71 Commits

Author SHA1 Message Date
github-actions[bot]
3d301d0c6f chore(main): release 0.1.0 (#1094)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-12-01 14:45:54 +01:00
lopagela
56af625d71 Fix the parallel ingestion mode, and make it available through conf (#1336)
* Fix the parallel ingestion mode, and make it available through conf

Also updated the documentation to show how to configure the ingest mode.

* PR feedback: redirect to documentation
2023-11-30 11:41:55 +01:00
Francisco García Sierra
b7ca7d35a0 Update ingest api docs with Windows support (#1289) 2023-11-29 20:56:37 +01:00
ishaandatta
28d03fdda8 Adding working combination of LLM and Embedding Model to recipes (#1315)
Co-authored-by: ishaandatta <ishaandatta50@gmail.com>
2023-11-29 20:54:22 +01:00
Phi Long
aabdb046ae Add docker compose (#1277)
Co-authored-by: philongn <philongn@theugroup.co>
Co-authored-by: Pablo Orgaz <pabloogc@gmail.com>
2023-11-29 16:46:40 +01:00
Iván Martínez
64ed9cd872 Allow passing a system prompt (#1318) 2023-11-29 15:51:19 +01:00
Gianni Acquisto
9c192ddd73 Added max_new_tokens as a config option to llm yaml block (#1317)
* added max_new_tokens as a configuration option to the llm block in settings

* Update fern/docs/pages/manual/settings.mdx

Co-authored-by: lopagela <lpglm@orange.fr>

* Update private_gpt/settings/settings.py

Add default value for max_new_tokens = 256

Co-authored-by: lopagela <lpglm@orange.fr>

* Addressed location of docs comment

* reformatting from running 'make check'

* remove default config value from settings.yaml

---------

Co-authored-by: lopagela <lpglm@orange.fr>
2023-11-26 19:17:29 +01:00
Gianni Acquisto
baf29f06fa Adding docs about embeddings settings + adding the embedding.mode: local in mock profile (#1316) 2023-11-26 17:32:11 +01:00
lopagela
bafdd3baf1 Ingestion Speedup Multiple strategy (#1309) 2023-11-25 20:12:09 +01:00
Iván Martínez
546ba33e6f Update readme with supporters info (#1311) 2023-11-25 18:35:59 +01:00
Iván Martínez
944c43bfa8 Multi language support - fern debug (#1307)
---------

Co-authored-by: Louis <lpglm@orange.fr>
Co-authored-by: LeMoussel <cnhx27@gmail.com>
2023-11-25 14:34:23 +01:00
Iván Martínez
e8d88f8952 Update preview-docs.yml
Use pull_request_target to be able to access FERN publication secret
2023-11-25 10:14:04 +01:00
Iván Martínez
c6d6e0e71b Update preview-docs.yml to enable debug 2023-11-24 17:51:33 +01:00
Iván Martínez
510caa576b Make qdrant the default vector db (#1285)
* Make qdrant the default vector db

---------

Co-authored-by: Pablo Orgaz <pabloogc@gmail.com>
Co-authored-by: lopagela <lpglm@orange.fr>
2023-11-20 16:19:22 +01:00
Francisco García Sierra
f1cbff0fb7 fix: Windows permission error on ingest service tmp files (#1280) 2023-11-20 10:08:03 +01:00
lopagela
a09cd7a892 Update llama_index to 0.9.3 (#1278)
* Update llama_index to 0.9.3

Had to change some imports because of breaking change durin the llama_index update to 0.9.0

* Update poetry.lock after update of llama_index
2023-11-19 18:49:36 +01:00
lopagela
36f69eed0f Refactor documentation architecture (#1264)
* Refactor documentation architecture

Split into several `tab` and sections

* Fix Fern's docs.yml after PR review

Thank you Danny!

Co-authored-by: dannysheridan <danny@buildwithfern.com>

* Re-add quickstart in the overview tab

It went missing after a refactoring of the doc architecture

* Documentation writing

* Adapt Makefile to fern documentation

* Do not create overlapping page names in fern documentation

This is causing 500. Thank you to @dsinghvi for the troubleshooting and the help!

* Add a readme to help to understand how fern documentation work and how to add new pages

* Rework the welcome view

Redirects directly users to installation guide with links for people that are not familiar with documentation browsing.

* Simplify the quickstart guide

* PR feedback on installation guide

A ton of refactoring can still be made there

* PR feedback on ingestion

* PR feedback on ingestion splitting

* Rename section on LLM

* Fix missing word in list of LLMs

---------

Co-authored-by: dannysheridan <danny@buildwithfern.com>
2023-11-19 18:46:09 +01:00
Iván Martínez
57a829a8e8 Move fern workflows to root workflows folder (#1273)
* Move fern workflows to root workflows folder

* Only run fern actions when docu has changed
2023-11-18 20:47:44 +01:00
Iván Martínez
8af5ed3347 Delete CNAME 2023-11-18 20:23:05 +01:00
lopagela
224812f7f6 Update to gradio 4 and allow upload multiple files at once in UI (#1271) 2023-11-18 20:19:43 +01:00
Iván Martínez
adaa00ccc8 Fix/readme UI image (#1272) 2023-11-18 20:19:03 +01:00
lopagela
99dc670df0 Add badges in the README.md (#1261)
Using https://shields.io/

To have the complete list of badges available, c.f. to their documentation: https://shields.io/badges
2023-11-18 18:47:30 +01:00
lopagela
f7d7b6cd4b Fixed the avatar of the box by using a local file (#1266)
Now rendering a specific file inside the python code
2023-11-18 12:29:27 +01:00
Pablo Orgaz
0d520026a3 fix: Windows 11 failing to auto-delete tmp file (#1260) 2023-11-17 18:23:57 +01:00
Lai Zn
4197ada626 feat: enable resume download for hf_hub_download (#1249) 2023-11-17 00:13:11 +01:00
Iván Martínez
09d9a91946 Create CNAME 2023-11-17 00:07:50 +01:00
Iván Martínez
f339f7608c Move Docs to Fern (#1257) 2023-11-16 23:25:14 +01:00
Iván Martínez
ff7e2bc9dd Delete CNAME 2023-11-16 22:53:00 +01:00
Iván Martínez
2a417d2f61 Fix/qdrant support (#1253)
* Disable check same thread by default to enable disk-based Qdrant local client to work
2023-11-16 13:29:17 +01:00
Dominik Fuchs
23fa530c31 added wipe make command (#1215)
* added `wipe` make command

* Apply suggestions from code review

Thanks for your suggestions, I like to apply them.

Co-authored-by: lopagela <lpglm@orange.fr>

* added `wipe` command to the documentation

* rebased to generate valid openapi.json

---------

Co-authored-by: lopagela <lpglm@orange.fr>
2023-11-16 11:44:02 +01:00
Anush
03d1ae6d70 feat: Qdrant support (#1228)
* feat: Qdrant support

* Update private_gpt/components/vector_store/vector_store_component.py
2023-11-13 21:23:26 +01:00
Iván Martínez
86fc4781d8 Fix openai setting literal (#1221) 2023-11-12 22:29:26 +01:00
Pablo Orgaz
022bd718e3 fix: Remove global state (#1216)
* Remove all global settings state

* chore: remove autogenerated class

* chore: cleanup

* chore: merge conflicts
2023-11-12 22:20:36 +01:00
Iván Martínez
f394ca61bb Reuse existing stored index during ingestion (#1220) 2023-11-12 22:14:38 +01:00
lopagela
aa70d3d9f0 Add simple Basic auth (#1203)
* Add simple Basic auth

To enable the basic authentication, one must set `server.auth.enabled`
to true.

The static string defined in `server.auth.secret` must be set in the
header `Authorization`.

The health check endpoint will always be accessible, no matter the API
auth configuration.

* Fix linting and type check

* Fighting with mypy being too restrictive

Had to disable mypy in the `auth` as we are not using the same signature
for the authenticated method.

mypy was complaining that the signatures of `authenticated` must be
identical, no matter in which logical branch we are.
Given that fastapi is accomodating itself of method signatures (it will
inject the dependencies in the method call), this warning of mypy is
actually preventing us to do something legit.

mypy doc: https://mypy.readthedocs.io/en/stable/common_issues.html

* Write tests to verify that the simple auth is working
2023-11-12 19:05:00 +01:00
Iván Martínez
b7647542f4 Curate sources to avoid the UI crashing (#1212)
* Curate sources to avoid the UI crashing

* Remove sources from chat history to avoid confusing the LLM
2023-11-12 10:59:51 +01:00
lopagela
a579c9bdc5 Update poetry lock (#1209)
* Update the version of llama_index used to fix transient openai errors

* Update poetry.lock file

* Make `local` mode the default mode by default
2023-11-11 22:44:19 +01:00
Iván Martínez
a22969ad1f Add sources to completions APIs and UI (#1206) 2023-11-11 21:39:15 +01:00
César García
dbd99e7b4b Update description.md (#1107)
Added a section on how to customize low level args, proposing people to stick to suggested models.
2023-11-11 09:23:46 +01:00
lopagela
8487440a6f Add basic CORS (#1198) 2023-11-10 14:29:43 +01:00
lopagela
a666fd5b73 Refactor UI state management (#1191)
* Added logs at generation of the UI, and generate the UI in an object
* Make ingest script more verbose in case of an error at ingestion time
* Removed the explicit state in the UI containing ingested files
* Make script of ingestion a bit more verbose by displaying stack traces
* Change the browser tab title of privateGPT ui to `My Private GPT`
2023-11-10 10:42:43 +01:00
Iván Martínez
55e626eac7 Update README.md
Make installation docs and community more visibile
2023-11-10 10:33:17 +01:00
Iván Martínez
c81f4b2ebd Search in Docs to UI (#1186)
Move from Context Chunks JSON response to a more comprehensive Search in Docs functionality
2023-11-09 12:44:57 +01:00
Iván Martínez
1e96e3a29e Stake issues/PRs not updated in 15 days (#1181)
Moving temporarily to 15 days given all PRs and Issues were "updated" on Oct 19 to label them as "primordial"
2023-11-08 12:07:17 +01:00
Iván Martínez
f75f60b234 Create stale.yml (#1177)
Workflow to automatically mark and close stale issues and PRs
2023-11-07 15:41:05 +01:00
lopagela
23cd3fea10 Parse JSON files using llama_index JSONReader (#1176)
Patch the default list of llama_index to support JSON files.
This injection of JSON documents should improve the comprehension in
JSON files, as there is a parsing of JSON files.
2023-11-07 15:39:40 +01:00
lopagela
0c40cfb115 Endpoint to delete documents ingested (#1163)
A file that is ingested will be transformed into several documents (that
are organized into nodes).
This endpoint is deleting documents (bits of a file). These bits can be
retrieved thanks to the endpoint to list all the documents.
2023-11-06 15:47:42 +01:00
lopagela
6583dc84c0 feat: Disable Gradio Analytics (#1165)
* Disable Gradio Analytics

Gradio analytics can be disabled by either using the kwargs `enable_analytics` on `gr.Blocks`, or by setting the env variable `GRADIO_ANALYTICS_ENABLED` to something different from `True`.

Since that Gradio does not seem to respect their code contract (around `enable_analytics`), and that they are performing other operations only based on the value of `GRADIO_ANALYTICS_ENABLED` (c.f. `gradio.strings` https://github.com/gradio-app/gradio/blob/main/gradio/strings.py#L39), we are disabling gradio analytics by setting the required env variable to `False`.

Note: Setting an environment variables using `os.environ['foo'] = 'bar'` on system that are not based on unix might not work.

c.f. https://docs.python.org/3/library/os.html#os.environ for details on how `os.environ` works and all its caveats

* Update private_gpt/__init__.py
2023-11-06 14:31:26 +01:00
Pablo Orgaz
0d677e10b9 feat: move torch and transformers to local group (#1172) 2023-11-06 14:24:16 +01:00
Iván Martínez
ad512e3c42 Feature/sagemaker embedding (#1161)
* Sagemaker deployed embedding model support

---------

Co-authored-by: Pablo Orgaz <pabloogc@gmail.com>
2023-11-05 16:16:49 +01:00
Pierre Marais
f29df84301 Disable chromaDB anonymous information collection (#1144)
See https://docs.trychroma.com/telemetry
2023-11-02 12:45:48 +01:00
Pablo Orgaz
a517a588c4 fix: sagemaker config and chat methods (#1142) 2023-10-30 21:54:41 +01:00
NetroScript
b0e258265f Improve logging and error handling when ingesting an entire folder (#1132) 2023-10-30 21:54:09 +01:00
Pablo Orgaz
5d1be6e94c chore: only generate docker images on demand (#1134)
* chore: only generate docker images on demand

* chore: consistent naming
2023-10-29 21:48:16 +01:00
lopagela
64c5ae214a feat: Drop loguru and use builtin logging (#1133)
* Configure simple builtin logging

Changed the 2 existing `print` in the `private_gpt` code base into actual python logging, stop using loguru (dependency will be dropped in a later commit).
Try to use the `key=value` logging convention in logs (to indicate what dynamic values represents, and what is dynamic vs not).
Using `%s` log style, so that the string formatting is pushed inside the logger, giving the ability to the logger to determine if the string need to be formatted or not (i.e. strings from debug logs might not be formatted if the log level is not debug)
The (basic) builtin log configuration have been placed in `private_gpt/__init__.py` in order to initialize the logging system even before we start to launch any python code in `private_gpt` package (ensuring we get any initialization log formatted as we want to)
Disabled `uvicorn` custom logging format, resulting in having uvicorn logs being outputted in our formatted.

Some more concise format could be used if we want to, especially:
```
COMPACT_LOG_FORMAT = '%(asctime)s.%(msecs)03d [%(levelname)s] %(name)s - %(message)s'
```

Python documentation and cookbook on logging for reference:
* https://docs.python.org/3/library/logging.html
* https://docs.python.org/3/howto/logging.html

* Removing loguru from the dependencies

Result of `poetry remove loguru`

* PR feedback: using `logger` variable name instead of `log`

---------

Co-authored-by: Louis Melchior <louis@jaris.io>
2023-10-29 19:11:02 +01:00
Pablo Orgaz
24cfddd60f fix: fix pytorch version to avoid wheel bug (#1123)
* fix: fix pytorch version

* fix: settings env var regex and split

* fix: add models folder for docker user
2023-10-27 20:27:40 +02:00
Pablo Orgaz
895588b82a fix: Docker and sagemaker setup (#1118)
* fix: docker copying extra files

* feat: allow configuring mode through env vars

* feat: Attempt to build and tag a docker image

* fix: run docker on release

* fix: typing in prompt transformation

* chore: remove tutorial comments
2023-10-27 13:29:29 +02:00
Shivam Singh
768e5ff505 chore: Update README.md (#1102)
Removed Grammatical errors
2023-10-24 12:43:41 +02:00
Iván Martínez
78546524d0 Use OpenAI for embeddings when openai mode is selected (#1096) 2023-10-23 10:50:42 +02:00
Federico Grandi
769a047b54 chore: add GitHub metadata (#1085)
* chore: add citation file

* chore: add LICENSE

* chore: update email

Co-authored-by: Daniel Gallego <danielgallegovico@gmail.com>

* chore: update email in citation file

Co-authored-by: Pablo Orgaz <pabloogc@gmail.com>

* chore: add ORCIDs to citation file

* docs: update README with citation info

---------

Co-authored-by: Daniel Gallego <danielgallegovico@gmail.com>
Co-authored-by: Pablo Orgaz <pabloogc@gmail.com>
2023-10-23 10:49:02 +02:00
Ikko Eltociear Ashimine
ba23443a70 fix: typo in README.md (#1091)
componentes -> components
2023-10-23 08:54:12 +02:00
github-actions[bot]
b8383e00a6 chore(main): release 0.0.2 (#1088)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-10-20 18:29:21 +02:00
Iván Martínez
f5a9bf4e37 fix: chromadb max batch size (#1087) 2023-10-20 18:24:56 +02:00
Pablo Orgaz
b46c1087e2 chore: add linux instructions and C++ guide (#1082)
* fix: add linux instructions

Co-authored-by: BW-Projects

* chore: Add C++ as a base requirement in the docs

* chore: Add clang for OSX

* chore: Update docs for OSX and gcc

* chore: make docs

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>
2023-10-20 14:36:50 +02:00
github-actions[bot]
97d860a7c9 chore(main): release 0.0.1 (#1086)
* chore(main): release 0.0.1

* Update CHANGELOG.md

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Pablo Orgaz <pabloogc@gmail.com>
2023-10-20 13:08:51 +02:00
Iván Martínez
490d93fdc1 chore: Initial version
Release-As: 0.0.1
2023-10-20 12:57:52 +02:00
Pablo Orgaz
aa4bb17a2e fix: make docs more visible (#1081) 2023-10-19 22:12:30 +02:00
Iván Martínez
d249a17c33 feat(ui): add LLM mode to UI (#1080) 2023-10-19 19:21:29 +02:00
Pablo Orgaz
b7450911b2 feat: Release GitHub action (#1078)
* feat: add release-please.yml

* feat: add release-please.yml

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>
2023-10-19 17:34:41 +02:00
Iván Martínez
3ad1da019b Update README.md
Primordial branch correct url
2023-10-19 16:17:35 +02:00
Pablo Orgaz
51cc638758 Next version of PrivateGPT (#1077)
* Dockerize private-gpt

* Use port 8001 for local development

* Add setup script

* Add CUDA Dockerfile

* Create README.md

* Make the API use OpenAI response format

* Truncate prompt

* refactor: add models and __pycache__ to .gitignore

* Better naming

* Update readme

* Move models ignore to it's folder

* Add scaffolding

* Apply formatting

* Fix tests

* Working sagemaker custom llm

* Fix linting

* Fix linting

* Enable streaming

* Allow all 3.11 python versions

* Use llama 2 prompt format and fix completion

* Restructure (#3)

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Fix Dockerfile

* Use a specific build stage

* Cleanup

* Add FastAPI skeleton

* Cleanup openai package

* Fix DI and tests

* Split tests and tests with coverage

* Remove old scaffolding

* Add settings logic (#4)

* Add settings logic

* Add settings for sagemaker

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Local LLM (#5)

* Add settings logic

* Add settings for sagemaker

* Add settings-local-example.yaml

* Delete terraform files

* Refactor tests to use fixtures

* Join deltas

* Add local model support

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Update README.md

* Fix tests

* Version bump

* Enable simple llamaindex observability (#6)

* Enable simple llamaindex observability

* Improve code through linting

* Update README.md

* Move to async (#7)

* Migrate implementation to use asyncio

* Formatting

* Cleanup

* Linting

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Query Docs and gradio UI

* Remove unnecessary files

* Git ignore chromadb folder

* Async migration + DI Cleanup

* Fix tests

* Add integration test

* Use fastapi responses

* Retrieval service with partial implementation

* Cleanup

* Run formatter

* Fix types

* Fetch nodes asynchronously

* Install local dependencies in tests

* Install ui dependencies in tests

* Install dependencies for llama-cpp

* Fix sudo

* Attempt to fix cuda issues

* Attempt to fix cuda issues

* Try to reclaim some space from ubuntu machine

* Retrieval with context

* Fix lint and imports

* Fix mypy

* Make retrieval API a POST

* Make Completions body a dataclass

* Fix LLM chat message order

* Add Query Chunks to Gradio UI

* Improve rag query prompt

* Rollback CI Changes

* Move to sync code

* Using Llamaindex abstraction for query retrieval

* Fix types

* Default to CONDENSED chat mode for contextualized chat

* Rename route function

* Add Chat endpoint

* Remove webhooks

* Add IntelliJ run config to gitignore

* .gitignore applied

* Sync chat completion

* Refactor total

* Typo in context_files.py

* Add embeddings component and service

* Remove wrong dataclass from IngestService

* Filter by context file id implementation

* Fix typing

* Implement context_filter and separate from the bool use_context in the API

* Change chunks api to avoid conceptual class of the context concept

* Deprecate completions and fix tests

* Remove remaining dataclasses

* Use embedding component in ingest service

* Fix ingestion to have multipart and local upload

* Fix ingestion API

* Add chunk tests

* Add configurable paths

* Cleaning up

* Add more docs

* IngestResponse includes a list of IngestedDocs

* Use IngestedDoc in the Chunk document reference

* Rename ingest routes to ingest_router.py

* Fix test working directory for intellij

* Set testpaths for pytest

* Remove unused as_chat_engine

* Add .fleet ide to gitignore

* Make LLM and Embedding model configurable

* Fix imports and checks

* Let local_data folder exist empty in the repository

* Don't use certain metadata in LLM

* Remove long lines

* Fix windows installation

* Typos

* Update poetry.lock

* Add TODO for linux

* Script and first version of docs

* No jekill build

* Fix relative url to openapi json

* Change default docs values

* Move chromadb dependency to the general group

* Fix tests to use separate local_data

* Create CNAME

* Update CNAME

* Fix openapi.json relative path

* PrivateGPT logo

* WIP OpenAPI documentation metadata

* Add ingest script (#11)

* Add ingest script

* Fix broken name refactor

* Add ingest docs and Makefile script

* Linting

* Move transformers to main dependency

* Move torch to main dependencies

* Don't load HuggingFaceEmbedding in tests

* Fix lint

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>

* Rename file to camel_case

* Commit settings-local.yaml

* Move documentation to public docs

* Fix docker image for linux

* Installation and Running the Server documentation

* Move back to docs folder, as it is the only supported by github pages

* Delete CNAME

* Create CNAME

* Delete CNAME

* Create CNAME

* Improved API documentation

* Fix lint

* Completions documentation

* Updated openapi scheme

* Ingestion API doc

* Minor doc changes

* Updated openapi scheme

* Chunks API documentation

* Embeddings and Health API, and homogeneous responses

* Revamp README with new skeleton of content

* More docs

* PrivateGPT logo

* Improve UI

* Update ingestion docu

* Update README with new sections

* Use context window in the retriever

* Gradio Documentation

* Add logo to UI

* Include Contributing and Community sections to README

* Update links to resources in the README

* Small README.md updates

* Wrap lines of README.md

* Don't put health under /v1

* Add copy button to Chat

* Architecture documentation

* Updated openapi.json

* Updated openapi.json

* Updated openapi.json

* Change UI label

* Update documentation

* Add releases link to README.md

* Gradio avatar and stop debug

* Readme update

* Clean old files

* Remove unused terraform checks

* Update twitter link.

