## **Description:**
Enable `ConfluenceLoader` to include labels with `include_labels` option
(`false` by default for backward compatibility). and the labels are set
to `metadata` in the `Document`. e.g. `{"labels": ["l1", "l2"]}`
## Notes
Confluence API supports to get labels by providing `metadata.labels` to
`expand` query parameter
All of the following functions support `expand` in the same way:
- confluence.get_page_by_id
- confluence.get_all_pages_by_label
- confluence.get_all_pages_from_space
- cql (internally using
[/api/content/search](https://developer.atlassian.com/cloud/confluence/rest/v1/api-group-content/#api-wiki-rest-api-content-search-get))
## **Issue:**
No issue related to this PR.
## **Dependencies:**
No changes.
## **Twitter handle:**
[@gymnstcs](https://x.com/gymnstcs)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Updated the kwargs for the structured query from
filters to filter due to deprecation of 'filters' for Databricks Vector
Search. Also changed the error messages as the allowed operators and
comparators are different which can cause issues with functions such as
get_query_constructor_prompt()
- **Issue:** Fixes the Key Error for filters due to deprecation in favor
for 'filter':
LangChainDeprecationWarning: DatabricksVectorSearch received a key
`filters` in search_kwargs. `filters` was deprecated since
langchain-community 0.2.11 and will be removed in 0.3. Please use
`filter` instead.
- **Dependencies:** N/A
- **Twitter handle:** N/A
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- [x] **PR title**: "community: add Needle retriever and document loader
integration"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** This PR adds a new integration for Needle, which
includes:
- **NeedleRetriever**: A retriever for fetching documents from Needle
collections.
- **NeedleLoader**: A document loader for managing and loading documents
into Needle collections.
- Example notebooks demonstrating usage have been added in:
- `docs/docs/integrations/retrievers/needle.ipynb`
- `docs/docs/integrations/document_loaders/needle.ipynb`.
- **Dependencies:** The `needle-python` package is required as an
external dependency for accessing Needle's API. It has been added to the
extended testing dependencies list.
- **Twitter handle:** Feel free to mention me if this PR gets announced:
[needlexai](https://x.com/NeedlexAI).
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Unit tests have been added for both `NeedleRetriever` and
`NeedleLoader` in `libs/community/tests/unit_tests`. These tests mock
API calls to avoid relying on network access.
2. Example notebooks have been added to `docs/docs/integrations/`,
showcasing both retriever and loader functionality.
- [x] **Lint and test**: Run `make format`, `make lint`, and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
- `make format`: Passed
- `make lint`: Passed
- `make test`: Passed (requires `needle-python` to be installed locally;
this package is not added to LangChain dependencies).
Additional guidelines:
- [x] Optional dependencies are imported only within functions.
- [x] No dependencies have been added to pyproject.toml files except for
those required for unit tests.
- [x] The PR does not touch more than one package.
- [x] Changes are fully backwards compatible.
- [x] Community additions are not re-imported into LangChain core.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** When an OpenAI assistant is invoked, it creates a run
by default, allowing users to set only a few request fields. The
truncation strategy is set to auto, which includes previous messages in
the thread along with the current question until the context length is
reached. This causes token usage to grow incrementally:
consumed_tokens = previous_consumed_tokens + current_consumed_tokens.
This PR adds support for user-defined truncation strategies, giving
better control over token consumption.
**Issue:** High token consumption.
In collaboration with @rlouf I build an
[outlines](https://dottxt-ai.github.io/outlines/latest/) integration for
langchain!
I think this is really useful for doing any type of structured output
locally.
[Dottxt](https://dottxt.co) spend alot of work optimising this process
at a lower level
([outlines-core](https://pypi.org/project/outlines-core/0.1.14/) written
in rust) so I think this is a better alternative over all current
approaches in langchain to do structured output.
It also implements the `.with_structured_output` method so it should be
a drop in replacement for a lot of applications.
The integration includes:
- **Outlines LLM class**
- **ChatOutlines class**
- **Tutorial Cookbooks**
- **Documentation Page**
- **Validation and error messages**
- **Exposes Outlines Structured output features**
- **Support for multiple backends**
- **Integration and Unit Tests**
Dependencies: `outlines` + additional (depending on backend used)
I am not sure if the unit-tests comply with all requirements, if not I
suggest to just remove them since I don't see a useful way to do it
differently.
### Quick overview:
Chat Models:
<img width="698" alt="image"
src="https://github.com/user-attachments/assets/05a499b9-858c-4397-a9ff-165c2b3e7acc">
Structured Output:
<img width="955" alt="image"
src="https://github.com/user-attachments/assets/b9fcac11-d3e5-4698-b1ae-8c4cb3d54c45">
---------
Co-authored-by: Vadym Barda <vadym@langchain.dev>
## Description
As proposed in our earlier discussion #26977 we have introduced a Google
Books API Tool that leverages the Google Books API found at
[https://developers.google.com/books/docs/v1/using](https://developers.google.com/books/docs/v1/using)
to generate book recommendations.
