Commit Graph

220 Commits

Author SHA1 Message Date
Leonid Ganeline
85094cbb3a
docs: community docstring updates (#21040)
Added missed docstrings. Updated docstrings to consistent format.
2024-04-29 17:40:23 -04:00
Leonid Ganeline
dc7c06bc07
community[minor]: import fix (#20995)
Issue: When the third-party package is not installed, whenever we need
to `pip install <package>` the ImportError is raised.
But sometimes, the `ValueError` or `ModuleNotFoundError` is raised. It
is bad for consistency.
Change: replaced the `ValueError` or `ModuleNotFoundError` with
`ImportError` when we raise an error with the `pip install <package>`
message.
Note: Ideally, we replace all `try: import... except... raise ... `with
helper functions like `import_aim` or just use the existing
[langchain_core.utils.utils.guard_import](https://api.python.langchain.com/en/latest/utils/langchain_core.utils.utils.guard_import.html#langchain_core.utils.utils.guard_import)
But it would be much bigger refactoring. @baskaryan Please, advice on
this.
2024-04-29 10:32:50 -04:00
Jorge Piedrahita Ortiz
40b2e2916b
community[minor]: Sambanova llm integration (#20955)
- **Description:** Added [Sambanova systems](https://sambanova.ai/)
integration, including sambaverse and sambastudio LLMs
- **Dependencies:**   sseclient-py  (optional)

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-27 01:05:13 +00:00
Amine Djeghri
790ea75cf7
community[minor]: add exllamav2 library for GPTQ & EXL2 models (#17817)
Added 3 files : 
- Library : ExLlamaV2 
- Test integration
- Notebook

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-27 00:44:43 +00:00
Shengsheng Huang
fd1061e7bf
community[patch]: add more data types support to ipex-llm llm integration (#20833)
- **Description**:  
- **add support for more data types**: by default `IpexLLM` will load
the model in int4 format. This PR adds more data types support such as
`sym_in5`, `sym_int8`, etc. Data formats like NF3, NF4, FP4 and FP8 are
only supported on GPU and will be added in future PR.
    - Fix a small issue in saving/loading, update api docs
- **Dependencies**: `ipex-llm` library
- **Document**: In `docs/docs/integrations/llms/ipex_llm.ipynb`, added
instructions for saving/loading low-bit model.
- **Tests**: added new test cases to
`libs/community/tests/integration_tests/llms/test_ipex_llm.py`, added
config params.
- **Contribution maintainer**: @shane-huang
2024-04-25 12:58:18 -07:00
ccurme
481d3855dc
patch: remove usage of llm, chat model __call__ (#20788)
- `llm(prompt)` -> `llm.invoke(prompt)`
- `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`)
- `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt,
config={"callbacks": callbacks})`
- `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
2024-04-24 19:39:23 -04:00
Alex Sherstinsky
12e5ec6de3
community: Support both Predibase SDK-v1 and SDK-v2 in Predibase-LangChain integration (#20859) 2024-04-24 13:31:01 -07:00
ccurme
7a922f3e48
core, openai: support custom token encoders (#20762) 2024-04-23 13:57:05 +00:00
Matheus Henrique Raymundo
bb69819267
community: Fix the stop sequence key name for Mistral in Bedrock (#20709)
Fixing the wrong stop sequence key name that causes an error on AWS
Bedrock.
You can check the MistralAI bedrock parameters
[here](https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-mistral.html)
This change fixes this
[issue](https://github.com/langchain-ai/langchain/issues/20095)
2024-04-21 20:06:06 -04:00
Dmitry Tyumentsev
f111efeb6e
community[patch]: YandexGPT API add ability to disable request logging (#20670)
Closes (#20622)

Added the ability to [disable logging of requests to
YandexGPT](https://yandex.cloud/en/docs/foundation-models/operations/yandexgpt/disable-logging).
2024-04-19 21:40:37 -04:00
Charlie Holtz
1cbab0ebda
community: update Replicate to work with official models (#20633)
Description: you don't need to pass a version for Replicate official
models. That was broken on LangChain until now!

You can now run: 

```
llm = Replicate(
    model="meta/meta-llama-3-8b-instruct",
    model_kwargs={"temperature": 0.75, "max_length": 500, "top_p": 1},
)
prompt = """
User: Answer the following yes/no question by reasoning step by step. Can a dog drive a car?
Assistant:
"""
llm(prompt)
```

I've updated the replicate.ipynb to reflect that.

twitter: @charliebholtz

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-19 01:43:40 +00:00
Lance Martin
d5c22b80a5
community[patch]: Fix Ollama for LLaMA3 (#20624)
We see verbose generations w/ LLaMA3 and Ollama - 

https://smith.langchain.com/public/88c4cd21-3d57-4229-96fe-53443398ca99/r

--- 

Fix here implies that when stop was being set to an empty list, the
stream had no conditions under which to stop, which could lead to
excessive or unintended output.

Test LLaMA2 - 

https://smith.langchain.com/public/57dfc64a-591b-46fa-a1cd-8783acaefea2/r

Test LLaMA3 - 

https://smith.langchain.com/public/76ff5f47-ac89-4772-a7d2-5caa907d3fd6/r

https://smith.langchain.com/public/a31d2fad-9094-4c93-949a-964b27630ccb/r

Test Mistral -

https://smith.langchain.com/public/a4fe7114-c308-4317-b9fd-6c86d31f1c5b/r

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-19 00:20:32 +00:00
balloonio
e786da7774
community[patch]: Invoke callback prior to yielding token fix [HuggingFaceTextGenInference] (#20426)
…gFaceTextGenInference)

- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for [HuggingFaceTextGenInference]


- [x] **PR message**: 
- **Description:** Invoke callback prior to yielding token in stream
method in [HuggingFaceTextGenInference]
    - **Issue:** https://github.com/langchain-ai/langchain/issues/16913
    - **Dependencies:** None
    - **Twitter handle:** @bolun_zhang

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-18 14:25:20 +00:00
Erick Friis
e395115807
docs: aws docs updates (#20571) 2024-04-17 23:32:00 +00:00
Erick Friis
f09bd0b75b
upstage: init package (#20574)
Co-authored-by: Sean Cho <sean@upstage.ai>
Co-authored-by: JuHyung-Son <sonju0427@gmail.com>
2024-04-17 23:25:36 +00:00
pjb157
479be3cc91
community[minor]: Unify Titan Takeoff Integrations and Adding Embedding Support (#18775)
**Community: Unify Titan Takeoff Integrations and Adding Embedding
Support**

 **Description:** 
Titan Takeoff no longer reflects this either of the integrations in the
community folder. The two integrations (TitanTakeoffPro and
TitanTakeoff) where causing confusion with clients, so have moved code
into one place and created an alias for backwards compatibility. Added
Takeoff Client python package to do the bulk of the work with the
requests, this is because this package is actively updated with new
versions of Takeoff. So this integration will be far more robust and
will not degrade as badly over time.

