Thank you for contributing to LangChain!
- [x] **PR title**: [PebbloSafeLoader] Rename loader type and add
SharePointLoader to supported loaders
- **Description:** Minor fixes in the PebbloSafeLoader:
- Renamed the loader type from `remote_db` to `cloud_folder`.
- Added `SharePointLoader` to the list of loaders supported by
PebbloSafeLoader.
- **Issue:** NA
- **Dependencies:** NA
- [x] **Add tests and docs**: NA
* Please see security warning already in existing class.
* The approach here is fundamentally insecure as it's relying on a block
approach rather than an approach based on only running allowed nodes.
So users should only use this code if its running from a properly
sandboxed environment.
### Description
Missing "stream" parameter. Without it, you'd never receive a stream of
tokens when using stream() or astream()
### Issue
No existing issue available
**Description:** : Add support for chat message history using Couchbase
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
**Description:**
- Updated constructors in PyPDFParser and PyPDFLoader to handle
`extraction_mode` and additional kwargs, aligning with the capabilities
of `PageObject.extract_text()` from pypdf.
- Added `test_pypdf_loader_with_layout` along with a corresponding
example text file to validate layout extraction from PDFs.
**Issue:** fixes#19735
**Dependencies:** This change requires updating the pypdf dependency
from version 3.4.0 to at least 4.0.0.
Additional changes include the addition of a new test
test_pypdf_loader_with_layout and an example text file to ensure the
functionality of layout extraction from PDFs aligns with the new
capabilities.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
# Description
This PR aims to solve a bug in `OutputFixingParser`, `RetryOutputParser`
and `RetryWithErrorOutputParser`
The bug is that the wrong keyword argument was given to `retry_chain`.
The correct keyword argument is 'completion', but 'input' is used.
This pull request makes the following changes:
1. correct a `dict` key given to `retry_chain`;
2. add a test when using the default prompt.
- `NAIVE_FIX_PROMPT` for `OutputFixingParser`;
- `NAIVE_RETRY_PROMPT` for `RetryOutputParser`;
- `NAIVE_RETRY_WITH_ERROR_PROMPT` for `RetryWithErrorOutputParser`;
3. ~~add comments on `retry_chain` input and output types~~ clarify
`InputType` and `OutputType` of `retry_chain`
# Issue
The bug is pointed out in
https://github.com/langchain-ai/langchain/pull/19792#issuecomment-2196512928
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
## Description
This pull-request improves the treatment of document IDs in
`MongoDBAtlasVectorSearch`.
Class method signatures of add_documents, add_texts, delete, and
from_texts
now include an `ids:Optional[List[str]]` keyword argument permitting the
user
greater control.
Note that, as before, IDs may also be inferred from
`Document.metadata['_id']`
if present, but this is no longer required,
IDs can also optionally be returned from searches.
This PR closes the following JIRA issues.
* [PYTHON-4446](https://jira.mongodb.org/browse/PYTHON-4446)
MongoDBVectorSearch delete / add_texts function rework
* [PYTHON-4435](https://jira.mongodb.org/browse/PYTHON-4435) Add support
for "Indexing"
* [PYTHON-4534](https://jira.mongodb.org/browse/PYTHON-4534) Ensure
datetimes are json-serializable
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- Description: When SQLDatabase.from_databricks is ran from a Databricks
Workflow job, line 205 (default_host = context.browserHostName) throws
an ``AttributeError`` as the ``context`` object has no
``browserHostName`` attribute. The fix handles the exception and sets
the ``default_host`` variable to null
---------
Co-authored-by: lmorosdb <lmorosdb>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
**Description:** At the moment neo4j wrapper is using setVectorProperty,
which is deprecated
([link](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_create_setVectorProperty)).
I replaced with the non-deprecated version.
Neo4j recently introduced a new cypher method to associate embeddings
into relations using "setRelationshipVectorProperty" method. In this PR
I also implemented a new method to perform this association maintaining
the same format used in the "add_embeddings" method which is used to
associate embeddings into Nodes.
I also included a test case for this new method.
Thank you for contributing to LangChain!
- [X] *ApertureDB as vectorstore**: "community: Add ApertureDB as a
vectorestore"
- **Description:** this change provides a new community integration that
uses ApertureData's ApertureDB as a vector store.
- **Issue:** none
- **Dependencies:** depends on ApertureDB Python SDK
- **Twitter handle:** ApertureData
- [X] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Integration tests rely on a local run of a public docker image.
Example notebook additionally relies on a local Ollama server.
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
All lint tests pass.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Gautam <gautam@aperturedata.io>
On using TavilySearchAPIRetriever with any conversation chain getting
error :
`TypeError: Client.__init__() got an unexpected keyword argument
'api_key'`
It is because the retreiver class is using the depreciated `Client`
class, `TavilyClient` need to be used instead.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
**Description:**
Databricks Vector Search recently added support for hybrid
keyword-similarity search.
See [usage
examples](https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#query-a-vector-search-endpoint)
from their documentation.
This PR updates the Langchain vectorstore interface for Databricks to
enable the user to pass the *query_type* parameter to
*similarity_search* to make use of this functionality.
By default, there will not be any changes for existing users of this
interface. To use the new hybrid search feature, it is now possible to
do
```python
# ...
dvs = DatabricksVectorSearch(index)
dvs.similarity_search("my search query", query_type="HYBRID")
```
Or using the retriever:
```python
retriever = dvs.as_retriever(
search_kwargs={
"query_type": "HYBRID",
}
)
retriever.invoke("my search query")
```
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
You.com is releasing two new conversational APIs — Smart and Research.
This PR:
- integrates those APIs with Langchain, as an LLM
- streaming is supported
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** This pull request introduces two new methods to the
Langchain Chroma partner package that enable similarity search based on
image embeddings. These methods enhance the package's functionality by
allowing users to search for images similar to a given image URI. Also
introduces a notebook to demonstrate it's use.
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mrugank9009
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
In some lines its trying to read a key that do not exists yet. In this
cases I changed the direct access to dict.get() method
Thank you for contributing to LangChain!
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
**Description:**
The `split_text_from_url` method of `HTMLHeaderTextSplitter` does not
include parameters like `timeout` when using `requests` to send a
request. Therefore, I suggest adding a `kwargs` parameter to the
function, which can be passed as arguments to `requests.get()`
internally, allowing control over the `get` request.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
The functions `convert_to_messages` has had an expansion of the
arguments it can take:
1. Previously, it only could take a `Sequence` in order to iterate over
it. This has been broadened slightly to an `Iterable` (which should have
no other impact).
2. Support for `PromptValue` and `BaseChatPromptTemplate` has been
added. These are generated when combining messages using the overloaded
`+` operator.
Functions which rely on `convert_to_messages` (namely `filter_messages`,
`merge_message_runs` and `trim_messages`) have had the type of their
arguments similarly expanded.
Resolves#23706.
<!--
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
-->
---------
Signed-off-by: JP-Ellis <josh@jpellis.me>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Spell check fixes for docs, comments, and a couple of
strings. No code change e.g. variable names.
**Issue:** none
**Dependencies:** none
**Twitter handle:** hmartin
## Description
This PR adds integration tests to follow up on #24164.
By default, the tests use an in-memory instance.
To run the full suite of tests, with both in-memory and Qdrant server:
```
$ docker run -p 6333:6333 qdrant/qdrant
$ make test
$ make integration_test
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Explicitly add parameters from openai API
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Erick Friis <erick@langchain.dev>
I stumbled upon a bug that led to different similarity scores between
the async and sync similarity searches with relevance scores in Qdrant.
The reason being is that _asimilarity_search_with_relevance_scores is
missing, this makes langchain_qdrant use the method of the vectorstore
baseclass leading to drastically different results.
To illustrate the magnitude here are the results running an identical
search in a test vectorstore.
Output of asimilarity_search_with_relevance_scores:
[0.9902903374601824, 0.9472135924938804, 0.8535534011299859]
Output of similarity_search_with_relevance_scores:
[0.9805806749203648, 0.8944271849877607, 0.7071068022599718]
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [ ] **HuggingFaceEndpoint**: "Skip Login to HuggingFaceHub"
- Where: langchain, community, llm, huggingface_endpoint
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Skip login to huggingface hub when when
`huggingfacehub_api_token` is not set. This is needed when using custom
`endpoint_url` outside of HuggingFaceHub.
