Compare commits

..

589 Commits

Author SHA1 Message Date
Bagatur
4305f78e40 core[patch]: Release 0.2.28 (#25000) 2024-08-02 21:07:06 +00:00
Bagatur
64ccddf3cb docs: fmt concepts (#24999) 2024-08-02 20:35:45 +00:00
Bagatur
dd8e4cd020 text-splitters[patch]: Release 0.2.3 (#24998) 2024-08-02 20:27:22 +00:00
Bagatur
0de0cd2d31 core[patch]: merge message runs nit (#24997)
Only add separator if both chunks are non-empty
2024-08-02 20:25:43 +00:00
Bagatur
8e2316b8c2 community[patch]: Release 0.2.11 (#24989) 2024-08-02 20:08:44 +00:00
ccurme
c2538e7834 experimental[patch]: bump min versions of core and community (#24996)
Ollama functions unit test broken with min version of community.
2024-08-02 19:58:55 +00:00
ccurme
acba38a18e docs: update toolkit guides (#24992) 2024-08-02 15:51:05 -04:00
ccurme
22c1a4041b community[patch]: support named arguments in github toolkit (#24986)
Parameters may be passed in by name if generated from tool calls.
2024-08-02 18:27:32 +00:00
ccurme
4797b806c2 experimental[patch]: release 0.0.64 (#24990) 2024-08-02 18:00:57 +00:00
Tomaz Bratanic
7061869aec Add relik graph transformer (#24982)
Relik is a new library for graph extraction that offers smaller and
cheaper models for graph construction
2024-08-02 13:55:41 -04:00
Erick Friis
98c22e9082 docs: feature table component (#24985) 2024-08-02 17:41:47 +00:00
ccurme
c04d95b962 standard-tests: set integration test parameters independent of unit test (#24979)
This ends up getting set in integration tests.
2024-08-02 10:40:11 -07:00
gbaian10
54e9ea433a fix: Modify the order of init_chat_model import ollama package. (#24977) 2024-08-02 08:32:56 -07:00
David Gao
fe1820cdaf docs: add wikipedia integration docs (#24932)
Dear langchain maintainers, 

I add the wikipedia integration docs according to the [web
docs](https://python.langchain.com/v0.2/docs/integrations/retrievers/wikipedia/),
and follow the format of [tavily
example](https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/retrievers/tavily.ipynb)
and [retriever
template](https://github.com/langchain-ai/langchain/blob/master/libs/cli/langchain_cli/integration_template/docs/retrievers.ipynb),
this is my first time contributing large repo. please let me know if I'm
doing anything wrong, thank you!

Topic related: #24908

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-02 10:12:04 -04:00
ZhangShenao
71c0564c9f community[patch]: Add test case for MoonshotChat (#24960)
Add test case for `MoonshotChat`.
2024-08-02 09:37:31 -04:00
ZhangShenao
c65e48996c patch[partners] Fix check_imports bugs in pinecone and milvus (#24971)
Fix wrong declared variables of `check_imports` in pinecone and milvus
2024-08-02 09:27:11 -04:00
Isaac Francisco
d7688a4328 community[patch]: adding artifact to Tavily search (#24376)
This allows you to get raw content as well as the answer, instead of
just getting the results.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-01 21:12:11 -07:00
Bagatur
7b08de8909 langchain[patch]: Release 0.2.12 (#24954) 2024-08-02 04:04:49 +00:00
Bagatur
245cb5a252 core[patch]: Release 0.2.27 (#24952) 2024-08-02 01:43:24 +00:00
Bagatur
199e9c5ae0 core[patch]: Fix tool args schema inherited field parsing (#24936)
Fix #24925
2024-08-01 18:36:33 -07:00
Bagatur
fba65ba04f infra: test core on py 3.9, 10, 11 (#24951) 2024-08-01 18:23:37 -07:00
Leonid Ganeline
4092876863 core: docstrings `BaseCallbackHandler update (#24948)
Added missed docstrings
2024-08-01 20:46:53 -04:00
ccurme
6e45dba471 docs: fix redirect (#24950) 2024-08-01 20:45:54 -04:00
WU LIFU
ad16eed119 core[patch]: runnable config ensure_config deep copy from var_child_runnable… (#24862)
**issue**: #24660 
RunnableWithMessageHistory.stream result in error because the
[evaluation](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/runnables/branch.py#L220)
of the branch
[condition](99eb31ec41/libs/core/langchain_core/runnables/history.py (L328C1-L329C1))
unexpectedly trigger the
"[on_end](99eb31ec41/libs/core/langchain_core/runnables/history.py (L332))"
(exit_history) callback of the default branch


**descriptions**
After a lot of investigation I'm convinced that the root cause is that
1. during the execution of the runnable, the
[var_child_runnable_config](99eb31ec41/libs/core/langchain_core/runnables/config.py (L122))
is shared between the branch
[condition](99eb31ec41/libs/core/langchain_core/runnables/history.py (L328C1-L329C1))
runnable and the [default branch
runnable](99eb31ec41/libs/core/langchain_core/runnables/history.py (L332))
within the same context
2. when the default branch runnable runs, it gets the
[var_child_runnable_config](99eb31ec41/libs/core/langchain_core/runnables/config.py (L163))
and may unintentionally [add more handlers
](99eb31ec41/libs/core/langchain_core/runnables/config.py (L325))to
the callback manager of this config
3. when it is again the turn for the
[condition](99eb31ec41/libs/core/langchain_core/runnables/history.py (L328C1-L329C1))
to run, it gets the `var_child_runnable_config` whose callback manager
has the handlers added by the default branch. When it runs that handler
(`exit_history`) it leads to the error
   
with the assumption that, the `ensure_config` function actually does
want to create a immutable copy from `var_child_runnable_config` because
it starts with an [`empty` variable
](99eb31ec41/libs/core/langchain_core/runnables/config.py (L156)),
i go ahead to do a deepcopy to ensure that future modification to the
returned value won't affect the `var_child_runnable_config` variable
   
   Having said that I actually 
1. don't know if this is a proper fix
2. don't know whether it will lead to other unintended consequence 
3. don't know why only "stream" runs into this issue while "invoke" runs
without problem

so @nfcampos @hwchase17 please help review, thanks!

---------

Co-authored-by: Lifu Wu <lifu@nextbillion.ai>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-01 17:30:32 -07:00
Jacob Lee
3ab09d87d6 docs[patch]: Adds components for prereqs, compatibility, fix chat model tab issue (#24585)
Added to `docs/how_to/tools_runtime` as a proof of concept, will apply
everywhere if we like.

A bit more compact than the default callouts, will help standardize the
layout of our pages since we frequently use these boxes.

<img width="1088" alt="Screenshot 2024-07-23 at 4 49 02 PM"
src="https://github.com/user-attachments/assets/7380801c-e092-4d31-bcd8-3652ee05f29e">
2024-08-01 15:04:13 -07:00
ccurme
9cb69a8746 docs: update retriever template, add arxiv retriever (#24947) 2024-08-01 16:53:18 -04:00
Casey Clements
db3ceb4d0a partners/mongodb: Improved search index commands (#24745)
Hardens index commands with try/except for free clusters and optional
waits for syncing and tests.

[efriis](https://github.com/efriis) These are the upgrades to the search
index commands (CRUD) that I mentioned.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-01 20:16:32 +00:00
ccurme
db42576b09 docs: delete old migration guide (#24881)
Redirects to
https://python.langchain.com/v0.2/docs/versions/migrating_chains/
2024-08-01 16:11:47 -04:00
Ikko Eltociear Ashimine
be5294e35d docs: update agents.ipynb (#24945)
initalize -> initialize
2024-08-01 14:37:37 -04:00
ccurme
41ed23a050 docs: update retriever integration pages (#24931) 2024-08-01 14:37:07 -04:00
maang-h
ea505985c4 docs: Standardize ZhipuAIEmbeddings docstrings (#24933)
- **Description:** Standardize ZhipuAIEmbeddings rich docstrings.
- **Issue:** the issue #24856
2024-08-01 14:06:53 -04:00
ccurme
02db66d764 docs: fix kv store column headers (#24941)
![Screenshot 2024-08-01 at 12 32 19
PM](https://github.com/user-attachments/assets/888056b7-3065-4be0-a6b8-bcab5b729c2c)
2024-08-01 09:49:36 -07:00
Anneli Samuel
2204d8cb7d community[patch]: Invoke on_llm_new_token callback before yielding chunk (#24938)
**Description**: Invoke on_llm_new_token callback before yielding chunk
in streaming mode
**Issue**:
[#16913](https://github.com/langchain-ai/langchain/issues/16913)
2024-08-01 16:39:04 +00:00
John
ff6274d32d docs: update langchain-unstructured docs (#24935)
- **Description:** The UnstructuredClient will have a breaking change in
the near future. Add a note in the docs that the examples here may not
use the latest version and users should refer to the SDK docs for the
latest info.
2024-08-01 16:27:40 +00:00
ccurme
c72f0d2f20 docs: update toolkit integration pages (#24887)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-01 12:13:08 -04:00
Eugene Yurtsev
75776e4a54 core[patch]: In unit tests, use _schema() instead of BaseModel.schema() (#24930)
This PR introduces a module with some helper utilities for the pydantic
1 -> 2 migration.

They're meant to be used in the following way:

1) Use the utility code to get unit tests pass without requiring
modification to the unit tests
2) (If desired) upgrade the unit tests to match pydantic 2 output
3) (If desired) stop using the utility code

Currently, this module contains a way to map `schema()` generated by
pydantic 2 to (mostly) match the output from pydantic v1.
2024-08-01 11:59:04 -04:00
Serena Ruan
1827bb4042 community[patch]: support bind_tools for ChatMlflow (#24547)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- **Description:** 
Support ChatMlflow.bind_tools method
Tested in Databricks:
<img width="836" alt="image"
src="https://github.com/user-attachments/assets/fa28ef50-0110-4698-8eda-4faf6f0b9ef8">



- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
2024-08-01 08:43:07 -07:00
Michal Gregor
769c3bb838 huggingface: Added a missing argument to a ChatHuggingFace doc notebook. (#24929)
- **Description:** When adding docs for constructing ChatHuggingFace
using a HuggingFacePipeline, I forgot to add `return_full_text=False` as
an argument. In this setup, the chat response would incorrectly contain
all the input text. I am fixing that here by adding that line to the
offending notebook.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-01 15:42:35 +00:00
BottlePumpkin
bfc59c1d26 community: Fix KeyError in NotionDB loader when 'name' is missing (#24224)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.



**Description:** This PR fixes a KeyError in NotionDBLoader when the
"name" key is missing in the "people" property.

**Issue:** Fixes #24223 

**Dependencies:** None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-01 13:55:40 +00:00
alexqiao
8eb0bdead3 community[patch]: Invoke callback prior to yielding token (#24917)
**Description: Invoke callback prior to yielding token in stream method
for chat_models .**
**Issue**: https://github.com/langchain-ai/langchain/issues/16913
#16913
2024-08-01 13:19:55 +00:00
ZhangShenao
b2dd9ffaaf patch[cli] Fix bug in check_imports.py (#24918)
The variable `has_failure` in check_imports.py is wrong-declared. It's
actually an another variable.
2024-08-01 09:08:12 -04:00
Jacob Lee
f14121faaf docs[patch]: Update local RAG tutorial (#24909) 2024-07-31 19:19:23 -07:00
Bagatur
b7abac9f92 infra: poetry lock root (#24913) 2024-08-01 01:19:34 +00:00
Jacob Lee
42c686bc28 docs[patch]: Update local model how-to guide (#24911)
Updates to use `langchain_ollama`, new models, chat model example
2024-07-31 18:01:55 -07:00
Erick Friis
600fc233ef partners/ollama: release 0.1.1 (#24910) 2024-07-31 17:31:29 -07:00
Bagatur
25b93cc4c0 core[patch]: stringify tool non-content blocks (#24626)
Slightly breaking bugfix. Shouldn't cause too many issues since no
models would be able to handle non-content block ToolMessage.content
anyways.
2024-07-31 16:42:38 -07:00
Bagatur
492df75937 docs: chat model table nit (#24907) 2024-07-31 15:14:27 -07:00
Bagatur
a24c445e02 docs: cleanup readme (#24905) 2024-07-31 15:03:28 -07:00
Jacob Lee
5098f9dc79 infra: related section in docs (#24829)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-31 14:25:58 -07:00
Nikita Pakunov
c776471ac6 community: fix AttributeError: 'YandexGPT' object has no attribute '_grpc_metadata' (#24432)
Fixes #24049

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-31 21:18:33 +00:00
Bagatur
752a71b688 integrations[patch]: release model packages (#24900) 2024-07-31 20:48:20 +00:00
Jacob Lee
1213a59f87 docs[patch]: Update kv store docs pages (#24848) 2024-07-31 13:23:24 -07:00
Erick Friis
17a06cb7a6 infra: check templates based on integration (#24857)
instead of hardcoding a linter for each, iterate through the lines of
the template notebook and find lines that start with `##` (includes
lower headings), and enforce that those headings are found in new docs
that are contributed
2024-07-31 13:19:50 -07:00
Erick Friis
a7380dd531 cli: release 0.0.28 (#24852) 2024-07-31 13:03:24 -07:00
Erick Friis
e98e4be0f7 cli: register new integration doc templates (#24854)
- wait to merge for retriever.ipynb merge #24836
2024-07-31 13:03:05 -07:00
Eugene Yurtsev
210623b409 core[minor]: Add support for pydantic 2 to utility to get fields (#24899)
Add compatibility for pydantic 2 for a utility function.

This will help push some small changes to master, so they don't have to
be kept track of on a separate branch.
2024-07-31 19:11:07 +00:00
Bagatur
7d1694040d core[patch]: Release 0.2.26 (#24898) 2024-07-31 19:00:50 +00:00
Eugene Yurtsev
add16111b9 community[patch]: Make the pydantic linter stricter (#24897)
Stricter linting of deprecated pydantic features.
2024-07-31 18:57:37 +00:00
Eugene Yurtsev
a4a444f73d community[patch]: Fix arcee llm usage of root_validator(pre=False) (#24896)
Should be pre=True
2024-07-31 18:49:20 +00:00
Eugene Yurtsev
69c656aa5f langchain[minor]: Upgrade ambiguous root_validator to @pre_init (#24895)
The @pre_init validator is a temporary solution for base models. It has
similar (but not identical) semantics to @root_validator(), but it works
strictly as a pre-init validator.

It'll work as expected as long as the pydantic model type hints were
correct.
2024-07-31 18:46:47 +00:00
Eugene Yurtsev
5099a9c9b4 core[patch]: Update unit tests with a workaround for using AnyID in pydantic 2 (#24892)
Pydantic 2 ignores __eq__ overload for subclasses of strings.
2024-07-31 14:42:12 -04:00
Bagatur
8461934c2b core[patch], integrations[patch]: convert TypedDict to tool schema support (#24641)
supports following UX

```python
    class SubTool(TypedDict):
        """Subtool docstring"""

        args: Annotated[Dict[str, Any], {}, "this does bar"]

    class Tool(TypedDict):
        """Docstring
        Args:
            arg1: foo
        """

        arg1: str
        arg2: Union[int, str]
        arg3: Optional[List[SubTool]]
        arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
        arg5: Annotated[Optional[float], None]
```

- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
2024-07-31 18:27:24 +00:00
Eugene Yurtsev
d24b82357f community[patch]: Add missing annotations (#24890)
This PR adds annotations in comunity package.

Annotations are only strictly needed in subclasses of BaseModel for
pydantic 2 compatibility.

This PR adds some unnecessary annotations, but they're not bad to have
regardless for documentation pages.
2024-07-31 18:13:44 +00:00
Eugene Yurtsev
7720483432 langchain[patch]: Update unit tests to workaround a pydantic 2 issue (#24886)
This will allow our unit tests to pass when using AnyID() with our pydantic models.
2024-07-31 14:09:40 -04:00
Eugene Yurtsev
2019e31bc5 langchain[patch]: Add missing type annotations (#24889)
Adds missing type annotations in preparation for pydantic 2 upgrade.
2024-07-31 14:09:22 -04:00
ccurme
30f18c7b02 docs: add retriever integrations template (#24836) 2024-07-31 13:50:44 -04:00
Anirudh31415926535
4da3d4b18e docs: Minor corrections and updates to Cohere docs (#22726)
- **Description:** Update the Cohere's provider and RagRetriever
documentations with latest updates.
    - **Twitter handle:** Anirudh1810
2024-07-31 10:16:26 -07:00
ccurme
40b4a3de6e docs: update chat model integration pages (#24882)
to conform with template
2024-07-31 11:26:52 -04:00
Nishan Jain
b00c0fc558 [Community][minor]: Added prompt governance in pebblo_retrieval (#24874)
Title: [pebblo_retrieval] Identifying entities in prompts given in
PebbloRetrievalQA leading to prompt governance
Description: Implemented identification of entities in the prompt using
Pebblo prompt governance API.
Issue: NA
Dependencies: NA
Add tests and docs: NA
2024-07-31 13:14:51 +00:00
Rajendra Kadam
a6add89bd4 community[minor]: [PebbloSafeLoader] Implement content-size-based batching (#24871)
- **Title:** [PebbloSafeLoader] Implement content-size-based batching in
the classification flow(loader/doc API)
- **Description:** 
- Implemented content-size-based batching in the loader/doc API, set to
100KB with no external configuration option, intentionally hard-coded to
prevent timeouts.
    - Remove unused field(pb_id) from doc_metadata
- **Issue:** NA
- **Dependencies:** NA
- **Add tests and docs:** Updated
2024-07-31 09:10:28 -04:00
TrumanYan
096b66db4a community: replace it with Tencent Cloud SDK (#24172)
Description: The old method will be discontinued; use the official SDK
for more model options.
Issue: None
Dependencies: None
Twitter handle: None

Co-authored-by: trumanyan <trumanyan@tencent.com>
2024-07-31 09:05:38 -04:00
Erick Friis
99eb31ec41 cli: embed docstring template (#24855) 2024-07-31 02:16:40 +00:00
Noah Peterson
4b2a8ce6c7 docs: Shorten unreasonably long OllamaEmbeddings page (#24850)
This change removes excessive embeddings output in the Jupyter Notebook
on the [Ollama text embedding
page](https://python.langchain.com/v0.2/docs/integrations/text_embedding/ollama/)
2024-07-31 01:57:04 +00:00
Erick Friis
3999e9035c cli/docs: embedding template standardization (#24849) 2024-07-30 18:54:03 -07:00
Bagatur
1181c10c65 docs: reorder integrations sidebar (#24847) 2024-07-30 16:58:26 -07:00
Bagatur
943126c5fd docs: chat model pkg links (#24845) 2024-07-30 16:26:06 -07:00
Erick Friis
1f5444817a community: deprecate BedrockEmbeddings in favor of langchain-aws (#24846) 2024-07-30 23:13:17 +00:00
Jacob Lee
21eb4c9e5d docs[patch]: Adds first kv store doc matching new template (#24844) 2024-07-30 15:58:51 -07:00
Bagatur
a4e940550a docs: integrations custom callout (#24843) 2024-07-30 22:48:18 +00:00
Bagatur
61ecb10a77 docs: partner pkg table (#24840) 2024-07-30 15:28:10 -07:00
Erick Friis
b099cc3507 cli: release 0.0.27 (#24842) 2024-07-30 22:07:50 +00:00
Bagatur
419f2c2585 cli[patch]: tool integration templates (#24837)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-30 14:59:33 -07:00
mschoenb97IL
19b127f640 langchain: Update Langchain -> Langgraph migration docs for the deprecation of the messages_modifier parameter. (#24839)
**Description:** Updated the Langgraph migration docs to use
`state_modifier` rather than `messages_modifier`
**Issue:** N/A
**Dependencies:** N/A

- [ X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-30 21:28:32 +00:00
ccurme
c123cb2b30 docs: update migration guide (#24835)
Move to its own section in the sidebar.
2024-07-30 20:17:12 +00:00
Erick Friis
957b05b8d5 infra: py3.11 for community integration test compiling (#24834)
e.g.
https://github.com/langchain-ai/langchain/actions/runs/10167754785/job/28120861343?pr=24833
2024-07-30 18:43:10 +00:00
Erick Friis
88418af3f5 core: release 0.2.25 (#24833) 2024-07-30 18:41:09 +00:00
Bagatur
37b060112a langchain[patch]: fix ollama in init_chat_model (#24832) 2024-07-30 18:38:53 +00:00
Jerron Lim
d8f3ea82db langchain[patch]: init_chat_model() to import ChatOllama from langchain-ollama and fallback on langchain-community (#24821)
Description: init_chat_model() should import ChatOllama from
`langchain-ollama`. If that fails, fallback to `langchain-community`
2024-07-30 11:16:10 -07:00
Eugene Yurtsev
3a7f3d46c3 docs: Add pydantic compatibility to side bar (#24826)
Add pydantic compatibility to side bar
2024-07-30 14:10:48 -04:00
Isaac Francisco
511242280b [docs]: standardize vectorstores (#24797) 2024-07-30 10:38:04 -07:00
Jacob Lee
ac649800df docs[patch]: Adds kv store integration docs template (#24804) 2024-07-30 10:07:57 -07:00
cffranco94
b01d938997 experimental: Add config to convert_to_graph_documents (#24012)
PR title: Experimental: Add config to convert_to_graph_documents

Description: In order to use langfuse, i need to pass the langfuse
configuration when invoking the chain. langchain_experimental does not
allow to add any parameters (beside the documents) to the
convert_to_graph_documents method. This way, I cannot monitor the chain
in langfuse.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Catarina Franco <catarina.franco@criticalsoftware.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-30 17:01:06 +00:00
Shailendra Mishra
f2d810b3c0 clob_bugfix... (#24813)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-30 12:44:04 -04:00
Anush
51b15448cc community: Fix FastEmbedEmbeddings (#24462)
## Description

This PR:
- Fixes the validation error in `FastEmbedEmbeddings`.
- Adds support for `batch_size`, `parallel` params.
- Removes support for very old FastEmbed versions.
- Updates the FastEmbed doc with the new params.

