As the title says, I added more code splitters.
The implementation is trivial, so i don't add separate tests for each
splitter.
Let me know if any concerns.
Fixes # (issue)
https://github.com/hwchase17/langchain/issues/5170
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev @hwchase17
---------
Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
# Creates GitHubLoader (#5257)
GitHubLoader is a DocumentLoader that loads issues and PRs from GitHub.
Fixes#5257
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Added New Trello loader class and documentation
Simple Loader on top of py-trello wrapper.
With a board name you can pull cards and to do some field parameter
tweaks on load operation.
I included documentation and examples.
Included unit test cases using patch and a fixture for py-trello client
class.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add ToolException that a tool can throw
This is an optional exception that tool throws when execution error
occurs.
When this exception is thrown, the agent will not stop working,but will
handle the exception according to the handle_tool_error variable of the
tool,and the processing result will be returned to the agent as
observation,and printed in pink on the console.It can be used like this:
```python
from langchain.schema import ToolException
from langchain import LLMMathChain, SerpAPIWrapper, OpenAI
from langchain.agents import AgentType, initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)
llm_math_chain = LLMMathChain(llm=llm, verbose=True)
class Error_tool:
def run(self, s: str):
raise ToolException('The current search tool is not available.')
def handle_tool_error(error) -> str:
return "The following errors occurred during tool execution:"+str(error)
search_tool1 = Error_tool()
search_tool2 = SerpAPIWrapper()
tools = [
Tool.from_function(
func=search_tool1.run,
name="Search_tool1",
description="useful for when you need to answer questions about current events.You should give priority to using it.",
handle_tool_error=handle_tool_error,
),
Tool.from_function(
func=search_tool2.run,
name="Search_tool2",
description="useful for when you need to answer questions about current events",
return_direct=True,
)
]
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True,
handle_tool_errors=handle_tool_error)
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")
```

## Who can review?
- @vowelparrot
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# docs: ecosystem/integrations update
It is the first in a series of `ecosystem/integrations` updates.
The ecosystem/integrations list is missing many integrations.
I'm adding the missing integrations in a consistent format:
1. description of the integrated system
2. `Installation and Setup` section with 'pip install ...`, Key setup,
and other necessary settings
3. Sections like `LLM`, `Text Embedding Models`, `Chat Models`... with
links to correspondent examples and imports of the used classes.
This PR keeps new docs, that are presented in the
`docs/modules/models/text_embedding/examples` but missed in the
`ecosystem/integrations`. The next PRs will cover the next example
sections.
Also updated `integrations.rst`: added the `Dependencies` section with a
link to the packages used in LangChain.
## Who can review?
@hwchase17
@eyurtsev
@dev2049
# docs: ecosystem/integrations update 2
#5219 - part 1
The second part of this update (parts are independent of each other! no
overlap):
- added diffbot.md
- updated confluence.ipynb; added confluence.md
- updated college_confidential.md
- updated openai.md
- added blackboard.md
- added bilibili.md
- added azure_blob_storage.md
- added azlyrics.md
- added aws_s3.md
## Who can review?
@hwchase17@agola11
@agola11
@vowelparrot
@dev2049
# Implemented appending arbitrary messages to the base chat message
history, the in-memory and cosmos ones.
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
As discussed this is the alternative way instead of #4480, with a
add_message method added that takes a BaseMessage as input, so that the
user can control what is in the base message like kwargs.
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Removed deprecated llm attribute for load_chain
Currently `load_chain` for some chain types expect `llm` attribute to be
present but `llm` is deprecated attribute for those chains and might not
be persisted during their `chain.save`.
Fixes#5224
[(issue)](https://github.com/hwchase17/langchain/issues/5224)
## Who can review?
@hwchase17
@dev2049
---------
Co-authored-by: imeckr <chandanroutray2012@gmail.com>
# Update llamacpp demonstration notebook
Add instructions to install with BLAS backend, and update the example of
model usage.
Fixes#5071. However, it is more like a prevention of similar issues in
the future, not a fix, since there was no problem in the framework
functionality
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @agola11
# Fix for `update_document` Function in Chroma
## Summary
This pull request addresses an issue with the `update_document` function
in the Chroma class, as described in
[#5031](https://github.com/hwchase17/langchain/issues/5031#issuecomment-1562577947).
The issue was identified as an `AttributeError` raised when calling
`update_document` due to a missing corresponding method in the
`Collection` object. This fix refactors the `update_document` method in
`Chroma` to correctly interact with the `Collection` object.
## Changes
1. Fixed the `update_document` method in the `Chroma` class to correctly
call methods on the `Collection` object.
2. Added the corresponding test `test_chroma_update_document` in
`tests/integration_tests/vectorstores/test_chroma.py` to reflect the
updated method call.
3. Added an example and explanation of how to use the `update_document`
function in the Jupyter notebook tutorial for Chroma.
## Test Plan
All existing tests pass after this change. In addition, the
`test_chroma_update_document` test case now correctly checks the
functionality of `update_document`, ensuring that the function works as
expected and updates the content of documents correctly.
## Reviewers
@dev2049
This fix will ensure that users are able to use the `update_document`
function as expected, without encountering the previous
`AttributeError`. This will enhance the usability and reliability of the
Chroma class for all users.
Thank you for considering this pull request. I look forward to your
feedback and suggestions.
# Add async support for (LLM) routing chains
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Add asynchronous LLM calls support for the routing chains. More
specifically:
- Add async `aroute` function (i.e. async version of `route`) to the
`RouterChain` which calls the routing LLM asynchronously
- Implement the async `_acall` for the `LLMRouterChain`
- Implement the async `_acall` function for `MultiRouteChain` which
first calls asynchronously the routing chain with its new `aroute`
function, and then calls asynchronously the relevant destination chain.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
- @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Async
- @agola11
-->
# Fix lost mimetype when using Blob.from_data method
The mimetype is lost due to a typo in the class attribue name
Fixes # - (no issue opened but I can open one if needed)
## Changes
* Fixed typo in name
* Added unit-tests to validate the output Blob
## Review
@eyurtsev
We shouldn't be calling a constructor for a default value - should use
default_factory instead. This is especially ad in this case since it
requires an optional dependency and an API key to be set.
Resolves#5361
# Fix: Handle empty documents in ContextualCompressionRetriever (Issue
#5304)
Fixes#5304
Prevent cohere.error.CohereAPIError caused by an empty list of documents
by adding a condition to check if the input documents list is empty in
the compress_documents method. If the list is empty, return an empty
list immediately, avoiding the error and unnecessary processing.
@dev2049
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add path validation to DirectoryLoader
This PR introduces a minor adjustment to the DirectoryLoader by adding
validation for the path argument. Previously, if the provided path
didn't exist or wasn't a directory, DirectoryLoader would return an
empty document list due to the behavior of the `glob` method. This could
potentially cause confusion for users, as they might expect a
file-loading error instead.
So, I've added two validations to the load method of the
DirectoryLoader:
- Raise a FileNotFoundError if the provided path does not exist
- Raise a ValueError if the provided path is not a directory
Due to the relatively small scope of these changes, a new issue was not
created.
## Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev
# Remove re-use of iter within add_embeddings causing error
As reported in https://github.com/hwchase17/langchain/issues/5336 there
is an issue currently involving the atempted re-use of an iterator
within the FAISS vectorstore adapter
Fixes # https://github.com/hwchase17/langchain/issues/5336
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
VectorStores / Retrievers / Memory
- @dev2049
# Add SKLearnVectorStore
This PR adds SKLearnVectorStore, a simply vector store based on
NearestNeighbors implementations in the scikit-learn package. This
provides a simple drop-in vector store implementation with minimal
dependencies (scikit-learn is typically installed in a data scientist /
ml engineer environment). The vector store can be persisted and loaded
from json, bson and parquet format.
SKLearnVectorStore has soft (dynamic) dependency on the scikit-learn,
numpy and pandas packages. Persisting to bson requires the bson package,
persisting to parquet requires the pyarrow package.
## Before submitting
Integration tests are provided under
`tests/integration_tests/vectorstores/test_sklearn.py`
Sample usage notebook is provided under
`docs/modules/indexes/vectorstores/examples/sklear.ipynb`
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Added the ability to pass kwargs to cosmos client constructor
The cosmos client has a ton of options that can be set, so allowing
those to be passed to the constructor from the chat memory constructor
with this PR.
# Sample Notebook for DynamoDB Chat Message History
@dev2049
Adding a sample notebook for the DynamoDB Chat Message History class.
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
# remove empty lines in GenerativeAgentMemory that cause
InvalidRequestError in OpenAIEmbeddings
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Let's say the text given to `GenerativeAgent._parse_list` is
```
text = """
Insight 1: <insight 1>
Insight 2: <insight 2>
"""
```
This creates an `openai.error.InvalidRequestError: [''] is not valid
under any of the given schemas - 'input'` because
`GenerativeAgent.add_memory()` tries to add an empty string to the
vectorstore.
This PR fixes the issue by removing the empty line between `Insight 1`
and `Insight 2`
## Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
@hwchase17
@vowelparrot
@dev2049
Fixed the issue of blank Thoughts being printed in verbose when
`handle_parsing_errors=True`, as below:
Before Fix:
```
Observation: There are 38175 accounts available in the dataframe.
Thought:
Observation: Invalid or incomplete response
Thought:
Observation: Invalid or incomplete response
Thought:
```
After Fix:
```
Observation: There are 38175 accounts available in the dataframe.
Thought:AI: {
"action": "Final Answer",
"action_input": "There are 38175 accounts available in the dataframe."
}
Observation: Invalid Action or Action Input format
Thought:AI: {
"action": "Final Answer",
"action_input": "The number of available accounts is 38175."
}
Observation: Invalid Action or Action Input format
```
@vowelparrot currently I have set the colour of thought to green (same
as the colour when `handle_parsing_errors=False`). If you want to change
the colour of this "_Exception" case to red or something else (when
`handle_parsing_errors=True`), feel free to change it in line 789.
# docs: improve flow of llm caching notebook
The notebook `llm_caching` demos various caching providers. In the
previous version, there was setup common to all examples but under the
`In Memory Caching` heading.
If a user comes and only wants to try a particular example, they will
run the common setup, then the cells for the specific provider they are
interested in. Then they will get import and variable reference errors.
This commit moves the common setup to the top to avoid this.
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@dev2049
# Better docs for weaviate hybrid search
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes: NA
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
@dev2049
# Fixed passing creds to VertexAI LLM
Fixes #5279
It looks like we should drop a type annotation for Credentials.
Co-authored-by: Leonid Kuligin <kuligin@google.com>
# Update contribution guidelines and PR template
This PR updates the contribution guidelines to include more information
on how to handle optional dependencies.
The PR template is updated to include a link to the contribution guidelines document.
# Add example to LLMMath to help with power operator
Add example to LLMMath that helps the model to interpret `^` as the power operator rather than the python xor operator.
This PR adds LLM wrapper for Databricks. It supports two endpoint types:
* serving endpoint
* cluster driver proxy app
An integration notebook is included to show how it works.
Co-authored-by: Davis Chase <130488702+dev2049@users.noreply.github.com>
Co-authored-by: Gengliang Wang <gengliang@apache.org>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Fixed typo: 'ouput' to 'output' in all documentation
In this instance, the typo 'ouput' was amended to 'output' in all
occurrences within the documentation. There are no dependencies required
for this change.
