Commit Graph

301 Commits

Author SHA1 Message Date
2jimoo
7fc903464a community: Add document manager and mongo document manager (#17320)
- **Description:** 
    - Add DocumentManager class, which is a nosql record manager. 
- In order to use index and aindex in
libs/langchain/langchain/indexes/_api.py, DocumentManager inherits
RecordManager.
    - Also I added the MongoDB implementation of Document Manager too.
  - **Dependencies:** pymongo, motor
  
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
- **Description:** Add DocumentManager class, which is a no sql record
manager. To use index method and aindex method in indexes._api.py,
Document Manager inherits RecordManager.Add the MongoDB implementation
of Document Manager.
  - **Dependencies:** pymongo, motor

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-23 21:32:52 -05:00
Chad Juliano
50ba3c68bb community[minor]: add Kinetica LLM wrapper (#17879)
**Description:** Initial pull request for Kinetica LLM wrapper
**Issue:** N/A
**Dependencies:** No new dependencies for unit tests. Integration tests
require gpudb, typeguard, and faker
**Twitter handle:** @chad_juliano

Note: There is another pull request for Kinetica vectorstore. Ultimately
we would like to make a partner package but we are starting with a
community contribution.
2024-02-22 16:02:00 -08:00
Ian
3019a594b7 community[minor]: Add tidb loader support (#17788)
This pull request support loading data from TiDB database with
Langchain.

A simple usage:
```
from  langchain_community.document_loaders import TiDBLoader

CONNECTION_STRING = "mysql+pymysql://root@127.0.0.1:4000/test"

QUERY = "select id, name, description from items;"
loader = TiDBLoader(
    connection_string=CONNECTION_STRING,
    query=QUERY,
    page_content_columns=["name", "description"],
    metadata_columns=["id"],
)
documents = loader.load()
print(documents)
```
2024-02-21 16:42:33 -08:00
ehude
9e54c227f1 community[patch]: Bug Neo4j VectorStore when having multiple indexes the sort is not working and the store that returned is random (#17396)
Bug fix: when having multiple indexes the sort is not working and the
store that returned is random.
The following small fix resolves the issue.
2024-02-21 16:33:33 -08:00
volodymyr-memsql
0a9a519a39 community[patch]: Added add_images method to SingleStoreDB vector store (#17871)
In this pull request, we introduce the add_images method to the
SingleStoreDB vector store class, expanding its capabilities to handle
multi-modal embeddings seamlessly. This method facilitates the
incorporation of image data into the vector store by associating each
image's URI with corresponding document content, metadata, and either
pre-generated embeddings or embeddings computed using the embed_image
method of the provided embedding object.

the change includes integration tests, validating the behavior of the
add_images. Additionally, we provide a notebook showcasing the usage of
this new method.

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
2024-02-21 15:16:32 -08:00
Guangdong Liu
47b1b7092d community[minor]: Add SparkLLM to community (#17702) 2024-02-20 11:23:47 -08:00
Guangdong Liu
3ba1cb8650 community[minor]: Add SparkLLM Text Embedding Model and SparkLLM introduction (#17573) 2024-02-20 11:22:27 -08:00
Aymeric Roucher
0d294760e7 Community: Fuse HuggingFace Endpoint-related classes into one (#17254)
## Description
Fuse HuggingFace Endpoint-related classes into one:
-
[HuggingFaceHub](5ceaf784f3/libs/community/langchain_community/llms/huggingface_hub.py)
-
[HuggingFaceTextGenInference](5ceaf784f3/libs/community/langchain_community/llms/huggingface_text_gen_inference.py)
- and
[HuggingFaceEndpoint](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py)

Are fused into
- HuggingFaceEndpoint

## Issue
The deduplication of classes was creating a lack of clarity, and
additional effort to develop classes leads to issues like [this
hack](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py (L159)).

## Dependancies

None, this removes dependancies.

## Twitter handle

If you want to post about this: @AymericRoucher

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-19 10:33:15 -08:00
Raghav Dixit
6c18f73ca5 community[patch]: LanceDB integration improvements/fixes (#16173)
Hi, I'm from the LanceDB team.

