main Concepts"
icon="fa-solid fa-lines-leaning"
href="/installation"
/>
<Card
title="API Reference"
icon="fa-solid fa-code"
@@ -23,7 +22,7 @@ The installation guide will help you in the [Installation section](/installation
<Card
title="Twitter"
icon="fa-brands fa-twitter"
href="https://twitter.com/PrivateGPT_AI"
href="https://twitter.com/ZylonPrivateGPT"
/>
<Card
title="Discord Server"
@@ -32,20 +31,8 @@ The installation guide will help you in the [Installation section](/installation
/>
</Cards>
## API Organization
<br />
The API is divided in two logical blocks:
1. High-level API, abstracting all the complexity of a RAG (Retrieval Augmented Generation) pipeline implementation:
- Ingestion of documents: internally managing document parsing, splitting, metadata extraction,
embedding generation and storage.
- Chat & Completions using context from ingested documents: abstracting the retrieval of context, the prompt
engineering and the response generation.
2. Low-level API, allowing advanced users to implement their own complex pipelines:
- Embeddings generation: based on a piece of text.
- Contextual chunks retrieval: given a query, returns the most relevant chunks of text from the ingested
documents.
<Callout intent = "info">
A working **Gradio UI client** is provided to test the API, together with a set of useful tools such as bulk

View File

@@ -24,7 +24,7 @@ user: {{ user_message }}
assistant: {{ assistant_message }}
```
And the "`tag`" style looks like this:
The "`tag`" style looks like this:
```text
<|system|>: {{ system_prompt }}
@@ -32,7 +32,23 @@ And the "`tag`" style looks like this:
<|assistant|>: {{ assistant_message }}
```
Some LLMs will not understand this prompt style, and will not work (returning nothing).
The "`mistral`" style looks like this:
```text
<s>[INST] You are an AI assistant. [/INST]</s>[INST] Hello, how are you doing? [/INST]
```
The "`chatml`" style looks like this:
```text
<|im_start|>system
{{ system_prompt }}<|im_end|>
<|im_start|>user"
{{ user_message }}<|im_end|>
<|im_start|>assistant
{{ assistant_message }}
```
Some LLMs will not understand these prompt styles, and will not work (returning nothing).
You can try to change the prompt style to `default` (or `tag`) in the settings, and it will
change the way the messages are formatted to be passed to the LLM.
@@ -92,4 +108,14 @@ local:
llm_hf_model_file: godzilla2-70b.Q4_K_M.gguf
embedding_hf_model_name: BAAI/bge-large-en
prompt_style: "llama2"
```
```
### German speaking model
`settings-de.yaml`:
```yml
local:
llm_hf_repo_id: TheBloke/em_german_leo_mistral-GGUF
llm_hf_model_file: em_german_leo_mistral.Q4_K_M.gguf
embedding_hf_model_name: T-Systems-onsite/german-roberta-sentence-transformer-v2
#llama, default or tag
prompt_style: "default"
```

View File

@@ -1,4 +1,4 @@
{
"organization": "privategpt",
"version": "0.15.3"
"version": "0.19.10"
}

View File

@@ -1,20 +1,8 @@
{
"openapi": "3.1.0",
"info": {
"title": "PrivateGPT",
"summary": "PrivateGPT is a production-ready AI project that allows you to ask questions to your documents using the power of Large Language Models (LLMs), even in scenarios without Internet connection. 100% private, no data leaves your execution environment at any point.",
"description": "",
"contact": {
"url": "https://github.com/imartinez/privateGPT"
},
"license": {
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html"
},
"version": "0.1.0",
"x-logo": {
"url": "https://lh3.googleusercontent.com/drive-viewer/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGjE1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560"
}
"title": "FastAPI",
"version": "0.1.0"
},
"paths": {
"/v1/completions": {
@@ -56,6 +44,15 @@
}
}
}
},
"x-fern-streaming": {
"stream-condition": "stream",
"response": {
"$ref": "#/components/schemas/OpenAICompletion"
},
"response-stream": {
"$ref": "#/components/schemas/OpenAICompletion"
}
}
}
},
@@ -65,7 +62,7 @@
"Contextual Completions"
],
"summary": "Chat Completion",
"description": "Given a list of messages comprising a conversation, return a response.\n\nOptionally include a `system_prompt` to influence the way the LLM answers.\n\nIf `use_context` is set to `true`, the model will use context coming\nfrom the ingested documents to create the response. The documents being used can\nbe filtered using the `context_filter` and passing the document IDs to be used.\nIngested documents IDs can be found using `/ingest/list` endpoint. If you want\nall ingested documents to be used, remove `context_filter` altogether.\n\nWhen using `'include_sources': true`, the API will return the source Chunks used\nto create the response, which come from the context provided.\n\nWhen using `'stream': true`, the API will return data chunks following [OpenAI's\nstreaming model](https://platform.openai.com/docs/api-reference/chat/streaming):\n```\n{\"id\":\"12345\",\"object\":\"completion.chunk\",\"created\":1694268190,\n\"model\":\"private-gpt\",\"choices\":[{\"index\":0,\"delta\":{\"content\":\"Hello\"},\n\"finish_reason\":null}]}\n```",
"description": "Given a list of messages comprising a conversation, return a response.\n\nOptionally include an initial `role: system` message to influence the way\nthe LLM answers.\n\nIf `use_context` is set to `true`, the model will use context coming\nfrom the ingested documents to create the response. The documents being used can\nbe filtered using the `context_filter` and passing the document IDs to be used.\nIngested documents IDs can be found using `/ingest/list` endpoint. If you want\nall ingested documents to be used, remove `context_filter` altogether.\n\nWhen using `'include_sources': true`, the API will return the source Chunks used\nto create the response, which come from the context provided.\n\nWhen using `'stream': true`, the API will return data chunks following [OpenAI's\nstreaming model](https://platform.openai.com/docs/api-reference/chat/streaming):\n```\n{\"id\":\"12345\",\"object\":\"completion.chunk\",\"created\":1694268190,\n\"model\":\"private-gpt\",\"choices\":[{\"index\":0,\"delta\":{\"content\":\"Hello\"},\n\"finish_reason\":null}]}\n```",
"operationId": "chat_completion_v1_chat_completions_post",
"requestBody": {
"content": {
@@ -98,6 +95,15 @@
}
}
}
},
"x-fern-streaming": {
"stream-condition": "stream",
"response": {
"$ref": "#/components/schemas/OpenAICompletion"
},
"response-stream": {
"$ref": "#/components/schemas/OpenAICompletion"
}
}
}
},
@@ -149,7 +155,7 @@
"Ingestion"
],
"summary": "Ingest",
"description": "Ingests and processes a file, storing its chunks to be used as context.\n\nThe context obtained from files is later used in\n`/chat/completions`, `/completions`, and `/chunks` APIs.\n\nMost common document\nformats are supported, but you may be prompted to install an extra dependency to\nmanage a specific file type.\n\nA file can generate different Documents (for example a PDF generates one Document\nper page). All Documents IDs are returned in the response, together with the\nextracted Metadata (which is later used to improve context retrieval). Those IDs\ncan be used to filter the context used to create responses in\n`/chat/completions`, `/completions`, and `/chunks` APIs.",
"description": "Ingests and processes a file.\n\nDeprecated. Use ingest/file instead.",
"operationId": "ingest_v1_ingest_post",
"requestBody": {
"content": {
@@ -161,6 +167,91 @@
},
"required": true
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/IngestResponse"
}
}
}
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
}
}
},
"deprecated": true
}
},
"/v1/ingest/file": {
"post": {
"tags": [
"Ingestion"
],
"summary": "Ingest File",
"description": "Ingests and processes a file, storing its chunks to be used as context.\n\nThe context obtained from files is later used in\n`/chat/completions`, `/completions`, and `/chunks` APIs.\n\nMost common document\nformats are supported, but you may be prompted to install an extra dependency to\nmanage a specific file type.\n\nA file can generate different Documents (for example a PDF generates one Document\nper page). All Documents IDs are returned in the response, together with the\nextracted Metadata (which is later used to improve context retrieval). Those IDs\ncan be used to filter the context used to create responses in\n`/chat/completions`, `/completions`, and `/chunks` APIs.",
"operationId": "ingest_file_v1_ingest_file_post",
"requestBody": {
"content": {
"multipart/form-data": {
"schema": {
"$ref": "#/components/schemas/Body_ingest_file_v1_ingest_file_post"
}
}
},
"required": true
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/IngestResponse"
}
}
}
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
}
}
}
}
},
"/v1/ingest/text": {
"post": {
"tags": [
"Ingestion"
],
"summary": "Ingest Text",
"description": "Ingests and processes a text, storing its chunks to be used as context.\n\nThe context obtained from files is later used in\n`/chat/completions`, `/completions`, and `/chunks` APIs.\n\nA Document will be generated with the given text. The Document\nID is returned in the response, together with the\nextracted Metadata (which is later used to improve context retrieval). That ID\ncan be used to filter the context used to create responses in\n`/chat/completions`, `/completions`, and `/chunks` APIs.",
"operationId": "ingest_text_v1_ingest_text_post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/IngestTextBody"
}
}
},
"required": true
},
"responses": {
"200": {
"description": "Successful Response",
@@ -315,6 +406,20 @@
},
"components": {
"schemas": {
"Body_ingest_file_v1_ingest_file_post": {
"properties": {
"file": {
"type": "string",
"format": "binary",
"title": "File"
}
},
"type": "object",
"required": [
"file"
],
"title": "Body_ingest_file_v1_ingest_file_post"
},
"Body_ingest_v1_ingest_post": {
"properties": {
"file": {
@@ -338,17 +443,6 @@
"type": "array",
"title": "Messages"
},
"system_prompt": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"title": "System Prompt"
},
"use_context": {
"type": "boolean",
"title": "Use Context",
@@ -389,13 +483,16 @@
},
"include_sources": true,
"messages": [
{
"content": "You are a rapper. Always answer with a rap.",
"role": "system"
},
{
"content": "How do you fry an egg?",
"role": "user"
}
],
"stream": false,
"system_prompt": "You are a rapper. Always answer with a rap.",
"use_context": true
}
]
@@ -591,6 +688,7 @@
"include_sources": false,
"prompt": "How do you fry an egg?",
"stream": false,
"system_prompt": "You are a rapper. Always answer with a rap.",
"use_context": false
}
]
@@ -754,6 +852,30 @@
],
"title": "IngestResponse"
},
"IngestTextBody": {
"properties": {
"file_name": {
"type": "string",
"title": "File Name",
"examples": [
"Avatar: The Last Airbender"
]
},
"text": {
"type": "string",
"title": "Text",
"examples": [
"Avatar is set in an Asian and Arctic-inspired world in which some people can telekinetically manipulate one of the four elements\u2014water, earth, fire or air\u2014through practices known as 'bending', inspired by Chinese martial arts."
]
}
},
"type": "object",
"required": [
"file_name",
"text"
],
"title": "IngestTextBody"
},
"IngestedDoc": {
"properties": {
"object": {
@@ -986,27 +1108,5 @@
"title": "ValidationError"
}
}
},
"tags": [
{
"name": "Ingestion",
"description": "High-level APIs covering document ingestion -internally managing document parsing, splitting,metadata extraction, embedding generation and storage- and ingested documents CRUD.Each ingested document is identified by an ID that can be used to filter the contextused in *Contextual Completions* and *Context Chunks* APIs."
},
{
"name": "Contextual Completions",
"description": "High-level APIs covering contextual Chat and Completions. They follow OpenAI's format, extending it to allow using the context coming from ingested documents to create the response. Internallymanage context retrieval, prompt engineering and the response generation."
},
{
"name": "Context Chunks",
"description": "Low-level API that given a query return relevant chunks of text coming from the ingesteddocuments."
},
{
"name": "Embeddings",
"description": "Low-level API to obtain the vector representation of a given text, using an Embeddings model.Follows OpenAI's embeddings API format."
},
{
"name": "Health",
"description": "Simple health API to make sure the server is up and running."
}
]
}
}

3791
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,5 @@
"""private-gpt."""
import logging
import os
@@ -21,3 +22,6 @@ os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
# Disable chromaDB telemetry
# It is already disabled, see PR#1144
# os.environ["ANONYMIZED_TELEMETRY"] = "False"
# adding tiktoken cache path within repo to be able to run in offline environment.
os.environ["TIKTOKEN_CACHE_DIR"] = "tiktoken_cache"

View File

@@ -3,7 +3,7 @@ import json
from typing import Any
import boto3
from llama_index.embeddings.base import BaseEmbedding
from llama_index.core.base.embeddings.base import BaseEmbedding
from pydantic import Field, PrivateAttr

View File

@@ -1,8 +1,7 @@
import logging
from injector import inject, singleton
from llama_index import MockEmbedding
from llama_index.embeddings.base import BaseEmbedding
from llama_index.core.embeddings import BaseEmbedding, MockEmbedding
from private_gpt.paths import models_cache_path
from private_gpt.settings.settings import Settings
@@ -19,27 +18,78 @@ class EmbeddingComponent:
embedding_mode = settings.embedding.mode
logger.info("Initializing the embedding model in mode=%s", embedding_mode)
match embedding_mode:
case "local":
from llama_index.embeddings import HuggingFaceEmbedding
case "huggingface":
try:
from llama_index.embeddings.huggingface import ( # type: ignore
HuggingFaceEmbedding,
)
except ImportError as e:
raise ImportError(
"Local dependencies not found, install with `poetry install --extras embeddings-huggingface`"
) from e
self.embedding_model = HuggingFaceEmbedding(
model_name=settings.local.embedding_hf_model_name,
model_name=settings.huggingface.embedding_hf_model_name,
cache_folder=str(models_cache_path),
)
case "sagemaker":
from private_gpt.components.embedding.custom.sagemaker import (
SagemakerEmbedding,
)
try:
from private_gpt.components.embedding.custom.sagemaker import (
SagemakerEmbedding,
)
except ImportError as e:
raise ImportError(
"Sagemaker dependencies not found, install with `poetry install --extras embeddings-sagemaker`"
) from e
self.embedding_model = SagemakerEmbedding(
endpoint_name=settings.sagemaker.embedding_endpoint_name,
)
case "openai":
from llama_index import OpenAIEmbedding
try:
from llama_index.embeddings.openai import ( # type: ignore
OpenAIEmbedding,
)
except ImportError as e:
raise ImportError(
"OpenAI dependencies not found, install with `poetry install --extras embeddings-openai`"
) from e
openai_settings = settings.openai.api_key
self.embedding_model = OpenAIEmbedding(api_key=openai_settings)
case "ollama":
try:
from llama_index.embeddings.ollama import ( # type: ignore
OllamaEmbedding,
)
except ImportError as e:
raise ImportError(
"Local dependencies not found, install with `poetry install --extras embeddings-ollama`"
) from e
ollama_settings = settings.ollama
self.embedding_model = OllamaEmbedding(
model_name=ollama_settings.embedding_model,
base_url=ollama_settings.embedding_api_base,
)
case "azopenai":
try:
from llama_index.embeddings.azure_openai import ( # type: ignore
AzureOpenAIEmbedding,
)
except ImportError as e:
raise ImportError(
"Azure OpenAI dependencies not found, install with `poetry install --extras embeddings-azopenai`"
) from e
azopenai_settings = settings.azopenai
self.embedding_model = AzureOpenAIEmbedding(
model=azopenai_settings.embedding_model,
deployment_name=azopenai_settings.embedding_deployment_name,
api_key=azopenai_settings.api_key,
azure_endpoint=azopenai_settings.azure_endpoint,
api_version=azopenai_settings.api_version,
)
case "mock":
# Not a random number, is the dimensionality used by
# the default embedding model

View File

@@ -6,22 +6,21 @@ import multiprocessing.pool
import os
import threading
from pathlib import Path
from queue import Queue
from typing import Any
from llama_index import (
Document,
ServiceContext,
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
from llama_index.data_structs import IndexDict
from llama_index.indices.base import BaseIndex
from llama_index.ingestion import run_transformations
from llama_index.core.data_structs import IndexDict
from llama_index.core.embeddings.utils import EmbedType
from llama_index.core.indices import VectorStoreIndex, load_index_from_storage
from llama_index.core.indices.base import BaseIndex
from llama_index.core.ingestion import run_transformations
from llama_index.core.schema import BaseNode, Document, TransformComponent
from llama_index.core.storage import StorageContext
from private_gpt.components.ingest.ingest_helper import IngestionHelper
from private_gpt.paths import local_data_path
from private_gpt.settings.settings import Settings
from private_gpt.utils.eta import eta
logger = logging.getLogger(__name__)
@@ -30,13 +29,15 @@ class BaseIngestComponent(abc.ABC):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
embed_model: EmbedType,
transformations: list[TransformComponent],
*args: Any,
**kwargs: Any,
) -> None:
logger.debug("Initializing base ingest component type=%s", type(self).__name__)
self.storage_context = storage_context
self.service_context = service_context
self.embed_model = embed_model
self.transformations = transformations
@abc.abstractmethod
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
@@ -55,11 +56,12 @@ class BaseIngestComponentWithIndex(BaseIngestComponent, abc.ABC):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
embed_model: EmbedType,
transformations: list[TransformComponent],
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
self.show_progress = True
self._index_thread_lock = (
@@ -73,9 +75,10 @@ class BaseIngestComponentWithIndex(BaseIngestComponent, abc.ABC):
# Load the index with store_nodes_override=True to be able to delete them
index = load_index_from_storage(
storage_context=self.storage_context,
service_context=self.service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=self.show_progress,
embed_model=self.embed_model,
transformations=self.transformations,
)
except ValueError:
# There are no index in the storage context, creating a new one
@@ -83,9 +86,10 @@ class BaseIngestComponentWithIndex(BaseIngestComponent, abc.ABC):
index = VectorStoreIndex.from_documents(
[],
storage_context=self.storage_context,
service_context=self.service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=self.show_progress,
embed_model=self.embed_model,
transformations=self.transformations,
)
index.storage_context.persist(persist_dir=local_data_path)
return index
@@ -106,11 +110,12 @@ class SimpleIngestComponent(BaseIngestComponentWithIndex):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
embed_model: EmbedType,
transformations: list[TransformComponent],
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
logger.info("Ingesting file_name=%s", file_name)
@@ -151,16 +156,17 @@ class BatchIngestComponent(BaseIngestComponentWithIndex):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
embed_model: EmbedType,
transformations: list[TransformComponent],
count_workers: int,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
# Make an efficient use of the CPU and GPU, the embedding
# must be in the transformations
assert (
len(self.service_context.transformations) >= 2
len(self.transformations) >= 2
), "Embeddings must be in the transformations"
assert count_workers > 0, "count_workers must be > 0"
self.count_workers = count_workers
@@ -197,7 +203,7 @@ class BatchIngestComponent(BaseIngestComponentWithIndex):
logger.debug("Transforming count=%s documents into nodes", len(documents))
nodes = run_transformations(
documents, # type: ignore[arg-type]
self.service_context.transformations,
self.transformations,
show_progress=self.show_progress,
)
# Locking the index to avoid concurrent writes
@@ -225,16 +231,17 @@ class ParallelizedIngestComponent(BaseIngestComponentWithIndex):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
embed_model: EmbedType,
transformations: list[TransformComponent],
count_workers: int,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
# To make an efficient use of the CPU and GPU, the embeddings
# must be in the transformations (to be computed in batches)
assert (
len(self.service_context.transformations) >= 2
len(self.transformations) >= 2
), "Embeddings must be in the transformations"
assert count_workers > 0, "count_workers must be > 0"
self.count_workers = count_workers
@@ -278,7 +285,7 @@ class ParallelizedIngestComponent(BaseIngestComponentWithIndex):
logger.debug("Transforming count=%s documents into nodes", len(documents))
nodes = run_transformations(
documents, # type: ignore[arg-type]
self.service_context.transformations,
self.transformations,
show_progress=self.show_progress,
)
# Locking the index to avoid concurrent writes
@@ -309,20 +316,202 @@ class ParallelizedIngestComponent(BaseIngestComponentWithIndex):
self._file_to_documents_work_pool.terminate()
class PipelineIngestComponent(BaseIngestComponentWithIndex):
"""Pipeline ingestion - keeping the embedding worker pool as busy as possible.
