mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-06 01:00:22 +00:00
Compare commits
363 Commits
eugene/roo
...
eugene/add
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
10282f34cc | ||
|
|
20b72a044c | ||
|
|
70c71efcab | ||
|
|
a5a3d28776 | ||
|
|
2a70a07aad | ||
|
|
5ac936a284 | ||
|
|
3c4652c906 | ||
|
|
2c6b9e8771 | ||
|
|
1639ccfd15 | ||
|
|
ab036c1a4c | ||
|
|
3dce2e1d35 | ||
|
|
c48e99e7f2 | ||
|
|
8a140ee77c | ||
|
|
df357f82ca | ||
|
|
236e957abb | ||
|
|
199e64d372 | ||
|
|
1f01c0fd98 | ||
|
|
884f76e05a | ||
|
|
a45337ea07 | ||
|
|
1318d534af | ||
|
|
10e3982b59 | ||
|
|
721f709dec | ||
|
|
02f0a29293 | ||
|
|
dcba7df2fe | ||
|
|
0f7569ddbc | ||
|
|
5ade0187d0 | ||
|
|
0f6737cbfe | ||
|
|
7ab82eb8cc | ||
|
|
37b89fb7fc | ||
|
|
40c02cedaf | ||
|
|
cecd875cdc | ||
|
|
0c6a3fdd6b | ||
|
|
d98b830e4b | ||
|
|
6b08a33fa4 | ||
|
|
947628311b | ||
|
|
c1d1fc13c2 | ||
|
|
74e3d796f1 | ||
|
|
7b28359719 | ||
|
|
5e48f35fba | ||
|
|
838464de25 | ||
|
|
f4ee3c8a22 | ||
|
|
50cb0a03bc | ||
|
|
842065a9cc | ||
|
|
27ad6a4bb3 | ||
|
|
dda9438e87 | ||
|
|
604dfe2d99 | ||
|
|
f101c759ed | ||
|
|
372c27f2e5 | ||
|
|
6a45bf9554 | ||
|
|
f5856680fe | ||
|
|
07715f815b | ||
|
|
020cc1cf3e | ||
|
|
9aae8ef416 | ||
|
|
06f47678ae | ||
|
|
9c3da11910 | ||
|
|
5affbada61 | ||
|
|
f9d64d22e5 | ||
|
|
3691701d58 | ||
|
|
ef049769f0 | ||
|
|
cd19ba9a07 | ||
|
|
83f3d95ffa | ||
|
|
b5acb91080 | ||
|
|
f99369a54c | ||
|
|
242b085be7 | ||
|
|
c3308f31bc | ||
|
|
c50dd79512 | ||
|
|
aade9bfde5 | ||
|
|
0ee6ed76ca | ||
|
|
62b6965d2a | ||
|
|
ef22ebe431 | ||
|
|
f62b323108 | ||
|
|
b2bc15e640 | ||
|
|
61ea7bf60b | ||
|
|
4c651ba13a | ||
|
|
334fc1ed1c | ||
|
|
ba74341eee | ||
|
|
3adf710f1d | ||
|
|
07c5c60f63 | ||
|
|
aade1550c6 | ||
|
|
63c60a31f0 | ||
|
|
242de9aa5e | ||
|
|
916b813107 | ||
|
|
1c65529fd7 | ||
|
|
6182a402f1 | ||
|
|
0dec72cab0 | ||
|
|
570566b858 | ||
|
|
f9baaae3ec | ||
|
|
4da1df568a | ||
|
|
96ccba9c27 | ||
|
|
a4c101ae97 | ||
|
|
c5a07e2dd8 | ||
|
|
80f3d48195 | ||
|
|
7d83189b19 | ||
|
|
eb26b5535a | ||
|
|
96bac8e20d | ||
|
|
034a8c7c1b | ||
|
|
a402de3dae | ||
|
|
a47f69a120 | ||
|
|
cc2cbfabfc | ||
|
|
9e4a0e76f6 | ||
|
|
81639243e2 | ||
|
|
61976a4147 | ||
|
|
b5360e2e5f | ||
|
|
4cf67084d3 | ||
|
|
bcb5f354ad | ||
|
|
24e9b48d15 | ||
|
|
cf28708e7b | ||
|
|
2a3288b15d | ||
|
|
1792684e8f | ||
|
|
e60ad12521 | ||
|
|
fc41730e28 | ||
|
|
47ed7f766a | ||
|
|
80e7cd6cff | ||
|
|
6c3e65a878 | ||
|
|
616196c620 | ||
|
|
dd7938ace8 | ||
|
|
ef07308c30 | ||
|
|
049bc37111 | ||
|
|
5ccf8ebfac | ||
|
|
1e9cc02ed8 | ||
|
|
dc42279eb5 | ||
|
|
e38bf08139 | ||
|
|
5caa381177 | ||
|
|
c59e663365 | ||
|
|
0c1889c713 | ||
|
|
5fcf2ef7ca | ||
|
|
77dd327282 | ||
|
|
f5a38772a8 | ||
|
|
5f2dea2b20 | ||
|
|
69b1603173 | ||
|
|
d83164f837 | ||
|
|
198b85334f | ||
|
|
7aeaa1974d | ||
|
|
1c753d1e81 | ||
|
|
6716379f0c | ||
|
|
58fdb070fa | ||
|
|
1d7a3ae7ce | ||
|
|
d2f671271e | ||
|
|
a3c10fc6ce | ||
|
|
5171ffc026 | ||
|
|
6c7d9f93b9 | ||
|
|
8f4620f4b8 | ||
|
|
9d97de34ae | ||
|
|
56cca23745 | ||
|
|
66bebeb76a | ||
|
|
b0aa915dea | ||
|
|
d93ae756e6 | ||
|
|
1244e66bd4 | ||
|
|
a001037319 | ||
|
|
20151384d7 | ||
|
|
d895614d19 | ||
|
|
9d0c1d2dc9 | ||
|
|
a7296bddc2 | ||
|
|
c9473367b1 | ||
|
|
f77659463a | ||
|
|
ccdaf14eff | ||
|
|
cacdf96f9c | ||
|
|
36ee083753 | ||
|
|
e8a21146d3 | ||
|
|
a0958c0607 | ||
|
|
620b118c70 | ||
|
|
888fbc07b5 | ||
|
|
ab2d7821a7 | ||
|
|
6fc7610b1c | ||
|
|
0da5078cad | ||
|
|
d0728b0ba0 | ||
|
|
9224027e45 | ||
|
|
5c3e2612da | ||
|
|
65321bf975 | ||
|
|
2b7d1cdd2f | ||
|
|
a653b209ba | ||
|
|
f071581aea | ||
|
|
f0a7581b50 | ||
|
|
474b88326f | ||
|
|
bdc03997c9 | ||
|
|
3f1cf00d97 | ||
|
|
6b47c7361e | ||
|
|
7677ceea60 | ||
|
|
aee55eda39 | ||
|
|
d09dda5a08 | ||
|
|
12950cc602 | ||
|
|
e8ee781a42 | ||
|
|
02e71cebed | ||
|
|
259d4d2029 | ||
|
|
3aed74a6fc | ||
|
|
13b0d7ec8f | ||
|
|
71cd6e6feb | ||
|
|
99054e19eb | ||
|
|
7a1321e2f9 | ||
|
|
cb5031f22f | ||
|
|
f1618ec540 | ||
|
|
8d82a0d483 | ||
|
|
0a1e475a30 | ||
|
|
6166ea67a8 | ||
|
|
d77d9bfc00 | ||
|
|
aa3e3cfa40 | ||
|
|
14ba1d4b45 | ||
|
|
18da9f5e59 | ||
|
|
d3a2b9fae0 | ||
|
|
7014d07cab | ||
|
|
35784d1c33 | ||
|
|
8858846607 | ||
|
|
ffe6ca986e | ||
|
|
7790d67f94 | ||
|
|
1132fb801b | ||
|
|
1d37aa8403 | ||
|
|
cb95198398 | ||
|
|
d002fa902f | ||
|
|
8d100c58de | ||
|
|
5fd1e67808 | ||
|
|
eeb996034b | ||
|
|
03fba07d15 | ||
|
|
c481a2715d | ||
|
|
8ee8ca7c83 | ||
|
|
4121d4151f | ||
|
|
bd18faa2a0 | ||
|
|
f1f1f75782 | ||
|
|
4ba14adec6 | ||
|
|
457677c1b7 | ||
|
|
8327925ab7 | ||
|
|
122e80e04d | ||
|
|
c4417ea93c | ||
|
|
7a62d3dbd6 | ||
|
|
2428984205 | ||
|
|
ea3cd1ebba | ||
|
|
3e454d7568 | ||
|
|
08638ccc88 | ||
|
|
ee3fe20af4 | ||
|
|
1e7d8ba9a6 | ||
|
|
16e178a8c2 | ||
|
|
5fc5ef2b52 | ||
|
|
9bcf8f867d | ||
|
|
092e9ee0e6 | ||
|
|
10d8c3cbfa | ||
|
|
555c6d3c20 | ||
|
|
dc131ac42a | ||
|
|
14a8bbc21a | ||
|
|
1de1182a9f | ||
|
|
71c2221f8c | ||
|
|
6ea6f9f7bc | ||
|
|
975b6129f6 | ||
|
|
b63a48b7d3 | ||
|
|
9de562f747 | ||
|
|
141943a7e1 | ||
|
|
6928f4c438 | ||
|
|
14dd89a1ee | ||
|
|
c4e149d4f1 | ||
|
|
9c6efadec3 | ||
|
|
91b37b2d81 | ||
|
|
1e1fd30def | ||
|
|
66265aaac4 | ||
|
|
8dac0fb3f1 | ||
|
|
68fee3e44b | ||
|
|
13855ef0c3 | ||
|
|
34a02efcf9 | ||
|
|
859e434932 | ||
|
|
160fc7f246 | ||
|
|
73966e693c | ||
|
|
007c5a85d5 | ||
|
|
e80c150c44 | ||
|
|
9f8fd08955 | ||
|
|
5d78b34a6f | ||
|
|
bedd893cd1 | ||
|
|
1e957c0c23 | ||
|
|
f765e8fa9d | ||
|
|
aa8c9bb4a9 | ||
|
|
2c180d645e | ||
|
|
f152d6ed3d | ||
|
|
4d6f28cdde | ||
|
|
bf8d4716a7 | ||
|
|
4ec5fdda8d | ||
|
|
ee579c77c1 | ||
|
|
9787552b00 | ||
|
|
8b84457b17 | ||
|
|
e0186df56b | ||
|
|
fcd018be47 | ||
|
|
0990ab146c | ||
|
|
ee8aa54f53 | ||
|
|
5b7d5f7729 | ||
|
|
e0889384d9 | ||
|
|
74c7198906 | ||
|
|
902b57d107 | ||
|
|
1f5a163f42 | ||
|
|
25de47878b | ||
|
|
42d049f618 | ||
|
|
77f5fc3d55 | ||
|
|
6f08e11d7c | ||
|
|
3c752238c5 | ||
|
|
12c92b6c19 | ||
|
|
1eca98ec56 | ||
|
|
289960bc60 | ||
|
|
2274d2b966 | ||
|
|
a2082bc1f8 | ||
|
|
d311f22182 | ||
|
|
db6512aa35 | ||
|
|
99b1467b63 | ||
|
|
b1e90b3075 | ||
|
|
a4eb6d0fb1 | ||
|
|
bb597b1286 | ||
|
|
efb48566d0 | ||
|
|
0e916d0d55 | ||
|
|
e62f8f143f | ||
|
|
2be66a38d8 | ||
|
|
9ccc4b1616 | ||
|
|
9bb623381b | ||
|
|
4ab78572e7 | ||
|
|
4a15fce516 | ||
|
|
c06c666ce5 | ||
|
|
d206df8d3d | ||
|
|
39b19cf764 | ||
|
|
a4798802ef | ||
|
|
55f6f91f17 | ||
|
|
26cee2e878 | ||
|
|
75734fbcf1 | ||
|
|
a0c2281540 | ||
|
|
6cd56821dc | ||
|
|
2a2c0d1a94 | ||
|
|
525109e506 | ||
|
|
8842a0d986 | ||
|
|
716a316654 | ||
|
|
30fdc2dbe7 | ||
|
|
54e730f6e4 | ||
|
|
e787249af1 | ||
|
|
27aa4d38bf | ||
|
|
ebb404527f | ||
|
|
6168c846b2 | ||
|
|
cb9812593f | ||
|
|
ed200bf2c4 | ||
|
|
7a3d8e5a99 | ||
|
|
d677dadf5f | ||
|
|
1d54ac93bb | ||
|
|
320dc31822 | ||
|
|
5cd4083457 | ||
|
|
76e7e4e9e6 | ||
|
|
7c1cddf1b7 | ||
|
|
c9dac59008 | ||
|
|
7a6c06cadd | ||
|
|
46cbf0e4aa | ||
|
|
dc396835ed | ||
|
|
27ce58f86e | ||
|
|
e4e28a6ff5 | ||
|
|
acc457f645 | ||
|
|
acc8fb3ead | ||
|
|
79c07a8ade | ||
|
|
a77a263e24 | ||
|
|
46ff0f7a3c | ||
|
|
b664dbcc36 | ||
|
|
338cef35b4 | ||
|
|
ee5eedfa04 | ||
|
|
ffde8a6a09 | ||
|
|
d084172b63 | ||
|
|
4457e64e13 | ||
|
|
bc98f90ba3 | ||
|
|
cc55823486 | ||
|
|
aa165539f6 | ||
|
|
7791d92711 | ||
|
|
f24e38876a | ||
|
|
5b1de2ae93 | ||
|
|
f4b2e553e7 | ||
|
|
5d2262af34 | ||
|
|
6019147b66 | ||
|
|
ebcee4f610 | ||
|
|
e800f6bb57 |
@@ -5,10 +5,10 @@ services:
|
||||
dockerfile: libs/langchain/dev.Dockerfile
|
||||
context: ..
|
||||
volumes:
|
||||
# Update this to wherever you want VS Code to mount the folder of your project
|
||||
# Update this to wherever you want VS Code to mount the folder of your project
|
||||
- ..:/workspaces/langchain:cached
|
||||
networks:
|
||||
- langchain-network
|
||||
- langchain-network
|
||||
# environment:
|
||||
# MONGO_ROOT_USERNAME: root
|
||||
# MONGO_ROOT_PASSWORD: example123
|
||||
@@ -28,5 +28,3 @@ services:
|
||||
networks:
|
||||
langchain-network:
|
||||
driver: bridge
|
||||
|
||||
|
||||
|
||||
3
.github/ISSUE_TEMPLATE/config.yml
vendored
3
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -4,9 +4,6 @@ contact_links:
|
||||
- name: 🤔 Question or Problem
|
||||
about: Ask a question or ask about a problem in GitHub Discussions.
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/q-a
|
||||
- name: Discord
|
||||
url: https://discord.gg/6adMQxSpJS
|
||||
about: General community discussions
|
||||
- name: Feature Request
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/ideas
|
||||
about: Suggest a feature or an idea
|
||||
|
||||
38
.github/actions/people/app/main.py
vendored
38
.github/actions/people/app/main.py
vendored
@@ -350,11 +350,7 @@ def get_graphql_pr_edges(*, settings: Settings, after: Union[str, None] = None):
|
||||
print("Querying PRs...")
|
||||
else:
|
||||
print(f"Querying PRs with cursor {after}...")
|
||||
data = get_graphql_response(
|
||||
settings=settings,
|
||||
query=prs_query,
|
||||
after=after
|
||||
)
|
||||
data = get_graphql_response(settings=settings, query=prs_query, after=after)
|
||||
graphql_response = PRsResponse.model_validate(data)
|
||||
return graphql_response.data.repository.pullRequests.edges
|
||||
|
||||
@@ -484,10 +480,16 @@ def get_contributors(settings: Settings):
|
||||
lines_changed = pr.additions + pr.deletions
|
||||
score = _logistic(files_changed, 20) + _logistic(lines_changed, 100)
|
||||
contributor_scores[pr.author.login] += score
|
||||
three_months_ago = (datetime.now(timezone.utc) - timedelta(days=3*30))
|
||||
three_months_ago = datetime.now(timezone.utc) - timedelta(days=3 * 30)
|
||||
if pr.createdAt > three_months_ago:
|
||||
recent_contributor_scores[pr.author.login] += score
|
||||
return contributors, contributor_scores, recent_contributor_scores, reviewers, authors
|
||||
return (
|
||||
contributors,
|
||||
contributor_scores,
|
||||
recent_contributor_scores,
|
||||
reviewers,
|
||||
authors,
|
||||
)
|
||||
|
||||
|
||||
def get_top_users(
|
||||
@@ -524,9 +526,13 @@ if __name__ == "__main__":
|
||||
# question_commentors, question_last_month_commentors, question_authors = get_experts(
|
||||
# settings=settings
|
||||
# )
|
||||
contributors, contributor_scores, recent_contributor_scores, reviewers, pr_authors = get_contributors(
|
||||
settings=settings
|
||||
)
|
||||
(
|
||||
contributors,
|
||||
contributor_scores,
|
||||
recent_contributor_scores,
|
||||
reviewers,
|
||||
pr_authors,
|
||||
) = get_contributors(settings=settings)
|
||||
# authors = {**question_authors, **pr_authors}
|
||||
authors = {**pr_authors}
|
||||
maintainers_logins = {
|
||||
@@ -559,7 +565,7 @@ if __name__ == "__main__":
|
||||
maintainers.append(
|
||||
{
|
||||
"login": login,
|
||||
"count": contributors[login], #+ question_commentors[login],
|
||||
"count": contributors[login], # + question_commentors[login],
|
||||
"avatarUrl": user.avatarUrl,
|
||||
"twitterUsername": user.twitterUsername,
|
||||
"url": user.url,
|
||||
@@ -615,9 +621,7 @@ if __name__ == "__main__":
|
||||
new_people_content = yaml.dump(
|
||||
people, sort_keys=False, width=200, allow_unicode=True
|
||||
)
|
||||
if (
|
||||
people_old_content == new_people_content
|
||||
):
|
||||
if people_old_content == new_people_content:
|
||||
logging.info("The LangChain People data hasn't changed, finishing.")
|
||||
sys.exit(0)
|
||||
people_path.write_text(new_people_content, encoding="utf-8")
|
||||
@@ -630,9 +634,7 @@ if __name__ == "__main__":
|
||||
logging.info(f"Creating a new branch {branch_name}")
|
||||
subprocess.run(["git", "checkout", "-B", branch_name], check=True)
|
||||
logging.info("Adding updated file")
|
||||
subprocess.run(
|
||||
["git", "add", str(people_path)], check=True
|
||||
)
|
||||
subprocess.run(["git", "add", str(people_path)], check=True)
|
||||
logging.info("Committing updated file")
|
||||
message = "👥 Update LangChain people data"
|
||||
result = subprocess.run(["git", "commit", "-m", message], check=True)
|
||||
@@ -641,4 +643,4 @@ if __name__ == "__main__":
|
||||
logging.info("Creating PR")
|
||||
pr = repo.create_pull(title=message, body=message, base="master", head=branch_name)
|
||||
logging.info(f"Created PR: {pr.number}")
|
||||
logging.info("Finished")
|
||||
logging.info("Finished")
|
||||
|
||||
115
.github/scripts/check_diff.py
vendored
115
.github/scripts/check_diff.py
vendored
@@ -1,11 +1,13 @@
|
||||
import glob
|
||||
import json
|
||||
import sys
|
||||
import os
|
||||
from typing import Dict, List, Set
|
||||
|
||||
import re
|
||||
import sys
|
||||
import tomllib
|
||||
from collections import defaultdict
|
||||
import glob
|
||||
from typing import Dict, List, Set
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
LANGCHAIN_DIRS = [
|
||||
"libs/core",
|
||||
@@ -15,22 +17,58 @@ LANGCHAIN_DIRS = [
|
||||
"libs/experimental",
|
||||
]
|
||||
|
||||
|
||||
def all_package_dirs() -> Set[str]:
|
||||
return {"/".join(path.split("/")[:-1]) for path in glob.glob("./libs/**/pyproject.toml", recursive=True)}
|
||||
return {
|
||||
"/".join(path.split("/")[:-1]).lstrip("./")
|
||||
for path in glob.glob("./libs/**/pyproject.toml", recursive=True)
|
||||
if "libs/cli" not in path and "libs/standard-tests" not in path
|
||||
}
|
||||
|
||||
|
||||
def dependents_graph() -> dict:
|
||||
"""
|
||||
Construct a mapping of package -> dependents, such that we can
|
||||
run tests on all dependents of a package when a change is made.
|
||||
"""
|
||||
dependents = defaultdict(set)
|
||||
|
||||
for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
|
||||
if "template" in path:
|
||||
continue
|
||||
|
||||
# load regular and test deps from pyproject.toml
|
||||
with open(path, "rb") as f:
|
||||
pyproject = tomllib.load(f)['tool']['poetry']
|
||||
pyproject = tomllib.load(f)["tool"]["poetry"]
|
||||
|
||||
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
|
||||
for dep in pyproject['dependencies']:
|
||||
for dep in [
|
||||
*pyproject["dependencies"].keys(),
|
||||
*pyproject["group"]["test"]["dependencies"].keys(),
|
||||
]:
|
||||
if "langchain" in dep:
|
||||
dependents[dep].add(pkg_dir)
|
||||
continue
|
||||
|
||||
# load extended deps from extended_testing_deps.txt
|
||||
package_path = Path(path).parent
|
||||
extended_requirement_path = package_path / "extended_testing_deps.txt"
|
||||
if extended_requirement_path.exists():
|
||||
with open(extended_requirement_path, "r") as f:
|
||||
extended_deps = f.read().splitlines()
|
||||
for depline in extended_deps:
|
||||
if depline.startswith("-e "):
|
||||
# editable dependency
|
||||
assert depline.startswith(
|
||||
"-e ../partners/"
|
||||
), "Extended test deps should only editable install partner packages"
|
||||
partner = depline.split("partners/")[1]
|
||||
dep = f"langchain-{partner}"
|
||||
else:
|
||||
dep = depline.split("==")[0]
|
||||
|
||||
if "langchain" in dep:
|
||||
dependents[dep].add(pkg_dir)
|
||||
return dependents
|
||||
|
||||
|
||||
@@ -47,6 +85,44 @@ def add_dependents(dirs_to_eval: Set[str], dependents: dict) -> List[str]:
|
||||
return list(updated)
|
||||
|
||||
|
||||
def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
min_python = "3.8"
|
||||
max_python = "3.12"
|
||||
|
||||
# custom logic for specific directories
|
||||
if dir_ == "libs/partners/milvus":
|
||||
# milvus poetry doesn't allow 3.12 because they
|
||||
# declare deps in funny way
|
||||
max_python = "3.11"
|
||||
|
||||
return [
|
||||
{"working-directory": dir_, "python-version": min_python},
|
||||
{"working-directory": dir_, "python-version": max_python},
|
||||
]
|
||||
|
||||
|
||||
def _get_configs_for_multi_dirs(
|
||||
job: str, dirs_to_run: List[str], dependents: dict
|
||||
) -> List[Dict[str, str]]:
|
||||
if job == "lint":
|
||||
dirs = add_dependents(
|
||||
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"],
|
||||
dependents,
|
||||
)
|
||||
elif job in ["test", "compile-integration-tests", "dependencies"]:
|
||||
dirs = add_dependents(
|
||||
dirs_to_run["test"] | dirs_to_run["extended-test"], dependents
|
||||
)
|
||||
elif job == "extended-tests":
|
||||
dirs = list(dirs_to_run["extended-test"])
|
||||
else:
|
||||
raise ValueError(f"Unknown job: {job}")
|
||||
|
||||
return [
|
||||
config for dir_ in dirs for config in _get_configs_for_single_dir(job, dir_)
|
||||
]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
files = sys.argv[1:]
|
||||
|
||||
@@ -120,14 +196,23 @@ if __name__ == "__main__":
|
||||
|
||||
dependents = dependents_graph()
|
||||
|
||||
outputs = {
|
||||
"dirs-to-lint": add_dependents(
|
||||
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"], dependents
|
||||
),
|
||||
"dirs-to-test": add_dependents(dirs_to_run["test"] | dirs_to_run["extended-test"], dependents),
|
||||
"dirs-to-extended-test": list(dirs_to_run["extended-test"]),
|
||||
"docs-edited": "true" if docs_edited else "",
|
||||
# we now have dirs_by_job
|
||||
# todo: clean this up
|
||||
|
||||
map_job_to_configs = {
|
||||
job: _get_configs_for_multi_dirs(job, dirs_to_run, dependents)
|
||||
for job in [
|
||||
"lint",
|
||||
"test",
|
||||
"extended-tests",
|
||||
"compile-integration-tests",
|
||||
"dependencies",
|
||||
]
|
||||
}
|
||||
for key, value in outputs.items():
|
||||
map_job_to_configs["test-doc-imports"] = (
|
||||
[{"python-version": "3.12"}] if docs_edited else []
|
||||
)
|
||||
|
||||
for key, value in map_job_to_configs.items():
|
||||
json_output = json.dumps(value)
|
||||
print(f"{key}={json_output}")
|
||||
|
||||
35
.github/scripts/check_prerelease_dependencies.py
vendored
Normal file
35
.github/scripts/check_prerelease_dependencies.py
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
import sys
|
||||
import tomllib
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
|
||||
# read toml file
|
||||
with open(toml_file, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# see if we're releasing an rc
|
||||
version = toml_data["tool"]["poetry"]["version"]
|
||||
releasing_rc = "rc" in version
|
||||
|
||||
# if not, iterate through dependencies and make sure none allow prereleases
|
||||
if not releasing_rc:
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
for lib in dependencies:
|
||||
dep_version = dependencies[lib]
|
||||
dep_version_string = (
|
||||
dep_version["version"] if isinstance(dep_version, dict) else dep_version
|
||||
)
|
||||
|
||||
if "rc" in dep_version_string:
|
||||
raise ValueError(
|
||||
f"Dependency {lib} has a prerelease version. Please remove this."
|
||||
)
|
||||
|
||||
if isinstance(dep_version, dict) and dep_version.get(
|
||||
"allow-prereleases", False
|
||||
):
|
||||
raise ValueError(
|
||||
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
|
||||
)
|
||||
24
.github/scripts/get_min_versions.py
vendored
24
.github/scripts/get_min_versions.py
vendored
@@ -1,6 +1,11 @@
|
||||
import sys
|
||||
|
||||
import tomllib
|
||||
if sys.version_info >= (3, 11):
|
||||
import tomllib
|
||||
else:
|
||||
# for python 3.10 and below, which doesnt have stdlib tomllib
|
||||
import tomli as tomllib
|
||||
|
||||
from packaging.version import parse as parse_version
|
||||
import re
|
||||
|
||||
@@ -9,8 +14,11 @@ MIN_VERSION_LIBS = [
|
||||
"langchain-community",
|
||||
"langchain",
|
||||
"langchain-text-splitters",
|
||||
"SQLAlchemy",
|
||||
]
|
||||
|
||||
SKIP_IF_PULL_REQUEST = ["langchain-core"]
|
||||
|
||||
|
||||
def get_min_version(version: str) -> str:
|
||||
# base regex for x.x.x with cases for rc/post/etc
|
||||
@@ -37,7 +45,7 @@ def get_min_version(version: str) -> str:
|
||||
raise ValueError(f"Unrecognized version format: {version}")
|
||||
|
||||
|
||||
def get_min_version_from_toml(toml_path: str):
|
||||
def get_min_version_from_toml(toml_path: str, versions_for: str):
|
||||
# Parse the TOML file
|
||||
with open(toml_path, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
@@ -50,6 +58,10 @@ def get_min_version_from_toml(toml_path: str):
|
||||
|
||||
# Iterate over the libs in MIN_VERSION_LIBS
|
||||
for lib in MIN_VERSION_LIBS:
|
||||
if versions_for == "pull_request" and lib in SKIP_IF_PULL_REQUEST:
|
||||
# some libs only get checked on release because of simultaneous
|
||||
# changes
|
||||
continue
|
||||
# Check if the lib is present in the dependencies
|
||||
if lib in dependencies:
|
||||
# Get the version string
|
||||
@@ -70,10 +82,10 @@ def get_min_version_from_toml(toml_path: str):
|
||||
if __name__ == "__main__":
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
versions_for = sys.argv[2]
|
||||
assert versions_for in ["release", "pull_request"]
|
||||
|
||||
# Call the function to get the minimum versions
|
||||
min_versions = get_min_version_from_toml(toml_file)
|
||||
min_versions = get_min_version_from_toml(toml_file, versions_for)
|
||||
|
||||
print(
|
||||
" ".join([f"{lib}=={version}" for lib, version in min_versions.items()])
|
||||
)
|
||||
print(" ".join([f"{lib}=={version}" for lib, version in min_versions.items()]))
|
||||
|
||||
18
.github/workflows/_compile_integration_test.yml
vendored
18
.github/workflows/_compile_integration_test.yml
vendored
@@ -7,6 +7,10 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
@@ -17,22 +21,14 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
- "3.12"
|
||||
name: "poetry run pytest -m compile tests/integration_tests #${{ matrix.python-version }}"
|
||||
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: compile-integration
|
||||
|
||||
18
.github/workflows/_dependencies.yml
vendored
18
.github/workflows/_dependencies.yml
vendored
@@ -11,6 +11,10 @@ on:
|
||||
required: false
|
||||
type: string
|
||||
description: "Relative path to the langchain library folder"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
@@ -21,22 +25,14 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
- "3.12"
|
||||
name: dependency checks ${{ matrix.python-version }}
|
||||
name: dependency checks ${{ inputs.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: pydantic-cross-compat
|
||||
|
||||
15
.github/workflows/_integration_test.yml
vendored
15
.github/workflows/_integration_test.yml
vendored
@@ -6,6 +6,10 @@ on:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
@@ -16,19 +20,14 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.11"
|
||||
name: Python ${{ matrix.python-version }}
|
||||
name: Python ${{ inputs.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
|
||||
26
.github/workflows/_lint.yml
vendored
26
.github/workflows/_lint.yml
vendored
@@ -11,6 +11,10 @@ on:
|
||||
required: false
|
||||
type: string
|
||||
description: "Relative path to the langchain library folder"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
@@ -21,27 +25,15 @@ env:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: "make lint #${{ matrix.python-version }}"
|
||||
name: "make lint #${{ inputs.python-version }}"
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
# Only lint on the min and max supported Python versions.
|
||||
# It's extremely unlikely that there's a lint issue on any version in between
|
||||
# that doesn't show up on the min or max versions.
|
||||
#
|
||||
# GitHub rate-limits how many jobs can be running at any one time.
|
||||
# Starting new jobs is also relatively slow,
|
||||
# so linting on fewer versions makes CI faster.
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.12"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: lint-with-extras
|
||||
@@ -86,7 +78,7 @@ jobs:
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache
|
||||
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
@@ -120,7 +112,7 @@ jobs:
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache_test
|
||||
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
10
.github/workflows/_release.yml
vendored
10
.github/workflows/_release.yml
vendored
@@ -122,7 +122,6 @@ jobs:
|
||||
fi
|
||||
{
|
||||
echo 'release-body<<EOF'
|
||||
echo "# Release $TAG"
|
||||
echo $PREAMBLE
|
||||
echo
|
||||
git log --format="%s" "$PREV_TAG"..HEAD -- $WORKING_DIR
|
||||
@@ -190,7 +189,7 @@ jobs:
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" || \
|
||||
( \
|
||||
sleep 5 && \
|
||||
sleep 15 && \
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" \
|
||||
@@ -222,12 +221,17 @@ jobs:
|
||||
run: make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Check for prerelease versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
|
||||
|
||||
- name: Get minimum versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
run: |
|
||||
poetry run pip install packaging
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
|
||||
36
.github/workflows/_test.yml
vendored
36
.github/workflows/_test.yml
vendored
@@ -11,6 +11,10 @@ on:
|
||||
required: false
|
||||
type: string
|
||||
description: "Relative path to the langchain library folder"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
@@ -21,22 +25,14 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
- "3.12"
|
||||
name: "make test #${{ matrix.python-version }}"
|
||||
name: "make test #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
@@ -69,3 +65,21 @@ jobs:
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
|
||||
- name: Get minimum versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
run: |
|
||||
poetry run pip install packaging tomli
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
- name: Run unit tests with minimum dependency versions
|
||||
if: ${{ steps.min-version.outputs.min-versions != '' }}
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
15
.github/workflows/_test_doc_imports.yml
vendored
15
.github/workflows/_test_doc_imports.yml
vendored
@@ -2,6 +2,11 @@ name: test_doc_imports
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
@@ -9,18 +14,14 @@ env:
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.12"
|
||||
name: "check doc imports #${{ matrix.python-version }}"
|
||||
name: "check doc imports #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
cache-key: core
|
||||
|
||||
|
||||
83
.github/workflows/check_diffs.yml
vendored
83
.github/workflows/check_diffs.yml
vendored
@@ -33,91 +33,96 @@ jobs:
|
||||
run: |
|
||||
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
|
||||
outputs:
|
||||
dirs-to-lint: ${{ steps.set-matrix.outputs.dirs-to-lint }}
|
||||
dirs-to-test: ${{ steps.set-matrix.outputs.dirs-to-test }}
|
||||
dirs-to-extended-test: ${{ steps.set-matrix.outputs.dirs-to-extended-test }}
|
||||
docs-edited: ${{ steps.set-matrix.outputs.docs-edited }}
|
||||
lint: ${{ steps.set-matrix.outputs.lint }}
|
||||
test: ${{ steps.set-matrix.outputs.test }}
|
||||
extended-tests: ${{ steps.set-matrix.outputs.extended-tests }}
|
||||
compile-integration-tests: ${{ steps.set-matrix.outputs.compile-integration-tests }}
|
||||
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
|
||||
test-doc-imports: ${{ steps.set-matrix.outputs.test-doc-imports }}
|
||||
lint:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
name: cd ${{ matrix.job-configs.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-lint != '[]' }}
|
||||
if: ${{ needs.build.outputs.lint != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-lint) }}
|
||||
job-configs: ${{ fromJson(needs.build.outputs.lint) }}
|
||||
uses: ./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
test:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
name: cd ${{ matrix.job-configs.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
|
||||
if: ${{ needs.build.outputs.test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
|
||||
job-configs: ${{ fromJson(needs.build.outputs.test) }}
|
||||
uses: ./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
test-doc-imports:
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' || needs.build.outputs.docs-edited }}
|
||||
uses: ./.github/workflows/_test_doc_imports.yml
|
||||
secrets: inherit
|
||||
|
||||
compile-integration-tests:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
|
||||
if: ${{ needs.build.outputs.test-doc-imports != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
|
||||
job-configs: ${{ fromJson(needs.build.outputs.test-doc-imports) }}
|
||||
uses: ./.github/workflows/_test_doc_imports.yml
|
||||
secrets: inherit
|
||||
with:
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
|
||||
compile-integration-tests:
|
||||
name: cd ${{ matrix.job-configs.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.compile-integration-tests != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.compile-integration-tests) }}
|
||||
uses: ./.github/workflows/_compile_integration_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
dependencies:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
name: cd ${{ matrix.job-configs.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
|
||||
if: ${{ needs.build.outputs.dependencies != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
|
||||
job-configs: ${{ fromJson(needs.build.outputs.dependencies) }}
|
||||
uses: ./.github/workflows/_dependencies.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
secrets: inherit
|
||||
|
||||
extended-tests:
|
||||
name: "cd ${{ matrix.working-directory }} / make extended_tests #${{ matrix.python-version }}"
|
||||
name: "cd ${{ matrix.job-configs.working-directory }} / make extended_tests #${{ matrix.job-configs.python-version }}"
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-extended-test != '[]' }}
|
||||
if: ${{ needs.build.outputs.extended-tests != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
# note different variable for extended test dirs
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-extended-test) }}
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
- "3.12"
|
||||
job-configs: ${{ fromJson(needs.build.outputs.extended-tests) }}
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
- name: Set up Python ${{ matrix.job-configs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies
|
||||
|
||||
5
.github/workflows/check_new_docs.yml
vendored
5
.github/workflows/check_new_docs.yml
vendored
@@ -26,6 +26,11 @@ jobs:
|
||||
python-version: '3.10'
|
||||
- id: files
|
||||
uses: Ana06/get-changed-files@v2.2.0
|
||||
with:
|
||||
filter: |
|
||||
*.ipynb
|
||||
*.md
|
||||
*.mdx
|
||||
- name: Check new docs
|
||||
run: |
|
||||
python docs/scripts/check_templates.py ${{ steps.files.outputs.added }}
|
||||
|
||||
10
.github/workflows/scheduled_test.yml
vendored
10
.github/workflows/scheduled_test.yml
vendored
@@ -27,7 +27,6 @@ jobs:
|
||||
- "libs/partners/groq"
|
||||
- "libs/partners/mistralai"
|
||||
- "libs/partners/together"
|
||||
- "libs/partners/cohere"
|
||||
- "libs/partners/google-vertexai"
|
||||
- "libs/partners/google-genai"
|
||||
- "libs/partners/aws"
|
||||
@@ -40,10 +39,6 @@ jobs:
|
||||
with:
|
||||
repository: langchain-ai/langchain-google
|
||||
path: langchain-google
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-cohere
|
||||
path: langchain-cohere
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-aws
|
||||
@@ -53,11 +48,9 @@ jobs:
|
||||
run: |
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
langchain/libs/partners/google-vertexai \
|
||||
langchain/libs/partners/cohere
|
||||
langchain/libs/partners/google-vertexai
|
||||
mv langchain-google/libs/genai langchain/libs/partners/google-genai
|
||||
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
|
||||
mv langchain-cohere/libs/cohere langchain/libs/partners/cohere
|
||||
mv langchain-aws/libs/aws langchain/libs/partners/aws
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
@@ -116,7 +109,6 @@ jobs:
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
langchain/libs/partners/google-vertexai \
|
||||
langchain/libs/partners/cohere \
|
||||
langchain/libs/partners/aws
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
[](https://github.com/langchain-ai/langchain/issues)
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
[](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://discord.gg/6adMQxSpJS)
|
||||
[](https://twitter.com/langchainai)
|
||||
|
||||
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
|
||||
@@ -64,7 +64,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
|
||||
"! pip install -U langchain openai langchain-chroma langchain-experimental # (newest versions required for multi-modal)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -355,7 +355,7 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
|
||||
@@ -37,7 +37,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -U --quiet langchain langchain_community openai chromadb langchain-experimental\n",
|
||||
"%pip install -U --quiet langchain langchain-chroma langchain-community openai langchain-experimental\n",
|
||||
"%pip install --quiet \"unstructured[all-docs]\" pypdf pillow pydantic lxml pillow matplotlib chromadb tiktoken"
|
||||
]
|
||||
},
|
||||
@@ -344,8 +344,8 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.embeddings import VertexAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pip install -U langchain umap-learn scikit-learn langchain_community tiktoken langchain-openai langchainhub chromadb langchain-anthropic"
|
||||
"pip install -U langchain umap-learn scikit-learn langchain_community tiktoken langchain-openai langchainhub langchain-chroma langchain-anthropic"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -645,7 +645,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"\n",
|
||||
"# Initialize all_texts with leaf_texts\n",
|
||||
"all_texts = leaf_texts.copy()\n",
|
||||
|
||||
@@ -57,4 +57,6 @@ Notebook | Description
|
||||
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
|
||||
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
|
||||
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
|
||||
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
|
||||
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
|
||||
[rag-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag-locally-on-intel-cpu.ipynb) | Perform Retrieval-Augmented-Generation (RAG) on locally downloaded open-source models using langchain and open source tools and execute it on Intel Xeon CPU. We showed an example of how to apply RAG on Llama 2 model and enable it to answer the queries related to Intel Q1 2024 earnings release.