Improves LanceDB integration by making it easier to use - now you aren't
required to create tables manually and pass them in the constructor,
although that is still backward compatible.

Bug fix - pandas was being used even though it's not a dependency for
LanceDB or langchain

PS - this issue was raised a few months ago but lost traction. It is a
feature improvement for our users kindly review this , Thanks !
2024-02-19 10:22:02 -08:00
Christophe Bornet
e92e96193f community[minor]: Add async methods to the AstraDB BaseStore (#16872)
---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-02-19 10:11:49 -08:00
morgana
9d7ca7df6e community[patch]: update copy of metadata in rockset vectorstore integration (#17612)
- **Description:** This fixes an issue with working with RecordManager.
RecordManager was generating new hashes on documents because `add_texts`
was modifying the metadata directly. Additionally moved some tests to
unit tests since that was a more appropriate home.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** `@_morgan_adams_`
2024-02-15 23:13:40 -07:00
Amir Karbasi
bccc9241ea community[patch]: Resolve KuzuQAChain API Changes (#16885)
- **Description:** Updates to the Kuzu API had broken this
functionality. These updates resolve those issues and add a new test to
demonstrate the updates.
- **Issue:** #11874
- **Dependencies:** No new dependencies
- **Twitter handle:** @amirk08


Test results:
```
tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_no_params PASSED                                   [ 33%]
tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_params PASSED                                      [ 66%]
tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_refresh_schema PASSED                                    [100%]

=================================================== slowest 5 durations =================================================== 
0.53s call     tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_refresh_schema
0.34s call     tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_no_params
0.28s call     tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_params
0.03s teardown tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_refresh_schema
0.02s teardown tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_params
==================================================== 3 passed in 1.27s ==================================================== 
```
2024-02-15 10:18:37 -08:00
Christophe Bornet
789cd5198d community[patch]: Use astrapy built-in pagination prefetch in AstraDBLoader (#17569) 2024-02-15 09:52:56 -05:00
Christophe Bornet
ff1f985a2a community: Fix some mypy types in cassandra doc loader (#17570)
Thank you!
2024-02-15 09:45:22 -05:00
wulixuan
c776cfc599 community[minor]: integrate with model Yuan2.0 (#15411)
1. integrate with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. update `langchain.llms`
3. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:46:20 -08:00
volodymyr-memsql
e36bc379f2 community[patch]: Add vector index support to SingleStoreDB VectorStore (#17308)
This pull request introduces support for various Approximate Nearest
Neighbor (ANN) vector index algorithms in the VectorStore class,
starting from version 8.5 of SingleStore DB. Leveraging this enhancement
enables users to harness the power of vector indexing, significantly
boosting search speed, particularly when handling large sets of vectors.

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:43:12 -08:00
Kate Silverstein
0bc4a9b3fc community[minor]: Adds Llamafile as an LLM (#17431)
* **Description:** Adds a simple LLM implementation for interacting with
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
* **Dependencies:** N/A
* **Issue:** N/A

**Detail**
[llamafile](https://github.com/Mozilla-Ocho/llamafile) lets you run LLMs
locally from a single file on most computers without installing any
dependencies.

To use the llamafile LLM implementation, the user needs to:

1. Download a llamafile e.g.
https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile?download=true
2. Make the file executable.
3. Run the llamafile in 'server mode'. (All llamafiles come packaged
with a lightweight server; by default, the server listens at
`http://localhost:8080`.)


```bash
wget https://url/of/model.llamafile
chmod +x model.llamafile
./model.llamafile --server --nobrowser
```

Now, the user can invoke the LLM via the LangChain client:

```python
from langchain_community.llms.llamafile import Llamafile

llm = Llamafile()

llm.invoke("Tell me a joke.")
```
2024-02-14 11:15:24 -08:00
Qihui Xie
5738143d4b add mongodb_store (#13801)
# Add MongoDB storage
  - **Description:** 
  Add MongoDB Storage as an option for large doc store. 

