Update to OpenLLM 0.6, which we decides to make use of OpenLLM's
OpenAI-compatible endpoint. Thus, OpenLLM will now just become a thin
wrapper around OpenAI wrapper.
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
---------
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: ccurme <chester.curme@gmail.com>
In collaboration with @rlouf I build an
[outlines](https://dottxt-ai.github.io/outlines/latest/) integration for
langchain!
I think this is really useful for doing any type of structured output
locally.
[Dottxt](https://dottxt.co) spend alot of work optimising this process
at a lower level
([outlines-core](https://pypi.org/project/outlines-core/0.1.14/) written
in rust) so I think this is a better alternative over all current
approaches in langchain to do structured output.
It also implements the `.with_structured_output` method so it should be
a drop in replacement for a lot of applications.
The integration includes:
- **Outlines LLM class**
- **ChatOutlines class**
- **Tutorial Cookbooks**
- **Documentation Page**
- **Validation and error messages**
- **Exposes Outlines Structured output features**
- **Support for multiple backends**
- **Integration and Unit Tests**
Dependencies: `outlines` + additional (depending on backend used)
I am not sure if the unit-tests comply with all requirements, if not I
suggest to just remove them since I don't see a useful way to do it
differently.
### Quick overview:
Chat Models:
<img width="698" alt="image"
src="https://github.com/user-attachments/assets/05a499b9-858c-4397-a9ff-165c2b3e7acc">
Structured Output:
<img width="955" alt="image"
src="https://github.com/user-attachments/assets/b9fcac11-d3e5-4698-b1ae-8c4cb3d54c45">
---------
Co-authored-by: Vadym Barda <vadym@langchain.dev>
**Description:**
- Fix bug in Replicate LLM class, where it was looking for parameter
names in a place where they no longer exist in pydantic 2, resulting in
the "Field required" validation error described in the issue.
- Fix Replicate LLM integration tests to:
- Use active models on Replicate.
- Use the correct model parameter `max_new_tokens` as shown in the
[Replicate
docs](https://replicate.com/docs/guides/language-models/how-to-use#minimum-and-maximum-new-tokens).
- Use callbacks instead of deprecated callback_manager.
**Issue:** #26937
**Dependencies:** n/a
**Twitter handle:** n/a
---------
Signed-off-by: Fayvor Love <fayvor@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** [IPEX-LLM](https://github.com/intel-analytics/ipex-llm)
is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local
PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low
latency. This PR adds Intel GPU support to `ipex-llm` llm integration.
**Dependencies:** `ipex-llm`
**Contribution maintainer**: @ivy-lv11 @Oscilloscope98
**tests and docs**:
- Add: langchain/docs/docs/integrations/llms/ipex_llm_gpu.ipynb
- Update: langchain/docs/docs/integrations/llms/ipex_llm_gpu.ipynb
- Update: langchain/libs/community/tests/llms/test_ipex_llm.py
---------
Co-authored-by: ivy-lv11 <zhicunlv@gmail.com>
- **Description:** Standardize SparkLLM, include:
- docs, the issue #24803
- to support stream
- update api url
- model init arg names, the issue #20085
Change all usages of __fields__ with get_fields adapter merged into
langchain_core.
Code mod generated using the following grit pattern:
```
engine marzano(0.1)
language python
`$X.__fields__` => `get_fields($X)` where {
add_import(source="langchain_core.utils.pydantic", name="get_fields")
}
```
This PR adds annotations in comunity package.
Annotations are only strictly needed in subclasses of BaseModel for
pydantic 2 compatibility.
This PR adds some unnecessary annotations, but they're not bad to have
regardless for documentation pages.
**Description:**
- Added masking of the API Keys for the modules:
- `langchain/chat_models/openai.py`
- `langchain/llms/openai.py`
- `langchain/llms/google_palm.py`
- `langchain/chat_models/google_palm.py`
- `langchain/llms/edenai.py`
- Updated the modules to utilize `SecretStr` from pydantic to securely
manage API key.