|
||||
[visual_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/visual_RAG_vdms.ipynb) | Performs Visual Retrieval-Augmented-Generation (RAG) using videos and scene descriptions generated by open source models.
|
||||
@@ -39,7 +39,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install langchain unstructured[all-docs] pydantic lxml langchainhub"
|
||||
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml langchainhub"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -320,7 +320,7 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
|
||||
@@ -59,7 +59,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install langchain unstructured[all-docs] pydantic lxml"
|
||||
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -375,7 +375,7 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
|
||||
@@ -59,7 +59,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install langchain unstructured[all-docs] pydantic lxml"
|
||||
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -378,8 +378,8 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.embeddings import GPT4AllEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
|
||||
@@ -19,7 +19,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
|
||||
"! pip install -U langchain openai langchain_chroma langchain-experimental # (newest versions required for multi-modal)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -132,7 +132,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"baseline = Chroma.from_texts(\n",
|
||||
|
||||
@@ -28,7 +28,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain-airbyte"
|
||||
"%pip install -qU langchain-airbyte langchain_chroma"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -123,7 +123,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tiktoken\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"enc = tiktoken.get_encoding(\"cl100k_base\")\n",
|
||||
|
||||
@@ -39,7 +39,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub chromadb hnswlib --upgrade --quiet"
|
||||
"! pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub langchain-chroma hnswlib --upgrade --quiet"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -547,7 +547,7 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores.chroma import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
|
||||
@@ -84,7 +84,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --quiet pypdf chromadb tiktoken openai \n",
|
||||
"%pip install --quiet pypdf langchain-chroma tiktoken openai \n",
|
||||
"%pip uninstall -y langchain-fireworks\n",
|
||||
"%pip install --editable /mnt/disks/data/langchain/libs/partners/fireworks"
|
||||
]
|
||||
@@ -138,7 +138,7 @@
|
||||
"all_splits = text_splitter.split_documents(data)\n",
|
||||
"\n",
|
||||
"# Add to vectorDB\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_fireworks.embeddings import FireworksEmbeddings\n",
|
||||
"\n",
|
||||
"vectorstore = Chroma.from_documents(\n",
|
||||
|
||||
@@ -170,7 +170,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
"with open(\"../../state_of_the_union.txt\") as f:\n",
|
||||
|
||||
603
cookbook/img-to_img-search_CLIP_ChromaDB.ipynb
Normal file
603
cookbook/img-to_img-search_CLIP_ChromaDB.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -7,7 +7,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph"
|
||||
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -30,8 +30,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.document_loaders import WebBaseLoader\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"urls = [\n",
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph tavily-python"
|
||||
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph tavily-python"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -77,8 +77,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.document_loaders import WebBaseLoader\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"urls = [\n",
|
||||
@@ -180,8 +180,8 @@
|
||||
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.tools.tavily_search import TavilySearchResults\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.messages import BaseMessage, FunctionMessage\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph"
|
||||
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -86,8 +86,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.document_loaders import WebBaseLoader\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"urls = [\n",
|
||||
@@ -188,7 +188,7 @@
|
||||
"from langchain.output_parsers import PydanticOutputParser\n",
|
||||
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_core.messages import BaseMessage, FunctionMessage\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
|
||||
@@ -58,7 +58,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
|
||||
"! pip install -U langchain openai langchain-chroma langchain-experimental # (newest versions required for multi-modal)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -187,7 +187,7 @@
|
||||
"\n",
|
||||
"import chromadb\n",
|
||||
"import numpy as np\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
|
||||
"from PIL import Image as _PILImage\n",
|
||||
"\n",
|
||||
|
||||
@@ -58,7 +58,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain"
|
||||
"! pip install -U langchain-nomic langchain-chroma langchain-community tiktoken langchain-openai langchain"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -167,7 +167,7 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_nomic import NomicEmbeddings\n",
|
||||
|
||||
@@ -56,7 +56,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain # (newest versions required for multi-modal)"
|
||||
"! pip install -U langchain-nomic langchain-chroma langchain-community tiktoken langchain-openai langchain # (newest versions required for multi-modal)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -194,7 +194,7 @@
|
||||
"\n",
|
||||
"import chromadb\n",
|
||||
"import numpy as np\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_nomic import NomicEmbeddings\n",
|
||||
"from PIL import Image as _PILImage\n",
|
||||
"\n",
|
||||
|
||||
@@ -20,8 +20,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter"
|
||||
]
|
||||
|
||||
@@ -80,7 +80,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
|
||||
756
cookbook/rag-locally-on-intel-cpu.ipynb
Normal file
756
cookbook/rag-locally-on-intel-cpu.ipynb
Normal file
@@ -0,0 +1,756 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "10f50955-be55-422f-8c62-3a32f8cf02ed",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# RAG application running locally on Intel Xeon CPU using langchain and open-source models"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "48113be6-44bb-4aac-aed3-76a1365b9561",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Author - Pratool Bharti (pratool.bharti@intel.com)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8b10b54b-1572-4ea1-9c1e-1d29fcc3dcd9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In this cookbook, we use langchain tools and open source models to execute locally on CPU. This notebook has been validated to run on Intel Xeon 8480+ CPU. Here we implement a RAG pipeline for Llama2 model to answer questions about Intel Q1 2024 earnings release."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "acadbcec-3468-4926-8ce5-03b678041c0a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Create a conda or virtualenv environment with python >=3.10 and install following libraries**\n",
|
||||
"<br>\n",
|
||||
"\n",
|
||||
"`pip install --upgrade langchain langchain-community langchainhub langchain-chroma bs4 gpt4all pypdf pysqlite3-binary` <br>\n",
|
||||
"`pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "84c392c8-700a-42ec-8e94-806597f22e43",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Load pysqlite3 in sys modules since ChromaDB requires sqlite3.**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "145cd491-b388-4ea7-bdc8-2f4995cac6fd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"__import__(\"pysqlite3\")\n",
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.modules[\"sqlite3\"] = sys.modules.pop(\"pysqlite3\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "14dde7e2-b236-49b9-b3a0-08c06410418c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Import essential components from langchain to load and split data**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "887643ba-249e-48d6-9aa7-d25087e8dfbf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "922c0eba-8736-4de5-bd2f-3d0f00b16e43",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Download Intel Q1 2024 earnings release**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "2d6a2419-5338-4188-8615-a40a65ff8019",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"--2024-07-15 15:04:43-- https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf\n",
|
||||
"Resolving proxy-dmz.intel.com (proxy-dmz.intel.com)... 10.7.211.16\n",
|
||||
"Connecting to proxy-dmz.intel.com (proxy-dmz.intel.com)|10.7.211.16|:912... connected.\n",
|
||||
"Proxy request sent, awaiting response... 200 OK\n",
|
||||
"Length: 133510 (130K) [application/pdf]\n",
|
||||
"Saving to: ‘intel_q1_2024_earnings.pdf’\n",
|
||||
"\n",
|
||||
"intel_q1_2024_earni 100%[===================>] 130.38K --.-KB/s in 0.005s \n",
|
||||
"\n",
|
||||
"2024-07-15 15:04:44 (24.6 MB/s) - ‘intel_q1_2024_earnings.pdf’ saved [133510/133510]\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!wget 'https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf' -O intel_q1_2024_earnings.pdf"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e3612627-e105-453d-8a50-bbd6e39dedb5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Loading earning release pdf document through PyPDFLoader**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "cac6278e-ebad-4224-a062-bf6daca24cb0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = PyPDFLoader(\"intel_q1_2024_earnings.pdf\")\n",
|
||||
"data = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a7dca43b-1c62-41df-90c7-6ed2904f823d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Splitting entire document in several chunks with each chunk size is 500 tokens**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "4486adbe-0d0e-4685-8c08-c1774ed6e993",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
|
||||
"all_splits = text_splitter.split_documents(data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "af142346-e793-4a52-9a56-63e3be416b3d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Looking at the first split of the document**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "e4240fd1-898e-4bfc-a377-02c9bc25b56e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Document(metadata={'source': 'intel_q1_2024_earnings.pdf', 'page': 0}, page_content='Intel Corporation\\n2200 Mission College Blvd.\\nSanta Clara, CA 95054-1549\\n \\nNews Release\\n Intel Reports First -Quarter 2024 Financial Results\\nNEWS SUMMARY\\n▪First-quarter revenue of $12.7 billion , up 9% year over year (YoY).\\n▪First-quarter GAAP earnings (loss) per share (EPS) attributable to Intel was $(0.09) ; non-GAAP EPS \\nattributable to Intel was $0.18 .')"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"all_splits[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b88d2632-7c1b-49ef-a691-c0eb67d23e6a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**One of the major step in RAG is to convert each split of document into embeddings and store in a vector database such that searching relevant documents are efficient.** <br>\n",
|
||||
"**For that, importing Chroma vector database from langchain. Also, importing open source GPT4All for embedding models**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "9ff99dd7-9d47-4239-ba0a-d775792334ba",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.embeddings import GPT4AllEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b5d1f4dd-dd8d-4a20-95d1-2dbdd204375a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**In next step, we will download one of the most popular embedding model \"all-MiniLM-L6-v2\". Find more details of the model at this link https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "05db3494-5d8e-4a13-9941-26330a86f5e5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_name = \"all-MiniLM-L6-v2.gguf2.f16.gguf\"\n",
|
||||
"gpt4all_kwargs = {\"allow_download\": \"True\"}\n",
|
||||
"embeddings = GPT4AllEmbeddings(model_name=model_name, gpt4all_kwargs=gpt4all_kwargs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4e53999e-1983-46ac-8039-2783e194c3ae",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Store all the embeddings in the Chroma database**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "0922951a-9ddf-4761-973d-8e9a86f61284",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=embeddings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "29f94fa0-6c75-4a65-a1a3-debc75422479",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Now, let's find relevant splits from the documents related to the question**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "88c8152d-ec7a-4f0b-9d86-877789407537",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"4\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"question = \"What is Intel CCG revenue in Q1 2024\"\n",
|
||||
"docs = vectorstore.similarity_search(question)\n",
|
||||
"print(len(docs))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "53330c6b-cb0f-43f9-b379-2e57ac1e5335",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Look at the first retrieved document from the vector database**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "43a6d94f-b5c4-47b0-a353-2db4c3d24d9c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Document(metadata={'page': 1, 'source': 'intel_q1_2024_earnings.pdf'}, page_content='Client Computing Group (CCG) $7.5 billion up31%\\nData Center and AI (DCAI) $3.0 billion up5%\\nNetwork and Edge (NEX) $1.4 billion down 8%\\nTotal Intel Products revenue $11.9 billion up17%\\nIntel Foundry $4.4 billion down 10%\\nAll other:\\nAltera $342 million down 58%\\nMobileye $239 million down 48%\\nOther $194 million up17%\\nTotal all other revenue $775 million down 46%\\nIntersegment eliminations $(4.4) billion\\nTotal net revenue $12.7 billion up9%\\nIntel Products Highlights')"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"docs[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "64ba074f-4b36-442e-b7e2-b26d6e2815c3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Download Lllama-2 model from Huggingface and store locally** <br>\n",
|
||||
"**You can download different quantization variant of Lllama-2 model from the link below. We are using Q8 version here (7.16GB).** <br>\n",
|
||||
"https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c8dd0811-6f43-4bc6-b854-2ab377639c9a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!huggingface-cli download TheBloke/Llama-2-7b-Chat-GGUF llama-2-7b-chat.Q8_0.gguf --local-dir . --local-dir-use-symlinks False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3895b1f5-f51d-4539-abf0-af33d7ca48ea",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Import langchain components required to load downloaded LLMs model**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "fb087088-aa62-44c0-8356-061e9b9f1186",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.callbacks.manager import CallbackManager\n",
|
||||
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
||||
"from langchain_community.llms import LlamaCpp"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5a8a111e-2614-4b70-b034-85cd3e7304cb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Loading the local Lllama-2 model using Llama-cpp library**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "fb917da2-c0d7-4995-b56d-26254276e0da",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from llama-2-7b-chat.Q8_0.gguf (version GGUF V2)\n",
|
||||
"llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n",
|
||||
"llama_model_loader: - kv 0: general.architecture str = llama\n",
|
||||
"llama_model_loader: - kv 1: general.name str = LLaMA v2\n",
|
||||
"llama_model_loader: - kv 2: llama.context_length u32 = 4096\n",
|
||||
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
|
||||
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
|
||||
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008\n",
|
||||
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
|
||||
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
|
||||
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32\n",
|
||||
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001\n",
|
||||
"llama_model_loader: - kv 10: general.file_type u32 = 7\n",
|
||||
"llama_model_loader: - kv 11: tokenizer.ggml.model str = llama\n",
|
||||
"llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
|
||||
"llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
|
||||
"llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
|
||||
"llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1\n",
|
||||
"llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2\n",
|
||||
"llama_model_loader: - kv 17: tokenizer.ggml.unknown_token_id u32 = 0\n",
|
||||
"llama_model_loader: - kv 18: general.quantization_version u32 = 2\n",
|
||||
"llama_model_loader: - type f32: 65 tensors\n",
|
||||
"llama_model_loader: - type q8_0: 226 tensors\n",
|
||||
"llm_load_vocab: special tokens cache size = 259\n",
|
||||
"llm_load_vocab: token to piece cache size = 0.1684 MB\n",
|
||||
"llm_load_print_meta: format = GGUF V2\n",
|
||||
"llm_load_print_meta: arch = llama\n",
|
||||
"llm_load_print_meta: vocab type = SPM\n",
|
||||
"llm_load_print_meta: n_vocab = 32000\n",
|
||||
"llm_load_print_meta: n_merges = 0\n",
|
||||
"llm_load_print_meta: vocab_only = 0\n",
|
||||
"llm_load_print_meta: n_ctx_train = 4096\n",
|
||||
"llm_load_print_meta: n_embd = 4096\n",
|
||||
"llm_load_print_meta: n_layer = 32\n",
|
||||
"llm_load_print_meta: n_head = 32\n",
|
||||
"llm_load_print_meta: n_head_kv = 32\n",
|
||||
"llm_load_print_meta: n_rot = 128\n",
|
||||
"llm_load_print_meta: n_swa = 0\n",
|
||||
"llm_load_print_meta: n_embd_head_k = 128\n",
|
||||
"llm_load_print_meta: n_embd_head_v = 128\n",
|
||||
"llm_load_print_meta: n_gqa = 1\n",
|
||||
"llm_load_print_meta: n_embd_k_gqa = 4096\n",
|
||||
"llm_load_print_meta: n_embd_v_gqa = 4096\n",
|
||||
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
|
||||
"llm_load_print_meta: f_norm_rms_eps = 1.0e-06\n",
|
||||
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
|
||||
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
|
||||
"llm_load_print_meta: f_logit_scale = 0.0e+00\n",
|
||||
"llm_load_print_meta: n_ff = 11008\n",
|
||||
"llm_load_print_meta: n_expert = 0\n",
|
||||
"llm_load_print_meta: n_expert_used = 0\n",
|
||||
"llm_load_print_meta: causal attn = 1\n",
|
||||
"llm_load_print_meta: pooling type = 0\n",
|
||||
"llm_load_print_meta: rope type = 0\n",
|
||||
"llm_load_print_meta: rope scaling = linear\n",
|
||||
"llm_load_print_meta: freq_base_train = 10000.0\n",
|
||||
"llm_load_print_meta: freq_scale_train = 1\n",
|
||||
"llm_load_print_meta: n_ctx_orig_yarn = 4096\n",
|
||||
"llm_load_print_meta: rope_finetuned = unknown\n",
|
||||
"llm_load_print_meta: ssm_d_conv = 0\n",
|
||||
"llm_load_print_meta: ssm_d_inner = 0\n",
|
||||
"llm_load_print_meta: ssm_d_state = 0\n",
|
||||
"llm_load_print_meta: ssm_dt_rank = 0\n",
|
||||
"llm_load_print_meta: model type = 7B\n",
|
||||
"llm_load_print_meta: model ftype = Q8_0\n",
|
||||
"llm_load_print_meta: model params = 6.74 B\n",
|
||||
"llm_load_print_meta: model size = 6.67 GiB (8.50 BPW) \n",
|
||||
"llm_load_print_meta: general.name = LLaMA v2\n",
|
||||
"llm_load_print_meta: BOS token = 1 '<s>'\n",
|
||||
"llm_load_print_meta: EOS token = 2 '</s>'\n",
|
||||
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
|
||||
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
|
||||
"llm_load_print_meta: max token length = 48\n",
|
||||
"llm_load_tensors: ggml ctx size = 0.14 MiB\n",
|
||||
"llm_load_tensors: CPU buffer size = 6828.64 MiB\n",
|
||||
"...................................................................................................\n",
|
||||
"llama_new_context_with_model: n_ctx = 2048\n",
|
||||
"llama_new_context_with_model: n_batch = 512\n",
|
||||
"llama_new_context_with_model: n_ubatch = 512\n",
|
||||
"llama_new_context_with_model: flash_attn = 0\n",
|
||||
"llama_new_context_with_model: freq_base = 10000.0\n",
|
||||
"llama_new_context_with_model: freq_scale = 1\n",
|
||||
"llama_kv_cache_init: CPU KV buffer size = 1024.00 MiB\n",
|
||||
"llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB\n",
|
||||
"llama_new_context_with_model: CPU output buffer size = 0.12 MiB\n",
|
||||
"llama_new_context_with_model: CPU compute buffer size = 164.01 MiB\n",
|
||||
"llama_new_context_with_model: graph nodes = 1030\n",
|
||||
"llama_new_context_with_model: graph splits = 1\n",
|
||||
"AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 | \n",
|
||||
"Model metadata: {'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.context_length': '4096', 'general.name': 'LLaMA v2', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '11008', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'llama.rope.dimension_count': '128', 'llama.attention.head_count': '32', 'tokenizer.ggml.bos_token_id': '1', 'llama.block_count': '32', 'llama.attention.head_count_kv': '32', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '7'}\n",
|
||||
"Using fallback chat format: llama-2\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = LlamaCpp(\n",
|
||||
" model_path=\"llama-2-7b-chat.Q8_0.gguf\",\n",
|
||||
" n_gpu_layers=-1,\n",
|
||||
" n_batch=512,\n",
|
||||
" n_ctx=2048,\n",
|
||||
" f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls\n",
|
||||
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
|
||||
" verbose=True,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "43e06f56-ef97-451b-87d9-8465ea442aed",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Now let's ask the same question to Llama model without showing them the earnings release.**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "1033dd82-5532-437d-a548-27695e109589",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"?\n",
|
||||
"(NASDAQ:INTC)\n",
|
||||
"Intel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year."
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"llama_print_timings: load time = 131.20 ms\n",
|
||||
"llama_print_timings: sample time = 16.05 ms / 68 runs ( 0.24 ms per token, 4236.76 tokens per second)\n",
|
||||
"llama_print_timings: prompt eval time = 131.14 ms / 16 tokens ( 8.20 ms per token, 122.01 tokens per second)\n",
|
||||
"llama_print_timings: eval time = 3225.00 ms / 67 runs ( 48.13 ms per token, 20.78 tokens per second)\n",
|
||||
"llama_print_timings: total time = 3466.40 ms / 83 tokens\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"?\\n(NASDAQ:INTC)\\nIntel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year.\""
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm.invoke(question)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "75f5cb10-746f-4e37-9386-b85a4d2b84ef",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**As you can see, model is giving wrong information. Correct asnwer is CCG revenue in Q1 2024 is $7.5B. Now let's apply RAG using the earning release document**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0f4150ec-5692-4756-b11a-22feb7ab88ff",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**in RAG, we modify the input prompt by adding relevent documents with the question. Here, we use one of the popular RAG prompt**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "226c14b0-f43e-4a1f-a1e4-04731d467ec4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], template=\"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\\nQuestion: {question} \\nContext: {context} \\nAnswer:\"))]"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"\n",
|
||||
"rag_prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
||||
"rag_prompt.messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "77deb6a0-0950-450a-916a-f2a029676c20",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Appending all retreived documents in a single document**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "2dbc3327-6ef3-4c1f-8797-0c71964b0921",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def format_docs(docs):\n",
|
||||
" return \"\\n\\n\".join(doc.page_content for doc in docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2e2d9f18-49d0-43a3-bea8-78746ffa86b7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**The last step is to create a chain using langchain tool that will create an e2e pipeline. It will take question and context as an input.**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "427379c2-51ff-4e0f-8278-a45221363299",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough, RunnablePick\n",
|
||||
"\n",
|
||||
"# Chain\n",
|
||||
"chain = (\n",
|
||||
" RunnablePassthrough.assign(context=RunnablePick(\"context\") | format_docs)\n",
|
||||
" | rag_prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "095d6280-c949-4d00-8e32-8895a82d245f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Llama.generate: prefix-match hit\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%."
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"llama_print_timings: load time = 131.20 ms\n",
|
||||
"llama_print_timings: sample time = 7.74 ms / 31 runs ( 0.25 ms per token, 4004.13 tokens per second)\n",
|
||||
"llama_print_timings: prompt eval time = 2529.41 ms / 674 tokens ( 3.75 ms per token, 266.46 tokens per second)\n",
|
||||
"llama_print_timings: eval time = 1542.94 ms / 30 runs ( 51.43 ms per token, 19.44 tokens per second)\n",
|
||||
"llama_print_timings: total time = 4123.68 ms / 704 tokens\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"' Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"context\": docs, \"question\": question})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "638364b2-6bd2-4471-9961-d3a1d1b9d4ee",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Now we see the results are correct as it is mentioned in earnings release.** <br>\n",
|
||||
"**To further automate, we will create a chain that will take input as question and retriever so that we don't need to retrieve documents seperately**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "4654e5b7-635f-4767-8b31-4c430164cdd5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = vectorstore.as_retriever()\n",
|
||||
"qa_chain = (\n",
|
||||
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
|
||||
" | rag_prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0979f393-fd0a-4e82-b844-68371c6ad68f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Now we only need to pass the question to the chain and it will fetch the contexts directly from the vector database to generate the answer**\n",
|
||||
"<br>\n",
|
||||
"**Let's try with another question**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"id": "3ea07b82-e6ec-4084-85f4-191373530172",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Llama.generate: prefix-match hit\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%."
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"llama_print_timings: load time = 131.20 ms\n",
|
||||
"llama_print_timings: sample time = 6.28 ms / 31 runs ( 0.20 ms per token, 4937.88 tokens per second)\n",
|
||||
"llama_print_timings: prompt eval time = 2681.93 ms / 730 tokens ( 3.67 ms per token, 272.19 tokens per second)\n",
|
||||
"llama_print_timings: eval time = 1471.07 ms / 30 runs ( 49.04 ms per token, 20.39 tokens per second)\n",
|
||||
"llama_print_timings: total time = 4206.77 ms / 760 tokens\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"' According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"qa_chain.invoke(\"what is Intel DCAI revenue in Q1 2024?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9407f2a0-4a35-4315-8e96-02fcb80f210c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "rag-on-intel",
|
||||
"language": "python",
|
||||
"name": "rag-on-intel"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -36,10 +36,10 @@
|
||||
"from bs4 import BeautifulSoup as Soup\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryByteStore, LocalFileStore\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.document_loaders.recursive_url_loader import (\n",
|
||||
" RecursiveUrlLoader,\n",
|
||||
")\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"# For our example, we'll load docs from the web\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||
@@ -370,13 +370,14 @@
|
||||
],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"from langchain.llms.huggingface_pipeline import HuggingFacePipeline\n",
|
||||
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
|
||||
"from langchain_huggingface.llms import HuggingFacePipeline\n",
|
||||
"from optimum.intel.ipex import IPEXModelForCausalLM\n",
|
||||
"from transformers import AutoTokenizer, pipeline\n",
|
||||
"\n",
|
||||
"model_id = \"Intel/neural-chat-7b-v3-3\"\n",
|
||||
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
||||
"model = AutoModelForCausalLM.from_pretrained(\n",
|
||||
" model_id, device_map=\"auto\", torch_dtype=torch.bfloat16\n",
|
||||
"model = IPEXModelForCausalLM.from_pretrained(\n",
|
||||
" model_id, torch_dtype=torch.bfloat16, export=True\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"pipe = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, max_new_tokens=100)\n",
|
||||
@@ -581,7 +582,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.18"
|
||||
"version": "3.10.14"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -740,7 +740,7 @@ Even this relatively large model will most likely fail to generate more complica
|
||||
|
||||
|
||||
```bash
|
||||
poetry run pip install pyyaml chromadb
|
||||
poetry run pip install pyyaml langchain_chroma
|
||||
import yaml
|
||||
```
|
||||
|
||||
@@ -994,7 +994,7 @@ from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
||||
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
|
||||
from langchain_huggingface import HuggingFaceEmbeddings
|
||||
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
|
||||
from langchain_community.vectorstores import Chroma
|
||||
from langchain_chroma import Chroma
|
||||
|
||||
example_prompt = PromptTemplate(
|
||||
input_variables=["table_info", "input", "sql_cmd", "sql_result", "answer"],
|
||||
|
||||
@@ -22,7 +22,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install --quiet pypdf chromadb tiktoken openai langchain-together"
|
||||
"! pip install --quiet pypdf tiktoken openai langchain-chroma langchain-together"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -45,8 +45,8 @@
|
||||
"all_splits = text_splitter.split_documents(data)\n",
|
||||
"\n",
|
||||
"# Add to vectorDB\n",
|
||||
"from langchain_chroma import Chroma\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"\"\"\"\n",
|
||||
"from langchain_together.embeddings import TogetherEmbeddings\n",
|
||||
|
||||
677
cookbook/visual_RAG_vdms.ipynb
Normal file
677
cookbook/visual_RAG_vdms.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -13,7 +13,7 @@ OUTPUT_NEW_DOCS_DIR = $(OUTPUT_NEW_DIR)/docs
|
||||
|
||||
PYTHON = .venv/bin/python
|
||||
|
||||
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm" | tr '\n' ' ')
|
||||
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm|couchbase" | tr '\n' ' ')
|
||||
|
||||
PORT ?= 3001
|
||||
|
||||
|
||||
@@ -178,3 +178,10 @@ autosummary_generate = True
|
||||
|
||||
html_copy_source = False
|
||||
html_show_sourcelink = False
|
||||
|
||||
# Set canonical URL from the Read the Docs Domain
|
||||
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "")
|
||||
|
||||
# Tell Jinja2 templates the build is running on Read the Docs
|
||||
if os.environ.get("READTHEDOCS", "") == "True":
|
||||
html_context["READTHEDOCS"] = True
|
||||
|
||||
@@ -78,7 +78,7 @@ def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
|
||||
continue
|
||||
|
||||
if inspect.isclass(type_):
|
||||
# The clasification of the class is used to select a template
|
||||
# The type of the class is used to select a template
|
||||
# for the object when rendering the documentation.
|
||||
# See `templates` directory for defined templates.
|
||||
# This is a hacky solution to distinguish between different
|
||||
|
||||
@@ -55,6 +55,7 @@ A developer platform that lets you debug, test, evaluate, and monitor LLM applic
|
||||
dark: useBaseUrl('/svg/langchain_stack_062024_dark.svg'),
|
||||
}}
|
||||
title="LangChain Framework Overview"
|
||||
style={{ width: "100%" }}
|
||||
/>
|
||||
|
||||
## LangChain Expression Language (LCEL)
|
||||
@@ -85,8 +86,13 @@ Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas i
|
||||
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
|
||||
With LCEL, **all** steps are automatically logged to [LangSmith](https://docs.smith.langchain.com/) for maximum observability and debuggability.
|
||||
|
||||
[**Seamless LangServe deployment**](/docs/langserve)
|
||||
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).
|
||||
LCEL aims to provide consistency around behavior and customization over legacy subclassed chains such as `LLMChain` and
|
||||
`ConversationalRetrievalChain`. Many of these legacy chains hide important details like prompts, and as a wider variety
|
||||
of viable models emerge, customization has become more and more important.
|
||||
|
||||
If you are currently using one of these legacy chains, please see [this guide for guidance on how to migrate](/docs/how_to/migrate_chains/).
|
||||
|
||||
For guides on how to do specific tasks with LCEL, check out [the relevant how-to guides](/docs/how_to/#langchain-expression-language-lcel).
|
||||
|
||||
### Runnable interface
|
||||
<span data-heading-keywords="invoke,runnable"></span>
|
||||
@@ -230,7 +236,7 @@ This is where information like log-probs and token usage may be stored.
|
||||
These represent a decision from an language model to call a tool. They are included as part of an `AIMessage` output.
|
||||
They can be accessed from there with the `.tool_calls` property.
|
||||
|
||||
This property returns a list of dictionaries. Each dictionary has the following keys:
|
||||
This property returns a list of `ToolCall`s. A `ToolCall` is a dictionary with the following arguments:
|
||||
|
||||
- `name`: The name of the tool that should be called.
|
||||
- `args`: The arguments to that tool.
|
||||
@@ -240,13 +246,18 @@ This property returns a list of dictionaries. Each dictionary has the following
|
||||
|
||||
This represents a system message, which tells the model how to behave. Not every model provider supports this.
|
||||
|
||||
#### FunctionMessage
|
||||
|
||||
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
|
||||
|
||||
#### ToolMessage
|
||||
|
||||
This represents the result of a tool call. This is distinct from a FunctionMessage in order to match OpenAI's `function` and `tool` message types. In addition to `role` and `content`, this message has a `tool_call_id` parameter which conveys the id of the call to the tool that was called to produce this result.
|
||||
This represents the result of a tool call. In addition to `role` and `content`, this message has:
|
||||
|
||||
- a `tool_call_id` field which conveys the id of the call to the tool that was called to produce this result.
|
||||
- an `artifact` field which can be used to pass along arbitrary artifacts of the tool execution which are useful to track but which should not be sent to the model.
|
||||
|
||||
#### (Legacy) FunctionMessage
|
||||
|
||||
This is a legacy message type, corresponding to OpenAI's legacy function-calling API. ToolMessage should be used instead to correspond to the updated tool-calling API.
|
||||
|
||||
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
|
||||
|
||||
|
||||
### Prompt templates
|
||||
@@ -490,33 +501,87 @@ For specifics on how to use retrievers, see the [relevant how-to guides here](/d
|
||||
### Tools
|
||||
<span data-heading-keywords="tool,tools"></span>
|
||||
|
||||
Tools are interfaces that an agent, a chain, or a chat model / LLM can use to interact with the world.
|
||||
Tools are utilities designed to be called by a model: their inputs are designed to be generated by models, and their outputs are designed to be passed back to models.
|
||||
Tools are needed whenever you want a model to control parts of your code or call out to external APIs.
|
||||
|
||||
A tool consists of the following components:
|
||||
A tool consists of:
|
||||
|
||||
1. The name of the tool
|
||||
2. A description of what the tool does
|
||||
3. JSON schema of what the inputs to the tool are
|
||||
4. The function to call
|
||||
5. Whether the result of a tool should be returned directly to the user (only relevant for agents)
|
||||
1. The name of the tool.
|
||||
2. A description of what the tool does.
|
||||
3. A JSON schema defining the inputs to the tool.
|
||||
4. A function (and, optionally, an async variant of the function).
|
||||
|
||||
The name, description and JSON schema are provided as context
|
||||
to the LLM, allowing the LLM to determine how to use the tool
|
||||
appropriately.
|
||||
When a tool is bound to a model, the name, description and JSON schema are provided as context to the model.
|
||||
Given a list of tools and a set of instructions, a model can request to call one or more tools with specific inputs.
|
||||
Typical usage may look like the following:
|
||||
|
||||
Given a list of available tools and a prompt, an LLM can request
|
||||
that one or more tools be invoked with appropriate arguments.