This class implements a threaded ingestion pipeline, which comprises two threads
and two queues. The primary thread is responsible for reading and parsing files
into documents. These documents are then placed into a queue, which is
distributed to a pool of worker processes for embedding computation. After
embedding, the documents are transferred to another queue where they are
accumulated until a threshold is reached. Upon reaching this threshold, the
accumulated documents are flushed to the document store, index, and vector
store.
Exception handling ensures robustness against erroneous files. However, in the
pipelined design, one error can lead to the discarding of multiple files. Any
discarded files will be reported.
"""
NODE_FLUSH_COUNT = 5000 # Save the index every # nodes.
def __init__(
self,
storage_context: StorageContext,
embed_model: EmbedType,
transformations: list[TransformComponent],
count_workers: int,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
self.count_workers = count_workers
assert (
len(self.transformations) >= 2
), "Embeddings must be in the transformations"
assert count_workers > 0, "count_workers must be > 0"
self.count_workers = count_workers
# We are doing our own multiprocessing
# To do not collide with the multiprocessing of huggingface, we disable it
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# doc_q stores parsed files as Document chunks.
# Using a shallow queue causes the filesystem parser to block
# when it reaches capacity. This ensures it doesn't outpace the
# computationally intensive embeddings phase, avoiding unnecessary
# memory consumption. The semaphore is used to bound the async worker
# embedding computations to cause the doc Q to fill and block.
self.doc_semaphore = multiprocessing.Semaphore(
self.count_workers
) # limit the doc queue to # items.
self.doc_q: Queue[tuple[str, str | None, list[Document] | None]] = Queue(20)
# node_q stores documents parsed into nodes (embeddings).
# Larger queue size so we don't block the embedding workers during a slow
# index update.
self.node_q: Queue[
tuple[str, str | None, list[Document] | None, list[BaseNode] | None]
] = Queue(40)
threading.Thread(target=self._doc_to_node, daemon=True).start()
threading.Thread(target=self._write_nodes, daemon=True).start()
def _doc_to_node(self) -> None:
# Parse documents into nodes
with multiprocessing.pool.ThreadPool(processes=self.count_workers) as pool:
while True:
try:
cmd, file_name, documents = self.doc_q.get(
block=True
) # Documents for a file
if cmd == "process":
# Push CPU/GPU embedding work to the worker pool
# Acquire semaphore to control access to worker pool
self.doc_semaphore.acquire()
pool.apply_async(
self._doc_to_node_worker, (file_name, documents)
)
elif cmd == "quit":
break
finally:
if cmd != "process":
self.doc_q.task_done() # unblock Q joins
def _doc_to_node_worker(self, file_name: str, documents: list[Document]) -> None:
# CPU/GPU intensive work in its own process
try:
nodes = run_transformations(
documents, # type: ignore[arg-type]
self.transformations,
show_progress=self.show_progress,
)
self.node_q.put(("process", file_name, documents, nodes))
finally:
self.doc_semaphore.release()
self.doc_q.task_done() # unblock Q joins
def _save_docs(
self, files: list[str], documents: list[Document], nodes: list[BaseNode]
) -> None:
try:
logger.info(
f"Saving {len(files)} files ({len(documents)} documents / {len(nodes)} nodes)"
)
self._index.insert_nodes(nodes)
for document in documents:
self._index.docstore.set_document_hash(
document.get_doc_id(), document.hash
)
self._save_index()
except Exception:
# Tell the user so they can investigate these files
logger.exception(f"Processing files {files}")
finally:
# Clearing work, even on exception, maintains a clean state.
nodes.clear()
documents.clear()
files.clear()
def _write_nodes(self) -> None:
# Save nodes to index. I/O intensive.
node_stack: list[BaseNode] = []
doc_stack: list[Document] = []
file_stack: list[str] = []
while True:
try:
cmd, file_name, documents, nodes = self.node_q.get(block=True)
if cmd in ("flush", "quit"):
if file_stack:
self._save_docs(file_stack, doc_stack, node_stack)
if cmd == "quit":
break
elif cmd == "process":
node_stack.extend(nodes) # type: ignore[arg-type]
doc_stack.extend(documents) # type: ignore[arg-type]
file_stack.append(file_name) # type: ignore[arg-type]
# Constant saving is heavy on I/O - accumulate to a threshold
if len(node_stack) >= self.NODE_FLUSH_COUNT:
self._save_docs(file_stack, doc_stack, node_stack)
finally:
self.node_q.task_done()
def _flush(self) -> None:
self.doc_q.put(("flush", None, None))
self.doc_q.join()
self.node_q.put(("flush", None, None, None))
self.node_q.join()
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
documents = IngestionHelper.transform_file_into_documents(file_name, file_data)
self.doc_q.put(("process", file_name, documents))
self._flush()
return documents
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
docs = []
for file_name, file_data in eta(files):
try:
documents = IngestionHelper.transform_file_into_documents(
file_name, file_data
)
self.doc_q.put(("process", file_name, documents))
docs.extend(documents)
except Exception:
logger.exception(f"Skipping {file_data.name}")
self._flush()
return docs
def get_ingestion_component(
storage_context: StorageContext,
service_context: ServiceContext,
embed_model: EmbedType,
transformations: list[TransformComponent],
settings: Settings,
) -> BaseIngestComponent:
"""Get the ingestion component for the given configuration."""
ingest_mode = settings.embedding.ingest_mode
if ingest_mode == "batch":
return BatchIngestComponent(
storage_context, service_context, settings.embedding.count_workers
storage_context=storage_context,
embed_model=embed_model,
transformations=transformations,
count_workers=settings.embedding.count_workers,
)
elif ingest_mode == "parallel":
return ParallelizedIngestComponent(
storage_context, service_context, settings.embedding.count_workers
storage_context=storage_context,
embed_model=embed_model,
transformations=transformations,
count_workers=settings.embedding.count_workers,
)
elif ingest_mode == "pipeline":
return PipelineIngestComponent(
storage_context=storage_context,
embed_model=embed_model,
transformations=transformations,
count_workers=settings.embedding.count_workers,
)
else:
return SimpleIngestComponent(storage_context, service_context)
return SimpleIngestComponent(
storage_context=storage_context,
embed_model=embed_model,
transformations=transformations,
)

View File

@@ -1,14 +1,58 @@
import logging
from pathlib import Path
from llama_index import Document
from llama_index.readers import JSONReader, StringIterableReader
from llama_index.readers.file.base import DEFAULT_FILE_READER_CLS
from llama_index.core.readers import StringIterableReader
from llama_index.core.readers.base import BaseReader
from llama_index.core.readers.json import JSONReader
from llama_index.core.schema import Document
logger = logging.getLogger(__name__)
# Inspired by the `llama_index.core.readers.file.base` module
def _try_loading_included_file_formats() -> dict[str, type[BaseReader]]:
try:
from llama_index.readers.file.docs import ( # type: ignore
DocxReader,
HWPReader,
PDFReader,
)
from llama_index.readers.file.epub import EpubReader # type: ignore
from llama_index.readers.file.image import ImageReader # type: ignore
from llama_index.readers.file.ipynb import IPYNBReader # type: ignore
from llama_index.readers.file.markdown import MarkdownReader # type: ignore
from llama_index.readers.file.mbox import MboxReader # type: ignore
from llama_index.readers.file.slides import PptxReader # type: ignore
from llama_index.readers.file.tabular import PandasCSVReader # type: ignore
from llama_index.readers.file.video_audio import ( # type: ignore
VideoAudioReader,
)
except ImportError as e:
raise ImportError("`llama-index-readers-file` package not found") from e
default_file_reader_cls: dict[str, type[BaseReader]] = {
".hwp": HWPReader,
".pdf": PDFReader,
".docx": DocxReader,
".pptx": PptxReader,
".ppt": PptxReader,
".pptm": PptxReader,
".jpg": ImageReader,
".png": ImageReader,
".jpeg": ImageReader,
".mp3": VideoAudioReader,
".mp4": VideoAudioReader,
".csv": PandasCSVReader,
".epub": EpubReader,
".md": MarkdownReader,
".mbox": MboxReader,
".ipynb": IPYNBReader,
}
return default_file_reader_cls
# Patching the default file reader to support other file types
FILE_READER_CLS = DEFAULT_FILE_READER_CLS.copy()
FILE_READER_CLS = _try_loading_included_file_formats()
FILE_READER_CLS.update(
{
".json": JSONReader,

View File

@@ -7,26 +7,20 @@ import logging
from typing import TYPE_CHECKING, Any
import boto3 # type: ignore
from llama_index.bridge.pydantic import Field
from llama_index.llms import (
from llama_index.core.base.llms.generic_utils import (
completion_response_to_chat_response,
stream_completion_response_to_chat_response,
)
from llama_index.core.bridge.pydantic import Field
from llama_index.core.llms import (
CompletionResponse,
CustomLLM,
LLMMetadata,
)
from llama_index.llms.base import (
from llama_index.core.llms.callbacks import (
llm_chat_callback,
llm_completion_callback,
)
from llama_index.llms.generic_utils import (
completion_response_to_chat_response,
stream_completion_response_to_chat_response,
)
from llama_index.llms.llama_utils import (
completion_to_prompt as generic_completion_to_prompt,
)
from llama_index.llms.llama_utils import (
messages_to_prompt as generic_messages_to_prompt,
)
if TYPE_CHECKING:
from collections.abc import Sequence
@@ -161,8 +155,8 @@ class SagemakerLLM(CustomLLM):
model_kwargs = model_kwargs or {}
model_kwargs.update({"n_ctx": context_window, "verbose": verbose})
messages_to_prompt = messages_to_prompt or generic_messages_to_prompt
completion_to_prompt = completion_to_prompt or generic_completion_to_prompt
messages_to_prompt = messages_to_prompt or {}
completion_to_prompt = completion_to_prompt or {}
generate_kwargs = generate_kwargs or {}
generate_kwargs.update(
@@ -249,12 +243,19 @@ class SagemakerLLM(CustomLLM):
event_stream = resp["Body"]
start_json = b"{"
stop_token = "<|endoftext|>"
first_token = True
for line in LineIterator(event_stream):
if line != b"" and start_json in line:
data = json.loads(line[line.find(start_json) :].decode("utf-8"))
if data["token"]["text"] != stop_token:
special = data["token"]["special"]
stop = data["token"]["text"] == stop_token
if not special and not stop:
delta = data["token"]["text"]
# trim the leading space for the first token if present
if first_token:
delta = delta.lstrip()
first_token = False
text += delta
yield CompletionResponse(delta=delta, text=text, raw=data)

View File

@@ -1,10 +1,15 @@
import logging
from collections.abc import Callable
from typing import Any
from injector import inject, singleton
from llama_index.llms import MockLLM
from llama_index.llms.base import LLM
from llama_index.core.llms import LLM, MockLLM
from llama_index.core.settings import Settings as LlamaIndexSettings
from llama_index.core.utils import set_global_tokenizer
from transformers import AutoTokenizer # type: ignore
from private_gpt.paths import models_path
from private_gpt.components.llm.prompt_helper import get_prompt_style
from private_gpt.paths import models_cache_path, models_path
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@@ -17,48 +22,154 @@ class LLMComponent:
@inject
def __init__(self, settings: Settings) -> None:
llm_mode = settings.llm.mode
if settings.llm.tokenizer:
set_global_tokenizer(
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=settings.llm.tokenizer,
cache_dir=str(models_cache_path),
)
)
logger.info("Initializing the LLM in mode=%s", llm_mode)
match settings.llm.mode:
case "local":
from llama_index.llms import LlamaCPP
from private_gpt.components.llm.prompt.prompt_helper import (
get_prompt_style,
)
prompt_style = get_prompt_style(
prompt_style=settings.local.prompt_style,
template_name=settings.local.template_name,
default_system_prompt=settings.local.default_system_prompt,
)
case "llamacpp":
try:
from llama_index.llms.llama_cpp import LlamaCPP # type: ignore
except ImportError as e:
raise ImportError(
"Local dependencies not found, install with `poetry install --extras llms-llama-cpp`"
) from e
prompt_style = get_prompt_style(settings.llamacpp.prompt_style)
settings_kwargs = {
"tfs_z": settings.llamacpp.tfs_z, # ollama and llama-cpp
"top_k": settings.llamacpp.top_k, # ollama and llama-cpp
"top_p": settings.llamacpp.top_p, # ollama and llama-cpp
"repeat_penalty": settings.llamacpp.repeat_penalty, # ollama llama-cpp
"n_gpu_layers": -1,
"offload_kqv": True,
}
self.llm = LlamaCPP(
model_path=str(models_path / settings.local.llm_hf_model_file),
temperature=0.1,
model_path=str(models_path / settings.llamacpp.llm_hf_model_file),
temperature=settings.llm.temperature,
max_new_tokens=settings.llm.max_new_tokens,
# llama2 has a context window of 4096 tokens,
# but we set it lower to allow for some wiggle room
context_window=3900,
context_window=settings.llm.context_window,
generate_kwargs={},
callback_manager=LlamaIndexSettings.callback_manager,
# All to GPU
model_kwargs={"n_gpu_layers": -1},
model_kwargs=settings_kwargs,
# transform inputs into Llama2 format
messages_to_prompt=prompt_style.messages_to_prompt,
completion_to_prompt=prompt_style.completion_to_prompt,
verbose=True,
)
# prompt_style.improve_prompt_format(llm=cast(LlamaCPP, self.llm))
case "sagemaker":
from private_gpt.components.llm.custom.sagemaker import SagemakerLLM
try:
from private_gpt.components.llm.custom.sagemaker import SagemakerLLM
except ImportError as e:
raise ImportError(
"Sagemaker dependencies not found, install with `poetry install --extras llms-sagemaker`"
) from e
self.llm = SagemakerLLM(
endpoint_name=settings.sagemaker.llm_endpoint_name,
max_new_tokens=settings.llm.max_new_tokens,
context_window=settings.llm.context_window,
)
case "openai":
from llama_index.llms import OpenAI
try:
from llama_index.llms.openai import OpenAI # type: ignore
except ImportError as e:
raise ImportError(
"OpenAI dependencies not found, install with `poetry install --extras llms-openai`"
) from e
openai_settings = settings.openai.api_key
self.llm = OpenAI(api_key=openai_settings)
openai_settings = settings.openai
self.llm = OpenAI(
api_base=openai_settings.api_base,
api_key=openai_settings.api_key,
model=openai_settings.model,
)
case "openailike":
try:
from llama_index.llms.openai_like import OpenAILike # type: ignore
except ImportError as e:
raise ImportError(
"OpenAILike dependencies not found, install with `poetry install --extras llms-openai-like`"
) from e
openai_settings = settings.openai
self.llm = OpenAILike(
api_base=openai_settings.api_base,
api_key=openai_settings.api_key,
model=openai_settings.model,
is_chat_model=True,
max_tokens=None,
api_version="",
)
case "ollama":
try:
from llama_index.llms.ollama import Ollama # type: ignore
except ImportError as e:
raise ImportError(
"Ollama dependencies not found, install with `poetry install --extras llms-ollama`"
) from e
ollama_settings = settings.ollama
settings_kwargs = {
"tfs_z": ollama_settings.tfs_z, # ollama and llama-cpp
"num_predict": ollama_settings.num_predict, # ollama only
"top_k": ollama_settings.top_k, # ollama and llama-cpp
"top_p": ollama_settings.top_p, # ollama and llama-cpp
"repeat_last_n": ollama_settings.repeat_last_n, # ollama
"repeat_penalty": ollama_settings.repeat_penalty, # ollama llama-cpp
}
self.llm = Ollama(
model=ollama_settings.llm_model,
base_url=ollama_settings.api_base,
temperature=settings.llm.temperature,
context_window=settings.llm.context_window,
additional_kwargs=settings_kwargs,
request_timeout=ollama_settings.request_timeout,
)
if (
ollama_settings.keep_alive
!= ollama_settings.model_fields["keep_alive"].default
):
# Modify Ollama methods to use the "keep_alive" field.
def add_keep_alive(func: Callable[..., Any]) -> Callable[..., Any]:
def wrapper(*args: Any, **kwargs: Any) -> Any:
kwargs["keep_alive"] = ollama_settings.keep_alive
return func(*args, **kwargs)
return wrapper
Ollama.chat = add_keep_alive(Ollama.chat)
Ollama.stream_chat = add_keep_alive(Ollama.stream_chat)
Ollama.complete = add_keep_alive(Ollama.complete)
Ollama.stream_complete = add_keep_alive(Ollama.stream_complete)
case "azopenai":
try:
from llama_index.llms.azure_openai import ( # type: ignore
AzureOpenAI,
)
except ImportError as e:
raise ImportError(
"Azure OpenAI dependencies not found, install with `poetry install --extras llms-azopenai`"
) from e
azopenai_settings = settings.azopenai
self.llm = AzureOpenAI(
model=azopenai_settings.llm_model,
deployment_name=azopenai_settings.llm_deployment_name,
api_key=azopenai_settings.api_key,
azure_endpoint=azopenai_settings.azure_endpoint,
api_version=azopenai_settings.api_version,
)
case "mock":
self.llm = MockLLM()

View File

@@ -1,446 +0,0 @@
# Ignoring the mypy check in this file, given that this file is imported only if
# running in local mode (and therefore the llama-cpp-python library is installed).
# type: ignore
"""Helper to get your llama_index messages correctly serialized into a prompt.