* Disable minimum coverage

* Clean install message in README.md

---------

Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local>
Co-authored-by: Iván Martínez <ivanmartit@gmail.com>
Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com>
Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
2023-10-19 16:04:35 +02:00
149 changed files with 12598 additions and 3249 deletions

12
.dockerignore Normal file
View File

@@ -0,0 +1,12 @@
.venv
models
.github
.vscode
.DS_Store
.mypy_cache
.ruff_cache
local_data
terraform
tests
Dockerfile
Dockerfile.*

View File

@@ -1,24 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: bug
assignees: ''
---
Note: if you'd like to *ask a question* or *open a discussion*, head over to the [Discussions](https://github.com/imartinez/privateGPT/discussions) section and post it there.
**Describe the bug and how to reproduce it**
A clear and concise description of what the bug is and the steps to reproduce the behavior.
**Expected behavior**
A clear and concise description of what you expected to happen.
**Environment (please complete the following information):**
- OS / hardware: [e.g. macOS 12.6 / M1]
- Python version [e.g. 3.11.3]
- Other relevant information
**Additional context**
Add any other context about the problem here.

View File

@@ -1,22 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''
---
Note: if you'd like to *ask a question* or *open a discussion*, head over to the [Discussions](https://github.com/imartinez/privateGPT/discussions) section and post it there.
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@@ -0,0 +1,30 @@
name: "Install Dependencies"
description: "Action to build the project dependencies from the main versions"
inputs:
python_version:
required: true
type: string
default: "3.11.4"
poetry_version:
required: true
type: string
default: "1.5.1"
runs:
using: composite
steps:
- name: Install Poetry
uses: snok/install-poetry@v1
with:
version: ${{ inputs.poetry_version }}
virtualenvs-create: true
virtualenvs-in-project: false
installer-parallel: true
- uses: actions/setup-python@v4
with:
python-version: ${{ inputs.python_version }}
cache: "poetry"
- name: Install Dependencies
run: poetry install --with ui --no-root
shell: bash

45
.github/workflows/docker.yml vendored Normal file
View File

@@ -0,0 +1,45 @@
name: docker
on:
release:
types: [ published ]
workflow_dispatch:
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to the Container registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=ref,event=pr
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=sha
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: .
file: Dockerfile.external
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

21
.github/workflows/fern-check.yml vendored Normal file
View File

@@ -0,0 +1,21 @@
name: fern check
on:
pull_request:
branches:
- main
paths:
- "fern/**"
jobs:
fern-check:
runs-on: ubuntu-latest
steps:
- name: Checkout repo
uses: actions/checkout@v4
- name: Install Fern
run: npm install -g fern-api
- name: Check Fern API is valid
run: fern check

48
.github/workflows/preview-docs.yml vendored Normal file
View File

@@ -0,0 +1,48 @@
name: deploy preview docs
on:
pull_request_target:
branches:
- main
paths:
- "fern/**"
jobs:
preview-docs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "18"
- name: Install Fern
run: npm install -g fern-api
- name: Generate Documentation Preview with Fern
id: generate_docs
env:
FERN_TOKEN: ${{ secrets.FERN_TOKEN }}
run: |
output=$(fern generate --docs --preview --log-level debug)
echo "$output"
# Extract the URL
preview_url=$(echo "$output" | grep -oP '(?<=Published docs to )https://[^\s]*')
# Set the output for the step
echo "::set-output name=preview_url::$preview_url"
- name: Comment PR with URL using github-actions bot
uses: actions/github-script@v4
if: ${{ steps.generate_docs.outputs.preview_url }}
with:
script: |
const preview_url = '${{ steps.generate_docs.outputs.preview_url }}';
const issue_number = context.issue.number;
github.issues.createComment({
...context.repo,
issue_number: issue_number,
body: `Published docs preview URL: ${preview_url}`
})

26
.github/workflows/publish-docs.yml vendored Normal file
View File

@@ -0,0 +1,26 @@
name: publish docs
on:
push:
branches:
- main
paths:
- "fern/**"
jobs:
publish-docs:
runs-on: ubuntu-latest
steps:
- name: Checkout repo
uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v3
- name: Download Fern
run: npm install -g fern-api
- name: Generate and Publish Docs
env:
FERN_TOKEN: ${{ secrets.FERN_TOKEN }}
run: fern generate --docs --log-level debug

19
.github/workflows/release-please.yml vendored Normal file
View File

@@ -0,0 +1,19 @@
name: release-please
on:
push:
branches:
- main
permissions:
contents: write
pull-requests: write
jobs:
release-please:
runs-on: ubuntu-latest
steps:
- uses: google-github-actions/release-please-action@v3
with:
release-type: simple
version-file: version.txt

30
.github/workflows/stale.yml vendored Normal file
View File

@@ -0,0 +1,30 @@
# This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time.
#
# You can adjust the behavior by modifying this file.
# For more information, see:
# https://github.com/actions/stale
name: Mark stale issues and pull requests
on:
schedule:
- cron: '42 5 * * *'
jobs:
stale:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v8
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
days-before-stale: 15
stale-issue-message: 'Stale issue'
stale-pr-message: 'Stale pull request'
stale-issue-label: 'stale'
stale-pr-label: 'stale'
exempt-issue-labels: 'autorelease: pending'
exempt-pr-labels: 'autorelease: pending'

67
.github/workflows/tests.yml vendored Normal file
View File

@@ -0,0 +1,67 @@
name: tests
on:
push:
branches:
- main
pull_request:
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.head_ref || github.ref }}
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
jobs:
setup:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: ./.github/workflows/actions/install_dependencies
checks:
needs: setup
runs-on: ubuntu-latest
name: ${{ matrix.quality-command }}
strategy:
matrix:
quality-command:
- black
- ruff
- mypy
steps:
- uses: actions/checkout@v3
- uses: ./.github/workflows/actions/install_dependencies
- name: run ${{ matrix.quality-command }}
run: make ${{ matrix.quality-command }}
test:
needs: setup
runs-on: ubuntu-latest
name: test
steps:
- uses: actions/checkout@v3
- uses: ./.github/workflows/actions/install_dependencies
- name: run test
run: make test-coverage
# Run even if make test fails for coverage reports
# TODO: select a better xml results displayer
- name: Archive test results coverage results
uses: actions/upload-artifact@v3
if: always()
with:
name: test_results
path: tests-results.xml
- name: Archive code coverage results
uses: actions/upload-artifact@v3
if: always()
with:
name: code-coverage-report
path: htmlcov/
all_checks_passed:
# Used to easily force requirements checks in GitHub
needs:
- checks
- test
runs-on: ubuntu-latest
steps:
- run: echo "All checks passed"

183
.gitignore vendored
View File

@@ -1,174 +1,29 @@
# OSX
.DS_STORE
.venv
# Models
models/
settings-me.yaml
# Local Chroma db
.chroma/
db/
persist_directory/chroma.sqlite
.ruff_cache
.pytest_cache
.mypy_cache
# Byte-compiled / optimized / DLL files
# byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# unit tests / coverage reports
/tests-results.xml
/.coverage
/coverage.xml
/htmlcov/
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
/.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# IDE
.idea/
.vscode/
/.run/
.fleet/
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# vscode
.vscode/launch.json
# macOS
.DS_Store

View File

@@ -1,44 +1,43 @@
---
files: ^(.*\.(py|json|md|sh|yaml|cfg|txt))$
exclude: ^(\.[^/]*cache/.*|.*/_user.py|source_documents/)$
default_install_hook_types:
# Mandatory to install both pre-commit and pre-push hooks (see https://pre-commit.com/#top_level-default_install_hook_types)
# Add new hook types here to ensure automatic installation when running `pre-commit install`
- pre-commit
- pre-push
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
hooks:
#- id: no-commit-to-branch
# args: [--branch, main]
- id: check-yaml
args: [--unsafe]
# - id: debug-statements
- id: end-of-file-fixer
- id: trailing-whitespace
exclude-files: \.md$
- id: check-json
- id: mixed-line-ending
# - id: check-builtin-literals
# - id: check-ast
- id: check-merge-conflict
- id: check-executables-have-shebangs
- id: check-shebang-scripts-are-executable
- id: check-docstring-first
- id: fix-byte-order-marker
- id: check-case-conflict
# - id: check-toml
- repo: https://github.com/adrienverge/yamllint.git
rev: v1.29.0
hooks:
- id: yamllint
args:
- --no-warnings
- -d
- '{extends: relaxed, rules: {line-length: {max: 90}}}'
- repo: https://github.com/codespell-project/codespell
rev: v2.2.2
hooks:
- id: codespell
args:
# - --builtin=clear,rare,informal,usage,code,names,en-GB_to_en-US
- --builtin=clear,rare,informal,usage,code,names
- --ignore-words-list=hass,master
- --skip="./.*"
- --quiet-level=2
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.3.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-json
- id: check-added-large-files
- repo: local
hooks:
- id: black
name: Formatting (black)
entry: black
language: system
types: [python]
stages: [commit]
- id: ruff
name: Linter (ruff)
entry: ruff
language: system
types: [python]
stages: [commit]
- id: mypy
name: Type checking (mypy)
entry: make mypy
pass_filenames: false
language: system
types: [python]
stages: [commit]
- id: test
name: Unit tests (pytest)
entry: make test
pass_filenames: false
language: system
types: [python]
stages: [push]

36
CHANGELOG.md Normal file
View File

@@ -0,0 +1,36 @@
# Changelog
## [0.1.0](https://github.com/imartinez/privateGPT/compare/v0.0.2...v0.1.0) (2023-11-30)
### Features
* Disable Gradio Analytics ([#1165](https://github.com/imartinez/privateGPT/issues/1165)) ([6583dc8](https://github.com/imartinez/privateGPT/commit/6583dc84c082773443fc3973b1cdf8095fa3fec3))
* Drop loguru and use builtin `logging` ([#1133](https://github.com/imartinez/privateGPT/issues/1133)) ([64c5ae2](https://github.com/imartinez/privateGPT/commit/64c5ae214a9520151c9c2d52ece535867d799367))
* enable resume download for hf_hub_download ([#1249](https://github.com/imartinez/privateGPT/issues/1249)) ([4197ada](https://github.com/imartinez/privateGPT/commit/4197ada6267c822f32c1d7ba2be6e7ce145a3404))
* move torch and transformers to local group ([#1172](https://github.com/imartinez/privateGPT/issues/1172)) ([0d677e1](https://github.com/imartinez/privateGPT/commit/0d677e10b970aec222ec04837d0f08f1631b6d4a))
* Qdrant support ([#1228](https://github.com/imartinez/privateGPT/issues/1228)) ([03d1ae6](https://github.com/imartinez/privateGPT/commit/03d1ae6d70dffdd2411f0d4e92f65080fff5a6e2))
### Bug Fixes
* Docker and sagemaker setup ([#1118](https://github.com/imartinez/privateGPT/issues/1118)) ([895588b](https://github.com/imartinez/privateGPT/commit/895588b82a06c2bc71a9e22fb840c7f6442a3b5b))
* fix pytorch version to avoid wheel bug ([#1123](https://github.com/imartinez/privateGPT/issues/1123)) ([24cfddd](https://github.com/imartinez/privateGPT/commit/24cfddd60f74aadd2dade4c63f6012a2489938a1))
* Remove global state ([#1216](https://github.com/imartinez/privateGPT/issues/1216)) ([022bd71](https://github.com/imartinez/privateGPT/commit/022bd718e3dfc197027b1e24fb97e5525b186db4))
* sagemaker config and chat methods ([#1142](https://github.com/imartinez/privateGPT/issues/1142)) ([a517a58](https://github.com/imartinez/privateGPT/commit/a517a588c4927aa5c5c2a93e4f82a58f0599d251))
* typo in README.md ([#1091](https://github.com/imartinez/privateGPT/issues/1091)) ([ba23443](https://github.com/imartinez/privateGPT/commit/ba23443a70d323cd4f9a242b33fd9dce1bacd2db))
* Windows 11 failing to auto-delete tmp file ([#1260](https://github.com/imartinez/privateGPT/issues/1260)) ([0d52002](https://github.com/imartinez/privateGPT/commit/0d520026a3d5b08a9b8487be992d3095b21e710c))
* Windows permission error on ingest service tmp files ([#1280](https://github.com/imartinez/privateGPT/issues/1280)) ([f1cbff0](https://github.com/imartinez/privateGPT/commit/f1cbff0fb7059432d9e71473cbdd039032dab60d))
## [0.0.2](https://github.com/imartinez/privateGPT/compare/v0.0.1...v0.0.2) (2023-10-20)
### Bug Fixes
* chromadb max batch size ([#1087](https://github.com/imartinez/privateGPT/issues/1087)) ([f5a9bf4](https://github.com/imartinez/privateGPT/commit/f5a9bf4e374b2d4c76438cf8a97cccf222ec8e6f))
## 0.0.1 (2023-10-20)
### Miscellaneous Chores
* Initial version ([490d93f](https://github.com/imartinez/privateGPT/commit/490d93fdc1977443c92f6c42e57a1c585aa59430))

25
CITATION.cff Normal file
View File

@@ -0,0 +1,25 @@
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: PrivateGPT
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Iván
family-names: Martínez Toro
email: ivanmartit@gmail.com
orcid: 'https://orcid.org/0009-0004-5065-2311'
- family-names: Gallego Vico
given-names: Daniel
email: danielgallegovico@gmail.com
orcid: 'https://orcid.org/0009-0006-8582-4384'
- given-names: Pablo
family-names: Orgaz
email: pabloogc+gh@gmail.com
orcid: 'https://orcid.org/0009-0008-0080-1437'
repository-code: 'https://github.com/imartinez/privateGPT'
license: Apache-2.0
date-released: '2023-05-02'

36
Dockerfile.external Normal file
View File

@@ -0,0 +1,36 @@
FROM python:3.11.6-slim-bookworm as base
# Install poetry
RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry
ENV PATH="/root/.local/bin:$PATH"
# https://python-poetry.org/docs/configuration/#virtualenvsin-project
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
FROM base as dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
RUN poetry install --with ui
FROM base as app
ENV PYTHONUNBUFFERED=1
ENV PORT=8080
EXPOSE 8080
# Prepare a non-root user
RUN adduser --system worker
WORKDIR /home/worker/app
RUN mkdir local_data; chown worker local_data
RUN mkdir models; chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker docs/ docs
COPY --chown=worker *.yaml *.md ./
USER worker
ENTRYPOINT .venv/bin/python -m private_gpt

47
Dockerfile.local Normal file
View File

@@ -0,0 +1,47 @@
### IMPORTANT, THIS IMAGE CAN ONLY BE RUN IN LINUX DOCKER
### You will run into a segfault in mac
FROM python:3.11.6-slim-bookworm as base
# Install poetry
RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry
ENV PATH="/root/.local/bin:$PATH"
# Dependencies to build llama-cpp
RUN apt update && apt install -y \
libopenblas-dev\
ninja-build\
build-essential\
pkg-config\
wget
# https://python-poetry.org/docs/configuration/#virtualenvsin-project
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
FROM base as dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
RUN poetry install --with local
RUN poetry install --with ui
FROM base as app
ENV PYTHONUNBUFFERED=1
ENV PORT=8080
EXPOSE 8080
# Prepare a non-root user
RUN adduser --system worker
WORKDIR /home/worker/app
RUN mkdir local_data; chown worker local_data
RUN mkdir models; chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker docs/ docs
COPY --chown=worker *.yaml *.md ./
USER worker
ENTRYPOINT .venv/bin/python -m private_gpt

55
Makefile Normal file
View File

@@ -0,0 +1,55 @@
# Any args passed to the make script, use with $(call args, default_value)
args = `arg="$(filter-out $@,$(MAKECMDGOALS))" && echo $${arg:-${1}}`
########################################################################################################################
# Quality checks
########################################################################################################################
test:
PYTHONPATH=. poetry run pytest tests
test-coverage:
PYTHONPATH=. poetry run pytest tests --cov private_gpt --cov-report term --cov-report=html --cov-report xml --junit-xml=tests-results.xml
black:
poetry run black . --check
ruff:
poetry run ruff check private_gpt tests
format:
poetry run black .
poetry run ruff check private_gpt tests --fix
mypy:
poetry run mypy private_gpt
check:
make format
make mypy
########################################################################################################################
# Run
########################################################################################################################
run:
poetry run python -m private_gpt
dev-windows:
(set PGPT_PROFILES=local & poetry run python -m uvicorn private_gpt.main:app --reload --port 8001)
dev:
PYTHONUNBUFFERED=1 PGPT_PROFILES=local poetry run python -m uvicorn private_gpt.main:app --reload --port 8001
########################################################################################################################
# Misc
########################################################################################################################
api-docs:
PGPT_PROFILES=mock poetry run python scripts/extract_openapi.py private_gpt.main:app --out fern/openapi/openapi.json
ingest:
@poetry run python scripts/ingest_folder.py $(call args)
wipe:
poetry run python scripts/utils.py wipe