Associated Issues:
- Resolves #24039
- Resolves #https://github.com/qdrant/fastembed/issues/296
2024-07-30 12:42:46 -04:00
ccurme
73ec24fc56 docs[patch]: add toolkit template (#24791) 2024-07-30 12:36:09 -04:00
Tamir Zitman
b3e1378f2b langchain : text_splitters Added PowerShell (#24582)
- **Description:** Added PowerShell support for text splitters language
include docs relevant update
  - **Issue:** None
  - **Dependencies:** None

---------

Co-authored-by: tzitman <tamir.zitman@intel.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-30 16:13:52 +00:00
ccurme
187ee96f7a docs: update chat model feature table (#24822) 2024-07-30 09:06:42 -07:00
Nuno Campos
68ecebf1ec core: Fix implementation of trim_first_node/trim_last_node to use exact same definition of first/last node as in the getter methods (#24802) 2024-07-30 08:44:27 -07:00
Igor Drozdov
c2706cfb9e feat(community): add tools support for litellm (#23906)
I used the following example to validate the behavior

```python
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import ConfigurableField
from langchain_anthropic import ChatAnthropic
from langchain_community.chat_models import ChatLiteLLM
from langchain_core.tools import tool
from langchain.agents import create_tool_calling_agent, AgentExecutor

@tool
def multiply(x: float, y: float) -> float:
    """Multiply 'x' times 'y'."""
    return x * y

@tool
def exponentiate(x: float, y: float) -> float:
    """Raise 'x' to the 'y'."""
    return x**y

@tool
def add(x: float, y: float) -> float:
    """Add 'x' and 'y'."""
    return x + y

prompt = ChatPromptTemplate.from_messages([
    ("system", "you're a helpful assistant"),
    ("human", "{input}"),
    ("placeholder", "{agent_scratchpad}"),
])

tools = [multiply, exponentiate, add]

llm = ChatAnthropic(model="claude-3-sonnet-20240229", temperature=0)
# llm = ChatLiteLLM(model="claude-3-sonnet-20240229", temperature=0)

agent = create_tool_calling_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

agent_executor.invoke({"input": "what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241", })
```

`ChatAnthropic` version works:

```
> Entering new AgentExecutor chain...

Invoking: `exponentiate` with `{'x': 5, 'y': 2.743}`
responded: [{'text': 'To calculate 3 + 5^2.743, we can use the "exponentiate" and "add" tools:', 'type': 'text', 'index': 0}, {'id': 'toolu_01Gf54DFTkfLMJQX3TXffmxe', 'input': {}, 'name': 'exponentiate', 'type': 'tool_use', 'index': 1, 'partial_json': '{"x": 5, "y": 2.743}'}]

82.65606421491815
Invoking: `add` with `{'x': 3, 'y': 82.65606421491815}`
responded: [{'id': 'toolu_01XUq9S56GT3Yv2N1KmNmmWp', 'input': {}, 'name': 'add', 'type': 'tool_use', 'index': 0, 'partial_json': '{"x": 3, "y": 82.65606421491815}'}]

85.65606421491815
Invoking: `add` with `{'x': 17.24, 'y': -918.1241}`
responded: [{'text': '\n\nSo 3 + 5^2.743 = 85.66\n\nTo calculate 17.24 - 918.1241, we can use:', 'type': 'text', 'index': 0}, {'id': 'toolu_01BkXTwP7ec9JKYtZPy5JKjm', 'input': {}, 'name': 'add', 'type': 'tool_use', 'index': 1, 'partial_json': '{"x": 17.24, "y": -918.1241}'}]

-900.8841[{'text': '\n\nTherefore, 17.24 - 918.1241 = -900.88', 'type': 'text', 'index': 0}]

> Finished chain.
```

While `ChatLiteLLM` version doesn't.

But with the changes in this PR, along with:

- https://github.com/langchain-ai/langchain/pull/23823
- https://github.com/BerriAI/litellm/pull/4554

The result is _almost_ the same:

```
> Entering new AgentExecutor chain...

Invoking: `exponentiate` with `{'x': 5, 'y': 2.743}`
responded: To calculate 3 + 5^2.743, we can use the "exponentiate" and "add" tools:

82.65606421491815
Invoking: `add` with `{'x': 3, 'y': 82.65606421491815}`


85.65606421491815
Invoking: `add` with `{'x': 17.24, 'y': -918.1241}`
responded:

So 3 + 5^2.743 = 85.66

To calculate 17.24 - 918.1241, we can use:

-900.8841

Therefore, 17.24 - 918.1241 = -900.88

> Finished chain.
```

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-30 15:39:34 +00:00
David Robertson
bfb7f8d40a Brave Search: Enhance search result details with extra snippets (#19209)
**Description:** 

This update significantly improves the Brave Search Tool's utility
within the LangChain library by enriching the search results it returns.
The tool previously returned title, link, and snippet, with the snippet
being a truncated 140-character description from the search engine. To
make the search results more informative, this update enables
extra_snippets by default and introduces additional result fields:
title, link, description (enhancing and renaming the former snippet
field), age, and snippets. The snippets field provides a list of strings
summarizing the webpage, utilizing Brave's capability for more detailed
search insights. This enhancement aims to make the search tool far more
informative and beneficial for users.

**Issue:** N/A

**Dependencies:** No additional dependencies introduced.

**Twitter handle:** @davidalexr987

**Code Changes Summary:**

- Changed the default setting to include extra_snippets in search
results.
- Renamed the snippet field to description to accurately reflect its
content and included an age field for search results.
- Introduced a snippets field that lists webpage summaries, providing
users with comprehensive search result insights.

**Backward Compatibility Note:**

The renaming of snippet to description improves the accuracy of the
returned data field but may impact existing users who have developed
integration's or analyses based on the snippet field. I believe this
change is essential for clarity and utility, and it aligns better with
the data provided by Brave Search.

**Additional Notes:**

This proposal focuses exclusively on the Brave Search package, without
affecting other LangChain packages or introducing new dependencies.
2024-07-30 15:29:38 +00:00
Eugene Yurtsev
873f64751e docs: Remove danger on how to migrate to astream events v2 (#24825)
Users should migrate to v2 now
2024-07-30 15:28:07 +00:00
Ben Chambers
435771fe74 [community]: Fix package name mismatch (#24824)
- **Description:** fix a mismatch in pypi package names
2024-07-30 11:21:39 -04:00
ccurme
b7bbfc7c67 langchain: revert "init_chat_model() to support ChatOllama from langchain-ollama" (#24819)
Reverts langchain-ai/langchain#24818

Overlooked discussion in
https://github.com/langchain-ai/langchain/pull/24801.
2024-07-30 14:23:36 +00:00
Jerron Lim
5abfc85fec langchain: init_chat_model() to support ChatOllama from langchain-ollama (#24818)
Description: Since moving away from `langchain-community` is
recommended, `init_chat_models()` should import ChatOllama from
`langchain-ollama` instead.
2024-07-30 10:17:38 -04:00
Eugene Yurtsev
4fab8996cf docs: Update pydantic compatibility (#24625)
Update pydantic compatibility. This will only be true after we release
the partner packages.
2024-07-29 22:19:00 -04:00
Jacob Lee
d6ca1474e0 docs[patch]: Adds key-value store to conceptual guide (#24798) 2024-07-29 18:45:16 -07:00
Erick Friis
cdaea17b3e cli/docs: llm integration template standardization (#24795) 2024-07-29 17:47:13 -07:00
Bagatur
a6d1fb4275 core[patch]: introduce ToolMessage.status (#24628)
Anthropic models (including via Bedrock and other cloud platforms)
accept a status/is_error attribute on tool messages/results
(specifically in `tool_result` content blocks for Anthropic API). Adding
a ToolMessage.status attribute so that users can set this attribute when
using those models
2024-07-29 14:01:53 -07:00
Isaac Francisco
78d97b49d9 [partner]: ollama llm fix (#24790) 2024-07-29 13:00:02 -07:00
maang-h
4bb1a11e02 community: Add MiniMaxChat bind_tools and structured output (#24310)
- **Description:** 
  - Add `bind_tools` method to support tool calling 
  - Add `with_structured_output` method to support structured output
2024-07-29 15:51:52 -04:00
John
0a2ff40fcc partners/unstructured: fix client api_url (#24680)
**Description:** Add empty string default for api_key and change
`server_url` to `url` to match existing loaders.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-29 11:16:41 -07:00
maang-h
bf685c242f docs: Standardize QianfanEmbeddingsEndpoint (#24786)
- **Description:** Standardize QianfanEmbeddingsEndpoint, include:
  - docstrings, the issue #21983 
  - model init arg names, the issue #20085
2024-07-29 13:19:24 -04:00
ccurme
9998e55936 core[patch]: support tool calls with non-pickleable args in tools (#24741)
Deepcopy raises with non-pickleable args.
2024-07-29 13:18:39 -04:00
Erick Friis
df78608741 mongodb: bson optional import (#24685) 2024-07-29 09:54:01 -07:00
M. Ali
c086410677 fix docs typos (#23668)
Thank you for contributing to LangChain!

- [x] **PR title**: "docs: fix multiple typos"

Co-authored-by: mohblnk <mohamed.ali@blnk.ai>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-29 16:10:55 +00:00
Pere Pasamonte
98175860ad community: Fix AWS DocumentDB similarity_search when filter is None (#24777)
**Description**

Fixes DocumentDBVectorSearch similarity_search when no filter is used;
it defaults to None but $match does not accept None, so changed default
to empty {} before pipeline is created.

**Issue**

AWS DocumentDB similarity search does not work when no filter is used.
Error msg: "the match filter must be an expression in an object" #24775

**Dependencies**

No dependencies

**Twitter handle**

https://x.com/perepasamonte

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-29 15:32:05 +00:00
Lennart J. Kurzweg
7da0597ecb partners[ollama]: Support seed parameter for ChatOllama (#24782)
## Description

Adds seed parameter to ChatOllama

## Resolves Issues
- #24703

## Dependency Changes
None

Co-authored-by: Lennart J. Kurzweg (Nx2) <git@nx2.site>
2024-07-29 15:15:20 +00:00
ccurme
e264ccf484 standard-tests[patch]: update groq and structured output test (#24781)
- Mixtral with Groq has started consistently failing tool calling tests.
Here we restrict testing to llama 3.1.
- `.schema` is deprecated in pydantic proper in favor of
`.model_json_schema`.
2024-07-29 11:10:01 -04:00
ZhangShenao
4a05679fdb patch[experimental] Fix prompt in GenerativeAgentMemory (#24771)
There is an issue with the prompt format in `GenerativeAgentMemory` ,
try to fix it.
The prompt is same as the one in method `_score_memory_importance`.
2024-07-29 07:02:31 -04:00
WU LIFU
2ba8393182 graph_transformers: bug fix for create_simple_model not passing in ll… (#24643)
issue: #24615 

descriptions: The _Graph pydantic model generated from
create_simple_model (which LLMGraphTransformer uses when allowed nodes
and relationships are provided) does not constrain the relationships
(source and target types, relationship type), and the node and
relationship properties with enums when using ChatOpenAI.
The issue is that when calling optional_enum_field throughout
create_simple_model the llm_type parameter is not passed in except for
when creating node type. Passing it into each call fixes the issue.

Co-authored-by: Lifu Wu <lifu@nextbillion.ai>
2024-07-29 07:00:56 -04:00
William FH
01ab2918a2 core[patch]: Respect injected in bound fns (#24733)
Since right now you cant use the nice injected arg syntas directly with
model.bind_tools()
2024-07-28 15:45:19 -07:00
Pavel
7fcfe7c1f4 openai[patch]: openai proxy added to base embeddings (#24539)
- [ ] **PR title**: "langchain-openai: openai proxy added to base
embeddings"

- [ ] **PR message**: 
    - **Description:** 
    Dear langchain developers,
You've already supported proxy for ChatOpenAI implementation in your
package. At the same time, if somebody needed to use proxy for chat, it
also could be necessary to be able to use it for OpenAIEmbeddings.
That's why I think it's important to add proxy support for OpenAI
embeddings. That's what I've done in this PR.

@baskaryan

---------

Co-authored-by: karpov <karpov@dohod.ru>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-07-28 20:54:13 +00:00
Lakshmi Peri
821196c4ee langchain-aws InMemoryVectorStore documentation updates (#24347)
Thank you for contributing to LangChain!

- [x] **PR title**: "Add documentaiton on InMemoryVectorStore driver for
MemoryDB to langchain-aws"
  - Langchain-aws repo :Add MemoryDB documentation 
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Added documentation on InMemoryVectorStore driver to
aws.mdx and usage example on MemoryDB clusuter
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
Add memorydb notebook to docs/docs/integrations/ folde


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-28 15:09:51 -04:00
Chuck Wooters
56c2a7f6d4 partners: add missing key name to Field() for ChatFireworks model (#24721)
**Description:** 

In the `ChatFireworks` class definition, the Field() call for the "stop"
("stop_sequences") parameter is missing the "default" keyword.

**Issue:**

Type checker reports "stop_sequences" as a missing arg (not recognizing
the default value is None)

**Dependencies:**

None

**Twitter handle:**

None
2024-07-28 18:40:21 +00:00
AmosDinh
c113682328 community:Add support for specifying document_loaders.firecrawl api url. (#24747)
community:Add support for specifying document_loaders.firecrawl api url.


Add support for specifying document_loaders.firecrawl api url. 
This is mainly to support the
[self-hosting](https://github.com/mendableai/firecrawl/blob/main/SELF_HOST.md)
option firecrawl provides. Eg. now I can specify localhost:....

The corresponding firecrawl class already provides functionality to pass
the argument. See here:
4c9d62f6d3/apps/python-sdk/firecrawl/firecrawl.py (L29)

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-28 14:30:36 -04:00
Jerron Lim
df37c0d086 partners[ollama]: Support base_url for ChatOllama (#24719)
Add a class attribute `base_url` for ChatOllama to allow users to choose
a different URL to connect to.

Fixes #24555
2024-07-28 14:25:58 -04:00
Bagatur
8964f8a710 core: use mypy<1.11 (#24749)
Bug in mypy 1.11.0 blocking CI, see example:
https://github.com/langchain-ai/langchain/actions/runs/10127096903/job/28004492692?pr=24641
2024-07-27 16:37:02 -07:00
Moritz
b81fbc962c docs: fix typo in DSPy docs (#24748)
**Description:** Just a missing "r" in metric
**Dependencies:**N/A
2024-07-27 23:34:39 +00:00
Isaac Francisco
152427eca1 make image inputs compatible with langchain_ollama (#24619) 2024-07-26 17:39:57 -07:00
William FH
0535d72927 Add type() in error msg (#24723) 2024-07-26 16:48:45 -07:00
Eugene Yurtsev
9be6b5a20f core[patch]: Correct doc-string for InMemoryRateLimiter (#24730)
Correct the documentaiton string.
2024-07-26 22:17:22 +00:00
Erick Friis
d5b4b7e05c infra: langchain max python 3.11 for resolution (#24729) 2024-07-26 21:17:11 +00:00
Erick Friis
3c3d3e9579 infra: community max python 3.11 for resolution (#24728) 2024-07-26 21:10:14 +00:00
Cristi Burcă
174e7d2ab2 langchain: Make OutputFixingParser.from_llm() create a useable retry chain (#24687)
Description: OutputFixingParser.from_llm() creates a retry chain that
returns a Generation instance, when it should actually just return a
string.
Issue: https://github.com/langchain-ai/langchain/issues/24600
Twitter handle: scribu

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-26 13:55:47 -07:00
Bagatur
b3a23ddf93 integration releases (#24725)
Release anthropic, openai, groq, mistralai, robocorp
2024-07-26 12:30:10 -07:00
Bagatur
315223ce26 core[patch]: Release 0.2.24 (#24722) 2024-07-26 18:55:32 +00:00
Hayden Wolff
0345990a42 docs: Add NVIDIA NIMs to Model Tab and Feature Table (#24146)
**Description:** Add NVIDIA NIMs to Model Tab and LLM Feature Table

---------

Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Erick Friis <erickfriis@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-26 18:20:52 +00:00
Haijian Wang
cda3025ee1 Integrating the Yi family of models. (#24491)
Thank you for contributing to LangChain!

- [x] **PR title**: "community:add Yi LLM", "docs:add Yi Documentation"
                          
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** This PR adds support for the Yi model to LangChain.
- **Dependencies:**
[langchain_core,requests,contextlib,typing,logging,json,langchain_community]
    - **Twitter handle:** 01.AI


- [x] **Add tests and docs**: I've added the corresponding documentation
to the relevant paths

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-26 10:57:33 -07:00
Bagatur
ad7581751f core[patch]: ChatPromptTemplate.init same as ChatPromptTemplate.from_… (#24486) 2024-07-26 10:48:39 -07:00
Marc Gibbons
cc451effd1 community[patch]: langchain_community.vectorstores.azuresearch Raise LangChainException instead of bare Exception (#23935)
Raise `LangChainException` instead of `Exception`. This alleviates the
need for library users to use bare try/except to handle exceptions
raised by `AzureSearch`.

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-26 15:59:06 +00:00
Jacob Lee
3d16dcd88d docs[patch]: Hide deprecated ChatGPT plugins page (#24704) 2024-07-26 08:24:33 -07:00
Eugene Yurtsev
3a5365a33e ai21: apply rate limiter in integration tests (#24717)
Apply rate limiter in integration tests
2024-07-26 11:15:36 -04:00
Eugene Yurtsev
03d62a737a together: Add rate limiter to integration tests (#24714)
Rate limit the integration tests to avoid getting 429s.
2024-07-26 10:59:33 -04:00
Eugene Yurtsev
e00cc74926 docs[minor]: Add how to guide for rate limiting a chat model (#24686)
Add how-to guide for rate limiting a chat model.
2024-07-26 14:29:06 +00:00
Diverrez morgan
c4d2a53f18 community: creation score_threshold in flashrank_rerank.py (#24016)
Description: 
add a optional score relevance threshold for select only coherent
document, it's in complement of top_n

Discussion:
add relevance score threshold in flashrank_rerank document compressors
#24013

Dependencies:
 no dependencies

---------

Co-authored-by: Benjamin BERNARD <benjamin.bernard@openpathview.fr>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-26 13:34:39 +00:00
Cong Peng
190988d93e community: Add parameter allow_dangerous_requests to WebResearchRetriever.from_llm construct (#24712)
**Description:** To avoid ValueError when construct the retriever from
method `from_llm()`.
2024-07-26 06:24:58 -07:00
monysun
5f593c172a community: fix dashcope embeddings embed_query func post too much req to api (#24707)
the fuc of embed_query of dashcope embeddings send a str param, and in
the embed_with_retry func will send error content to api
2024-07-26 12:44:07 +00:00
yonarw
b65ac8d39c community[minor]: Self query retriever for HANA Cloud Vector Engine (#24494)
Description:

- This PR adds a self query retriever implementation for SAP HANA Cloud
Vector Engine. The retriever supports all operators except for contains.
- Issue: N/A
- Dependencies: no new dependencies added

**Add tests and docs:**
Added integration tests to:
libs/community/tests/unit_tests/query_constructors/test_hanavector.py

**Documentation for self query retriever:**
/docs/integrations/retrievers/self_query/hanavector_self_query.ipynb

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-26 06:56:51 +00:00
nobbbbby
4f3b4fc7fe community[patch]: Extend Baichuan model with tool support (#24529)
**Description:** Expanded the chat model functionality to support tools
in the 'baichuan.py' file. Updated module imports and added tool object
handling in message conversions. Additional changes include the
implementation of tool binding and related unit tests. The alterations
offer enhanced model capabilities by enabling interaction with tool-like
objects.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-25 23:20:44 -07:00
Rave Harpaz
ee399e3ec5 community[patch]: Add OCI Generative AI tool and structured output support (#24693)
- [x] **PR title**: 
  community: Add OCI Generative AI tool and structured output support


- [x] **PR message**: 
- **Description:** adding tool calling and structured output support for
chat models offered by OCI Generative AI services. This is an update to
our last PR 22880 with changes in
/langchain_community/chat_models/oci_generative_ai.py
    - **Issue:** NA
    - **Dependencies:** NA
    - **Twitter handle:** NA


- [x] **Add tests and docs**: 
  1. we have updated our unit tests
2. we have updated our documentation under
/docs/docs/integrations/chat/oci_generative_ai.ipynb


- [x] **Lint and test**: `make format`, `make lint` and `make test` we
run successfully

---------

Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
2024-07-25 23:19:00 -07:00
Yuki Watanabe
2b6a262f84 community[patch]: Replace filters argument to filter in DatabricksVectorSearch (#24530)
The
[DatabricksVectorSearch](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/vectorstores/databricks_vector_search.py#L21)
class exposes similarity search APIs with argument `filters`, which is
inconsistent with other VS classes who uses `filter` (singular). This PR
updates the argument and add alias for backward compatibility.

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
2024-07-25 21:20:18 -07:00
Leonid Ganeline
148766ddc1 docs: integrations missed links (#24681)
Added missed links; missed provider page
2024-07-25 20:38:25 -07:00
Sunish Sheth
59880a9147 community[patch]: mlflow handle empty chunk(#24689) 2024-07-25 20:36:29 -07:00
Eugene Yurtsev
20690db482 core[minor]: Add BaseModel.rate_limiter, RateLimiter abstraction and in-memory implementation (#24669)
This PR proposes to create a rate limiter in the chat model directly,
and would replace: https://github.com/langchain-ai/langchain/pull/21992

It resolves most of the constraints that the Runnable rate limiter
introduced:

1. It's not annoying to apply the rate limiter to existing code; i.e., 
possible to roll out the change at the location where the model is
instantiated,
rather than at every location where the model is used! (Which is
necessary
   if the model is used in different ways in a given application.)
2. batch rate limiting is enforced properly
3. the rate limiter works correctly with streaming
4. the rate limiter is aware of the cache
5. The rate limiter can take into account information about the inputs
into the
model (we can add optional inputs to it down-the road together with
outputs!)