**Issue:**
Fixes bugs in the old Titan integrations and unified the code with added
unit test converge to avoid future problems.

**Dependencies:**
Added optional dependency takeoff-client, all imports still work without
dependency including the Titan Takeoff classes but just will fail on
initialisation if not pip installed takeoff-client

**Twitter**
@MeryemArik9

Thanks all :)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-17 01:43:35 +00:00
Sevin F. Varoglu
54d388d898
community[patch]: update OctoAI endpoint to subclass BaseOpenAI (#19757)
This PR updates OctoAIEndpoint LLM to subclass BaseOpenAI as OctoAI is
an OpenAI-compatible service. The documentation and tests have also been
updated.
2024-04-16 17:32:20 -07:00
balloonio
b66a4f48fa
community[patch]: Invoke callback prior to yielding token fix [DeepInfra] (#20427)
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for [DeepInfra]


- [x] **PR message**: 
- **Description:** Invoke callback prior to yielding token in stream
method in [DeepInfra]
    - **Issue:** https://github.com/langchain-ai/langchain/issues/16913
    - **Dependencies:** None
    - **Twitter handle:** @bolun_zhang

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-04-14 14:32:52 -04:00
ccurme
38faa74c23
community[patch]: update use of deprecated llm methods (#20393)
.predict and .predict_messages for BaseLanguageModel and BaseChatModel
2024-04-12 17:28:23 -04:00
Corey Zumar
3a068b26f3
community[patch]: Databricks - fix scope of dangerous deserialization error in Databricks LLM connector (#20368)
fix scope of dangerous deserialization error in Databricks LLM connector

---------

Signed-off-by: dbczumar <corey.zumar@databricks.com>
2024-04-12 17:27:26 -04:00
balloonio
e7b1a44c5b
community[patch]: Invoke callback prior to yielding token fix for Llamafile (#20365)
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for Llamafile


- [x] **PR message**: 
- **Description:** Invoke callback prior to yielding token in stream
method in community llamafile.py
    - **Issue:** https://github.com/langchain-ai/langchain/issues/16913
    - **Dependencies:** None
    - **Twitter handle:** @bolun_zhang

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-04-12 19:26:12 +00:00
balloonio
93caa568f9
community[patch]: Invoke callback prior to yielding token fix for HuggingFaceEndpoint (#20366)
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for HuggingFaceEndpoint


- [x] **PR message**: 
- **Description:** Invoke callback prior to yielding token in stream
method in community HuggingFaceEndpoint
    - **Issue:** https://github.com/langchain-ai/langchain/issues/16913
    - **Dependencies:** None
    - **Twitter handle:** @bolun_zhang

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-12 19:16:34 +00:00
Alex Sherstinsky
fad0962643
community: for Predibase -- enable both Predibase-hosted and HuggingFace-hosted fine-tuned adapter repositories (#20370) 2024-04-12 08:32:00 -07:00
Leonid Ganeline
7cf2d2759d
community[patch]: docstrings update (#20301)
Added missed docstrings. Format docstings to the consistent form.
2024-04-11 16:23:27 -04:00
Leonid Ganeline
4cb5f4c353
community[patch]: import flattening fix (#20110)
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.

See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-10 13:01:19 -04:00
seray
add31f46d0
community[patch]: OpenLLM Async Client Fixes and Timeout Parameter (#20007)
Same changes as this merged
[PR](https://github.com/langchain-ai/langchain/pull/17478)
(https://github.com/langchain-ai/langchain/pull/17478), but for the
async client, as the same issues persist.

- Replaced 'responses' attribute of OpenLLM's GenerationOutput schema to
'outputs'.
reference:
66de54eae7/openllm-core/src/openllm_core/_schemas.py (L135)

- Added timeout parameter for the async client.

---------

Co-authored-by: Seray Arslan <seray.arslan@knime.com>
2024-04-09 16:34:56 -04:00
Prince Canuma
1f9f4d8742
community[minor]: Add support for MLX models (chat & llm) (#18152)
**Description:** This PR adds support for MLX models both chat (i.e.,
instruct) and llm (i.e., pretrained) types/
**Dependencies:** mlx, mlx_lm, transformers
**Twitter handle:** @Prince_Canuma

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-09 14:17:07 +00:00
Alex Sherstinsky
5f563e040a
community: extend Predibase integration to support fine-tuned LLM adapters (#19979)
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
    - **Twitter handle:** `@alexsherstinsky`


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-08 18:54:29 +00:00
Cheng, Penghui
cc407e8a1b
community[minor]: weight only quantization with intel-extension-for-transformers. (#14504)
Support weight only quantization with intel-extension-for-transformers.
[Intel® Extension for
Transformers](https://github.com/intel/intel-extension-for-transformers)
is an innovative toolkit to accelerate Transformer-based models on Intel
platforms, in particular effective on 4th Intel Xeon Scalable processor
[Sapphire
Rapids](https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html)
(codenamed Sapphire Rapids). The toolkit provides the below key
features:

* Seamless user experience of model compressions on Transformer-based
models by extending [Hugging Face
transformers](https://github.com/huggingface/transformers) APIs and
leveraging [Intel® Neural
Compressor](https://github.com/intel/neural-compressor)
* Advanced software optimizations and unique compression-aware runtime.
* Optimized Transformer-based model packages.
*
[NeuralChat](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat),
a customizable chatbot framework to create your own chatbot within
minutes by leveraging a rich set of plugins and SOTA optimizations.
*
[Inference](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/llm/runtime/graph)
of Large Language Model (LLM) in pure C/C++ with weight-only
quantization kernels.
This PR is an integration of weight only quantization feature with
intel-extension-for-transformers.

Unit test is in
lib/langchain/tests/integration_tests/llm/test_weight_only_quantization.py
The notebook is in
docs/docs/integrations/llms/weight_only_quantization.ipynb.
The document is in
docs/docs/integrations/providers/weight_only_quantization.mdx.

---------

Signed-off-by: Cheng, Penghui <penghui.cheng@intel.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-03 16:21:34 +00:00
Jamsheed Mistri
4f70bc119d
community[minor]: add Layerup Security integration (#19787)
**Description:** adds integration with [Layerup
Security](https://uselayerup.com). Docs can be found
[here](https://docs.uselayerup.com). Integrates directly with our Python
SDK.

**Dependencies:**
[LayerupSecurity](https://pypi.org/project/LayerupSecurity/)

**Note**: all methods for our product require a paid API key, so I only
included 1 test which checks for an invalid API key response. I have
tested extensively locally.