- **Issue:** the issue # it fixes
https://github.com/langchain-ai/langchain/issues/20342 and
https://github.com/langchain-ai/langchain/issues/19685
- **Dependencies:** None
- [ ] **Add tests and docs**:
1. Tested with locally available TGI endpoint
2. Example Usage
```python
from langchain_community.llms import HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
endpoint_url='http://localhost:8080',
server_kwargs={
"headers": {"Content-Type": "application/json"}
}
)
resp = llm.invoke("Tell me a joke")
print(resp)
```
Also tested against HF Endpoints
```python
from langchain_community.llms import HuggingFaceEndpoint
huggingfacehub_api_token = "hf_xyz"
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm = HuggingFaceEndpoint(
huggingfacehub_api_token=huggingfacehub_api_token,
repo_id=repo_id,
)
resp = llm.invoke("Tell me a joke")
print(resp)
```
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
**Description:** Add support for caching (standard + semantic) LLM
responses using Couchbase
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
If you use `refresh_schema=False`, then the metadata constraint doesn't
exist. ATM, we used default `None` in the constraint check, but then
`any` fails because it can't iterate over None value
- **Description:** `StuffDocumentsChain` uses `LLMChain` which is
deprecated by langchain runnables. `create_stuff_documents_chain` is the
replacement, but needs support for `document_variable_name` to allow
multiple uses of the chain within a longer chain.
- **Issue:** none
- **Dependencies:** none
Thank you for contributing to LangChain!
**Description**:
This PR fixes a bug described in the issue in #24064, when using the
AzureSearch Vectorstore with the asyncronous methods to do search which
is also the method used for the retriever. The proposed change includes
just change the access of the embedding as optional because is it not
used anywhere to retrieve documents. Actually, the syncronous methods of
retrieval do not use the embedding neither.
With this PR the code given by the user in the issue works.
```python
vectorstore = AzureSearch(
azure_search_endpoint=os.getenv("AI_SEARCH_ENDPOINT_SECRET"),
azure_search_key=os.getenv("AI_SEARCH_API_KEY"),
index_name=os.getenv("AI_SEARCH_INDEX_NAME_SECRET"),
fields=fields,
embedding_function=encoder,
)
retriever = vectorstore.as_retriever(search_type="hybrid", k=2)
await vectorstore.avector_search("what is the capital of France")
await retriever.ainvoke("what is the capital of France")
```
**Issue**:
The Azure Search Vectorstore is not working when searching for documents
with asyncronous methods, as described in issue #24064
**Dependencies**:
There are no extra dependencies required for this change.
---------
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
## Description
This PR introduces a new sparse embedding provider interface to work
with the new Qdrant implementation that will follow this PR.
Additionally, an implementation of this interface is provided with
https://github.com/qdrant/fastembed.
This PR will be followed by
https://github.com/Anush008/langchain/pull/3.
Disabled by default.
```python
from langchain_core.tools import tool
@tool(parse_docstring=True)
def foo(bar: str, baz: int) -> str:
"""The foo.
Args:
bar: this is the bar
baz: this is the baz
"""
return bar
foo.args_schema.schema()
```
```json
{
"title": "fooSchema",
"description": "The foo.",
"type": "object",
"properties": {
"bar": {
"title": "Bar",
"description": "this is the bar",
"type": "string"
},
"baz": {
"title": "Baz",
"description": "this is the baz",
"type": "integer"
}
},
"required": [
"bar",
"baz"
]
}
```
Refactor the code to use the existing InMemroyVectorStore.
This change is needed for another PR that moves some of the imports
around (and messes up the mock.patch in this file)
Description: ImagePromptTemplate for Multimodal llms like llava when
using Ollama
Twitter handle: https://x.com/a7ulr
Details:
When using llava models / any ollama multimodal llms and passing images
in the prompt as urls, langchain breaks with this error.
```python
image_url_components = image_url.split(",")
^^^^^^^^^^^^^^^^^^^^
AttributeError: 'dict' object has no attribute 'split'
```
From the looks of it, there was bug where the condition did check for a
`url` field in the variable but missed to actually assign it.
This PR fixes ImagePromptTemplate for Multimodal llms like llava when
using Ollama specifically.
@hwchase17
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This adds an extractor interface and an implementation for HTML pages.
Extractors are used to create GraphVectorStore Links on loaded content.
**Twitter handle:** cbornet_
**Description:** There was missing some documentation regarding the
`filter` and `params` attributes in similarity search methods.
---------
Co-authored-by: rpereira <rafael.pereira@criticalsoftware.com>
Decisions to discuss:
1. is a new attr needed or could additional_kwargs be used for this
2. is raw_output a good name for this attr
3. should raw_output default to {} or None
4. should raw_output be included in serialization
5. do we need to update repr/str to exclude raw_output
- add version of AIMessageChunk.__add__ that can add many chunks,
instead of only 2
- In agenerate_from_stream merge and parse chunks in bg thread
- In output parse base classes do more work in bg threads where
appropriate
---------
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This PR moves the in memory implementation to langchain-core.
* The implementation remains importable from langchain-community.
* Supporting utilities are marked as private for now.
- **Description:** Support PGVector in PebbloRetrievalQA
- Identity and Semantic Enforcement support for PGVector
- Refactor Vectorstore validation and name check
- Clear the overridden identity and semantic enforcement filters
- **Issue:** NA
- **Dependencies:** NA
- **Tests**: NA(already added)
- **Docs**: Updated
- **Twitter handle:** [@Raj__725](https://twitter.com/Raj__725)
**Description:** Fix for source path mismatch in PebbloSafeLoader. The
fix involves storing the full path in the doc metadata in VectorDB
**Issue:** NA, caught in internal testing
**Dependencies:** NA
**Add tests**: Updated tests
resolves https://github.com/langchain-ai/langchain/issues/23911
When an AIMessageChunk is instantiated, we attempt to parse tool calls
off of the tool_call_chunks.
Here we add a special-case to this parsing, where `""` will be parsed as
`{}`.
This is a reaction to how Anthropic streams tool calls in the case where
a function has no arguments:
```
{'id': 'toolu_01J8CgKcuUVrMqfTQWPYh64r', 'input': {}, 'name': 'magic_function', 'type': 'tool_use', 'index': 1}
{'partial_json': '', 'type': 'tool_use', 'index': 1}
```
The `partial_json` does not accumulate to a valid json string-- most
other providers tend to emit `"{}"` in this case.
Thank you for contributing to LangChain!
- [x] **PR title**: "IBM: Added WatsonxChat to chat models preview,
update passing params to invoke method"
- [x] **PR message**:
- **Description:** Added WatsonxChat passing params to invoke method,
added integration tests
- **Dependencies:** `ibm_watsonx_ai`
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR introduces a GraphStore component. GraphStore extends
VectorStore with the concept of links between documents based on
document metadata. This allows linking documents based on a variety of
techniques, including common keywords, explicit links in the content,
and other patterns.
This works with existing Documents, so it’s easy to extend existing
VectorStores to be used as GraphStores. The interface can be implemented
for any Vector Store technology that supports metadata, not only graph
DBs.
When retrieving documents for a given query, the first level of search
is done using classical similarity search. Next, links may be followed
using various traversal strategies to get additional documents. This
allows documents to be retrieved that aren’t directly similar to the
query but contain relevant information.
2 retrieving methods are added to the VectorStore ones :
* traversal_search which gets all linked documents up to a certain depth
* mmr_traversal_search which selects linked documents using an MMR
algorithm to have more diverse results.
If a depth of retrieval of 0 is used, GraphStore is effectively a
VectorStore. It enables an easy transition from a simple VectorStore to
GraphStore by adding links between documents as a second step.
An implementation for Apache Cassandra is also proposed.
See
https://github.com/datastax/ragstack-ai/blob/main/libs/knowledge-store/notebooks/astra_support.ipynb
for a notebook explaining how to use GraphStore and that shows that it
can answer correctly to questions that a simple VectorStore cannot.
**Twitter handle:** _cbornet
This PR rolls out part of the new proposed interface for vectorstores
(https://github.com/langchain-ai/langchain/pull/23544) to existing store
implementations.