Example usage: 
```Python
# Instantiate the MongodbStore with a MongoDB connection
from langchain.storage import MongodbStore

mongo_conn_str = "mongodb://localhost:27017/"
mongodb_store = MongodbStore(mongo_conn_str, db_name="test-db",
                                collection_name="test-collection")

# Set values for keys
doc1 = Document(page_content='test1')
doc2 = Document(page_content='test2')
mongodb_store.mset([("key1", doc1), ("key2", doc2)])

# Get values for keys
values = mongodb_store.mget(["key1", "key2"])
# [doc1, doc2]

# Iterate over keys
for key in mongodb_store.yield_keys():
    print(key)

# Delete keys
mongodb_store.mdelete(["key1", "key2"])
 ```

  - **Dependencies:**
  Use `mongomock` for integration test.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-13 22:33:22 -05:00
wulixuan
5d06797905 community[minor]: integrate chat models with Yuan2.0 (#16575)
1. integrate chat models with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)
 
Yuan2.0 is a new generation Fundamental Large Language Model developed
by IEIT System. We have published all three models, Yuan 2.0-102B, Yuan
2.0-51B, and Yuan 2.0-2B.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-13 10:55:14 -08:00
Chris
f9f5626ca4 community[patch]: Fix github search issues and PRs PaginatedList has no len() error (#16806)
**Description:** 
Bugfix: Langchain_community's GitHub Api wrapper throws a TypeError when
searching for issues and/or PRs (the `search_issues_and_prs` method).
This is because PyGithub's PageinatedList type does not support the
len() method. See https://github.com/PyGithub/PyGithub/issues/1476

![image](https://github.com/langchain-ai/langchain/assets/8849021/57390b11-ed41-4f48-ba50-f3028610789c)
  **Dependencies:** None 
  **Twitter handle**: @ChrisKeoghNZ
  
I haven't registered an issue as it would take me longer to fill the
template out than to make the fix, but I'm happy to if that's deemed
essential.

I've added a simple integration test to cover this as there were no
existing unit tests and it was going to be tricky to set them up.

Co-authored-by: Chris Keogh <chris.keogh@xero.com>
2024-02-12 19:50:59 -08:00
morgana
722aae4fd1 community: add delete method to rocksetdb vectorstore to support recordmanager (#17030)
- **Description:** This adds a delete method so that rocksetdb can be
used with `RecordManager`.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** `@_morgan_adams_`

---------

Co-authored-by: Rockset API Bot <admin@rockset.io>
2024-02-12 19:50:20 -08:00
yin1991
37ef6ac113 community[patch]: Add Pagination to GitHubIssuesLoader for Efficient GitHub Issues Retrieval (#16934)
- **Description:** Add Pagination to GitHubIssuesLoader for Efficient
GitHub Issues Retrieval
- **Issue:** [the issue # it fixes if
applicable,](https://github.com/langchain-ai/langchain/issues/16864)

---------

Co-authored-by: root <root@ip-172-31-46-160.ap-southeast-1.compute.internal>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 18:30:36 -08:00
Erick Friis
3a2eb6e12b infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00
Quang Hoa
54c1fb3f25 community[patch]: Make some functions work with Milvus (#10695)
**Description**
Make some functions work with Milvus:
1. get_ids: Get primary keys by field in the metadata
2. delete: Delete one or more entities by ids
3. upsert: Update/Insert one or more entities

**Issue**
None
**Dependencies**
None
**Tag maintainer:**
@hwchase17 
**Twitter handle:**
None

---------

Co-authored-by: HoaNQ9 <hoanq.1811@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 15:21:31 -08:00
Armin Stepanyan
641efcf41c community: add runtime kwargs to HuggingFacePipeline (#17005)
This PR enables changing the behaviour of huggingface pipeline between
different calls. For example, before this PR there's no way of changing
maximum generation length between different invocations of the chain.
This is desirable in cases, such as when we want to scale the maximum
output size depending on a dynamic prompt size.