**Twitter handle**: [@layerup_](https://twitter.com/layerup_)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-01 23:49:00 +00:00
Kamal Zhang
368e35c3b1
community[patch]: introduce convert_to_secret() to bananadev llm (#14283)
- **Description:** Per #12165, this PR add to BananaLLM the function
convert_to_secret_str() during environment variable validation.
- **Issue:** #12165
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** @treewatcha75751

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-30 00:52:25 +00:00
Alex Sherstinsky
a9bc212bf2
community[minor]: fix failing Predibase integration (#19776)
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
    - **Twitter handle:** `@alexsherstinsky`


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-30 00:38:13 +00:00
Jialei
f7c903e24a
community[minor]: add support for Moonshot llm and chat model (#17100) 2024-03-29 08:54:23 +00:00
T Cramer
540ebf35a9
community[patch]: Add explicit error message to Bedrock error output. (#17328)
- **Description:** Propagate Bedrock errors into Langchain explicitly.
Use-case: unset region error is hidden behind 'Could not load
credentials...' message
- **Issue:**
[17654](https://github.com/langchain-ai/langchain/issues/17654)
  - **Dependencies:** None

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 03:07:33 +00:00
Sachin Paryani
25c9f3d1d1
community[patch]: Support Streaming in Azure Machine Learning (#18246)
- [x] **PR title**: "community: Support streaming in Azure ML and few
naming changes"

- [x] **PR message**:
- **Description:** Added support for streaming for azureml_endpoint.
Also, renamed and AzureMLEndpointApiType.realtime to
AzureMLEndpointApiType.dedicated. Also, added new classes
CustomOpenAIChatContentFormatter and CustomOpenAIContentFormatter and
updated the classes LlamaChatContentFormatter and LlamaContentFormatter
to now show a deprecated warning message when instantiated.

---------

Co-authored-by: Sachin Paryani <saparan@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 23:38:20 +00:00
wulixuan
b7c8bc8268
community[patch]: fix yuan2 errors in LLMs (#19004)
1. fix yuan2 errors while invoke Yuan2.
2. update tests.
2024-03-28 14:37:44 -07:00
高璟琦
75173d31db
community[minor]: Add solar model chat model (#18556)
Add our solar chat models, available model choices:
* solar-1-mini-chat
* solar-1-mini-translate-enko
* solar-1-mini-translate-koen

More documents and pricing can be found at
https://console.upstage.ai/services/solar.

The references to our solar model can be found at
* https://arxiv.org/abs/2402.17032

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 12:31:11 -07:00
Davide Menini
f7042321f1
community[patch]: gather token usage info in BedrockChat during generation (#19127)
This PR allows to calculate token usage for prompts and completion
directly in the generation method of BedrockChat. The token usage
details are then returned together with the generations, so that other
downstream tasks can access them easily.

This allows to define a callback for tokens tracking and cost
calculation, similarly to what happens with OpenAI (see
[OpenAICallbackHandler](https://api.python.langchain.com/en/latest/_modules/langchain_community/callbacks/openai_info.html#OpenAICallbackHandler).
I plan on adding a BedrockCallbackHandler later.
Right now keeping track of tokens in the callback is already possible,
but it requires passing the llm, as done here:
https://how.wtf/how-to-count-amazon-bedrock-anthropic-tokens-with-langchain.html.
However, I find the approach of this PR cleaner.

Thanks for your reviews. FYI @baskaryan, @hwchase17

---------

Co-authored-by: taamedag <Davide.Menini@swisscom.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 18:58:46 +00:00
ligang-super
a662468dde
community[patch]: Fix the error of Baidu Qianfan not passing the stop parameter (#18666)
- [x] **PR title**: "community: fix baidu qianfan missing stop
parameter"
- [x] **PR message**:
- **Description: Baidu Qianfan lost the stop parameter when requesting
service due to extracting it from kwargs. This bug can cause the agent
to receive incorrect results

---------

Co-authored-by: ligang33 <ligang33@baidu.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 18:21:49 +00:00
Shengsheng Huang
ac1dd8ad94
community[minor]: migrate bigdl-llm to ipex-llm (#19518)
- **Description**: `bigdl-llm` library has been renamed to
[`ipex-llm`](https://github.com/intel-analytics/ipex-llm). This PR
migrates the `bigdl-llm` integration to `ipex-llm` .
- **Issue**: N/A. The original PR of `bigdl-llm` is
https://github.com/langchain-ai/langchain/pull/17953
- **Dependencies**: `ipex-llm` library
- **Contribution maintainer**: @shane-huang

Updated doc:   docs/docs/integrations/llms/ipex_llm.ipynb
Updated test:
libs/community/tests/integration_tests/llms/test_ipex_llm.py
2024-03-27 20:12:59 -07:00
Yuki Watanabe
cfecbda48b
community[minor]: Allow passing allow_dangerous_deserialization when loading LLM chain (#18894)
### Issue
Recently, the new `allow_dangerous_deserialization` flag was introduced
for preventing unsafe model deserialization that relies on pickle
without user's notice (#18696). Since then some LLMs like Databricks
requires passing in this flag with true to instantiate the model.

However, this breaks existing functionality to loading such LLMs within
a chain using `load_chain` method, because the underlying loader
function
[load_llm_from_config](f96dd57501/libs/langchain/langchain/chains/loading.py (L40))
 (and load_llm) ignores keyword arguments passed in. 

### Solution
This PR fixes this issue by propagating the
`allow_dangerous_deserialization` argument to the class loader iff the
LLM class has that field.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 11:07:55 -04:00
Dmitry Tyumentsev
08b769d539
community[patch]: YandexGPT Use recent yandexcloud sdk version (#19341)
Fixed inability to work with [yandexcloud
SDK](https://pypi.org/project/yandexcloud/) version higher 0.265.0
2024-03-25 17:05:57 -07:00
Mikelarg
dac2e0165a
community[minor]: Added GigaChat Embeddings support + updated previous GigaChat integration (#19516)
- **Description:** Added integration with
[GigaChat](https://developers.sber.ru/portal/products/gigachat)
embeddings. Also added support for extra fields in GigaChat LLM and
fixed docs.
2024-03-25 16:08:37 -07:00
billytrend-cohere
63343b4987
cohere[patch]: add cohere as a partner package (#19049)
Description: adds support for langchain_cohere

---------

Co-authored-by: Harry M <127103098+harry-cohere@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-25 20:23:47 +00:00
Nikhil Kumar
3d3b46a782
docs: Update docs for HuggingFacePipeline (#19306)
Updated `HuggingFacePipeline` docs to be in sync with list of supported
tasks, including translation.