294
README.md
View File

@@ -1,151 +1,161 @@
# privateGPT
Ask questions to your documents without an internet connection, using the power of LLMs. 100% private, no data leaves your execution environment at any point. You can ingest documents and ask questions without an internet connection!
# 🔒 PrivateGPT 📑
> :warning: **This branch is frozen and won't be updated; use main branch instead.** This branch contains the primordial version of PrivateGPT, which was launched in May 2023 as a novel approach to address AI privacy concerns by using LLMs in a complete offline way. That version, which rapidly became a go-to project for privacy-sensitive setups and served as the seed for thousands of local-focused generative AI projects, was the foundation of what PrivateGPT is becoming nowadays. Check the latest updates in main branch.
<img width="902" alt="demo" src="https://user-images.githubusercontent.com/721666/236942256-985801c9-25b9-48ef-80be-3acbb4575164.png">
[![Tests](https://github.com/imartinez/privateGPT/actions/workflows/tests.yml/badge.svg)](https://github.com/imartinez/privateGPT/actions/workflows/tests.yml?query=branch%3Amain)
[![Website](https://img.shields.io/website?up_message=check%20it&down_message=down&url=https%3A%2F%2Fdocs.privategpt.dev%2F&label=Documentation)](https://docs.privategpt.dev/)
Built with [LangChain](https://github.com/hwchase17/langchain), [LlamaIndex](https://www.llamaindex.ai/), [GPT4All](https://github.com/nomic-ai/gpt4all), [LlamaCpp](https://github.com/ggerganov/llama.cpp), [Chroma](https://www.trychroma.com/) and [SentenceTransformers](https://www.sbert.net/).
[![Discord](https://img.shields.io/discord/1164200432894234644?logo=discord&label=PrivateGPT)](https://discord.gg/bK6mRVpErU)
[![X (formerly Twitter) Follow](https://img.shields.io/twitter/follow/PrivateGPT_AI)](https://twitter.com/PrivateGPT_AI)
# Environment Setup
In order to set your environment up to run the code here, first install all requirements:
```shell
pip3 install -r requirements.txt
> Install & usage docs: https://docs.privategpt.dev/
>
> Join the community: [Twitter](https://twitter.com/PrivateGPT_AI) & [Discord](https://discord.gg/bK6mRVpErU)
![Gradio UI](/fern/docs/assets/ui.png?raw=true)
PrivateGPT is a production-ready AI project that allows you to ask questions about your documents using the power
of Large Language Models (LLMs), even in scenarios without an Internet connection. 100% private, no data leaves your
execution environment at any point.
The project provides an API offering all the primitives required to build private, context-aware AI applications.
It follows and extends the [OpenAI API standard](https://openai.com/blog/openai-api),
and supports both normal and streaming responses.
The API is divided into two logical blocks:
**High-level API**, which abstracts all the complexity of a RAG (Retrieval Augmented Generation)
pipeline implementation:
- Ingestion of documents: internally managing document parsing,
splitting, metadata extraction, embedding generation and storage.
- Chat & Completions using context from ingested documents:
abstracting the retrieval of context, the prompt engineering and the response generation.
**Low-level API**, which allows advanced users to implement their own complex pipelines:
- Embeddings generation: based on a piece of text.
- Contextual chunks retrieval: given a query, returns the most relevant chunks of text from the ingested documents.
In addition to this, a working [Gradio UI](https://www.gradio.app/)
client is provided to test the API, together with a set of useful tools such as bulk model
download script, ingestion script, documents folder watch, etc.
> 👂 **Need help applying PrivateGPT to your specific use case?**
> [Let us know more about it](https://forms.gle/4cSDmH13RZBHV9at7)
> and we'll try to help! We are refining PrivateGPT through your feedback.
## 🎞️ Overview
DISCLAIMER: This README is not updated as frequently as the [documentation](https://docs.privategpt.dev/).
Please check it out for the latest updates!
### Motivation behind PrivateGPT
Generative AI is a game changer for our society, but adoption in companies of all sizes and data-sensitive
domains like healthcare or legal is limited by a clear concern: **privacy**.
Not being able to ensure that your data is fully under your control when using third-party AI tools
is a risk those industries cannot take.
### Primordial version
The first version of PrivateGPT was launched in May 2023 as a novel approach to address the privacy
concerns by using LLMs in a complete offline way.
That version, which rapidly became a go-to project for privacy-sensitive setups and served as the seed
for thousands of local-focused generative AI projects, was the foundation of what PrivateGPT is becoming nowadays;
thus a simpler and more educational implementation to understand the basic concepts required
to build a fully local -and therefore, private- chatGPT-like tool.
If you want to keep experimenting with it, we have saved it in the
[primordial branch](https://github.com/imartinez/privateGPT/tree/primordial) of the project.
> It is strongly recommended to do a clean clone and install of this new version of
PrivateGPT if you come from the previous, primordial version.
### Present and Future of PrivateGPT
PrivateGPT is now evolving towards becoming a gateway to generative AI models and primitives, including
completions, document ingestion, RAG pipelines and other low-level building blocks.
We want to make it easier for any developer to build AI applications and experiences, as well as provide
a suitable extensive architecture for the community to keep contributing.
Stay tuned to our [releases](https://github.com/imartinez/privateGPT/releases) to check out all the new features and changes included.
## 📄 Documentation
Full documentation on installation, dependencies, configuration, running the server, deployment options,
ingesting local documents, API details and UI features can be found here: https://docs.privategpt.dev/
## 🧩 Architecture
Conceptually, PrivateGPT is an API that wraps a RAG pipeline and exposes its
primitives.
* The API is built using [FastAPI](https://fastapi.tiangolo.com/) and follows
[OpenAI's API scheme](https://platform.openai.com/docs/api-reference).
* The RAG pipeline is based on [LlamaIndex](https://www.llamaindex.ai/).
The design of PrivateGPT allows to easily extend and adapt both the API and the
RAG implementation. Some key architectural decisions are:
* Dependency Injection, decoupling the different components and layers.
* Usage of LlamaIndex abstractions such as `LLM`, `BaseEmbedding` or `VectorStore`,
making it immediate to change the actual implementations of those abstractions.
* Simplicity, adding as few layers and new abstractions as possible.
* Ready to use, providing a full implementation of the API and RAG
pipeline.
Main building blocks:
* APIs are defined in `private_gpt:server:<api>`. Each package contains an
`<api>_router.py` (FastAPI layer) and an `<api>_service.py` (the
service implementation). Each *Service* uses LlamaIndex base abstractions instead
of specific implementations,
decoupling the actual implementation from its usage.
* Components are placed in
`private_gpt:components:<component>`. Each *Component* is in charge of providing
actual implementations to the base abstractions used in the Services - for example
`LLMComponent` is in charge of providing an actual implementation of an `LLM`
(for example `LlamaCPP` or `OpenAI`).
## 💡 Contributing
Contributions are welcomed! To ensure code quality we have enabled several format and
typing checks, just run `make check` before committing to make sure your code is ok.
Remember to test your code! You'll find a tests folder with helpers, and you can run
tests using `make test` command.
Don't know what to contribute? Here is the public
[Project Board](https://github.com/users/imartinez/projects/3) with several ideas.
Head over to Discord
#contributors channel and ask for write permissions on that Github project.
## 💬 Community
Join the conversation around PrivateGPT on our:
- [Twitter (aka X)](https://twitter.com/PrivateGPT_AI)
- [Discord](https://discord.gg/bK6mRVpErU)
## 📖 Citation
If you use PrivateGPT in a paper, check out the [Citation file](CITATION.cff) for the correct citation.
You can also use the "Cite this repository" button in this repo to get the citation in different formats.
Here are a couple of examples:
#### BibTeX
```bibtex
@software{Martinez_Toro_PrivateGPT_2023,
author = {Martínez Toro, Iván and Gallego Vico, Daniel and Orgaz, Pablo},
license = {Apache-2.0},
month = may,
title = {{PrivateGPT}},
url = {https://github.com/imartinez/privateGPT},
year = {2023}
}
```
*Alternative requirements installation with poetry*
1. Install [poetry](https://python-poetry.org/docs/#installation)
2. Run this commands
```shell
cd privateGPT
poetry install
poetry shell
#### APA
```
Martínez Toro, I., Gallego Vico, D., & Orgaz, P. (2023). PrivateGPT [Computer software]. https://github.com/imartinez/privateGPT
```
Then, download the LLM model and place it in a directory of your choice:
- LLM: default to [ggml-gpt4all-j-v1.3-groovy.bin](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin). If you prefer a different GPT4All-J compatible model, just download it and reference it in your `.env` file.
## 🤗 Partners & Supporters
PrivateGPT is actively supported by the teams behind:
* [Qdrant](https://qdrant.tech/), providing the default vector database
* [Fern](https://buildwithfern.com/), providing Documentation and SDKs
* [LlamaIndex](https://www.llamaindex.ai/), providing the base RAG framework and abstractions
Copy the `example.env` template into `.env`
```shell
cp example.env .env
```
and edit the variables appropriately in the `.env` file.
```
MODEL_TYPE: supports LlamaCpp or GPT4All
PERSIST_DIRECTORY: is the folder you want your vectorstore in
MODEL_PATH: Path to your GPT4All or LlamaCpp supported LLM
MODEL_N_CTX: Maximum token limit for the LLM model
MODEL_N_BATCH: Number of tokens in the prompt that are fed into the model at a time. Optimal value differs a lot depending on the model (8 works well for GPT4All, and 1024 is better for LlamaCpp)
EMBEDDINGS_MODEL_NAME: SentenceTransformers embeddings model name (see https://www.sbert.net/docs/pretrained_models.html)
TARGET_SOURCE_CHUNKS: The amount of chunks (sources) that will be used to answer a question
```
Note: because of the way `langchain` loads the `SentenceTransformers` embeddings, the first time you run the script it will require internet connection to download the embeddings model itself.
## Test dataset
This repo uses a [state of the union transcript](https://github.com/imartinez/privateGPT/blob/main/source_documents/state_of_the_union.txt) as an example.
## Instructions for ingesting your own dataset
Put any and all your files into the `source_documents` directory
The supported extensions are:
- `.csv`: CSV,
- `.docx`: Word Document,
- `.doc`: Word Document,
- `.enex`: EverNote,
- `.eml`: Email,
- `.epub`: EPub,
- `.html`: HTML File,
- `.md`: Markdown,
- `.msg`: Outlook Message,
- `.odt`: Open Document Text,
- `.pdf`: Portable Document Format (PDF),
- `.pptx` : PowerPoint Document,
- `.ppt` : PowerPoint Document,
- `.txt`: Text file (UTF-8),
Run the following command to ingest all the data.
```shell
python ingest.py
```
Output should look like this:
```shell
Creating new vectorstore
Loading documents from source_documents
Loading new documents: 100%|██████████████████████| 1/1 [00:01<00:00, 1.73s/it]
Loaded 1 new documents from source_documents
Split into 90 chunks of text (max. 500 tokens each)
Creating embeddings. May take some minutes...
Using embedded DuckDB with persistence: data will be stored in: db
Ingestion complete! You can now run privateGPT.py to query your documents
```
It will create a `db` folder containing the local vectorstore. Will take 20-30 seconds per document, depending on the size of the document.
You can ingest as many documents as you want, and all will be accumulated in the local embeddings database.
If you want to start from an empty database, delete the `db` folder.
Note: during the ingest process no data leaves your local environment. You could ingest without an internet connection, except for the first time you run the ingest script, when the embeddings model is downloaded.
## Ask questions to your documents, locally!
In order to ask a question, run a command like:
```shell
python privateGPT.py
```
And wait for the script to require your input.
```plaintext
> Enter a query:
```
Hit enter. You'll need to wait 20-30 seconds (depending on your machine) while the LLM model consumes the prompt and prepares the answer. Once done, it will print the answer and the 4 sources it used as context from your documents; you can then ask another question without re-running the script, just wait for the prompt again.
Note: you could turn off your internet connection, and the script inference would still work. No data gets out of your local environment.
Type `exit` to finish the script.
### CLI
The script also supports optional command-line arguments to modify its behavior. You can see a full list of these arguments by running the command ```python privateGPT.py --help``` in your terminal.
# How does it work?
Selecting the right local models and the power of `LangChain` you can run the entire pipeline locally, without any data leaving your environment, and with reasonable performance.
- `ingest.py` uses `LangChain` tools to parse the document and create embeddings locally using `HuggingFaceEmbeddings` (`SentenceTransformers`). It then stores the result in a local vector database using `Chroma` vector store.
- `privateGPT.py` uses a local LLM based on `GPT4All-J` or `LlamaCpp` to understand questions and create answers. The context for the answers is extracted from the local vector store using a similarity search to locate the right piece of context from the docs.
- `GPT4All-J` wrapper was introduced in LangChain 0.0.162.
# System Requirements
## Python Version
To use this software, you must have Python 3.10 or later installed. Earlier versions of Python will not compile.
## C++ Compiler
If you encounter an error while building a wheel during the `pip install` process, you may need to install a C++ compiler on your computer.
### For Windows 10/11
To install a C++ compiler on Windows 10/11, follow these steps:
1. Install Visual Studio 2022.
2. Make sure the following components are selected:
* Universal Windows Platform development
* C++ CMake tools for Windows
3. Download the MinGW installer from the [MinGW website](https://sourceforge.net/projects/mingw/).
4. Run the installer and select the `gcc` component.
## Mac Running Intel
When running a Mac with Intel hardware (not M1), you may run into _clang: error: the clang compiler does not support '-march=native'_ during pip install.
If so set your archflags during pip install. eg: _ARCHFLAGS="-arch x86_64" pip3 install -r requirements.txt_
# Disclaimer
This is a test project to validate the feasibility of a fully private solution for question answering using LLMs and Vector embeddings. It is not production ready, and it is not meant to be used in production. The models selection is not optimized for performance, but for privacy; but it is possible to use different models and vectorstores to improve performance.
This project has been strongly influenced and supported by other amazing projects like
[LangChain](https://github.com/hwchase17/langchain),
[GPT4All](https://github.com/nomic-ai/gpt4all),
[LlamaCpp](https://github.com/ggerganov/llama.cpp),
[Chroma](https://www.trychroma.com/)
and [SentenceTransformers](https://www.sbert.net/).

View File

@@ -1,16 +0,0 @@
import os
from dotenv import load_dotenv
from chromadb.config import Settings
load_dotenv()
# Define the folder for storing database
PERSIST_DIRECTORY = os.environ.get('PERSIST_DIRECTORY')
if PERSIST_DIRECTORY is None:
raise Exception("Please set the PERSIST_DIRECTORY environment variable")
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
persist_directory=PERSIST_DIRECTORY,
anonymized_telemetry=False
)

14
docker-compose.yaml Normal file
View File

@@ -0,0 +1,14 @@
services:
private-gpt:
build:
dockerfile: Dockerfile.local
volumes:
- ./local_data/:/home/worker/app/local_data
- ./models/:/home/worker/app/models
ports:
- 8001:8080
environment:
PORT: 8080
PGPT_PROFILES: docker
PGPT_MODE: local

0
docs/.nojekyll Normal file
View File

474
docs/description.md Normal file
View File

@@ -0,0 +1,474 @@
## Introduction
PrivateGPT provides an **API** containing all the building blocks required to build
**private, context-aware AI applications**. The API follows and extends OpenAI API standard, and supports
both normal and streaming responses.
The API is divided in two logical blocks:
- High-level API, abstracting all the complexity of a RAG (Retrieval Augmented Generation) pipeline implementation:
- Ingestion of documents: internally managing document parsing, splitting, metadata extraction,
embedding generation and storage.
- Chat & Completions using context from ingested documents: abstracting the retrieval of context, the prompt
engineering and the response generation.
- Low-level API, allowing advanced users to implement their own complex pipelines:
- Embeddings generation: based on a piece of text.
- Contextual chunks retrieval: given a query, returns the most relevant chunks of text from the ingested
documents.
> A working **Gradio UI client** is provided to test the API, together with a set of
> useful tools such as bulk model download script, ingestion script, documents folder
> watch, etc.
## Quick Local Installation steps
The steps in `Installation and Settings` section are better explained and cover more
setup scenarios. But if you are looking for a quick setup guide, here it is:
```
# Clone the repo
git clone https://github.com/imartinez/privateGPT
cd privateGPT
# Install Python 3.11
pyenv install 3.11
pyenv local 3.11
# Install dependencies
poetry install --with ui,local
# Download Embedding and LLM models
poetry run python scripts/setup
# (Optional) For Mac with Metal GPU, enable it. Check Installation and Settings section
to know how to enable GPU on other platforms
CMAKE_ARGS="-DLLAMA_METAL=on" pip install --force-reinstall --no-cache-dir llama-cpp-python
# Run the local server
PGPT_PROFILES=local make run
# Note: on Mac with Metal you should see a ggml_metal_add_buffer log, stating GPU is
being used
# Navigate to the UI and try it out!
http://localhost:8001/
```
## Installation and Settings
### Base requirements to run PrivateGPT
* Git clone PrivateGPT repository, and navigate to it:
```
git clone https://github.com/imartinez/privateGPT
cd privateGPT
```
* Install Python 3.11. Ideally through a python version manager like `pyenv`.
Python 3.12
should work too. Earlier python versions are not supported.
* osx/linux: [pyenv](https://github.com/pyenv/pyenv)
* windows: [pyenv-win](https://github.com/pyenv-win/pyenv-win)
```
pyenv install 3.11
pyenv local 3.11
```
* Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
* Have a valid C++ compiler like gcc. See [Troubleshooting: C++ Compiler](#troubleshooting-c-compiler) for more details.
* Install `make` for scripts:
* osx: (Using homebrew): `brew install make`
* windows: (Using chocolatey) `choco install make`
### Install dependencies
Install the dependencies:
```bash
poetry install --with ui
```
Verify everything is working by running `make run` (or `poetry run python -m private_gpt`) and navigate to
http://localhost:8001. You should see a [Gradio UI](https://gradio.app/) **configured with a mock LLM** that will
echo back the input. Later we'll see how to configure a real LLM.
### Settings
> Note: the default settings of PrivateGPT work out-of-the-box for a 100% local setup. Skip this section if you just
> want to test PrivateGPT locally, and come back later to learn about more configuration options.
PrivateGPT is configured through *profiles* that are defined using yaml files, and selected through env variables.
The full list of properties configurable can be found in `settings.yaml`
#### env var `PGPT_SETTINGS_FOLDER`
The location of the settings folder. Defaults to the root of the project.
Should contain the default `settings.yaml` and any other `settings-{profile}.yaml`.
#### env var `PGPT_PROFILES`
By default, the profile definition in `settings.yaml` is loaded.
Using this env var you can load additional profiles; format is a comma separated list of profile names.
This will merge `settings-{profile}.yaml` on top of the base settings file.
For example:
`PGPT_PROFILES=local,cuda` will load `settings-local.yaml`
and `settings-cuda.yaml`, their contents will be merged with
later profiles properties overriding values of earlier ones like `settings.yaml`.
During testing, the `test` profile will be active along with the default, therefore `settings-test.yaml`
file is required.
#### Environment variables expansion
Configuration files can contain environment variables,
they will be expanded at runtime.
Expansion must follow the pattern `${VARIABLE_NAME:default_value}`.
For example, the following configuration will use the value of the `PORT`
environment variable or `8001` if it's not set.
Missing variables with no default will produce an error.
```yaml
server:
port: ${PORT:8001}
```
### Local LLM requirements
Install extra dependencies for local execution:
```bash
poetry install --with local
```
For PrivateGPT to run fully locally GPU acceleration is required
(CPU execution is possible, but very slow), however,
typical Macbook laptops or window desktops with mid-range GPUs lack VRAM to run
even the smallest LLMs. For that reason
**local execution is only supported for models compatible with [llama.cpp](https://github.com/ggerganov/llama.cpp)**
These two models are known to work well:
* https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF
* https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF (recommended)
To ease the installation process, use the `setup` script that will download both
the embedding and the LLM model and place them in the correct location (under `models` folder):
```bash
poetry run python scripts/setup
```
If you are ok with CPU execution, you can skip the rest of this section.
As stated before, llama.cpp is required and in
particular [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
is used.
> It's highly encouraged that you fully read llama-cpp and llama-cpp-python documentation relevant to your platform.
> Running into installation issues is very likely, and you'll need to troubleshoot them yourself.
#### Customizing low level parameters
Currently not all the parameters of llama-cpp and llama-cpp-python are available at PrivateGPT's `settings.yaml` file. In case you need to customize parameters such as the number of layers loaded into the GPU, you might change these at the `llm_component.py` file under the `private_gpt/components/llm/llm_component.py`. If you are getting an out of memory error, you might also try a smaller model or stick to the proposed recommended models, instead of custom tuning the parameters.
#### OSX GPU support
You will need to build [llama.cpp](https://github.com/ggerganov/llama.cpp) with
metal support. To do that run:
```bash
CMAKE_ARGS="-DLLAMA_METAL=on" pip install --force-reinstall --no-cache-dir llama-cpp-python
```
#### Windows NVIDIA GPU support
Windows GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
dependencies.
Some tips to get it working with an NVIDIA card and CUDA (Tested on Windows 10 with CUDA 11.5 RTX 3070):
* Install latest VS2022 (and build tools) https://visualstudio.microsoft.com/vs/community/
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
* [Optional] Install CMake to troubleshoot building issues by compiling llama.cpp directly https://cmake.org/download/
If you have all required dependencies properly configured running the
following powershell command should succeed.
```powershell
$env:CMAKE_ARGS='-DLLAMA_CUBLAS=on'; poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
```
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
```
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
```
Note that llama.cpp offloads matrix calculations to the GPU but the performance is
still hit heavily due to latency between CPU and GPU communication. You might need to tweak
batch sizes and other parameters to get the best performance for your particular system.
#### Linux NVIDIA GPU support and Windows-WSL
Linux GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
external
dependencies.
Some tips:
* Make sure you have an up-to-date C++ compiler
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
After that running the following command in the repository will install llama.cpp with GPU support:
`
CMAKE_ARGS='-DLLAMA_CUBLAS=on' poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
`
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
```
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
```
#### Vectorstores
PrivateGPT supports [Chroma](https://www.trychroma.com/), [Qdrant](https://qdrant.tech/) as vectorstore providers. Chroma being the default.
To enable Qdrant, set the `vectorstore.database` property in the `settings.yaml` file to `qdrant` and install the `qdrant` extra.
```bash
poetry install --extras qdrant
```
By default Qdrant tries to connect to an instance at `http://localhost:3000`.
Qdrant settings can be configured by setting values to the `qdrant` property in the `settings.yaml` file.
The available configuration options are:
| Field | Description |
|--------------|-------------|
| location | If `:memory:` - use in-memory Qdrant instance.<br>If `str` - use it as a `url` parameter.|
| url | Either host or str of 'Optional[scheme], host, Optional[port], Optional[prefix]'.<br> Eg. `http://localhost:6333` |
| port | Port of the REST API interface. Default: `6333` |
| grpc_port | Port of the gRPC interface. Default: `6334` |
| prefer_grpc | If `true` - use gRPC interface whenever possible in custom methods. |
| https | If `true` - use HTTPS(SSL) protocol.|
| api_key | API key for authentication in Qdrant Cloud.|
| prefix | If set, add `prefix` to the REST URL path.<br>Example: `service/v1` will result in `http://localhost:6333/service/v1/{qdrant-endpoint}` for REST API.|
| timeout | Timeout for REST and gRPC API requests.<br>Default: 5.0 seconds for REST and unlimited for gRPC |
| host | Host name of Qdrant service. If url and host are not set, defaults to 'localhost'.|
| path | Persistence path for QdrantLocal. Eg. `local_data/private_gpt/qdrant`|
| force_disable_check_same_thread | Force disable check_same_thread for QdrantLocal sqlite connection.|
#### Known issues and Troubleshooting
Execution of LLMs locally still has a lot of sharp edges, specially when running on non Linux platforms.
You might encounter several issues:
* Performance: RAM or VRAM usage is very high, your computer might experience slowdowns or even crashes.
* GPU Virtualization on Windows and OSX: Simply not possible with docker desktop, you have to run the server directly on
the host.
* Building errors: Some of PrivateGPT dependencies need to build native code, and they might fail on some platforms.
Most likely you are missing some dev tools in your machine (updated C++ compiler, CUDA is not on PATH, etc.).
If you encounter any of these issues, please open an issue and we'll try to help.
#### Troubleshooting: C++ Compiler
If you encounter an error while building a wheel during the `pip install` process, you may need to install a C++
compiler on your computer.
**For Windows 10/11**
To install a C++ compiler on Windows 10/11, follow these steps:
1. Install Visual Studio 2022.
2. Make sure the following components are selected:
* Universal Windows Platform development
* C++ CMake tools for Windows
3. Download the MinGW installer from the [MinGW website](https://sourceforge.net/projects/mingw/).
4. Run the installer and select the `gcc` component.
** For OSX **
1. Check if you have a C++ compiler installed, Xcode might have done it for you. for example running `gcc`.
2. If not, you can install clang or gcc with homebrew `brew install gcc`
#### Troubleshooting: Mac Running Intel
When running a Mac with Intel hardware (not M1), you may run into _clang: error: the clang compiler does not support '
-march=native'_ during pip install.
If so set your archflags during pip install. eg: _ARCHFLAGS="-arch x86_64" pip3 install -r requirements.txt_
## Running the Server
After following the installation steps you should be ready to go. Here are some common run setups:
### Running 100% locally
Make sure you have followed the *Local LLM requirements* section before moving on.
This command will start PrivateGPT using the `settings.yaml` (default profile) together with the `settings-local.yaml`
configuration files. By default, it will enable both the API and the Gradio UI. Run:
```
PGPT_PROFILES=local make run
```
or
```
PGPT_PROFILES=local poetry run python -m private_gpt
```
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API
using Swagger UI.
### Local server using OpenAI as LLM
If you cannot run a local model (because you don't have a GPU, for example) or for testing purposes, you may
decide to run PrivateGPT using OpenAI as the LLM.
In order to do so, create a profile `settings-openai.yaml` with the following contents:
```yaml
llm:
mode: openai
openai:
api_key: <your_openai_api_key> # You could skip this configuration and use the OPENAI_API_KEY env var instead
```
And run PrivateGPT loading that profile you just created:
```PGPT_PROFILES=openai make run```
or
```PGPT_PROFILES=openai poetry run python -m private_gpt```
> Note this will still use the local Embeddings model, as it is ok to use it on a CPU.
> We'll support using OpenAI embeddings in a future release.
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.
You'll notice the speed and quality of response is higher, given you are using OpenAI's servers for the heavy
computations.
### Use AWS's Sagemaker
🚧 Under construction 🚧
## Gradio UI user manual
Gradio UI is a ready to use way of testing most of PrivateGPT API functionalities.
![Gradio PrivateGPT](https://lh3.googleusercontent.com/drive-viewer/AK7aPaD_Hc-A8A9ooMe-hPgm_eImgsbxAjb__8nFYj8b_WwzvL1Gy90oAnp1DfhPaN6yGiEHCOXs0r77W1bYHtPzlVwbV7fMsA=s1600)
### Execution Modes
It has 3 modes of execution (you can select in the top-left):
* Query Docs: uses the context from the
ingested documents to answer the questions posted in the chat. It also takes
into account previous chat messages as context.
* Makes use of `/chat/completions` API with `use_context=true` and no
`context_filter`.
* Search in Docs: fast search that returns the 4 most related text
chunks, together with their source document and page.
* Makes use of `/chunks` API with no `context_filter`, `limit=4` and
`prev_next_chunks=0`.
* LLM Chat: simple, non-contextual chat with the LLM. The ingested documents won't
be taken into account, only the previous messages.
* Makes use of `/chat/completions` API with `use_context=false`.
### Document Ingestion
Ingest documents by using the `Upload a File` button. You can check the progress of
the ingestion in the console logs of the server.
The list of ingested files is shown below the button.
If you want to delete the ingested documents, refer to *Reset Local documents
database* section in the documentation.
### Chat
Normal chat interface, self-explanatory ;)
You can check the actual prompt being passed to the LLM by looking at the logs of
the server. We'll add better observability in future releases.
## Deployment options
🚧 We are working on Dockerized deployment guidelines 🚧
## Observability
Basic logs are enabled using LlamaIndex
basic logging (for example ingestion progress or LLM prompts and answers).
🚧 We are working on improved Observability. 🚧
## Ingesting & Managing Documents
🚧 Document Update and Delete are still WIP. 🚧
The ingestion of documents can be done in different ways:
* Using the `/ingest` API
* Using the Gradio UI
* Using the Bulk Local Ingestion functionality (check next section)
### Bulk Local Ingestion
When you are running PrivateGPT in a fully local setup, you can ingest a complete folder for convenience (containing
pdf, text files, etc.)
and optionally watch changes on it with the command:
```bash
make ingest /path/to/folder -- --watch
```
To log the processed and failed files to an additional file, use:
```bash
make ingest /path/to/folder -- --watch --log-file /path/to/log/file.log
```
After ingestion is complete, you should be able to chat with your documents
by navigating to http://localhost:8001 and using the option `Query documents`,
or using the completions / chat API.
### Reset Local documents database
When running in a local setup, you can remove all ingested documents by simply
deleting all contents of `local_data` folder (except .gitignore).
To simplify this process, you can use the command:
```bash
make wipe
```
## API
As explained in the introduction, the API contains high level APIs (ingestion and chat/completions) and low level APIs
(embeddings and chunk retrieval). In this section the different specific API calls are explained.

