- **Description:** `add_texts` was using `get_setting` for marqo client
which was being used according to 1.5.x API version. However, this PR
updates the `add_text` accounting for updated response payload for 2.x
and later while maintaining backward compatibility. Plus I have verified
this was the only place where marqo client was not accounting for
updated API version.
- **Issue:** #28323
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
_This should only be merged once neo4j is included under libs/partners._
# **Description:**
Neo4jVector from langchain-community is being moved to langchain-neo4j:
[see
link](https://github.com/langchain-ai/langchain-neo4j/blob/main/libs/neo4j/langchain_neo4j/vectorstores/neo4j_vector.py#L436).
To solve the issue below, this PR adds an attempt to import
`Neo4jVector` from the partner package `langchain-neo4j`, similarly to
the other partner packages.
# **Issue:**
When initializing `SelfQueryRetriever`, the following error is raised:
```
ValueError: Self query retriever with Vector Store type <class 'langchain_neo4j.vectorstores.neo4j_vector.Neo4jVector'> not supported.
```
[See related
issue](https://github.com/langchain-ai/langchain/issues/19748).
# **Dependencies:**
- langchain-neo4j
v0.4 of the Python SDK is already installed via the lock file in CI, but
our current implementation is not compatible with it.
This also addresses an issue introduced in
https://github.com/langchain-ai/langchain/pull/28299. @RyanMagnuson
would you mind explaining the motivation for that change? From what I
can tell the Ollama SDK [does not support
kwargs](6c44bb2729/ollama/_client.py (L286)).
Previously, unsupported kwargs were ignored, but they currently raise
`TypeError`.
Some of LangChain's standard test suite expects `tool_choice` to be
supported, so here we catch it in `bind_tools` so it is ignored and not
passed through to the client.
Adds deprecation notices for Neo4j components moving to the
`langchain_neo4j` partner package.
- Adds deprecation warnings to all Neo4j-related classes and functions
that have been migrated to the new `langchain_neo4j` partner package
- Updates documentation to reference the new `langchain_neo4j` package
instead of `langchain_community`
**Description:**
Currently, the docstring for `LanceDB.__init__()` provides the default
value for `mode`, but not the list of valid values. This PR adds that
list to the docstring.
**Issue:**
N/A
**Dependencies:**
N/A
**Twitter handle:**
`@metadaddy`
[Leaving as a reminder: If no one reviews your PR within a few days,
please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda,
hwchase17.]
We have a test
[test_structured_few_shot_examples](ad4333ca03/libs/standard-tests/langchain_tests/integration_tests/chat_models.py (L546))
in standard integration tests that implements a version of tool-calling
few shot examples that works with ~all tested providers. The formulation
supported by ~all providers is: `human message, tool call, tool message,
AI reponse`.
Here we update
`langchain_core.utils.function_calling.tool_example_to_messages` to
support this formulation.
The `tool_example_to_messages` util is undocumented outside of our API
reference. IMO, if we are testing that this function works across all
providers, it can be helpful to feature it in our guides. The structured
few-shot examples we document at the moment require users to implement
this function and can be simplified.
- **Description:** Corrected the parameter name in the
HuggingFaceEmbeddings documentation under integrations/text_embedding/
from model to model_name to align with the actual code usage in the
langchain_huggingface package.
- **Issue:** Fixes#28231
- **Dependencies:** None
Thank you for contributing to LangChain!
Ctrl+F to find instances of `langchain-databricks` and replace with
`databricks-langchain`.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Signed-off-by: Prithvi Kannan <prithvi.kannan@databricks.com>
From what I can tell response using SDK is not deterministic:
```python
import numpy as np
import openai
documents = ["disallowed special token '<|endoftext|>'"]
model = "text-embedding-ada-002"
direct_output_1 = (
openai.OpenAI()
.embeddings.create(input=documents, model=model)
.data[0]
.embedding
)
for i in range(10):
direct_output_2 = (
openai.OpenAI()
.embeddings.create(input=documents, model=model)
.data[0]
.embedding
)
print(f"{i}: {np.isclose(direct_output_1, direct_output_2).all()}")
```
```
0: True
1: True
2: True
3: True
4: False
5: True
6: True
7: True
8: True
9: True
```
See related discussion here:
https://community.openai.com/t/can-text-embedding-ada-002-be-made-deterministic/318054
Found the same result using `"text-embedding-3-small"`.
Fixed a compatibility issue in the `load_messages_from_context()`
function for the Kinetica chat model integration. The issue was caused
by stricter validation introduced in Pydantic 2.