# Add Momento as a standard cache and chat message history provider
This PR adds Momento as a standard caching provider. Implements the
interface, adds integration tests, and documentation. We also add
Momento as a chat history message provider along with integration tests,
and documentation.
[Momento](https://www.gomomento.com/) is a fully serverless cache.
Similar to S3 or DynamoDB, it requires zero configuration,
infrastructure management, and is instantly available. Users sign up for
free and get 50GB of data in/out for free every month.
## Before submitting
✅ We have added documentation, notebooks, and integration tests
demonstrating usage.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Your PR Title (What it does)
Adding an if statement to deal with bigquery sql dialect. When I use
bigquery dialect before, it failed while using SET search_path TO. So
added a condition to set dataset as the schema parameter which is
equivalent to SET search_path TO . I have tested and it works.
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@dev2049
The current `HuggingFacePipeline.from_model_id` does not allow passing
of pipeline arguments to the transformer pipeline.
This PR enables adding important pipeline parameters like setting
`max_new_tokens` for example.
Previous to this PR it would be necessary to manually create the
pipeline through huggingface transformers then handing it to langchain.
For example instead of this
```py
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe)
```
You can write this
```py
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}
)
```
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Add Multi-CSV/DF support in CSV and DataFrame Toolkits
* CSV and DataFrame toolkits now accept list of CSVs/DFs
* Add default prompts for many dataframes in `pandas_dataframe` toolkit
Fixes#1958
Potentially fixes#4423
## Testing
* Add single and multi-dataframe integration tests for
`pandas_dataframe` toolkit with permutations of `include_df_in_prompt`
* Add single and multi-CSV integration tests for csv toolkit
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Add C Transformers for GGML Models
I created Python bindings for the GGML models:
https://github.com/marella/ctransformers
Currently it supports GPT-2, GPT-J, GPT-NeoX, LLaMA, MPT, etc. See
[Supported
Models](https://github.com/marella/ctransformers#supported-models).
It provides a unified interface for all models:
```python
from langchain.llms import CTransformers
llm = CTransformers(model='/path/to/ggml-gpt-2.bin', model_type='gpt2')
print(llm('AI is going to'))
```
It can be used with models hosted on the Hugging Face Hub:
```py
llm = CTransformers(model='marella/gpt-2-ggml')
```
It supports streaming:
```py
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = CTransformers(model='marella/gpt-2-ggml', callbacks=[StreamingStdOutCallbackHandler()])
```
Please see [README](https://github.com/marella/ctransformers#readme) for
more details.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
zep-python's sync methods no longer need an asyncio wrapper. This was
causing issues with FastAPI deployment.
Zep also now supports putting and getting of arbitrary message metadata.
Bump zep-python version to v0.30
Remove nest-asyncio from Zep example notebooks.
Modify tests to include metadata.
---------
Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
Fixes a regression in JoplinLoader that was introduced during the code
review (bad `page` wildcard in _get_note_url).
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@dev2049
@leo-gan
For most queries it's the `size` parameter that determines final number
of documents to return. Since our abstractions refer to this as `k`, set
this to be `k` everywhere instead of expecting a separate param. Would
be great to have someone more familiar with OpenSearch validate that
this is reasonable (e.g. that having `size` and what OpenSearch calls
`k` be the same won't lead to any strange behavior). cc @naveentatikonda
Closes#5212
# Resolve error in StructuredOutputParser docs
Documentation for `StructuredOutputParser` currently not reproducible,
that is, `output_parser.parse(output)` raises an error because the LLM
returns a response with an invalid format
```python
_input = prompt.format_prompt(question="what's the capital of france")
output = model(_input.to_string())
output
# ?
#
# ```json
# {
# "answer": "Paris",
# "source": "https://www.worldatlas.com/articles/what-is-the-capital-of-france.html"
# }
# ```
```
Was fixed by adding a question mark to the prompt
# Add QnA with sources example
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes: see
https://stackoverflow.com/questions/76207160/langchain-doesnt-work-with-weaviate-vector-database-getting-valueerror/76210017#76210017
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
@dev2049
# Bibtex integration
Wrap bibtexparser to retrieve a list of docs from a bibtex file.
* Get the metadata from the bibtex entries
* `page_content` get from the local pdf referenced in the `file` field
of the bibtex entry using `pymupdf`
* If no valid pdf file, `page_content` set to the `abstract` field of
the bibtex entry
* Support Zotero flavour using regex to get the file path
* Added usage example in
`docs/modules/indexes/document_loaders/examples/bibtex.ipynb`
---------
Co-authored-by: Sébastien M. Popoff <sebastien.popoff@espci.fr>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Allow to specify ID when adding to the FAISS vectorstore
This change allows unique IDs to be specified when adding documents /
embeddings to a faiss vectorstore.
- This reflects the current approach with the chroma vectorstore.
- It allows rejection of inserts on duplicate IDs
- will allow deletion / update by searching on deterministic ID (such as
a hash).
- If not specified, a random UUID is generated (as per previous
behaviour, so non-breaking).
This commit fixes#5065 and #3896 and should fix#2699 indirectly. I've
tested adding and merging.
Kindly tagging @Xmaster6y @dev2049 for review.
---------
Co-authored-by: Ati Sharma <ati@agalmic.ltd>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Change Default GoogleDriveLoader Behavior to not Load Trashed Files
(issue #5104)
Fixes#5104
If the previous behavior of loading files that used to live in the
folder, but are now trashed, you can use the `load_trashed_files`
parameter:
```
loader = GoogleDriveLoader(
folder_id="1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5",
recursive=False,
load_trashed_files=True
)
```
As not loading trashed files should be expected behavior, should we
1. even provide the `load_trashed_files` parameter?
2. add documentation? Feels most users will stick with default behavior
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
DataLoaders
- @eyurtsev
Twitter: [@nicholasliu77](https://twitter.com/nicholasliu77)
I found an API key for `serpapi_api_key` while reading the docs. It
seems to have been modified very recently. Removed it in this PR
@hwchase17 - project lead
Copies `GraphIndexCreator.from_text()` to make an async version called
`GraphIndexCreator.afrom_text()`.
This is (should be) a trivial change: it just adds a copy of
`GraphIndexCreator.from_text()` which is async and awaits a call to
`chain.apredict()` instead of `chain.predict()`. There is no unit test
for GraphIndexCreator, and I did not create one, but this code works for
me locally.
@agola11 @hwchase17
# fix a mistake in concepts.md
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
Example:
```
$ langchain plus start --expose
...
$ langchain plus status
The LangChainPlus server is currently running.
Service Status Published Ports
langchain-backend Up 40 seconds 1984
langchain-db Up 41 seconds 5433
langchain-frontend Up 40 seconds 80
ngrok Up 41 seconds 4040
To connect, set the following environment variables in your LangChain application:
LANGCHAIN_TRACING_V2=true
LANGCHAIN_ENDPOINT=https://5cef-70-23-89-158.ngrok.io
$ langchain plus stop
$ langchain plus status
The LangChainPlus server is not running.
$ langchain plus start
The LangChainPlus server is currently running.
Service Status Published Ports
langchain-backend Up 5 seconds 1984
langchain-db Up 6 seconds 5433
langchain-frontend Up 5 seconds 80
To connect, set the following environment variables in your LangChain application:
LANGCHAIN_TRACING_V2=true
LANGCHAIN_ENDPOINT=http://localhost:1984
```
# Add Joplin document loader
[Joplin](https://joplinapp.org/) is an open source note-taking app.
Joplin has a [REST API](https://joplinapp.org/api/references/rest_api/)
for accessing its local database. The proposed `JoplinLoader` uses the
API to retrieve all notes in the database and their metadata. Joplin
needs to be installed and running locally, and an access token is
required.
- The PR includes an integration test.
- The PR includes an example notebook.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
## Description
The html structure of readthedocs can differ. Currently, the html tag is
hardcoded in the reader, and unable to fit into some cases. This pr
includes the following changes:
1. Replace `find_all` with `find` because we just want one tag.
2. Provide `custom_html_tag` to the loader.
3. Add tests for readthedoc loader
4. Refactor code
## Issues
See more in https://github.com/hwchase17/langchain/pull/2609. The
problem was not completely fixed in that pr.
---------
Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Output parsing variation allowance for self-ask with search
This change makes self-ask with search easier for Llama models to
follow, as they tend toward returning 'Followup:' instead of 'Follow
up:' despite an otherwise valid remaining output.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
`vectorstore.PGVector`: The transactional boundary should be increased
to cover the query itself
Currently, within the `similarity_search_with_score_by_vector` the
transactional boundary (created via the `Session` call) does not include
the select query being made.
This can result in un-intended consequences when interacting with the
PGVector instance methods directly
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# OpanAI finetuned model giving zero tokens cost
Very simple fix to the previously committed solution to allowing
finetuned Openai models.
Improves #5127
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Improve Cypher QA prompt
The current QA prompt is optimized for networkX answer generation, which
returns all the possible triples.
However, Cypher search is a bit more focused and doesn't necessary
return all the context information.
Due to that reason, the model sometimes refuses to generate an answer
even though the information is provided:

To fix this issue, I have updated the prompt. Interestingly, I tried
many variations with less instructions and they didn't work properly.
However, the current fix works nicely.

# Reuse `length_func` in `MapReduceDocumentsChain`
Pretty straightforward refactor in `MapReduceDocumentsChain`. Reusing
the local variable `length_func`, instead of the longer alternative
`self.combine_document_chain.prompt_length`.
@hwchase17
# Beam
Calls the Beam API wrapper to deploy and make subsequent calls to an
instance of the gpt2 LLM in a cloud deployment. Requires installation of
the Beam library and registration of Beam Client ID and Client Secret.
Additional calls can then be made through the instance of the large
language model in your code or by calling the Beam API.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Vectara Integration
This PR provides integration with Vectara. Implemented here are:
* langchain/vectorstore/vectara.py
* tests/integration_tests/vectorstores/test_vectara.py
* langchain/retrievers/vectara_retriever.py
And two IPYNB notebooks to do more testing:
* docs/modules/chains/index_examples/vectara_text_generation.ipynb
* docs/modules/indexes/vectorstores/examples/vectara.ipynb
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# DOCS added missed document_loader examples
Added missed examples: `JSON`, `Open Document Format (ODT)`,
`Wikipedia`, `tomarkdown`.
Updated them to a consistent format.
## Who can review?
@hwchase17
@dev2049
# Clarification of the reference to the "get_text_legth" function in
getting_started.md
Reference to the function "get_text_legth" in the documentation did not
make sense. Comment added for clarification.
@hwchase17
# Docs: updated getting_started.md
Just accommodating some unnecessary spaces in the example of "pass few
shot examples to a prompt template".
@vowelparrot
# Same as PR #5045, but for async
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes#4825
I had forgotten to update the asynchronous counterpart `aadd_documents`
with the bug fix from PR #5045, so this PR also fixes `aadd_documents`
too.
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@dev2049
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
# Add async versions of predict() and predict_messages()
#4615 introduced a unifying interface for "base" and "chat" LLM models
via the new `predict()` and `predict_messages()` methods that allow both
types of models to operate on string and message-based inputs,
respectively.
This PR adds async versions of the same (`apredict()` and
`apredict_messages()`) that are identical except for their use of
`agenerate()` in place of `generate()`, which means they repurpose all
existing work on the async backend.