22
docs/index.html Normal file
View File

@@ -0,0 +1,22 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>PrivateGPT Docs</title>
<!-- needed for adaptive design -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="https://fonts.googleapis.com/css?family=Montserrat:300,400,700|Roboto:300,400,700" rel="stylesheet">
<link rel="shortcut icon" href="https://fastapi.tiangolo.com/img/favicon.png">
<!-- ReDoc doesn't change outer page styles -->
<style>
body {
margin: 0;
padding: 0;
}
</style>
</head>
<body>
<noscript> ReDoc requires Javascript to function. Please enable it to browse the documentation. </noscript>
<redoc spec-url="/openapi.json"></redoc>
<script src="https://cdn.jsdelivr.net/npm/redoc@next/bundles/redoc.standalone.js"></script>
</body>

BIN
docs/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

989
docs/openapi.json Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +0,0 @@
PERSIST_DIRECTORY=db
MODEL_TYPE=GPT4All
MODEL_PATH=models/ggml-gpt4all-j-v1.3-groovy.bin
EMBEDDINGS_MODEL_NAME=all-MiniLM-L6-v2
MODEL_N_CTX=1000
MODEL_N_BATCH=8
TARGET_SOURCE_CHUNKS=4

39
fern/README.md Normal file
View File

@@ -0,0 +1,39 @@
# Documentation of privateGPT
The documentation of this project is being rendered thanks to [fern](https://github.com/fern-api/fern).
Fern is basically transforming your `.md` and `.mdx` files into a static website: your documentation.
The configuration of your documentation is done in the `./docs.yml` file.
There, you can configure the navbar, tabs, sections and pages being rendered.
The documentation of fern (and the syntax of its configuration `docs.yml`) is
available there [docs.buildwithfern.com](https://docs.buildwithfern.com/).
## How to run fern
**You cannot render your documentation locally without fern credentials.**
To see how your documentation looks like, you **have to** use the CICD of this
repository (by opening a PR, CICD job will be executed, and a preview of
your PR's documentation will be deployed in vercel automatically, through fern).
The only thing you can do locally, is to run `fern check`, which check the syntax of
your `docs.yml` file.
## How to add a new page
Add in the `docs.yml` a new `page`, with the following syntax:
```yml
navigation:
# ...
- tab: my-existing-tab
layout:
# ...
- section: My Existing Section
contents:
# ...
- page: My new page display name
# The path of the page, relative to `fern/`
path: ./docs/pages/my-existing-tab/new-page-content.mdx
```

111
fern/docs.yml Normal file
View File

@@ -0,0 +1,111 @@
# Main Fern configuration file
instances:
- url: privategpt.docs.buildwithfern.com
custom-domain: docs.privategpt.dev
title: PrivateGPT | Docs
# The tabs definition, in the top left corner
tabs:
overview:
display-name: Overview
icon: "fa-solid fa-home"
installation:
display-name: Installation
icon: "fa-solid fa-download"
manual:
display-name: Manual
icon: "fa-solid fa-book"
recipes:
display-name: Recipes
icon: "fa-solid fa-flask"
api-reference:
display-name: API Reference
icon: "fa-solid fa-file-contract"
# Definition of tabs contents, will be displayed on the left side of the page, below all tabs
navigation:
# The default tab
- tab: overview
layout:
- section: Welcome
contents:
- page: Welcome
path: ./docs/pages/overview/welcome.mdx
- page: Quickstart
path: ./docs/pages/overview/quickstart.mdx
# How to install privateGPT, with FAQ and troubleshooting
- tab: installation
layout:
- section: Getting started
contents:
- page: Installation
path: ./docs/pages/installation/installation.mdx
# Manual of privateGPT: how to use it and configure it
- tab: manual
layout:
- section: General configuration
contents:
- page: Configuration
path: ./docs/pages/manual/settings.mdx
- section: Document management
contents:
- page: Ingestion
path: ./docs/pages/manual/ingestion.mdx
- page: Deletion
path: ./docs/pages/manual/ingestion-reset.mdx
- section: Storage
contents:
- page: Vector Stores
path: ./docs/pages/manual/vectordb.mdx
- section: Advanced Setup
contents:
- page: LLM Backends
path: ./docs/pages/manual/llms.mdx
- section: User Interface
contents:
- page: User interface (Gradio) Manual
path: ./docs/pages/manual/ui.mdx
# Small code snippet or example of usage to help users
- tab: recipes
layout:
- section: Choice of LLM
contents:
# TODO: add recipes
- page: List of LLMs
path: ./docs/pages/recipes/list-llm.mdx
# More advanced usage of privateGPT, by API
- tab: api-reference
layout:
- section: Overview
contents:
- page : API Reference overview
path: ./docs/pages/api-reference/api-reference.mdx
- page: SDKs
path: ./docs/pages/api-reference/sdks.mdx
- api: API Reference
# Definition of the navbar, will be displayed in the top right corner.
# `type:primary` is always displayed at the most right side of the navbar
navbar-links:
- type: secondary
text: Github
url: "https://github.com/imartinez/privateGPT"
- type: secondary
text: Contact us
url: "mailto:hello@zylon.ai"
- type: primary
text: Join the Discord
url: https://discord.com/invite/bK6mRVpErU
colors:
accentPrimary:
dark: "#C6BBFF"
light: "#756E98"
logo:
dark: ./docs/assets/logo_light.png
light: ./docs/assets/logo_dark.png
height: 50
favicon: ./docs/assets/favicon.ico

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.3 KiB

BIN
fern/docs/assets/ui.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 212 KiB

View File

@@ -0,0 +1 @@
# API Reference

View File

@@ -0,0 +1,38 @@
We use [Fern](www.buildwithfern.com) to offer API clients for Node.js, Python, Go, and Java.
We recommend using these clients to interact with our endpoints.
The clients are kept up to date automatically, so we encourage you to use the latest version.
## SDKs
*Coming soon!*
<Cards>
<Card
title="Node.js/TypeScript"
icon="fa-brands fa-node"
href="https://github.com/imartinez/privateGPT-typescript"
/>
<Card
title="Python"
icon="fa-brands fa-python"
href="https://github.com/imartinez/privateGPT-python"
/>
<br />
</Cards>
<br />
<Cards>
<Card
title="Java"
icon="fa-brands fa-java"
href="https://github.com/imartinez/privateGPT-java"
/>
<Card
title="Go"
icon="fa-brands fa-golang"
href="https://github.com/imartinez/privateGPT-go"
/>
</Cards>
<br />

View File

@@ -0,0 +1,235 @@
## Installation and Settings
### Base requirements to run PrivateGPT
* Git clone PrivateGPT repository, and navigate to it:
```bash
git clone https://github.com/imartinez/privateGPT
cd privateGPT
```
* Install Python `3.11` (*if you do not have it already*). Ideally through a python version manager like `pyenv`.
Python 3.12 should work too. Earlier python versions are not supported.
* osx/linux: [pyenv](https://github.com/pyenv/pyenv)
* windows: [pyenv-win](https://github.com/pyenv-win/pyenv-win)
```bash
pyenv install 3.11
pyenv local 3.11
```
* Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
* Have a valid C++ compiler like gcc. See [Troubleshooting: C++ Compiler](#troubleshooting-c-compiler) for more details.
* Install `make` for scripts:
* osx: (Using homebrew): `brew install make`
* windows: (Using chocolatey) `choco install make`
### Install dependencies
Install the dependencies:
```bash
poetry install --with ui
```
Verify everything is working by running `make run` (or `poetry run python -m private_gpt`) and navigate to
http://localhost:8001. You should see a [Gradio UI](https://gradio.app/) **configured with a mock LLM** that will
echo back the input. Below we'll see how to configure a real LLM.
### Settings
<Callout intent="info">
The default settings of PrivateGPT should work out-of-the-box for a 100% local setup. **However**, as is, it runs exclusively on your CPU.
Skip this section if you just want to test PrivateGPT locally, and come back later to learn about more configuration options (and have better performances).
</Callout>
<br />
### Local LLM requirements
Install extra dependencies for local execution:
```bash
poetry install --with local
```
For PrivateGPT to run fully locally GPU acceleration is required
(CPU execution is possible, but very slow), however,
typical Macbook laptops or window desktops with mid-range GPUs lack VRAM to run
even the smallest LLMs. For that reason
**local execution is only supported for models compatible with [llama.cpp](https://github.com/ggerganov/llama.cpp)**
These two models are known to work well:
* https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF
* https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF (recommended)
To ease the installation process, use the `setup` script that will download both
the embedding and the LLM model and place them in the correct location (under `models` folder):
```bash
poetry run python scripts/setup
```
If you are ok with CPU execution, you can skip the rest of this section.
As stated before, llama.cpp is required and in
particular [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
is used.
> It's highly encouraged that you fully read llama-cpp and llama-cpp-python documentation relevant to your platform.
> Running into installation issues is very likely, and you'll need to troubleshoot them yourself.
#### Customizing low level parameters
Currently, not all the parameters of `llama.cpp` and `llama-cpp-python` are available at PrivateGPT's `settings.yaml` file.
In case you need to customize parameters such as the number of layers loaded into the GPU, you might change
these at the `llm_component.py` file under the `private_gpt/components/llm/llm_component.py`.
##### Available LLM config options
The `llm` section of the settings allows for the following configurations:
- `mode`: how to run your llm
- `max_new_tokens`: this lets you configure the number of new tokens the LLM will generate and add to the context window (by default Llama.cpp uses `256`)
Example:
```yaml
llm:
mode: local
max_new_tokens: 256
```
If you are getting an out of memory error, you might also try a smaller model or stick to the proposed
recommended models, instead of custom tuning the parameters.
#### OSX GPU support
You will need to build [llama.cpp](https://github.com/ggerganov/llama.cpp) with metal support.
To do that, you need to install `llama.cpp` python's binding `llama-cpp-python` through pip, with the compilation flag
that activate `METAL`: you have to pass `-DLLAMA_METAL=on` to the CMake command tha `pip` runs for you (see below).
In other words, one should simply run:
```bash
CMAKE_ARGS="-DLLAMA_METAL=on" pip install --force-reinstall --no-cache-dir llama-cpp-python
```
The above command will force the re-installation of `llama-cpp-python` with `METAL` support by compiling
`llama.cpp` locally with your `METAL` libraries (shipped by default with your macOS).
More information is available in the documentation of the libraries themselves:
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python#installation-with-hardware-acceleration)
* [llama-cpp-python's documentation](https://llama-cpp-python.readthedocs.io/en/latest/#installation-with-hardware-acceleration)
* [llama.cpp](https://github.com/ggerganov/llama.cpp#build)
#### Windows NVIDIA GPU support
Windows GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
dependencies.
Some tips to get it working with an NVIDIA card and CUDA (Tested on Windows 10 with CUDA 11.5 RTX 3070):
* Install latest VS2022 (and build tools) https://visualstudio.microsoft.com/vs/community/
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
* [Optional] Install CMake to troubleshoot building issues by compiling llama.cpp directly https://cmake.org/download/
If you have all required dependencies properly configured running the
following powershell command should succeed.
```powershell
$env:CMAKE_ARGS='-DLLAMA_CUBLAS=on'; poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
```
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
```console
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
```
Note that llama.cpp offloads matrix calculations to the GPU but the performance is
still hit heavily due to latency between CPU and GPU communication. You might need to tweak
batch sizes and other parameters to get the best performance for your particular system.
#### Linux NVIDIA GPU support and Windows-WSL
Linux GPU support is done through CUDA.
Follow the instructions on the original [llama.cpp](https://github.com/ggerganov/llama.cpp) repo to install the required
external
dependencies.
Some tips:
* Make sure you have an up-to-date C++ compiler
* Install CUDA toolkit https://developer.nvidia.com/cuda-downloads
* Verify your installation is correct by running `nvcc --version` and `nvidia-smi`, ensure your CUDA version is up to
date and your GPU is detected.
After that running the following command in the repository will install llama.cpp with GPU support:
```bash
CMAKE_ARGS='-DLLAMA_CUBLAS=on' poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
```
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`.
```
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
```
### Known issues and Troubleshooting
Execution of LLMs locally still has a lot of sharp edges, specially when running on non Linux platforms.
You might encounter several issues:
* Performance: RAM or VRAM usage is very high, your computer might experience slowdowns or even crashes.
* GPU Virtualization on Windows and OSX: Simply not possible with docker desktop, you have to run the server directly on
the host.
* Building errors: Some of PrivateGPT dependencies need to build native code, and they might fail on some platforms.
Most likely you are missing some dev tools in your machine (updated C++ compiler, CUDA is not on PATH, etc.).
If you encounter any of these issues, please open an issue and we'll try to help.
One of the first reflex to adopt is: get more information.
If, during your installation, something does not go as planned, retry in *verbose* mode, and see what goes wrong.
For example, when installing packages with `pip install`, you can add the option `-vvv` to show the details of the installation.
#### Troubleshooting: C++ Compiler
If you encounter an error while building a wheel during the `pip install` process, you may need to install a C++
compiler on your computer.
**For Windows 10/11**
To install a C++ compiler on Windows 10/11, follow these steps:
1. Install Visual Studio 2022.
2. Make sure the following components are selected:
* Universal Windows Platform development
* C++ CMake tools for Windows
3. Download the MinGW installer from the [MinGW website](https://sourceforge.net/projects/mingw/).
4. Run the installer and select the `gcc` component.
**For OSX**
1. Check if you have a C++ compiler installed, `Xcode` should have done it for you. To install Xcode, go to the App
Store and search for Xcode and install it. **Or** you can install the command line tools by running `xcode-select --install`.
2. If not, you can install clang or gcc with homebrew `brew install gcc`
#### Troubleshooting: Mac Running Intel
When running a Mac with Intel hardware (not M1), you may run into _clang: error: the clang compiler does not support '
-march=native'_ during pip install.
If so set your archflags during pip install. eg: _ARCHFLAGS="-arch x86_64" pip3 install -r requirements.txt_

View File

@@ -0,0 +1,14 @@
# Reset Local documents database
When running in a local setup, you can remove all ingested documents by simply
deleting all contents of `local_data` folder (except .gitignore).
To simplify this process, you can use the command:
```bash
make wipe
```
# Advanced usage
You can actually delete your documents from your storage by using the
API endpoint `DELETE` in the Ingestion API.

View File

@@ -0,0 +1,124 @@
# Ingesting & Managing Documents
The ingestion of documents can be done in different ways:
* Using the `/ingest` API
* Using the Gradio UI
* Using the Bulk Local Ingestion functionality (check next section)
## Bulk Local Ingestion
When you are running PrivateGPT in a fully local setup, you can ingest a complete folder for convenience (containing
pdf, text files, etc.)
and optionally watch changes on it with the command:
```bash
make ingest /path/to/folder -- --watch
```
To log the processed and failed files to an additional file, use:
```bash
make ingest /path/to/folder -- --watch --log-file /path/to/log/file.log
```
**Note for Windows Users:** Depending on your Windows version and whether you are using PowerShell to execute
PrivateGPT API calls, you may need to include the parameter name before passing the folder path for consumption:
```bash
make ingest arg=/path/to/folder -- --watch --log-file /path/to/log/file.log
```
After ingestion is complete, you should be able to chat with your documents
by navigating to http://localhost:8001 and using the option `Query documents`,
or using the completions / chat API.
## Ingestion troubleshooting
### Running out of memory
To do not run out of memory, you should ingest your documents without the LLM loaded in your (video) memory.
To do so, you should change your configuration to set `llm.mode: mock`.
You can also use the existing `PGPT_PROFILES=mock` that will set the following configuration for you:
```yaml
llm:
mode: mock
embedding:
mode: local
```
This configuration allows you to use hardware acceleration for creating embeddings while avoiding loading the full LLM into (video) memory.
Once your documents are ingested, you can set the `llm.mode` value back to `local` (or your previous custom value).
### Ingestion speed
The ingestion speed depends on the number of documents you are ingesting, and the size of each document.
To speed up the ingestion, you can change the ingestion mode in configuration.
The following ingestion mode exist:
* `simple`: historic behavior, ingest one document at a time, sequentially
* `batch`: read, parse, and embed multiple documents using batches (batch read, and then batch parse, and then batch embed)
* `parallel`: read, parse, and embed multiple documents in parallel. This is the fastest ingestion mode for local setup.
To change the ingestion mode, you can use the `embedding.ingest_mode` configuration value. The default value is `simple`.
To configure the number of workers used for parallel or batched ingestion, you can use
the `embedding.count_workers` configuration value. If you set this value too high, you might run out of
memory, so be mindful when setting this value. The default value is `2`.
For `batch` mode, you can easily set this value to your number of threads available on your CPU without
running out of memory. For `parallel` mode, you should be more careful, and set this value to a lower value.
The configuration below should be enough for users who want to stress more their hardware:
```yaml
embedding:
ingest_mode: parallel
count_workers: 4
```
If your hardware is powerful enough, and that you are loading heavy documents, you can increase the number of workers.
It is recommended to do your own tests to find the optimal value for your hardware.
If you have a `bash` shell, you can use this set of command to do your own benchmark:
```bash
# Wipe your local data, to put yourself in a clean state
# This will delete all your ingested documents
make wipe
time PGPT_PROFILES=mock python ./scripts/ingest_folder.py ~/my-dir/to-ingest/
```
## Supported file formats
privateGPT by default supports all the file formats that contains clear text (for example, `.txt` files, `.html`, etc.).
However, these text based file formats as only considered as text files, and are not pre-processed in any other way.
It also supports the following file formats:
* `.hwp`
* `.pdf`
* `.docx`
* `.pptx`
* `.ppt`
* `.pptm`
* `.jpg`
* `.png`
* `.jpeg`
* `.mp3`
* `.mp4`
* `.csv`
* `.epub`
* `.md`
* `.mbox`
* `.ipynb`
* `.json`
**Please note the following nuance**: while `privateGPT` supports these file formats, it **might** require additional
dependencies to be installed in your python's virtual environment.
For example, if you try to ingest `.epub` files, `privateGPT` might fail to do it, and will instead display an
explanatory error asking you to download the necessary dependencies to install this file format.
**Other file formats might work**, but they will be considered as plain text
files (in other words, they will be ingested as `.txt` files).

