Compare commits

..

281 Commits

Author SHA1 Message Date
Eugene Yurtsev
de339acbc1 x 2024-07-25 16:19:57 -04:00
Eugene Yurtsev
c929c0e38d x 2024-07-25 16:18:03 -04:00
Eugene Yurtsev
2ec1b96527 update 2024-07-25 16:14:50 -04:00
Eugene Yurtsev
0fd685fb7d x 2024-07-25 11:34:50 -04:00
Eugene Yurtsev
be89bf47e8 x 2024-07-25 11:34:34 -04:00
Eugene Yurtsev
b3419a3018 x 2024-07-25 10:27:47 -04:00
Eugene Yurtsev
98cbfb9643 x 2024-07-25 10:18:07 -04:00
Eugene Yurtsev
5776402f92 update 2024-07-25 10:13:41 -04:00
Eugene Yurtsev
f5e36246e3 qxqx 2024-07-25 09:41:21 -04:00
Eugene Yurtsev
7dd6b32991 core[minor]: Add InMemoryRateLimiter (#21992)
This PR introduces the following Runnables:

1. BaseRateLimiter: an abstraction for specifying a time based rate
limiter as a Runnable
2. InMemoryRateLimiter: Provides an in-memory implementation of a rate
limiter

## Example

```python

from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda
from datetime import datetime

foo = InMemoryRateLimiter(requests_per_second=0.5)

def meow(x):
    print(datetime.now().strftime("%H:%M:%S.%f"))
    return x

chain = foo | meow

for _ in range(10):
    print(chain.invoke('hello'))
```

Produces:

```
17:12:07.530151
hello
17:12:09.537932
hello
17:12:11.548375
hello
17:12:13.558383
hello
17:12:15.568348
hello
17:12:17.578171
hello
17:12:19.587508
hello
17:12:21.597877
hello
17:12:23.607707
hello
17:12:25.617978
hello
```


![image](https://github.com/user-attachments/assets/283af59f-e1e1-408b-8e75-d3910c3c44cc)


## Interface

The rate limiter uses the following interface for acquiring a token:

```python
class BaseRateLimiter(Runnable[Input, Output], abc.ABC):
  @abc.abstractmethod
  def acquire(self, *, blocking: bool = True) -> bool:
      """Attempt to acquire the necessary tokens for the rate limiter.```
```

The flag `blocking` has been added to the abstraction to allow
supporting streaming (which is easier if blocking=False).

## Limitations

- The rate limiter is not designed to work across different processes.
It is an in-memory rate limiter, but it is thread safe.
- The rate limiter only supports time-based rate limiting. It does not
take into account the size of the request or any other factors.
- The current implementation does not handle streaming inputs well and
will consume all inputs even if the rate limit has been reached. Better
support for streaming inputs will be added in the future.
- When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.
One way to mitigate this is to use batch_as_completed() or
abatch_as_completed().

## Bursty behavior in `batch` and `abatch`

When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.

This becomes a problem if users are using `batch` and `abatch` with many
inputs (e.g., 100). In this case, there will be a burst of 100 inputs
into the batch of the rate limited runnable.

1. Using a RunnableBinding

The API would look like:

```python
from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda

rate_limiter = InMemoryRateLimiter(requests_per_second=0.5)

def meow(x):
    return x

rate_limited_meow = RunnableLambda(meow).with_rate_limiter(rate_limiter)
```

2. Another option is to add some init option to RunnableSequence that
changes `.batch()` to be depth first (e.g., by delegating to
`batch_as_completed`)

```python
RunnableSequence(first=rate_limiter, last=model, how='batch-depth-first')
```

Pros: Does not require Runnable Binding
Cons: Feels over-complicated
2024-07-25 01:34:03 +00:00
Oleg Kulyk
4b1b7959a2 community[minor]: Add ScrapingAnt Loader Community Integration (#24514)
Added [ScrapingAnt](https://scrapingant.com/) Web Loader integration.
ScrapingAnt is a web scraping API that allows extracting web page data
into accessible and well-formatted markdown.

Description: Added ScrapingAnt web loader for retrieving web page data
as markdown
Dependencies: scrapingant-client
Twitter: @WeRunTheWorld3

---------

Co-authored-by: Oleg Kulyk <oleg@scrapingant.com>
2024-07-24 21:11:43 -04:00
Jacob Lee
afee851645 docs[patch]: Fix image caption document loader page and typo on custom tools page (#24635) 2024-07-24 17:16:18 -07:00
Jacob Lee
a73e2222d4 docs[patch]: Updates LLM caching, HF sentence transformers, and DDG pages (#24633) 2024-07-24 16:58:05 -07:00
Erick Friis
e160b669c8 infra: add unstructured api key to release (#24638) 2024-07-24 16:47:24 -07:00
John
d59c656ea5 unstructured, community, initialize langchain-unstructured package (#22779)
#### Update (2): 
A single `UnstructuredLoader` is added to handle both local and api
partitioning. This loader also handles single or multiple documents.

#### Changes in `community`:
Changes here do not affect users. In the initial process of using the
SDK for the API Loaders, the Loaders in community were refactored.
Other changes include:
The `UnstructuredBaseLoader` has a new check to see if both
`mode="paged"` and `chunking_strategy="by_page"`. It also now has
`Element.element_id` added to the `Document.metadata`.
`UnstructuredAPIFileLoader` and `UnstructuredAPIFileIOLoader`. As such,
now both directly inherit from `UnstructuredBaseLoader` and initialize
their `file_path`/`file` attributes respectively and implement their own
`_post_process_elements` methods.

--------
#### Update:
New SDK Loaders in a [partner
package](https://python.langchain.com/v0.1/docs/contributing/integrations/#partner-package-in-langchain-repo)
are introduced to prevent breaking changes for users (see discussion
below).

##### TODO:
- [x] Test docstring examples
--------
- **Description:** UnstructuredAPIFileIOLoader and
UnstructuredAPIFileLoader calls to the unstructured api are now made
using the unstructured-client sdk.
- **New Dependencies:** unstructured-client

- [x] **Add tests and docs**: If you're adding a new integration, please
include
- [x] a test for the integration, preferably unit tests that do not rely
on network access,
- [x] update the description in
`docs/docs/integrations/providers/unstructured.mdx`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

TODO:
- [x] Update
https://python.langchain.com/v0.1/docs/integrations/document_loaders/unstructured_file/#unstructured-api
-
`langchain/docs/docs/integrations/document_loaders/unstructured_file.ipynb`
- The description here needs to indicate that users should install
`unstructured-client` instead of `unstructured`. Read over closely to
look for any other changes that need to be made.
- [x] Update the `lazy_load` method in `UnstructuredBaseLoader` to
handle json responses from the API instead of just lists of elements.
- This method may need to be overwritten by the API loaders instead of
changing it in the `UnstructuredBaseLoader`.
- [x] Update the documentation links in the class docstrings (the
Unstructured documents have moved)
- [x] Update Document.metadata to include `element_id` (see thread
[here](https://unstructuredw-kbe4326.slack.com/archives/C044N0YV08G/p1718187499818419))

---------

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
2024-07-24 23:21:20 +00:00
Leonid Ganeline
2394807033 docs: fix ChatGooglePalm fix (#24629)
**Issue:** now the
[ChatGooglePalm](https://python.langchain.com/v0.2/docs/integrations/vectorstores/scann/#retrievalqa-demo)
class is not parsed and do not presented in the "API Reference:" line.

**PR:** [Fixed
it](https://langchain-7n5k5wkfs-langchain.vercel.app/v0.2/docs/integrations/vectorstores/scann/#retrievalqa-demo)
by properly importing.
2024-07-24 18:09:08 -04:00
Joel Akeret
acfce30017 Adding compatibility for OllamaFunctions with ImagePromptTemplate (#24499)
- [ ] **PR title**: "experimental: Adding compatibility for
OllamaFunctions with ImagePromptTemplate"

- [ ] **PR message**: 
- **Description:** Removes the outdated
`_convert_messages_to_ollama_messages` method override in the
`OllamaFunctions` class to ensure that ollama multimodal models can be
invoked with an image.
    - **Issue:** #24174

---------

Co-authored-by: Joel Akeret <joel.akeret@ti&m.com>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-24 14:57:05 -07:00
Erick Friis
8f3c052db1 cli: release 0.0.26 (#24623)
- **cli: remove snapshot flag from pytest defaults**
- **x**
- **x**
2024-07-24 13:13:58 -07:00
ChengZi
29a3b3a711 partners[milvus]: add dynamic field (#24544)
add dynamic field feature to langchain_milvus
more unittest, more robustic

plan to deprecate the `metadata_field` in the future, because it's
function is the same as `enable_dynamic_field`, but the latter one is a
more advanced concept in milvus

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-24 20:01:58 +00:00
Erick Friis
20fe4deea0 milvus: release 0.1.3 (#24624) 2024-07-24 13:01:27 -07:00
Erick Friis
3a55f4bfe9 cli: remove snapshot flag from pytest defaults (#24622) 2024-07-24 19:41:01 +00:00
Isaac Francisco
fea9ff3831 docs: add tables for search and code interpreter tools (#24586) 2024-07-24 10:51:39 -07:00
Eugene Yurtsev
b55f6105c6 community[patch]: Add linter to prevent further usage of root_validator and validator (#24613)
This linter is meant to move development to use __init__ instead of
root_validator and validator.

We need to investigate whether we need to lint some of the functionality
of Field (e.g., `lt` and `gt`, `alias`)

`alias` is the one that's most popular:

(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "alias=" | wc -l
144

(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "ge=" | wc -l
10

(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "gt=" | wc -l
4
2024-07-24 12:35:21 -04:00
Anush
4585eaef1b qdrant: Fix vectors_config access (#24606)
## Description

Fixes #24558 by accessing `vectors_config` after asserting it to be a
dict.
2024-07-24 10:54:33 -04:00
ccurme
f337f3ed36 docs: update chain migration guide (#24501)
- Update `ConversationChain` example to show use without session IDs;
- Fix a minor bug (specify history_messages_key).
2024-07-24 10:45:00 -04:00
maang-h
22175738ac docs: Add MongoDBChatMessageHistory docstrings (#24608)
- **Description:** Add MongoDBChatMessageHistory rich docstrings.
- **Issue:** the issue #21983
2024-07-24 10:12:44 -04:00
Anindyadeep
12c3454fd9 [Community] PremAI Tool Calling Functionality (#23931)
This PR is under WIP and adds the following functionalities:

- [X] Supports tool calling across the langchain ecosystem. (However
streaming is not supported)
- [X] Update documentation
2024-07-24 09:53:58 -04:00
Vishnu Nandakumar
e271965d1e community: retrievers: added capability for using Product Quantization as one of the retriever. (#22424)
- [ ] **Community**: "Retrievers: Product Quantization"
- [X] This PR adds Product Quantization feature to the retrievers to the
Langchain Community. PQ is one of the fastest retrieval methods if the
embeddings are rich enough in context due to the concepts of
quantization and representation through centroids
    - **Description:** Adding PQ as one of the retrievers
    - **Dependencies:** using the package nanopq for this PR
    - **Twitter handle:** vishnunkumar_


- [X] **Add tests and docs**: If you're adding a new integration, please
include
   - [X] Added unit tests for the same in the retrievers.
   - [] Will add an example notebook subsequently

- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/ -
done the same

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-24 13:52:15 +00:00
stydxm
b9bea36dd4 community: fix typo in warning message (#24597)
- **Description:** 
  This PR fixes a small typo in a warning message
- **Issue:**

![](https://github.com/user-attachments/assets/5aa57724-26c5-49f6-8bc1-5a54bb67ed49)
There were double `Use` and double `instead`
2024-07-24 13:19:07 +00:00
cüre
da06d4d7af community: update finetuned model cost for 4o-mini (#24605)
- **Description:** adds model price for. reference:
https://openai.com/api/pricing/
- **Issue:** -
- **Dependencies:** -
- **Twitter handle:** cureef
2024-07-24 13:17:26 +00:00
Philippe PRADOS
5f73c836a6 openai[small]: Add the new model: gpt-4o-mini (#24594) 2024-07-24 09:14:48 -04:00
Mateusz Szewczyk
597be7d501 docs: Update IBM docs about information to pass client into WatsonxLLM and WatsonxEmbeddings object. (#24602)
Thank you for contributing to LangChain!

- [x] **PR title**: Update IBM docs about information to pass client
into WatsonxLLM and WatsonxEmbeddings object.


- [x] **PR message**: 
- **Description:** Update IBM docs about information to pass client into
WatsonxLLM and WatsonxEmbeddings object.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-07-24 09:12:13 -04:00
Jacob Lee
379803751e docs[patch]: Remove very old document comparison notebook (#24587) 2024-07-23 22:25:35 -07:00
ZhangShenao
ad18afc3ec community[patch]: Fix param spelling error in ElasticsearchChatMessageHistory (#24589)
Fix param spelling error in `ElasticsearchChatMessageHistory`
2024-07-23 19:29:42 -07:00
Isaac Francisco
464a525a5a [partner]: minor change to embeddings for Ollama (#24521) 2024-07-24 00:00:13 +00:00
Aayush Kataria
0f45ac4088 LangChain Community: VectorStores: Azure Cosmos DB Filtered Vector Search (#24087)
Thank you for contributing to LangChain!

- This PR adds vector search filtering for Azure Cosmos DB Mongo vCore
and NoSQL.


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-23 16:59:23 -07:00
Gareth
ac41c97d21 pinecone: Add embedding Inference Support (#24515)
**Description**

Add support for Pinecone hosted embedding models as
`PineconeEmbeddings`. Replacement for #22890

**Dependencies**
Add `aiohttp` to support async embeddings call against REST directly

- [x] **Add tests and docs**: If you're adding a new integration, please
include

Added `docs/docs/integrations/text_embedding/pinecone.ipynb`


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Twitter: `gdjdg17`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-23 22:50:28 +00:00
ccurme
aaf788b7cb docs[patch]: fix chat model tabs in runnable-as-tool guide (#24580) 2024-07-23 18:36:01 -04:00
Bagatur
47ae06698f docs: update ChatModelTabs defaults (#24583) 2024-07-23 21:56:30 +00:00
Erick Friis
03881c6743 docs: fix hf embeddings install (#24577) 2024-07-23 21:03:30 +00:00
ccurme
2d6b0bf3e3 core[patch]: add to RunnableLambda docstring (#24575)
Explain behavior when function returns a runnable.
2024-07-23 20:46:44 +00:00
Erick Friis
ee3955c68c docs: add tool calling for ollama (#24574) 2024-07-23 20:33:23 +00:00
Carlos André Antunes
325068bb53 community: Fix azure_openai.py (#24572)
In some lines its trying to read a key that do not exists yet. In this
cases I changed the direct access to dict.get() method


- [ x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-07-23 16:22:21 -04:00
Bagatur
bff6ca78a2 docs: duplicate how to link (#24569) 2024-07-23 18:52:05 +00:00
Nik Jmaeff
6878bc39b5 langchain: fix TrajectoryEvalChain.prep_inputs (#19959)
The previous implementation would never be called.

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-23 18:37:39 +00:00
Bagatur
55e66aa40c langchain[patch]: init_chat_model support ChatBedrockConverse (#24564) 2024-07-23 11:07:38 -07:00
Bagatur
9b7db08184 experimental[patch]: Release 0.0.63 (#24563) 2024-07-23 16:28:37 +00:00
Bagatur
8691a5a37f community[patch]: Release 0.2.10 (#24560) 2024-07-23 09:24:57 -07:00
Bagatur
4919d5d6df langchain[patch]: Release 0.2.11 (#24559) 2024-07-23 09:18:44 -07:00
Bagatur
918e1c8a93 core[patch]: Release 0.2.23 (#24557) 2024-07-23 09:01:18 -07:00
Lance Martin
58def6e34d Add tool calling example to Ollama ntbk (#24522) 2024-07-23 15:58:54 +00:00
Leonid Ganeline
e787532479 langchain: globals fix (#21281)
Issue: functions from `globals`, like the `get_debug` are placed in the
init.py file. As a result, they don't listed in the API Reference docs.
[See
this](https://langchain-9jq1kef7i-langchain.vercel.app/v0.2/docs/how_to/debugging/#set_debugtrue)
and [broken
this](https://api.python.langchain.com/en/latest/globals/langchain.globals.set_debug.html).
Change: moved code from init.py into the `globals.py` file and removed
`globals` directory. Similar to: #21266
BTW `globals` in core implemented exactly inside a file not inside a
folder.
2024-07-23 11:23:18 -04:00
Ben Chambers
e80b0932ee community[patch]: small fixes to link extractors (#24528)
- **Description:** small fixes to imports / types in the link extraction
work

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-23 14:28:06 +00:00
Morteza Hosseini
9e06991aae community[patch]: Update URL to the 2markdown API (#24546)
Update the URL to Markdown endpoint.

API information is available here: https://2markdown.com/docs#url2md
2024-07-23 14:27:55 +00:00
ZhangShenao
a14e02ab33 core[patch]: Fix word spelling error in globals.py (#24532)
Fix word spelling error in `globals.py`

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-23 14:27:16 +00:00
maang-h
378db2e1a5 docs: Add RedisChatMessageHistory docstrings (#24548)
- **Description:** Add `RedisChatMessageHistory ` rich docstrings.
- **Issue:** the issue #21983

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-23 14:23:46 +00:00
ccurme
a197a8e184 openai[patch]: move test (#24552)
No-override tests (https://github.com/langchain-ai/langchain/pull/24407)
include a condition that integrations not implement additional tests.
2024-07-23 10:22:22 -04:00
Eugene Yurtsev
0bb54ab9f0 CI: Temporarily disable min version checking on pull request (#24551)
Short term to fix CI
2024-07-23 14:12:08 +00:00
Eugene Yurtsev
f47b4edcc2 standard-test: Fix typo in skipif for chat model integration tests (#24553) 2024-07-23 10:11:01 -04:00
Jesse Wright
837a3d400b chore(docs): SQARQL -> SPARQL typo fix (#24536)
nit picky typo fix
2024-07-23 13:39:34 +00:00
Eugene Yurtsev
20b72a044c standard-tests: Add BaseModel variations tests to with_structured_output (#24527)
After this standard tests will test with the following combinations:

1. pydantic.BaseModel
2. pydantic.v1.BaseModel

If ran within a matrix, it'll covert both pydantic.BaseModel originating
from
pydantic 1 and the one defined in pydantic 2.
2024-07-23 09:01:26 -04:00
Bagatur
70c71efcab core[patch]: merge_content fix (#24526) 2024-07-22 22:20:22 -07:00
Ben Chambers
a5a3d28776 community[patch]: Remove targets_table from C* GraphVectorStore (#24502)
- **Description:** Remove the unnecessary `targets_table` parameter
2024-07-22 22:09:36 -04:00
Alexander Golodkov
2a70a07aad community[minor]: added new document loaders based on dedoc library (#24303)
### Description
This pull request added new document loaders to load documents of
various formats using [Dedoc](https://github.com/ispras/dedoc):
  - `DedocFileLoader` (determine file types automatically and parse)
  - `DedocPDFLoader` (for `PDF` and images parsing)
- `DedocAPIFileLoader` (determine file types automatically and parse
using Dedoc API without library installation)

[Dedoc](https://dedoc.readthedocs.io) is an open-source library/service
that extracts texts, tables, attached files and document structure
(e.g., titles, list items, etc.) from files of various formats. The
library is actively developed and maintained by a group of developers.

`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images
and more.
Full list of supported formats can be found
[here](https://dedoc.readthedocs.io/en/latest/#id1).
For `PDF` documents, `Dedoc` allows to determine textual layer
correctness and split the document into paragraphs.


### Issue
This pull request extends variety of document loaders supported by
`langchain_community` allowing users to choose the most suitable option
for raw documents parsing.

### Dependencies
The PR added a new (optional) dependency `dedoc>=2.2.5` ([library
documentation](https://dedoc.readthedocs.io)) to the
`extended_testing_deps.txt`

### Twitter handle
None

### Add tests and docs
1. Test for the integration:
`libs/community/tests/integration_tests/document_loaders/test_dedoc.py`
2. Example notebook:
`docs/docs/integrations/document_loaders/dedoc.ipynb`
3. Information about the library:
`docs/docs/integrations/providers/dedoc.mdx`

### Lint and test

Done locally:

  - `make format`
  - `make lint`
  - `make integration_tests`
  - `make docs_build` (from the project root)

---------

Co-authored-by: Nasty <bogatenkova.anastasiya@mail.ru>
2024-07-23 02:04:53 +00:00
Ben Chambers
5ac936a284 community[minor]: add document transformer for extracting links (#24186)
- **Description:** Add a DocumentTransformer for executing one or more
`LinkExtractor`s and adding the extracted links to each document.
- **Issue:** n/a
- **Depedencies:** none

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-22 22:01:21 -04:00
Jacob Lee
3c4652c906 docs[patch]: Hide OllamaFunctions now that Ollama supports tool calling (#24523) 2024-07-22 17:56:51 -07:00
Erick Friis
2c6b9e8771 standard-tests: add override check (#24407) 2024-07-22 23:38:01 +00:00
Nithish Raghunandanan
1639ccfd15 couchbase: [patch] Return chat message history in order (#24498)
**Description:** Fixes an issue where the chat message history was not
returned in order. Fixed it now by returning based on timestamps.

- [x] **Add tests and docs**: Updated the tests to check the order
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-22 23:30:29 +00:00
C K Ashby
ab036c1a4c docs: Update .run() to .invoke() (#24520) 2024-07-22 14:21:33 -07:00
Erick Friis
3dce2e1d35 all: add release notes to pypi (#24519) 2024-07-22 13:59:13 -07:00
Bagatur
c48e99e7f2 docs: fix sql db note (#24505) 2024-07-22 13:30:29 -07:00
Bagatur
8a140ee77c core[patch]: don't serialize BasePromptTemplate.input_types (#24516)
Candidate fix for #24513
2024-07-22 13:30:16 -07:00
MarkYQJ
df357f82ca ignore the first turn to apply "history" mechanism (#14118)
This will generate a meaningless string "system: " for generating
condense question; this increases the probability to make an improper
condense question and misunderstand user's question. Below is a case
- Original Question: Can you explain the arguments of Meilisearch?
- Condense Question
  - What are the benefits of using Meilisearch? (by CodeLlama)
  - What are the reasons for using Meilisearch? (by GPT-4)

The condense questions (not matter from CodeLlam or GPT-4) are different
from the original one.

By checking the content of each dialogue turn, generating history string
only when the dialog content is not empty.
Since there is nothing before first turn, the "history" mechanism will
be ignored at the very first turn.

Doing so, the condense question will be "What are the arguments for
using Meilisearch?".

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-22 20:11:17 +00:00
Bagatur
236e957abb core,groq,openai,mistralai,robocorp,fireworks,anthropic[patch]: Update BaseModel subclass and instance checks to handle both v1 and proper namespaces (#24417)
After this PR chat models will correctly handle pydantic 2 with
bind_tools and with_structured_output.


```python
import pydantic
print(pydantic.__version__)
```
2.8.2

```python
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_PNUFa4pdfNOYXxIMHc6ps2Do', 'type': 'tool_call'}]
<class '__main__.Add'>
```


```python
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```python
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_hhiHYP441cp14TtrHKx3Upg0', 'type': 'tool_call'}]
<class '__main__.Add'>
```

Addresses issues: https://github.com/langchain-ai/langchain/issues/22782

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 20:07:39 +00:00
C K Ashby
199e64d372 Please spell Lex's name correctly Fridman (#24517)
https://www.youtube.com/watch?v=ZIyB9e_7a4c

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-22 19:38:32 +00:00
Erick Friis
1f01c0fd98 infra: remove core from min version pr testing (#24507)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 17:46:15 +00:00
Naka Masato
884f76e05a fix: load google credentials properly in GoogleDriveLoader (#12871)
- **Description:** 
- Fix #12870: set scope in `default` func (ref:
https://google-auth.readthedocs.io/en/master/reference/google.auth.html)
- Moved the code to load default credentials to the bottom for clarity
of the logic
	- Add docstring and comment for each credential loading logic
- **Issue:** https://github.com/langchain-ai/langchain/issues/12870
- **Dependencies:** no dependencies change
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** @gymnstcs

<!-- If no one reviews your PR within a few days, please @-mention one
of @baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-22 17:43:33 +00:00
Erick Friis
a45337ea07 ollama: release 0.1.0 (#24510) 2024-07-22 10:35:26 -07:00
Isaac Francisco
1318d534af [docs]: minor react change (#24509) 2024-07-22 10:25:01 -07:00
Jorge Piedrahita Ortiz
10e3982b59 community: sambanova integration minor changes (#24503)
- Minor changes in samabanova llm integration 
  - default api 
  - docstrings
- minor changes in docs
2024-07-22 17:06:35 +00:00
maang-h
721f709dec community: Improve QianfanChatEndpoint tool result to model (#24466)
- **Description:** `QianfanChatEndpoint` When using tool result to
answer questions, the content of the tool is required to be in Dict
format. Of course, this can require users to return Dict format when
calling the tool, but in order to be consistent with other Chat Models,
I think such modifications are necessary.
2024-07-22 11:29:00 -04:00
Chaunte W. Lacewell
02f0a29293 Cookbook: Add Visual RAG example using VDMS (#24353)
- **Description:** Adding notebook to demonstrate visual RAG which uses
both video scene description generated by open source vision models (ex.
video-llama, video-llava etc.) as text embeddings and frames as image
embeddings to perform vector similarity search using VDMS.
  - **Issue:** N/A
  - **Dependencies:** N/A
2024-07-22 11:16:06 -04:00
ccurme
dcba7df2fe community[patch]: deprecate langchain_community Chroma in favor of langchain_chroma (#24474) 2024-07-22 11:00:13 -04:00
ccurme
0f7569ddbc core[patch]: enable RunnableWithMessageHistory without config (#23775)
Feedback that `RunnableWithMessageHistory` is unwieldy compared to
ConversationChain and similar legacy abstractions is common.

Legacy chains using memory typically had no explicit notion of threads
or separate sessions. To use `RunnableWithMessageHistory`, users are
forced to introduce this concept into their code. This possibly felt
like unnecessary boilerplate.

Here we enable `RunnableWithMessageHistory` to run without a config if
the `get_session_history` callable has no arguments. This enables
minimal implementations like the following:
```python
from langchain_core.chat_history import InMemoryChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
memory = InMemoryChatMessageHistory()
chain = RunnableWithMessageHistory(llm, lambda: memory)

chain.invoke("Hi I'm Bob")  # Hello Bob!
chain.invoke("What is my name?")  # Your name is Bob.
```
2024-07-22 10:36:53 -04:00
Mohammad Mohtashim
5ade0187d0 [Commutiy]: Prompts Fixed for ZERO_SHOT_REACT React Agent Type in create_sql_agent function (#23693)
- **Description:** The correct Prompts for ZERO_SHOT_REACT were not
being used in the `create_sql_agent` function. They were not using the
specific `SQL_PREFIX` and `SQL_SUFFIX` prompts if client does not
provide any prompts. This is fixed.
- **Issue:** #23585

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-22 14:04:20 +00:00
ZhangShenao
0f6737cbfe [Vector Store] Fix function add_texts in TencentVectorDB (#24469)
Regardless of whether `embedding_func` is set or not, the 'text'
attribute of document should be assigned, otherwise the `page_content`
in the document of the final search result will be lost
2024-07-22 09:50:22 -04:00
남광우
7ab82eb8cc langchain: Copy libs/standard-tests folder when building devcontainer (#24470)
### Description

* Fix `libs/langchain/dev.Dockerfile` file. copy the
`libs/standard-tests` folder when building the devcontainer.
* `poetry install --no-interaction --no-ansi --with dev,test,docs`
command requires this folder, but it was not copied.

### Reference

#### Error message when building the devcontainer from the master branch

```
...

[2024-07-20T14:27:34.779Z] ------
 > [langchain langchain-dev-dependencies 7/7] RUN poetry install --no-interaction --no-ansi --with dev,test,docs:
0.409 
0.409 Directory ../standard-tests does not exist
------

...
```

#### After the fix

Build success at vscode:

<img width="866" alt="image"
src="https://github.com/user-attachments/assets/10db1b50-6fcf-4dfe-83e1-d93c96aa2317">
2024-07-22 13:46:38 +00:00
rbrugaro
37b89fb7fc fix RAG with quantized embeddings notebook (#24422)
1. Fix HuggingfacePipeline import error to newer partner package
 2. Switch to IPEXModelForCausalLM for performance

There are no dependency changes since optimum intel is also needed for
QuantizedBiEncoderEmbeddings

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-22 13:44:03 +00:00
Thomas Meike
40c02cedaf langchain[patch]: add async methods to ConversationSummaryBufferMemory (#20956)
Added asynchronously callable methods according to the
ConversationSummaryBufferMemory API documentation.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-22 09:21:43 -04:00
Steve Sharp
cecd875cdc docs: Update streaming.ipynb (typo fix) (#24483)
**Description:** Fixes typo `Le'ts` -> `Let's`.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-22 11:09:13 +00:00
Sheng Han Lim
0c6a3fdd6b langchain: Update ContextualCompressionRetriever base_retriever type to RetrieverLike (#24192)
**Description:**
When initializing retrievers with `configurable_fields` as base
retriever, `ContextualCompressionRetriever` validation fails with the
following error:

```
ValidationError: 1 validation error for ContextualCompressionRetriever
base_retriever
  Can't instantiate abstract class BaseRetriever with abstract method _get_relevant_documents (type=type_error)
```

Example code:

```python
esearch_retriever = VertexAISearchRetriever(
    project_id=GCP_PROJECT_ID,
    location_id="global",
    data_store_id=SEARCH_ENGINE_ID,
).configurable_fields(
    filter=ConfigurableField(id="vertex_search_filter", name="Vertex Search Filter")
)

# rerank documents with Vertex AI Rank API
reranker = VertexAIRank(
    project_id=GCP_PROJECT_ID,
    location_id=GCP_REGION,
    ranking_config="default_ranking_config",
)

retriever_with_reranker = ContextualCompressionRetriever(
    base_compressor=reranker, base_retriever=esearch_retriever
)
```

It seems like the issue stems from ContextualCompressionRetriever
insisting that base retrievers must be strictly `BaseRetriever`
inherited, and doesn't take into account cases where retrievers need to
be chained and can have configurable fields defined.


0a1e475a30/libs/langchain/langchain/retrievers/contextual_compression.py (L15-L22)

This PR proposes that the base_retriever type be set to `RetrieverLike`,
similar to how `EnsembleRetriever` validates its list of retrievers:


0a1e475a30/libs/langchain/langchain/retrievers/ensemble.py (L58-L75)
2024-07-21 14:23:19 -04:00
clement.l
d98b830e4b community: add flag to toggle progress bar (#24463)
- **Description:** Add a flag to determine whether to show progress bar 
- **Issue:** n/a
- **Dependencies:** n/a
- **Twitter handle:** n/a

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-20 13:18:02 +00:00
chuanbei888
6b08a33fa4 community: fix QianfanChatEndpoint default model (#24464)
the baidu_qianfan_endpoint has been changed from ERNIE-Bot-turbo to
ERNIE-Lite-8K
2024-07-20 13:00:29 +00:00
Nuno Campos
947628311b core[patch]: Accept configurable keys top-level (#23806)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-07-20 03:49:00 +00:00
Jesus Martinez
c1d1fc13c2 langchain[patch]: Remove multiagent return_direct validation (#24419)
**Description:**

When you use Agents with multi-input tool and some of these tools have
`return_direct=True`, langchain thrown an error related to one
validator.
This change is implemented on [JS
community](https://github.com/langchain-ai/langchainjs/pull/4643) as
well

**Issue**:
This MR resolves #19843

**Dependencies:**

None

Co-authored-by: Jesus Martinez <jesusabraham.martinez@tyson.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-20 03:27:43 +00:00
Will Badart
74e3d796f1 core[patch]: ensure iterator_ in scope for _atransform_stream_with_config except (#24454)
Before, if an exception was raised in the outer `try` block in
`Runnable._atransform_stream_with_config` before `iterator_` is
assigned, the corresponding `finally` block would blow up with an
`UnboundLocalError`:

```txt
UnboundLocalError: cannot access local variable 'iterator_' where it is not associated with a value
```

By assigning an initial value to `iterator_` before entering the `try`
block, this commit ensures that the `finally` can run, and not bury the
"true" exception under a "During handling of the above exception [...]"
traceback.

Thanks for your consideration!
2024-07-20 03:24:04 +00:00
maang-h
7b28359719 docs: Add ChatSparkLLM docstrings (#24449)
- **Description:** 
  - Add `ChatSparkLLM` docstrings, the issue #22296 
  - To support `stream` method
2024-07-19 20:19:14 -07:00
Eugene Yurtsev
5e48f35fba core[minor]: Relax constraints on type checking for tools and parsers (#24459)
This will allow tools and parsers to accept pydantic models from any of
the
following namespaces:

* pydantic.BaseModel with pydantic 1
* pydantic.BaseModel with pydantic 2
* pydantic.v1.BaseModel with pydantic 2
2024-07-19 21:47:34 -04:00
Isaac Francisco
838464de25 ollama: init package (#23615)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-20 00:43:29 +00:00
Erick Friis
f4ee3c8a22 infra: add min version testing to pr test flow (#24358)
xfailing some sql tests that do not currently work on sqlalchemy v1

#22207 was very much not sqlalchemy v1 compatible. 

Moving forward, implementations should be compatible with both to pass
CI
2024-07-19 22:03:19 +00:00
Erick Friis
50cb0a03bc docs: advanced feature note (#24456)
fixes #24430
2024-07-19 20:05:59 +00:00
Bagatur
842065a9cc community[patch]: Release 0.2.9 (#24453) 2024-07-19 12:50:22 -07:00
Bagatur
27ad6a4bb3 langchain[patch]: Release 0.2.10 (#24452) 2024-07-19 12:50:13 -07:00
Bagatur
dda9438e87 community[patch]: gpt-4o-mini costs (#24421) 2024-07-19 19:02:44 +00:00
Eugene Yurtsev
604dfe2d99 community[patch]: Force opt-in for WebResearchRetriever (CVE-2024-3095) (#24451)
This PR addresses the issue raised by (CVE-2024-3095)

https://huntr.com/bounties/e62d4895-2901-405b-9559-38276b6a5273

Unfortunately, we didn't do a good job writing the initial report. It's
pointing at both the wrong package and the wrong code.

The affected code is the Web Retriever not the AsyncHTMLLoader, and the
WebRetriever lives in langchain-community

The vulnerable code lives here: 

0bd3f4e129/libs/community/langchain_community/retrievers/web_research.py (L233-L233)


This PR adds a forced opt-in for users to make sure they are aware of
the risk and can mitigate by configuring a proxy:


0bd3f4e129/libs/community/langchain_community/retrievers/web_research.py (L84-L84)
2024-07-19 18:51:35 +00:00
Bagatur
f101c759ed docs: how to pass runtime secrets (#24450) 2024-07-19 18:36:28 +00:00
Asi Greenholts
372c27f2e5 community[minor]: [GoogleApiYoutubeLoader] Replace API used in _get_document_for_channel from search to playlistItem (#24034)
- **Description:** Search has a limit of 500 results, playlistItems
doesn't. Added a class in except clause to catch another common error.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** @TupleType

---------

Co-authored-by: asi-cider <88270351+asi-cider@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 14:04:34 -04:00
Rafael Pereira
6a45bf9554 community[minor]: GraphCypherQAChain to accept additional inputs as provided by the user for cypher generation (#24300)
**Description:** This PR introduces a change to the
`cypher_generation_chain` to dynamically concatenate inputs. This
improvement aims to streamline the input handling process and make the
method more flexible. The change involves updating the arguments
dictionary with all elements from the `inputs` dictionary, ensuring that
all necessary inputs are dynamically appended. This will ensure that any
cypher generation template will not require a new `_call` method patch.

**Issue:** This PR fixes issue #24260.
2024-07-19 14:03:14 -04:00
Philippe PRADOS
f5856680fe community[minor]: add mongodb byte store (#23876)
The `MongoDBStore` can manage only documents.
It's not possible to use MongoDB for an `CacheBackedEmbeddings`.

With this new implementation, it's possible to use:
```python
CacheBackedEmbeddings.from_bytes_store(
    underlying_embeddings=embeddings,
    document_embedding_cache=MongoDBByteStore(
      connection_string=db_uri,
      db_name=db_name,
      collection_name=collection_name,
  ),
)
```
and use MongoDB to cache the embeddings !
2024-07-19 13:54:12 -04:00
yabooung
07715f815b community[minor]: Add ability to specify file encoding and json encoding for FileChatMessageHistory (#24258)
Description:
Add UTF-8 encoding support

Issue:
Inability to properly handle characters from certain languages (e.g.,
Korean)

Fix:
Implement UTF-8 encoding in FileChatMessageHistory

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 13:53:21 -04:00
Dristy Srivastava
020cc1cf3e Community[minor]: Added checksum in while send data to pebblo-cloud (#23968)
- **Description:** 
            - Updated checksum in doc metadata
- Sending checksum and removing actual content, while sending data to
`pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`/loader/doc` API
            - Adding `pb_id` i.e. pebblo id to doc metadata
            - Refactoring as needed.
- Sending `content-checksum` and removing actual content, while sending
data to `pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`prmopt` API
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** Updated
- **Docs** NA

---------

Co-authored-by: dristy.cd <dristy@clouddefense.io>
2024-07-19 13:52:54 -04:00
Eun Hye Kim
9aae8ef416 core[patch]: Fix utils.json_schema.dereference_refs (#24335 KeyError: 400 in JSON schema processing) (#24337)
Description:
This PR fixes a KeyError: 400 that occurs in the JSON schema processing
within the reduce_openapi_spec function. The _retrieve_ref function in
json_schema.py was modified to handle missing components gracefully by
continuing to the next component if the current one is not found. This
ensures that the OpenAPI specification is fully interpreted and the
agent executes without errors.

Issue:
Fixes issue #24335

Dependencies:
No additional dependencies are required for this change.

Twitter handle:
@lunara_x
2024-07-19 13:31:00 -04:00
keval dekivadiya
06f47678ae community[minor]: Add TextEmbed Embedding Integration (#22946)
**Description:**

**TextEmbed** is a high-performance embedding inference server designed
to provide a high-throughput, low-latency solution for serving
embeddings. It supports various sentence-transformer models and includes
the ability to deploy image and text embedding models. TextEmbed offers
flexibility and scalability for diverse applications.

- **PyPI Package:** [TextEmbed on
PyPI](https://pypi.org/project/textembed/)
- **Docker Image:** [TextEmbed on Docker
Hub](https://hub.docker.com/r/kevaldekivadiya/textembed)
- **GitHub Repository:** [TextEmbed on
GitHub](https://github.com/kevaldekivadiya2415/textembed)

**PR Description**
This PR adds functionality for embedding documents and queries using the
`TextEmbedEmbeddings` class. The implementation allows for both
synchronous and asynchronous embedding requests to a TextEmbed API
endpoint. The class handles batching and permuting of input texts to
optimize the embedding process.