|
||||
```python
|
||||
tools = [...] # Define a list of tools
|
||||
llm_with_tools = llm.bind_tools(tools)
|
||||
ai_msg = llm_with_tools.invoke("do xyz...") # AIMessage(tool_calls=[ToolCall(...), ...], ...)
|
||||
```
|
||||
|
||||
Generally, when designing tools to be used by a chat model or LLM, it is important to keep in mind the following:
|
||||
The `AIMessage` returned from the model MAY have `tool_calls` associated with it.
|
||||
Read [this guide](/docs/concepts/#aimessage) for more information on what the response type may look like.
|
||||
|
||||
- Chat models that have been fine-tuned for tool calling will be better at tool calling than non-fine-tuned models.
|
||||
- Non fine-tuned models may not be able to use tools at all, especially if the tools are complex or require multiple tool calls.
|
||||
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas.
|
||||
- Simpler tools are generally easier for models to use than more complex tools.
|
||||
Once the chosen tools are invoked, the results can be passed back to the model so that it can complete whatever task
|
||||
it's performing.
|
||||
There are generally two different ways to invoke the tool and pass back the response:
|
||||
|
||||
For specifics on how to use tools, see the [relevant how-to guides here](/docs/how_to/#tools).
|
||||
#### Invoke with just the arguments
|
||||
|
||||
When you invoke a tool with just the arguments, you will get back the raw tool output (usually a string).
|
||||
This generally looks like:
|
||||
|
||||
```python
|
||||
# You will want to previously check that the LLM returned tool calls
|
||||
tool_call = ai_msg.tool_calls[0] # ToolCall(args={...}, id=..., ...)
|
||||
tool_output = tool.invoke(tool_call["args"])
|
||||
tool_message = ToolMessage(content=tool_output, tool_call_id=tool_call["id"], name=tool_call["name"])
|
||||
```
|
||||
|
||||
Note that the `content` field will generally be passed back to the model.
|
||||
If you do not want the raw tool response to be passed to the model, but you still want to keep it around,
|
||||
you can transform the tool output but also pass it as an artifact (read more about [`ToolMessage.artifact` here](/docs/concepts/#toolmessage))
|
||||
|
||||
```python
|
||||
... # Same code as above
|
||||
response_for_llm = transform(response)
|
||||
tool_message = ToolMessage(content=response_for_llm, tool_call_id=tool_call["id"], name=tool_call["name"], artifact=tool_output)
|
||||
```
|
||||
|
||||
#### Invoke with `ToolCall`
|
||||
|
||||
The other way to invoke a tool is to call it with the full `ToolCall` that was generated by the model.
|
||||
When you do this, the tool will return a ToolMessage.
|
||||
The benefits of this are that you don't have to write the logic yourself to transform the tool output into a ToolMessage.
|
||||
This generally looks like:
|
||||
|
||||
```python
|
||||
tool_call = ai_msg.tool_calls[0] # ToolCall(args={...}, id=..., ...)
|
||||
tool_message = tool.invoke(tool_call)
|
||||
# -> ToolMessage(content="tool result foobar...", tool_call_id=..., name="tool_name")
|
||||
```
|
||||
|
||||
If you are invoking the tool this way and want to include an [artifact](/docs/concepts/#toolmessage) for the ToolMessage, you will need to have the tool return two things.
|
||||
Read more about [defining tools that return artifacts here](/docs/how_to/tool_artifacts/).
|
||||
|
||||
#### Best practices
|
||||
|
||||
When designing tools to be used by a model, it is important to keep in mind that:
|
||||
|
||||
- Chat models that have explicit [tool-calling APIs](/docs/concepts/#functiontool-calling) will be better at tool calling than non-fine-tuned models.
|
||||
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This another form of prompt engineering.
|
||||
- Simple, narrowly scoped tools are easier for models to use than complex tools.
|
||||
|
||||
#### Related
|
||||
|
||||
For specifics on how to use tools, see the [tools how-to guides](/docs/how_to/#tools).
|
||||
|
||||
To use a pre-built tool, see the [tool integration docs](/docs/integrations/tools/).
|
||||
|
||||
### Toolkits
|
||||
<span data-heading-keywords="toolkit,toolkits"></span>
|
||||
|
||||
Toolkits are collections of tools that are designed to be used together for specific tasks. They have convenient loading methods.
|
||||
|
||||
@@ -776,14 +841,54 @@ a few ways to get structured output from models in LangChain.
|
||||
|
||||
#### `.with_structured_output()`
|
||||
|
||||
For convenience, some LangChain chat models support a `.with_structured_output()` method.
|
||||
This method only requires a schema as input, and returns a dict or Pydantic object.
|
||||
For convenience, some LangChain chat models support a [`.with_structured_output()`](/docs/how_to/structured_output/#the-with_structured_output-method)
|
||||
method. This method only requires a schema as input, and returns a dict or Pydantic object.
|
||||
Generally, this method is only present on models that support one of the more advanced methods described below,
|
||||
and will use one of them under the hood. It takes care of importing a suitable output parser and
|
||||
formatting the schema in the right format for the model.
|
||||
|
||||
Here's an example:
|
||||
|
||||
```python
|
||||
from typing import Optional
|
||||
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
|
||||
|
||||
class Joke(BaseModel):
|
||||
"""Joke to tell user."""
|
||||
|
||||
setup: str = Field(description="The setup of the joke")
|
||||
punchline: str = Field(description="The punchline to the joke")
|
||||
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
||||
|
||||
structured_llm = llm.with_structured_output(Joke)
|
||||
|
||||
structured_llm.invoke("Tell me a joke about cats")
|
||||
```
|
||||
|
||||
```
|
||||
Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)
|
||||
|
||||
```
|
||||
|
||||
We recommend this method as a starting point when working with structured output:
|
||||
|
||||
- It uses other model-specific features under the hood, without the need to import an output parser.
|
||||
- For the models that use tool calling, no special prompting is needed.
|
||||
- If multiple underlying techniques are supported, you can supply a `method` parameter to
|
||||
[toggle which one is used](/docs/how_to/structured_output/#advanced-specifying-the-method-for-structuring-outputs).
|
||||
|
||||
You may want or need to use other techniques if:
|
||||
|
||||
- The chat model you are using does not support tool calling.
|
||||
- You are working with very complex schemas and the model is having trouble generating outputs that conform.
|
||||
|
||||
For more information, check out this [how-to guide](/docs/how_to/structured_output/#the-with_structured_output-method).
|
||||
|
||||
You can also check out [this table](/docs/integrations/chat/#advanced-features) for a list of models that support
|
||||
`with_structured_output()`.
|
||||
|
||||
#### Raw prompting
|
||||
|
||||
The most intuitive way to get a model to structure output is to ask nicely.
|
||||
@@ -806,9 +911,8 @@ for smooth parsing can be surprisingly difficult and model-specific.
|
||||
Some may be better at interpreting [JSON schema](https://json-schema.org/), others may be best with TypeScript definitions,
|
||||
and still others may prefer XML.
|
||||
|
||||
While we'll next go over some ways that you can take advantage of features offered by
|
||||
model providers to increase reliability, prompting techniques remain important for tuning your
|
||||
results no matter what method you choose.
|
||||
While features offered by model providers may increase reliability, prompting techniques remain important for tuning your
|
||||
results no matter which method you choose.
|
||||
|
||||
#### JSON mode
|
||||
<span data-heading-keywords="json mode"></span>
|
||||
@@ -818,10 +922,11 @@ Some models, such as [Mistral](/docs/integrations/chat/mistralai/), [OpenAI](/do
|
||||
support a feature called **JSON mode**, usually enabled via config.
|
||||
|
||||
When enabled, JSON mode will constrain the model's output to always be some sort of valid JSON.
|
||||
Often they require some custom prompting, but it's usually much less burdensome and along the lines of,
|
||||
`"you must always return JSON"`, and the [output is easier to parse](/docs/how_to/output_parser_json/).
|
||||
Often they require some custom prompting, but it's usually much less burdensome than completely raw prompting and
|
||||
more along the lines of, `"you must always return JSON"`. The [output also generally easier to parse](/docs/how_to/output_parser_json/).
|
||||
|
||||
It's also generally simpler and more commonly available than tool calling.
|
||||
It's also generally simpler to use directly and more commonly available than tool calling, and can give
|
||||
more flexibility around prompting and shaping results than tool calling.
|
||||
|
||||
Here's an example:
|
||||
|
||||
@@ -975,7 +1080,7 @@ See our [blog post overview](https://blog.langchain.dev/query-construction/) and
|
||||
|
||||
#### Indexing
|
||||
|
||||
Fouth, consider the design of your document index. A simple and powerful idea is to **decouple the documents that you index for retrieval from the documents that you pass to the LLM for generation.** Indexing frequently uses embedding models with vector stores, which [compress the semantic information in documents to fixed-size vectors](/docs/concepts/#embedding-models).
|
||||
Fourth, consider the design of your document index. A simple and powerful idea is to **decouple the documents that you index for retrieval from the documents that you pass to the LLM for generation.** Indexing frequently uses embedding models with vector stores, which [compress the semantic information in documents to fixed-size vectors](/docs/concepts/#embedding-models).
|
||||
|
||||
Many RAG approaches focus on splitting documents into chunks and retrieving some number based on similarity to an input question for the LLM. But chunk size and chunk number can be difficult to set and affect results if they do not provide full context for the LLM to answer a question. Furthermore, LLMs are increasingly capable of processing millions of tokens.
|
||||
|
||||
@@ -1083,7 +1188,7 @@ Table columns:
|
||||
| Token | [many classes](/docs/how_to/split_by_token/) | Tokens | | Splits text on tokens. There exist a few different ways to measure tokens. |
|
||||
| Character | [CharacterTextSplitter](/docs/how_to/character_text_splitter/) | A user defined character | | Splits text based on a user defined character. One of the simpler methods. |
|
||||
| Semantic Chunker (Experimental) | [SemanticChunker](/docs/how_to/semantic-chunker/) | Sentences | | First splits on sentences. Then combines ones next to each other if they are semantically similar enough. Taken from [Greg Kamradt](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb) |
|
||||
| Integration: AI21 Semantic | [AI21SemanticTextSplitter](/docs/integrations/document_transformers/ai21_semantic_text_splitter/) | ✅ | Identifies distinct topics that form coherent pieces of text and splits along those. |
|
||||
| Integration: AI21 Semantic | [AI21SemanticTextSplitter](/docs/integrations/document_transformers/ai21_semantic_text_splitter/) | | ✅ | Identifies distinct topics that form coherent pieces of text and splits along those. |
|
||||
|
||||
### Evaluation
|
||||
<span data-heading-keywords="evaluation,evaluate"></span>
|
||||
|
||||
@@ -33,6 +33,8 @@ Some examples include:
|
||||
|
||||
- [Build a Simple LLM Application with LCEL](/docs/tutorials/llm_chain/)
|
||||
- [Build a Retrieval Augmented Generation (RAG) App](/docs/tutorials/rag/)
|
||||
|
||||
A good structural rule of thumb is to follow the structure of this [example from Numpy](https://numpy.org/numpy-tutorials/content/tutorial-svd.html).
|
||||
|
||||
Here are some high-level tips on writing a good tutorial:
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ There are a few different places you can contribute integrations for LangChain:
|
||||
- **Community**: For lighter-weight integrations that are primarily maintained by LangChain and the Open Source Community.
|
||||
- **Partner Packages**: For independent packages that are co-maintained by LangChain and a partner.
|
||||
|
||||
For the most part, new integrations should be added to the Community package. Partner packages require more maintenance as separate packages, so please confirm with the LangChain team before creating a new partner package.
|
||||
For the most part, **new integrations should be added to the Community package**. Partner packages require more maintenance as separate packages, so please confirm with the LangChain team before creating a new partner package.
|
||||
|
||||
In the following sections, we'll walk through how to contribute to each of these packages from a fake company, `Parrot Link AI`.
|
||||
|
||||
@@ -60,6 +60,10 @@ And add documentation to:
|
||||
|
||||
## Partner package in LangChain repo
|
||||
|
||||
:::caution
|
||||
Before starting a **partner** package, please confirm your intent with the LangChain team. Partner packages require more maintenance as separate packages, so we will close PRs that add new partner packages without prior discussion. See the above section for how to add a community integration.
|
||||
:::
|
||||
|
||||
Partner packages can be hosted in the `LangChain` monorepo or in an external repo.
|
||||
|
||||
Partner package in the `LangChain` repo is placed in `libs/partners/{partner}`
|
||||
|
||||
@@ -153,7 +153,7 @@
|
||||
"\n",
|
||||
" def parse(self, text: str) -> List[str]:\n",
|
||||
" lines = text.strip().split(\"\\n\")\n",
|
||||
" return lines\n",
|
||||
" return list(filter(None, lines)) # Remove empty lines\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"output_parser = LineListOutputParser()\n",
|
||||
|
||||
342
docs/docs/how_to/callbacks_custom_events.ipynb
Normal file
342
docs/docs/how_to/callbacks_custom_events.ipynb
Normal file
@@ -0,0 +1,342 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to dispatch custom callback events\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"\n",
|
||||
"- [Callbacks](/docs/concepts/#callbacks)\n",
|
||||
"- [Custom callback handlers](/docs/how_to/custom_callbacks)\n",
|
||||
"- [Astream Events API](/docs/concepts/#astream_events) the `astream_events` method will surface custom callback events.\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"In some situations, you may want to dipsatch a custom callback event from within a [Runnable](/docs/concepts/#runnable-interface) so it can be surfaced\n",
|
||||
"in a custom callback handler or via the [Astream Events API](/docs/concepts/#astream_events).\n",
|
||||
"\n",
|
||||
"For example, if you have a long running tool with multiple steps, you can dispatch custom events between the steps and use these custom events to monitor progress.\n",
|
||||
"You could also surface these custom events to an end user of your application to show them how the current task is progressing.\n",
|
||||
"\n",
|
||||
"To dispatch a custom event you need to decide on two attributes for the event: the `name` and the `data`.\n",
|
||||
"\n",
|
||||
"| Attribute | Type | Description |\n",
|
||||
"|-----------|------|----------------------------------------------------------------------------------------------------------|\n",
|
||||
"| name | str | A user defined name for the event. |\n",
|
||||
"| data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. |\n",
|
||||
"\n",
|
||||
"\n",
|
||||
":::{.callout-important}\n",
|
||||
"* Dispatching custom callback events requires `langchain-core>=0.2.15`.\n",
|
||||
"* Custom callback events can only be dispatched from within an existing `Runnable`.\n",
|
||||
"* If using `astream_events`, you must use `version='v2'` to see custom events.\n",
|
||||
"* Sending or rendering custom callbacks events in LangSmith is not yet supported.\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"\n",
|
||||
":::caution COMPATIBILITY\n",
|
||||
"LangChain cannot automatically propagate configuration, including callbacks necessary for astream_events(), to child runnables if you are running async code in python<=3.10. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
|
||||
"\n",
|
||||
"If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n",
|
||||
"\n",
|
||||
"If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in other Python versions.\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | output: false\n",
|
||||
"# | echo: false\n",
|
||||
"\n",
|
||||
"%pip install -qU langchain-core"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Astream Events API\n",
|
||||
"\n",
|
||||
"The most useful way to consume custom events is via the [Astream Events API](/docs/concepts/#astream_events).\n",
|
||||
"\n",
|
||||
"We can use the `async` `adispatch_custom_event` API to emit custom events in an async setting. \n",
|
||||
"\n",
|
||||
"\n",
|
||||
":::{.callout-important}\n",
|
||||
"\n",
|
||||
"To see custom events via the astream events API, you need to use the newer `v2` API of `astream_events`.\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'foo', 'tags': [], 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'metadata': {}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chain_stream', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.callbacks.manager import (\n",
|
||||
" adispatch_custom_event,\n",
|
||||
")\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langchain_core.runnables.config import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@RunnableLambda\n",
|
||||
"async def foo(x: str) -> str:\n",
|
||||
" await adispatch_custom_event(\"event1\", {\"x\": x})\n",
|
||||
" await adispatch_custom_event(\"event2\", 5)\n",
|
||||
" return x\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async for event in foo.astream_events(\"hello world\", version=\"v2\"):\n",
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In python <= 3.10, you must propagate the config manually!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'bar', 'tags': [], 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'metadata': {}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chain_stream', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
|
||||
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.callbacks.manager import (\n",
|
||||
" adispatch_custom_event,\n",
|
||||
")\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langchain_core.runnables.config import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@RunnableLambda\n",
|
||||
"async def bar(x: str, config: RunnableConfig) -> str:\n",
|
||||
" \"\"\"An example that shows how to manually propagate config.\n",
|
||||
"\n",
|
||||
" You must do this if you're running python<=3.10.\n",
|
||||
" \"\"\"\n",
|
||||
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
|
||||
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
|
||||
" return x\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async for event in bar.astream_events(\"hello world\", version=\"v2\"):\n",
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Async Callback Handler\n",
|
||||
"\n",
|
||||
"You can also consume the dispatched event via an async callback handler."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n",
|
||||
"Received event event2 with data: 5, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from typing import Any, Dict, List, Optional\n",
|
||||
"from uuid import UUID\n",
|
||||
"\n",
|
||||
"from langchain_core.callbacks import AsyncCallbackHandler\n",
|
||||
"from langchain_core.callbacks.manager import (\n",
|
||||
" adispatch_custom_event,\n",
|
||||
")\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langchain_core.runnables.config import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class AsyncCustomCallbackHandler(AsyncCallbackHandler):\n",
|
||||
" async def on_custom_event(\n",
|
||||
" self,\n",
|
||||
" name: str,\n",
|
||||
" data: Any,\n",
|
||||
" *,\n",
|
||||
" run_id: UUID,\n",
|
||||
" tags: Optional[List[str]] = None,\n",
|
||||
" metadata: Optional[Dict[str, Any]] = None,\n",
|
||||
" **kwargs: Any,\n",
|
||||
" ) -> None:\n",
|
||||
" print(\n",
|
||||
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@RunnableLambda\n",
|
||||
"async def bar(x: str, config: RunnableConfig) -> str:\n",
|
||||
" \"\"\"An example that shows how to manually propagate config.\n",
|
||||
"\n",
|
||||
" You must do this if you're running python<=3.10.\n",
|
||||
" \"\"\"\n",
|
||||
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
|
||||
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
|
||||
" return x\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async_handler = AsyncCustomCallbackHandler()\n",
|
||||
"await foo.ainvoke(1, {\"callbacks\": [async_handler], \"tags\": [\"foo\", \"bar\"]})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Sync Callback Handler\n",
|
||||
"\n",
|
||||
"Let's see how to emit custom events in a sync environment using `dispatch_custom_event`.\n",
|
||||
"\n",
|
||||
"You **must** call `dispatch_custom_event` from within an existing `Runnable`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n",
|
||||
"Received event event2 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from typing import Any, Dict, List, Optional\n",
|
||||
"from uuid import UUID\n",
|
||||
"\n",
|
||||
"from langchain_core.callbacks import BaseCallbackHandler\n",
|
||||
"from langchain_core.callbacks.manager import (\n",
|
||||
" dispatch_custom_event,\n",
|
||||
")\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langchain_core.runnables.config import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class CustomHandler(BaseCallbackHandler):\n",
|
||||
" def on_custom_event(\n",
|
||||
" self,\n",
|
||||
" name: str,\n",
|
||||
" data: Any,\n",
|
||||
" *,\n",
|
||||
" run_id: UUID,\n",
|
||||
" tags: Optional[List[str]] = None,\n",
|
||||
" metadata: Optional[Dict[str, Any]] = None,\n",
|
||||
" **kwargs: Any,\n",
|
||||
" ) -> None:\n",
|
||||
" print(\n",
|
||||
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@RunnableLambda\n",
|
||||
"def foo(x: int, config: RunnableConfig) -> int:\n",
|
||||
" dispatch_custom_event(\"event1\", {\"x\": x})\n",
|
||||
" dispatch_custom_event(\"event2\", {\"x\": x})\n",
|
||||
" return x\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"handler = CustomHandler()\n",
|
||||
"foo.invoke(1, {\"callbacks\": [handler], \"tags\": [\"foo\", \"bar\"]})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"You've seen how to emit custom events, you can check out the more in depth guide for [astream events](/docs/how_to/streaming/#using-stream-events) which is the easiest way to leverage custom events."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -15,6 +15,12 @@
|
||||
"\n",
|
||||
"Make sure you have the integration packages installed for any model providers you want to support. E.g. you should have `langchain-openai` installed to init an OpenAI model.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
":::info Requires ``langchain >= 0.2.8``\n",
|
||||
"\n",
|
||||
"This functionality was added in ``langchain-core == 0.2.8``. Please make sure your package is up to date.\n",
|
||||
"\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
@@ -25,7 +31,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain langchain-openai langchain-anthropic langchain-google-vertexai"
|
||||
"%pip install -qU langchain>=0.2.8 langchain-openai langchain-anthropic langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -76,32 +82,6 @@
|
||||
"print(\"Gemini 1.5: \" + gemini_15.invoke(\"what's your name\").content + \"\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fff9a4c8-b6ee-4a1a-8d3d-0ecaa312d4ed",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Simple config example"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "75c25d39-bf47-4b51-a6c6-64d9c572bfd6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"user_config = {\n",
|
||||
" \"model\": \"...user-specified...\",\n",
|
||||
" \"model_provider\": \"...user-specified...\",\n",
|
||||
" \"temperature\": 0,\n",
|
||||
" \"max_tokens\": 1000,\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"llm = init_chat_model(**user_config)\n",
|
||||
"llm.invoke(\"what's your name\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f811f219-5e78-4b62-b495-915d52a22532",
|
||||
@@ -125,12 +105,215 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "da07b5c0-d2e6-42e4-bfcd-2efcfaae6221",
|
||||
"cell_type": "markdown",
|
||||
"id": "476a44db-c50d-4846-951d-0f1c9ba8bbaa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"source": [
|
||||
"## Creating a configurable model\n",
|
||||
"\n",
|
||||
"You can also create a runtime-configurable model by specifying `configurable_fields`. If you don't specify a `model` value, then \"model\" and \"model_provider\" be configurable by default."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "6c037f27-12d7-4e83-811e-4245c0e3ba58",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_d576307f90', 'finish_reason': 'stop', 'logprobs': None}, id='run-5428ab5c-b5c0-46de-9946-5d4ca40dbdc8-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"configurable_model = init_chat_model(temperature=0)\n",
|
||||
"\n",
|
||||
"configurable_model.invoke(\n",
|
||||
" \"what's your name\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_012XvotUJ3kGLXJUWKBVxJUi', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-1ad1eefe-f1c6-4244-8bc6-90e2cb7ee554-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"configurable_model.invoke(\n",
|
||||
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7f3b3d4a-4066-45e4-8297-ea81ac8e70b7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Configurable model with default values\n",
|
||||
"\n",
|
||||
"We can create a configurable model with default model values, specify which parameters are configurable, and add prefixes to configurable params:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "814a2289-d0db-401e-b555-d5116112b413",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_ce0793330f', 'finish_reason': 'stop', 'logprobs': None}, id='run-3923e328-7715-4cd6-b215-98e4b6bf7c9d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"first_llm = init_chat_model(\n",
|
||||
" model=\"gpt-4o\",\n",
|
||||
" temperature=0,\n",
|
||||
" configurable_fields=(\"model\", \"model_provider\", \"temperature\", \"max_tokens\"),\n",
|
||||
" config_prefix=\"first\", # useful when you have a chain with multiple models\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"first_llm.invoke(\"what's your name\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "6c8755ba-c001-4f5a-a497-be3f1db83244",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_01RyYR64DoMPNCfHeNnroMXm', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-22446159-3723-43e6-88df-b84797e7751d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"first_llm.invoke(\n",
|
||||
" \"what's your name\",\n",
|
||||
" config={\n",
|
||||
" \"configurable\": {\n",
|
||||
" \"first_model\": \"claude-3-5-sonnet-20240620\",\n",
|
||||
" \"first_temperature\": 0.5,\n",
|
||||
" \"first_max_tokens\": 100,\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0072b1a3-7e44-4b4e-8b07-efe1ba91a689",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Using a configurable model declaratively\n",
|
||||
"\n",
|
||||
"We can call declarative operations like `bind_tools`, `with_structured_output`, `with_configurable`, etc. on a configurable model and chain a configurable model in the same way that we would a regularly instantiated chat model object."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "067dabee-1050-4110-ae24-c48eba01e13b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'GetPopulation',\n",
|
||||
" 'args': {'location': 'Los Angeles, CA'},\n",
|
||||
" 'id': 'call_sYT3PFMufHGWJD32Hi2CTNUP'},\n",
|
||||
" {'name': 'GetPopulation',\n",
|
||||
" 'args': {'location': 'New York, NY'},\n",
|
||||
" 'id': 'call_j1qjhxRnD3ffQmRyqjlI1Lnk'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GetWeather(BaseModel):\n",
|
||||
" \"\"\"Get the current weather in a given location\"\"\"\n",
|
||||
"\n",
|
||||
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GetPopulation(BaseModel):\n",
|
||||
" \"\"\"Get the current population in a given location\"\"\"\n",
|
||||
"\n",
|
||||
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"llm = init_chat_model(temperature=0)\n",
|
||||
"llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])\n",
|
||||
"\n",
|
||||
"llm_with_tools.invoke(\n",
|
||||
" \"what's bigger in 2024 LA or NYC\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
|
||||
").tool_calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "e57dfe9f-cd24-4e37-9ce9-ccf8daf78f89",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'GetPopulation',\n",
|
||||
" 'args': {'location': 'Los Angeles, CA'},\n",
|
||||
" 'id': 'toolu_01CxEHxKtVbLBrvzFS7GQ5xR'},\n",
|
||||
" {'name': 'GetPopulation',\n",
|
||||
" 'args': {'location': 'New York City, NY'},\n",
|
||||
" 'id': 'toolu_013A79qt5toWSsKunFBDZd5S'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_with_tools.invoke(\n",
|
||||
" \"what's bigger in 2024 LA or NYC\",\n",
|
||||
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}},\n",
|
||||
").tool_calls"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -149,7 +332,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -16,7 +16,7 @@
|
||||
"\n",
|
||||
"Tracking token usage to calculate cost is an important part of putting your app in production. This guide goes over how to obtain this information from your LangChain model calls.\n",
|
||||
"\n",
|
||||
"This guide requires `langchain-openai >= 0.1.8`."
|
||||
"This guide requires `langchain-openai >= 0.1.9`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -153,7 +153,7 @@
|
||||
"\n",
|
||||
"#### OpenAI\n",
|
||||
"\n",
|
||||
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.8` and can be enabled by setting `stream_options={\"include_usage\": True}`.\n",
|
||||
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
|
||||
"\n",
|
||||
"```{=mdx}\n",
|
||||
":::note\n",
|
||||
@@ -172,18 +172,18 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content='Hello' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content='!' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content=' How' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content=' can' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content=' I' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content=' assist' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content=' you' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content=' today' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content='?' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content='' response_metadata={'finish_reason': 'stop'} id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
|
||||
"content='' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}\n"
|
||||
"content='' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content='Hello' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content='!' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content=' How' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content=' can' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content=' I' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content=' assist' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content=' you' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content=' today' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content='?' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-3.5-turbo-0125'} id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
|
||||
"content='' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -191,7 +191,7 @@
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n",
|
||||
"\n",
|
||||
"aggregate = None\n",
|
||||
"for chunk in llm.stream(\"hello\", stream_options={\"include_usage\": True}):\n",
|
||||
"for chunk in llm.stream(\"hello\", stream_usage=True):\n",
|
||||
" print(chunk)\n",
|
||||
" aggregate = chunk if aggregate is None else aggregate + chunk"
|
||||
]
|
||||
@@ -229,7 +229,7 @@
|
||||
"id": "7dba63e8-0ed7-4533-8f0f-78e19c38a25c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To disable streaming token counts for OpenAI, set `\"include_usage\"` to False in `stream_options`, or omit it from the parameters:"
|
||||
"To disable streaming token counts for OpenAI, set `stream_usage` to False, or omit it from the parameters:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -242,17 +242,17 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content='Hello' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content='!' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content=' How' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content=' can' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content=' I' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content=' assist' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content=' you' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content=' today' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content='?' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
|
||||
"content='' response_metadata={'finish_reason': 'stop'} id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n"
|
||||
"content='' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content='Hello' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content='!' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content=' How' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content=' can' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content=' I' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content=' assist' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content=' you' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content=' today' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content='?' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
|
||||
"content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-3.5-turbo-0125'} id='run-8e758550-94b0-4cca-a298-57482793c25d'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -267,7 +267,7 @@
|
||||
"id": "6a5d9617-be3a-419a-9276-de9c29fa50ae",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also enable streaming token usage by setting `model_kwargs` when instantiating the chat model. This can be useful when incorporating chat models into LangChain [chains](/docs/concepts#langchain-expression-language-lcel): usage metadata can be monitored when [streaming intermediate steps](/docs/how_to/streaming#using-stream-events) or using tracing software such as [LangSmith](https://docs.smith.langchain.com/).\n",
|
||||
"You can also enable streaming token usage by setting `stream_usage` when instantiating the chat model. This can be useful when incorporating chat models into LangChain [chains](/docs/concepts#langchain-expression-language-lcel): usage metadata can be monitored when [streaming intermediate steps](/docs/how_to/streaming#using-stream-events) or using tracing software such as [LangSmith](https://docs.smith.langchain.com/).\n",
|
||||
"\n",
|
||||
"See the below example, where we return output structured to a desired schema, but can still observe token usage streamed from intermediate steps."