View File

@@ -0,0 +1,83 @@
## Running the Server
PrivateGPT supports running with different LLMs & setups.
### Local models
Both the LLM and the Embeddings model will run locally.
Make sure you have followed the *Local LLM requirements* section before moving on.
This command will start PrivateGPT using the `settings.yaml` (default profile) together with the `settings-local.yaml`
configuration files. By default, it will enable both the API and the Gradio UI. Run:
```bash
PGPT_PROFILES=local make run
```
or
```bash
PGPT_PROFILES=local poetry run python -m private_gpt
```
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API
using Swagger UI.
### Using OpenAI
If you cannot run a local model (because you don't have a GPU, for example) or for testing purposes, you may
decide to run PrivateGPT using OpenAI as the LLM and Embeddings model.
In order to do so, create a profile `settings-openai.yaml` with the following contents:
```yaml
llm:
mode: openai
openai:
api_key: <your_openai_api_key> # You could skip this configuration and use the OPENAI_API_KEY env var instead
```
And run PrivateGPT loading that profile you just created:
`PGPT_PROFILES=openai make run`
or
`PGPT_PROFILES=openai poetry run python -m private_gpt`
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.
You'll notice the speed and quality of response is higher, given you are using OpenAI's servers for the heavy
computations.
### Using AWS Sagemaker
For a fully private & performant setup, you can choose to have both your LLM and Embeddings model deployed using Sagemaker.
Note: how to deploy models on Sagemaker is out of the scope of this documentation.
In order to do so, create a profile `settings-sagemaker.yaml` with the following contents (remember to
update the values of the llm_endpoint_name and embedding_endpoint_name to yours):
```yaml
llm:
mode: sagemaker
sagemaker:
llm_endpoint_name: huggingface-pytorch-tgi-inference-2023-09-25-19-53-32-140
embedding_endpoint_name: huggingface-pytorch-inference-2023-11-03-07-41-36-479
```
And run PrivateGPT loading that profile you just created:
`PGPT_PROFILES=sagemaker make run`
or
`PGPT_PROFILES=sagemaker poetry run python -m private_gpt`
When the server is started it will print a log *Application startup complete*.
Navigate to http://localhost:8001 to use the Gradio UI or to http://localhost:8001/docs (API section) to try the API.

View File

@@ -0,0 +1,80 @@
# Settings and profiles for your private GPT
The configuration of your private GPT server is done thanks to `settings` files (more precisely `settings.yaml`).
These text files are written using the [YAML](https://en.wikipedia.org/wiki/YAML) syntax.
While privateGPT is distributing safe and universal configuration files, you might want to quickly customize your
privateGPT, and this can be done using the `settings` files.
This project is defining the concept of **profiles** (or configuration profiles).
This mechanism, using your environment variables, is giving you the ability to easily switch between
configuration you've made.
A typical use case of profile is to easily switch between LLM and embeddings.
To be a bit more precise, you can change the language (to French, Spanish, Italian, English, etc) by simply changing
the profile you've selected; no code changes required!
PrivateGPT is configured through *profiles* that are defined using yaml files, and selected through env variables.
The full list of properties configurable can be found in `settings.yaml`.
## How to know which profiles exist
Given that a profile `foo_bar` points to the file `settings-foo_bar.yaml` and vice-versa, you simply have to look
at the files starting with `settings` and ending in `.yaml`.
## How to use an existing profiles
**Please note that the syntax to set the value of an environment variables depends on your OS**.
You have to set environment variable `PGPT_PROFILES` to the name of the profile you want to use.
For example, on **linux and macOS**, this gives:
```bash
export PGPT_PROFILES=my_profile_name_here
```
Windows Powershell(s) have a different syntax, one of them being:
```shell
set PGPT_PROFILES=my_profile_name_here
```
If the above is not working, you might want to try other ways to set an env variable in your window's terminal.
---
Once you've set this environment variable to the desired profile, you can simply launch your privateGPT,
and it will run using your profile on top of the default configuration.
## Reference
Additional details on the profiles are described in this section
### Environment variable `PGPT_SETTINGS_FOLDER`
The location of the settings folder. Defaults to the root of the project.
Should contain the default `settings.yaml` and any other `settings-{profile}.yaml`.
### Environment variable `PGPT_PROFILES`
By default, the profile definition in `settings.yaml` is loaded.
Using this env var you can load additional profiles; format is a comma separated list of profile names.
This will merge `settings-{profile}.yaml` on top of the base settings file.
For example:
`PGPT_PROFILES=local,cuda` will load `settings-local.yaml`
and `settings-cuda.yaml`, their contents will be merged with
later profiles properties overriding values of earlier ones like `settings.yaml`.
During testing, the `test` profile will be active along with the default, therefore `settings-test.yaml`
file is required.
### Environment variables expansion
Configuration files can contain environment variables,
they will be expanded at runtime.
Expansion must follow the pattern `${VARIABLE_NAME:default_value}`.
For example, the following configuration will use the value of the `PORT`
environment variable or `8001` if it's not set.
Missing variables with no default will produce an error.
```yaml
server:
port: ${PORT:8001}
```

View File

@@ -0,0 +1,39 @@
## Gradio UI user manual
Gradio UI is a ready to use way of testing most of PrivateGPT API functionalities.
![Gradio PrivateGPT](https://lh3.googleusercontent.com/drive-viewer/AK7aPaD_Hc-A8A9ooMe-hPgm_eImgsbxAjb__8nFYj8b_WwzvL1Gy90oAnp1DfhPaN6yGiEHCOXs0r77W1bYHtPzlVwbV7fMsA=s1600)
### Execution Modes
It has 3 modes of execution (you can select in the top-left):
* Query Docs: uses the context from the
ingested documents to answer the questions posted in the chat. It also takes
into account previous chat messages as context.
* Makes use of `/chat/completions` API with `use_context=true` and no
`context_filter`.
* Search in Docs: fast search that returns the 4 most related text
chunks, together with their source document and page.
* Makes use of `/chunks` API with no `context_filter`, `limit=4` and
`prev_next_chunks=0`.
* LLM Chat: simple, non-contextual chat with the LLM. The ingested documents won't
be taken into account, only the previous messages.
* Makes use of `/chat/completions` API with `use_context=false`.
### Document Ingestion
Ingest documents by using the `Upload a File` button. You can check the progress of
the ingestion in the console logs of the server.
The list of ingested files is shown below the button.
If you want to delete the ingested documents, refer to *Reset Local documents
database* section in the documentation.
### Chat
Normal chat interface, self-explanatory ;)
You can check the actual prompt being passed to the LLM by looking at the logs of
the server. We'll add better observability in future releases.

View File

@@ -0,0 +1,50 @@
## Vectorstores
PrivateGPT supports [Qdrant](https://qdrant.tech/) and [Chroma](https://www.trychroma.com/) as vectorstore providers. Qdrant being the default.
In order to select one or the other, set the `vectorstore.database` property in the `settings.yaml` file to `qdrant` or `chroma`.
```yaml
vectorstore:
database: qdrant
```
### Qdrant configuration
To enable Qdrant, set the `vectorstore.database` property in the `settings.yaml` file to `qdrant`.
Qdrant settings can be configured by setting values to the `qdrant` property in the `settings.yaml` file.
The available configuration options are:
| Field | Description |
|--------------|-------------|
| location | If `:memory:` - use in-memory Qdrant instance. If `str` - use it as a `url` parameter.|
| url | Either host or str of 'Optional[scheme], host, Optional[port], Optional[prefix]'. Eg. `http://localhost:6333` |
| port | Port of the REST API interface. Default: `6333` |
| grpc_port | Port of the gRPC interface. Default: `6334` |
| prefer_grpc | If `true` - use gRPC interface whenever possible in custom methods. |
| https | If `true` - use HTTPS(SSL) protocol.|
| api_key | API key for authentication in Qdrant Cloud.|
| prefix | If set, add `prefix` to the REST URL path. Example: `service/v1` will result in `http://localhost:6333/service/v1/{qdrant-endpoint}` for REST API.|
| timeout | Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC |
| host | Host name of Qdrant service. If url and host are not set, defaults to 'localhost'.|
| path | Persistence path for QdrantLocal. Eg. `local_data/private_gpt/qdrant`|
| force_disable_check_same_thread | Force disable check_same_thread for QdrantLocal sqlite connection, defaults to True.|
By default Qdrant tries to connect to an instance of Qdrant server at `http://localhost:3000`.
To obtain a local setup (disk-based database) without running a Qdrant server, configure the `qdrant.path` value in settings.yaml:
```yaml
qdrant:
path: local_data/private_gpt/qdrant
```
### Chroma configuration
To enable Chroma, set the `vectorstore.database` property in the `settings.yaml` file to `chroma` and install the `chroma` extra.
```bash
poetry install --extras chroma
```
By default `chroma` will use a disk-based database stored in local_data_path / "chroma_db" (being local_data_path defined in settings.yaml)

View File

@@ -0,0 +1,21 @@
## Local Installation steps
The steps in [Installation](/installation) section are better explained and cover more
setup scenarios (macOS, Windows, Linux).
But if you like one-liners, have python3.11 installed, and you are running a UNIX (macOS or Linux)
system, you can get up and running on CPU in few lines:
```bash
git clone https://github.com/imartinez/privateGPT && cd privateGPT && \
python3.11 -m venv .venv && source .venv/bin/activate && \
pip install --upgrade pip poetry && poetry install --with ui,local && ./scripts/setup
# Launch the privateGPT API server **and** the gradio UI
python3.11 -m private_gpt
# In another terminal, create a new browser window on your private GPT!
open http:////127.0.0.1:8001/
```
The above is not working, or it is too slow, so **you want to run it on GPU(s)**?
Please check the more detailed [installation guide](/installation).

View File

@@ -0,0 +1,53 @@
## Introduction 👋
PrivateGPT provides an **API** containing all the building blocks required to
build **private, context-aware AI applications**.
The API follows and extends OpenAI API standard, and supports both normal and streaming responses.
That means that, if you can use OpenAI API in one of your tools, you can use your own PrivateGPT API instead,
with no code changes, **and for free** if you are running privateGPT in `local` mode.
Looking for the installation quickstart? [Quickstart installation guide for Linux and macOS](/overview/welcome/quickstart).
Do you want to install it on Windows? Or do you want to take full advantage of your hardware for better performances?
The installation guide will help you in the [Installation section](/installation).
## Frequently Visited Resources
<Cards>
<Card
title="API Reference"
icon="fa-solid fa-code"
href="/api-reference"
/>
<Card
title="Twitter"
icon="fa-brands fa-twitter"
href="https://twitter.com/PrivateGPT_AI"
/>
<Card
title="Discord Server"
icon="fa-brands fa-discord"
href="https://discord.gg/bK6mRVpErU"
/>
</Cards>
## API Organization
The API is divided in two logical blocks:
1. High-level API, abstracting all the complexity of a RAG (Retrieval Augmented Generation) pipeline implementation:
- Ingestion of documents: internally managing document parsing, splitting, metadata extraction,
embedding generation and storage.
- Chat & Completions using context from ingested documents: abstracting the retrieval of context, the prompt
engineering and the response generation.
2. Low-level API, allowing advanced users to implement their own complex pipelines:
- Embeddings generation: based on a piece of text.
- Contextual chunks retrieval: given a query, returns the most relevant chunks of text from the ingested
documents.
<Callout intent = "info">
A working **Gradio UI client** is provided to test the API, together with a set of useful tools such as bulk
model download script, ingestion script, documents folder watch, etc.
</Callout>

View File

@@ -0,0 +1,95 @@
# List of working LLM
**Do you have any working combination of LLM and embeddings?**
Please open a PR to add it to the list, and come on our Discord to tell us about it!
## Prompt style
LLMs might have been trained with different prompt styles.
The prompt style is the way the prompt is written, and how the system message is injected in the prompt.
For example, `llama2` looks like this:
```text
<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>
{{ user_message }} [/INST]
```
While `default` (the `llama_index` default) looks like this:
```text
system: {{ system_prompt }}
user: {{ user_message }}
assistant: {{ assistant_message }}
```
And the "`tag`" style looks like this:
```text
<|system|>: {{ system_prompt }}
<|user|>: {{ user_message }}
<|assistant|>: {{ assistant_message }}
```
Some LLMs will not understand this prompt style, and will not work (returning nothing).
You can try to change the prompt style to `default` (or `tag`) in the settings, and it will
change the way the messages are formatted to be passed to the LLM.
## Example of configuration
You might want to change the prompt depending on the language and model you are using.
### English, with instructions
`settings-en.yaml`:
```yml
local:
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.1-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.1.Q4_K_M.gguf
embedding_hf_model_name: BAAI/bge-small-en-v1.5
prompt_style: "llama2"
```
### French, with instructions
`settings-fr.yaml`:
```yml
local:
llm_hf_repo_id: TheBloke/Vigogne-2-7B-Instruct-GGUF
llm_hf_model_file: vigogne-2-7b-instruct.Q4_K_M.gguf
embedding_hf_model_name: dangvantuan/sentence-camembert-base
prompt_style: "default"
# prompt_style: "tag" # also works
# The default system prompt is injected only when the `prompt_style` != default, and there are no system message in the discussion
# default_system_prompt: Vous êtes un assistant IA qui répond à la question posée à la fin en utilisant le contexte suivant. Si vous ne connaissez pas la réponse, dites simplement que vous ne savez pas, n'essayez pas d'inventer une réponse. Veuillez répondre exclusivement en français.
```
You might want to change the prompt as the one above might not directly answer your question.
You can read online about how to write a good prompt, but in a nutshell, make it (extremely) directive.
You can try and troubleshot your prompt by writing multiline requests in the UI, while
writing your interaction with the model, for example:
```text
Tu es un programmeur senior qui programme en python et utilise le framework fastapi. Ecrit moi un serveur qui retourne "hello world".
```
Another example:
```text
Context: None
Situation: tu es au milieu d'un champ.
Tache: va a la rivière, en bas du champ.
Décrit comment aller a la rivière.
```
### Optimised Models
GodziLLa2-70B LLM (English, rank 2 on HuggingFace OpenLLM Leaderboard), bge large Embedding Model (rank 1 on HuggingFace MTEB Leaderboard)
`settings-optimised.yaml`:
```yml
local:
llm_hf_repo_id: TheBloke/GodziLLa2-70B-GGUF
llm_hf_model_file: godzilla2-70b.Q4_K_M.gguf
embedding_hf_model_name: BAAI/bge-large-en
prompt_style: "llama2"
```

4
fern/fern.config.json Normal file
View File

@@ -0,0 +1,4 @@
{
"organization": "privategpt",
"version": "0.15.3"
}

8
fern/generators.yml Normal file
View File

@@ -0,0 +1,8 @@
groups:
public:
generators:
- name: fernapi/fern-python-sdk
version: 0.6.2
output:
location: local-file-system
path: ../../pgpt-sdk/python

1012
fern/openapi/openapi.json Normal file

File diff suppressed because it is too large Load Diff

185
ingest.py
View File

@@ -1,185 +0,0 @@
#!/usr/bin/env python3
import os
import glob
from typing import List
from dotenv import load_dotenv
from multiprocessing import Pool
from tqdm import tqdm
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
if not load_dotenv():
print("Could not load .env file or it is empty. Please check if it exists and is readable.")
exit(1)
from constants import CHROMA_SETTINGS
import chromadb
from chromadb.api.segment import API
# Load environment variables
persist_directory = os.environ.get('PERSIST_DIRECTORY')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME')
chunk_size = 500
chunk_overlap = 50
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
# Map file extensions to document loaders and their arguments
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# Add more mappings for other file extensions and loaders as needed
}
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1].lower()
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext.lower()}"), recursive=True)
)
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext.upper()}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
documents = text_splitter.split_documents(documents)
print(f"Split into {len(documents)} chunks of text (max. {chunk_size} tokens each)")
return documents
def batch_chromadb_insertions(chroma_client: API, documents: List[Document]) -> List[Document]:
"""
Split the total documents to be inserted into batches of documents that the local chroma client can process
"""
# Get max batch size.
max_batch_size = chroma_client.max_batch_size
for i in range(0, len(documents), max_batch_size):
yield documents[i:i + max_batch_size]
def does_vectorstore_exist(persist_directory: str, embeddings: HuggingFaceEmbeddings) -> bool:
"""
Checks if vectorstore exists
"""
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
if not db.get()['documents']:
return False
return True
def main():
# Create embeddings
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
# Chroma client
chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS , path=persist_directory)
if does_vectorstore_exist(persist_directory, embeddings):
# Update and store locally vectorstore
print(f"Appending to existing vectorstore at {persist_directory}")
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client)
collection = db.get()
documents = process_documents([metadata['source'] for metadata in collection['metadatas']])
print(f"Creating embeddings. May take some minutes...")
for batched_chromadb_insertion in batch_chromadb_insertions(chroma_client, documents):
db.add_documents(batched_chromadb_insertion)
else:
# Create and store locally vectorstore
print("Creating new vectorstore")
documents = process_documents()
print(f"Creating embeddings. May take some minutes...")
# Create the db with the first batch of documents to insert
batched_chromadb_insertions = batch_chromadb_insertions(chroma_client, documents)
first_insertion = next(batched_chromadb_insertions)
db = Chroma.from_documents(first_insertion, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS, client=chroma_client)
# Add the rest of batches of documents
for batched_chromadb_insertion in batched_chromadb_insertions:
db.add_documents(batched_chromadb_insertion)
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
if __name__ == "__main__":
main()

2
local_data/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
*
!.gitignore

2
models/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
*
!.gitignore

6011
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,87 +0,0 @@
#!/usr/bin/env python3
from dotenv import load_dotenv
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import GPT4All, LlamaCpp
import chromadb
import os
import argparse
import time
if not load_dotenv():
print("Could not load .env file or it is empty. Please check if it exists and is readable.")
exit(1)
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME")
persist_directory = os.environ.get('PERSIST_DIRECTORY')
model_type = os.environ.get('MODEL_TYPE')
model_path = os.environ.get('MODEL_PATH')
model_n_ctx = os.environ.get('MODEL_N_CTX')
model_n_batch = int(os.environ.get('MODEL_N_BATCH',8))
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
from constants import CHROMA_SETTINGS
def main():
# Parse the command line arguments
args = parse_arguments()
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS , path=persist_directory)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client)
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
# activate/deactivate the streaming StdOut callback for LLMs
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
# Prepare the LLM
match model_type:
case "LlamaCpp":
llm = LlamaCpp(model_path=model_path, max_tokens=model_n_ctx, n_batch=model_n_batch, callbacks=callbacks, verbose=False)
case "GPT4All":
llm = GPT4All(model=model_path, max_tokens=model_n_ctx, backend='gptj', n_batch=model_n_batch, callbacks=callbacks, verbose=False)
case _default:
# raise exception if model_type is not supported
raise Exception(f"Model type {model_type} is not supported. Please choose one of the following: LlamaCpp, GPT4All")
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
# Interactive questions and answers
while True:
query = input("\nEnter a query: ")
if query == "exit":
break
if query.strip() == "":
continue
# Get the answer from the chain
start = time.time()
res = qa(query)
answer, docs = res['result'], [] if args.hide_source else res['source_documents']
end = time.time()
# Print the result
print("\n\n> Question:")
print(query)
print(f"\n> Answer (took {round(end - start, 2)} s.):")
print(answer)
# Print the relevant sources used for the answer
for document in docs:
print("\n> " + document.metadata["source"] + ":")
print(document.page_content)
def parse_arguments():
parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
'using the power of LLMs.')
parser.add_argument("--hide-source", "-S", action='store_true',
help='Use this flag to disable printing of source documents used for answers.')
parser.add_argument("--mute-stream", "-M",
action='store_true',
help='Use this flag to disable the streaming StdOut callback for LLMs.')
return parser.parse_args()
if __name__ == "__main__":
main()

23
private_gpt/__init__.py Normal file
View File

@@ -0,0 +1,23 @@
"""private-gpt."""
import logging
import os
# Set to 'DEBUG' to have extensive logging turned on, even for libraries
ROOT_LOG_LEVEL = "INFO"
PRETTY_LOG_FORMAT = (
"%(asctime)s.%(msecs)03d [%(levelname)-8s] %(name)+25s - %(message)s"
)
logging.basicConfig(level=ROOT_LOG_LEVEL, format=PRETTY_LOG_FORMAT, datefmt="%H:%M:%S")
logging.captureWarnings(True)
# Disable gradio analytics
# This is done this way because gradio does not solely rely on what values are
# passed to gr.Blocks(enable_analytics=...) but also on the environment
# variable GRADIO_ANALYTICS_ENABLED. `gradio.strings` actually reads this env
# directly, so to fully disable gradio analytics we need to set this env var.
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
# Disable chromaDB telemetry
# It is already disabled, see PR#1144
# os.environ["ANONYMIZED_TELEMETRY"] = "False"

11
private_gpt/__main__.py Normal file
View File

@@ -0,0 +1,11 @@
# start a fastapi server with uvicorn
import uvicorn
from private_gpt.main import app
from private_gpt.settings.settings import settings
# Set log_config=None to do not use the uvicorn logging configuration, and
# use ours instead. For reference, see below:
# https://github.com/tiangolo/fastapi/discussions/7457#discussioncomment-5141108
uvicorn.run(app, host="0.0.0.0", port=settings().server.port, log_config=None)