This set of classes and functions is used to format a series of
llama_index ChatMessage into a prompt (a unique string) that will be passed
as is to the LLM. The LLM will then use this prompt to generate a completion.
There are **MANY** formats for prompts; usually, each model has its own format.
Models posted on HuggingFace usually have a description of the format they use.
The original models, that are shipped through `transformers`, have their
format defined in the file `tokenizer_config.json` in the model's directory.
The prompt format are usually defined as a Jinja template (with some custom
Jinja token definitions). These prompt templates are usable using
the `transformers.AutoTokenizer`, as described in
https://huggingface.co/docs/transformers/main/chat_templating
Examples of `tokenizer_config.json` files:
https://huggingface.co/bofenghuang/vigogne-2-7b-chat/blob/main/tokenizer_config.json
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/blob/main/tokenizer_config.json
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/tokenizer_config.json
The format of the prompt is important, as if the wrong one is used, it
will lead to "hallucinations" and other completions that are not relevant.
"""
import abc
import logging
from collections.abc import Sequence
from pathlib import Path
from typing import Any
from jinja2 import FileSystemLoader
from jinja2.exceptions import TemplateError
from jinja2.sandbox import ImmutableSandboxedEnvironment
from llama_cpp import llama_chat_format, llama_types
from llama_index.llms import ChatMessage, MessageRole
from llama_index.llms.llama_utils import (
DEFAULT_SYSTEM_PROMPT,
completion_to_prompt,
messages_to_prompt,
)
from private_gpt.constants import PROJECT_ROOT_PATH
logger = logging.getLogger(__name__)
THIS_DIRECTORY_RELATIVE = Path(__file__).parent.relative_to(PROJECT_ROOT_PATH)
_LLAMA_CPP_PYTHON_CHAT_FORMAT: dict[str, llama_chat_format.ChatFormatter] = {
"llama-2": llama_chat_format.format_llama2,
"alpaca": llama_chat_format.format_alpaca,
"vicuna": llama_chat_format.format,
"oasst_llama": llama_chat_format.format_oasst_llama,
"baichuan-2": llama_chat_format.format_baichuan2,
"baichuan": llama_chat_format.format_baichuan,
"openbuddy": llama_chat_format.format_openbuddy,
"redpajama-incite": llama_chat_format.format_redpajama_incite,
"snoozy": llama_chat_format.format_snoozy,
"phind": llama_chat_format.format_phind,
"intel": llama_chat_format.format_intel,
"open-orca": llama_chat_format.format_open_orca,
"mistrallite": llama_chat_format.format_mistrallite,
"zephyr": llama_chat_format.format_zephyr,
"chatml": llama_chat_format.format_chatml,
"openchat": llama_chat_format.format_openchat,
}
# FIXME partial support
def llama_index_to_llama_cpp_messages(
messages: Sequence[ChatMessage],
) -> list[llama_types.ChatCompletionRequestMessage]:
"""Convert messages from llama_index to llama_cpp format.
Convert a list of llama_index ChatMessage to a
list of llama_cpp ChatCompletionRequestMessage.
"""
llama_cpp_messages: list[llama_types.ChatCompletionRequestMessage] = []
l_msg: llama_types.ChatCompletionRequestMessage
for msg in messages:
if msg.role == MessageRole.SYSTEM:
l_msg = llama_types.ChatCompletionRequestSystemMessage(
content=msg.content, role=msg.role.value
)
elif msg.role == MessageRole.USER:
# FIXME partial support
l_msg = llama_types.ChatCompletionRequestUserMessage(
content=msg.content, role=msg.role.value
)
elif msg.role == MessageRole.ASSISTANT:
# FIXME partial support
l_msg = llama_types.ChatCompletionRequestAssistantMessage(
content=msg.content, role=msg.role.value
)
elif msg.role == MessageRole.TOOL:
# FIXME partial support
l_msg = llama_types.ChatCompletionRequestToolMessage(
content=msg.content, role=msg.role.value, tool_call_id=""
)
elif msg.role == MessageRole.FUNCTION:
# FIXME partial support
l_msg = llama_types.ChatCompletionRequestFunctionMessage(
content=msg.content, role=msg.role.value, name=""
)
else:
raise ValueError(f"Unknown role='{msg.role}'")
llama_cpp_messages.append(l_msg)
return llama_cpp_messages
def _get_llama_cpp_chat_format(name: str) -> llama_chat_format.ChatFormatter:
logger.debug("Getting llama_cpp_python prompt_format='%s'", name)
try:
return _LLAMA_CPP_PYTHON_CHAT_FORMAT[name]
except KeyError as err:
raise ValueError(f"Unknown llama_cpp_python prompt style '{name}'") from err
class AbstractPromptStyle(abc.ABC):
"""Abstract class for prompt styles.
This class is used to format a series of messages into a prompt that can be
understood by the models. A series of messages represents the interaction(s)
between a user and an assistant. This series of messages can be considered as a
session between a user X and an assistant Y.This session holds, through the
messages, the state of the conversation. This session, to be understood by the
model, needs to be formatted into a prompt (i.e. a string that the models
can understand). Prompts can be formatted in different ways,
depending on the model.
The implementations of this class represent the different ways to format a
series of messages into a prompt.
"""
@abc.abstractmethod
def __init__(self, *args: Any, **kwargs: Any) -> None:
logger.debug("Initializing prompt_style=%s", self.__class__.__name__)
self.bos_token = "<s>"
self.eos_token = "</s>"
self.nl_token = "\n"
@abc.abstractmethod
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
pass
@abc.abstractmethod
def _completion_to_prompt(self, completion: str) -> str:
pass
def messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
logger.debug("Formatting messages='%s' to prompt", messages)
prompt = self._messages_to_prompt(messages)
logger.debug("Got for messages='%s' the prompt='%s'", messages, prompt)
return prompt
def completion_to_prompt(self, completion: str) -> str:
logger.debug("Formatting completion='%s' to prompt", completion)
prompt = self._completion_to_prompt(completion)
logger.debug("Got for completion='%s' the prompt='%s'", completion, prompt)
return prompt
# def improve_prompt_format(self, llm: LlamaCPP) -> None:
# """Improve the prompt format of the given LLM.
#
# Use the given metadata in the LLM to improve the prompt format.
# """
# # FIXME: we are getting IDs (1,2,13) from llama.cpp, and not actual strings
# llama_cpp_llm = cast(Llama, llm._model)
# self.bos_token = llama_cpp_llm.token_bos()
# self.eos_token = llama_cpp_llm.token_eos()
# self.nl_token = llama_cpp_llm.token_nl()
# print([self.bos_token, self.eos_token, self.nl_token])
# # (1,2,13) are the IDs of the tokens
class AbstractPromptStyleWithSystemPrompt(AbstractPromptStyle, abc.ABC):
_DEFAULT_SYSTEM_PROMPT = DEFAULT_SYSTEM_PROMPT
def __init__(
self, default_system_prompt: str | None, *args: Any, **kwargs: Any
) -> None:
super().__init__(*args, **kwargs)
logger.debug("Got default_system_prompt='%s'", default_system_prompt)
self.default_system_prompt = default_system_prompt
def _add_missing_system_prompt(
self, messages: Sequence[ChatMessage]
) -> Sequence[ChatMessage]:
if messages[0].role != MessageRole.SYSTEM:
logger.debug(
"Adding system_promt='%s' to the given messages as there are none given in the session",
self.default_system_prompt,
)
messages = [
ChatMessage(
content=self.default_system_prompt, role=MessageRole.SYSTEM
),
*messages,
]
return messages
class DefaultPromptStyle(AbstractPromptStyle):
"""Default prompt style that uses the defaults from llama_utils.
It basically passes None to the LLM, indicating it should use
the default functions.
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
# Hacky way to override the functions
# Override the functions to be None, and pass None to the LLM.
self.messages_to_prompt = None # type: ignore[method-assign, assignment]
self.completion_to_prompt = None # type: ignore[method-assign, assignment]
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
"""Dummy implementation."""
return ""
def _completion_to_prompt(self, completion: str) -> str:
"""Dummy implementation."""
return ""
class LlamaIndexPromptStyle(AbstractPromptStyleWithSystemPrompt):
"""Simple prompt style that just uses the default llama_utils functions.
It transforms the sequence of messages into a prompt that should look like:
```text
<s> [INST] <<SYS>> your system prompt here. <</SYS>>
user message here [/INST] assistant (model) response here </s>
```
"""
def __init__(
self, default_system_prompt: str | None = None, *args: Any, **kwargs: Any
) -> None:
# If no system prompt is given, the default one of the implementation is used.
# default_system_prompt can be None here
kwargs["default_system_prompt"] = default_system_prompt
super().__init__(*args, **kwargs)
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
return messages_to_prompt(messages, self.default_system_prompt)
def _completion_to_prompt(self, completion: str) -> str:
return completion_to_prompt(completion, self.default_system_prompt)
class VigognePromptStyle(AbstractPromptStyleWithSystemPrompt):
"""Tag prompt style (used by Vigogne) that uses the prompt style `<|ROLE|>`.
It transforms the sequence of messages into a prompt that should look like:
```text
<|system|>: your system prompt here.
<|user|>: user message here
(possibly with context and question)
<|assistant|>: assistant (model) response here.
```
FIXME: should we add surrounding `<s>` and `</s>` tags, like in llama2?
"""
def __init__(
self,
default_system_prompt: str | None = None,
add_generation_prompt: bool = True,
*args: Any,
**kwargs: Any,
) -> None:
# We have to define a default system prompt here as the LLM will not
# use the default llama_utils functions.
default_system_prompt = default_system_prompt or self._DEFAULT_SYSTEM_PROMPT
kwargs["default_system_prompt"] = default_system_prompt
super().__init__(*args, **kwargs)
self.add_generation_prompt = add_generation_prompt
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
messages = self._add_missing_system_prompt(messages)
return self._format_messages_to_prompt(messages)
def _completion_to_prompt(self, completion: str) -> str:
messages = [ChatMessage(content=completion, role=MessageRole.USER)]
return self._format_messages_to_prompt(messages)
def _format_messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
# TODO add BOS and EOS TOKEN !!!!! (c.f. jinja template)
"""Format message to prompt with `<|ROLE|>: MSG` style."""
assert messages[0].role == MessageRole.SYSTEM
prompt = ""
# TODO enclose the interaction between self.token_bos and self.token_eos
for message in messages:
role = message.role
content = message.content or ""
message_from_user = f"<|{role.lower()}|>: {content.strip()}"
message_from_user += self.nl_token
prompt += message_from_user
if self.add_generation_prompt:
# we are missing the last <|assistant|> tag that will trigger a completion
prompt += "<|assistant|>: "
return prompt
class LlamaCppPromptStyle(AbstractPromptStyleWithSystemPrompt):
def __init__(
self,
prompt_style: str,
default_system_prompt: str | None = None,
*args: Any,
**kwargs: Any,
) -> None:
"""Wrapper for llama_cpp_python defined prompt format.
:param prompt_style:
:param default_system_prompt: Used if no system prompt is given in the messages.
"""
assert prompt_style.startswith("llama_cpp.")
default_system_prompt = default_system_prompt or self._DEFAULT_SYSTEM_PROMPT
kwargs["default_system_prompt"] = default_system_prompt
super().__init__(*args, **kwargs)
self.prompt_style = prompt_style[len("llama_cpp.") :]
if self.prompt_style is None:
return
self._llama_cpp_formatter = _get_llama_cpp_chat_format(self.prompt_style)
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
messages = self._add_missing_system_prompt(messages)
return self._llama_cpp_formatter(
messages=llama_index_to_llama_cpp_messages(messages)
).prompt
def _completion_to_prompt(self, completion: str) -> str:
messages = self._add_missing_system_prompt(
[ChatMessage(content=completion, role=MessageRole.USER)]
)
return self._llama_cpp_formatter(
messages=llama_index_to_llama_cpp_messages(messages)
).prompt
class TemplatePromptStyle(AbstractPromptStyleWithSystemPrompt):
def __init__(
self,
template_name: str,
template_dir: str | None = None,
add_generation_prompt: bool = True,
default_system_prompt: str | None = None,
*args: Any,
**kwargs: Any,
) -> None:
"""Prompt format using a Jinja template.
:param template_name: the filename of the template to use, must be in
the `./template/` directory.
:param template_dir: the directory where the template is located.
Defaults to `./template/`.
:param default_system_prompt: Used if no system prompt is
given in the messages.
"""
default_system_prompt = default_system_prompt or DEFAULT_SYSTEM_PROMPT
kwargs["default_system_prompt"] = default_system_prompt
super().__init__(*args, **kwargs)
self._add_generation_prompt = add_generation_prompt
def raise_exception(message: str) -> None:
raise TemplateError(message)
if template_dir is None:
self.template_dir = THIS_DIRECTORY_RELATIVE / "template"
else:
self.template_dir = Path(template_dir)
self._jinja_fs_loader = FileSystemLoader(searchpath=self.template_dir)
self._jinja_env = ImmutableSandboxedEnvironment(
loader=self._jinja_fs_loader, trim_blocks=True, lstrip_blocks=True
)
self._jinja_env.globals["raise_exception"] = raise_exception
self.template = self._jinja_env.get_template(template_name)
@property
def _extra_kwargs_render(self) -> dict[str, Any]:
return {
"eos_token": self.eos_token,
"bos_token": self.bos_token,
"nl_token": self.nl_token,
}
@staticmethod
def _j_raise_exception(x: str) -> None:
"""Helper method to let Jinja template raise exceptions."""
raise RuntimeError(x)
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
messages = self._add_missing_system_prompt(messages)
msgs = [{"role": msg.role.value, "content": msg.content} for msg in messages]
return self.template.render(
messages=msgs,
add_generation_prompt=self._add_generation_prompt,
**self._extra_kwargs_render,
)
def _completion_to_prompt(self, completion: str) -> str:
messages = self._add_missing_system_prompt(
[
ChatMessage(content=completion, role=MessageRole.USER),
]
)
return self._messages_to_prompt(messages)
# TODO Maybe implement an auto-prompt style?
# Pass all the arguments at once
def get_prompt_style(
prompt_style: str | None,
**kwargs: Any,
) -> AbstractPromptStyle:
"""Get the prompt style to use from the given string.
:param prompt_style: The prompt style to use.
:return: The prompt style to use.
"""
if prompt_style is None:
return DefaultPromptStyle(**kwargs)
if prompt_style.startswith("llama_cpp."):
return LlamaCppPromptStyle(prompt_style, **kwargs)
elif prompt_style == "llama2":
return LlamaIndexPromptStyle(**kwargs)
elif prompt_style == "vigogne":
return VigognePromptStyle(**kwargs)
elif prompt_style == "template":
return TemplatePromptStyle(**kwargs)
raise ValueError(f"Unknown prompt_style='{prompt_style}'")

View File

@@ -1,2 +0,0 @@
{# This template is coming from: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/blob/main/tokenizer_config.json #}
{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}

View File

@@ -1,2 +0,0 @@
{# This template is coming from: https://huggingface.co/bofenghuang/vigogne-2-7b-chat/blob/main/tokenizer_config.json #}
{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif true == true %}{% set loop_messages = messages %}{% set system_message = 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|system|>: ' + system_message + '\n' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>: ' + message['content'].strip() + '\n' }}{% elif message['role'] == 'assistant' %}{{ '<|assistant|>: ' + message['content'].strip() + eos_token + '\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>:' }}{% endif %}

View File

@@ -1,2 +0,0 @@
{# This template is coming from: https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/tokenizer_config.json #}
{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}

View File

@@ -0,0 +1,235 @@
import abc
import logging
from collections.abc import Sequence
from typing import Any, Literal
from llama_index.core.llms import ChatMessage, MessageRole
logger = logging.getLogger(__name__)
class AbstractPromptStyle(abc.ABC):
"""Abstract class for prompt styles.
This class is used to format a series of messages into a prompt that can be
understood by the models. A series of messages represents the interaction(s)
between a user and an assistant. This series of messages can be considered as a
session between a user X and an assistant Y.This session holds, through the
messages, the state of the conversation. This session, to be understood by the
model, needs to be formatted into a prompt (i.e. a string that the models
can understand). Prompts can be formatted in different ways,
depending on the model.
The implementations of this class represent the different ways to format a
series of messages into a prompt.
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
logger.debug("Initializing prompt_style=%s", self.__class__.__name__)
@abc.abstractmethod
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
pass
@abc.abstractmethod
def _completion_to_prompt(self, completion: str) -> str:
pass
def messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
prompt = self._messages_to_prompt(messages)
logger.debug("Got for messages='%s' the prompt='%s'", messages, prompt)
return prompt
def completion_to_prompt(self, completion: str) -> str:
prompt = self._completion_to_prompt(completion)
logger.debug("Got for completion='%s' the prompt='%s'", completion, prompt)
return prompt
class DefaultPromptStyle(AbstractPromptStyle):
"""Default prompt style that uses the defaults from llama_utils.
It basically passes None to the LLM, indicating it should use
the default functions.
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
# Hacky way to override the functions
# Override the functions to be None, and pass None to the LLM.
self.messages_to_prompt = None # type: ignore[method-assign, assignment]
self.completion_to_prompt = None # type: ignore[method-assign, assignment]
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
return ""
def _completion_to_prompt(self, completion: str) -> str:
return ""
class Llama2PromptStyle(AbstractPromptStyle):
"""Simple prompt style that uses llama 2 prompt style.