|
||||
]
|
||||
@@ -275,7 +275,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "57dec1fb-bd9c-4c98-8798-8fbbe67f6b2c",
|
||||
"id": "0b1523d8-127e-4314-82fa-bd97aca37f9a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -301,7 +301,7 @@
|
||||
"\n",
|
||||
"llm = ChatOpenAI(\n",
|
||||
" model=\"gpt-3.5-turbo-0125\",\n",
|
||||
" model_kwargs={\"stream_options\": {\"include_usage\": True}},\n",
|
||||
" stream_usage=True,\n",
|
||||
")\n",
|
||||
"# Under the hood, .with_structured_output binds tools to the\n",
|
||||
"# chat model and appends a parser.\n",
|
||||
@@ -341,7 +341,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "31667d54",
|
||||
"id": "b04a4486-72fd-48ce-8f9e-5d281b441195",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -361,7 +361,11 @@
|
||||
"\n",
|
||||
"from langchain_community.callbacks.manager import get_openai_callback\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
|
||||
"llm = ChatOpenAI(\n",
|
||||
" model=\"gpt-3.5-turbo-0125\",\n",
|
||||
" temperature=0,\n",
|
||||
" stream_usage=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"with get_openai_callback() as cb:\n",
|
||||
" result = llm.invoke(\"Tell me a joke\")\n",
|
||||
@@ -379,14 +383,14 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "e09420f4",
|
||||
"id": "05f22a1d-b021-490f-8840-f628a07459f2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"55\n"
|
||||
"54\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -397,37 +401,29 @@
|
||||
" print(cb.total_tokens)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9ac51188-c8f4-4230-90fd-3cd78cdd955d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"```{=mdx}\n",
|
||||
":::note\n",
|
||||
"Cost information is currently not available in streaming mode. This is because model names are currently not propagated through chunks in streaming mode, and the model name is used to look up the correct pricing. Token counts however are available:\n",
|
||||
":::\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "b241069a-265d-4497-af34-b0a5f95ae67f",
|
||||
"id": "c00c9158-7bb4-4279-88e6-ea70f46e6ac2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"28\n"
|
||||
"Tokens Used: 27\n",
|
||||
"\tPrompt Tokens: 11\n",
|
||||
"\tCompletion Tokens: 16\n",
|
||||
"Successful Requests: 1\n",
|
||||
"Total Cost (USD): $2.95e-05\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"with get_openai_callback() as cb:\n",
|
||||
" for chunk in llm.stream(\"Tell me a joke\", stream_options={\"include_usage\": True}):\n",
|
||||
" for chunk in llm.stream(\"Tell me a joke\"):\n",
|
||||
" pass\n",
|
||||
" print(cb.total_tokens)"
|
||||
" print(cb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -457,21 +453,7 @@
|
||||
")\n",
|
||||
"tools = load_tools([\"wikipedia\"])\n",
|
||||
"agent = create_tool_calling_agent(llm, tools, prompt)\n",
|
||||
"agent_executor = AgentExecutor(\n",
|
||||
" agent=agent, tools=tools, verbose=True, stream_runnable=False\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9c1ae74d-8300-4041-9ff4-66093ee592b1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"```{=mdx}\n",
|
||||
":::note\n",
|
||||
"We have to set `stream_runnable=False` for cost information, as described above. By default the AgentExecutor will stream the underlying agent so that you can get the most granular results when streaming events via AgentExecutor.stream_events.\n",
|
||||
":::\n",
|
||||
"```"
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -503,36 +485,30 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Page: Anna's hummingbird\n",
|
||||
"Summary: Anna's hummingbird (Calypte anna) is a North American species of hummingbird. It was named after Anna Masséna, Duchess of Rivoli.\n",
|
||||
"It is native to western coastal regions of North America. In the early 20th century, Anna's hummingbirds bred only in northern Baja California and Southern California. The transplanting of exotic ornamental plants in residential areas throughout the Pacific coast and inland deserts provided expanded nectar and nesting sites, allowing the species to expand its breeding range. Year-round residence of Anna's hummingbirds in the Pacific Northwest is an example of ecological release dependent on acclimation to colder winter temperatures, introduced plants, and human provision of nectar feeders during winter.\n",
|
||||
"These birds feed on nectar from flowers using a long extendable tongue. They also consume small insects and other arthropods caught in flight or gleaned from vegetation.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
|
||||
"Page: Allen's hummingbird\n",
|
||||
"Summary: Allen's hummingbird (Selasphorus sasin) is a species of hummingbird that breeds in the western United States. It is one of seven species in the genus Selasphorus.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
|
||||
"Invoking: `wikipedia` with `{'query': 'fastest bird species'}`\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[0m\u001b[36;1m\u001b[1;3mPage: List of birds by flight speed\n",
|
||||
"Summary: This is a list of the fastest flying birds in the world. A bird's velocity is necessarily variable; a hunting bird will reach much greater speeds while diving to catch prey than when flying horizontally. The bird that can achieve the greatest airspeed is the peregrine falcon (Falco peregrinus), able to exceed 320 km/h (200 mph) in its dives. A close relative of the common swift, the white-throated needletail (Hirundapus caudacutus), is commonly reported as the fastest bird in level flight with a reported top speed of 169 km/h (105 mph). This record remains unconfirmed as the measurement methods have never been published or verified. The record for the fastest confirmed level flight by a bird is 111.5 km/h (69.3 mph) held by the common swift.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Page: Fastest animals\n",
|
||||
"Summary: This is a list of the fastest animals in the world, by types of animal.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Page: Falcon\n",
|
||||
"Summary: Falcons () are birds of prey in the genus Falco, which includes about 40 species. Falcons are widely distributed on all continents of the world except Antarctica, though closely related raptors did occur there in the Eocene.\n",
|
||||
"Adult falcons have thin, tapered wings, which enable them to fly at high speed and change direction rapidly. Fledgling falcons, in their first year of flying, have longer flight feathers, which make their configuration more like that of a general-purpose bird such as a broad wing. This makes flying easier while learning the exceptional skills required to be effective hunters as adults.\n",
|
||||
"The falcons are the largest genus in the Falconinae subfamily of Falconidae, which itself also includes another subfamily comprising caracaras and a few other species. All these birds kill with their beaks, using a tomial \"tooth\" on the side of their beaks—unlike the hawks, eagles, and other birds of prey in the Accipitridae, which use their feet.\n",
|
||||
"The largest falcon is the gyrfalcon at up to 65 cm in length. The smallest falcon species is the pygmy falcon, which measures just 20 cm. As with hawks and owls, falcons exhibit sexual dimorphism, with the females typically larger than the males, thus allowing a wider range of prey species.\n",
|
||||
"Some small falcons with long, narrow wings are called \"hobbies\" and some which hover while hunting are called \"kestrels\".\n",
|
||||
"As is the case with many birds of prey, falcons have exceptional powers of vision; the visual acuity of one species has been measured at 2.6 times that of a normal human. Peregrine falcons have been recorded diving at speeds of 320 km/h (200 mph), making them the fastest-moving creatures on Earth; the fastest recorded dive attained a vertical speed of 390 km/h (240 mph).\u001b[0m\u001b[32;1m\u001b[1;3mThe scientific name for a hummingbird is Trochilidae. The fastest bird species is the peregrine falcon (Falco peregrinus), which can exceed speeds of 320 km/h (200 mph) in its dives.\u001b[0m\n",
|
||||
"As is the case with many birds of prey, falcons have exceptional powers of vision; the visual acuity of one species has been measured at 2.6 times that of a normal human. Peregrine falcons have been recorded diving at speeds of 320 km/h (200 mph), making them the fastest-moving creatures on Earth; the fastest recorded dive attained a vertical speed of 390 km/h (240 mph).\u001b[0m\u001b[32;1m\u001b[1;3mThe scientific name for a hummingbird is Trochilidae. The fastest bird species in level flight is the common swift, which holds the record for the fastest confirmed level flight by a bird at 111.5 km/h (69.3 mph). The peregrine falcon is known to exceed speeds of 320 km/h (200 mph) in its dives, making it the fastest bird in terms of diving speed.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||
"Total Tokens: 1787\n",
|
||||
"Prompt Tokens: 1687\n",
|
||||
"Completion Tokens: 100\n",
|
||||
"Total Cost (USD): $0.0009935\n"
|
||||
"Total Tokens: 1675\n",
|
||||
"Prompt Tokens: 1538\n",
|
||||
"Completion Tokens: 137\n",
|
||||
"Total Cost (USD): $0.0009745000000000001\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -300,7 +300,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 2,
|
||||
"id": "ac9295d3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -312,10 +312,8 @@
|
||||
"\n",
|
||||
"## Quick Install\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# Hopefully this code block isn't split\n",
|
||||
"pip install langchain\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"As an open-source project in a rapidly developing field, we are extremely open to contributions.\n",
|
||||
"\"\"\""
|
||||
@@ -323,7 +321,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 3,
|
||||
"id": "3a0cb17a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -332,15 +330,14 @@
|
||||
"text/plain": [
|
||||
"[Document(page_content='# 🦜️🔗 LangChain'),\n",
|
||||
" Document(page_content='⚡ Building applications with LLMs through composability ⚡'),\n",
|
||||
" Document(page_content='## Quick Install\\n\\n```bash'),\n",
|
||||
" Document(page_content='## Quick Install'),\n",
|
||||
" Document(page_content=\"# Hopefully this code block isn't split\"),\n",
|
||||
" Document(page_content='pip install langchain'),\n",
|
||||
" Document(page_content='```'),\n",
|
||||
" Document(page_content='As an open-source project in a rapidly developing field, we'),\n",
|
||||
" Document(page_content='are extremely open to contributions.')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -742,7 +739,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
"version": "3.10.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -48,20 +48,10 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"id": "40ed76a2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n",
|
||||
"You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
|
||||
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai\n",
|
||||
"\n",
|
||||
|
||||
@@ -220,6 +220,57 @@
|
||||
"pretty_print_docs(compressed_docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "14002ec8-7ee5-4f91-9315-dd21c3808776",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### `LLMListwiseRerank`\n",
|
||||
"\n",
|
||||
"[LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n",
|
||||
"\n",
|
||||
"Note that `LLMListwiseRerank` requires a model with the [with_structured_output](/docs/integrations/chat/) method implemented."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "4ab9ee9f-917e-4d6f-9344-eb7f01533228",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Document 1:\n",
|
||||
"\n",
|
||||
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||||
"\n",
|
||||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||||
"\n",
|
||||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||||
"\n",
|
||||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.retrievers.document_compressors import LLMListwiseRerank\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
|
||||
"\n",
|
||||
"_filter = LLMListwiseRerank.from_llm(llm, top_n=1)\n",
|
||||
"compression_retriever = ContextualCompressionRetriever(\n",
|
||||
" base_compressor=_filter, base_retriever=retriever\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"compressed_docs = compression_retriever.invoke(\n",
|
||||
" \"What did the president say about Ketanji Jackson Brown\"\n",
|
||||
")\n",
|
||||
"pretty_print_docs(compressed_docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7194da42",
|
||||
@@ -295,7 +346,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"id": "617a1756",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
|
||||
549
docs/docs/how_to/convert_runnable_to_tool.ipynb
Normal file
549
docs/docs/how_to/convert_runnable_to_tool.ipynb
Normal file
@@ -0,0 +1,549 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9a8bceb3-95bd-4496-bb9e-57655136e070",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to convert Runnables as Tools\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"\n",
|
||||
"- [Runnables](/docs/concepts#runnable-interface)\n",
|
||||
"- [Tools](/docs/concepts#tools)\n",
|
||||
"- [Agents](/docs/tutorials/agents)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"Here we will demonstrate how to convert a LangChain `Runnable` into a tool that can be used by agents, chains, or chat models.\n",
|
||||
"\n",
|
||||
"## Dependencies\n",
|
||||
"\n",
|
||||
"**Note**: this guide requires `langchain-core` >= 0.2.13. We will also use [OpenAI](/docs/integrations/platforms/openai/) for embeddings, but any LangChain embeddings should suffice. We will use a simple [LangGraph](https://langchain-ai.github.io/langgraph/) agent for demonstration purposes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "92341f48-2c29-4ce9-8ab8-0a7c7a7c98a1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%capture --no-stderr\n",
|
||||
"%pip install -U langchain-core langchain-openai langgraph"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b0dcc1a-48e8-4a81-b920-3563192ce076",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"LangChain [tools](/docs/concepts#tools) are interfaces that an agent, chain, or chat model can use to interact with the world. See [here](/docs/how_to/#tools) for how-to guides covering tool-calling, built-in tools, custom tools, and more information.\n",
|
||||
"\n",
|
||||
"LangChain tools-- instances of [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n",
|
||||
"\n",
|
||||
"- Their inputs are constrained to be serializable, specifically strings and Python `dict` objects;\n",
|
||||
"- They contain names and descriptions indicating how and when they should be used;\n",
|
||||
"- They may contain a detailed [args_schema](https://python.langchain.com/v0.2/docs/how_to/custom_tools/) for their arguments. That is, while a tool (as a `Runnable`) might accept a single `dict` input, the specific keys and type information needed to populate a dict should be specified in the `args_schema`.\n",
|
||||
"\n",
|
||||
"Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b4d76680-1b6b-4862-8c4f-22766a1d41f2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Basic usage\n",
|
||||
"\n",
|
||||
"With typed `dict` input:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "b2cc4231-64a3-4733-a284-932dcbf2fcc3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from typing_extensions import TypedDict\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class Args(TypedDict):\n",
|
||||
" a: int\n",
|
||||
" b: List[int]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def f(x: Args) -> str:\n",
|
||||
" return str(x[\"a\"] * max(x[\"b\"]))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"runnable = RunnableLambda(f)\n",
|
||||
"as_tool = runnable.as_tool(\n",
|
||||
" name=\"My tool\",\n",
|
||||
" description=\"Explanation of when to use tool.\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "57f2d435-624d-459a-903d-8509fbbde610",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Explanation of when to use tool.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'My tool',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'a': {'title': 'A', 'type': 'integer'},\n",
|
||||
" 'b': {'title': 'B', 'type': 'array', 'items': {'type': 'integer'}}},\n",
|
||||
" 'required': ['a', 'b']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(as_tool.description)\n",
|
||||
"\n",
|
||||
"as_tool.args_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "54ae7384-a03d-4fa4-8cdf-9604a4bc39ee",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'6'"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"as_tool.invoke({\"a\": 3, \"b\": [1, 2]})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9038f587-4613-4f50-b349-135f9e7e3b15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Without typing information, arg types can be specified via `arg_types`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "169f733c-4936-497f-8577-ee769dc16b88",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Any, Dict\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def g(x: Dict[str, Any]) -> str:\n",
|
||||
" return str(x[\"a\"] * max(x[\"b\"]))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"runnable = RunnableLambda(g)\n",
|
||||
"as_tool = runnable.as_tool(\n",
|
||||
" name=\"My tool\",\n",
|
||||
" description=\"Explanation of when to use tool.\",\n",
|
||||
" arg_types={\"a\": int, \"b\": List[int]},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "32b1a992-8997-4c98-8eb2-c9fe9431b799",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "eb102705-89b7-48dc-9158-d36d5f98ae8e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GSchema(BaseModel):\n",
|
||||
" \"\"\"Apply a function to an integer and list of integers.\"\"\"\n",
|
||||
"\n",
|
||||
" a: int = Field(..., description=\"Integer\")\n",
|
||||
" b: List[int] = Field(..., description=\"List of ints\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"runnable = RunnableLambda(g)\n",
|
||||
"as_tool = runnable.as_tool(GSchema)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7c474d85-4e01-4fae-9bba-0c6c8c26475c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"String input is also supported:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "c475282a-58d6-4c2b-af7d-99b73b7d8a13",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def f(x: str) -> str:\n",
|
||||
" return x + \"a\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def g(x: str) -> str:\n",
|
||||
" return x + \"z\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"runnable = RunnableLambda(f) | g\n",
|
||||
"as_tool = runnable.as_tool()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "ad6d8d96-3a87-40bd-a2ac-44a8acde0a8e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'baz'"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"as_tool.invoke(\"b\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "89fdb3a7-d228-48f0-8f73-262af4febb58",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## In agents\n",
|
||||
"\n",
|
||||
"Below we will incorporate LangChain Runnables as tools in an [agent](/docs/concepts/#agents) application. We will demonstrate with:\n",
|
||||
"\n",
|
||||
"- a document [retriever](/docs/concepts/#retrievers);\n",
|
||||
"- a simple [RAG](/docs/tutorials/rag/) chain, allowing an agent to delegate relevant queries to it.\n",
|
||||
"\n",
|
||||
"We first instantiate a chat model that supports [tool calling](/docs/how_to/tool_calling/):\n",
|
||||
"\n",
|
||||
"```{=mdx}\n",
|
||||
"<ChatModelTabs\n",
|
||||
" customVarName=\"llm\"\n",
|
||||
"/>\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "d06c9f2a-4475-450f-9106-54db1d99623b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | output: false\n",
|
||||
"# | echo: false\n",
|
||||
"\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e8a2038a-d762-4196-b5e3-fdb89c11e71d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Following the [RAG tutorial](/docs/tutorials/rag/), let's first construct a retriever:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "23d2a47e-6712-4294-81c8-2c1d76b4bb81",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_core.vectorstores import InMemoryVectorStore\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"documents = [\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Dogs are great companions, known for their loyalty and friendliness.\",\n",
|
||||
" ),\n",
|
||||
" Document(\n",
|
||||
" page_content=\"Cats are independent pets that often enjoy their own space.\",\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"vectorstore = InMemoryVectorStore.from_documents(\n",
|
||||
" documents, embedding=OpenAIEmbeddings()\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"retriever = vectorstore.as_retriever(\n",
|
||||
" search_type=\"similarity\",\n",
|
||||
" search_kwargs={\"k\": 1},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9ba737ac-43a2-4a6f-b855-5bd0305017f1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We next create use a simple pre-built [LangGraph agent](https://python.langchain.com/v0.2/docs/tutorials/agents/) and provide it the tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "c939cf2a-60e9-4afd-8b47-84d76ccb13f5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langgraph.prebuilt import create_react_agent\n",
|
||||
"\n",
|
||||
"tools = [\n",
|
||||
" retriever.as_tool(\n",
|
||||
" name=\"pet_info_retriever\",\n",
|
||||
" description=\"Get information about pets.\",\n",
|
||||
" )\n",
|
||||
"]\n",
|
||||
"agent = create_react_agent(llm, tools)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "be29437b-a187-4a0a-9a5d-419c56f2434e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD', 'function': {'arguments': '{\"__arg1\":\"dogs\"}', 'name': 'pet_info_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 60, 'total_tokens': 79}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d7f81de9-1fb7-4caf-81ed-16dcdb0b2ab4-0', tool_calls=[{'name': 'pet_info_retriever', 'args': {'__arg1': 'dogs'}, 'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD'}], usage_metadata={'input_tokens': 60, 'output_tokens': 19, 'total_tokens': 79})]}}\n",
|
||||
"----\n",
|
||||
"{'tools': {'messages': [ToolMessage(content=\"[Document(id='86f835fe-4bbe-4ec6-aeb4-489a8b541707', page_content='Dogs are great companions, known for their loyalty and friendliness.')]\", name='pet_info_retriever', tool_call_id='call_W8cnfOjwqEn4cFcg19LN9mYD')]}}\n",
|
||||
"----\n",
|
||||
"{'agent': {'messages': [AIMessage(content='Dogs are known for being great companions, known for their loyalty and friendliness.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 134, 'total_tokens': 152}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9ca5847a-a5eb-44c0-a774-84cc2c5bbc5b-0', usage_metadata={'input_tokens': 134, 'output_tokens': 18, 'total_tokens': 152})]}}\n",
|
||||
"----\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for chunk in agent.stream({\"messages\": [(\"human\", \"What are dogs known for?\")]}):\n",
|
||||
" print(chunk)\n",
|
||||
" print(\"----\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "96f2ac9c-36f4-4b7a-ae33-f517734c86aa",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"See [LangSmith trace](https://smith.langchain.com/public/44e438e3-2faf-45bd-b397-5510fc145eb9/r) for the above run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a722fd8a-b957-4ba7-b408-35596b76835f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Going further, we can create a simple [RAG](/docs/tutorials/rag/) chain that takes an additional parameter-- here, the \"style\" of the answer."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "bea518c9-c711-47c2-b8cc-dbd102f71f09",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"system_prompt = \"\"\"\n",
|
||||
"You are an assistant for question-answering tasks.\n",
|
||||
"Use the below context to answer the question. If\n",
|
||||
"you don't know the answer, say you don't know.\n",
|
||||
"Use three sentences maximum and keep the answer\n",
|
||||
"concise.\n",
|
||||
"\n",
|
||||
"Answer in the style of {answer_style}.\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\n",
|
||||
"Context: {context}\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", system_prompt)])\n",
|
||||
"\n",
|
||||
"rag_chain = (\n",
|
||||
" {\n",
|
||||
" \"context\": itemgetter(\"question\") | retriever,\n",
|
||||
" \"question\": itemgetter(\"question\"),\n",
|
||||
" \"answer_style\": itemgetter(\"answer_style\"),\n",
|
||||
" }\n",
|
||||
" | prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "955a23db-5218-4c34-8486-450a2ddb3443",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note that the input schema for our chain contains the required arguments, so it converts to a tool without further specification:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "2c9f6e61-80ed-4abb-8e77-84de3ccbc891",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'RunnableParallel<context,question,answer_style>Input',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'question': {'title': 'Question'},\n",
|
||||
" 'answer_style': {'title': 'Answer Style'}}}"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rag_chain.input_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "a3f9cf5b-8c71-4b0f-902b-f92e028780c9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"rag_tool = rag_chain.as_tool(\n",
|
||||
" name=\"pet_expert\",\n",
|
||||
" description=\"Get information about pets.\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4570615b-8f96-4d97-ae01-1c08b14be584",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Below we again invoke the agent. Note that the agent populates the required parameters in its `tool_calls`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "06409913-a2ad-400f-a202-7b8dd2ef483a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_17iLPWvOD23zqwd1QVQ00Y63', 'function': {'arguments': '{\"question\":\"What are dogs known for according to pirates?\",\"answer_style\":\"quote\"}', 'name': 'pet_expert'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 28, 'prompt_tokens': 59, 'total_tokens': 87}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-7fef44f3-7bba-4e63-8c51-2ad9c5e65e2e-0', tool_calls=[{'name': 'pet_expert', 'args': {'question': 'What are dogs known for according to pirates?', 'answer_style': 'quote'}, 'id': 'call_17iLPWvOD23zqwd1QVQ00Y63'}], usage_metadata={'input_tokens': 59, 'output_tokens': 28, 'total_tokens': 87})]}}\n",
|
||||
"----\n",
|
||||
"{'tools': {'messages': [ToolMessage(content='\"Dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.\"', name='pet_expert', tool_call_id='call_17iLPWvOD23zqwd1QVQ00Y63')]}}\n",
|
||||
"----\n",
|
||||
"{'agent': {'messages': [AIMessage(content='According to pirates, dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 119, 'total_tokens': 146}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5a30edc3-7be0-4743-b980-ca2f8cad9b8d-0', usage_metadata={'input_tokens': 119, 'output_tokens': 27, 'total_tokens': 146})]}}\n",
|
||||
"----\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent = create_react_agent(llm, [rag_tool])\n",
|
||||
"\n",
|
||||
"for chunk in agent.stream(\n",
|
||||
" {\"messages\": [(\"human\", \"What would a pirate say dogs are known for?\")]}\n",
|
||||
"):\n",
|
||||
" print(chunk)\n",
|
||||
" print(\"----\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "96cc9bc3-e79e-49a8-9915-428ea225358b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"See [LangSmith trace](https://smith.langchain.com/public/147ae4e6-4dfb-4dd9-8ca0-5c5b954f08ac/r) for the above run."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -131,7 +131,7 @@
|
||||
"source": [
|
||||
"## Base Chat Model\n",
|
||||
"\n",
|
||||
"Let's implement a chat model that echoes back the first `n` characetrs of the last message in the prompt!\n",
|
||||
"Let's implement a chat model that echoes back the first `n` characters of the last message in the prompt!\n",
|
||||
"\n",
|
||||
"To do so, we will inherit from `BaseChatModel` and we'll need to implement the following:\n",
|
||||
"\n",
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
"id": "5436020b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to create custom tools\n",
|
||||
"# How to create tools\n",
|
||||
"\n",
|
||||
"When constructing an agent, you will need to provide it with a list of `Tool`s that it can use. Besides the actual function that is called, the Tool consists of several components:\n",
|
||||
"\n",
|
||||
@@ -16,13 +16,15 @@
|
||||
"| args_schema | Pydantic BaseModel | Optional but recommended, can be used to provide more information (e.g., few-shot examples) or validation for expected parameters |\n",
|
||||
"| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n",
|
||||
"\n",
|
||||
"LangChain provides 3 ways to create tools:\n",
|
||||
"LangChain supports the creation of tools from:\n",
|
||||
"\n",
|
||||
"1. Using [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool) -- the simplest way to define a custom tool.\n",
|
||||
"2. Using [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method -- this is similar to the `@tool` decorator, but allows more configuration and specification of both sync and async implementations.\n",
|
||||
"1. Functions;\n",
|
||||
"2. LangChain [Runnables](/docs/concepts#runnable-interface);\n",
|
||||
"3. By sub-classing from [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
|
||||
"\n",
|
||||
"The `@tool` or the `StructuredTool.from_function` class method should be sufficient for most use cases.\n",
|
||||
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
|
||||
"\n",
|
||||
"In this guide we provide an overview of these methods.\n",
|
||||
"\n",
|
||||
":::{.callout-tip}\n",
|
||||
"\n",
|
||||
@@ -35,7 +37,9 @@
|
||||
"id": "c7326b23",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## @tool decorator\n",
|
||||
"## Creating tools from functions\n",
|
||||
"\n",
|
||||
"### @tool decorator\n",
|
||||
"\n",
|
||||
"This `@tool` decorator is the simplest way to define a custom tool. The decorator uses the function name as the tool name by default, but this can be overridden by passing a string as the first argument. Additionally, the decorator will use the function's docstring as the tool's description - so a docstring MUST be provided. "
|
||||
]
|
||||
@@ -51,7 +55,7 @@
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"multiply\n",
|
||||
"multiply(a: int, b: int) -> int - Multiply two numbers.\n",
|
||||
"Multiply two numbers.\n",
|
||||
"{'a': {'title': 'A', 'type': 'integer'}, 'b': {'title': 'B', 'type': 'integer'}}\n"
|
||||
]
|
||||
}
|
||||
@@ -96,6 +100,57 @@
|
||||
" return a * b"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8f0edc51-c586-414c-8941-c8abe779943f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note that `@tool` supports parsing of annotations, nested schemas, and other features:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "5626423f-053e-4a66-adca-1d794d835397",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'multiply_by_maxSchema',\n",
|
||||
" 'description': 'Multiply a by the maximum of b.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'a': {'title': 'A',\n",
|
||||
" 'description': 'scale factor',\n",
|
||||
" 'type': 'string'},\n",
|
||||
" 'b': {'title': 'B',\n",
|
||||
" 'description': 'list of ints over which to take maximum',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'integer'}}},\n",
|
||||
" 'required': ['a', 'b']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from typing import Annotated, List\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def multiply_by_max(\n",
|
||||
" a: Annotated[str, \"scale factor\"],\n",
|
||||
" b: Annotated[List[int], \"list of ints over which to take maximum\"],\n",
|
||||
") -> int:\n",
|
||||
" \"\"\"Multiply a by the maximum of b.\"\"\"\n",
|
||||
" return a * max(b)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"multiply_by_max.args_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "98d6eee9",
|
||||
@@ -106,7 +161,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"id": "9216d03a-f6ea-4216-b7e1-0661823a4c0b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -115,7 +170,7 @@
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"multiplication-tool\n",
|
||||
"multiplication-tool(a: int, b: int) -> int - Multiply two numbers.\n",
|
||||
"Multiply two numbers.\n",
|
||||
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n",
|
||||
"True\n"
|
||||
]
|
||||
@@ -143,19 +198,84 @@
|
||||
"print(multiply.return_direct)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "33a9e94d-0b60-48f3-a4c2-247dce096e66",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Docstring parsing"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6d0cb586-93d4-4ff1-9779-71df7853cb68",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"`@tool` can optionally parse [Google Style docstrings](https://google.github.io/styleguide/pyguide.html#383-functions-and-methods) and associate the docstring components (such as arg descriptions) to the relevant parts of the tool schema. To toggle this behavior, specify `parse_docstring`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "336f5538-956e-47d5-9bde-b732559f9e61",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'fooSchema',\n",
|
||||
" 'description': 'The foo.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'bar': {'title': 'Bar',\n",
|
||||
" 'description': 'The bar.',\n",
|
||||
" 'type': 'string'},\n",
|
||||
" 'baz': {'title': 'Baz', 'description': 'The baz.', 'type': 'integer'}},\n",
|
||||
" 'required': ['bar', 'baz']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"@tool(parse_docstring=True)\n",
|
||||
"def foo(bar: str, baz: int) -> str:\n",
|
||||
" \"\"\"The foo.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" bar: The bar.\n",
|
||||
" baz: The baz.\n",
|
||||
" \"\"\"\n",
|
||||
" return bar\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"foo.args_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f18a2503-5393-421b-99fa-4a01dd824d0e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
":::{.callout-caution}\n",
|
||||
"By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html) for detail and examples.\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b63fcc3b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## StructuredTool\n",
|
||||
"### StructuredTool\n",
|
||||
"\n",
|
||||
"The `StrurcturedTool.from_function` class method provides a bit more configurability than the `@tool` decorator, without requiring much additional code."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 6,
|
||||
"id": "564fbe6f-11df-402d-b135-ef6ff25e1e63",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -198,7 +318,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 7,
|
||||
"id": "6bc055d4-1fbe-4db5-8881-9c382eba6b1b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -208,7 +328,7 @@
|
||||
"text": [
|
||||
"6\n",
|
||||
"Calculator\n",
|
||||
"Calculator(a: int, b: int) -> int - multiply numbers\n",
|
||||
"multiply numbers\n",
|
||||
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n"
|
||||
]
|
||||
}
|
||||
@@ -239,6 +359,63 @@
|
||||
"print(calculator.args)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5517995d-54e3-449b-8fdb-03561f5e4647",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating tools from Runnables\n",
|
||||
"\n",
|
||||
"LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n",
|
||||
"\n",
|
||||
"Example usage:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "8ef593c5-cf72-4c10-bfc9-7d21874a0c24",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'answer_style': {'title': 'Answer Style', 'type': 'string'}}"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.language_models import GenericFakeChatModel\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"human\", \"Hello. Please respond in the style of {answer_style}.\")]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Placeholder LLM\n",
|
||||
"llm = GenericFakeChatModel(messages=iter([\"hello matey\"]))\n",
|
||||
"\n",
|
||||
"chain = prompt | llm | StrOutputParser()\n",
|
||||
"\n",
|
||||
"as_tool = chain.as_tool(\n",
|
||||
" name=\"Style responder\", description=\"Description of when to use tool.\"\n",
|
||||
")\n",
|
||||
"as_tool.args"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0521b787-a146-45a6-8ace-ae1ac4669dd7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"See [this guide](/docs/how_to/convert_runnable_to_tool) for more detail."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b840074b-9c10-4ca0-aed8-626c52b2398f",
|
||||
@@ -251,7 +428,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"execution_count": 10,
|
||||
"id": "1dad8f8e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -300,7 +477,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 11,
|
||||
"id": "bb551c33",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -351,7 +528,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 12,
|
||||
"id": "6615cb77-fd4c-4676-8965-f92cc71d4944",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -383,7 +560,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 13,
|
||||
"id": "bb2af583-eadd-41f4-a645-bf8748bd3dcd",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -428,7 +605,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 14,
|
||||
"id": "4ad0932c-8610-4278-8c57-f9218f654c8a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -473,7 +650,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 15,
|
||||
"id": "7094c0e8-6192-4870-a942-aad5b5ae48fd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -496,7 +673,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 16,
|
||||
"id": "b4d22022-b105-4ccc-a15b-412cb9ea3097",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -506,7 +683,7 @@
|
||||
"'Error: There is no city by the name of foobar.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -530,7 +707,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 17,
|
||||
"id": "3fad1728-d367-4e1b-9b54-3172981271cf",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -540,7 +717,7 @@
|
||||
"\"There is no such city, but it's probably above 0K there!\""
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -564,7 +741,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 18,
|
||||
"id": "ebfe7c1f-318d-4e58-99e1-f31e69473c46",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -574,7 +751,7 @@
|
||||
"'The following errors occurred during tool execution: `Error: There is no city by the name of foobar.`'"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -591,13 +768,189 @@
|
||||
"\n",
|
||||
"get_weather_tool.invoke({\"city\": \"foobar\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1a8d8383-11b3-445e-956f-df4e96995e00",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Returning artifacts of Tool execution\n",
|
||||
"\n",
|
||||
"Sometimes there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns custom objects like Documents, we may want to pass some view or metadata about this output to the model without passing the raw output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
|
||||
"\n",
|
||||
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
|
||||
"\n",
|
||||
":::info Requires ``langchain-core >= 0.2.19``\n",
|
||||
"\n",
|
||||
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"If we want our tool to distinguish between message content and other artifacts, we need to specify `response_format=\"content_and_artifact\"` when defining our tool and make sure that we return a tuple of (content, artifact):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "14905425-0334-43a0-9de9-5bcf622ede0e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import random\n",
|
||||
"from typing import List, Tuple\n",
|
||||
"\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool(response_format=\"content_and_artifact\")\n",
|
||||
"def generate_random_ints(min: int, max: int, size: int) -> Tuple[str, List[int]]:\n",
|
||||
" \"\"\"Generate size random ints in the range [min, max].\"\"\"\n",
|
||||
" array = [random.randint(min, max) for _ in range(size)]\n",
|
||||
" content = f\"Successfully generated array of {size} random ints in [{min}, {max}].\"\n",
|
||||
" return content, array"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "49f057a6-8938-43ea-8faf-ae41e797ceb8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we invoke our tool directly with the tool arguments, we'll get back just the content part of the output:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "0f2e1528-404b-46e6-b87c-f0957c4b9217",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Successfully generated array of 10 random ints in [0, 9].'"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke({\"min\": 0, \"max\": 9, \"size\": 10})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1e62ebba-1737-4b97-b61a-7313ade4e8c2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we invoke our tool with a ToolCall (like the ones generated by tool-calling models), we'll get back a ToolMessage that contains both the content and artifact generated by the Tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "cc197777-26eb-46b3-a83b-c2ce116c6311",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[1, 4, 2, 5, 3, 9, 0, 4, 7, 7])"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke(\n",
|
||||
" {\n",
|
||||
" \"name\": \"generate_random_ints\",\n",
|
||||
" \"args\": {\"min\": 0, \"max\": 9, \"size\": 10},\n",
|
||||
" \"id\": \"123\", # required\n",
|
||||
" \"type\": \"tool_call\", # required\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "dfdc1040-bf25-4790-b4c3-59452db84e11",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can do the same when subclassing BaseTool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "fe1a09d1-378b-4b91-bb5e-0697c3d7eb92",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import BaseTool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GenerateRandomFloats(BaseTool):\n",
|
||||
" name: str = \"generate_random_floats\"\n",
|
||||
" description: str = \"Generate size random floats in the range [min, max].\"\n",
|
||||
" response_format: str = \"content_and_artifact\"\n",
|
||||
"\n",
|
||||
" ndigits: int = 2\n",
|
||||
"\n",
|
||||
" def _run(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
|
||||
" range_ = max - min\n",
|
||||
" array = [\n",
|
||||
" round(min + (range_ * random.random()), ndigits=self.ndigits)\n",
|
||||
" for _ in range(size)\n",
|
||||
" ]\n",
|
||||
" content = f\"Generated {size} floats in [{min}, {max}], rounded to {self.ndigits} decimals.\"\n",
|
||||
" return content, array\n",
|
||||
"\n",
|
||||
" # Optionally define an equivalent async method\n",
|
||||
"\n",
|
||||
" # async def _arun(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
|
||||
" # ..."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "8c3d16f6-1c4a-48ab-b05a-38547c592e79",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.4277, 0.7578, 2.4871])"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rand_gen = GenerateRandomFloats(ndigits=4)\n",
|
||||
"\n",
|
||||
"rand_gen.invoke(\n",
|
||||
" {\n",
|
||||
" \"name\": \"generate_random_floats\",\n",
|
||||
" \"args\": {\"min\": 0.1, \"max\": 3.3333, \"size\": 3},\n",
|
||||
" \"id\": \"123\",\n",
|
||||
" \"type\": \"tool_call\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -609,7 +962,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.9"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
||||
@@ -23,12 +23,12 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install \"unstructured[html]\""
|
||||
"%pip install unstructured"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 2,
|
||||
"id": "7d167ca3-c7c7-4ef0-b509-080629f0f482",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -36,14 +36,14 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Document(page_content='My First Heading\\n\\nMy first paragraph.', metadata={'source': '../../../docs/integrations/document_loaders/example_data/fake-content.html'})]\n"
|
||||
"[Document(page_content='My First Heading\\n\\nMy first paragraph.', metadata={'source': '../../docs/integrations/document_loaders/example_data/fake-content.html'})]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import UnstructuredHTMLLoader\n",
|
||||
"\n",
|
||||
"file_path = \"../../../docs/integrations/document_loaders/example_data/fake-content.html\"\n",
|
||||
"file_path = \"../../docs/integrations/document_loaders/example_data/fake-content.html\"\n",
|
||||
"\n",
|
||||
"loader = UnstructuredHTMLLoader(file_path)\n",
|
||||
"data = loader.load()\n",
|
||||
@@ -73,7 +73,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 4,
|
||||
"id": "0a2050a8-6df6-4696-9889-ba367d6f9caa",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -81,7 +81,7 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Document(page_content='\\nTest Title\\n\\n\\nMy First Heading\\nMy first paragraph.\\n\\n\\n', metadata={'source': '../../../docs/integrations/document_loaders/example_data/fake-content.html', 'title': 'Test Title'})]\n"
|
||||
"[Document(page_content='\\nTest Title\\n\\n\\nMy First Heading\\nMy first paragraph.\\n\\n\\n', metadata={'source': '../../docs/integrations/document_loaders/example_data/fake-content.html', 'title': 'Test Title'})]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -111,7 +111,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
"version": "3.10.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -21,12 +21,12 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"execution_count": null,
|
||||
"id": "c8b147fb-6877-4f7a-b2ee-ee971c7bc662",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !pip install \"unstructured[md]\""
|
||||
"%pip install \"unstructured[md]\""
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -39,7 +39,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 4,
|
||||
"id": "80c50cc4-7ce9-4418-81b9-29c52c7b3627",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -62,7 +62,7 @@
|
||||
"from langchain_community.document_loaders import UnstructuredMarkdownLoader\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"markdown_path = \"../../../../README.md\"\n",
|
||||
"markdown_path = \"../../../README.md\"\n",
|
||||
"loader = UnstructuredMarkdownLoader(markdown_path)\n",
|
||||
"\n",
|
||||
"data = loader.load()\n",
|
||||
@@ -84,7 +84,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 5,
|
||||
"id": "a986bbce-7fd3-41d1-bc47-49f9f57c7cd1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -92,11 +92,11 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of documents: 65\n",
|
||||
"Number of documents: 66\n",
|
||||
"\n",
|
||||
"page_content='🦜️🔗 LangChain' metadata={'source': '../../../../README.md', 'last_modified': '2024-04-29T13:40:19', 'page_number': 1, 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': '../../../..', 'filename': 'README.md', 'category': 'Title'}\n",
|
||||
"page_content='🦜️🔗 LangChain' metadata={'source': '../../../README.md', 'category_depth': 0, 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'Title'}\n",
|
||||
"\n",
|
||||
"page_content='⚡ Build context-aware reasoning applications ⚡' metadata={'source': '../../../../README.md', 'last_modified': '2024-04-29T13:40:19', 'page_number': 1, 'languages': ['eng'], 'parent_id': 'c3223b6f7100be08a78f1e8c0c28fde1', 'filetype': 'text/markdown', 'file_directory': '../../../..', 'filename': 'README.md', 'category': 'NarrativeText'}\n",
|
||||
"page_content='⚡ Build context-aware reasoning applications ⚡' metadata={'source': '../../../README.md', 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'parent_id': '200b8a7d0dd03f66e4f13456566d2b3a', 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'NarrativeText'}\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
@@ -121,7 +121,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 6,
|
||||
"id": "75abc139-3ded-4e8e-9f21-d0c8ec40fdfc",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -129,13 +129,21 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'Title', 'NarrativeText', 'ListItem'}\n"
|
||||
"{'ListItem', 'NarrativeText', 'Title'}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(set(document.metadata[\"category\"] for document in data))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "223b4c11",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -154,7 +162,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
"version": "3.10.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -58,6 +58,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import Runnable, RunnablePassthrough, chain\n",
|
||||
@@ -86,7 +88,7 @@
|
||||
" # NOTE: This is returning another Runnable, not an actual output.\n",
|
||||
" return contextualize_question\n",
|
||||
" else:\n",
|
||||
" return RunnablePassthrough()\n",
|
||||
" return RunnablePassthrough() | itemgetter(\"question\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@chain\n",
|
||||
|
||||
@@ -67,15 +67,16 @@ If you'd prefer not to set an environment variable you can pass the key in direc
|
||||
```python
|
||||
from langchain_cohere import CohereEmbeddings
|
||||
|
||||
embeddings_model = CohereEmbeddings(cohere_api_key="...")
|
||||
embeddings_model = CohereEmbeddings(cohere_api_key="...", model='embed-english-v3.0')
|
||||
```
|
||||
|
||||
Otherwise you can initialize without any params:
|
||||
Otherwise you can initialize simply as shown below:
|
||||
```python
|
||||
from langchain_cohere import CohereEmbeddings
|
||||
|
||||
embeddings_model = CohereEmbeddings()
|
||||
embeddings_model = CohereEmbeddings(model='embed-english-v3.0')
|
||||
```
|
||||
Do note that it is mandatory to pass the model parameter while initializing the CohereEmbeddings class.