**Example Usage:**

```python
from langchain_community.embeddings import TextEmbedEmbeddings

# Initialise the embeddings class
embeddings = TextEmbedEmbeddings(model="your-model-id", api_key="your-api-key", api_url="your_api_url")

# Define a list of documents
documents = [
    "Data science involves extracting insights from data.",
    "Artificial intelligence is transforming various industries.",
    "Cloud computing provides scalable computing resources over the internet.",
    "Big data analytics helps in understanding large datasets.",
    "India has a diverse cultural heritage."
]

# Define a query
query = "What is the cultural heritage of India?"

# Embed all documents
document_embeddings = embeddings.embed_documents(documents)

# Embed the query
query_embedding = embeddings.embed_query(query)

# Print embeddings for each document
for i, embedding in enumerate(document_embeddings):
    print(f"Document {i+1} Embedding:", embedding)

# Print the query embedding
print("Query Embedding:", query_embedding)

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-19 17:30:25 +00:00
Shikanime Deva
9c3da11910 Fix MultiQueryRetriever breaking Embeddings with empty lines (#21093)
Fix MultiQueryRetriever breaking Embeddings with empty lines

```
[chain/end] [1:chain:ConversationalRetrievalChain > 2:retriever:Retriever > 3:retriever:Retriever > 4:chain:LLMChain] [2.03s] Exiting Chain run with output:
[outputs]
> /workspaces/Sfeir/sncf/metabot-backend/.venv/lib/python3.11/site-packages/langchain/retrievers/multi_query.py(116)_aget_relevant_documents()
-> if self.include_original:
(Pdb) queries
['## Alternative questions for "Hello, tell me about phones?":', '', '1. **What are the latest trends in smartphone technology?** (Focuses on recent advancements)', '2. **How has the mobile phone industry evolved over the years?** (Historical perspective)', '3. **What are the different types of phones available in the market, and which one is best for me?** (Categorization and recommendation)']
```

Example of failure on VertexAIEmbeddings

```
grpc._channel._InactiveRpcError: <_InactiveRpcError of RPC that terminated with:
	status = StatusCode.INVALID_ARGUMENT
	details = "The text content is empty."
	debug_error_string = "UNKNOWN:Error received from peer ipv4:142.250.184.234:443 {created_time:"2024-04-30T09:57:45.625698408+00:00", grpc_status:3, grpc_message:"The text content is empty."}"
```

Fixes: #15959

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-19 17:13:12 +00:00
John Kelly
5affbada61 langchain: Add aadd_documents to ParentDocumentRetriever (#23969)
- **Description:** Add an async version of `add_documents` to
`ParentDocumentRetriever`
-  **Twitter handle:** @johnkdev

---------

Co-authored-by: John Kelly <j.kelly@mwam.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 13:12:39 -04:00
Andrew Benton
f9d64d22e5 community[minor]: Add Riza Python/JS code execution tool (#23995)
- **Description:** Add Riza Python/JS code execution tool
- **Issue:** N/A
- **Dependencies:** an optional dependency on the `rizaio` pypi package
- **Twitter handle:** [@rizaio](https://x.com/rizaio)

[Riza](https://riza.io) is a safe code execution environment for
agent-generated Python and JavaScript that's easy to integrate into
langchain apps. This PR adds two new tool classes to the community
package.
2024-07-19 17:03:22 +00:00
Ben Chambers
3691701d58 community[minor]: Add keybert-based link extractor (#24311)
- **Description:** Add a `KeybertLinkExtractor` for graph vectorstores.
This allows extracting links from keywords in a Document and linking
nodes that have common keywords.
- **Issue:** None
- **Dependencies:** None.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-19 12:25:07 -04:00
Erick Friis
ef049769f0 core[patch]: Release 0.2.22 (#24423)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-19 09:09:24 -07:00
Bagatur
cd19ba9a07 core[patch]: core lint fix (#24447) 2024-07-19 09:01:22 -07:00
Ben Chambers
83f3d95ffa community[minor]: GLiNER link extraction (#24314)
- **Description:** This allows extracting links between documents with
common named entities using [GLiNER](https://github.com/urchade/GLiNER).
- **Issue:** None
- **Dependencies:** None

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 15:34:54 +00:00
Anas Khan
b5acb91080 Mask API keys for various LLM/ChatModel Modules (#13885)
**Description:** 
- Added masking of the API Keys for the modules:
  - `langchain/chat_models/openai.py`
  - `langchain/llms/openai.py`
  - `langchain/llms/google_palm.py`
  - `langchain/chat_models/google_palm.py`
  - `langchain/llms/edenai.py`

- Updated the modules to utilize `SecretStr` from pydantic to securely
manage API key.
- Added unit/integration tests
- `langchain/chat_models/asure_openai.py` used the `open_api_key` that
is derived from the `ChatOpenAI` Class and it was assuming
`openai_api_key` is a str so we changed it to expect `SecretStr`
instead.

**Issue:** https://github.com/langchain-ai/langchain/issues/12165 ,
**Dependencies:** none,
**Tag maintainer:** @eyurtsev

---------

Co-authored-by: HassanA01 <anikeboss@gmail.com>
Co-authored-by: Aneeq Hassan <aneeq.hassan@utoronto.ca>
Co-authored-by: kristinspenc <kristinspenc2003@gmail.com>
Co-authored-by: faisalt14 <faisalt14@gmail.com>
Co-authored-by: Harshil-Patel28 <76663814+Harshil-Patel28@users.noreply.github.com>
Co-authored-by: kristinspenc <146893228+kristinspenc@users.noreply.github.com>
Co-authored-by: faisalt14 <90787271+faisalt14@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-19 15:23:34 +00:00
ccurme
f99369a54c community[patch]: fix formatting (#24443)
Somehow this got through CI:
https://github.com/langchain-ai/langchain/pull/24363
2024-07-19 14:38:53 +00:00
Ben Chambers
242b085be7 Merge pull request #24315
* community: Add Hierarchy link extractor

* add example

* lint
2024-07-19 09:42:26 -04:00
Rhuan Barros
c3308f31bc Merge pull request #24363
* important email fields
2024-07-19 09:41:20 -04:00
Piotr Romanowski
c50dd79512 docs: Update langchain-openai package version in chat_token_usage_tracking (#24436)
This PR updates docs to mention correct version of the
`langchain-openai` package required to use the `stream_usage` parameter.

As it can be noticed in the details of this [merge
commit](722c8f50ea),
that functionality is available only in `langchain-openai >= 0.1.9`
while docs state it's available in `langchain-openai >= 0.1.8`.
2024-07-19 13:07:37 +00:00
Han Sol Park
aade9bfde5 Mask API key for ChatOpenAI based chat_models (#14293)
- **Description**: Mask API key for ChatOpenAi based chat_models
(openai, azureopenai, anyscale, everlyai).
Made changes to all chat_models that are based on ChatOpenAI since all
of them assumes that openai_api_key is str rather than SecretStr.
  - **Issue:**: #12165 
  - **Dependencies:**  N/A
  - **Tag maintainer:** @eyurtsev
  - **Twitter handle:** N/A

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-19 02:25:38 +00:00
William FH
0ee6ed76ca [Evaluation] Pass in seed directly (#24403)
adding test rn
2024-07-18 19:12:28 -07:00
Nuno Campos
62b6965d2a core: In ensure_config don't copy dunder configurable keys to metadata (#24420) 2024-07-18 22:28:52 +00:00
Eugene Yurtsev
ef22ebe431 standard-tests[patch]: Add pytest assert rewrites (#24408)
This will surface nice error messages in subclasses that fail assertions.
2024-07-18 21:41:11 +00:00
Eugene Yurtsev
f62b323108 core[minor]: Support all versions of pydantic base model in argsschema (#24418)
This adds support to any pydantic base model for tools.

The only potential issue is that `get_input_schema()` will not always
return a v1 base model.
2024-07-18 17:14:23 -04:00
Prakul
b2bc15e640 docs: Update mongodb README.md (#24412)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-18 14:02:34 -07:00
Evan Harris
61ea7bf60b Add a ListRerank document compressor (#13311)
- **Description:** This PR adds a new document compressor called
`ListRerank`. It's derived from `BaseDocumentCompressor`. It's a near
exact implementation of introduced by this paper: [Zero-Shot Listwise
Document Reranking with a Large Language
Model](https://arxiv.org/pdf/2305.02156.pdf) which it finds to
outperform pointwise reranking, which is somewhat implemented in
LangChain as
[LLMChainFilter](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/document_compressors/chain_filter.py).
- **Issue:** None
- **Dependencies:** None
- **Tag maintainer:** @hwchase17 @izzymsft
- **Twitter handle:** @HarrisEMitchell

Notes:
1. I didn't add anything to `docs`. I wasn't exactly sure which patterns
to follow as [cohere reranker is under
Retrievers](https://python.langchain.com/docs/integrations/retrievers/cohere-reranker)
with other external document retrieval integrations, but other
contextual compression is
[here](https://python.langchain.com/docs/modules/data_connection/retrievers/contextual_compression/).
Happy to contribute to either with some direction.
2. I followed syntax, docstrings, implementation patterns, etc. as well
as I could looking at nearby modules. One thing I didn't do was put the
default prompt in a separate `.py` file like [Chain
Filter](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/document_compressors/chain_filter_prompt.py)
and [Chain
Extract](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/document_compressors/chain_extract_prompt.py).
Happy to follow that pattern if it would be preferred.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-18 20:34:38 +00:00
Srijan Dubey
4c651ba13a Adding LangChain v0.2 support for nvidia ai endpoint, langchain-nvidia-ai-endpoints. Removed deprecated classes from nvidia_ai_endpoints.ipynb (#24411)
Description: added support for LangChain v0.2 for nvidia ai endpoint.
Implremented inMemory storage for chains using
RunnableWithMessageHistory which is analogous to using
`ConversationChain` which was used in v0.1 with the default
`ConversationBufferMemory`. This class is deprecated in favor of
`RunnableWithMessageHistory` in LangChain v0.2

Issue: None

Dependencies: None.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-18 15:59:26 -04:00
Erick Friis
334fc1ed1c mongodb: release 0.1.7 (#24409) 2024-07-18 18:13:27 +00:00
ccurme
ba74341eee docs: update tool calling how-to to pass functions to bind_tools (#24402) 2024-07-18 08:53:48 -07:00
Harrison Chase
3adf710f1d docs: improve docs on tools (#24404)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-18 08:52:12 -07:00
Eun Hye Kim
07c5c60f63 community: fix tool appending logic and update planner prompt in OpenAPI agent toolkit (#24384)
**Description:**
- Updated the format for the 'Action' section in the planner prompt to
ensure it must be one of the tools without additional words. Adjusted
the phrasing from "should be" to "must be" for clarity and
enforceability.
- Corrected the tool appending logic in the
`_create_api_controller_agent` function to ensure that
`RequestsDeleteToolWithParsing` and `RequestsPatchToolWithParsing` are
properly added to the tools list for "DELETE" and "PATCH" operations.

**Issue:** #24382

**Dependencies:** None

**Twitter handle:** @lunara_x

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-18 13:37:46 +00:00
Casey Clements
aade1550c6 docs: Adds MongoDBAtlasVectorSearch to VectorStore list compatible with Indexing API (#24374)
Adds MongoDBAtlasVectorSearch to list of VectorStores compatible with
the Indexing API.

(One line change.)

As of `langchain-mongodb = "0.1.7"`, the requirements that the
VectorStore have both add_documents and delete methods with an ids kwarg
is satisfied. #23535 contains the implementation of that, and has been
merged.
2024-07-18 09:37:29 -04:00
Chen Xiabin
63c60a31f0 [fix] baidu qianfan AiMessage with usage_metadata (#24389)
make AIMessage usage_metadata has error
2024-07-18 09:28:16 -04:00
João Dinis Ferreira
242de9aa5e docs: remove redundant --quiet option in pip install command (#24397)
- **Description:** Removes a redundant option in a `pip install` command
in the documentation.
- **Issue:** N/A
- **Dependencies:** N/A
2024-07-18 13:24:42 +00:00
ZhangShenao
916b813107 community[patch]: Fix spelling error in ConversationVectorStoreTokenBufferMemory doc-string (#24385)
Fix word spelling error in `ConversationVectorStoreTokenBufferMemory`
2024-07-18 12:27:36 +00:00
Rajendra Kadam
1c65529fd7 community[minor]: [PebbloSafeLoader] Rename loader type and add SharePointLoader to supported loaders (#24393)
Thank you for contributing to LangChain!

- [x] **PR title**: [PebbloSafeLoader] Rename loader type and add
SharePointLoader to supported loaders
    - **Description:** Minor fixes in the PebbloSafeLoader:
        - Renamed the loader type from `remote_db` to `cloud_folder`.
- Added `SharePointLoader` to the list of loaders supported by
PebbloSafeLoader.
    - **Issue:** NA
    - **Dependencies:** NA
- [x] **Add tests and docs**: NA
2024-07-18 08:23:12 -04:00
Eugene Yurtsev
6182a402f1 experimental[patch]: block a few more things from PALValidator (#24379)
* Please see security warning already in existing class.
* The approach here is fundamentally insecure as it's relying on a block
  approach rather than an approach based on only running allowed nodes.
So users should only use this code if its running from a properly
sandboxed  environment.
2024-07-18 08:22:45 -04:00
Paolo Ráez
0dec72cab0 Community[patch]: Missing "stream" parameter in cloudflare_workersai (#23987)
### Description
Missing "stream" parameter. Without it, you'd never receive a stream of
tokens when using stream() or astream()

### Issue
No existing issue available
2024-07-18 02:09:39 +00:00
Eugene Yurtsev
570566b858 core[patch]: Update API reference for astream events (#24359)
Update the API reference for astream events to include information about
custom events.
2024-07-17 21:48:53 -04:00
Bagatur
f9baaae3ec docs: clean up tool how to titles (#24373) 2024-07-17 17:08:31 -07:00
Bagatur
4da1df568a docs: tools concepts (#24368) 2024-07-17 17:08:16 -07:00
Erick Friis
96ccba9c27 infra: 15s retry wait on test pypi (#24375) 2024-07-17 23:41:22 +00:00
Bagatur
a4c101ae97 core[patch]: Release 0.2.21 (#24372) 2024-07-17 22:44:35 +00:00
William FH
c5a07e2dd8 core[patch]: add InjectedToolArg annotation (#24279)
```python
from typing_extensions import Annotated
from langchain_core.tools import tool, InjectedToolArg
from langchain_anthropic import ChatAnthropic

@tool
def multiply(x: int, y: int, not_for_model: Annotated[dict, InjectedToolArg]) -> str:
    """multiply."""
    return x * y 

ChatAnthropic(model='claude-3-sonnet-20240229',).bind_tools([multiply]).invoke('5 times 3').tool_calls
'''
-> [{'name': 'multiply',
  'args': {'x': 5, 'y': 3},
  'id': 'toolu_01Y1QazYWhu4R8vF4hF4z9no',
  'type': 'tool_call'}]
'''
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-17 15:28:40 -07:00
Erick Friis
80f3d48195 openai: release 0.1.18 (#24369) 2024-07-17 22:26:33 +00:00
Bagatur
7d83189b19 openai[patch]: use model_name in AzureOpenAI.ls_model_name (#24366) 2024-07-17 15:24:05 -07:00
Nithish Raghunandanan
eb26b5535a couchbase: Add chat message history (#24356)
**Description:** : Add support for chat message history using Couchbase

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
2024-07-17 15:22:42 -07:00
Eugene Yurtsev
96bac8e20d core[patch]: Fix regression requiring input_variables in few chat prompt templates (#24360)
* Fix regression that requires users passing input_variables=[].

* Regression introduced by my own changes to this PR:
https://github.com/langchain-ai/langchain/pull/22851
2024-07-17 18:14:57 -04:00
Brice Fotzo
034a8c7c1b community: support advanced text extraction options for pdf documents (#20265)
**Description:** 
- Updated constructors in PyPDFParser and PyPDFLoader to handle
`extraction_mode` and additional kwargs, aligning with the capabilities
of `PageObject.extract_text()` from pypdf.

- Added `test_pypdf_loader_with_layout` along with a corresponding
example text file to validate layout extraction from PDFs.

**Issue:** fixes #19735 

**Dependencies:** This change requires updating the pypdf dependency
from version 3.4.0 to at least 4.0.0.

Additional changes include the addition of a new test
test_pypdf_loader_with_layout and an example text file to ensure the
functionality of layout extraction from PDFs aligns with the new
capabilities.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-17 20:47:09 +00:00
hmasdev
a402de3dae langchain[patch]: fix wrong dict key in OutputFixingParser, RetryOutputParser and RetryWithErrorOutputParser (#23967)
# Description
This PR aims to solve a bug in `OutputFixingParser`, `RetryOutputParser`
and `RetryWithErrorOutputParser`
The bug is that the wrong keyword argument was given to `retry_chain`.
The correct keyword argument is 'completion', but 'input' is used.

This pull request makes the following changes:
1. correct a `dict` key given to `retry_chain`;
2. add a test when using the default prompt.
   - `NAIVE_FIX_PROMPT` for `OutputFixingParser`;
   - `NAIVE_RETRY_PROMPT` for `RetryOutputParser`;
   - `NAIVE_RETRY_WITH_ERROR_PROMPT` for `RetryWithErrorOutputParser`;
3. ~~add comments on `retry_chain` input and output types~~ clarify
`InputType` and `OutputType` of `retry_chain`

# Issue
The bug is pointed out in
https://github.com/langchain-ai/langchain/pull/19792#issuecomment-2196512928

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-17 20:34:46 +00:00
Casey Clements
a47f69a120 partners/mongodb : Significant MongoDBVectorSearch ID enhancements (#23535)
## Description

This pull-request improves the treatment of document IDs in
`MongoDBAtlasVectorSearch`.

Class method signatures of add_documents, add_texts, delete, and
from_texts
now include an `ids:Optional[List[str]]` keyword argument permitting the
user
greater control. 
Note that, as before, IDs may also be inferred from
`Document.metadata['_id']`
if present, but this is no longer required,
IDs can also optionally be returned from searches.

This PR closes the following JIRA issues.

* [PYTHON-4446](https://jira.mongodb.org/browse/PYTHON-4446)
MongoDBVectorSearch delete / add_texts function rework
* [PYTHON-4435](https://jira.mongodb.org/browse/PYTHON-4435) Add support
for "Indexing"
* [PYTHON-4534](https://jira.mongodb.org/browse/PYTHON-4534) Ensure
datetimes are json-serializable

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-17 13:26:20 -07:00
Erick Friis
cc2cbfabfc milvus: release 0.1.2 (#24365) 2024-07-17 19:42:44 +00:00
Eugene Yurtsev
9e4a0e76f6 core[patch]: Fix one unit test for chat prompt template (#24362)
Minor change that fixes a unit test that had missing assertions.
2024-07-17 18:56:48 +00:00
Erick Friis
81639243e2 openai: release 0.1.17 (#24361) 2024-07-17 18:50:42 +00:00
Erick Friis
61976a4147 pinecone: release 0.1.2 (#24355) 2024-07-17 17:09:07 +00:00
Bagatur
b5360e2e5f community[patch]: Release 0.2.8 (#24354) 2024-07-17 17:07:27 +00:00
ccurme
4cf67084d3 openai[patch]: fix key collision and _astream (#24345)
Fixes small issues introduced in
https://github.com/langchain-ai/langchain/pull/24150 (unreleased).
2024-07-17 12:59:26 -04:00
Luis Moros
bcb5f354ad community: Fix SQLDatabse.from_databricks issue when ran from Job (#24346)
- Description: When SQLDatabase.from_databricks is ran from a Databricks
Workflow job, line 205 (default_host = context.browserHostName) throws
an ``AttributeError`` as the ``context`` object has no
``browserHostName`` attribute. The fix handles the exception and sets
the ``default_host`` variable to null

---------

Co-authored-by: lmorosdb <lmorosdb>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-17 12:40:12 -04:00
Bagatur
24e9b48d15 langchain[patch]: Release 0.2.9 (#24327) 2024-07-17 09:39:57 -07:00
Rafael Pereira
cf28708e7b Neo4j: Update with non-deprecated cypher methods, and new method to associate relationship embeddings (#23725)
**Description:** At the moment neo4j wrapper is using setVectorProperty,
which is deprecated
([link](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_create_setVectorProperty)).
I replaced with the non-deprecated version.

Neo4j recently introduced a new cypher method to associate embeddings
into relations using "setRelationshipVectorProperty" method. In this PR
I also implemented a new method to perform this association maintaining
the same format used in the "add_embeddings" method which is used to
associate embeddings into Nodes.
I also included a test case for this new method.
2024-07-17 12:37:47 -04:00
maang-h
2a3288b15d docs: Add ChatBaichuan docstrings (#24348)
- **Description:** Add ChatBaichuan rich docstrings.
- **Issue:** the issue #22296
2024-07-17 12:00:16 -04:00
Srijan Dubey
1792684e8f removed deprecated classes from pipelineai.ipynb, added support for LangChain v0.2 for PipelineAI integration (#24333)
Description: added support for LangChain v0.2 for PipelineAI
integration. Removed deprecated classes and incorporated support for
LangChain v0.2 to integrate with PipelineAI. Removed LLMChain and
replaced it with Runnable interface. Also added StrOutputParser, that
parses LLMResult into the top likely string.

Issue: None

Dependencies: None.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-17 13:48:32 +00:00
Tobias Sette
e60ad12521 docs(infobip.ipynb): fix typo (#24328) 2024-07-17 13:33:34 +00:00
Rafael Pereira
fc41730e28 neo4j: Fix test for order-insensitive comparison and floating-point precision issues (#24338)
**Description:** 
This PR addresses two main issues in the `test_neo4jvector.py`:
1. **Order-insensitive Comparison:** Modified the
`test_retrieval_dictionary` to ensure that it passes regardless of the
order of returned values by parsing `page_content` into a structured
format (dictionary) before comparison.
2. **Floating-point Precision:** Updated
`test_neo4jvector_relevance_score` to handle minor floating-point
precision differences by using the `isclose` function for comparing
relevance scores with a relative tolerance.

Errors addressed:

- **test_neo4jvector_relevance_score:**
  ```
AssertionError: assert [(Document(page_content='foo', metadata={'page':
'0'}), 1.0000014305114746), (Document(page_content='bar',
metadata={'page': '1'}), 0.9998371005058289),
(Document(page_content='baz', metadata={'page': '2'}),
0.9993508458137512)] == [(Document(page_content='foo', metadata={'page':
'0'}), 1.0), (Document(page_content='bar', metadata={'page': '1'}),
0.9998376369476318), (Document(page_content='baz', metadata={'page':
'2'}), 0.9993523359298706)]
At index 0 diff: (Document(page_content='foo', metadata={'page': '0'}),
1.0000014305114746) != (Document(page_content='foo', metadata={'page':
'0'}), 1.0)
  Full diff:
  - [(Document(page_content='foo', metadata={'page': '0'}), 1.0),
+ [(Document(page_content='foo', metadata={'page': '0'}),
1.0000014305114746),
? +++++++++++++++
- (Document(page_content='bar', metadata={'page': '1'}),
0.9998376369476318),
? ^^^ ------
+ (Document(page_content='bar', metadata={'page': '1'}),
0.9998371005058289),
? ^^^^^^^^^
- (Document(page_content='baz', metadata={'page': '2'}),
0.9993523359298706),
? ----------
+ (Document(page_content='baz', metadata={'page': '2'}),
0.9993508458137512),
? ++++++++++
  ]
  ```

- **test_retrieval_dictionary:**
  ```
AssertionError: assert [Document(page_content='skills:\n- Python\n- Data
Analysis\n- Machine Learning\nname: John\nage: 30\n')] ==
[Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: 30\nname: John\n')]
At index 0 diff: Document(page_content='skills:\n- Python\n- Data
Analysis\n- Machine Learning\nname: John\nage: 30\n') !=
Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: 30\nname: John\n')
  Full diff:
- [Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: 30\nname: John\n')]
? ---------
+ [Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: John\nage: 30\n')]
? +++++++++
  ```
2024-07-17 09:28:25 -04:00
Erick Friis
47ed7f766a infra: fix release prerelease deps bug (#24323) 2024-07-16 15:13:41 -07:00
Bagatur
80e7cd6cff core[patch]: Release 0.2.20 (#24322) 2024-07-16 15:04:36 -07:00
Erick Friis
6c3e65a878 infra: prerelease dep checking on release (#23269) 2024-07-16 21:48:15 +00:00
Eugene Yurtsev
616196c620 Docs: Add how to dispatch custom callback events (#24278)
* Add how-to guide for dispatching custom callback events.
* Add links from index to the how to guide
* Add link from streaming from within a tool
* Update versionadded to correct release
https://github.com/langchain-ai/langchain/releases/tag/langchain-core%3D%3D0.2.15
2024-07-16 17:38:32 -04:00
Erick Friis
dd7938ace8 docs: readthedocs deprecation fix (#24321)
https://about.readthedocs.com/blog/2024/07/addons-by-default/#how-does-it-affect-my-projects

we use build.command so we're already using addons, so I think this is
it
2024-07-16 20:32:51 +00:00
Srijan Dubey
ef07308c30 Upgraded shaleprotocol to use langchain v0.2 removed deprecated classes (#24320)
Description: Added support for langchain v0.2 for shale protocol.
Replaced LLMChain with Runnable interface which allows any two Runnables
to be 'chained' together into sequences. Also added
StreamingStdOutCallbackHandler. Callback handler for streaming.
Issue: None
Dependencies: None.
2024-07-16 20:07:36 +00:00
pbharti0831
049bc37111 Cookbook for applying RAG locally using open source models and tools on CPU (#24284)
This cookbook guides user to implement RAG locally on CPU using
langchain tools and open source models. It enables Llama2 model to
answer queries about Intel Q1 2024 earning release using RAG pipeline.

Main libraries are langchain, llama-cpp-python and gpt4all.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Sriragavi <sriragavi.r@intel.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-16 15:17:10 -04:00
Leonid Ganeline
5ccf8ebfac core: docstrings vectorstores update (#24281)
Added missed docstrings. Formatted docstrings to the consistent form.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-16 16:58:11 +00:00
Erick Friis
1e9cc02ed8 openai: raw response headers (#24150) 2024-07-16 09:54:54 -07:00
Bagatur
dc42279eb5 core[patch]: fix Typing.cast import (#24313)
Fixes #24287
2024-07-16 16:53:48 +00:00
Anush
e38bf08139 qdrant: Fixed typos in Qdrant vectorstore docs (#24312)
## Description 

As that title goes.
2024-07-16 09:44:07 -07:00
bovlb
5caa381177 community[minor]: Add ApertureDB as a vectorstore (#24088)
Thank you for contributing to LangChain!

- [X] *ApertureDB as vectorstore**: "community: Add ApertureDB as a
vectorestore"

- **Description:** this change provides a new community integration that
uses ApertureData's ApertureDB as a vector store.
    - **Issue:** none
    - **Dependencies:** depends on ApertureDB Python SDK
    - **Twitter handle:** ApertureData

- [X] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

Integration tests rely on a local run of a public docker image.
Example notebook additionally relies on a local Ollama server.

- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

All lint tests pass.

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Gautam <gautam@aperturedata.io>
2024-07-16 09:32:59 -07:00
frob
c59e663365 community[patch]: Fix docstring for ollama parameter "keep_alive" (#23973)
Fix doc-string for ollama integration
2024-07-16 14:48:38 +00:00
Mazen Ramadan
0c1889c713 docs: fix parameter typo in scrapfly loader docs (#24307)
Fixed wrong parameter typo in
[ScrapflyLoader](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/scrapfly.py)
docs, where `ignore_scrape_failures` is used instead of
`continue_on_failure`.

- Description: Fix wrong param typo in ScrapflyLoader docs.
2024-07-16 14:48:13 +00:00
Leonid Ganeline
5fcf2ef7ca core: docstrings documents (#23506)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-16 10:43:54 -04:00
Rafael Pereira
77dd327282 Docs: Fix Concepts Integration Tools Link (#24301)
- **Description:** This PR fix concepts integrations tools link.

- **Issue:** Fixes issue #24112

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-16 10:29:30 -04:00
Rahul Raghavendra Choudhury
f5a38772a8 community[patch]: Update TavilySearch to use TavilyClient instead of the deprecated Client (#24270)
On using TavilySearchAPIRetriever with any conversation chain getting
error :

`TypeError: Client.__init__() got an unexpected keyword argument
'api_key'`

It is because the retreiver class is using the depreciated `Client`
class, `TavilyClient` need to be used instead.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-16 13:35:28 +00:00
Shenhai Ran
5f2dea2b20 core[patch]: Add encoding options when create prompt template from a file (#24054)
- Uses default utf-8 encoding for loading prompt templates from file

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-16 09:35:09 -04:00
Chen Xiabin
69b1603173 baidu qianfan AiMessage with usage_metadata (#24288)
add usage_metadata to qianfan AIMessage. Thanks
2024-07-16 09:30:50 -04:00
amcastror
d83164f837 Update retrievers.ipynb (#24289)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-16 13:30:41 +00:00
Leonid Ganeline
198b85334f core[patch]: docstrings langchain_core/ files update (#24285)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-16 09:21:51 -04:00
Dobiichi-Origami
7aeaa1974d community[patch]: change the class of qianfan_ak and qianfan_sk parameters (#24293)
- **Description:** we changed the class of two parameters to fix a bug,
which causes validation failure when using QianfanEmbeddingEndpoint
2024-07-16 09:17:48 -04:00
Tibor Reiss
1c753d1e81 core[patch]: Update typing for template format to include jinja2 as a Literal (#24144)
Fixes #23929 via adjusting the typing
2024-07-16 09:09:42 -04:00
Jacob Lee
6716379f0c docs[patch]: Fix rendering issue in code splitter page (#24291) 2024-07-15 23:08:21 -07:00
Jacob Lee
58fdb070fa docs[patch]: Update intro diagram (#24290)
CC @agola11
2024-07-15 22:04:42 -07:00
Erick Friis
1d7a3ae7ce infra: add test deps to add_dependents (#24283) 2024-07-15 15:48:53 -07:00
Erick Friis
d2f671271e langchain: fix extended test (#24282) 2024-07-15 15:29:48 -07:00
Lage Ragnarsson
a3c10fc6ce community: Add support for specifying hybrid search for Databricks vector search (#23528)
**Description:**

Databricks Vector Search recently added support for hybrid
keyword-similarity search.
See [usage
examples](https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#query-a-vector-search-endpoint)
from their documentation.

This PR updates the Langchain vectorstore interface for Databricks to
enable the user to pass the *query_type* parameter to
*similarity_search* to make use of this functionality.
By default, there will not be any changes for existing users of this
interface. To use the new hybrid search feature, it is now possible to
do

```python
# ...
dvs = DatabricksVectorSearch(index)
dvs.similarity_search("my search query", query_type="HYBRID")
```

Or using the retriever:

```python
retriever = dvs.as_retriever(
    search_kwargs={
        "query_type": "HYBRID",
    }
)
retriever.invoke("my search query")
```

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-15 22:14:08 +00:00
Christopher Tee
5171ffc026 community(you): Integrate You.com conversational APIs (#23046)
You.com is releasing two new conversational APIs — Smart and Research. 

This PR:
- integrates those APIs with Langchain, as an LLM
- streaming is supported

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-15 17:46:58 -04:00
maang-h
6c7d9f93b9 feat: Add ChatTongyi structured output (#24187)
- **Description:** Add `with_structured_output` method to ChatTongyi to
support structured output.
2024-07-15 15:57:21 -04:00
Chen Xiabin
8f4620f4b8 baidu qianfan streaming token_usage (#24117)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-15 19:52:31 +00:00
maang-h
9d97de34ae community[patch]: Improve ChatBaichuan init args and role (#23878)
- **Description:** Improve ChatBaichuan init args and role
   -  ChatBaichuan adds `system` role
   - alias: `baichuan_api_base` -> `base_url`
   - `with_search_enhance` is deprecated
   - Add `max_tokens` argument
2024-07-15 15:17:00 -04:00
Erick Friis
56cca23745 openai: remove some params from default serialization (#24280) 2024-07-15 18:53:36 +00:00
mrugank-wadekar
66bebeb76a partners: add similarity search by image functionality to langchain_chroma partner package (#22982)
- **Description:** This pull request introduces two new methods to the
Langchain Chroma partner package that enable similarity search based on
image embeddings. These methods enhance the package's functionality by
allowing users to search for images similar to a given image URI. Also
introduces a notebook to demonstrate it's use.
  - **Issue:** N/A
  - **Dependencies:** None
  - **Twitter handle:** @mrugank9009

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-15 18:48:22 +00:00
pm390
b0aa915dea community[patch]: use asyncio.sleep instead of sleep in OpenAI Assistant async (#24275)
**Description:** Implemented async sleep using asyncio instead of
synchronous sleep in openAI Assistants
**Issue:** 24194
**Dependencies:** asyncio
**Twitter handle:** pietromald60939
2024-07-15 18:14:39 +00:00
Anush
d93ae756e6 qdrant: Documentation for the new QdrantVectorStore class (#24166)
## Description

Follow up on #24165. Adds a page to document the latest usage of the new
`QdrantVectorStore` class.
2024-07-15 10:39:23 -07:00
Erick Friis
1244e66bd4 docs: remove couchbase from docs linking (#24277)
`pip install couchbase` adds 12 minutes to the docs build...
2024-07-15 17:34:41 +00:00
wenngong
a001037319 retrievers: MultiVectorRetriever similarity_score_threshold search type (#23539)
Description: support MultiVectorRetriever similarity_score_threshold
search type.

Issue: #23387 #19404

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-15 13:31:34 -04:00
Carlos André Antunes
20151384d7 fix azure_openai.py: some keys do not exists (#24158)
In some lines its trying to read a key that do not exists yet. In this
cases I changed the direct access to dict.get() method

Thank you for contributing to LangChain!

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-07-15 17:17:05 +00:00
blueoom
d895614d19 text_splitters: add request parameters for function HTMLHeaderTextSplitter.split_text… (#24178)
**Description:**

The `split_text_from_url` method of `HTMLHeaderTextSplitter` does not
include parameters like `timeout` when using `requests` to send a
request. Therefore, I suggest adding a `kwargs` parameter to the
function, which can be passed as arguments to `requests.get()`
internally, allowing control over the `get` request.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-15 16:43:56 +00:00
Bagatur
9d0c1d2dc9 docs: specify init_chat_model version (#24274) 2024-07-15 16:29:06 +00:00
MoraxMa
a7296bddc2 docs: updated Tongyi package (#24259)
* updated pip install package
2024-07-15 16:25:35 +00:00
Bagatur
c9473367b1 langchain[patch]: Release 0.2.8 (#24273) 2024-07-15 16:05:51 +00:00
JP-Ellis
f77659463a core[patch]: allow message utils to work with lcel (#23743)
The functions `convert_to_messages` has had an expansion of the
arguments it can take:

1. Previously, it only could take a `Sequence` in order to iterate over
it. This has been broadened slightly to an `Iterable` (which should have
no other impact).
2. Support for `PromptValue` and `BaseChatPromptTemplate` has been
added. These are generated when combining messages using the overloaded
`+` operator.

Functions which rely on `convert_to_messages` (namely `filter_messages`,
`merge_message_runs` and `trim_messages`) have had the type of their
arguments similarly expanded.

Resolves #23706.

<!--
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
-->

---------

Signed-off-by: JP-Ellis <josh@jpellis.me>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-07-15 08:58:05 -07:00
Harold Martin
ccdaf14eff docs: Spell check fixes (#24217)
**Description:** Spell check fixes for docs, comments, and a couple of
strings. No code change e.g. variable names.
**Issue:** none
**Dependencies:** none
**Twitter handle:** hmartin
2024-07-15 15:51:43 +00:00
Leonid Ganeline
cacdf96f9c core docstrings tracers update (#24211)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-15 11:37:09 -04:00
Leonid Ganeline
36ee083753 core: docstrings utils update (#24213)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-15 11:36:00 -04:00
thehunmonkgroup
e8a21146d3 community[patch]: upgrade default model for ChatAnyscale (#24232)
Old default `meta-llama/Llama-2-7b-chat-hf` no longer supported.
2024-07-15 11:34:59 -04:00
Bagatur
a0958c0607 docs: more tool call -> tool message docs (#24271) 2024-07-15 07:55:07 -07:00
Bagatur
620b118c70 core[patch]: Release 0.2.19 (#24272) 2024-07-15 07:51:30 -07:00
ccurme
888fbc07b5 core[patch]: support passing args_schema through as_tool (#24269)
Note: this allows the schema to be passed in positionally.

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda


class Add(BaseModel):
    """Add two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


def add(input: dict) -> int:
    return input["a"] + input["b"]


runnable = RunnableLambda(add)
as_tool = runnable.as_tool(Add)
as_tool.args_schema.schema()
```
```
{'title': 'Add',
 'description': 'Add two integers together.',
 'type': 'object',
 'properties': {'a': {'title': 'A',
   'description': 'First integer',
   'type': 'integer'},
  'b': {'title': 'B', 'description': 'Second integer', 'type': 'integer'}},
 'required': ['a', 'b']}
```
2024-07-15 07:51:05 -07:00
ccurme
ab2d7821a7 fireworks[patch]: use firefunction-v2 in standard tests (#24264) 2024-07-15 13:15:08 +00:00
ccurme
6fc7610b1c standard-tests[patch]: update test_bind_runnables_as_tools (#24241)
Reduce number of tool arguments from two to one.
2024-07-15 08:35:07 -04:00
Bagatur
0da5078cad langchain[minor]: Generic configurable model (#23419)
alternative to
[23244](https://github.com/langchain-ai/langchain/pull/23244). allows
you to use chat model declarative methods

![Screenshot 2024-06-25 at 1 07 10
PM](https://github.com/langchain-ai/langchain/assets/22008038/910d1694-9b7b-46bc-bc2e-3792df9321d6)
2024-07-15 01:11:01 +00:00
Bagatur
d0728b0ba0 core[patch]: add tool name to tool message (#24243)
Copying current ToolNode behavior
2024-07-15 00:42:40 +00:00
Bagatur
9224027e45 docs: tool artifacts how to (#24198) 2024-07-14 17:04:47 -07:00
Bagatur
5c3e2612da core[patch]: Release 0.2.18 (#24230) 2024-07-13 09:14:43 -07:00
Bagatur
65321bf975 core[patch]: fix ToolCall "type" when streaming (#24218) 2024-07-13 08:59:03 -07:00
Jacob Lee
2b7d1cdd2f docs[patch]: Update tool child run docs (#24160)
Documents #24143
2024-07-13 07:52:37 -07:00
Anush
a653b209ba qdrant: test new QdrantVectorStore (#24165)
## Description

This PR adds integration tests to follow up on #24164.

By default, the tests use an in-memory instance.

To run the full suite of tests, with both in-memory and Qdrant server:

```
$ docker run -p 6333:6333 qdrant/qdrant

$ make test

$ make integration_test
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:59:30 +00:00
Roman Solomatin
f071581aea openai[patch]: update openai params (#23691)
**Description:** Explicitly add parameters from openai API



- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 16:53:33 -07:00
Leonid Ganeline
f0a7581b50 milvus: docstring (#23151)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:25:31 +00:00
Christian D. Glissov
474b88326f langchain_qdrant: Added method "_asimilarity_search_with_relevance_scores" to Qdrant class (#23954)
I stumbled upon a bug that led to different similarity scores between
the async and sync similarity searches with relevance scores in Qdrant.
The reason being is that _asimilarity_search_with_relevance_scores is
missing, this makes langchain_qdrant use the method of the vectorstore
baseclass leading to drastically different results.

To illustrate the magnitude here are the results running an identical
search in a test vectorstore.

Output of asimilarity_search_with_relevance_scores:
[0.9902903374601824, 0.9472135924938804, 0.8535534011299859]

Output of similarity_search_with_relevance_scores:
[0.9805806749203648, 0.8944271849877607, 0.7071068022599718]

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:25:20 +00:00
Bagatur
bdc03997c9 standard-tests[patch]: check for ToolCall["type"] (#24209) 2024-07-12 16:17:34 -07:00
Nada Amin
3f1cf00d97 docs: Improve neo4j semantic templates (#23939)
I made some changes based on the issues I stumbled on while following
the README of neo4j-semantic-ollama.
I made the changes to the ollama variant, and can also port the relevant
ones to the layer variant once this is approved.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:08:25 +00:00
Nada Amin
6b47c7361e docs: fix code usage to use the ollama variant (#23937)
**Description:** the template neo4j-semantic-ollama uses an import from
the neo4j-semantic-layer template instead of its own.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:07:42 +00:00
Anirudh31415926535
7677ceea60 docs: model parameter mandatory for cohere embedding and rerank (#23349)
Latest langchain-cohere sdk mandates passing in the model parameter into
the Embeddings and Reranker inits.

This PR is to update the docs to reflect these changes.
2024-07-12 23:07:28 +00:00
Miroslav
aee55eda39 community: Skip Login to HuggubgFaceHub when token is not set (#21561)
Thank you for contributing to LangChain!