The PR makes the following changes:
1. Adds standard upsert, streaming_upsert, aupsert, astreaming_upsert
methods to the vectorstore.
2. Updates `add_texts` and `aadd_texts` to be non required with a
default implementation that delegates to `upsert` and `aupsert` if those
have been implemented. The original `add_texts` and `aadd_texts` methods
are problematic as they spread object specific information across
document and **kwargs. (e.g., ids are not a part of the document)
3. Adds a default implementation to `add_documents` and `aadd_documents`
that delegates to `upsert` and `aupsert` respectively.
4. Adds standard unit tests to verify that a given vectorstore
implements a correct read/write API.
A downside of this implementation is that it creates `upsert` with a
very similar signature to `add_documents`.
The reason for introducing `upsert` is to:
* Remove any ambiguities about what information is allowed in `kwargs`.
Specifically kwargs should only be used for information common to all
indexed data. (e.g., indexing timeout).
*Allow inheriting from an anticipated generalized interface for indexing
that will allow indexing `BaseMedia` (i.e., allow making a vectorstore
for images/audio etc.)
`add_documents` can be deprecated in the future in favor of `upsert` to
make sure that users have a single correct way of indexing content.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
The `langchain_common.vectostore.Redis.delete()` must not be a
`@staticmethod`.
With the current implementation, it's not possible to have multiple
instances of Redis vectorstore because all versions must share the
`REDIS_URL`.
It's not conform with the base class.
**Description**: After reviewing the prompts API, it is clear that the
only way a user can explicitly mark an input variable as optional is
through the `MessagePlaceholder.optional` attribute. Otherwise, the user
must explicitly pass in the `input_variables` expected to be used in the
`BasePromptTemplate`, which will be validated upon execution. Therefore,
to semantically handle a `MessagePlaceholder` `variable_name` as
optional, we will treat the `variable_name` of `MessagePlaceholder` as a
`partial_variable` if it has been marked as optional. This approach
aligns with how the `variable_name` of `MessagePlaceholder` is already
handled
[here](https://github.com/keenborder786/langchain/blob/optional_input_variables/libs/core/langchain_core/prompts/chat.py#L991).
Additionally, an attribute `optional_variable` has been added to
`BasePromptTemplate`, and the `variable_name` of `MessagePlaceholder` is
also made part of `optional_variable` when marked as optional.
Moreover, the `get_input_schema` method has been updated for
`BasePromptTemplate` to differentiate between optional and non-optional
variables.
**Issue**: #22832, #21425
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** Enhance JiraAPIWrapper to accept the 'cloud'
parameter through an environment variable. This update allows more
flexibility in configuring the environment for the Jira API.
- **Twitter handle:** Andre_Q_Pereira
---------
Co-authored-by: André Quintino <andre.quintino@tui.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This PR adds a `SingleStoreDBSemanticCache` class that implements a
cache based on SingleStoreDB vector store, integration tests, and a
notebook example.
Additionally, this PR contains minor changes to SingleStoreDB vector
store:
- change add texts/documents methods to return a list of inserted ids
- implement delete(ids) method to delete documents by list of ids
- added drop() method to drop a correspondent database table
- updated integration tests to use and check functionality implemented
above
CC: @baskaryan, @hwchase17
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
It's a follow-up to https://github.com/langchain-ai/langchain/pull/23765
Now the tools can be bound by calling `bind_tools`
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
prompt = "Which city is hotter today and which is bigger: LA or NY?"
# tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
tools = [GetWeather, GetPopulation]
llm = ChatLiteLLM(model="claude-3-sonnet-20240229").bind_tools(tools)
ai_msg = llm.invoke(prompt)
print(ai_msg.tool_calls)
```
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
This PR should fix the following issue:
https://github.com/langchain-ai/langchain/issues/23824
Introduced as part of this PR:
https://github.com/langchain-ai/langchain/pull/23416
I am unable to reproduce the issue locally though it's clear that we're
getting a `serialized` object which is not a dictionary somehow.
The test below passes for me prior to the PR as well
```python
def test_cache_with_sqllite() -> None:
from langchain_community.cache import SQLiteCache
from langchain_core.globals import set_llm_cache
cache = SQLiteCache(database_path=".langchain.db")
set_llm_cache(cache)
chat_model = FakeListChatModel(responses=["hello", "goodbye"], cache=True)
assert chat_model.invoke("How are you?").content == "hello"
assert chat_model.invoke("How are you?").content == "hello"
```
**Description**: The ``declarative_base()`` function is now available as
sqlalchemy.orm.declarative_base(). (depreca ted since: 2.0) (Background
on SQLAlchemy 2.0 at: https://sqlalche.me/e/b8d9)
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
- Description: Add support for `path` and `detail` keys in
`ImagePromptTemplate`. Previously, only variables associated with the
`url` key were considered. This PR allows for the inclusion of a local
image path and a detail parameter as input to the format method.
- Issues:
- fixes#20820
- related to #22024
- Dependencies: None
- Twitter handle: @DeschampsTho5
---------
Co-authored-by: tdeschamps <tdeschamps@kameleoon.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
The mongdb have some errors.
- `add_texts() -> List` returns a list of `ObjectId`, and not a list of
string
- `delete()` with `id` never remove chunks.
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
enviroment -> environment
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
Use pydantic to infer nested schemas and all that fun.
Include bagatur's convenient docstring parser
Include annotation support
Previously we didn't adequately support many typehints in the
bind_tools() method on raw functions (like optionals/unions, nested
types, etc.)
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Added support for streaming in AI21 Jamba Model
- **Twitter handle:** https://github.com/AI21Labs
- [x] **Add tests and docs**: If you're adding a new integration, please
include
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
---------
Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
`ChatAnthropic` can get `stop_reason` from the resulting `AIMessage` in
`invoke` and `ainvoke`, but not in `stream` and `astream`.
This is a different behavior from `ChatOpenAI`.
It is possible to get `stop_reason` from `stream` as well, since it is
needed to determine the next action after the LLM call. This would be
easier to handle in situations where only `stop_reason` is needed.
- Issue: NA
- Dependencies: NA
- Twitter handle: https://x.com/kiarina37
- **Description:** Fix some issues in MiniMaxChat
- Fix `minimax_api_host` not in `values` error
- Remove `minimax_group_id` from reading environment variables, the
`minimax_group_id` no longer use in MiniMaxChat
- Invoke callback prior to yielding token, the issus #16913
The prompt template variable detection only worked for singly-nested
sections because we just kept track of whether we were in a section and
then set that to false as soon as we encountered an end block. i.e. the
following:
```
{{#outerSection}}
{{variableThatShouldntShowUp}}
{{#nestedSection}}
{{nestedVal}}
{{/nestedSection}}
{{anotherVariableThatShouldntShowUp}}
{{/outerSection}}
```
Would yield `['outerSection', 'anotherVariableThatShouldntShowUp']` as
input_variables (whereas it should just yield `['outerSection']`). This
fixes that by keeping track of the current depth and using a stack.
When `model_kwargs={"tools": tools}` are passed to `ChatLiteLLM`, they
are executed, but the response is not recognized correctly
Let's add `tool_calls` to the `additional_kwargs`
Thank you for contributing to LangChain!