- Added unit/integration tests
- `langchain/chat_models/asure_openai.py` used the `open_api_key` that
is derived from the `ChatOpenAI` Class and it was assuming
`openai_api_key` is a str so we changed it to expect `SecretStr`
instead.
**Issue:** https://github.com/langchain-ai/langchain/issues/12165 ,
**Dependencies:** none,
**Tag maintainer:** @eyurtsev
---------
Co-authored-by: HassanA01 <anikeboss@gmail.com>
Co-authored-by: Aneeq Hassan <aneeq.hassan@utoronto.ca>
Co-authored-by: kristinspenc <kristinspenc2003@gmail.com>
Co-authored-by: faisalt14 <faisalt14@gmail.com>
Co-authored-by: Harshil-Patel28 <76663814+Harshil-Patel28@users.noreply.github.com>
Co-authored-by: kristinspenc <146893228+kristinspenc@users.noreply.github.com>
Co-authored-by: faisalt14 <90787271+faisalt14@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description**:
- **add support for more data types**: by default `IpexLLM` will load
the model in int4 format. This PR adds more data types support such as
`sym_in5`, `sym_int8`, etc. Data formats like NF3, NF4, FP4 and FP8 are
only supported on GPU and will be added in future PR.
- Fix a small issue in saving/loading, update api docs
- **Dependencies**: `ipex-llm` library
- **Document**: In `docs/docs/integrations/llms/ipex_llm.ipynb`, added
instructions for saving/loading low-bit model.
- **Tests**: added new test cases to
`libs/community/tests/integration_tests/llms/test_ipex_llm.py`, added
config params.
- **Contribution maintainer**: @shane-huang
**Community: Unify Titan Takeoff Integrations and Adding Embedding
Support**
**Description:**
Titan Takeoff no longer reflects this either of the integrations in the
community folder. The two integrations (TitanTakeoffPro and
TitanTakeoff) where causing confusion with clients, so have moved code
into one place and created an alias for backwards compatibility. Added
Takeoff Client python package to do the bulk of the work with the
requests, this is because this package is actively updated with new
versions of Takeoff. So this integration will be far more robust and
will not degrade as badly over time.
**Issue:**
Fixes bugs in the old Titan integrations and unified the code with added
unit test converge to avoid future problems.
**Dependencies:**
Added optional dependency takeoff-client, all imports still work without
dependency including the Titan Takeoff classes but just will fail on
initialisation if not pip installed takeoff-client
**Twitter**
@MeryemArik9
Thanks all :)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This PR updates OctoAIEndpoint LLM to subclass BaseOpenAI as OctoAI is
an OpenAI-compatible service. The documentation and tests have also been
updated.
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
- **Twitter handle:** `@alexsherstinsky`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** adds integration with [Layerup
Security](https://uselayerup.com). Docs can be found
[here](https://docs.uselayerup.com). Integrates directly with our Python
SDK.
**Dependencies:**
[LayerupSecurity](https://pypi.org/project/LayerupSecurity/)
**Note**: all methods for our product require a paid API key, so I only
included 1 test which checks for an invalid API key response. I have
tested extensively locally.
**Twitter handle**: [@layerup_](https://twitter.com/layerup_)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
- **Twitter handle:** `@alexsherstinsky`
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description**: `bigdl-llm` library has been renamed to
[`ipex-llm`](https://github.com/intel-analytics/ipex-llm). This PR
migrates the `bigdl-llm` integration to `ipex-llm` .
- **Issue**: N/A. The original PR of `bigdl-llm` is
https://github.com/langchain-ai/langchain/pull/17953
- **Dependencies**: `ipex-llm` library
- **Contribution maintainer**: @shane-huang
Updated doc: docs/docs/integrations/llms/ipex_llm.ipynb
Updated test:
libs/community/tests/integration_tests/llms/test_ipex_llm.py
## Description
- Add [Friendli](https://friendli.ai/) integration for `Friendli` LLM
and `ChatFriendli` chat model.