The only downside is that information will not be properly reflected in
tracing
as we don't have any metadata evens about a rate limiter. So the total
time
spent on a model invocation will be: 

* time spent waiting for the rate limiter
* time spend on the actual model request

## Example

```python
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_groq import ChatGroq

groq = ChatGroq(rate_limiter=InMemoryRateLimiter(check_every_n_seconds=1))
groq.invoke('hello')
```
2024-07-26 03:03:34 +00:00
Eugene Yurtsev
c623ae6661 experimental[patch]: Fix import test (#24672)
Import test was misconfigured, the glob wasn't returning any file paths
2024-07-25 22:14:40 -04:00
Chaunte W. Lacewell
69eacaa887 Community[minor]: Update VDMS vectorstore (#23729)
**Description:** 
- This PR exposes some functions in VDMS vectorstore, updates VDMS
related notebooks, updates tests, and upgrade version of VDMS (>=0.0.20)

**Issue:** N/A

**Dependencies:** 
- Update vdms>=0.0.20
2024-07-25 22:13:04 -04:00
sykp241095
703491e824 docs: update another TiDB Cloud link as it is already public beta (#24694)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-25 18:39:55 -07:00
Nuno Campos
8734cabc09 core: Don't draw None edge labels (#24690)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-25 22:12:39 +00:00
Jacob Lee
ce067c19e9 docs[patch]: Simplify tool calling guide, improve tool calling conceptual guide (#24637)
Lots of duplicated content from concepts, missing pointers to the second
half of the tool calling loop

Simpler + more focused + a more prominent link to the second half of the
loop was what I was aiming for, but down to be more conservative and
just more prominently link the "passing tools back to the model" guide.

I have also moved the tool calling conceptual guide out from under
`Structured Output` (while leaving a small section for structured
output-specific information) and added more content. The existing
`#functiontool-calling` link will go to this new section.
2024-07-25 14:39:14 -07:00
Bagatur
4840db6892 docs: standardize groq chat model docs (#24616)
part of #22296

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-25 14:10:49 -07:00
Isaac Francisco
218c554c4f [docs]: add doctoring to ChatTogether (#24636) 2024-07-25 14:10:41 -07:00
Bagatur
0fe29b4343 docs: standardize Together docs (#24617)
Part of #22296

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-25 14:10:31 -07:00
Isaac Francisco
5c7e589aaf deprecating ollama_functions (#24632) 2024-07-25 13:50:04 -07:00
KyrianC
0fdbaf4a8d community: fix ChatEdenAI + EdenAI Tools (#23715)
Fixes for Eden AI Custom tools and ChatEdenAI:
- add missing import in __init__ of chat_models
- add `args_schema` to custom tools. otherwise '__arg1' would sometimes
be passed to the `run` method
- fix IndexError when no human msg is added in ChatEdenAI
2024-07-25 15:19:14 -04:00
Daniel Campos
871bf5a841 docs: Update snowflake.mdx for arctic-m-v1.5 (#24678)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-25 17:48:54 +00:00
Leonid Ganeline
8b7cffc363 docs: integrations missed references (#24631)
**Issue:** Several packages are not referenced in the `providers` pages.

**Fix:** Added the missed references. Fixed the notebook formatting.
2024-07-25 13:26:46 -04:00
ccurme
58dd69f7f2 core[patch]: fix mutating tool calls (#24677)
In some cases tool calls are mutated when passed through a tool.
2024-07-25 16:46:36 +00:00
ccurme
dfbd12b384 mistral[patch]: translate tool call IDs to mistral compatible format (#24668)
Mistral appears to have added validation for the format of its tool call
IDs:

`{"object":"error","message":"Tool call id was abc123 but must be a-z,
A-Z, 0-9, with a length of
9.","type":"invalid_request_error","param":null,"code":null}`

This breaks compatibility of messages from other providers. Here we add
a function that converts any string to a Mistral-valid tool call ID, and
apply it to incoming messages.
2024-07-25 12:39:32 -04:00
maang-h
38d30e285a docs: Standardize BaichuanTextEmbeddings docstrings (#24674)
- **Description:** Standardize BaichuanTextEmbeddings docstrings.
- **Issue:** the issue #21983
2024-07-25 12:12:00 -04:00
Eugene Yurtsev
89bcca3542 experimental[patch]: Bump core (#24671) 2024-07-25 09:05:43 -07:00
rick-SOPTIM
cd563fb628 community[minor]: passthrough auth parameter on requests to Ollama-LLMs (#24068)
Thank you for contributing to LangChain!

**Description:**
This PR allows users of `langchain_community.llms.ollama.Ollama` to
specify the `auth` parameter, which is then forwarded to all internal
calls of `requests.request`. This works in the same way as the existing
`headers` parameters. The auth parameter enables the usage of the given
class with Ollama instances, which are secured by more complex
authentication mechanisms, that do not only rely on static headers. An
example are AWS API Gateways secured by the IAM authorizer, which
expects signatures dynamically calculated on the specific HTTP request.

**Issue:**

Integrating a remote LLM running through Ollama using
`langchain_community.llms.ollama.Ollama` only allows setting static HTTP
headers with the parameter `headers`. This does not work, if the given
instance of Ollama is secured with an authentication mechanism that
makes use of dynamically created HTTP headers which for example may
depend on the content of a given request.

**Dependencies:**

None

**Twitter handle:**

None

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-25 15:48:35 +00:00
남광우
256bad3251 core[minor]: Support asynchronous in InMemoryVectorStore (#24472)
### Description

* support asynchronous in InMemoryVectorStore
* since embeddings might be possible to call asynchronously, ensure that
both asynchronous and synchronous functions operate correctly.
2024-07-25 11:36:55 -04:00
Luca Dorigo
5fdbdd6bec community[patch]: Fix invalid iohttp verify parameter (#24655)
Should fix https://github.com/langchain-ai/langchain/issues/24654
2024-07-25 11:09:21 -04:00
Daniel Glogowski
221486687a docs: updated CHATNVIDIA notebooks (#24584)
Updated notebook for tool calling support in chat models
2024-07-25 09:22:53 -04:00
Ken Jenney
d6631919f4 docs: tool calling is enabled in ChatOllama (#24665)
Description: According to this page:
https://python.langchain.com/v0.2/docs/integrations/chat/ollama_functions/
ChatOllama does support Tool Calling.
Issue: The documentation is incorrect
Dependencies: None
Twitter handle: NA
2024-07-25 13:21:30 +00:00
sykp241095
235eb38d3e docs: update TiDB Cloud links as vector search feature becomes public beta (#24667)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-25 13:20:02 +00:00
Eugene Yurtsev
7dd6b32991 core[minor]: Add InMemoryRateLimiter (#21992)
This PR introduces the following Runnables:

1. BaseRateLimiter: an abstraction for specifying a time based rate
limiter as a Runnable
2. InMemoryRateLimiter: Provides an in-memory implementation of a rate
limiter

## Example

```python

from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda
from datetime import datetime

foo = InMemoryRateLimiter(requests_per_second=0.5)

def meow(x):
    print(datetime.now().strftime("%H:%M:%S.%f"))
    return x

chain = foo | meow

for _ in range(10):
    print(chain.invoke('hello'))
```

Produces:

```
17:12:07.530151
hello
17:12:09.537932
hello
17:12:11.548375
hello
17:12:13.558383
hello
17:12:15.568348
hello
17:12:17.578171
hello
17:12:19.587508
hello
17:12:21.597877
hello
17:12:23.607707
hello
17:12:25.617978
hello
```


![image](https://github.com/user-attachments/assets/283af59f-e1e1-408b-8e75-d3910c3c44cc)


## Interface

The rate limiter uses the following interface for acquiring a token:

```python
class BaseRateLimiter(Runnable[Input, Output], abc.ABC):
  @abc.abstractmethod
  def acquire(self, *, blocking: bool = True) -> bool:
      """Attempt to acquire the necessary tokens for the rate limiter.```
```

The flag `blocking` has been added to the abstraction to allow
supporting streaming (which is easier if blocking=False).

## Limitations

- The rate limiter is not designed to work across different processes.
It is an in-memory rate limiter, but it is thread safe.
- The rate limiter only supports time-based rate limiting. It does not
take into account the size of the request or any other factors.
- The current implementation does not handle streaming inputs well and
will consume all inputs even if the rate limit has been reached. Better
support for streaming inputs will be added in the future.
- When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.
One way to mitigate this is to use batch_as_completed() or
abatch_as_completed().

## Bursty behavior in `batch` and `abatch`

When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.

This becomes a problem if users are using `batch` and `abatch` with many
inputs (e.g., 100). In this case, there will be a burst of 100 inputs
into the batch of the rate limited runnable.

1. Using a RunnableBinding

The API would look like:

```python
from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda

rate_limiter = InMemoryRateLimiter(requests_per_second=0.5)

def meow(x):
    return x

rate_limited_meow = RunnableLambda(meow).with_rate_limiter(rate_limiter)
```

2. Another option is to add some init option to RunnableSequence that
changes `.batch()` to be depth first (e.g., by delegating to
`batch_as_completed`)

```python
RunnableSequence(first=rate_limiter, last=model, how='batch-depth-first')
```

Pros: Does not require Runnable Binding
Cons: Feels over-complicated
2024-07-25 01:34:03 +00:00
Oleg Kulyk
4b1b7959a2 community[minor]: Add ScrapingAnt Loader Community Integration (#24514)
Added [ScrapingAnt](https://scrapingant.com/) Web Loader integration.
ScrapingAnt is a web scraping API that allows extracting web page data
into accessible and well-formatted markdown.

Description: Added ScrapingAnt web loader for retrieving web page data
as markdown
Dependencies: scrapingant-client
Twitter: @WeRunTheWorld3

---------

Co-authored-by: Oleg Kulyk <oleg@scrapingant.com>
2024-07-24 21:11:43 -04:00
Jacob Lee
afee851645 docs[patch]: Fix image caption document loader page and typo on custom tools page (#24635) 2024-07-24 17:16:18 -07:00
Jacob Lee
a73e2222d4 docs[patch]: Updates LLM caching, HF sentence transformers, and DDG pages (#24633) 2024-07-24 16:58:05 -07:00
Erick Friis
e160b669c8 infra: add unstructured api key to release (#24638) 2024-07-24 16:47:24 -07:00
John
d59c656ea5 unstructured, community, initialize langchain-unstructured package (#22779)
#### Update (2): 
A single `UnstructuredLoader` is added to handle both local and api
partitioning. This loader also handles single or multiple documents.

#### Changes in `community`:
Changes here do not affect users. In the initial process of using the
SDK for the API Loaders, the Loaders in community were refactored.
Other changes include:
The `UnstructuredBaseLoader` has a new check to see if both
`mode="paged"` and `chunking_strategy="by_page"`. It also now has
`Element.element_id` added to the `Document.metadata`.
`UnstructuredAPIFileLoader` and `UnstructuredAPIFileIOLoader`. As such,
now both directly inherit from `UnstructuredBaseLoader` and initialize
their `file_path`/`file` attributes respectively and implement their own
`_post_process_elements` methods.

--------
#### Update:
New SDK Loaders in a [partner
package](https://python.langchain.com/v0.1/docs/contributing/integrations/#partner-package-in-langchain-repo)
are introduced to prevent breaking changes for users (see discussion
below).

##### TODO:
- [x] Test docstring examples
--------
- **Description:** UnstructuredAPIFileIOLoader and
UnstructuredAPIFileLoader calls to the unstructured api are now made
using the unstructured-client sdk.
- **New Dependencies:** unstructured-client

- [x] **Add tests and docs**: If you're adding a new integration, please
include
- [x] a test for the integration, preferably unit tests that do not rely
on network access,
- [x] update the description in
`docs/docs/integrations/providers/unstructured.mdx`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

TODO:
- [x] Update
https://python.langchain.com/v0.1/docs/integrations/document_loaders/unstructured_file/#unstructured-api
-
`langchain/docs/docs/integrations/document_loaders/unstructured_file.ipynb`
- The description here needs to indicate that users should install
`unstructured-client` instead of `unstructured`. Read over closely to
look for any other changes that need to be made.
- [x] Update the `lazy_load` method in `UnstructuredBaseLoader` to
handle json responses from the API instead of just lists of elements.
- This method may need to be overwritten by the API loaders instead of
changing it in the `UnstructuredBaseLoader`.
- [x] Update the documentation links in the class docstrings (the
Unstructured documents have moved)
- [x] Update Document.metadata to include `element_id` (see thread
[here](https://unstructuredw-kbe4326.slack.com/archives/C044N0YV08G/p1718187499818419))

---------

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
2024-07-24 23:21:20 +00:00
Leonid Ganeline
2394807033 docs: fix ChatGooglePalm fix (#24629)
**Issue:** now the
[ChatGooglePalm](https://python.langchain.com/v0.2/docs/integrations/vectorstores/scann/#retrievalqa-demo)
class is not parsed and do not presented in the "API Reference:" line.

**PR:** [Fixed
it](https://langchain-7n5k5wkfs-langchain.vercel.app/v0.2/docs/integrations/vectorstores/scann/#retrievalqa-demo)
by properly importing.
2024-07-24 18:09:08 -04:00
Joel Akeret
acfce30017 Adding compatibility for OllamaFunctions with ImagePromptTemplate (#24499)
- [ ] **PR title**: "experimental: Adding compatibility for
OllamaFunctions with ImagePromptTemplate"

- [ ] **PR message**: 
- **Description:** Removes the outdated
`_convert_messages_to_ollama_messages` method override in the
`OllamaFunctions` class to ensure that ollama multimodal models can be
invoked with an image.
    - **Issue:** #24174

---------

Co-authored-by: Joel Akeret <joel.akeret@ti&m.com>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-24 14:57:05 -07:00
Erick Friis
8f3c052db1 cli: release 0.0.26 (#24623)
- **cli: remove snapshot flag from pytest defaults**
- **x**
- **x**
2024-07-24 13:13:58 -07:00
ChengZi
29a3b3a711 partners[milvus]: add dynamic field (#24544)
add dynamic field feature to langchain_milvus
more unittest, more robustic

plan to deprecate the `metadata_field` in the future, because it's
function is the same as `enable_dynamic_field`, but the latter one is a
more advanced concept in milvus

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-24 20:01:58 +00:00
Erick Friis
20fe4deea0 milvus: release 0.1.3 (#24624) 2024-07-24 13:01:27 -07:00
Erick Friis
3a55f4bfe9 cli: remove snapshot flag from pytest defaults (#24622) 2024-07-24 19:41:01 +00:00
Isaac Francisco
fea9ff3831 docs: add tables for search and code interpreter tools (#24586) 2024-07-24 10:51:39 -07:00
Eugene Yurtsev
b55f6105c6 community[patch]: Add linter to prevent further usage of root_validator and validator (#24613)
This linter is meant to move development to use __init__ instead of
root_validator and validator.

We need to investigate whether we need to lint some of the functionality
of Field (e.g., `lt` and `gt`, `alias`)

`alias` is the one that's most popular:

(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "alias=" | wc -l
144

(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "ge=" | wc -l
10

(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "gt=" | wc -l
4
2024-07-24 12:35:21 -04:00
Anush
4585eaef1b qdrant: Fix vectors_config access (#24606)
## Description

Fixes #24558 by accessing `vectors_config` after asserting it to be a
dict.
2024-07-24 10:54:33 -04:00
ccurme
f337f3ed36 docs: update chain migration guide (#24501)
- Update `ConversationChain` example to show use without session IDs;
- Fix a minor bug (specify history_messages_key).
2024-07-24 10:45:00 -04:00
maang-h
22175738ac docs: Add MongoDBChatMessageHistory docstrings (#24608)
- **Description:** Add MongoDBChatMessageHistory rich docstrings.
- **Issue:** the issue #21983
2024-07-24 10:12:44 -04:00
Anindyadeep
12c3454fd9 [Community] PremAI Tool Calling Functionality (#23931)
This PR is under WIP and adds the following functionalities:

- [X] Supports tool calling across the langchain ecosystem. (However
streaming is not supported)
- [X] Update documentation
2024-07-24 09:53:58 -04:00
Vishnu Nandakumar
e271965d1e community: retrievers: added capability for using Product Quantization as one of the retriever. (#22424)
- [ ] **Community**: "Retrievers: Product Quantization"
- [X] This PR adds Product Quantization feature to the retrievers to the
Langchain Community. PQ is one of the fastest retrieval methods if the
embeddings are rich enough in context due to the concepts of
quantization and representation through centroids
    - **Description:** Adding PQ as one of the retrievers
    - **Dependencies:** using the package nanopq for this PR
    - **Twitter handle:** vishnunkumar_


- [X] **Add tests and docs**: If you're adding a new integration, please
include
   - [X] Added unit tests for the same in the retrievers.
   - [] Will add an example notebook subsequently

- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/ -
done the same

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-24 13:52:15 +00:00
stydxm
b9bea36dd4 community: fix typo in warning message (#24597)
- **Description:** 
  This PR fixes a small typo in a warning message
- **Issue:**

![](https://github.com/user-attachments/assets/5aa57724-26c5-49f6-8bc1-5a54bb67ed49)
There were double `Use` and double `instead`
2024-07-24 13:19:07 +00:00
cüre
da06d4d7af community: update finetuned model cost for 4o-mini (#24605)
- **Description:** adds model price for. reference:
https://openai.com/api/pricing/
- **Issue:** -
- **Dependencies:** -
- **Twitter handle:** cureef
2024-07-24 13:17:26 +00:00
Philippe PRADOS
5f73c836a6 openai[small]: Add the new model: gpt-4o-mini (#24594) 2024-07-24 09:14:48 -04:00
Mateusz Szewczyk
597be7d501 docs: Update IBM docs about information to pass client into WatsonxLLM and WatsonxEmbeddings object. (#24602)
Thank you for contributing to LangChain!

- [x] **PR title**: Update IBM docs about information to pass client
into WatsonxLLM and WatsonxEmbeddings object.


- [x] **PR message**: 
- **Description:** Update IBM docs about information to pass client into
WatsonxLLM and WatsonxEmbeddings object.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-07-24 09:12:13 -04:00
Jacob Lee
379803751e docs[patch]: Remove very old document comparison notebook (#24587) 2024-07-23 22:25:35 -07:00
ZhangShenao
ad18afc3ec community[patch]: Fix param spelling error in ElasticsearchChatMessageHistory (#24589)
Fix param spelling error in `ElasticsearchChatMessageHistory`
2024-07-23 19:29:42 -07:00
Isaac Francisco
464a525a5a [partner]: minor change to embeddings for Ollama (#24521) 2024-07-24 00:00:13 +00:00
Aayush Kataria
0f45ac4088 LangChain Community: VectorStores: Azure Cosmos DB Filtered Vector Search (#24087)
Thank you for contributing to LangChain!

- This PR adds vector search filtering for Azure Cosmos DB Mongo vCore
and NoSQL.


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-23 16:59:23 -07:00
Gareth
ac41c97d21 pinecone: Add embedding Inference Support (#24515)
**Description**

Add support for Pinecone hosted embedding models as
`PineconeEmbeddings`. Replacement for #22890

**Dependencies**
Add `aiohttp` to support async embeddings call against REST directly

- [x] **Add tests and docs**: If you're adding a new integration, please
include

Added `docs/docs/integrations/text_embedding/pinecone.ipynb`


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Twitter: `gdjdg17`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-23 22:50:28 +00:00
ccurme
aaf788b7cb docs[patch]: fix chat model tabs in runnable-as-tool guide (#24580) 2024-07-23 18:36:01 -04:00
Bagatur
47ae06698f docs: update ChatModelTabs defaults (#24583) 2024-07-23 21:56:30 +00:00
Erick Friis
03881c6743 docs: fix hf embeddings install (#24577) 2024-07-23 21:03:30 +00:00
ccurme
2d6b0bf3e3 core[patch]: add to RunnableLambda docstring (#24575)
Explain behavior when function returns a runnable.
2024-07-23 20:46:44 +00:00
Erick Friis
ee3955c68c docs: add tool calling for ollama (#24574) 2024-07-23 20:33:23 +00:00
Carlos André Antunes
325068bb53 community: Fix azure_openai.py (#24572)
In some lines its trying to read a key that do not exists yet. In this
cases I changed the direct access to dict.get() method


- [ x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-07-23 16:22:21 -04:00
Bagatur
bff6ca78a2 docs: duplicate how to link (#24569) 2024-07-23 18:52:05 +00:00
Nik Jmaeff
6878bc39b5 langchain: fix TrajectoryEvalChain.prep_inputs (#19959)
The previous implementation would never be called.

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-23 18:37:39 +00:00
Bagatur
55e66aa40c langchain[patch]: init_chat_model support ChatBedrockConverse (#24564) 2024-07-23 11:07:38 -07:00
Bagatur
9b7db08184 experimental[patch]: Release 0.0.63 (#24563) 2024-07-23 16:28:37 +00:00
Bagatur
8691a5a37f community[patch]: Release 0.2.10 (#24560) 2024-07-23 09:24:57 -07:00
Bagatur
4919d5d6df langchain[patch]: Release 0.2.11 (#24559) 2024-07-23 09:18:44 -07:00
Bagatur
918e1c8a93 core[patch]: Release 0.2.23 (#24557) 2024-07-23 09:01:18 -07:00
Lance Martin
58def6e34d Add tool calling example to Ollama ntbk (#24522) 2024-07-23 15:58:54 +00:00
Leonid Ganeline
e787532479 langchain: globals fix (#21281)
Issue: functions from `globals`, like the `get_debug` are placed in the
init.py file. As a result, they don't listed in the API Reference docs.
[See
this](https://langchain-9jq1kef7i-langchain.vercel.app/v0.2/docs/how_to/debugging/#set_debugtrue)
and [broken
this](https://api.python.langchain.com/en/latest/globals/langchain.globals.set_debug.html).
Change: moved code from init.py into the `globals.py` file and removed
`globals` directory. Similar to: #21266
BTW `globals` in core implemented exactly inside a file not inside a
folder.
2024-07-23 11:23:18 -04:00
Ben Chambers
e80b0932ee community[patch]: small fixes to link extractors (#24528)
- **Description:** small fixes to imports / types in the link extraction
work

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-23 14:28:06 +00:00
Morteza Hosseini
9e06991aae community[patch]: Update URL to the 2markdown API (#24546)
Update the URL to Markdown endpoint.