- [ ] **HuggingFaceEndpoint**: "Skip Login to HuggingFaceHub"
  - Where:  langchain, community, llm, huggingface_endpoint
 


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Skip login to huggingface hub when when
`huggingfacehub_api_token` is not set. This is needed when using custom
`endpoint_url` outside of HuggingFaceHub.
- **Issue:** the issue # it fixes
https://github.com/langchain-ai/langchain/issues/20342 and
https://github.com/langchain-ai/langchain/issues/19685
    - **Dependencies:** None


- [ ] **Add tests and docs**: 
  1. Tested with locally available TGI endpoint
  2.  Example Usage
```python
from langchain_community.llms import HuggingFaceEndpoint

llm = HuggingFaceEndpoint(
    endpoint_url='http://localhost:8080',
    server_kwargs={
        "headers": {"Content-Type": "application/json"}
    }
)
resp = llm.invoke("Tell me a joke")
print(resp)
```
 Also tested against HF Endpoints
 ```python
 from langchain_community.llms import HuggingFaceEndpoint
huggingfacehub_api_token = "hf_xyz"
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm = HuggingFaceEndpoint(
    huggingfacehub_api_token=huggingfacehub_api_token,
    repo_id=repo_id,
)
resp = llm.invoke("Tell me a joke")
print(resp)
 ```
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 22:10:32 +00:00
Anush
d09dda5a08 qdrant: Bump patch version (#24168)
# Description

To release a new version of `langchain-qdrant` after #24165 and #24166.
2024-07-12 14:48:50 -07:00
Bagatur
12950cc602 standard-tests[patch]: improve runnable tool description (#24210) 2024-07-12 21:33:56 +00:00
Erick Friis
e8ee781a42 ibm: move to external repo (#24208) 2024-07-12 21:14:24 +00:00
Bagatur
02e71cebed together[patch]: Release 0.1.4 (#24205) 2024-07-12 13:59:58 -07:00
Bagatur
259d4d2029 anthropic[patch]: Release 0.1.20 (#24204) 2024-07-12 13:59:15 -07:00
Bagatur
3aed74a6fc fireworks[patch]: Release 0.1.5 (#24203) 2024-07-12 13:58:58 -07:00
Bagatur
13b0d7ec8f openai[patch]: Release 0.1.16 (#24202) 2024-07-12 13:58:39 -07:00
Bagatur
71cd6e6feb groq[patch]: Release 0.1.7 (#24201) 2024-07-12 13:58:19 -07:00
Bagatur
99054e19eb mistralai[patch]: Release 0.1.10 (#24200) 2024-07-12 13:57:58 -07:00
Bagatur
7a1321e2f9 ibm[patch]: Release 0.1.10 (#24199) 2024-07-12 13:57:38 -07:00
Bagatur
cb5031f22f integrations[patch]: require core >=0.2.17 (#24207) 2024-07-12 20:54:01 +00:00
Nithish Raghunandanan
f1618ec540 couchbase: Add standard and semantic caches (#23607)
Thank you for contributing to LangChain!

**Description:** Add support for caching (standard + semantic) LLM
responses using Couchbase


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 20:30:03 +00:00
Eugene Yurtsev
8d82a0d483 core[patch]: Mark GraphVectorStore as beta (#24195)
* This PR marks graph vectorstore as beta
2024-07-12 14:28:06 -04:00
Bagatur
0a1e475a30 core[patch]: Release 0.2.17 (#24189) 2024-07-12 17:08:29 +00:00
Bagatur
6166ea67a8 core[minor]: rename ToolMessage.raw_output -> artifact (#24185) 2024-07-12 09:52:44 -07:00
Jean Nshuti
d77d9bfc00 community[patch]: update typo document content returned from semanticscholar (#24175)
Update "astract" -> abstract
2024-07-12 15:40:47 +00:00
Leonid Ganeline
aa3e3cfa40 core[patch]: docstrings runnables update (#24161)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-12 11:27:06 -04:00
mumu
14ba1d4b45 docs: fix numeric errors in tools_chain.ipynb (#24169)
Description: Corrected several numeric errors in the
docs/docs/how_to/tools_chain.ipynb file to ensure the accuracy of the
documentation.
2024-07-12 11:26:26 -04:00
Ikko Eltociear Ashimine
18da9f5e59 docs: update custom_chat_model.ipynb (#24170)
characetrs -> characters
2024-07-12 06:48:22 -04:00
Tomaz Bratanic
d3a2b9fae0 Fix neo4j type error on missing constraint information (#24177)
If you use `refresh_schema=False`, then the metadata constraint doesn't
exist. ATM, we used default `None` in the constraint check, but then
`any` fails because it can't iterate over None value
2024-07-12 06:39:29 -04:00
Anush
7014d07cab qdrant: new Qdrant implementation (#24164) 2024-07-12 04:52:02 +02:00
Xander Dumaine
35784d1c33 langchain[minor]: add document_variable_name to create_stuff_documents_chain (#24083)
- **Description:** `StuffDocumentsChain` uses `LLMChain` which is
deprecated by langchain runnables. `create_stuff_documents_chain` is the
replacement, but needs support for `document_variable_name` to allow
multiple uses of the chain within a longer chain.
- **Issue:** none
- **Dependencies:** none
2024-07-12 02:31:46 +00:00
Eugene Yurtsev
8858846607 milvus[patch]: Fix Milvus vectorstore for newer versions of langchain-core (#24152)
Fix for: https://github.com/langchain-ai/langchain/issues/24116

This keeps the old behavior of add_documents and add_texts
2024-07-11 18:51:18 -07:00
thedavgar
ffe6ca986e community: Fix Bug in Azure Search Vectorstore search asyncronously (#24081)
Thank you for contributing to LangChain!

**Description**:
This PR fixes a bug described in the issue in #24064, when using the
AzureSearch Vectorstore with the asyncronous methods to do search which
is also the method used for the retriever. The proposed change includes
just change the access of the embedding as optional because is it not
used anywhere to retrieve documents. Actually, the syncronous methods of
retrieval do not use the embedding neither.

With this PR the code given by the user in the issue works.

```python
vectorstore = AzureSearch(
    azure_search_endpoint=os.getenv("AI_SEARCH_ENDPOINT_SECRET"),
    azure_search_key=os.getenv("AI_SEARCH_API_KEY"),
    index_name=os.getenv("AI_SEARCH_INDEX_NAME_SECRET"),
    fields=fields,
    embedding_function=encoder,
)

retriever = vectorstore.as_retriever(search_type="hybrid", k=2)

await vectorstore.avector_search("what is the capital of France")
await retriever.ainvoke("what is the capital of France")
```

**Issue**:
The Azure Search Vectorstore is not working when searching for documents
with asyncronous methods, as described in issue #24064

**Dependencies**:
There are no extra dependencies required for this change.

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-11 18:32:19 -07:00
Anush
7790d67f94 qdrant: New sparse embeddings provider interface - PART 1 (#24015)
## Description

This PR introduces a new sparse embedding provider interface to work
with the new Qdrant implementation that will follow this PR.

Additionally, an implementation of this interface is provided with
https://github.com/qdrant/fastembed.

This PR will be followed by
https://github.com/Anush008/langchain/pull/3.
2024-07-11 17:07:25 -07:00
Erick Friis
1132fb801b core: release 0.2.16 (#24159) 2024-07-11 23:59:41 +00:00
Nuno Campos
1d37aa8403 core: Remove extra newline (#24157) 2024-07-11 23:55:36 +00:00
ccurme
cb95198398 standard-tests[patch]: add tests for runnables as tools and streaming usage metadata (#24153) 2024-07-11 18:30:05 -04:00
Erick Friis
d002fa902f infra: fix redundant matrix config (#24151) 2024-07-11 15:15:41 -07:00
Bagatur
8d100c58de core[patch]: Tool accept RunnableConfig (#24143)
Relies on #24038

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 22:13:17 +00:00
Bagatur
5fd1e67808 core[minor], integrations...[patch]: Support ToolCall as Tool input and ToolMessage as Tool output (#24038)
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)

Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
    arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
    """A Structured Tool"""
    return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}


def test_tool_call_input_tool_message_with_raw_output() -> None:
    tool_call: Dict = {
        "name": "structured_api",
        "args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
        "id": "123",
        "type": "tool_call",
    }
    expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
    tool = _mock_structured_tool_with_raw_output
    actual = tool.invoke(tool_call)
    assert actual == expected

    tool_call.pop("type")
    with pytest.raises(ValidationError):
        tool.invoke(tool_call)

    actual_content = tool.invoke(tool_call["args"])
    assert actual_content == expected.content
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 14:54:02 -07:00
Bagatur
eeb996034b core[patch]: Release 0.2.15 (#24149) 2024-07-11 21:34:25 +00:00
Nuno Campos
03fba07d15 core[patch]: Update styles for mermaid graphs (#24147) 2024-07-11 14:19:36 -07:00
Jacob Lee
c481a2715d docs[patch]: Add structural example to style guide (#24133)
CC @nfcampos
2024-07-11 13:20:14 -07:00
ccurme
8ee8ca7c83 core[patch]: propagate parse_docstring to tool decorator (#24123)
Disabled by default.

```python
from langchain_core.tools import tool

@tool(parse_docstring=True)
def foo(bar: str, baz: int) -> str:
    """The foo.

    Args:
        bar: this is the bar
        baz: this is the baz
    """
    return bar


foo.args_schema.schema()
```
```json
{
  "title": "fooSchema",
  "description": "The foo.",
  "type": "object",
  "properties": {
    "bar": {
      "title": "Bar",
      "description": "this is the bar",
      "type": "string"
    },
    "baz": {
      "title": "Baz",
      "description": "this is the baz",
      "type": "integer"
    }
  },
  "required": [
    "bar",
    "baz"
  ]
}
```
2024-07-11 20:11:45 +00:00
Jacob Lee
4121d4151f docs[patch]: Fix typo (#24132)
CC @efriis
2024-07-11 20:10:48 +00:00
Erick Friis
bd18faa2a0 infra: add SQLAlchemy to min version testing (#23186)
preventing issues like #22546 

Notes:
- this will only affect release CI. We may want to consider adding
running unit tests with min versions to PR CI in some form
- because this only affects release CI, it could create annoying issues
releasing while I'm on vacation. Unless anyone feels strongly, I'll wait
to merge this til when I'm back
2024-07-11 20:09:57 +00:00
Jacob Lee
f1f1f75782 community[patch]: Make AzureML endpoint return AI messages for type assistant (#24085) 2024-07-11 21:45:30 +02:00
Eugene Yurtsev
4ba14adec6 core[patch]: Clean up indexing test code (#24139)
Refactor the code to use the existing InMemroyVectorStore.

This change is needed for another PR that moves some of the imports
around (and messes up the mock.patch in this file)
2024-07-11 18:54:46 +00:00
Atul R
457677c1b7 community: Fixes use of ImagePromptTemplate with Ollama (#24140)
Description: ImagePromptTemplate for Multimodal llms like llava when
using Ollama
Twitter handle: https://x.com/a7ulr

Details:

When using llava models / any ollama multimodal llms and passing images
in the prompt as urls, langchain breaks with this error.

```python
image_url_components = image_url.split(",")
                           ^^^^^^^^^^^^^^^^^^^^
AttributeError: 'dict' object has no attribute 'split'
```

From the looks of it, there was bug where the condition did check for a
`url` field in the variable but missed to actually assign it.

This PR fixes ImagePromptTemplate for Multimodal llms like llava when
using Ollama specifically.

@hwchase17
2024-07-11 11:31:48 -07:00
Matt
8327925ab7 community:support additional Azure Search Options (#24134)
- **Description:** Support additional kwargs options for the Azure
Search client (Described here
https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#configurations)
    - **Issue:** N/A
    - **Dependencies:** No additional Dependencies

---------
2024-07-11 18:22:36 +00:00
ccurme
122e80e04d core[patch]: add versionadded to as_tool (#24138) 2024-07-11 18:08:08 +00:00
Erick Friis
c4417ea93c core: release 0.2.14, remove poetry 1.7 incompatible flag from root (#24137) 2024-07-11 17:59:51 +00:00
619 changed files with 45000 additions and 11678 deletions

View File

@@ -5,10 +5,10 @@ services:
dockerfile: libs/langchain/dev.Dockerfile
context: ..
volumes:
# Update this to wherever you want VS Code to mount the folder of your project
# Update this to wherever you want VS Code to mount the folder of your project
- ..:/workspaces/langchain:cached
networks:
- langchain-network
- langchain-network
# environment:
# MONGO_ROOT_USERNAME: root
# MONGO_ROOT_PASSWORD: example123
@@ -28,5 +28,3 @@ services:
networks:
langchain-network:
driver: bridge

View File

@@ -6,6 +6,7 @@ import sys
import tomllib
from collections import defaultdict
from typing import Dict, List, Set
from pathlib import Path
LANGCHAIN_DIRS = [
@@ -26,17 +27,48 @@ def all_package_dirs() -> Set[str]:
def dependents_graph() -> dict:
"""
Construct a mapping of package -> dependents, such that we can
run tests on all dependents of a package when a change is made.
"""
dependents = defaultdict(set)
for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
if "template" in path:
continue
# load regular and test deps from pyproject.toml
with open(path, "rb") as f:
pyproject = tomllib.load(f)["tool"]["poetry"]
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
for dep in pyproject["dependencies"]:
for dep in [
*pyproject["dependencies"].keys(),
*pyproject["group"]["test"]["dependencies"].keys(),
]:
if "langchain" in dep:
dependents[dep].add(pkg_dir)
continue
# load extended deps from extended_testing_deps.txt
package_path = Path(path).parent
extended_requirement_path = package_path / "extended_testing_deps.txt"
if extended_requirement_path.exists():
with open(extended_requirement_path, "r") as f:
extended_deps = f.read().splitlines()
for depline in extended_deps:
if depline.startswith("-e "):
# editable dependency
assert depline.startswith(
"-e ../partners/"
), "Extended test deps should only editable install partner packages"
partner = depline.split("partners/")[1]
dep = f"langchain-{partner}"
else:
dep = depline.split("==")[0]
if "langchain" in dep:
dependents[dep].add(pkg_dir)
return dependents

View File

@@ -0,0 +1,35 @@
import sys
import tomllib
if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
# read toml file
with open(toml_file, "rb") as file:
toml_data = tomllib.load(file)
# see if we're releasing an rc
version = toml_data["tool"]["poetry"]["version"]
releasing_rc = "rc" in version
# if not, iterate through dependencies and make sure none allow prereleases
if not releasing_rc:
dependencies = toml_data["tool"]["poetry"]["dependencies"]
for lib in dependencies:
dep_version = dependencies[lib]
dep_version_string = (
dep_version["version"] if isinstance(dep_version, dict) else dep_version
)
if "rc" in dep_version_string:
raise ValueError(
f"Dependency {lib} has a prerelease version. Please remove this."
)
if isinstance(dep_version, dict) and dep_version.get(
"allow-prereleases", False
):
raise ValueError(
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
)

View File

@@ -1,6 +1,11 @@
import sys
import tomllib
if sys.version_info >= (3, 11):
import tomllib
else:
# for python 3.10 and below, which doesnt have stdlib tomllib
import tomli as tomllib
from packaging.version import parse as parse_version
import re
@@ -9,8 +14,11 @@ MIN_VERSION_LIBS = [
"langchain-community",
"langchain",
"langchain-text-splitters",
"SQLAlchemy",
]
SKIP_IF_PULL_REQUEST = ["langchain-core"]
def get_min_version(version: str) -> str:
# base regex for x.x.x with cases for rc/post/etc
@@ -37,7 +45,7 @@ def get_min_version(version: str) -> str:
raise ValueError(f"Unrecognized version format: {version}")
def get_min_version_from_toml(toml_path: str):
def get_min_version_from_toml(toml_path: str, versions_for: str):
# Parse the TOML file
with open(toml_path, "rb") as file:
toml_data = tomllib.load(file)
@@ -50,6 +58,10 @@ def get_min_version_from_toml(toml_path: str):
# Iterate over the libs in MIN_VERSION_LIBS
for lib in MIN_VERSION_LIBS:
if versions_for == "pull_request" and lib in SKIP_IF_PULL_REQUEST:
# some libs only get checked on release because of simultaneous
# changes
continue
# Check if the lib is present in the dependencies
if lib in dependencies:
# Get the version string
@@ -70,8 +82,10 @@ def get_min_version_from_toml(toml_path: str):
if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
versions_for = sys.argv[2]
assert versions_for in ["release", "pull_request"]
# Call the function to get the minimum versions
min_versions = get_min_version_from_toml(toml_file)
min_versions = get_min_version_from_toml(toml_file, versions_for)
print(" ".join([f"{lib}=={version}" for lib, version in min_versions.items()]))

View File

@@ -21,14 +21,6 @@ jobs:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4

View File

@@ -189,7 +189,7 @@ jobs:
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION" || \
( \
sleep 5 && \
sleep 15 && \
poetry run pip install \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION" \
@@ -221,12 +221,17 @@ jobs:
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: Check for prerelease versions
working-directory: ${{ inputs.working-directory }}
run: |
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
poetry run pip install packaging
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
@@ -285,6 +290,7 @@ jobs:
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
UNSTRUCTURED_API_KEY: ${{ secrets.UNSTRUCTURED_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -65,3 +65,22 @@ jobs:
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
poetry run pip install packaging tomli
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
# Temporarily disabled until we can get the minimum versions working
# - name: Run unit tests with minimum dependency versions
# if: ${{ steps.min-version.outputs.min-versions != '' }}
# env:
# MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
# run: |
# poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
# make tests
# working-directory: ${{ inputs.working-directory }}

View File

@@ -14,10 +14,6 @@ env:
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.12"
name: "check doc imports #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4

View File

@@ -64,7 +64,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
"! pip install -U langchain openai langchain-chroma langchain-experimental # (newest versions required for multi-modal)"
]
},
{
@@ -355,7 +355,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -37,7 +37,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -U --quiet langchain langchain_community openai chromadb langchain-experimental\n",
"%pip install -U --quiet langchain langchain-chroma langchain-community openai langchain-experimental\n",
"%pip install --quiet \"unstructured[all-docs]\" pypdf pillow pydantic lxml pillow matplotlib chromadb tiktoken"
]
},
@@ -344,8 +344,8 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import VertexAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"\n",

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"pip install -U langchain umap-learn scikit-learn langchain_community tiktoken langchain-openai langchainhub chromadb langchain-anthropic"
"pip install -U langchain umap-learn scikit-learn langchain_community tiktoken langchain-openai langchainhub langchain-chroma langchain-anthropic"
]
},
{
@@ -645,7 +645,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"\n",
"# Initialize all_texts with leaf_texts\n",
"all_texts = leaf_texts.copy()\n",

View File

@@ -57,4 +57,6 @@ Notebook | Description
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
[rag-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag-locally-on-intel-cpu.ipynb) | Perform Retrieval-Augmented-Generation (RAG) on locally downloaded open-source models using langchain and open source tools and execute it on Intel Xeon CPU. We showed an example of how to apply RAG on Llama 2 model and enable it to answer the queries related to Intel Q1 2024 earnings release.
[visual_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/visual_RAG_vdms.ipynb) | Performs Visual Retrieval-Augmented-Generation (RAG) using videos and scene descriptions generated by open source models.

View File

@@ -39,7 +39,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain unstructured[all-docs] pydantic lxml langchainhub"
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml langchainhub"
]
},
{
@@ -320,7 +320,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -59,7 +59,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain unstructured[all-docs] pydantic lxml"
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml"
]
},
{
@@ -375,7 +375,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -59,7 +59,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain unstructured[all-docs] pydantic lxml"
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml"
]
},
{
@@ -378,8 +378,8 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import GPT4AllEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"# The vectorstore to use to index the child chunks\n",

View File

@@ -19,7 +19,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
"! pip install -U langchain openai langchain_chroma langchain-experimental # (newest versions required for multi-modal)"
]
},
{
@@ -132,7 +132,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"baseline = Chroma.from_texts(\n",

View File

@@ -28,7 +28,7 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",

View File

@@ -14,7 +14,7 @@
}
],
"source": [
"%pip install -qU langchain-airbyte"
"%pip install -qU langchain-airbyte langchain_chroma"
]
},
{
@@ -123,7 +123,7 @@
"outputs": [],
"source": [
"import tiktoken\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"enc = tiktoken.get_encoding(\"cl100k_base\")\n",

View File

@@ -39,7 +39,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub chromadb hnswlib --upgrade --quiet"
"! pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub langchain-chroma hnswlib --upgrade --quiet"
]
},
{
@@ -547,7 +547,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores.chroma import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -84,7 +84,7 @@
}
],
"source": [
"%pip install --quiet pypdf chromadb tiktoken openai \n",
"%pip install --quiet pypdf langchain-chroma tiktoken openai \n",
"%pip uninstall -y langchain-fireworks\n",
"%pip install --editable /mnt/disks/data/langchain/libs/partners/fireworks"
]
@@ -138,7 +138,7 @@
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_fireworks.embeddings import FireworksEmbeddings\n",
"\n",
"vectorstore = Chroma.from_documents(\n",

View File

@@ -170,7 +170,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",
"with open(\"../../state_of_the_union.txt\") as f:\n",

File diff suppressed because one or more lines are too long

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph"
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph"
]
},
{
@@ -30,8 +30,8 @@
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"urls = [\n",

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph tavily-python"
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph tavily-python"
]
},
{
@@ -77,8 +77,8 @@
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"urls = [\n",
@@ -180,8 +180,8 @@
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema import Document\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.tools.tavily_search import TavilySearchResults\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.messages import BaseMessage, FunctionMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph"
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph"
]
},
{
@@ -86,8 +86,8 @@
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"urls = [\n",
@@ -188,7 +188,7 @@
"from langchain.output_parsers import PydanticOutputParser\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.messages import BaseMessage, FunctionMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",

View File

@@ -58,7 +58,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
"! pip install -U langchain openai langchain-chroma langchain-experimental # (newest versions required for multi-modal)"
]
},
{
@@ -187,7 +187,7 @@
"\n",
"import chromadb\n",
"import numpy as np\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
"from PIL import Image as _PILImage\n",
"\n",

View File

@@ -58,7 +58,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain"
"! pip install -U langchain-nomic langchain-chroma langchain-community tiktoken langchain-openai langchain"
]
},
{
@@ -167,7 +167,7 @@
"source": [
"import os\n",
"\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_nomic import NomicEmbeddings\n",

View File

@@ -56,7 +56,7 @@
},
"outputs": [],
"source": [
"! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain # (newest versions required for multi-modal)"
"! pip install -U langchain-nomic langchain-chroma langchain-community tiktoken langchain-openai langchain # (newest versions required for multi-modal)"
]
},
{
@@ -194,7 +194,7 @@
"\n",
"import chromadb\n",
"import numpy as np\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_nomic import NomicEmbeddings\n",
"from PIL import Image as _PILImage\n",
"\n",

View File

@@ -20,8 +20,8 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter"
]

View File

@@ -80,7 +80,7 @@
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings()"

View File

@@ -0,0 +1,756 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "10f50955-be55-422f-8c62-3a32f8cf02ed",
"metadata": {},
"source": [
"# RAG application running locally on Intel Xeon CPU using langchain and open-source models"
]
},
{
"cell_type": "markdown",
"id": "48113be6-44bb-4aac-aed3-76a1365b9561",
"metadata": {},
"source": [
"Author - Pratool Bharti (pratool.bharti@intel.com)"
]
},
{
"cell_type": "markdown",
"id": "8b10b54b-1572-4ea1-9c1e-1d29fcc3dcd9",
"metadata": {},
"source": [
"In this cookbook, we use langchain tools and open source models to execute locally on CPU. This notebook has been validated to run on Intel Xeon 8480+ CPU. Here we implement a RAG pipeline for Llama2 model to answer questions about Intel Q1 2024 earnings release."
]
},
{
"cell_type": "markdown",
"id": "acadbcec-3468-4926-8ce5-03b678041c0a",
"metadata": {},
"source": [
"**Create a conda or virtualenv environment with python >=3.10 and install following libraries**\n",
"<br>\n",
"\n",
"`pip install --upgrade langchain langchain-community langchainhub langchain-chroma bs4 gpt4all pypdf pysqlite3-binary` <br>\n",
"`pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu`"
]
},
{
"cell_type": "markdown",
"id": "84c392c8-700a-42ec-8e94-806597f22e43",
"metadata": {},
"source": [
"**Load pysqlite3 in sys modules since ChromaDB requires sqlite3.**"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "145cd491-b388-4ea7-bdc8-2f4995cac6fd",
"metadata": {},
"outputs": [],
"source": [
"__import__(\"pysqlite3\")\n",
"import sys\n",
"\n",
"sys.modules[\"sqlite3\"] = sys.modules.pop(\"pysqlite3\")"
]
},
{
"cell_type": "markdown",
"id": "14dde7e2-b236-49b9-b3a0-08c06410418c",
"metadata": {},
"source": [
"**Import essential components from langchain to load and split data**"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "887643ba-249e-48d6-9aa7-d25087e8dfbf",
"metadata": {},
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_community.document_loaders import PyPDFLoader"
]
},
{
"cell_type": "markdown",
"id": "922c0eba-8736-4de5-bd2f-3d0f00b16e43",
"metadata": {},
"source": [
"**Download Intel Q1 2024 earnings release**"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2d6a2419-5338-4188-8615-a40a65ff8019",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2024-07-15 15:04:43-- https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf\n",
"Resolving proxy-dmz.intel.com (proxy-dmz.intel.com)... 10.7.211.16\n",
"Connecting to proxy-dmz.intel.com (proxy-dmz.intel.com)|10.7.211.16|:912... connected.\n",
"Proxy request sent, awaiting response... 200 OK\n",
"Length: 133510 (130K) [application/pdf]\n",
"Saving to: intel_q1_2024_earnings.pdf\n",
"\n",
"intel_q1_2024_earni 100%[===================>] 130.38K --.-KB/s in 0.005s \n",
"\n",
"2024-07-15 15:04:44 (24.6 MB/s) - intel_q1_2024_earnings.pdf saved [133510/133510]\n",
"\n"
]
}
],
"source": [
"!wget 'https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf' -O intel_q1_2024_earnings.pdf"
]
},
{
"cell_type": "markdown",
"id": "e3612627-e105-453d-8a50-bbd6e39dedb5",
"metadata": {},
"source": [
"**Loading earning release pdf document through PyPDFLoader**"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "cac6278e-ebad-4224-a062-bf6daca24cb0",
"metadata": {},
"outputs": [],
"source": [
"loader = PyPDFLoader(\"intel_q1_2024_earnings.pdf\")\n",
"data = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "a7dca43b-1c62-41df-90c7-6ed2904f823d",
"metadata": {},
"source": [
"**Splitting entire document in several chunks with each chunk size is 500 tokens**"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4486adbe-0d0e-4685-8c08-c1774ed6e993",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)"
]
},
{
"cell_type": "markdown",
"id": "af142346-e793-4a52-9a56-63e3be416b3d",
"metadata": {},
"source": [
"**Looking at the first split of the document**"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e4240fd1-898e-4bfc-a377-02c9bc25b56e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(metadata={'source': 'intel_q1_2024_earnings.pdf', 'page': 0}, page_content='Intel Corporation\\n2200 Mission College Blvd.\\nSanta Clara, CA 95054-1549\\n \\nNews Release\\n Intel Reports First -Quarter 2024 Financial Results\\nNEWS SUMMARY\\n▪First-quarter revenue of $12.7 billion , up 9% year over year (YoY).\\n▪First-quarter GAAP earnings (loss) per share (EPS) attributable to Intel was $(0.09) ; non-GAAP EPS \\nattributable to Intel was $0.18 .')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_splits[0]"
]
},
{
"cell_type": "markdown",
"id": "b88d2632-7c1b-49ef-a691-c0eb67d23e6a",
"metadata": {},
"source": [
"**One of the major step in RAG is to convert each split of document into embeddings and store in a vector database such that searching relevant documents are efficient.** <br>\n",
"**For that, importing Chroma vector database from langchain. Also, importing open source GPT4All for embedding models**"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9ff99dd7-9d47-4239-ba0a-d775792334ba",
"metadata": {},
"outputs": [],
"source": [
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import GPT4AllEmbeddings"
]
},
{
"cell_type": "markdown",
"id": "b5d1f4dd-dd8d-4a20-95d1-2dbdd204375a",
"metadata": {},
"source": [
"**In next step, we will download one of the most popular embedding model \"all-MiniLM-L6-v2\". Find more details of the model at this link https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2**"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "05db3494-5d8e-4a13-9941-26330a86f5e5",
"metadata": {},
"outputs": [],
"source": [
"model_name = \"all-MiniLM-L6-v2.gguf2.f16.gguf\"\n",
"gpt4all_kwargs = {\"allow_download\": \"True\"}\n",
"embeddings = GPT4AllEmbeddings(model_name=model_name, gpt4all_kwargs=gpt4all_kwargs)"
]
},
{
"cell_type": "markdown",
"id": "4e53999e-1983-46ac-8039-2783e194c3ae",
"metadata": {},
"source": [
"**Store all the embeddings in the Chroma database**"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "0922951a-9ddf-4761-973d-8e9a86f61284",
"metadata": {},
"outputs": [],
"source": [
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=embeddings)"
]
},
{
"cell_type": "markdown",
"id": "29f94fa0-6c75-4a65-a1a3-debc75422479",
"metadata": {},
"source": [
"**Now, let's find relevant splits from the documents related to the question**"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "88c8152d-ec7a-4f0b-9d86-877789407537",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n"
]
}
],
"source": [
"question = \"What is Intel CCG revenue in Q1 2024\"\n",
"docs = vectorstore.similarity_search(question)\n",
"print(len(docs))"
]
},
{
"cell_type": "markdown",
"id": "53330c6b-cb0f-43f9-b379-2e57ac1e5335",
"metadata": {},
"source": [
"**Look at the first retrieved document from the vector database**"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "43a6d94f-b5c4-47b0-a353-2db4c3d24d9c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(metadata={'page': 1, 'source': 'intel_q1_2024_earnings.pdf'}, page_content='Client Computing Group (CCG) $7.5 billion up31%\\nData Center and AI (DCAI) $3.0 billion up5%\\nNetwork and Edge (NEX) $1.4 billion down 8%\\nTotal Intel Products revenue $11.9 billion up17%\\nIntel Foundry $4.4 billion down 10%\\nAll other:\\nAltera $342 million down 58%\\nMobileye $239 million down 48%\\nOther $194 million up17%\\nTotal all other revenue $775 million down 46%\\nIntersegment eliminations $(4.4) billion\\nTotal net revenue $12.7 billion up9%\\nIntel Products Highlights')"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[0]"
]
},
{
"cell_type": "markdown",
"id": "64ba074f-4b36-442e-b7e2-b26d6e2815c3",
"metadata": {},
"source": [
"**Download Lllama-2 model from Huggingface and store locally** <br>\n",
"**You can download different quantization variant of Lllama-2 model from the link below. We are using Q8 version here (7.16GB).** <br>\n",
"https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8dd0811-6f43-4bc6-b854-2ab377639c9a",
"metadata": {},
"outputs": [],
"source": [
"!huggingface-cli download TheBloke/Llama-2-7b-Chat-GGUF llama-2-7b-chat.Q8_0.gguf --local-dir . --local-dir-use-symlinks False"
]
},
{
"cell_type": "markdown",
"id": "3895b1f5-f51d-4539-abf0-af33d7ca48ea",
"metadata": {},
"source": [
"**Import langchain components required to load downloaded LLMs model**"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "fb087088-aa62-44c0-8356-061e9b9f1186",
"metadata": {},
"outputs": [],
"source": [
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"from langchain_community.llms import LlamaCpp"
]
},
{
"cell_type": "markdown",
"id": "5a8a111e-2614-4b70-b034-85cd3e7304cb",
"metadata": {},
"source": [
"**Loading the local Lllama-2 model using Llama-cpp library**"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "fb917da2-c0d7-4995-b56d-26254276e0da",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from llama-2-7b-chat.Q8_0.gguf (version GGUF V2)\n",
"llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n",
"llama_model_loader: - kv 0: general.architecture str = llama\n",
"llama_model_loader: - kv 1: general.name str = LLaMA v2\n",
"llama_model_loader: - kv 2: llama.context_length u32 = 4096\n",
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008\n",
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32\n",
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001\n",
"llama_model_loader: - kv 10: general.file_type u32 = 7\n",
"llama_model_loader: - kv 11: tokenizer.ggml.model str = llama\n",
"llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
"llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
"llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
"llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1\n",
"llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2\n",
"llama_model_loader: - kv 17: tokenizer.ggml.unknown_token_id u32 = 0\n",
"llama_model_loader: - kv 18: general.quantization_version u32 = 2\n",
"llama_model_loader: - type f32: 65 tensors\n",
"llama_model_loader: - type q8_0: 226 tensors\n",
"llm_load_vocab: special tokens cache size = 259\n",
"llm_load_vocab: token to piece cache size = 0.1684 MB\n",
"llm_load_print_meta: format = GGUF V2\n",
"llm_load_print_meta: arch = llama\n",
"llm_load_print_meta: vocab type = SPM\n",
"llm_load_print_meta: n_vocab = 32000\n",
"llm_load_print_meta: n_merges = 0\n",
"llm_load_print_meta: vocab_only = 0\n",
"llm_load_print_meta: n_ctx_train = 4096\n",
"llm_load_print_meta: n_embd = 4096\n",
"llm_load_print_meta: n_layer = 32\n",
"llm_load_print_meta: n_head = 32\n",
"llm_load_print_meta: n_head_kv = 32\n",
"llm_load_print_meta: n_rot = 128\n",
"llm_load_print_meta: n_swa = 0\n",
"llm_load_print_meta: n_embd_head_k = 128\n",
"llm_load_print_meta: n_embd_head_v = 128\n",
"llm_load_print_meta: n_gqa = 1\n",
"llm_load_print_meta: n_embd_k_gqa = 4096\n",
"llm_load_print_meta: n_embd_v_gqa = 4096\n",
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
"llm_load_print_meta: f_norm_rms_eps = 1.0e-06\n",
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
"llm_load_print_meta: f_logit_scale = 0.0e+00\n",
"llm_load_print_meta: n_ff = 11008\n",
"llm_load_print_meta: n_expert = 0\n",
"llm_load_print_meta: n_expert_used = 0\n",
"llm_load_print_meta: causal attn = 1\n",
"llm_load_print_meta: pooling type = 0\n",
"llm_load_print_meta: rope type = 0\n",
"llm_load_print_meta: rope scaling = linear\n",
"llm_load_print_meta: freq_base_train = 10000.0\n",
"llm_load_print_meta: freq_scale_train = 1\n",
"llm_load_print_meta: n_ctx_orig_yarn = 4096\n",
"llm_load_print_meta: rope_finetuned = unknown\n",
"llm_load_print_meta: ssm_d_conv = 0\n",
"llm_load_print_meta: ssm_d_inner = 0\n",
"llm_load_print_meta: ssm_d_state = 0\n",
"llm_load_print_meta: ssm_dt_rank = 0\n",
"llm_load_print_meta: model type = 7B\n",
"llm_load_print_meta: model ftype = Q8_0\n",
"llm_load_print_meta: model params = 6.74 B\n",
"llm_load_print_meta: model size = 6.67 GiB (8.50 BPW) \n",
"llm_load_print_meta: general.name = LLaMA v2\n",
"llm_load_print_meta: BOS token = 1 '<s>'\n",
"llm_load_print_meta: EOS token = 2 '</s>'\n",
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
"llm_load_print_meta: max token length = 48\n",
"llm_load_tensors: ggml ctx size = 0.14 MiB\n",
"llm_load_tensors: CPU buffer size = 6828.64 MiB\n",
"...................................................................................................\n",
"llama_new_context_with_model: n_ctx = 2048\n",
"llama_new_context_with_model: n_batch = 512\n",
"llama_new_context_with_model: n_ubatch = 512\n",
"llama_new_context_with_model: flash_attn = 0\n",
"llama_new_context_with_model: freq_base = 10000.0\n",
"llama_new_context_with_model: freq_scale = 1\n",
"llama_kv_cache_init: CPU KV buffer size = 1024.00 MiB\n",
"llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB\n",
"llama_new_context_with_model: CPU output buffer size = 0.12 MiB\n",
"llama_new_context_with_model: CPU compute buffer size = 164.01 MiB\n",
"llama_new_context_with_model: graph nodes = 1030\n",
"llama_new_context_with_model: graph splits = 1\n",
"AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 | \n",
"Model metadata: {'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.context_length': '4096', 'general.name': 'LLaMA v2', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '11008', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'llama.rope.dimension_count': '128', 'llama.attention.head_count': '32', 'tokenizer.ggml.bos_token_id': '1', 'llama.block_count': '32', 'llama.attention.head_count_kv': '32', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '7'}\n",
"Using fallback chat format: llama-2\n"
]
}
],
"source": [
"llm = LlamaCpp(\n",
" model_path=\"llama-2-7b-chat.Q8_0.gguf\",\n",
" n_gpu_layers=-1,\n",
" n_batch=512,\n",
" n_ctx=2048,\n",
" f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
" verbose=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "43e06f56-ef97-451b-87d9-8465ea442aed",
"metadata": {},
"source": [
"**Now let's ask the same question to Llama model without showing them the earnings release.**"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "1033dd82-5532-437d-a548-27695e109589",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"?\n",
"(NASDAQ:INTC)\n",
"Intel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"llama_print_timings: load time = 131.20 ms\n",
"llama_print_timings: sample time = 16.05 ms / 68 runs ( 0.24 ms per token, 4236.76 tokens per second)\n",
"llama_print_timings: prompt eval time = 131.14 ms / 16 tokens ( 8.20 ms per token, 122.01 tokens per second)\n",
"llama_print_timings: eval time = 3225.00 ms / 67 runs ( 48.13 ms per token, 20.78 tokens per second)\n",
"llama_print_timings: total time = 3466.40 ms / 83 tokens\n"
]
},
{
"data": {
"text/plain": [
"\"?\\n(NASDAQ:INTC)\\nIntel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year.\""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.invoke(question)"
]
},
{
"cell_type": "markdown",
"id": "75f5cb10-746f-4e37-9386-b85a4d2b84ef",
"metadata": {},
"source": [
"**As you can see, model is giving wrong information. Correct asnwer is CCG revenue in Q1 2024 is $7.5B. Now let's apply RAG using the earning release document**"
]
},
{
"cell_type": "markdown",
"id": "0f4150ec-5692-4756-b11a-22feb7ab88ff",
"metadata": {},
"source": [
"**in RAG, we modify the input prompt by adding relevent documents with the question. Here, we use one of the popular RAG prompt**"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "226c14b0-f43e-4a1f-a1e4-04731d467ec4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], template=\"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\\nQuestion: {question} \\nContext: {context} \\nAnswer:\"))]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import hub\n",
"\n",
"rag_prompt = hub.pull(\"rlm/rag-prompt\")\n",
"rag_prompt.messages"
]
},
{
"cell_type": "markdown",
"id": "77deb6a0-0950-450a-916a-f2a029676c20",
"metadata": {},
"source": [
"**Appending all retreived documents in a single document**"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "2dbc3327-6ef3-4c1f-8797-0c71964b0921",
"metadata": {},
"outputs": [],
"source": [
"def format_docs(docs):\n",
" return \"\\n\\n\".join(doc.page_content for doc in docs)"
]
},
{
"cell_type": "markdown",
"id": "2e2d9f18-49d0-43a3-bea8-78746ffa86b7",
"metadata": {},
"source": [
"**The last step is to create a chain using langchain tool that will create an e2e pipeline. It will take question and context as an input.**"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "427379c2-51ff-4e0f-8278-a45221363299",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough, RunnablePick\n",
"\n",
"# Chain\n",
"chain = (\n",
" RunnablePassthrough.assign(context=RunnablePick(\"context\") | format_docs)\n",
" | rag_prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "095d6280-c949-4d00-8e32-8895a82d245f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Llama.generate: prefix-match hit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"llama_print_timings: load time = 131.20 ms\n",
"llama_print_timings: sample time = 7.74 ms / 31 runs ( 0.25 ms per token, 4004.13 tokens per second)\n",
"llama_print_timings: prompt eval time = 2529.41 ms / 674 tokens ( 3.75 ms per token, 266.46 tokens per second)\n",
"llama_print_timings: eval time = 1542.94 ms / 30 runs ( 51.43 ms per token, 19.44 tokens per second)\n",
"llama_print_timings: total time = 4123.68 ms / 704 tokens\n"
]
},
{
"data": {
"text/plain": [
"' Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%.'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"context\": docs, \"question\": question})"
]
},
{
"cell_type": "markdown",
"id": "638364b2-6bd2-4471-9961-d3a1d1b9d4ee",
"metadata": {},
"source": [
"**Now we see the results are correct as it is mentioned in earnings release.** <br>\n",
"**To further automate, we will create a chain that will take input as question and retriever so that we don't need to retrieve documents seperately**"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "4654e5b7-635f-4767-8b31-4c430164cdd5",
"metadata": {},
"outputs": [],
"source": [
"retriever = vectorstore.as_retriever()\n",
"qa_chain = (\n",
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
" | rag_prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0979f393-fd0a-4e82-b844-68371c6ad68f",
"metadata": {},
"source": [
"**Now we only need to pass the question to the chain and it will fetch the contexts directly from the vector database to generate the answer**\n",
"<br>\n",
"**Let's try with another question**"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "3ea07b82-e6ec-4084-85f4-191373530172",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Llama.generate: prefix-match hit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"llama_print_timings: load time = 131.20 ms\n",
"llama_print_timings: sample time = 6.28 ms / 31 runs ( 0.20 ms per token, 4937.88 tokens per second)\n",
"llama_print_timings: prompt eval time = 2681.93 ms / 730 tokens ( 3.67 ms per token, 272.19 tokens per second)\n",
"llama_print_timings: eval time = 1471.07 ms / 30 runs ( 49.04 ms per token, 20.39 tokens per second)\n",
"llama_print_timings: total time = 4206.77 ms / 760 tokens\n"
]
},
{
"data": {
"text/plain": [
"' According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%.'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"qa_chain.invoke(\"what is Intel DCAI revenue in Q1 2024?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9407f2a0-4a35-4315-8e96-02fcb80f210c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "rag-on-intel",
"language": "python",
"name": "rag-on-intel"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -36,10 +36,10 @@
"from bs4 import BeautifulSoup as Soup\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryByteStore, LocalFileStore\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders.recursive_url_loader import (\n",
" RecursiveUrlLoader,\n",
")\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"# For our example, we'll load docs from the web\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
@@ -370,13 +370,14 @@
],
"source": [
"import torch\n",
"from langchain.llms.huggingface_pipeline import HuggingFacePipeline\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
"from langchain_huggingface.llms import HuggingFacePipeline\n",
"from optimum.intel.ipex import IPEXModelForCausalLM\n",
"from transformers import AutoTokenizer, pipeline\n",
"\n",
"model_id = \"Intel/neural-chat-7b-v3-3\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
"model = AutoModelForCausalLM.from_pretrained(\n",
" model_id, device_map=\"auto\", torch_dtype=torch.bfloat16\n",
"model = IPEXModelForCausalLM.from_pretrained(\n",
" model_id, torch_dtype=torch.bfloat16, export=True\n",
")\n",
"\n",
"pipe = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, max_new_tokens=100)\n",
@@ -581,7 +582,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
"version": "3.10.14"
}
},
"nbformat": 4,