### Sample Usage
```python
from langchain_community.tools import GoogleBooksQueryRun
from langchain_community.utilities import GoogleBooksAPIWrapper
api_wrapper = GoogleBooksAPIWrapper()
tool = GoogleBooksQueryRun(api_wrapper=api_wrapper)
tool.run('ai')
```
### Sample Output
```txt
Here are 5 suggestions based off your search for books related to ai:
1. "AI's Take on the Stigma Against AI-Generated Content" by Sandy Y. Greenleaf: In a world where artificial intelligence (AI) is rapidly advancing and transforming various industries, a new form of content creation has emerged: AI-generated content. However, despite its potential to revolutionize the way we produce and consume information, AI-generated content often faces a significant stigma. "AI's Take on the Stigma Against AI-Generated Content" is a groundbreaking book that delves into the heart of this issue, exploring the reasons behind the stigma and offering a fresh, unbiased perspective on the topic. Written from the unique viewpoint of an AI, this book provides readers with a comprehensive understanding of the challenges and opportunities surrounding AI-generated content. Through engaging narratives, thought-provoking insights, and real-world examples, this book challenges readers to reconsider their preconceptions about AI-generated content. It explores the potential benefits of embracing this technology, such as increased efficiency, creativity, and accessibility, while also addressing the concerns and drawbacks that contribute to the stigma. As you journey through the pages of this book, you'll gain a deeper understanding of the complex relationship between humans and AI in the realm of content creation. You'll discover how AI can be used as a tool to enhance human creativity, rather than replace it, and how collaboration between humans and machines can lead to unprecedented levels of innovation. Whether you're a content creator, marketer, business owner, or simply someone curious about the future of AI and its impact on our society, "AI's Take on the Stigma Against AI-Generated Content" is an essential read. With its engaging writing style, well-researched insights, and practical strategies for navigating this new landscape, this book will leave you equipped with the knowledge and tools needed to embrace the AI revolution and harness its potential for success. Prepare to have your assumptions challenged, your mind expanded, and your perspective on AI-generated content forever changed. Get ready to embark on a captivating journey that will redefine the way you think about the future of content creation.
Read more at https://play.google.com/store/books/details?id=4iH-EAAAQBAJ&source=gbs_api
2. "AI Strategies For Web Development" by Anderson Soares Furtado Oliveira: From fundamental to advanced strategies, unlock useful insights for creating innovative, user-centric websites while navigating the evolving landscape of AI ethics and security Key Features Explore AI's role in web development, from shaping projects to architecting solutions Master advanced AI strategies to build cutting-edge applications Anticipate future trends by exploring next-gen development environments, emerging interfaces, and security considerations in AI web development Purchase of the print or Kindle book includes a free PDF eBook Book Description If you're a web developer looking to leverage the power of AI in your projects, then this book is for you. Written by an AI and ML expert with more than 15 years of experience, AI Strategies for Web Development takes you on a transformative journey through the dynamic intersection of AI and web development, offering a hands-on learning experience.The first part of the book focuses on uncovering the profound impact of AI on web projects, exploring fundamental concepts, and navigating popular frameworks and tools. As you progress, you'll learn how to build smart AI applications with design intelligence, personalized user journeys, and coding assistants. Later, you'll explore how to future-proof your web development projects using advanced AI strategies and understand AI's impact on jobs. Toward the end, you'll immerse yourself in AI-augmented development, crafting intelligent web applications and navigating the ethical landscape.Packed with insights into next-gen development environments, AI-augmented practices, emerging realities, interfaces, and security governance, this web development book acts as your roadmap to staying ahead in the AI and web development domain. What you will learn Build AI-powered web projects with optimized models Personalize UX dynamically with AI, NLP, chatbots, and recommendations Explore AI coding assistants and other tools for advanced web development Craft data-driven, personalized experiences using pattern recognition Architect effective AI solutions while exploring the future of web development Build secure and ethical AI applications following TRiSM best practices Explore cutting-edge AI and web development trends Who this book is for This book is for web developers with experience in programming languages and an interest in keeping up with the latest trends in AI-powered web development. Full-stack, front-end, and back-end developers, UI/UX designers, software engineers, and web development enthusiasts will also find valuable information and practical guidelines for developing smarter websites with AI. To get the most out of this book, it is recommended that you have basic knowledge of programming languages such as HTML, CSS, and JavaScript, as well as a familiarity with machine learning concepts.