Usage example:

```python
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
hf = HuggingFacePipeline(pipeline=pipe)

hf("Say foo:", pipeline_kwargs={"max_new_tokens": 42})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-08 13:58:31 -08:00
Neli Hateva
9bb5157a3d langchain[patch], community[patch]: Fixes in the Ontotext GraphDB Graph and QA Chain (#17239)
- **Description:** Fixes in the Ontotext GraphDB Graph and QA Chain
related to the error handling in case of invalid SPARQL queries, for
which `prepareQuery` doesn't throw an exception, but the server returns
400 and the query is indeed invalid
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @OntotextGraphDB
2024-02-08 12:05:43 -08:00
Bagatur
6e2ed9671f infra: fix breebs test lint (#17075) 2024-02-05 16:09:48 -08:00
Alex Boury
334b6ebdf3 community[minor]: Breebs docs retriever (#16578)
- **Description:** Implementation of breeb retriever with integration
tests ->
libs/community/tests/integration_tests/retrievers/test_breebs.py and
documentation (notebook) ->
docs/docs/integrations/retrievers/breebs.ipynb.
  - **Dependencies:** None
2024-02-05 15:51:08 -08:00
Harrison Chase
4eda647fdd infra: add -p to mkdir in lint steps (#17013)
Previously, if this did not find a mypy cache then it wouldnt run

this makes it always run

adding mypy ignore comments with existing uncaught issues to unblock other prs

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-02-05 11:22:06 -08:00
Killinsun - Ryota Takeuchi
bcfce146d8 community[patch]: Correct the calling to collection_name in qdrant (#16920)
## Description

In #16608, the calling `collection_name` was wrong.
I made a fix for it. 
Sorry for the inconvenience!

## Issue

https://github.com/langchain-ai/langchain/issues/16962

## Dependencies

N/A



<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Kumar Shivendu <kshivendu1@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-04 10:45:35 -08:00
Erick Friis
b1a847366c community: revert SQL Stores (#16912)
This reverts commit cfc225ecb3.


https://github.com/langchain-ai/langchain/pull/15909#issuecomment-1922418097

These will have existed in langchain-community 0.0.16 and 0.0.17.
2024-02-01 16:37:40 -08:00
Christophe Bornet
744070ee85 Add async methods for the AstraDB VectorStore (#16391)
- **Description**: fully async versions are available for astrapy 0.7+.
For older astrapy versions or if the user provides a sync client without
an async one, the async methods will call the sync ones wrapped in
`run_in_executor`
  - **Twitter handle:** cbornet_
2024-01-29 20:22:25 -08:00
baichuan-assistant
f8f2649f12 community: Add Baichuan LLM to community (#16724)
Replace this entire comment with:
- **Description:** Add Baichuan LLM to integration/llm, also updated
related docs.

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-29 20:08:24 -08:00
Volodymyr Machula
32c5be8b73 community[minor]: Connery Tool and Toolkit (#14506)
## Summary

This PR implements the "Connery Action Tool" and "Connery Toolkit".
Using them, you can integrate Connery actions into your LangChain agents
and chains.

Connery is an open-source plugin infrastructure for AI.

With Connery, you can easily create a custom plugin with a set of
actions and seamlessly integrate them into your LangChain agents and
chains. Connery will handle the rest: runtime, authorization, secret
management, access management, audit logs, and other vital features.
Additionally, Connery and our community offer a wide range of
ready-to-use open-source plugins for your convenience.

Learn more about Connery:

- GitHub: https://github.com/connery-io/connery-platform
- Documentation: https://docs.connery.io
- Twitter: https://twitter.com/connery_io

## TODOs

- [x] API wrapper
   - [x] Integration tests
- [x] Connery Action Tool
   - [x] Docs
   - [x] Example
   - [x] Integration tests
- [x] Connery Toolkit
  - [x] Docs
  - [x] Example
- [x] Formatting (`make format`)
- [x] Linting (`make lint`)
- [x] Testing (`make test`)
2024-01-29 12:45:03 -08:00
Harrison Chase
8457c31c04 community[patch]: activeloop ai tql deprecation (#14634)
Co-authored-by: AdkSarsen <adilkhan@activeloop.ai>
2024-01-29 12:43:54 -08:00
Neli Hateva
c95facc293 langchain[minor], community[minor]: Implement Ontotext GraphDB QA Chain (#16019)
- **Description:** Implement Ontotext GraphDB QA Chain
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @OntotextGraphDB
2024-01-29 12:25:53 -08:00
Jael Gu
a1aa3a657c community[patch]: Milvus supports add & delete texts by ids (#16256)
# Description

To support [langchain
indexing](https://python.langchain.com/docs/modules/data_connection/indexing)
as requested by users, vectorstore Milvus needs to support:
- document addition by id (`add_documents` method with `ids` argument)
- delete by id (`delete` method with `ids` argument)

Example usage:

```python
from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain_community.vectorstores import Milvus
from langchain_openai import OpenAIEmbeddings

collection_name = "test_index"
embedding = OpenAIEmbeddings()
vectorstore = Milvus(embedding_function=embedding, collection_name=collection_name)

namespace = f"milvus/{collection_name}"
record_manager = SQLRecordManager(
    namespace, db_url="sqlite:///record_manager_cache.sql"
)
record_manager.create_schema()

doc1 = Document(page_content="kitty", metadata={"source": "kitty.txt"})
doc2 = Document(page_content="doggy", metadata={"source": "doggy.txt"})

index(
    [doc1, doc1, doc2],
    record_manager,
    vectorstore,
    cleanup="incremental",  # None, "incremental", or "full"
    source_id_key="source",
)
```

# Fix issues

Fix https://github.com/milvus-io/milvus/issues/30112

---------

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-29 11:19:50 -08:00
Benito Geordie
f3fdc5c5da community: Added integrations for ThirdAI's NeuralDB with Retriever and VectorStore frameworks (#15280)
**Description:** Adds ThirdAI NeuralDB retriever and vectorstore
integration. NeuralDB is a CPU-friendly and fine-tunable text retrieval
engine.
2024-01-29 08:35:42 -08:00
Christophe Bornet
2e3af04080 Use Postponed Evaluation of Annotations in Astra and Cassandra doc loaders (#16694)
Minor/cosmetic change
2024-01-28 16:39:27 -08:00
Christophe Bornet
36e432672a community[minor]: Add async methods to AstraDBLoader (#16652) 2024-01-27 17:05:41 -08:00
Christophe Bornet
4915c3cd86 [Fix] Fix Cassandra Document loader default page content mapper (#16273)
We can't use `json.dumps` by default as many types returned by the
cassandra driver are not serializable. It's safer to use `str` and let
users define their own custom `page_content_mapper` if needed.
2024-01-27 11:23:02 -08:00
baichuan-assistant
70ff54eace community[minor]: Add Baichuan Text Embedding Model and Baichuan Inc introduction (#16568)
- **Description:** Adding Baichuan Text Embedding Model and Baichuan Inc
introduction.

Baichuan Text Embedding ranks #1 in C-MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-26 12:57:26 -08:00
Ghani
e30c6662df Langchain-community : EdenAI chat integration. (#16377)
- **Description:** This PR adds [EdenAI](https://edenai.co/) for the
chat model (already available in LLM & Embeddings). It supports all
[ChatModel] functionality: generate, async generate, stream, astream and
batch. A detailed notebook was added.

  - **Dependencies**: No dependencies are added as we call a rest API.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-01-26 09:56:43 -05:00
Brian Burgin
148347e858 community[minor]: Add LiteLLM Router Integration (#15588)
community:

  - **Description:**
- Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM
Router as a LangChain chat model.
- Note: The existing ChatLiteLLM integration did not cover the LiteLLM
Router class.
    - Add tests and Jupyter notebook.
  - **Issue:** None
  - **Dependencies:** Relies on existing ChatLiteLLM integration
  - **Twitter handle:** @bburgin_0

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-25 11:03:05 -08:00
Harel Gal
a91181fe6d community[minor]: add support for Guardrails for Amazon Bedrock (#15099)
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.

@baskaryan  @hwchase17

```python 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  guardrails={"id": " <guardrail_id>",
                              "version": "<guardrail_version>",
                               "trace": True}, callbacks=[BedrockAsyncCallbackHandler()])

class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
    """Async callback handler that can be used to handle callbacks from langchain."""