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@hwchase17 (follows his work on #4615)
@agola11 (async)
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Check whether 'other' is empty before popping
This PR could fix a potential 'popping empty set' error.
Co-authored-by: Junlin Zhou <jlzhou@zjuici.com>
# Add MosaicML inference endpoints
This PR adds support in langchain for MosaicML inference endpoints. We
both serve a select few open source models, and allow customers to
deploy their own models using our inference service. Docs are here
(https://docs.mosaicml.com/en/latest/inference.html), and sign up form
is here (https://forms.mosaicml.com/demo?utm_source=langchain). I'm not
intimately familiar with the details of langchain, or the contribution
process, so please let me know if there is anything that needs fixing or
this is the wrong way to submit a new integration, thanks!
I'm also not sure what the procedure is for integration tests. I have
tested locally with my api key.
## Who can review?
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR introduces a new module, `elasticsearch_embeddings.py`, which
provides a wrapper around Elasticsearch embedding models. The new
ElasticsearchEmbeddings class allows users to generate embeddings for
documents and query texts using a [model deployed in an Elasticsearch
cluster](https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-model-ref.html#ml-nlp-model-ref-text-embedding).
### Main features:
1. The ElasticsearchEmbeddings class initializes with an Elasticsearch
connection object and a model_id, providing an interface to interact
with the Elasticsearch ML client through
[infer_trained_model](https://elasticsearch-py.readthedocs.io/en/v8.7.0/api.html?highlight=trained%20model%20infer#elasticsearch.client.MlClient.infer_trained_model)
.
2. The `embed_documents()` method generates embeddings for a list of
documents, and the `embed_query()` method generates an embedding for a
single query text.
3. The class supports custom input text field names in case the deployed
model expects a different field name than the default `text_field`.
4. The implementation is compatible with any model deployed in
Elasticsearch that generates embeddings as output.
### Benefits:
1. Simplifies the process of generating embeddings using Elasticsearch
models.
2. Provides a clean and intuitive interface to interact with the
Elasticsearch ML client.
3. Allows users to easily integrate Elasticsearch-generated embeddings.
Related issue https://github.com/hwchase17/langchain/issues/3400
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Some LLM's will produce numbered lists with leading whitespace, i.e. in
response to "What is the sum of 2 and 3?":
```
Plan:
1. Add 2 and 3.
2. Given the above steps taken, please respond to the users original question.
```
This commit updates the PlanningOutputParser regex to ignore leading
whitespace before the step number, enabling it to correctly parse this
format.
# Allowing openAI fine-tuned models
Very simple fix that checks whether a openAI `model_name` is a
fine-tuned model when loading `context_size` and when computing call's
cost in the `openai_callback`.
Fixes#2887
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Fix typo + add wikipedia package installation part in
human_input_llm.ipynb
This PR
1. Fixes typo ("the the human input LLM"),
2. Addes wikipedia package installation part (in accordance with
`WikipediaQueryRun`
[documentation](https://python.langchain.com/en/latest/modules/agents/tools/examples/wikipedia.html))
in `human_input_llm.ipynb`
(`docs/modules/models/llms/examples/human_input_llm.ipynb`)
# Add link to Psychic from document loaders documentation page
In my previous PR I forgot to update `document_loaders.rst` to link to
`psychic.ipynb` to make it discoverable from the main documentation.
# Add AzureCognitiveServicesToolkit to call Azure Cognitive Services
API: achieve some multimodal capabilities
This PR adds a toolkit named AzureCognitiveServicesToolkit which bundles
the following tools:
- AzureCogsImageAnalysisTool: calls Azure Cognitive Services image
analysis API to extract caption, objects, tags, and text from images.
- AzureCogsFormRecognizerTool: calls Azure Cognitive Services form
recognizer API to extract text, tables, and key-value pairs from
documents.
- AzureCogsSpeech2TextTool: calls Azure Cognitive Services speech to
text API to transcribe speech to text.
- AzureCogsText2SpeechTool: calls Azure Cognitive Services text to
speech API to synthesize text to speech.
This toolkit can be used to process image, document, and audio inputs.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add a WhyLabs callback handler
* Adds a simple WhyLabsCallbackHandler
* Add required dependencies as optional
* protect against missing modules with imports
* Add docs/ecosystem basic example
based on initial prototype from @andrewelizondo
> this integration gathers privacy preserving telemetry on text with
whylogs and sends stastical profiles to WhyLabs platform to monitoring
these metrics over time. For more information on what WhyLabs is see:
https://whylabs.ai
After you run the notebook (if you have env variables set for the API
Keys, org_id and dataset_id) you get something like this in WhyLabs:

Co-authored-by: Andre Elizondo <andre@whylabs.ai>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Improve TextSplitter.split_documents, collect page_content and
metadata in one iteration
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev In the case where documents is a generator that can only be
iterated once making this change is a huge help. Otherwise a silent
issue happens where metadata is empty for all documents when documents
is a generator. So we expand the argument from `List[Document]` to
`Union[Iterable[Document], Sequence[Document]]`
---------
Co-authored-by: Steven Tartakovsky <tartakovsky.developer@gmail.com>
Implementation is similar to search_distance and where_filter
# adds 'additional' support to Weaviate queries
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
OpenLM is a zero-dependency OpenAI-compatible LLM provider that can call
different inference endpoints directly via HTTP. It implements the
OpenAI Completion class so that it can be used as a drop-in replacement
for the OpenAI API. This changeset utilizes BaseOpenAI for minimal added
code.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add Mastodon toots loader.
Loader works either with public toots, or Mastodon app credentials. Toot
text and user info is loaded.
I've also added integration test for this new loader as it works with
public data, and a notebook with example output run now.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Assign `current_time` to `datetime.now()` if it `current_time is None`
in `time_weighted_retriever`
Fixes#4825
As implemented, `add_documents` in `TimeWeightedVectorStoreRetriever`
assigns `doc.metadata["last_accessed_at"]` and
`doc.metadata["created_at"]` to `datetime.datetime.now()` if
`current_time` is not in `kwargs`.
```python
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
"""Add documents to vectorstore."""
current_time = kwargs.get("current_time", datetime.datetime.now())
# Avoid mutating input documents
dup_docs = [deepcopy(d) for d in documents]
for i, doc in enumerate(dup_docs):
if "last_accessed_at" not in doc.metadata:
doc.metadata["last_accessed_at"] = current_time
if "created_at" not in doc.metadata:
doc.metadata["created_at"] = current_time
doc.metadata["buffer_idx"] = len(self.memory_stream) + i
self.memory_stream.extend(dup_docs)
return self.vectorstore.add_documents(dup_docs, **kwargs)
```
However, from the way `add_documents` is being called from
`GenerativeAgentMemory`, `current_time` is set as a `kwarg`, but it is
given a value of `None`:
```python
def add_memory(
self, memory_content: str, now: Optional[datetime] = None
) -> List[str]:
"""Add an observation or memory to the agent's memory."""
importance_score = self._score_memory_importance(memory_content)
self.aggregate_importance += importance_score
document = Document(
page_content=memory_content, metadata={"importance": importance_score}
)
result = self.memory_retriever.add_documents([document], current_time=now)
```
The default of `now` was set in #4658 to be None. The proposed fix is
the following:
```python
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
"""Add documents to vectorstore."""
current_time = kwargs.get("current_time", datetime.datetime.now())
# `current_time` may exist in kwargs, but may still have the value of None.
if current_time is None:
current_time = datetime.datetime.now()
```
Alternatively, we could just set the default of `now` to be
`datetime.datetime.now()` everywhere instead. Thoughts @hwchase17? If we
still want to keep the default to be `None`, then this PR should fix the
above issue. If we want to set the default to be
`datetime.datetime.now()` instead, I can update this PR with that
alternative fix. EDIT: seems like from #5018 it looks like we would
prefer to keep the default to be `None`, in which case this PR should
fix the error.
# changed ValueError to ImportError
Code cleaning.
Fixed inconsistencies in ImportError handling. Sometimes it raises
ImportError and sometime ValueError.
I've changed all cases to the `raise ImportError`
Also:
- added installation instruction in the error message, where it missed;
- fixed several installation instructions in the error message;
- fixed several error handling in regards to the ImportError
Added link option in _process_response
<!--
In _process_respons "snippet" provided non working links for the case
that "links" had the correct answer. Thus added an elif statement before
snippet
-->
<!-- Remove if not applicable -->
Fixes # (issue)
In _process_response link provided correct answers while the snippet
reply provided non working links
@vowelparrot
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# fix a bug in the add_texts method of Weaviate vector store that creats
wrong embeddings
The following is the original code in the `add_texts` method of the
Weaviate vector store, from line 131 to 153, which contains a bug. The
code here includes some extra explanations in the form of comments and
some omissions.
```python
for i, doc in enumerate(texts):
# some code omitted
if self._embedding is not None:
# variable texts is a list of string and doc here is just a string.
# list(doc) actually breaks up the string into characters.
# so, embeddings[0] is just the embedding of the first character
embeddings = self._embedding.embed_documents(list(doc))
batch.add_data_object(
data_object=data_properties,
class_name=self._index_name,
uuid=_id,
vector=embeddings[0],
)
```
To fix this bug, I pulled the embedding operation out of the for loop
and embed all texts at once.
Co-authored-by: Shawn91 <zyx199199@qq.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# PowerBI major refinement in working of tool and tweaks in the rest
I've gained some experience with more complex sets and the earlier
implementation had too many tries by the agent to create DAX, so
refactored the code to run the LLM to create dax based on a question and
then immediately run the same against the dataset, with retries and a
prompt that includes the error for the retry. This works much better!
Also did some other refactoring of the inner workings, making things
clearer, more concise and faster.
# Row-wise cosine similarity between two equal-width matrices and return
the max top_k score and index, the score all greater than
threshold_score.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Enhance the code to support SSL authentication for Elasticsearch when
using the VectorStore module, as previous versions did not provide this
capability.
@dev2049
---------
Co-authored-by: caidong <zhucaidong1992@gmail.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Improve pinecone hybrid search retriever adding metadata support
I simply remove the hardwiring of metadata to the existing
implementation allowing one to pass `metadatas` attribute to the
constructors and in `get_relevant_documents`. I also add one missing pip
install to the accompanying notebook (I am not adding dependencies, they
were pre-existing).
First contribution, just hoping to help, feel free to critique :)
my twitter username is `@andreliebschner`
While looking at hybrid search I noticed #3043 and #1743. I think the
former can be closed as following the example right now (even prior to
my improvements) works just fine, the latter I think can be also closed
safely, maybe pointing out the relevant classes and example. Should I
reply those issues mentioning someone?
@dev2049, @hwchase17
---------
Co-authored-by: Andreas Liebschner <a.liebschner@shopfully.com>
This is a highly optimized update to the pull request
https://github.com/hwchase17/langchain/pull/3269
Summary:
1) Added ability to MRKL agent to self solve the ValueError(f"Could not
parse LLM output: `{llm_output}`") error, whenever llm (especially
gpt-3.5-turbo) does not follow the format of MRKL Agent, while returning
"Action:" & "Action Input:".
2) The way I am solving this error is by responding back to the llm with
the messages "Invalid Format: Missing 'Action:' after 'Thought:'" &
"Invalid Format: Missing 'Action Input:' after 'Action:'" whenever
Action: and Action Input: are not present in the llm output
respectively.
For a detailed explanation, look at the previous pull request.