Read more at https://play.google.com/store/books/details?id=FzYZEQAAQBAJ&source=gbs_api
3. "Artificial Intelligence for Students" by Vibha Pandey: A multifaceted approach to develop an understanding of AI and its potential applications KEY FEATURES ● AI-informed focuses on AI foundation, applications, and methodologies. ● AI-inquired focuses on computational thinking and bias awareness. ● AI-innovate focuses on creative and critical thinking and the Capstone project. DESCRIPTION AI is a discipline in Computer Science that focuses on developing intelligent machines, machines that can learn and then teach themselves. If you are interested in AI, this book can definitely help you prepare for future careers in AI and related fields. The book is aligned with the CBSE course, which focuses on developing employability and vocational competencies of students in skill subjects. The book is an introduction to the basics of AI. It is divided into three parts – AI-informed, AI-inquired and AI-innovate. It will help you understand AI's implications on society and the world. You will also develop a deeper understanding of how it works and how it can be used to solve complex real-world problems. Additionally, the book will also focus on important skills such as problem scoping, goal setting, data analysis, and visualization, which are essential for success in AI projects. Lastly, you will learn how decision trees, neural networks, and other AI concepts are commonly used in real-world applications. By the end of the book, you will develop the skills and competencies required to pursue a career in AI. WHAT YOU WILL LEARN ● Get familiar with the basics of AI and Machine Learning. ● Understand how and where AI can be applied. ● Explore different applications of mathematical methods in AI. ● Get tips for improving your skills in Data Storytelling. ● Understand what is AI bias and how it can affect human rights. WHO THIS BOOK IS FOR This book is for CBSE class XI and XII students who want to learn and explore more about AI. Basic knowledge of Statistical concepts, Algebra, and Plotting of equations is a must. TABLE OF CONTENTS 1. Introduction: AI for Everyone 2. AI Applications and Methodologies 3. Mathematics in Artificial Intelligence 4. AI Values (Ethical Decision-Making) 5. Introduction to Storytelling 6. Critical and Creative Thinking 7. Data Analysis 8. Regression 9. Classification and Clustering 10. AI Values (Bias Awareness) 11. Capstone Project 12. Model Lifecycle (Knowledge) 13. Storytelling Through Data 14. AI Applications in Use in Real-World
Read more at https://play.google.com/store/books/details?id=ptq1EAAAQBAJ&source=gbs_api
4. "The AI Book" by Ivana Bartoletti, Anne Leslie and Shân M. Millie: Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important
Read more at http://books.google.ca/books?id=oE3YDwAAQBAJ&dq=ai&hl=&source=gbs_api
5. "Artificial Intelligence in Society" by OECD: The artificial intelligence (AI) landscape has evolved significantly from 1950 when Alan Turing first posed the question of whether machines can think. Today, AI is transforming societies and economies. It promises to generate productivity gains, improve well-being and help address global challenges, such as climate change, resource scarcity and health crises.
Read more at https://play.google.com/store/books/details?id=eRmdDwAAQBAJ&source=gbs_api
```
## Issue
This closes#27276
## Dependencies
No additional dependencies were added
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: chat models wrapper for Cloudflare
Workers AI"
- [x] **PR message**:
- **Description:** Add chat models wrapper for Cloudflare Workers AI.
Enables Langgraph intergration via ChatModel for tool usage, agentic
usage.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** Add support for Writer chat models
**Issue:** N/A
**Dependencies:** Add `writer-sdk` to optional dependencies.
**Twitter handle:** Please tag `@samjulien` and `@Get_Writer`
**Tests and docs**
- [x] Unit test
- [x] Example notebook in `docs/docs/integrations` directory.
**Lint and test**
- [x] Run `make format`
- [x] Run `make lint`
- [x] Run `make test`
---------
Co-authored-by: Johannes <tolstoy.work@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Reopened as a personal repo outside the organization.
## Description
- Naver HyperCLOVA X community package
- Add chat model & embeddings
- Add unit test & integration test
- Add chat model & embeddings docs
- I changed partner
package(https://github.com/langchain-ai/langchain/pull/24252) to
community package on this PR
- Could this
embeddings(https://github.com/langchain-ai/langchain/pull/21890) be
deprecated? We are trying to replace it with embedding
model(**ClovaXEmbeddings**) in this PR.
Twitter handle: None. (if needed, contact with
joonha.jeon@navercorp.com)
---
you can check our previous discussion below:
> one question on namespaces - would it make sense to have these in
.clova namespaces instead of .naver?
I would like to keep it as is, unless it is essential to unify the
package name.
(ClovaX is a branding for the model, and I plan to add other models and
components. They need to be managed as separate classes.)
> also, could you clarify the difference between ClovaEmbeddings and
ClovaXEmbeddings?
There are 3 models that are being serviced by embedding, and all are
supported in the current PR. In addition, all the functionality of CLOVA
Studio that serves actual models, such as distinguishing between test
apps and service apps, is supported. The existing PR does not support
this content because it is hard-coded.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Vadym Barda <vadym@langchain.dev>
**Description:**
This PR updates `CassandraGraphVectorStore` to be based off
`CassandraVectorStore`, instead of using a custom CQL implementation.
This allows users using a `CassandraVectorStore` to upgrade to a
`GraphVectorStore` without having to change their database schema or
re-embed documents.
This PR also updates the documentation of the `GraphVectorStore` base
class and contains native async implementations for the standard graph
methods: `traversal_search` and `mmr_traversal_search` in
`CassandraVectorStore`.
**Issue:** No issue number.
**Dependencies:** https://github.com/langchain-ai/langchain/pull/27078
(already-merged)
**Lint and test**:
- Lint and tests all pass, including existing
`CassandraGraphVectorStore` tests.
- Also added numerous additional tests based of the tests in
`langchain-astradb` which cover many more scenarios than the existing
tests for `Cassandra` and `CassandraGraphVectorStore`
** BREAKING CHANGE**
Note that this is a breaking change for existing users of
`CassandraGraphVectorStore`. They will need to wipe their database table
and restart.