View File

@@ -740,7 +740,7 @@ Even this relatively large model will most likely fail to generate more complica
```bash
poetry run pip install pyyaml chromadb
poetry run pip install pyyaml langchain_chroma
import yaml
```
@@ -994,7 +994,7 @@ from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
from langchain_community.vectorstores import Chroma
from langchain_chroma import Chroma
example_prompt = PromptTemplate(
input_variables=["table_info", "input", "sql_cmd", "sql_result", "answer"],

View File

@@ -22,7 +22,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet pypdf chromadb tiktoken openai langchain-together"
"! pip install --quiet pypdf tiktoken openai langchain-chroma langchain-together"
]
},
{
@@ -45,8 +45,8 @@
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"\"\"\"\n",
"from langchain_together.embeddings import TogetherEmbeddings\n",

File diff suppressed because one or more lines are too long

View File

@@ -13,7 +13,7 @@ OUTPUT_NEW_DOCS_DIR = $(OUTPUT_NEW_DIR)/docs
PYTHON = .venv/bin/python
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm" | tr '\n' ' ')
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm|couchbase" | tr '\n' ' ')
PORT ?= 3001
@@ -38,6 +38,8 @@ generate-files:
$(PYTHON) scripts/model_feat_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/tool_feat_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/document_loader_feat_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/copy_templates.py $(INTERMEDIATE_DIR)

View File

@@ -178,3 +178,10 @@ autosummary_generate = True
html_copy_source = False
html_show_sourcelink = False
# Set canonical URL from the Read the Docs Domain
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "")
# Tell Jinja2 templates the build is running on Read the Docs
if os.environ.get("READTHEDOCS", "") == "True":
html_context["READTHEDOCS"] = True

View File

@@ -78,7 +78,7 @@ def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
continue
if inspect.isclass(type_):
# The clasification of the class is used to select a template
# The type of the class is used to select a template
# for the object when rendering the documentation.
# See `templates` directory for defined templates.
# This is a hacky solution to distinguish between different

View File

@@ -55,6 +55,7 @@ A developer platform that lets you debug, test, evaluate, and monitor LLM applic
dark: useBaseUrl('/svg/langchain_stack_062024_dark.svg'),
}}
title="LangChain Framework Overview"
style={{ width: "100%" }}
/>
## LangChain Expression Language (LCEL)
@@ -235,7 +236,7 @@ This is where information like log-probs and token usage may be stored.
These represent a decision from an language model to call a tool. They are included as part of an `AIMessage` output.
They can be accessed from there with the `.tool_calls` property.
This property returns a list of dictionaries. Each dictionary has the following keys:
This property returns a list of `ToolCall`s. A `ToolCall` is a dictionary with the following arguments:
- `name`: The name of the tool that should be called.
- `args`: The arguments to that tool.
@@ -245,13 +246,18 @@ This property returns a list of dictionaries. Each dictionary has the following
This represents a system message, which tells the model how to behave. Not every model provider supports this.
#### FunctionMessage
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
#### ToolMessage
This represents the result of a tool call. This is distinct from a FunctionMessage in order to match OpenAI's `function` and `tool` message types. In addition to `role` and `content`, this message has a `tool_call_id` parameter which conveys the id of the call to the tool that was called to produce this result.
This represents the result of a tool call. In addition to `role` and `content`, this message has:
- a `tool_call_id` field which conveys the id of the call to the tool that was called to produce this result.
- an `artifact` field which can be used to pass along arbitrary artifacts of the tool execution which are useful to track but which should not be sent to the model.
#### (Legacy) FunctionMessage
This is a legacy message type, corresponding to OpenAI's legacy function-calling API. ToolMessage should be used instead to correspond to the updated tool-calling API.
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
### Prompt templates
@@ -495,35 +501,87 @@ For specifics on how to use retrievers, see the [relevant how-to guides here](/d
### Tools
<span data-heading-keywords="tool,tools"></span>
Tools are interfaces that an agent, a chain, or a chat model / LLM can use to interact with the world.
Tools are utilities designed to be called by a model: their inputs are designed to be generated by models, and their outputs are designed to be passed back to models.
Tools are needed whenever you want a model to control parts of your code or call out to external APIs.
A tool consists of the following components:
A tool consists of:
1. The name of the tool
2. A description of what the tool does
3. JSON schema of what the inputs to the tool are
4. The function to call
5. Whether the result of a tool should be returned directly to the user (only relevant for agents)
1. The name of the tool.
2. A description of what the tool does.
3. A JSON schema defining the inputs to the tool.
4. A function (and, optionally, an async variant of the function).
The name, description and JSON schema are provided as context
to the LLM, allowing the LLM to determine how to use the tool
appropriately.
When a tool is bound to a model, the name, description and JSON schema are provided as context to the model.
Given a list of tools and a set of instructions, a model can request to call one or more tools with specific inputs.
Typical usage may look like the following:
Given a list of available tools and a prompt, an LLM can request
that one or more tools be invoked with appropriate arguments.
```python
tools = [...] # Define a list of tools
llm_with_tools = llm.bind_tools(tools)
ai_msg = llm_with_tools.invoke("do xyz...") # AIMessage(tool_calls=[ToolCall(...), ...], ...)
```
Generally, when designing tools to be used by a chat model or LLM, it is important to keep in mind the following:
The `AIMessage` returned from the model MAY have `tool_calls` associated with it.
Read [this guide](/docs/concepts/#aimessage) for more information on what the response type may look like.
- Chat models that have been fine-tuned for tool calling will be better at tool calling than non-fine-tuned models.
- Non fine-tuned models may not be able to use tools at all, especially if the tools are complex or require multiple tool calls.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas.
- Simpler tools are generally easier for models to use than more complex tools.
Once the chosen tools are invoked, the results can be passed back to the model so that it can complete whatever task
it's performing.
There are generally two different ways to invoke the tool and pass back the response:
For specifics on how to use tools, see the [relevant how-to guides here](/docs/how_to/#tools).
#### Invoke with just the arguments
To use an existing pre-built tool, see [here](docs/integrations/tools/) for a list of pre-built tools.
When you invoke a tool with just the arguments, you will get back the raw tool output (usually a string).
This generally looks like:
```python
# You will want to previously check that the LLM returned tool calls
tool_call = ai_msg.tool_calls[0] # ToolCall(args={...}, id=..., ...)
tool_output = tool.invoke(tool_call["args"])
tool_message = ToolMessage(content=tool_output, tool_call_id=tool_call["id"], name=tool_call["name"])
```
Note that the `content` field will generally be passed back to the model.
If you do not want the raw tool response to be passed to the model, but you still want to keep it around,
you can transform the tool output but also pass it as an artifact (read more about [`ToolMessage.artifact` here](/docs/concepts/#toolmessage))
```python
... # Same code as above
response_for_llm = transform(response)
tool_message = ToolMessage(content=response_for_llm, tool_call_id=tool_call["id"], name=tool_call["name"], artifact=tool_output)
```
#### Invoke with `ToolCall`
The other way to invoke a tool is to call it with the full `ToolCall` that was generated by the model.
When you do this, the tool will return a ToolMessage.
The benefits of this are that you don't have to write the logic yourself to transform the tool output into a ToolMessage.
This generally looks like:
```python
tool_call = ai_msg.tool_calls[0] # ToolCall(args={...}, id=..., ...)
tool_message = tool.invoke(tool_call)
# -> ToolMessage(content="tool result foobar...", tool_call_id=..., name="tool_name")
```
If you are invoking the tool this way and want to include an [artifact](/docs/concepts/#toolmessage) for the ToolMessage, you will need to have the tool return two things.
Read more about [defining tools that return artifacts here](/docs/how_to/tool_artifacts/).
#### Best practices
When designing tools to be used by a model, it is important to keep in mind that:
- Chat models that have explicit [tool-calling APIs](/docs/concepts/#functiontool-calling) will be better at tool calling than non-fine-tuned models.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This another form of prompt engineering.
- Simple, narrowly scoped tools are easier for models to use than complex tools.
#### Related
For specifics on how to use tools, see the [tools how-to guides](/docs/how_to/#tools).
To use a pre-built tool, see the [tool integration docs](/docs/integrations/tools/).
### Toolkits
<span data-heading-keywords="toolkit,toolkits"></span>
Toolkits are collections of tools that are designed to be used together for specific tasks. They have convenient loading methods.
@@ -821,7 +879,7 @@ We recommend this method as a starting point when working with structured output
- If multiple underlying techniques are supported, you can supply a `method` parameter to
[toggle which one is used](/docs/how_to/structured_output/#advanced-specifying-the-method-for-structuring-outputs).
You may want or need to use other techiniques if:
You may want or need to use other techniques if:
- The chat model you are using does not support tool calling.
- You are working with very complex schemas and the model is having trouble generating outputs that conform.

View File

@@ -33,6 +33,8 @@ Some examples include:
- [Build a Simple LLM Application with LCEL](/docs/tutorials/llm_chain/)
- [Build a Retrieval Augmented Generation (RAG) App](/docs/tutorials/rag/)
A good structural rule of thumb is to follow the structure of this [example from Numpy](https://numpy.org/numpy-tutorials/content/tutorial-svd.html).
Here are some high-level tips on writing a good tutorial:

Binary file not shown.

View File

@@ -153,7 +153,7 @@
"\n",
" def parse(self, text: str) -> List[str]:\n",
" lines = text.strip().split(\"\\n\")\n",
" return lines\n",
" return list(filter(None, lines)) # Remove empty lines\n",
"\n",
"\n",
"output_parser = LineListOutputParser()\n",

View File

@@ -0,0 +1,342 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to dispatch custom callback events\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [Callbacks](/docs/concepts/#callbacks)\n",
"- [Custom callback handlers](/docs/how_to/custom_callbacks)\n",
"- [Astream Events API](/docs/concepts/#astream_events) the `astream_events` method will surface custom callback events.\n",
":::\n",
"\n",
"In some situations, you may want to dipsatch a custom callback event from within a [Runnable](/docs/concepts/#runnable-interface) so it can be surfaced\n",
"in a custom callback handler or via the [Astream Events API](/docs/concepts/#astream_events).\n",
"\n",
"For example, if you have a long running tool with multiple steps, you can dispatch custom events between the steps and use these custom events to monitor progress.\n",
"You could also surface these custom events to an end user of your application to show them how the current task is progressing.\n",
"\n",
"To dispatch a custom event you need to decide on two attributes for the event: the `name` and the `data`.\n",
"\n",
"| Attribute | Type | Description |\n",
"|-----------|------|----------------------------------------------------------------------------------------------------------|\n",
"| name | str | A user defined name for the event. |\n",
"| data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. |\n",
"\n",
"\n",
":::{.callout-important}\n",
"* Dispatching custom callback events requires `langchain-core>=0.2.15`.\n",
"* Custom callback events can only be dispatched from within an existing `Runnable`.\n",
"* If using `astream_events`, you must use `version='v2'` to see custom events.\n",
"* Sending or rendering custom callbacks events in LangSmith is not yet supported.\n",
":::\n",
"\n",
"\n",
":::caution COMPATIBILITY\n",
"LangChain cannot automatically propagate configuration, including callbacks necessary for astream_events(), to child runnables if you are running async code in python<=3.10. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
"\n",
"If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n",
"\n",
"If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in other Python versions.\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain-core"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Astream Events API\n",
"\n",
"The most useful way to consume custom events is via the [Astream Events API](/docs/concepts/#astream_events).\n",
"\n",
"We can use the `async` `adispatch_custom_event` API to emit custom events in an async setting. \n",
"\n",
"\n",
":::{.callout-important}\n",
"\n",
"To see custom events via the astream events API, you need to use the newer `v2` API of `astream_events`.\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'foo', 'tags': [], 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'metadata': {}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
"{'event': 'on_chain_stream', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
]
}
],
"source": [
"from langchain_core.callbacks.manager import (\n",
" adispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"@RunnableLambda\n",
"async def foo(x: str) -> str:\n",
" await adispatch_custom_event(\"event1\", {\"x\": x})\n",
" await adispatch_custom_event(\"event2\", 5)\n",
" return x\n",
"\n",
"\n",
"async for event in foo.astream_events(\"hello world\", version=\"v2\"):\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In python <= 3.10, you must propagate the config manually!"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'bar', 'tags': [], 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'metadata': {}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
"{'event': 'on_chain_stream', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
]
}
],
"source": [
"from langchain_core.callbacks.manager import (\n",
" adispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"@RunnableLambda\n",
"async def bar(x: str, config: RunnableConfig) -> str:\n",
" \"\"\"An example that shows how to manually propagate config.\n",
"\n",
" You must do this if you're running python<=3.10.\n",
" \"\"\"\n",
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
" return x\n",
"\n",
"\n",
"async for event in bar.astream_events(\"hello world\", version=\"v2\"):\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Async Callback Handler\n",
"\n",
"You can also consume the dispatched event via an async callback handler."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n",
"Received event event2 with data: 5, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n"
]
},
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Any, Dict, List, Optional\n",
"from uuid import UUID\n",
"\n",
"from langchain_core.callbacks import AsyncCallbackHandler\n",
"from langchain_core.callbacks.manager import (\n",
" adispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"class AsyncCustomCallbackHandler(AsyncCallbackHandler):\n",
" async def on_custom_event(\n",
" self,\n",
" name: str,\n",
" data: Any,\n",
" *,\n",
" run_id: UUID,\n",
" tags: Optional[List[str]] = None,\n",
" metadata: Optional[Dict[str, Any]] = None,\n",
" **kwargs: Any,\n",
" ) -> None:\n",
" print(\n",
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
" )\n",
"\n",
"\n",
"@RunnableLambda\n",
"async def bar(x: str, config: RunnableConfig) -> str:\n",
" \"\"\"An example that shows how to manually propagate config.\n",
"\n",
" You must do this if you're running python<=3.10.\n",
" \"\"\"\n",
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
" return x\n",
"\n",
"\n",
"async_handler = AsyncCustomCallbackHandler()\n",
"await foo.ainvoke(1, {\"callbacks\": [async_handler], \"tags\": [\"foo\", \"bar\"]})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sync Callback Handler\n",
"\n",
"Let's see how to emit custom events in a sync environment using `dispatch_custom_event`.\n",
"\n",
"You **must** call `dispatch_custom_event` from within an existing `Runnable`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n",
"Received event event2 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n"
]
},
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Any, Dict, List, Optional\n",
"from uuid import UUID\n",
"\n",
"from langchain_core.callbacks import BaseCallbackHandler\n",
"from langchain_core.callbacks.manager import (\n",
" dispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"class CustomHandler(BaseCallbackHandler):\n",
" def on_custom_event(\n",
" self,\n",
" name: str,\n",
" data: Any,\n",
" *,\n",
" run_id: UUID,\n",
" tags: Optional[List[str]] = None,\n",
" metadata: Optional[Dict[str, Any]] = None,\n",
" **kwargs: Any,\n",
" ) -> None:\n",
" print(\n",
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
" )\n",
"\n",
"\n",
"@RunnableLambda\n",
"def foo(x: int, config: RunnableConfig) -> int:\n",
" dispatch_custom_event(\"event1\", {\"x\": x})\n",
" dispatch_custom_event(\"event2\", {\"x\": x})\n",
" return x\n",
"\n",
"\n",
"handler = CustomHandler()\n",
"foo.invoke(1, {\"callbacks\": [handler], \"tags\": [\"foo\", \"bar\"]})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"You've seen how to emit custom events, you can check out the more in depth guide for [astream events](/docs/how_to/streaming/#using-stream-events) which is the easiest way to leverage custom events."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -15,6 +15,12 @@
"\n",
"Make sure you have the integration packages installed for any model providers you want to support. E.g. you should have `langchain-openai` installed to init an OpenAI model.\n",
"\n",
":::\n",
"\n",
":::info Requires ``langchain >= 0.2.8``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.8``. Please make sure your package is up to date.\n",
"\n",
":::"
]
},
@@ -25,7 +31,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain langchain-openai langchain-anthropic langchain-google-vertexai"
"%pip install -qU langchain>=0.2.8 langchain-openai langchain-anthropic langchain-google-vertexai"
]
},
{
@@ -76,32 +82,6 @@
"print(\"Gemini 1.5: \" + gemini_15.invoke(\"what's your name\").content + \"\\n\")"
]
},
{
"cell_type": "markdown",
"id": "fff9a4c8-b6ee-4a1a-8d3d-0ecaa312d4ed",
"metadata": {},
"source": [
"## Simple config example"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "75c25d39-bf47-4b51-a6c6-64d9c572bfd6",
"metadata": {},
"outputs": [],
"source": [
"user_config = {\n",
" \"model\": \"...user-specified...\",\n",
" \"model_provider\": \"...user-specified...\",\n",
" \"temperature\": 0,\n",
" \"max_tokens\": 1000,\n",
"}\n",
"\n",
"llm = init_chat_model(**user_config)\n",
"llm.invoke(\"what's your name\")"
]
},
{
"cell_type": "markdown",
"id": "f811f219-5e78-4b62-b495-915d52a22532",
@@ -125,12 +105,215 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "da07b5c0-d2e6-42e4-bfcd-2efcfaae6221",
"cell_type": "markdown",
"id": "476a44db-c50d-4846-951d-0f1c9ba8bbaa",
"metadata": {},
"outputs": [],
"source": []
"source": [
"## Creating a configurable model\n",
"\n",
"You can also create a runtime-configurable model by specifying `configurable_fields`. If you don't specify a `model` value, then \"model\" and \"model_provider\" be configurable by default."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6c037f27-12d7-4e83-811e-4245c0e3ba58",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_d576307f90', 'finish_reason': 'stop', 'logprobs': None}, id='run-5428ab5c-b5c0-46de-9946-5d4ca40dbdc8-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"configurable_model = init_chat_model(temperature=0)\n",
"\n",
"configurable_model.invoke(\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_012XvotUJ3kGLXJUWKBVxJUi', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-1ad1eefe-f1c6-4244-8bc6-90e2cb7ee554-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"configurable_model.invoke(\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}}\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7f3b3d4a-4066-45e4-8297-ea81ac8e70b7",
"metadata": {},
"source": [
"### Configurable model with default values\n",
"\n",
"We can create a configurable model with default model values, specify which parameters are configurable, and add prefixes to configurable params:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "814a2289-d0db-401e-b555-d5116112b413",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_ce0793330f', 'finish_reason': 'stop', 'logprobs': None}, id='run-3923e328-7715-4cd6-b215-98e4b6bf7c9d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"first_llm = init_chat_model(\n",
" model=\"gpt-4o\",\n",
" temperature=0,\n",
" configurable_fields=(\"model\", \"model_provider\", \"temperature\", \"max_tokens\"),\n",
" config_prefix=\"first\", # useful when you have a chain with multiple models\n",
")\n",
"\n",
"first_llm.invoke(\"what's your name\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "6c8755ba-c001-4f5a-a497-be3f1db83244",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_01RyYR64DoMPNCfHeNnroMXm', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-22446159-3723-43e6-88df-b84797e7751d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"first_llm.invoke(\n",
" \"what's your name\",\n",
" config={\n",
" \"configurable\": {\n",
" \"first_model\": \"claude-3-5-sonnet-20240620\",\n",
" \"first_temperature\": 0.5,\n",
" \"first_max_tokens\": 100,\n",
" }\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0072b1a3-7e44-4b4e-8b07-efe1ba91a689",
"metadata": {},
"source": [
"### Using a configurable model declaratively\n",
"\n",
"We can call declarative operations like `bind_tools`, `with_structured_output`, `with_configurable`, etc. on a configurable model and chain a configurable model in the same way that we would a regularly instantiated chat model object."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "067dabee-1050-4110-ae24-c48eba01e13b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'GetPopulation',\n",
" 'args': {'location': 'Los Angeles, CA'},\n",
" 'id': 'call_sYT3PFMufHGWJD32Hi2CTNUP'},\n",
" {'name': 'GetPopulation',\n",
" 'args': {'location': 'New York, NY'},\n",
" 'id': 'call_j1qjhxRnD3ffQmRyqjlI1Lnk'}]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class GetWeather(BaseModel):\n",
" \"\"\"Get the current weather in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"class GetPopulation(BaseModel):\n",
" \"\"\"Get the current population in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"llm = init_chat_model(temperature=0)\n",
"llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])\n",
"\n",
"llm_with_tools.invoke(\n",
" \"what's bigger in 2024 LA or NYC\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
").tool_calls"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e57dfe9f-cd24-4e37-9ce9-ccf8daf78f89",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'GetPopulation',\n",
" 'args': {'location': 'Los Angeles, CA'},\n",
" 'id': 'toolu_01CxEHxKtVbLBrvzFS7GQ5xR'},\n",
" {'name': 'GetPopulation',\n",
" 'args': {'location': 'New York City, NY'},\n",
" 'id': 'toolu_013A79qt5toWSsKunFBDZd5S'}]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tools.invoke(\n",
" \"what's bigger in 2024 LA or NYC\",\n",
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}},\n",
").tool_calls"
]
}
],
"metadata": {
@@ -149,7 +332,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -16,7 +16,7 @@
"\n",
"Tracking token usage to calculate cost is an important part of putting your app in production. This guide goes over how to obtain this information from your LangChain model calls.\n",
"\n",
"This guide requires `langchain-openai >= 0.1.8`."
"This guide requires `langchain-openai >= 0.1.9`."
]
},
{
@@ -153,7 +153,7 @@
"\n",
"#### OpenAI\n",
"\n",
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.8` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
"\n",
"```{=mdx}\n",
":::note\n",

View File

@@ -300,7 +300,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 2,
"id": "ac9295d3",
"metadata": {},
"outputs": [],
@@ -312,10 +312,8 @@
"\n",
"## Quick Install\n",
"\n",
"```bash\n",
"# Hopefully this code block isn't split\n",
"pip install langchain\n",
"```\n",
"\n",
"As an open-source project in a rapidly developing field, we are extremely open to contributions.\n",
"\"\"\""
@@ -323,7 +321,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 3,
"id": "3a0cb17a",
"metadata": {},
"outputs": [
@@ -332,15 +330,14 @@
"text/plain": [
"[Document(page_content='# 🦜️🔗 LangChain'),\n",
" Document(page_content='⚡ Building applications with LLMs through composability ⚡'),\n",
" Document(page_content='## Quick Install\\n\\n```bash'),\n",
" Document(page_content='## Quick Install'),\n",
" Document(page_content=\"# Hopefully this code block isn't split\"),\n",
" Document(page_content='pip install langchain'),\n",
" Document(page_content='```'),\n",
" Document(page_content='As an open-source project in a rapidly developing field, we'),\n",
" Document(page_content='are extremely open to contributions.')]"
]
},
"execution_count": 9,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -742,7 +739,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -48,20 +48,10 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "40ed76a2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n",
"You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
]
}
],
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai\n",
"\n",

View File

@@ -220,6 +220,57 @@
"pretty_print_docs(compressed_docs)"
]
},
{
"cell_type": "markdown",
"id": "14002ec8-7ee5-4f91-9315-dd21c3808776",
"metadata": {},
"source": [
"### `LLMListwiseRerank`\n",
"\n",
"[LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n",
"\n",
"Note that `LLMListwiseRerank` requires a model with the [with_structured_output](/docs/integrations/chat/) method implemented."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4ab9ee9f-917e-4d6f-9344-eb7f01533228",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Document 1:\n",
"\n",
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.\n"
]
}
],
"source": [
"from langchain.retrievers.document_compressors import LLMListwiseRerank\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
"\n",
"_filter = LLMListwiseRerank.from_llm(llm, top_n=1)\n",
"compression_retriever = ContextualCompressionRetriever(\n",
" base_compressor=_filter, base_retriever=retriever\n",
")\n",
"\n",
"compressed_docs = compression_retriever.invoke(\n",
" \"What did the president say about Ketanji Jackson Brown\"\n",
")\n",
"pretty_print_docs(compressed_docs)"
]
},
{
"cell_type": "markdown",
"id": "7194da42",
@@ -295,7 +346,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"id": "617a1756",
"metadata": {},
"outputs": [],

View File

@@ -5,7 +5,7 @@
"id": "9a8bceb3-95bd-4496-bb9e-57655136e070",
"metadata": {},
"source": [
"# How to use Runnables as Tools\n",
"# How to convert Runnables as Tools\n",
"\n",
":::info Prerequisites\n",
"\n",
@@ -180,7 +180,7 @@
"id": "32b1a992-8997-4c98-8eb2-c9fe9431b799",
"metadata": {},
"source": [
"Alternatively, we can add typing information via [Runnable.with_types](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_types):"
"Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:"
]
},
{
@@ -190,10 +190,18 @@
"metadata": {},
"outputs": [],
"source": [
"as_tool = runnable.with_types(input_type=Args).as_tool(\n",
" name=\"My tool\",\n",
" description=\"Explanation of when to use tool.\",\n",
")"
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class GSchema(BaseModel):\n",
" \"\"\"Apply a function to an integer and list of integers.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"Integer\")\n",
" b: List[int] = Field(..., description=\"List of ints\")\n",
"\n",
"\n",
"runnable = RunnableLambda(g)\n",
"as_tool = runnable.as_tool(GSchema)"
]
},
{
@@ -259,9 +267,9 @@
"We first instantiate a chat model that supports [tool calling](/docs/how_to/tool_calling/):\n",
"\n",
"```{=mdx}\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
"/>\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs customVarName=\"llm\" />\n",
"```"
]
},

View File

@@ -131,7 +131,7 @@
"source": [
"## Base Chat Model\n",
"\n",
"Let's implement a chat model that echoes back the first `n` characetrs of the last message in the prompt!\n",
"Let's implement a chat model that echoes back the first `n` characters of the last message in the prompt!\n",
"\n",
"To do so, we will inherit from `BaseChatModel` and we'll need to implement the following:\n",
"\n",

View File

@@ -5,7 +5,7 @@
"id": "5436020b",
"metadata": {},
"source": [
"# How to create custom tools\n",
"# How to create tools\n",
"\n",
"When constructing an agent, you will need to provide it with a list of `Tool`s that it can use. Besides the actual function that is called, the Tool consists of several components:\n",
"\n",
@@ -16,13 +16,15 @@
"| args_schema | Pydantic BaseModel | Optional but recommended, can be used to provide more information (e.g., few-shot examples) or validation for expected parameters |\n",
"| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n",
"\n",
"LangChain provides 3 ways to create tools:\n",
"LangChain supports the creation of tools from:\n",
"\n",
"1. Using [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool) -- the simplest way to define a custom tool.\n",
"2. Using [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method -- this is similar to the `@tool` decorator, but allows more configuration and specification of both sync and async implementations.\n",
"1. Functions;\n",
"2. LangChain [Runnables](/docs/concepts#runnable-interface);\n",
"3. By sub-classing from [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
"\n",
"The `@tool` or the `StructuredTool.from_function` class method should be sufficient for most use cases.\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
"\n",
"In this guide we provide an overview of these methods.\n",
"\n",
":::{.callout-tip}\n",
"\n",
@@ -35,7 +37,9 @@
"id": "c7326b23",
"metadata": {},
"source": [
"## @tool decorator\n",
"## Creating tools from functions\n",
"\n",
"### @tool decorator\n",
"\n",
"This `@tool` decorator is the simplest way to define a custom tool. The decorator uses the function name as the tool name by default, but this can be overridden by passing a string as the first argument. Additionally, the decorator will use the function's docstring as the tool's description - so a docstring MUST be provided. "
]
@@ -51,7 +55,7 @@
"output_type": "stream",
"text": [
"multiply\n",
"multiply(a: int, b: int) -> int - Multiply two numbers.\n",
"Multiply two numbers.\n",
"{'a': {'title': 'A', 'type': 'integer'}, 'b': {'title': 'B', 'type': 'integer'}}\n"
]
}
@@ -96,6 +100,57 @@
" return a * b"
]
},
{
"cell_type": "markdown",
"id": "8f0edc51-c586-414c-8941-c8abe779943f",
"metadata": {},
"source": [
"Note that `@tool` supports parsing of annotations, nested schemas, and other features:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5626423f-053e-4a66-adca-1d794d835397",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'multiply_by_maxSchema',\n",
" 'description': 'Multiply a by the maximum of b.',\n",
" 'type': 'object',\n",
" 'properties': {'a': {'title': 'A',\n",
" 'description': 'scale factor',\n",
" 'type': 'string'},\n",
" 'b': {'title': 'B',\n",
" 'description': 'list of ints over which to take maximum',\n",
" 'type': 'array',\n",
" 'items': {'type': 'integer'}}},\n",
" 'required': ['a', 'b']}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Annotated, List\n",
"\n",
"\n",
"@tool\n",
"def multiply_by_max(\n",
" a: Annotated[str, \"scale factor\"],\n",
" b: Annotated[List[int], \"list of ints over which to take maximum\"],\n",
") -> int:\n",
" \"\"\"Multiply a by the maximum of b.\"\"\"\n",
" return a * max(b)\n",
"\n",
"\n",
"multiply_by_max.args_schema.schema()"
]
},
{
"cell_type": "markdown",
"id": "98d6eee9",
@@ -106,7 +161,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"id": "9216d03a-f6ea-4216-b7e1-0661823a4c0b",
"metadata": {},
"outputs": [
@@ -115,7 +170,7 @@
"output_type": "stream",
"text": [
"multiplication-tool\n",
"multiplication-tool(a: int, b: int) -> int - Multiply two numbers.\n",
"Multiply two numbers.\n",
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n",
"True\n"
]
@@ -145,17 +200,82 @@
},
{
"cell_type": "markdown",
"id": "b63fcc3b",
"id": "33a9e94d-0b60-48f3-a4c2-247dce096e66",
"metadata": {},
"source": [
"## StructuredTool\n",
"\n",
"The `StrurcturedTool.from_function` class method provides a bit more configurability than the `@tool` decorator, without requiring much additional code."
"#### Docstring parsing"
]
},
{
"cell_type": "markdown",
"id": "6d0cb586-93d4-4ff1-9779-71df7853cb68",
"metadata": {},
"source": [
"`@tool` can optionally parse [Google Style docstrings](https://google.github.io/styleguide/pyguide.html#383-functions-and-methods) and associate the docstring components (such as arg descriptions) to the relevant parts of the tool schema. To toggle this behavior, specify `parse_docstring`:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"id": "336f5538-956e-47d5-9bde-b732559f9e61",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'fooSchema',\n",
" 'description': 'The foo.',\n",
" 'type': 'object',\n",
" 'properties': {'bar': {'title': 'Bar',\n",
" 'description': 'The bar.',\n",
" 'type': 'string'},\n",
" 'baz': {'title': 'Baz', 'description': 'The baz.', 'type': 'integer'}},\n",
" 'required': ['bar', 'baz']}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@tool(parse_docstring=True)\n",
"def foo(bar: str, baz: int) -> str:\n",
" \"\"\"The foo.\n",
"\n",
" Args:\n",
" bar: The bar.\n",
" baz: The baz.\n",
" \"\"\"\n",
" return bar\n",
"\n",
"\n",
"foo.args_schema.schema()"
]
},
{
"cell_type": "markdown",
"id": "f18a2503-5393-421b-99fa-4a01dd824d0e",
"metadata": {},
"source": [
":::{.callout-caution}\n",
"By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html) for detail and examples.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "b63fcc3b",
"metadata": {},
"source": [
"### StructuredTool\n",
"\n",
"The `StructuredTool.from_function` class method provides a bit more configurability than the `@tool` decorator, without requiring much additional code."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "564fbe6f-11df-402d-b135-ef6ff25e1e63",
"metadata": {},
"outputs": [
@@ -198,7 +318,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"id": "6bc055d4-1fbe-4db5-8881-9c382eba6b1b",
"metadata": {},
"outputs": [
@@ -208,7 +328,7 @@
"text": [
"6\n",
"Calculator\n",
"Calculator(a: int, b: int) -> int - multiply numbers\n",
"multiply numbers\n",
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n"
]
}
@@ -239,6 +359,63 @@
"print(calculator.args)"
]
},
{
"cell_type": "markdown",
"id": "5517995d-54e3-449b-8fdb-03561f5e4647",
"metadata": {},
"source": [
"## Creating tools from Runnables\n",
"\n",
"LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n",
"\n",
"Example usage:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8ef593c5-cf72-4c10-bfc9-7d21874a0c24",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'answer_style': {'title': 'Answer Style', 'type': 'string'}}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.language_models import GenericFakeChatModel\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"human\", \"Hello. Please respond in the style of {answer_style}.\")]\n",
")\n",
"\n",
"# Placeholder LLM\n",
"llm = GenericFakeChatModel(messages=iter([\"hello matey\"]))\n",
"\n",
"chain = prompt | llm | StrOutputParser()\n",
"\n",
"as_tool = chain.as_tool(\n",
" name=\"Style responder\", description=\"Description of when to use tool.\"\n",
")\n",
"as_tool.args"
]
},
{
"cell_type": "markdown",
"id": "0521b787-a146-45a6-8ace-ae1ac4669dd7",
"metadata": {},
"source": [
"See [this guide](/docs/how_to/convert_runnable_to_tool) for more detail."
]
},
{
"cell_type": "markdown",
"id": "b840074b-9c10-4ca0-aed8-626c52b2398f",
@@ -251,7 +428,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 10,
"id": "1dad8f8e",
"metadata": {},
"outputs": [],
@@ -300,7 +477,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 11,
"id": "bb551c33",
"metadata": {},
"outputs": [
@@ -351,7 +528,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 12,
"id": "6615cb77-fd4c-4676-8965-f92cc71d4944",
"metadata": {},
"outputs": [
@@ -383,7 +560,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 13,
"id": "bb2af583-eadd-41f4-a645-bf8748bd3dcd",
"metadata": {},
"outputs": [
@@ -428,7 +605,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 14,
"id": "4ad0932c-8610-4278-8c57-f9218f654c8a",
"metadata": {},
"outputs": [
@@ -473,7 +650,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 15,
"id": "7094c0e8-6192-4870-a942-aad5b5ae48fd",
"metadata": {},
"outputs": [],
@@ -496,7 +673,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 16,
"id": "b4d22022-b105-4ccc-a15b-412cb9ea3097",
"metadata": {},
"outputs": [
@@ -506,7 +683,7 @@
"'Error: There is no city by the name of foobar.'"
]
},
"execution_count": 12,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -530,7 +707,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 17,
"id": "3fad1728-d367-4e1b-9b54-3172981271cf",
"metadata": {},
"outputs": [
@@ -540,7 +717,7 @@
"\"There is no such city, but it's probably above 0K there!\""
]
},
"execution_count": 13,
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -564,7 +741,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 18,
"id": "ebfe7c1f-318d-4e58-99e1-f31e69473c46",
"metadata": {},
"outputs": [
@@ -574,7 +751,7 @@
"'The following errors occurred during tool execution: `Error: There is no city by the name of foobar.`'"
]
},
"execution_count": 14,
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
@@ -591,13 +768,189 @@
"\n",
"get_weather_tool.invoke({\"city\": \"foobar\"})"
]
},
{
"cell_type": "markdown",
"id": "1a8d8383-11b3-445e-956f-df4e96995e00",
"metadata": {},
"source": [
"## Returning artifacts of Tool execution\n",
"\n",
"Sometimes there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns custom objects like Documents, we may want to pass some view or metadata about this output to the model without passing the raw output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
"\n",
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
"\n",
":::info Requires ``langchain-core >= 0.2.19``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
"\n",
":::\n",
"\n",
"If we want our tool to distinguish between message content and other artifacts, we need to specify `response_format=\"content_and_artifact\"` when defining our tool and make sure that we return a tuple of (content, artifact):"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "14905425-0334-43a0-9de9-5bcf622ede0e",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"from typing import List, Tuple\n",
"\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool(response_format=\"content_and_artifact\")\n",
"def generate_random_ints(min: int, max: int, size: int) -> Tuple[str, List[int]]:\n",
" \"\"\"Generate size random ints in the range [min, max].\"\"\"\n",
" array = [random.randint(min, max) for _ in range(size)]\n",
" content = f\"Successfully generated array of {size} random ints in [{min}, {max}].\"\n",
" return content, array"
]
},
{
"cell_type": "markdown",
"id": "49f057a6-8938-43ea-8faf-ae41e797ceb8",
"metadata": {},
"source": [
"If we invoke our tool directly with the tool arguments, we'll get back just the content part of the output:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0f2e1528-404b-46e6-b87c-f0957c4b9217",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Successfully generated array of 10 random ints in [0, 9].'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke({\"min\": 0, \"max\": 9, \"size\": 10})"
]
},
{
"cell_type": "markdown",
"id": "1e62ebba-1737-4b97-b61a-7313ade4e8c2",
"metadata": {},
"source": [
"If we invoke our tool with a ToolCall (like the ones generated by tool-calling models), we'll get back a ToolMessage that contains both the content and artifact generated by the Tool:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cc197777-26eb-46b3-a83b-c2ce116c6311",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[1, 4, 2, 5, 3, 9, 0, 4, 7, 7])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke(\n",
" {\n",
" \"name\": \"generate_random_ints\",\n",
" \"args\": {\"min\": 0, \"max\": 9, \"size\": 10},\n",
" \"id\": \"123\", # required\n",
" \"type\": \"tool_call\", # required\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "dfdc1040-bf25-4790-b4c3-59452db84e11",
"metadata": {},
"source": [
"We can do the same when subclassing BaseTool:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fe1a09d1-378b-4b91-bb5e-0697c3d7eb92",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import BaseTool\n",
"\n",
"\n",
"class GenerateRandomFloats(BaseTool):\n",
" name: str = \"generate_random_floats\"\n",
" description: str = \"Generate size random floats in the range [min, max].\"\n",
" response_format: str = \"content_and_artifact\"\n",
"\n",
" ndigits: int = 2\n",
"\n",
" def _run(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" range_ = max - min\n",
" array = [\n",
" round(min + (range_ * random.random()), ndigits=self.ndigits)\n",
" for _ in range(size)\n",
" ]\n",
" content = f\"Generated {size} floats in [{min}, {max}], rounded to {self.ndigits} decimals.\"\n",
" return content, array\n",
"\n",
" # Optionally define an equivalent async method\n",
"\n",
" # async def _arun(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" # ..."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8c3d16f6-1c4a-48ab-b05a-38547c592e79",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.4277, 0.7578, 2.4871])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rand_gen = GenerateRandomFloats(ndigits=4)\n",
"\n",
"rand_gen.invoke(\n",
" {\n",
" \"name\": \"generate_random_floats\",\n",
" \"args\": {\"min\": 0.1, \"max\": 3.3333, \"size\": 3},\n",
" \"id\": \"123\",\n",
" \"type\": \"tool_call\",\n",
" }\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv-311",
"language": "python",
"name": "python3"
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
@@ -609,7 +962,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
},
"vscode": {
"interpreter": {