Inspired by llama_index/legacy/llms/llama_utils.py
It transforms the sequence of messages into a prompt that should look like:
```text
<s> [INST] <<SYS>> your system prompt here. <</SYS>>
user message here [/INST] assistant (model) response here </s>
```
"""
BOS, EOS = "<s>", "</s>"
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. \
Always answer as helpfully as possible and follow ALL given instructions. \
Do not speculate or make up information. \
Do not reference any given instructions or context. \
"""
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
string_messages: list[str] = []
if messages[0].role == MessageRole.SYSTEM:
# pull out the system message (if it exists in messages)
system_message_str = messages[0].content or ""
messages = messages[1:]
else:
system_message_str = self.DEFAULT_SYSTEM_PROMPT
system_message_str = f"{self.B_SYS} {system_message_str.strip()} {self.E_SYS}"
for i in range(0, len(messages), 2):
# first message should always be a user
user_message = messages[i]
assert user_message.role == MessageRole.USER
if i == 0:
# make sure system prompt is included at the start
str_message = f"{self.BOS} {self.B_INST} {system_message_str} "
else:
# end previous user-assistant interaction
string_messages[-1] += f" {self.EOS}"
# no need to include system prompt
str_message = f"{self.BOS} {self.B_INST} "
# include user message content
str_message += f"{user_message.content} {self.E_INST}"
if len(messages) > (i + 1):
# if assistant message exists, add to str_message
assistant_message = messages[i + 1]
assert assistant_message.role == MessageRole.ASSISTANT
str_message += f" {assistant_message.content}"
string_messages.append(str_message)
return "".join(string_messages)
def _completion_to_prompt(self, completion: str) -> str:
system_prompt_str = self.DEFAULT_SYSTEM_PROMPT
return (
f"{self.BOS} {self.B_INST} {self.B_SYS} {system_prompt_str.strip()} {self.E_SYS} "
f"{completion.strip()} {self.E_INST}"
)
class TagPromptStyle(AbstractPromptStyle):
"""Tag prompt style (used by Vigogne) that uses the prompt style `<|ROLE|>`.
It transforms the sequence of messages into a prompt that should look like:
```text
<|system|>: your system prompt here.
<|user|>: user message here
(possibly with context and question)
<|assistant|>: assistant (model) response here.
```
FIXME: should we add surrounding `<s>` and `</s>` tags, like in llama2?
"""
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
"""Format message to prompt with `<|ROLE|>: MSG` style."""
prompt = ""
for message in messages:
role = message.role
content = message.content or ""
message_from_user = f"<|{role.lower()}|>: {content.strip()}"
message_from_user += "\n"
prompt += message_from_user
# we are missing the last <|assistant|> tag that will trigger a completion
prompt += "<|assistant|>: "
return prompt
def _completion_to_prompt(self, completion: str) -> str:
return self._messages_to_prompt(
[ChatMessage(content=completion, role=MessageRole.USER)]
)
class MistralPromptStyle(AbstractPromptStyle):
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
prompt = "<s>"
for message in messages:
role = message.role
content = message.content or ""
if role.lower() == "system":
message_from_user = f"[INST] {content.strip()} [/INST]"
prompt += message_from_user
elif role.lower() == "user":
prompt += "</s>"
message_from_user = f"[INST] {content.strip()} [/INST]"
prompt += message_from_user
return prompt
def _completion_to_prompt(self, completion: str) -> str:
return self._messages_to_prompt(
[ChatMessage(content=completion, role=MessageRole.USER)]
)
class ChatMLPromptStyle(AbstractPromptStyle):
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
prompt = "<|im_start|>system\n"
for message in messages:
role = message.role
content = message.content or ""
if role.lower() == "system":
message_from_user = f"{content.strip()}"
prompt += message_from_user
elif role.lower() == "user":
prompt += "<|im_end|>\n<|im_start|>user\n"
message_from_user = f"{content.strip()}<|im_end|>\n"
prompt += message_from_user
prompt += "<|im_start|>assistant\n"
return prompt
def _completion_to_prompt(self, completion: str) -> str:
return self._messages_to_prompt(
[ChatMessage(content=completion, role=MessageRole.USER)]
)
def get_prompt_style(
prompt_style: Literal["default", "llama2", "tag", "mistral", "chatml"] | None
) -> AbstractPromptStyle:
"""Get the prompt style to use from the given string.
:param prompt_style: The prompt style to use.
:return: The prompt style to use.
"""
if prompt_style is None or prompt_style == "default":
return DefaultPromptStyle()
elif prompt_style == "llama2":
return Llama2PromptStyle()
elif prompt_style == "tag":
return TagPromptStyle()
elif prompt_style == "mistral":
return MistralPromptStyle()
elif prompt_style == "chatml":
return ChatMLPromptStyle()
raise ValueError(f"Unknown prompt_style='{prompt_style}'")

View File

@@ -1,11 +1,12 @@
import logging
from injector import inject, singleton
from llama_index.storage.docstore import BaseDocumentStore, SimpleDocumentStore
from llama_index.storage.index_store import SimpleIndexStore
from llama_index.storage.index_store.types import BaseIndexStore
from llama_index.core.storage.docstore import BaseDocumentStore, SimpleDocumentStore
from llama_index.core.storage.index_store import SimpleIndexStore
from llama_index.core.storage.index_store.types import BaseIndexStore
from private_gpt.paths import local_data_path
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@@ -16,19 +17,51 @@ class NodeStoreComponent:
doc_store: BaseDocumentStore
@inject
def __init__(self) -> None:
try:
self.index_store = SimpleIndexStore.from_persist_dir(
persist_dir=str(local_data_path)
)
except FileNotFoundError:
logger.debug("Local index store not found, creating a new one")
self.index_store = SimpleIndexStore()
def __init__(self, settings: Settings) -> None:
match settings.nodestore.database:
case "simple":
try:
self.index_store = SimpleIndexStore.from_persist_dir(
persist_dir=str(local_data_path)
)
except FileNotFoundError:
logger.debug("Local index store not found, creating a new one")
self.index_store = SimpleIndexStore()
try:
self.doc_store = SimpleDocumentStore.from_persist_dir(
persist_dir=str(local_data_path)
)
except FileNotFoundError:
logger.debug("Local document store not found, creating a new one")
self.doc_store = SimpleDocumentStore()
try:
self.doc_store = SimpleDocumentStore.from_persist_dir(
persist_dir=str(local_data_path)
)
except FileNotFoundError:
logger.debug("Local document store not found, creating a new one")
self.doc_store = SimpleDocumentStore()
case "postgres":
try:
from llama_index.core.storage.docstore.postgres_docstore import (
PostgresDocumentStore,
)
from llama_index.core.storage.index_store.postgres_index_store import (
PostgresIndexStore,
)
except ImportError:
raise ImportError(
"Postgres dependencies not found, install with `poetry install --extras storage-nodestore-postgres`"
) from None
if settings.postgres is None:
raise ValueError("Postgres index/doc store settings not found.")
self.index_store = PostgresIndexStore.from_params(
**settings.postgres.model_dump(exclude_none=True)
)
self.doc_store = PostgresDocumentStore.from_params(
**settings.postgres.model_dump(exclude_none=True)
)
case _:
# Should be unreachable
# The settings validator should have caught this
raise ValueError(
f"Database {settings.nodestore.database} not supported"
)

View File

@@ -1,12 +1,28 @@
from collections.abc import Generator
from typing import Any
from llama_index.schema import BaseNode, MetadataMode
from llama_index.vector_stores import ChromaVectorStore
from llama_index.vector_stores.chroma import chunk_list
from llama_index.vector_stores.utils import node_to_metadata_dict
from llama_index.core.schema import BaseNode, MetadataMode
from llama_index.core.vector_stores.utils import node_to_metadata_dict
from llama_index.vector_stores.chroma import ChromaVectorStore # type: ignore
class BatchedChromaVectorStore(ChromaVectorStore):
def chunk_list(
lst: list[BaseNode], max_chunk_size: int
) -> Generator[list[BaseNode], None, None]:
"""Yield successive max_chunk_size-sized chunks from lst.
Args:
lst (List[BaseNode]): list of nodes with embeddings
max_chunk_size (int): max chunk size
Yields:
Generator[List[BaseNode], None, None]: list of nodes with embeddings
"""
for i in range(0, len(lst), max_chunk_size):
yield lst[i : i + max_chunk_size]
class BatchedChromaVectorStore(ChromaVectorStore): # type: ignore
"""Chroma vector store, batching additions to avoid reaching the max batch limit.
In this vector store, embeddings are stored within a ChromaDB collection.

View File

@@ -2,11 +2,14 @@ import logging
import typing
from injector import inject, singleton
from llama_index import VectorStoreIndex
from llama_index.indices.vector_store import VectorIndexRetriever
from llama_index.vector_stores.types import VectorStore
from llama_index.core.indices.vector_store import VectorIndexRetriever, VectorStoreIndex
from llama_index.core.vector_stores.types import (
FilterCondition,
MetadataFilter,
MetadataFilters,
VectorStore,
)
from private_gpt.components.vector_store.batched_chroma import BatchedChromaVectorStore
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.paths import local_data_path
from private_gpt.settings.settings import Settings
@@ -14,43 +17,64 @@ from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@typing.no_type_check
def _chromadb_doc_id_metadata_filter(
def _doc_id_metadata_filter(
context_filter: ContextFilter | None,
) -> dict | None:
if context_filter is None or context_filter.docs_ids is None:
return {} # No filter
elif len(context_filter.docs_ids) < 1:
return {"doc_id": "-"} # Effectively filtering out all docs
else:
doc_filter_items = []
if len(context_filter.docs_ids) > 1:
doc_filter = {"$or": doc_filter_items}
for doc_id in context_filter.docs_ids:
doc_filter_items.append({"doc_id": doc_id})
else:
doc_filter = {"doc_id": context_filter.docs_ids[0]}
return doc_filter
) -> MetadataFilters:
filters = MetadataFilters(filters=[], condition=FilterCondition.OR)
if context_filter is not None and context_filter.docs_ids is not None:
for doc_id in context_filter.docs_ids:
filters.filters.append(MetadataFilter(key="doc_id", value=doc_id))
return filters
@singleton
class VectorStoreComponent:
settings: Settings
vector_store: VectorStore
@inject
def __init__(self, settings: Settings) -> None:
self.settings = settings
match settings.vectorstore.database:
case "postgres":
try:
from llama_index.vector_stores.postgres import ( # type: ignore
PGVectorStore,
)
except ImportError as e:
raise ImportError(
"Postgres dependencies not found, install with `poetry install --extras vector-stores-postgres`"
) from e
if settings.postgres is None:
raise ValueError(
"Postgres settings not found. Please provide settings."
)
self.vector_store = typing.cast(
VectorStore,
PGVectorStore.from_params(
**settings.postgres.model_dump(exclude_none=True),
table_name="embeddings",
embed_dim=settings.embedding.embed_dim,
),
)
case "chroma":
try:
import chromadb # type: ignore
from chromadb.config import ( # type: ignore
Settings as ChromaSettings,
)
from private_gpt.components.vector_store.batched_chroma import (
BatchedChromaVectorStore,
)
except ImportError as e:
raise ImportError(
"'chromadb' is not installed."
"To use PrivateGPT with Chroma, install the 'chroma' extra."
"`poetry install --extras chroma`"
"ChromaDB dependencies not found, install with `poetry install --extras vector-stores-chroma`"
) from e
chroma_settings = ChromaSettings(anonymized_telemetry=False)
@@ -70,8 +94,15 @@ class VectorStoreComponent:
)
case "qdrant":
from llama_index.vector_stores.qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
try:
from llama_index.vector_stores.qdrant import ( # type: ignore
QdrantVectorStore,
)
from qdrant_client import QdrantClient # type: ignore
except ImportError as e:
raise ImportError(
"Qdrant dependencies not found, install with `poetry install --extras vector-stores-qdrant`"
) from e
if settings.qdrant is None:
logger.info(
@@ -97,20 +128,22 @@ class VectorStoreComponent:
f"Vectorstore database {settings.vectorstore.database} not supported"
)
@staticmethod
def get_retriever(
self,
index: VectorStoreIndex,
context_filter: ContextFilter | None = None,
similarity_top_k: int = 2,
) -> VectorIndexRetriever:
# This way we support qdrant (using doc_ids) and chroma (using where clause)
# This way we support qdrant (using doc_ids) and the rest (using filters)
return VectorIndexRetriever(
index=index,
similarity_top_k=similarity_top_k,
doc_ids=context_filter.docs_ids if context_filter else None,
vector_store_kwargs={
"where": _chromadb_doc_id_metadata_filter(context_filter)
},
filters=(
_doc_id_metadata_filter(context_filter)
if self.settings.vectorstore.database != "qdrant"
else None
),
)
def close(self) -> None:

View File

@@ -1,13 +1,14 @@
"""FastAPI app creation, logger configuration and main API routes."""
import logging
from typing import Any
from fastapi import Depends, FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.utils import get_openapi
from injector import Injector
from llama_index.core.callbacks import CallbackManager
from llama_index.core.callbacks.global_handlers import create_global_handler
from llama_index.core.settings import Settings as LlamaIndexSettings
from private_gpt.paths import docs_path
from private_gpt.server.chat.chat_router import chat_router
from private_gpt.server.chunks.chunks_router import chunks_router
from private_gpt.server.completions.completions_router import completions_router
@@ -22,107 +23,44 @@ logger = logging.getLogger(__name__)
def create_app(root_injector: Injector) -> FastAPI:
# Start the API
with open(docs_path / "description.md") as description_file:
description = description_file.read()
async def bind_injector_to_request(request: Request) -> None:
request.state.injector = root_injector
tags_metadata = [
{
"name": "Ingestion",
"description": "High-level APIs covering document ingestion -internally "
"managing document parsing, splitting,"
"metadata extraction, embedding generation and storage- and ingested "
"documents CRUD."
"Each ingested document is identified by an ID that can be used to filter the "
"context"
"used in *Contextual Completions* and *Context Chunks* APIs.",
},
{
"name": "Contextual Completions",
"description": "High-level APIs covering contextual Chat and Completions. They "
"follow OpenAI's format, extending it to "
"allow using the context coming from ingested documents to create the "
"response. Internally"
"manage context retrieval, prompt engineering and the response generation.",
},
{
"name": "Context Chunks",
"description": "Low-level API that given a query return relevant chunks of "
"text coming from the ingested"
"documents.",
},
{
"name": "Embeddings",
"description": "Low-level API to obtain the vector representation of a given "
"text, using an Embeddings model."
"Follows OpenAI's embeddings API format.",
},
{
"name": "Health",
"description": "Simple health API to make sure the server is up and running.",
},
]
app = FastAPI(dependencies=[Depends(bind_injector_to_request)])
async def bind_injector_to_request(request: Request) -> None:
request.state.injector = root_injector
app.include_router(completions_router)
app.include_router(chat_router)
app.include_router(chunks_router)
app.include_router(ingest_router)
app.include_router(embeddings_router)
app.include_router(health_router)
app = FastAPI(dependencies=[Depends(bind_injector_to_request)])
# Add LlamaIndex simple observability
global_handler = create_global_handler("simple")
LlamaIndexSettings.callback_manager = CallbackManager([global_handler])
def custom_openapi() -> dict[str, Any]:
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title="PrivateGPT",
description=description,
version="0.1.0",
summary="PrivateGPT is a production-ready AI project that allows you to "
"ask questions to your documents using the power of Large Language "
"Models (LLMs), even in scenarios without Internet connection. "
"100% private, no data leaves your execution environment at any point.",
contact={
"url": "https://github.com/imartinez/privateGPT",
},
license_info={
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
routes=app.routes,
tags=tags_metadata,
)
openapi_schema["info"]["x-logo"] = {
"url": "https://lh3.googleusercontent.com/drive-viewer"
"/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj"
"E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560"
}
settings = root_injector.get(Settings)
if settings.server.cors.enabled:
logger.debug("Setting up CORS middleware")
app.add_middleware(
CORSMiddleware,
allow_credentials=settings.server.cors.allow_credentials,
allow_origins=settings.server.cors.allow_origins,
allow_origin_regex=settings.server.cors.allow_origin_regex,
allow_methods=settings.server.cors.allow_methods,
allow_headers=settings.server.cors.allow_headers,
)
app.openapi_schema = openapi_schema
return app.openapi_schema
app.openapi = custom_openapi # type: ignore[method-assign]
app.include_router(completions_router)
app.include_router(chat_router)
app.include_router(chunks_router)
app.include_router(ingest_router)
app.include_router(embeddings_router)
app.include_router(health_router)
settings = root_injector.get(Settings)
if settings.server.cors.enabled:
logger.debug("Setting up CORS middleware")
app.add_middleware(
CORSMiddleware,
allow_credentials=settings.server.cors.allow_credentials,
allow_origins=settings.server.cors.allow_origins,
allow_origin_regex=settings.server.cors.allow_origin_regex,
allow_methods=settings.server.cors.allow_methods,
allow_headers=settings.server.cors.allow_headers,
)
if settings.ui.enabled:
logger.debug("Importing the UI module")
if settings.ui.enabled:
logger.debug("Importing the UI module")
try:
from private_gpt.ui.ui import PrivateGptUi
except ImportError as e:
raise ImportError(
"UI dependencies not found, install with `poetry install --extras ui`"
) from e
ui = root_injector.get(PrivateGptUi)
ui.mount_in_app(app, settings.ui.path)
ui = root_injector.get(PrivateGptUi)
ui.mount_in_app(app, settings.ui.path)
return app
return app

View File

@@ -1,11 +1,6 @@
"""FastAPI app creation, logger configuration and main API routes."""