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="huggingface" label="Hugging Face">
|
||||
|
||||
@@ -9,11 +9,13 @@
|
||||
"source": [
|
||||
"# Hybrid Search\n",
|
||||
"\n",
|
||||
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, ...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
|
||||
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, Qdrant...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
|
||||
"\n",
|
||||
"**Step 1: Make sure the vectorstore you are using supports hybrid search**\n",
|
||||
"\n",
|
||||
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`. By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
|
||||
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`.\n",
|
||||
"\n",
|
||||
"By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
|
||||
"\n",
|
||||
"**Step 2: Add that parameter as a configurable field for the chain**\n",
|
||||
"\n",
|
||||
|
||||
@@ -43,6 +43,8 @@ This highlights functionality that is core to using LangChain.
|
||||
- [How to: create a dynamic (self-constructing) chain](/docs/how_to/dynamic_chain/)
|
||||
- [How to: inspect runnables](/docs/how_to/inspect)
|
||||
- [How to: add fallbacks to a runnable](/docs/how_to/fallbacks)
|
||||
- [How to: migrate chains to LCEL](/docs/how_to/migrate_chains)
|
||||
- [How to: pass runtime secrets to a runnable](/docs/how_to/runnable_runtime_secrets)
|
||||
|
||||
## Components
|
||||
|
||||
@@ -83,8 +85,8 @@ These are the core building blocks you can use when building applications.
|
||||
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
|
||||
- [How to: stream tool calls](/docs/how_to/tool_streaming)
|
||||
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
|
||||
- [How to: bind model-specific formated tools](/docs/how_to/tools_model_specific)
|
||||
- [How to: force specific tool call](/docs/how_to/tool_choice)
|
||||
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
|
||||
- [How to: force a specific tool call](/docs/how_to/tool_choice)
|
||||
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
|
||||
|
||||
### Messages
|
||||
@@ -182,17 +184,23 @@ Indexing is the process of keeping your vectorstore in-sync with the underlying
|
||||
|
||||
### Tools
|
||||
|
||||
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call.
|
||||
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call. Refer [here](/docs/integrations/tools/) for a list of pre-buit tools.
|
||||
|
||||
- [How to: create custom tools](/docs/how_to/custom_tools)
|
||||
- [How to: use built-in tools and built-in toolkits](/docs/how_to/tools_builtin)
|
||||
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
|
||||
- [How to: pass tool results back to model](/docs/how_to/tool_results_pass_to_model)
|
||||
- [How to: add ad-hoc tool calling capability to LLMs and chat models](/docs/how_to/tools_prompting)
|
||||
- [How to: create tools](/docs/how_to/custom_tools)
|
||||
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)
|
||||
- [How to: use chat models to call tools](/docs/how_to/tool_calling)
|
||||
- [How to: pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model)
|
||||
- [How to: pass run time values to tools](/docs/how_to/tool_runtime)
|
||||
- [How to: add a human in the loop to tool usage](/docs/how_to/tools_human)
|
||||
- [How to: handle errors when calling tools](/docs/how_to/tools_error)
|
||||
- [How to: disable parallel tool calling](/docs/how_to/tool_choice)
|
||||
- [How to: add a human-in-the-loop for tools](/docs/how_to/tools_human)
|
||||
- [How to: handle tool errors](/docs/how_to/tools_error)
|
||||
- [How to: force models to call a tool](/docs/how_to/tool_choice)
|
||||
- [How to: disable parallel tool calling](/docs/how_to/tool_calling_parallel)
|
||||
- [How to: access the `RunnableConfig` from a tool](/docs/how_to/tool_configure)
|
||||
- [How to: stream events from a tool](/docs/how_to/tool_stream_events)
|
||||
- [How to: return artifacts from a tool](/docs/how_to/tool_artifacts/)
|
||||
- [How to: convert Runnables to tools](/docs/how_to/convert_runnable_to_tool)
|
||||
- [How to: add ad-hoc tool calling capability to models](/docs/how_to/tools_prompting)
|
||||
- [How to: pass in runtime secrets](/docs/how_to/runnable_runtime_secrets)
|
||||
|
||||
### Multimodal
|
||||
|
||||
@@ -204,7 +212,7 @@ LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to p
|
||||
|
||||
:::note
|
||||
|
||||
For in depth how-to guides for agents, please check out [LangGraph](https://github.com/langchain-ai/langgraph) documentation.
|
||||
For in depth how-to guides for agents, please check out [LangGraph](https://langchain-ai.github.io/langgraph/) documentation.
|
||||
|
||||
:::
|
||||
|
||||
@@ -220,6 +228,7 @@ For in depth how-to guides for agents, please check out [LangGraph](https://gith
|
||||
- [How to: pass callbacks into a module constructor](/docs/how_to/callbacks_constructor)
|
||||
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
|
||||
- [How to: use callbacks in async environments](/docs/how_to/callbacks_async)
|
||||
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
|
||||
|
||||
### Custom
|
||||
|
||||
@@ -232,6 +241,7 @@ All of LangChain components can easily be extended to support your own versions.
|
||||
- [How to: write a custom output parser class](/docs/how_to/output_parser_custom)
|
||||
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
|
||||
- [How to: define a custom tool](/docs/how_to/custom_tools)
|
||||
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
|
||||
|
||||
### Serialization
|
||||
- [How to: save and load LangChain objects](/docs/how_to/serialization)
|
||||
|
||||
@@ -60,7 +60,7 @@
|
||||
" * document addition by id (`add_documents` method with `ids` argument)\n",
|
||||
" * delete by id (`delete` method with `ids` argument)\n",
|
||||
"\n",
|
||||
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
|
||||
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MongoDBAtlasVectorSearch`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SingleStoreDB`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
|
||||
" \n",
|
||||
"## Caution\n",
|
||||
"\n",
|
||||
|
||||
@@ -63,6 +63,38 @@
|
||||
"Notice that if the contents of one of the messages to merge is a list of content blocks then the merged message will have a list of content blocks. And if both messages to merge have string contents then those are concatenated with a newline character."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "11f7e8d3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The `merge_message_runs` utility also works with messages composed together using the overloaded `+` operation:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b51855c5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"messages = (\n",
|
||||
" SystemMessage(\"you're a good assistant.\")\n",
|
||||
" + SystemMessage(\"you always respond with a joke.\")\n",
|
||||
" + HumanMessage([{\"type\": \"text\", \"text\": \"i wonder why it's called langchain\"}])\n",
|
||||
" + HumanMessage(\"and who is harrison chasing anyways\")\n",
|
||||
" + AIMessage(\n",
|
||||
" 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n",
|
||||
" )\n",
|
||||
" + AIMessage(\n",
|
||||
" \"Why, he's probably chasing after the last cup of coffee in the office!\"\n",
|
||||
" )\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"merged = merge_message_runs(messages)\n",
|
||||
"print(\"\\n\\n\".join([repr(x) for x in merged]))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1b2eee74-71c8-4168-b968-bca580c25d18",
|
||||
|
||||
@@ -351,7 +351,15 @@
|
||||
"id": "68df3a09",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Memory\n",
|
||||
"## Memory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "96e7ffc8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### In LangChain\n",
|
||||
"\n",
|
||||
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could add chat [Memory](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.memory) so it can engage in a multi-turn conversation."
|
||||
]
|
||||
@@ -439,7 +447,7 @@
|
||||
"id": "c2a5a32f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### In LangGraph\n",
|
||||
"### In LangGraph\n",
|
||||
"\n",
|
||||
"Memory is just [persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/), aka [checkpointing](https://langchain-ai.github.io/langgraph/reference/checkpoints/).\n",
|
||||
"\n",
|
||||
@@ -510,6 +518,8 @@
|
||||
"source": [
|
||||
"## Iterating through steps\n",
|
||||
"\n",
|
||||
"### In LangChain\n",
|
||||
"\n",
|
||||
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could iterate over the steps using the [stream](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) (or async `astream`) methods or the [iter](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter) method. LangGraph supports stepwise iteration using [stream](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) "
|
||||
]
|
||||
},
|
||||
@@ -568,7 +578,7 @@
|
||||
"id": "46ccbcbf",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### In LangGraph\n",
|
||||
"### In LangGraph\n",
|
||||
"\n",
|
||||
"In LangGraph, things are handled natively using [stream](https://langchain-ai.github.io/langgraph/reference/graphs/#langgraph.graph.graph.CompiledGraph.stream) or the asynchronous `astream` method."
|
||||
]
|
||||
@@ -619,6 +629,8 @@
|
||||
"source": [
|
||||
"## `return_intermediate_steps`\n",
|
||||
"\n",
|
||||
"### In LangChain\n",
|
||||
"\n",
|
||||
"Setting this parameter on AgentExecutor allows users to access intermediate_steps, which pairs agent actions (e.g., tool invocations) with their outcomes.\n"
|
||||
]
|
||||
},
|
||||
@@ -647,6 +659,8 @@
|
||||
"id": "594f7567-302f-4fa8-85bb-025ac8322162",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### In LangGraph\n",
|
||||
"\n",
|
||||
"By default the [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) in LangGraph appends all messages to the central state. Therefore, it is easy to see any intermediate steps by just looking at the full state."
|
||||
]
|
||||
},
|
||||
@@ -687,11 +701,9 @@
|
||||
"source": [
|
||||
"## `max_iterations`\n",
|
||||
"\n",
|
||||
"`AgentExecutor` implements a `max_iterations` parameter, whereas this is controlled via `recursion_limit` in LangGraph.\n",
|
||||
"### In LangChain\n",
|
||||
"\n",
|
||||
"Note that in AgentExecutor, an \"iteration\" includes a full turn of tool invocation and execution. In LangGraph, each step contributes to the recursion limit, so we will need to multiply by two (and add one) to get equivalent results.\n",
|
||||
"\n",
|
||||
"If the recursion limit is reached, LangGraph raises a specific exception type, that we can catch and manage similarly to AgentExecutor."
|
||||
"`AgentExecutor` implements a `max_iterations` parameter, allowing users to abort a run that exceeds a specified number of iterations."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -769,6 +781,20 @@
|
||||
"agent_executor.invoke({\"input\": query})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "dd3a933f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### In LangGraph\n",
|
||||
"\n",
|
||||
"In LangGraph this is controlled via `recursion_limit` configuration parameter.\n",
|
||||
"\n",
|
||||
"Note that in `AgentExecutor`, an \"iteration\" includes a full turn of tool invocation and execution. In LangGraph, each step contributes to the recursion limit, so we will need to multiply by two (and add one) to get equivalent results.\n",
|
||||
"\n",
|
||||
"If the recursion limit is reached, LangGraph raises a specific exception type, that we can catch and manage similarly to AgentExecutor."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
@@ -814,6 +840,8 @@
|
||||
"source": [
|
||||
"## `max_execution_time`\n",
|
||||
"\n",
|
||||
"### In LangChain\n",
|
||||
"\n",
|
||||
"`AgentExecutor` implements a `max_execution_time` parameter, allowing users to abort a run that exceeds a total time limit."
|
||||
]
|
||||
},
|
||||
@@ -880,6 +908,8 @@
|
||||
"id": "d02eb025",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### In LangGraph\n",
|
||||
"\n",
|
||||
"With LangGraph's react agent, you can control timeouts on two levels. \n",
|
||||
"\n",
|
||||
"You can set a `step_timeout` to bound each **step**:"
|
||||
@@ -968,6 +998,8 @@
|
||||
"source": [
|
||||
"## `early_stopping_method`\n",
|
||||
"\n",
|
||||
"### In LangChain\n",
|
||||
"\n",
|
||||
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could configure an [early_stopping_method](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.early_stopping_method) to either return a string saying \"Agent stopped due to iteration limit or time limit.\" (`\"force\"`) or prompt the LLM a final time to respond (`\"generate\"`)."
|
||||
]
|
||||
},
|
||||
@@ -1028,7 +1060,7 @@
|
||||
"id": "706e05c4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### In LangGraph\n",
|
||||
"### In LangGraph\n",
|
||||
"\n",
|
||||
"In LangGraph, you can explicitly handle the response behavior outside the agent, since the full state can be accessed."
|
||||
]
|
||||
@@ -1077,6 +1109,8 @@
|
||||
"source": [
|
||||
"## `trim_intermediate_steps`\n",
|
||||
"\n",
|
||||
"### In LangChain\n",
|
||||
"\n",
|
||||
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), you could trim the intermediate steps of long-running agents using [trim_intermediate_steps](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.trim_intermediate_steps), which is either an integer (indicating the agent should keep the last N steps) or a custom function.\n",
|
||||
"\n",
|
||||
"For instance, we could trim the value so the agent only sees the most recent intermediate step."
|
||||
@@ -1180,7 +1214,7 @@
|
||||
"id": "3d450c5a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### In LangGraph\n",
|
||||
"### In LangGraph\n",
|
||||
"\n",
|
||||
"We can use the [`messages_modifier`](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) just as before when passing in [prompt templates](#prompt-templates)."
|
||||
]
|
||||
|
||||
798
docs/docs/how_to/migrate_chains.ipynb
Normal file
798
docs/docs/how_to/migrate_chains.ipynb
Normal file
@@ -0,0 +1,798 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f331037f-be3f-4782-856f-d55dab952488",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to migrate chains to LCEL\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"- [LangChain Expression Language](/docs/concepts#langchain-expression-language-lcel)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"LCEL is designed to streamline the process of building useful apps with LLMs and combining related components. It does this by providing:\n",
|
||||
"\n",
|
||||
"1. **A unified interface**: Every LCEL object implements the `Runnable` interface, which defines a common set of invocation methods (`invoke`, `batch`, `stream`, `ainvoke`, ...). This makes it possible to also automatically and consistently support useful operations like streaming of intermediate steps and batching, since every chain composed of LCEL objects is itself an LCEL object.\n",
|
||||
"2. **Composition primitives**: LCEL provides a number of primitives that make it easy to compose chains, parallelize components, add fallbacks, dynamically configure chain internals, and more.\n",
|
||||
"\n",
|
||||
"LangChain maintains a number of legacy abstractions. Many of these can be reimplemented via short combinations of LCEL primitives. Doing so confers some general advantages:\n",
|
||||
"\n",
|
||||
"- The resulting chains typically implement the full `Runnable` interface, including streaming and asynchronous support where appropriate;\n",
|
||||
"- The chains may be more easily extended or modified;\n",
|
||||
"- The parameters of the chain are typically surfaced for easier customization (e.g., prompts) over previous versions, which tended to be subclasses and had opaque parameters and internals.\n",
|
||||
"\n",
|
||||
"The LCEL implementations can be slightly more verbose, but there are significant benefits in transparency and customizability.\n",
|
||||
"\n",
|
||||
"In this guide we review LCEL implementations of common legacy abstractions. Where appropriate, we link out to separate guides with more detail."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b99b47ec",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-community langchain langchain-openai faiss-cpu"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "717c8673",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e3621b62-a037-42b8-8faa-59575608bb8b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## `LLMChain`\n",
|
||||
"<span data-heading-keywords=\"llmchain\"></span>\n",
|
||||
"\n",
|
||||
"[`LLMChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.llm.LLMChain.html) combined a prompt template, LLM, and output parser into a class.\n",
|
||||
"\n",
|
||||
"Some advantages of switching to the LCEL implementation are:\n",
|
||||
"\n",
|
||||
"- Clarity around contents and parameters. The legacy `LLMChain` contains a default output parser and other options.\n",
|
||||
"- Easier streaming. `LLMChain` only supports streaming via callbacks.\n",
|
||||
"- Easier access to raw message outputs if desired. `LLMChain` only exposes these via a parameter or via callback.\n",
|
||||
"\n",
|
||||
"import { ColumnContainer, Column } from \"@theme/Columns\";\n",
|
||||
"\n",
|
||||
"<ColumnContainer>\n",
|
||||
"\n",
|
||||
"<Column>\n",
|
||||
"\n",
|
||||
"#### Legacy\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "e628905c-430e-4e4a-9d7c-c91d2f42052e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'adjective': 'funny',\n",
|
||||
" 'text': \"Why couldn't the bicycle find its way home?\\n\\nBecause it lost its bearings!\"}"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"user\", \"Tell me a {adjective} joke\")],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = LLMChain(llm=ChatOpenAI(), prompt=prompt)\n",
|
||||
"\n",
|
||||
"chain({\"adjective\": \"funny\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cdc3b527-c09e-4c77-9711-c3cc4506cd95",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"</Column>\n",
|
||||
"\n",
|
||||
"<Column>\n",
|
||||
"\n",
|
||||
"#### LCEL\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "0d2a7cf8-1bc7-405c-bb0d-f2ab2ba3b6ab",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"Why couldn't the bicycle stand up by itself?\\n\\nBecause it was two tired!\""
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"user\", \"Tell me a {adjective} joke\")],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
|
||||
"\n",
|
||||
"chain.invoke({\"adjective\": \"funny\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3c0b0513-77b8-4371-a20e-3e487cec7e7f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"</Column>\n",
|
||||
"</ColumnContainer>\n",
|
||||
"\n",
|
||||
"Note that `LLMChain` by default returns a `dict` containing both the input and the output. If this behavior is desired, we can replicate it using another LCEL primitive, [`RunnablePassthrough`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "529206c5-abbe-4213-9e6c-3b8586c8000d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'adjective': 'funny',\n",
|
||||
" 'text': \"Why couldn't the bicycle stand up by itself?\\n\\nBecause it was two tired!\"}"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"outer_chain = RunnablePassthrough().assign(text=chain)\n",
|
||||
"\n",
|
||||
"outer_chain.invoke({\"adjective\": \"funny\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "29d2e26c-2854-4971-9c2b-613450993921",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"See [this tutorial](/docs/tutorials/llm_chain) for more detail on building with prompt templates, LLMs, and output parsers."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "00df631d-5121-4918-94aa-b88acce9b769",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## `ConversationChain`\n",
|
||||
"<span data-heading-keywords=\"conversationchain\"></span>\n",
|
||||
"\n",
|
||||
"[`ConversationChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.conversation.base.ConversationChain.html) incorporates a memory of previous messages to sustain a stateful conversation.\n",
|
||||
"\n",
|
||||
"Some advantages of switching to the LCEL implementation are:\n",
|
||||
"\n",
|
||||
"- Innate support for threads/separate sessions. To make this work with `ConversationChain`, you'd need to instantiate a separate memory class outside the chain.\n",
|
||||
"- More explicit parameters. `ConversationChain` contains a hidden default prompt, which can cause confusion.\n",
|
||||
"- Streaming support. `ConversationChain` only supports streaming via callbacks.\n",
|
||||
"\n",
|
||||
"`RunnableWithMessageHistory` implements sessions via configuration parameters. It should be instantiated with a callable that returns a [chat message history](https://api.python.langchain.com/en/latest/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html). By default, it expects this function to take a single argument `session_id`.\n",
|
||||
"\n",
|
||||
"<ColumnContainer>\n",
|
||||
"<Column>\n",
|
||||
"\n",
|
||||
"#### Legacy\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "4f2cc6dc-d70a-4c13-9258-452f14290da6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input': 'how are you?',\n",
|
||||
" 'history': '',\n",
|
||||
" 'response': \"Arrr, I be doin' well, me matey! Just sailin' the high seas in search of treasure and adventure. How can I assist ye today?\"}"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import ConversationChain\n",
|
||||
"from langchain.memory import ConversationBufferMemory\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"template = \"\"\"\n",
|
||||
"You are a pirate. Answer the following questions as best you can.\n",
|
||||
"Chat history: {history}\n",
|
||||
"Question: {input}\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"\n",
|
||||
"memory = ConversationBufferMemory()\n",
|
||||
"\n",
|
||||
"chain = ConversationChain(\n",
|
||||
" llm=ChatOpenAI(),\n",
|
||||
" memory=memory,\n",
|
||||
" prompt=prompt,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain({\"input\": \"how are you?\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f8e36b0e-c7dc-4130-a51b-189d4b756c7f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</Column>\n",
|
||||
"\n",
|
||||
"<Column>\n",
|
||||
"\n",
|
||||
"#### LCEL\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "173e1a9c-2a18-4669-b0de-136f39197786",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"Arr, matey! I be sailin' the high seas with me crew, searchin' for buried treasure and adventure! How be ye doin' on this fine day?\""
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.chat_history import InMemoryChatMessageHistory\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", \"You are a pirate. Answer the following questions as best you can.\"),\n",
|
||||
" (\"placeholder\", \"{chat_history}\"),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"history = InMemoryChatMessageHistory()\n",
|
||||
"\n",
|
||||
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
|
||||
"\n",
|
||||
"wrapped_chain = RunnableWithMessageHistory(chain, lambda x: history)\n",
|
||||
"\n",
|
||||
"wrapped_chain.invoke(\n",
|
||||
" {\"input\": \"how are you?\"},\n",
|
||||
" config={\"configurable\": {\"session_id\": \"42\"}},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6b386ce6-895e-442c-88f3-7bec0ab9f401",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"</Column>\n",
|
||||
"</ColumnContainer>\n",
|
||||
"\n",
|
||||
"The above example uses the same `history` for all sessions. The example below shows how to use a different chat history for each session."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "4e05994f-1fbc-4699-bf2e-62cb0e4deeb8",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"Ahoy there! What be ye wantin' from this old pirate?\", response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 29, 'total_tokens': 44}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-1846d5f5-0dda-43b6-bb49-864e541f9c29-0', usage_metadata={'input_tokens': 29, 'output_tokens': 15, 'total_tokens': 44})"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.chat_history import BaseChatMessageHistory\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"\n",
|
||||
"store = {}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_session_history(session_id: str) -> BaseChatMessageHistory:\n",
|
||||
" if session_id not in store:\n",
|
||||
" store[session_id] = InMemoryChatMessageHistory()\n",
|
||||
" return store[session_id]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
|
||||
"\n",
|
||||
"wrapped_chain = RunnableWithMessageHistory(chain, get_session_history)\n",
|
||||
"\n",
|
||||
"wrapped_chain.invoke(\"Hello!\", config={\"configurable\": {\"session_id\": \"abc123\"}})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c36ebecb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"See [this tutorial](/docs/tutorials/chatbot) for a more end-to-end guide on building with [`RunnableWithMessageHistory`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html).\n",
|
||||
"\n",
|
||||
"## `RetrievalQA`\n",
|
||||
"<span data-heading-keywords=\"retrievalqa\"></span>\n",
|
||||
"\n",
|
||||
"The [`RetrievalQA`](https://api.python.langchain.com/en/latest/chains/langchain.chains.retrieval_qa.base.RetrievalQA.html) chain performed natural-language question answering over a data source using retrieval-augmented generation.\n",
|
||||
"\n",
|
||||
"Some advantages of switching to the LCEL implementation are:\n",
|
||||
"\n",
|
||||
"- Easier customizability. Details such as the prompt and how documents are formatted are only configurable via specific parameters in the `RetrievalQA` chain.\n",
|
||||
"- More easily return source documents.\n",
|
||||
"- Support for runnable methods like streaming and async operations.\n",
|
||||
"\n",
|
||||
"Now let's look at them side-by-side. We'll use the same ingestion code to load a [blog post by Lilian Weng](https://lilianweng.github.io/posts/2023-06-23-agent/) on autonomous agents into a local vector store:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "1efbe16e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load docs\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain_community.document_loaders import WebBaseLoader\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_openai.chat_models import ChatOpenAI\n",
|
||||
"from langchain_openai.embeddings import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"loader = WebBaseLoader(\"https://lilianweng.github.io/posts/2023-06-23-agent/\")\n",
|
||||
"data = loader.load()\n",
|
||||
"\n",
|
||||
"# Split\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
|
||||
"all_splits = text_splitter.split_documents(data)\n",
|
||||
"\n",
|
||||
"# Store splits\n",
|
||||
"vectorstore = FAISS.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())\n",
|
||||
"\n",
|
||||
"# LLM\n",
|
||||
"llm = ChatOpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c7e16438",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<ColumnContainer>\n",
|
||||
"\n",
|
||||
"<Column>\n",
|
||||
"\n",
|
||||
"#### Legacy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "43bf55a0",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'query': 'What are autonomous agents?',\n",
|
||||
" 'result': 'Autonomous agents are LLM-empowered agents that handle autonomous design, planning, and performance of complex tasks, such as scientific experiments. These agents can browse the Internet, read documentation, execute code, call robotics experimentation APIs, and leverage other LLMs. They are capable of reasoning and planning ahead for complicated tasks by breaking them down into smaller steps.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"\n",
|
||||
"# See full prompt at https://smith.langchain.com/hub/rlm/rag-prompt\n",
|
||||
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
||||
"\n",
|
||||
"qa_chain = RetrievalQA.from_llm(\n",
|
||||
" llm, retriever=vectorstore.as_retriever(), prompt=prompt\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"qa_chain(\"What are autonomous agents?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "081948e5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</Column>\n",
|
||||
"\n",
|
||||
"<Column>\n",
|
||||
"\n",
|
||||
"#### LCEL\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "9efcc931",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Autonomous agents are agents that can handle autonomous design, planning, and performance of complex tasks, such as scientific experiments. They can browse the Internet, read documentation, execute code, call robotics experimentation APIs, and leverage other language model models. These agents use reasoning steps to develop solutions to specific tasks, like creating a novel anticancer drug.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# See full prompt at https://smith.langchain.com/hub/rlm/rag-prompt\n",
|
||||
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def format_docs(docs):\n",
|
||||
" return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"qa_chain = (\n",
|
||||
" {\n",
|
||||
" \"context\": vectorstore.as_retriever() | format_docs,\n",
|
||||
" \"question\": RunnablePassthrough(),\n",
|
||||
" }\n",
|
||||
" | prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"qa_chain.invoke(\"What are autonomous agents?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d6f44fe8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</Column>\n",
|
||||
"</ColumnContainer>\n",
|
||||
"\n",
|
||||
"The LCEL implementation exposes the internals of what's happening around retrieving, formatting documents, and passing them through a prompt to the LLM, but it is more verbose. You can customize and wrap this composition logic in a helper function, or use the higher-level [`create_retrieval_chain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.retrieval.create_retrieval_chain.html) and [`create_stuff_documents_chain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) helper method:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "5fe42761",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input': 'What are autonomous agents?',\n",
|
||||
" 'context': [Document(page_content='Boiko et al. (2023) also looked into LLM-empowered agents for scientific discovery, to handle autonomous design, planning, and performance of complex scientific experiments. This agent can use tools to browse the Internet, read documentation, execute code, call robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested to \"develop a novel anticancer drug\", the model came up with the following reasoning steps:', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:', 'language': 'en'}),\n",
|
||||
" Document(page_content='Weng, Lilian. (Jun 2023). “LLM-powered Autonomous Agents”. Lil’Log. https://lilianweng.github.io/posts/2023-06-23-agent/.', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:', 'language': 'en'}),\n",
|
||||
" Document(page_content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:', 'language': 'en'}),\n",
|
||||
" Document(page_content=\"LLM Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\", metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:', 'language': 'en'})],\n",
|
||||
" 'answer': 'Autonomous agents are entities that can operate independently, making decisions and taking actions without direct human intervention. These agents can perform tasks such as planning, executing complex experiments, and leveraging various tools and resources to achieve objectives. In the context provided, LLM-powered autonomous agents are specifically designed for scientific discovery, capable of handling tasks like designing novel anticancer drugs through reasoning steps.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain.chains import create_retrieval_chain\n",
|
||||
"from langchain.chains.combine_documents import create_stuff_documents_chain\n",
|
||||
"\n",
|
||||
"# See full prompt at https://smith.langchain.com/hub/langchain-ai/retrieval-qa-chat\n",
|
||||
"retrieval_qa_chat_prompt = hub.pull(\"langchain-ai/retrieval-qa-chat\")\n",
|
||||
"\n",
|
||||
"combine_docs_chain = create_stuff_documents_chain(llm, retrieval_qa_chat_prompt)\n",
|
||||
"rag_chain = create_retrieval_chain(vectorstore.as_retriever(), combine_docs_chain)\n",
|
||||
"\n",
|
||||
"rag_chain.invoke({\"input\": \"What are autonomous agents?\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2772f4e9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## `ConversationalRetrievalChain`\n",
|
||||
"<span data-heading-keywords=\"conversationalretrievalchain\"></span>\n",
|
||||
"\n",
|
||||
"The [`ConversationalRetrievalChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.conversational_retrieval.base.ConversationalRetrievalChain.html) was an all-in one way that combined retrieval-augmented generation with chat history, allowing you to \"chat with\" your documents.\n",
|
||||
"\n",
|
||||
"Advantages of switching to the LCEL implementation are similar to the `RetrievalQA` section above:\n",
|
||||
"\n",
|
||||
"- Clearer internals. The `ConversationalRetrievalChain` chain hides an entire question rephrasing step which dereferences the initial query against the chat history.\n",
|
||||
" - This means the class contains two sets of configurable prompts, LLMs, etc.\n",
|
||||
"- More easily return source documents.\n",
|
||||
"- Support for runnable methods like streaming and async operations.\n",
|
||||
"\n",
|
||||
"Here are side-by-side implementations with custom prompts. We'll reuse the loaded documents and vector store from the previous section:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8bc06416",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<ColumnContainer>\n",
|
||||
"\n",
|
||||
"<Column>\n",
|
||||
"\n",
|
||||
"#### Legacy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"id": "54eb9576",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'question': 'What are autonomous agents?',\n",
|
||||
" 'chat_history': '',\n",
|
||||
" 'answer': 'Autonomous agents are powered by Large Language Models (LLMs) to handle tasks like scientific discovery and complex experiments autonomously. These agents can browse the internet, read documentation, execute code, and leverage other LLMs to perform tasks. They can reason and plan ahead to decompose complicated tasks into manageable steps.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||
"\n",
|
||||
"condense_question_template = \"\"\"\n",
|
||||
"Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n",
|
||||
"\n",
|
||||
"Chat History:\n",
|
||||
"{chat_history}\n",
|
||||
"Follow Up Input: {question}\n",
|
||||
"Standalone question:\"\"\"\n",
|
||||
"\n",
|
||||
"condense_question_prompt = ChatPromptTemplate.from_template(condense_question_template)\n",
|
||||
"\n",
|
||||
"qa_template = \"\"\"\n",
|
||||
"You are an assistant for question-answering tasks.\n",
|
||||
"Use the following pieces of retrieved context to answer\n",
|
||||
"the question. If you don't know the answer, say that you\n",
|
||||
"don't know. Use three sentences maximum and keep the\n",
|
||||
"answer concise.\n",
|
||||
"\n",
|
||||
"Chat History:\n",
|
||||
"{chat_history}\n",
|
||||
"\n",
|
||||
"Other context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"qa_prompt = ChatPromptTemplate.from_template(qa_template)\n",
|
||||
"\n",
|
||||
"convo_qa_chain = ConversationalRetrievalChain.from_llm(\n",
|
||||
" llm,\n",
|
||||
" vectorstore.as_retriever(),\n",
|
||||
" condense_question_prompt=condense_question_prompt,\n",
|
||||
" combine_docs_chain_kwargs={\n",
|
||||
" \"prompt\": qa_prompt,\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"convo_qa_chain(\n",
|
||||
" {\n",
|
||||
" \"question\": \"What are autonomous agents?\",\n",
|
||||
" \"chat_history\": \"\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "43a8a23c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</Column>\n",
|
||||
"\n",
|
||||
"<Column>\n",
|
||||
"\n",
|
||||
"#### LCEL\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "c884b138",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input': 'What are autonomous agents?',\n",
|
||||
" 'chat_history': [],\n",
|
||||
" 'context': [Document(page_content='Boiko et al. (2023) also looked into LLM-empowered agents for scientific discovery, to handle autonomous design, planning, and performance of complex scientific experiments. This agent can use tools to browse the Internet, read documentation, execute code, call robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested to \"develop a novel anticancer drug\", the model came up with the following reasoning steps:', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:', 'language': 'en'}),\n",
|
||||
" Document(page_content='Weng, Lilian. (Jun 2023). “LLM-powered Autonomous Agents”. Lil’Log. https://lilianweng.github.io/posts/2023-06-23-agent/.', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:', 'language': 'en'}),\n",
|
||||
" Document(page_content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:', 'language': 'en'}),\n",
|
||||
" Document(page_content='Or\\n@article{weng2023agent,\\n title = \"LLM-powered Autonomous Agents\",\\n author = \"Weng, Lilian\",\\n journal = \"lilianweng.github.io\",\\n year = \"2023\",\\n month = \"Jun\",\\n url = \"https://lilianweng.github.io/posts/2023-06-23-agent/\"\\n}\\nReferences#\\n[1] Wei et al. “Chain of thought prompting elicits reasoning in large language models.” NeurIPS 2022\\n[2] Yao et al. “Tree of Thoughts: Dliberate Problem Solving with Large Language Models.” arXiv preprint arXiv:2305.10601 (2023).', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:', 'language': 'en'})],\n",
|
||||
" 'answer': 'Autonomous agents are entities capable of acting independently, making decisions, and performing tasks without direct human intervention. These agents can interact with their environment, perceive information, and take actions based on their goals or objectives. They often use artificial intelligence techniques to navigate and accomplish tasks in complex or dynamic environments.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import create_history_aware_retriever, create_retrieval_chain\n",
|
||||
"\n",
|
||||
"condense_question_system_template = (\n",
|
||||
" \"Given a chat history and the latest user question \"\n",
|
||||
" \"which might reference context in the chat history, \"\n",
|
||||
" \"formulate a standalone question which can be understood \"\n",
|
||||
" \"without the chat history. Do NOT answer the question, \"\n",
|
||||
" \"just reformulate it if needed and otherwise return it as is.\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"condense_question_prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", condense_question_system_template),\n",
|
||||
" (\"placeholder\", \"{chat_history}\"),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"history_aware_retriever = create_history_aware_retriever(\n",
|
||||
" llm, vectorstore.as_retriever(), condense_question_prompt\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"system_prompt = (\n",
|
||||
" \"You are an assistant for question-answering tasks. \"\n",
|
||||
" \"Use the following pieces of retrieved context to answer \"\n",
|
||||
" \"the question. If you don't know the answer, say that you \"\n",
|
||||
" \"don't know. Use three sentences maximum and keep the \"\n",
|
||||
" \"answer concise.\"\n",
|
||||
" \"\\n\\n\"\n",
|
||||
" \"{context}\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"qa_prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", system_prompt),\n",
|
||||
" (\"placeholder\", \"{chat_history}\"),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"qa_chain = create_stuff_documents_chain(llm, qa_prompt)\n",
|
||||
"\n",
|
||||
"convo_qa_chain = create_retrieval_chain(history_aware_retriever, qa_chain)\n",
|
||||
"\n",
|
||||
"convo_qa_chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input\": \"What are autonomous agents?\",\n",
|
||||
" \"chat_history\": [],\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b2717810",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"</Column>\n",
|
||||
"\n",
|
||||
"</ColumnContainer>\n",
|
||||
"\n",
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"You've now seen how to migrate existing usage of some legacy chains to LCEL.\n",
|
||||
"\n",
|
||||
"Next, check out the [LCEL conceptual docs](/docs/concepts/#langchain-expression-language-lcel) for more background information."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
78
docs/docs/how_to/runnable_runtime_secrets.ipynb
Normal file
78
docs/docs/how_to/runnable_runtime_secrets.ipynb
Normal file
@@ -0,0 +1,78 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6fcd2994-0092-4fa3-9bb1-c9c84babadc5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to pass runtime secrets to runnables\n",
|
||||
"\n",
|
||||
":::info Requires `langchain-core >= 0.2.22`\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"We can pass in secrets to our runnables at runtime using the `RunnableConfig`. Specifically we can pass in secrets with a `__` prefix to the `configurable` field. This will ensure that these secrets aren't traced as part of the invocation:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "92e42e91-c277-49de-aa7a-dfb5c993c817",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"7"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnableConfig\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def foo(x: int, config: RunnableConfig) -> int:\n",
|
||||
" \"\"\"Sum x and a secret int\"\"\"\n",
|
||||
" return x + config[\"configurable\"][\"__top_secret_int\"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"foo.invoke({\"x\": 5}, {\"configurable\": {\"__top_secret_int\": 2, \"traced_key\": \"bar\"}})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ae3a4fb9-2ce7-46b2-b654-35dff0ae7197",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Looking at the LangSmith trace for this run, we can see that \"traced_key\" was recorded (as part of Metadata) while our secret int was not: https://smith.langchain.com/public/aa7e3289-49ca-422d-a408-f6b927210170/r"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -452,7 +452,7 @@
|
||||
"source": [
|
||||
"#### Generator Functions\n",
|
||||
"\n",
|
||||
"Le'ts fix the streaming using a generator function that can operate on the **input stream**.\n",
|
||||
"Let's fix the streaming using a generator function that can operate on the **input stream**.\n",
|
||||
"\n",
|
||||
":::{.callout-tip}\n",
|
||||
"A generator function (a function that uses `yield`) allows writing code that operates on **input streams**\n",
|
||||
|
||||
@@ -58,7 +58,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 2,
|
||||
"id": "6d55008f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -81,17 +81,17 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 38,
|
||||
"execution_count": 3,
|
||||
"id": "070bf702",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)"
|
||||
"Joke(setup='Why was the cat sitting on the computer?', punchline='Because it wanted to keep an eye on the mouse!', rating=8)"
|
||||
]
|
||||
},
|
||||
"execution_count": 38,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -514,12 +514,49 @@
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "91e95aa2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### (Advanced) Raw outputs\n",
|
||||
"\n",
|
||||
"LLMs aren't perfect at generating structured output, especially as schemas become complex. You can avoid raising exceptions and handle the raw output yourself by passing `include_raw=True`. This changes the output format to contain the raw message output, the `parsed` value (if successful), and any resulting errors:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "10ed2842",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_ASK4EmZeZ69Fi3p554Mb4rWy', 'function': {'arguments': '{\"setup\":\"Why was the cat sitting on the computer?\",\"punchline\":\"Because it wanted to keep an eye on the mouse!\"}', 'name': 'Joke'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 107, 'total_tokens': 143}, 'model_name': 'gpt-4-0125-preview', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-6491d35b-9164-4656-b75c-d7882cfb76cb-0', tool_calls=[{'name': 'Joke', 'args': {'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!'}, 'id': 'call_ASK4EmZeZ69Fi3p554Mb4rWy'}], usage_metadata={'input_tokens': 107, 'output_tokens': 36, 'total_tokens': 143}),\n",
|
||||
" 'parsed': Joke(setup='Why was the cat sitting on the computer?', punchline='Because it wanted to keep an eye on the mouse!', rating=None),\n",
|
||||
" 'parsing_error': None}"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"structured_llm = llm.with_structured_output(Joke, include_raw=True)\n",
|
||||
"\n",
|
||||
"structured_llm.invoke(\n",
|
||||
" \"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5e92a98a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prompting and parsing model directly\n",
|
||||
"## Prompting and parsing model outputs directly\n",
|
||||
"\n",
|
||||
"Not all models support `.with_structured_output()`, since not all models have tool calling or JSON mode support. For such models you'll need to directly prompt the model to use a specific format, and use an output parser to extract the structured response from the raw model output.\n",
|
||||
"\n",
|
||||
@@ -787,9 +824,9 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-2",
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-2"
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -801,7 +838,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
"version": "3.10.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
396
docs/docs/how_to/tool_artifacts.ipynb
Normal file
396
docs/docs/how_to/tool_artifacts.ipynb
Normal file
@@ -0,0 +1,396 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "503e36ae-ca62-4f8a-880c-4fe78ff5df93",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to return artifacts from a tool\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"\n",
|
||||
"- [ToolMessage](/docs/concepts/#toolmessage)\n",
|
||||
"- [Tools](/docs/concepts/#tools)\n",
|
||||
"- [Function/tool calling](/docs/concepts/#functiontool-calling)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"Tools are utilities that can be called by a model, and whose outputs are designed to be fed back to a model. Sometimes, however, there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns a custom object, a dataframe or an image, we may want to pass some metadata about this output to the model without passing the actual output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