View File

@@ -67,15 +67,16 @@ If you'd prefer not to set an environment variable you can pass the key in direc
```python
from langchain_cohere import CohereEmbeddings
embeddings_model = CohereEmbeddings(cohere_api_key="...")
embeddings_model = CohereEmbeddings(cohere_api_key="...", model='embed-english-v3.0')
```
Otherwise you can initialize without any params:
Otherwise you can initialize simply as shown below:
```python
from langchain_cohere import CohereEmbeddings
embeddings_model = CohereEmbeddings()
embeddings_model = CohereEmbeddings(model='embed-english-v3.0')
```
Do note that it is mandatory to pass the model parameter while initializing the CohereEmbeddings class.
</TabItem>
<TabItem value="huggingface" label="Hugging Face">

View File

@@ -9,11 +9,13 @@
"source": [
"# Hybrid Search\n",
"\n",
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, ...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, Qdrant...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
"\n",
"**Step 1: Make sure the vectorstore you are using supports hybrid search**\n",
"\n",
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`. By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`.\n",
"\n",
"By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
"\n",
"**Step 2: Add that parameter as a configurable field for the chain**\n",
"\n",

View File

@@ -44,6 +44,7 @@ This highlights functionality that is core to using LangChain.
- [How to: inspect runnables](/docs/how_to/inspect)
- [How to: add fallbacks to a runnable](/docs/how_to/fallbacks)
- [How to: migrate chains to LCEL](/docs/how_to/migrate_chains)
- [How to: pass runtime secrets to a runnable](/docs/how_to/runnable_runtime_secrets)
## Components
@@ -80,11 +81,10 @@ These are the core building blocks you can use when building applications.
- [How to: stream a response back](/docs/how_to/chat_streaming)
- [How to: track token usage](/docs/how_to/chat_token_usage_tracking)
- [How to: track response metadata across providers](/docs/how_to/response_metadata)
- [How to: let your end users choose their model](/docs/how_to/chat_models_universal_init/)
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: stream tool calls](/docs/how_to/tool_streaming)
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
- [How to: bind model-specific formated tools](/docs/how_to/tools_model_specific)
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
- [How to: force a specific tool call](/docs/how_to/tool_choice)
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
@@ -185,17 +185,21 @@ Indexing is the process of keeping your vectorstore in-sync with the underlying
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call. Refer [here](/docs/integrations/tools/) for a list of pre-buit tools.
- [How to: create custom tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and built-in toolkits](/docs/how_to/tools_builtin)
- [How to: convert Runnables to tools](/docs/how_to/convert_runnable_to_tool)
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: pass tool results back to model](/docs/how_to/tool_results_pass_to_model)
- [How to: add ad-hoc tool calling capability to LLMs and chat models](/docs/how_to/tools_prompting)
- [How to: create tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)
- [How to: use chat models to call tools](/docs/how_to/tool_calling)
- [How to: pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model)
- [How to: pass run time values to tools](/docs/how_to/tool_runtime)
- [How to: add a human in the loop to tool usage](/docs/how_to/tools_human)
- [How to: handle errors when calling tools](/docs/how_to/tools_error)
- [How to: disable parallel tool calling](/docs/how_to/tool_choice)
- [How to: stream events from within a tool](/docs/how_to/tool_stream_events)
- [How to: add a human-in-the-loop for tools](/docs/how_to/tools_human)
- [How to: handle tool errors](/docs/how_to/tools_error)
- [How to: force models to call a tool](/docs/how_to/tool_choice)
- [How to: disable parallel tool calling](/docs/how_to/tool_calling_parallel)
- [How to: access the `RunnableConfig` from a tool](/docs/how_to/tool_configure)
- [How to: stream events from a tool](/docs/how_to/tool_stream_events)
- [How to: return artifacts from a tool](/docs/how_to/tool_artifacts/)
- [How to: convert Runnables to tools](/docs/how_to/convert_runnable_to_tool)
- [How to: add ad-hoc tool calling capability to models](/docs/how_to/tools_prompting)
- [How to: pass in runtime secrets](/docs/how_to/runnable_runtime_secrets)
### Multimodal
@@ -223,6 +227,7 @@ For in depth how-to guides for agents, please check out [LangGraph](https://lang
- [How to: pass callbacks into a module constructor](/docs/how_to/callbacks_constructor)
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
- [How to: use callbacks in async environments](/docs/how_to/callbacks_async)
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
### Custom
@@ -235,6 +240,7 @@ All of LangChain components can easily be extended to support your own versions.
- [How to: write a custom output parser class](/docs/how_to/output_parser_custom)
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
- [How to: define a custom tool](/docs/how_to/custom_tools)
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
### Serialization
- [How to: save and load LangChain objects](/docs/how_to/serialization)

View File

@@ -60,7 +60,7 @@
" * document addition by id (`add_documents` method with `ids` argument)\n",
" * delete by id (`delete` method with `ids` argument)\n",
"\n",
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SingleStoreDB`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MongoDBAtlasVectorSearch`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SingleStoreDB`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
" \n",
"## Caution\n",
"\n",

View File

@@ -15,7 +15,23 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "25b0b0fa",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain_openai langchain_community\n",
"\n",
"import os\n",
"from getpass import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"# Please manually enter OpenAI Key"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0aa6d335",
"metadata": {},
"outputs": [],
@@ -23,13 +39,14 @@
"from langchain.globals import set_llm_cache\n",
"from langchain_openai import OpenAI\n",
"\n",
"# To make the caching really obvious, lets use a slower model.\n",
"llm = OpenAI(model_name=\"gpt-3.5-turbo-instruct\", n=2, best_of=2)"
"# To make the caching really obvious, lets use a slower and older model.\n",
"# Caching supports newer chat models as well.\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\", n=2, best_of=2)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 3,
"id": "f168ff0d",
"metadata": {},
"outputs": [
@@ -37,17 +54,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 13.7 ms, sys: 6.54 ms, total: 20.2 ms\n",
"Wall time: 330 ms\n"
"CPU times: user 546 ms, sys: 379 ms, total: 925 ms\n",
"Wall time: 1.11 s\n"
]
},
{
"data": {
"text/plain": [
"\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was two-tired!\""
"\"\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything!\""
]
},
"execution_count": 12,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -59,12 +76,12 @@
"set_llm_cache(InMemoryCache())\n",
"\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"llm.predict(\"Tell me a joke\")"
"llm.invoke(\"Tell me a joke\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 4,
"id": "ce7620fb",
"metadata": {},
"outputs": [
@@ -72,17 +89,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 436 µs, sys: 921 µs, total: 1.36 ms\n",
"Wall time: 1.36 ms\n"
"CPU times: user 192 µs, sys: 77 µs, total: 269 µs\n",
"Wall time: 270 µs\n"
]
},
{
"data": {
"text/plain": [
"\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was two-tired!\""
"\"\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything!\""
]
},
"execution_count": 13,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -90,7 +107,7 @@
"source": [
"%%time\n",
"# The second time it is, so it goes faster\n",
"llm.predict(\"Tell me a joke\")"
"llm.invoke(\"Tell me a joke\")"
]
},
{
@@ -103,7 +120,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 5,
"id": "2e65de83",
"metadata": {},
"outputs": [],
@@ -113,7 +130,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 6,
"id": "0be83715",
"metadata": {},
"outputs": [],
@@ -126,7 +143,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 7,
"id": "9b427ce7",
"metadata": {},
"outputs": [
@@ -134,17 +151,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 29.3 ms, sys: 17.3 ms, total: 46.7 ms\n",
"Wall time: 364 ms\n"
"CPU times: user 10.6 ms, sys: 4.21 ms, total: 14.8 ms\n",
"Wall time: 851 ms\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nWhy did the tomato turn red?\\n\\nBecause it saw the salad dressing!'"
"\"\\n\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything!\""
]
},
"execution_count": 10,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -152,12 +169,12 @@
"source": [
"%%time\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"llm.predict(\"Tell me a joke\")"
"llm.invoke(\"Tell me a joke\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 8,
"id": "87f52611",
"metadata": {},
"outputs": [
@@ -165,17 +182,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 4.58 ms, sys: 2.23 ms, total: 6.8 ms\n",
"Wall time: 4.68 ms\n"
"CPU times: user 59.7 ms, sys: 63.6 ms, total: 123 ms\n",
"Wall time: 134 ms\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nWhy did the tomato turn red?\\n\\nBecause it saw the salad dressing!'"
"\"\\n\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything!\""
]
},
"execution_count": 11,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -183,7 +200,7 @@
"source": [
"%%time\n",
"# The second time it is, so it goes faster\n",
"llm.predict(\"Tell me a joke\")"
"llm.invoke(\"Tell me a joke\")"
]
},
{
@@ -211,7 +228,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -63,6 +63,38 @@
"Notice that if the contents of one of the messages to merge is a list of content blocks then the merged message will have a list of content blocks. And if both messages to merge have string contents then those are concatenated with a newline character."
]
},
{
"cell_type": "markdown",
"id": "11f7e8d3",
"metadata": {},
"source": [
"The `merge_message_runs` utility also works with messages composed together using the overloaded `+` operation:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b51855c5",
"metadata": {},
"outputs": [],
"source": [
"messages = (\n",
" SystemMessage(\"you're a good assistant.\")\n",
" + SystemMessage(\"you always respond with a joke.\")\n",
" + HumanMessage([{\"type\": \"text\", \"text\": \"i wonder why it's called langchain\"}])\n",
" + HumanMessage(\"and who is harrison chasing anyways\")\n",
" + AIMessage(\n",
" 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n",
" )\n",
" + AIMessage(\n",
" \"Why, he's probably chasing after the last cup of coffee in the office!\"\n",
" )\n",
")\n",
"\n",
"merged = merge_message_runs(messages)\n",
"print(\"\\n\\n\".join([repr(x) for x in merged]))"
]
},
{
"cell_type": "markdown",
"id": "1b2eee74-71c8-4168-b968-bca580c25d18",

View File

@@ -284,17 +284,17 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 1,
"id": "173e1a9c-2a18-4669-b0de-136f39197786",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Arr, matey! I be sailin' the high seas with me crew, searchin' for buried treasure and adventure! How be ye doin' on this fine day?\""
"\"Arrr, I be doin' well, me heartie! Just sailin' the high seas in search of treasure and adventure. How be ye?\""
]
},
"execution_count": 8,
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
@@ -316,14 +316,20 @@
"\n",
"history = InMemoryChatMessageHistory()\n",
"\n",
"\n",
"def get_history():\n",
" return history\n",
"\n",
"\n",
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
"\n",
"wrapped_chain = RunnableWithMessageHistory(chain, lambda x: history)\n",
"wrapped_chain = RunnableWithMessageHistory(\n",
" chain,\n",
" get_history,\n",
" history_messages_key=\"chat_history\",\n",
")\n",
"\n",
"wrapped_chain.invoke(\n",
" {\"input\": \"how are you?\"},\n",
" config={\"configurable\": {\"session_id\": \"42\"}},\n",
")"
"wrapped_chain.invoke({\"input\": \"how are you?\"})"
]
},
{
@@ -340,17 +346,17 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 2,
"id": "4e05994f-1fbc-4699-bf2e-62cb0e4deeb8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Ahoy there! What be ye wantin' from this old pirate?\", response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 29, 'total_tokens': 44}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-1846d5f5-0dda-43b6-bb49-864e541f9c29-0', usage_metadata={'input_tokens': 29, 'output_tokens': 15, 'total_tokens': 44})"
"'Ahoy matey! What can this old pirate do for ye today?'"
]
},
"execution_count": 7,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -370,9 +376,16 @@
"\n",
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
"\n",
"wrapped_chain = RunnableWithMessageHistory(chain, get_session_history)\n",
"wrapped_chain = RunnableWithMessageHistory(\n",
" chain,\n",
" get_session_history,\n",
" history_messages_key=\"chat_history\",\n",
")\n",
"\n",
"wrapped_chain.invoke(\"Hello!\", config={\"configurable\": {\"session_id\": \"abc123\"}})"
"wrapped_chain.invoke(\n",
" {\"input\": \"Hello!\"},\n",
" config={\"configurable\": {\"session_id\": \"abc123\"}},\n",
")"
]
},
{
@@ -790,7 +803,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.10.4"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,78 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "6fcd2994-0092-4fa3-9bb1-c9c84babadc5",
"metadata": {},
"source": [
"# How to pass runtime secrets to runnables\n",
"\n",
":::info Requires `langchain-core >= 0.2.22`\n",
"\n",
":::\n",
"\n",
"We can pass in secrets to our runnables at runtime using the `RunnableConfig`. Specifically we can pass in secrets with a `__` prefix to the `configurable` field. This will ensure that these secrets aren't traced as part of the invocation:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "92e42e91-c277-49de-aa7a-dfb5c993c817",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.runnables import RunnableConfig\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def foo(x: int, config: RunnableConfig) -> int:\n",
" \"\"\"Sum x and a secret int\"\"\"\n",
" return x + config[\"configurable\"][\"__top_secret_int\"]\n",
"\n",
"\n",
"foo.invoke({\"x\": 5}, {\"configurable\": {\"__top_secret_int\": 2, \"traced_key\": \"bar\"}})"
]
},
{
"cell_type": "markdown",
"id": "ae3a4fb9-2ce7-46b2-b654-35dff0ae7197",
"metadata": {},
"source": [
"Looking at the LangSmith trace for this run, we can see that \"traced_key\" was recorded (as part of Metadata) while our secret int was not: https://smith.langchain.com/public/aa7e3289-49ca-422d-a408-f6b927210170/r"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-311",
"language": "python",
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -452,7 +452,7 @@
"source": [
"#### Generator Functions\n",
"\n",
"Le'ts fix the streaming using a generator function that can operate on the **input stream**.\n",
"Let's fix the streaming using a generator function that can operate on the **input stream**.\n",
"\n",
":::{.callout-tip}\n",
"A generator function (a function that uses `yield`) allows writing code that operates on **input streams**\n",

View File

@@ -0,0 +1,396 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "503e36ae-ca62-4f8a-880c-4fe78ff5df93",
"metadata": {},
"source": [
"# How to return artifacts from a tool\n",
"\n",
":::info Prerequisites\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [ToolMessage](/docs/concepts/#toolmessage)\n",
"- [Tools](/docs/concepts/#tools)\n",
"- [Function/tool calling](/docs/concepts/#functiontool-calling)\n",
"\n",
":::\n",
"\n",
"Tools are utilities that can be called by a model, and whose outputs are designed to be fed back to a model. Sometimes, however, there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns a custom object, a dataframe or an image, we may want to pass some metadata about this output to the model without passing the actual output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
"\n",
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
"\n",
":::info Requires ``langchain-core >= 0.2.19``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
"\n",
":::\n",
"\n",
"## Defining the tool\n",
"\n",
"If we want our tool to distinguish between message content and other artifacts, we need to specify `response_format=\"content_and_artifact\"` when defining our tool and make sure that we return a tuple of (content, artifact):"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "762b9199-885f-4946-9c98-cc54d72b0d76",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU \"langchain-core>=0.2.19\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b9eb179d-1f41-4748-9866-b3d3e8c73cd0",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"from typing import List, Tuple\n",
"\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool(response_format=\"content_and_artifact\")\n",
"def generate_random_ints(min: int, max: int, size: int) -> Tuple[str, List[int]]:\n",
" \"\"\"Generate size random ints in the range [min, max].\"\"\"\n",
" array = [random.randint(min, max) for _ in range(size)]\n",
" content = f\"Successfully generated array of {size} random ints in [{min}, {max}].\"\n",
" return content, array"
]
},
{
"cell_type": "markdown",
"id": "0ab05d25-af4a-4e5a-afe2-f090416d7ee7",
"metadata": {},
"source": [
"## Invoking the tool with ToolCall\n",
"\n",
"If we directly invoke our tool with just the tool arguments, you'll notice that we only get back the content part of the Tool output:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5e7d5e77-3102-4a59-8ade-e4e699dd1817",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Successfully generated array of 10 random ints in [0, 9].'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Failed to batch ingest runs: LangSmithRateLimitError('Rate limit exceeded for https://api.smith.langchain.com/runs/batch. HTTPError(\\'429 Client Error: Too Many Requests for url: https://api.smith.langchain.com/runs/batch\\', \\'{\"detail\":\"Monthly unique traces usage limit exceeded\"}\\')')\n"
]
}
],
"source": [
"generate_random_ints.invoke({\"min\": 0, \"max\": 9, \"size\": 10})"
]
},
{
"cell_type": "markdown",
"id": "30db7228-f04c-489e-afda-9a572eaa90a1",
"metadata": {},
"source": [
"In order to get back both the content and the artifact, we need to invoke our model with a ToolCall (which is just a dictionary with \"name\", \"args\", \"id\" and \"type\" keys), which has additional info needed to generate a ToolMessage like the tool call ID:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "da1d939d-a900-4b01-92aa-d19011a6b034",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[2, 8, 0, 6, 0, 0, 1, 5, 0, 0])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke(\n",
" {\n",
" \"name\": \"generate_random_ints\",\n",
" \"args\": {\"min\": 0, \"max\": 9, \"size\": 10},\n",
" \"id\": \"123\", # required\n",
" \"type\": \"tool_call\", # required\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a3cfc03d-020b-42c7-b0f8-c824af19e45e",
"metadata": {},
"source": [
"## Using with a model\n",
"\n",
"With a [tool-calling model](/docs/how_to/tool_calling/), we can easily use a model to call our Tool and generate ToolMessages:\n",
"\n",
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
"/>\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "74de0286-b003-4b48-9cdd-ecab435515ca",
"metadata": {},
"outputs": [],
"source": [
"# | echo: false\n",
"# | output: false\n",
"\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8a67424b-d19c-43df-ac7b-690bca42146c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'generate_random_ints',\n",
" 'args': {'min': 1, 'max': 24, 'size': 6},\n",
" 'id': 'toolu_01EtALY3Wz1DVYhv1TLvZGvE',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tools = llm.bind_tools([generate_random_ints])\n",
"\n",
"ai_msg = llm_with_tools.invoke(\"generate 6 positive ints less than 25\")\n",
"ai_msg.tool_calls"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "00c4e906-3ca8-41e8-a0be-65cb0db7d574",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Successfully generated array of 6 random ints in [1, 24].', name='generate_random_ints', tool_call_id='toolu_01EtALY3Wz1DVYhv1TLvZGvE', artifact=[2, 20, 23, 8, 1, 15])"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke(ai_msg.tool_calls[0])"
]
},
{
"cell_type": "markdown",
"id": "ddef2690-70de-4542-ab20-2337f77f3e46",
"metadata": {},
"source": [
"If we just pass in the tool call args, we'll only get back the content:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f4a6c9a6-0ffc-4b0e-a59f-f3c3d69d824d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Successfully generated array of 6 random ints in [1, 24].'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke(ai_msg.tool_calls[0][\"args\"])"
]
},
{
"cell_type": "markdown",
"id": "98d6443b-ff41-4d91-8523-b6274fc74ee5",
"metadata": {},
"source": [
"If we wanted to declaratively create a chain, we could do this:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "eb55ec23-95a4-464e-b886-d9679bf3aaa2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ToolMessage(content='Successfully generated array of 1 random ints in [1, 5].', name='generate_random_ints', tool_call_id='toolu_01FwYhnkwDPJPbKdGq4ng6uD', artifact=[5])]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from operator import attrgetter\n",
"\n",
"chain = llm_with_tools | attrgetter(\"tool_calls\") | generate_random_ints.map()\n",
"\n",
"chain.invoke(\"give me a random number between 1 and 5\")"
]
},
{
"cell_type": "markdown",
"id": "4df46be2-babb-4bfe-a641-91cd3d03ffaf",
"metadata": {},
"source": [
"## Creating from BaseTool class\n",
"\n",
"If you want to create a BaseTool object directly, instead of decorating a function with `@tool`, you can do so like this:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9a9129e1-6aee-4a10-ad57-62ef3bf0276c",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import BaseTool\n",
"\n",
"\n",
"class GenerateRandomFloats(BaseTool):\n",
" name: str = \"generate_random_floats\"\n",
" description: str = \"Generate size random floats in the range [min, max].\"\n",
" response_format: str = \"content_and_artifact\"\n",
"\n",
" ndigits: int = 2\n",
"\n",
" def _run(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" range_ = max - min\n",
" array = [\n",
" round(min + (range_ * random.random()), ndigits=self.ndigits)\n",
" for _ in range(size)\n",
" ]\n",
" content = f\"Generated {size} floats in [{min}, {max}], rounded to {self.ndigits} decimals.\"\n",
" return content, array\n",
"\n",
" # Optionally define an equivalent async method\n",
"\n",
" # async def _arun(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" # ..."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d7322619-f420-4b29-8ee5-023e693d0179",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rand_gen = GenerateRandomFloats(ndigits=4)\n",
"rand_gen.invoke({\"min\": 0.1, \"max\": 3.3333, \"size\": 3})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0892f277-23a6-4bb8-a0e9-59f533ac9750",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.5789, 2.464, 2.2719])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rand_gen.invoke(\n",
" {\n",
" \"name\": \"generate_random_floats\",\n",
" \"args\": {\"min\": 0.1, \"max\": 3.3333, \"size\": 3},\n",
" \"id\": \"123\",\n",
" \"type\": \"tool_call\",\n",
" }\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-311",
"language": "python",
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -17,7 +17,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to use a model to call tools\n",
"# How to use chat models to call tools\n",
"\n",
":::info Prerequisites\n",
"\n",
@@ -82,30 +82,24 @@
"## Passing tools to chat models\n",
"\n",
"Chat models that support tool calling features implement a `.bind_tools` method, which \n",
"receives a list of LangChain [tool objects](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n",
"receives a list of functions, Pydantic models, or LangChain [tool objects](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n",
"and binds them to the chat model in its expected format. Subsequent invocations of the \n",
"chat model will include tool schemas in its calls to the LLM.\n",
"\n",
"For example, we can define the schema for custom tools using the `@tool` decorator \n",
"on Python functions:"
"For example, below we implement simple tools for arithmetic:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Adds a and b.\"\"\"\n",
" return a + b\n",
"\n",
"\n",
"@tool\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiplies a and b.\"\"\"\n",
" return a * b\n",
@@ -118,12 +112,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Or below, we define the schema using [Pydantic](https://docs.pydantic.dev):"
"LangChain also implements a `@tool` decorator that allows for further control of the tool schema, such as tool names and argument descriptions. See the how-to guide [here](/docs/how_to/custom_tools/#creating-tools-from-functions) for detail.\n",
"\n",
"We can also define the schema using [Pydantic](https://docs.pydantic.dev):"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -343,7 +339,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.10.4"
}
},
"nbformat": 4,

View File

@@ -4,7 +4,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Disabling parallel tool calling (OpenAI only)\n",
"# How to disable parallel tool calling\n",
"\n",
":::info OpenAI-specific\n",
"\n",
"This API is currently only supported by OpenAI.\n",
"\n",
":::\n",
"\n",
"OpenAI tool calling performs tool calling in parallel by default. That means that if we ask a question like \"What is the weather in Tokyo, New York, and Chicago?\" and we have a tool for getting the weather, it will call the tool 3 times in parallel. We can force it to call only a single tool once by using the ``parallel_tool_call`` parameter."
]
@@ -99,10 +105,24 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to force tool calling behavior\n",
"# How to force models to call a tool\n",
"\n",
":::info Prerequisites\n",
"\n",
@@ -125,10 +125,24 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -0,0 +1,132 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to access the RunnableConfig from a tool\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [Custom tools](/docs/how_to/custom_tools)\n",
"- [LangChain Expression Language (LCEL)](/docs/concepts/#langchain-expression-language-lcel)\n",
"- [Configuring runnable behavior](/docs/how_to/configure/)\n",
"\n",
":::\n",
"\n",
"If you have a tool that call chat models, retrievers, or other runnables, you may want to access internal events from those runnables or configure them with additional properties. This guide shows you how to manually pass parameters properly so that you can do this using the `astream_events()` method.\n",
"\n",
"Tools are runnables, and you can treat them the same way as any other runnable at the interface level - you can call `invoke()`, `batch()`, and `stream()` on them as normal. However, when writing custom tools, you may want to invoke other runnables like chat models or retrievers. In order to properly trace and configure those sub-invocations, you'll need to manually access and pass in the tool's current [`RunnableConfig`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.config.RunnableConfig.html) object. This guide show you some examples of how to do that.\n",
"\n",
":::caution Compatibility\n",
"\n",
"This guide requires `langchain-core>=0.2.16`.\n",
"\n",
":::\n",
"\n",
"## Inferring by parameter type\n",
"\n",
"To access reference the active config object from your custom tool, you'll need to add a parameter to your tool's signature typed as `RunnableConfig`. When you invoke your tool, LangChain will inspect your tool's signature, look for a parameter typed as `RunnableConfig`, and if it exists, populate that parameter with the correct value.\n",
"\n",
"**Note:** The actual name of the parameter doesn't matter, only the typing.\n",
"\n",
"To illustrate this, define a custom tool that takes a two parameters - one typed as a string, the other typed as `RunnableConfig`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain_core"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.runnables import RunnableConfig\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"async def reverse_tool(text: str, special_config_param: RunnableConfig) -> str:\n",
" \"\"\"A test tool that combines input text with a configurable parameter.\"\"\"\n",
" return (text + special_config_param[\"configurable\"][\"additional_field\"])[::-1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, if we invoke the tool with a `config` containing a `configurable` field, we can see that `additional_field` is passed through correctly:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'321cba'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await reverse_tool.ainvoke(\n",
" {\"text\": \"abc\"}, config={\"configurable\": {\"additional_field\": \"123\"}}\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"You've now seen how to configure and stream events from within a tool. Next, check out the following guides for more on using tools:\n",
"\n",
"- [Stream events from child runs within a custom tool](/docs/how_to/tool_stream_events/)\n",
"- Pass [tool results back to a model](/docs/how_to/tool_results_pass_to_model)\n",
"\n",
"You can also check out some more specific uses of tool calling:\n",
"\n",
"- Building [tool-using chains and agents](/docs/how_to#tools)\n",
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -4,14 +4,22 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to pass tool outputs to the model\n",
"# How to pass tool outputs to chat models\n",
"\n",
"If we're using the model-generated tool invocations to actually call tools and want to pass the tool results back to the model, we can do so using `ToolMessage`s. First, let's define our tools and our model."
":::info Prerequisites\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [Tools](/docs/concepts/#tools)\n",
"- [Function/tool calling](/docs/concepts/#functiontool-calling)\n",
"\n",
":::\n",
"\n",
"If we're using the model-generated tool invocations to actually call tools and want to pass the tool results back to the model, we can do so using `ToolMessage`s and `ToolCall`s. First, let's define our tools and our model."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -35,7 +43,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -54,25 +62,32 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can use ``ToolMessage`` to pass back the output of the tool calls to the model."
"The nice thing about Tools is that if we invoke them with a ToolCall, we'll automatically get back a ToolMessage that can be fed back to the model: \n",
"\n",
":::info Requires ``langchain-core >= 0.2.19``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?'),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_svc2GLSxNFALbaCAbSjMI9J8', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'Multiply'}, 'type': 'function'}, {'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 105, 'total_tokens': 155}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-a79ad1dd-95f1-4a46-b688-4c83f327a7b3-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_svc2GLSxNFALbaCAbSjMI9J8'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh'}]),\n",
" ToolMessage(content='36', tool_call_id='call_svc2GLSxNFALbaCAbSjMI9J8'),\n",
" ToolMessage(content='60', tool_call_id='call_r8jxte3zW6h3MEGV3zH2qzFh')]"
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Smg3NHJNxrKfAmd4f9GkaYn3', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'multiply'}, 'type': 'function'}, {'id': 'call_55K1C0DmH6U5qh810gW34xZ0', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 49, 'prompt_tokens': 88, 'total_tokens': 137}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-56657feb-96dd-456c-ab8e-1857eab2ade0-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_Smg3NHJNxrKfAmd4f9GkaYn3', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_55K1C0DmH6U5qh810gW34xZ0', 'type': 'tool_call'}], usage_metadata={'input_tokens': 88, 'output_tokens': 49, 'total_tokens': 137}),\n",
" ToolMessage(content='36', name='multiply', tool_call_id='call_Smg3NHJNxrKfAmd4f9GkaYn3'),\n",
" ToolMessage(content='60', name='add', tool_call_id='call_55K1C0DmH6U5qh810gW34xZ0')]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "display_data"
"output_type": "execute_result"
}
],
"source": [
@@ -85,24 +100,25 @@
"messages.append(ai_msg)\n",
"for tool_call in ai_msg.tool_calls:\n",
" selected_tool = {\"add\": add, \"multiply\": multiply}[tool_call[\"name\"].lower()]\n",
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))\n",
" tool_msg = selected_tool.invoke(tool_call)\n",
" messages.append(tool_msg)\n",
"messages"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 171, 'total_tokens': 189}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'stop', 'logprobs': None}, id='run-20b52149-e00d-48ea-97cf-f8de7a255f8c-0')"
"AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 153, 'total_tokens': 171}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-ba5032f0-f773-406d-a408-8314e66511d0-0', usage_metadata={'input_tokens': 153, 'output_tokens': 18, 'total_tokens': 171})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "display_data"
"output_type": "execute_result"
}
],
"source": [
@@ -118,10 +134,24 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-311",
"language": "python",
"name": "poetry-venv-311"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to pass run time values to a tool\n",
"# How to pass run time values to tools\n",
"\n",
":::info Prerequisites\n",
"\n",
@@ -15,26 +15,25 @@
"- [How to use a model to call tools](/docs/how_to/tool_calling)\n",
":::\n",
"\n",
":::{.callout-info} Supported models\n",
"\n",
"This how-to guide uses models with native tool calling capability.\n",
"You can find a [list of all models that support tool calling](/docs/integrations/chat/).\n",
"\n",
":::\n",
"\n",
":::{.callout-info} Using with LangGraph\n",
":::info Using with LangGraph\n",
"\n",
"If you're using LangGraph, please refer to [this how-to guide](https://langchain-ai.github.io/langgraph/how-tos/pass-run-time-values-to-tools/)\n",
"which shows how to create an agent that keeps track of a given user's favorite pets.\n",
":::\n",
"\n",
":::caution Added in `langchain-core==0.2.21`\n",
"\n",
"Must have `langchain-core>=0.2.21` to use this functionality.\n",
"\n",
":::\n",
"\n",
"You may need to bind values to a tool that are only known at runtime. For example, the tool logic may require using the ID of the user who made the request.\n",
"\n",
"Most of the time, such values should not be controlled by the LLM. In fact, allowing the LLM to control the user ID may lead to a security risk.\n",
"\n",
"Instead, the LLM should only control the parameters of the tool that are meant to be controlled by the LLM, while other parameters (such as user ID) should be fixed by the application logic.\n",
"\n",
"This how-to guide shows a simple design pattern that creates the tool dynamically at run time and binds to them appropriate values."
"This how-to guide shows you how to prevent the model from generating certain tool arguments and injecting them in directly at runtime."
]
},
{
@@ -57,23 +56,12 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain langchain_openai\n",
"# %pip install -qU langchain langchain_openai\n",
"\n",
"import os\n",
"from getpass import getpass\n",
@@ -90,10 +78,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Passing request time information\n",
"## Hiding arguments from the model\n",
"\n",
"The idea is to create the tool dynamically at request time, and bind to it the appropriate information. For example,\n",
"this information may be the user ID as resolved from the request itself."
"We can use the InjectedToolArg annotation to mark certain parameters of our Tool, like `user_id` as being injected at runtime, meaning they shouldn't be generated by the model"
]
},
{
@@ -104,46 +91,88 @@
"source": [
"from typing import List\n",
"\n",
"from langchain_core.output_parsers import JsonOutputParser\n",
"from langchain_core.tools import BaseTool, tool"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import InjectedToolArg, tool\n",
"from typing_extensions import Annotated\n",
"\n",
"user_to_pets = {}\n",
"\n",
"\n",
"def generate_tools_for_user(user_id: str) -> List[BaseTool]:\n",
" \"\"\"Generate a set of tools that have a user id associated with them.\"\"\"\n",
"@tool(parse_docstring=True)\n",
"def update_favorite_pets(\n",
" pets: List[str], user_id: Annotated[str, InjectedToolArg]\n",
") -> None:\n",
" \"\"\"Add the list of favorite pets.\n",
"\n",
" @tool\n",
" def update_favorite_pets(pets: List[str]) -> None:\n",
" \"\"\"Add the list of favorite pets.\"\"\"\n",
" user_to_pets[user_id] = pets\n",
" Args:\n",
" pets: List of favorite pets to set.\n",
" user_id: User's ID.\n",
" \"\"\"\n",
" user_to_pets[user_id] = pets\n",
"\n",
" @tool\n",
" def delete_favorite_pets() -> None:\n",
" \"\"\"Delete the list of favorite pets.\"\"\"\n",
" if user_id in user_to_pets:\n",
" del user_to_pets[user_id]\n",
"\n",
" @tool\n",
" def list_favorite_pets() -> None:\n",
" \"\"\"List favorite pets if any.\"\"\"\n",
" return user_to_pets.get(user_id, [])\n",
"@tool(parse_docstring=True)\n",
"def delete_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:\n",
" \"\"\"Delete the list of favorite pets.\n",
"\n",
" return [update_favorite_pets, delete_favorite_pets, list_favorite_pets]"
" Args:\n",
" user_id: User's ID.\n",
" \"\"\"\n",
" if user_id in user_to_pets:\n",
" del user_to_pets[user_id]\n",
"\n",
"\n",
"@tool(parse_docstring=True)\n",
"def list_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:\n",
" \"\"\"List favorite pets if any.\n",
"\n",
" Args:\n",
" user_id: User's ID.\n",
" \"\"\"\n",
" return user_to_pets.get(user_id, [])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Verify that the tools work correctly"
"If we look at the input schemas for these tools, we'll see that user_id is still listed:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_petsSchema',\n",
" 'description': 'Add the list of favorite pets.',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}},\n",
" 'user_id': {'title': 'User Id',\n",
" 'description': \"User's ID.\",\n",
" 'type': 'string'}},\n",
" 'required': ['pets', 'user_id']}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"update_favorite_pets.get_input_schema().schema()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But if we look at the tool call schema, which is what is passed to the model for tool-calling, user_id has been removed:"
]
},
{
@@ -152,46 +181,60 @@
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'eugene': ['cat', 'dog']}\n",
"['cat', 'dog']\n"
]
"data": {
"text/plain": [
"{'title': 'update_favorite_pets',\n",
" 'description': 'Add the list of favorite pets.',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}}},\n",
" 'required': ['pets']}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"update_pets, delete_pets, list_pets = generate_tools_for_user(\"eugene\")\n",
"update_pets.invoke({\"pets\": [\"cat\", \"dog\"]})\n",
"print(user_to_pets)\n",
"print(list_pets.invoke({}))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"\n",
"def handle_run_time_request(user_id: str, query: str):\n",
" \"\"\"Handle run time request.\"\"\"\n",
" tools = generate_tools_for_user(user_id)\n",
" llm_with_tools = llm.bind_tools(tools)\n",
" prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", \"You are a helpful assistant.\")],\n",
" )\n",
" chain = prompt | llm_with_tools\n",
" return llm_with_tools.invoke(query)"
"update_favorite_pets.tool_call_schema.schema()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This code will allow the LLM to invoke the tools, but the LLM is **unaware** of the fact that a **user ID** even exists!"
"So when we invoke our tool, we need to pass in user_id:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'123': ['lizard', 'dog']}\n",
"['lizard', 'dog']\n"
]
}
],
"source": [
"user_id = \"123\"\n",
"update_favorite_pets.invoke({\"pets\": [\"lizard\", \"dog\"], \"user_id\": user_id})\n",
"print(user_to_pets)\n",
"print(list_favorite_pets.invoke({\"user_id\": user_id}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But when the model calls the tool, no user_id argument will be generated:"
]
},
{
@@ -204,7 +247,8 @@
"text/plain": [
"[{'name': 'update_favorite_pets',\n",
" 'args': {'pets': ['cats', 'parrots']},\n",
" 'id': 'call_jJvjPXsNbFO5MMgW0q84iqCN'}]"
" 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 6,
@@ -213,30 +257,349 @@
}
],
"source": [
"ai_message = handle_run_time_request(\n",
" \"eugene\", \"my favorite animals are cats and parrots.\"\n",
")\n",
"ai_message.tool_calls"
"tools = [\n",
" update_favorite_pets,\n",
" delete_favorite_pets,\n",
" list_favorite_pets,\n",
"]\n",
"llm_with_tools = llm.bind_tools(tools)\n",
"ai_msg = llm_with_tools.invoke(\"my favorite animals are cats and parrots\")\n",
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
":::{.callout-important}\n",
"## Injecting arguments at runtime"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we want to actually execute our tools using the model-generated tool call, we'll need to inject the user_id ourselves:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'update_favorite_pets',\n",
" 'args': {'pets': ['cats', 'parrots'], 'user_id': '123'},\n",
" 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from copy import deepcopy\n",
"\n",
"Chat models only output requests to invoke tools, they don't actually invoke the underlying tools.\n",
"from langchain_core.runnables import chain\n",
"\n",
"To see how to invoke the tools, please refer to [how to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling).\n",
":::"
"\n",
"@chain\n",
"def inject_user_id(ai_msg):\n",
" tool_calls = []\n",
" for tool_call in ai_msg.tool_calls:\n",
" tool_call_copy = deepcopy(tool_call)\n",
" tool_call_copy[\"args\"][\"user_id\"] = user_id\n",
" tool_calls.append(tool_call_copy)\n",
" return tool_calls\n",
"\n",
"\n",
"inject_user_id.invoke(ai_msg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And now we can chain together our model, injection code, and the actual tools to create a tool-executing chain:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ToolMessage(content='null', name='update_favorite_pets', tool_call_id='call_HUyF6AihqANzEYxQnTUKxkXj')]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tool_map = {tool.name: tool for tool in tools}\n",
"\n",
"\n",
"@chain\n",
"def tool_router(tool_call):\n",
" return tool_map[tool_call[\"name\"]]\n",
"\n",
"\n",
"chain = llm_with_tools | inject_user_id | tool_router.map()\n",
"chain.invoke(\"my favorite animals are cats and parrots\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looking at the user_to_pets dict, we can see that it's been updated to include cats and parrots:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'123': ['cats', 'parrots']}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"user_to_pets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Other ways of annotating args\n",
"\n",
"Here are a few other ways of annotating our tool args:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'UpdateFavoritePetsSchema',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}},\n",
" 'user_id': {'title': 'User Id',\n",
" 'description': \"User's ID.\",\n",
" 'type': 'string'}},\n",
" 'required': ['pets', 'user_id']}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"from langchain_core.tools import BaseTool\n",
"\n",
"\n",
"class UpdateFavoritePetsSchema(BaseModel):\n",
" \"\"\"Update list of favorite pets\"\"\"\n",
"\n",
" pets: List[str] = Field(..., description=\"List of favorite pets to set.\")\n",
" user_id: Annotated[str, InjectedToolArg] = Field(..., description=\"User's ID.\")\n",
"\n",
"\n",
"@tool(args_schema=UpdateFavoritePetsSchema)\n",
"def update_favorite_pets(pets, user_id):\n",
" user_to_pets[user_id] = pets\n",
"\n",
"\n",
"update_favorite_pets.get_input_schema().schema()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_pets',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}}},\n",
" 'required': ['pets']}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"update_favorite_pets.tool_call_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'UpdateFavoritePetsSchema',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}},\n",
" 'user_id': {'title': 'User Id',\n",
" 'description': \"User's ID.\",\n",
" 'type': 'string'}},\n",
" 'required': ['pets', 'user_id']}"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Optional, Type\n",
"\n",
"\n",
"class UpdateFavoritePets(BaseTool):\n",
" name: str = \"update_favorite_pets\"\n",
" description: str = \"Update list of favorite pets\"\n",
" args_schema: Optional[Type[BaseModel]] = UpdateFavoritePetsSchema\n",
"\n",
" def _run(self, pets, user_id):\n",
" user_to_pets[user_id] = pets\n",
"\n",
"\n",
"UpdateFavoritePets().get_input_schema().schema()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_pets',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}}},\n",
" 'required': ['pets']}"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"UpdateFavoritePets().tool_call_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_petsSchema',\n",
" 'description': 'Use the tool.\\n\\nAdd run_manager: Optional[CallbackManagerForToolRun] = None\\nto child implementations to enable tracing.',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}},\n",
" 'user_id': {'title': 'User Id', 'type': 'string'}},\n",
" 'required': ['pets', 'user_id']}"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"class UpdateFavoritePets2(BaseTool):\n",
" name: str = \"update_favorite_pets\"\n",
" description: str = \"Update list of favorite pets\"\n",
"\n",
" def _run(self, pets: List[str], user_id: Annotated[str, InjectedToolArg]) -> None:\n",
" user_to_pets[user_id] = pets\n",
"\n",
"\n",
"UpdateFavoritePets2().get_input_schema().schema()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_pets',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}}},\n",
" 'required': ['pets']}"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"UpdateFavoritePets2().tool_call_schema.schema()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv-311",
"language": "python",
"name": "python3"
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
@@ -248,7 +611,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -4,25 +4,32 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to stream events from within a tool\n",
"# How to stream events from a tool\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [Custom tools](/docs/how_to/custom_tools)\n",
"- [Using stream events](/docs/how_to/streaming/#using-stream-events)\n",
"- [Accessing RunnableConfig within a custom tool](/docs/how_to/tool_configure/)\n",
"\n",
":::\n",
"\n",
"If you have tools that call LLMs, retrievers, or other runnables, you may want to access internal events from those runnables. This guide shows you a few ways you can do this using the `astream_events()` method.\n",
"If you have tools that call chat models, retrievers, or other runnables, you may want to access internal events from those runnables or configure them with additional properties. This guide shows you how to manually pass parameters properly so that you can do this using the `astream_events()` method.\n",
"\n",
":::caution\n",
"LangChain cannot automatically propagate callbacks to child runnables if you are running async code in python<=3.10.\n",
" \n",
"This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
":::caution Compatibility\n",
"\n",
"LangChain cannot automatically propagate configuration, including callbacks necessary for `astream_events()`, to child runnables if you are running `async` code in `python<=3.10`. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
"\n",
"If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n",
"\n",
"If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in older Python versions.\n",
"\n",
"This guide also requires `langchain-core>=0.2.16`.\n",
":::\n",
"\n",
"We'll define a custom tool below that calls a chain that summarizes its input in a special way by prompting an LLM to return only 10 words, then reversing the output:\n",
"Say you have a custom tool that calls a chain that condenses its input by prompting a chat model to return only 10 words, then reversing the output. First, define it in a naive way:\n",
"\n",
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
@@ -40,7 +47,7 @@
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain langchain_anthropic\n",
"%pip install -qU langchain langchain_anthropic langchain_core\n",
"\n",
"import os\n",
"from getpass import getpass\n",
@@ -65,7 +72,7 @@
"\n",
"\n",
"@tool\n",
"def special_summarization_tool(long_text: str) -> str:\n",
"async def special_summarization_tool(long_text: str) -> str:\n",
" \"\"\"A tool that summarizes input text using advanced techniques.\"\"\"\n",
" prompt = ChatPromptTemplate.from_template(\n",
" \"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n{long_text}\"\n",
@@ -75,7 +82,7 @@
" return x[::-1]\n",
"\n",
" chain = prompt | model | StrOutputParser() | reverse\n",
" summary = chain.invoke({\"long_text\": long_text})\n",
" summary = await chain.ainvoke({\"long_text\": long_text})\n",
" return summary"
]
},
@@ -83,7 +90,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"If you just invoke the tool directly, you can see that you only get the final response:"
"Invoking the tool directly works just fine:"
]
},
{
@@ -116,31 +123,90 @@
"Coming! Hang on a second.\n",
"\"\"\"\n",
"\n",
"special_summarization_tool.invoke({\"long_text\": LONG_TEXT})"
"await special_summarization_tool.ainvoke({\"long_text\": LONG_TEXT})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you wanted to access the raw output from the chat model, you could use the [`astream_events()`](/docs/how_to/streaming/#using-stream-events) method and look for `on_chat_model_end` events:"
"But if you wanted to access the raw output from the chat model rather than the full tool, you might try to use the [`astream_events()`](/docs/how_to/streaming/#using-stream-events) method and look for an `on_chat_model_end` event. Here's what happens:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"stream = special_summarization_tool.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
")\n",
"\n",
"async for event in stream:\n",
" if event[\"event\"] == \"on_chat_model_end\":\n",
" # Never triggers in python<=3.10!\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You'll notice (unless you're running through this guide in `python>=3.11`) that there are no chat model events emitted from the child run!\n",
"\n",
"This is because the example above does not pass the tool's config object into the internal chain. To fix this, redefine your tool to take a special parameter typed as `RunnableConfig` (see [this guide](/docs/how_to/tool_configure) for more details). You'll also need to pass that parameter through into the internal chain when executing it:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.runnables import RunnableConfig\n",
"\n",
"\n",
"@tool\n",
"async def special_summarization_tool_with_config(\n",
" long_text: str, config: RunnableConfig\n",
") -> str:\n",
" \"\"\"A tool that summarizes input text using advanced techniques.\"\"\"\n",
" prompt = ChatPromptTemplate.from_template(\n",
" \"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n{long_text}\"\n",
" )\n",
"\n",
" def reverse(x: str):\n",
" return x[::-1]\n",
"\n",
" chain = prompt | model | StrOutputParser() | reverse\n",
" # Pass the \"config\" object as an argument to any executed runnables\n",
" summary = await chain.ainvoke({\"long_text\": long_text}, config=config)\n",
" return summary"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And now try the same `astream_events()` call as before with your new tool:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chat_model_end', 'data': {'output': AIMessage(content='Bee defies physics; Barry chooses outfit for graduation day.', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-195c0986-2ffa-43a3-9366-f2f96c42fe57', usage_metadata={'input_tokens': 182, 'output_tokens': 16, 'total_tokens': 198}), 'input': {'messages': [[HumanMessage(content=\"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n\\nNARRATOR:\\n(Black screen with text; The sound of buzzing bees can be heard)\\nAccording to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\\nBARRY BENSON:\\n(Barry is picking out a shirt)\\nYellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\\nJANET BENSON:\\nBarry! Breakfast is ready!\\nBARRY:\\nComing! Hang on a second.\\n\")]]}}, 'run_id': '195c0986-2ffa-43a3-9366-f2f96c42fe57', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['370919df-1bc3-43ae-aab2-8e112a4ddf47', 'de535624-278b-4927-9393-6d0cac3248df']}\n"
"{'event': 'on_chat_model_end', 'data': {'output': AIMessage(content='Bee defies physics; Barry chooses outfit for graduation day.', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-d23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', usage_metadata={'input_tokens': 182, 'output_tokens': 16, 'total_tokens': 198}), 'input': {'messages': [[HumanMessage(content=\"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n\\nNARRATOR:\\n(Black screen with text; The sound of buzzing bees can be heard)\\nAccording to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\\nBARRY BENSON:\\n(Barry is picking out a shirt)\\nYellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\\nJANET BENSON:\\nBarry! Breakfast is ready!\\nBARRY:\\nComing! Hang on a second.\\n\")]]}}, 'run_id': 'd23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['f25c41fe-8972-4893-bc40-cecf3922c1fa']}\n"
]
}
],
"source": [
"stream = special_summarization_tool.astream_events(\n",
"stream = special_summarization_tool_with_config.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
")\n",
"\n",
@@ -153,38 +219,38 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"And you can see that you get the raw response from the chat model.\n",
"Awesome! This time there's an event emitted.\n",
"\n",
"`astream_events()` will automatically call internal runnables in a chain with streaming enabled if possible, so if you wanted to a stream of tokens as they are generated from the chat model, you could simply filter our calls to look for `on_chat_model_stream` events with no other changes:"
"For streaming, `astream_events()` automatically calls internal runnables in a chain with streaming enabled if possible, so if you wanted to a stream of tokens as they are generated from the chat model, you could simply filter to look for `on_chat_model_stream` events with no other changes:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', usage_metadata={'input_tokens': 182, 'output_tokens': 0, 'total_tokens': 182})}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' def', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='ies physics', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=';', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' cho', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='oses outfit', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' for', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' day', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='.', id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3')}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', usage_metadata={'input_tokens': 0, 'output_tokens': 16, 'total_tokens': 16})}, 'run_id': 'cd8c1bd9-64d8-463c-a4d7-4bceed7911b3', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['8ddd1325-07c4-4213-8a2f-4462db8c6c70', '9f8654b4-b3f6-414e-b41d-dd201342a2fa']}\n"
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 182, 'output_tokens': 0, 'total_tokens': 182})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' def', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='ies physics', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=';', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' cho', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='oses outfit', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' for', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' day', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='.', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 0, 'output_tokens': 16, 'total_tokens': 16})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n"
]
}
],
"source": [
"stream = special_summarization_tool.astream_events(\n",
"stream = special_summarization_tool_with_config.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
")\n",
"\n",
@@ -193,67 +259,17 @@
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that you still have access to the final tool response as well. You can access it by looking for an `on_tool_end` event.\n",
"\n",
"To make events your tool emits easier to identify, you can also add identifiers to runnables using the `with_config()` method. `run_name` will apply to only to the runnable you attach it to, while `tags` will be inherited by runnables called within your initial runnable.\n",
"\n",
"Let's redeclare the tool with a tag, then run it with `astream_events()` with some filters. You should only see streamed events from the chat model and the final tool output:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630', usage_metadata={'input_tokens': 182, 'output_tokens': 0, 'total_tokens': 182})}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' def', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='ies physics', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=';', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' cho', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='oses outfit', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' for', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' day', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='.', id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630')}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-696f4fc8-6c6f-46a0-8c82-e2e3f7625630', usage_metadata={'input_tokens': 0, 'output_tokens': 16, 'total_tokens': 16})}, 'run_id': '696f4fc8-6c6f-46a0-8c82-e2e3f7625630', 'name': 'ChatAnthropic', 'tags': ['seq:step:2', 'bee_movie'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['49d9d7d3-2b02-4964-a6c5-12f57a063146', '8922d0e3-4199-4ba5-9a7a-fc4f2fca3e72']}\n",
"{'event': 'on_tool_end', 'data': {'output': '.yad noitaudarg rof tiftuo sesoohc yrraB ;scisyhp seifed eeB'}, 'run_id': '49d9d7d3-2b02-4964-a6c5-12f57a063146', 'name': 'special_summarization_tool', 'tags': ['bee_movie'], 'metadata': {}, 'parent_ids': []}\n"
]
}
],
"source": [
"tagged_tool = special_summarization_tool.with_config({\"tags\": [\"bee_movie\"]})\n",
"\n",
"stream = tagged_tool.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\", include_tags=[\"bee_movie\"]\n",
")\n",
"\n",
"async for event in stream:\n",
" event_type = event[\"event\"]\n",
" if event_type == \"on_chat_model_stream\" or event_type == \"on_tool_end\":\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"Now you've learned how to stream events from within a tool. Next, you can learn more about how to use tools:\n",
"You've now seen how to stream events from within a tool. Next, check out the following guides for more on using tools:\n",
"\n",
"- Bind [model-specific tools](/docs/how_to/tools_model_specific/)\n",
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)\n",
"- Pass [tool results back to a model](/docs/how_to/tool_results_pass_to_model)\n",
"- [Dispatch custom callback events](/docs/how_to/callbacks_custom_events)\n",
"\n",
"You can also check out some more specific uses of tool calling:\n",
"\n",
@@ -264,7 +280,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -278,9 +294,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -228,7 +228,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -419,13 +419,13 @@
"Invoking: `exponentiate` with `{'base': 405, 'exponent': 2}`\n",
"\n",
"\n",
"\u001b[0m\u001b[38;5;200m\u001b[1;3m164025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of taking 3 to the fifth power is 243. \n",
"\u001b[0m\u001b[38;5;200m\u001b[1;3m13286025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of taking 3 to the fifth power is 243. \n",
"\n",
"The sum of twelve and three is 15. \n",
"\n",
"Multiplying 243 by 15 gives 3645. \n",
"\n",
"Finally, squaring 3645 gives 164025.\u001b[0m\n",
"Finally, squaring 3645 gives 13286025.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
@@ -434,7 +434,7 @@
"data": {
"text/plain": [
"{'input': 'Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result',\n",
" 'output': 'The result of taking 3 to the fifth power is 243. \\n\\nThe sum of twelve and three is 15. \\n\\nMultiplying 243 by 15 gives 3645. \\n\\nFinally, squaring 3645 gives 164025.'}"
" 'output': 'The result of taking 3 to the fifth power is 243. \\n\\nThe sum of twelve and three is 15. \\n\\nMultiplying 243 by 15 gives 3645. \\n\\nFinally, squaring 3645 gives 13286025.'}"
]
},
"execution_count": 18,