## ChatAnthropic
I used the following example to verify the output of llm with tools:
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_anthropic import ChatAnthropic
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
llm = ChatAnthropic(model="claude-3-sonnet-20240229")
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
print(ai_msg.tool_calls)
```
I get the following response:
```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01UfDA89knrhw3vFV9X47neT'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01NrYVRYae7m7z7tBgyPb3Gd'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01EPFEpDgzL6vV2dTpD9SVP5'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01B5J6tPJXgwwfhQX9BHP2dt'}]
```
## LiteLLM
Based on https://litellm.vercel.app/docs/completion/function_call
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
import litellm
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
response = litellm.completion(model="claude-3-sonnet-20240229", messages=[{'role': 'user', 'content': prompt}], tools=tools)
print(response.choices[0].message.tool_calls)
```
```python
[ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetWeather'), id='toolu_01HeDWV5vP7BDFfytH5FJsja', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetWeather'), id='toolu_01EiLesUSEr3YK1DaE2jxsQv', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetPopulation'), id='toolu_01Xz26zvkBDRxEUEWm9pX6xa', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetPopulation'), id='toolu_01SDqKnsLjvUXuBsgAZdEEpp', type='function')]
```
## ChatLiteLLM
When I try the following
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
llm = ChatLiteLLM(model="claude-3-sonnet-20240229", model_kwargs={"tools": tools})
ai_msg = llm.invoke(prompt)
print(ai_msg)
print(ai_msg.tool_calls)
```
```python
content="Okay, let's find out the current weather and populations for Los Angeles and New York City:" response_metadata={'token_usage': Usage(prompt_tokens=329, completion_tokens=193, total_tokens=522), 'model': 'claude-3-sonnet-20240229', 'finish_reason': 'tool_calls'} id='run-748b7a84-84f4-497e-bba1-320bd4823937-0'
[]
```
---
When I apply the changes of this PR, the output is
```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_017D2tGjiaiakB1HadsEFZ4e'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01WrDpJfVqLkPejWzonPCbLW'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_016UKyYrVAV9Pz99iZGgGU7V'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01Sgv1imExFX1oiR1Cw88zKy'}]
```
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
Description:
1. partners/HuggingFace module support reading params from env. Not
adjust langchain_community/.../huggingfaceXX modules since they are
deprecated.
2. pydantic 2 @root_validator migration.
Issue: #22448#22819
---------
Co-authored-by: gongwn1 <gongwn1@lenovo.com>
**Description**: Milvus vectorstore supports both `add_documents` via
the base class and `upsert` method which deletes and re-adds documents
based on their ids
**Issue**: Due to mismatch in the interfaces the ids used by `upsert`
are neglected in `add_documents`, as `ids` are passed as argument in
`upsert` but via `kwargs` is `add_documents`
This caused exceptions and inconsistency in the DB, tested with
`auto_id=False`
**Fix**: pass `ids` via `kwargs` to `add_documents`
# Fix streaming in mistral with ainvoke
- [x] **PR title**
- [x] **PR message**
- [x] **Add tests and docs**:
1. [x] Added a test for the fixed integration.
2. [x] An example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Ran `make format`, `make lint` and `make test`
from the root of the package(s) I've modified.
Hello
* I Identified an issue in the mistral package where the callback
streaming (see on_llm_new_token) was not functioning correctly when the
streaming parameter was set to True and call with `ainvoke`.
* The root cause of the problem was the streaming not taking into
account. ( I think it's an oversight )
* To resolve the issue, I added the `streaming` attribut.
* Now, the callback with streaming works as expected when the streaming
parameter is set to True.
## How to reproduce
```
from langchain_mistralai.chat_models import ChatMistralAI
chain = ChatMistralAI(streaming=True)
# Add a callback
chain.ainvoke(..)
# Oberve on_llm_new_token
# Now, the callback is given as streaming tokens, before it was in grouped format.
```
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR implements a BaseContent object from which Document and Blob
objects will inherit proposed here:
https://github.com/langchain-ai/langchain/pull/23544
Alternative: Create a base object that only has an identifier and no
metadata.
For now decided against it, since that refactor can be done at a later
time. It also feels a bit odd since our IDs are optional at the moment.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This fix is for #21726. When having other packages installed that
require the `openai_api_base` environment variable, users are not able
to instantiate the AzureChatModels or AzureEmbeddings.
This PR adds a new value `ignore_openai_api_base` which is a bool. When
set to True, it sets `openai_api_base` to `None`
Two new tests were added for the `test_azure` and a new file
`test_azure_embeddings`
A different approach may be better for this. If you can think of better
logic, let me know and I can adjust it.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Fix#23716
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This PR introduces a maxsize parameter for the InMemoryCache class,
allowing users to specify the maximum number of items to store in the
cache. If the cache exceeds the specified maximum size, the oldest items
are removed. Additionally, comprehensive unit tests have been added to
ensure all functionalities are thoroughly tested. The tests are written
using pytest and cover both synchronous and asynchronous methods.
Twitter: @spyrosavl
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Fix LLM string representation for serializable objects.
Fix for issue: https://github.com/langchain-ai/langchain/issues/23257
The llm string of serializable chat models is the serialized
representation of the object. LangChain serialization dumps some basic
information about non serializable objects including their repr() which
includes an object id.
This means that if a chat model has any non serializable fields (e.g., a
cache), then any new instantiation of the those fields will change the
llm representation of the chat model and cause chat misses.
i.e., re-instantiating a postgres cache would result in cache misses!
**Description:** In the chat_models module of the language model, the
import statement for BaseModel has been moved from the conditionally
imported section to the main import area, fixing `NameError `.
**Issue:** fix `NameError `
- Description: Modified the prompt created by the function
`create_unstructured_prompt` (which is called for LLMs that do not
support function calling) by adding conditional checks that verify if
restrictions on entity types and rel_types should be added to the
prompt. If the user provides a sufficiently large text, the current
prompt **may** fail to produce results in some LLMs. I have first seen
this issue when I implemented a custom LLM class that did not support
Function Calling and used Gemini 1.5 Pro, but I was able to replicate
this issue using OpenAI models.
By loading a sufficiently large text
```python
from langchain_community.llms import Ollama
from langchain_openai import ChatOpenAI, OpenAI
from langchain_core.prompts import PromptTemplate
import re
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.documents import Document
with open("texto-longo.txt", "r") as file:
full_text = file.read()
partial_text = full_text[:4000]
documents = [Document(page_content=partial_text)] # cropped to fit GPT 3.5 context window
```
And using the chat class (that has function calling)
```python
chat_openai = ChatOpenAI(model="gpt-3.5-turbo", model_kwargs={"seed": 42})
chat_gpt35_transformer = LLMGraphTransformer(llm=chat_openai)
graph_from_chat_gpt35 = chat_gpt35_transformer.convert_to_graph_documents(documents)
```
It works:
```
>>> print(graph_from_chat_gpt35[0].nodes)
[Node(id="Jesu, Joy of Man's Desiring", type='Music'), Node(id='Godel', type='Person'), Node(id='Johann Sebastian Bach', type='Person'), Node(id='clever way of encoding the complicated expressions as numbers', type='Concept')]
```
But if you try to use the non-chat LLM class (that does not support
function calling)
```python
openai = OpenAI(
model="gpt-3.5-turbo-instruct",
max_tokens=1000,
)
gpt35_transformer = LLMGraphTransformer(llm=openai)
graph_from_gpt35 = gpt35_transformer.convert_to_graph_documents(documents)
```
It uses the prompt that has issues and sometimes does not produce any
result
```
>>> print(graph_from_gpt35[0].nodes)
[]
```
After implementing the changes, I was able to use both classes more
consistently:
```shell
>>> chat_gpt35_transformer = LLMGraphTransformer(llm=chat_openai)
>>> graph_from_chat_gpt35 = chat_gpt35_transformer.convert_to_graph_documents(documents)
>>> print(graph_from_chat_gpt35[0].nodes)
[Node(id="Jesu, Joy Of Man'S Desiring", type='Music'), Node(id='Johann Sebastian Bach', type='Person'), Node(id='Godel', type='Person')]
>>> gpt35_transformer = LLMGraphTransformer(llm=openai)
>>> graph_from_gpt35 = gpt35_transformer.convert_to_graph_documents(documents)
>>> print(graph_from_gpt35[0].nodes)
[Node(id='I', type='Pronoun'), Node(id="JESU, JOY OF MAN'S DESIRING", type='Song'), Node(id='larger memory', type='Memory'), Node(id='this nice tree structure', type='Structure'), Node(id='how you can do it all with the numbers', type='Process'), Node(id='JOHANN SEBASTIAN BACH', type='Composer'), Node(id='type of structure', type='Characteristic'), Node(id='that', type='Pronoun'), Node(id='we', type='Pronoun'), Node(id='worry', type='Verb')]
```
The results are a little inconsistent because the GPT 3.5 model may
produce incomplete json due to the token limit, but that could be solved
(or mitigated) by checking for a complete json when parsing it.
This PR adds a part of the indexing API proposed in this RFC
https://github.com/langchain-ai/langchain/pull/23544/files.
It allows rolling out `get_by_ids` which should be uncontroversial to
existing vectorstores without introducing new abstractions.