API information is available here: https://2markdown.com/docs#url2md
2024-07-23 14:27:55 +00:00
ZhangShenao
a14e02ab33 core[patch]: Fix word spelling error in globals.py (#24532)
Fix word spelling error in `globals.py`

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-23 14:27:16 +00:00
maang-h
378db2e1a5 docs: Add RedisChatMessageHistory docstrings (#24548)
- **Description:** Add `RedisChatMessageHistory ` rich docstrings.
- **Issue:** the issue #21983

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-23 14:23:46 +00:00
ccurme
a197a8e184 openai[patch]: move test (#24552)
No-override tests (https://github.com/langchain-ai/langchain/pull/24407)
include a condition that integrations not implement additional tests.
2024-07-23 10:22:22 -04:00
Eugene Yurtsev
0bb54ab9f0 CI: Temporarily disable min version checking on pull request (#24551)
Short term to fix CI
2024-07-23 14:12:08 +00:00
Eugene Yurtsev
f47b4edcc2 standard-test: Fix typo in skipif for chat model integration tests (#24553) 2024-07-23 10:11:01 -04:00
Jesse Wright
837a3d400b chore(docs): SQARQL -> SPARQL typo fix (#24536)
nit picky typo fix
2024-07-23 13:39:34 +00:00
Eugene Yurtsev
20b72a044c standard-tests: Add BaseModel variations tests to with_structured_output (#24527)
After this standard tests will test with the following combinations:

1. pydantic.BaseModel
2. pydantic.v1.BaseModel

If ran within a matrix, it'll covert both pydantic.BaseModel originating
from
pydantic 1 and the one defined in pydantic 2.
2024-07-23 09:01:26 -04:00
Bagatur
70c71efcab core[patch]: merge_content fix (#24526) 2024-07-22 22:20:22 -07:00
Ben Chambers
a5a3d28776 community[patch]: Remove targets_table from C* GraphVectorStore (#24502)
- **Description:** Remove the unnecessary `targets_table` parameter
2024-07-22 22:09:36 -04:00
Alexander Golodkov
2a70a07aad community[minor]: added new document loaders based on dedoc library (#24303)
### Description
This pull request added new document loaders to load documents of
various formats using [Dedoc](https://github.com/ispras/dedoc):
  - `DedocFileLoader` (determine file types automatically and parse)
  - `DedocPDFLoader` (for `PDF` and images parsing)
- `DedocAPIFileLoader` (determine file types automatically and parse
using Dedoc API without library installation)

[Dedoc](https://dedoc.readthedocs.io) is an open-source library/service
that extracts texts, tables, attached files and document structure
(e.g., titles, list items, etc.) from files of various formats. The
library is actively developed and maintained by a group of developers.

`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images
and more.
Full list of supported formats can be found
[here](https://dedoc.readthedocs.io/en/latest/#id1).
For `PDF` documents, `Dedoc` allows to determine textual layer
correctness and split the document into paragraphs.


### Issue
This pull request extends variety of document loaders supported by
`langchain_community` allowing users to choose the most suitable option
for raw documents parsing.

### Dependencies
The PR added a new (optional) dependency `dedoc>=2.2.5` ([library
documentation](https://dedoc.readthedocs.io)) to the
`extended_testing_deps.txt`

### Twitter handle
None

### Add tests and docs
1. Test for the integration:
`libs/community/tests/integration_tests/document_loaders/test_dedoc.py`
2. Example notebook:
`docs/docs/integrations/document_loaders/dedoc.ipynb`
3. Information about the library:
`docs/docs/integrations/providers/dedoc.mdx`

### Lint and test

Done locally:

  - `make format`
  - `make lint`
  - `make integration_tests`
  - `make docs_build` (from the project root)

---------

Co-authored-by: Nasty <bogatenkova.anastasiya@mail.ru>
2024-07-23 02:04:53 +00:00
Ben Chambers
5ac936a284 community[minor]: add document transformer for extracting links (#24186)
- **Description:** Add a DocumentTransformer for executing one or more
`LinkExtractor`s and adding the extracted links to each document.
- **Issue:** n/a
- **Depedencies:** none

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-22 22:01:21 -04:00
Jacob Lee
3c4652c906 docs[patch]: Hide OllamaFunctions now that Ollama supports tool calling (#24523) 2024-07-22 17:56:51 -07:00
Erick Friis
2c6b9e8771 standard-tests: add override check (#24407) 2024-07-22 23:38:01 +00:00
Nithish Raghunandanan
1639ccfd15 couchbase: [patch] Return chat message history in order (#24498)
**Description:** Fixes an issue where the chat message history was not
returned in order. Fixed it now by returning based on timestamps.

- [x] **Add tests and docs**: Updated the tests to check the order
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-22 23:30:29 +00:00
C K Ashby
ab036c1a4c docs: Update .run() to .invoke() (#24520) 2024-07-22 14:21:33 -07:00
Erick Friis
3dce2e1d35 all: add release notes to pypi (#24519) 2024-07-22 13:59:13 -07:00
Bagatur
c48e99e7f2 docs: fix sql db note (#24505) 2024-07-22 13:30:29 -07:00
Bagatur
8a140ee77c core[patch]: don't serialize BasePromptTemplate.input_types (#24516)
Candidate fix for #24513
2024-07-22 13:30:16 -07:00
MarkYQJ
df357f82ca ignore the first turn to apply "history" mechanism (#14118)
This will generate a meaningless string "system: " for generating
condense question; this increases the probability to make an improper
condense question and misunderstand user's question. Below is a case
- Original Question: Can you explain the arguments of Meilisearch?
- Condense Question
  - What are the benefits of using Meilisearch? (by CodeLlama)
  - What are the reasons for using Meilisearch? (by GPT-4)

The condense questions (not matter from CodeLlam or GPT-4) are different
from the original one.

By checking the content of each dialogue turn, generating history string
only when the dialog content is not empty.
Since there is nothing before first turn, the "history" mechanism will
be ignored at the very first turn.

Doing so, the condense question will be "What are the arguments for
using Meilisearch?".

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-22 20:11:17 +00:00
Bagatur
236e957abb core,groq,openai,mistralai,robocorp,fireworks,anthropic[patch]: Update BaseModel subclass and instance checks to handle both v1 and proper namespaces (#24417)
After this PR chat models will correctly handle pydantic 2 with
bind_tools and with_structured_output.


```python
import pydantic
print(pydantic.__version__)
```
2.8.2

```python
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_PNUFa4pdfNOYXxIMHc6ps2Do', 'type': 'tool_call'}]
<class '__main__.Add'>
```


```python
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```python
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_hhiHYP441cp14TtrHKx3Upg0', 'type': 'tool_call'}]
<class '__main__.Add'>
```

Addresses issues: https://github.com/langchain-ai/langchain/issues/22782

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 20:07:39 +00:00
C K Ashby
199e64d372 Please spell Lex's name correctly Fridman (#24517)
https://www.youtube.com/watch?v=ZIyB9e_7a4c

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-22 19:38:32 +00:00
Erick Friis
1f01c0fd98 infra: remove core from min version pr testing (#24507)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 17:46:15 +00:00
Naka Masato
884f76e05a fix: load google credentials properly in GoogleDriveLoader (#12871)
- **Description:** 
- Fix #12870: set scope in `default` func (ref:
https://google-auth.readthedocs.io/en/master/reference/google.auth.html)
- Moved the code to load default credentials to the bottom for clarity
of the logic
	- Add docstring and comment for each credential loading logic
- **Issue:** https://github.com/langchain-ai/langchain/issues/12870
- **Dependencies:** no dependencies change
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** @gymnstcs

<!-- If no one reviews your PR within a few days, please @-mention one
of @baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-22 17:43:33 +00:00
Erick Friis
a45337ea07 ollama: release 0.1.0 (#24510) 2024-07-22 10:35:26 -07:00
Isaac Francisco
1318d534af [docs]: minor react change (#24509) 2024-07-22 10:25:01 -07:00
Jorge Piedrahita Ortiz
10e3982b59 community: sambanova integration minor changes (#24503)
- Minor changes in samabanova llm integration 
  - default api 
  - docstrings
- minor changes in docs
2024-07-22 17:06:35 +00:00
maang-h
721f709dec community: Improve QianfanChatEndpoint tool result to model (#24466)
- **Description:** `QianfanChatEndpoint` When using tool result to
answer questions, the content of the tool is required to be in Dict
format. Of course, this can require users to return Dict format when
calling the tool, but in order to be consistent with other Chat Models,
I think such modifications are necessary.
2024-07-22 11:29:00 -04:00
Chaunte W. Lacewell
02f0a29293 Cookbook: Add Visual RAG example using VDMS (#24353)
- **Description:** Adding notebook to demonstrate visual RAG which uses
both video scene description generated by open source vision models (ex.
video-llama, video-llava etc.) as text embeddings and frames as image
embeddings to perform vector similarity search using VDMS.
  - **Issue:** N/A
  - **Dependencies:** N/A
2024-07-22 11:16:06 -04:00
ccurme
dcba7df2fe community[patch]: deprecate langchain_community Chroma in favor of langchain_chroma (#24474) 2024-07-22 11:00:13 -04:00
ccurme
0f7569ddbc core[patch]: enable RunnableWithMessageHistory without config (#23775)
Feedback that `RunnableWithMessageHistory` is unwieldy compared to
ConversationChain and similar legacy abstractions is common.

Legacy chains using memory typically had no explicit notion of threads
or separate sessions. To use `RunnableWithMessageHistory`, users are
forced to introduce this concept into their code. This possibly felt
like unnecessary boilerplate.

Here we enable `RunnableWithMessageHistory` to run without a config if
the `get_session_history` callable has no arguments. This enables
minimal implementations like the following:
```python
from langchain_core.chat_history import InMemoryChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
memory = InMemoryChatMessageHistory()
chain = RunnableWithMessageHistory(llm, lambda: memory)

chain.invoke("Hi I'm Bob")  # Hello Bob!
chain.invoke("What is my name?")  # Your name is Bob.
```
2024-07-22 10:36:53 -04:00
Mohammad Mohtashim
5ade0187d0 [Commutiy]: Prompts Fixed for ZERO_SHOT_REACT React Agent Type in create_sql_agent function (#23693)
- **Description:** The correct Prompts for ZERO_SHOT_REACT were not
being used in the `create_sql_agent` function. They were not using the
specific `SQL_PREFIX` and `SQL_SUFFIX` prompts if client does not
provide any prompts. This is fixed.
- **Issue:** #23585

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-22 14:04:20 +00:00
ZhangShenao
0f6737cbfe [Vector Store] Fix function add_texts in TencentVectorDB (#24469)
Regardless of whether `embedding_func` is set or not, the 'text'
attribute of document should be assigned, otherwise the `page_content`
in the document of the final search result will be lost
2024-07-22 09:50:22 -04:00
남광우
7ab82eb8cc langchain: Copy libs/standard-tests folder when building devcontainer (#24470)
### Description

* Fix `libs/langchain/dev.Dockerfile` file. copy the
`libs/standard-tests` folder when building the devcontainer.
* `poetry install --no-interaction --no-ansi --with dev,test,docs`
command requires this folder, but it was not copied.

### Reference

#### Error message when building the devcontainer from the master branch

```
...

[2024-07-20T14:27:34.779Z] ------
 > [langchain langchain-dev-dependencies 7/7] RUN poetry install --no-interaction --no-ansi --with dev,test,docs:
0.409 
0.409 Directory ../standard-tests does not exist
------

...
```

#### After the fix

Build success at vscode:

<img width="866" alt="image"
src="https://github.com/user-attachments/assets/10db1b50-6fcf-4dfe-83e1-d93c96aa2317">
2024-07-22 13:46:38 +00:00
rbrugaro
37b89fb7fc fix RAG with quantized embeddings notebook (#24422)
1. Fix HuggingfacePipeline import error to newer partner package
 2. Switch to IPEXModelForCausalLM for performance

There are no dependency changes since optimum intel is also needed for
QuantizedBiEncoderEmbeddings

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-22 13:44:03 +00:00
Thomas Meike
40c02cedaf langchain[patch]: add async methods to ConversationSummaryBufferMemory (#20956)
Added asynchronously callable methods according to the
ConversationSummaryBufferMemory API documentation.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-22 09:21:43 -04:00
Steve Sharp
cecd875cdc docs: Update streaming.ipynb (typo fix) (#24483)
**Description:** Fixes typo `Le'ts` -> `Let's`.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-22 11:09:13 +00:00
Sheng Han Lim
0c6a3fdd6b langchain: Update ContextualCompressionRetriever base_retriever type to RetrieverLike (#24192)
**Description:**
When initializing retrievers with `configurable_fields` as base
retriever, `ContextualCompressionRetriever` validation fails with the
following error:

```
ValidationError: 1 validation error for ContextualCompressionRetriever
base_retriever
  Can't instantiate abstract class BaseRetriever with abstract method _get_relevant_documents (type=type_error)
```

Example code:

```python
esearch_retriever = VertexAISearchRetriever(
    project_id=GCP_PROJECT_ID,
    location_id="global",
    data_store_id=SEARCH_ENGINE_ID,
).configurable_fields(
    filter=ConfigurableField(id="vertex_search_filter", name="Vertex Search Filter")
)

# rerank documents with Vertex AI Rank API
reranker = VertexAIRank(
    project_id=GCP_PROJECT_ID,
    location_id=GCP_REGION,
    ranking_config="default_ranking_config",
)

retriever_with_reranker = ContextualCompressionRetriever(
    base_compressor=reranker, base_retriever=esearch_retriever
)
```

It seems like the issue stems from ContextualCompressionRetriever
insisting that base retrievers must be strictly `BaseRetriever`
inherited, and doesn't take into account cases where retrievers need to
be chained and can have configurable fields defined.


0a1e475a30/libs/langchain/langchain/retrievers/contextual_compression.py (L15-L22)

This PR proposes that the base_retriever type be set to `RetrieverLike`,
similar to how `EnsembleRetriever` validates its list of retrievers:


0a1e475a30/libs/langchain/langchain/retrievers/ensemble.py (L58-L75)
2024-07-21 14:23:19 -04:00
clement.l
d98b830e4b community: add flag to toggle progress bar (#24463)
- **Description:** Add a flag to determine whether to show progress bar 
- **Issue:** n/a
- **Dependencies:** n/a
- **Twitter handle:** n/a

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-20 13:18:02 +00:00
chuanbei888
6b08a33fa4 community: fix QianfanChatEndpoint default model (#24464)
the baidu_qianfan_endpoint has been changed from ERNIE-Bot-turbo to
ERNIE-Lite-8K
2024-07-20 13:00:29 +00:00
Nuno Campos
947628311b core[patch]: Accept configurable keys top-level (#23806)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-07-20 03:49:00 +00:00
Jesus Martinez
c1d1fc13c2 langchain[patch]: Remove multiagent return_direct validation (#24419)
**Description:**

When you use Agents with multi-input tool and some of these tools have
`return_direct=True`, langchain thrown an error related to one
validator.
This change is implemented on [JS
community](https://github.com/langchain-ai/langchainjs/pull/4643) as
well

**Issue**:
This MR resolves #19843

**Dependencies:**

None

Co-authored-by: Jesus Martinez <jesusabraham.martinez@tyson.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-20 03:27:43 +00:00
Will Badart
74e3d796f1 core[patch]: ensure iterator_ in scope for _atransform_stream_with_config except (#24454)
Before, if an exception was raised in the outer `try` block in
`Runnable._atransform_stream_with_config` before `iterator_` is
assigned, the corresponding `finally` block would blow up with an
`UnboundLocalError`:

```txt
UnboundLocalError: cannot access local variable 'iterator_' where it is not associated with a value
```

By assigning an initial value to `iterator_` before entering the `try`
block, this commit ensures that the `finally` can run, and not bury the
"true" exception under a "During handling of the above exception [...]"
traceback.

Thanks for your consideration!
2024-07-20 03:24:04 +00:00
maang-h
7b28359719 docs: Add ChatSparkLLM docstrings (#24449)
- **Description:** 
  - Add `ChatSparkLLM` docstrings, the issue #22296 
  - To support `stream` method
2024-07-19 20:19:14 -07:00
Eugene Yurtsev
5e48f35fba core[minor]: Relax constraints on type checking for tools and parsers (#24459)
This will allow tools and parsers to accept pydantic models from any of
the
following namespaces:

* pydantic.BaseModel with pydantic 1
* pydantic.BaseModel with pydantic 2
* pydantic.v1.BaseModel with pydantic 2
2024-07-19 21:47:34 -04:00
Isaac Francisco
838464de25 ollama: init package (#23615)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-20 00:43:29 +00:00
Erick Friis
f4ee3c8a22 infra: add min version testing to pr test flow (#24358)
xfailing some sql tests that do not currently work on sqlalchemy v1

#22207 was very much not sqlalchemy v1 compatible. 

Moving forward, implementations should be compatible with both to pass
CI
2024-07-19 22:03:19 +00:00
Erick Friis
50cb0a03bc docs: advanced feature note (#24456)
fixes #24430
2024-07-19 20:05:59 +00:00
Bagatur
842065a9cc community[patch]: Release 0.2.9 (#24453) 2024-07-19 12:50:22 -07:00
Bagatur
27ad6a4bb3 langchain[patch]: Release 0.2.10 (#24452) 2024-07-19 12:50:13 -07:00
Bagatur
dda9438e87 community[patch]: gpt-4o-mini costs (#24421) 2024-07-19 19:02:44 +00:00
Eugene Yurtsev
604dfe2d99 community[patch]: Force opt-in for WebResearchRetriever (CVE-2024-3095) (#24451)
This PR addresses the issue raised by (CVE-2024-3095)

https://huntr.com/bounties/e62d4895-2901-405b-9559-38276b6a5273

Unfortunately, we didn't do a good job writing the initial report. It's
pointing at both the wrong package and the wrong code.

The affected code is the Web Retriever not the AsyncHTMLLoader, and the
WebRetriever lives in langchain-community

The vulnerable code lives here: 

0bd3f4e129/libs/community/langchain_community/retrievers/web_research.py (L233-L233)


This PR adds a forced opt-in for users to make sure they are aware of
the risk and can mitigate by configuring a proxy:


0bd3f4e129/libs/community/langchain_community/retrievers/web_research.py (L84-L84)
2024-07-19 18:51:35 +00:00
Bagatur
f101c759ed docs: how to pass runtime secrets (#24450) 2024-07-19 18:36:28 +00:00
Asi Greenholts
372c27f2e5 community[minor]: [GoogleApiYoutubeLoader] Replace API used in _get_document_for_channel from search to playlistItem (#24034)
- **Description:** Search has a limit of 500 results, playlistItems
doesn't. Added a class in except clause to catch another common error.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** @TupleType

---------

Co-authored-by: asi-cider <88270351+asi-cider@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 14:04:34 -04:00
Rafael Pereira
6a45bf9554 community[minor]: GraphCypherQAChain to accept additional inputs as provided by the user for cypher generation (#24300)
**Description:** This PR introduces a change to the
`cypher_generation_chain` to dynamically concatenate inputs. This
improvement aims to streamline the input handling process and make the
method more flexible. The change involves updating the arguments
dictionary with all elements from the `inputs` dictionary, ensuring that
all necessary inputs are dynamically appended. This will ensure that any
cypher generation template will not require a new `_call` method patch.

**Issue:** This PR fixes issue #24260.
2024-07-19 14:03:14 -04:00
Philippe PRADOS
f5856680fe community[minor]: add mongodb byte store (#23876)
The `MongoDBStore` can manage only documents.
It's not possible to use MongoDB for an `CacheBackedEmbeddings`.

With this new implementation, it's possible to use:
```python
CacheBackedEmbeddings.from_bytes_store(
    underlying_embeddings=embeddings,
    document_embedding_cache=MongoDBByteStore(
      connection_string=db_uri,
      db_name=db_name,
      collection_name=collection_name,
  ),
)
```
and use MongoDB to cache the embeddings !
2024-07-19 13:54:12 -04:00
yabooung
07715f815b community[minor]: Add ability to specify file encoding and json encoding for FileChatMessageHistory (#24258)
Description:
Add UTF-8 encoding support

Issue:
Inability to properly handle characters from certain languages (e.g.,
Korean)

Fix:
Implement UTF-8 encoding in FileChatMessageHistory

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 13:53:21 -04:00
Dristy Srivastava
020cc1cf3e Community[minor]: Added checksum in while send data to pebblo-cloud (#23968)
- **Description:** 
            - Updated checksum in doc metadata
- Sending checksum and removing actual content, while sending data to
`pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`/loader/doc` API
            - Adding `pb_id` i.e. pebblo id to doc metadata
            - Refactoring as needed.
- Sending `content-checksum` and removing actual content, while sending
data to `pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`prmopt` API
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** Updated
- **Docs** NA

---------

Co-authored-by: dristy.cd <dristy@clouddefense.io>
2024-07-19 13:52:54 -04:00
Eun Hye Kim
9aae8ef416 core[patch]: Fix utils.json_schema.dereference_refs (#24335 KeyError: 400 in JSON schema processing) (#24337)
Description:
This PR fixes a KeyError: 400 that occurs in the JSON schema processing
within the reduce_openapi_spec function. The _retrieve_ref function in
json_schema.py was modified to handle missing components gracefully by
continuing to the next component if the current one is not found. This
ensures that the OpenAPI specification is fully interpreted and the
agent executes without errors.

Issue:
Fixes issue #24335

Dependencies:
No additional dependencies are required for this change.