- [x] **PR title**: "community: Update docs for `HuggingFacePipeline`"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**:
- **Description:** Update docs for `HuggingFacePipeline`, was earlier
missing `translation` as a valid task
    - **Issue:** N/A
    - **Dependencies:** N/A
    - **Twitter handle:** None


- [x] **Add tests and docs**:


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-03-25 00:29:21 -07:00
aditya thomas
515aab3312
community[patch]: invoke callback prior to yielding token (openai) (#19389)
**Description:** Invoke callback prior to yielding token for BaseOpenAI
& OpenAIChat
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
2024-03-22 16:45:55 -07:00
aditya thomas
49e932cd24
community[patch]: invoke callback prior to yielding token (fireworks) (#19388)
**Description:** Invoke callback prior to yielding token for Fireworks
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
2024-03-22 16:44:06 -07:00
aditya thomas
4856a87261
community[patch]: invoke callback prior to yielding token (llama.cpp) (#19392)
**Description:** Invoke callback prior to yielding token for llama.cpp
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
2024-03-22 16:17:56 -04:00
Yudhajit Sinha
7d216ad1e1
community[patch]: Invoke callback prior to yielding token (titan_takeoff_pro) (#18624)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/titan_takeoff_pro.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:58:18 -07:00
Yudhajit Sinha
455a74486b
community[patch]: Invoke callback prior to yielding token (sparkllm) (#18625)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/sparkllm.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:57:53 -07:00
Yudhajit Sinha
5ac1860484
community[patch]: Invoke callback prior to yielding token (replicate) (#18626)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/replicate.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:57:27 -07:00
Yudhajit Sinha
9525e392de
community[patch]: Invoke callback prior to yielding token (pai_eas_endpoint) (#18627)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/pai_eas_endpoint.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:56:58 -07:00
Yudhajit Sinha
140f06e59a
community[patch]: Invoke callback prior to yielding token (openai) (#18628)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/openai.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:56:30 -07:00
Yudhajit Sinha
280a914920
community[patch]: Invoke callback prior to yielding token (ollama) (#18629)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_ &
_astream_ methods in llms/ollama.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:56:09 -07:00
gonvee
b82644078e
community: Add keep_alive parameter to control how long the model w… (#19005)
Add `keep_alive` parameter to control how long the model will stay
loaded into memory with Ollama。

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-19 04:29:01 +00:00
Taqi Jaffri
044bc22acc
Community: Add mistral oss model support to azureml endpoints, plus configurable timeout (#19123)
- **Description:** There was no formatter for mistral models for Azure
ML endpoints. Adding that, plus a configurable timeout (it was hard
coded before)
- **Dependencies:** none
- **Twitter handle:** @tjaffri @docugami
2024-03-18 21:10:42 -07:00
Leonid Ganeline
7de1d9acfd
community: llms imports fixes (#18943)
Classes are missed in  __all__  and in different places of __init__.py
- BaichuanLLM 
- ChatDatabricks
- ChatMlflow
- Llamafile
- Mlflow
- Together
Added classes to __all__. I also sorted __all__ list.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-18 20:24:40 +00:00
primate88
5aa68936e0
community: Fix import path for StreamingStdOutCallbackHandler example (#19170)
- Description:
- Updated the import path for `StreamingStdOutCallbackHandler` in the
streaming response example within `huggingface_endpoint.py`. This change
corrects the import statement to reflect the actual location of
`StreamingStdOutCallbackHandler` in
`langchain_core.callbacks.streaming_stdout`.
- Issue:
  - None
- Dependencies:
  - No additional dependencies are required for this change.
- Twitter handle:
  - None

## Note:
I have tested this change locally and confirmed that the
`StreamingStdOutCallbackHandler` works as expected with the updated
import path. This PR does not require the addition of new tests since it
is a correction to documentation/examples rather than functional code.
2024-03-17 00:50:37 +00:00
Nikhil Kumar
635b3372bd
community[minor]: Add support for translation in HuggingFacePipeline (#19190)
- [x] **Support for translation**: "community: Add support for
translation in `HuggingFacePipeline`"


- [x] **Add support for translation in `HuggingFacePipeline`**:
- **Description:** Add support for translation in `HuggingFacePipeline`,
which earlier used to support only text summarization and generation.
    - **Issue:** N/A
    - **Dependencies:** N/A
    - **Twitter handle:** None
2024-03-17 00:48:13 +00:00
Shuai Liu
c244e1a50b
community[patch]: Fixed bug in merging generation_info during chunk concatenation in Tongyi and ChatTongyi (#19014)
- **Description:** 

In #16218 , during the `GenerationChunk` and `ChatGenerationChunk`
concatenation, the `generation_info` merging changed from simple keys &
values replacement to using the util method
[`merge_dicts`](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/utils/_merge.py):


![image](https://github.com/langchain-ai/langchain/assets/2098020/10f315bf-7fe0-43a7-a0ce-6a3834b99a15)

The `merge_dicts` method could not handle merging values of `int` or
some other types, and would raise a
[`TypeError`](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/utils/_merge.py#L55).

This PR fixes this issue in the **Tongyi and ChatTongyi Model** by
adopting the `generation_info` of the last chunk
and discarding the `generation_info` of the intermediate chunks,
ensuring that `stream` and `astream` function correctly.

- **Issue:**  
    - Related issues or PRs about Tongyi & ChatTongyi: #16605, #17105 
    - Other models or cases: #18441, #17376
- **Dependencies:** No new dependencies
2024-03-15 16:27:53 -07:00
case-k
ebc4a64f9e
docs: fix databricks document url (#19096)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-15 22:25:11 +00:00
billytrend-cohere
7253b816cc
community: Add support for cohere SDK v5 (keeps v4 backwards compatibility) (#19084)
- **Description:** Add support for cohere SDK v5 (keeps v4 backwards
compatibility)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-14 15:53:24 -07:00
Anis ZAKARI
37e89ba5b1
community[patch]: Bedrock add support for mistral models (#18756)
*Description**: My previous
[PR](https://github.com/langchain-ai/langchain/pull/18521) was
mistakenly closed, so I am reopening this one. Context: AWS released two
Mistral models on Bedrock last Friday (March 1, 2024). This PR includes
some code adjustments to ensure their compatibility with the Bedrock
class.

---------

Co-authored-by: Anis ZAKARI <anis.zakari@hymaia.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-09 01:20:38 +00:00
Phat Vo
3ecb903d49
community[patch] : Tidy up and update Clarifai SDK functions (#18314)
Description :
* Tidy up, add missing docstring and fix unused params
* Enable using session token
2024-03-07 19:47:44 -08:00
Yunmo Koo
fee6f983ef
community[minor]: Integration for Friendli LLM and ChatFriendli ChatModel. (#17913)
## Description
- Add [Friendli](https://friendli.ai/) integration for `Friendli` LLM
and `ChatFriendli` chat model.
- Unit tests and integration tests corresponding to this change are
added.
- Documentations corresponding to this change are added.

## Dependencies
- Optional dependency
[`friendli-client`](https://pypi.org/project/friendli-client/) package
is added only for those who use `Frienldi` or `ChatFriendli` model.