View File

@@ -540,7 +540,7 @@
"id": "137662a6"
},
"source": [
"## Example usage within a Conversation Chains"
"## Example usage within RunnableWithMessageHistory "
]
},
{
@@ -550,7 +550,7 @@
"id": "79efa62d"
},
"source": [
"Like any other integration, ChatNVIDIA is fine to support chat utilities like conversation buffers by default. Below, we show the [LangChain ConversationBufferMemory](https://python.langchain.com/docs/modules/memory/types/buffer) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model."
"Like any other integration, ChatNVIDIA is fine to support chat utilities like RunnableWithMessageHistory which is analogous to using `ConversationChain`. Below, we show the [LangChain RunnableWithMessageHistory](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model."
]
},
{
@@ -572,8 +572,19 @@
},
"outputs": [],
"source": [
"from langchain.chains import ConversationChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.chat_history import InMemoryChatMessageHistory\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"\n",
"# store is a dictionary that maps session IDs to their corresponding chat histories.\n",
"store = {} # memory is maintained outside the chain\n",
"\n",
"\n",
"# A function that returns the chat history for a given session ID.\n",
"def get_session_history(session_id: str) -> InMemoryChatMessageHistory:\n",
" if session_id not in store:\n",
" store[session_id] = InMemoryChatMessageHistory()\n",
" return store[session_id]\n",
"\n",
"\n",
"chat = ChatNVIDIA(\n",
" model=\"mistralai/mixtral-8x22b-instruct-v0.1\",\n",
@@ -582,24 +593,18 @@
" top_p=1.0,\n",
")\n",
"\n",
"conversation = ConversationChain(llm=chat, memory=ConversationBufferMemory())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f644ff28",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 268
},
"id": "f644ff28",
"outputId": "bae354cc-2118-4e01-ce20-a717ac94d27d"
},
"outputs": [],
"source": [
"conversation.invoke(\"Hi there!\")[\"response\"]"
"# Define a RunnableConfig object, with a `configurable` key. session_id determines thread\n",
"config = {\"configurable\": {\"session_id\": \"1\"}}\n",
"\n",
"conversation = RunnableWithMessageHistory(\n",
" chat,\n",
" get_session_history,\n",
")\n",
"\n",
"conversation.invoke(\n",
" \"Hi I'm Srijan Dubey.\", # input or query\n",
" config=config,\n",
")"
]
},
{
@@ -616,26 +621,30 @@
},
"outputs": [],
"source": [
"conversation.invoke(\"I'm doing well! Just having a conversation with an AI.\")[\n",
" \"response\"\n",
"]"
"conversation.invoke(\n",
" \"I'm doing well! Just having a conversation with an AI.\",\n",
" config=config,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "LyD1xVKmVSs4",
"id": "uHIMZxVSVNBC",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 350
"height": 284
},
"id": "LyD1xVKmVSs4",
"outputId": "a1714513-a8fd-4d14-f974-233e39d5c4f5"
"id": "uHIMZxVSVNBC",
"outputId": "79acc89d-a820-4f2c-bac2-afe99da95580"
},
"outputs": [],
"source": [
"conversation.invoke(\"Tell me about yourself.\")[\"response\"]"
"conversation.invoke(\n",
" \"Tell me about yourself.\",\n",
" config=config,\n",
")"
]
}
],

View File

@@ -2,6 +2,7 @@
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
@@ -11,6 +12,7 @@
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatOllama\n",
@@ -23,6 +25,18 @@
"\n",
"For a complete list of supported models and model variants, see the [Ollama model library](https://github.com/jmorganca/ollama#model-library).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/ollama) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatOllama](https://api.python.langchain.com/en/latest/chat_models/langchain_ollama.chat_models.ChatOllama.html) | [langchain-ollama](https://api.python.langchain.com/en/latest/ollama_api_reference.html) | ✅ | ❌ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ollama?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ollama?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"First, follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance:\n",
@@ -40,307 +54,285 @@
"* Specify the exact version of the model of interest as such `ollama pull vicuna:13b-v1.5-16k-q4_0` (View the [various tags for the `Vicuna`](https://ollama.ai/library/vicuna/tags) model in this instance)\n",
"* To view all pulled models, use `ollama list`\n",
"* To chat directly with a model from the command line, use `ollama run <name-of-model>`\n",
"* View the [Ollama documentation](https://github.com/jmorganca/ollama) for more commands. Run `ollama help` in the terminal to see available commands too.\n",
"\n",
"## Usage\n",
"\n",
"You can see a full list of supported parameters on the [API reference page](https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html).\n",
"\n",
"If you are using a LLaMA `chat` model (e.g., `ollama pull llama3`) then you can use the `ChatOllama` interface.\n",
"\n",
"This includes [special tokens](https://huggingface.co/blog/llama2#how-to-prompt-llama-2) for system message and user input.\n",
"\n",
"## Interacting with Models \n",
"\n",
"Here are a few ways to interact with pulled local models\n",
"\n",
"#### In the terminal:\n",
"\n",
"* All of your local models are automatically served on `localhost:11434`\n",
"* Run `ollama run <name-of-model>` to start interacting via the command line directly\n",
"\n",
"#### Via an API\n",
"\n",
"Send an `application/json` request to the API endpoint of Ollama to interact.\n",
"\n",
"```bash\n",
"curl http://localhost:11434/api/generate -d '{\n",
" \"model\": \"llama3\",\n",
" \"prompt\":\"Why is the sky blue?\"\n",
"}'\n",
"```\n",
"\n",
"See the Ollama [API documentation](https://github.com/jmorganca/ollama/blob/main/docs/api.md) for all endpoints.\n",
"\n",
"#### Via LangChain\n",
"\n",
"See a typical basic example of using Ollama via the `ChatOllama` chat model in your LangChain application. \n",
"\n",
"View the [API Reference for ChatOllama](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.ollama.ChatOllama.html#langchain_community.chat_models.ollama.ChatOllama) for more."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Why did the astronaut break up with his girlfriend?\n",
"\n",
"Because he needed space!\n"
]
}
],
"source": [
"# LangChain supports many other chat models. Here, we're using Ollama\n",
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"# supports many more optional parameters. Hover on your `ChatOllama(...)`\n",
"# class to view the latest available supported parameters\n",
"llm = ChatOllama(model=\"llama3\")\n",
"prompt = ChatPromptTemplate.from_template(\"Tell me a short joke about {topic}\")\n",
"\n",
"# using LangChain Expressive Language chain syntax\n",
"# learn more about the LCEL on\n",
"# /docs/concepts/#langchain-expression-language-lcel\n",
"chain = prompt | llm | StrOutputParser()\n",
"\n",
"# for brevity, response is printed in terminal\n",
"# You can use LangServe to deploy your application for\n",
"# production\n",
"print(chain.invoke({\"topic\": \"Space travel\"}))"
"* View the [Ollama documentation](https://github.com/jmorganca/ollama) for more commands. Run `ollama help` in the terminal to see available commands too.\n"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"LCEL chains, out of the box, provide extra functionalities, such as streaming of responses, and async support"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Why\n",
" did\n",
" the\n",
" astronaut\n",
" break\n",
" up\n",
" with\n",
" his\n",
" girlfriend\n",
" before\n",
" going\n",
" to\n",
" Mars\n",
"?\n",
"\n",
"\n",
"Because\n",
" he\n",
" needed\n",
" space\n",
"!\n",
"\n"
]
}
],
"source": [
"topic = {\"topic\": \"Space travel\"}\n",
"\n",
"for chunks in chain.stream(topic):\n",
" print(chunks)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For streaming async support, here's an example - all possible via the single chain created above."
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"topic = {\"topic\": \"Space travel\"}\n",
"\n",
"async for chunks in chain.astream(topic):\n",
" print(chunks)"
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"Take a look at the [LangChain Expressive Language (LCEL) Interface](/docs/concepts#interface) for the other available interfaces for use when a chain is created.\n",
"### Installation\n",
"\n",
"## Building from source\n",
"\n",
"For up to date instructions on building from source, check the Ollama documentation on [Building from Source](https://github.com/ollama/ollama?tab=readme-ov-file#building)"
"The LangChain Ollama integration lives in the `langchain-ollama` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-ollama"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Extraction\n",
" \n",
"Use the latest version of Ollama and supply the [`format`](https://github.com/jmorganca/ollama/blob/main/docs/api.md#json-mode) flag. The `format` flag will force the model to produce the response in JSON.\n",
"## Instantiation\n",
"\n",
"> **Note:** You can also try out the experimental [OllamaFunctions](/docs/integrations/chat/ollama_functions) wrapper for convenience."
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_ollama import ChatOllama\n",
"\n",
"llm = ChatOllama(\n",
" model=\"llama3\",\n",
" temperature=0,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOllama\n",
"\n",
"llm = ChatOllama(model=\"llama3\", format=\"json\", temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content='{ \"morning\": \"blue\", \"noon\": \"clear blue\", \"afternoon\": \"hazy yellow\", \"evening\": \"orange-red\" }\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n ' id='run-e893700f-e2d0-4df8-ad86-17525dcee318-0'\n"
]
"data": {
"text/plain": [
"AIMessage(content='Je adore le programmation.\\n\\n(Note: \"programmation\" is not commonly used in French, but I translated it as \"le programmation\" to maintain the same grammatical structure and meaning as the original English sentence.)', response_metadata={'model': 'llama3', 'created_at': '2024-07-22T17:43:54.731273Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 11094839375, 'load_duration': 10121854667, 'prompt_eval_count': 36, 'prompt_eval_duration': 146569000, 'eval_count': 46, 'eval_duration': 816593000}, id='run-befccbdc-e1f9-42a9-85cf-e69b926d6b8b-0', usage_metadata={'input_tokens': 36, 'output_tokens': 46, 'total_tokens': 82})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.messages import AIMessage\n",
"\n",
"messages = [\n",
" HumanMessage(\n",
" content=\"What color is the sky at different times of the day? Respond using JSON\"\n",
" )\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"\n",
"chat_model_response = llm.invoke(messages)\n",
"print(chat_model_response)"
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 5,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Je adore le programmation.\n",
"\n",
"Name: John\n",
"Age: 35\n",
"Likes: Pizza\n"
"(Note: \"programmation\" is not commonly used in French, but I translated it as \"le programmation\" to maintain the same grammatical structure and meaning as the original English sentence.)\n"
]
}
],
"source": [
"import json\n",
"\n",
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"json_schema = {\n",
" \"title\": \"Person\",\n",
" \"description\": \"Identifying information about a person.\",\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"name\": {\"title\": \"Name\", \"description\": \"The person's name\", \"type\": \"string\"},\n",
" \"age\": {\"title\": \"Age\", \"description\": \"The person's age\", \"type\": \"integer\"},\n",
" \"fav_food\": {\n",
" \"title\": \"Fav Food\",\n",
" \"description\": \"The person's favorite food\",\n",
" \"type\": \"string\",\n",
" },\n",
" },\n",
" \"required\": [\"name\", \"age\"],\n",
"}\n",
"\n",
"llm = ChatOllama(model=\"llama2\")\n",
"\n",
"messages = [\n",
" HumanMessage(\n",
" content=\"Please tell me about a person using the following JSON schema:\"\n",
" ),\n",
" HumanMessage(content=\"{dumps}\"),\n",
" HumanMessage(\n",
" content=\"Now, considering the schema, tell me about a person named John who is 35 years old and loves pizza.\"\n",
" ),\n",
"]\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(messages)\n",
"dumps = json.dumps(json_schema, indent=2)\n",
"\n",
"chain = prompt | llm | StrOutputParser()\n",
"\n",
"print(chain.invoke({\"dumps\": dumps}))"
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren!\\n\\n(Note: \"Ich liebe\" means \"I love\", \"Programmieren\" is the verb for \"programming\")', response_metadata={'model': 'llama3', 'created_at': '2024-07-04T04:22:33.864132Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 1310800083, 'load_duration': 1782000, 'prompt_eval_count': 16, 'prompt_eval_duration': 250199000, 'eval_count': 29, 'eval_duration': 1057192000}, id='run-cbadbe59-2de2-4ec0-a18a-b3220226c3d2-0')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0f51345d-0a9d-43f1-8fca-d0662cb8e21b",
"metadata": {},
"source": [
"## Tool calling\n",
"\n",
"We can use [tool calling](https://blog.langchain.dev/improving-core-tool-interfaces-and-docs-in-langchain/) with an LLM [that has been fine-tuned for tool use](https://ollama.com/library/llama3-groq-tool-use): \n",
"\n",
"```\n",
"ollama pull llama3-groq-tool-use\n",
"```\n",
"\n",
"We can just pass normal Python functions directly as tools."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "5250bceb-1029-41ff-b447-983518704d88",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'validate_user',\n",
" 'args': {'addresses': ['123 Fake St, Boston MA',\n",
" '234 Pretend Boulevard, Houston TX'],\n",
" 'user_id': 123},\n",
" 'id': 'fe2148d3-95fb-48e9-845a-4bfecc1f1f96',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import List\n",
"\n",
"from langchain_ollama import ChatOllama\n",
"from typing_extensions import TypedDict\n",
"\n",
"\n",
"def validate_user(user_id: int, addresses: List) -> bool:\n",
" \"\"\"Validate user using historical addresses.\n",
"\n",
" Args:\n",
" user_id: (int) the user ID.\n",
" addresses: Previous addresses.\n",
" \"\"\"\n",
" return True\n",
"\n",
"\n",
"llm = ChatOllama(\n",
" model=\"llama3-groq-tool-use\",\n",
" temperature=0,\n",
").bind_tools([validate_user])\n",
"\n",
"result = llm.invoke(\n",
" \"Could you validate user 123? They previously lived at \"\n",
" \"123 Fake St in Boston MA and 234 Pretend Boulevard in \"\n",
" \"Houston TX.\"\n",
")\n",
"result.tool_calls"
]
},
{
"cell_type": "markdown",
"id": "2bb034ff-218f-4865-afea-3f5e57d3bdee",
"metadata": {},
"source": [
"We look at the LangSmith trace to see that the tool call was performed: \n",
"\n",
"https://smith.langchain.com/public/4169348a-d6be-45df-a7cf-032f6baa4697/r\n",
"\n",
"In particular, the trace shows how the tool schema was populated."
]
},
{
"cell_type": "markdown",
"id": "4c5e0197",
"metadata": {},
"source": [
"## Multi-modal\n",
"\n",
"Ollama has support for multi-modal LLMs, such as [bakllava](https://ollama.ai/library/bakllava) and [llava](https://ollama.ai/library/llava).\n",
"Ollama has support for multi-modal LLMs, such as [bakllava](https://ollama.com/library/bakllava) and [llava](https://ollama.com/library/llava).\n",
"\n",
"Browse the full set of versions for models with `tags`, such as [Llava](https://ollama.ai/library/llava/tags).\n",
" ollama pull bakllava\n",
"\n",
"Download the desired LLM via `ollama pull bakllava`\n",
"\n",
"Be sure to update Ollama so that you have the most recent version to support multi-modal.\n",
"\n",
"Check out the typical example of how to use ChatOllama multi-modal support below:"
"Be sure to update Ollama so that you have the most recent version to support multi-modal."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"!pip install --upgrade --quiet pillow"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 11,
"id": "36c9b1c2",
"metadata": {},
"outputs": [
{
@@ -399,7 +391,8 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 12,
"id": "32b3ba7b",
"metadata": {},
"outputs": [
{
@@ -411,8 +404,8 @@
}
],
"source": [
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_ollama import ChatOllama\n",
"\n",
"llm = ChatOllama(model=\"bakllava\", temperature=0)\n",
"\n",
@@ -449,20 +442,12 @@
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## Concurrency Features\n",
"## API reference\n",
"\n",
"Ollama supports concurrency inference for a single model, and or loading multiple models simulatenously (at least [version 0.1.33](https://github.com/ollama/ollama/releases)).\n",
"\n",
"Start the Ollama server with:\n",
"\n",
"* `OLLAMA_NUM_PARALLEL`: Handle multiple requests simultaneously for a single model\n",
"* `OLLAMA_MAX_LOADED_MODELS`: Load multiple models simultaneously\n",
"\n",
"Example: `OLLAMA_NUM_PARALLEL=4 OLLAMA_MAX_LOADED_MODELS=4 ollama serve`\n",
"\n",
"Learn more about configuring Ollama server in [the official guide](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-configure-ollama-server)."
"For detailed documentation of all ChatOllama features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_ollama.chat_models.ChatOllama.html"
]
}
],
@@ -486,5 +471,5 @@
}
},
"nbformat": 4,
"nbformat_minor": 4
"nbformat_minor": 5
}

View File

@@ -6,6 +6,7 @@
"source": [
"---\n",
"sidebar_label: Ollama Functions\n",
"sidebar_class_name: hidden\n",
"---"
]
},
@@ -15,16 +16,16 @@
"source": [
"# OllamaFunctions\n",
"\n",
":::warning\n",
"\n",
"This was an experimental wrapper that attempts to bolt-on tool calling support to models that do not natively support it. The [primary Ollama integration](/docs/integrations/chat/ollama/) now supports tool calling, and should be used instead.\n",
"\n",
":::\n",
"This notebook shows how to use an experimental wrapper around Ollama that gives it [tool calling capabilities](https://python.langchain.com/v0.2/docs/concepts/#functiontool-calling).\n",
"\n",
"Note that more powerful and capable models will perform better with complex schema and/or multiple functions. The examples below use llama3 and phi3 models.\n",
"For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).\n",
"\n",
":::warning\n",
"\n",
"This is an experimental wrapper that attempts to bolt-on tool calling support to models that do not natively support it. Use with caution.\n",
"\n",
":::\n",
"## Overview\n",
"\n",
"### Integration details\n",