|
||||
"\n",
|
||||
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
|
||||
"\n",
|
||||
":::info Requires ``langchain-core >= 0.2.19``\n",
|
||||
"\n",
|
||||
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"## Defining the tool\n",
|
||||
"\n",
|
||||
"If we want our tool to distinguish between message content and other artifacts, we need to specify `response_format=\"content_and_artifact\"` when defining our tool and make sure that we return a tuple of (content, artifact):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "762b9199-885f-4946-9c98-cc54d72b0d76",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU \"langchain-core>=0.2.19\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "b9eb179d-1f41-4748-9866-b3d3e8c73cd0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import random\n",
|
||||
"from typing import List, Tuple\n",
|
||||
"\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool(response_format=\"content_and_artifact\")\n",
|
||||
"def generate_random_ints(min: int, max: int, size: int) -> Tuple[str, List[int]]:\n",
|
||||
" \"\"\"Generate size random ints in the range [min, max].\"\"\"\n",
|
||||
" array = [random.randint(min, max) for _ in range(size)]\n",
|
||||
" content = f\"Successfully generated array of {size} random ints in [{min}, {max}].\"\n",
|
||||
" return content, array"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0ab05d25-af4a-4e5a-afe2-f090416d7ee7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invoking the tool with ToolCall\n",
|
||||
"\n",
|
||||
"If we directly invoke our tool with just the tool arguments, you'll notice that we only get back the content part of the Tool output:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "5e7d5e77-3102-4a59-8ade-e4e699dd1817",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Successfully generated array of 10 random ints in [0, 9].'"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Failed to batch ingest runs: LangSmithRateLimitError('Rate limit exceeded for https://api.smith.langchain.com/runs/batch. HTTPError(\\'429 Client Error: Too Many Requests for url: https://api.smith.langchain.com/runs/batch\\', \\'{\"detail\":\"Monthly unique traces usage limit exceeded\"}\\')')\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke({\"min\": 0, \"max\": 9, \"size\": 10})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "30db7228-f04c-489e-afda-9a572eaa90a1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In order to get back both the content and the artifact, we need to invoke our model with a ToolCall (which is just a dictionary with \"name\", \"args\", \"id\" and \"type\" keys), which has additional info needed to generate a ToolMessage like the tool call ID:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "da1d939d-a900-4b01-92aa-d19011a6b034",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[2, 8, 0, 6, 0, 0, 1, 5, 0, 0])"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke(\n",
|
||||
" {\n",
|
||||
" \"name\": \"generate_random_ints\",\n",
|
||||
" \"args\": {\"min\": 0, \"max\": 9, \"size\": 10},\n",
|
||||
" \"id\": \"123\", # required\n",
|
||||
" \"type\": \"tool_call\", # required\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a3cfc03d-020b-42c7-b0f8-c824af19e45e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Using with a model\n",
|
||||
"\n",
|
||||
"With a [tool-calling model](/docs/how_to/tool_calling/), we can easily use a model to call our Tool and generate ToolMessages:\n",
|
||||
"\n",
|
||||
"```{=mdx}\n",
|
||||
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
|
||||
"\n",
|
||||
"<ChatModelTabs\n",
|
||||
" customVarName=\"llm\"\n",
|
||||
"/>\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "74de0286-b003-4b48-9cdd-ecab435515ca",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | echo: false\n",
|
||||
"# | output: false\n",
|
||||
"\n",
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"\n",
|
||||
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "8a67424b-d19c-43df-ac7b-690bca42146c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'generate_random_ints',\n",
|
||||
" 'args': {'min': 1, 'max': 24, 'size': 6},\n",
|
||||
" 'id': 'toolu_01EtALY3Wz1DVYhv1TLvZGvE',\n",
|
||||
" 'type': 'tool_call'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_with_tools = llm.bind_tools([generate_random_ints])\n",
|
||||
"\n",
|
||||
"ai_msg = llm_with_tools.invoke(\"generate 6 positive ints less than 25\")\n",
|
||||
"ai_msg.tool_calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "00c4e906-3ca8-41e8-a0be-65cb0db7d574",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Successfully generated array of 6 random ints in [1, 24].', name='generate_random_ints', tool_call_id='toolu_01EtALY3Wz1DVYhv1TLvZGvE', artifact=[2, 20, 23, 8, 1, 15])"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke(ai_msg.tool_calls[0])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ddef2690-70de-4542-ab20-2337f77f3e46",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we just pass in the tool call args, we'll only get back the content:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "f4a6c9a6-0ffc-4b0e-a59f-f3c3d69d824d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Successfully generated array of 6 random ints in [1, 24].'"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_random_ints.invoke(ai_msg.tool_calls[0][\"args\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "98d6443b-ff41-4d91-8523-b6274fc74ee5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we wanted to declaratively create a chain, we could do this:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "eb55ec23-95a4-464e-b886-d9679bf3aaa2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[ToolMessage(content='Successfully generated array of 1 random ints in [1, 5].', name='generate_random_ints', tool_call_id='toolu_01FwYhnkwDPJPbKdGq4ng6uD', artifact=[5])]"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from operator import attrgetter\n",
|
||||
"\n",
|
||||
"chain = llm_with_tools | attrgetter(\"tool_calls\") | generate_random_ints.map()\n",
|
||||
"\n",
|
||||
"chain.invoke(\"give me a random number between 1 and 5\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4df46be2-babb-4bfe-a641-91cd3d03ffaf",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating from BaseTool class\n",
|
||||
"\n",
|
||||
"If you want to create a BaseTool object directly, instead of decorating a function with `@tool`, you can do so like this:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "9a9129e1-6aee-4a10-ad57-62ef3bf0276c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import BaseTool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GenerateRandomFloats(BaseTool):\n",
|
||||
" name: str = \"generate_random_floats\"\n",
|
||||
" description: str = \"Generate size random floats in the range [min, max].\"\n",
|
||||
" response_format: str = \"content_and_artifact\"\n",
|
||||
"\n",
|
||||
" ndigits: int = 2\n",
|
||||
"\n",
|
||||
" def _run(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
|
||||
" range_ = max - min\n",
|
||||
" array = [\n",
|
||||
" round(min + (range_ * random.random()), ndigits=self.ndigits)\n",
|
||||
" for _ in range(size)\n",
|
||||
" ]\n",
|
||||
" content = f\"Generated {size} floats in [{min}, {max}], rounded to {self.ndigits} decimals.\"\n",
|
||||
" return content, array\n",
|
||||
"\n",
|
||||
" # Optionally define an equivalent async method\n",
|
||||
"\n",
|
||||
" # async def _arun(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
|
||||
" # ..."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "d7322619-f420-4b29-8ee5-023e693d0179",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rand_gen = GenerateRandomFloats(ndigits=4)\n",
|
||||
"rand_gen.invoke({\"min\": 0.1, \"max\": 3.3333, \"size\": 3})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "0892f277-23a6-4bb8-a0e9-59f533ac9750",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.5789, 2.464, 2.2719])"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rand_gen.invoke(\n",
|
||||
" {\n",
|
||||
" \"name\": \"generate_random_floats\",\n",
|
||||
" \"args\": {\"min\": 0.1, \"max\": 3.3333, \"size\": 3},\n",
|
||||
" \"id\": \"123\",\n",
|
||||
" \"type\": \"tool_call\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -17,7 +17,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to use a model to call tools\n",
|
||||
"# How to use chat models to call tools\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
@@ -82,30 +82,24 @@
|
||||
"## Passing tools to chat models\n",
|
||||
"\n",
|
||||
"Chat models that support tool calling features implement a `.bind_tools` method, which \n",
|
||||
"receives a list of LangChain [tool objects](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n",
|
||||
"receives a list of functions, Pydantic models, or LangChain [tool objects](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n",
|
||||
"and binds them to the chat model in its expected format. Subsequent invocations of the \n",
|
||||
"chat model will include tool schemas in its calls to the LLM.\n",
|
||||
"\n",
|
||||
"For example, we can define the schema for custom tools using the `@tool` decorator \n",
|
||||
"on Python functions:"
|
||||
"For example, below we implement simple tools for arithmetic:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def add(a: int, b: int) -> int:\n",
|
||||
" \"\"\"Adds a and b.\"\"\"\n",
|
||||
" return a + b\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def multiply(a: int, b: int) -> int:\n",
|
||||
" \"\"\"Multiplies a and b.\"\"\"\n",
|
||||
" return a * b\n",
|
||||
@@ -118,12 +112,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Or below, we define the schema using [Pydantic](https://docs.pydantic.dev):"
|
||||
"LangChain also implements a `@tool` decorator that allows for further control of the tool schema, such as tool names and argument descriptions. See the how-to guide [here](/docs/how_to/custom_tools/#creating-tools-from-functions) for detail.\n",
|
||||
"\n",
|
||||
"We can also define the schema using [Pydantic](https://docs.pydantic.dev):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -343,7 +339,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
"version": "3.10.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -4,7 +4,13 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Disabling parallel tool calling (OpenAI only)\n",
|
||||
"# How to disable parallel tool calling\n",
|
||||
"\n",
|
||||
":::info OpenAI-specific\n",
|
||||
"\n",
|
||||
"This API is currently only supported by OpenAI.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"OpenAI tool calling performs tool calling in parallel by default. That means that if we ask a question like \"What is the weather in Tokyo, New York, and Chicago?\" and we have a tool for getting the weather, it will call the tool 3 times in parallel. We can force it to call only a single tool once by using the ``parallel_tool_call`` parameter."
|
||||
]
|
||||
@@ -99,10 +105,24 @@
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
||||
@@ -4,7 +4,15 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to force tool calling behavior\n",
|
||||
"# How to force models to call a tool\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"- [Chat models](/docs/concepts/#chat-models)\n",
|
||||
"- [LangChain Tools](/docs/concepts/#tools)\n",
|
||||
"- [How to use a model to call tools](/docs/how_to/tool_calling)\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"In order to force our LLM to spelect a specific tool, we can use the `tool_choice` parameter to ensure certain behavior. First, let's define our model and tools:"
|
||||
]
|
||||
@@ -117,10 +125,24 @@
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
||||
132
docs/docs/how_to/tool_configure.ipynb
Normal file
132
docs/docs/how_to/tool_configure.ipynb
Normal file
@@ -0,0 +1,132 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to access the RunnableConfig from a tool\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"\n",
|
||||
"- [LangChain Tools](/docs/concepts/#tools)\n",
|
||||
"- [Custom tools](/docs/how_to/custom_tools)\n",
|
||||
"- [LangChain Expression Language (LCEL)](/docs/concepts/#langchain-expression-language-lcel)\n",
|
||||
"- [Configuring runnable behavior](/docs/how_to/configure/)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"If you have a tool that call chat models, retrievers, or other runnables, you may want to access internal events from those runnables or configure them with additional properties. This guide shows you how to manually pass parameters properly so that you can do this using the `astream_events()` method.\n",
|
||||
"\n",
|
||||
"Tools are runnables, and you can treat them the same way as any other runnable at the interface level - you can call `invoke()`, `batch()`, and `stream()` on them as normal. However, when writing custom tools, you may want to invoke other runnables like chat models or retrievers. In order to properly trace and configure those sub-invocations, you'll need to manually access and pass in the tool's current [`RunnableConfig`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.config.RunnableConfig.html) object. This guide show you some examples of how to do that.\n",
|
||||
"\n",
|
||||
":::caution Compatibility\n",
|
||||
"\n",
|
||||
"This guide requires `langchain-core>=0.2.16`.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"## Inferring by parameter type\n",
|
||||
"\n",
|
||||
"To access reference the active config object from your custom tool, you'll need to add a parameter to your tool's signature typed as `RunnableConfig`. When you invoke your tool, LangChain will inspect your tool's signature, look for a parameter typed as `RunnableConfig`, and if it exists, populate that parameter with the correct value.\n",
|
||||
"\n",
|
||||
"**Note:** The actual name of the parameter doesn't matter, only the typing.\n",
|
||||
"\n",
|
||||
"To illustrate this, define a custom tool that takes a two parameters - one typed as a string, the other typed as `RunnableConfig`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain_core"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnableConfig\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"async def reverse_tool(text: str, special_config_param: RunnableConfig) -> str:\n",
|
||||
" \"\"\"A test tool that combines input text with a configurable parameter.\"\"\"\n",
|
||||
" return (text + special_config_param[\"configurable\"][\"additional_field\"])[::-1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Then, if we invoke the tool with a `config` containing a `configurable` field, we can see that `additional_field` is passed through correctly:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'321cba'"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"await reverse_tool.ainvoke(\n",
|
||||
" {\"text\": \"abc\"}, config={\"configurable\": {\"additional_field\": \"123\"}}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"You've now seen how to configure and stream events from within a tool. Next, check out the following guides for more on using tools:\n",
|
||||
"\n",
|
||||
"- [Stream events from child runs within a custom tool](/docs/how_to/tool_stream_events/)\n",
|
||||
"- Pass [tool results back to a model](/docs/how_to/tool_results_pass_to_model)\n",
|
||||
"\n",
|
||||
"You can also check out some more specific uses of tool calling:\n",
|
||||
"\n",
|
||||
"- Building [tool-using chains and agents](/docs/how_to#tools)\n",
|
||||
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -4,14 +4,22 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to pass tool outputs to the model\n",
|
||||
"# How to pass tool outputs to chat models\n",
|
||||
"\n",
|
||||
"If we're using the model-generated tool invocations to actually call tools and want to pass the tool results back to the model, we can do so using `ToolMessage`s. First, let's define our tools and our model."
|
||||
":::info Prerequisites\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"\n",
|
||||
"- [Tools](/docs/concepts/#tools)\n",
|
||||
"- [Function/tool calling](/docs/concepts/#functiontool-calling)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"If we're using the model-generated tool invocations to actually call tools and want to pass the tool results back to the model, we can do so using `ToolMessage`s and `ToolCall`s. First, let's define our tools and our model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -35,7 +43,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -54,25 +62,32 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now we can use ``ToolMessage`` to pass back the output of the tool calls to the model."
|
||||
"The nice thing about Tools is that if we invoke them with a ToolCall, we'll automatically get back a ToolMessage that can be fed back to the model: \n",
|
||||
"\n",
|
||||
":::info Requires ``langchain-core >= 0.2.19``\n",
|
||||
"\n",
|
||||
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
|
||||
"\n",
|
||||
":::"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?'),\n",
|
||||
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_svc2GLSxNFALbaCAbSjMI9J8', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'Multiply'}, 'type': 'function'}, {'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 105, 'total_tokens': 155}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-a79ad1dd-95f1-4a46-b688-4c83f327a7b3-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_svc2GLSxNFALbaCAbSjMI9J8'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh'}]),\n",
|
||||
" ToolMessage(content='36', tool_call_id='call_svc2GLSxNFALbaCAbSjMI9J8'),\n",
|
||||
" ToolMessage(content='60', tool_call_id='call_r8jxte3zW6h3MEGV3zH2qzFh')]"
|
||||
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Smg3NHJNxrKfAmd4f9GkaYn3', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'multiply'}, 'type': 'function'}, {'id': 'call_55K1C0DmH6U5qh810gW34xZ0', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 49, 'prompt_tokens': 88, 'total_tokens': 137}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-56657feb-96dd-456c-ab8e-1857eab2ade0-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_Smg3NHJNxrKfAmd4f9GkaYn3', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_55K1C0DmH6U5qh810gW34xZ0', 'type': 'tool_call'}], usage_metadata={'input_tokens': 88, 'output_tokens': 49, 'total_tokens': 137}),\n",
|
||||
" ToolMessage(content='36', name='multiply', tool_call_id='call_Smg3NHJNxrKfAmd4f9GkaYn3'),\n",
|
||||
" ToolMessage(content='60', name='add', tool_call_id='call_55K1C0DmH6U5qh810gW34xZ0')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -85,24 +100,25 @@
|
||||
"messages.append(ai_msg)\n",
|
||||
"for tool_call in ai_msg.tool_calls:\n",
|
||||
" selected_tool = {\"add\": add, \"multiply\": multiply}[tool_call[\"name\"].lower()]\n",
|
||||
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
|
||||
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))\n",
|
||||
" tool_msg = selected_tool.invoke(tool_call)\n",
|
||||
" messages.append(tool_msg)\n",
|
||||
"messages"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 171, 'total_tokens': 189}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'stop', 'logprobs': None}, id='run-20b52149-e00d-48ea-97cf-f8de7a255f8c-0')"
|
||||
"AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 153, 'total_tokens': 171}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-ba5032f0-f773-406d-a408-8314e66511d0-0', usage_metadata={'input_tokens': 153, 'output_tokens': 18, 'total_tokens': 171})"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -118,10 +134,24 @@
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to pass run time values to a tool\n",
|
||||
"# How to pass run time values to tools\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
@@ -12,29 +12,28 @@
|
||||
"- [Chat models](/docs/concepts/#chat-models)\n",
|
||||
"- [LangChain Tools](/docs/concepts/#tools)\n",
|
||||
"- [How to create tools](/docs/how_to/custom_tools)\n",
|
||||
"- [How to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling)\n",
|
||||
"- [How to use a model to call tools](/docs/how_to/tool_calling)\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
":::{.callout-info} Supported models\n",
|
||||
"\n",
|
||||
"This how-to guide uses models with native tool calling capability.\n",
|
||||
"You can find a [list of all models that support tool calling](/docs/integrations/chat/).\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
":::{.callout-info} Using with LangGraph\n",
|
||||
":::info Using with LangGraph\n",
|
||||
"\n",
|
||||
"If you're using LangGraph, please refer to [this how-to guide](https://langchain-ai.github.io/langgraph/how-tos/pass-run-time-values-to-tools/)\n",
|
||||
"which shows how to create an agent that keeps track of a given user's favorite pets.\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
":::caution Added in `langchain-core==0.2.21`\n",
|
||||
"\n",
|
||||
"Must have `langchain-core>=0.2.21` to use this functionality.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"You may need to bind values to a tool that are only known at runtime. For example, the tool logic may require using the ID of the user who made the request.\n",
|
||||
"\n",
|
||||
"Most of the time, such values should not be controlled by the LLM. In fact, allowing the LLM to control the user ID may lead to a security risk.\n",
|
||||
"\n",
|
||||
"Instead, the LLM should only control the parameters of the tool that are meant to be controlled by the LLM, while other parameters (such as user ID) should be fixed by the application logic.\n",
|
||||
"\n",
|
||||
"This how-to guide shows a simple design pattern that creates the tool dynamically at run time and binds to them appropriate values."
|
||||
"This how-to guide shows you how to prevent the model from generating certain tool arguments and injecting them in directly at runtime."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -57,23 +56,12 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | output: false\n",
|
||||
"# | echo: false\n",
|
||||
"\n",
|
||||
"%pip install -qU langchain langchain_openai\n",
|
||||
"# %pip install -qU langchain langchain_openai\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from getpass import getpass\n",
|
||||
@@ -90,10 +78,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Passing request time information\n",
|
||||
"## Hiding arguments from the model\n",
|
||||
"\n",
|
||||
"The idea is to create the tool dynamically at request time, and bind to it the appropriate information. For example,\n",
|
||||
"this information may be the user ID as resolved from the request itself."
|
||||
"We can use the InjectedToolArg annotation to mark certain parameters of our Tool, like `user_id` as being injected at runtime, meaning they shouldn't be generated by the model"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -104,46 +91,88 @@
|
||||
"source": [
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain_core.output_parsers import JsonOutputParser\n",
|
||||
"from langchain_core.tools import BaseTool, tool"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.tools import InjectedToolArg, tool\n",
|
||||
"from typing_extensions import Annotated\n",
|
||||
"\n",
|
||||
"user_to_pets = {}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def generate_tools_for_user(user_id: str) -> List[BaseTool]:\n",
|
||||
" \"\"\"Generate a set of tools that have a user id associated with them.\"\"\"\n",
|
||||
"@tool(parse_docstring=True)\n",
|
||||
"def update_favorite_pets(\n",
|
||||
" pets: List[str], user_id: Annotated[str, InjectedToolArg]\n",
|
||||
") -> None:\n",
|
||||
" \"\"\"Add the list of favorite pets.\n",
|
||||
"\n",
|
||||
" @tool\n",
|
||||
" def update_favorite_pets(pets: List[str]) -> None:\n",
|
||||
" \"\"\"Add the list of favorite pets.\"\"\"\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
" Args:\n",
|
||||
" pets: List of favorite pets to set.\n",
|
||||
" user_id: User's ID.\n",
|
||||
" \"\"\"\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
"\n",
|
||||
" @tool\n",
|
||||
" def delete_favorite_pets() -> None:\n",
|
||||
" \"\"\"Delete the list of favorite pets.\"\"\"\n",
|
||||
" if user_id in user_to_pets:\n",
|
||||
" del user_to_pets[user_id]\n",
|
||||
"\n",
|
||||
" @tool\n",
|
||||
" def list_favorite_pets() -> None:\n",
|
||||
" \"\"\"List favorite pets if any.\"\"\"\n",
|
||||
" return user_to_pets.get(user_id, [])\n",
|
||||
"@tool(parse_docstring=True)\n",
|
||||
"def delete_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:\n",
|
||||
" \"\"\"Delete the list of favorite pets.\n",
|
||||
"\n",
|
||||
" return [update_favorite_pets, delete_favorite_pets, list_favorite_pets]"
|
||||
" Args:\n",
|
||||
" user_id: User's ID.\n",
|
||||
" \"\"\"\n",
|
||||
" if user_id in user_to_pets:\n",
|
||||
" del user_to_pets[user_id]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool(parse_docstring=True)\n",
|
||||
"def list_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:\n",
|
||||
" \"\"\"List favorite pets if any.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" user_id: User's ID.\n",
|
||||
" \"\"\"\n",
|
||||
" return user_to_pets.get(user_id, [])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Verify that the tools work correctly"
|
||||
"If we look at the input schemas for these tools, we'll see that user_id is still listed:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_petsSchema',\n",
|
||||
" 'description': 'Add the list of favorite pets.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}},\n",
|
||||
" 'user_id': {'title': 'User Id',\n",
|
||||
" 'description': \"User's ID.\",\n",
|
||||
" 'type': 'string'}},\n",
|
||||
" 'required': ['pets', 'user_id']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"update_favorite_pets.get_input_schema().schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"But if we look at the tool call schema, which is what is passed to the model for tool-calling, user_id has been removed:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -152,46 +181,60 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'eugene': ['cat', 'dog']}\n",
|
||||
"['cat', 'dog']\n"
|
||||
]
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_pets',\n",
|
||||
" 'description': 'Add the list of favorite pets.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}}},\n",
|
||||
" 'required': ['pets']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"update_pets, delete_pets, list_pets = generate_tools_for_user(\"eugene\")\n",
|
||||
"update_pets.invoke({\"pets\": [\"cat\", \"dog\"]})\n",
|
||||
"print(user_to_pets)\n",
|
||||
"print(list_pets.invoke({}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def handle_run_time_request(user_id: str, query: str):\n",
|
||||
" \"\"\"Handle run time request.\"\"\"\n",
|
||||
" tools = generate_tools_for_user(user_id)\n",
|
||||
" llm_with_tools = llm.bind_tools(tools)\n",
|
||||
" prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"system\", \"You are a helpful assistant.\")],\n",
|
||||
" )\n",
|
||||
" chain = prompt | llm_with_tools\n",
|
||||
" return llm_with_tools.invoke(query)"
|
||||
"update_favorite_pets.tool_call_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This code will allow the LLM to invoke the tools, but the LLM is **unaware** of the fact that a **user ID** even exists!"
|
||||
"So when we invoke our tool, we need to pass in user_id:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'123': ['lizard', 'dog']}\n",
|
||||
"['lizard', 'dog']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"user_id = \"123\"\n",
|
||||
"update_favorite_pets.invoke({\"pets\": [\"lizard\", \"dog\"], \"user_id\": user_id})\n",
|
||||
"print(user_to_pets)\n",
|
||||
"print(list_favorite_pets.invoke({\"user_id\": user_id}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"But when the model calls the tool, no user_id argument will be generated:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -204,7 +247,8 @@
|
||||
"text/plain": [
|
||||
"[{'name': 'update_favorite_pets',\n",
|
||||
" 'args': {'pets': ['cats', 'parrots']},\n",
|
||||
" 'id': 'call_jJvjPXsNbFO5MMgW0q84iqCN'}]"
|
||||
" 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n",
|
||||
" 'type': 'tool_call'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
@@ -213,30 +257,349 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ai_message = handle_run_time_request(\n",
|
||||
" \"eugene\", \"my favorite animals are cats and parrots.\"\n",
|
||||
")\n",
|
||||
"ai_message.tool_calls"
|
||||
"tools = [\n",
|
||||
" update_favorite_pets,\n",
|
||||
" delete_favorite_pets,\n",
|
||||
" list_favorite_pets,\n",
|
||||
"]\n",
|
||||
"llm_with_tools = llm.bind_tools(tools)\n",
|
||||
"ai_msg = llm_with_tools.invoke(\"my favorite animals are cats and parrots\")\n",
|
||||
"ai_msg.tool_calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
":::{.callout-important}\n",
|
||||
"## Injecting arguments at runtime"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we want to actually execute our tools using the model-generated tool call, we'll need to inject the user_id ourselves:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'update_favorite_pets',\n",
|
||||
" 'args': {'pets': ['cats', 'parrots'], 'user_id': '123'},\n",
|
||||
" 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n",
|
||||
" 'type': 'tool_call'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from copy import deepcopy\n",
|
||||
"\n",
|
||||
"Chat models only output requests to invoke tools, they don't actually invoke the underlying tools.\n",
|
||||
"from langchain_core.runnables import chain\n",
|
||||
"\n",
|
||||
"To see how to invoke the tools, please refer to [how to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling).\n",
|
||||
":::"
|
||||
"\n",
|
||||
"@chain\n",
|
||||
"def inject_user_id(ai_msg):\n",
|
||||
" tool_calls = []\n",
|
||||
" for tool_call in ai_msg.tool_calls:\n",
|
||||
" tool_call_copy = deepcopy(tool_call)\n",
|
||||
" tool_call_copy[\"args\"][\"user_id\"] = user_id\n",
|
||||
" tool_calls.append(tool_call_copy)\n",
|
||||
" return tool_calls\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"inject_user_id.invoke(ai_msg)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And now we can chain together our model, injection code, and the actual tools to create a tool-executing chain:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[ToolMessage(content='null', name='update_favorite_pets', tool_call_id='call_HUyF6AihqANzEYxQnTUKxkXj')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tool_map = {tool.name: tool for tool in tools}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@chain\n",
|
||||
"def tool_router(tool_call):\n",
|
||||
" return tool_map[tool_call[\"name\"]]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chain = llm_with_tools | inject_user_id | tool_router.map()\n",
|
||||
"chain.invoke(\"my favorite animals are cats and parrots\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Looking at the user_to_pets dict, we can see that it's been updated to include cats and parrots:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'123': ['cats', 'parrots']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"user_to_pets"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Other ways of annotating args\n",
|
||||
"\n",
|
||||
"Here are a few other ways of annotating our tool args:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'UpdateFavoritePetsSchema',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}},\n",
|
||||
" 'user_id': {'title': 'User Id',\n",
|
||||
" 'description': \"User's ID.\",\n",
|
||||
" 'type': 'string'}},\n",
|
||||
" 'required': ['pets', 'user_id']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"from langchain_core.tools import BaseTool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class UpdateFavoritePetsSchema(BaseModel):\n",
|
||||
" \"\"\"Update list of favorite pets\"\"\"\n",
|
||||
"\n",
|
||||
" pets: List[str] = Field(..., description=\"List of favorite pets to set.\")\n",
|
||||
" user_id: Annotated[str, InjectedToolArg] = Field(..., description=\"User's ID.\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool(args_schema=UpdateFavoritePetsSchema)\n",
|
||||
"def update_favorite_pets(pets, user_id):\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"update_favorite_pets.get_input_schema().schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_pets',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}}},\n",
|
||||
" 'required': ['pets']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"update_favorite_pets.tool_call_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'UpdateFavoritePetsSchema',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}},\n",
|
||||
" 'user_id': {'title': 'User Id',\n",
|
||||
" 'description': \"User's ID.\",\n",
|
||||
" 'type': 'string'}},\n",
|
||||
" 'required': ['pets', 'user_id']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from typing import Optional, Type\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class UpdateFavoritePets(BaseTool):\n",
|
||||
" name: str = \"update_favorite_pets\"\n",
|
||||
" description: str = \"Update list of favorite pets\"\n",
|
||||
" args_schema: Optional[Type[BaseModel]] = UpdateFavoritePetsSchema\n",
|
||||
"\n",
|
||||
" def _run(self, pets, user_id):\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"UpdateFavoritePets().get_input_schema().schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_pets',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'description': 'List of favorite pets to set.',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}}},\n",
|
||||
" 'required': ['pets']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"UpdateFavoritePets().tool_call_schema.schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_petsSchema',\n",
|
||||
" 'description': 'Use the tool.\\n\\nAdd run_manager: Optional[CallbackManagerForToolRun] = None\\nto child implementations to enable tracing.',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}},\n",
|
||||
" 'user_id': {'title': 'User Id', 'type': 'string'}},\n",
|
||||
" 'required': ['pets', 'user_id']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"class UpdateFavoritePets2(BaseTool):\n",
|
||||
" name: str = \"update_favorite_pets\"\n",
|
||||
" description: str = \"Update list of favorite pets\"\n",
|
||||
"\n",
|
||||
" def _run(self, pets: List[str], user_id: Annotated[str, InjectedToolArg]) -> None:\n",
|
||||
" user_to_pets[user_id] = pets\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"UpdateFavoritePets2().get_input_schema().schema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'title': 'update_favorite_pets',\n",
|
||||
" 'description': 'Update list of favorite pets',\n",
|
||||
" 'type': 'object',\n",
|
||||
" 'properties': {'pets': {'title': 'Pets',\n",
|
||||
" 'type': 'array',\n",
|
||||
" 'items': {'type': 'string'}}},\n",
|
||||
" 'required': ['pets']}"
|
||||
]
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"UpdateFavoritePets2().tool_call_schema.schema()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": "poetry-venv-311",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
"name": "poetry-venv-311"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -248,7 +611,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
302
docs/docs/how_to/tool_stream_events.ipynb
Normal file
302
docs/docs/how_to/tool_stream_events.ipynb
Normal file
@@ -0,0 +1,302 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to stream events from a tool\n",
|
||||
"\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"- [LangChain Tools](/docs/concepts/#tools)\n",
|
||||
"- [Custom tools](/docs/how_to/custom_tools)\n",
|
||||
"- [Using stream events](/docs/how_to/streaming/#using-stream-events)\n",
|
||||
"- [Accessing RunnableConfig within a custom tool](/docs/how_to/tool_configure/)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"If you have tools that call chat models, retrievers, or other runnables, you may want to access internal events from those runnables or configure them with additional properties. This guide shows you how to manually pass parameters properly so that you can do this using the `astream_events()` method.\n",
|
||||
"\n",
|
||||
":::caution Compatibility\n",
|
||||
"\n",
|
||||
"LangChain cannot automatically propagate configuration, including callbacks necessary for `astream_events()`, to child runnables if you are running `async` code in `python<=3.10`. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
|
||||
"\n",
|
||||
"If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n",
|
||||
"\n",
|
||||
"If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in older Python versions.\n",
|
||||
"\n",
|
||||
"This guide also requires `langchain-core>=0.2.16`.\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"Say you have a custom tool that calls a chain that condenses its input by prompting a chat model to return only 10 words, then reversing the output. First, define it in a naive way:\n",
|
||||
"\n",
|
||||
"```{=mdx}\n",
|
||||
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
|
||||
"\n",
|
||||
"<ChatModelTabs customVarName=\"model\" />\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# | output: false\n",
|
||||
"# | echo: false\n",
|
||||
"\n",
|
||||
"%pip install -qU langchain langchain_anthropic langchain_core\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"\n",
|
||||
"if \"ANTHROPIC_API_KEY\" not in os.environ:\n",
|
||||
" os.environ[\"ANTHROPIC_API_KEY\"] = getpass()\n",
|
||||
"\n",
|
||||
"model = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"async def special_summarization_tool(long_text: str) -> str:\n",
|
||||
" \"\"\"A tool that summarizes input text using advanced techniques.\"\"\"\n",
|
||||
" prompt = ChatPromptTemplate.from_template(\n",
|
||||
" \"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n{long_text}\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" def reverse(x: str):\n",
|
||||
" return x[::-1]\n",
|
||||
"\n",
|
||||
" chain = prompt | model | StrOutputParser() | reverse\n",
|
||||
" summary = await chain.ainvoke({\"long_text\": long_text})\n",
|
||||
" return summary"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Invoking the tool directly works just fine:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'.yad noitaudarg rof tiftuo sesoohc yrraB ;scisyhp seifed eeB'"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"LONG_TEXT = \"\"\"\n",
|
||||
"NARRATOR:\n",
|
||||
"(Black screen with text; The sound of buzzing bees can be heard)\n",
|
||||
"According to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\n",
|
||||
"BARRY BENSON:\n",
|
||||
"(Barry is picking out a shirt)\n",
|
||||
"Yellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\n",
|
||||
"JANET BENSON:\n",
|
||||
"Barry! Breakfast is ready!\n",
|
||||
"BARRY:\n",
|
||||
"Coming! Hang on a second.\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"await special_summarization_tool.ainvoke({\"long_text\": LONG_TEXT})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"But if you wanted to access the raw output from the chat model rather than the full tool, you might try to use the [`astream_events()`](/docs/how_to/streaming/#using-stream-events) method and look for an `on_chat_model_end` event. Here's what happens:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"stream = special_summarization_tool.astream_events(\n",
|
||||
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"async for event in stream:\n",
|
||||
" if event[\"event\"] == \"on_chat_model_end\":\n",
|
||||
" # Never triggers in python<=3.10!\n",
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You'll notice (unless you're running through this guide in `python>=3.11`) that there are no chat model events emitted from the child run!\n",
|
||||
"\n",
|
||||
"This is because the example above does not pass the tool's config object into the internal chain. To fix this, redefine your tool to take a special parameter typed as `RunnableConfig` (see [this guide](/docs/how_to/tool_configure) for more details). You'll also need to pass that parameter through into the internal chain when executing it:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnableConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"async def special_summarization_tool_with_config(\n",
|
||||
" long_text: str, config: RunnableConfig\n",
|
||||
") -> str:\n",
|
||||
" \"\"\"A tool that summarizes input text using advanced techniques.\"\"\"\n",
|
||||
" prompt = ChatPromptTemplate.from_template(\n",
|
||||
" \"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n{long_text}\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" def reverse(x: str):\n",
|
||||
" return x[::-1]\n",
|
||||
"\n",
|
||||
" chain = prompt | model | StrOutputParser() | reverse\n",
|
||||
" # Pass the \"config\" object as an argument to any executed runnables\n",
|
||||
" summary = await chain.ainvoke({\"long_text\": long_text}, config=config)\n",
|
||||
" return summary"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And now try the same `astream_events()` call as before with your new tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chat_model_end', 'data': {'output': AIMessage(content='Bee defies physics; Barry chooses outfit for graduation day.', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-d23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', usage_metadata={'input_tokens': 182, 'output_tokens': 16, 'total_tokens': 198}), 'input': {'messages': [[HumanMessage(content=\"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n\\nNARRATOR:\\n(Black screen with text; The sound of buzzing bees can be heard)\\nAccording to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\\nBARRY BENSON:\\n(Barry is picking out a shirt)\\nYellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\\nJANET BENSON:\\nBarry! Breakfast is ready!\\nBARRY:\\nComing! Hang on a second.\\n\")]]}}, 'run_id': 'd23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['f25c41fe-8972-4893-bc40-cecf3922c1fa']}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"stream = special_summarization_tool_with_config.astream_events(\n",
|
||||
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"async for event in stream:\n",
|
||||
" if event[\"event\"] == \"on_chat_model_end\":\n",
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Awesome! This time there's an event emitted.\n",
|
||||
"\n",
|
||||
"For streaming, `astream_events()` automatically calls internal runnables in a chain with streaming enabled if possible, so if you wanted to a stream of tokens as they are generated from the chat model, you could simply filter to look for `on_chat_model_stream` events with no other changes:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 182, 'output_tokens': 0, 'total_tokens': 182})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' def', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='ies physics', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=';', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' cho', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='oses outfit', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' for', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' day', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='.', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
|
||||
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 0, 'output_tokens': 16, 'total_tokens': 16})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"stream = special_summarization_tool_with_config.astream_events(\n",
|
||||
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"async for event in stream:\n",
|
||||
" if event[\"event\"] == \"on_chat_model_stream\":\n",
|
||||
" print(event)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"You've now seen how to stream events from within a tool. Next, check out the following guides for more on using tools:\n",
|
||||
"\n",
|
||||
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)\n",
|
||||
"- Pass [tool results back to a model](/docs/how_to/tool_results_pass_to_model)\n",
|
||||
"- [Dispatch custom callback events](/docs/how_to/callbacks_custom_events)\n",
|
||||
"\n",
|
||||
"You can also check out some more specific uses of tool calling:\n",
|
||||
"\n",
|
||||
"- Building [tool-using chains and agents](/docs/how_to#tools)\n",
|
||||
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -228,7 +228,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -419,13 +419,13 @@
|
||||
"Invoking: `exponentiate` with `{'base': 405, 'exponent': 2}`\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[0m\u001b[38;5;200m\u001b[1;3m164025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of taking 3 to the fifth power is 243. \n",
|
||||
"\u001b[0m\u001b[38;5;200m\u001b[1;3m13286025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of taking 3 to the fifth power is 243. \n",
|
||||
"\n",
|
||||
"The sum of twelve and three is 15. \n",
|
||||
"\n",
|
||||
"Multiplying 243 by 15 gives 3645. \n",
|
||||
"\n",
|
||||
"Finally, squaring 3645 gives 164025.\u001b[0m\n",
|
||||
"Finally, squaring 3645 gives 13286025.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
@@ -434,7 +434,7 @@
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input': 'Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result',\n",
|
||||
" 'output': 'The result of taking 3 to the fifth power is 243. \\n\\nThe sum of twelve and three is 15. \\n\\nMultiplying 243 by 15 gives 3645. \\n\\nFinally, squaring 3645 gives 164025.'}"
|
||||
" 'output': 'The result of taking 3 to the fifth power is 243. \\n\\nThe sum of twelve and three is 15. \\n\\nMultiplying 243 by 15 gives 3645. \\n\\nFinally, squaring 3645 gives 13286025.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
|
||||
@@ -7,9 +7,18 @@
|
||||
"source": [
|
||||
"# How to handle tool errors\n",
|
||||
"\n",
|
||||
"Using a model to invoke a tool has some obvious potential failure modes. Firstly, the model needs to return a output that can be parsed at all. Secondly, the model needs to return tool arguments that are valid.\n",
|
||||
":::info Prerequisites\n",
|
||||
"\n",
|
||||
"We can build error handling into our chains to mitigate these failure modes."