## Twitter handle
- https://twitter.com/friendliai
2024-03-08 02:20:47 +00:00
Erick Friis
1beb84b061
community[patch]: move pdf text tests to integration (#18746) 2024-03-07 10:34:22 -08:00
Guangdong Liu
ced5e7bae7
community[patch]: Fix sparkllm authentication problem. (#18651)
- **Description:** fix sparkllm authentication problem.The current
timestamp is in RFC1123 format. The time deviation must be controlled
within 300s. I changed to re-obtain the url every time I ask a question.
https://www.xfyun.cn/doc/spark/general_url_authentication.html#_1-2-%E9%89%B4%E6%9D%83%E5%8F%82%E6%95%B0
2024-03-06 18:43:16 -08:00
Piyush Jain
2b234a4d96
Support for claude v3 models. (#18630)
Fixes #18513.

## Description
This PR attempts to fix the support for Anthropic Claude v3 models in
BedrockChat LLM. The changes here has updated the payload to use the
`messages` format instead of the formatted text prompt for all models;
`messages` API is backwards compatible with all models in Anthropic, so
this should not break the experience for any models.


## Notes
The PR in the current form does not support the v3 models for the
non-chat Bedrock LLM. This means, that with these changes, users won't
be able to able to use the v3 models with the Bedrock LLM. I can open a
separate PR to tackle this use-case, the intent here was to get this out
quickly, so users can start using and test the chat LLM. The Bedrock LLM
classes have also grown complex with a lot of conditions to support
various providers and models, and is ripe for a refactor to make future
changes more palatable. This refactor is likely to take longer, and
requires more thorough testing from the community. Credit to PRs
[18579](https://github.com/langchain-ai/langchain/pull/18579) and
[18548](https://github.com/langchain-ai/langchain/pull/18548) for some
of the code here.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-06 15:46:18 -08:00
Eugene Yurtsev
4c25b49229
community[major]: breaking change in some APIs to force users to opt-in for pickling (#18696)
This is a PR that adds a dangerous load parameter to force users to opt in to use pickle.

This is a PR that's meant to raise user awareness that the pickling module is involved.
2024-03-06 16:43:01 -05:00
Liang Zhang
81985b31e6
community[patch]: Databricks SerDe uses cloudpickle instead of pickle (#18607)
- **Description:** Databricks SerDe uses cloudpickle instead of pickle
when serializing a user-defined function transform_input_fn since pickle
does not support functions defined in `__main__`, and cloudpickle
supports this.
- **Dependencies:** cloudpickle>=2.0.0

Added a unit test.
2024-03-05 18:04:45 -08:00
Yudhajit Sinha
4570b477b9
community[patch]: Invoke callback prior to yielding token (titan_takeoff) (#18560)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/titan_takeoff.
- Issue: #16913 
- Dependencies: None
2024-03-05 12:54:26 -08:00
Erick Friis
343438e872
community[patch]: deprecate community fireworks (#18544) 2024-03-05 01:04:26 +00:00
William De Vena
275877980e
community[patch]: Invoke callback prior to yielding token (#18447)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
Description: Invoke callback prior to yielding token in _stream method
in llms/vertexai.
Issue: https://github.com/langchain-ai/langchain/issues/16913
Dependencies: None
2024-03-03 14:14:40 -08:00
William De Vena
67375e96e0
community[patch]: Invoke callback prior to yielding token (#18448)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream method
in llms/tongyi.
- Issue: https://github.com/langchain-ai/langchain/issues/16913
- Dependencies: None
2024-03-03 14:14:22 -08:00
William De Vena
eb04d0d3e2
community[patch]: Invoke callback prior to yielding token (#18452)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream and
_astream methods in llms/anthropic.
- Issue: https://github.com/langchain-ai/langchain/issues/16913
- Dependencies: None
2024-03-03 14:13:41 -08:00
William De Vena
371bec79bc
community[patch]: Invoke callback prior to yielding token (#18454)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream and
_astream methods in llms/baidu_qianfan_endpoint.
- Issue: https://github.com/langchain-ai/langchain/issues/16913
- Dependencies: None
2024-03-03 14:13:22 -08:00
Kate Silverstein
b7c71e2e07
community[minor]: llamafile embeddings support (#17976)
* **Description:** adds `LlamafileEmbeddings` class implementation for
generating embeddings using
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
Includes related unit tests and notebook showing example usage.
* **Issue:** N/A
* **Dependencies:** N/A
2024-03-01 13:49:18 -08:00
Arun Sathiya
4adac20d7b
community[patch]: Make cohere_api_key a SecretStr (#12188)
This PR makes `cohere_api_key` in `llms/cohere` a SecretStr, so that the
API Key is not leaked when `Cohere.cohere_api_key` is represented as a
string.

---------

Signed-off-by: Arun <arun@arun.blog>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-01 20:27:53 +00:00
Nikita Titov
9f2ab37162
community[patch]: don't try to parse json in case of errored response (#18317)
Related issue: #13896.

In case Ollama is behind a proxy, proxy error responses cannot be
viewed. You aren't even able to check response code.

For example, if your Ollama has basic access authentication and it's not
passed, `JSONDecodeError` will overwrite the truth response error.