- Unit tests and integration tests corresponding to this change are
added.
- Documentations corresponding to this change are added.
## Dependencies
- Optional dependency
[`friendli-client`](https://pypi.org/project/friendli-client/) package
is added only for those who use `Frienldi` or `ChatFriendli` model.
## Twitter handle
- https://twitter.com/friendliai
This PR makes `cohere_api_key` in `llms/cohere` a SecretStr, so that the
API Key is not leaked when `Cohere.cohere_api_key` is represented as a
string.
---------
Signed-off-by: Arun <arun@arun.blog>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description**:
[`bigdl-llm`](https://github.com/intel-analytics/BigDL) is a library for
running LLM on Intel XPU (from Laptop to GPU to Cloud) using
INT4/FP4/INT8/FP8 with very low latency (for any PyTorch model). This PR
adds bigdl-llm integrations to langchain.
- **Issue**: NA
- **Dependencies**: `bigdl-llm` library
- **Contribution maintainer**: @shane-huang
Examples added:
- docs/docs/integrations/llms/bigdl.ipynb
1. integrate with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. update `langchain.llms`
3. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR enables changing the behaviour of huggingface pipeline between
different calls. For example, before this PR there's no way of changing
maximum generation length between different invocations of the chain.
This is desirable in cases, such as when we want to scale the maximum
output size depending on a dynamic prompt size.
Usage example:
```python
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
hf = HuggingFacePipeline(pipeline=pipe)
hf("Say foo:", pipeline_kwargs={"max_new_tokens": 42})
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Previously, if this did not find a mypy cache then it wouldnt run
this makes it always run
adding mypy ignore comments with existing uncaught issues to unblock other prs
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Replace this entire comment with:
- **Description:** Add Baichuan LLM to integration/llm, also updated
related docs.
Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.
@baskaryan @hwchase17
```python
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
guardrails={"id": " <guardrail_id>",
"version": "<guardrail_version>",
"trace": True}, callbacks=[BedrockAsyncCallbackHandler()])
class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
"""Async callback handler that can be used to handle callbacks from langchain."""
async def on_llm_error(
self,
error: BaseException,
**kwargs: Any,
) -> Any:
reason = kwargs.get("reason")
if reason == "GUARDRAIL_INTERVENED":
# kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
print(f"""Guardrails: {kwargs}""")
# streaming
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
streaming=True,
guardrails={"id": "<guardrail_id>",
"version": "<guardrail_version>"})
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR introduces update to Konko Integration with LangChain.
1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.
2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.
4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.
Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.
---------
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
Todo
- [x] copy over integration tests
- [x] update docs with new instructions in #15513
- [x] add linear ticket to bump core -> community, community->langchain,
and core->openai deps
- [ ] (optional): add `pip install langchain-openai` command to each
notebook using it
- [x] Update docstrings to not need `openai` install
- [x] Add serialization
- [x] deprecate old models
Contributor steps:
- [x] Add secret names to manual integrations workflow in
.github/workflows/_integration_test.yml
- [x] Add secrets to release workflow (for pre-release testing) in
.github/workflows/_release.yml
Maintainer steps (Contributors should not do these):
- [x] set up pypi and test pypi projects
- [x] add credential secrets to Github Actions
- [ ] add package to conda-forge
Functional changes to existing classes:
- now relies on openai client v1 (1.6.1) via concrete dep in
langchain-openai package
Codebase organization
- some function calling stuff moved to
`langchain_core.utils.function_calling` in order to be used in both
community and langchain-openai
- **Description:**
- support custom kwargs in object initialization. For instantance, QPS
differs from multiple object(chat/completion/embedding with diverse
models), for which global env is not a good choice for configuration.
- **Issue:** no
- **Dependencies:** no
- **Twitter handle:** no
@baskaryan PTAL