New Updates:
1) Since @hwchase17 , requested in the previous PR to communicate the
self correction (error) message, using the OutputParserException, I have
added new ability to the OutputParserException class to store the
observation & previous llm_output in order to communicate it to the next
Agent's prompt. This is done, without breaking/modifying any of the
functionality OutputParserException previously performs (i.e.
OutputParserException can be used in the same way as before, without
passing any observation & previous llm_output too).
---------
Co-authored-by: Deepak S V <svdeepak99@users.noreply.github.com>
tldr: The docarray [integration
PR](https://github.com/hwchase17/langchain/pull/4483) introduced a
pinned dependency to protobuf. This is a docarray dependency, not a
langchain dependency. Since this is handled by the docarray
dependencies, it is unnecessary here.
Further, as a pinned dependency, this quickly leads to incompatibilities
with application code that consumes the library. Much less with a
heavily used library like protobuf.
Detail: as we see in the [docarray
integration](https://github.com/hwchase17/langchain/pull/4483/files#diff-50c86b7ed8ac2cf95bd48334961bf0530cdc77b5a56f852c5c61b89d735fd711R81-R83),
the transitive dependencies of docarray were also listed as langchain
dependencies. This is unnecessary as the docarray project has an
appropriate
[extras](a01a05542d/pyproject.toml (L70)).
The docarray project also does not require this _pinned_ version of
protobuf, rather [a minimum
version](a01a05542d/pyproject.toml (L41)).
So this pinned version was likely in error.
To fix this, this PR reverts the explicit hnswlib and protobuf
dependencies and adds the hnswlib extras install for docarray (which
installs hnswlib and protobuf, as originally intended). Because version
`0.32.0`
of the docarray hnswlib extras added protobuf, we bump the docarray
dependency from `^0.31.0` to `^0.32.0`.
# revert docarray explicit transitive dependencies and use extras
instead
## Who can review?
@dev2049 -- reviewed the original PR
@eyurtsev -- bumped the pinned protobuf dependency a few days ago
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Update to pull request https://github.com/hwchase17/langchain/pull/3215
Summary:
1) Improved the sanitization of query (using regex), by removing python
command (since gpt-3.5-turbo sometimes assumes python console as a
terminal, and runs python command first which causes error). Also
sometimes 1 line python codes contain single backticks.
2) Added 7 new test cases.
For more details, view the previous pull request.
---------
Co-authored-by: Deepak S V <svdeepak99@users.noreply.github.com>
Extract the methods specific to running an LLM or Chain on a dataset to
separate utility functions.
This simplifies the client a bit and lets us separate concerns of LCP
details from running examples (e.g., for evals)
# docs: `deployments` page moved into `ecosystem/`
The `Deployments` page moved into the `Ecosystem/` group
Small fixes:
- `index` page: fixed order of items in the `Modules` list, in the `Use
Cases` list
- item `References/Installation` was lost in the `index` page (not on
the Navbar!). Restored it.
- added `|` marker in several places.
NOTE: I also thought about moving the `Additional Resources/Gallery`
page into the `Ecosystem` group but decided to leave it unchanged.
Please, advise on this.
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@dev2049
Without the addition of 'in its original language', the condensing
response, more often than not, outputs the rephrased question in
English, even when the conversation is in another language. This
question in English then transfers to the question in the retrieval
prompt and the chatbot is stuck in English.
I'm sometimes surprised that this does not happen more often, but
apparently the GPT models are smart enough to understand that when the
template contains
Question: ....
Answer:
then the answer should be in in the language of the question.
### Submit Multiple Files to the Unstructured API
Enables batching multiple files into a single Unstructured API requests.
Support for requests with multiple files was added to both
`UnstructuredAPIFileLoader` and `UnstructuredAPIFileIOLoader`. Note that
if you submit multiple files in "single" mode, the result will be
concatenated into a single document. We recommend using this feature in
"elements" mode.
### Testing
The following should load both documents, using two of the example docs
from the integration tests folder.
```python
from langchain.document_loaders import UnstructuredAPIFileLoader
file_paths = ["examples/layout-parser-paper.pdf", "examples/whatsapp_chat.txt"]
loader = UnstructuredAPIFileLoader(
file_paths=file_paths,
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
)
docs = loader.load()
```
# Corrected Misspelling in agents.rst Documentation
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get
-->
In the
[documentation](https://python.langchain.com/en/latest/modules/agents.html)
it says "in fact, it is often best to have an Action Agent be in
**change** of the execution for the Plan and Execute agent."
**Suggested Change:** I propose correcting change to charge.
Fix for issue: #5039
# Add documentation for Databricks integration
This is a follow-up of https://github.com/hwchase17/langchain/pull/4702
It documents the details of how to integrate Databricks using langchain.
It also provides examples in a notebook.
## Who can review?
@dev2049 @hwchase17 since you are aware of the context. We will promote
the integration after this doc is ready. Thanks in advance!
# Fixes an annoying typo in docs
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes Annoying typo in docs - "Therefor" -> "Therefore". It's so
annoying to read that I just had to make this PR.
# Streaming only final output of agent (#2483)
As requested in issue #2483, this Callback allows to stream only the
final output of an agent (ie not the intermediate steps).
Fixes#2483
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Ensuring that users pass a single prompt when calling a LLM
- This PR adds a check to the `__call__` method of the `BaseLLM` class
to ensure that it is called with a single prompt
- Raises a `ValueError` if users try to call a LLM with a list of prompt
and instructs them to use the `generate` method instead
## Why this could be useful
I stumbled across this by accident. I accidentally called the OpenAI LLM
with a list of prompts instead of a single string and still got a
result:
```
>>> from langchain.llms import OpenAI
>>> llm = OpenAI()
>>> llm(["Tell a joke"]*2)
"\n\nQ: Why don't scientists trust atoms?\nA: Because they make up everything!"
```
It might be better to catch such a scenario preventing unnecessary costs
and irritation for the user.
## Proposed behaviour
```
>>> from langchain.llms import OpenAI
>>> llm = OpenAI()
>>> llm(["Tell a joke"]*2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/marcus/Projects/langchain/langchain/llms/base.py", line 291, in __call__
raise ValueError(
ValueError: Argument `prompt` is expected to be a single string, not a list. If you want to run the LLM on multiple prompts, use `generate` instead.
```
# Add self query translator for weaviate vectorstore
Adds support for the EQ comparator and the AND/OR operators.
Co-authored-by: Dominic Chan <dchan@cppib.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
- Higher accuracy on the responses
- New redesigned UI
- Pretty Sources: display the sources by title / sub-section instead of
long URL.
- Fixed Reset Button bugs and some other UI issues
- Other tweaks
# Improve Evernote Document Loader
When exporting from Evernote you may export more than one note.
Currently the Evernote loader concatenates the content of all notes in
the export into a single document and only attaches the name of the
export file as metadata on the document.
This change ensures that each note is loaded as an independent document
and all available metadata on the note e.g. author, title, created,
updated are added as metadata on each document.
It also uses an existing optional dependency of `html2text` instead of
`pypandoc` to remove the need to download the pandoc application via
`download_pandoc()` to be able to use the `pypandoc` python bindings.
Fixes#4493
Co-authored-by: Mike McGarry <mike.mcgarry@finbourne.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Change the logger message level
The library is logging at `error` level a situation that is not an
error.
We noticed this error in our logs, but from our point of view it's an
expected behavior and the log level should be `warning`.
# Adds "IN" metadata filter for pgvector to all checking for set
presence
PGVector currently supports metadata filters of the form:
```
{"filter": {"key": "value"}}
```
which will return documents where the "key" metadata field is equal to
"value".
This PR adds support for metadata filters of the form:
```
{"filter": {"key": { "IN" : ["list", "of", "values"]}}}
```
Other vector stores support this via an "$in" syntax. I chose to use
"IN" to match postgres' syntax, though happy to switch.
Tested locally with PGVector and ChatVectorDBChain.
@dev2049
---------
Co-authored-by: jade@spanninglabs.com <jade@spanninglabs.com>
# Bug fixes in Redis - Vectorstore (Added the version of redis to the
error message and removed the cls argument from a classmethod)
Co-authored-by: Tyler Hutcherson <tyler.hutcherson@redis.com>
# Remove autoreload in examples
Remove the `autoreload` in examples since it is not necessary for most
users:
```
%load_ext autoreload,
%autoreload 2
```
# Powerbi API wrapper bug fix + integration tests
- Bug fix by removing `TYPE_CHECKING` in in utilities/powerbi.py
- Added integration test for power bi api in
utilities/test_powerbi_api.py
- Added integration test for power bi agent in
agent/test_powerbi_agent.py
- Edited .env.examples to help set up power bi related environment
variables
- Updated demo notebook with working code in
docs../examples/powerbi.ipynb - AzureOpenAI -> ChatOpenAI
Notes:
Chat models (gpt3.5, gpt4) are much more capable than davinci at writing
DAX queries, so that is important to getting the agent to work properly.
Interestingly, gpt3.5-turbo needed the examples=DEFAULT_FEWSHOT_EXAMPLES
to write consistent DAX queries, so gpt4 seems necessary as the smart
llm.
Fixes#4325
## Before submitting
Azure-core and Azure-identity are necessary dependencies
check integration tests with the following:
`pytest tests/integration_tests/utilities/test_powerbi_api.py`
`pytest tests/integration_tests/agent/test_powerbi_agent.py`
You will need a power bi account with a dataset id + table name in order
to test. See .env.examples for details.
## Who can review?
@hwchase17
@vowelparrot
---------
Co-authored-by: aditya-pethe <adityapethe1@gmail.com>
# Added a YouTube Tutorial
Added a LangChain tutorial playlist aimed at onboarding newcomers to
LangChain and its use cases.
I've shared the video in the #tutorials channel and it seemed to be well
received. I think this could be useful to the greater community.
## Who can review?
@dev2049
This PR adds support for Databricks runtime and Databricks SQL by using
[Databricks SQL Connector for
Python](https://docs.databricks.com/dev-tools/python-sql-connector.html).
As a cloud data platform, accessing Databricks requires a URL as follows
`databricks://token:{api_token}@{hostname}?http_path={http_path}&catalog={catalog}&schema={schema}`.
**The URL is **complicated** and it may take users a while to figure it
out**. Since the fields `api_token`/`hostname`/`http_path` fields are
known in the Databricks notebook, I am proposing a new method
`from_databricks` to simplify the connection to Databricks.
## In Databricks Notebook
After changes, Databricks users only need to specify the `catalog` and
`schema` field when using langchain.
<img width="881" alt="image"
src="https://github.com/hwchase17/langchain/assets/1097932/984b4c57-4c2d-489d-b060-5f4918ef2f37">
## In Jupyter Notebook
The method can be used on the local setup as well:
<img width="678" alt="image"
src="https://github.com/hwchase17/langchain/assets/1097932/142e8805-a6ef-4919-b28e-9796ca31ef19">
# Add Spark SQL support
* Add Spark SQL support. It can connect to Spark via building a
local/remote SparkSession.
* Include a notebook example
I tried some complicated queries (window function, table joins), and the
tool works well.
Compared to the [Spark Dataframe
agent](https://python.langchain.com/en/latest/modules/agents/toolkits/examples/spark.html),
this tool is able to generate queries across multiple tables.