import llama_index
from private_gpt.di import global_injector
from private_gpt.launcher import create_app
# Add LlamaIndex simple observability
llama_index.set_global_handler("simple")
app = create_app(global_injector)

View File

@@ -3,7 +3,7 @@ import uuid
from collections.abc import Iterator
from typing import Literal
from llama_index.llms import ChatResponse, CompletionResponse
from llama_index.core.llms import ChatResponse, CompletionResponse
from pydantic import BaseModel, Field
from private_gpt.server.chunks.chunks_service import Chunk
@@ -118,5 +118,5 @@ def to_openai_sse_stream(
yield f"data: {OpenAICompletion.json_from_delta(text=response.delta)}\n\n"
else:
yield f"data: {OpenAICompletion.json_from_delta(text=response, sources=sources)}\n\n"
yield f"data: {OpenAICompletion.json_from_delta(text=None, finish_reason='stop')}\n\n"
yield f"data: {OpenAICompletion.json_from_delta(text='', finish_reason='stop')}\n\n"
yield "data: [DONE]\n\n"

View File

@@ -1,5 +1,5 @@
from fastapi import APIRouter, Depends, Request
from llama_index.llms import ChatMessage, MessageRole
from llama_index.core.llms import ChatMessage, MessageRole
from pydantic import BaseModel
from starlette.responses import StreamingResponse
@@ -54,6 +54,13 @@ class ChatBody(BaseModel):
response_model=None,
responses={200: {"model": OpenAICompletion}},
tags=["Contextual Completions"],
openapi_extra={
"x-fern-streaming": {
"stream-condition": "stream",
"response": {"$ref": "#/components/schemas/OpenAICompletion"},
"response-stream": {"$ref": "#/components/schemas/OpenAICompletion"},
}
},
)
def chat_completion(
request: Request, body: ChatBody

View File

@@ -1,14 +1,19 @@
from dataclasses import dataclass
from injector import inject, singleton
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
from llama_index.chat_engine import ContextChatEngine, SimpleChatEngine
from llama_index.chat_engine.types import (
from llama_index.core.chat_engine import ContextChatEngine, SimpleChatEngine
from llama_index.core.chat_engine.types import (
BaseChatEngine,
)
from llama_index.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.llms import ChatMessage, MessageRole
from llama_index.types import TokenGen
from llama_index.core.indices import VectorStoreIndex
from llama_index.core.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.postprocessor import (
SentenceTransformerRerank,
SimilarityPostprocessor,
)
from llama_index.core.storage import StorageContext
from llama_index.core.types import TokenGen
from pydantic import BaseModel
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
@@ -19,6 +24,7 @@ from private_gpt.components.vector_store.vector_store_component import (
)
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chunks.chunks_service import Chunk
from private_gpt.settings.settings import Settings
class Completion(BaseModel):
@@ -67,28 +73,31 @@ class ChatEngineInput:
@singleton
class ChatService:
settings: Settings
@inject
def __init__(
self,
settings: Settings,
llm_component: LLMComponent,
vector_store_component: VectorStoreComponent,
embedding_component: EmbeddingComponent,
node_store_component: NodeStoreComponent,
) -> None:
self.llm_service = llm_component
self.settings = settings
self.llm_component = llm_component
self.embedding_component = embedding_component
self.vector_store_component = vector_store_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
self.service_context = ServiceContext.from_defaults(
llm=llm_component.llm, embed_model=embedding_component.embedding_model
)
self.index = VectorStoreIndex.from_vector_store(
vector_store_component.vector_store,
storage_context=self.storage_context,
service_context=self.service_context,
llm=llm_component.llm,
embed_model=embedding_component.embedding_model,
show_progress=True,
)
@@ -98,22 +107,36 @@ class ChatService:
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> BaseChatEngine:
settings = self.settings
if use_context:
vector_index_retriever = self.vector_store_component.get_retriever(
index=self.index, context_filter=context_filter
index=self.index,
context_filter=context_filter,
similarity_top_k=self.settings.rag.similarity_top_k,
)
node_postprocessors = [
MetadataReplacementPostProcessor(target_metadata_key="window"),
SimilarityPostprocessor(
similarity_cutoff=settings.rag.similarity_value
),
]
if settings.rag.rerank.enabled:
rerank_postprocessor = SentenceTransformerRerank(
model=settings.rag.rerank.model, top_n=settings.rag.rerank.top_n
)
node_postprocessors.append(rerank_postprocessor)
return ContextChatEngine.from_defaults(
system_prompt=system_prompt,
retriever=vector_index_retriever,
service_context=self.service_context,
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window"),
],
llm=self.llm_component.llm, # Takes no effect at the moment
node_postprocessors=node_postprocessors,
)
else:
return SimpleChatEngine.from_defaults(
system_prompt=system_prompt,
service_context=self.service_context,
llm=self.llm_component.llm,
)
def stream_chat(

View File

@@ -1,8 +1,9 @@
from typing import TYPE_CHECKING, Literal
from injector import inject, singleton
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
from llama_index.schema import NodeWithScore
from llama_index.core.indices import VectorStoreIndex
from llama_index.core.schema import NodeWithScore
from llama_index.core.storage import StorageContext
from pydantic import BaseModel, Field
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
@@ -15,7 +16,7 @@ from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.ingest.model import IngestedDoc
if TYPE_CHECKING:
from llama_index.schema import RelatedNodeInfo
from llama_index.core.schema import RelatedNodeInfo
class Chunk(BaseModel):
@@ -63,14 +64,13 @@ class ChunksService:
node_store_component: NodeStoreComponent,
) -> None:
self.vector_store_component = vector_store_component
self.llm_component = llm_component
self.embedding_component = embedding_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
self.query_service_context = ServiceContext.from_defaults(
llm=llm_component.llm, embed_model=embedding_component.embedding_model
)
def _get_sibling_nodes_text(
self, node_with_score: NodeWithScore, related_number: int, forward: bool = True
@@ -103,7 +103,8 @@ class ChunksService:
index = VectorStoreIndex.from_vector_store(
self.vector_store_component.vector_store,
storage_context=self.storage_context,
service_context=self.query_service_context,
llm=self.llm_component.llm,
embed_model=self.embedding_component.embedding_model,
show_progress=True,
)
vector_index_retriever = self.vector_store_component.get_retriever(

View File

@@ -42,6 +42,13 @@ class CompletionsBody(BaseModel):
summary="Completion",
responses={200: {"model": OpenAICompletion}},
tags=["Contextual Completions"],
openapi_extra={
"x-fern-streaming": {
"stream-condition": "stream",
"response": {"$ref": "#/components/schemas/OpenAICompletion"},
"response-stream": {"$ref": "#/components/schemas/OpenAICompletion"},
}
},
)
def prompt_completion(
request: Request, body: CompletionsBody

View File

@@ -1,7 +1,7 @@
from typing import Literal
from fastapi import APIRouter, Depends, HTTPException, Request, UploadFile
from pydantic import BaseModel
from pydantic import BaseModel, Field
from private_gpt.server.ingest.ingest_service import IngestService
from private_gpt.server.ingest.model import IngestedDoc
@@ -10,14 +10,35 @@ from private_gpt.server.utils.auth import authenticated
ingest_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
class IngestTextBody(BaseModel):
file_name: str = Field(examples=["Avatar: The Last Airbender"])
text: str = Field(
examples=[
"Avatar is set in an Asian and Arctic-inspired world in which some "
"people can telekinetically manipulate one of the four elements—water, "
"earth, fire or air—through practices known as 'bending', inspired by "
"Chinese martial arts."
]
)
class IngestResponse(BaseModel):
object: Literal["list"]
model: Literal["private-gpt"]
data: list[IngestedDoc]
@ingest_router.post("/ingest", tags=["Ingestion"])
@ingest_router.post("/ingest", tags=["Ingestion"], deprecated=True)
def ingest(request: Request, file: UploadFile) -> IngestResponse:
"""Ingests and processes a file.
Deprecated. Use ingest/file instead.
"""
return ingest_file(request, file)
@ingest_router.post("/ingest/file", tags=["Ingestion"])
def ingest_file(request: Request, file: UploadFile) -> IngestResponse:
"""Ingests and processes a file, storing its chunks to be used as context.
The context obtained from files is later used in
@@ -40,6 +61,26 @@ def ingest(request: Request, file: UploadFile) -> IngestResponse:
return IngestResponse(object="list", model="private-gpt", data=ingested_documents)
@ingest_router.post("/ingest/text", tags=["Ingestion"])
def ingest_text(request: Request, body: IngestTextBody) -> IngestResponse:
"""Ingests and processes a text, storing its chunks to be used as context.
The context obtained from files is later used in
`/chat/completions`, `/completions`, and `/chunks` APIs.
A Document will be generated with the given text. The Document
ID is returned in the response, together with the
extracted Metadata (which is later used to improve context retrieval). That ID
can be used to filter the context used to create responses in
`/chat/completions`, `/completions`, and `/chunks` APIs.
"""
service = request.state.injector.get(IngestService)
if len(body.file_name) == 0:
raise HTTPException(400, "No file name provided")
ingested_documents = service.ingest_text(body.file_name, body.text)
return IngestResponse(object="list", model="private-gpt", data=ingested_documents)
@ingest_router.get("/ingest/list", tags=["Ingestion"])
def list_ingested(request: Request) -> IngestResponse:
"""Lists already ingested Documents including their Document ID and metadata.

View File

@@ -1,14 +1,11 @@
import logging
import tempfile
from pathlib import Path
from typing import BinaryIO
from typing import TYPE_CHECKING, AnyStr, BinaryIO
from injector import inject, singleton
from llama_index import (
ServiceContext,
StorageContext,
)
from llama_index.node_parser import SentenceWindowNodeParser
from llama_index.core.node_parser import SentenceWindowNodeParser
from llama_index.core.storage import StorageContext
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.ingest.ingest_component import get_ingestion_component
@@ -20,6 +17,9 @@ from private_gpt.components.vector_store.vector_store_component import (
from private_gpt.server.ingest.model import IngestedDoc
from private_gpt.settings.settings import settings
if TYPE_CHECKING:
from llama_index.core.storage.docstore.types import RefDocInfo
logger = logging.getLogger(__name__)
@@ -40,29 +40,15 @@ class IngestService:
index_store=node_store_component.index_store,
)
node_parser = SentenceWindowNodeParser.from_defaults()
self.ingest_service_context = ServiceContext.from_defaults(
llm=self.llm_service.llm,
embed_model=embedding_component.embedding_model,
node_parser=node_parser,
# Embeddings done early in the pipeline of node transformations, right
# after the node parsing
transformations=[node_parser, embedding_component.embedding_model],
)
self.ingest_component = get_ingestion_component(
self.storage_context, self.ingest_service_context, settings=settings()
self.storage_context,
embed_model=embedding_component.embedding_model,
transformations=[node_parser, embedding_component.embedding_model],
settings=settings(),
)
def ingest(self, file_name: str, file_data: Path) -> list[IngestedDoc]:
logger.info("Ingesting file_name=%s", file_name)
documents = self.ingest_component.ingest(file_name, file_data)
return [IngestedDoc.from_document(document) for document in documents]
def ingest_bin_data(
self, file_name: str, raw_file_data: BinaryIO
) -> list[IngestedDoc]:
logger.debug("Ingesting binary data with file_name=%s", file_name)
file_data = raw_file_data.read()
def _ingest_data(self, file_name: str, file_data: AnyStr) -> list[IngestedDoc]:
logger.debug("Got file data of size=%s to ingest", len(file_data))
# llama-index mainly supports reading from files, so
# we have to create a tmp file to read for it to work
@@ -74,28 +60,44 @@ class IngestService:
path_to_tmp.write_bytes(file_data)
else:
path_to_tmp.write_text(str(file_data))
return self.ingest(file_name, path_to_tmp)
return self.ingest_file(file_name, path_to_tmp)
finally:
tmp.close()
path_to_tmp.unlink()
def ingest_file(self, file_name: str, file_data: Path) -> list[IngestedDoc]:
logger.info("Ingesting file_name=%s", file_name)
documents = self.ingest_component.ingest(file_name, file_data)
logger.info("Finished ingestion file_name=%s", file_name)
return [IngestedDoc.from_document(document) for document in documents]
def ingest_text(self, file_name: str, text: str) -> list[IngestedDoc]:
logger.debug("Ingesting text data with file_name=%s", file_name)
return self._ingest_data(file_name, text)
def ingest_bin_data(
self, file_name: str, raw_file_data: BinaryIO
) -> list[IngestedDoc]:
logger.debug("Ingesting binary data with file_name=%s", file_name)
file_data = raw_file_data.read()
return self._ingest_data(file_name, file_data)
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[IngestedDoc]:
logger.info("Ingesting file_names=%s", [f[0] for f in files])
documents = self.ingest_component.bulk_ingest(files)
logger.info("Finished ingestion file_name=%s", [f[0] for f in files])
return [IngestedDoc.from_document(document) for document in documents]
def list_ingested(self) -> list[IngestedDoc]:
ingested_docs = []
ingested_docs: list[IngestedDoc] = []
try:
docstore = self.storage_context.docstore
ingested_docs_ids: set[str] = set()
ref_docs: dict[str, RefDocInfo] | None = docstore.get_all_ref_doc_info()
for node in docstore.docs.values():
if node.ref_doc_id is not None:
ingested_docs_ids.add(node.ref_doc_id)
if not ref_docs:
return ingested_docs
for doc_id in ingested_docs_ids:
ref_doc_info = docstore.get_ref_doc_info(ref_doc_id=doc_id)
for doc_id, ref_doc_info in ref_docs.items():
doc_metadata = None
if ref_doc_info is not None and ref_doc_info.metadata is not None:
doc_metadata = IngestedDoc.curate_metadata(ref_doc_info.metadata)

View File

@@ -3,10 +3,9 @@ from pathlib import Path
from typing import Any
from watchdog.events import (
DirCreatedEvent,
DirModifiedEvent,
FileCreatedEvent,
FileModifiedEvent,
FileSystemEvent,
FileSystemEventHandler,
)
from watchdog.observers import Observer
@@ -20,11 +19,11 @@ class IngestWatcher:
self.on_file_changed = on_file_changed
class Handler(FileSystemEventHandler):
def on_modified(self, event: DirModifiedEvent | FileModifiedEvent) -> None:
def on_modified(self, event: FileSystemEvent) -> None:
if isinstance(event, FileModifiedEvent):
on_file_changed(Path(event.src_path))
def on_created(self, event: DirCreatedEvent | FileCreatedEvent) -> None:
def on_created(self, event: FileSystemEvent) -> None:
if isinstance(event, FileCreatedEvent):
on_file_changed(Path(event.src_path))

View File

@@ -1,6 +1,6 @@
from typing import Any, Literal
from llama_index import Document
from llama_index.core.schema import Document
from pydantic import BaseModel, Field

View File

@@ -12,6 +12,7 @@ Authorization can be done by following fastapi's guides:
* https://fastapi.tiangolo.com/tutorial/security/
* https://fastapi.tiangolo.com/tutorial/dependencies/dependencies-in-path-operation-decorators/
"""
# mypy: ignore-errors
# Disabled mypy error: All conditional function variants must have identical signatures
# We are changing the implementation of the authenticated method, based on

View File

@@ -81,80 +81,88 @@ class DataSettings(BaseModel):
class LLMSettings(BaseModel):
mode: Literal["local", "openai", "sagemaker", "mock"]
mode: Literal[
"llamacpp", "openai", "openailike", "azopenai", "sagemaker", "mock", "ollama"
]
max_new_tokens: int = Field(
256,
description="The maximum number of token that the LLM is authorized to generate in one completion.",
)
context_window: int = Field(
3900,
description="The maximum number of context tokens for the model.",
)
tokenizer: str = Field(
None,
description="The model id of a predefined tokenizer hosted inside a model repo on "
"huggingface.co. Valid model ids can be located at the root-level, like "
"`bert-base-uncased`, or namespaced under a user or organization name, "
"like `HuggingFaceH4/zephyr-7b-beta`. If not set, will load a tokenizer matching "
"gpt-3.5-turbo LLM.",
)
temperature: float = Field(
0.1,
description="The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual.",
)
class VectorstoreSettings(BaseModel):
database: Literal["chroma", "qdrant"]
database: Literal["chroma", "qdrant", "postgres"]
class LocalSettings(BaseModel):
class NodeStoreSettings(BaseModel):
database: Literal["simple", "postgres"]
class LlamaCPPSettings(BaseModel):
llm_hf_repo_id: str
llm_hf_model_file: str
embedding_hf_model_name: str = Field(
description="Name of the HuggingFace model to use for embeddings"
)
prompt_style: Literal[
"llama_cpp.llama-2",
"llama_cpp.alpaca",
"llama_cpp.vicuna",
"llama_cpp.oasst_llama",
"llama_cpp.baichuan-2",
"llama_cpp.baichuan",
"llama_cpp.openbuddy",
"llama_cpp.redpajama-incite",
"llama_cpp.snoozy",
"llama_cpp.phind",
"llama_cpp.intel",
"llama_cpp.open-orca",
"llama_cpp.mistrallite",
"llama_cpp.zephyr",
"llama_cpp.chatml",
"llama_cpp.openchat",
prompt_style: Literal["default", "llama2", "tag", "mistral", "chatml"] = Field(
"llama2",
"vigogne",
"template",
] | None = Field(
None,
description=(
"The prompt style to use for the chat engine. "
"If None is given - use the default prompt style from the llama_index. It should look like `role: message`.\n"
"If `default` - use the default prompt style from the llama_index. It should look like `role: message`.\n"
"If `llama2` - use the llama2 prompt style from the llama_index. Based on `<s>`, `[INST]` and `<<SYS>>`.\n"
"If `llama_cpp.<name>` - use the `<name>` prompt style, implemented by `llama-cpp-python`. \n"
"If `tag` - use the `tag` prompt style. It should look like `<|role|>: message`. \n"
"If `mistral` - use the `mistral prompt style. It shoudl look like <s>[INST] {System Prompt} [/INST]</s>[INST] { UserInstructions } [/INST]"
"`llama2` is the historic behaviour. `default` might work better with your custom models."
),
)
default_system_prompt: str | None = Field(
None,
description=(
"The default system prompt to use for the chat engine. "
"If none is given - use the default system prompt (from the llama_index). "
"Please note that the default prompt might not be the same for all prompt styles. "
"Also note that this is only used if the first message is not a system message. "
),
tfs_z: float = Field(
1.0,
description="Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.",
)
top_k: int = Field(
40,
description="Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)",
)
top_p: float = Field(
0.9,
description="Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)",
)
repeat_penalty: float = Field(
1.1,
description="Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)",
)
template_name: str | None = Field(
None,
description=(
"The name of the template to use for the chat engine, if the `prompt_style` is `template`."