<details>
<summary><b>Log now:</b></summary>

```
{
	"name": "JSONDecodeError",
	"message": "Expecting value: line 1 column 1 (char 0)",
	"stack": "---------------------------------------------------------------------------
JSONDecodeError                           Traceback (most recent call last)
File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/requests/models.py:971, in Response.json(self, **kwargs)
    970 try:
--> 971     return complexjson.loads(self.text, **kwargs)
    972 except JSONDecodeError as e:
    973     # Catch JSON-related errors and raise as requests.JSONDecodeError
    974     # This aliases json.JSONDecodeError and simplejson.JSONDecodeError

File /opt/miniforge3/envs/.gpt/lib/python3.10/json/__init__.py:346, in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
    343 if (cls is None and object_hook is None and
    344         parse_int is None and parse_float is None and
    345         parse_constant is None and object_pairs_hook is None and not kw):
--> 346     return _default_decoder.decode(s)
    347 if cls is None:

File /opt/miniforge3/envs/.gpt/lib/python3.10/json/decoder.py:337, in JSONDecoder.decode(self, s, _w)
    333 \"\"\"Return the Python representation of ``s`` (a ``str`` instance
    334 containing a JSON document).
    335 
    336 \"\"\"
--> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end())
    338 end = _w(s, end).end()

File /opt/miniforge3/envs/.gpt/lib/python3.10/json/decoder.py:355, in JSONDecoder.raw_decode(self, s, idx)
    354 except StopIteration as err:
--> 355     raise JSONDecodeError(\"Expecting value\", s, err.value) from None
    356 return obj, end

JSONDecodeError: Expecting value: line 1 column 1 (char 0)

During handling of the above exception, another exception occurred:

JSONDecodeError                           Traceback (most recent call last)
Cell In[3], line 1
----> 1 print(translate_func().invoke('text'))

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/runnables/base.py:2053, in RunnableSequence.invoke(self, input, config)
   2051 try:
   2052     for i, step in enumerate(self.steps):
-> 2053         input = step.invoke(
   2054             input,
   2055             # mark each step as a child run
   2056             patch_config(
   2057                 config, callbacks=run_manager.get_child(f\"seq:step:{i+1}\")
   2058             ),
   2059         )
   2060 # finish the root run
   2061 except BaseException as e:

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:165, in BaseChatModel.invoke(self, input, config, stop, **kwargs)
    154 def invoke(
    155     self,
    156     input: LanguageModelInput,
   (...)
    160     **kwargs: Any,
    161 ) -> BaseMessage:
    162     config = ensure_config(config)
    163     return cast(
    164         ChatGeneration,
--> 165         self.generate_prompt(
    166             [self._convert_input(input)],
    167             stop=stop,
    168             callbacks=config.get(\"callbacks\"),
    169             tags=config.get(\"tags\"),
    170             metadata=config.get(\"metadata\"),
    171             run_name=config.get(\"run_name\"),
    172             **kwargs,
    173         ).generations[0][0],
    174     ).message

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:543, in BaseChatModel.generate_prompt(self, prompts, stop, callbacks, **kwargs)
    535 def generate_prompt(
    536     self,
    537     prompts: List[PromptValue],
   (...)
    540     **kwargs: Any,
    541 ) -> LLMResult:
    542     prompt_messages = [p.to_messages() for p in prompts]
--> 543     return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:407, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs)
    405         if run_managers:
    406             run_managers[i].on_llm_error(e, response=LLMResult(generations=[]))
--> 407         raise e
    408 flattened_outputs = [
    409     LLMResult(generations=[res.generations], llm_output=res.llm_output)
    410     for res in results
    411 ]
    412 llm_output = self._combine_llm_outputs([res.llm_output for res in results])

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:397, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs)
    394 for i, m in enumerate(messages):
    395     try:
    396         results.append(
--> 397             self._generate_with_cache(
    398                 m,
    399                 stop=stop,
    400                 run_manager=run_managers[i] if run_managers else None,
    401                 **kwargs,
    402             )
    403         )
    404     except BaseException as e:
    405         if run_managers:

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:576, in BaseChatModel._generate_with_cache(self, messages, stop, run_manager, **kwargs)
    572     raise ValueError(
    573         \"Asked to cache, but no cache found at `langchain.cache`.\"
    574     )
    575 if new_arg_supported:
--> 576     return self._generate(
    577         messages, stop=stop, run_manager=run_manager, **kwargs
    578     )
    579 else:
    580     return self._generate(messages, stop=stop, **kwargs)

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/chat_models/ollama.py:250, in ChatOllama._generate(self, messages, stop, run_manager, **kwargs)
    226 def _generate(
    227     self,
    228     messages: List[BaseMessage],
   (...)
    231     **kwargs: Any,
    232 ) -> ChatResult:
    233     \"\"\"Call out to Ollama's generate endpoint.
    234 
    235     Args:
   (...)
    247             ])
    248     \"\"\"
--> 250     final_chunk = self._chat_stream_with_aggregation(
    251         messages,
    252         stop=stop,
    253         run_manager=run_manager,
    254         verbose=self.verbose,
    255         **kwargs,
    256     )
    257     chat_generation = ChatGeneration(
    258         message=AIMessage(content=final_chunk.text),
    259         generation_info=final_chunk.generation_info,
    260     )
    261     return ChatResult(generations=[chat_generation])

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/chat_models/ollama.py:183, in ChatOllama._chat_stream_with_aggregation(self, messages, stop, run_manager, verbose, **kwargs)
    174 def _chat_stream_with_aggregation(
    175     self,
    176     messages: List[BaseMessage],
   (...)
    180     **kwargs: Any,
    181 ) -> ChatGenerationChunk:
    182     final_chunk: Optional[ChatGenerationChunk] = None
--> 183     for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
    184         if stream_resp:
    185             chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/chat_models/ollama.py:156, in ChatOllama._create_chat_stream(self, messages, stop, **kwargs)
    147 def _create_chat_stream(
    148     self,
    149     messages: List[BaseMessage],
    150     stop: Optional[List[str]] = None,
    151     **kwargs: Any,
    152 ) -> Iterator[str]:
    153     payload = {
    154         \"messages\": self._convert_messages_to_ollama_messages(messages),
    155     }
--> 156     yield from self._create_stream(
    157         payload=payload, stop=stop, api_url=f\"{self.base_url}/api/chat/\", **kwargs
    158     )

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/llms/ollama.py:234, in _OllamaCommon._create_stream(self, api_url, payload, stop, **kwargs)
    228         raise OllamaEndpointNotFoundError(
    229             \"Ollama call failed with status code 404. \"
    230             \"Maybe your model is not found \"
    231             f\"and you should pull the model with `ollama pull {self.model}`.\"
    232         )
    233     else:
--> 234         optional_detail = response.json().get(\"error\")
    235         raise ValueError(
    236             f\"Ollama call failed with status code {response.status_code}.\"
    237             f\" Details: {optional_detail}\"
    238         )
    239 return response.iter_lines(decode_unicode=True)

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/requests/models.py:975, in Response.json(self, **kwargs)
    971     return complexjson.loads(self.text, **kwargs)
    972 except JSONDecodeError as e:
    973     # Catch JSON-related errors and raise as requests.JSONDecodeError
    974     # This aliases json.JSONDecodeError and simplejson.JSONDecodeError
--> 975     raise RequestsJSONDecodeError(e.msg, e.doc, e.pos)

JSONDecodeError: Expecting value: line 1 column 1 (char 0)"
}
```