View File

@@ -82,9 +82,9 @@
"outputs": [],
"source": [
"# By default it will use the model which was deployed through the platform\n",
"# in my case it will is \"claude-3-haiku\"\n",
"# in my case it will is \"gpt-4o\"\n",
"\n",
"chat = ChatPremAI(project_id=8)"
"chat = ChatPremAI(project_id=1234, model_name=\"gpt-4o\")"
]
},
{
@@ -107,7 +107,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"I am an artificial intelligence created by Anthropic. I'm here to help with a wide variety of tasks, from research and analysis to creative projects and open-ended conversation. I have general knowledge and capabilities, but I'm not a real person - I'm an AI assistant. Please let me know if you have any other questions!\n"
"I am an AI language model created by OpenAI, designed to assist with answering questions and providing information based on the context provided. How can I help you today?\n"
]
}
],
@@ -133,7 +133,7 @@
{
"data": {
"text/plain": [
"AIMessage(content=\"I am an artificial intelligence created by Anthropic. My purpose is to assist and converse with humans in a friendly and helpful way. I have a broad knowledge base that I can use to provide information, answer questions, and engage in discussions on a wide range of topics. Please let me know if you have any other questions - I'm here to help!\")"
"AIMessage(content=\"I'm your friendly assistant! How can I help you today?\", response_metadata={'document_chunks': [{'repository_id': 1985, 'document_id': 1306, 'chunk_id': 173899, 'document_name': '[D] Difference between sparse and dense informati…', 'similarity_score': 0.3209080100059509, 'content': \"with the difference or anywhere\\nwhere I can read about it?\\n\\n\\n 17 9\\n\\n\\n u/ScotiabankCanada • Promoted\\n\\n\\n Accelerate your study permit process\\n with Scotiabank's Student GIC\\n Program. We're here to help you tur…\\n\\n\\n startright.scotiabank.com Learn More\\n\\n\\n Add a Comment\\n\\n\\nSort by: Best\\n\\n\\n DinosParkour • 1y ago\\n\\n\\n Dense Retrieval (DR) m\"}]}, id='run-510bbd0e-3f8f-4095-9b1f-c2d29fd89719-0')"
]
},
"execution_count": 5,
@@ -160,10 +160,18 @@
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/anindya/prem/langchain/libs/community/langchain_community/chat_models/premai.py:355: UserWarning: WARNING: Parameter top_p is not supported in kwargs.\n",
" warnings.warn(f\"WARNING: Parameter {key} is not supported in kwargs.\")\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='I am an artificial intelligence created by Anthropic')"
"AIMessage(content=\"Hello! I'm your friendly assistant. How can I\", response_metadata={'document_chunks': [{'repository_id': 1985, 'document_id': 1306, 'chunk_id': 173899, 'document_name': '[D] Difference between sparse and dense informati…', 'similarity_score': 0.3209080100059509, 'content': \"with the difference or anywhere\\nwhere I can read about it?\\n\\n\\n 17 9\\n\\n\\n u/ScotiabankCanada • Promoted\\n\\n\\n Accelerate your study permit process\\n with Scotiabank's Student GIC\\n Program. We're here to help you tur…\\n\\n\\n startright.scotiabank.com Learn More\\n\\n\\n Add a Comment\\n\\n\\nSort by: Best\\n\\n\\n DinosParkour • 1y ago\\n\\n\\n Dense Retrieval (DR) m\"}]}, id='run-c4b06b98-4161-4cca-8495-fd2fc98fa8f8-0')"
]
},
"execution_count": 6,
@@ -195,13 +203,13 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"query = \"what is the diameter of individual Galaxy\"\n",
"query = \"Which models are used for dense retrieval\"\n",
"repository_ids = [\n",
" 1991,\n",
" 1985,\n",
"]\n",
"repositories = dict(ids=repository_ids, similarity_threshold=0.3, limit=3)"
]
@@ -219,9 +227,34 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 8,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dense retrieval models typically include:\n",
"\n",
"1. **BERT-based Models**: Such as DPR (Dense Passage Retrieval) which uses BERT for encoding queries and passages.\n",
"2. **ColBERT**: A model that combines BERT with late interaction mechanisms.\n",
"3. **ANCE (Approximate Nearest Neighbor Negative Contrastive Estimation)**: Uses BERT and focuses on efficient retrieval.\n",
"4. **TCT-ColBERT**: A variant of ColBERT that uses a two-tower\n",
"{\n",
" \"document_chunks\": [\n",
" {\n",
" \"repository_id\": 1985,\n",
" \"document_id\": 1306,\n",
" \"chunk_id\": 173899,\n",
" \"document_name\": \"[D] Difference between sparse and dense informati\\u2026\",\n",
" \"similarity_score\": 0.3209080100059509,\n",
" \"content\": \"with the difference or anywhere\\nwhere I can read about it?\\n\\n\\n 17 9\\n\\n\\n u/ScotiabankCanada \\u2022 Promoted\\n\\n\\n Accelerate your study permit process\\n with Scotiabank's Student GIC\\n Program. We're here to help you tur\\u2026\\n\\n\\n startright.scotiabank.com Learn More\\n\\n\\n Add a Comment\\n\\n\\nSort by: Best\\n\\n\\n DinosParkour \\u2022 1y ago\\n\\n\\n Dense Retrieval (DR) m\"\n",
" }\n",
" ]\n",
"}\n"
]
}
],
"source": [
"import json\n",
"\n",
@@ -262,7 +295,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -288,7 +321,7 @@
"outputs": [],
"source": [
"template_id = \"78069ce8-xxxxx-xxxxx-xxxx-xxx\"\n",
"response = chat.invoke([human_message], template_id=template_id)\n",
"response = chat.invoke([human_messages], template_id=template_id)\n",
"print(response.content)"
]
},
@@ -310,14 +343,14 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hello! As an AI language model, I don't have feelings or a physical state, but I'm functioning properly and ready to assist you with any questions or tasks you might have. How can I help you today?"
"It looks like your message got cut off. If you need information about Dense Retrieval (DR) or any other topic, please provide more details or clarify your question."
]
}
],
@@ -338,14 +371,14 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hello! As an AI language model, I don't have feelings or a physical form, but I'm functioning properly and ready to assist you. How can I help you today?"
"Woof! 🐾 How can I help you today? Want to play fetch or maybe go for a walk 🐶🦴"
]
}
],
@@ -365,6 +398,275 @@
" sys.stdout.write(chunk.content)\n",
" sys.stdout.flush()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Tool/Function Calling\n",
"\n",
"LangChain PremAI supports tool/function calling. Tool/function calling allows a model to respond to a given prompt by generating output that matches a user-defined schema. \n",
"\n",
"- You can learn all about tool calling in details [in our documentation here](https://docs.premai.io/get-started/function-calling).\n",
"- You can learn more about langchain tool calling in [this part of the docs](https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling).\n",
"\n",
"**NOTE:**\n",
"The current version of LangChain ChatPremAI do not support function/tool calling with streaming support. Streaming support along with function calling will come soon. \n",
"\n",
"#### Passing tools to model\n",
"\n",
"In order to pass tools and let the LLM choose the tool it needs to call, we need to pass a tool schema. A tool schema is the function definition along with proper docstring on what does the function do, what each argument of the function is etc. Below are some simple arithmetic functions with their schema. \n",
"\n",
"**NOTE:** When defining function/tool schema, do not forget to add information around the function arguments, otherwise it would throw error."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"# Define the schema for function arguments\n",
"class OperationInput(BaseModel):\n",
" a: int = Field(description=\"First number\")\n",
" b: int = Field(description=\"Second number\")\n",
"\n",
"\n",
"# Now define the function where schema for argument will be OperationInput\n",
"@tool(\"add\", args_schema=OperationInput, return_direct=True)\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Adds a and b.\n",
"\n",
" Args:\n",
" a: first int\n",
" b: second int\n",
" \"\"\"\n",
" return a + b\n",
"\n",
"\n",
"@tool(\"multiply\", args_schema=OperationInput, return_direct=True)\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiplies a and b.\n",
"\n",
" Args:\n",
" a: first int\n",
" b: second int\n",
" \"\"\"\n",
" return a * b"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Binding tool schemas with our LLM\n",
"\n",
"We will now use the `bind_tools` method to convert our above functions to a \"tool\" and binding it with the model. This means we are going to pass these tool informations everytime we invoke the model. "
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"tools = [add, multiply]\n",
"llm_with_tools = chat.bind_tools(tools)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After this, we get the response from the model which is now binded with the tools. "
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"query = \"What is 3 * 12? Also, what is 11 + 49?\"\n",
"\n",
"messages = [HumanMessage(query)]\n",
"ai_msg = llm_with_tools.invoke(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we can see, when our chat model is binded with tools, then based on the given prompt, it calls the correct set of the tools and sequentially. "
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'multiply',\n",
" 'args': {'a': 3, 'b': 12},\n",
" 'id': 'call_A9FL20u12lz6TpOLaiS6rFa8'},\n",
" {'name': 'add',\n",
" 'args': {'a': 11, 'b': 49},\n",
" 'id': 'call_MPKYGLHbf39csJIyb5BZ9xIk'}]"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We append this message shown above to the LLM which acts as a context and makes the LLM aware that what all functions it has called. "
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"messages.append(ai_msg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Since tool calling happens into two phases, where:\n",
"\n",
"1. in our first call, we gathered all the tools that the LLM decided to tool, so that it can get the result as an added context to give more accurate and hallucination free result. \n",
"\n",
"2. in our second call, we will parse those set of tools decided by LLM and run them (in our case it will be the functions we defined, with the LLM's extracted arguments) and pass this result to the LLM"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import ToolMessage\n",
"\n",
"for tool_call in ai_msg.tool_calls:\n",
" selected_tool = {\"add\": add, \"multiply\": multiply}[tool_call[\"name\"].lower()]\n",
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we call the LLM (binded with the tools) with the function response added in it's context. "
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The final answers are:\n",
"\n",
"- 3 * 12 = 36\n",
"- 11 + 49 = 60\n"
]
}
],
"source": [
"response = llm_with_tools.invoke(messages)\n",
"print(response.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Defining tool schemas: Pydantic class\n",
"\n",
"Above we have shown how to define schema using `tool` decorator, however we can equivalently define the schema using Pydantic. Pydantic is useful when your tool inputs are more complex:"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers.openai_tools import PydanticToolsParser\n",
"\n",
"\n",
"class add(BaseModel):\n",
" \"\"\"Add two integers together.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"First integer\")\n",
" b: int = Field(..., description=\"Second integer\")\n",
"\n",
"\n",
"class multiply(BaseModel):\n",
" \"\"\"Multiply two integers together.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"First integer\")\n",
" b: int = Field(..., description=\"Second integer\")\n",
"\n",
"\n",
"tools = [add, multiply]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can bind them to chat models and directly get the result:"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[multiply(a=3, b=12), add(a=11, b=49)]"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain = llm_with_tools | PydanticToolsParser(tools=[multiply, add])\n",
"chain.invoke(query)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, as done above, we parse this and run this functions and call the LLM once again to get the result."
]
}
],
"metadata": {
@@ -383,7 +685,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.9.19"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,484 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "6b74f73d-1763-42d0-9c24-8f65f445bb72",
"metadata": {},
"source": [
"# Dedoc\n",
"\n",
"This sample demonstrates the use of `Dedoc` in combination with `LangChain` as a `DocumentLoader`.\n",
"\n",
"## Overview\n",
"\n",
"[Dedoc](https://dedoc.readthedocs.io) is an [open-source](https://github.com/ispras/dedoc)\n",
"library/service that extracts texts, tables, attached files and document structure\n",
"(e.g., titles, list items, etc.) from files of various formats.\n",
"\n",
"`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images and more.\n",
"Full list of supported formats can be found [here](https://dedoc.readthedocs.io/en/latest/#id1).\n",
"\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support |\n",
"|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----:|:------------:|:----------:|\n",
"| [DedocFileLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ |\n",
"| [DedocPDFLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ | \n",
"| [DedocAPIFileLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ | \n",
"\n",
"\n",
"### Loader features\n",
"\n",
"Methods for lazy loading and async loading are available, but in fact, document loading is executed synchronously.\n",
"\n",
"| Source | Document Lazy Loading | Async Support |\n",
"|:------------------:|:---------------------:|:-------------:| \n",
"| DedocFileLoader | ❌ | ❌ |\n",
"| DedocPDFLoader | ❌ | ❌ | \n",
"| DedocAPIFileLoader | ❌ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"* To access `DedocFileLoader` and `DedocPDFLoader` document loaders, you'll need to install the `dedoc` integration package.\n",
"* To access `DedocAPIFileLoader`, you'll need to run the `Dedoc` service, e.g. `Docker` container (please see [the documentation](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker) \n",
"for more details):\n",
"\n",
"```bash\n",
"docker pull dedocproject/dedoc\n",
"docker run -p 1231:1231\n",
"```\n",
"\n",
"`Dedoc` installation instruction is given [here](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "511c109d-a5c3-42ba-914e-5d1b385bc40f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"# Install package\n",
"%pip install --quiet \"dedoc[torch]\""
]
},
{
"cell_type": "markdown",
"id": "6820c0e9-d56d-4899-b8c8-374760360e2b",
"metadata": {},
"source": [
"## Instantiation"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c1f98cae-71ec-4d60-87fb-96c1a76851d8",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import DedocFileLoader\n",
"\n",
"loader = DedocFileLoader(\"./example_data/state_of_the_union.txt\")"
]
},
{
"cell_type": "markdown",
"id": "5d7bc2b3-73a0-4cd6-8014-cc7184aa9d4a",
"metadata": {},
"source": [
"## Load"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b9097c14-6168-4726-819e-24abb9a63b13",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nMadam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and t'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs = loader.load()\n",
"docs[0].page_content[:100]"
]
},
{
"cell_type": "markdown",
"id": "9ed8bd46-0047-4ccc-b2d6-beb7761f7312",
"metadata": {},
"source": [
"## Lazy Load"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6ae12d7e-8105-4bbe-9031-0e968475f6bf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and t\n"
]
}
],
"source": [
"docs = loader.lazy_load()\n",
"\n",
"for doc in docs:\n",
" print(doc.page_content[:100])\n",
" break"
]
},
{
"cell_type": "markdown",
"id": "8772ae40-6239-4751-bb2d-b4a9415c1ad1",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed information on configuring and calling `Dedoc` loaders, please see the API references: \n",
"\n",
"* https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html\n",
"* https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html\n",
"* https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html"
]
},
{
"cell_type": "markdown",
"id": "c4d5e702-0e21-4cad-a4c3-b9b3bff77203",
"metadata": {},
"source": [
"## Loading any file\n",
"\n",
"For automatic handling of any file in a [supported format](https://dedoc.readthedocs.io/en/latest/#id1),\n",
"`DedocFileLoader` can be useful.\n",
"The file loader automatically detects the file type with a correct extension.\n",
"\n",
"File parsing process can be configured through `dedoc_kwargs` during the `DedocFileLoader` class initialization.\n",
"Here the basic examples of some options usage are given, \n",
"please see the documentation of `DedocFileLoader` and \n",
"[dedoc documentation](https://dedoc.readthedocs.io/en/latest/parameters/parameters.html) \n",
"to get more details about configuration parameters."
]
},
{
"cell_type": "markdown",
"id": "de97d0ed-d6b1-44e0-b392-1f3d89c762f9",
"metadata": {},
"source": [
"### Basic example"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "50ffeeee-db12-4801-b208-7e32ea3d72ad",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nMadam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \\n\\n\\n\\nLast year COVID-19 kept us apart. This year we are finally together again. \\n\\n\\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \\n\\n\\n\\nWith a duty to one another to the American people to '"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import DedocFileLoader\n",
"\n",
"loader = DedocFileLoader(\"./example_data/state_of_the_union.txt\")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
]
},
{
"cell_type": "markdown",
"id": "457e5d4c-a4ee-4f31-ae74-3f75a1bbd0af",
"metadata": {},
"source": [
"### Modes of split\n",
"\n",
"`DedocFileLoader` supports different types of document splitting into parts (each part is returned separately).\n",
"For this purpose, `split` parameter is used with the following options:\n",
"* `document` (default value): document text is returned as a single langchain `Document` object (don't split);\n",
"* `page`: split document text into pages (works for `PDF`, `DJVU`, `PPTX`, `PPT`, `ODP`);\n",
"* `node`: split document text into `Dedoc` tree nodes (title nodes, list item nodes, raw text nodes);\n",
"* `line`: split document text into textual lines."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eec54d31-ae7a-4a3c-aa10-4ae276b1e4c4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = DedocFileLoader(\n",
" \"./example_data/layout-parser-paper.pdf\",\n",
" split=\"page\",\n",
" pages=\":2\",\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"len(docs)"
]
},
{
"cell_type": "markdown",
"id": "61e11769-4780-4f77-b10e-27db6936f226",
"metadata": {},
"source": [
"### Handling tables\n",
"\n",
"`DedocFileLoader` supports tables handling when `with_tables` parameter is \n",
"set to `True` during loader initialization (`with_tables=True` by default). \n",
"\n",
"Tables are not split - each table corresponds to one langchain `Document` object.\n",
"For tables, `Document` object has additional `metadata` fields `type=\"table\"` \n",
"and `text_as_html` with table `HTML` representation."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "bbeb2f8a-ac5e-4b59-8026-7ea3fc14c928",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('table',\n",
" '<table border=\"1\" style=\"border-collapse: collapse; width: 100%;\">\\n<tbody>\\n<tr>\\n<td colspan=\"1\" rowspan=\"1\">Team</td>\\n<td colspan=\"1\" rowspan=\"1\"> &quot;Payroll (millions)&quot;</td>\\n<td colspan=\"1\" r')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = DedocFileLoader(\"./example_data/mlb_teams_2012.csv\")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[1].metadata[\"type\"], docs[1].metadata[\"text_as_html\"][:200]"
]
},
{
"cell_type": "markdown",
"id": "b4a2b872-2aba-4e4c-8b2f-83a5a81ee1da",
"metadata": {},
"source": [
"### Handling attached files\n",
"\n",
"`DedocFileLoader` supports attached files handling when `with_attachments` is set \n",
"to `True` during loader initialization (`with_attachments=False` by default). \n",
"\n",
"Attachments are split according to the `split` parameter.\n",
"For attachments, langchain `Document` object has an additional metadata \n",
"field `type=\"attachment\"`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "bb9d6c1c-e24c-4979-88a0-38d54abd6332",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('attachment',\n",
" '\\nContent-Type\\nmultipart/mixed; boundary=\"0000000000005d654405f082adb7\"\\nDate\\nFri, 23 Dec 2022 12:08:48 -0600\\nFrom\\nMallori Harrell <mallori@unstructured.io>\\nMIME-Version\\n1.0\\nMessage-ID\\n<CAPgNNXSzLVJ-d1OCX_TjFgJU7ugtQrjFybPtAMmmYZzphxNFYg@mail.gmail.com>\\nSubject\\nFake email with attachment\\nTo\\nMallori Harrell <mallori@unstructured.io>')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = DedocFileLoader(\n",
" \"./example_data/fake-email-attachment.eml\",\n",
" with_attachments=True,\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[1].metadata[\"type\"], docs[1].page_content"
]
},
{
"cell_type": "markdown",
"id": "d435c3f6-703a-4064-8307-ace140de967a",
"metadata": {},
"source": [
"## Loading PDF file\n",
"\n",
"If you want to handle only `PDF` documents, you can use `DedocPDFLoader` with only `PDF` support.\n",
"The loader supports the same parameters for document split, tables and attachments extraction.\n",
"\n",
"`Dedoc` can extract `PDF` with or without a textual layer, \n",
"as well as automatically detect its presence and correctness.\n",
"Several `PDF` handlers are available, you can use `pdf_with_text_layer` \n",
"parameter to choose one of them.\n",
"Please see [parameters description](https://dedoc.readthedocs.io/en/latest/parameters/pdf_handling.html) \n",
"to get more details.\n",
"\n",
"For `PDF` without a textual layer, `Tesseract OCR` and its language packages should be installed.\n",
"In this case, [the instruction](https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html) can be useful."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0103a7f3-6b5e-4444-8f4d-83dd3724a9af",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n2\\n\\nZ. Shen et al.\\n\\n37], layout detection [38, 22], table detection [26], and scene text detection [4].\\n\\nA generalized learning-based framework dramatically reduces the need for the\\n\\nmanual specification of complicated rules, which is the status quo with traditional\\n\\nmethods. DL has the potential to transform DIA pipelines and benefit a broad\\n\\nspectrum of large-scale document digitization projects.\\n'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import DedocPDFLoader\n",
"\n",
"loader = DedocPDFLoader(\n",
" \"./example_data/layout-parser-paper.pdf\", pdf_with_text_layer=\"true\", pages=\"2:2\"\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
]
},
{
"cell_type": "markdown",
"id": "13061995-1805-40c2-a77a-a6cd80999e20",
"metadata": {},
"source": [
"## Dedoc API\n",
"\n",
"If you want to get up and running with less set up, you can use `Dedoc` as a service.\n",
"**`DedocAPIFileLoader` can be used without installation of `dedoc` library.**\n",
"The loader supports the same parameters as `DedocFileLoader` and\n",
"also automatically detects input file types.\n",
"\n",
"To use `DedocAPIFileLoader`, you should run the `Dedoc` service, e.g. `Docker` container (please see [the documentation](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker) \n",
"for more details):\n",
"\n",
"```bash\n",
"docker pull dedocproject/dedoc\n",
"docker run -p 1231:1231\n",
"```\n",
"\n",
"Please do not use our demo URL `https://dedoc-readme.hf.space` in your code."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "211fc0b5-6080-4974-a6c1-f982bafd87d6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nMadam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \\n\\n\\n\\nLast year COVID-19 kept us apart. This year we are finally together again. \\n\\n\\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \\n\\n\\n\\nWith a duty to one another to the American people to '"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import DedocAPIFileLoader\n",
"\n",
"loader = DedocAPIFileLoader(\n",
" \"./example_data/state_of_the_union.txt\",\n",
" url=\"https://dedoc-readme.hf.space\",\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "faaff475-5209-436f-bcde-97d58daed05c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -162,7 +162,7 @@
"metadata": {},
"outputs": [],
"source": [
"!poetry run pip install --upgrade langchain-openai tiktoken chromadb hnswlib"
"!poetry run pip install --upgrade langchain-openai tiktoken langchain-chroma hnswlib"
]
},
{
@@ -211,7 +211,7 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain_community.vectorstores.chroma import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"\n",
"embedding = OpenAIEmbeddings()\n",
@@ -365,7 +365,7 @@
"source": [
"from langchain.chains.query_constructor.schema import AttributeInfo\n",
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
"from langchain_community.vectorstores.chroma import Chroma\n",
"from langchain_chroma import Chroma\n",
"\n",
"EXCLUDE_KEYS = [\"id\", \"xpath\", \"structure\"]\n",
"metadata_field_info = [\n",
@@ -540,7 +540,7 @@
"source": [
"from langchain.retrievers.multi_vector import MultiVectorRetriever, SearchType\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores.chroma import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"# The vectorstore to use to index the child chunks\n",

File diff suppressed because one or more lines are too long

View File

@@ -37,7 +37,7 @@
"scrapfly_loader = ScrapflyLoader(\n",
" [\"https://web-scraping.dev/products\"],\n",
" api_key=\"Your ScrapFly API key\", # Get your API key from https://www.scrapfly.io/\n",
" ignore_scrape_failures=True, # Ignore unprocessable web pages and log their exceptions\n",
" continue_on_failure=True, # Ignore unprocessable web pages and log their exceptions\n",
")\n",
"\n",
"# Load documents from URLs as markdown\n",
@@ -72,7 +72,7 @@
"scrapfly_loader = ScrapflyLoader(\n",
" [\"https://web-scraping.dev/products\"],\n",
" api_key=\"Your ScrapFly API key\", # Get your API key from https://www.scrapfly.io/\n",
" ignore_scrape_failures=True, # Ignore unprocessable web pages and log their exceptions\n",
" continue_on_failure=True, # Ignore unprocessable web pages and log their exceptions\n",
" scrape_config=scrapfly_scrape_config, # Pass the scrape_config object\n",
" scrape_format=\"markdown\", # The scrape result format, either `markdown`(default) or `text`\n",
")\n",

File diff suppressed because one or more lines are too long

View File

@@ -5,7 +5,7 @@
"id": "20deed05",
"metadata": {},
"source": [
"# Unstructured File\n",
"# Unstructured\n",
"\n",
"This notebook covers how to use `Unstructured` package to load files of many types. `Unstructured` currently supports loading of text files, powerpoints, html, pdfs, images, and more.\n",
"\n",
@@ -14,79 +14,69 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "2886982e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"# # Install package\n",
"%pip install --upgrade --quiet \"unstructured[all-docs]\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "54d62efd",
"metadata": {},
"outputs": [],
"source": [
"# # Install other dependencies\n",
"# # https://github.com/Unstructured-IO/unstructured/blob/main/docs/source/installing.rst\n",
"# !brew install libmagic\n",
"# !brew install poppler\n",
"# !brew install tesseract\n",
"# # If parsing xml / html documents:\n",
"# !brew install libxml2\n",
"# !brew install libxslt"
"# Install package, compatible with API partitioning\n",
"%pip install --upgrade --quiet \"langchain-unstructured\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "af6a64f5",
"cell_type": "markdown",
"id": "e75e2a6d",
"metadata": {},
"outputs": [],
"source": [
"# import nltk\n",
"# nltk.download('punkt')"
"### Local Partitioning (Optional)\n",
"\n",
"By default, `langchain-unstructured` installs a smaller footprint that requires\n",
"offloading of the partitioning logic to the Unstructured API.\n",
"\n",
"If you would like to run the partitioning logic locally, you will need to install\n",
"a combination of system dependencies, as outlined in the \n",
"[Unstructured documentation here](https://docs.unstructured.io/open-source/installation/full-installation).\n",
"\n",
"For example, on Macs you can install the required dependencies with:\n",
"\n",
"```bash\n",
"# base dependencies\n",
"brew install libmagic poppler tesseract\n",
"\n",
"# If parsing xml / html documents:\n",
"brew install libxml2 libxslt\n",
"```\n",
"\n",
"You can install the required `pip` dependencies with:\n",
"\n",
"```bash\n",
"pip install \"langchain-unstructured[local]\"\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "a9c1c775",
"metadata": {},
"source": [
"### Quickstart\n",
"\n",
"To simply load a file as a document, you can use the LangChain `DocumentLoader.load` \n",
"interface:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "79d3e549",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.\\n\\nLast year COVID-19 kept us apart. This year we are finally together again.\\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.\\n\\nWith a duty to one another to the American people to the Constit'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"from langchain_community.document_loaders import UnstructuredFileLoader\n",
"from langchain_unstructured import UnstructuredLoader\n",
"\n",
"loader = UnstructuredFileLoader(\"./example_data/state_of_the_union.txt\")\n",
"loader = UnstructuredLoader(\"./example_data/state_of_the_union.txt\")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
"docs = loader.load()"
]
},
{
@@ -99,113 +89,31 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"id": "092d9a0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'1/22/23, 6:30 PM - User 1: Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!\\n\\n1/22/23, 8:24 PM - User 2: Goodmorning! $50 is too low.\\n\\n1/23/23, 2:59 AM - User 1: How much do you want?\\n\\n1/23/23, 3:00 AM - User 2: Online is at least $100\\n\\n1/23/23, 3:01 AM - User 2: Here is $129\\n\\n1/23/23, 3:01 AM - User 2: <Media omitted>\\n\\n1/23/23, 3:01 AM - User 1: Im not int'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"whatsapp_chat.txt : 1/22/23, 6:30 PM - User 1: Hi! Im interested in your bag. Im offering $50. Let me know if you are in\n",
"state_of_the_union.txt : May God bless you all. May God protect our troops.\n"
]
}
],
"source": [
"files = [\"./example_data/whatsapp_chat.txt\", \"./example_data/layout-parser-paper.pdf\"]\n",
"file_paths = [\n",
" \"./example_data/whatsapp_chat.txt\",\n",
" \"./example_data/state_of_the_union.txt\",\n",
"]\n",
"\n",
"loader = UnstructuredFileLoader(files)\n",
"loader = UnstructuredLoader(file_paths)\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[0].page_content[:400]"
]
},
{
"cell_type": "markdown",
"id": "7874d01d",
"metadata": {},
"source": [
"## Retain Elements\n",
"\n",
"Under the hood, Unstructured creates different \"elements\" for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying `mode=\"elements\"`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ff5b616d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'NarrativeText'}),\n",
" Document(page_content='Last year COVID-19 kept us apart. This year we are finally together again.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'NarrativeText'}),\n",
" Document(page_content='Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'NarrativeText'}),\n",
" Document(page_content='With a duty to one another to the American people to the Constitution.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'UncategorizedText'}),\n",
" Document(page_content='And with an unwavering resolve that freedom will always triumph over tyranny.', metadata={'source': './example_data/state_of_the_union.txt', 'file_directory': './example_data', 'filename': 'state_of_the_union.txt', 'last_modified': '2024-07-01T11:18:22', 'languages': ['eng'], 'filetype': 'text/plain', 'category': 'NarrativeText'})]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = UnstructuredFileLoader(\n",
" \"./example_data/state_of_the_union.txt\", mode=\"elements\"\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[:5]"
]
},
{
"cell_type": "markdown",
"id": "672733fd",
"metadata": {},
"source": [
"## Define a Partitioning Strategy\n",
"\n",
"Unstructured document loader allow users to pass in a `strategy` parameter that lets `unstructured` know how to partition the document. Currently supported strategies are `\"hi_res\"` (the default) and `\"fast\"`. Hi res partitioning strategies are more accurate, but take longer to process. Fast strategies partition the document more quickly, but trade-off accuracy. Not all document types have separate hi res and fast partitioning strategies. For those document types, the `strategy` kwarg is ignored. In some cases, the high res strategy will fallback to fast if there is a dependency missing (i.e. a model for document partitioning). You can see how to apply a strategy to an `UnstructuredFileLoader` below."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "767238a4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 393.9), (16.34, 560.0), (36.34, 560.0), (36.34, 393.9)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': '89565df026a24279aaea20dc08cedbec', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'Title'}),\n",
" Document(page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((162.779, 338.45008160000003), (162.779, 566.8455408), (454.0372021523199, 566.8455408), (454.0372021523199, 338.45008160000003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'links': [{'text': ':// layout - parser . github . io', 'url': 'https://layout-parser.github.io', 'start_index': 1477}], 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'NarrativeText'})]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredFileLoader\n",
"\n",
"loader = UnstructuredFileLoader(\n",
" \"./example_data/layout-parser-paper.pdf\", strategy=\"fast\", mode=\"elements\"\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"docs[5:10]"
"print(docs[0].metadata.get(\"filename\"), \": \", docs[0].page_content[:100])\n",
"print(docs[-1].metadata.get(\"filename\"), \": \", docs[-1].page_content[:100])"
]
},
{
@@ -215,37 +123,52 @@
"source": [
"## PDF Example\n",
"\n",
"Processing PDF documents works exactly the same way. Unstructured detects the file type and extracts the same types of elements. Modes of operation are \n",
"- `single` all the text from all elements are combined into one (default)\n",
"- `elements` maintain individual elements\n",
"- `paged` texts from each page are only combined"
"Processing PDF documents works exactly the same way. Unstructured detects the file type and extracts the same types of elements."
]
},
{
"cell_type": "markdown",
"id": "672733fd",
"metadata": {},
"source": [
"### Define a Partitioning Strategy\n",
"\n",
"Unstructured document loader allow users to pass in a `strategy` parameter that lets Unstructured\n",
"know how to partition pdf and other OCR'd documents. Currently supported strategies are `\"auto\"`,\n",
"`\"hi_res\"`, `\"ocr_only\"`, and `\"fast\"`. Learn more about the different strategies\n",
"[here](https://docs.unstructured.io/open-source/core-functionality/partitioning#partition-pdf). \n",
"\n",
"Not all document types have separate hi res and fast partitioning strategies. For those document types, the `strategy` kwarg is\n",
"ignored. In some cases, the high res strategy will fallback to fast if there is a dependency missing\n",
"(i.e. a model for document partitioning). You can see how to apply a strategy to an\n",
"`UnstructuredLoader` below."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "686e5eb4",
"execution_count": 6,
"id": "60685353",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 393.9), (16.34, 560.0), (36.34, 560.0), (36.34, 393.9)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': '89565df026a24279aaea20dc08cedbec', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'Title'}),\n",
" Document(page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((162.779, 338.45008160000003), (162.779, 566.8455408), (454.0372021523199, 566.8455408), (454.0372021523199, 338.45008160000003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'links': [{'text': ':// layout - parser . github . io', 'url': 'https://layout-parser.github.io', 'start_index': 1477}], 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'NarrativeText'})]"
"[Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 393.9), (16.34, 560.0), (36.34, 560.0), (36.34, 393.9)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'parent_id': '89565df026a24279aaea20dc08cedbec', 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'e9fa370aef7ee5c05744eb7bb7d9981b'}, page_content='2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a'),\n",
" Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'Title', 'element_id': 'bde0b230a1aa488e3ce837d33015181b'}, page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis'),\n",
" Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': '54700f902899f0c8c90488fa8d825bce'}, page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5'),\n",
" Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'b650f5867bad9bb4e30384282c79bcfe'}, page_content='1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca'),\n",
" Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((162.779, 338.45008160000003), (162.779, 566.8455408), (454.0372021523199, 566.8455408), (454.0372021523199, 338.45008160000003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'links': [{'text': ':// layout - parser . github . io', 'url': 'https://layout-parser.github.io', 'start_index': 1477}], 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'NarrativeText', 'element_id': 'cfc957c94fe63c8fd7c7f4bcb56e75a7'}, page_content='Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.')]"
]
},
"execution_count": 12,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader = UnstructuredFileLoader(\n",
" \"./example_data/layout-parser-paper.pdf\", mode=\"elements\"\n",
")\n",
"from langchain_unstructured import UnstructuredLoader\n",
"\n",
"loader = UnstructuredLoader(\"./example_data/layout-parser-paper.pdf\", strategy=\"fast\")\n",
"\n",
"docs = loader.load()\n",
"\n",
@@ -257,37 +180,39 @@
"id": "1cf27fc8",
"metadata": {},
"source": [
"If you need to post process the `unstructured` elements after extraction, you can pass in a list of `str` -> `str` functions to the `post_processors` kwarg when you instantiate the `UnstructuredFileLoader`. This applies to other Unstructured loaders as well. Below is an example."
"## Post Processing\n",
"\n",
"If you need to post process the `unstructured` elements after extraction, you can pass in a list of\n",
"`str` -> `str` functions to the `post_processors` kwarg when you instantiate the `UnstructuredLoader`. This applies to other Unstructured loaders as well. Below is an example."
]
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 7,
"id": "112e5538",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 393.9), (16.34, 560.0), (36.34, 560.0), (36.34, 393.9)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': '89565df026a24279aaea20dc08cedbec', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'Title'}),\n",
" Document(page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText'}),\n",
" Document(page_content='Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.', metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((162.779, 338.45008160000003), (162.779, 566.8455408), (454.0372021523199, 566.8455408), (454.0372021523199, 338.45008160000003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2023-12-19T13:42:18', 'links': [{'text': ':// layout - parser . github . io', 'url': 'https://layout-parser.github.io', 'start_index': 1477}], 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'NarrativeText'})]"
"[Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 393.9), (16.34, 560.0), (36.34, 560.0), (36.34, 393.9)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'parent_id': '89565df026a24279aaea20dc08cedbec', 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'e9fa370aef7ee5c05744eb7bb7d9981b'}, page_content='2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a'),\n",
" Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'Title', 'element_id': 'bde0b230a1aa488e3ce837d33015181b'}, page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis'),\n",
" Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': '54700f902899f0c8c90488fa8d825bce'}, page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5'),\n",
" Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'b650f5867bad9bb4e30384282c79bcfe'}, page_content='1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca'),\n",
" Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((162.779, 338.45008160000003), (162.779, 566.8455408), (454.0372021523199, 566.8455408), (454.0372021523199, 338.45008160000003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'links': [{'text': ':// layout - parser . github . io', 'url': 'https://layout-parser.github.io', 'start_index': 1477}], 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'NarrativeText', 'element_id': 'cfc957c94fe63c8fd7c7f4bcb56e75a7'}, page_content='Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.')]"
]
},
"execution_count": 14,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredFileLoader\n",
"from langchain_unstructured import UnstructuredLoader\n",
"from unstructured.cleaners.core import clean_extra_whitespace\n",
"\n",
"loader = UnstructuredFileLoader(\n",
"loader = UnstructuredLoader(\n",
" \"./example_data/layout-parser-paper.pdf\",\n",
" mode=\"elements\",\n",
" post_processors=[clean_extra_whitespace],\n",
")\n",
"\n",
@@ -303,34 +228,70 @@
"source": [
"## Unstructured API\n",
"\n",
"If you want to get up and running with less set up, you can simply run `pip install unstructured` and use `UnstructuredAPIFileLoader` or `UnstructuredAPIFileIOLoader`. That will process your document using the hosted Unstructured API. You can generate a free Unstructured API key [here](https://www.unstructured.io/api-key/). The [Unstructured documentation](https://unstructured-io.github.io/unstructured/) page will have instructions on how to generate an API key once theyre available. Check out the instructions [here](https://github.com/Unstructured-IO/unstructured-api#dizzy-instructions-for-using-the-docker-image) if youd like to self-host the Unstructured API or run it locally."
"If you want to get up and running with smaller packages and get the most up-to-date partitioning you can `pip install\n",
"unstructured-client` and `pip install langchain-unstructured`. For\n",
"more information about the `UnstructuredLoader`, refer to the\n",
"[Unstructured provider page](https://python.langchain.com/v0.1/docs/integrations/document_loaders/unstructured_file/).\n",
"\n",
"The loader will process your document using the hosted Unstructured serverless API when you pass in\n",
"your `api_key` and set `partition_via_api=True`. You can generate a free\n",
"Unstructured API key [here](https://unstructured.io/api-key/).\n",
"\n",
"Check out the instructions [here](https://github.com/Unstructured-IO/unstructured-api#dizzy-instructions-for-using-the-docker-image)\n",
"if youd like to self-host the Unstructured API or run it locally."
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "6e5fde16",
"metadata": {},
"outputs": [],
"source": [
"# Install package\n",
"%pip install \"langchain-unstructured\"\n",
"%pip install \"unstructured-client\"\n",
"\n",
"# Set API key\n",
"import os\n",
"\n",
"os.environ[\"UNSTRUCTURED_API_KEY\"] = \"FAKE_API_KEY\""
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "386eb63c",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO: Preparing to split document for partition.\n",
"INFO: Given file doesn't have '.pdf' extension, so splitting is not enabled.\n",
"INFO: Partitioning without split.\n",
"INFO: Successfully partitioned the document.\n"
]
},
{
"data": {
"text/plain": [
"Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.docx'})"
"Document(metadata={'source': 'example_data/fake.docx', 'category_depth': 0, 'filename': 'fake.docx', 'languages': ['por', 'cat'], 'filetype': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', 'category': 'Title', 'element_id': '56d531394823d81787d77a04462ed096'}, page_content='Lorem ipsum dolor sit amet.')"
]
},
"execution_count": 4,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredAPIFileLoader\n",
"from langchain_unstructured import UnstructuredLoader\n",
"\n",
"filenames = [\"example_data/fake.docx\", \"example_data/fake-email.eml\"]\n",
"\n",
"loader = UnstructuredAPIFileLoader(\n",
" file_path=filenames[0],\n",
" api_key=\"FAKE_API_KEY\",\n",
"loader = UnstructuredLoader(\n",
" file_path=\"example_data/fake.docx\",\n",
" api_key=os.getenv(\"UNSTRUCTURED_API_KEY\"),\n",
" partition_via_api=True,\n",
")\n",
"\n",
"docs = loader.load()\n",
@@ -342,43 +303,197 @@
"id": "94158999",
"metadata": {},
"source": [
"You can also batch multiple files through the Unstructured API in a single API using `UnstructuredAPIFileLoader`."
"You can also batch multiple files through the Unstructured API in a single API using `UnstructuredLoader`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 10,
"id": "a3d7c846",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='Lorem ipsum dolor sit amet.\\n\\nThis is a test email to use for unit tests.\\n\\nImportant points:\\n\\nRoses are red\\n\\nViolets are blue', metadata={'source': ['example_data/fake.docx', 'example_data/fake-email.eml']})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
"name": "stderr",
"output_type": "stream",
"text": [
"INFO: Preparing to split document for partition.\n",
"INFO: Given file doesn't have '.pdf' extension, so splitting is not enabled.\n",
"INFO: Partitioning without split.\n",
"INFO: Successfully partitioned the document.\n",
"INFO: Preparing to split document for partition.\n",
"INFO: Given file doesn't have '.pdf' extension, so splitting is not enabled.\n",
"INFO: Partitioning without split.\n",
"INFO: Successfully partitioned the document.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"fake.docx : Lorem ipsum dolor sit amet.\n",
"fake-email.eml : Violets are blue\n"
]
}
],
"source": [
"loader = UnstructuredAPIFileLoader(\n",
" file_path=filenames,\n",
" api_key=\"FAKE_API_KEY\",\n",
"loader = UnstructuredLoader(\n",
" file_path=[\"example_data/fake.docx\", \"example_data/fake-email.eml\"],\n",
" api_key=os.getenv(\"UNSTRUCTURED_API_KEY\"),\n",
" partition_via_api=True,\n",
")\n",
"\n",
"docs = loader.load()\n",
"docs[0]"
"\n",
"print(docs[0].metadata[\"filename\"], \": \", docs[0].page_content[:100])\n",
"print(docs[-1].metadata[\"filename\"], \": \", docs[-1].page_content[:100])"
]
},
{
"cell_type": "markdown",
"id": "a324a0db",
"metadata": {},
"source": [
"### Unstructured SDK Client\n",
"\n",
"Partitioning with the Unstructured API relies on the [Unstructured SDK\n",
"Client](https://docs.unstructured.io/api-reference/api-services/sdk).\n",
"\n",
"Below is an example showing how you can customize some features of the client and use your own\n",
"`requests.Session()`, pass in an alternative `server_url`, or customize the `RetryConfig` object for more control over how failed requests are handled."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e510495",
"execution_count": 11,
"id": "58e55264",
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO: Preparing to split document for partition.\n",
"INFO: Concurrency level set to 5\n",
"INFO: Splitting pages 1 to 16 (16 total)\n",
"INFO: Determined optimal split size of 4 pages.\n",
"INFO: Partitioning 4 files with 4 page(s) each.\n",
"INFO: Partitioning set #1 (pages 1-4).\n",
"INFO: Partitioning set #2 (pages 5-8).\n",
"INFO: Partitioning set #3 (pages 9-12).\n",
"INFO: Partitioning set #4 (pages 13-16).\n",
"INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general \"HTTP/1.1 200 OK\"\n",
"INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general \"HTTP/1.1 200 OK\"\n",
"INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general \"HTTP/1.1 200 OK\"\n",
"INFO: Successfully partitioned set #1, elements added to the final result.\n",
"INFO: Successfully partitioned set #2, elements added to the final result.\n",
"INFO: Successfully partitioned set #3, elements added to the final result.\n",
"INFO: Successfully partitioned set #4, elements added to the final result.\n",
"INFO: Successfully partitioned the document.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"layout-parser-paper.pdf : LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis\n"
]
}
],
"source": [
"import requests\n",
"from langchain_unstructured import UnstructuredLoader\n",
"from unstructured_client import UnstructuredClient\n",
"from unstructured_client.utils import BackoffStrategy, RetryConfig\n",
"\n",
"client = UnstructuredClient(\n",
" api_key_auth=os.getenv(\n",
" \"UNSTRUCTURED_API_KEY\"\n",
" ), # Note: the client API param is \"api_key_auth\" instead of \"api_key\"\n",
" client=requests.Session(),\n",
" server_url=\"https://api.unstructuredapp.io/general/v0/general\",\n",
" retry_config=RetryConfig(\n",
" strategy=\"backoff\",\n",
" retry_connection_errors=True,\n",
" backoff=BackoffStrategy(\n",
" initial_interval=500,\n",
" max_interval=60000,\n",
" exponent=1.5,\n",
" max_elapsed_time=900000,\n",
" ),\n",
" ),\n",
")\n",
"\n",
"loader = UnstructuredLoader(\n",
" \"./example_data/layout-parser-paper.pdf\",\n",
" partition_via_api=True,\n",
" client=client,\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"print(docs[0].metadata[\"filename\"], \": \", docs[0].page_content[:100])"
]
},
{
"cell_type": "markdown",
"id": "c66fbeb3",
"metadata": {},
"source": [
"## Chunking\n",
"\n",
"The `UnstructuredLoader` does not support `mode` as parameter for grouping text like the older\n",
"loader `UnstructuredFileLoader` and others did. It instead supports \"chunking\". Chunking in\n",
"unstructured differs from other chunking mechanisms you may be familiar with that form chunks based\n",
"on plain-text features--character sequences like \"\\n\\n\" or \"\\n\" that might indicate a paragraph\n",
"boundary or list-item boundary. Instead, all documents are split using specific knowledge about each\n",
"document format to partition the document into semantic units (document elements) and we only need to\n",
"resort to text-splitting when a single element exceeds the desired maximum chunk size. In general,\n",
"chunking combines consecutive elements to form chunks as large as possible without exceeding the\n",
"maximum chunk size. Chunking produces a sequence of CompositeElement, Table, or TableChunk elements.\n",
"Each “chunk” is an instance of one of these three types.\n",
"\n",
"See this [page](https://docs.unstructured.io/open-source/core-functionality/chunking) for more\n",
"details about chunking options, but to reproduce the same behavior as `mode=\"single\"`, you can set\n",
"`chunking_strategy=\"basic\"`, `max_characters=<some-really-big-number>`, and `include_orig_elements=False`."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e9f1c20d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING: Partitioning locally even though api_key is defined since partition_via_api=False.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of LangChain documents: 1\n",
"Length of text in the document: 42772\n"
]
}
],
"source": [
"from langchain_unstructured import UnstructuredLoader\n",
"\n",
"loader = UnstructuredLoader(\n",
" \"./example_data/layout-parser-paper.pdf\",\n",
" chunking_strategy=\"basic\",\n",
" max_characters=1000000,\n",
" include_orig_elements=False,\n",
")\n",
"\n",
"docs = loader.load()\n",
"\n",
"print(\"Number of LangChain documents:\", len(docs))\n",
"print(\"Length of text in the document:\", len(docs[0].page_content))"
]
}
],
"metadata": {
@@ -397,7 +512,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.10.13"
}
},
"nbformat": 4,

View File

@@ -316,7 +316,7 @@
"id": "eb00a625-a6c9-4766-b3f0-eaed024851c9",
"metadata": {},
"source": [
"## Return SQARQL query\n",
"## Return SPARQL query\n",
"You can return the SPARQL query step from the Sparql QA Chain using the `return_sparql_query` parameter"
]
},
@@ -358,7 +358,7 @@
"\u001b[32;1m\u001b[1;3m[]\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"SQARQL query: PREFIX foaf: <http://xmlns.com/foaf/0.1/>\n",
"SPARQL query: PREFIX foaf: <http://xmlns.com/foaf/0.1/>\n",
"SELECT ?workHomepage\n",
"WHERE {\n",
" ?person foaf:name \"Tim Berners-Lee\" .\n",
@@ -370,7 +370,7 @@
],
"source": [
"result = chain(\"What is Tim Berners-Lee's work homepage?\")\n",
"print(f\"SQARQL query: {result['sparql_query']}\")\n",
"print(f\"SPARQL query: {result['sparql_query']}\")\n",
"print(f\"Final answer: {result['result']}\")"
]
},

File diff suppressed because it is too large Load Diff

View File

@@ -33,7 +33,7 @@
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet transformers --quiet"
"%pip install --upgrade --quiet transformers"
]
},
{

View File

@@ -194,12 +194,37 @@
")"
]
},
{
"cell_type": "markdown",
"id": "e4a1e0f1",
"metadata": {},
"source": [
"For certain requirements, there is an option to pass the IBM's [`APIClient`](https://ibm.github.io/watsonx-ai-python-sdk/base.html#apiclient) object into the `WatsonxLLM` class."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4b28afc1",
"metadata": {},
"outputs": [],
"source": [
"from ibm_watsonx_ai import APIClient\n",
"\n",
"api_client = APIClient(...)\n",
"\n",
"watsonx_llm = WatsonxLLM(\n",
" model_id=\"ibm/granite-13b-instruct-v2\",\n",
" watsonx_client=api_client,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7c4a632b",
"metadata": {},
"source": [
"You can also pass the IBM's [`ModelInference`](https://ibm.github.io/watsonx-ai-python-sdk/fm_model_inference.html) object into `WatsonxLLM` class."
"You can also pass the IBM's [`ModelInference`](https://ibm.github.io/watsonx-ai-python-sdk/fm_model_inference.html) object into the `WatsonxLLM` class."
]
},
{