However:
- The interfaces have not changed. Just the underlying storage
mechanism.
- Any one using `langchain_community.vectorstores.Cassandra` can instead
use `langchain_community.graph_vectorstores.CassandraGraphVectorStore`
and they will gain Graph capabilities without having to re-embed their
existing documents. This is the primary goal of this PR.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR updates the integration with OCI data science model deployment
service.
- Update LLM to support streaming and async calls.
- Added chat model.
- Updated tests and docs.
- Updated `libs/community/scripts/check_pydantic.sh` since the use of
`@pre_init` is removed from existing integration.
- Updated `libs/community/extended_testing_deps.txt` as this integration
requires `langchain_openai`.
---------
Co-authored-by: MING KANG <ming.kang@oracle.com>
Co-authored-by: Dmitrii Cherkasov <dmitrii.cherkasov@oracle.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Given the current erroring behavior, every time we've moved a kwarg from
model_kwargs and made it its own field that was a breaking change.
Updating this behavior to support the old instantiations /
serializations.
Assuming build_extra_kwargs was not something that itself is being used
externally and needs to be kept backwards compatible
These allow converting linked documents (such as those used with
GraphVectorStore) to networkx for rendering and/or in-memory graph
algorithms such as community detection.
**Description**:
Adds a vector store integration with
[sqlite-vec](https://alexgarcia.xyz/sqlite-vec/), the successor to
sqlite-vss that is a single C file with no external dependencies.
Pretty straightforward, just copy-pasted the sqlite-vss integration and
made a few tweaks and added integration tests. Only question is whether
all documentation should be directed away from sqlite-vss if it is
defacto deprecated (cc @asg017).
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: philippe-oger <philippe.oger@adevinta.com>
- **Description:** Added PebbloTextLoader for loading text in
PebbloSafeLoader.
- Since PebbloSafeLoader wraps document loaders, this new loader enables
direct loading of text into Documents using PebbloSafeLoader.
- **Issue:** NA
- **Dependencies:** NA
- [x] **Tests**: Added/Updated tests
# Description
[Vector store base
class](4cdaca67dc/libs/core/langchain_core/vectorstores/base.py (L65))
currently expects `ids` to be passed in and that is what it passes along
to the AzureSearch vector store when attempting to `add_texts()`.
However AzureSearch expects `keys` to be passed in. When they are not
present, AzureSearch `add_embeddings()` makes up new uuids. This is a
problem when trying to run indexing. [Indexing code
expects](b297af5482/libs/core/langchain_core/indexing/api.py (L371))
the documents to be uploaded using provided ids. Currently AzureSearch
ignores `ids` passed from `indexing` and makes up new ones. Later when
`indexer` attempts to delete removed file, it uses the `id` it had
stored when uploading the document, however it was uploaded under
different `id`.
**Twitter handle: @martintriska1**
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
### Description:
This pull request significantly enhances the MongodbLoader class in the
LangChain community package by adding robust metadata customization and
improved field extraction capabilities. The updated class now allows
users to specify additional metadata fields through the metadata_names
parameter, enabling the extraction of both top-level and deeply nested
document attributes as metadata. This flexibility is crucial for users
who need to include detailed contextual information without altering the
database schema.
Moreover, the include_db_collection_in_metadata flag offers optional
inclusion of database and collection names in the metadata, allowing for
even greater customization depending on the user's needs.
The loader's field extraction logic has been refined to handle missing
or nested fields more gracefully. It now employs a safe access mechanism
that avoids the KeyError previously encountered when a specified nested
field was absent in a document. This update ensures that the loader can
handle diverse and complex data structures without failure, making it
more resilient and user-friendly.
### Issue:
This pull request addresses a critical issue where the MongodbLoader
class in the LangChain community package could throw a KeyError when
attempting to access nested fields that may not exist in some documents.
The previous implementation did not handle the absence of specified
nested fields gracefully, leading to runtime errors and interruptions in
data processing workflows.
This enhancement ensures robust error handling by safely accessing
nested document fields, using default values for missing data, thus
preventing KeyError and ensuring smoother operation across various data
structures in MongoDB. This improvement is crucial for users working
with diverse and complex data sets, ensuring the loader can adapt to
documents with varying structures without failing.
### Dependencies:
Requires motor for asynchronous MongoDB interaction.
### Twitter handle:
N/A
### Add tests and docs
Tests: Unit tests have been added to verify that the metadata inclusion
toggle works as expected and that the field extraction correctly handles
nested fields.
Docs: An example notebook demonstrating the use of the enhanced
MongodbLoader is included in the docs/docs/integrations directory. This
notebook includes setup instructions, example usage, and outputs.
(Here is the notebook link : [colab
link](https://colab.research.google.com/drive/1tp7nyUnzZa3dxEFF4Kc3KS7ACuNF6jzH?usp=sharing))
Lint and test
Before submitting, I ran make format, make lint, and make test as per
the contribution guidelines. All tests pass, and the code style adheres
to the LangChain standards.