---------
# Your PR Title (What it does)
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Gengliang Wang <gengliang@apache.org>
Co-authored-by: Mike W <62768671+skcoirz@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: UmerHA <40663591+UmerHA@users.noreply.github.com>
Co-authored-by: 张城铭 <z@hyperf.io>
Co-authored-by: assert <zhangchengming@kkguan.com>
Co-authored-by: blob42 <spike@w530>
Co-authored-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Co-authored-by: Richard He <he.yucheng@outlook.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Leonid Ganeline <leo.gan.57@gmail.com>
Co-authored-by: Alexey Nominas <60900649+Chae4ek@users.noreply.github.com>
Co-authored-by: elBarkey <elbarkey@gmail.com>
Co-authored-by: Davis Chase <130488702+dev2049@users.noreply.github.com>
Co-authored-by: Jeffrey D <1289344+verygoodsoftwarenotvirus@users.noreply.github.com>
Co-authored-by: so2liu <yangliu35@outlook.com>
Co-authored-by: Viswanadh Rayavarapu <44315599+vishwa-rn@users.noreply.github.com>
Co-authored-by: Chakib Ben Ziane <contact@blob42.xyz>
Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
Co-authored-by: Jari Bakken <jari.bakken@gmail.com>
Co-authored-by: escafati <scafatieugenio@gmail.com>
# Fixes syntax for setting Snowflake database search_path
An error occurs when using a Snowflake database and providing a schema
argument.
I have updated the syntax to run a Snowflake specific query when the
database dialect is 'snowflake'.
The Anthropic classes used `BaseLanguageModel.get_num_tokens` because of
an issue with multiple inheritance. Fixed by moving the method from
`_AnthropicCommon` to both its subclasses.
This change will significantly speed up token counting for Anthropic
users.
the output parser form chat conversational agent now raises
`OutputParserException` like the rest.
The `raise OutputParserExeption(...) from e` form also carries through
the original error details on what went wrong.
I added the `ValueError` as a base class to `OutputParserException` to
avoid breaking code that was relying on `ValueError` as a way to catch
exceptions from the agent. So catching ValuError still works. Not sure
if this is a good idea though ?
# docs: updated `Supabase` notebook
- the title of the notebook was inconsistent (included redundant
"Vectorstore"). Removed this "Vectorstore"
- added `Postgress` to the title. It is important. The `Postgres` name
is much more popular than `Supabase`.
- added description for the `Postrgress`
- added more info to the `Supabase` description
# Update GPT4ALL integration
GPT4ALL have completely changed their bindings. They use a bit odd
implementation that doesn't fit well into base.py and it will probably
be changed again, so it's a temporary solution.
Fixes#3839, #4628
# Docs: compound ecosystem and integrations
**Problem statement:** We have a big overlap between the
References/Integrations and Ecosystem/LongChain Ecosystem pages. It
confuses users. It creates a situation when new integration is added
only on one of these pages, which creates even more confusion.
- removed References/Integrations page (but move all its information
into the individual integration pages - in the next PR).
- renamed Ecosystem/LongChain Ecosystem into Integrations/Integrations.
I like the Ecosystem term. It is more generic and semantically richer
than the Integration term. But it mentally overloads users. The
`integration` term is more concrete.
UPDATE: after discussion, the Ecosystem is the term.
Ecosystem/Integrations is the page (in place of Ecosystem/LongChain
Ecosystem).
As a result, a user gets a single place to start with the individual
integration.
this makes it so we dont throw errors when importing langchain when
sqlalchemy==1.3.1
we dont really want to support 1.3.1 (seems like unneccessary maintance
cost) BUT we would like it to not terribly error should someone decide
to run on it
# Add human message as input variable to chat agent prompt creation
This PR adds human message and system message input to
`CHAT_ZERO_SHOT_REACT_DESCRIPTION` agent, similar to [conversational
chat
agent](7bcf238a1a/langchain/agents/conversational_chat/base.py (L64-L71)).
I met this issue trying to use `create_prompt` function when using the
[BabyAGI agent with tools
notebook](https://python.langchain.com/en/latest/use_cases/autonomous_agents/baby_agi_with_agent.html),
since BabyAGI uses “task” instead of “input” input variable. For normal
zero shot react agent this is fine because I can manually change the
suffix to “{input}/n/n{agent_scratchpad}” just like the notebook, but I
cannot do this with conversational chat agent, therefore blocking me to
use BabyAGI with chat zero shot agent.
I tested this in my own project
[Chrome-GPT](https://github.com/richardyc/Chrome-GPT) and this fix
worked.
## Request for review
Agents / Tools / Toolkits
- @vowelparrot
# Fix bilibili api import error
bilibili-api package is depracated and there is no sync module.
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes#2673#2724
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@vowelparrot @liaokongVFX
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
# TextLoader auto detect encoding and enhanced exception handling
- Add an option to enable encoding detection on `TextLoader`.
- The detection is done using `chardet`
- The loading is done by trying all detected encodings by order of
confidence or raise an exception otherwise.
### New Dependencies:
- `chardet`
Fixes#4479
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @eyurtsev
---------
Co-authored-by: blob42 <spike@w530>
# Load specific file types from Google Drive (issue #4878)
Add the possibility to define what file types you want to load from
Google Drive.
```
loader = GoogleDriveLoader(
folder_id="1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5",
file_types=["document", "pdf"]
recursive=False
)
```
Fixes ##4878
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
DataLoaders
- @eyurtsev
Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord:
RicChilligerDude#7589
---------
Co-authored-by: UmerHA <40663591+UmerHA@users.noreply.github.com>
#docs: text splitters improvements
Changes are only in the Jupyter notebooks.
- added links to the source packages and a short description of these
packages
- removed " Text Splitters" suffixes from the TOC elements (they made
the list of the text splitters messy)
- moved text splitters, based on the length function into a separate
list. They can be mixed with any classes from the "Text Splitters", so
it is a different classification.
## Who can review?
@hwchase17 - project lead
@eyurtsev
@vowelparrot
NOTE: please, check out the results of the `Python code` text splitter
example (text_splitters/examples/python.ipynb). It looks suboptimal.
# Added another helpful way for developers who want to set OpenAI API
Key dynamically
Previous methods like exporting environment variables are good for
project-wide settings.
But many use cases need to assign API keys dynamically, recently.
```python
from langchain.llms import OpenAI
llm = OpenAI(openai_api_key="OPENAI_API_KEY")
```
## Before submitting
```bash
export OPENAI_API_KEY="..."
```
Or,
```python
import os
os.environ["OPENAI_API_KEY"] = "..."
```
<hr>
Thank you.
Cheers,
Bongsang
# Documentation for Azure OpenAI embeddings model
- OPENAI_API_VERSION environment variable is needed for the endpoint
- The constructor does not work with model, it works with deployment.
I fixed it in the notebook.
(This is my first contribution)
## Who can review?
@hwchase17
@agola
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Add bs4 html parser
* Some minor refactors
* Extract the bs4 html parsing code from the bs html loader
* Move some tests from integration tests to unit tests
# Add generic document loader
* This PR adds a generic document loader which can assemble a loader
from a blob loader and a parser
* Adds a registry for parsers
* Populate registry with a default mimetype based parser
## Expected changes
- Parsing involves loading content via IO so can be sped up via:
* Threading in sync
* Async
- The actual parsing logic may be computatinoally involved: may need to
figure out to add multi-processing support
- May want to add suffix based parser since suffixes are easier to
specify in comparison to mime types
## Before submitting
No notebooks yet, we first need to get a few of the basic parsers up
(prior to advertising the interface)
It's currently not possible to change the `TEMPLATE_TOOL_RESPONSE`
prompt for ConversationalChatAgent, this PR changes that.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Update deployments doc with langcorn API server
API server example
```python
from fastapi import FastAPI
from langcorn import create_service
app: FastAPI = create_service(
"examples.ex1:chain",
"examples.ex2:chain",
"examples.ex3:chain",
"examples.ex4:sequential_chain",
"examples.ex5:conversation",
"examples.ex6:conversation_with_summary",
)
```
More examples: https://github.com/msoedov/langcorn/tree/main/examples
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Docs and code review fixes for Docugami DataLoader
1. I noticed a couple of hyperlinks that are not loading in the
langchain docs (I guess need explicit anchor tags). Added those.
2. In code review @eyurtsev had a
[suggestion](https://github.com/hwchase17/langchain/pull/4727#discussion_r1194069347)
to allow string paths. Turns out just updating the type works (I tested
locally with string paths).
# Pre-submission checks
I ran `make lint` and `make tests` successfully.
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
# Fix Homepage Typo
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested... not sure
# Docs: improvements in the `retrievers/examples/` notebooks
Its primary purpose is to make the Jupyter notebook examples
**consistent** and more suitable for first-time viewers.
- add links to the integration source (if applicable) with a short
description of this source;
- removed `_retriever` suffix from the file names (where it existed) for
consistency;
- removed ` retriever` from the notebook title (where it existed) for
consistency;
- added code to install necessary Python package(s);
- added code to set up the necessary API Key.
- very small fixes in notebooks from other folders (for consistency):
- docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
- docs/modules/indexes/vectorstores/examples/pinecone.ipynb
- docs/modules/models/llms/integrations/cohere.ipynb
- fixed misspelling in langchain/retrievers/time_weighted_retriever.py
comment (sorry, about this change in a .py file )
## Who can review
@dev2049
# Remove unused variables in Milvus vectorstore
This PR simply removes a variable unused in Milvus. The variable looks
like a copy-paste from other functions in Milvus but it is really
unnecessary.
# Fix TypeError in Vectorstore Redis class methods
This change resolves a TypeError that was raised when invoking the
`from_texts_return_keys` method from the `from_texts` method in the
`Redis` class. The error was due to the `cls` argument being passed
explicitly, which led to it being provided twice since it's also
implicitly passed in class methods. No relevant tests were added as the
issue appeared to be better suited for linters to catch proactively.
Changes:
- Removed `cls=cls` from the call to `from_texts_return_keys` in the
`from_texts` method.
Related to:
https://github.com/hwchase17/langchain/pull/4653
# Remove unnecessary comment
Remove unnecessary comment accidentally included in #4800
## Before submitting
- no test
- no document
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
# Fixed typos (issues #4818 & #4668 & more typos)
- At some places, it said `model = ChatOpenAI(model='gpt-3.5-turbo')`
but should be `model = ChatOpenAI(model_name='gpt-3.5-turbo')`
- Fixes some other typos
Fixes#4818, #4668
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
Previously, the client expected a strict 'prompt' or 'messages' format
and wouldn't permit running a chat model or llm on prompts or messages
(respectively).
Since many datasets may want to specify custom key: string , relax this
requirement.
Also, add support for running a chat model on raw prompts and LLM on
chat messages through their respective fallbacks.
# Your PR Title (What it does)
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
# Fix subclassing OpenAIEmbeddings
Fixes#4498
## Before submitting
- Problem: Due to annotated type `Tuple[()]`.
- Fix: Change the annotated type to "Iterable[str]". Even though
tiktoken use
[Collection[str]](095924e02c/tiktoken/core.py (L80))
type annotation, but pydantic doesn't support Collection type, and
[Iterable](https://docs.pydantic.dev/latest/usage/types/#typing-iterables)
is the closest to Collection.
# fix: agenerate miss run_manager args in llm.py
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
fix: agenerate miss run_manager args in llm.py
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
ArxivAPIWrapper searches and downloads PDFs to get related information.