),
class HuggingFaceSettings(BaseModel):
embedding_hf_model_name: str = Field(
description="Name of the HuggingFace model to use for embeddings"
)
class EmbeddingSettings(BaseModel):
mode: Literal["local", "openai", "sagemaker", "mock"]
ingest_mode: Literal["simple", "batch", "parallel"] = Field(
mode: Literal["huggingface", "openai", "azopenai", "sagemaker", "ollama", "mock"]
ingest_mode: Literal["simple", "batch", "parallel", "pipeline"] = Field(
"simple",
description=(
"The ingest mode to use for the embedding engine:\n"
"If `simple` - ingest files sequentially and one by one. It is the historic behaviour.\n"
"If `batch` - if multiple files, parse all the files in parallel, "
"and send them in batch to the embedding model.\n"
"In `pipeline` - The Embedding engine is kept as busy as possible\n"
"If `parallel` - parse the files in parallel using multiple cores, and embedd them in parallel.\n"
"`parallel` is the fastest mode for local setup, as it parallelize IO RW in the index.\n"
"For modes that leverage parallelization, you can specify the number of "
@@ -167,11 +175,16 @@ class EmbeddingSettings(BaseModel):
"The number of workers to use for file ingestion.\n"
"In `batch` mode, this is the number of workers used to parse the files.\n"
"In `parallel` mode, this is the number of workers used to parse the files and embed them.\n"
"In `pipeline` mode, this is the number of workers that can perform embeddings.\n"
"This is only used if `ingest_mode` is not `simple`.\n"
"Do not go too high with this number, as it might cause memory issues. (especially in `parallel` mode)\n"
"Do not set it higher than your number of threads of your CPU."
),
)
embed_dim: int = Field(
384,
description="The dimension of the embeddings stored in the Postgres database",
)
class SagemakerSettings(BaseModel):
@@ -180,12 +193,157 @@ class SagemakerSettings(BaseModel):
class OpenAISettings(BaseModel):
api_base: str = Field(
None,
description="Base URL of OpenAI API. Example: 'https://api.openai.com/v1'.",
)
api_key: str
model: str = Field(
"gpt-3.5-turbo",
description="OpenAI Model to use. Example: 'gpt-4'.",
)
class OllamaSettings(BaseModel):
api_base: str = Field(
"http://localhost:11434",
description="Base URL of Ollama API. Example: 'https://localhost:11434'.",
)
embedding_api_base: str = Field(
"http://localhost:11434",
description="Base URL of Ollama embedding API. Example: 'https://localhost:11434'.",
)
llm_model: str = Field(
None,
description="Model to use. Example: 'llama2-uncensored'.",
)
embedding_model: str = Field(
None,
description="Model to use. Example: 'nomic-embed-text'.",
)
keep_alive: str = Field(
"5m",
description="Time the model will stay loaded in memory after a request. examples: 5m, 5h, '-1' ",
)
tfs_z: float = Field(
1.0,
description="Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.",
)
num_predict: int = Field(
None,
description="Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context)",
)
top_k: int = Field(
40,
description="Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)",
)
top_p: float = Field(
0.9,
description="Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)",
)
repeat_last_n: int = Field(
64,
description="Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)",
)
repeat_penalty: float = Field(
1.1,
description="Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)",
)
request_timeout: float = Field(
120.0,
description="Time elapsed until ollama times out the request. Default is 120s. Format is float. ",
)
class AzureOpenAISettings(BaseModel):
api_key: str
azure_endpoint: str
api_version: str = Field(
"2023_05_15",
description="The API version to use for this operation. This follows the YYYY-MM-DD format.",
)
embedding_deployment_name: str
embedding_model: str = Field(
"text-embedding-ada-002",
description="OpenAI Model to use. Example: 'text-embedding-ada-002'.",
)
llm_deployment_name: str
llm_model: str = Field(
"gpt-35-turbo",
description="OpenAI Model to use. Example: 'gpt-4'.",
)
class UISettings(BaseModel):
enabled: bool
path: str
default_chat_system_prompt: str = Field(
None,
description="The default system prompt to use for the chat mode.",
)
default_query_system_prompt: str = Field(
None, description="The default system prompt to use for the query mode."
)
delete_file_button_enabled: bool = Field(
True, description="If the button to delete a file is enabled or not."
)
delete_all_files_button_enabled: bool = Field(
False, description="If the button to delete all files is enabled or not."
)
class RerankSettings(BaseModel):
enabled: bool = Field(
False,
description="This value controls whether a reranker should be included in the RAG pipeline.",
)
model: str = Field(
"cross-encoder/ms-marco-MiniLM-L-2-v2",
description="Rerank model to use. Limited to SentenceTransformer cross-encoder models.",
)
top_n: int = Field(
2,
description="This value controls the number of documents returned by the RAG pipeline.",
)
class RagSettings(BaseModel):
similarity_top_k: int = Field(
2,
description="This value controls the number of documents returned by the RAG pipeline or considered for reranking if enabled.",
)
similarity_value: float = Field(
None,
description="If set, any documents retrieved from the RAG must meet a certain match score. Acceptable values are between 0 and 1.",
)
rerank: RerankSettings
class PostgresSettings(BaseModel):
host: str = Field(
"localhost",
description="The server hosting the Postgres database",
)
port: int = Field(
5432,
description="The port on which the Postgres database is accessible",
)
user: str = Field(
"postgres",
description="The user to use to connect to the Postgres database",
)
password: str = Field(
"postgres",
description="The password to use to connect to the Postgres database",
)
database: str = Field(
"postgres",
description="The database to use to connect to the Postgres database",
)
schema_name: str = Field(
"public",
description="The name of the schema in the Postgres database to use",
)
class QdrantSettings(BaseModel):
@@ -248,11 +406,17 @@ class Settings(BaseModel):
ui: UISettings
llm: LLMSettings
embedding: EmbeddingSettings
local: LocalSettings
llamacpp: LlamaCPPSettings
huggingface: HuggingFaceSettings
sagemaker: SagemakerSettings
openai: OpenAISettings
ollama: OllamaSettings
azopenai: AzureOpenAISettings
vectorstore: VectorstoreSettings
nodestore: NodeStoreSettings
rag: RagSettings
qdrant: QdrantSettings | None = None
postgres: PostgresSettings | None = None
"""

View File

@@ -16,7 +16,7 @@ logger = logging.getLogger(__name__)
_settings_folder = os.environ.get("PGPT_SETTINGS_FOLDER", PROJECT_ROOT_PATH)
# if running in unittest, use the test profile
_test_profile = ["test"] if "unittest" in sys.modules else []
_test_profile = ["test"] if "tests.fixtures" in sys.modules else []
active_profiles: list[str] = unique_list(
["default"]

View File

@@ -1,6 +1,8 @@
"""This file should be imported only and only if you want to run the UI locally."""
"""This file should be imported if and only if you want to run the UI locally."""
import itertools
import logging
import time
from collections.abc import Iterable
from pathlib import Path
from typing import Any
@@ -9,11 +11,12 @@ import gradio as gr # type: ignore
from fastapi import FastAPI
from gradio.themes.utils.colors import slate # type: ignore
from injector import inject, singleton
from llama_index.llms import ChatMessage, MessageRole
from llama_index.core.llms import ChatMessage, ChatResponse, MessageRole
from pydantic import BaseModel
from private_gpt.constants import PROJECT_ROOT_PATH
from private_gpt.di import global_injector
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chat.chat_service import ChatService, CompletionGen
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
from private_gpt.server.ingest.ingest_service import IngestService
@@ -30,6 +33,8 @@ UI_TAB_TITLE = "My Private GPT"
SOURCES_SEPARATOR = "\n\n Sources: \n"
MODES = ["Query Files", "Search Files", "LLM Chat (no context from files)"]
class Source(BaseModel):
file: str
@@ -40,8 +45,8 @@ class Source(BaseModel):
frozen = True
@staticmethod
def curate_sources(sources: list[Chunk]) -> set["Source"]:
curated_sources = set()
def curate_sources(sources: list[Chunk]) -> list["Source"]:
curated_sources = []
for chunk in sources:
doc_metadata = chunk.document.doc_metadata
@@ -50,32 +55,14 @@ class Source(BaseModel):
page_label = doc_metadata.get("page_label", "-") if doc_metadata else "-"
source = Source(file=file_name, page=page_label, text=chunk.text)
curated_sources.add(source)
curated_sources.append(source)
curated_sources = list(
dict.fromkeys(curated_sources).keys()
) # Unique sources only
return curated_sources
def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]:
full_response: str = ""
stream = completion_gen.response
for delta in stream:
# if isinstance(delta, str):
full_response += str(delta)
# elif isinstance(delta, ChatResponse):
# full_response += delta.delta or ""
yield full_response
if completion_gen.sources:
full_response += SOURCES_SEPARATOR
cur_sources = Source.curate_sources(completion_gen.sources)
sources_text = "\n\n\n".join(
f"{index}. {source.file} (page {source.page})"
for index, source in enumerate(cur_sources, start=1)
)
full_response += sources_text
yield full_response
@singleton
class PrivateGptUi:
@inject
@@ -92,7 +79,39 @@ class PrivateGptUi:
# Cache the UI blocks
self._ui_block = None
self._selected_filename = None
# Initialize system prompt based on default mode
self.mode = MODES[0]
self._system_prompt = self._get_default_system_prompt(self.mode)
def _chat(self, message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]:
full_response: str = ""
stream = completion_gen.response
for delta in stream:
if isinstance(delta, str):
full_response += str(delta)
elif isinstance(delta, ChatResponse):
full_response += delta.delta or ""
yield full_response
time.sleep(0.02)
if completion_gen.sources:
full_response += SOURCES_SEPARATOR
cur_sources = Source.curate_sources(completion_gen.sources)
sources_text = "\n\n\n"
used_files = set()
for index, source in enumerate(cur_sources, start=1):
if f"{source.file}-{source.page}" not in used_files:
sources_text = (
sources_text
+ f"{index}. {source.file} (page {source.page}) \n\n"
)
used_files.add(f"{source.file}-{source.page}")
full_response += sources_text
yield full_response
def build_history() -> list[ChatMessage]:
history_messages: list[ChatMessage] = list(
itertools.chain(
@@ -115,33 +134,44 @@ class PrivateGptUi:
new_message = ChatMessage(content=message, role=MessageRole.USER)
all_messages = [*build_history(), new_message]
# If a system prompt is set, add it as a system message
if self._system_prompt:
all_messages.insert(
0,
ChatMessage(
content=self._system_prompt,
role=MessageRole.SYSTEM,
),
)
match mode:
case "Query Docs":
# Add a system message to force the behaviour of the LLM
# to answer only questions about the provided context.
all_messages.insert(
0,
ChatMessage(
content="You can only answer questions about the provided context. If you know the answer "
"but it is not based in the provided context, don't provide the answer, just state "
"the answer is not in the context provided.",
role=MessageRole.SYSTEM,
),
)
case "Query Files":
# Use only the selected file for the query
context_filter = None
if self._selected_filename is not None:
docs_ids = []
for ingested_document in self._ingest_service.list_ingested():
if (
ingested_document.doc_metadata["file_name"]
== self._selected_filename
):
docs_ids.append(ingested_document.doc_id)
context_filter = ContextFilter(docs_ids=docs_ids)
query_stream = self._chat_service.stream_chat(
messages=all_messages,
use_context=True,
context_filter=context_filter,
)
yield from yield_deltas(query_stream)
case "LLM Chat":
case "LLM Chat (no context from files)":
llm_stream = self._chat_service.stream_chat(
messages=all_messages,
use_context=False,
)
yield from yield_deltas(llm_stream)
case "Search in Docs":
case "Search Files":
response = self._chunks_service.retrieve_relevant(
text=message, limit=4, prev_next_chunks=0
)
@@ -155,6 +185,37 @@ class PrivateGptUi:
for index, source in enumerate(sources, start=1)
)
# On initialization and on mode change, this function set the system prompt
# to the default prompt based on the mode (and user settings).
@staticmethod
def _get_default_system_prompt(mode: str) -> str:
p = ""
match mode:
# For query chat mode, obtain default system prompt from settings
case "Query Files":
p = settings().ui.default_query_system_prompt
# For chat mode, obtain default system prompt from settings
case "LLM Chat (no context from files)":
p = settings().ui.default_chat_system_prompt
# For any other mode, clear the system prompt
case _:
p = ""
return p
def _set_system_prompt(self, system_prompt_input: str) -> None:
logger.info(f"Setting system prompt to: {system_prompt_input}")
self._system_prompt = system_prompt_input
def _set_current_mode(self, mode: str) -> Any:
self.mode = mode
self._set_system_prompt(self._get_default_system_prompt(mode))
# Update placeholder and allow interaction if default system prompt is set
if self._system_prompt:
return gr.update(placeholder=self._system_prompt, interactive=True)
# Update placeholder and disable interaction if no default system prompt is set
else:
return gr.update(placeholder=self._system_prompt, interactive=False)
def _list_ingested_files(self) -> list[list[str]]:
files = set()
for ingested_document in self._ingest_service.list_ingested():
@@ -170,8 +231,71 @@ class PrivateGptUi:
def _upload_file(self, files: list[str]) -> None:
logger.debug("Loading count=%s files", len(files))
paths = [Path(file) for file in files]
# remove all existing Documents with name identical to a new file upload:
file_names = [path.name for path in paths]
doc_ids_to_delete = []
for ingested_document in self._ingest_service.list_ingested():
if (
ingested_document.doc_metadata
and ingested_document.doc_metadata["file_name"] in file_names
):
doc_ids_to_delete.append(ingested_document.doc_id)
if len(doc_ids_to_delete) > 0:
logger.info(
"Uploading file(s) which were already ingested: %s document(s) will be replaced.",
len(doc_ids_to_delete),
)
for doc_id in doc_ids_to_delete:
self._ingest_service.delete(doc_id)
self._ingest_service.bulk_ingest([(str(path.name), path) for path in paths])
def _delete_all_files(self) -> Any:
ingested_files = self._ingest_service.list_ingested()
logger.debug("Deleting count=%s files", len(ingested_files))
for ingested_document in ingested_files:
self._ingest_service.delete(ingested_document.doc_id)
return [
gr.List(self._list_ingested_files()),
gr.components.Button(interactive=False),
gr.components.Button(interactive=False),
gr.components.Textbox("All files"),
]
def _delete_selected_file(self) -> Any:
logger.debug("Deleting selected %s", self._selected_filename)
# Note: keep looping for pdf's (each page became a Document)
for ingested_document in self._ingest_service.list_ingested():
if (
ingested_document.doc_metadata
and ingested_document.doc_metadata["file_name"]
== self._selected_filename
):
self._ingest_service.delete(ingested_document.doc_id)
return [
gr.List(self._list_ingested_files()),
gr.components.Button(interactive=False),
gr.components.Button(interactive=False),
gr.components.Textbox("All files"),
]
def _deselect_selected_file(self) -> Any:
self._selected_filename = None
return [
gr.components.Button(interactive=False),
gr.components.Button(interactive=False),
gr.components.Textbox("All files"),
]
def _selected_a_file(self, select_data: gr.SelectData) -> Any:
self._selected_filename = select_data.value
return [
gr.components.Button(interactive=True),
gr.components.Button(interactive=True),
gr.components.Textbox(self._selected_filename),
]
def _build_ui_blocks(self) -> gr.Blocks:
logger.debug("Creating the UI blocks")
with gr.Blocks(
@@ -186,17 +310,21 @@ class PrivateGptUi:
"justify-content: center;"
"align-items: center;"
"}"
".logo img { height: 25% }",
".logo img { height: 25% }"
".contain { display: flex !important; flex-direction: column !important; }"
"#component-0, #component-3, #component-10, #component-8 { height: 100% !important; }"
"#chatbot { flex-grow: 1 !important; overflow: auto !important;}"
"#col { height: calc(100vh - 112px - 16px) !important; }",
) as blocks:
with gr.Row():
gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div")
with gr.Row():
with gr.Column(scale=3, variant="compact"):
with gr.Row(equal_height=False):
with gr.Column(scale=3):
mode = gr.Radio(
["Query Docs", "Search in Docs", "LLM Chat"],
MODES,
label="Mode",
value="Query Docs",
value="Query Files",
)
upload_button = gr.components.UploadButton(
"Upload File(s)",
@@ -208,6 +336,7 @@ class PrivateGptUi:
self._list_ingested_files,
headers=["File name"],
label="Ingested Files",
height=235,
interactive=False,
render=False, # Rendered under the button
)
@@ -221,19 +350,131 @@ class PrivateGptUi:
outputs=ingested_dataset,
)
ingested_dataset.render()
with gr.Column(scale=7):
deselect_file_button = gr.components.Button(
"De-select selected file", size="sm", interactive=False
)
selected_text = gr.components.Textbox(
"All files", label="Selected for Query or Deletion", max_lines=1
)
delete_file_button = gr.components.Button(
"🗑️ Delete selected file",
size="sm",
visible=settings().ui.delete_file_button_enabled,
interactive=False,
)
delete_files_button = gr.components.Button(
"⚠️ Delete ALL files",
size="sm",
visible=settings().ui.delete_all_files_button_enabled,
)
deselect_file_button.click(
self._deselect_selected_file,
outputs=[
delete_file_button,
deselect_file_button,
selected_text,
],
)
ingested_dataset.select(
fn=self._selected_a_file,
outputs=[
delete_file_button,
deselect_file_button,
selected_text,
],
)
delete_file_button.click(
self._delete_selected_file,
outputs=[
ingested_dataset,
delete_file_button,
deselect_file_button,
selected_text,
],
)
delete_files_button.click(
self._delete_all_files,
outputs=[
ingested_dataset,
delete_file_button,
deselect_file_button,
selected_text,
],
)
system_prompt_input = gr.Textbox(
placeholder=self._system_prompt,
label="System Prompt",
lines=2,
interactive=True,
render=False,
)
# When mode changes, set default system prompt
mode.change(
self._set_current_mode, inputs=mode, outputs=system_prompt_input
)
# On blur, set system prompt to use in queries
system_prompt_input.blur(
self._set_system_prompt,
inputs=system_prompt_input,
)
def get_model_label() -> str | None:
"""Get model label from llm mode setting YAML.