```python
import unittest
from unittest.mock import patch, MagicMock
import asyncio
from langchain_community.document_loaders.mongodb import MongodbLoader
class TestMongodbLoader(unittest.TestCase):
def setUp(self):
"""Setup the MongodbLoader test environment by mocking the motor client
and database collection interactions."""
# Mocking the AsyncIOMotorClient
self.mock_client = MagicMock()
self.mock_db = MagicMock()
self.mock_collection = MagicMock()
self.mock_client.get_database.return_value = self.mock_db
self.mock_db.get_collection.return_value = self.mock_collection
# Initialize the MongodbLoader with test data
self.loader = MongodbLoader(
connection_string="mongodb://localhost:27017",
db_name="testdb",
collection_name="testcol"
)
@patch('langchain_community.document_loaders.mongodb.AsyncIOMotorClient', return_value=MagicMock())
def test_constructor(self, mock_motor_client):
"""Test if the constructor properly initializes with the correct database and collection names."""
loader = MongodbLoader(
connection_string="mongodb://localhost:27017",
db_name="testdb",
collection_name="testcol"
)
self.assertEqual(loader.db_name, "testdb")
self.assertEqual(loader.collection_name, "testcol")
def test_aload(self):
"""Test the aload method to ensure it correctly queries and processes documents."""
# Setup mock data and responses for the database operations
self.mock_collection.count_documents.return_value = asyncio.Future()
self.mock_collection.count_documents.return_value.set_result(1)
self.mock_collection.find.return_value = [
{"_id": "1", "content": "Test document content"}
]
# Run the aload method and check responses
loop = asyncio.get_event_loop()
results = loop.run_until_complete(self.loader.aload())
self.assertEqual(len(results), 1)
self.assertEqual(results[0].page_content, "Test document content")
def test_construct_projection(self):
"""Verify that the projection dictionary is constructed correctly based on field names."""
self.loader.field_names = ['content', 'author']
self.loader.metadata_names = ['timestamp']
expected_projection = {'content': 1, 'author': 1, 'timestamp': 1}
projection = self.loader._construct_projection()
self.assertEqual(projection, expected_projection)
if __name__ == '__main__':
unittest.main()
```
### Additional Example for Documentation
Sample Data:
```json
[
{
"_id": "1",
"title": "Artificial Intelligence in Medicine",
"content": "AI is transforming the medical industry by providing personalized medicine solutions.",
"author": {
"name": "John Doe",
"email": "john.doe@example.com"
},
"tags": ["AI", "Healthcare", "Innovation"]
},
{
"_id": "2",
"title": "Data Science in Sports",
"content": "Data science provides insights into player performance and strategic planning in sports.",
"author": {
"name": "Jane Smith",
"email": "jane.smith@example.com"
},
"tags": ["Data Science", "Sports", "Analytics"]
}
]
```
Example Code:
```python
loader = MongodbLoader(
connection_string="mongodb://localhost:27017",
db_name="example_db",
collection_name="articles",
filter_criteria={"tags": "AI"},
field_names=["title", "content"],
metadata_names=["author.name", "author.email"],
include_db_collection_in_metadata=True
)
documents = loader.load()
for doc in documents:
print("Page Content:", doc.page_content)
print("Metadata:", doc.metadata)
```
Expected Output:
```
Page Content: Artificial Intelligence in Medicine AI is transforming the medical industry by providing personalized medicine solutions.
Metadata: {'author_name': 'John Doe', 'author_email': 'john.doe@example.com', 'database': 'example_db', 'collection': 'articles'}
```
Thank you.
---
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- **PR title**: "community: add Jina Search tool"
- **Description:** Added the Jina Search tool for querying the Jina
search API. This includes the implementation of the JinaSearchAPIWrapper
and the JinaSearch tool, along with a Jupyter notebook example
demonstrating its usage.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** [Twitter
handle](https://x.com/yashp3020?t=7wM0gQ7XjGciFoh9xaBtqA&s=09)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:**
Adding a new option to the CSVLoader that allows us to implicitly
specify the columns that are used for generating the Document content.
Currently these are implicitly set as "all fields not part of the
metadata_columns".
In some cases however it is useful to have a field both as a metadata
and as part of the document content.
Description:
- Add system templates and user templates in integration testing
- initialize the response id field value to request_id
- Adjust the default model to hunyuan-pro
- Remove the default values of Temperature and TopP
- Add SystemMessage
all the integration tests have passed.
1、Execute integration tests for the first time
<img width="1359" alt="71ca77a2-e9be-4af6-acdc-4d665002bd9b"
src="https://github.com/user-attachments/assets/9298dc3a-aa26-4bfa-968b-c011a4e699c9">
2、Run the integration test a second time
<img width="1501" alt="image"
src="https://github.com/user-attachments/assets/61335416-4a67-4840-bb89-090ba668e237">
Issue: None
Dependencies: None
Twitter handle: None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [x] **PR title - community: add neo4j query constructor for self
query**
- [x] **PR message**
- **Description:** adding a Neo4jTranslator so that the Neo4j vector
database can use SelfQueryRetriever
- **Issue:** this issue had been raised before in #19748
- **Dependencies:** none.