But I found that it doesn't delete the downloaded file. The reason why
this is a problem is that a lot of PDF files remain on the server. For
example, one size is about 28M.
So, I added a delete line because it's too big to maintain on the
server.
# Clean up downloaded PDF files
- Changes: Added new line to delete downloaded file
- Background: To get the information on arXiv's paper, ArxivAPIWrapper
class downloads a PDF.
It's a natural approach, but the wrapper retains a lot of PDF files on
the server.
- Problem: One size of PDFs is about 28M. It's too big to maintain on a
small server like AWS.
- Dependency: import os
Thank you.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Get the memory importance score from regex matched group
In `GenerativeAgentMemory`, the `_score_memory_importance()` will make a
prompt to get a rating score. The prompt is:
```
prompt = PromptTemplate.from_template(
"On the scale of 1 to 10, where 1 is purely mundane"
+ " (e.g., brushing teeth, making bed) and 10 is"
+ " extremely poignant (e.g., a break up, college"
+ " acceptance), rate the likely poignancy of the"
+ " following piece of memory. Respond with a single integer."
+ "\nMemory: {memory_content}"
+ "\nRating: "
)
```
For some LLM, it will respond with, for example, `Rating: 8`. Thus we
might want to get the score from the matched regex group.
The function _get_prompt() was returning the DEFAULT_EXAMPLES even if
some custom examples were given. The return FewShotPromptTemplate was
returnong DEFAULT_EXAMPLES and not examples
# The cohere embedding model do not use large, small. It is deprecated.
Changed the modules default model
Fixes#4694
Co-authored-by: rajib76 <rajib76@yahoo.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
**Feature**: This PR adds `from_template_file` class method to
BaseStringMessagePromptTemplate. This is useful to help user to create
message prompt templates directly from template files, including
`ChatMessagePromptTemplate`, `HumanMessagePromptTemplate`,
`AIMessagePromptTemplate` & `SystemMessagePromptTemplate`.
**Tests**: Unit tests have been added in this PR.
Co-authored-by: charosen <charosen@bupt.cn>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Removed usage of deprecated methods
Replaced `SQLDatabaseChain` deprecated direct initialisation with
`from_llm` method
## Who can review?
@hwchase17
@agola11
---------
Co-authored-by: imeckr <chandanroutray2012@gmail.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Fixed query checker for SQLDatabaseChain
When `SQLDatabaseChain`'s llm attribute was deprecated, the query
checker stopped working if `SQLDatabaseChain` is initialised via
`from_llm` method. With this fix, `SQLDatabaseChain`'s query checker
would use the same `llm` as used in the `llm_chain`
## Who can review?
@hwchase17 - project lead
Co-authored-by: imeckr <chandanroutray2012@gmail.com>
- Installation of non-colab packages
- Get API keys
# Added dependencies to make notebook executable on hosted notebooks
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@hwchase17
@vowelparrot
- Installation of non-colab packages
- Get API keys
- Get rid of warnings
# Cleanup and added dependencies to make notebook executable on hosted
notebooks
@hwchase17
@vowelparrot
The current example in
https://python.langchain.com/en/latest/modules/agents/plan_and_execute.html
has inconsistent reasoning step (observing 28 years and thinking it's 26
years):
```
Observation: 28 years
Thought:Based on my search, Gigi Hadid's current age is 26 years old.
Action:
{
"action": "Final Answer",
"action_input": "Gigi Hadid's current age is 26 years old."
}
```
Guessing this is model noise. Rerunning seems to give correct answer of
28 years.
Adds some basic unit tests for the ConfluenceLoader that can be extended
later. Ports this [PR from
llama-hub](https://github.com/emptycrown/llama-hub/pull/208) and adapts
it to `langchain`.
@Jflick58 and @zywilliamli adding you here as potential reviewers
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Improve the Chroma get() method by adding the optional "include"
parameter.
The Chroma get() method excludes embeddings by default. You can
customize the response by specifying the "include" parameter to
selectively retrieve the desired data from the collection.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Fix Telegram API loader + add tests.
I was testing this integration and it was broken with next error:
```python
message_threads = loader._get_message_threads(df)
KeyError: False
```
Also, this particular loader didn't have any tests / related group in
poetry, so I added those as well.
@hwchase17 / @eyurtsev please take a look on this fix PR.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Thank you for contributing to LangChain! Your PR will appear in our next release under the title you set. Please make sure it highlights your valuable contribution.
Thank you for contributing to LangChain! Your PR will appear in our release under the title you set. Please make sure it highlights your valuable contribution.
Replace this with a description of the change, the issue it fixes (if applicable), and relevant context. List any dependencies required for this change.
After you're done, someone will review your PR. They may suggest improvements. If no one reviews your PR within a few days, feel free to @-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
@@ -14,7 +16,17 @@ Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, include an integration test and an example notebook showing its use! -->
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests, lint
This Python package adds a decorator llm_strategy that connects to an LLM (such as OpenAI’s GPT-3) and uses the LLM to "implement" abstract methods in interface classes. It does this by forwarding requests to the LLM and converting the responses back to Python data using Python's @dataclasses.
This simple application demonstrates a conversational agent implemented with OpenAI GPT-3.5 and LangChain. When necessary, it leverages tools for complex math, searching the internet, and accessing news and weather.
LlamaIndex (formerly GPT Index) is a project consisting of a set of data structures that are created using GPT-3 and can be traversed using GPT-3 in order to answer queries.
This sample demonstrates a few approaches for creating ChatGPT-like experiences over your own data. It uses OpenAI / Azure OpenAI Service to access the ChatGPT model (gpt-35-turbo and gpt3), and vector store (Pinecone, Redis and others) or Azure cognitive search for data indexing and retrieval.
A chat-based AI personal assistant with long-term memory about you.
---
..link-button:: https://anysummary.app
:type:url
:text:Summarize any file with AI
:classes:stretched-link btn-lg
+++
Summarize not only long docs, interview audio or video files quickly, but also entire websites and YouTube videos. Share or download your generated summaries to collaborate with others, or revisit them at any time! Bonus: `@anysummary <https://twitter.com/anysummary>`_ on Twitter will also summarize any thread it is tagged in.
By Raza Habib, this demo utilizes LangChain + SerpAPI + HumanLoop to write sales emails. Give it a company name and a person, this application will use Google Search (via SerpAPI) to get more information on the company and the person, and then write them a sales message.
By Zahid Khawaja, this demo utilizes question answering to answer questions about a given website. A followup added this for `YouTube videos <https://twitter.com/chillzaza_/status/1593739682013220865?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ>`_, and then another followup added it for `Wikipedia <https://twitter.com/chillzaza_/status/1594847151238037505?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ>`_.
---
..link-button:: https://mynd.so
:type:url
:text:Mynd
:classes:stretched-link btn-lg
+++
A journaling app for self-care that uses AI to uncover insights and patterns over time.
Articles on **Google Scholar**
-----------------------------
LangChain is used in many scientific and research projects.
**Google Scholar** presents a `list of the papers <https://scholar.google.com/scholar?q=%22langchain%22&hl=en&as_sdt=0,5&as_vis=1>`_
This repo is a cookbook explaining how to visualize and deploy LangChain agents with Chainlit.
You create ChatGPT-like UIs with Chainlit. Some of the key features include intermediary steps visualisation, element management & display (images, text, carousel, etc.) as well as cloud deployment.
Chainlit [doc](https://docs.chainlit.io/langchain) on the integration with LangChain
This page covers how to use the Prediction Guard ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Prediction Guard wrappers.
## Installation and Setup
- Install the Python SDK with `pip install predictionguard`
- Get an Prediction Guard access token (as described [here](https://docs.predictionguard.com/)) and set it as an environment variable (`PREDICTIONGUARD_TOKEN`)
## LLM Wrapper
There exists a Prediction Guard LLM wrapper, which you can access with
```python
fromlangchain.llmsimportPredictionGuard
```
You can provide the name of your Prediction Guard "proxy" as an argument when initializing the LLM:
```python
pgllm=PredictionGuard(name="your-text-gen-proxy")
```
Alternatively, you can use Prediction Guard's default proxy for SOTA LLMs:
```python
pgllm=PredictionGuard(name="default-text-gen")
```
You can also provide your access token directly as an argument:
This is a collection of `LangChain` tutorials on `YouTube`.
This is a collection of `LangChain` tutorials mostly on `YouTube`.
⛓ icon marks a new video [last update 2023-05-15]
###
[LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
###
[LangChain Tutorials](https://www.youtube.com/watch?v=FuqdVNB_8c0&list=PL9V0lbeJ69brU-ojMpU1Y7Ic58Tap0Cw6) by [Edrick](https://www.youtube.com/@edrickdch):
- ⛓ [LangChain, Chroma DB, OpenAI Beginner Guide | ChatGPT with your PDF](https://youtu.be/FuqdVNB_8c0)
[LangChain Crash Course: Build an AutoGPT app in 25 minutes](https://youtu.be/MlK6SIjcjE8) by [Nicholas Renotte](https://www.youtube.com/@NicholasRenotte)
| These modules are the core abstractions which we view as the building blocks of any LLM-powered application.
For each module LangChain provides standard, extendable interfaces. LanghChain also provides external integrations and even end-to-end implementations for off-the-shelf use.
For each module LangChain provides standard, extendable interfaces. LangChain also provides external integrations and even end-to-end implementations for off-the-shelf use.
| The docs for each module contain quickstart examples, how-to guides, reference docs, and conceptual guides.
@@ -67,8 +67,8 @@ For each module LangChain provides standard, extendable interfaces. LanghChain a
./modules/models.rst
./modules/prompts.rst
./modules/indexes.md
./modules/memory.md
./modules/indexes.md
./modules/chains.md
./modules/agents.md
./modules/callbacks/getting_started.ipynb
@@ -115,8 +115,8 @@ Use Cases
./use_cases/tabular.rst
./use_cases/code.md
./use_cases/apis.md
./use_cases/summarization.md
./use_cases/extraction.md
./use_cases/summarization.md
./use_cases/evaluation.rst
@@ -126,7 +126,10 @@ Reference Docs
| Full documentation on all methods, classes, installation methods, and integration setups for LangChain.
|Guides for how other companies/products can be used with LangChain.
|LangChain integrates a lot of different LLMs, systems, and products.
| From the other side, many systems and products depend on LangChain.
| It creates a vibrant and thriving ecosystem.
-`Integrations <./integrations.html>`_: Guides for how other products can be used with LangChain.
-`Dependents <./dependents.html>`_: List of repositories that use LangChain.
-`Deployments <./ecosystem/deployments.html>`_: A collection of instructions, code snippets, and template repositories for deploying LangChain apps.
-`LangChain Ecosystem <./ecosystem.html>`_
..toctree::
:maxdepth:1
:maxdepth:2
:glob:
:caption:Ecosystem
:name:ecosystem
:hidden:
./ecosystem.rst
./integrations.rst
./dependents.md
./ecosystem/deployments.md
Additional Resources
@@ -162,9 +174,7 @@ Additional Resources
-`LangChainHub <https://github.com/hwchase17/langchain-hub>`_: The LangChainHub is a place to share and explore other prompts, chains, and agents.
-`Gallery <./additional_resources/gallery.html>`_: A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.
-`Deployments <./additional_resources/deployments.html>`_: A collection of instructions, code snippets, and template repositories for deploying LangChain apps.