|
||||
"This guide assumes familiarity with the following concepts:\n",
|
||||
"- [Chat models](/docs/concepts/#chat-models)\n",
|
||||
"- [LangChain Tools](/docs/concepts/#tools)\n",
|
||||
"- [How to use a model to call tools](/docs/how_to/tool_calling)\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"\n",
|
||||
"Calling tools with an LLM is generally more reliable than pure prompting, but it isn't perfect. The model may try to call a tool that doesn't exist or fail to return arguments that match the requested schema. Strategies like keeping schemas simple, reducing the number of tools you pass at once, and having good names and descriptions can help mitigate this risk, but aren't foolproof.\n",
|
||||
"\n",
|
||||
"This guide covers some ways to build error handling into your chains to mitigate these failure modes."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -42,7 +51,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 2,
|
||||
"id": "08785b6d-722d-4620-b6ec-36deb3842c69",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -72,7 +81,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 4,
|
||||
"id": "86258950-5e61-4340-81b9-84a5d26e8773",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -82,12 +91,14 @@
|
||||
"\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 5,
|
||||
"id": "1d20604e-c4d1-4d21-841b-23e4f61aec36",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -99,28 +110,13 @@
|
||||
"@tool\n",
|
||||
"def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int:\n",
|
||||
" \"\"\"Do something complex with a complex tool.\"\"\"\n",
|
||||
" return int_arg * float_arg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "553c2c13-28c8-4451-8a3a-6c31d52dc31d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
" return int_arg * float_arg\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"llm_with_tools = llm.bind_tools(\n",
|
||||
" [complex_tool],\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "802b2eca-9f79-4d6c-8257-85139ca5c752",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
")\n",
|
||||
"\n",
|
||||
"# Define chain\n",
|
||||
"chain = llm_with_tools | (lambda msg: msg.tool_calls[0][\"args\"]) | complex_tool"
|
||||
]
|
||||
@@ -135,7 +131,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 6,
|
||||
"id": "d354664c-ac44-4967-a35f-8912b3ad9477",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -146,14 +142,14 @@
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muse complex tool. the args are 5, 2.1, empty dictionary. don\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt forget dict_arg\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 3\u001b[0m \u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:2499\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m 2497\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 2498\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msteps):\n\u001b[0;32m-> 2499\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2500\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2501\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# mark each step as a child run\u001b[39;49;00m\n\u001b[1;32m 2502\u001b[0m \u001b[43m \u001b[49m\u001b[43mpatch_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2503\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseq:step:\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mi\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2504\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2505\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2506\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 2507\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:241\u001b[0m, in \u001b[0;36mBaseTool.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 234\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 235\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 236\u001b[0m \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, Dict],\n\u001b[1;32m 237\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 238\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 239\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 240\u001b[0m config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[0;32m--> 241\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 242\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 243\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallbacks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 244\u001b[0m \u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtags\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 245\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 246\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 247\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 248\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 249\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:387\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 385\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ValidationError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 386\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error:\n\u001b[0;32m--> 387\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 388\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error, \u001b[38;5;28mbool\u001b[39m):\n\u001b[1;32m 389\u001b[0m observation \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTool input validation error\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:378\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 364\u001b[0m run_manager \u001b[38;5;241m=\u001b[39m callback_manager\u001b[38;5;241m.\u001b[39mon_tool_start(\n\u001b[1;32m 365\u001b[0m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdescription\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdescription},\n\u001b[1;32m 366\u001b[0m tool_input \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(tool_input, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mstr\u001b[39m(tool_input),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 376\u001b[0m )\n\u001b[1;32m 377\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 378\u001b[0m parsed_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_parse_input\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 379\u001b[0m tool_args, tool_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_to_args_and_kwargs(parsed_input)\n\u001b[1;32m 380\u001b[0m observation \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run(\u001b[38;5;241m*\u001b[39mtool_args, run_manager\u001b[38;5;241m=\u001b[39mrun_manager, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs)\n\u001b[1;32m 382\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m 383\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run(\u001b[38;5;241m*\u001b[39mtool_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs)\n\u001b[1;32m 384\u001b[0m )\n",
|
||||
"File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:283\u001b[0m, in \u001b[0;36mBaseTool._parse_input\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 282\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m input_args \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 283\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43minput_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_obj\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 284\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m {\n\u001b[1;32m 285\u001b[0m k: \u001b[38;5;28mgetattr\u001b[39m(result, k)\n\u001b[1;32m 286\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m result\u001b[38;5;241m.\u001b[39mdict()\u001b[38;5;241m.\u001b[39mitems()\n\u001b[1;32m 287\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m tool_input\n\u001b[1;32m 288\u001b[0m }\n\u001b[1;32m 289\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tool_input\n",
|
||||
"File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/pydantic/v1/main.py:526\u001b[0m, in \u001b[0;36mBaseModel.parse_obj\u001b[0;34m(cls, obj)\u001b[0m\n\u001b[1;32m 524\u001b[0m exc \u001b[38;5;241m=\u001b[39m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m expected dict not \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mobj\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 525\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ValidationError([ErrorWrapper(exc, loc\u001b[38;5;241m=\u001b[39mROOT_KEY)], \u001b[38;5;28mcls\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[0;32m--> 526\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/pydantic/v1/main.py:341\u001b[0m, in \u001b[0;36mBaseModel.__init__\u001b[0;34m(__pydantic_self__, **data)\u001b[0m\n\u001b[1;32m 339\u001b[0m values, fields_set, validation_error \u001b[38;5;241m=\u001b[39m validate_model(__pydantic_self__\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m, data)\n\u001b[1;32m 340\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m validation_error:\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m validation_error\n\u001b[1;32m 342\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 343\u001b[0m object_setattr(__pydantic_self__, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__dict__\u001b[39m\u001b[38;5;124m'\u001b[39m, values)\n",
|
||||
"Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muse complex tool. the args are 5, 2.1, empty dictionary. don\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt forget dict_arg\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 3\u001b[0m \u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/runnables/base.py:2572\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 2570\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 2571\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2572\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2573\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 2574\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
|
||||
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:380\u001b[0m, in \u001b[0;36mBaseTool.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 373\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 374\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 375\u001b[0m \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, Dict],\n\u001b[1;32m 376\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 377\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 378\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 379\u001b[0m config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[0;32m--> 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallbacks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 383\u001b[0m \u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtags\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 384\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 385\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 386\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 387\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 388\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 389\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:537\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, **kwargs)\u001b[0m\n\u001b[1;32m 535\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ValidationError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 536\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error:\n\u001b[0;32m--> 537\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 538\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error, \u001b[38;5;28mbool\u001b[39m):\n\u001b[1;32m 539\u001b[0m observation \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTool input validation error\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
|
||||
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:526\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, **kwargs)\u001b[0m\n\u001b[1;32m 524\u001b[0m context \u001b[38;5;241m=\u001b[39m copy_context()\n\u001b[1;32m 525\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, child_config)\n\u001b[0;32m--> 526\u001b[0m parsed_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_parse_input\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 527\u001b[0m tool_args, tool_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_to_args_and_kwargs(parsed_input)\n\u001b[1;32m 528\u001b[0m observation \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 529\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(\n\u001b[1;32m 530\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run, \u001b[38;5;241m*\u001b[39mtool_args, run_manager\u001b[38;5;241m=\u001b[39mrun_manager, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 533\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m context\u001b[38;5;241m.\u001b[39mrun(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run, \u001b[38;5;241m*\u001b[39mtool_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs)\n\u001b[1;32m 534\u001b[0m )\n",
|
||||
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:424\u001b[0m, in \u001b[0;36mBaseTool._parse_input\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 422\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 423\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m input_args \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 424\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43minput_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_obj\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 425\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m {\n\u001b[1;32m 426\u001b[0m k: \u001b[38;5;28mgetattr\u001b[39m(result, k)\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m result\u001b[38;5;241m.\u001b[39mdict()\u001b[38;5;241m.\u001b[39mitems()\n\u001b[1;32m 428\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m tool_input\n\u001b[1;32m 429\u001b[0m }\n\u001b[1;32m 430\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tool_input\n",
|
||||
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/pydantic/main.py:526\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.parse_obj\u001b[0;34m()\u001b[0m\n",
|
||||
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/pydantic/main.py:341\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[0;34m()\u001b[0m\n",
|
||||
"\u001b[0;31mValidationError\u001b[0m: 1 validation error for complex_toolSchema\ndict_arg\n field required (type=value_error.missing)"
|
||||
]
|
||||
}
|
||||
@@ -176,10 +172,26 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 8,
|
||||
"id": "8fedb550-683d-45ae-8876-ae7acb332019",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Calling tool with arguments:\n",
|
||||
"\n",
|
||||
"{'int_arg': 5, 'float_arg': 2.1}\n",
|
||||
"\n",
|
||||
"raised the following error:\n",
|
||||
"\n",
|
||||
"<class 'pydantic.error_wrappers.ValidationError'>: 1 validation error for complex_toolSchema\n",
|
||||
"dict_arg\n",
|
||||
" field required (type=value_error.missing)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from typing import Any\n",
|
||||
"\n",
|
||||
@@ -193,32 +205,8 @@
|
||||
" return f\"Calling tool with arguments:\\n\\n{tool_args}\\n\\nraised the following error:\\n\\n{type(e)}: {e}\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chain = llm_with_tools | (lambda msg: msg.tool_calls[0][\"args\"]) | try_except_tool"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "71a2c98d-c0be-4c0a-bb3d-41ad4596526c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Calling tool with arguments:\n",
|
||||
"\n",
|
||||
"{'int_arg': 5, 'float_arg': 2.1}\n",
|
||||
"\n",
|
||||
"raised the following error:\n",
|
||||
"\n",
|
||||
"<class 'pydantic.v1.error_wrappers.ValidationError'>: 1 validation error for complex_toolSchema\n",
|
||||
"dict_arg\n",
|
||||
" field required (type=value_error.missing)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain = llm_with_tools | (lambda msg: msg.tool_calls[0][\"args\"]) | try_except_tool\n",
|
||||
"\n",
|
||||
"print(\n",
|
||||
" chain.invoke(\n",
|
||||
" \"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg\"\n",
|
||||
@@ -238,7 +226,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": 10,
|
||||
"id": "02cc4223-35fa-4240-976a-012299ca703c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -248,19 +236,22 @@
|
||||
"10.5"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain = llm_with_tools | (lambda msg: msg.tool_calls[0][\"args\"]) | complex_tool\n",
|
||||
"\n",
|
||||
"better_model = ChatOpenAI(model=\"gpt-4-1106-preview\", temperature=0).bind_tools(\n",
|
||||
" [complex_tool], tool_choice=\"complex_tool\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"better_chain = better_model | (lambda msg: msg.tool_calls[0][\"args\"]) | complex_tool\n",
|
||||
"\n",
|
||||
"chain_with_fallback = chain.with_fallbacks([better_chain])\n",
|
||||
"\n",
|
||||
"chain_with_fallback.invoke(\n",
|
||||
" \"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg\"\n",
|
||||
")"
|
||||
@@ -271,7 +262,7 @@
|
||||
"id": "412f8c4e-cc83-4d87-84a1-5ba2f8edb1e9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Looking at the [Langsmith trace](https://smith.langchain.com/public/00e91fc2-e1a4-4b0f-a82e-e6b3119d196c/r) for this chain run, we can see that the first chain call fails as expected and it's the fallback that succeeds."
|
||||
"Looking at the [LangSmith trace](https://smith.langchain.com/public/00e91fc2-e1a4-4b0f-a82e-e6b3119d196c/r) for this chain run, we can see that the first chain call fails as expected and it's the fallback that succeeds."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -286,17 +277,13 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 11,
|
||||
"id": "b5659956-9454-468a-9753-a3ff9052b8f5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"from typing import Any\n",
|
||||
"\n",
|
||||
"from langchain_core.messages import AIMessage, HumanMessage, ToolCall, ToolMessage\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class CustomToolException(Exception):\n",
|
||||
@@ -336,7 +323,7 @@
|
||||
"# affect the prompt at all, but gives us the option to insert an arbitrary list of Messages\n",
|
||||
"# into the prompt if needed. We'll use this on retries to insert the error message.\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"human\", \"{input}\"), MessagesPlaceholder(\"last_output\", optional=True)]\n",
|
||||
" [(\"human\", \"{input}\"), (\"placeholder\", \"{last_output}\")]\n",
|
||||
")\n",
|
||||
"chain = prompt | llm_with_tools | tool_custom_exception\n",
|
||||
"\n",
|
||||
@@ -348,7 +335,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 12,
|
||||
"id": "4c45f5bd-cbb4-47d5-b4b6-aec50673c750",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -358,7 +345,7 @@
|
||||
"10.5"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -378,6 +365,24 @@
|
||||
"source": [
|
||||
"And our chain succeeds! Looking at the [LangSmith trace](https://smith.langchain.com/public/c11e804c-e14f-4059-bd09-64766f999c14/r), we can see that indeed our initial chain still fails, and it's only on retrying that the chain succeeds."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6b97af9f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"Now you've seen some strategies how to handle tool calling errors. Next, you can learn more about how to use tools:\n",
|
||||
"\n",
|
||||
"- Few shot prompting [with tools](/docs/how_to/tools_few_shot/)\n",
|
||||
"- Stream [tool calls](/docs/how_to/tool_streaming/)\n",
|
||||
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)\n",
|
||||
"\n",
|
||||
"You can also check out some more specific uses of tool calling:\n",
|
||||
"\n",
|
||||
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -396,7 +401,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
"version": "3.10.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -2,86 +2,125 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "fbc66410",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"id": "afaf8039",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: Bedrock\n",
|
||||
"sidebar_label: AWS Bedrock\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bf733a38-db84-4363-89e2-de6735c37230",
|
||||
"id": "e49f1e0d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ChatBedrock\n",
|
||||
"\n",
|
||||
">[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that offers a choice of \n",
|
||||
"> high-performing foundation models (FMs) from leading AI companies like `AI21 Labs`, `Anthropic`, `Cohere`, \n",
|
||||
"> `Meta`, `Stability AI`, and `Amazon` via a single API, along with a broad set of capabilities you need to \n",
|
||||
"> build generative AI applications with security, privacy, and responsible AI. Using `Amazon Bedrock`, \n",
|
||||
"> you can easily experiment with and evaluate top FMs for your use case, privately customize them with \n",
|
||||
"> your data using techniques such as fine-tuning and `Retrieval Augmented Generation` (`RAG`), and build \n",
|
||||
"> agents that execute tasks using your enterprise systems and data sources. Since `Amazon Bedrock` is \n",
|
||||
"> serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy \n",
|
||||
"> generative AI capabilities into your applications using the AWS services you are already familiar with."
|
||||
"This doc will help you get started with AWS Bedrock [chat models](/docs/concepts/#chat-models). Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon via a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI. Using Amazon Bedrock, you can easily experiment with and evaluate top FMs for your use case, privately customize them with your data using techniques such as fine-tuning and Retrieval Augmented Generation (RAG), and build agents that execute tasks using your enterprise systems and data sources. Since Amazon Bedrock is serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy generative AI capabilities into your applications using the AWS services you are already familiar with.\n",
|
||||
"\n",
|
||||
"For more information on which models are accessible via Bedrock, head to the [AWS docs](https://docs.aws.amazon.com/bedrock/latest/userguide/models-features.html).\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ChatBedrock features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html).\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/bedrock) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatBedrock](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html) | [langchain-aws](https://api.python.langchain.com/en/latest/aws_api_reference.html) | ❌ | beta | ✅ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | \n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"To access Bedrock models you'll need to create an AWS account, set up the Bedrock API service, get an access key ID and secret key, and install the `langchain-aws` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"Head to the [AWS docs](https://docs.aws.amazon.com/bedrock/latest/userguide/setting-up.html) to sign up to AWS and setup your credentials. You'll also need to turn on model access for your account, which you can do by following [these instructions](https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "d51edc81",
|
||||
"cell_type": "markdown",
|
||||
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-aws"
|
||||
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"execution_count": null,
|
||||
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain Bedrock integration lives in the `langchain-aws` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain-aws"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our model object and generate chat completions:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_aws import ChatBedrock\n",
|
||||
"from langchain_core.messages import HumanMessage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chat = ChatBedrock(\n",
|
||||
"\n",
|
||||
"llm = ChatBedrock(\n",
|
||||
" model_id=\"anthropic.claude-3-sonnet-20240229-v1:0\",\n",
|
||||
" model_kwargs={\"temperature\": 0.1},\n",
|
||||
" model_kwargs=dict(temperature=0),\n",
|
||||
" # other params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b4f3e15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
|
||||
"execution_count": 5,
|
||||
"id": "62e0dbc3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
@@ -89,38 +128,30 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", additional_kwargs={'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, response_metadata={'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0', 'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, id='run-994f0362-0e50-4524-afad-3c4f5bb11328-0')"
|
||||
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", additional_kwargs={'usage': {'prompt_tokens': 29, 'completion_tokens': 21, 'total_tokens': 50}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, response_metadata={'usage': {'prompt_tokens': 29, 'completion_tokens': 21, 'total_tokens': 50}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, id='run-fdb07dc3-ff72-430d-b22b-e7824b15c766-0', usage_metadata={'input_tokens': 29, 'output_tokens': 21, 'total_tokens': 50})"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"messages = [\n",
|
||||
" HumanMessage(\n",
|
||||
" content=\"Translate this sentence from English to French. I love programming.\"\n",
|
||||
" )\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"chat.invoke(messages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "a4a4f4d4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Streaming\n",
|
||||
"\n",
|
||||
"To stream responses, you can use the runnable `.stream()` method."
|
||||
"ai_msg = llm.invoke(messages)\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "d9e52838",
|
||||
"execution_count": 6,
|
||||
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -129,84 +160,124 @@
|
||||
"text": [
|
||||
"Voici la traduction en français :\n",
|
||||
"\n",
|
||||
"J'aime la programmation."
|
||||
"J'aime la programmation.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for chunk in chat.stream(messages):\n",
|
||||
" print(chunk.content, end=\"\", flush=True)"
|
||||
"print(ai_msg.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c36575b3",
|
||||
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### LLM Caching with OpenSearch Semantic Cache\n",
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"Use OpenSearch as a semantic cache to cache prompts and responses and evaluate hits based on semantic similarity.\n",
|
||||
"\n"
|
||||
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "375d4e56",
|
||||
"execution_count": 7,
|
||||
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Ich liebe Programmieren.', additional_kwargs={'usage': {'prompt_tokens': 23, 'completion_tokens': 11, 'total_tokens': 34}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, response_metadata={'usage': {'prompt_tokens': 23, 'completion_tokens': 11, 'total_tokens': 34}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, id='run-5ad005ce-9f31-4670-baa0-9373d418698a-0', usage_metadata={'input_tokens': 23, 'output_tokens': 11, 'total_tokens': 34})"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.globals import set_llm_cache\n",
|
||||
"from langchain_aws import BedrockEmbeddings, ChatBedrock\n",
|
||||
"from langchain_community.cache import OpenSearchSemanticCache\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"bedrock_embeddings = BedrockEmbeddings(\n",
|
||||
" model_id=\"amazon.titan-embed-text-v1\", region_name=\"us-east-1\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chat = ChatBedrock(\n",
|
||||
" model_id=\"anthropic.claude-3-haiku-20240307-v1:0\", model_kwargs={\"temperature\": 0.5}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Enable LLM cache. Make sure OpenSearch is set up and running. Update URL accordingly.\n",
|
||||
"set_llm_cache(\n",
|
||||
" OpenSearchSemanticCache(\n",
|
||||
" opensearch_url=\"http://localhost:9200\", embedding=bedrock_embeddings\n",
|
||||
" )\n",
|
||||
"chain = prompt | llm\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bb5d25bb",
|
||||
"cell_type": "markdown",
|
||||
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# The first time, it is not yet in cache, so it should take longer\n",
|
||||
"messages = [HumanMessage(content=\"tell me about Amazon Bedrock\")]\n",
|
||||
"response_text = chat.invoke(messages)\n",
|
||||
"## ***Beta***: Bedrock Converse API\n",
|
||||
"\n",
|
||||
"print(response_text)"
|
||||
"AWS has recently recently the Bedrock Converse API which provides a unified conversational interface for Bedrock models. This API does not yet support custom models. You can see a list of all [models that are supported here](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html). To improve reliability the ChatBedrock integration will switch to using the Bedrock Converse API as soon as it has feature parity with the existing Bedrock API. Until then a separate [ChatBedrockConverse](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html#langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse) integration has been released in beta for users who do not need to use custom models.\n",
|
||||
"\n",
|
||||
"You can use it like so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6cfb3086",
|
||||
"execution_count": 8,
|
||||
"id": "ae728e59-94d4-40cf-9d24-25ad8723fc59",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/Users/bagatur/langchain/libs/core/langchain_core/_api/beta_decorator.py:87: LangChainBetaWarning: The class `ChatBedrockConverse` is in beta. It is actively being worked on, so the API may change.\n",
|
||||
" warn_beta(\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", response_metadata={'ResponseMetadata': {'RequestId': '122fb1c8-c3c5-4b06-941e-c95d210bfbc7', 'HTTPStatusCode': 200, 'HTTPHeaders': {'date': 'Mon, 01 Jul 2024 21:48:25 GMT', 'content-type': 'application/json', 'content-length': '243', 'connection': 'keep-alive', 'x-amzn-requestid': '122fb1c8-c3c5-4b06-941e-c95d210bfbc7'}, 'RetryAttempts': 0}, 'stopReason': 'end_turn', 'metrics': {'latencyMs': 830}}, id='run-0e3df22f-fcd8-4fbb-a4fb-565227e7e430-0', usage_metadata={'input_tokens': 29, 'output_tokens': 21, 'total_tokens': 50})"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# The second time, while not a direct hit, the question is semantically similar to the original question,\n",
|
||||
"# so it uses the cached result!\n",
|
||||
"from langchain_aws import ChatBedrockConverse\n",
|
||||
"\n",
|
||||
"messages = [HumanMessage(content=\"what is amazon bedrock\")]\n",
|
||||
"response_text = chat.invoke(messages)\n",
|
||||
"llm = ChatBedrockConverse(\n",
|
||||
" model=\"anthropic.claude-3-sonnet-20240229-v1:0\",\n",
|
||||
" temperature=0,\n",
|
||||
" max_tokens=None,\n",
|
||||
" # other params...\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(response_text)"
|
||||
"llm.invoke(messages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ChatBedrock features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ChatBedrockConverse features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -226,7 +297,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "53fbf15f",
|
||||
"id": "afaf8039",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
@@ -12,103 +12,129 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bf733a38-db84-4363-89e2-de6735c37230",
|
||||
"id": "e49f1e0d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Cohere\n",
|
||||
"# ChatCohere\n",
|
||||
"\n",
|
||||
"This notebook covers how to get started with [Cohere chat models](https://cohere.com/chat).\n",
|
||||
"This doc will help you get started with Cohere [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatCohere features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_cohere.chat_models.ChatCohere.html).\n",
|
||||
"\n",
|
||||
"For an overview of all Cohere models head to the [Cohere docs](https://docs.cohere.com/docs/models).\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/cohere) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatCohere](https://api.python.langchain.com/en/latest/chat_models/langchain_cohere.chat_models.ChatCohere.html) | [langchain-cohere](https://api.python.langchain.com/en/latest/cohere_api_reference.html) | ❌ | beta | ✅ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | \n",
|
||||
"\n",
|
||||
"Head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.cohere.ChatCohere.html) for detailed documentation of all attributes and methods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3607d67e-e56c-4102-bbba-df2edc0e109e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"The integration lives in the `langchain-cohere` package. We can install these with:\n",
|
||||
"To access Cohere models you'll need to create a Cohere account, get an API key, and install the `langchain-cohere` integration package.\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install -U langchain-cohere\n",
|
||||
"```\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"We'll also need to get a [Cohere API key](https://cohere.com/) and set the `COHERE_API_KEY` environment variable:"
|
||||
"Head to https://dashboard.cohere.com/welcome/login to sign up to Cohere and generate an API key. Once you've done this set the COHERE_API_KEY environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "2108b517-1e8d-473d-92fa-4f930e8072a7",
|
||||
"execution_count": null,
|
||||
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"COHERE_API_KEY\"] = getpass.getpass()"
|
||||
"os.environ[\"COHERE_API_KEY\"] = getpass.getpass(\"Enter your Cohere API key: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cf690fbb",
|
||||
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"It's also helpful (but not needed) to set up [LangSmith](https://smith.langchain.com/) for best-in-class observability"
|
||||
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "7f11de02",
|
||||
"execution_count": null,
|
||||
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4c26754b-b3c9-4d93-8f36-43049bd943bf",
|
||||
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Usage\n",
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"ChatCohere supports all [ChatModel](/docs/how_to#chat-models) functionality:"
|
||||
"The LangChain Cohere integration lives in the `langchain-cohere` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"execution_count": null,
|
||||
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain-cohere"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our model object and generate chat completions:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_cohere import ChatCohere\n",
|
||||
"from langchain_core.messages import HumanMessage"
|
||||
"\n",
|
||||
"llm = ChatCohere(\n",
|
||||
" model=\"command-r-plus\",\n",
|
||||
" temperature=0,\n",
|
||||
" max_tokens=None,\n",
|
||||
" timeout=None,\n",
|
||||
" max_retries=2,\n",
|
||||
" # other params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"cell_type": "markdown",
|
||||
"id": "2b4f3e15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"chat = ChatCohere(model=\"command\")"
|
||||
"## Invocation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
|
||||
"execution_count": 2,
|
||||
"id": "62e0dbc3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
@@ -116,134 +142,110 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='4 && 5 \\n6 || 7 \\n\\nWould you like to play a game of odds and evens?', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '2076b614-52b3-4082-a259-cc92cd3d9fea', 'token_count': {'prompt_tokens': 68, 'response_tokens': 23, 'total_tokens': 91, 'billed_tokens': 77}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '2076b614-52b3-4082-a259-cc92cd3d9fea', 'token_count': {'prompt_tokens': 68, 'response_tokens': 23, 'total_tokens': 91, 'billed_tokens': 77}}, id='run-3475e0c8-c89b-4937-9300-e07d652455e1-0')"
|
||||
"AIMessage(content=\"J'adore programmer.\", additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'd84f80f3-4611-46e6-aed0-9d8665a20a11', 'token_count': {'input_tokens': 89, 'output_tokens': 5}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'd84f80f3-4611-46e6-aed0-9d8665a20a11', 'token_count': {'input_tokens': 89, 'output_tokens': 5}}, id='run-514ab516-ed7e-48ac-b132-2598fb80ebef-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"messages = [HumanMessage(content=\"1\"), HumanMessage(content=\"2 3\")]\n",
|
||||
"chat.invoke(messages)"
|
||||
"messages = [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"ai_msg = llm.invoke(messages)\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='4 && 5', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'f0708a92-f874-46ee-9b93-334d616ad92e', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'f0708a92-f874-46ee-9b93-334d616ad92e', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, id='run-1635e63e-2994-4e7f-986e-152ddfc95777-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"await chat.ainvoke(messages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"execution_count": 3,
|
||||
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"4 && 5"
|
||||
"J'adore programmer.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for chunk in chat.stream(messages):\n",
|
||||
" print(chunk.content, end=\"\", flush=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "064288e4-f184-4496-9427-bcf148fa055e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[AIMessage(content='4 && 5', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6770ca86-f6c3-4ba3-a285-c4772160612f', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6770ca86-f6c3-4ba3-a285-c4772160612f', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, id='run-8d6fade2-1b39-4e31-ab23-4be622dd0027-0')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chat.batch([messages])"
|
||||
"print(ai_msg.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f1c56460",
|
||||
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"You can also easily combine with a prompt template for easy structuring of user input. We can do this using [LCEL](/docs/concepts#langchain-expression-language-lcel)"
|
||||
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "0851b103",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(\"Tell me a joke about {topic}\")\n",
|
||||
"chain = prompt | chat"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "ae950c0f-1691-47f1-b609-273033cae707",
|
||||
"execution_count": 4,
|
||||
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='What color socks do bears wear?\\n\\nThey don’t wear socks, they have bear feet. \\n\\nHope you laughed! If not, maybe this will help: laughter is the best medicine, and a good sense of humor is infectious!', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6edccf44-9bc8-4139-b30e-13b368f3563c', 'token_count': {'prompt_tokens': 68, 'response_tokens': 51, 'total_tokens': 119, 'billed_tokens': 108}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6edccf44-9bc8-4139-b30e-13b368f3563c', 'token_count': {'prompt_tokens': 68, 'response_tokens': 51, 'total_tokens': 119, 'billed_tokens': 108}}, id='run-ef7f9789-0d4d-43bf-a4f7-f2a0e27a5320-0')"
|
||||
"AIMessage(content='Ich liebe Programmierung.', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '053bebde-4e1d-4d06-8ee6-3446e7afa25e', 'token_count': {'input_tokens': 84, 'output_tokens': 6}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '053bebde-4e1d-4d06-8ee6-3446e7afa25e', 'token_count': {'input_tokens': 84, 'output_tokens': 6}}, id='run-53700708-b7fb-417b-af36-1a6fcde38e7d-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"topic\": \"bears\"})"
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | llm\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ChatCohere features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_cohere.chat_models.ChatCohere.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": "poetry-venv-2",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
"name": "poetry-venv-2"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -255,7 +257,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "529aeba9",
|
||||
"id": "afaf8039",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
@@ -11,190 +11,236 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "642fd21c-600a-47a1-be96-6e1438b421a9",
|
||||
"id": "e49f1e0d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ChatFireworks\n",
|
||||
"\n",
|
||||
">[Fireworks](https://app.fireworks.ai/) accelerates product development on generative AI by creating an innovative AI experiment and production platform. \n",
|
||||
"This doc help you get started with Fireworks AI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatFireworks features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_fireworks.chat_models.ChatFireworks.html).\n",
|
||||
"\n",
|
||||
"This example goes over how to use LangChain to interact with `ChatFireworks` models."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "4a7c795e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"%pip install langchain-fireworks"
|
||||
"Fireworks AI is an AI inference platform to run and customize models. For a list of all models served by Fireworks see the [Fireworks docs](https://fireworks.ai/models).\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/fireworks) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatFireworks](https://api.python.langchain.com/en/latest/chat_models/langchain_fireworks.chat_models.ChatFireworks.html) | [langchain-fireworks](https://api.python.langchain.com/en/latest/fireworks_api_reference.html) | ❌ | beta | ✅ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | \n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"To access Fireworks models you'll need to create a Fireworks account, get an API key, and install the `langchain-fireworks` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"Head to (ttps://fireworks.ai/login to sign up to Fireworks and generate an API key. Once you've done this set the FIREWORKS_API_KEY environment variable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "d00d850917865298",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain_fireworks import ChatFireworks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f28ebf8b-f14f-46c7-9962-8b8dc42e31be",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Setup\n",
|
||||
"\n",
|
||||
"1. Make sure the `langchain-fireworks` package is installed in your environment.\n",
|
||||
"2. Sign in to [Fireworks AI](http://fireworks.ai) for the an API Key to access our models, and make sure it is set as the `FIREWORKS_API_KEY` environment variable.\n",
|
||||
"3. Set up your model using a model id. If the model is not set, the default model is fireworks-llama-v2-7b-chat. See the full, most up-to-date model list on [app.fireworks.ai](https://app.fireworks.ai)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "d096fb14-8acc-4047-9cd0-c842430c3a1d",
|
||||
"execution_count": null,
|
||||
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if \"FIREWORKS_API_KEY\" not in os.environ:\n",
|
||||
" os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Fireworks API Key:\")\n",
|
||||
"\n",
|
||||
"# Initialize a Fireworks chat model\n",
|
||||
"chat = ChatFireworks(model=\"accounts/fireworks/models/mixtral-8x7b-instruct\")"
|
||||
"os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Enter your Fireworks API key: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d8f13144-37cf-47a5-b5a0-e3cdf76d9a72",
|
||||
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Calling the Model Directly\n",
|
||||
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"You can call the model directly with a system and human message to get answers."