- **Twitter handle:** @moyi_dang
- p.s. I have not added the query constructor in BUILTIN_TRANSLATORS in
this PR, I want to make changes to only one package at a time.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [ ] **PR title**: community: add tests for ChatOctoAI
- [ ] **PR message**:
Description: Added unit tests for the ChatOctoAI class in the community
package to ensure proper validation and default values. These tests
verify the correct initialization of fields, the handling of missing
required parameters, and the proper setting of aliases.
Issue: N/A
Dependencies: None
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Thank you for contributing to LangChain!
community:premai[patch]: standardize init args
- updated `temperature` with Pydantic Field, updated the unit test.
- updated `max_tokens` with Pydantic Field, updated the unit test.
- updated `max_retries` with Pydantic Field, updated the unit test.
Related to #20085
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
it fixes two issues:
### YGPTs are broken #25575
```
File ....conda/lib/python3.11/site-packages/langchain_community/embeddings/yandex.py:211, in _make_request(self, texts, **kwargs)
..
--> 211 res = stub.TextEmbedding(request, metadata=self._grpc_metadata) # type: ignore[attr-defined]
AttributeError: 'YandexGPTEmbeddings' object has no attribute '_grpc_metadata'
```
My gut feeling that #23841 is the cause.
I have to drop leading underscore from `_grpc_metadata` for quickfix,
but I just don't know how to do it _pydantic_ enough.
### minor issue:
if we use `api_key`, which is not the best practice the code fails with
```
File ~/git/...../python3.11/site-packages/langchain_community/embeddings/yandex.py:119, in YandexGPTEmbeddings.validate_environment(cls, values)
...
AttributeError: 'tuple' object has no attribute 'append'
```
- Added new integration test. But it requires YGPT env available and
active account. I don't know how int tests dis\enabled in CI.
- added small unit tests with mocks. Should be fine.
---------
Co-authored-by: mikhail-khludnev <mikhail_khludnev@rntgroup.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
Support passing extra params when executing UC functions:
The params should be a dictionary with key EXECUTE_FUNCTION_ARG_NAME,
the assumption is that the function itself doesn't use such variable
name (starting and ending with double underscores), and if it does we
raise Exception.
If invalid params passing to the execute_statement, we raise Exception
as well.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
adds an init method to ChatDeepInfra to set the model_name attribute
accordings to the argument
### Issue
currently, the model_name specified by the user during initialization of
the ChatDeepInfra class is never set. Therefore, it always chooses the
default model (meta-llama/Llama-2-70b-chat-hf, however probably since
this is deprecated it always uses meta-llama/Llama-3-70b-Instruct). We
stumbled across this issue and fixed it as proposed in this pull
request. Feel free to change the fix according to your coding guidelines
and style, this is just a proposal and we want to draw attention to this
problem.
### Dependencies
no additional dependencies required
Feel free to contact me or @timo282 and @finitearth if you have any
questions.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Added Azure Search Access Token Authentication instead of API KEY auth.
Fixes Issue: https://github.com/langchain-ai/langchain/issues/24263
Dependencies: None
Twitter: @levalencia
@baskaryan
Could you please review? First time creating a PR that fixes some code.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
updated stop and request_timeout so they aliased to stop_sequences, and
timeout respectively. Added test that both continue to set the same
underlying attributes.
Related to
[20085](https://github.com/langchain-ai/langchain/issues/20085)
Co-authored-by: ccurme <chester.curme@gmail.com>
Description: Send both the query and query_embedding to the Databricks
index for hybrid search.
Issue: When using hybrid search with non-Databricks managed embedding we
currently don't pass both the embedding and query_text to the index.
Hybrid search requires both of these. This change fixes this issue for
both `similarity_search` and `similarity_search_by_vector`.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Refactor PebbloSafeLoader**
- Created `APIWrapper` and moved API logic into it.
- Moved helper functions to the utility file.
- Created smaller functions and methods for better readability.
- Properly read environment variables.
- Removed unused code.
**Issue:** NA
**Dependencies:** NA
**tests**: Updated
- [x] NatbotChain: move to community, deprecate langchain version.
Update to use `prompt | llm | output_parser` instead of LLMChain.
- [x] LLMMathChain: deprecate + add langgraph replacement example to API
ref
- [x] HypotheticalDocumentEmbedder (retriever): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] FlareChain: update to use `prompt | llm | output_parser` instead
of LLMChain
- [x] ConstitutionalChain: deprecate + add langgraph replacement example
to API ref
- [x] LLMChainExtractor (document compressor): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] LLMChainFilter (document compressor): update to use `prompt | llm
| output_parser` instead of LLMChain
- [x] RePhraseQueryRetriever (retriever): update to use `prompt | llm |
output_parser` instead of LLMChain
This PR gets rid `root_validators(allow_reuse=True)` logic used in
EdenAI Tool in preparation for pydantic 2 upgrade.
- add another test to secret_from_env_factory
Change all usages of __fields__ with get_fields adapter merged into
langchain_core.