Twitter handle:
@lunara_x
2024-07-19 13:31:00 -04:00
keval dekivadiya
06f47678ae community[minor]: Add TextEmbed Embedding Integration (#22946)
**Description:**

**TextEmbed** is a high-performance embedding inference server designed
to provide a high-throughput, low-latency solution for serving
embeddings. It supports various sentence-transformer models and includes
the ability to deploy image and text embedding models. TextEmbed offers
flexibility and scalability for diverse applications.

- **PyPI Package:** [TextEmbed on
PyPI](https://pypi.org/project/textembed/)
- **Docker Image:** [TextEmbed on Docker
Hub](https://hub.docker.com/r/kevaldekivadiya/textembed)
- **GitHub Repository:** [TextEmbed on
GitHub](https://github.com/kevaldekivadiya2415/textembed)

**PR Description**
This PR adds functionality for embedding documents and queries using the
`TextEmbedEmbeddings` class. The implementation allows for both
synchronous and asynchronous embedding requests to a TextEmbed API
endpoint. The class handles batching and permuting of input texts to
optimize the embedding process.

**Example Usage:**

```python
from langchain_community.embeddings import TextEmbedEmbeddings

# Initialise the embeddings class
embeddings = TextEmbedEmbeddings(model="your-model-id", api_key="your-api-key", api_url="your_api_url")

# Define a list of documents
documents = [
    "Data science involves extracting insights from data.",
    "Artificial intelligence is transforming various industries.",
    "Cloud computing provides scalable computing resources over the internet.",
    "Big data analytics helps in understanding large datasets.",
    "India has a diverse cultural heritage."
]

# Define a query
query = "What is the cultural heritage of India?"

# Embed all documents
document_embeddings = embeddings.embed_documents(documents)

# Embed the query
query_embedding = embeddings.embed_query(query)

# Print embeddings for each document
for i, embedding in enumerate(document_embeddings):
    print(f"Document {i+1} Embedding:", embedding)

# Print the query embedding
print("Query Embedding:", query_embedding)

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-19 17:30:25 +00:00
Shikanime Deva
9c3da11910 Fix MultiQueryRetriever breaking Embeddings with empty lines (#21093)
Fix MultiQueryRetriever breaking Embeddings with empty lines

```
[chain/end] [1:chain:ConversationalRetrievalChain > 2:retriever:Retriever > 3:retriever:Retriever > 4:chain:LLMChain] [2.03s] Exiting Chain run with output:
[outputs]
> /workspaces/Sfeir/sncf/metabot-backend/.venv/lib/python3.11/site-packages/langchain/retrievers/multi_query.py(116)_aget_relevant_documents()
-> if self.include_original:
(Pdb) queries
['## Alternative questions for "Hello, tell me about phones?":', '', '1. **What are the latest trends in smartphone technology?** (Focuses on recent advancements)', '2. **How has the mobile phone industry evolved over the years?** (Historical perspective)', '3. **What are the different types of phones available in the market, and which one is best for me?** (Categorization and recommendation)']
```

Example of failure on VertexAIEmbeddings

```
grpc._channel._InactiveRpcError: <_InactiveRpcError of RPC that terminated with:
	status = StatusCode.INVALID_ARGUMENT
	details = "The text content is empty."
	debug_error_string = "UNKNOWN:Error received from peer ipv4:142.250.184.234:443 {created_time:"2024-04-30T09:57:45.625698408+00:00", grpc_status:3, grpc_message:"The text content is empty."}"
```

Fixes: #15959

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-19 17:13:12 +00:00
John Kelly
5affbada61 langchain: Add aadd_documents to ParentDocumentRetriever (#23969)
- **Description:** Add an async version of `add_documents` to
`ParentDocumentRetriever`
-  **Twitter handle:** @johnkdev

---------

Co-authored-by: John Kelly <j.kelly@mwam.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 13:12:39 -04:00
Andrew Benton
f9d64d22e5 community[minor]: Add Riza Python/JS code execution tool (#23995)
- **Description:** Add Riza Python/JS code execution tool
- **Issue:** N/A
- **Dependencies:** an optional dependency on the `rizaio` pypi package
- **Twitter handle:** [@rizaio](https://x.com/rizaio)

[Riza](https://riza.io) is a safe code execution environment for
agent-generated Python and JavaScript that's easy to integrate into
langchain apps. This PR adds two new tool classes to the community
package.
2024-07-19 17:03:22 +00:00
Ben Chambers
3691701d58 community[minor]: Add keybert-based link extractor (#24311)
- **Description:** Add a `KeybertLinkExtractor` for graph vectorstores.
This allows extracting links from keywords in a Document and linking
nodes that have common keywords.
- **Issue:** None
- **Dependencies:** None.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-19 12:25:07 -04:00
Erick Friis
ef049769f0 core[patch]: Release 0.2.22 (#24423)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-19 09:09:24 -07:00
Bagatur
cd19ba9a07 core[patch]: core lint fix (#24447) 2024-07-19 09:01:22 -07:00
Ben Chambers
83f3d95ffa community[minor]: GLiNER link extraction (#24314)
- **Description:** This allows extracting links between documents with
common named entities using [GLiNER](https://github.com/urchade/GLiNER).
- **Issue:** None
- **Dependencies:** None

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 15:34:54 +00:00
Anas Khan
b5acb91080 Mask API keys for various LLM/ChatModel Modules (#13885)
**Description:** 
- Added masking of the API Keys for the modules:
  - `langchain/chat_models/openai.py`
  - `langchain/llms/openai.py`
  - `langchain/llms/google_palm.py`
  - `langchain/chat_models/google_palm.py`
  - `langchain/llms/edenai.py`

- Updated the modules to utilize `SecretStr` from pydantic to securely
manage API key.
- Added unit/integration tests
- `langchain/chat_models/asure_openai.py` used the `open_api_key` that
is derived from the `ChatOpenAI` Class and it was assuming
`openai_api_key` is a str so we changed it to expect `SecretStr`
instead.

**Issue:** https://github.com/langchain-ai/langchain/issues/12165 ,
**Dependencies:** none,
**Tag maintainer:** @eyurtsev

---------

Co-authored-by: HassanA01 <anikeboss@gmail.com>
Co-authored-by: Aneeq Hassan <aneeq.hassan@utoronto.ca>
Co-authored-by: kristinspenc <kristinspenc2003@gmail.com>
Co-authored-by: faisalt14 <faisalt14@gmail.com>
Co-authored-by: Harshil-Patel28 <76663814+Harshil-Patel28@users.noreply.github.com>
Co-authored-by: kristinspenc <146893228+kristinspenc@users.noreply.github.com>
Co-authored-by: faisalt14 <90787271+faisalt14@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-19 15:23:34 +00:00
ccurme
f99369a54c community[patch]: fix formatting (#24443)
Somehow this got through CI:
https://github.com/langchain-ai/langchain/pull/24363
2024-07-19 14:38:53 +00:00
Ben Chambers
242b085be7 Merge pull request #24315
* community: Add Hierarchy link extractor

* add example

* lint
2024-07-19 09:42:26 -04:00
Rhuan Barros
c3308f31bc Merge pull request #24363
* important email fields
2024-07-19 09:41:20 -04:00
Piotr Romanowski
c50dd79512 docs: Update langchain-openai package version in chat_token_usage_tracking (#24436)
This PR updates docs to mention correct version of the
`langchain-openai` package required to use the `stream_usage` parameter.

As it can be noticed in the details of this [merge
commit](722c8f50ea),
that functionality is available only in `langchain-openai >= 0.1.9`
while docs state it's available in `langchain-openai >= 0.1.8`.
2024-07-19 13:07:37 +00:00
Han Sol Park
aade9bfde5 Mask API key for ChatOpenAI based chat_models (#14293)
- **Description**: Mask API key for ChatOpenAi based chat_models
(openai, azureopenai, anyscale, everlyai).
Made changes to all chat_models that are based on ChatOpenAI since all
of them assumes that openai_api_key is str rather than SecretStr.
  - **Issue:**: #12165 
  - **Dependencies:**  N/A
  - **Tag maintainer:** @eyurtsev
  - **Twitter handle:** N/A

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-19 02:25:38 +00:00
William FH
0ee6ed76ca [Evaluation] Pass in seed directly (#24403)
adding test rn
2024-07-18 19:12:28 -07:00
Nuno Campos
62b6965d2a core: In ensure_config don't copy dunder configurable keys to metadata (#24420) 2024-07-18 22:28:52 +00:00
Eugene Yurtsev
ef22ebe431 standard-tests[patch]: Add pytest assert rewrites (#24408)
This will surface nice error messages in subclasses that fail assertions.
2024-07-18 21:41:11 +00:00
Eugene Yurtsev
f62b323108 core[minor]: Support all versions of pydantic base model in argsschema (#24418)
This adds support to any pydantic base model for tools.

The only potential issue is that `get_input_schema()` will not always
return a v1 base model.
2024-07-18 17:14:23 -04:00
Prakul
b2bc15e640 docs: Update mongodb README.md (#24412)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-18 14:02:34 -07:00
Evan Harris
61ea7bf60b Add a ListRerank document compressor (#13311)
- **Description:** This PR adds a new document compressor called
`ListRerank`. It's derived from `BaseDocumentCompressor`. It's a near
exact implementation of introduced by this paper: [Zero-Shot Listwise
Document Reranking with a Large Language
Model](https://arxiv.org/pdf/2305.02156.pdf) which it finds to
outperform pointwise reranking, which is somewhat implemented in
LangChain as
[LLMChainFilter](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/document_compressors/chain_filter.py).
- **Issue:** None
- **Dependencies:** None
- **Tag maintainer:** @hwchase17 @izzymsft
- **Twitter handle:** @HarrisEMitchell

Notes:
1. I didn't add anything to `docs`. I wasn't exactly sure which patterns
to follow as [cohere reranker is under
Retrievers](https://python.langchain.com/docs/integrations/retrievers/cohere-reranker)
with other external document retrieval integrations, but other
contextual compression is
[here](https://python.langchain.com/docs/modules/data_connection/retrievers/contextual_compression/).
Happy to contribute to either with some direction.
2. I followed syntax, docstrings, implementation patterns, etc. as well
as I could looking at nearby modules. One thing I didn't do was put the
default prompt in a separate `.py` file like [Chain
Filter](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/document_compressors/chain_filter_prompt.py)
and [Chain
Extract](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/document_compressors/chain_extract_prompt.py).
Happy to follow that pattern if it would be preferred.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-18 20:34:38 +00:00
Srijan Dubey
4c651ba13a Adding LangChain v0.2 support for nvidia ai endpoint, langchain-nvidia-ai-endpoints. Removed deprecated classes from nvidia_ai_endpoints.ipynb (#24411)
Description: added support for LangChain v0.2 for nvidia ai endpoint.
Implremented inMemory storage for chains using
RunnableWithMessageHistory which is analogous to using
`ConversationChain` which was used in v0.1 with the default
`ConversationBufferMemory`. This class is deprecated in favor of
`RunnableWithMessageHistory` in LangChain v0.2

Issue: None

Dependencies: None.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-18 15:59:26 -04:00
Erick Friis
334fc1ed1c mongodb: release 0.1.7 (#24409) 2024-07-18 18:13:27 +00:00
ccurme
ba74341eee docs: update tool calling how-to to pass functions to bind_tools (#24402) 2024-07-18 08:53:48 -07:00
Harrison Chase
3adf710f1d docs: improve docs on tools (#24404)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-18 08:52:12 -07:00
Eun Hye Kim
07c5c60f63 community: fix tool appending logic and update planner prompt in OpenAPI agent toolkit (#24384)
**Description:**
- Updated the format for the 'Action' section in the planner prompt to
ensure it must be one of the tools without additional words. Adjusted
the phrasing from "should be" to "must be" for clarity and
enforceability.
- Corrected the tool appending logic in the
`_create_api_controller_agent` function to ensure that
`RequestsDeleteToolWithParsing` and `RequestsPatchToolWithParsing` are
properly added to the tools list for "DELETE" and "PATCH" operations.

**Issue:** #24382

**Dependencies:** None

**Twitter handle:** @lunara_x

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-18 13:37:46 +00:00
Casey Clements
aade1550c6 docs: Adds MongoDBAtlasVectorSearch to VectorStore list compatible with Indexing API (#24374)
Adds MongoDBAtlasVectorSearch to list of VectorStores compatible with
the Indexing API.

(One line change.)

As of `langchain-mongodb = "0.1.7"`, the requirements that the
VectorStore have both add_documents and delete methods with an ids kwarg
is satisfied. #23535 contains the implementation of that, and has been
merged.
2024-07-18 09:37:29 -04:00
Chen Xiabin
63c60a31f0 [fix] baidu qianfan AiMessage with usage_metadata (#24389)
make AIMessage usage_metadata has error
2024-07-18 09:28:16 -04:00
João Dinis Ferreira
242de9aa5e docs: remove redundant --quiet option in pip install command (#24397)
- **Description:** Removes a redundant option in a `pip install` command
in the documentation.
- **Issue:** N/A
- **Dependencies:** N/A
2024-07-18 13:24:42 +00:00
ZhangShenao
916b813107 community[patch]: Fix spelling error in ConversationVectorStoreTokenBufferMemory doc-string (#24385)
Fix word spelling error in `ConversationVectorStoreTokenBufferMemory`
2024-07-18 12:27:36 +00:00
Rajendra Kadam
1c65529fd7 community[minor]: [PebbloSafeLoader] Rename loader type and add SharePointLoader to supported loaders (#24393)
Thank you for contributing to LangChain!

- [x] **PR title**: [PebbloSafeLoader] Rename loader type and add
SharePointLoader to supported loaders
    - **Description:** Minor fixes in the PebbloSafeLoader:
        - Renamed the loader type from `remote_db` to `cloud_folder`.
- Added `SharePointLoader` to the list of loaders supported by
PebbloSafeLoader.
    - **Issue:** NA
    - **Dependencies:** NA
- [x] **Add tests and docs**: NA
2024-07-18 08:23:12 -04:00
Eugene Yurtsev
6182a402f1 experimental[patch]: block a few more things from PALValidator (#24379)
* Please see security warning already in existing class.
* The approach here is fundamentally insecure as it's relying on a block
  approach rather than an approach based on only running allowed nodes.
So users should only use this code if its running from a properly
sandboxed  environment.
2024-07-18 08:22:45 -04:00
Paolo Ráez
0dec72cab0 Community[patch]: Missing "stream" parameter in cloudflare_workersai (#23987)
### Description
Missing "stream" parameter. Without it, you'd never receive a stream of
tokens when using stream() or astream()

### Issue
No existing issue available
2024-07-18 02:09:39 +00:00
Eugene Yurtsev
570566b858 core[patch]: Update API reference for astream events (#24359)
Update the API reference for astream events to include information about
custom events.
2024-07-17 21:48:53 -04:00
Bagatur
f9baaae3ec docs: clean up tool how to titles (#24373) 2024-07-17 17:08:31 -07:00
Bagatur
4da1df568a docs: tools concepts (#24368) 2024-07-17 17:08:16 -07:00
Erick Friis
96ccba9c27 infra: 15s retry wait on test pypi (#24375) 2024-07-17 23:41:22 +00:00
Bagatur
a4c101ae97 core[patch]: Release 0.2.21 (#24372) 2024-07-17 22:44:35 +00:00
William FH
c5a07e2dd8 core[patch]: add InjectedToolArg annotation (#24279)
```python
from typing_extensions import Annotated
from langchain_core.tools import tool, InjectedToolArg
from langchain_anthropic import ChatAnthropic

@tool
def multiply(x: int, y: int, not_for_model: Annotated[dict, InjectedToolArg]) -> str:
    """multiply."""
    return x * y 

ChatAnthropic(model='claude-3-sonnet-20240229',).bind_tools([multiply]).invoke('5 times 3').tool_calls
'''
-> [{'name': 'multiply',
  'args': {'x': 5, 'y': 3},
  'id': 'toolu_01Y1QazYWhu4R8vF4hF4z9no',
  'type': 'tool_call'}]
'''
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-17 15:28:40 -07:00
Erick Friis
80f3d48195 openai: release 0.1.18 (#24369) 2024-07-17 22:26:33 +00:00
Bagatur
7d83189b19 openai[patch]: use model_name in AzureOpenAI.ls_model_name (#24366) 2024-07-17 15:24:05 -07:00
Nithish Raghunandanan
eb26b5535a couchbase: Add chat message history (#24356)
**Description:** : Add support for chat message history using Couchbase

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
2024-07-17 15:22:42 -07:00
Eugene Yurtsev
96bac8e20d core[patch]: Fix regression requiring input_variables in few chat prompt templates (#24360)
* Fix regression that requires users passing input_variables=[].

* Regression introduced by my own changes to this PR:
https://github.com/langchain-ai/langchain/pull/22851
2024-07-17 18:14:57 -04:00
Brice Fotzo
034a8c7c1b community: support advanced text extraction options for pdf documents (#20265)
**Description:** 
- Updated constructors in PyPDFParser and PyPDFLoader to handle
`extraction_mode` and additional kwargs, aligning with the capabilities
of `PageObject.extract_text()` from pypdf.

- Added `test_pypdf_loader_with_layout` along with a corresponding
example text file to validate layout extraction from PDFs.

**Issue:** fixes #19735 

**Dependencies:** This change requires updating the pypdf dependency
from version 3.4.0 to at least 4.0.0.

Additional changes include the addition of a new test
test_pypdf_loader_with_layout and an example text file to ensure the
functionality of layout extraction from PDFs aligns with the new
capabilities.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-17 20:47:09 +00:00
hmasdev
a402de3dae langchain[patch]: fix wrong dict key in OutputFixingParser, RetryOutputParser and RetryWithErrorOutputParser (#23967)
# Description
This PR aims to solve a bug in `OutputFixingParser`, `RetryOutputParser`
and `RetryWithErrorOutputParser`
The bug is that the wrong keyword argument was given to `retry_chain`.
The correct keyword argument is 'completion', but 'input' is used.

This pull request makes the following changes:
1. correct a `dict` key given to `retry_chain`;
2. add a test when using the default prompt.
   - `NAIVE_FIX_PROMPT` for `OutputFixingParser`;
   - `NAIVE_RETRY_PROMPT` for `RetryOutputParser`;
   - `NAIVE_RETRY_WITH_ERROR_PROMPT` for `RetryWithErrorOutputParser`;
3. ~~add comments on `retry_chain` input and output types~~ clarify
`InputType` and `OutputType` of `retry_chain`

# Issue
The bug is pointed out in
https://github.com/langchain-ai/langchain/pull/19792#issuecomment-2196512928

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-17 20:34:46 +00:00
Casey Clements
a47f69a120 partners/mongodb : Significant MongoDBVectorSearch ID enhancements (#23535)
## Description

This pull-request improves the treatment of document IDs in
`MongoDBAtlasVectorSearch`.

Class method signatures of add_documents, add_texts, delete, and
from_texts
now include an `ids:Optional[List[str]]` keyword argument permitting the
user
greater control. 
Note that, as before, IDs may also be inferred from
`Document.metadata['_id']`
if present, but this is no longer required,
IDs can also optionally be returned from searches.

This PR closes the following JIRA issues.

* [PYTHON-4446](https://jira.mongodb.org/browse/PYTHON-4446)
MongoDBVectorSearch delete / add_texts function rework
* [PYTHON-4435](https://jira.mongodb.org/browse/PYTHON-4435) Add support
for "Indexing"
* [PYTHON-4534](https://jira.mongodb.org/browse/PYTHON-4534) Ensure
datetimes are json-serializable

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-17 13:26:20 -07:00
Erick Friis
cc2cbfabfc milvus: release 0.1.2 (#24365) 2024-07-17 19:42:44 +00:00
Eugene Yurtsev
9e4a0e76f6 core[patch]: Fix one unit test for chat prompt template (#24362)
Minor change that fixes a unit test that had missing assertions.
2024-07-17 18:56:48 +00:00
Erick Friis
81639243e2 openai: release 0.1.17 (#24361) 2024-07-17 18:50:42 +00:00
Erick Friis
61976a4147 pinecone: release 0.1.2 (#24355) 2024-07-17 17:09:07 +00:00
Bagatur
b5360e2e5f community[patch]: Release 0.2.8 (#24354) 2024-07-17 17:07:27 +00:00
ccurme
4cf67084d3 openai[patch]: fix key collision and _astream (#24345)
Fixes small issues introduced in
https://github.com/langchain-ai/langchain/pull/24150 (unreleased).
2024-07-17 12:59:26 -04:00
Luis Moros
bcb5f354ad community: Fix SQLDatabse.from_databricks issue when ran from Job (#24346)
- Description: When SQLDatabase.from_databricks is ran from a Databricks
Workflow job, line 205 (default_host = context.browserHostName) throws
an ``AttributeError`` as the ``context`` object has no
``browserHostName`` attribute. The fix handles the exception and sets
the ``default_host`` variable to null

---------

Co-authored-by: lmorosdb <lmorosdb>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-17 12:40:12 -04:00
Bagatur
24e9b48d15 langchain[patch]: Release 0.2.9 (#24327) 2024-07-17 09:39:57 -07:00
Rafael Pereira
cf28708e7b Neo4j: Update with non-deprecated cypher methods, and new method to associate relationship embeddings (#23725)
**Description:** At the moment neo4j wrapper is using setVectorProperty,
which is deprecated
([link](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_create_setVectorProperty)).
I replaced with the non-deprecated version.

Neo4j recently introduced a new cypher method to associate embeddings
into relations using "setRelationshipVectorProperty" method. In this PR
I also implemented a new method to perform this association maintaining
the same format used in the "add_embeddings" method which is used to
associate embeddings into Nodes.
I also included a test case for this new method.
2024-07-17 12:37:47 -04:00
maang-h
2a3288b15d docs: Add ChatBaichuan docstrings (#24348)
- **Description:** Add ChatBaichuan rich docstrings.
- **Issue:** the issue #22296
2024-07-17 12:00:16 -04:00
Srijan Dubey
1792684e8f removed deprecated classes from pipelineai.ipynb, added support for LangChain v0.2 for PipelineAI integration (#24333)
Description: added support for LangChain v0.2 for PipelineAI
integration. Removed deprecated classes and incorporated support for
LangChain v0.2 to integrate with PipelineAI. Removed LLMChain and
replaced it with Runnable interface. Also added StrOutputParser, that
parses LLMResult into the top likely string.