The semantics for this method depend on the ability of identifying
returned documents using the new optional ID field on documents:
https://github.com/langchain-ai/langchain/pull/23411
Alternatives are:
1. Relax the sequence requirement
```python
def get_by_ids(self, ids: Iterable[str], /) -> Iterable[Document]:
```
Rejected:
- implementations are more likley to start batching with bad defaults
- users would need to call list() or we'd need to introduce another
convenience method
2. Support more kwargs
```python
def get_by_ids(self, ids: Sequence[str], /, **kwargs) -> List[Document]:
...
```
Rejected:
- No need for `batch` parameter since IDs is a sequence
- Output cannot be customized since `Document` is fixed. (e.g.,
parameters could be useful to grab extra metadata like the vector that
was indexed with the Document or to project a part of the document)
**Description:** LanceDB didn't allow querying the database using
similarity score thresholds because the metrics value was missing. This
PR simply fixes that bug.
**Issue:** not applicable
**Dependencies:** none
**Twitter handle:** not available
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description:** At the moment the Jira wrapper only accepts the the
usage of the Username and Password/Token at the same time. However Jira
allows the connection using only is useful for enterprise context.
Co-authored-by: rpereira <rafael.pereira@criticalsoftware.com>
This change adds a new message type `RemoveMessage`. This will enable
`langgraph` users to manually modify graph state (or have the graph
nodes modify the state) to remove messages by `id`
Examples:
* allow users to delete messages from state by calling
```python
graph.update_state(config, values=[RemoveMessage(id=state.values[-1].id)])
```
* allow nodes to delete messages
```python
graph.add_node("delete_messages", lambda state: [RemoveMessage(id=state[-1].id)])
```
- add test for structured output
- fix bug with structured output for Azure
- better testing on Groq (break out Mixtral + Llama3 and add xfails
where needed)
updated request_timeout default alias value per related docstring.
Related to
[20085](https://github.com/langchain-ai/langchain/issues/20085)
Thank you for contributing to LangChain!
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description:** The name of ToolMessage is default to None, which
makes tool message send to LLM likes
```json
{"role": "tool",
"tool_call_id": "",
"content": "{\"time\": \"12:12\"}",
"name": null}
```
But the name seems essential for some LLMs like TongYi Qwen. so we need to set the name use agent_action's tool value.
- **Issue:** N/A
- **Dependencies:** N/A
- **Description:** Fixing the way users have to import Arxiv and
Semantic Scholar
- **Issue:** Changed to use `from langchain_community.tools.arxiv import
ArxivQueryRun` instead of `from langchain_community.tools.arxiv.tool
import ArxivQueryRun`
- **Dependencies:** None
- **Twitter handle:** Nope
This PR fixes an issue with not able to use unlimited/infinity tokens
from the respective provider for the LiteLLM provider.
This is an issue when working in an agent environment that the token
usage can drastically increase beyond the initial value set causing
unexpected behavior.
- **Description:** A small fix where I moved the `available_endpoints`
in order to avoid the token error in the below issue. Also I have added
conftest file and updated the `scripy`,`numpy` versions to support newer
python versions in poetry files.
- **Issue:** #22804
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
Discovered alongside @t968914
- **Description:**
According to OpenAI docs, tool messages (response from calling tools)
must have a 'name' field.
https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models
- **Issue:** N/A (as of right now)
- **Dependencies:** N/A
- **Twitter handle:** N/A
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This PR adds an optional ID field to the document schema.
# 1. Optional or Required
- An optional field will will requrie additional checking for the type
in user code (annoying).
- However, vectorstores currently don't respect this field. So if we
make it
required and start returning random UUIDs that might be even more
confusing
to users.
**Proposal**: Start with Optional and convert to Required (with default
set to uuid4()) in 1-2 major releases.
# 2. Override __str__ or generic solution in prompts
Overriding __str__ as a simple way to avoid changing user code that
relies on
default str(document) in prompts.
I considered rolling out a more general solution in prompts
(https://github.com/langchain-ai/langchain/pull/8685),
but to do that we need to:
1. Make things serializable
2. The more general solution would likely need to be backwards
compatible as well
3. It's unclear that one wants to format a List[int] in the same way as
List[Document]. The former should be `,` seperated (likely), the latter
should be `---` separated (likely).
**Proposal** Start with __str__ override and focus on the vectorstore
APIs, we generalize prompts later
## Description
Created a helper method to make vector search indexes via client-side
pymongo.
**Recent Update** -- Removed error suppressing/overwriting layer in
favor of letting the original exception provide information.
## ToDo's
- [x] Make _wait_untils for integration test delete index
functionalities.
- [x] Add documentation for its use. Highlight it's experimental
- [x] Post Integration Test Results in a screenshot
- [x] Get review from MongoDB internal team (@shaneharvey, @blink1073 ,
@NoahStapp , @caseyclements)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Added new integration tests. Not eligible for unit testing since the
operation is Atlas Cloud specific.
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
- **Description:** This PR fixes an issue with SAP HANA Cloud QRC03
version. In that version the number to indicate no length being set for
a vector column changed from -1 to 0. The change in this PR support both
behaviours (old/new).
- **Dependencies:** No dependencies have been introduced.
- **Tests**: The change is covered by previous unit tests.
fixed potential `IndexError: list index out of range` in case there is
no title
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**langchain: ConversationVectorStoreTokenBufferMemory**
-**Description:** This PR adds ConversationVectorStoreTokenBufferMemory.
It is similar in concept to ConversationSummaryBufferMemory. It
maintains an in-memory buffer of messages up to a preset token limit.
After the limit is hit timestamped messages are written into a
vectorstore retriever rather than into a summary. The user's prompt is
then used to retrieve relevant fragments of the previous conversation.
By persisting the vectorstore, one can maintain memory from session to
session.
-**Issue:** n/a
-**Dependencies:** none
-**Twitter handle:** Please no!!!
- [X] **Add tests and docs**: I looked to see how the unit tests were
written for the other ConversationMemory modules, but couldn't find
anything other than a test for successful import. I need to know whether
you are using pytest.mock or another fixture to simulate the LLM and
vectorstore. In addition, I would like guidance on where to place the
documentation. Should it be a notebook file in docs/docs?
- [X] **Lint and test**: I am seeing some linting errors from a couple
of modules unrelated to this PR.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: update docs and add tool to init.py"
- [x] **PR message**:
- **Description:** Fixed some errors and comments in the docs and added
our ZenGuardTool and additional classes to init.py for easy access when
importing
- **Question:** when will you update the langchain-community package in
pypi to make our tool available?
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Thank you for review!
---------
Co-authored-by: Baur <baur.krykpayev@gmail.com>
These currently read off AIMessage.tool_calls, and only fall back to
OpenAI parsing if tool calls aren't populated.
Importing these from `openai_tools` (e.g., in our [tool calling
docs](https://python.langchain.com/v0.2/docs/how_to/tool_calling/#tool-calls))
can lead to confusion.
After landing, would need to release core and update docs.
Pydantic allows empty strings:
```
from langchain.pydantic_v1 import Field, BaseModel
class Property(BaseModel):
"""A single property consisting of key and value"""
key: str = Field(..., description="key")
value: str = Field(..., description="value")
x = Property(key="", value="")
```
Which can produce errors downstream. We simply ignore those records
bing_search_url is an endpoint to requests bing search resource and is
normally invariant to users, we can give it the default value to simply
the uesages of this utility/tool
Description: Add classifier_location feature flag. This flag enables
Pebblo to decide the classifier location, local or pebblo-cloud.
Unit Tests: N/A
Documentation: N/A
---------
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
**Description:** Adds options for configuring MongoDBChatMessageHistory
(no breaking changes):
- session_id_key: name of the field that stores the session id
- history_key: name of the field that stores the chat history
- create_index: whether to create an index on the session id field
- index_kwargs: additional keyword arguments to pass to the index
creation
**Discussion:**
https://github.com/langchain-ai/langchain/discussions/22918
**Twitter handle:** @userlerueda
---------
Co-authored-by: Jib <Jibzade@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Add standard tests to base store abstraction. These only work on [str,
str] right now. We'll need to check if it's possible to add
encoder/decoders to generalize
**Description:**
This PR addresses an issue in the `MongodbLoader` where nested fields
were not being correctly extracted. The loader now correctly handles
nested fields specified in the `field_names` parameter.