</details>


<details>

<summary><b>Log after a fix:</b></summary>

```
{
	"name": "ValueError",
	"message": "Ollama call failed with status code 401. Details: <html>\r
<head><title>401 Authorization Required</title></head>\r
<body>\r
<center><h1>401 Authorization Required</h1></center>\r
<hr><center>nginx/1.18.0 (Ubuntu)</center>\r
</body>\r
</html>\r
",
	"stack": "---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[2], line 1
----> 1 print(translate_func().invoke('text'))

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/runnables/base.py:2053, in RunnableSequence.invoke(self, input, config)
   2051 try:
   2052     for i, step in enumerate(self.steps):
-> 2053         input = step.invoke(
   2054             input,
   2055             # mark each step as a child run
   2056             patch_config(
   2057                 config, callbacks=run_manager.get_child(f\"seq:step:{i+1}\")
   2058             ),
   2059         )
   2060 # finish the root run
   2061 except BaseException as e:

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:165, in BaseChatModel.invoke(self, input, config, stop, **kwargs)
    154 def invoke(
    155     self,
    156     input: LanguageModelInput,
   (...)
    160     **kwargs: Any,
    161 ) -> BaseMessage:
    162     config = ensure_config(config)
    163     return cast(
    164         ChatGeneration,
--> 165         self.generate_prompt(
    166             [self._convert_input(input)],
    167             stop=stop,
    168             callbacks=config.get(\"callbacks\"),
    169             tags=config.get(\"tags\"),
    170             metadata=config.get(\"metadata\"),
    171             run_name=config.get(\"run_name\"),
    172             **kwargs,
    173         ).generations[0][0],
    174     ).message

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:543, in BaseChatModel.generate_prompt(self, prompts, stop, callbacks, **kwargs)
    535 def generate_prompt(
    536     self,
    537     prompts: List[PromptValue],
   (...)
    540     **kwargs: Any,
    541 ) -> LLMResult:
    542     prompt_messages = [p.to_messages() for p in prompts]
--> 543     return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:407, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs)
    405         if run_managers:
    406             run_managers[i].on_llm_error(e, response=LLMResult(generations=[]))
--> 407         raise e
    408 flattened_outputs = [
    409     LLMResult(generations=[res.generations], llm_output=res.llm_output)
    410     for res in results
    411 ]
    412 llm_output = self._combine_llm_outputs([res.llm_output for res in results])

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:397, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs)
    394 for i, m in enumerate(messages):
    395     try:
    396         results.append(
--> 397             self._generate_with_cache(
    398                 m,
    399                 stop=stop,
    400                 run_manager=run_managers[i] if run_managers else None,
    401                 **kwargs,
    402             )
    403         )
    404     except BaseException as e:
    405         if run_managers:

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:576, in BaseChatModel._generate_with_cache(self, messages, stop, run_manager, **kwargs)
    572     raise ValueError(
    573         \"Asked to cache, but no cache found at `langchain.cache`.\"
    574     )
    575 if new_arg_supported:
--> 576     return self._generate(
    577         messages, stop=stop, run_manager=run_manager, **kwargs
    578     )
    579 else:
    580     return self._generate(messages, stop=stop, **kwargs)

File /opt/miniforge3/envs/.gpt/lib/python3.10/site-packages/langchain_community/chat_models/ollama.py:250, in ChatOllama._generate(self, messages, stop, run_manager, **kwargs)
    226 def _generate(
    227     self,
    228     messages: List[BaseMessage],
   (...)
    231     **kwargs: Any,
    232 ) -> ChatResult:
    233     \"\"\"Call out to Ollama's generate endpoint.
    234 
    235     Args:
   (...)
    247             ])
    248     \"\"\"
--> 250     final_chunk = self._chat_stream_with_aggregation(
    251         messages,
    252         stop=stop,
    253         run_manager=run_manager,
    254         verbose=self.verbose,
    255         **kwargs,
    256     )
    257     chat_generation = ChatGeneration(
    258         message=AIMessage(content=final_chunk.text),
    259         generation_info=final_chunk.generation_info,
    260     )
    261     return ChatResult(generations=[chat_generation])

File /storage/gpt-project/Repos/repo_nikita/gpt_lib/langchain/ollama.py:328, in ChatOllamaCustom._chat_stream_with_aggregation(self, messages, stop, run_manager, verbose, **kwargs)
    319 def _chat_stream_with_aggregation(
    320     self,
    321     messages: List[BaseMessage],
   (...)
    325     **kwargs: Any,
    326 ) -> ChatGenerationChunk:
    327     final_chunk: Optional[ChatGenerationChunk] = None
--> 328     for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
    329         if stream_resp:
    330             chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)

File /storage/gpt-project/Repos/repo_nikita/gpt_lib/langchain/ollama.py:301, in ChatOllamaCustom._create_chat_stream(self, messages, stop, **kwargs)
    292 def _create_chat_stream(
    293     self,
    294     messages: List[BaseMessage],
    295     stop: Optional[List[str]] = None,
    296     **kwargs: Any,
    297 ) -> Iterator[str]:
    298     payload = {
    299         \"messages\": self._convert_messages_to_ollama_messages(messages),
    300     }
--> 301     yield from self._create_stream(
    302         payload=payload, stop=stop, api_url=f\"{self.base_url}/api/chat\", **kwargs
    303     )

File /storage/gpt-project/Repos/repo_nikita/gpt_lib/langchain/ollama.py:134, in _OllamaCommonCustom._create_stream(self, api_url, payload, stop, **kwargs)
    132     else:
    133         optional_detail = response.text
--> 134         raise ValueError(
    135             f\"Ollama call failed with status code {response.status_code}.\"
    136             f\" Details: {optional_detail}\"
    137         )
    138 return response.iter_lines(decode_unicode=True)

ValueError: Ollama call failed with status code 401. Details: <html>\r
<head><title>401 Authorization Required</title></head>\r
<body>\r
<center><h1>401 Authorization Required</h1></center>\r
<hr><center>nginx/1.18.0 (Ubuntu)</center>\r
</body>\r
</html>\r
"
}
```

</details>

The same is true for timeout errors or when you simply mistyped in
`base_url` arg and get response from some other service, for instance.