View File

@@ -1,10 +1,21 @@
{
"cells": [
{
"cell_type": "markdown",
"cell_type": "raw",
"id": "67db2992",
"metadata": {},
"source": [
"# Ollama\n",
"---\n",
"sidebar_label: Ollama\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9597802c",
"metadata": {},
"source": [
"# OllamaLLM\n",
"\n",
":::caution\n",
"You are currently on a page documenting the use of Ollama models as [text completion models](/docs/concepts/#llms). Many popular Ollama models are [chat completion models](/docs/concepts/#chat-models).\n",
@@ -12,21 +23,35 @@
"You may be looking for [this page instead](/docs/integrations/chat/ollama/).\n",
":::\n",
"\n",
"[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as Llama 2, locally.\n",
"\n",
"Ollama bundles model weights, configuration, and data into a single package, defined by a Modelfile. \n",
"\n",
"It optimizes setup and configuration details, including GPU usage.\n",
"\n",
"For a complete list of supported models and model variants, see the [Ollama model library](https://github.com/ollama/ollama#model-library).\n",
"This page goes over how to use LangChain to interact with `Ollama` models.\n",
"\n",
"## Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59c710c4",
"metadata": {},
"outputs": [],
"source": [
"# install package\n",
"%pip install -U langchain-ollama"
]
},
{
"cell_type": "markdown",
"id": "0ee90032",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"First, follow [these instructions](https://github.com/ollama/ollama) to set up and run a local Ollama instance:\n",
"First, follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance:\n",
"\n",
"* [Download](https://ollama.ai/download) and install Ollama onto the available supported platforms (including Windows Subsystem for Linux)\n",
"* Fetch available LLM model via `ollama pull <name-of-model>`\n",
" * View a list of available models via the [model library](https://ollama.ai/library) and pull to use locally with the command `ollama pull llama3`\n",
" * View a list of available models via the [model library](https://ollama.ai/library)\n",
" * e.g., `ollama pull llama3`\n",
"* This will download the default tagged version of the model. Typically, the default points to the latest, smallest sized-parameter model.\n",
"\n",
"> On Mac, the models will be download to `~/.ollama/models`\n",
@@ -34,194 +59,67 @@
"> On Linux (or WSL), the models will be stored at `/usr/share/ollama/.ollama/models`\n",
"\n",
"* Specify the exact version of the model of interest as such `ollama pull vicuna:13b-v1.5-16k-q4_0` (View the [various tags for the `Vicuna`](https://ollama.ai/library/vicuna/tags) model in this instance)\n",
"* To view all pulled models on your local instance, use `ollama list`\n",
"* To view all pulled models, use `ollama list`\n",
"* To chat directly with a model from the command line, use `ollama run <name-of-model>`\n",
"* View the [Ollama documentation](https://github.com/ollama/ollama) for more commands. \n",
"* Run `ollama help` in the terminal to see available commands too.\n",
"* View the [Ollama documentation](https://github.com/jmorganca/ollama) for more commands. Run `ollama help` in the terminal to see available commands too.\n",
"\n",
"## Usage\n",
"\n",
"You can see a full list of supported parameters on the [API reference page](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.ollama.Ollama.html).\n",
"\n",
"If you are using a LLaMA `chat` model (e.g., `ollama pull llama3`) then you can use the `ChatOllama` [interface](https://python.langchain.com/v0.2/docs/integrations/chat/ollama/).\n",
"\n",
"This includes [special tokens](https://ollama.com/library/llama3) for system message and user input.\n",
"\n",
"## Interacting with Models \n",
"\n",
"Here are a few ways to interact with pulled local models\n",
"\n",
"#### In the terminal:\n",
"\n",
"* All of your local models are automatically served on `localhost:11434`\n",
"* Run `ollama run <name-of-model>` to start interacting via the command line directly\n",
"\n",
"#### Via the API\n",
"\n",
"Send an `application/json` request to the API endpoint of Ollama to interact.\n",
"\n",
"```bash\n",
"curl http://localhost:11434/api/generate -d '{\n",
" \"model\": \"llama3\",\n",
" \"prompt\":\"Why is the sky blue?\"\n",
"}'\n",
"```\n",
"\n",
"See the Ollama [API documentation](https://github.com/ollama/ollama/blob/main/docs/api.md) for all endpoints.\n",
"\n",
"#### via LangChain\n",
"\n",
"See a typical basic example of using [Ollama chat model](https://python.langchain.com/v0.2/docs/integrations/chat/ollama/) in your LangChain application."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install langchain-community"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Here's one:\\n\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything!\\n\\nHope that made you smile! Do you want to hear another one?\""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.llms import Ollama\n",
"\n",
"llm = Ollama(\n",
" model=\"llama3\"\n",
") # assuming you have Ollama installed and have llama3 model pulled with `ollama pull llama3 `\n",
"\n",
"llm.invoke(\"Tell me a joke\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To stream tokens, use the `.stream(...)` method:"
"## Usage"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"id": "035dea0f",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"S\n",
"ure\n",
",\n",
" here\n",
"'\n",
"s\n",
" one\n",
":\n",
"\n",
"\n",
"\n",
"\n",
"Why\n",
" don\n",
"'\n",
"t\n",
" scient\n",
"ists\n",
" trust\n",
" atoms\n",
"?\n",
"\n",
"\n",
"B\n",
"ecause\n",
" they\n",
" make\n",
" up\n",
" everything\n",
"!\n",
"\n",
"\n",
"\n",
"\n",
"I\n",
" hope\n",
" you\n",
" found\n",
" that\n",
" am\n",
"using\n",
"!\n",
" Do\n",
" you\n",
" want\n",
" to\n",
" hear\n",
" another\n",
" one\n",
"?\n",
"\n"
]
"data": {
"text/plain": [
"'A great start!\\n\\nLangChain is a type of AI model that uses language processing techniques to generate human-like text based on input prompts or chains of reasoning. In other words, it can have a conversation with humans, understanding the context and responding accordingly.\\n\\nHere\\'s a possible breakdown:\\n\\n* \"Lang\" likely refers to its focus on natural language processing (NLP) and linguistic analysis.\\n* \"Chain\" suggests that LangChain is designed to generate text in response to a series of connected ideas or prompts, rather than simply generating random text.\\n\\nSo, what do you think LangChain\\'s capabilities might be?'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"Tell me a joke\"\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_ollama.llms import OllamaLLM\n",
"\n",
"for chunks in llm.stream(query):\n",
" print(chunks)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To learn more about the LangChain Expressive Language and the available methods on an LLM, see the [LCEL Interface](/docs/concepts#interface)"
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"model = OllamaLLM(model=\"llama3\")\n",
"\n",
"chain = prompt | model\n",
"\n",
"chain.invoke({\"question\": \"What is LangChain?\"})"
]
},
{
"cell_type": "markdown",
"id": "e2d85456",
"metadata": {},
"source": [
"## Multi-modal\n",
"\n",
"Ollama has support for multi-modal LLMs, such as [bakllava](https://ollama.ai/library/bakllava) and [llava](https://ollama.ai/library/llava).\n",
"Ollama has support for multi-modal LLMs, such as [bakllava](https://ollama.com/library/bakllava) and [llava](https://ollama.com/library/llava).\n",
"\n",
"`ollama pull bakllava`\n",
" ollama pull bakllava\n",
"\n",
"Be sure to update Ollama so that you have the most recent version to support multi-modal."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import Ollama\n",
"\n",
"bakllava = Ollama(model=\"bakllava\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4043e202",
"metadata": {},
"outputs": [
{
@@ -279,7 +177,8 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 4,
"id": "79aaf863",
"metadata": {},
"outputs": [
{
@@ -288,38 +187,24 @@
"'90%'"
]
},
"execution_count": 8,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_image_context = bakllava.bind(images=[image_b64])\n",
"from langchain_ollama import OllamaLLM\n",
"\n",
"llm = OllamaLLM(model=\"bakllava\")\n",
"\n",
"llm_with_image_context = llm.bind(images=[image_b64])\n",
"llm_with_image_context.invoke(\"What is the dollar based gross retention rate:\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Concurrency Features\n",
"\n",
"Ollama supports concurrency inference for a single model, and or loading multiple models simulatenously (at least [version 0.1.33](https://github.com/ollama/ollama/releases)).\n",
"\n",
"Start the Ollama server with:\n",
"\n",
"* `OLLAMA_NUM_PARALLEL`: Handle multiple requests simultaneously for a single model\n",
"* `OLLAMA_MAX_LOADED_MODELS`: Load multiple models simultaneously\n",
"\n",
"Example: `OLLAMA_NUM_PARALLEL=4 OLLAMA_MAX_LOADED_MODELS=4 ollama serve`\n",
"\n",
"Learn more about configuring Ollama server in [the official guide](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-configure-ollama-server)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python 3.11.1 64-bit",
"language": "python",
"name": "python3"
},
@@ -333,9 +218,14 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
"version": "3.12.3"
},
"vscode": {
"interpreter": {
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
"nbformat_minor": 5
}

View File

@@ -50,8 +50,8 @@
"source": [
"import os\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain_community.llms import PipelineAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import PromptTemplate"
]
},
@@ -123,7 +123,7 @@
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
"llm_chain = prompt | llm | StrOutputParser()"
]
},
{
@@ -142,7 +142,7 @@
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
"llm_chain.invoke(question)"
]
}
],

View File

@@ -88,6 +88,7 @@
" \"max_tokens_to_generate\": 1000,\n",
" \"temperature\": 0.01,\n",
" \"select_expert\": \"llama-2-7b-chat-hf\",\n",
" \"process_prompt\": False,\n",
" # \"stop_sequences\": '\\\"sequence1\\\",\\\"sequence2\\\"',\n",
" # \"repetition_penalty\": 1.0,\n",
" # \"top_k\": 50,\n",
@@ -116,6 +117,7 @@
" \"max_tokens_to_generate\": 1000,\n",
" \"temperature\": 0.01,\n",
" \"select_expert\": \"llama-2-7b-chat-hf\",\n",
" \"process_prompt\": False,\n",
" # \"stop_sequences\": '\\\"sequence1\\\",\\\"sequence2\\\"',\n",
" # \"repetition_penalty\": 1.0,\n",
" # \"top_k\": 50,\n",
@@ -175,9 +177,7 @@
"import os\n",
"\n",
"sambastudio_base_url = \"<Your SambaStudio environment URL>\"\n",
"sambastudio_base_uri = (\n",
" \"<Your SambaStudio endpoint base URI>\" # optional, \"api/predict/nlp\" set as default\n",
")\n",
"sambastudio_base_uri = \"<Your SambaStudio endpoint base URI>\" # optional, \"api/predict/generic\" set as default\n",
"sambastudio_project_id = \"<Your SambaStudio project id>\"\n",
"sambastudio_endpoint_id = \"<Your SambaStudio endpoint id>\"\n",
"sambastudio_api_key = \"<Your SambaStudio endpoint API key>\"\n",
@@ -271,6 +271,7 @@
" \"do_sample\": True,\n",
" \"max_tokens_to_generate\": 1000,\n",
" \"temperature\": 0.01,\n",
" \"process_prompt\": False,\n",
" \"select_expert\": \"Meta-Llama-3-8B-Instruct\",\n",
" # \"repetition_penalty\": 1.0,\n",
" # \"top_k\": 50,\n",

View File

@@ -27,7 +27,7 @@
"outputs": [],
"source": [
"# Install the package\n",
"%pip install --upgrade --quiet dashscope"
"%pip install --upgrade --quiet langchain-community dashscope"
]
},
{

View File

@@ -0,0 +1,325 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a283d2fd-e26e-4811-a486-d3cf0ecf6749",
"metadata": {},
"source": [
"# Couchbase\n",
"> Couchbase is an award-winning distributed NoSQL cloud database that delivers unmatched versatility, performance, scalability, and financial value for all of your cloud, mobile, AI, and edge computing applications. Couchbase embraces AI with coding assistance for developers and vector search for their applications.\n",
"\n",
"This notebook goes over how to use the `CouchbaseChatMessageHistory` class to store the chat message history in a Couchbase cluster\n"
]
},
{
"cell_type": "markdown",
"id": "ff868a6c-3e17-4c3d-8d32-67b01f4d7bcc",
"metadata": {},
"source": [
"## Set Up Couchbase Cluster\n",
"To run this demo, you need a Couchbase Cluster. \n",
"\n",
"You can work with both [Couchbase Capella](https://www.couchbase.com/products/capella/) and your self-managed Couchbase Server."
]
},
{
"cell_type": "markdown",
"id": "41fa85e7-6968-45e4-a445-de305d80f332",
"metadata": {},
"source": [
"## Install Dependencies\n",
"`CouchbaseChatMessageHistory` lives inside the `langchain-couchbase` package. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b744ca05-b8c6-458c-91df-f50ca2c20b3c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --upgrade --quiet langchain-couchbase"
]
},
{
"cell_type": "markdown",
"id": "41f29205-6452-493b-ba18-8a3b006bcca4",
"metadata": {},
"source": [
"## Create Couchbase Connection Object\n",
"We create a connection to the Couchbase cluster initially and then pass the cluster object to the Vector Store. \n",
"\n",
"Here, we are connecting using the username and password. You can also connect using any other supported way to your cluster. \n",
"\n",
"For more information on connecting to the Couchbase cluster, please check the [Python SDK documentation](https://docs.couchbase.com/python-sdk/current/hello-world/start-using-sdk.html#connect)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f394908e-f5fe-408a-84d7-b97fdebcfa26",
"metadata": {},
"outputs": [],
"source": [
"COUCHBASE_CONNECTION_STRING = (\n",
" \"couchbase://localhost\" # or \"couchbases://localhost\" if using TLS\n",
")\n",
"DB_USERNAME = \"Administrator\"\n",
"DB_PASSWORD = \"Password\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ad4dce21-d80c-465a-b709-fd366ba5ce35",
"metadata": {},
"outputs": [],
"source": [
"from datetime import timedelta\n",
"\n",
"from couchbase.auth import PasswordAuthenticator\n",
"from couchbase.cluster import Cluster\n",
"from couchbase.options import ClusterOptions\n",
"\n",
"auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)\n",
"options = ClusterOptions(auth)\n",
"cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)\n",
"\n",
"# Wait until the cluster is ready for use.\n",
"cluster.wait_until_ready(timedelta(seconds=5))"
]
},
{
"cell_type": "markdown",
"id": "e3d0210c-e2e6-437a-86f3-7397a1899fef",
"metadata": {},
"source": [
"We will now set the bucket, scope, and collection names in the Couchbase cluster that we want to use for storing the message history.\n",
"\n",
"Note that the bucket, scope, and collection need to exist before using them to store the message history."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e8c7f846-a5c4-4465-a40e-4a9a23ac71bd",
"metadata": {},
"outputs": [],
"source": [
"BUCKET_NAME = \"langchain-testing\"\n",
"SCOPE_NAME = \"_default\"\n",
"COLLECTION_NAME = \"conversational_cache\""
]
},
{
"cell_type": "markdown",
"id": "283959e1-6af7-4768-9211-5b0facc6ef65",
"metadata": {},
"source": [
"## Usage\n",
"In order to store the messages, you need the following:\n",
"- Couchbase Cluster object: Valid connection to the Couchbase cluster\n",
"- bucket_name: Bucket in cluster to store the chat message history\n",
"- scope_name: Scope in bucket to store the message history\n",
"- collection_name: Collection in scope to store the message history\n",
"- session_id: Unique identifier for the session\n",
"\n",
"Optionally you can configure the following:\n",
"- session_id_key: Field in the chat message documents to store the `session_id`\n",
"- message_key: Field in the chat message documents to store the message content\n",
"- create_index: Used to specify if the index needs to be created on the collection. By default, an index is created on the `message_key` and the `session_id_key` of the documents"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "43c3b2d5-aae2-44a9-9e9f-f10adf054cfa",
"metadata": {},
"outputs": [],
"source": [
"from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory\n",
"\n",
"message_history = CouchbaseChatMessageHistory(\n",
" cluster=cluster,\n",
" bucket_name=BUCKET_NAME,\n",
" scope_name=SCOPE_NAME,\n",
" collection_name=COLLECTION_NAME,\n",
" session_id=\"test-session\",\n",
")\n",
"\n",
"message_history.add_user_message(\"hi!\")\n",
"\n",
"message_history.add_ai_message(\"how are you doing?\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e7e348ef-79e9-481c-aeef-969ae03dea6a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='hi!'), AIMessage(content='how are you doing?')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"message_history.messages"
]
},
{
"cell_type": "markdown",
"id": "c8b942a7-93fa-4cd9-8414-d047135c2733",
"metadata": {},
"source": [
"## Chaining\n",
"The chat message history class can be used with [LCEL Runnables](https://python.langchain.com/v0.2/docs/how_to/message_history/)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8a9f0d91-d1d6-481d-8137-ea11229f485a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "946d45aa-5a61-49ae-816b-1c3949c56d9a",
"metadata": {},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a helpful assistant.\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
")\n",
"\n",
"# Create the LCEL runnable\n",
"chain = prompt | ChatOpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "20dfd838-b549-42ed-b3ba-ac005f7e024c",
"metadata": {},
"outputs": [],
"source": [
"chain_with_history = RunnableWithMessageHistory(\n",
" chain,\n",
" lambda session_id: CouchbaseChatMessageHistory(\n",
" cluster=cluster,\n",
" bucket_name=BUCKET_NAME,\n",
" scope_name=SCOPE_NAME,\n",
" collection_name=COLLECTION_NAME,\n",
" session_id=session_id,\n",
" ),\n",
" input_messages_key=\"question\",\n",
" history_messages_key=\"history\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "17bd09f4-896d-433d-bb9a-369a06e7aa8a",
"metadata": {},
"outputs": [],
"source": [
"# This is where we configure the session id\n",
"config = {\"configurable\": {\"session_id\": \"testing\"}}"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "4bda1096-2fc2-40d7-a046-0d5d8e3a8f75",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello Bob! How can I assist you today?', response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 22, 'total_tokens': 32}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-a0f8a29e-ddf4-4e06-a1fe-cf8c325a2b72-0', usage_metadata={'input_tokens': 22, 'output_tokens': 10, 'total_tokens': 32})"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "1cfb31da-51bb-4c5f-909a-b7118b0ae08d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Your name is Bob.', response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 43, 'total_tokens': 48}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f764a9eb-999e-4042-96b6-fe47b7ae4779-0', usage_metadata={'input_tokens': 43, 'output_tokens': 5, 'total_tokens': 48})"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -40,6 +40,7 @@ These providers have standalone `langchain-{provider}` packages for improved ver
- [Qdrant](/docs/integrations/providers/qdrant)
- [Robocorp](/docs/integrations/providers/robocorp)
- [Together AI](/docs/integrations/providers/together)
- [Unstructured](/docs/integrations/providers/unstructured)
- [Upstage](/docs/integrations/providers/upstage)
- [Voyage AI](/docs/integrations/providers/voyageai)

View File

@@ -27,3 +27,85 @@ See a [usage example](/docs/integrations/document_loaders/couchbase).
```python
from langchain_community.document_loaders.couchbase import CouchbaseLoader
```
## LLM Caches
### CouchbaseCache
Use Couchbase as a cache for prompts and responses.
See a [usage example](/docs/integrations/llm_caching/#couchbase-cache).
To import this cache:
```python
from langchain_couchbase.cache import CouchbaseCache
```
To use this cache with your LLMs:
```python
from langchain_core.globals import set_llm_cache
cluster = couchbase_cluster_connection_object
set_llm_cache(
CouchbaseCache(
cluster=cluster,
bucket_name=BUCKET_NAME,
scope_name=SCOPE_NAME,
collection_name=COLLECTION_NAME,
)
)
```
### CouchbaseSemanticCache
Semantic caching allows users to retrieve cached prompts based on the semantic similarity between the user input and previously cached inputs. Under the hood it uses Couchbase as both a cache and a vectorstore.
The CouchbaseSemanticCache needs a Search Index defined to work. Please look at the [usage example](/docs/integrations/vectorstores/couchbase) on how to set up the index.
See a [usage example](/docs/integrations/llm_caching/#couchbase-semantic-cache).
To import this cache:
```python
from langchain_couchbase.cache import CouchbaseSemanticCache
```
To use this cache with your LLMs:
```python
from langchain_core.globals import set_llm_cache
# use any embedding provider...
from langchain_openai.Embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
cluster = couchbase_cluster_connection_object
set_llm_cache(
CouchbaseSemanticCache(
cluster=cluster,
embedding = embeddings,
bucket_name=BUCKET_NAME,
scope_name=SCOPE_NAME,
collection_name=COLLECTION_NAME,
index_name=INDEX_NAME,
)
)
```
## Chat Message History
Use Couchbase as the storage for your chat messages.
See a [usage example](/docs/integrations/memory/couchbase_chat_message_history).
To use the chat message history in your applications:
```python
from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory
message_history = CouchbaseChatMessageHistory(
cluster=cluster,
bucket_name=BUCKET_NAME,
scope_name=SCOPE_NAME,
collection_name=COLLECTION_NAME,
session_id="test-session",
)
message_history.add_user_message("hi!")
```

View File

@@ -0,0 +1,56 @@
# Dedoc
>[Dedoc](https://dedoc.readthedocs.io) is an [open-source](https://github.com/ispras/dedoc)
library/service that extracts texts, tables, attached files and document structure
(e.g., titles, list items, etc.) from files of various formats.
`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images and more.
Full list of supported formats can be found [here](https://dedoc.readthedocs.io/en/latest/#id1).
## Installation and Setup
### Dedoc library
You can install `Dedoc` using `pip`.
In this case, you will need to install dependencies,
please go [here](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html)
to get more information.
```bash
pip install dedoc
```
### Dedoc API
If you are going to use `Dedoc` API, you don't need to install `dedoc` library.
In this case, you should run the `Dedoc` service, e.g. `Docker` container (please see
[the documentation](https://dedoc.readthedocs.io/en/latest/getting_started/installation.html#install-and-run-dedoc-using-docker)
for more details):
```bash
docker pull dedocproject/dedoc
docker run -p 1231:1231
```
## Document Loader
* For handling files of any formats (supported by `Dedoc`), you can use `DedocFileLoader`:
```python
from langchain_community.document_loaders import DedocFileLoader
```
* For handling PDF files (with or without a textual layer), you can use `DedocPDFLoader`:
```python
from langchain_community.document_loaders import DedocPDFLoader
```
* For handling files of any formats without library installation,
you can use `Dedoc API` with `DedocAPIFileLoader`:
```python
from langchain_community.document_loaders import DedocAPIFileLoader
```
Please see a [usage example](/docs/integrations/document_loaders/dedoc) for more details.

View File

@@ -61,7 +61,7 @@ When ready to deploy, you can self-host models with NVIDIA NIM—which is includ
```python
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings, NVIDIARerank
# connect to an chat NIM running at localhost:8000, specifyig a specific model
# connect to a chat NIM running at localhost:8000, specifying a model
llm = ChatNVIDIA(base_url="http://localhost:8000/v1", model="meta/llama3-8b-instruct")
# connect to an embedding NIM running at localhost:8080

View File

@@ -38,7 +38,7 @@ import getpass
if "PREMAI_API_KEY" not in os.environ:
os.environ["PREMAI_API_KEY"] = getpass.getpass("PremAI API Key:")
chat = ChatPremAI(project_id=8)
chat = ChatPremAI(project_id=1234, model_name="gpt-4o")
```
### Chat Completions
@@ -50,7 +50,8 @@ The first one will give us a static result. Whereas the second one will stream t
```python
human_message = HumanMessage(content="Who are you?")
chat.invoke([human_message])
response = chat.invoke([human_message])
print(response.content)
```
You can provide system prompt here like this:
@@ -84,8 +85,8 @@ Repositories are also supported in langchain premai. Here is how you can do it.
```python
query = "what is the diameter of individual Galaxy"
repository_ids = [1991, ]
query = "Which models are used for dense retrieval"
repository_ids = [1985,]
repositories = dict(
ids=repository_ids,
similarity_threshold=0.3,
@@ -100,6 +101,8 @@ First we start by defining our repository with some repository ids. Make sure th
Now, we connect the repository with our chat object to invoke RAG based generations.
```python
import json
response = chat.invoke(query, max_tokens=100, repositories=repositories)
print(response.content)
@@ -109,25 +112,22 @@ print(json.dumps(response.response_metadata, indent=4))
This is how an output looks like.
```bash
The diameters of individual galaxies range from 80,000-150,000 light-years.
Dense retrieval models typically include:
1. **BERT-based Models**: Such as DPR (Dense Passage Retrieval) which uses BERT for encoding queries and passages.
2. **ColBERT**: A model that combines BERT with late interaction mechanisms.
3. **ANCE (Approximate Nearest Neighbor Negative Contrastive Estimation)**: Uses BERT and focuses on efficient retrieval.
4. **TCT-ColBERT**: A variant of ColBERT that uses a two-tower
{
"document_chunks": [
{
"repository_id": 19xx,
"document_id": 13xx,
"chunk_id": 173xxx,
"document_name": "Kegy 202 Chapter 2",
"similarity_score": 0.586126983165741,
"content": "n thousands\n of light-years. The diameters of individual\n galaxies range from 80,000-150,000 light\n "
},
{
"repository_id": 19xx,
"document_id": 13xx,
"chunk_id": 173xxx,
"document_name": "Kegy 202 Chapter 2",
"similarity_score": 0.4815782308578491,
"content": " for development of galaxies. A galaxy contains\n a large number of stars. Galaxies spread over\n vast distances that are measured in thousands\n "
},
"repository_id": 1985,
"document_id": 1306,
"chunk_id": 173899,
"document_name": "[D] Difference between sparse and dense informati\u2026",
"similarity_score": 0.3209080100059509,
"content": "with the difference or anywhere\nwhere I can read about it?\n\n\n 17 9\n\n\n u/ScotiabankCanada \u2022 Promoted\n\n\n Accelerate your study permit process\n with Scotiabank's Student GIC\n Program. We're here to help you tur\u2026\n\n\n startright.scotiabank.com Learn More\n\n\n Add a Comment\n\n\nSort by: Best\n\n\n DinosParkour \u2022 1y ago\n\n\n Dense Retrieval (DR) m"
}
]
}
```
@@ -202,7 +202,7 @@ Prem Templates are also available for Streaming too.
## Prem Embeddings
In this section we are going to dicuss how we can get access to different embedding model using `PremEmbeddings` with LangChain. Lets start by importing our modules and setting our API Key.
In this section we cover how we can get access to different embedding models using `PremEmbeddings` with LangChain. Let's start by importing our modules and setting our API Key.
```python
import os
@@ -264,4 +264,164 @@ doc_result[:5]
0.0008162345038726926,
-0.004556538071483374,
0.02918623760342598,
-0.02547479420900345]
-0.02547479420900345]
## Tool/Function Calling
LangChain PremAI supports tool/function calling. Tool/function calling allows a model to respond to a given prompt by generating output that matches a user-defined schema.
- You can learn all about tool calling in details [in our documentation here](https://docs.premai.io/get-started/function-calling).
- You can learn more about langchain tool calling in [this part of the docs](https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling).
**NOTE:**
> The current version of LangChain ChatPremAI do not support function/tool calling with streaming support. Streaming support along with function calling will come soon.
### Passing tools to model
In order to pass tools and let the LLM choose the tool it needs to call, we need to pass a tool schema. A tool schema is the function definition along with proper docstring on what does the function do, what each argument of the function is etc. Below are some simple arithmetic functions with their schema.
**NOTE:**
> When defining function/tool schema, do not forget to add information around the function arguments, otherwise it would throw error.
```python
from langchain_core.tools import tool
from langchain_core.pydantic_v1 import BaseModel, Field
# Define the schema for function arguments
class OperationInput(BaseModel):
a: int = Field(description="First number")
b: int = Field(description="Second number")
# Now define the function where schema for argument will be OperationInput
@tool("add", args_schema=OperationInput, return_direct=True)
def add(a: int, b: int) -> int:
"""Adds a and b.
Args:
a: first int
b: second int
"""
return a + b
@tool("multiply", args_schema=OperationInput, return_direct=True)
def multiply(a: int, b: int) -> int:
"""Multiplies a and b.
Args:
a: first int
b: second int
"""
return a * b
```
### Binding tool schemas with our LLM
We will now use the `bind_tools` method to convert our above functions to a "tool" and binding it with the model. This means we are going to pass these tool informations everytime we invoke the model.
```python
tools = [add, multiply]
llm_with_tools = chat.bind_tools(tools)
```
After this, we get the response from the model which is now binded with the tools.
```python
query = "What is 3 * 12? Also, what is 11 + 49?"
messages = [HumanMessage(query)]
ai_msg = llm_with_tools.invoke(messages)
```
As we can see, when our chat model is binded with tools, then based on the given prompt, it calls the correct set of the tools and sequentially.
```python
ai_msg.tool_calls
```
**Output**
```python
[{'name': 'multiply',
'args': {'a': 3, 'b': 12},
'id': 'call_A9FL20u12lz6TpOLaiS6rFa8'},
{'name': 'add',
'args': {'a': 11, 'b': 49},
'id': 'call_MPKYGLHbf39csJIyb5BZ9xIk'}]
```
We append this message shown above to the LLM which acts as a context and makes the LLM aware that what all functions it has called.
```python
messages.append(ai_msg)
```
Since tool calling happens into two phases, where:
1. in our first call, we gathered all the tools that the LLM decided to tool, so that it can get the result as an added context to give more accurate and hallucination free result.
2. in our second call, we will parse those set of tools decided by LLM and run them (in our case it will be the functions we defined, with the LLM's extracted arguments) and pass this result to the LLM
```python
from langchain_core.messages import ToolMessage
for tool_call in ai_msg.tool_calls:
selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
tool_output = selected_tool.invoke(tool_call["args"])
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
```
Finally, we call the LLM (binded with the tools) with the function response added in it's context.
```python
response = llm_with_tools.invoke(messages)
print(response.content)
```
**Output**
```txt
The final answers are:
- 3 * 12 = 36
- 11 + 49 = 60
```
### Defining tool schemas: Pydantic class `Optional`
Above we have shown how to define schema using `tool` decorator, however we can equivalently define the schema using Pydantic. Pydantic is useful when your tool inputs are more complex:
```python
from langchain_core.output_parsers.openai_tools import PydanticToolsParser
class add(BaseModel):
"""Add two integers together."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
class multiply(BaseModel):
"""Multiply two integers together."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
tools = [add, multiply]
```
Now, we can bind them to chat models and directly get the result:
```python
chain = llm_with_tools | PydanticToolsParser(tools=[multiply, add])
chain.invoke(query)
```
**Output**
```txt
[multiply(a=3, b=12), add(a=11, b=49)]
```
Now, as done above, we parse this and run this functions and call the LLM once again to get the result.

View File

@@ -21,7 +21,7 @@ whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain_qdrant import Qdrant
from langchain_qdrant import QdrantVectorStore
```
For a more detailed walkthrough of the Qdrant wrapper, see [this notebook](/docs/integrations/vectorstores/qdrant)

View File

@@ -21,7 +21,7 @@ For example
```python
from langchain_openai import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
import os
os.environ['OPENAI_API_BASE'] = "https://shale.live/v1"
@@ -35,10 +35,11 @@ template = """Question: {question}
prompt = PromptTemplate.from_template(template)
llm_chain = LLMChain(prompt=prompt, llm=llm)
llm_chain = prompt | llm | StrOutputParser()
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
llm_chain.run(question)
llm_chain.invoke(question)
```

View File

@@ -8,11 +8,21 @@ ecosystem within LangChain.
## Installation and Setup
If you are using a loader that runs locally, use the following steps to get `unstructured` and
its dependencies running locally.
If you are using a loader that runs locally, use the following steps to get `unstructured` and its
dependencies running.
- Install the Python SDK with `pip install unstructured`.
- You can install document specific dependencies with extras, i.e. `pip install "unstructured[docx]"`.
- For the smallest installation footprint and to take advantage of features not available in the
open-source `unstructured` package, install the Python SDK with `pip install unstructured-client`
along with `pip install langchain-unstructured` to use the `UnstructuredLoader` and partition
remotely against the Unstructured API. This loader lives
in a LangChain partner repo instead of the `langchain-community` repo and you will need an
`api_key`, which you can generate a free key [here](https://unstructured.io/api-key/).
- Unstructured's documentation for the sdk can be found here:
https://docs.unstructured.io/api-reference/api-services/sdk
- To run everything locally, install the open-source python package with `pip install unstructured`
along with `pip install langchain-community` and use the same `UnstructuredLoader` as mentioned above.
- You can install document specific dependencies with extras, e.g. `pip install "unstructured[docx]"`.
- To install the dependencies for all document types, use `pip install "unstructured[all-docs]"`.
- Install the following system dependencies if they are not already available on your system with e.g. `brew install` for Mac.
Depending on what document types you're parsing, you may not need all of these.
@@ -22,16 +32,11 @@ its dependencies running locally.
- `qpdf` (PDFs)
- `libreoffice` (MS Office docs)
- `pandoc` (EPUBs)
- When running locally, Unstructured also recommends using Docker [by following this
guide](https://docs.unstructured.io/open-source/installation/docker-installation) to ensure all
system dependencies are installed correctly.
When running locally, Unstructured also recommends using Docker [by following this guide](https://docs.unstructured.io/open-source/installation/docker-installation)
to ensure all system dependencies are installed correctly.
If you want to get up and running with less set up, you can
simply run `pip install unstructured` and use `UnstructuredAPIFileLoader` or
`UnstructuredAPIFileIOLoader`. That will process your document using the hosted Unstructured API.
The `Unstructured API` requires API keys to make requests.
The Unstructured API requires API keys to make requests.
You can request an API key [here](https://unstructured.io/api-key-hosted) and start using it today!
Checkout the README [here](https://github.com/Unstructured-IO/unstructured-api) here to get started making API calls.
We'd love to hear your feedback, let us know how it goes in our [community slack](https://join.slack.com/t/unstructuredw-kbe4326/shared_invite/zt-1x7cgo0pg-PTptXWylzPQF9xZolzCnwQ).
@@ -42,30 +47,21 @@ Check out the instructions
## Data Loaders
The primary usage of the `Unstructured` is in data loaders.
The primary usage of `Unstructured` is in data loaders.
### UnstructuredAPIFileIOLoader
### UnstructuredLoader
See a [usage example](/docs/integrations/document_loaders/unstructured_file#unstructured-api).
See a [usage example](/docs/integrations/document_loaders/unstructured_file) to see how you can use
this loader for both partitioning locally and remotely with the serverless Unstructured API.
```python
from langchain_community.document_loaders import UnstructuredAPIFileIOLoader
```
### UnstructuredAPIFileLoader
See a [usage example](/docs/integrations/document_loaders/unstructured_file#unstructured-api).
```python
from langchain_community.document_loaders import UnstructuredAPIFileLoader
from langchain_unstructured import UnstructuredLoader
```
### UnstructuredCHMLoader
`CHM` means `Microsoft Compiled HTML Help`.
See a usage example in the API documentation.
```python
from langchain_community.document_loaders import UnstructuredCHMLoader
```
@@ -119,15 +115,6 @@ See a [usage example](/docs/integrations/document_loaders/google_drive#passing-i
from langchain_community.document_loaders import UnstructuredFileIOLoader
```
### UnstructuredFileLoader
See a [usage example](/docs/integrations/document_loaders/unstructured_file).
```python
from langchain_community.document_loaders import UnstructuredFileLoader
```
### UnstructuredHTMLLoader
See a [usage example](/docs/how_to/document_loader_html).

View File

@@ -309,9 +309,9 @@
"documents = TextLoader(\"../../how_to/state_of_the_union.txt\").load()\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)\n",
"texts = text_splitter.split_documents(documents)\n",
"retriever = FAISS.from_documents(texts, CohereEmbeddings()).as_retriever(\n",
" search_kwargs={\"k\": 20}\n",
")\n",
"retriever = FAISS.from_documents(\n",
" texts, CohereEmbeddings(model=\"embed-english-v3.0\")\n",
").as_retriever(search_kwargs={\"k\": 20})\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = retriever.invoke(query)\n",
@@ -324,7 +324,8 @@
"metadata": {},
"source": [
"## Doing reranking with CohereRerank\n",
"Now let's wrap our base retriever with a `ContextualCompressionRetriever`. We'll add an `CohereRerank`, uses the Cohere rerank endpoint to rerank the returned results."
"Now let's wrap our base retriever with a `ContextualCompressionRetriever`. We'll add an `CohereRerank`, uses the Cohere rerank endpoint to rerank the returned results.\n",
"Do note that it is mandatory to specify the model name in CohereRerank!"
]
},
{
@@ -339,7 +340,7 @@
"from langchain_community.llms import Cohere\n",
"\n",
"llm = Cohere(temperature=0)\n",
"compressor = CohereRerank()\n",
"compressor = CohereRerank(model=\"rerank-english-v3.0\")\n",
"compression_retriever = ContextualCompressionRetriever(\n",
" base_compressor=compressor, base_retriever=retriever\n",
")\n",

View File

@@ -0,0 +1,135 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "661d5123-8ed2-4504-a846-7df0984e79f9",
"metadata": {},
"source": [
"# NanoPQ (Product Quantization)\n",
"\n",
">[Product Quantization algorithm (k-NN)](https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701) in brief is a quantization algorithm that helps in compression of database vectors which helps in semantic search when large datasets are involved. In a nutshell, the embedding is split into M subspaces which further goes through clustering. Upon clustering the vectors the centroid vector gets mapped to the vectors present in the each of the clusters of the subspace. \n",
"\n",
"This notebook goes over how to use a retriever that under the hood uses a Product Quantization which has been implemented by the [nanopq](https://github.com/matsui528/nanopq) package."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "68794637-c13b-4145-944f-3b0c2f1258f9",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community langchain-openai nanopq"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "39ecbf50-4623-4ee6-9c8e-fea5da21767e",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings\n",
"from langchain_community.retrievers import NanoPQRetriever"
]
},
{
"cell_type": "markdown",
"id": "c1ce742a-5085-408a-a2c2-4bae0f605880",
"metadata": {},
"source": [
"## Create New Retriever with Texts"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "6c80020e-bc9e-49e8-8f93-5f75fd823738",
"metadata": {},
"outputs": [],
"source": [
"retriever = NanoPQRetriever.from_texts(\n",
" [\"Great world\", \"great words\", \"world\", \"planets of the world\"],\n",
" SpacyEmbeddings(model_name=\"en_core_web_sm\"),\n",
" clusters=2,\n",
" subspace=2,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "743c26c1-0072-4e46-b41b-c28b3f1737c8",
"metadata": {},
"source": [
"## Use Retriever\n",
"\n",
"We can now use the retriever!"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f496de2d-9b8f-4f8b-a30f-279ef199259a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"M: 2, Ks: 2, metric : <class 'numpy.uint8'>, code_dtype: l2\n",
"iter: 20, seed: 123\n",
"Training the subspace: 0 / 2\n",
"Training the subspace: 1 / 2\n",
"Encoding the subspace: 0 / 2\n",
"Encoding the subspace: 1 / 2\n"
]
},
{
"data": {
"text/plain": [
"[Document(page_content='world'),\n",
" Document(page_content='Great world'),\n",
" Document(page_content='great words'),\n",
" Document(page_content='planets of the world')]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever.invoke(\"earth\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "617202a7-e3a6-49a8-b807-4b4d771159d5",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -40,7 +40,9 @@
"metadata": {},
"outputs": [],
"source": [
"embeddings = CohereEmbeddings(model=\"embed-english-light-v3.0\")"
"embeddings = CohereEmbeddings(\n",
" model=\"embed-english-light-v3.0\"\n",
") # It is mandatory to pass a model parameter to initialize the CohereEmbeddings object"
]
},
{

Some files were not shown because too many files have changed in this diff Show More