Code mod generated using the following grit pattern:
```
engine marzano(0.1)
language python
`$X.__fields__` => `get_fields($X)` where {
add_import(source="langchain_core.utils.pydantic", name="get_fields")
}
```
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
- **Description:** Instantiating `GPT4AllEmbeddings` with no
`gpt4all_kwargs` argument raised a `ValidationError`. Root cause: #21238
added the capability to pass `gpt4all_kwargs` through to the `GPT4All`
instance via `Embed4All`, but broke code that did not specify a
`gpt4all_kwargs` argument.
- **Issue:** #25119
- **Dependencies:** None
- **Twitter handle:** [`@metadaddy`](https://twitter.com/metadaddy)
**Description:**
In this PR, I am adding three stock market tools from
financialdatasets.ai (my API!):
- get balance sheets
- get cash flow statements
- get income statements
Twitter handle: [@virattt](https://twitter.com/virattt)
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- **Description:**
Support ChatMlflow.bind_tools method
Tested in Databricks:
<img width="836" alt="image"
src="https://github.com/user-attachments/assets/fa28ef50-0110-4698-8eda-4faf6f0b9ef8">
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
This PR adds annotations in comunity package.
Annotations are only strictly needed in subclasses of BaseModel for
pydantic 2 compatibility.
This PR adds some unnecessary annotations, but they're not bad to have
regardless for documentation pages.
- **Title:** [PebbloSafeLoader] Implement content-size-based batching in
the classification flow(loader/doc API)
- **Description:**
- Implemented content-size-based batching in the loader/doc API, set to
100KB with no external configuration option, intentionally hard-coded to
prevent timeouts.
- Remove unused field(pb_id) from doc_metadata
- **Issue:** NA
- **Dependencies:** NA
- **Add tests and docs:** Updated
Description: The old method will be discontinued; use the official SDK
for more model options.
Issue: None
Dependencies: None
Twitter handle: None
Co-authored-by: trumanyan <trumanyan@tencent.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "community:add Yi LLM", "docs:add Yi Documentation"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** This PR adds support for the Yi model to LangChain.
- **Dependencies:**
[langchain_core,requests,contextlib,typing,logging,json,langchain_community]
- **Twitter handle:** 01.AI
- [x] **Add tests and docs**: I've added the corresponding documentation
to the relevant paths
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Description:
- This PR adds a self query retriever implementation for SAP HANA Cloud
Vector Engine. The retriever supports all operators except for contains.
- Issue: N/A
- Dependencies: no new dependencies added
**Add tests and docs:**
Added integration tests to:
libs/community/tests/unit_tests/query_constructors/test_hanavector.py
**Documentation for self query retriever:**
/docs/integrations/retrievers/self_query/hanavector_self_query.ipynb
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Expanded the chat model functionality to support tools
in the 'baichuan.py' file. Updated module imports and added tool object
handling in message conversions. Additional changes include the
implementation of tool binding and related unit tests. The alterations
offer enhanced model capabilities by enabling interaction with tool-like
objects.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- [x] **PR title**:
community: Add OCI Generative AI tool and structured output support
- [x] **PR message**:
- **Description:** adding tool calling and structured output support for
chat models offered by OCI Generative AI services. This is an update to
our last PR 22880 with changes in
/langchain_community/chat_models/oci_generative_ai.py
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** NA
- [x] **Add tests and docs**:
1. we have updated our unit tests
2. we have updated our documentation under
/docs/docs/integrations/chat/oci_generative_ai.ipynb
- [x] **Lint and test**: `make format`, `make lint` and `make test` we
run successfully
---------
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Fixes for Eden AI Custom tools and ChatEdenAI:
- add missing import in __init__ of chat_models
- add `args_schema` to custom tools. otherwise '__arg1' would sometimes
be passed to the `run` method
- fix IndexError when no human msg is added in ChatEdenAI
Thank you for contributing to LangChain!
**Description:**
This PR allows users of `langchain_community.llms.ollama.Ollama` to
specify the `auth` parameter, which is then forwarded to all internal
calls of `requests.request`. This works in the same way as the existing
`headers` parameters. The auth parameter enables the usage of the given
class with Ollama instances, which are secured by more complex
authentication mechanisms, that do not only rely on static headers. An
example are AWS API Gateways secured by the IAM authorizer, which
expects signatures dynamically calculated on the specific HTTP request.
**Issue:**
Integrating a remote LLM running through Ollama using
`langchain_community.llms.ollama.Ollama` only allows setting static HTTP
headers with the parameter `headers`. This does not work, if the given
instance of Ollama is secured with an authentication mechanism that
makes use of dynamically created HTTP headers which for example may
depend on the content of a given request.
**Dependencies:**
None
**Twitter handle:**
None
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Added [ScrapingAnt](https://scrapingant.com/) Web Loader integration.
ScrapingAnt is a web scraping API that allows extracting web page data
into accessible and well-formatted markdown.
Description: Added ScrapingAnt web loader for retrieving web page data
as markdown
Dependencies: scrapingant-client
Twitter: @WeRunTheWorld3
---------
Co-authored-by: Oleg Kulyk <oleg@scrapingant.com>
This PR is under WIP and adds the following functionalities:
- [X] Supports tool calling across the langchain ecosystem. (However
streaming is not supported)
- [X] Update documentation
- [ ] **Community**: "Retrievers: Product Quantization"
- [X] This PR adds Product Quantization feature to the retrievers to the
Langchain Community. PQ is one of the fastest retrieval methods if the
embeddings are rich enough in context due to the concepts of
quantization and representation through centroids
- **Description:** Adding PQ as one of the retrievers
- **Dependencies:** using the package nanopq for this PR
- **Twitter handle:** vishnunkumar_
- [X] **Add tests and docs**: If you're adding a new integration, please
include
- [X] Added unit tests for the same in the retrievers.