**Issue:**
Fixes an issue where attempting to extract nested fields from MongoDB
documents resulted in `KeyError`.
**Dependencies:**
No new dependencies are required for this change.
**Twitter handle:**
(Optional, your Twitter handle if you'd like a mention when the PR is
announced)
### Changes
1. **Field Name Parsing**:
- Added logic to parse nested field names and safely extract their
values from the MongoDB documents.
2. **Projection Construction**:
- Updated the projection dictionary to include nested fields correctly.
3. **Field Extraction**:
- Updated the `aload` method to handle nested field extraction using a
recursive approach to traverse the nested dictionaries.
### Example Usage
Updated usage example to demonstrate how to specify nested fields in the
`field_names` parameter:
```python
loader = MongodbLoader(
connection_string=MONGO_URI,
db_name=MONGO_DB,
collection_name=MONGO_COLLECTION,
filter_criteria={"data.job.company.industry_name": "IT", "data.job.detail": { "$exists": True }},
field_names=[
"data.job.detail.id",
"data.job.detail.position",
"data.job.detail.intro",
"data.job.detail.main_tasks",
"data.job.detail.requirements",
"data.job.detail.preferred_points",
"data.job.detail.benefits",
],
)
docs = loader.load()
print(len(docs))
for doc in docs:
print(doc.page_content)
```
### Testing
Tested with a MongoDB collection containing nested documents to ensure
that the nested fields are correctly extracted and concatenated into a
single page_content string.
### Note
This change ensures backward compatibility for non-nested fields and
improves functionality for nested field extraction.
### Output Sample
```python
print(docs[:3])
```
```shell
# output sample:
[
Document(
# Here in this example, page_content is the combined text from the fields below
# "position", "intro", "main_tasks", "requirements", "preferred_points", "benefits"
page_content='all combined contents from the requested fields in the document',
metadata={'database': 'Your Database name', 'collection': 'Your Collection name'}
),
...
]
```
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [x] PR title:
community: Add OCI Generative AI new model support
- [x] PR message:
- Description: adding support for new models offered by OCI Generative
AI services. This is a moderate update of our initial integration PR
16548 and includes a new integration for our chat models under
/langchain_community/chat_models/oci_generative_ai.py
- Issue: NA
- Dependencies: No new Dependencies, just latest version of our OCI sdk
- Twitter handle: NA
- [x] Add tests and docs:
1. we have updated our unit tests
2. we have updated our documentation including a new ipynb for our new
chat integration
- [x] Lint and test:
`make format`, `make lint`, and `make test` run successfully
---------
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
** Description**
This is the community integration of ZenGuard AI - the fastest
guardrails for GenAI applications. ZenGuard AI protects against:
- Prompts Attacks
- Veering of the pre-defined topics
- PII, sensitive info, and keywords leakage.
- Toxicity
- Etc.
**Twitter Handle** : @zenguardai
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Added an integration test
2. Added colab
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified.
---------
Co-authored-by: Nuradil <nuradil.maksut@icloud.com>
Co-authored-by: Nuradil <133880216+yaksh0nti@users.noreply.github.com>
They are now rejecting with code 401 calls from users with expired or
invalid tokens (while before they were being considered anonymous).
Thus, the authorization header has to be removed when there is no token.
Related to: #23178
---------
Signed-off-by: Joffref <mariusjoffre@gmail.com>
Description: 2 feature flags added to SharePointLoader in this PR:
1. load_auth: if set to True, adds authorised identities to metadata
2. load_extended_metadata, adds source, owner and full_path to metadata
Unit tests:N/A
Documentation: To be done.
---------
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
This fixes processing issue for nodes with numbers in their labels (e.g.
`"node_1"`, which would previously be relabeled as `"node__"`, and now
are correctly processed as `"node_1"`)
**Description:**
Fix "`TypeError: 'NoneType' object is not iterable`" when the
auth_context is absent in PebbloRetrievalQA. The auth_context is
optional; hence, PebbloRetrievalQA should work without it, but it throws
an error at the moment. This PR fixes that issue.
**Issue:** NA
**Dependencies:** None
**Unit tests:** NA
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Description: file_metadata_ was not getting propagated to returned
documents. Changed the lookup key to the name of the blob's path.
Changed blob.path key to blob.path.name for metadata_dict key lookup.
Documentation: N/A
Unit tests: N/A
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:**
Currently, the `langchain_pinecone` library forces the `async_req`
(asynchronous required) argument to Pinecone to `True`. This design
choice causes problems when deploying to environments that do not
support multiprocessing, such as AWS Lambda. In such environments, this
restriction can prevent users from successfully using
`langchain_pinecone`.
This PR introduces a change that allows users to specify whether they
want to use asynchronous requests by passing the `async_req` parameter
through `**kwargs`. By doing so, users can set `async_req=False` to
utilize synchronous processing, making the library compatible with AWS
Lambda and other environments that do not support multithreading.
**Issue:**
This PR does not address a specific issue number but aims to resolve
compatibility issues with AWS Lambda by allowing synchronous processing.
**Dependencies:**
None, that I'm aware of.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** When use
RunnableWithMessageHistory/SQLChatMessageHistory in async mode, we'll
get the following error:
```
Error in RootListenersTracer.on_chain_end callback: RuntimeError("There is no current event loop in thread 'asyncio_3'.")
```
which throwed by
ddfbca38df/libs/community/langchain_community/chat_message_histories/sql.py (L259).
and no message history will be add to database.
In this patch, a new _aexit_history function which will'be called in
async mode is added, and in turn aadd_messages will be called.
In this patch, we use `afunc` attribute of a Runnable to check if the
end listener should be run in async mode or not.
- **Issue:** #22021, #22022
- **Dependencies:** N/A
The SelfQuery PGVectorTranslator is not correct. The operator is "eq"
and not "$eq".
This patch use a new version of PGVectorTranslator from
langchain_postgres.
It's necessary to release a new version of langchain_postgres (see
[here](https://github.com/langchain-ai/langchain-postgres/pull/75)
before accepting this PR in langchain.
fix systax warning in `create_json_chat_agent`
```
.../langchain/agents/json_chat/base.py:22: SyntaxWarning: invalid escape sequence '\ '
"""Create an agent that uses JSON to format its logic, build for Chat Models.
```
- **Description:** AsyncRootListenersTracer support on_chat_model_start,
it's schema_format should be "original+chat".
- **Issue:** N/A
- **Dependencies:**
minor changes to module import error handling and minor issues in
tutorial documents.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
**Desscription**: When the ``sql_database.from_databricks`` is executed
from a Workflow Job, the ``context`` object does not have a
"browserHostName" property, resulting in an error. This change manages
the error so the "DATABRICKS_HOST" env variable value is used instead of
stoping the flow
Co-authored-by: lmorosdb <lmorosdb>
This change updates the requirements in
`libs/partners/pinecone/pyproject.toml` to allow all versions of
`pinecone-client` greater than or equal to 3.2.2.
This change resolves issue
[21955](https://github.com/langchain-ai/langchain/issues/21955).
---------
Co-authored-by: Erick Friis <erickfriis@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
The return type of `json.loads` is `Any`.
In fact, the return type of `dumpd` must be based on `json.loads`, so
the correction here is understandable.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Currently, calling `with_structured_output()` with an invalid method
argument raises `Unrecognized method argument. Expected one of
'function_calling' or 'json_format'`, but the JSON mode option [is now
referred
to](https://python.langchain.com/v0.2/docs/how_to/structured_output/#the-with_structured_output-method)
by `'json_mode'`. This fixes that.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Add optional max_messages to MessagePlaceholder
- **Issue:**
[16096](https://github.com/langchain-ai/langchain/issues/16096)
- **Dependencies:** None
- **Twitter handle:** @davedecaprio
Sometimes it's better to limit the history in the prompt itself rather
than the memory. This is needed if you want different prompts in the
chain to have different history lengths.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Thank you for contributing to LangChain!
**Description**
The current code snippet for `Fireworks` had incorrect parameters. This
PR fixes those parameters.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Moved doc-strings below attribtues in TypedDicts -- seems to render
better on APIReference pages.