Issue: None

Dependencies: None.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-17 13:48:32 +00:00
Tobias Sette
e60ad12521 docs(infobip.ipynb): fix typo (#24328) 2024-07-17 13:33:34 +00:00
Rafael Pereira
fc41730e28 neo4j: Fix test for order-insensitive comparison and floating-point precision issues (#24338)
**Description:** 
This PR addresses two main issues in the `test_neo4jvector.py`:
1. **Order-insensitive Comparison:** Modified the
`test_retrieval_dictionary` to ensure that it passes regardless of the
order of returned values by parsing `page_content` into a structured
format (dictionary) before comparison.
2. **Floating-point Precision:** Updated
`test_neo4jvector_relevance_score` to handle minor floating-point
precision differences by using the `isclose` function for comparing
relevance scores with a relative tolerance.

Errors addressed:

- **test_neo4jvector_relevance_score:**
  ```
AssertionError: assert [(Document(page_content='foo', metadata={'page':
'0'}), 1.0000014305114746), (Document(page_content='bar',
metadata={'page': '1'}), 0.9998371005058289),
(Document(page_content='baz', metadata={'page': '2'}),
0.9993508458137512)] == [(Document(page_content='foo', metadata={'page':
'0'}), 1.0), (Document(page_content='bar', metadata={'page': '1'}),
0.9998376369476318), (Document(page_content='baz', metadata={'page':
'2'}), 0.9993523359298706)]
At index 0 diff: (Document(page_content='foo', metadata={'page': '0'}),
1.0000014305114746) != (Document(page_content='foo', metadata={'page':
'0'}), 1.0)
  Full diff:
  - [(Document(page_content='foo', metadata={'page': '0'}), 1.0),
+ [(Document(page_content='foo', metadata={'page': '0'}),
1.0000014305114746),
? +++++++++++++++
- (Document(page_content='bar', metadata={'page': '1'}),
0.9998376369476318),
? ^^^ ------
+ (Document(page_content='bar', metadata={'page': '1'}),
0.9998371005058289),
? ^^^^^^^^^
- (Document(page_content='baz', metadata={'page': '2'}),
0.9993523359298706),
? ----------
+ (Document(page_content='baz', metadata={'page': '2'}),
0.9993508458137512),
? ++++++++++
  ]
  ```

- **test_retrieval_dictionary:**
  ```
AssertionError: assert [Document(page_content='skills:\n- Python\n- Data
Analysis\n- Machine Learning\nname: John\nage: 30\n')] ==
[Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: 30\nname: John\n')]
At index 0 diff: Document(page_content='skills:\n- Python\n- Data
Analysis\n- Machine Learning\nname: John\nage: 30\n') !=
Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: 30\nname: John\n')
  Full diff:
- [Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: 30\nname: John\n')]
? ---------
+ [Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: John\nage: 30\n')]
? +++++++++
  ```
2024-07-17 09:28:25 -04:00
Erick Friis
47ed7f766a infra: fix release prerelease deps bug (#24323) 2024-07-16 15:13:41 -07:00
Bagatur
80e7cd6cff core[patch]: Release 0.2.20 (#24322) 2024-07-16 15:04:36 -07:00
Erick Friis
6c3e65a878 infra: prerelease dep checking on release (#23269) 2024-07-16 21:48:15 +00:00
Eugene Yurtsev
616196c620 Docs: Add how to dispatch custom callback events (#24278)
* Add how-to guide for dispatching custom callback events.
* Add links from index to the how to guide
* Add link from streaming from within a tool
* Update versionadded to correct release
https://github.com/langchain-ai/langchain/releases/tag/langchain-core%3D%3D0.2.15
2024-07-16 17:38:32 -04:00
Erick Friis
dd7938ace8 docs: readthedocs deprecation fix (#24321)
https://about.readthedocs.com/blog/2024/07/addons-by-default/#how-does-it-affect-my-projects

we use build.command so we're already using addons, so I think this is
it
2024-07-16 20:32:51 +00:00
Srijan Dubey
ef07308c30 Upgraded shaleprotocol to use langchain v0.2 removed deprecated classes (#24320)
Description: Added support for langchain v0.2 for shale protocol.
Replaced LLMChain with Runnable interface which allows any two Runnables
to be 'chained' together into sequences. Also added
StreamingStdOutCallbackHandler. Callback handler for streaming.
Issue: None
Dependencies: None.
2024-07-16 20:07:36 +00:00
pbharti0831
049bc37111 Cookbook for applying RAG locally using open source models and tools on CPU (#24284)
This cookbook guides user to implement RAG locally on CPU using
langchain tools and open source models. It enables Llama2 model to
answer queries about Intel Q1 2024 earning release using RAG pipeline.

Main libraries are langchain, llama-cpp-python and gpt4all.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Sriragavi <sriragavi.r@intel.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-16 15:17:10 -04:00
Leonid Ganeline
5ccf8ebfac core: docstrings vectorstores update (#24281)
Added missed docstrings. Formatted docstrings to the consistent form.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-16 16:58:11 +00:00
Erick Friis
1e9cc02ed8 openai: raw response headers (#24150) 2024-07-16 09:54:54 -07:00
Bagatur
dc42279eb5 core[patch]: fix Typing.cast import (#24313)
Fixes #24287
2024-07-16 16:53:48 +00:00
Anush
e38bf08139 qdrant: Fixed typos in Qdrant vectorstore docs (#24312)
## Description 

As that title goes.
2024-07-16 09:44:07 -07:00
bovlb
5caa381177 community[minor]: Add ApertureDB as a vectorstore (#24088)
Thank you for contributing to LangChain!

- [X] *ApertureDB as vectorstore**: "community: Add ApertureDB as a
vectorestore"

- **Description:** this change provides a new community integration that
uses ApertureData's ApertureDB as a vector store.
    - **Issue:** none
    - **Dependencies:** depends on ApertureDB Python SDK
    - **Twitter handle:** ApertureData

- [X] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

Integration tests rely on a local run of a public docker image.
Example notebook additionally relies on a local Ollama server.

- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

All lint tests pass.

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Gautam <gautam@aperturedata.io>
2024-07-16 09:32:59 -07:00
frob
c59e663365 community[patch]: Fix docstring for ollama parameter "keep_alive" (#23973)
Fix doc-string for ollama integration
2024-07-16 14:48:38 +00:00
Mazen Ramadan
0c1889c713 docs: fix parameter typo in scrapfly loader docs (#24307)
Fixed wrong parameter typo in
[ScrapflyLoader](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/scrapfly.py)
docs, where `ignore_scrape_failures` is used instead of
`continue_on_failure`.

- Description: Fix wrong param typo in ScrapflyLoader docs.
2024-07-16 14:48:13 +00:00
Leonid Ganeline
5fcf2ef7ca core: docstrings documents (#23506)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-16 10:43:54 -04:00
Rafael Pereira
77dd327282 Docs: Fix Concepts Integration Tools Link (#24301)
- **Description:** This PR fix concepts integrations tools link.

- **Issue:** Fixes issue #24112

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-16 10:29:30 -04:00
Rahul Raghavendra Choudhury
f5a38772a8 community[patch]: Update TavilySearch to use TavilyClient instead of the deprecated Client (#24270)
On using TavilySearchAPIRetriever with any conversation chain getting
error :

`TypeError: Client.__init__() got an unexpected keyword argument
'api_key'`

It is because the retreiver class is using the depreciated `Client`
class, `TavilyClient` need to be used instead.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-16 13:35:28 +00:00
Shenhai Ran
5f2dea2b20 core[patch]: Add encoding options when create prompt template from a file (#24054)
- Uses default utf-8 encoding for loading prompt templates from file

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-16 09:35:09 -04:00
Chen Xiabin
69b1603173 baidu qianfan AiMessage with usage_metadata (#24288)
add usage_metadata to qianfan AIMessage. Thanks
2024-07-16 09:30:50 -04:00
amcastror
d83164f837 Update retrievers.ipynb (#24289)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-16 13:30:41 +00:00
Leonid Ganeline
198b85334f core[patch]: docstrings langchain_core/ files update (#24285)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-16 09:21:51 -04:00
Dobiichi-Origami
7aeaa1974d community[patch]: change the class of qianfan_ak and qianfan_sk parameters (#24293)
- **Description:** we changed the class of two parameters to fix a bug,
which causes validation failure when using QianfanEmbeddingEndpoint
2024-07-16 09:17:48 -04:00
Tibor Reiss
1c753d1e81 core[patch]: Update typing for template format to include jinja2 as a Literal (#24144)
Fixes #23929 via adjusting the typing
2024-07-16 09:09:42 -04:00
Jacob Lee
6716379f0c docs[patch]: Fix rendering issue in code splitter page (#24291) 2024-07-15 23:08:21 -07:00
Jacob Lee
58fdb070fa docs[patch]: Update intro diagram (#24290)
CC @agola11
2024-07-15 22:04:42 -07:00
Erick Friis
1d7a3ae7ce infra: add test deps to add_dependents (#24283) 2024-07-15 15:48:53 -07:00
Erick Friis
d2f671271e langchain: fix extended test (#24282) 2024-07-15 15:29:48 -07:00
Lage Ragnarsson
a3c10fc6ce community: Add support for specifying hybrid search for Databricks vector search (#23528)
**Description:**

Databricks Vector Search recently added support for hybrid
keyword-similarity search.
See [usage
examples](https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#query-a-vector-search-endpoint)
from their documentation.

This PR updates the Langchain vectorstore interface for Databricks to
enable the user to pass the *query_type* parameter to
*similarity_search* to make use of this functionality.
By default, there will not be any changes for existing users of this
interface. To use the new hybrid search feature, it is now possible to
do

```python
# ...
dvs = DatabricksVectorSearch(index)
dvs.similarity_search("my search query", query_type="HYBRID")
```

Or using the retriever:

```python
retriever = dvs.as_retriever(
    search_kwargs={
        "query_type": "HYBRID",
    }
)
retriever.invoke("my search query")
```

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-15 22:14:08 +00:00
Christopher Tee
5171ffc026 community(you): Integrate You.com conversational APIs (#23046)
You.com is releasing two new conversational APIs — Smart and Research. 

This PR:
- integrates those APIs with Langchain, as an LLM
- streaming is supported

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-15 17:46:58 -04:00
maang-h
6c7d9f93b9 feat: Add ChatTongyi structured output (#24187)
- **Description:** Add `with_structured_output` method to ChatTongyi to
support structured output.
2024-07-15 15:57:21 -04:00
Chen Xiabin
8f4620f4b8 baidu qianfan streaming token_usage (#24117)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-15 19:52:31 +00:00
maang-h
9d97de34ae community[patch]: Improve ChatBaichuan init args and role (#23878)
- **Description:** Improve ChatBaichuan init args and role
   -  ChatBaichuan adds `system` role
   - alias: `baichuan_api_base` -> `base_url`
   - `with_search_enhance` is deprecated
   - Add `max_tokens` argument
2024-07-15 15:17:00 -04:00
Erick Friis
56cca23745 openai: remove some params from default serialization (#24280) 2024-07-15 18:53:36 +00:00
mrugank-wadekar
66bebeb76a partners: add similarity search by image functionality to langchain_chroma partner package (#22982)
- **Description:** This pull request introduces two new methods to the
Langchain Chroma partner package that enable similarity search based on
image embeddings. These methods enhance the package's functionality by
allowing users to search for images similar to a given image URI. Also
introduces a notebook to demonstrate it's use.
  - **Issue:** N/A
  - **Dependencies:** None
  - **Twitter handle:** @mrugank9009

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-15 18:48:22 +00:00
pm390
b0aa915dea community[patch]: use asyncio.sleep instead of sleep in OpenAI Assistant async (#24275)
**Description:** Implemented async sleep using asyncio instead of
synchronous sleep in openAI Assistants
**Issue:** 24194
**Dependencies:** asyncio
**Twitter handle:** pietromald60939
2024-07-15 18:14:39 +00:00
Anush
d93ae756e6 qdrant: Documentation for the new QdrantVectorStore class (#24166)
## Description

Follow up on #24165. Adds a page to document the latest usage of the new
`QdrantVectorStore` class.
2024-07-15 10:39:23 -07:00
Erick Friis
1244e66bd4 docs: remove couchbase from docs linking (#24277)
`pip install couchbase` adds 12 minutes to the docs build...
2024-07-15 17:34:41 +00:00
wenngong
a001037319 retrievers: MultiVectorRetriever similarity_score_threshold search type (#23539)
Description: support MultiVectorRetriever similarity_score_threshold
search type.

Issue: #23387 #19404

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-15 13:31:34 -04:00
Carlos André Antunes
20151384d7 fix azure_openai.py: some keys do not exists (#24158)
In some lines its trying to read a key that do not exists yet. In this
cases I changed the direct access to dict.get() method

Thank you for contributing to LangChain!

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-07-15 17:17:05 +00:00
blueoom
d895614d19 text_splitters: add request parameters for function HTMLHeaderTextSplitter.split_text… (#24178)
**Description:**

The `split_text_from_url` method of `HTMLHeaderTextSplitter` does not
include parameters like `timeout` when using `requests` to send a
request. Therefore, I suggest adding a `kwargs` parameter to the
function, which can be passed as arguments to `requests.get()`
internally, allowing control over the `get` request.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-15 16:43:56 +00:00
Bagatur
9d0c1d2dc9 docs: specify init_chat_model version (#24274) 2024-07-15 16:29:06 +00:00
MoraxMa
a7296bddc2 docs: updated Tongyi package (#24259)
* updated pip install package
2024-07-15 16:25:35 +00:00
Bagatur
c9473367b1 langchain[patch]: Release 0.2.8 (#24273) 2024-07-15 16:05:51 +00:00
JP-Ellis
f77659463a core[patch]: allow message utils to work with lcel (#23743)
The functions `convert_to_messages` has had an expansion of the
arguments it can take:

1. Previously, it only could take a `Sequence` in order to iterate over
it. This has been broadened slightly to an `Iterable` (which should have
no other impact).
2. Support for `PromptValue` and `BaseChatPromptTemplate` has been
added. These are generated when combining messages using the overloaded
`+` operator.

Functions which rely on `convert_to_messages` (namely `filter_messages`,
`merge_message_runs` and `trim_messages`) have had the type of their
arguments similarly expanded.

Resolves #23706.

<!--
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
-->

---------

Signed-off-by: JP-Ellis <josh@jpellis.me>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-07-15 08:58:05 -07:00
Harold Martin
ccdaf14eff docs: Spell check fixes (#24217)
**Description:** Spell check fixes for docs, comments, and a couple of
strings. No code change e.g. variable names.
**Issue:** none
**Dependencies:** none
**Twitter handle:** hmartin
2024-07-15 15:51:43 +00:00
Leonid Ganeline
cacdf96f9c core docstrings tracers update (#24211)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-15 11:37:09 -04:00
Leonid Ganeline
36ee083753 core: docstrings utils update (#24213)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-15 11:36:00 -04:00
thehunmonkgroup
e8a21146d3 community[patch]: upgrade default model for ChatAnyscale (#24232)
Old default `meta-llama/Llama-2-7b-chat-hf` no longer supported.
2024-07-15 11:34:59 -04:00
Bagatur
a0958c0607 docs: more tool call -> tool message docs (#24271) 2024-07-15 07:55:07 -07:00
Bagatur
620b118c70 core[patch]: Release 0.2.19 (#24272) 2024-07-15 07:51:30 -07:00
ccurme
888fbc07b5 core[patch]: support passing args_schema through as_tool (#24269)
Note: this allows the schema to be passed in positionally.

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda


class Add(BaseModel):
    """Add two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


def add(input: dict) -> int:
    return input["a"] + input["b"]


runnable = RunnableLambda(add)
as_tool = runnable.as_tool(Add)
as_tool.args_schema.schema()
```
```
{'title': 'Add',
 'description': 'Add two integers together.',
 'type': 'object',
 'properties': {'a': {'title': 'A',
   'description': 'First integer',
   'type': 'integer'},
  'b': {'title': 'B', 'description': 'Second integer', 'type': 'integer'}},
 'required': ['a', 'b']}
```
2024-07-15 07:51:05 -07:00
ccurme
ab2d7821a7 fireworks[patch]: use firefunction-v2 in standard tests (#24264) 2024-07-15 13:15:08 +00:00
ccurme
6fc7610b1c standard-tests[patch]: update test_bind_runnables_as_tools (#24241)
Reduce number of tool arguments from two to one.
2024-07-15 08:35:07 -04:00
Bagatur
0da5078cad langchain[minor]: Generic configurable model (#23419)
alternative to
[23244](https://github.com/langchain-ai/langchain/pull/23244). allows
you to use chat model declarative methods

![Screenshot 2024-06-25 at 1 07 10
PM](https://github.com/langchain-ai/langchain/assets/22008038/910d1694-9b7b-46bc-bc2e-3792df9321d6)
2024-07-15 01:11:01 +00:00
Bagatur
d0728b0ba0 core[patch]: add tool name to tool message (#24243)
Copying current ToolNode behavior
2024-07-15 00:42:40 +00:00
Bagatur
9224027e45 docs: tool artifacts how to (#24198) 2024-07-14 17:04:47 -07:00
Bagatur
5c3e2612da core[patch]: Release 0.2.18 (#24230) 2024-07-13 09:14:43 -07:00
Bagatur
65321bf975 core[patch]: fix ToolCall "type" when streaming (#24218) 2024-07-13 08:59:03 -07:00
Jacob Lee
2b7d1cdd2f docs[patch]: Update tool child run docs (#24160)
Documents #24143
2024-07-13 07:52:37 -07:00
Anush
a653b209ba qdrant: test new QdrantVectorStore (#24165)
## Description

This PR adds integration tests to follow up on #24164.

By default, the tests use an in-memory instance.

To run the full suite of tests, with both in-memory and Qdrant server:

```
$ docker run -p 6333:6333 qdrant/qdrant

$ make test

$ make integration_test
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:59:30 +00:00
Roman Solomatin
f071581aea openai[patch]: update openai params (#23691)
**Description:** Explicitly add parameters from openai API



- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 16:53:33 -07:00
Leonid Ganeline
f0a7581b50 milvus: docstring (#23151)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:25:31 +00:00
Christian D. Glissov
474b88326f langchain_qdrant: Added method "_asimilarity_search_with_relevance_scores" to Qdrant class (#23954)
I stumbled upon a bug that led to different similarity scores between
the async and sync similarity searches with relevance scores in Qdrant.
The reason being is that _asimilarity_search_with_relevance_scores is
missing, this makes langchain_qdrant use the method of the vectorstore
baseclass leading to drastically different results.

To illustrate the magnitude here are the results running an identical
search in a test vectorstore.

Output of asimilarity_search_with_relevance_scores:
[0.9902903374601824, 0.9472135924938804, 0.8535534011299859]

Output of similarity_search_with_relevance_scores:
[0.9805806749203648, 0.8944271849877607, 0.7071068022599718]

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:25:20 +00:00
Bagatur
bdc03997c9 standard-tests[patch]: check for ToolCall["type"] (#24209) 2024-07-12 16:17:34 -07:00
Nada Amin
3f1cf00d97 docs: Improve neo4j semantic templates (#23939)
I made some changes based on the issues I stumbled on while following
the README of neo4j-semantic-ollama.
I made the changes to the ollama variant, and can also port the relevant
ones to the layer variant once this is approved.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:08:25 +00:00
Nada Amin
6b47c7361e docs: fix code usage to use the ollama variant (#23937)
**Description:** the template neo4j-semantic-ollama uses an import from
the neo4j-semantic-layer template instead of its own.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:07:42 +00:00
Anirudh31415926535
7677ceea60 docs: model parameter mandatory for cohere embedding and rerank (#23349)
Latest langchain-cohere sdk mandates passing in the model parameter into
the Embeddings and Reranker inits.

This PR is to update the docs to reflect these changes.
2024-07-12 23:07:28 +00:00
Miroslav
aee55eda39 community: Skip Login to HuggubgFaceHub when token is not set (#21561)
Thank you for contributing to LangChain!

- [ ] **HuggingFaceEndpoint**: "Skip Login to HuggingFaceHub"
  - Where:  langchain, community, llm, huggingface_endpoint
 


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Skip login to huggingface hub when when
`huggingfacehub_api_token` is not set. This is needed when using custom
`endpoint_url` outside of HuggingFaceHub.
- **Issue:** the issue # it fixes
https://github.com/langchain-ai/langchain/issues/20342 and
https://github.com/langchain-ai/langchain/issues/19685
    - **Dependencies:** None


- [ ] **Add tests and docs**: 
  1. Tested with locally available TGI endpoint
  2.  Example Usage
```python
from langchain_community.llms import HuggingFaceEndpoint

llm = HuggingFaceEndpoint(
    endpoint_url='http://localhost:8080',
    server_kwargs={
        "headers": {"Content-Type": "application/json"}
    }
)
resp = llm.invoke("Tell me a joke")
print(resp)
```
 Also tested against HF Endpoints
 ```python
 from langchain_community.llms import HuggingFaceEndpoint
huggingfacehub_api_token = "hf_xyz"
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm = HuggingFaceEndpoint(
    huggingfacehub_api_token=huggingfacehub_api_token,
    repo_id=repo_id,
)
resp = llm.invoke("Tell me a joke")
print(resp)
 ```
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 22:10:32 +00:00
Anush
d09dda5a08 qdrant: Bump patch version (#24168)
# Description

To release a new version of `langchain-qdrant` after #24165 and #24166.
2024-07-12 14:48:50 -07:00
Bagatur
12950cc602 standard-tests[patch]: improve runnable tool description (#24210) 2024-07-12 21:33:56 +00:00
Erick Friis
e8ee781a42 ibm: move to external repo (#24208) 2024-07-12 21:14:24 +00:00
Bagatur
02e71cebed together[patch]: Release 0.1.4 (#24205) 2024-07-12 13:59:58 -07:00
Bagatur
259d4d2029 anthropic[patch]: Release 0.1.20 (#24204) 2024-07-12 13:59:15 -07:00
Bagatur
3aed74a6fc fireworks[patch]: Release 0.1.5 (#24203) 2024-07-12 13:58:58 -07:00
Bagatur
13b0d7ec8f openai[patch]: Release 0.1.16 (#24202) 2024-07-12 13:58:39 -07:00
Bagatur
71cd6e6feb groq[patch]: Release 0.1.7 (#24201) 2024-07-12 13:58:19 -07:00
Bagatur
99054e19eb mistralai[patch]: Release 0.1.10 (#24200) 2024-07-12 13:57:58 -07:00
Bagatur
7a1321e2f9 ibm[patch]: Release 0.1.10 (#24199) 2024-07-12 13:57:38 -07:00
Bagatur
cb5031f22f integrations[patch]: require core >=0.2.17 (#24207) 2024-07-12 20:54:01 +00:00
Nithish Raghunandanan
f1618ec540 couchbase: Add standard and semantic caches (#23607)
Thank you for contributing to LangChain!