- [] Will add an example notebook subsequently
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/ -
done the same
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
### Description
This pull request added new document loaders to load documents of
various formats using [Dedoc](https://github.com/ispras/dedoc):
- `DedocFileLoader` (determine file types automatically and parse)
- `DedocPDFLoader` (for `PDF` and images parsing)
- `DedocAPIFileLoader` (determine file types automatically and parse
using Dedoc API without library installation)
[Dedoc](https://dedoc.readthedocs.io) is an open-source library/service
that extracts texts, tables, attached files and document structure
(e.g., titles, list items, etc.) from files of various formats. The
library is actively developed and maintained by a group of developers.
`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images
and more.
Full list of supported formats can be found
[here](https://dedoc.readthedocs.io/en/latest/#id1).
For `PDF` documents, `Dedoc` allows to determine textual layer
correctness and split the document into paragraphs.
### Issue
This pull request extends variety of document loaders supported by
`langchain_community` allowing users to choose the most suitable option
for raw documents parsing.
### Dependencies
The PR added a new (optional) dependency `dedoc>=2.2.5` ([library
documentation](https://dedoc.readthedocs.io)) to the
`extended_testing_deps.txt`
### Twitter handle
None
### Add tests and docs
1. Test for the integration:
`libs/community/tests/integration_tests/document_loaders/test_dedoc.py`
2. Example notebook:
`docs/docs/integrations/document_loaders/dedoc.ipynb`
3. Information about the library:
`docs/docs/integrations/providers/dedoc.mdx`
### Lint and test
Done locally:
- `make format`
- `make lint`
- `make integration_tests`
- `make docs_build` (from the project root)
---------
Co-authored-by: Nasty <bogatenkova.anastasiya@mail.ru>
- **Description:** Add a DocumentTransformer for executing one or more
`LinkExtractor`s and adding the extracted links to each document.
- **Issue:** n/a
- **Depedencies:** none
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
xfailing some sql tests that do not currently work on sqlalchemy v1
#22207 was very much not sqlalchemy v1 compatible.
Moving forward, implementations should be compatible with both to pass
CI
The `MongoDBStore` can manage only documents.
It's not possible to use MongoDB for an `CacheBackedEmbeddings`.
With this new implementation, it's possible to use:
```python
CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings=embeddings,
document_embedding_cache=MongoDBByteStore(
connection_string=db_uri,
db_name=db_name,
collection_name=collection_name,
),
)
```
and use MongoDB to cache the embeddings !
- **Description:**
- Updated checksum in doc metadata
- Sending checksum and removing actual content, while sending data to
`pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`/loader/doc` API
- Adding `pb_id` i.e. pebblo id to doc metadata
- Refactoring as needed.
- Sending `content-checksum` and removing actual content, while sending
data to `pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`prmopt` API
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** Updated
- **Docs** NA
---------
Co-authored-by: dristy.cd <dristy@clouddefense.io>
**Description:**
**TextEmbed** is a high-performance embedding inference server designed
to provide a high-throughput, low-latency solution for serving
embeddings. It supports various sentence-transformer models and includes
the ability to deploy image and text embedding models. TextEmbed offers
flexibility and scalability for diverse applications.
- **PyPI Package:** [TextEmbed on
PyPI](https://pypi.org/project/textembed/)
- **Docker Image:** [TextEmbed on Docker
Hub](https://hub.docker.com/r/kevaldekivadiya/textembed)
- **GitHub Repository:** [TextEmbed on
GitHub](https://github.com/kevaldekivadiya2415/textembed)
**PR Description**
This PR adds functionality for embedding documents and queries using the
`TextEmbedEmbeddings` class. The implementation allows for both
synchronous and asynchronous embedding requests to a TextEmbed API
endpoint. The class handles batching and permuting of input texts to
optimize the embedding process.
**Example Usage:**
```python
from langchain_community.embeddings import TextEmbedEmbeddings
# Initialise the embeddings class
embeddings = TextEmbedEmbeddings(model="your-model-id", api_key="your-api-key", api_url="your_api_url")
# Define a list of documents
documents = [
"Data science involves extracting insights from data.",
"Artificial intelligence is transforming various industries.",
"Cloud computing provides scalable computing resources over the internet.",
"Big data analytics helps in understanding large datasets.",
"India has a diverse cultural heritage."
]
# Define a query
query = "What is the cultural heritage of India?"
# Embed all documents
document_embeddings = embeddings.embed_documents(documents)
# Embed the query
query_embedding = embeddings.embed_query(query)
# Print embeddings for each document
for i, embedding in enumerate(document_embeddings):
print(f"Document {i+1} Embedding:", embedding)
# Print the query embedding
print("Query Embedding:", query_embedding)
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>