Raises:
ValueError: If an invalid 'llm_mode' is encountered.
Returns:
str: The corresponding model label.
"""
# Get model label from llm mode setting YAML
# Labels: local, openai, openailike, sagemaker, mock, ollama
config_settings = settings()
if config_settings is None:
raise ValueError("Settings are not configured.")
# Get llm_mode from settings
llm_mode = config_settings.llm.mode
# Mapping of 'llm_mode' to corresponding model labels
model_mapping = {
"llamacpp": config_settings.llamacpp.llm_hf_model_file,
"openai": config_settings.openai.model,
"openailike": config_settings.openai.model,
"sagemaker": config_settings.sagemaker.llm_endpoint_name,
"mock": llm_mode,
"ollama": config_settings.ollama.llm_model,
}
if llm_mode not in model_mapping:
print(f"Invalid 'llm mode': {llm_mode}")
return None
return model_mapping[llm_mode]
with gr.Column(scale=7, elem_id="col"):
# Determine the model label based on the value of PGPT_PROFILES
model_label = get_model_label()
if model_label is not None:
label_text = (
f"LLM: {settings().llm.mode} | Model: {model_label}"
)
else:
label_text = f"LLM: {settings().llm.mode}"
_ = gr.ChatInterface(
self._chat,
chatbot=gr.Chatbot(
label=f"LLM: {settings().llm.mode}",
label=label_text,
show_copy_button=True,
elem_id="chatbot",
render=False,
avatar_images=(
None,
AVATAR_BOT,
),
),
additional_inputs=[mode, upload_button],
additional_inputs=[mode, upload_button, system_prompt_input],
)
return blocks

122
private_gpt/utils/eta.py Normal file
View File

@@ -0,0 +1,122 @@
import datetime
import logging
import math
import time
from collections import deque
from typing import Any
logger = logging.getLogger(__name__)
def human_time(*args: Any, **kwargs: Any) -> str:
def timedelta_total_seconds(timedelta: datetime.timedelta) -> float:
return (
timedelta.microseconds
+ 0.0
+ (timedelta.seconds + timedelta.days * 24 * 3600) * 10**6
) / 10**6
secs = float(timedelta_total_seconds(datetime.timedelta(*args, **kwargs)))
# We want (ms) precision below 2 seconds
if secs < 2:
return f"{secs * 1000}ms"
units = [("y", 86400 * 365), ("d", 86400), ("h", 3600), ("m", 60), ("s", 1)]
parts = []
for unit, mul in units:
if secs / mul >= 1 or mul == 1:
if mul > 1:
n = int(math.floor(secs / mul))
secs -= n * mul
else:
# >2s we drop the (ms) component.
n = int(secs)
if n:
parts.append(f"{n}{unit}")
return " ".join(parts)
def eta(iterator: list[Any]) -> Any:
"""Report an ETA after 30s and every 60s thereafter."""
total = len(iterator)
_eta = ETA(total)
_eta.needReport(30)
for processed, data in enumerate(iterator, start=1):
yield data
_eta.update(processed)
if _eta.needReport(60):
logger.info(f"{processed}/{total} - ETA {_eta.human_time()}")
class ETA:
"""Predict how long something will take to complete."""
def __init__(self, total: int):
self.total: int = total # Total expected records.
self.rate: float = 0.0 # per second
self._timing_data: deque[tuple[float, int]] = deque(maxlen=100)
self.secondsLeft: float = 0.0
self.nexttime: float = 0.0
def human_time(self) -> str:
if self._calc():
return f"{human_time(seconds=self.secondsLeft)} @ {int(self.rate * 60)}/min"
return "(computing)"
def update(self, count: int) -> None:
# count should be in the range 0 to self.total
assert count > 0
assert count <= self.total
self._timing_data.append((time.time(), count)) # (X,Y) for pearson
def needReport(self, whenSecs: int) -> bool:
now = time.time()
if now > self.nexttime:
self.nexttime = now + whenSecs
return True
return False
def _calc(self) -> bool:
# A sample before a prediction. Need two points to compute slope!
if len(self._timing_data) < 3:
return False
# http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
# Calculate means and standard deviations.
samples = len(self._timing_data)
# column wise sum of the timing tuples to compute their mean.
mean_x, mean_y = (
sum(i) / samples for i in zip(*self._timing_data, strict=False)
)
std_x = math.sqrt(
sum(pow(i[0] - mean_x, 2) for i in self._timing_data) / (samples - 1)
)
std_y = math.sqrt(
sum(pow(i[1] - mean_y, 2) for i in self._timing_data) / (samples - 1)
)
# Calculate coefficient.
sum_xy, sum_sq_v_x, sum_sq_v_y = 0.0, 0.0, 0
for x, y in self._timing_data:
x -= mean_x
y -= mean_y
sum_xy += x * y
sum_sq_v_x += pow(x, 2)
sum_sq_v_y += pow(y, 2)
pearson_r = sum_xy / math.sqrt(sum_sq_v_x * sum_sq_v_y)
# Calculate regression line.
# y = mx + b where m is the slope and b is the y-intercept.
m = self.rate = pearson_r * (std_y / std_x)
y = self.total
b = mean_y - m * mean_x
x = (y - b) / m
# Calculate fitted line (transformed/shifted regression line horizontally).
fitted_b = self._timing_data[-1][1] - (m * self._timing_data[-1][0])
fitted_x = (y - fitted_b) / m
_, count = self._timing_data[-1] # adjust last data point progress count
adjusted_x = ((fitted_x - x) * (count / self.total)) + x
eta_epoch = adjusted_x
self.secondsLeft = max([eta_epoch - time.time(), 0])
return True

View File

@@ -1,21 +1,68 @@
[tool.poetry]
name = "private-gpt"
version = "0.1.0"
version = "0.5.0"
description = "Private GPT"
authors = ["Zylon <hi@zylon.ai>"]
[tool.poetry.dependencies]
python = ">=3.11,<3.12"
fastapi = { extras = ["all"], version = "^0.103.1" }
boto3 = "^1.28.56"
# PrivateGPT
fastapi = { extras = ["all"], version = "^0.110.0" }
python-multipart = "^0.0.9"
injector = "^0.21.0"
pyyaml = "^6.0.1"
python-multipart = "^0.0.6"
pypdf = "^3.16.2"
llama-index = { extras = ["local_models"], version = "0.9.10" }
watchdog = "^3.0.0"
qdrant-client = "^1.6.9"
chromadb = {version = "^0.4.13", optional = true}
watchdog = "^4.0.0"
transformers = "^4.38.2"
# LlamaIndex core libs
llama-index-core = "^0.10.14"
llama-index-readers-file = "^0.1.6"
# Optional LlamaIndex integration libs
llama-index-llms-llama-cpp = {version = "^0.1.3", optional = true}
llama-index-llms-openai = {version = "^0.1.6", optional = true}
llama-index-llms-openai-like = {version ="^0.1.3", optional = true}
llama-index-llms-ollama = {version ="^0.1.2", optional = true}
llama-index-llms-azure-openai = {version ="^0.1.5", optional = true}
llama-index-embeddings-ollama = {version ="^0.1.2", optional = true}
llama-index-embeddings-huggingface = {version ="^0.1.4", optional = true}
llama-index-embeddings-openai = {version ="^0.1.6", optional = true}
llama-index-embeddings-azure-openai = {version ="^0.1.6", optional = true}
llama-index-vector-stores-qdrant = {version ="^0.1.3", optional = true}
llama-index-vector-stores-chroma = {version ="^0.1.4", optional = true}
llama-index-vector-stores-postgres = {version ="^0.1.2", optional = true}
llama-index-storage-docstore-postgres = {version ="^0.1.2", optional = true}
llama-index-storage-index-store-postgres = {version ="^0.1.2", optional = true}
# Postgres
psycopg2-binary = {version ="^2.9.9", optional = true}
asyncpg = {version="^0.29.0", optional = true}
# Optional Sagemaker dependency
boto3 = {version ="^1.34.51", optional = true}
# Optional Reranker dependencies
torch = {version ="^2.1.2", optional = true}
sentence-transformers = {version ="^2.6.1", optional = true}
# Optional UI
gradio = {version ="^4.19.2", optional = true}
[tool.poetry.extras]
ui = ["gradio"]
llms-llama-cpp = ["llama-index-llms-llama-cpp"]
llms-openai = ["llama-index-llms-openai"]
llms-openai-like = ["llama-index-llms-openai-like"]
llms-ollama = ["llama-index-llms-ollama"]
llms-sagemaker = ["boto3"]
llms-azopenai = ["llama-index-llms-azure-openai"]
embeddings-ollama = ["llama-index-embeddings-ollama"]
embeddings-huggingface = ["llama-index-embeddings-huggingface"]
embeddings-openai = ["llama-index-embeddings-openai"]
embeddings-sagemaker = ["boto3"]
embeddings-azopenai = ["llama-index-embeddings-azure-openai"]
vector-stores-qdrant = ["llama-index-vector-stores-qdrant"]
vector-stores-chroma = ["llama-index-vector-stores-chroma"]
vector-stores-postgres = ["llama-index-vector-stores-postgres"]
storage-nodestore-postgres = ["llama-index-storage-docstore-postgres","llama-index-storage-index-store-postgres","psycopg2-binary","asyncpg"]
rerank-sentence-transformers = ["torch", "sentence-transformers"]
[tool.poetry.group.dev.dependencies]
black = "^22"
@@ -27,26 +74,6 @@ ruff = "^0"
pytest-asyncio = "^0.21.1"
types-pyyaml = "^6.0.12.12"
# Dependencies for gradio UI
[tool.poetry.group.ui]
optional = true
[tool.poetry.group.ui.dependencies]
gradio = "^4.7.1"
[tool.poetry.group.local]
optional = true
[tool.poetry.group.local.dependencies]
llama-cpp-python = "^0.2.20"
jinja2 = "^3.1.2"
# numpy = "1.26.0"
sentence-transformers = "^2.2.2"
# https://stackoverflow.com/questions/76327419/valueerror-libcublas-so-0-9-not-found-in-the-system-path
torch = ">=2.0.0, !=2.0.1, !=2.1.0"
transformers = "^4.35.2"
[tool.poetry.extras]
chroma = ["chromadb"]
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
@@ -139,6 +166,9 @@ explicit_package_bases = true
warn_unused_ignores = false
exclude = ["tests"]
[tool.mypy-llama-index]
ignore_missing_imports = true
[tool.pytest.ini_options]
asyncio_mode = "auto"
testpaths = ["tests"]

View File

@@ -1,6 +1,7 @@
import argparse
import json
import sys
import yaml
from uvicorn.importer import import_from_string

View File

@@ -18,22 +18,23 @@ class LocalIngestWorker:
self.total_documents = 0
self.current_document_count = 0
self._files_under_root_folder: list[Path] = list()
self._files_under_root_folder: list[Path] = []
def _find_all_files_in_folder(self, root_path: Path) -> None:
def _find_all_files_in_folder(self, root_path: Path, ignored: list[str]) -> None:
"""Search all files under the root folder recursively.
Count them at the same time
"""
for file_path in root_path.iterdir():
if file_path.is_file():
if file_path.is_file() and file_path.name not in ignored:
self.total_documents += 1
self._files_under_root_folder.append(file_path)
elif file_path.is_dir():
self._find_all_files_in_folder(file_path)
elif file_path.is_dir() and file_path.name not in ignored:
self._find_all_files_in_folder(file_path, ignored)
def ingest_folder(self, folder_path: Path) -> None:
def ingest_folder(self, folder_path: Path, ignored: list[str]) -> None:
# Count total documents before ingestion
self._find_all_files_in_folder(folder_path)
self._find_all_files_in_folder(folder_path, ignored)
self._ingest_all(self._files_under_root_folder)
def _ingest_all(self, files_to_ingest: list[Path]) -> None:
@@ -48,7 +49,7 @@ class LocalIngestWorker:
try:
if changed_path.exists():
logger.info(f"Started ingesting file={changed_path}")
self.ingest_service.ingest(changed_path.name, changed_path)
self.ingest_service.ingest_file(changed_path.name, changed_path)
logger.info(f"Completed ingesting file={changed_path}")
except Exception:
logger.exception(
@@ -64,12 +65,19 @@ parser.add_argument(
action=argparse.BooleanOptionalAction,
default=False,
)
parser.add_argument(
"--ignored",
nargs="*",
help="List of files/directories to ignore",
default=[],
)
parser.add_argument(
"--log-file",
help="Optional path to a log file. If provided, logs will be written to this file.",
type=str,
default=None,
)
args = parser.parse_args()
# Set up logging to a file if a path is provided
@@ -91,9 +99,17 @@ if __name__ == "__main__":
ingest_service = global_injector.get(IngestService)
worker = LocalIngestWorker(ingest_service)
worker.ingest_folder(root_path)
worker.ingest_folder(root_path, args.ignored)
if args.ignored:
logger.info(f"Skipping following files and directories: {args.ignored}")
if args.watch:
logger.info(f"Watching {args.folder} for changes, press Ctrl+C to stop...")
directories_to_watch = [
dir
for dir in root_path.iterdir()
if dir.is_dir() and dir.name not in args.ignored
]
watcher = IngestWatcher(args.folder, worker.ingest_on_watch)
watcher.start()

View File

@@ -3,37 +3,47 @@ import os
import argparse
from huggingface_hub import hf_hub_download, snapshot_download
from transformers import AutoTokenizer
from private_gpt.paths import models_path, models_cache_path
from private_gpt.settings.settings import settings
resume_download = True
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='Setup: Download models from huggingface')
parser = argparse.ArgumentParser(prog='Setup: Download models from Hugging Face')
parser.add_argument('--resume', default=True, action=argparse.BooleanOptionalAction, help='Enable/Disable resume_download options to restart the download progress interrupted')
args = parser.parse_args()
resume_download = args.resume
os.makedirs(models_path, exist_ok=True)
embedding_path = models_path / "embedding"
print(f"Downloading embedding {settings().local.embedding_hf_model_name}")
# Download Embedding model
embedding_path = models_path / "embedding"
print(f"Downloading embedding {settings().huggingface.embedding_hf_model_name}")
snapshot_download(
repo_id=settings().local.embedding_hf_model_name,
repo_id=settings().huggingface.embedding_hf_model_name,
cache_dir=models_cache_path,
local_dir=embedding_path,
)
print("Embedding model downloaded!")
print("Downloading models for local execution...")
# Download LLM and create a symlink to the model file
print(f"Downloading LLM {settings().llamacpp.llm_hf_model_file}")
hf_hub_download(
repo_id=settings().local.llm_hf_repo_id,
filename=settings().local.llm_hf_model_file,
repo_id=settings().llamacpp.llm_hf_repo_id,
filename=settings().llamacpp.llm_hf_model_file,
cache_dir=models_cache_path,
local_dir=models_path,
resume_download=resume_download,
)
print("LLM model downloaded!")
# Download Tokenizer
print(f"Downloading tokenizer {settings().llm.tokenizer}")
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=settings().llm.tokenizer,
cache_dir=models_cache_path,
)
print("Tokenizer downloaded!")
print("Setup done")

View File

@@ -1,10 +1,22 @@
import argparse
import os
import shutil
from typing import Any, ClassVar
from private_gpt.paths import local_data_path
from private_gpt.settings.settings import settings
def wipe():
path = "local_data"
def wipe_file(file: str) -> None:
if os.path.isfile(file):
os.remove(file)
print(f" - Deleted {file}")
def wipe_tree(path: str) -> None:
if not os.path.exists(path):
print(f"Warning: Path not found {path}")
return
print(f"Wiping {path}...")
all_files = os.listdir(path)
@@ -24,14 +36,149 @@ def wipe():
continue
if __name__ == "__main__":
commands = {
"wipe": wipe,
class Postgres:
tables: ClassVar[dict[str, list[str]]] = {
"nodestore": ["data_docstore", "data_indexstore"],
"vectorstore": ["data_embeddings"],
}
parser = argparse.ArgumentParser()
parser.add_argument(
"mode", help="select a mode to run", choices=list(commands.keys())
def __init__(self) -> None:
try:
import psycopg2
except ModuleNotFoundError:
raise ModuleNotFoundError("Postgres dependencies not found") from None
connection = settings().postgres.model_dump(exclude_none=True)
self.schema = connection.pop("schema_name")
self.conn = psycopg2.connect(**connection)
def wipe(self, storetype: str) -> None:
cur = self.conn.cursor()
try:
for table in self.tables[storetype]:
sql = f"DROP TABLE IF EXISTS {self.schema}.{table}"
cur.execute(sql)
print(f"Table {self.schema}.{table} dropped.")
self.conn.commit()
finally:
cur.close()
def stats(self, store_type: str) -> None:
template = "SELECT '{table}', COUNT(*), pg_size_pretty(pg_total_relation_size('{table}')) FROM {table}"
sql = " UNION ALL ".join(
template.format(table=tbl) for tbl in self.tables[store_type]
)
cur = self.conn.cursor()
try:
print(f"Storage for Postgres {store_type}.")
print("{:<15} | {:>15} | {:>9}".format("Table", "Rows", "Size"))
print("-" * 45) # Print a line separator
cur.execute(sql)
for row in cur.fetchall():
formatted_row_count = f"{row[1]:,}"
print(f"{row[0]:<15} | {formatted_row_count:>15} | {row[2]:>9}")
print()
finally:
cur.close()
def __del__(self):
if hasattr(self, "conn") and self.conn:
self.conn.close()
class Simple:
def wipe(self, store_type: str) -> None:
assert store_type == "nodestore"
from llama_index.core.storage.docstore.types import (
DEFAULT_PERSIST_FNAME as DOCSTORE,
)
from llama_index.core.storage.index_store.types import (
DEFAULT_PERSIST_FNAME as INDEXSTORE,
)
for store in (DOCSTORE, INDEXSTORE):
wipe_file(str((local_data_path / store).absolute()))
class Chroma:
def wipe(self, store_type: str) -> None:
assert store_type == "vectorstore"
wipe_tree(str((local_data_path / "chroma_db").absolute()))
class Qdrant:
COLLECTION = (
"make_this_parameterizable_per_api_call" # ?! see vector_store_component.py
)
def __init__(self) -> None:
try:
from qdrant_client import QdrantClient # type: ignore
except ImportError:
raise ImportError("Qdrant dependencies not found") from None
self.client = QdrantClient(**settings().qdrant.model_dump(exclude_none=True))
def wipe(self, store_type: str) -> None:
assert store_type == "vectorstore"
try:
self.client.delete_collection(self.COLLECTION)
print("Collection dropped successfully.")