**Description:** Add support for caching (standard + semantic) LLM
responses using Couchbase


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 20:30:03 +00:00
Eugene Yurtsev
8d82a0d483 core[patch]: Mark GraphVectorStore as beta (#24195)
* This PR marks graph vectorstore as beta
2024-07-12 14:28:06 -04:00
Bagatur
0a1e475a30 core[patch]: Release 0.2.17 (#24189) 2024-07-12 17:08:29 +00:00
Bagatur
6166ea67a8 core[minor]: rename ToolMessage.raw_output -> artifact (#24185) 2024-07-12 09:52:44 -07:00
Jean Nshuti
d77d9bfc00 community[patch]: update typo document content returned from semanticscholar (#24175)
Update "astract" -> abstract
2024-07-12 15:40:47 +00:00
Leonid Ganeline
aa3e3cfa40 core[patch]: docstrings runnables update (#24161)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-12 11:27:06 -04:00
mumu
14ba1d4b45 docs: fix numeric errors in tools_chain.ipynb (#24169)
Description: Corrected several numeric errors in the
docs/docs/how_to/tools_chain.ipynb file to ensure the accuracy of the
documentation.
2024-07-12 11:26:26 -04:00
Ikko Eltociear Ashimine
18da9f5e59 docs: update custom_chat_model.ipynb (#24170)
characetrs -> characters
2024-07-12 06:48:22 -04:00
Tomaz Bratanic
d3a2b9fae0 Fix neo4j type error on missing constraint information (#24177)
If you use `refresh_schema=False`, then the metadata constraint doesn't
exist. ATM, we used default `None` in the constraint check, but then
`any` fails because it can't iterate over None value
2024-07-12 06:39:29 -04:00
Anush
7014d07cab qdrant: new Qdrant implementation (#24164) 2024-07-12 04:52:02 +02:00
Xander Dumaine
35784d1c33 langchain[minor]: add document_variable_name to create_stuff_documents_chain (#24083)
- **Description:** `StuffDocumentsChain` uses `LLMChain` which is
deprecated by langchain runnables. `create_stuff_documents_chain` is the
replacement, but needs support for `document_variable_name` to allow
multiple uses of the chain within a longer chain.
- **Issue:** none
- **Dependencies:** none
2024-07-12 02:31:46 +00:00
Eugene Yurtsev
8858846607 milvus[patch]: Fix Milvus vectorstore for newer versions of langchain-core (#24152)
Fix for: https://github.com/langchain-ai/langchain/issues/24116

This keeps the old behavior of add_documents and add_texts
2024-07-11 18:51:18 -07:00
thedavgar
ffe6ca986e community: Fix Bug in Azure Search Vectorstore search asyncronously (#24081)
Thank you for contributing to LangChain!

**Description**:
This PR fixes a bug described in the issue in #24064, when using the
AzureSearch Vectorstore with the asyncronous methods to do search which
is also the method used for the retriever. The proposed change includes
just change the access of the embedding as optional because is it not
used anywhere to retrieve documents. Actually, the syncronous methods of
retrieval do not use the embedding neither.

With this PR the code given by the user in the issue works.

```python
vectorstore = AzureSearch(
    azure_search_endpoint=os.getenv("AI_SEARCH_ENDPOINT_SECRET"),
    azure_search_key=os.getenv("AI_SEARCH_API_KEY"),
    index_name=os.getenv("AI_SEARCH_INDEX_NAME_SECRET"),
    fields=fields,
    embedding_function=encoder,
)

retriever = vectorstore.as_retriever(search_type="hybrid", k=2)

await vectorstore.avector_search("what is the capital of France")
await retriever.ainvoke("what is the capital of France")
```

**Issue**:
The Azure Search Vectorstore is not working when searching for documents
with asyncronous methods, as described in issue #24064

**Dependencies**:
There are no extra dependencies required for this change.

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-11 18:32:19 -07:00
Anush
7790d67f94 qdrant: New sparse embeddings provider interface - PART 1 (#24015)
## Description

This PR introduces a new sparse embedding provider interface to work
with the new Qdrant implementation that will follow this PR.

Additionally, an implementation of this interface is provided with
https://github.com/qdrant/fastembed.

This PR will be followed by
https://github.com/Anush008/langchain/pull/3.
2024-07-11 17:07:25 -07:00
Erick Friis
1132fb801b core: release 0.2.16 (#24159) 2024-07-11 23:59:41 +00:00
Nuno Campos
1d37aa8403 core: Remove extra newline (#24157) 2024-07-11 23:55:36 +00:00
ccurme
cb95198398 standard-tests[patch]: add tests for runnables as tools and streaming usage metadata (#24153) 2024-07-11 18:30:05 -04:00
Erick Friis
d002fa902f infra: fix redundant matrix config (#24151) 2024-07-11 15:15:41 -07:00
Bagatur
8d100c58de core[patch]: Tool accept RunnableConfig (#24143)
Relies on #24038

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 22:13:17 +00:00
Bagatur
5fd1e67808 core[minor], integrations...[patch]: Support ToolCall as Tool input and ToolMessage as Tool output (#24038)
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)

Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
    arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
    """A Structured Tool"""
    return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}


def test_tool_call_input_tool_message_with_raw_output() -> None:
    tool_call: Dict = {
        "name": "structured_api",
        "args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
        "id": "123",
        "type": "tool_call",
    }
    expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
    tool = _mock_structured_tool_with_raw_output
    actual = tool.invoke(tool_call)
    assert actual == expected

    tool_call.pop("type")
    with pytest.raises(ValidationError):
        tool.invoke(tool_call)

    actual_content = tool.invoke(tool_call["args"])
    assert actual_content == expected.content
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 14:54:02 -07:00
Bagatur
eeb996034b core[patch]: Release 0.2.15 (#24149) 2024-07-11 21:34:25 +00:00
Nuno Campos
03fba07d15 core[patch]: Update styles for mermaid graphs (#24147) 2024-07-11 14:19:36 -07:00
Jacob Lee
c481a2715d docs[patch]: Add structural example to style guide (#24133)
CC @nfcampos
2024-07-11 13:20:14 -07:00
ccurme
8ee8ca7c83 core[patch]: propagate parse_docstring to tool decorator (#24123)
Disabled by default.

```python
from langchain_core.tools import tool

@tool(parse_docstring=True)
def foo(bar: str, baz: int) -> str:
    """The foo.

    Args:
        bar: this is the bar
        baz: this is the baz
    """
    return bar


foo.args_schema.schema()
```
```json
{
  "title": "fooSchema",
  "description": "The foo.",
  "type": "object",
  "properties": {
    "bar": {
      "title": "Bar",
      "description": "this is the bar",
      "type": "string"
    },
    "baz": {
      "title": "Baz",
      "description": "this is the baz",
      "type": "integer"
    }
  },
  "required": [
    "bar",
    "baz"
  ]
}
```
2024-07-11 20:11:45 +00:00
Jacob Lee
4121d4151f docs[patch]: Fix typo (#24132)
CC @efriis
2024-07-11 20:10:48 +00:00
Erick Friis
bd18faa2a0 infra: add SQLAlchemy to min version testing (#23186)
preventing issues like #22546 

Notes:
- this will only affect release CI. We may want to consider adding
running unit tests with min versions to PR CI in some form
- because this only affects release CI, it could create annoying issues
releasing while I'm on vacation. Unless anyone feels strongly, I'll wait
to merge this til when I'm back
2024-07-11 20:09:57 +00:00
Jacob Lee
f1f1f75782 community[patch]: Make AzureML endpoint return AI messages for type assistant (#24085) 2024-07-11 21:45:30 +02:00
Eugene Yurtsev
4ba14adec6 core[patch]: Clean up indexing test code (#24139)
Refactor the code to use the existing InMemroyVectorStore.

This change is needed for another PR that moves some of the imports
around (and messes up the mock.patch in this file)
2024-07-11 18:54:46 +00:00
Atul R
457677c1b7 community: Fixes use of ImagePromptTemplate with Ollama (#24140)
Description: ImagePromptTemplate for Multimodal llms like llava when
using Ollama
Twitter handle: https://x.com/a7ulr

Details:

When using llava models / any ollama multimodal llms and passing images
in the prompt as urls, langchain breaks with this error.

```python
image_url_components = image_url.split(",")
                           ^^^^^^^^^^^^^^^^^^^^
AttributeError: 'dict' object has no attribute 'split'
```

From the looks of it, there was bug where the condition did check for a
`url` field in the variable but missed to actually assign it.

This PR fixes ImagePromptTemplate for Multimodal llms like llava when
using Ollama specifically.

@hwchase17
2024-07-11 11:31:48 -07:00
Matt
8327925ab7 community:support additional Azure Search Options (#24134)
- **Description:** Support additional kwargs options for the Azure
Search client (Described here
https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#configurations)
    - **Issue:** N/A
    - **Dependencies:** No additional Dependencies

---------
2024-07-11 18:22:36 +00:00
ccurme
122e80e04d core[patch]: add versionadded to as_tool (#24138) 2024-07-11 18:08:08 +00:00
Erick Friis
c4417ea93c core: release 0.2.14, remove poetry 1.7 incompatible flag from root (#24137) 2024-07-11 17:59:51 +00:00
Isaac Francisco
7a62d3dbd6 standard-tests[patch]: test that bind_tools can accept regular python function (#24135) 2024-07-11 17:42:17 +00:00
Nuno Campos
2428984205 core: Add metadata to graph json repr (#24131)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-11 17:23:52 +00:00
Harley Gross
ea3cd1ebba community[minor]: added support for C in RecursiveCharacterTextSplitter (#24091)
Description: Added support for C in RecursiveCharacterTextSplitter by
reusing the separators for C++
2024-07-11 16:47:48 +00:00
Nuno Campos
3e454d7568 core: fix docstring (#24129) 2024-07-11 16:38:14 +00:00
Eugene Yurtsev
08638ccc88 community[patch]: QianfanLLMEndpoint fix type information for the keys (#24128)
Fix for issue: https://github.com/langchain-ai/langchain/issues/24126
2024-07-11 16:24:26 +00:00
Nuno Campos
ee3fe20af4 core: mermaid: Render metadata key-value pairs when drawing mermaid graph (#24103)
- if node is runnable binding with metadata attached
2024-07-11 16:22:23 +00:00
Eugene Yurtsev
1e7d8ba9a6 ci[patch]: Update community linter to provide a helpful error message (#24127)
Update community import linter to explain what's wrong
2024-07-11 16:22:08 +00:00
maang-h
16e178a8c2 docs: Add MiniMaxChat docstrings (#24026)
- **Description:** Add MiniMaxChat rich docstrings.
- **Issue:** the issue #22296
2024-07-11 10:55:02 -04:00
Christophe Bornet
5fc5ef2b52 community[minor]: Add graph store extractors (#24065)
This adds an extractor interface and an implementation for HTML pages.
Extractors are used to create GraphVectorStore Links on loaded content.

**Twitter handle:** cbornet_
2024-07-11 10:35:31 -04:00
maang-h
9bcf8f867d docs: Add SQLChatMessageHistory docstring (#23978)
- **Description:** Add SQLChatMessageHistory docstring.
- **Issue:** the issue #21983

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-11 14:24:28 +00:00
Rafael Pereira
092e9ee0e6 community[minor]: Neo4j Fixed similarity docs (#23913)
**Description:** There was missing some documentation regarding the
`filter` and `params` attributes in similarity search methods.

---------

Co-authored-by: rpereira <rafael.pereira@criticalsoftware.com>
2024-07-11 10:16:48 -04:00
Mis
10d8c3cbfa docs: Fix column positioning in the text splitting section for AI21SemanticTextSplitter (#24062) 2024-07-11 09:38:04 -04:00
Jacob Lee
555c6d3c20 docs[patch]: Updates tool error handling guide, add admonition (#24102)
@eyurtsev
2024-07-10 21:10:46 -07:00
Eugene Yurtsev
dc131ac42a core[minor]: Add dispatching for custom events (#24080)
This PR allows dispatching adhoc events for a given run.

# Context

This PR allows users to send arbitrary data to the callback system and
to the astream events API from within a given runnable. This can be
extremely useful to surface custom information to end users about
progress etc.

Integration with langsmith tracer will be done separately since the data
cannot be currently visualized. It'll be accommodated using the events
attribute of the Run

# Examples with astream events

```python
from langchain_core.callbacks import adispatch_custom_event
from langchain_core.tools import tool

@tool
async def foo(x: int) -> int:
    """Foo"""
    await adispatch_custom_event("event1", {"x": x})
    await adispatch_custom_event("event2", {"x": x})
    return x + 1

async for event in foo.astream_events({'x': 1}, version='v2'):
    print(event)
```

```python
{'event': 'on_tool_start', 'data': {'input': {'x': 1}}, 'name': 'foo', 'tags': [], 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'metadata': {}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_tool_end', 'data': {'output': 2}, 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}
```

```python
from langchain_core.callbacks import adispatch_custom_event
from langchain_core.runnables import RunnableLambda

@RunnableLambda
async def foo(x: int) -> int:
    """Foo"""
    await adispatch_custom_event("event1", {"x": x})
    await adispatch_custom_event("event2", {"x": x})
    return x + 1

async for event in foo.astream_events(1, version='v2'):
    print(event)
```

```python
{'event': 'on_chain_start', 'data': {'input': 1}, 'name': 'foo', 'tags': [], 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'metadata': {}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_chain_stream', 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'foo', 'tags': [], 'metadata': {}, 'data': {'chunk': 2}, 'parent_ids': []}
{'event': 'on_chain_end', 'data': {'output': 2}, 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}
```

# Examples with handlers 

This is copy pasted from unit tests

```python
    class CustomCallbackManager(BaseCallbackHandler):
        def __init__(self) -> None:
            self.events: List[Any] = []

        def on_custom_event(
            self,
            name: str,
            data: Any,
            *,
            run_id: UUID,
            tags: Optional[List[str]] = None,
            metadata: Optional[Dict[str, Any]] = None,
            **kwargs: Any,
        ) -> None:
            assert kwargs == {}
            self.events.append(
                (
                    name,
                    data,
                    run_id,
                    tags,
                    metadata,
                )
            )

    callback = CustomCallbackManager()

    run_id = uuid.UUID(int=7)

    @RunnableLambda
    def foo(x: int, config: RunnableConfig) -> int:
        dispatch_custom_event("event1", {"x": x})
        dispatch_custom_event("event2", {"x": x}, config=config)
        return x

    foo.invoke(1, {"callbacks": [callback], "run_id": run_id})

    assert callback.events == [
        ("event1", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}),
        ("event2", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}),
    ]
```
2024-07-11 02:25:12 +00:00
Jacob Lee
14a8bbc21a docs[patch]: Adds tool intermediate streaming guide (#24098)
Can merge now and update when we add support for custom events.

CC @eyurtsev @vbarda
2024-07-10 17:38:51 -07:00
Erick Friis
1de1182a9f docs: discourage unconfirmed partner packages (#24099) 2024-07-11 00:34:37 +00:00
Erick Friis
71c2221f8c openai: release 0.1.15 (#24097) 2024-07-10 16:45:42 -07:00
Erick Friis
6ea6f9f7bc core: release 0.2.13 (#24096) 2024-07-10 16:39:15 -07:00
ccurme
975b6129f6 core[patch]: support conversion of runnables to tools (#23992)
Open to other thoughts on UX.

string input:
```python
as_tool = retriever.as_tool()
as_tool.invoke("cat")  # [Document(...), ...]
```

typed dict input:
```python
class Args(TypedDict):
    key: int

def f(x: Args) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(f).as_tool(
    name="my tool",
    description="description",  # name, description are inferred if not supplied
)
as_tool.invoke({"key": 3})  # "6"
```

for untyped dict input, allow specification of parameters + types
```python
def g(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(g).as_tool(arg_types={"key": int})
result = as_tool.invoke({"key": 3})  # "6"
```

Passing the `arg_types` is slightly awkward but necessary to ensure tool
calls populate parameters correctly:
```python
from typing import Any, Dict

from langchain_core.runnables import RunnableLambda
from langchain_openai import ChatOpenAI


def f(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"key": int})

llm = ChatOpenAI().bind_tools([as_tool])

result = llm.invoke("Use the tool on 3.")
tool_call = result.tool_calls[0]
args = tool_call["args"]
assert args == {"key": 3}

as_tool.run(args)
```