* Provided more description and some simple code examples
- **Description:** Restores compatibility with SQLAlchemy 1.4.x that was
broken since #18992 and adds a test run for this version on CI (only for
Python 3.11)
- **Issue:** fixes#19681
- **Dependencies:** None
- **Twitter handle:** `@krassowski_m`
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** sambanova sambaverse integration improvement: removed
input parsing that was changing raw user input, and was making to use
process prompt parameter as true mandatory
**Description:** `astream_events(version="v2")` didn't propagate
exceptions in `langchain-core<=0.2.6`, fixed in the #22916. This PR adds
a unit test to check that exceptions are propagated upwards.
Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
This raises ImportError due to a circular import:
```python
from langchain_core import chat_history
```
This does not:
```python
from langchain_core import runnables
from langchain_core import chat_history
```
Here we update `test_imports` to run each import in a separate
subprocess. Open to other ways of doing this!
Tests failing on master with
> FAILED
tests/unit_tests/embeddings/test_ovhcloud.py::test_ovhcloud_embed_documents
- ValueError: Request failed with status code: 401, {"message":"Bad
token; invalid JSON"}
Thank you for contributing to LangChain!
**Description:** Noticed an issue with when I was calling
`RecursiveJsonSplitter().split_json()` multiple times that I was getting
weird results. I found an issue where `chunks` list in the `_json_split`
method. If chunks is not provided when _json_split (which is the case
when split_json calls _json_split) then the same list is used for
subsequent calls to `_json_split`.
You can see this in the test case i also added to this commit.
Output should be:
```
[{'a': 1, 'b': 2}]
[{'c': 3, 'd': 4}]
```
Instead you get:
```
[{'a': 1, 'b': 2}]
[{'a': 1, 'b': 2, 'c': 3, 'd': 4}]
```
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
- **Description:** add `**request_kwargs` and expect `TimeError` in
`_fetch` function for AsyncHtmlLoader. This allows you to fill in the
kwargs parameter when using the `load()` method of the `AsyncHtmlLoader`
class.
Co-authored-by: Yucolu <yucolu@tencent.com>
#### Description
This MR defines a `ExperimentalMarkdownSyntaxTextSplitter` class. The
main goal is to replicate the functionality of the original
`MarkdownHeaderTextSplitter` which extracts the header stack as metadata
but with one critical difference: it keeps the whitespace of the
original text intact.
This draft reimplements the `MarkdownHeaderTextSplitter` with a very
different algorithmic approach. Instead of marking up each line of the
text individually and aggregating them back together into chunks, this
method builds each chunk sequentially and applies the metadata to each
chunk. This makes the implementation simpler. However, since it's
designed to keep white space intact its not a full drop in replacement
for the original. Since it is a radical implementation change to the
original code and I would like to get feedback to see if this is a
worthwhile replacement, should be it's own class, or is not a good idea
at all.
Note: I implemented the `return_each_line` parameter but I don't think
it's a necessary feature. I'd prefer to remove it.
This implementation also adds the following additional features:
- Splits out code blocks and includes the language in the `"Code"`
metadata key
- Splits text on the horizontal rule `---` as well
- The `headers_to_split_on` parameter is now optional - with sensible
defaults that can be overridden.
#### Issue
Keeping the whitespace keeps the paragraphs structure and the formatting
of the code blocks intact which allows the caller much more flexibility
in how they want to further split the individuals sections of the
resulting documents. This addresses the issues brought up by the
community in the following issues:
- https://github.com/langchain-ai/langchain/issues/20823
- https://github.com/langchain-ai/langchain/issues/19436
- https://github.com/langchain-ai/langchain/issues/22256
#### Dependencies
N/A
#### Twitter handle
@RyanElston
---------
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
# Description
This pull request aims to address specific issues related to the
ambiguity and error-proneness of the output types of certain output
parsers, as well as the absence of unit tests for some parsers. These
issues could potentially lead to runtime errors or unexpected behaviors
due to type mismatches when used, causing confusion for developers and
users. Through clarifying output types, this PR seeks to improve the
stability and reliability.
Therefore, this pull request
- fixes the `OutputType` of OutputParsers to be the expected type;
- e.g. `OutputType` property of `EnumOutputParser` raises `TypeError`.
This PR introduce a logic to extract `OutputType` from its attribute.
- and fixes the legacy API in OutputParsers like `LLMChain.run` to the
modern API like `LLMChain.invoke`;
- Note: For `OutputFixingParser`, `RetryOutputParser` and
`RetryWithErrorOutputParser`, this PR introduces `legacy` attribute with
False as default value in order to keep the backward compatibility
- and adds the tests for the `OutputFixingParser` and
`RetryOutputParser`.
The following table shows my expected output and the actual output of
the `OutputType` of OutputParsers.
I have used this table to fix `OutputType` of OutputParsers.
| Class Name of OutputParser | My Expected `OutputType` (after this PR)|
Actual `OutputType` [evidence](#evidence) (before this PR)| Fix Required
|
|---------|--------------|---------|--------|
| BooleanOutputParser | `<class 'bool'>` | `<class 'bool'>` | NO |
| CombiningOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| DatetimeOutputParser | `<class 'datetime.datetime'>` | `<class
'datetime.datetime'>` | NO |
| EnumOutputParser(enum=MyEnum) | `MyEnum` | `TypeError` is raised | YES
|
| OutputFixingParser | The same type as `self.parser.OutputType` | `~T`
| YES |
| CommaSeparatedListOutputParser | `typing.List[str]` |
`typing.List[str]` | NO |
| MarkdownListOutputParser | `typing.List[str]` | `typing.List[str]` |
NO |
| NumberedListOutputParser | `typing.List[str]` | `typing.List[str]` |
NO |
| JsonOutputKeyToolsParser | `typing.Any` | `typing.Any` | NO |
| JsonOutputToolsParser | `typing.Any` | `typing.Any` | NO |
| PydanticToolsParser | `typing.Any` | `typing.Any` | NO |
| PandasDataFrameOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| PydanticOutputParser(pydantic_object=MyModel) | `<class
'__main__.MyModel'>` | `<class '__main__.MyModel'>` | NO |
| RegexParser | `typing.Dict[str, str]` | `TypeError` is raised | YES |
| RegexDictParser | `typing.Dict[str, str]` | `TypeError` is raised |
YES |
| RetryOutputParser | The same type as `self.parser.OutputType` | `~T` |
YES |
| RetryWithErrorOutputParser | The same type as `self.parser.OutputType`
| `~T` | YES |
| StructuredOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| YamlOutputParser(pydantic_object=MyModel) | `MyModel` | `~T` | YES |
NOTE: In "Fix Required", "YES" means that it is required to fix in this
PR while "NO" means that it is not required.
# Issue
No issues for this PR.
# Twitter handle
- [hmdev3](https://twitter.com/hmdev3)
# Questions:
1. Is it required to create tests for legacy APIs `LLMChain.run` in the
following scripts?
- libs/langchain/tests/unit_tests/output_parsers/test_fix.py;
- libs/langchain/tests/unit_tests/output_parsers/test_retry.py.
2. Is there a more appropriate expected output type than I expect in the
above table?
- e.g. the `OutputType` of `CombiningOutputParser` should be
SOMETHING...
# Actual outputs (before this PR)
<div id='evidence'></div>
<details><summary>Actual outputs</summary>
## Requirements
- Python==3.9.13
- langchain==0.1.13
```python
Python 3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import langchain
>>> langchain.__version__
'0.1.13'
>>> from langchain import output_parsers
```
### `BooleanOutputParser`
```python
>>> output_parsers.BooleanOutputParser().OutputType
<class 'bool'>
```
### `CombiningOutputParser`
```python
>>> output_parsers.CombiningOutputParser(parsers=[output_parsers.DatetimeOutputParser(), output_parsers.CommaSeparatedListOutputParser()]).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable CombiningOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `DatetimeOutputParser`
```python
>>> output_parsers.DatetimeOutputParser().OutputType
<class 'datetime.datetime'>
```
### `EnumOutputParser`
```python
>>> from enum import Enum
>>> class MyEnum(Enum):
... a = 'a'
... b = 'b'
...