except Exception as e:
print("Error dropping collection:", e)
def stats(self, store_type: str) -> None:
print(f"Storage for Qdrant {store_type}.")
try:
collection_data = self.client.get_collection(self.COLLECTION)
if collection_data:
# Collection Info
# https://qdrant.tech/documentation/concepts/collections/
print(f"\tPoints: {collection_data.points_count:,}")
print(f"\tVectors: {collection_data.vectors_count:,}")
print(f"\tIndex Vectors: {collection_data.indexed_vectors_count:,}")
return
except ValueError:
pass
print("\t- Qdrant collection not found or empty")
class Command:
DB_HANDLERS: ClassVar[dict[str, Any]] = {
"simple": Simple, # node store
"chroma": Chroma, # vector store
"postgres": Postgres, # node, index and vector store
"qdrant": Qdrant, # vector store
}
def for_each_store(self, cmd: str):
for store_type in ("nodestore", "vectorstore"):
database = getattr(settings(), store_type).database
handler_class = self.DB_HANDLERS.get(database)
if handler_class is None:
print(f"No handler found for database '{database}'")
continue
handler_instance = handler_class() # Instantiate the class
# If the DB can handle this cmd dispatch it.
if hasattr(handler_instance, cmd) and callable(
func := getattr(handler_instance, cmd)
):
func(store_type)
else:
print(
f"Unable to execute command '{cmd}' on '{store_type}' in database '{database}'"
)
def execute(self, cmd: str) -> None:
if cmd in ("wipe", "stats"):
self.for_each_store(cmd)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("mode", help="select a mode to run", choices=["wipe", "stats"])
args = parser.parse_args()
commands[args.mode.lower()]()
Command().execute(args.mode.lower())

17
settings-azopenai.yaml Normal file
View File

@@ -0,0 +1,17 @@
server:
env_name: ${APP_ENV:azopenai}
llm:
mode: azopenai
embedding:
mode: azopenai
azopenai:
api_key: ${AZ_OPENAI_API_KEY:}
azure_endpoint: ${AZ_OPENAI_ENDPOINT:}
embedding_deployment_name: ${AZ_OPENAI_EMBEDDING_DEPLOYMENT_NAME:}
llm_deployment_name: ${AZ_OPENAI_LLM_DEPLOYMENT_NAME:}
api_version: "2023-05-15"
embedding_model: text-embedding-ada-002
llm_model: gpt-35-turbo

View File

@@ -5,15 +5,31 @@ server:
llm:
mode: ${PGPT_MODE:mock}
local:
embedding:
mode: ${PGPT_MODE:sagemaker}
llamacpp:
llm_hf_repo_id: ${PGPT_HF_REPO_ID:TheBloke/Mistral-7B-Instruct-v0.1-GGUF}
llm_hf_model_file: ${PGPT_HF_MODEL_FILE:mistral-7b-instruct-v0.1.Q4_K_M.gguf}
huggingface:
embedding_hf_model_name: ${PGPT_EMBEDDING_HF_MODEL_NAME:BAAI/bge-small-en-v1.5}
sagemaker:
llm_endpoint_name: ${PGPT_SAGEMAKER_LLM_ENDPOINT_NAME:}
embedding_endpoint_name: ${PGPT_SAGEMAKER_EMBEDDING_ENDPOINT_NAME:}
ollama:
llm_model: ${PGPT_OLLAMA_LLM_MODEL:mistral}
embedding_model: ${PGPT_OLLAMA_EMBEDDING_MODEL:nomic-embed-text}
api_base: ${PGPT_OLLAMA_API_BASE:http://ollama:11434}
tfs_z: ${PGPT_OLLAMA_TFS_Z:1.0}
top_k: ${PGPT_OLLAMA_TOP_K:40}
top_p: ${PGPT_OLLAMA_TOP_P:0.9}
repeat_last_n: ${PGPT_OLLAMA_REPEAT_LAST_N:64}
repeat_penalty: ${PGPT_OLLAMA_REPEAT_PENALTY:1.2}
request_timeout: ${PGPT_OLLAMA_REQUEST_TIMEOUT:600.0}
ui:
enabled: true
path: /
path: /

View File

@@ -1,5 +1,27 @@
# poetry install --extras "ui llms-llama-cpp vector-stores-qdrant embeddings-huggingface"
server:
env_name: ${APP_ENV:local}
llm:
mode: local
mode: llamacpp
# Should be matching the selected model
max_new_tokens: 512
context_window: 3900
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
llamacpp:
prompt_style: "mistral"
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
embedding:
mode: huggingface
huggingface:
embedding_hf_model_name: BAAI/bge-small-en-v1.5
vectorstore:
database: qdrant
qdrant:
path: local_data/private_gpt/qdrant

View File

@@ -4,5 +4,6 @@ server:
# This configuration allows you to use GPU for creating embeddings while avoiding loading LLM into vRAM
llm:
mode: mock
embedding:
mode: local
mode: huggingface

34
settings-ollama-pg.yaml Normal file
View File

@@ -0,0 +1,34 @@
# Using ollama and postgres for the vector, doc and index store. Ollama is also used for embeddings.
# To use install these extras:
# poetry install --extras "llms-ollama ui vector-stores-postgres embeddings-ollama storage-nodestore-postgres"
server:
env_name: ${APP_ENV:ollama}
llm:
mode: ollama
max_new_tokens: 512
context_window: 3900
embedding:
mode: ollama
embed_dim: 768
ollama:
llm_model: mistral
embedding_model: nomic-embed-text
api_base: http://localhost:11434
nodestore:
database: postgres
vectorstore:
database: postgres
postgres:
host: localhost
port: 5432
database: postgres
user: postgres
password: admin
schema_name: private_gpt

30
settings-ollama.yaml Normal file
View File

@@ -0,0 +1,30 @@
server:
env_name: ${APP_ENV:ollama}
llm:
mode: ollama
max_new_tokens: 512
context_window: 3900
temperature: 0.1 #The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
embedding:
mode: ollama
ollama:
llm_model: mistral
embedding_model: nomic-embed-text
api_base: http://localhost:11434
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama
keep_alive: 5m
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
top_p: 0.9 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
repeat_last_n: 64 # Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)
repeat_penalty: 1.2 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
request_timeout: 120.0 # Time elapsed until ollama times out the request. Default is 120s. Format is float.
vectorstore:
database: qdrant
qdrant:
path: local_data/private_gpt/qdrant

12
settings-openai.yaml Normal file
View File

@@ -0,0 +1,12 @@
server:
env_name: ${APP_ENV:openai}
llm:
mode: openai
embedding:
mode: openai
openai:
api_key: ${OPENAI_API_KEY:}
model: gpt-3.5-turbo

View File

@@ -1,5 +1,5 @@
server:
env_name: ${APP_ENV:prod}
env_name: ${APP_ENV:sagemaker}
port: ${PORT:8001}
ui:
@@ -9,6 +9,9 @@ ui:
llm:
mode: sagemaker
embedding:
mode: sagemaker
sagemaker:
llm_endpoint_name: huggingface-pytorch-tgi-inference-2023-09-25-19-53-32-140
embedding_endpoint_name: huggingface-pytorch-inference-2023-11-03-07-41-36-479
llm_endpoint_name: llm
embedding_endpoint_name: embedding

View File

@@ -14,5 +14,8 @@ qdrant:
llm:
mode: mock
embedding:
mode: mock
ui:
enabled: false

17
settings-vllm.yaml Normal file
View File

@@ -0,0 +1,17 @@
server:
env_name: ${APP_ENV:vllm}
llm:
mode: openailike
embedding:
mode: huggingface
ingest_mode: simple
huggingface:
embedding_hf_model_name: BAAI/bge-small-en-v1.5
openai:
api_base: http://localhost:8000/v1
api_key: EMPTY
model: facebook/opt-125m

View File

@@ -22,26 +22,70 @@ data:
ui:
enabled: true
path: /
default_chat_system_prompt: >
You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible and follow ALL given instructions.
Do not speculate or make up information.
Do not reference any given instructions or context.
default_query_system_prompt: >
You can only answer questions about the provided context.
If you know the answer but it is not based in the provided context, don't provide
the answer, just state the answer is not in the context provided.
delete_file_button_enabled: true
delete_all_files_button_enabled: true
llm:
mode: local
mode: llamacpp
# Should be matching the selected model
max_new_tokens: 512
context_window: 3900
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
rag:
similarity_top_k: 2
#This value controls how many "top" documents the RAG returns to use in the context.
#similarity_value: 0.45
#This value is disabled by default. If you enable this settings, the RAG will only use articles that meet a certain percentage score.
rerank:
enabled: false
model: cross-encoder/ms-marco-MiniLM-L-2-v2
top_n: 1
llamacpp:
prompt_style: "mistral"
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
top_p: 1.0 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
repeat_penalty: 1.1 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
embedding:
# Should be matching the value above in most cases
mode: local
mode: huggingface
ingest_mode: simple
embed_dim: 384 # 384 is for BAAI/bge-small-en-v1.5
huggingface:
embedding_hf_model_name: BAAI/bge-small-en-v1.5
vectorstore:
database: qdrant
nodestore:
database: simple
qdrant:
path: local_data/private_gpt/qdrant
local:
prompt_style: "llama2"
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.1-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.1.Q4_K_M.gguf
embedding_hf_model_name: BAAI/bge-small-en-v1.5
postgres:
host: localhost
port: 5432
database: postgres
user: postgres
password: postgres
schema_name: private_gpt
sagemaker:
llm_endpoint_name: huggingface-pytorch-tgi-inference-2023-09-25-19-53-32-140
@@ -49,3 +93,21 @@ sagemaker:
openai:
api_key: ${OPENAI_API_KEY:}
model: gpt-3.5-turbo
ollama:
llm_model: llama2
embedding_model: nomic-embed-text
api_base: http://localhost:11434
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama
keep_alive: 5m
request_timeout: 120.0
azopenai:
api_key: ${AZ_OPENAI_API_KEY:}
azure_endpoint: ${AZ_OPENAI_ENDPOINT:}
embedding_deployment_name: ${AZ_OPENAI_EMBEDDING_DEPLOYMENT_NAME:}
llm_deployment_name: ${AZ_OPENAI_LLM_DEPLOYMENT_NAME:}
api_version: "2023-05-15"
embedding_model: text-embedding-ada-002
llm_model: gpt-35-turbo

View File

@@ -13,7 +13,7 @@ class IngestHelper:
def ingest_file(self, path: Path) -> IngestResponse:
files = {"file": (path.name, path.open("rb"))}
response = self.test_client.post("/v1/ingest", files=files)
response = self.test_client.post("/v1/ingest/file", files=files)
assert response.status_code == 200
ingest_result = IngestResponse.model_validate(response.json())
return ingest_result

View File

@@ -3,6 +3,7 @@ from pathlib import Path
from fastapi.testclient import TestClient
from private_gpt.server.ingest.ingest_router import IngestResponse
from tests.fixtures.ingest_helper import IngestHelper
@@ -34,3 +35,12 @@ def test_ingest_list_returns_something_after_ingestion(
assert (
count_ingest_after == count_ingest_before + 1
), "The temp doc should be returned"
def test_ingest_plain_text(test_client: TestClient) -> None:
response = test_client.post(
"/v1/ingest/text", json={"file_name": "file_name", "text": "text"}
)
assert response.status_code == 200
ingest_result = IngestResponse.model_validate(response.json())
assert len(ingest_result.data) == 1

View File

@@ -5,6 +5,7 @@ NOTE: We are not testing the switch based on the config in
is currently architecture (it is hard to patch the `settings` and the app while
the tests are directly importing them).
"""
from typing import Annotated
import pytest

View File

@@ -1,80 +1,30 @@
import sys
from pathlib import Path
from tempfile import NamedTemporaryFile
import pytest
from llama_index.llms import ChatMessage, MessageRole
from llama_index.core.llms import ChatMessage, MessageRole
try:
from private_gpt.components.llm.prompt.prompt_helper import (
DefaultPromptStyle,
LlamaCppPromptStyle,
LlamaIndexPromptStyle,
TemplatePromptStyle,
VigognePromptStyle,
get_prompt_style,
)
except ImportError:
DefaultPromptStyle = None
LlamaCppPromptStyle = None
LlamaIndexPromptStyle = None
TemplatePromptStyle = None
VigognePromptStyle = None
get_prompt_style = None
@pytest.mark.skipif(
"llama_cpp" not in sys.modules, reason="requires the llama-cpp-python library"
from private_gpt.components.llm.prompt_helper import (
ChatMLPromptStyle,
DefaultPromptStyle,
Llama2PromptStyle,
MistralPromptStyle,
TagPromptStyle,
get_prompt_style,
)
@pytest.mark.parametrize(
("prompt_style", "expected_prompt_style"),
[
(None, DefaultPromptStyle),
("llama2", LlamaIndexPromptStyle),
("vigogne", VigognePromptStyle),
("llama_cpp.alpaca", LlamaCppPromptStyle),
("llama_cpp.zephyr", LlamaCppPromptStyle),
("default", DefaultPromptStyle),
("llama2", Llama2PromptStyle),
("tag", TagPromptStyle),
("mistral", MistralPromptStyle),
("chatml", ChatMLPromptStyle),
],
)
def test_get_prompt_style_success(prompt_style, expected_prompt_style):
assert type(get_prompt_style(prompt_style)) == expected_prompt_style
assert isinstance(get_prompt_style(prompt_style), expected_prompt_style)
@pytest.mark.skipif(
"llama_cpp" not in sys.modules, reason="requires the llama-cpp-python library"
)
def test_get_prompt_style_template_success():
jinja_template = "{% for message in messages %}<|{{message['role']}}|>: {{message['content'].strip() + '\\n'}}{% endfor %}<|assistant|>: "
with NamedTemporaryFile("w") as tmp_file:
path = Path(tmp_file.name)
tmp_file.write(jinja_template)
tmp_file.flush()
tmp_file.seek(0)
prompt_style = get_prompt_style(
"template", template_name=path.name, template_dir=path.parent
)
assert type(prompt_style) == TemplatePromptStyle
prompt = prompt_style.messages_to_prompt(
[
ChatMessage(
content="You are an AI assistant.", role=MessageRole.SYSTEM
),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
)
expected_prompt = (
"<|system|>: You are an AI assistant.\n"
"<|user|>: Hello, how are you doing?\n"
"<|assistant|>: "
)
assert prompt == expected_prompt
@pytest.mark.skipif(
"llama_cpp" not in sys.modules, reason="requires the llama-cpp-python library"
)
def test_get_prompt_style_failure():
prompt_style = "unknown"
with pytest.raises(ValueError) as exc_info:
@@ -82,11 +32,8 @@ def test_get_prompt_style_failure():
assert str(exc_info.value) == f"Unknown prompt_style='{prompt_style}'"
@pytest.mark.skipif(
"llama_cpp" not in sys.modules, reason="requires the llama-cpp-python library"
)
def test_tag_prompt_style_format():
prompt_style = VigognePromptStyle()
prompt_style = TagPromptStyle()
messages = [
ChatMessage(content="You are an AI assistant.", role=MessageRole.SYSTEM),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
@@ -101,24 +48,8 @@ def test_tag_prompt_style_format():
assert prompt_style.messages_to_prompt(messages) == expected_prompt
@pytest.mark.skipif(
"llama_cpp" not in sys.modules, reason="requires the llama-cpp-python library"
)
def test_tag_prompt_style_format_with_system_prompt():
system_prompt = "This is a system prompt from configuration."
prompt_style = VigognePromptStyle(default_system_prompt=system_prompt)
messages = [
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
f"<|system|>: {system_prompt}\n"
"<|user|>: Hello, how are you doing?\n"
"<|assistant|>: "
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
prompt_style = TagPromptStyle()
messages = [
ChatMessage(
content="FOO BAR Custom sys prompt from messages.", role=MessageRole.SYSTEM
@@ -135,11 +66,41 @@ def test_tag_prompt_style_format_with_system_prompt():
assert prompt_style.messages_to_prompt(messages) == expected_prompt
@pytest.mark.skipif(
"llama_cpp" not in sys.modules, reason="requires the llama-cpp-python library"
)
def test_mistral_prompt_style_format():
prompt_style = MistralPromptStyle()
messages = [
ChatMessage(content="You are an AI assistant.", role=MessageRole.SYSTEM),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<s>[INST] You are an AI assistant. [/INST]</s>"
"[INST] Hello, how are you doing? [/INST]"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
def test_chatml_prompt_style_format():
prompt_style = ChatMLPromptStyle()
messages = [
ChatMessage(content="You are an AI assistant.", role=MessageRole.SYSTEM),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<|im_start|>system\n"
"You are an AI assistant.<|im_end|>\n"
"<|im_start|>user\n"
"Hello, how are you doing?<|im_end|>\n"
"<|im_start|>assistant\n"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
def test_llama2_prompt_style_format():
prompt_style = LlamaIndexPromptStyle()
prompt_style = Llama2PromptStyle()
messages = [
ChatMessage(content="You are an AI assistant.", role=MessageRole.SYSTEM),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
@@ -156,26 +117,8 @@ def test_llama2_prompt_style_format():
assert prompt_style.messages_to_prompt(messages) == expected_prompt
@pytest.mark.skipif(
"llama_cpp" not in sys.modules, reason="requires the llama-cpp-python library"
)
def test_llama2_prompt_style_with_system_prompt():
system_prompt = "This is a system prompt from configuration."
prompt_style = LlamaIndexPromptStyle(default_system_prompt=system_prompt)
messages = [
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<s> [INST] <<SYS>>\n"
f" {system_prompt} \n"
"<</SYS>>\n"
"\n"
" Hello, how are you doing? [/INST]"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
prompt_style = Llama2PromptStyle()
messages = [
ChatMessage(
content="FOO BAR Custom sys prompt from messages.", role=MessageRole.SYSTEM

2
tiktoken_cache/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
*
!.gitignore

View File

@@ -1 +1 @@
0.1.0
0.5.0