    async def on_llm_error(
            self,
            error: BaseException,
            **kwargs: Any,
    ) -> Any:
        reason = kwargs.get("reason")
        if reason == "GUARDRAIL_INTERVENED":
           # kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
            print(f"""Guardrails: {kwargs}""")


# streaming 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  streaming=True,
                  guardrails={"id": "<guardrail_id>",
                              "version": "<guardrail_version>"})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:44:19 -08:00
Martin Kolb
04651f0248 community[minor]: VectorStore integration for SAP HANA Cloud Vector Engine (#16514)
- **Description:**
This PR adds a VectorStore integration for SAP HANA Cloud Vector Engine,
which is an upcoming feature in the SAP HANA Cloud database
(https://blogs.sap.com/2023/11/02/sap-hana-clouds-vector-engine-announcement/).

  - **Issue:** N/A
- **Dependencies:** [SAP HANA Python
Client](https://pypi.org/project/hdbcli/)
  - **Twitter handle:** @sapopensource

Implementation of the integration:
`libs/community/langchain_community/vectorstores/hanavector.py`

Unit tests:
`libs/community/tests/unit_tests/vectorstores/test_hanavector.py`

Integration tests:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`

Example notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`

Access credentials for execution of the integration tests can be
provided to the maintainers.

---------

Co-authored-by: sascha <sascha.stoll@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:05:07 -08:00
Raunak
476bf8b763 community[patch]: Load list of files using UnstructuredFileLoader (#16216)
- **Description:** Updated `_get_elements()` function of
`UnstructuredFileLoader `class to check if the argument self.file_path
is a file or list of files. If it is a list of files then it iterates
over the list of file paths, calls the partition function for each one,
and appends the results to the elements list. If self.file_path is not a
list, it calls the partition function as before.
  
  - **Issue:** Fixed #15607,
  - **Dependencies:** NA
  - **Twitter handle:** NA

Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
2024-01-23 19:37:37 -08:00
Xudong Sun
019b6ebe8d community[minor]: Add iFlyTek Spark LLM chat model support (#13389)
- **Description:** This PR enables LangChain to access the iFlyTek's
Spark LLM via the chat_models wrapper.
  - **Dependencies:** websocket-client ^1.6.1
  - **Tag maintainer:** @baskaryan 

### SparkLLM chat model usage

Get SparkLLM's app_id, api_key and api_secret from [iFlyTek SparkLLM API
Console](https://console.xfyun.cn/services/bm3) (for more info, see
[iFlyTek SparkLLM Intro](https://xinghuo.xfyun.cn/sparkapi) ), then set
environment variables `IFLYTEK_SPARK_APP_ID`, `IFLYTEK_SPARK_API_KEY`
and `IFLYTEK_SPARK_API_SECRET` or pass parameters when using it like the
demo below:

```python3
from langchain.chat_models.sparkllm import ChatSparkLLM

client = ChatSparkLLM(
    spark_app_id="<app_id>",
    spark_api_key="<api_key>",
    spark_api_secret="<api_secret>"
)
```
2024-01-23 19:23:46 -08:00
Shivani Modi
4e160540ff community[minor]: Adding Konko Completion endpoint (#15570)
This PR introduces update to Konko Integration with LangChain.

1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.

2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.

4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.

Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.

---------

Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
2024-01-23 18:22:32 -08:00
Facundo Santiago
92e6a641fd feat: adding paygo api support for Azure ML / Azure AI Studio (#14560)
- **Description:** Introducing support for LLMs and Chat models running
in Azure AI studio and Azure ML using the new deployment mode
pay-as-you-go (model as a service).
- **Issue:** NA
- **Dependencies:** None.
- **Tag maintainer:** @prakharg-msft @gdyre 
- **Twitter handle:** @santiagofacundo

Examples added:
*
[docs/docs/integrations/llms/azure_ml.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_endpoint.ipynb)
*
[docs/docs/integrations/chat/azureml_chat_endpoint.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_chat_endpoint.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-23 17:08:51 -08:00