>>> output_parsers.EnumOutputParser(enum=MyEnum).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable EnumOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `OutputFixingParser`
```python
>>> output_parsers.OutputFixingParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```
### `CommaSeparatedListOutputParser`
```python
>>> output_parsers.CommaSeparatedListOutputParser().OutputType
typing.List[str]
```
### `MarkdownListOutputParser`
```python
>>> output_parsers.MarkdownListOutputParser().OutputType
typing.List[str]
```
### `NumberedListOutputParser`
```python
>>> output_parsers.NumberedListOutputParser().OutputType
typing.List[str]
```
### `JsonOutputKeyToolsParser`
```python
>>> output_parsers.JsonOutputKeyToolsParser(key_name='tool').OutputType
typing.Any
```
### `JsonOutputToolsParser`
```python
>>> output_parsers.JsonOutputToolsParser().OutputType
typing.Any
```
### `PydanticToolsParser`
```python
>>> from langchain.pydantic_v1 import BaseModel
>>> class MyModel(BaseModel):
... a: int
...
>>> output_parsers.PydanticToolsParser(tools=[MyModel, MyModel]).OutputType
typing.Any
```
### `PandasDataFrameOutputParser`
```python
>>> output_parsers.PandasDataFrameOutputParser().OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable PandasDataFrameOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `PydanticOutputParser`
```python
>>> output_parsers.PydanticOutputParser(pydantic_object=MyModel).OutputType
<class '__main__.MyModel'>
```
### `RegexParser`
```python
>>> output_parsers.RegexParser(regex='$', output_keys=['a']).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable RegexParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `RegexDictParser`
```python
>>> output_parsers.RegexDictParser(output_key_to_format={'a':'a'}).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable RegexDictParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `RetryOutputParser`
```python
>>> output_parsers.RetryOutputParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```
### `RetryWithErrorOutputParser`
```python
>>> output_parsers.RetryWithErrorOutputParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```
### `StructuredOutputParser`
```python
>>> from langchain.output_parsers.structured import ResponseSchema
>>> response_schemas = [ResponseSchema(name="foo",description="a list of strings",type="List[string]"),ResponseSchema(name="bar",description="a string",type="string"), ]
>>> output_parsers.StructuredOutputParser.from_response_schemas(response_schemas).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable StructuredOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `YamlOutputParser`
```python
>>> output_parsers.YamlOutputParser(pydantic_object=MyModel).OutputType
~T
```
<div>
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This change adds args_schema (pydantic BaseModel) to SearxSearchRun for
correct schema formatting on LLM function calls
Issue: currently using SearxSearchRun with OpenAI function calling
returns the following error "TypeError: SearxSearchRun._run() got an
unexpected keyword argument '__arg1' ".
This happens because the schema sent to the LLM is "input:
'{"__arg1":"foobar"}'" while the method should be called with the
"query" parameter.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Updated
*community.langchain_community.document_loaders.directory.py* to enable
the use of multiple glob patterns in the `DirectoryLoader` class. Now,
the glob parameter is of type `list[str] | str` and still defaults to
the same value as before. I updated the docstring of the class to
reflect this, and added a unit test to
*community.tests.unit_tests.document_loaders.test_directory.py* named
`test_directory_loader_glob_multiple`. This test also shows an example
of how to use the new functionality.
- ~~Issue:~~**Discussion Thread:**
https://github.com/langchain-ai/langchain/discussions/18559
- **Dependencies:** None
- **Twitter handle:** N/a
- [x] **Add tests and docs**
- Added test (described above)
- Updated class docstring
- [x] **Lint and test**
---------
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Fix https://github.com/langchain-ai/langchain/issues/22972.
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
```SemanticChunker``` currently provide three methods to split the texts semantically:
- percentile
- standard_deviation
- interquartile
I propose new method ```gradient```. In this method, the gradient of distance is used to split chunks along with the percentile method (technically) . This method is useful when chunks are highly correlated with each other or specific to a domain e.g. legal or medical. The idea is to apply anomaly detection on gradient array so that the distribution become wider and easy to identify boundaries in highly semantic data.
I have tested this merge on a set of 10 domain specific documents (mostly legal).
Details :
- **Issue:** Improvement
- **Dependencies:** NA
- **Twitter handle:** [x.com/prajapat_ravi](https://x.com/prajapat_ravi)
@hwchase17
---------
Co-authored-by: Raviraj Prajapat <raviraj.prajapat@sirionlabs.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Add chat history store based on Kafka.
Files added:
`libs/community/langchain_community/chat_message_histories/kafka.py`
`docs/docs/integrations/memory/kafka_chat_message_history.ipynb`
New issue to be created for future improvement:
1. Async method implementation.
2. Message retrieval based on timestamp.
3. Support for other configs when connecting to cloud hosted Kafka (e.g.
add `api_key` field)
4. Improve unit testing & integration testing.
**Description:**
- What I changed
- By specifying the `id_key` during the initialization of
`EnsembleRetriever`, it is now possible to determine which documents to
merge scores for based on the value corresponding to the `id_key`
element in the metadata, instead of `page_content`. Below is an example
of how to use the modified `EnsembleRetriever`:
```python
retriever = EnsembleRetriever(retrievers=[ret1, ret2], id_key="id") #
The Document returned by each retriever must keep the "id" key in its
metadata.
```
- Additionally, I added a script to easily test the behavior of the
`invoke` method of the modified `EnsembleRetriever`.
- Why I changed
- There are cases where you may want to calculate scores by treating
Documents with different `page_content` as the same when using
`EnsembleRetriever`. For example, when you want to ensemble the search
results of the same document described in two different languages.
- The previous `EnsembleRetriever` used `page_content` as the basis for
score aggregation, making the above usage difficult. Therefore, the
score is now calculated based on the specified key value in the
Document's metadata.
**Twitter handle:** @shimajiroxyz
- **Description:** add tool_messages_formatter for tool calling agent,
make tool messages can be formatted in different ways for your LLM.
- **Issue:** N/A
- **Dependencies:** N/A
**Standardizing DocumentLoader docstrings (of which there are many)**
This PR addresses issue #22866 and adds docstrings according to the
issue's specified format (in the appendix) for files csv_loader.py and
json_loader.py in langchain_community.document_loaders. In particular,
the following sections have been added to both CSVLoader and JSONLoader:
Setup, Instantiate, Load, Async load, and Lazy load. It may be worth
adding a 'Metadata' section to the JSONLoader docstring to clarify how
we want to extract the JSON metadata (using the `metadata_func`
argument). The files I used to walkthrough the various sections were
`example_2.json` from
[HERE](https://support.oneskyapp.com/hc/en-us/articles/208047697-JSON-sample-files)
and `hw_200.csv` from
[HERE](https://people.sc.fsu.edu/~jburkardt/data/csv/csv.html).
---------
Co-authored-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
- **Description:** A very small fix in the Docstring of
`DuckDuckGoSearchResults` identified in the following issue.
- **Issue:** #22961
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **PR title**: "community: Fix#22975 (Add SSL Verification Option to
Requests Class in langchain_community)"
- **PR message**:
- **Description:**
- Added an optional verify parameter to the Requests class with a
default value of True.
- Modified the get, post, patch, put, and delete methods to include the
verify parameter.
- Updated the _arequest async context manager to include the verify
parameter.
- Added the verify parameter to the GenericRequestsWrapper class and
passed it to the Requests class.
- **Issue:** This PR fixes issue #22975.
- **Dependencies:** No additional dependencies are required for this
change.
- **Twitter handle:** @lunara_x
You can check this change with below code.
```python
from langchain_openai.chat_models import ChatOpenAI
from langchain.requests import RequestsWrapper
from langchain_community.agent_toolkits.openapi import planner
from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec
with open("swagger.yaml") as f:
data = yaml.load(f, Loader=yaml.FullLoader)
swagger_api_spec = reduce_openapi_spec(data)
llm = ChatOpenAI(model='gpt-4o')
swagger_requests_wrapper = RequestsWrapper(verify=False) # modified point
superset_agent = planner.create_openapi_agent(swagger_api_spec, swagger_requests_wrapper, llm, allow_dangerous_requests=True, handle_parsing_errors=True)
superset_agent.run(
"Tell me the number and types of charts and dashboards available."
)
```
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** The PR #22777 introduced a bug in
`_similarity_search_without_score` which was raising the
`OperationFailure` error. The mistake was syntax error for MongoDB
pipeline which has been corrected now.
- **Issue:** #22770