View File

View File

@@ -0,0 +1,82 @@
# mypy: ignore-errors
import json
from typing import Any
import boto3
from llama_index.embeddings.base import BaseEmbedding
from pydantic import Field, PrivateAttr
class SagemakerEmbedding(BaseEmbedding):
"""Sagemaker Embedding Endpoint.
To use, you must supply the endpoint name from your deployed
Sagemaker embedding model & the region where it is deployed.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Sagemaker endpoint.
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
"""
endpoint_name: str = Field(description="")
_boto_client: Any = boto3.client(
"sagemaker-runtime",
) # TODO make it an optional field
_async_not_implemented_warned: bool = PrivateAttr(default=False)
@classmethod
def class_name(cls) -> str:
return "SagemakerEmbedding"
def _async_not_implemented_warn_once(self) -> None:
if not self._async_not_implemented_warned:
print("Async embedding not available, falling back to sync method.")
self._async_not_implemented_warned = True
def _embed(self, sentences: list[str]) -> list[list[float]]:
request_params = {
"inputs": sentences,
}
resp = self._boto_client.invoke_endpoint(
EndpointName=self.endpoint_name,
Body=json.dumps(request_params),
ContentType="application/json",
)
response_body = resp["Body"]
response_str = response_body.read().decode("utf-8")
response_json = json.loads(response_str)
return response_json["vectors"]
def _get_query_embedding(self, query: str) -> list[float]:
"""Get query embedding."""
return self._embed([query])[0]
async def _aget_query_embedding(self, query: str) -> list[float]:
# Warn the user that sync is being used
self._async_not_implemented_warn_once()
return self._get_query_embedding(query)
async def _aget_text_embedding(self, text: str) -> list[float]:
# Warn the user that sync is being used
self._async_not_implemented_warn_once()
return self._get_text_embedding(text)
def _get_text_embedding(self, text: str) -> list[float]:
"""Get text embedding."""
return self._embed([text])[0]
def _get_text_embeddings(self, texts: list[str]) -> list[list[float]]:
"""Get text embeddings."""
return self._embed(texts)

View File

@@ -0,0 +1,46 @@
import logging
from injector import inject, singleton
from llama_index import MockEmbedding
from llama_index.embeddings.base import BaseEmbedding
from private_gpt.paths import models_cache_path
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@singleton
class EmbeddingComponent:
embedding_model: BaseEmbedding
@inject
def __init__(self, settings: Settings) -> None:
embedding_mode = settings.embedding.mode
logger.info("Initializing the embedding model in mode=%s", embedding_mode)
match embedding_mode:
case "local":
from llama_index.embeddings import HuggingFaceEmbedding
self.embedding_model = HuggingFaceEmbedding(
model_name=settings.local.embedding_hf_model_name,
cache_folder=str(models_cache_path),
)
case "sagemaker":
from private_gpt.components.embedding.custom.sagemaker import (
SagemakerEmbedding,
)
self.embedding_model = SagemakerEmbedding(
endpoint_name=settings.sagemaker.embedding_endpoint_name,
)
case "openai":
from llama_index import OpenAIEmbedding
openai_settings = settings.openai.api_key
self.embedding_model = OpenAIEmbedding(api_key=openai_settings)
case "mock":
# Not a random number, is the dimensionality used by
# the default embedding model
self.embedding_model = MockEmbedding(384)

View File

@@ -0,0 +1,328 @@
import abc
import itertools
import logging
import multiprocessing
import multiprocessing.pool
import os
import threading
from pathlib import Path
from typing import Any
from llama_index import (
Document,
ServiceContext,
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
from llama_index.data_structs import IndexDict
from llama_index.indices.base import BaseIndex
from llama_index.ingestion import run_transformations
from private_gpt.components.ingest.ingest_helper import IngestionHelper
from private_gpt.paths import local_data_path
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
class BaseIngestComponent(abc.ABC):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
*args: Any,
**kwargs: Any,
) -> None:
logger.debug("Initializing base ingest component type=%s", type(self).__name__)
self.storage_context = storage_context
self.service_context = service_context
@abc.abstractmethod
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
pass
@abc.abstractmethod
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
pass
@abc.abstractmethod
def delete(self, doc_id: str) -> None:
pass
class BaseIngestComponentWithIndex(BaseIngestComponent, abc.ABC):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
self.show_progress = True
self._index_thread_lock = (
threading.Lock()
) # Thread lock! Not Multiprocessing lock
self._index = self._initialize_index()
def _initialize_index(self) -> BaseIndex[IndexDict]:
"""Initialize the index from the storage context."""
try:
# Load the index with store_nodes_override=True to be able to delete them
index = load_index_from_storage(
storage_context=self.storage_context,
service_context=self.service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=self.show_progress,
)
except ValueError:
# There are no index in the storage context, creating a new one
logger.info("Creating a new vector store index")
index = VectorStoreIndex.from_documents(
[],
storage_context=self.storage_context,
service_context=self.service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=self.show_progress,
)
index.storage_context.persist(persist_dir=local_data_path)
return index
def _save_index(self) -> None:
self._index.storage_context.persist(persist_dir=local_data_path)
def delete(self, doc_id: str) -> None:
with self._index_thread_lock:
# Delete the document from the index
self._index.delete_ref_doc(doc_id, delete_from_docstore=True)
# Save the index
self._save_index()
class SimpleIngestComponent(BaseIngestComponentWithIndex):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
logger.info("Ingesting file_name=%s", file_name)
documents = IngestionHelper.transform_file_into_documents(file_name, file_data)
logger.info(
"Transformed file=%s into count=%s documents", file_name, len(documents)
)
logger.debug("Saving the documents in the index and doc store")
return self._save_docs(documents)
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
saved_documents = []
for file_name, file_data in files:
documents = IngestionHelper.transform_file_into_documents(
file_name, file_data
)
saved_documents.extend(self._save_docs(documents))
return saved_documents
def _save_docs(self, documents: list[Document]) -> list[Document]:
logger.debug("Transforming count=%s documents into nodes", len(documents))
with self._index_thread_lock:
for document in documents:
self._index.insert(document, show_progress=True)
logger.debug("Persisting the index and nodes")
# persist the index and nodes
self._save_index()
logger.debug("Persisted the index and nodes")
return documents
class BatchIngestComponent(BaseIngestComponentWithIndex):
"""Parallelize the file reading and parsing on multiple CPU core.
This also makes the embeddings to be computed in batches (on GPU or CPU).
"""
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
count_workers: int,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
# Make an efficient use of the CPU and GPU, the embedding
# must be in the transformations
assert (
len(self.service_context.transformations) >= 2
), "Embeddings must be in the transformations"
assert count_workers > 0, "count_workers must be > 0"
self.count_workers = count_workers
self._file_to_documents_work_pool = multiprocessing.Pool(
processes=self.count_workers
)
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
logger.info("Ingesting file_name=%s", file_name)
documents = IngestionHelper.transform_file_into_documents(file_name, file_data)
logger.info(
"Transformed file=%s into count=%s documents", file_name, len(documents)
)
logger.debug("Saving the documents in the index and doc store")
return self._save_docs(documents)
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
documents = list(
itertools.chain.from_iterable(
self._file_to_documents_work_pool.starmap(
IngestionHelper.transform_file_into_documents, files
)
)
)
logger.info(
"Transformed count=%s files into count=%s documents",
len(files),
len(documents),
)
return self._save_docs(documents)
def _save_docs(self, documents: list[Document]) -> list[Document]:
logger.debug("Transforming count=%s documents into nodes", len(documents))
nodes = run_transformations(
documents, # type: ignore[arg-type]
self.service_context.transformations,
show_progress=self.show_progress,
)
# Locking the index to avoid concurrent writes
with self._index_thread_lock:
logger.info("Inserting count=%s nodes in the index", len(nodes))
self._index.insert_nodes(nodes, show_progress=True)
for document in documents:
self._index.docstore.set_document_hash(
document.get_doc_id(), document.hash
)
logger.debug("Persisting the index and nodes")
# persist the index and nodes
self._save_index()
logger.debug("Persisted the index and nodes")
return documents
class ParallelizedIngestComponent(BaseIngestComponentWithIndex):
"""Parallelize the file ingestion (file reading, embeddings, and index insertion).
This use the CPU and GPU in parallel (both running at the same time), and
reduce the memory pressure by not loading all the files in memory at the same time.
"""
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
count_workers: int,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
# To make an efficient use of the CPU and GPU, the embeddings
# must be in the transformations (to be computed in batches)
assert (
len(self.service_context.transformations) >= 2
), "Embeddings must be in the transformations"
assert count_workers > 0, "count_workers must be > 0"
self.count_workers = count_workers
# We are doing our own multiprocessing
# To do not collide with the multiprocessing of huggingface, we disable it
os.environ["TOKENIZERS_PARALLELISM"] = "false"
self._ingest_work_pool = multiprocessing.pool.ThreadPool(
processes=self.count_workers
)
self._file_to_documents_work_pool = multiprocessing.Pool(
processes=self.count_workers
)
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
logger.info("Ingesting file_name=%s", file_name)
# Running in a single (1) process to release the current
# thread, and take a dedicated CPU core for computation
documents = self._file_to_documents_work_pool.apply(
IngestionHelper.transform_file_into_documents, (file_name, file_data)
)
logger.info(
"Transformed file=%s into count=%s documents", file_name, len(documents)
)
logger.debug("Saving the documents in the index and doc store")
return self._save_docs(documents)
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
# Lightweight threads, used for parallelize the
# underlying IO calls made in the ingestion
documents = list(
itertools.chain.from_iterable(
self._ingest_work_pool.starmap(self.ingest, files)
)
)
return documents
def _save_docs(self, documents: list[Document]) -> list[Document]:
logger.debug("Transforming count=%s documents into nodes", len(documents))
nodes = run_transformations(
documents, # type: ignore[arg-type]
self.service_context.transformations,
show_progress=self.show_progress,
)
# Locking the index to avoid concurrent writes
with self._index_thread_lock:
logger.info("Inserting count=%s nodes in the index", len(nodes))
self._index.insert_nodes(nodes, show_progress=True)
for document in documents:
self._index.docstore.set_document_hash(
document.get_doc_id(), document.hash
)
logger.debug("Persisting the index and nodes")
# persist the index and nodes
self._save_index()
logger.debug("Persisted the index and nodes")
return documents
def __del__(self) -> None:
# We need to do the appropriate cleanup of the multiprocessing pools
# when the object is deleted. Using root logger to avoid
# the logger to be deleted before the pool
logging.debug("Closing the ingest work pool")
self._ingest_work_pool.close()
self._ingest_work_pool.join()
self._ingest_work_pool.terminate()
logging.debug("Closing the file to documents work pool")
self._file_to_documents_work_pool.close()
self._file_to_documents_work_pool.join()
self._file_to_documents_work_pool.terminate()
def get_ingestion_component(
storage_context: StorageContext,
service_context: ServiceContext,
settings: Settings,
) -> BaseIngestComponent:
"""Get the ingestion component for the given configuration."""
ingest_mode = settings.embedding.ingest_mode
if ingest_mode == "batch":
return BatchIngestComponent(
storage_context, service_context, settings.embedding.count_workers
)
elif ingest_mode == "parallel":
return ParallelizedIngestComponent(
storage_context, service_context, settings.embedding.count_workers
)
else:
return SimpleIngestComponent(storage_context, service_context)

View File

@@ -0,0 +1,61 @@
import logging
from pathlib import Path
from llama_index import Document
from llama_index.readers import JSONReader, StringIterableReader
from llama_index.readers.file.base import DEFAULT_FILE_READER_CLS
logger = logging.getLogger(__name__)
# Patching the default file reader to support other file types
FILE_READER_CLS = DEFAULT_FILE_READER_CLS.copy()
FILE_READER_CLS.update(
{
".json": JSONReader,
}
)
class IngestionHelper:
"""Helper class to transform a file into a list of documents.
This class should be used to transform a file into a list of documents.
These methods are thread-safe (and multiprocessing-safe).
"""
@staticmethod
def transform_file_into_documents(
file_name: str, file_data: Path
) -> list[Document]:
documents = IngestionHelper._load_file_to_documents(file_name, file_data)
for document in documents:
document.metadata["file_name"] = file_name
IngestionHelper._exclude_metadata(documents)
return documents
@staticmethod
def _load_file_to_documents(file_name: str, file_data: Path) -> list[Document]:
logger.debug("Transforming file_name=%s into documents", file_name)
extension = Path(file_name).suffix
reader_cls = FILE_READER_CLS.get(extension)
if reader_cls is None:
logger.debug(
"No reader found for extension=%s, using default string reader",
extension,
)
# Read as a plain text
string_reader = StringIterableReader()
return string_reader.load_data([file_data.read_text()])
logger.debug("Specific reader found for extension=%s", extension)
return reader_cls().load_data(file_data)
@staticmethod
def _exclude_metadata(documents: list[Document]) -> None:
logger.debug("Excluding metadata from count=%s documents", len(documents))
for document in documents:
document.metadata["doc_id"] = document.doc_id
# We don't want the Embeddings search to receive this metadata
document.excluded_embed_metadata_keys = ["doc_id"]
# We don't want the LLM to receive these metadata in the context
document.excluded_llm_metadata_keys = ["file_name", "doc_id", "page_label"]

View File

@@ -0,0 +1 @@
"""LLM implementations."""

View File

@@ -0,0 +1,275 @@
# mypy: ignore-errors
from __future__ import annotations
import io
import json
import logging
from typing import TYPE_CHECKING, Any
import boto3 # type: ignore
from llama_index.bridge.pydantic import Field
from llama_index.llms import (
CompletionResponse,
CustomLLM,
LLMMetadata,
)
from llama_index.llms.base import (
llm_chat_callback,
llm_completion_callback,
)
from llama_index.llms.generic_utils import (
completion_response_to_chat_response,
stream_completion_response_to_chat_response,
)
from llama_index.llms.llama_utils import (
completion_to_prompt as generic_completion_to_prompt,
)
from llama_index.llms.llama_utils import (
messages_to_prompt as generic_messages_to_prompt,
)
if TYPE_CHECKING:
from collections.abc import Sequence
from llama_index.callbacks import CallbackManager
from llama_index.llms import (
ChatMessage,
ChatResponse,
ChatResponseGen,
CompletionResponseGen,
)
logger = logging.getLogger(__name__)
class LineIterator:
r"""A helper class for parsing the byte stream input from TGI container.
The output of the model will be in the following format:
```
b'data:{"token": {"text": " a"}}\n\n'
b'data:{"token": {"text": " challenging"}}\n\n'
b'data:{"token": {"text": " problem"
b'}}'
...
```
While usually each PayloadPart event from the event stream will contain a byte array
with a full json, this is not guaranteed and some of the json objects may be split
across PayloadPart events. For example:
```
{'PayloadPart': {'Bytes': b'{"outputs": '}}
{'PayloadPart': {'Bytes': b'[" problem"]}\n'}}
```
This class accounts for this by concatenating bytes written via the 'write' function
and then exposing a method which will return lines (ending with a '\n' character)
within the buffer via the 'scan_lines' function. It maintains the position of the
last read position to ensure that previous bytes are not exposed again. It will
also save any pending lines that doe not end with a '\n' to make sure truncations
are concatinated
"""
def __init__(self, stream: Any) -> None:
"""Line iterator initializer."""
self.byte_iterator = iter(stream)
self.buffer = io.BytesIO()
self.read_pos = 0
def __iter__(self) -> Any:
"""Self iterator."""
return self
def __next__(self) -> Any:
"""Next element from iterator."""
while True:
self.buffer.seek(self.read_pos)
line = self.buffer.readline()
if line and line[-1] == ord("\n"):
self.read_pos += len(line)
return line[:-1]
try:
chunk = next(self.byte_iterator)
except StopIteration:
if self.read_pos < self.buffer.getbuffer().nbytes:
continue
raise
if "PayloadPart" not in chunk:
logger.warning("Unknown event type=%s", chunk)
continue
self.buffer.seek(0, io.SEEK_END)
self.buffer.write(chunk["PayloadPart"]["Bytes"])
class SagemakerLLM(CustomLLM):
"""Sagemaker Inference Endpoint models.
To use, you must supply the endpoint name from your deployed
Sagemaker model & the region where it is deployed.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Sagemaker endpoint.
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
"""
endpoint_name: str = Field(description="")
temperature: float = Field(description="The temperature to use for sampling.")
max_new_tokens: int = Field(description="The maximum number of tokens to generate.")
context_window: int = Field(
description="The maximum number of context tokens for the model."
)
messages_to_prompt: Any = Field(
description="The function to convert messages to a prompt.", exclude=True
)
completion_to_prompt: Any = Field(
description="The function to convert a completion to a prompt.", exclude=True
)
generate_kwargs: dict[str, Any] = Field(
default_factory=dict, description="Kwargs used for generation."
)
model_kwargs: dict[str, Any] = Field(
default_factory=dict, description="Kwargs used for model initialization."
)
verbose: bool = Field(description="Whether to print verbose output.")
_boto_client: Any = boto3.client(
"sagemaker-runtime",
) # TODO make it an optional field
def __init__(
self,
endpoint_name: str | None = "",
temperature: float = 0.1,
max_new_tokens: int = 512, # to review defaults
context_window: int = 2048, # to review defaults
messages_to_prompt: Any = None,
completion_to_prompt: Any = None,
callback_manager: CallbackManager | None = None,
generate_kwargs: dict[str, Any] | None = None,
model_kwargs: dict[str, Any] | None = None,
verbose: bool = True,
) -> None:
"""SagemakerLLM initializer."""
model_kwargs = model_kwargs or {}
model_kwargs.update({"n_ctx": context_window, "verbose": verbose})
messages_to_prompt = messages_to_prompt or generic_messages_to_prompt
completion_to_prompt = completion_to_prompt or generic_completion_to_prompt
generate_kwargs = generate_kwargs or {}
generate_kwargs.update(
{"temperature": temperature, "max_tokens": max_new_tokens}
)
super().__init__(
endpoint_name=endpoint_name,
temperature=temperature,
context_window=context_window,
max_new_tokens=max_new_tokens,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
callback_manager=callback_manager,
generate_kwargs=generate_kwargs,
model_kwargs=model_kwargs,
verbose=verbose,
)
@property
def inference_params(self):
# TODO expose the rest of params
return {
"do_sample": True,
"top_p": 0.7,
"temperature": self.temperature,
"top_k": 50,
"max_new_tokens": self.max_new_tokens,
}
@property
def metadata(self) -> LLMMetadata:
"""Get LLM metadata."""
return LLMMetadata(
context_window=self.context_window,
num_output=self.max_new_tokens,
model_name="Sagemaker LLama 2",
)
@llm_completion_callback()
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
self.generate_kwargs.update({"stream": False})
is_formatted = kwargs.pop("formatted", False)
if not is_formatted:
prompt = self.completion_to_prompt(prompt)
request_params = {
"inputs": prompt,
"stream": False,
"parameters": self.inference_params,
}
resp = self._boto_client.invoke_endpoint(
EndpointName=self.endpoint_name,
Body=json.dumps(request_params),
ContentType="application/json",
)
response_body = resp["Body"]
response_str = response_body.read().decode("utf-8")
response_dict = eval(response_str)
return CompletionResponse(
text=response_dict[0]["generated_text"][len(prompt) :], raw=resp
)
@llm_completion_callback()
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
def get_stream():
text = ""
request_params = {
"inputs": prompt,
"stream": True,
"parameters": self.inference_params,
}
resp = self._boto_client.invoke_endpoint_with_response_stream(
EndpointName=self.endpoint_name,
Body=json.dumps(request_params),
ContentType="application/json",
)
event_stream = resp["Body"]
start_json = b"{"
stop_token = "<|endoftext|>"
for line in LineIterator(event_stream):
if line != b"" and start_json in line:
data = json.loads(line[line.find(start_json) :].decode("utf-8"))
if data["token"]["text"] != stop_token:
delta = data["token"]["text"]
text += delta
yield CompletionResponse(delta=delta, text=text, raw=data)
return get_stream()
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
prompt = self.messages_to_prompt(messages)
completion_response = self.complete(prompt, formatted=True, **kwargs)
return completion_response_to_chat_response(completion_response)
@llm_chat_callback()
def stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
prompt = self.messages_to_prompt(messages)
completion_response = self.stream_complete(prompt, formatted=True, **kwargs)
return stream_completion_response_to_chat_response(completion_response)

View File

@@ -0,0 +1,59 @@
import logging
from injector import inject, singleton
from llama_index.llms import MockLLM
from llama_index.llms.base import LLM
from private_gpt.components.llm.prompt_helper import get_prompt_style
from private_gpt.paths import models_path
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@singleton
class LLMComponent:
llm: LLM
@inject
def __init__(self, settings: Settings) -> None:
llm_mode = settings.llm.mode
logger.info("Initializing the LLM in mode=%s", llm_mode)
match settings.llm.mode:
case "local":
from llama_index.llms import LlamaCPP
prompt_style_cls = get_prompt_style(settings.local.prompt_style)
prompt_style = prompt_style_cls(
default_system_prompt=settings.local.default_system_prompt
)
self.llm = LlamaCPP(
model_path=str(models_path / settings.local.llm_hf_model_file),
temperature=0.1,
max_new_tokens=settings.llm.max_new_tokens,
# llama2 has a context window of 4096 tokens,
# but we set it lower to allow for some wiggle room
context_window=3900,
generate_kwargs={},
# All to GPU
model_kwargs={"n_gpu_layers": -1},
# transform inputs into Llama2 format
messages_to_prompt=prompt_style.messages_to_prompt,
completion_to_prompt=prompt_style.completion_to_prompt,
verbose=True,
)
case "sagemaker":
from private_gpt.components.llm.custom.sagemaker import SagemakerLLM
self.llm = SagemakerLLM(
endpoint_name=settings.sagemaker.llm_endpoint_name,
)
case "openai":
from llama_index.llms import OpenAI
openai_settings = settings.openai.api_key
self.llm = OpenAI(api_key=openai_settings)
case "mock":
self.llm = MockLLM()