|
||||
"The LangChain Fireworks integration lives in the `langchain-fireworks` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain-fireworks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"Now we can instantiate our model object and generate chat completions:\n",
|
||||
"\n",
|
||||
"- TODO: Update model instantiation with relevant params."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_fireworks import ChatFireworks\n",
|
||||
"\n",
|
||||
"llm = ChatFireworks(\n",
|
||||
" model=\"accounts/fireworks/models/llama-v3-70b-instruct\",\n",
|
||||
" temperature=0,\n",
|
||||
" max_tokens=None,\n",
|
||||
" timeout=None,\n",
|
||||
" max_retries=2,\n",
|
||||
" # other params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b4f3e15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "62e0dbc3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"J'adore la programmation.\", response_metadata={'token_usage': {'prompt_tokens': 35, 'total_tokens': 44, 'completion_tokens': 9}, 'model_name': 'accounts/fireworks/models/llama-v3-70b-instruct', 'system_fingerprint': '', 'finish_reason': 'stop', 'logprobs': None}, id='run-df28e69a-ff30-457e-a743-06eb14d01cb0-0', usage_metadata={'input_tokens': 35, 'output_tokens': 9, 'total_tokens': 44})"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"messages = [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"ai_msg = llm.invoke(messages)\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "72340871-ae2f-415f-b399-0777d32dc379",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"Hello! I'm an AI language model, a helpful assistant designed to chat and assist you with any questions or information you might need. I'm here to make your experience as smooth and enjoyable as possible. How can I assist you today?\")"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# ChatFireworks Wrapper\n",
|
||||
"system_message = SystemMessage(content=\"You are to chat with the user.\")\n",
|
||||
"human_message = HumanMessage(content=\"Who are you?\")\n",
|
||||
"\n",
|
||||
"chat.invoke([system_message, human_message])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "68c6b1fa-2ff7-4a63-8d88-3cec302180b8",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"I'm an AI and do not have the ability to experience the weather firsthand. However,\")"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Setting additional parameters: temperature, max_tokens, top_p\n",
|
||||
"chat = ChatFireworks(\n",
|
||||
" model=\"accounts/fireworks/models/mixtral-8x7b-instruct\",\n",
|
||||
" temperature=1,\n",
|
||||
" max_tokens=20,\n",
|
||||
")\n",
|
||||
"system_message = SystemMessage(content=\"You are to chat with the user.\")\n",
|
||||
"human_message = HumanMessage(content=\"How's the weather today?\")\n",
|
||||
"chat.invoke([system_message, human_message])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8c44cb36",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Tool Calling\n",
|
||||
"\n",
|
||||
"Fireworks offers the `FireFunction-v2` tool calling model. You can use it for structured output and function calling use cases:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "ee2db682",
|
||||
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'function': {'arguments': '{\"name\": \"Erick\", \"age\": 27}',\n",
|
||||
" 'name': 'ExtractFields'},\n",
|
||||
" 'id': 'call_J0WYP2TLenaFw3UeVU0UnWqx',\n",
|
||||
" 'index': 0,\n",
|
||||
" 'type': 'function'}\n"
|
||||
"J'adore la programmation.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from pprint import pprint\n",
|
||||
"print(ai_msg.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class ExtractFields(BaseModel):\n",
|
||||
" name: str\n",
|
||||
" age: int\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chat = ChatFireworks(\n",
|
||||
" model=\"accounts/fireworks/models/firefunction-v2\",\n",
|
||||
").bind_tools([ExtractFields])\n",
|
||||
"\n",
|
||||
"result = chat.invoke(\"I am a 27 year old named Erick\")\n",
|
||||
"\n",
|
||||
"pprint(result.additional_kwargs[\"tool_calls\"][0])"
|
||||
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2321a4e6",
|
||||
"execution_count": 4,
|
||||
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Ich liebe das Programmieren.', response_metadata={'token_usage': {'prompt_tokens': 30, 'total_tokens': 37, 'completion_tokens': 7}, 'model_name': 'accounts/fireworks/models/llama-v3-70b-instruct', 'system_fingerprint': '', 'finish_reason': 'stop', 'logprobs': None}, id='run-ff3f91ad-ed81-4acf-9f59-7490dc8d8f48-0', usage_metadata={'input_tokens': 30, 'output_tokens': 7, 'total_tokens': 37})"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | llm\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ChatFireworks features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_fireworks.chat_models.ChatFireworks.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -213,7 +259,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -454,7 +454,7 @@
|
||||
"\n",
|
||||
"Please note that `ChatWatsonx.bind_tools` is on beta state, so right now we only support `mistralai/mixtral-8x7b-instruct-v01` model.\n",
|
||||
"\n",
|
||||
"You should also redefine `max_new_tokens` parameter to get the entire model response. By default `max_new_tokens` is set ot 20."
|
||||
"You should also redefine `max_new_tokens` parameter to get the entire model response. By default `max_new_tokens` is set to 20."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -577,7 +577,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
"version": "3.1.undefined"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -41,7 +41,7 @@
|
||||
"\n",
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain OpenAI integration lives in the `langchain-community` and `llama-cpp-python` packages:"
|
||||
"The LangChain LlamaCpp integration lives in the `langchain-community` and `llama-cpp-python` packages:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -540,7 +540,7 @@
|
||||
"id": "137662a6"
|
||||
},
|
||||
"source": [
|
||||
"## Example usage within a Conversation Chains"
|
||||
"## Example usage within RunnableWithMessageHistory "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -550,7 +550,7 @@
|
||||
"id": "79efa62d"
|
||||
},
|
||||
"source": [
|
||||
"Like any other integration, ChatNVIDIA is fine to support chat utilities like conversation buffers by default. Below, we show the [LangChain ConversationBufferMemory](https://python.langchain.com/docs/modules/memory/types/buffer) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model."
|
||||
"Like any other integration, ChatNVIDIA is fine to support chat utilities like RunnableWithMessageHistory which is analogous to using `ConversationChain`. Below, we show the [LangChain RunnableWithMessageHistory](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -572,8 +572,19 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import ConversationChain\n",
|
||||
"from langchain.memory import ConversationBufferMemory\n",
|
||||
"from langchain_core.chat_history import InMemoryChatMessageHistory\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"\n",
|
||||
"# store is a dictionary that maps session IDs to their corresponding chat histories.\n",
|
||||
"store = {} # memory is maintained outside the chain\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# A function that returns the chat history for a given session ID.\n",
|
||||
"def get_session_history(session_id: str) -> InMemoryChatMessageHistory:\n",
|
||||
" if session_id not in store:\n",
|
||||
" store[session_id] = InMemoryChatMessageHistory()\n",
|
||||
" return store[session_id]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chat = ChatNVIDIA(\n",
|
||||
" model=\"mistralai/mixtral-8x22b-instruct-v0.1\",\n",
|
||||
@@ -582,24 +593,18 @@
|
||||
" top_p=1.0,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"conversation = ConversationChain(llm=chat, memory=ConversationBufferMemory())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f644ff28",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 268
|
||||
},
|
||||
"id": "f644ff28",
|
||||
"outputId": "bae354cc-2118-4e01-ce20-a717ac94d27d"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conversation.invoke(\"Hi there!\")[\"response\"]"
|
||||
"# Define a RunnableConfig object, with a `configurable` key. session_id determines thread\n",
|
||||
"config = {\"configurable\": {\"session_id\": \"1\"}}\n",
|
||||
"\n",
|
||||
"conversation = RunnableWithMessageHistory(\n",
|
||||
" chat,\n",
|
||||
" get_session_history,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"conversation.invoke(\n",
|
||||
" \"Hi I'm Srijan Dubey.\", # input or query\n",
|
||||
" config=config,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -616,26 +621,30 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conversation.invoke(\"I'm doing well! Just having a conversation with an AI.\")[\n",
|
||||
" \"response\"\n",
|
||||
"]"
|
||||
"conversation.invoke(\n",
|
||||
" \"I'm doing well! Just having a conversation with an AI.\",\n",
|
||||
" config=config,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "LyD1xVKmVSs4",
|
||||
"id": "uHIMZxVSVNBC",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 350
|
||||
"height": 284
|
||||
},
|
||||
"id": "LyD1xVKmVSs4",
|
||||
"outputId": "a1714513-a8fd-4d14-f974-233e39d5c4f5"
|
||||
"id": "uHIMZxVSVNBC",
|
||||
"outputId": "79acc89d-a820-4f2c-bac2-afe99da95580"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conversation.invoke(\"Tell me about yourself.\")[\"response\"]"
|
||||
"conversation.invoke(\n",
|
||||
" \"Tell me about yourself.\",\n",
|
||||
" config=config,\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "afaf8039",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
@@ -11,6 +12,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e49f1e0d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ChatOllama\n",
|
||||
@@ -23,6 +25,18 @@
|
||||
"\n",
|
||||
"For a complete list of supported models and model variants, see the [Ollama model library](https://github.com/jmorganca/ollama#model-library).\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/ollama) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatOllama](https://api.python.langchain.com/en/latest/chat_models/langchain_ollama.chat_models.ChatOllama.html) | [langchain-ollama](https://api.python.langchain.com/en/latest/ollama_api_reference.html) | ✅ | ❌ | ✅ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | \n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"First, follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance:\n",
|
||||
@@ -40,307 +54,202 @@
|
||||
"* Specify the exact version of the model of interest as such `ollama pull vicuna:13b-v1.5-16k-q4_0` (View the [various tags for the `Vicuna`](https://ollama.ai/library/vicuna/tags) model in this instance)\n",
|
||||
"* To view all pulled models, use `ollama list`\n",
|
||||
"* To chat directly with a model from the command line, use `ollama run <name-of-model>`\n",
|
||||
"* View the [Ollama documentation](https://github.com/jmorganca/ollama) for more commands. Run `ollama help` in the terminal to see available commands too.\n",
|
||||
"\n",
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"You can see a full list of supported parameters on the [API reference page](https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html).\n",
|
||||
"\n",
|
||||
"If you are using a LLaMA `chat` model (e.g., `ollama pull llama3`) then you can use the `ChatOllama` interface.\n",
|
||||
"\n",
|
||||
"This includes [special tokens](https://huggingface.co/blog/llama2#how-to-prompt-llama-2) for system message and user input.\n",
|
||||
"\n",
|
||||
"## Interacting with Models \n",
|
||||
"\n",
|
||||
"Here are a few ways to interact with pulled local models\n",
|
||||
"\n",
|
||||
"#### In the terminal:\n",
|
||||
"\n",
|
||||
"* All of your local models are automatically served on `localhost:11434`\n",
|
||||
"* Run `ollama run <name-of-model>` to start interacting via the command line directly\n",
|
||||
"\n",
|
||||
"#### Via an API\n",
|
||||
"\n",
|
||||
"Send an `application/json` request to the API endpoint of Ollama to interact.\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"curl http://localhost:11434/api/generate -d '{\n",
|
||||
" \"model\": \"llama3\",\n",
|
||||
" \"prompt\":\"Why is the sky blue?\"\n",
|
||||
"}'\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"See the Ollama [API documentation](https://github.com/jmorganca/ollama/blob/main/docs/api.md) for all endpoints.\n",
|
||||
"\n",
|
||||
"#### Via LangChain\n",
|
||||
"\n",
|
||||
"See a typical basic example of using Ollama via the `ChatOllama` chat model in your LangChain application. \n",
|
||||
"\n",
|
||||
"View the [API Reference for ChatOllama](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.ollama.ChatOllama.html#langchain_community.chat_models.ollama.ChatOllama) for more."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Why did the astronaut break up with his girlfriend?\n",
|
||||
"\n",
|
||||
"Because he needed space!\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# LangChain supports many other chat models. Here, we're using Ollama\n",
|
||||
"from langchain_community.chat_models import ChatOllama\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"# supports many more optional parameters. Hover on your `ChatOllama(...)`\n",
|
||||
"# class to view the latest available supported parameters\n",
|
||||
"llm = ChatOllama(model=\"llama3\")\n",
|
||||
"prompt = ChatPromptTemplate.from_template(\"Tell me a short joke about {topic}\")\n",
|
||||
"\n",
|
||||
"# using LangChain Expressive Language chain syntax\n",
|
||||
"# learn more about the LCEL on\n",
|
||||
"# /docs/concepts/#langchain-expression-language-lcel\n",
|
||||
"chain = prompt | llm | StrOutputParser()\n",
|
||||
"\n",
|
||||
"# for brevity, response is printed in terminal\n",
|
||||
"# You can use LangServe to deploy your application for\n",
|
||||
"# production\n",
|
||||
"print(chain.invoke({\"topic\": \"Space travel\"}))"
|
||||
"* View the [Ollama documentation](https://github.com/jmorganca/ollama) for more commands. Run `ollama help` in the terminal to see available commands too.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"LCEL chains, out of the box, provide extra functionalities, such as streaming of responses, and async support"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Why\n",
|
||||
" did\n",
|
||||
" the\n",
|
||||
" astronaut\n",
|
||||
" break\n",
|
||||
" up\n",
|
||||
" with\n",
|
||||
" his\n",
|
||||
" girlfriend\n",
|
||||
" before\n",
|
||||
" going\n",
|
||||
" to\n",
|
||||
" Mars\n",
|
||||
"?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Because\n",
|
||||
" he\n",
|
||||
" needed\n",
|
||||
" space\n",
|
||||
"!\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"topic = {\"topic\": \"Space travel\"}\n",
|
||||
"\n",
|
||||
"for chunks in chain.stream(topic):\n",
|
||||
" print(chunks)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For streaming async support, here's an example - all possible via the single chain created above."
|
||||
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"topic = {\"topic\": \"Space travel\"}\n",
|
||||
"\n",
|
||||
"async for chunks in chain.astream(topic):\n",
|
||||
" print(chunks)"
|
||||
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Take a look at the [LangChain Expressive Language (LCEL) Interface](/docs/concepts#interface) for the other available interfaces for use when a chain is created.\n",
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"## Building from source\n",
|
||||
"\n",
|
||||
"For up to date instructions on building from source, check the Ollama documentation on [Building from Source](https://github.com/ollama/ollama?tab=readme-ov-file#building)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Extraction\n",
|
||||
" \n",
|
||||
"Use the latest version of Ollama and supply the [`format`](https://github.com/jmorganca/ollama/blob/main/docs/api.md#json-mode) flag. The `format` flag will force the model to produce the response in JSON.\n",
|
||||
"\n",
|
||||
"> **Note:** You can also try out the experimental [OllamaFunctions](/docs/integrations/chat/ollama_functions) wrapper for convenience."
|
||||
"The LangChain Ollama integration lives in the `langchain-ollama` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": null,
|
||||
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_models import ChatOllama\n",
|
||||
"%pip install -qU langchain-ollama"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"llm = ChatOllama(model=\"llama3\", format=\"json\", temperature=0)"
|
||||
"Now we can instantiate our model object and generate chat completions:\n",
|
||||
"\n",
|
||||
"- TODO: Update model instantiation with relevant params."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_ollama import ChatOllama\n",
|
||||
"\n",
|
||||
"llm = ChatOllama(\n",
|
||||
" model=\"llama3\",\n",
|
||||
" temperature=0,\n",
|
||||
" # other params...\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b4f3e15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"content='{ \"morning\": \"blue\", \"noon\": \"clear blue\", \"afternoon\": \"hazy yellow\", \"evening\": \"orange-red\" }\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n ' id='run-e893700f-e2d0-4df8-ad86-17525dcee318-0'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" HumanMessage(\n",
|
||||
" content=\"What color is the sky at different times of the day? Respond using JSON\"\n",
|
||||
" )\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"chat_model_response = llm.invoke(messages)\n",
|
||||
"print(chat_model_response)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"Name: John\n",
|
||||
"Age: 35\n",
|
||||
"Likes: Pizza\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"from langchain_community.chat_models import ChatOllama\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"json_schema = {\n",
|
||||
" \"title\": \"Person\",\n",
|
||||
" \"description\": \"Identifying information about a person.\",\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"name\": {\"title\": \"Name\", \"description\": \"The person's name\", \"type\": \"string\"},\n",
|
||||
" \"age\": {\"title\": \"Age\", \"description\": \"The person's age\", \"type\": \"integer\"},\n",
|
||||
" \"fav_food\": {\n",
|
||||
" \"title\": \"Fav Food\",\n",
|
||||
" \"description\": \"The person's favorite food\",\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" },\n",
|
||||
" },\n",
|
||||
" \"required\": [\"name\", \"age\"],\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"llm = ChatOllama(model=\"llama2\")\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" HumanMessage(\n",
|
||||
" content=\"Please tell me about a person using the following JSON schema:\"\n",
|
||||
" ),\n",
|
||||
" HumanMessage(content=\"{dumps}\"),\n",
|
||||
" HumanMessage(\n",
|
||||
" content=\"Now, considering the schema, tell me about a person named John who is 35 years old and loves pizza.\"\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(messages)\n",
|
||||
"dumps = json.dumps(json_schema, indent=2)\n",
|
||||
"\n",
|
||||
"chain = prompt | llm | StrOutputParser()\n",
|
||||
"\n",
|
||||
"print(chain.invoke({\"dumps\": dumps}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Multi-modal\n",
|
||||
"\n",
|
||||
"Ollama has support for multi-modal LLMs, such as [bakllava](https://ollama.ai/library/bakllava) and [llava](https://ollama.ai/library/llava).\n",
|
||||
"\n",
|
||||
"Browse the full set of versions for models with `tags`, such as [Llava](https://ollama.ai/library/llava/tags).\n",
|
||||
"\n",
|
||||
"Download the desired LLM via `ollama pull bakllava`\n",
|
||||
"\n",
|
||||
"Be sure to update Ollama so that you have the most recent version to support multi-modal.\n",
|
||||
"\n",
|
||||
"Check out the typical example of how to use ChatOllama multi-modal support below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "62e0dbc3",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
"AIMessage(content='Je adore le programmation.\\n\\n(Note: \"programmation\" is the feminine form of the noun in French, but if you want to use the masculine form, it would be \"le programme\" instead.)' response_metadata={'model': 'llama3', 'created_at': '2024-07-04T04:20:28.138164Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 1943337750, 'load_duration': 1128875, 'prompt_eval_count': 33, 'prompt_eval_duration': 322813000, 'eval_count': 43, 'eval_duration': 1618213000} id='run-ed8c17ab-7fc2-4c90-a88a-f6273b49bc78-0')\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip install --upgrade --quiet pillow"
|
||||
"from langchain_core.messages import AIMessage\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"ai_msg = llm.invoke(messages)\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 8,
|
||||
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Je adore le programmation.\n",
|
||||
"\n",
|
||||
"(Note: \"programmation\" is the feminine form of the noun in French, but if you want to use the masculine form, it would be \"le programme\" instead.)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(ai_msg.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Ich liebe Programmieren!\\n\\n(Note: \"Ich liebe\" means \"I love\", \"Programmieren\" is the verb for \"programming\")', response_metadata={'model': 'llama3', 'created_at': '2024-07-04T04:22:33.864132Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 1310800083, 'load_duration': 1782000, 'prompt_eval_count': 16, 'prompt_eval_duration': 250199000, 'eval_count': 29, 'eval_duration': 1057192000}, id='run-cbadbe59-2de2-4ec0-a18a-b3220226c3d2-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | llm\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4c5e0197",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Multi-modal\n",
|
||||
"\n",
|
||||
"Ollama has support for multi-modal LLMs, such as [bakllava](https://ollama.com/library/bakllava) and [llava](https://ollama.com/library/llava).\n",
|
||||
"\n",
|
||||
" ollama pull bakllava\n",
|
||||
"\n",
|
||||
"Be sure to update Ollama so that you have the most recent version to support multi-modal."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "36c9b1c2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -399,7 +308,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 12,
|
||||
"id": "32b3ba7b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -411,8 +321,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.chat_models import ChatOllama\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from langchain_ollama import ChatOllama\n",
|
||||
"\n",
|
||||
"llm = ChatOllama(model=\"bakllava\", temperature=0)\n",
|
||||
"\n",
|
||||
@@ -449,20 +359,12 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Concurrency Features\n",
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"Ollama supports concurrency inference for a single model, and or loading multiple models simulatenously (at least [version 0.1.33](https://github.com/ollama/ollama/releases)).\n",
|
||||
"\n",
|
||||
"Start the Ollama server with:\n",
|
||||
"\n",
|
||||
"* `OLLAMA_NUM_PARALLEL`: Handle multiple requests simultaneously for a single model\n",
|
||||
"* `OLLAMA_MAX_LOADED_MODELS`: Load multiple models simultaneously\n",
|
||||
"\n",
|
||||
"Example: `OLLAMA_NUM_PARALLEL=4 OLLAMA_MAX_LOADED_MODELS=4 ollama serve`\n",
|
||||
"\n",
|
||||
"Learn more about configuring Ollama server in [the official guide](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-configure-ollama-server)."
|
||||
"For detailed documentation of all ChatOllama features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_ollama.chat_models.ChatOllama.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -482,9 +384,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.8"
|
||||
"version": "3.12.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
||||
@@ -6,6 +6,7 @@
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: Ollama Functions\n",
|
||||
"sidebar_class_name: hidden\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
@@ -15,91 +16,85 @@
|
||||
"source": [
|
||||
"# OllamaFunctions\n",
|
||||
"\n",
|
||||
"This notebook shows how to use an experimental wrapper around Ollama that gives it the same API as OpenAI Functions.\n",
|
||||
":::warning\n",
|
||||
"\n",
|
||||
"This was an experimental wrapper that attempts to bolt-on tool calling support to models that do not natively support it. The [primary Ollama integration](/docs/integrations/chat/ollama/) now supports tool calling, and should be used instead.\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"This notebook shows how to use an experimental wrapper around Ollama that gives it [tool calling capabilities](https://python.langchain.com/v0.2/docs/concepts/#functiontool-calling).\n",
|
||||
"\n",
|
||||
"Note that more powerful and capable models will perform better with complex schema and/or multiple functions. The examples below use llama3 and phi3 models.\n",
|
||||
"For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).\n",
|
||||
"\n",
|
||||
":::warning\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"This is an experimental wrapper that attempts to bolt-on tool calling support to models that do not natively support it. Use with caution.\n",
|
||||
"### Integration details\n",
|
||||
"\n",
|
||||
":::\n",
|
||||
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
|
||||
"|:-----------------------------------------------------------------------------------------------------------------------------------:|:-------:|:-----:|:------------:|:----------:|:-----------------:|:--------------:|\n",
|
||||
"| [OllamaFunctions](https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.ollama_function.OllamaFunctions.html) | [langchain-experimental](https://api.python.langchain.com/en/latest/openai_api_reference.html) | ✅ | ❌ | ❌ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |\n",
|
||||
"\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"Follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance.\n",
|
||||
"To access `OllamaFunctions` you will need to install `langchain-experimental` integration package.\n",
|
||||
"Follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance as well as download and serve [supported models](https://ollama.com/library).\n",
|
||||
"\n",
|
||||
"## Usage\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"You can initialize OllamaFunctions in a similar way to how you'd initialize a standard ChatOllama instance:"
|
||||
"Credentials support is not present at this time.\n",
|
||||
"\n",
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The `OllamaFunctions` class lives in the `langchain-experimental` package:\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain-experimental"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"`OllamaFunctions` takes the same init parameters as `ChatOllama`. \n",
|
||||
"\n",
|
||||
"In order to use tool calling, you must also specify `format=\"json\"`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-28T00:53:25.276543Z",
|
||||
"start_time": "2024-04-28T00:53:24.881202Z"
|
||||
},
|
||||
"scrolled": true
|
||||
"end_time": "2024-06-23T15:20:21.818089Z",
|
||||
"start_time": "2024-06-23T15:20:21.815759Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_experimental.llms.ollama_functions import OllamaFunctions\n",
|
||||
"\n",
|
||||
"model = OllamaFunctions(model=\"llama3\", format=\"json\")"
|
||||
"llm = OllamaFunctions(model=\"phi3\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can then bind functions defined with JSON Schema parameters and a `function_call` parameter to force the model to call the given function:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:17.270931Z",
|
||||
"start_time": "2024-04-26T04:59:17.263347Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = model.bind_tools(\n",
|
||||
" tools=[\n",
|
||||
" {\n",
|
||||
" \"name\": \"get_current_weather\",\n",
|
||||
" \"description\": \"Get the current weather in a given location\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"location\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"The city and state, \" \"e.g. San Francisco, CA\",\n",
|
||||
" },\n",
|
||||
" \"unit\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"enum\": [\"celsius\", \"fahrenheit\"],\n",
|
||||
" },\n",
|
||||
" },\n",
|
||||
" \"required\": [\"location\"],\n",
|
||||
" },\n",
|
||||
" }\n",
|
||||
" ],\n",
|
||||
" function_call={\"name\": \"get_current_weather\"},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Calling a function with this model then results in JSON output matching the provided schema:"
|
||||
"## Invocation"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -107,15 +102,15 @@
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:26.092428Z",
|
||||
"start_time": "2024-04-26T04:59:17.272627Z"
|
||||
"end_time": "2024-06-23T15:20:46.794689Z",
|
||||
"start_time": "2024-06-23T15:20:44.982632Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'get_current_weather', 'arguments': '{\"location\": \"Boston, MA\"}'}}, id='run-1791f9fe-95ad-4ca4-bdf7-9f73eab31e6f-0')"
|
||||
"AIMessage(content=\"J'adore programmer.\", id='run-94815fcf-ae11-438a-ba3f-00819328b5cd-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
@@ -124,79 +119,55 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"model.invoke(\"what is the weather in Boston?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Structured Output\n",
|
||||
"\n",
|
||||
"One useful thing you can do with function calling using `with_structured_output()` function is extracting properties from a given input in a structured format:"
|
||||
"messages = [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"I love programming.\"),\n",
|
||||
"]\n",
|
||||
"ai_msg = llm.invoke(messages)\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:26.098828Z",
|
||||
"start_time": "2024-04-26T04:59:26.094021Z"
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"J'adore programmer.\""
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Schema for structured response\n",
|
||||
"class Person(BaseModel):\n",
|
||||
" name: str = Field(description=\"The person's name\", required=True)\n",
|
||||
" height: float = Field(description=\"The person's height\", required=True)\n",
|
||||
" hair_color: str = Field(description=\"The person's hair color\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Prompt template\n",
|
||||
"prompt = PromptTemplate.from_template(\n",
|
||||
" \"\"\"Alex is 5 feet tall. \n",
|
||||
"Claudia is 1 feet taller than Alex and jumps higher than him. \n",
|
||||
"Claudia is a brunette and Alex is blonde.\n",
|
||||
"\n",
|
||||
"Human: {question}\n",
|
||||
"AI: \"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Chain\n",
|
||||
"llm = OllamaFunctions(model=\"phi3\", format=\"json\", temperature=0)\n",
|
||||
"structured_llm = llm.with_structured_output(Person)\n",
|
||||
"chain = prompt | structured_llm"
|
||||
"ai_msg.content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Extracting data about Alex"
|
||||
"## Chaining\n",
|
||||
"\n",
|
||||
"We can [chain](https://python.langchain.com/v0.2/docs/how_to/sequence/) our model with a prompt template like so:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:30.164955Z",
|
||||
"start_time": "2024-04-26T04:59:26.099790Z"
|
||||
}
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Person(name='Alex', height=5.0, hair_color='blonde')"
|
||||
"AIMessage(content='Programmieren ist sehr verrückt! Es freut mich, dass Sie auf Programmierung so positiv eingestellt sind.', id='run-ee99be5e-4d48-4ab6-b602-35415f0bdbde-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
@@ -205,41 +176,123 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"alex = chain.invoke(\"Describe Alex\")\n",
|
||||
"alex"
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\n",
|
||||
" \"system\",\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
|
||||
" ),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = prompt | llm\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love programming.\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Extracting data about Claudia"
|
||||
"## Tool Calling\n",
|
||||
"\n",
|
||||
"### OllamaFunctions.bind_tools()\n",
|
||||
"\n",
|
||||
"With `OllamaFunctions.bind_tools`, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood these are converted to a tool definition schemas, which looks like:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2024-04-26T04:59:31.509846Z",
|
||||
"start_time": "2024-04-26T04:59:30.165662Z"
|
||||
}
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GetWeather(BaseModel):\n",
|
||||
" \"\"\"Get the current weather in a given location\"\"\"\n",
|
||||
"\n",
|
||||
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"llm_with_tools = llm.bind_tools([GetWeather])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Person(name='Claudia', height=6.0, hair_color='brunette')"
|
||||
"AIMessage(content='', id='run-b9769435-ec6a-4cb8-8545-5a5035fc19bd-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': 'call_064c4e1cb27e4adb9e4e7ed60362ecc9'}])"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"claudia = chain.invoke(\"Describe Claudia\")\n",
|
||||
"claudia"
|
||||
"ai_msg = llm_with_tools.invoke(\n",
|
||||
" \"what is the weather like in San Francisco\",\n",
|
||||
")\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### AIMessage.tool_calls\n",
|
||||
"\n",
|
||||
"Notice that the AIMessage has a `tool_calls` attribute. This contains in a standardized `ToolCall` format that is model-provider agnostic."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'GetWeather',\n",
|
||||
" 'args': {'location': 'San Francisco, CA'},\n",
|
||||
" 'id': 'call_064c4e1cb27e4adb9e4e7ed60362ecc9'}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ai_msg.tool_calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": "For more on binding tools and tool call outputs, head to the [tool calling](docs/how_to/function_calling) docs."
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all ToolCallingLLM features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.ollama_functions.OllamaFunctions.html\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -259,7 +312,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -45,7 +45,7 @@
|
||||
"The code provided assumes that your PPLX_API_KEY is set in your environment variables. If you would like to manually specify your API key and also choose a different model, you can use the following code:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"chat = ChatPerplexity(temperature=0, pplx_api_key=\"YOUR_API_KEY\", model=\"pplx-70b-online\")\n",
|
||||
"chat = ChatPerplexity(temperature=0, pplx_api_key=\"YOUR_API_KEY\", model=\"llama-3-sonar-small-32k-online\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"You can check a list of available models [here](https://docs.perplexity.ai/docs/model-cards). For reproducibility, we can set the API key dynamically by taking it as an input in this notebook."
|
||||
@@ -78,7 +78,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chat = ChatPerplexity(temperature=0, model=\"pplx-70b-online\")"
|
||||
"chat = ChatPerplexity(temperature=0, model=\"llama-3-sonar-small-32k-online\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -146,7 +146,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chat = ChatPerplexity(temperature=0, model=\"pplx-70b-online\")\n",
|
||||
"chat = ChatPerplexity(temperature=0, model=\"llama-3-sonar-small-32k-online\")\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"human\", \"Tell me a joke about {topic}\")])\n",
|
||||
"chain = prompt | chat\n",
|
||||
"response = chain.invoke({\"topic\": \"cats\"})\n",
|
||||
@@ -195,7 +195,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chat = ChatPerplexity(temperature=0.7, model=\"pplx-70b-online\")\n",
|
||||
"chat = ChatPerplexity(temperature=0.7, model=\"llama-3-sonar-small-32k-online\")\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [(\"human\", \"Give me a list of famous tourist attractions in Pakistan\")]\n",
|
||||
")\n",
|
||||
|
||||
@@ -1,5 +1,19 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "bd931196",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_class_name: hidden\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1f3a5ebf",
|
||||
|
||||
@@ -1,5 +1,15 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "344fc5a3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_class_name: hidden\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1f3a5ebf",
|
||||
|
||||
@@ -1,5 +1,15 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "a792e839",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_class_name: hidden\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1f3a5ebf",
|
||||
|
||||
@@ -1,5 +1,15 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "61c2629c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_class_name: hidden\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1f3a5ebf",
|
||||
|
||||
@@ -1,5 +1,15 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "e329385c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_class_name: hidden\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1f3a5ebf",
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user