Real Ollama errors are still clearly readable:

```
ValueError: Ollama call failed with status code 400. Details: {"error":"invalid options: unknown_option"}
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-01 12:17:29 -08:00
Guangdong Liu
760a16ff32
community[patch]: Fix ChatModel for sparkllm Bug. (#18375)
**PR message**: ***Delete this entire checklist*** and replace with
    - **Description:** fix sparkllm paramer error
    - **Issue:**   close #18370
- **Dependencies:** change `IFLYTEK_SPARK_APP_URL` to
`IFLYTEK_SPARK_API_URL`
    - **Twitter handle:** No
2024-03-01 10:49:30 -08:00
Shengsheng Huang
ae471a7dcb
community[minor]: add BigDL-LLM integrations (#17953)
- **Description**:
[`bigdl-llm`](https://github.com/intel-analytics/BigDL) is a library for
running LLM on Intel XPU (from Laptop to GPU to Cloud) using
INT4/FP4/INT8/FP8 with very low latency (for any PyTorch model). This PR
adds bigdl-llm integrations to langchain.
- **Issue**: NA
- **Dependencies**: `bigdl-llm` library
- **Contribution maintainer**: @shane-huang 
 
Examples added:
- docs/docs/integrations/llms/bigdl.ipynb
2024-03-01 10:04:53 -08:00
Ethan Yang
f61cb8d407
community[minor]: Add openvino backend support (#11591)
- **Description:** add openvino backend support by HuggingFace Optimum
Intel,
  - **Dependencies:** “optimum[openvino]”,

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-01 10:04:24 -08:00
Erick Friis
eefb49680f
multiple[patch]: fix deprecation versions (#18349) 2024-02-29 16:58:33 -08:00
William De Vena
6b58943917
community[patch]: Invoke callback prior to yielding token (#18288)
## PR title
community[patch]: Invoke callback prior to yielding

PR message
Description: Invoke on_llm_new_token callback prior to yielding token in
_stream and _astream methods.
Issue: https://github.com/langchain-ai/langchain/issues/16913
Dependencies: None
Twitter handle: None
2024-02-28 21:40:53 +00:00
kYLe
17ecf6e119
community[patch]: Remove model limitation on Anyscale LLM (#17662)
**Description:** Llama Guard is deprecated from Anyscale public
endpoint.
**Issue:** Change the default model. and remove the limitation of only
use Llama Guard with Anyscale LLMs
Anyscale LLM can also works with all other Chat model hosted on
Anyscale.
Also added `async_client` for Anyscale LLM
2024-02-25 18:21:19 -08:00
Erick Friis
29e0445490
community[patch]: BaseLLM typing in init (#18029) 2024-02-23 17:51:27 +00:00
Guangdong Liu
4197efd67a
community: Fix SparkLLM error (#18015)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"

- **Description:** fix SparkLLM  error
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
2024-02-23 06:40:29 -08:00
Brad Erickson
ecd72d26cf
community: Bugfix - correct Ollama API path to avoid HTTP 307 (#17895)
Sets the correct /api/generate path, without ending /, to reduce HTTP
requests.

Reference:

https://github.com/ollama/ollama/blob/efe040f8/docs/api.md#generate-request-streaming

Before:

    DEBUG: Starting new HTTP connection (1): localhost:11434
    DEBUG: http://localhost:11434 "POST /api/generate/ HTTP/1.1" 307 0
    DEBUG: http://localhost:11434 "POST /api/generate HTTP/1.1" 200 None

After:

    DEBUG: Starting new HTTP connection (1): localhost:11434
    DEBUG: http://localhost:11434 "POST /api/generate HTTP/1.1" 200 None
2024-02-22 11:59:55 -05:00
Guangdong Liu
47b1b7092d
community[minor]: Add SparkLLM to community (#17702) 2024-02-20 11:23:47 -08:00
Aymeric Roucher
0d294760e7
Community: Fuse HuggingFace Endpoint-related classes into one (#17254)
## Description
Fuse HuggingFace Endpoint-related classes into one:
-
[HuggingFaceHub](5ceaf784f3/libs/community/langchain_community/llms/huggingface_hub.py)
-
[HuggingFaceTextGenInference](5ceaf784f3/libs/community/langchain_community/llms/huggingface_text_gen_inference.py)
- and
[HuggingFaceEndpoint](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py)

Are fused into
- HuggingFaceEndpoint

## Issue
The deduplication of classes was creating a lack of clarity, and
additional effort to develop classes leads to issues like [this
hack](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py (L159)).

## Dependancies

None, this removes dependancies.

## Twitter handle

If you want to post about this: @AymericRoucher

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-19 10:33:15 -08:00
Mohammad Mohtashim
43dc5d3416
community[patch]: OpenLLM Client Fixes + Added Timeout Parameter (#17478)
- OpenLLM was using outdated method to get the final text output from
openllm client invocation which was raising the error. Therefore
corrected that.
- OpenLLM `_identifying_params` was getting the openllm's client
configuration using outdated attributes which was raising error.
- Updated the docstring for OpenLLM.
- Added timeout parameter to be passed to underlying openllm client.
2024-02-19 10:09:11 -08:00
Mateusz Szewczyk
916332ef5b
ibm: added partners package langchain_ibm, added llm (#16512)
- **Description:** Added `langchain_ibm` as an langchain partners
package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM
provider (`WatsonxLLM`)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
  - **Tag maintainer:** : 
---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-14 12:12:19 -08:00
wulixuan
c776cfc599
community[minor]: integrate with model Yuan2.0 (#15411)
1. integrate with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. update `langchain.llms`
3. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:46:20 -08:00
Alex Peplowski
70c296ae96
community[patch]: Expose Anthropic Retry Logic (#17069)
**Description:**

Expose Anthropic's retry logic, so that `max_retries` can be configured
via langchain. Anthropic's retry logic is implemented in their Python
SDK here:
https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#retries

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:44:28 -08:00
Kate Silverstein
0bc4a9b3fc
community[minor]: Adds Llamafile as an LLM (#17431)
* **Description:** Adds a simple LLM implementation for interacting with
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
* **Dependencies:** N/A
* **Issue:** N/A

**Detail**
[llamafile](https://github.com/Mozilla-Ocho/llamafile) lets you run LLMs
locally from a single file on most computers without installing any
dependencies.

To use the llamafile LLM implementation, the user needs to:

1. Download a llamafile e.g.
https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile?download=true
2. Make the file executable.
3. Run the llamafile in 'server mode'. (All llamafiles come packaged
with a lightweight server; by default, the server listens at
`http://localhost:8080`.)


```bash
wget https://url/of/model.llamafile
chmod +x model.llamafile
./model.llamafile --server --nobrowser
```

Now, the user can invoke the LLM via the LangChain client:

```python
from langchain_community.llms.llamafile import Llamafile

llm = Llamafile()

llm.invoke("Tell me a joke.")
```
2024-02-14 11:15:24 -08:00
Nat Noordanus
8a3b74fe1f
community[patch]: Fix pydantic ForwardRef error in BedrockBase (#17416)
- **Description:** Fixes a type annotation issue in the definition of
BedrockBase. This issue was that the annotation for the `config`
attribute includes a ForwardRef to `botocore.client.Config` which is
only imported when `TYPE_CHECKING`. This can cause pydantic to raise an
error like `pydantic.errors.ConfigError: field "config" not yet prepared
so type is still a ForwardRef, ...`.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** `@__nat_n__`
2024-02-13 16:15:55 -08:00
Theo / Taeyoon Kang
1987f905ed
core[patch]: Support .yml extension for YAML (#16783)
- **Description:**

[AS-IS] When dealing with a yaml file, the extension must be .yaml.  

[TO-BE] In the absence of extension length constraints in the OS, the
extension of the YAML file is yaml, but control over the yml extension
must still be made.

It's as if it's an error because it's a .jpg extension in jpeg support.

  - **Issue:** - 

  - **Dependencies:**
no dependencies required for this change,
2024-02-12 19:57:20 -08:00
Robby
0653aa469a
community[patch]: Invoke callback prior to yielding token (#17346)
**Description:** Invoke callback prior to yielding token in stream
method for watsonx.
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)

Co-authored-by: Robby <h0rv@users.noreply.github.com>
2024-02-12 16:36:33 -08:00
Erick Friis
3a2eb6e12b
infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00
kYLe
c9999557bf
community[patch]: Modify LLMs/Anyscale work with OpenAI API v1 (#14206)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
- **Description:** 
1. Modify LLMs/Anyscale to work with OAI v1
2. Get rid of openai_ prefixed variables in Chat_model/ChatAnyscale
3. Modify `anyscale_api_base` to `anyscale_base_url` to follow OAI name
convention (reverted)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 15:11:18 -08:00