View File

@@ -0,0 +1,179 @@
import abc
import logging
from collections.abc import Sequence
from typing import Any, Literal
from llama_index.llms import ChatMessage, MessageRole
from llama_index.llms.llama_utils import (
DEFAULT_SYSTEM_PROMPT,
completion_to_prompt,
messages_to_prompt,
)
logger = logging.getLogger(__name__)
class AbstractPromptStyle(abc.ABC):
"""Abstract class for prompt styles.
This class is used to format a series of messages into a prompt that can be
understood by the models. A series of messages represents the interaction(s)
between a user and an assistant. This series of messages can be considered as a
session between a user X and an assistant Y.This session holds, through the
messages, the state of the conversation. This session, to be understood by the
model, needs to be formatted into a prompt (i.e. a string that the models
can understand). Prompts can be formatted in different ways,
depending on the model.
The implementations of this class represent the different ways to format a
series of messages into a prompt.
"""
@abc.abstractmethod
def __init__(self, *args: Any, **kwargs: Any) -> None:
logger.debug("Initializing prompt_style=%s", self.__class__.__name__)
@abc.abstractmethod
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
pass
@abc.abstractmethod
def _completion_to_prompt(self, completion: str) -> str:
pass
def messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
prompt = self._messages_to_prompt(messages)
logger.debug("Got for messages='%s' the prompt='%s'", messages, prompt)
return prompt
def completion_to_prompt(self, completion: str) -> str:
prompt = self._completion_to_prompt(completion)
logger.debug("Got for completion='%s' the prompt='%s'", completion, prompt)
return prompt
class AbstractPromptStyleWithSystemPrompt(AbstractPromptStyle, abc.ABC):
_DEFAULT_SYSTEM_PROMPT = DEFAULT_SYSTEM_PROMPT
def __init__(self, default_system_prompt: str | None) -> None:
super().__init__()
logger.debug("Got default_system_prompt='%s'", default_system_prompt)
self.default_system_prompt = default_system_prompt
class DefaultPromptStyle(AbstractPromptStyle):
"""Default prompt style that uses the defaults from llama_utils.
It basically passes None to the LLM, indicating it should use
the default functions.
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
# Hacky way to override the functions
# Override the functions to be None, and pass None to the LLM.
self.messages_to_prompt = None # type: ignore[method-assign, assignment]
self.completion_to_prompt = None # type: ignore[method-assign, assignment]
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
return ""
def _completion_to_prompt(self, completion: str) -> str:
return ""
class Llama2PromptStyle(AbstractPromptStyleWithSystemPrompt):
"""Simple prompt style that just uses the default llama_utils functions.
It transforms the sequence of messages into a prompt that should look like:
```text
<s> [INST] <<SYS>> your system prompt here. <</SYS>>
user message here [/INST] assistant (model) response here </s>
```
"""
def __init__(self, default_system_prompt: str | None = None) -> None:
# If no system prompt is given, the default one of the implementation is used.
super().__init__(default_system_prompt=default_system_prompt)
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
return messages_to_prompt(messages, self.default_system_prompt)
def _completion_to_prompt(self, completion: str) -> str:
return completion_to_prompt(completion, self.default_system_prompt)
class TagPromptStyle(AbstractPromptStyleWithSystemPrompt):
"""Tag prompt style (used by Vigogne) that uses the prompt style `<|ROLE|>`.
It transforms the sequence of messages into a prompt that should look like:
```text
<|system|>: your system prompt here.
<|user|>: user message here
(possibly with context and question)
<|assistant|>: assistant (model) response here.
```
FIXME: should we add surrounding `<s>` and `</s>` tags, like in llama2?
"""
def __init__(self, default_system_prompt: str | None = None) -> None:
# We have to define a default system prompt here as the LLM will not
# use the default llama_utils functions.
default_system_prompt = default_system_prompt or self._DEFAULT_SYSTEM_PROMPT
super().__init__(default_system_prompt)
self.system_prompt: str = default_system_prompt
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
messages = list(messages)
if messages[0].role != MessageRole.SYSTEM:
logger.info(
"Adding system_promt='%s' to the given messages as there are none given in the session",
self.system_prompt,
)
messages = [
ChatMessage(content=self.system_prompt, role=MessageRole.SYSTEM),
*messages,
]
return self._format_messages_to_prompt(messages)
def _completion_to_prompt(self, completion: str) -> str:
return (
f"<|system|>: {self.system_prompt.strip()}\n"
f"<|user|>: {completion.strip()}\n"
"<|assistant|>: "
)
@staticmethod
def _format_messages_to_prompt(messages: list[ChatMessage]) -> str:
"""Format message to prompt with `<|ROLE|>: MSG` style."""
assert messages[0].role == MessageRole.SYSTEM
prompt = ""
for message in messages:
role = message.role
content = message.content or ""
message_from_user = f"<|{role.lower()}|>: {content.strip()}"
message_from_user += "\n"
prompt += message_from_user
# we are missing the last <|assistant|> tag that will trigger a completion
prompt += "<|assistant|>: "
return prompt
def get_prompt_style(
prompt_style: Literal["default", "llama2", "tag"] | None
) -> type[AbstractPromptStyle]:
"""Get the prompt style to use from the given string.
:param prompt_style: The prompt style to use.
:return: The prompt style to use.
"""
if prompt_style is None or prompt_style == "default":
return DefaultPromptStyle
elif prompt_style == "llama2":
return Llama2PromptStyle
elif prompt_style == "tag":
return TagPromptStyle
raise ValueError(f"Unknown prompt_style='{prompt_style}'")

View File

@@ -0,0 +1,34 @@
import logging
from injector import inject, singleton
from llama_index.storage.docstore import BaseDocumentStore, SimpleDocumentStore
from llama_index.storage.index_store import SimpleIndexStore
from llama_index.storage.index_store.types import BaseIndexStore
from private_gpt.paths import local_data_path
logger = logging.getLogger(__name__)
@singleton
class NodeStoreComponent:
index_store: BaseIndexStore
doc_store: BaseDocumentStore
@inject
def __init__(self) -> None:
try:
self.index_store = SimpleIndexStore.from_persist_dir(
persist_dir=str(local_data_path)
)
except FileNotFoundError:
logger.debug("Local index store not found, creating a new one")
self.index_store = SimpleIndexStore()
try:
self.doc_store = SimpleDocumentStore.from_persist_dir(
persist_dir=str(local_data_path)
)
except FileNotFoundError:
logger.debug("Local document store not found, creating a new one")
self.doc_store = SimpleDocumentStore()

View File

@@ -0,0 +1,87 @@
from typing import Any
from llama_index.schema import BaseNode, MetadataMode
from llama_index.vector_stores import ChromaVectorStore
from llama_index.vector_stores.chroma import chunk_list
from llama_index.vector_stores.utils import node_to_metadata_dict
class BatchedChromaVectorStore(ChromaVectorStore):
"""Chroma vector store, batching additions to avoid reaching the max batch limit.
In this vector store, embeddings are stored within a ChromaDB collection.
During query time, the index uses ChromaDB to query for the top
k most similar nodes.
Args:
chroma_client (from chromadb.api.API):
API instance
chroma_collection (chromadb.api.models.Collection.Collection):
ChromaDB collection instance
"""
chroma_client: Any | None
def __init__(
self,
chroma_client: Any,
chroma_collection: Any,
host: str | None = None,
port: str | None = None,
ssl: bool = False,
headers: dict[str, str] | None = None,
collection_kwargs: dict[Any, Any] | None = None,
) -> None:
super().__init__(
chroma_collection=chroma_collection,
host=host,
port=port,
ssl=ssl,
headers=headers,
collection_kwargs=collection_kwargs or {},
)
self.chroma_client = chroma_client
def add(self, nodes: list[BaseNode], **add_kwargs: Any) -> list[str]:
"""Add nodes to index, batching the insertion to avoid issues.
Args:
nodes: List[BaseNode]: list of nodes with embeddings
add_kwargs: _
"""
if not self.chroma_client:
raise ValueError("Client not initialized")
if not self._collection:
raise ValueError("Collection not initialized")
max_chunk_size = self.chroma_client.max_batch_size
node_chunks = chunk_list(nodes, max_chunk_size)
all_ids = []
for node_chunk in node_chunks:
embeddings = []
metadatas = []
ids = []
documents = []
for node in node_chunk:
embeddings.append(node.get_embedding())
metadatas.append(
node_to_metadata_dict(
node, remove_text=True, flat_metadata=self.flat_metadata
)
)
ids.append(node.node_id)
documents.append(node.get_content(metadata_mode=MetadataMode.NONE))
self._collection.add(
embeddings=embeddings,
ids=ids,
metadatas=metadatas,
documents=documents,
)
all_ids.extend(ids)
return all_ids

View File

@@ -0,0 +1,118 @@
import logging
import typing
from injector import inject, singleton
from llama_index import VectorStoreIndex
from llama_index.indices.vector_store import VectorIndexRetriever
from llama_index.vector_stores.types import VectorStore
from private_gpt.components.vector_store.batched_chroma import BatchedChromaVectorStore
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.paths import local_data_path
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@typing.no_type_check
def _chromadb_doc_id_metadata_filter(
context_filter: ContextFilter | None,
) -> dict | None:
if context_filter is None or context_filter.docs_ids is None:
return {} # No filter
elif len(context_filter.docs_ids) < 1:
return {"doc_id": "-"} # Effectively filtering out all docs
else:
doc_filter_items = []
if len(context_filter.docs_ids) > 1:
doc_filter = {"$or": doc_filter_items}
for doc_id in context_filter.docs_ids:
doc_filter_items.append({"doc_id": doc_id})
else:
doc_filter = {"doc_id": context_filter.docs_ids[0]}
return doc_filter
@singleton
class VectorStoreComponent:
vector_store: VectorStore
@inject
def __init__(self, settings: Settings) -> None:
match settings.vectorstore.database:
case "chroma":
try:
import chromadb # type: ignore
from chromadb.config import ( # type: ignore
Settings as ChromaSettings,
)
except ImportError as e:
raise ImportError(
"'chromadb' is not installed."
"To use PrivateGPT with Chroma, install the 'chroma' extra."
"`poetry install --extras chroma`"
) from e
chroma_settings = ChromaSettings(anonymized_telemetry=False)
chroma_client = chromadb.PersistentClient(
path=str((local_data_path / "chroma_db").absolute()),
settings=chroma_settings,
)
chroma_collection = chroma_client.get_or_create_collection(
"make_this_parameterizable_per_api_call"
) # TODO
self.vector_store = typing.cast(
VectorStore,
BatchedChromaVectorStore(
chroma_client=chroma_client, chroma_collection=chroma_collection
),
)
case "qdrant":
from llama_index.vector_stores.qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
if settings.qdrant is None:
logger.info(
"Qdrant config not found. Using default settings."
"Trying to connect to Qdrant at localhost:6333."
)
client = QdrantClient()
else:
client = QdrantClient(
**settings.qdrant.model_dump(exclude_none=True)
)
self.vector_store = typing.cast(
VectorStore,
QdrantVectorStore(
client=client,
collection_name="make_this_parameterizable_per_api_call",
), # TODO
)
case _:
# Should be unreachable
# The settings validator should have caught this
raise ValueError(
f"Vectorstore database {settings.vectorstore.database} not supported"
)
@staticmethod
def get_retriever(
index: VectorStoreIndex,
context_filter: ContextFilter | None = None,
similarity_top_k: int = 2,
) -> VectorIndexRetriever:
# This way we support qdrant (using doc_ids) and chroma (using where clause)
return VectorIndexRetriever(
index=index,
similarity_top_k=similarity_top_k,
doc_ids=context_filter.docs_ids if context_filter else None,
vector_store_kwargs={
"where": _chromadb_doc_id_metadata_filter(context_filter)
},
)
def close(self) -> None:
if hasattr(self.vector_store.client, "close"):
self.vector_store.client.close()

3
private_gpt/constants.py Normal file
View File

@@ -0,0 +1,3 @@
from pathlib import Path
PROJECT_ROOT_PATH: Path = Path(__file__).parents[1]

19
private_gpt/di.py Normal file
View File

@@ -0,0 +1,19 @@
from injector import Injector
from private_gpt.settings.settings import Settings, unsafe_typed_settings
def create_application_injector() -> Injector:
_injector = Injector(auto_bind=True)
_injector.binder.bind(Settings, to=unsafe_typed_settings)
return _injector
"""
Global injector for the application.
Avoid using this reference, it will make your code harder to test.
Instead, use the `request.state.injector` reference, which is bound to every request
"""
global_injector: Injector = create_application_injector()

128
private_gpt/launcher.py Normal file
View File

@@ -0,0 +1,128 @@
"""FastAPI app creation, logger configuration and main API routes."""
import logging
from typing import Any
from fastapi import Depends, FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.utils import get_openapi
from injector import Injector
from private_gpt.paths import docs_path
from private_gpt.server.chat.chat_router import chat_router
from private_gpt.server.chunks.chunks_router import chunks_router
from private_gpt.server.completions.completions_router import completions_router
from private_gpt.server.embeddings.embeddings_router import embeddings_router
from private_gpt.server.health.health_router import health_router
from private_gpt.server.ingest.ingest_router import ingest_router
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
def create_app(root_injector: Injector) -> FastAPI:
# Start the API
with open(docs_path / "description.md") as description_file:
description = description_file.read()
tags_metadata = [
{
"name": "Ingestion",
"description": "High-level APIs covering document ingestion -internally "
"managing document parsing, splitting,"
"metadata extraction, embedding generation and storage- and ingested "
"documents CRUD."
"Each ingested document is identified by an ID that can be used to filter the "
"context"
"used in *Contextual Completions* and *Context Chunks* APIs.",
},
{
"name": "Contextual Completions",
"description": "High-level APIs covering contextual Chat and Completions. They "
"follow OpenAI's format, extending it to "
"allow using the context coming from ingested documents to create the "
"response. Internally"
"manage context retrieval, prompt engineering and the response generation.",
},
{
"name": "Context Chunks",
"description": "Low-level API that given a query return relevant chunks of "
"text coming from the ingested"
"documents.",
},
{
"name": "Embeddings",
"description": "Low-level API to obtain the vector representation of a given "
"text, using an Embeddings model."
"Follows OpenAI's embeddings API format.",
},
{
"name": "Health",
"description": "Simple health API to make sure the server is up and running.",
},
]
async def bind_injector_to_request(request: Request) -> None:
request.state.injector = root_injector
app = FastAPI(dependencies=[Depends(bind_injector_to_request)])
def custom_openapi() -> dict[str, Any]:
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title="PrivateGPT",
description=description,
version="0.1.0",
summary="PrivateGPT is a production-ready AI project that allows you to "
"ask questions to your documents using the power of Large Language "
"Models (LLMs), even in scenarios without Internet connection. "
"100% private, no data leaves your execution environment at any point.",
contact={
"url": "https://github.com/imartinez/privateGPT",
},
license_info={
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
routes=app.routes,
tags=tags_metadata,
)
openapi_schema["info"]["x-logo"] = {
"url": "https://lh3.googleusercontent.com/drive-viewer"
"/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj"
"E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560"
}
app.openapi_schema = openapi_schema
return app.openapi_schema
app.openapi = custom_openapi # type: ignore[method-assign]
app.include_router(completions_router)
app.include_router(chat_router)
app.include_router(chunks_router)
app.include_router(ingest_router)
app.include_router(embeddings_router)
app.include_router(health_router)
settings = root_injector.get(Settings)
if settings.server.cors.enabled:
logger.debug("Setting up CORS middleware")
app.add_middleware(
CORSMiddleware,
allow_credentials=settings.server.cors.allow_credentials,
allow_origins=settings.server.cors.allow_origins,
allow_origin_regex=settings.server.cors.allow_origin_regex,
allow_methods=settings.server.cors.allow_methods,
allow_headers=settings.server.cors.allow_headers,
)
if settings.ui.enabled:
logger.debug("Importing the UI module")
from private_gpt.ui.ui import PrivateGptUi
ui = root_injector.get(PrivateGptUi)
ui.mount_in_app(app, settings.ui.path)
return app

11
private_gpt/main.py Normal file
View File

@@ -0,0 +1,11 @@
"""FastAPI app creation, logger configuration and main API routes."""
import llama_index
from private_gpt.di import global_injector
from private_gpt.launcher import create_app
# Add LlamaIndex simple observability
llama_index.set_global_handler("simple")
app = create_app(global_injector)

View File

@@ -0,0 +1 @@
"""OpenAI compatibility utilities."""

View File

@@ -0,0 +1 @@
"""OpenAI API extensions."""

View File

@@ -0,0 +1,7 @@
from pydantic import BaseModel, Field
class ContextFilter(BaseModel):
docs_ids: list[str] | None = Field(
examples=[["c202d5e6-7b69-4869-81cc-dd574ee8ee11"]]
)

View File

@@ -0,0 +1,122 @@
import time
import uuid
from collections.abc import Iterator
from typing import Literal
from llama_index.llms import ChatResponse, CompletionResponse
from pydantic import BaseModel, Field
from private_gpt.server.chunks.chunks_service import Chunk
class OpenAIDelta(BaseModel):
"""A piece of completion that needs to be concatenated to get the full message."""
content: str | None
class OpenAIMessage(BaseModel):
"""Inference result, with the source of the message.
Role could be the assistant or system
(providing a default response, not AI generated).
"""
role: Literal["assistant", "system", "user"] = Field(default="user")
content: str | None
class OpenAIChoice(BaseModel):
"""Response from AI.
Either the delta or the message will be present, but never both.
Sources used will be returned in case context retrieval was enabled.
"""
finish_reason: str | None = Field(examples=["stop"])
delta: OpenAIDelta | None = None
message: OpenAIMessage | None = None
sources: list[Chunk] | None = None
index: int = 0
class OpenAICompletion(BaseModel):
"""Clone of OpenAI Completion model.
For more information see: https://platform.openai.com/docs/api-reference/chat/object
"""
id: str
object: Literal["completion", "completion.chunk"] = Field(default="completion")
created: int = Field(..., examples=[1623340000])
model: Literal["private-gpt"]
choices: list[OpenAIChoice]
@classmethod
def from_text(
cls,
text: str | None,
finish_reason: str | None = None,
sources: list[Chunk] | None = None,
) -> "OpenAICompletion":
return OpenAICompletion(
id=str(uuid.uuid4()),
object="completion",
created=int(time.time()),
model="private-gpt",
choices=[
OpenAIChoice(
message=OpenAIMessage(role="assistant", content=text),
finish_reason=finish_reason,
sources=sources,
)
],
)
@classmethod
def json_from_delta(
cls,
*,
text: str | None,
finish_reason: str | None = None,
sources: list[Chunk] | None = None,
) -> str:
chunk = OpenAICompletion(
id=str(uuid.uuid4()),
object="completion.chunk",
created=int(time.time()),
model="private-gpt",
choices=[
OpenAIChoice(
delta=OpenAIDelta(content=text),
finish_reason=finish_reason,
sources=sources,
)
],
)
return chunk.model_dump_json()
def to_openai_response(
response: str | ChatResponse, sources: list[Chunk] | None = None
) -> OpenAICompletion:
if isinstance(response, ChatResponse):
return OpenAICompletion.from_text(response.delta, finish_reason="stop")
else:
return OpenAICompletion.from_text(
response, finish_reason="stop", sources=sources
)
def to_openai_sse_stream(
response_generator: Iterator[str | CompletionResponse | ChatResponse],
sources: list[Chunk] | None = None,
) -> Iterator[str]:
for response in response_generator:
if isinstance(response, CompletionResponse | ChatResponse):
yield f"data: {OpenAICompletion.json_from_delta(text=response.delta)}\n\n"
else:
yield f"data: {OpenAICompletion.json_from_delta(text=response, sources=sources)}\n\n"
yield f"data: {OpenAICompletion.json_from_delta(text=None, finish_reason='stop')}\n\n"
yield "data: [DONE]\n\n"

18
private_gpt/paths.py Normal file
View File

@@ -0,0 +1,18 @@
from pathlib import Path
from private_gpt.constants import PROJECT_ROOT_PATH
from private_gpt.settings.settings import settings
def _absolute_or_from_project_root(path: str) -> Path:
if path.startswith("/"):
return Path(path)
return PROJECT_ROOT_PATH / path
models_path: Path = PROJECT_ROOT_PATH / "models"
models_cache_path: Path = models_path / "cache"
docs_path: Path = PROJECT_ROOT_PATH / "docs"
local_data_path: Path = _absolute_or_from_project_root(
settings().data.local_data_folder
)

View File

@@ -0,0 +1 @@
"""private-gpt server."""