-`Gallery <https://github.com/kyrolabs/awesome-langchain>`_: A collection of great projects that use Langchain, compiled by the folks at `Kyrolabs <https://kyrolabs.com>`_. Useful for finding inspiration and example implementations.
-`Tracing <./additional_resources/tracing.html>`_: A guide on using tracing in LangChain to visualize the execution of chains and agents.
>[Airbyte](https://github.com/airbytehq/airbyte) is a data integration platform for ELT pipelines from APIs,
> databases & files to warehouses & lakes. It has the largest catalog of ELT connectors to data warehouses and databases.
## Installation and Setup
This instruction shows how to load any source from `Airbyte` into a local `JSON` file that can be read in as a document.
**Prerequisites:**
Have `docker desktop` installed.
**Steps:**
1. Clone Airbyte from GitHub - `git clone https://github.com/airbytehq/airbyte.git`.
2. Switch into Airbyte directory - `cd airbyte`.
3. Start Airbyte - `docker compose up`.
4. In your browser, just visit http://localhost:8000. You will be asked for a username and password. By default, that's username `airbyte` and password `password`.
5. Setup any source you wish.
6. Set destination as Local JSON, with specified destination path - lets say `/json_data`. Set up a manual sync.
7. Run the connection.
8. To see what files are created, navigate to: `file:///tmp/airbyte_local/`.
## Document Loader
See a [usage example](../modules/indexes/document_loaders/examples/airbyte_json.ipynb).
>[Aleph Alpha](https://docs.aleph-alpha.com/) was founded in 2019 with the mission to research and build the foundational technology for an era of strong AI. The team of international scientists, engineers, and innovators researches, develops, and deploys transformative AI like large language and multimodal models and runs the fastest European commercial AI cluster.
>[The Luminous series](https://docs.aleph-alpha.com/docs/introduction/luminous/) is a family of large language models.
## Installation and Setup
```bash
pip install aleph-alpha-client
```
You have to create a new token. Please, see [instructions](https://docs.aleph-alpha.com/docs/account/#create-a-new-token).
```python
fromgetpassimportgetpass
ALEPH_ALPHA_API_KEY=getpass()
```
## LLM
See a [usage example](../modules/models/llms/integrations/aleph_alpha.ipynb).
```python
fromlangchain.llmsimportAlephAlpha
```
## Text Embedding Models
See a [usage example](../modules/models/text_embedding/examples/aleph_alpha.ipynb).
>[Azure Blob Storage](https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction) is Microsoft's object storage solution for the cloud. Blob Storage is optimized for storing massive amounts of unstructured data. Unstructured data is data that doesn't adhere to a particular data model or definition, such as text or binary data.
>[Microsoft Azure](https://en.wikipedia.org/wiki/Microsoft_Azure), often referred to as `Azure` is a cloud computing platform run by `Microsoft`, which offers access, management, and development of applications and services through global data centers. It provides a range of capabilities, including software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). `Microsoft Azure` supports many programming languages, tools, and frameworks, including Microsoft-specific and third-party software and systems.
>[Azure OpenAI](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) is an `Azure` service with powerful language models from `OpenAI` including the `GPT-3`, `Codex` and `Embeddings model` series for content generation, summarization, semantic search, and natural language to code translation.
## Installation and Setup
```bash
pip install openai
pip install tiktoken
```
Set the environment variables to get access to the `Azure OpenAI` service.
>[Confluence](https://www.atlassian.com/software/confluence) is a wiki collaboration platform that saves and organizes all of the project-related material. `Confluence` is a knowledge base that primarily handles content management activities.
## Installation and Setup
```bash
pip install atlassian-python-api
```
We need to set up `username/api_key` or `Oauth2 login`.
See [instructions](https://support.atlassian.com/atlassian-account/docs/manage-api-tokens-for-your-atlassian-account/).
## Document Loader
See a [usage example](../modules/indexes/document_loaders/examples/confluence.ipynb).
This page covers how to use the [C Transformers](https://github.com/marella/ctransformers) library within LangChain.
It is broken into two parts: installation and setup, and then references to specific C Transformers wrappers.
## Installation and Setup
- Install the Python package with `pip install ctransformers`
- Download a supported [GGML model](https://huggingface.co/TheBloke) (see [Supported Models](https://github.com/marella/ctransformers#supported-models))
## Wrappers
### LLM
There exists a CTransformers LLM wrapper, which you can access with:
"This notebook covers how to connect to the [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the SQLDatabase wrapper of LangChain.\n",
"It is broken into 3 parts: installation and setup, connecting to Databricks, and examples."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"## Installation and Setup"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"!pip install databricks-sql-connector"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"## Connecting to Databricks\n",
"\n",
"You can connect to [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the `SQLDatabase.from_databricks()` method.\n",
"\n",
"### Syntax\n",
"```python\n",
"SQLDatabase.from_databricks(\n",
" catalog: str,\n",
" schema: str,\n",
" host: Optional[str] = None,\n",
" api_token: Optional[str] = None,\n",
" warehouse_id: Optional[str] = None,\n",
" cluster_id: Optional[str] = None,\n",
" engine_args: Optional[dict] = None,\n",
" **kwargs: Any)\n",
"```\n",
"### Required Parameters\n",
"* `catalog`: The catalog name in the Databricks database.\n",
"* `schema`: The schema name in the catalog.\n",
"\n",
"### Optional Parameters\n",
"There following parameters are optional. When executing the method in a Databricks notebook, you don't need to provide them in most of the cases.\n",
"* `host`: The Databricks workspace hostname, excluding 'https://' part. Defaults to 'DATABRICKS_HOST' environment variable or current workspace if in a Databricks notebook.\n",
"* `api_token`: The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. Defaults to 'DATABRICKS_API_TOKEN' environment variable or a temporary one is generated if in a Databricks notebook.\n",
"* `warehouse_id`: The warehouse ID in the Databricks SQL.\n",
"* `cluster_id`: The cluster ID in the Databricks Runtime. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to.\n",
"* `engine_args`: The arguments to be used when connecting Databricks.\n",
"* `**kwargs`: Additional keyword arguments for the `SQLDatabase.from_uri` method."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"## Examples"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"# Connecting to Databricks with SQLDatabase wrapper\n",
"This example demonstrates the use of the [SQL Chain](https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html) for answering a question over a Databricks database."
"Answer:\u001B[32;1m\u001B[1;3mThe average duration of taxi rides that start between midnight and 6am is 987.81 seconds.\u001B[0m\n",
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
"data": {
"text/plain": "'The average duration of taxi rides that start between midnight and 6am is 987.81 seconds.'"
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db_chain.run(\"What is the average duration of taxi rides that start between midnight and 6am?\")"
]
},
{
"cell_type": "markdown",
"source": [
"### SQL Database Agent example\n",
"\n",
"This example demonstrates the use of the [SQL Database Agent](https://python.langchain.com/en/latest/modules/agents/toolkits/examples/sql_database.html) for answering questions over a Databricks database."
"Thought:\u001B[32;1m\u001B[1;3mI should check the schema of the trips table to see if it has the necessary columns for trip distance and duration.\n",
"Thought:\u001B[32;1m\u001B[1;3mThe trips table has the necessary columns for trip distance and duration. I will write a query to find the longest trip distance and its duration.\n",
"Action: query_checker_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001B[0m\n",
"Observation: \u001B[31;1m\u001B[1;3mSELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3mThe query is correct. I will now execute it to find the longest trip distance and its duration.\n",
"Action: query_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001B[0m\n",
>[Diffbot](https://docs.diffbot.com/docs) is a service to read web pages. Unlike traditional web scraping tools,
> `Diffbot` doesn't require any rules to read the content on a page.
>It starts with computer vision, which classifies a page into one of 20 possible types. Content is then interpreted by a machine learning model trained to identify the key attributes on a page based on its type.
>The result is a website transformed into clean-structured data (like JSON or CSV), ready for your application.
## Installation and Setup
Read [instructions](https://docs.diffbot.com/reference/authentication) how to get the Diffbot API Token.
## Document Loader
See a [usage example](../modules/indexes/document_loaders/examples/diffbot.ipynb).
@@ -8,10 +8,10 @@ Docugami converts business documents into a Document XML Knowledge Graph, genera
## Quick start
1. Create a Docugami workspace: http://www.docugami.com (free trials available)
1. Create a Docugami workspace: <a href="http://www.docugami.com">http://www.docugami.com</a> (free trials available)
2. Add your documents (PDF, DOCX or DOC) and allow Docugami to ingest and cluster them into sets of similar documents, e.g. NDAs, Lease Agreements, and Service Agreements. There is no fixed set of document types supported by the system, the clusters created depend on your particular documents, and you can [change the docset assignments](https://help.docugami.com/home/working-with-the-doc-sets-view) later.
3. Create an access token via the Developer Playground for your workspace. Detailed instructions: https://help.docugami.com/home/docugami-api
4. Explore the Docugami API at https://api-docs.docugami.com/ to get a list of your processed docset IDs, or just the document IDs for a particular docset.
4. Explore the Docugami API at <a href="https://api-docs.docugami.com">https://api-docs.docugami.com</a> to get a list of your processed docset IDs, or just the document IDs for a particular docset.
6. Use the DocugamiLoader as detailed in [this notebook](../modules/indexes/document_loaders/examples/docugami.ipynb), to get rich semantic chunks for your documents.
7. Optionally, build and publish one or more [reports or abstracts](https://help.docugami.com/home/reports). This helps Docugami improve the semantic XML with better tags based on your preferences, which are then added to the DocugamiLoader output as metadata. Use techniques like [self-querying retriever](https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/self_query_retriever.html) to do high accuracy Document QA.
This page covers how to use the [Serper](https://serper.dev) Google Search API within LangChain. Serper is a low-cost Google Search API that can be used to add answer box, knowledge graph, and organic results data from Google Search.
It is broken into two parts: setup, and then references to the specific Google Serper wrapper.
This page covers how to use the [Momento](https://gomomento.com) ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Momento wrappers.
## Installation and Setup
- Sign up for a free account [here](https://docs.momentohq.com/getting-started) and get an auth token
- Install the Momento Python SDK with `pip install momento`
## Wrappers
### Cache
The Cache wrapper allows for [Momento](https://gomomento.com) to be used as a serverless, distributed, low-latency cache for LLM prompts and responses.
#### Standard Cache
The standard cache is the go-to use case for [Momento](https://gomomento.com) users in any environment.
Momento can be used as a distributed memory store for LLMs.
#### Chat Message History Memory
See [this notebook](../modules/memory/examples/momento_chat_message_history.ipynb) for a walkthrough of how to use Momento as a memory store for chat message history.
This page covers how to use the Prediction Guard ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Prediction Guard wrappers.
## Installation and Setup
- Install the Python SDK with `pip install predictionguard`
- Get an Prediction Guard access token (as described [here](https://docs.predictionguard.com/)) and set it as an environment variable (`PREDICTIONGUARD_TOKEN`)
## LLM Wrapper
There exists a Prediction Guard LLM wrapper, which you can access with
```python
fromlangchain.llmsimportPredictionGuard
```
You can provide the name of the Prediction Guard model as an argument when initializing the LLM:
```python
pgllm=PredictionGuard(model="MPT-7B-Instruct")
```
You can also provide your access token directly as an argument:
template="""Respond to the following query based on the context.
Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦
Exclusive Candle Box - $80
Monthly Candle Box - $45 (NEW!)
Scent of The Month Box - $28 (NEW!)
Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉
This page covers how to use [Psychic](https://www.psychic.dev/) within LangChain.
## What is Psychic?
Psychic is a platform for integrating with your customer’s SaaS tools like Notion, Zendesk, Confluence, and Google Drive via OAuth and syncing documents from these applications to your SQL or vector database. You can think of it like Plaid for unstructured data. Psychic is easy to set up - you use it by importing the react library and configuring it with your Sidekick API key, which you can get from the [Psychic dashboard](https://dashboard.psychic.dev/). When your users connect their applications, you can view these connections from the dashboard and retrieve data using the server-side libraries.
## Quick start
1. Create an account in the [dashboard](https://dashboard.psychic.dev/).
2. Use the [react library](https://docs.psychic.dev/sidekick-link) to add the Psychic link modal to your frontend react app. Users will use this to connect their SaaS apps.
3. Once your user has created a connection, you can use the langchain PsychicLoader by following the [example notebook](../modules/indexes/document_loaders/examples/psychic.ipynb)
# Advantages vs Other Document Loaders
1. **Universal API:** Instead of building OAuth flows and learning the APIs for every SaaS app, you integrate Psychic once and leverage our universal API to retrieve data.
2. **Data Syncs:** Data in your customers' SaaS apps can get stale fast. With Psychic you can configure webhooks to keep your documents up to date on a daily or realtime basis.
3. **Simplified OAuth:** Psychic handles OAuth end-to-end so that you don't have to spend time creating OAuth clients for each integration, keeping access tokens fresh, and handling OAuth redirect logic.
>[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a system that can build, train, and deploy machine learning (ML) models with fully managed infrastructure, tools, and workflows.
We use `SageMaker` to host our model and expose it as the `SageMaker Endpoint`.
## Installation and Setup
```bash
pip install boto3
```
For instructions on how to expose model as a `SageMaker Endpoint`, please see [here](https://www.philschmid.de/custom-inference-huggingface-sagemaker).
**Note**: In order to handle batched requests, we need to adjust the return line in the `predict_fn()` function within the custom `inference.py` script:
- Vectara is developer-first API platform for building conversational search applications
- To use Vectara - first [sign up](https://console.vectara.com/signup) and create an account. Then create a corpus and an API key for indexing and searching.
- You can use Vectara's [indexing API](https://docs.vectara.com/docs/indexing-apis/indexing) to add documents into Vectara's index
- You can use Vectara's [Search API](https://docs.vectara.com/docs/search-apis/search) to query Vectara's index (which also supports Hybrid search implicitly).
- You can use Vectara's integration with LangChain as a Vector store or using the Retriever abstraction.
## Installation and Setup
To use Vectara with LangChain no special installation steps are required. You just have to provide your customer_id, corpus ID, and an API key created within the Vectara console to enable indexing and searching.
### VectorStore
There exists a wrapper around the Vectara platform, allowing you to use it as a vectorstore, whether for semantic search or example selection.
To import this vectorstore:
```python
fromlangchain.vectorstoresimportVectara
```
To create an instance of the Vectara vectorstore:
```python
vectara=Vectara(
vectara_customer_id=customer_id,
vectara_corpus_id=corpus_id,
vectara_api_key=api_key
)
```
The customer_id, corpus_id and api_key are optional, and if they are not supplied will be read from the environment variables `VECTARA_CUSTOMER_ID`, `VECTARA_CORPUS_ID` and `VECTARA_API_KEY`, respectively.
For a more detailed walkthrough of the Vectara wrapper, see one of the two example notebooks:
* [Chat Over Documents with Vectara](./vectara/vectara_chat.html)
* [Vectara Text Generation](./vectara/vectara_text_generation.html)
"This notebook is based on the [chat_vector_db](https://github.com/hwchase17/langchain/blob/master/docs/modules/chains/index_examples/chat_vector_db.ipynb) notebook, but using Vectara as the vector database."
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"result = qa({\"question\": query})"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4c79862b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" The president said that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, and a former federal public defender.\""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result[\"answer\"]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c697d9d1",
"metadata": {},
"outputs": [],
"source": [
"query = \"Did he mention who she suceeded\"\n",
"result = qa({\"question\": query})"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ba0678f3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' Justice Stephen Breyer.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result['answer']"
]
},
{
"cell_type": "markdown",
"id": "b3308b01-5300-4999-8cd3-22f16dae757e",
"metadata": {},
"source": [
"## Pass in chat history\n",
"\n",
"In the above example, we used a Memory object to track chat history. We can also just pass it in explicitly. In order to do this, we need to initialize a chain without any memory object."
"\" The president said that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, and a former federal public defender.\""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result[\"answer\"]"
]
},
{
"cell_type": "markdown",
"id": "8c26a83d-c945-4458-b54a-c6bd7f391303",
"metadata": {},
"source": [
"Here's an example of asking a question with some chat history"
"You can also easily return source documents from the ConversationalRetrievalChain. This is useful for when you want to inspect what documents were returned."
"Document(page_content='Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. A former top litigator in private practice. A former federal public defender.', metadata={'source': '../../modules/state_of_the_union.txt'})"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result['source_documents'][0]"
]
},
{
"cell_type": "markdown",
"id": "669ede2f-d69f-4960-8468-8a768ce1a55f",
"metadata": {},
"source": [
"## ConversationalRetrievalChain with `search_distance`\n",
"If you are using a vector store that supports filtering by search distance, you can add a threshold value parameter."
" The president said that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, and a former federal public defender."
]
}
],
"source": [
"chat_history = []\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"\" The president said that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, and a former federal public defender.\""
"This notebook is based on [chat_vector_db](https://github.com/hwchase17/langchain/blob/master/docs/modules/chains/index_examples/question_answering.ipynb) and adapted to Vectara."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare Data\n",
"\n",
"First, we prepare the data. For this example, we fetch a documentation site that consists of markdown files hosted on Github and split them into small enough Documents."
"Next, let's set up a simple LLM chain but give it a custom prompt for blog post generation. Note that the custom prompt is parameterized and takes two inputs: `context`, which will be the documents fetched from the vector search, and `topic`, which is given by the user."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"prompt_template = \"\"\"Use the context below to write a 400 word blog post about the topic below:\n",
"Finally, we write a function to apply our inputs to the chain. The function takes an input parameter `topic`. We find the documents in the vector index that correspond to that `topic`, and use them as additional context in our simple LLM chain."
" inputs = [{\"context\": doc.page_content, \"topic\": topic} for doc in docs]\n",
" print(chain.apply(inputs))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'text': '\\n\\nEnvironment variables are an essential part of any development workflow. They provide a way to store and access information that is specific to the environment in which the code is running. This can be especially useful when working with different versions of a language or framework, or when running code on different machines.\\n\\nThe Deno CLI tasks extension provides a way to easily manage environment variables when running Deno commands. This extension provides a task definition for allowing you to create tasks that execute the `deno` CLI from within the editor. The template for the Deno CLI tasks has the following interface, which can be configured in a `tasks.json` within your workspace:\\n\\nThe task definition includes the `type` field, which should be set to `deno`, and the `command` field, which is the `deno` command to run (e.g. `run`, `test`, `cache`, etc.). Additionally, you can specify additional arguments to pass on the command line, the current working directory to execute the command, and any environment variables.\\n\\nUsing environment variables with the Deno CLI tasks extension is a great way to ensure that your code is running in the correct environment. For example, if you are running a test suite,'}, {'text': '\\n\\nEnvironment variables are an important part of any programming language, and they can be used to store and access data in a variety of ways. In this blog post, we\\'ll be taking a look at environment variables specifically for the shell.\\n\\nShell variables are similar to environment variables, but they won\\'t be exported to spawned commands. They are defined with the following syntax:\\n\\n```sh\\nVAR_NAME=value\\n```\\n\\nShell variables can be used to store and access data in a variety of ways. For example, you can use them to store values that you want to re-use, but don\\'t want to be available in any spawned processes.\\n\\nFor example, if you wanted to store a value and then use it in a command, you could do something like this:\\n\\n```sh\\nVAR=hello && echo $VAR && deno eval \"console.log(\\'Deno: \\' + Deno.env.get(\\'VAR\\'))\"\\n```\\n\\nThis would output the following:\\n\\n```\\nhello\\nDeno: undefined\\n```\\n\\nAs you can see, the value stored in the shell variable is not available in the spawned process.\\n\\n'}, {'text': '\\n\\nWhen it comes to developing applications, environment variables are an essential part of the process. Environment variables are used to store information that can be used by applications and scripts to customize their behavior. This is especially important when it comes to developing applications with Deno, as there are several environment variables that can impact the behavior of Deno.\\n\\nThe most important environment variable for Deno is `DENO_AUTH_TOKENS`. This environment variable is used to store authentication tokens that are used to access remote resources. This is especially important when it comes to accessing remote APIs or databases. Without the proper authentication tokens, Deno will not be able to access the remote resources.\\n\\nAnother important environment variable for Deno is `DENO_DIR`. This environment variable is used to store the directory where Deno will store its files. This includes the Deno executable, the Deno cache, and the Deno configuration files. By setting this environment variable, you can ensure that Deno will always be able to find the files it needs.\\n\\nFinally, there is the `DENO_PLUGINS` environment variable. This environment variable is used to store the list of plugins that Deno will use. This is important for customizing the'}, {'text': '\\n\\nEnvironment variables are a great way to store and access sensitive information in your Deno applications. Deno offers built-in support for environment variables with `Deno.env`, and you can also use a `.env` file to store and access environment variables. In this blog post, we\\'ll explore both of these options and how to use them in your Deno applications.\\n\\n## Built-in `Deno.env`\\n\\nThe Deno runtime offers built-in support for environment variables with [`Deno.env`](https://deno.land/api@v1.25.3?s=Deno.env). `Deno.env` has getter and setter methods. Here is example usage:\\n\\n```ts\\nDeno.env.set(\"FIREBASE_API_KEY\", \"examplekey123\");\\nDeno.env.set(\"FIREBASE_AUTH_DOMAIN\", \"firebasedomain.com\");\\n\\nconsole.log(Deno.env.get(\"FIREBASE_API_KEY\")); // examplekey123\\nconsole.log(Deno.env.get(\"FIREBASE_AUTH_'}]\n"
"Enable observability to detect inputs and LLM issues faster, deliver continuous improvements, and avoid costly incidents."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install langkit -q"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Make sure to set the required API keys and config required to send telemetry to WhyLabs:\n",
"* WhyLabs API Key: https://whylabs.ai/whylabs-free-sign-up\n",
"* Org and Dataset [https://docs.whylabs.ai/docs/whylabs-onboarding](https://docs.whylabs.ai/docs/whylabs-onboarding#upload-a-profile-to-a-whylabs-project)\n",
"> *Note*: the callback supports directly passing in these variables to the callback, when no auth is directly passed in it will default to the environment. Passing in auth directly allows for writing profiles to multiple projects or organizations in WhyLabs.\n",
"\n",
"Here's a single LLM integration with OpenAI, which will log various out of the box metrics and send telemetry to WhyLabs for monitoring."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"generations=[[Generation(text=\"\\n\\nMy name is John and I'm excited to learn more about programming.\", generation_info={'finish_reason': 'stop', 'logprobs': None})]] llm_output={'token_usage': {'total_tokens': 20, 'prompt_tokens': 4, 'completion_tokens': 16}, 'model_name': 'text-davinci-003'}\n"
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.