View File

View File

@@ -0,0 +1,108 @@
from fastapi import APIRouter, Depends, Request
from llama_index.llms import ChatMessage, MessageRole
from pydantic import BaseModel
from starlette.responses import StreamingResponse
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.open_ai.openai_models import (
OpenAICompletion,
OpenAIMessage,
to_openai_response,
to_openai_sse_stream,
)
from private_gpt.server.chat.chat_service import ChatService
from private_gpt.server.utils.auth import authenticated
chat_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
class ChatBody(BaseModel):
messages: list[OpenAIMessage]
use_context: bool = False
context_filter: ContextFilter | None = None
include_sources: bool = True
stream: bool = False
model_config = {
"json_schema_extra": {
"examples": [
{
"messages": [
{
"role": "system",
"content": "You are a rapper. Always answer with a rap.",
},
{
"role": "user",
"content": "How do you fry an egg?",
},
],
"stream": False,
"use_context": True,
"include_sources": True,
"context_filter": {
"docs_ids": ["c202d5e6-7b69-4869-81cc-dd574ee8ee11"]
},
}
]
}
}
@chat_router.post(
"/chat/completions",
response_model=None,
responses={200: {"model": OpenAICompletion}},
tags=["Contextual Completions"],
)
def chat_completion(
request: Request, body: ChatBody
) -> OpenAICompletion | StreamingResponse:
"""Given a list of messages comprising a conversation, return a response.
Optionally include an initial `role: system` message to influence the way
the LLM answers.
If `use_context` is set to `true`, the model will use context coming
from the ingested documents to create the response. The documents being used can
be filtered using the `context_filter` and passing the document IDs to be used.
Ingested documents IDs can be found using `/ingest/list` endpoint. If you want
all ingested documents to be used, remove `context_filter` altogether.
When using `'include_sources': true`, the API will return the source Chunks used
to create the response, which come from the context provided.
When using `'stream': true`, the API will return data chunks following [OpenAI's
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
```
{"id":"12345","object":"completion.chunk","created":1694268190,
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
"finish_reason":null}]}
```
"""
service = request.state.injector.get(ChatService)
all_messages = [
ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages
]
if body.stream:
completion_gen = service.stream_chat(
messages=all_messages,
use_context=body.use_context,
context_filter=body.context_filter,
)
return StreamingResponse(
to_openai_sse_stream(
completion_gen.response,
completion_gen.sources if body.include_sources else None,
),
media_type="text/event-stream",
)
else:
completion = service.chat(
messages=all_messages,
use_context=body.use_context,
context_filter=body.context_filter,
)
return to_openai_response(
completion.response, completion.sources if body.include_sources else None
)

View File

@@ -0,0 +1,187 @@
from dataclasses import dataclass
from injector import inject, singleton
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
from llama_index.chat_engine import ContextChatEngine, SimpleChatEngine
from llama_index.chat_engine.types import (
BaseChatEngine,
)
from llama_index.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.llms import ChatMessage, MessageRole
from llama_index.types import TokenGen
from pydantic import BaseModel
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.llm.llm_component import LLMComponent
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent,
)
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chunks.chunks_service import Chunk
class Completion(BaseModel):
response: str
sources: list[Chunk] | None = None
class CompletionGen(BaseModel):
response: TokenGen
sources: list[Chunk] | None = None
@dataclass
class ChatEngineInput:
system_message: ChatMessage | None = None
last_message: ChatMessage | None = None
chat_history: list[ChatMessage] | None = None
@classmethod
def from_messages(cls, messages: list[ChatMessage]) -> "ChatEngineInput":
# Detect if there is a system message, extract the last message and chat history
system_message = (
messages[0]
if len(messages) > 0 and messages[0].role == MessageRole.SYSTEM
else None
)
last_message = (
messages[-1]
if len(messages) > 0 and messages[-1].role == MessageRole.USER
else None
)
# Remove from messages list the system message and last message,
# if they exist. The rest is the chat history.
if system_message:
messages.pop(0)
if last_message:
messages.pop(-1)
chat_history = messages if len(messages) > 0 else None
return cls(
system_message=system_message,
last_message=last_message,
chat_history=chat_history,
)
@singleton
class ChatService:
@inject
def __init__(
self,
llm_component: LLMComponent,
vector_store_component: VectorStoreComponent,
embedding_component: EmbeddingComponent,
node_store_component: NodeStoreComponent,
) -> None:
self.llm_service = llm_component
self.vector_store_component = vector_store_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
self.service_context = ServiceContext.from_defaults(
llm=llm_component.llm, embed_model=embedding_component.embedding_model
)
self.index = VectorStoreIndex.from_vector_store(
vector_store_component.vector_store,
storage_context=self.storage_context,
service_context=self.service_context,
show_progress=True,
)
def _chat_engine(
self,
system_prompt: str | None = None,
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> BaseChatEngine:
if use_context:
vector_index_retriever = self.vector_store_component.get_retriever(
index=self.index, context_filter=context_filter
)
return ContextChatEngine.from_defaults(
system_prompt=system_prompt,
retriever=vector_index_retriever,
service_context=self.service_context,
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window"),
],
)
else:
return SimpleChatEngine.from_defaults(
system_prompt=system_prompt,
service_context=self.service_context,
)
def stream_chat(
self,
messages: list[ChatMessage],
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> CompletionGen:
chat_engine_input = ChatEngineInput.from_messages(messages)
last_message = (
chat_engine_input.last_message.content
if chat_engine_input.last_message
else None
)
system_prompt = (
chat_engine_input.system_message.content
if chat_engine_input.system_message
else None
)
chat_history = (
chat_engine_input.chat_history if chat_engine_input.chat_history else None
)
chat_engine = self._chat_engine(
system_prompt=system_prompt,
use_context=use_context,
context_filter=context_filter,
)
streaming_response = chat_engine.stream_chat(
message=last_message if last_message is not None else "",
chat_history=chat_history,
)
sources = [Chunk.from_node(node) for node in streaming_response.source_nodes]
completion_gen = CompletionGen(
response=streaming_response.response_gen, sources=sources
)
return completion_gen
def chat(
self,
messages: list[ChatMessage],
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> Completion:
chat_engine_input = ChatEngineInput.from_messages(messages)
last_message = (
chat_engine_input.last_message.content
if chat_engine_input.last_message
else None
)
system_prompt = (
chat_engine_input.system_message.content
if chat_engine_input.system_message
else None
)
chat_history = (
chat_engine_input.chat_history if chat_engine_input.chat_history else None
)
chat_engine = self._chat_engine(
system_prompt=system_prompt,
use_context=use_context,
context_filter=context_filter,
)
wrapped_response = chat_engine.chat(
message=last_message if last_message is not None else "",
chat_history=chat_history,
)
sources = [Chunk.from_node(node) for node in wrapped_response.source_nodes]
completion = Completion(response=wrapped_response.response, sources=sources)
return completion

View File

View File

@@ -0,0 +1,55 @@
from typing import Literal
from fastapi import APIRouter, Depends, Request
from pydantic import BaseModel, Field
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
from private_gpt.server.utils.auth import authenticated
chunks_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
class ChunksBody(BaseModel):
text: str = Field(examples=["Q3 2023 sales"])
context_filter: ContextFilter | None = None
limit: int = 10
prev_next_chunks: int = Field(default=0, examples=[2])
class ChunksResponse(BaseModel):
object: Literal["list"]
model: Literal["private-gpt"]
data: list[Chunk]
@chunks_router.post("/chunks", tags=["Context Chunks"])
def chunks_retrieval(request: Request, body: ChunksBody) -> ChunksResponse:
"""Given a `text`, returns the most relevant chunks from the ingested documents.
The returned information can be used to generate prompts that can be
passed to `/completions` or `/chat/completions` APIs. Note: it is usually a very
fast API, because only the Embeddings model is involved, not the LLM. The
returned information contains the relevant chunk `text` together with the source
`document` it is coming from. It also contains a score that can be used to
compare different results.
The max number of chunks to be returned is set using the `limit` param.
Previous and next chunks (pieces of text that appear right before or after in the
document) can be fetched by using the `prev_next_chunks` field.
The documents being used can be filtered using the `context_filter` and passing
the document IDs to be used. Ingested documents IDs can be found using
`/ingest/list` endpoint. If you want all ingested documents to be used,
remove `context_filter` altogether.
"""
service = request.state.injector.get(ChunksService)
results = service.retrieve_relevant(
body.text, body.context_filter, body.limit, body.prev_next_chunks
)
return ChunksResponse(
object="list",
model="private-gpt",
data=results,
)

View File

@@ -0,0 +1,124 @@
from typing import TYPE_CHECKING, Literal
from injector import inject, singleton
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
from llama_index.schema import NodeWithScore
from pydantic import BaseModel, Field
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.llm.llm_component import LLMComponent
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent,
)
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.ingest.model import IngestedDoc
if TYPE_CHECKING:
from llama_index.schema import RelatedNodeInfo
class Chunk(BaseModel):
object: Literal["context.chunk"]
score: float = Field(examples=[0.023])
document: IngestedDoc
text: str = Field(examples=["Outbound sales increased 20%, driven by new leads."])
previous_texts: list[str] | None = Field(
default=None,
examples=[["SALES REPORT 2023", "Inbound didn't show major changes."]],
)
next_texts: list[str] | None = Field(
default=None,
examples=[
[
"New leads came from Google Ads campaign.",
"The campaign was run by the Marketing Department",
]
],
)
@classmethod
def from_node(cls: type["Chunk"], node: NodeWithScore) -> "Chunk":
doc_id = node.node.ref_doc_id if node.node.ref_doc_id is not None else "-"
return cls(
object="context.chunk",
score=node.score or 0.0,
document=IngestedDoc(
object="ingest.document",
doc_id=doc_id,
doc_metadata=node.metadata,
),
text=node.get_content(),
)
@singleton
class ChunksService:
@inject
def __init__(
self,
llm_component: LLMComponent,
vector_store_component: VectorStoreComponent,
embedding_component: EmbeddingComponent,
node_store_component: NodeStoreComponent,
) -> None:
self.vector_store_component = vector_store_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
self.query_service_context = ServiceContext.from_defaults(
llm=llm_component.llm, embed_model=embedding_component.embedding_model
)
def _get_sibling_nodes_text(
self, node_with_score: NodeWithScore, related_number: int, forward: bool = True
) -> list[str]:
explored_nodes_texts = []
current_node = node_with_score.node
for _ in range(related_number):
explored_node_info: RelatedNodeInfo | None = (
current_node.next_node if forward else current_node.prev_node
)
if explored_node_info is None:
break
explored_node = self.storage_context.docstore.get_node(
explored_node_info.node_id
)
explored_nodes_texts.append(explored_node.get_content())
current_node = explored_node
return explored_nodes_texts
def retrieve_relevant(
self,
text: str,
context_filter: ContextFilter | None = None,
limit: int = 10,
prev_next_chunks: int = 0,
) -> list[Chunk]:
index = VectorStoreIndex.from_vector_store(
self.vector_store_component.vector_store,
storage_context=self.storage_context,
service_context=self.query_service_context,
show_progress=True,
)
vector_index_retriever = self.vector_store_component.get_retriever(
index=index, context_filter=context_filter, similarity_top_k=limit
)
nodes = vector_index_retriever.retrieve(text)
nodes.sort(key=lambda n: n.score or 0.0, reverse=True)
retrieved_nodes = []
for node in nodes:
chunk = Chunk.from_node(node)
chunk.previous_texts = self._get_sibling_nodes_text(
node, prev_next_chunks, False
)
chunk.next_texts = self._get_sibling_nodes_text(node, prev_next_chunks)
retrieved_nodes.append(chunk)
return retrieved_nodes

View File

@@ -0,0 +1 @@
"""Deprecated Openai compatibility endpoint."""

View File

@@ -0,0 +1,85 @@
from fastapi import APIRouter, Depends, Request
from pydantic import BaseModel
from starlette.responses import StreamingResponse
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.open_ai.openai_models import (
OpenAICompletion,
OpenAIMessage,
)
from private_gpt.server.chat.chat_router import ChatBody, chat_completion
from private_gpt.server.utils.auth import authenticated
completions_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
class CompletionsBody(BaseModel):
prompt: str
system_prompt: str | None = None
use_context: bool = False
context_filter: ContextFilter | None = None
include_sources: bool = True
stream: bool = False
model_config = {
"json_schema_extra": {
"examples": [
{
"prompt": "How do you fry an egg?",
"system_prompt": "You are a rapper. Always answer with a rap.",
"stream": False,
"use_context": False,
"include_sources": False,
}
]
}
}
@completions_router.post(
"/completions",
response_model=None,
summary="Completion",
responses={200: {"model": OpenAICompletion}},
tags=["Contextual Completions"],
)
def prompt_completion(
request: Request, body: CompletionsBody
) -> OpenAICompletion | StreamingResponse:
"""We recommend most users use our Chat completions API.
Given a prompt, the model will return one predicted completion.
Optionally include a `system_prompt` to influence the way the LLM answers.
If `use_context`
is set to `true`, the model will use context coming from the ingested documents
to create the response. The documents being used can be filtered using the
`context_filter` and passing the document IDs to be used. Ingested documents IDs
can be found using `/ingest/list` endpoint. If you want all ingested documents to
be used, remove `context_filter` altogether.
When using `'include_sources': true`, the API will return the source Chunks used
to create the response, which come from the context provided.
When using `'stream': true`, the API will return data chunks following [OpenAI's
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
```
{"id":"12345","object":"completion.chunk","created":1694268190,
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
"finish_reason":null}]}
```
"""
messages = [OpenAIMessage(content=body.prompt, role="user")]
# If system prompt is passed, create a fake message with the system prompt.
if body.system_prompt:
messages.insert(0, OpenAIMessage(content=body.system_prompt, role="system"))
chat_body = ChatBody(
messages=messages,
use_context=body.use_context,
stream=body.stream,
include_sources=body.include_sources,
context_filter=body.context_filter,
)
return chat_completion(request, chat_body)

View File

@@ -0,0 +1,35 @@
from typing import Literal
from fastapi import APIRouter, Depends, Request
from pydantic import BaseModel
from private_gpt.server.embeddings.embeddings_service import (
Embedding,
EmbeddingsService,
)
from private_gpt.server.utils.auth import authenticated
embeddings_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
class EmbeddingsBody(BaseModel):
input: str | list[str]
class EmbeddingsResponse(BaseModel):
object: Literal["list"]
model: Literal["private-gpt"]
data: list[Embedding]
@embeddings_router.post("/embeddings", tags=["Embeddings"])
def embeddings_generation(request: Request, body: EmbeddingsBody) -> EmbeddingsResponse:
"""Get a vector representation of a given input.
That vector representation can be easily consumed
by machine learning models and algorithms.
"""
service = request.state.injector.get(EmbeddingsService)
input_texts = body.input if isinstance(body.input, list) else [body.input]
embeddings = service.texts_embeddings(input_texts)
return EmbeddingsResponse(object="list", model="private-gpt", data=embeddings)

View File

@@ -0,0 +1,30 @@
from typing import Literal
from injector import inject, singleton
from pydantic import BaseModel, Field
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
class Embedding(BaseModel):
index: int
object: Literal["embedding"]
embedding: list[float] = Field(examples=[[0.0023064255, -0.009327292]])
@singleton
class EmbeddingsService:
@inject
def __init__(self, embedding_component: EmbeddingComponent) -> None:
self.embedding_model = embedding_component.embedding_model
def texts_embeddings(self, texts: list[str]) -> list[Embedding]:
texts_embeddings = self.embedding_model.get_text_embedding_batch(texts)
return [
Embedding(
index=texts_embeddings.index(embedding),
object="embedding",
embedding=embedding,
)
for embedding in texts_embeddings
]

View File

View File

@@ -0,0 +1,17 @@
from typing import Literal
from fastapi import APIRouter
from pydantic import BaseModel, Field
# Not authentication or authorization required to get the health status.
health_router = APIRouter()
class HealthResponse(BaseModel):
status: Literal["ok"] = Field(default="ok")
@health_router.get("/health", tags=["Health"])
def health() -> HealthResponse:
"""Return ok if the system is up."""
return HealthResponse(status="ok")

View File

View File

@@ -0,0 +1,63 @@
from typing import Literal
from fastapi import APIRouter, Depends, HTTPException, Request, UploadFile
from pydantic import BaseModel
from private_gpt.server.ingest.ingest_service import IngestService
from private_gpt.server.ingest.model import IngestedDoc
from private_gpt.server.utils.auth import authenticated
ingest_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
class IngestResponse(BaseModel):
object: Literal["list"]
model: Literal["private-gpt"]
data: list[IngestedDoc]
@ingest_router.post("/ingest", tags=["Ingestion"])
def ingest(request: Request, file: UploadFile) -> IngestResponse:
"""Ingests and processes a file, storing its chunks to be used as context.
The context obtained from files is later used in
`/chat/completions`, `/completions`, and `/chunks` APIs.
Most common document
formats are supported, but you may be prompted to install an extra dependency to
manage a specific file type.
A file can generate different Documents (for example a PDF generates one Document
per page). All Documents IDs are returned in the response, together with the
extracted Metadata (which is later used to improve context retrieval). Those IDs
can be used to filter the context used to create responses in
`/chat/completions`, `/completions`, and `/chunks` APIs.
"""
service = request.state.injector.get(IngestService)
if file.filename is None:
raise HTTPException(400, "No file name provided")
ingested_documents = service.ingest_bin_data(file.filename, file.file)
return IngestResponse(object="list", model="private-gpt", data=ingested_documents)
@ingest_router.get("/ingest/list", tags=["Ingestion"])
def list_ingested(request: Request) -> IngestResponse:
"""Lists already ingested Documents including their Document ID and metadata.
Those IDs can be used to filter the context used to create responses
in `/chat/completions`, `/completions`, and `/chunks` APIs.
"""
service = request.state.injector.get(IngestService)
ingested_documents = service.list_ingested()
return IngestResponse(object="list", model="private-gpt", data=ingested_documents)
@ingest_router.delete("/ingest/{doc_id}", tags=["Ingestion"])
def delete_ingested(request: Request, doc_id: str) -> None:
"""Delete the specified ingested Document.
The `doc_id` can be obtained from the `GET /ingest/list` endpoint.
The document will be effectively deleted from your storage context.
"""
service = request.state.injector.get(IngestService)
service.delete(doc_id)

View File

@@ -0,0 +1,123 @@
import logging
import tempfile
from pathlib import Path
from typing import BinaryIO
from injector import inject, singleton
from llama_index import (
ServiceContext,
StorageContext,
)
from llama_index.node_parser import SentenceWindowNodeParser
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.ingest.ingest_component import get_ingestion_component
from private_gpt.components.llm.llm_component import LLMComponent
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent,
)
from private_gpt.server.ingest.model import IngestedDoc
from private_gpt.settings.settings import settings
logger = logging.getLogger(__name__)
@singleton
class IngestService:
@inject
def __init__(
self,
llm_component: LLMComponent,
vector_store_component: VectorStoreComponent,
embedding_component: EmbeddingComponent,
node_store_component: NodeStoreComponent,
) -> None:
self.llm_service = llm_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
node_parser = SentenceWindowNodeParser.from_defaults()
self.ingest_service_context = ServiceContext.from_defaults(
llm=self.llm_service.llm,
embed_model=embedding_component.embedding_model,
node_parser=node_parser,
# Embeddings done early in the pipeline of node transformations, right
# after the node parsing
transformations=[node_parser, embedding_component.embedding_model],
)
self.ingest_component = get_ingestion_component(
self.storage_context, self.ingest_service_context, settings=settings()
)
def ingest(self, file_name: str, file_data: Path) -> list[IngestedDoc]:
logger.info("Ingesting file_name=%s", file_name)
documents = self.ingest_component.ingest(file_name, file_data)
return [IngestedDoc.from_document(document) for document in documents]
def ingest_bin_data(
self, file_name: str, raw_file_data: BinaryIO
) -> list[IngestedDoc]:
logger.debug("Ingesting binary data with file_name=%s", file_name)
file_data = raw_file_data.read()
logger.debug("Got file data of size=%s to ingest", len(file_data))
# llama-index mainly supports reading from files, so
# we have to create a tmp file to read for it to work
# delete=False to avoid a Windows 11 permission error.
with tempfile.NamedTemporaryFile(delete=False) as tmp:
try:
path_to_tmp = Path(tmp.name)
if isinstance(file_data, bytes):
path_to_tmp.write_bytes(file_data)
else:
path_to_tmp.write_text(str(file_data))
return self.ingest(file_name, path_to_tmp)
finally:
tmp.close()
path_to_tmp.unlink()
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[IngestedDoc]:
logger.info("Ingesting file_names=%s", [f[0] for f in files])
documents = self.ingest_component.bulk_ingest(files)
return [IngestedDoc.from_document(document) for document in documents]
def list_ingested(self) -> list[IngestedDoc]:
ingested_docs = []
try:
docstore = self.storage_context.docstore
ingested_docs_ids: set[str] = set()
for node in docstore.docs.values():
if node.ref_doc_id is not None:
ingested_docs_ids.add(node.ref_doc_id)
for doc_id in ingested_docs_ids:
ref_doc_info = docstore.get_ref_doc_info(ref_doc_id=doc_id)
doc_metadata = None
if ref_doc_info is not None and ref_doc_info.metadata is not None:
doc_metadata = IngestedDoc.curate_metadata(ref_doc_info.metadata)
ingested_docs.append(
IngestedDoc(
object="ingest.document",
doc_id=doc_id,
doc_metadata=doc_metadata,
)
)
except ValueError:
logger.warning("Got an exception when getting list of docs", exc_info=True)
pass
logger.debug("Found count=%s ingested documents", len(ingested_docs))
return ingested_docs
def delete(self, doc_id: str) -> None:
"""Delete an ingested document.
:raises ValueError: if the document does not exist
"""
logger.info(
"Deleting the ingested document=%s in the doc and index store", doc_id
)
self.ingest_component.delete(doc_id)

Some files were not shown because too many files have changed in this diff Show More