Contrived (?) example with langgraph agent as a tool:
```python
from typing import List, Literal
from typing_extensions import TypedDict

from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent


llm = ChatOpenAI(temperature=0)


def magic_function(input: int) -> int:
    """Applies a magic function to an input."""
    return input + 2


agent_1 = create_react_agent(llm, [magic_function])


class Message(TypedDict):
    role: Literal["human"]
    content: str

agent_tool = agent_1.as_tool(
    arg_types={"messages": List[Message]},
    name="Jeeves",
    description="Ask Jeeves.",
)

agent_2 = create_react_agent(llm, [agent_tool])
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-10 19:29:59 -04:00
Jacob Lee
b63a48b7d3 docs[patch]: Fix typos, add prereq sections (#24095) 2024-07-10 23:15:37 +00:00
Erick Friis
9de562f747 infra: create individual jobs in check_diff, do max milvus testing in 3.11 (#23829)
pickup from #23721
2024-07-10 22:45:18 +00:00
Erick Friis
141943a7e1 infra: docs ignore step in script (#24090) 2024-07-10 15:18:00 -07:00
Bagatur
6928f4c438 core[minor]: Add ToolMessage.raw_output (#23994)
Decisions to discuss:
1.  is a new attr needed or could additional_kwargs be used for this
2. is raw_output a good name for this attr
3. should raw_output default to {} or None
4. should raw_output be included in serialization
5. do we need to update repr/str to  exclude raw_output
2024-07-10 20:11:10 +00:00
jongwony
14dd89a1ee docs: add itemgetter in how_to/dynamic_chain (#23951)
Hello! I am honored to be able to contribute to the LangChain project
for the first time.

- **Description:** Using `RunnablePassthrough` logic without providing
`chat_history` key will result in nested keys in `question`, so I submit
a pull request to resolve this issue.

I am attaching a LangSmith screenshot below.

This is the result of the current version of the document.

<img width="1112" alt="image"
src="https://github.com/langchain-ai/langchain/assets/12846075/f0597089-c375-472f-b2bf-793baaecd836">

without `chat_history`:

<img width="1112" alt="image"
src="https://github.com/langchain-ai/langchain/assets/12846075/5c0e3ae7-3afe-417c-9132-770387f0fff2">


- **Lint and test**: 

<img width="777" alt="image"
src="https://github.com/langchain-ai/langchain/assets/12846075/575d2545-3aed-4338-9779-1a0b17365418">
2024-07-10 17:17:51 +00:00
Eugene Yurtsev
c4e149d4f1 community[patch]: Add linter to catch @root_validator (#24070)
- Add linter to prevent further usage of vanilla root validator
- Udpate remaining root validators
2024-07-10 14:51:03 +00:00
ccurme
9c6efadec3 community[patch]: propagate cost information to OpenAI callback (#23996)
This is enabled following
https://github.com/langchain-ai/langchain/pull/22716.
2024-07-10 14:50:35 +00:00
Dismas Banda
91b37b2d81 docs: fix spelling mistake in concepts.mdx: Fouth -> Fourth (#24067)
**Description:** 
Corrected the spelling for fourth.

**Twitter handle:** @dismasbanda
2024-07-10 14:35:54 +00:00
William FH
1e1fd30def [Core] Fix fstring in logger warning (#24043) 2024-07-09 19:53:18 -07:00
Jacob Lee
66265aaac4 docs[patch]: Update GPT4All docs (#24044)
CC @efriis
2024-07-10 02:39:42 +00:00
Jacob Lee
8dac0fb3f1 docs[patch]: Remove deprecated Airbyte loaders from listings (#23927)
CC @efriis
2024-07-10 02:21:25 +00:00
G Sreejith
68fee3e44b docs: template readme update, fix docstring typo in a runnable (#24002)
URL

https://python.langchain.com/v0.2/docs/templates/openai-functions-tool-retrieval-agent/

Checklist
I added a url -
https://python.langchain.com/v0.2/docs/templates/openai-functions-agent/
2024-07-09 14:03:31 -07:00
Ethan Yang
13855ef0c3 [HuggingFace Pipeline] add streaming support (#23852) 2024-07-09 17:02:00 -04:00
Erick Friis
34a02efcf9 infra: remove double heading in release notes (#24037) 2024-07-09 20:48:17 +00:00
Nuno Campos
859e434932 core: Speed up json parse for large strings (#24036)
for a large string:
- old 4.657918874989264
- new 0.023724667000351474
2024-07-09 12:26:50 -07:00
Nuno Campos
160fc7f246 core: Move json parsing in base chat model / output parser to bg thread (#24031)
- add version of AIMessageChunk.__add__ that can add many chunks,
instead of only 2
- In agenerate_from_stream merge and parse chunks in bg thread
- In output parse base classes do more work in bg threads where
appropriate

---------

Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
2024-07-09 12:26:36 -07:00
Nuno Campos
73966e693c openai: Create msg chunk in bg thread (#24032)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-09 12:01:51 -07:00
Erick Friis
007c5a85d5 multiple: use modern installer in poetry (#23998) 2024-07-08 18:50:48 -07:00
Erick Friis
e80c150c44 community: release 0.2.7 (prev was langchain) (#23997) 2024-07-08 23:43:32 +00:00
Erick Friis
9f8fd08955 community: release 0.2.7 (#23993) 2024-07-08 22:04:58 +00:00
Bhadresh Savani
5d78b34a6f [Docs] typo Update in azureopenai.ipynb (#23945)
Update documentation for a typo.
2024-07-08 17:48:33 -04:00
Erick Friis
bedd893cd1 core: release 0.2.12 (#23991) 2024-07-08 21:29:29 +00:00
Bagatur
1e957c0c23 docs: rm discord (#23985) 2024-07-08 14:27:58 -07:00
Eugene Yurtsev
f765e8fa9d core[minor],community[patch],standard-tests[patch]: Move InMemoryImplementation to langchain-core (#23986)
This PR moves the in memory implementation to langchain-core.

* The implementation remains importable from langchain-community.
* Supporting utilities are marked as private for now.
2024-07-08 14:11:51 -07:00
Eugene Yurtsev
aa8c9bb4a9 community[patch]: Add constraint for pdfminer.six to unbreak CI (#23988)
Something changed in pdfminer six. This PR unreaks CI without
fixing the underlying PDF parser.
2024-07-08 20:55:19 +00:00
Eugene Yurtsev
2c180d645e core[minor],community[minor]: Upgrade all @root_validator() to @pre_init (#23841)
This PR introduces a @pre_init decorator that's a @root_validator(pre=True) but with all the defaults populated!
2024-07-08 16:09:29 -04:00
Mustafa Abdul-Kader
f152d6ed3d docs(llamacpp): fix copy paste error (#23983) 2024-07-08 20:06:04 +00:00
JonasDeitmersATACAMA
4d6f28cdde Update annoy.ipynb (#23970)
mmemory in the description -> memory (corrected spelling mistake)

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-08 12:52:05 +00:00
Zheng Robert Jia
bf8d4716a7 Update concepts.mdx (#23955)
Added link to list of built-in tools.

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-08 08:47:51 -04:00
Zheng Robert Jia
4ec5fdda8d Update index.mdx (#23956)
Added reference to built-in tools list.
2024-07-08 08:47:28 -04:00
ccurme
ee579c77c1 docs: chain migration guide (#23844)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
2024-07-05 16:37:34 -07:00
Eugene Yurtsev
9787552b00 core[patch]: Use InMemoryChatMessageHistory in unit tests (#23916)
Update unit test to use the existing implementation of chat message
history
2024-07-05 20:10:54 +00:00
Rajendra Kadam
8b84457b17 community[minor]: Support PGVector in PebbloRetrievalQA (#23874)
- **Description:** Support PGVector in PebbloRetrievalQA
  - Identity and Semantic Enforcement support for PGVector
  - Refactor Vectorstore validation and name check
  - Clear the overridden identity and semantic enforcement filters
- **Issue:** NA
- **Dependencies:** NA
- **Tests**: NA(already added)
-  **Docs**: Updated
- **Twitter handle:** [@Raj__725](https://twitter.com/Raj__725)
2024-07-05 16:02:25 -04:00
Eugene Yurtsev
e0186df56b core[patch]: Clarify upsert response semantics (#23921) 2024-07-05 15:59:47 -04:00
Leonid Ganeline
fcd018be47 docs: langgraph link fix (#23848)
Link for the LangGraph doc is instead the LG repo link.
Fixed the link
2024-07-05 15:50:45 -04:00
Robbie Cronin
0990ab146c community: update import in chatbot tutorial to use InMemoryChatMessageHistory (#23903)
Summary of change:

- Replace ChatMessageHistory with InMemoryChatMessageHistory

Fixes #23892

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-05 15:48:11 -04:00
Rajendra Kadam
ee8aa54f53 community[patch]: Fix source path mismatch in PebbloSafeLoader (#23857)
**Description:** Fix for source path mismatch in PebbloSafeLoader. The
fix involves storing the full path in the doc metadata in VectorDB
**Issue:** NA, caught in internal testing
**Dependencies:** NA
**Add tests**:  Updated tests
2024-07-05 15:24:17 -04:00
Eugene Yurtsev
5b7d5f7729 core[patch]: Add comment to clarify aadd_documents (#23920)
Add comment to clarify how add documents works
2024-07-05 15:20:16 -04:00
Eugene Yurtsev
e0889384d9 standard-tests[minor]: add unit tests for testing get_by_ids, aget_by_ids, upsert, aupsert_by_ids (#23919)
These standard unit tests provide standard tests for functionality
introduced in these PRs:

* https://github.com/langchain-ai/langchain/pull/23774
* https://github.com/langchain-ai/langchain/pull/23594
2024-07-05 19:11:54 +00:00
ccurme
74c7198906 core, anthropic[patch]: support streaming tool calls when function has no arguments (#23915)
resolves https://github.com/langchain-ai/langchain/issues/23911

When an AIMessageChunk is instantiated, we attempt to parse tool calls
off of the tool_call_chunks.

Here we add a special-case to this parsing, where `""` will be parsed as
`{}`.

This is a reaction to how Anthropic streams tool calls in the case where
a function has no arguments:
```
{'id': 'toolu_01J8CgKcuUVrMqfTQWPYh64r', 'input': {}, 'name': 'magic_function', 'type': 'tool_use', 'index': 1}
{'partial_json': '', 'type': 'tool_use', 'index': 1}
```
The `partial_json` does not accumulate to a valid json string-- most
other providers tend to emit `"{}"` in this case.
2024-07-05 18:57:41 +00:00
Mateusz Szewczyk
902b57d107 IBM: Added WatsonxChat passing params to invoke method (#23758)
Thank you for contributing to LangChain!

- [x] **PR title**: "IBM: Added WatsonxChat to chat models preview,
update passing params to invoke method"


- [x] **PR message**: 
- **Description:** Added WatsonxChat passing params to invoke method,
added integration tests
    - **Dependencies:** `ibm_watsonx_ai`


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-05 18:07:50 +00:00
ccurme
1f5a163f42 langchain[patch]: deprecate QAGenerationChain (#23730) 2024-07-05 18:06:19 +00:00
ccurme
25de47878b langchain[patch]: deprecate AnalyzeDocumentChain (#23769) 2024-07-05 14:00:23 -04:00
Christophe Bornet
42d049f618 core[minor]: Add Graph Store component (#23092)
This PR introduces a GraphStore component. GraphStore extends
VectorStore with the concept of links between documents based on
document metadata. This allows linking documents based on a variety of
techniques, including common keywords, explicit links in the content,
and other patterns.

This works with existing Documents, so it’s easy to extend existing
VectorStores to be used as GraphStores. The interface can be implemented
for any Vector Store technology that supports metadata, not only graph
DBs.

When retrieving documents for a given query, the first level of search
is done using classical similarity search. Next, links may be followed
using various traversal strategies to get additional documents. This
allows documents to be retrieved that aren’t directly similar to the
query but contain relevant information.

2 retrieving methods are added to the VectorStore ones : 
* traversal_search which gets all linked documents up to a certain depth
* mmr_traversal_search which selects linked documents using an MMR
algorithm to have more diverse results.

If a depth of retrieval of 0 is used, GraphStore is effectively a
VectorStore. It enables an easy transition from a simple VectorStore to
GraphStore by adding links between documents as a second step.

An implementation for Apache Cassandra is also proposed.

See
https://github.com/datastax/ragstack-ai/blob/main/libs/knowledge-store/notebooks/astra_support.ipynb
for a notebook explaining how to use GraphStore and that shows that it
can answer correctly to questions that a simple VectorStore cannot.

**Twitter handle:** _cbornet
2024-07-05 12:24:10 -04:00
Leonid Ganeline
77f5fc3d55 core: docstrings load (#23787)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:23:19 -04:00
Eugene Yurtsev
6f08e11d7c core[minor]: add upsert, streaming_upsert, aupsert, astreaming_upsert methods to the VectorStore abstraction (#23774)
This PR rolls out part of the new proposed interface for vectorstores
(https://github.com/langchain-ai/langchain/pull/23544) to existing store
implementations.

The PR makes the following changes:

1. Adds standard upsert, streaming_upsert, aupsert, astreaming_upsert
methods to the vectorstore.
2. Updates `add_texts` and `aadd_texts` to be non required with a
default implementation that delegates to `upsert` and `aupsert` if those
have been implemented. The original `add_texts` and `aadd_texts` methods
are problematic as they spread object specific information across
document and **kwargs. (e.g., ids are not a part of the document)
3. Adds a default implementation to `add_documents` and `aadd_documents`
that delegates to `upsert` and `aupsert` respectively.
4. Adds standard unit tests to verify that a given vectorstore
implements a correct read/write API.

A downside of this implementation is that it creates `upsert` with a
very similar signature to `add_documents`.
The reason for introducing `upsert` is to:
* Remove any ambiguities about what information is allowed in `kwargs`.
Specifically kwargs should only be used for information common to all
indexed data. (e.g., indexing timeout).
*Allow inheriting from an anticipated generalized interface for indexing
that will allow indexing `BaseMedia` (i.e., allow making a vectorstore
for images/audio etc.)
 
`add_documents` can be deprecated in the future in favor of `upsert` to
make sure that users have a single correct way of indexing content.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-05 12:21:40 -04:00
G Sreejith
3c752238c5 core[patch]: Fix typo in docstring (graphm -> graph) (#23910)
Changes has been as per the request
Replaced graphm with graph
2024-07-05 16:20:33 +00:00
Leonid Ganeline
12c92b6c19 core: docstrings outputs (#23889)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:18:17 -04:00
Leonid Ganeline
1eca98ec56 core: docstrings prompts (#23890)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:17:52 -04:00
Philippe PRADOS
289960bc60 community[patch]: Redis.delete should be a regular method not a static method (#23873)
The `langchain_common.vectostore.Redis.delete()` must not be a
`@staticmethod`.

With the current implementation, it's not possible to have multiple
instances of Redis vectorstore because all versions must share the
`REDIS_URL`.

It's not conform with the base class.
2024-07-05 12:04:58 -04:00
Mohammad Mohtashim
2274d2b966 core[patch]: Accounting for Optional Input Variables in BasePromptTemplate (#22851)
**Description**: After reviewing the prompts API, it is clear that the
only way a user can explicitly mark an input variable as optional is
through the `MessagePlaceholder.optional` attribute. Otherwise, the user
must explicitly pass in the `input_variables` expected to be used in the
`BasePromptTemplate`, which will be validated upon execution. Therefore,
to semantically handle a `MessagePlaceholder` `variable_name` as
optional, we will treat the `variable_name` of `MessagePlaceholder` as a
`partial_variable` if it has been marked as optional. This approach
aligns with how the `variable_name` of `MessagePlaceholder` is already
handled
[here](https://github.com/keenborder786/langchain/blob/optional_input_variables/libs/core/langchain_core/prompts/chat.py#L991).
Additionally, an attribute `optional_variable` has been added to
`BasePromptTemplate`, and the `variable_name` of `MessagePlaceholder` is
also made part of `optional_variable` when marked as optional.

Moreover, the `get_input_schema` method has been updated for
`BasePromptTemplate` to differentiate between optional and non-optional
variables.

**Issue**: #22832, #21425

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-05 15:49:40 +00:00
Klaudia Lemiec
a2082bc1f8 docs: Arxiv docs update (#23871)
- [X] **PR title**
- [X] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** Update of docstrings and docpages
- **Issue:**
[22866](https://github.com/langchain-ai/langchain/issues/22866)

- [X] **Add tests and docs**

- [X] **Lint and test**
2024-07-05 11:43:51 -04:00
jonathan | ヨナタン
d311f22182 Langchain: fixed a typo in the imports (#23864)
Description: Fixed a typo during the imports for the
GoogleDriveSearchTool
    
Issue: It's only for the docs, but it bothered me so i decided to fix it
quickly :D
2024-07-05 15:42:50 +00:00
Arun Sasidharan
db6512aa35 docs: fix typo in llm_chain.ipynb (#23907)
- Fix typo in the tutorial step
- Add some context on `text`
2024-07-05 15:41:46 +00:00
André Quintino
99b1467b63 community: add support for 'cloud' parameter in JiraAPIWrapper (#23057)
- **Description:** Enhance JiraAPIWrapper to accept the 'cloud'
parameter through an environment variable. This update allows more
flexibility in configuring the environment for the Jira API.
 - **Twitter handle:** Andre_Q_Pereira

---------

Co-authored-by: André Quintino <andre.quintino@tui.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-05 15:11:10 +00:00
wenngong
b1e90b3075 community: add model_name param valid for GPT4AllEmbeddings (#23867)
Description: add model_name param valid for GPT4AllEmbeddings

Issue: #23863 #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-05 10:46:34 -04:00
volodymyr-memsql
a4eb6d0fb1 community: add SingleStoreDB semantic cache (#23218)
This PR adds a `SingleStoreDBSemanticCache` class that implements a
cache based on SingleStoreDB vector store, integration tests, and a
notebook example.

Additionally, this PR contains minor changes to SingleStoreDB vector
store:
 - change add texts/documents methods to return a list of inserted ids
 - implement delete(ids) method to delete documents by list of ids
 - added drop() method to drop a correspondent database table
- updated integration tests to use and check functionality implemented
above


CC: @baskaryan, @hwchase17

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
2024-07-05 09:26:06 -04:00
Igor Drozdov
bb597b1286 feat(community): add bind_tools function for ChatLiteLLM (#23823)
It's a follow-up to https://github.com/langchain-ai/langchain/pull/23765

Now the tools can be bound by calling `bind_tools`

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
# tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
tools = [GetWeather, GetPopulation]

llm = ChatLiteLLM(model="claude-3-sonnet-20240229").bind_tools(tools)
ai_msg = llm.invoke(prompt)
print(ai_msg.tool_calls)
```

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
2024-07-05 09:19:41 -04:00
eliasecchig
efb48566d0 docs: add Vertex Feature Store, edit BigQuery Vector Search (#23709)
Add Vertex Feature Store, edit BigQuery Vector Search docs

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-05 12:12:21 +00:00
Yuki Watanabe
0e916d0d55 community: Overhaul MLflow Integration documentation (#23067) 2024-07-03 22:52:17 -04:00
ccurme
e62f8f143f infra: remove cohere from monorepo scheduled tests (#23846) 2024-07-03 21:48:39 +00:00
Jiejun Tan
2be66a38d8 huggingface: Fix huggingface tei support (#22653)
Update former pull request:
https://github.com/langchain-ai/langchain/pull/22595.

Modified
`libs/partners/huggingface/langchain_huggingface/embeddings/huggingface_endpoint.py`,
where the API call function does not match current [Text Embeddings
Inference
API](https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/embed).
One example is:
```json
{
  "inputs": "string",
  "normalize": true,
  "truncate": false
}
```
Parameters in `_model_kwargs` are not passed properly in the latest
version. By the way, the issue *[why cause 413?
#50](https://github.com/huggingface/text-embeddings-inference/issues/50)*
might be solved.
2024-07-03 13:30:29 -07:00
Eugene Yurtsev
9ccc4b1616 core[patch]: Fix logic in BaseChatModel that processes the llm string that is used as a key for caching chat models responses (#23842)
This PR should fix the following issue:
https://github.com/langchain-ai/langchain/issues/23824
Introduced as part of this PR:
https://github.com/langchain-ai/langchain/pull/23416

I am unable to reproduce the issue locally though it's clear that we're
getting a `serialized` object which is not a dictionary somehow.

The test below passes for me prior to the PR as well

```python

def test_cache_with_sqllite() -> None:
    from langchain_community.cache import SQLiteCache

    from langchain_core.globals import set_llm_cache

    cache = SQLiteCache(database_path=".langchain.db")
    set_llm_cache(cache)
    chat_model = FakeListChatModel(responses=["hello", "goodbye"], cache=True)
    assert chat_model.invoke("How are you?").content == "hello"
    assert chat_model.invoke("How are you?").content == "hello"
```
2024-07-03 16:23:55 -04:00
Vadym Barda
9bb623381b core[minor]: update conversion utils to handle RemoveMessage (#23840) 2024-07-03 16:13:31 -04:00
Eugene Yurtsev
4ab78572e7 core[patch]: Speed up unit tests for imports (#23837)
Speed up unit tests for imports
2024-07-03 15:55:15 -04:00
Nico Puhlmann
4a15fce516 langchain: update declarative_base import (#20056)
**Description**: The ``declarative_base()`` function is now available as
sqlalchemy.orm.declarative_base(). (depreca ted since: 2.0) (Background
on SQLAlchemy 2.0 at: https://sqlalche.me/e/b8d9)

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-03 15:52:35 -04:00
Mu Xian Ming
c06c666ce5 docs: fix docs/tutorials/llm_chain.ipynb (#23807)
to correctly display the link

Co-authored-by: Mu Xianming <mu.xianming@lmwn.com>
2024-07-03 15:38:31 -04:00
Vadym Barda
d206df8d3d docs: improve structure in the agent migration to langgraph guide (#23817) 2024-07-03 12:25:11 -07:00
Théo Deschamps
39b19cf764 core[patch]: extract input variables for path and detail keys in order to format an ImagePromptTemplate (#22613)
- Description: Add support for `path` and `detail` keys in
`ImagePromptTemplate`. Previously, only variables associated with the
`url` key were considered. This PR allows for the inclusion of a local
image path and a detail parameter as input to the format method.
- Issues:
    - fixes #20820 
    - related to #22024 
- Dependencies: None
- Twitter handle: @DeschampsTho5

---------

Co-authored-by: tdeschamps <tdeschamps@kameleoon.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-03 18:58:42 +00:00
Bagatur
a4798802ef cli[patch]: ruff 0.5 (#23833) 2024-07-03 18:33:15 +00:00
Leonid Ganeline
55f6f91f17 core[patch]: docstrings output_parsers (#23825)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-03 14:27:40 -04:00
Philippe PRADOS
26cee2e878 partners[patch]: MongoDB vectorstore to return and accept string IDs (#23818)
The mongdb have some errors.
- `add_texts() -> List` returns a list of `ObjectId`, and not a list of
string
- `delete()` with `id` never remove chunks.

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-03 14:14:08 -04:00
Ikko Eltociear Ashimine
75734fbcf1 community: fix typo in unit tests for test_zenguard.py (#23819)
enviroment -> environment


- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"
2024-07-03 14:05:42 -04:00
Bagatur
a0c2281540 infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00
William FH
6cd56821dc [Core] Unify function schema parsing (#23370)
Use pydantic to infer nested schemas and all that fun.
Include bagatur's convenient docstring parser
Include annotation support


Previously we didn't adequately support many typehints in the
bind_tools() method on raw functions (like optionals/unions, nested
types, etc.)
2024-07-03 09:55:38 -07:00
Oguz Vuruskaner
2a2c0d1a94 community[deepinfra]: fix tool call parsing. (#23162)
This PR includes fix for DeepInfra tool call parsing.
2024-07-03 12:11:37 -04:00
maang-h
525109e506 feat: Implement ChatBaichuan asynchronous interface (#23589)
- **Description:** Add interface to `ChatBaichuan` to support
asynchronous requests
    - `_agenerate` method
    - `_astream` method

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-03 12:10:04 -04:00
Bagatur
8842a0d986 docs: fireworks nit (#23822) 2024-07-03 15:36:27 +00:00
Leonid Ganeline
716a316654 core: docstrings indexing (#23785)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-03 11:27:34 -04:00
Leonid Ganeline
30fdc2dbe7 core: docstrings messages (#23788)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-03 11:25:00 -04:00
ccurme
54e730f6e4 fireworks[patch]: read from tool calls attribute (#23820) 2024-07-03 11:11:17 -04:00
Bagatur
e787249af1 docs: fireworks standard page (#23816) 2024-07-03 14:33:05 +00:00
Jacob Lee
27aa4d38bf docs[patch]: Update structured output docs to have more discussion (#23786)
CC @agola11 @ccurme
2024-07-02 16:53:31 -07:00
Bagatur
ebb404527f anthropic[patch]: Release 0.1.19 (#23783) 2024-07-02 18:17:25 -04:00
Bagatur
6168c846b2 openai[patch]: Release 0.1.14 (#23782) 2024-07-02 18:17:15 -04:00
Bagatur
cb9812593f openai[patch]: expose model request payload (#23287)
![Screenshot 2024-06-21 at 3 12 12
PM](https://github.com/langchain-ai/langchain/assets/22008038/6243a01f-1ef6-4085-9160-2844d9f2b683)
2024-07-02 17:43:55 -04:00
Bagatur
ed200bf2c4 anthropic[patch]: expose payload (#23291)
![Screenshot 2024-06-21 at 4 56 02
PM](https://github.com/langchain-ai/langchain/assets/22008038/a2c6224f-3741-4502-9607-1a726a0551c9)
2024-07-02 17:43:47 -04:00
Bagatur
7a3d8e5a99 core[patch]: Release 0.2.11 (#23780) 2024-07-02 17:35:57 -04:00
Bagatur
d677dadf5f core[patch]: mark RemoveMessage beta (#23656) 2024-07-02 21:27:21 +00:00
ccurme
1d54ac93bb ai21[patch]: release 0.1.7 (#23781) 2024-07-02 21:24:13 +00:00
Asaf Joseph Gardin
320dc31822 partners: AI21 Labs Jamba Streaming Support (#23538)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"

- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** Added support for streaming in AI21 Jamba Model
    - **Twitter handle:** https://github.com/AI21Labs


- [x] **Add tests and docs**: If you're adding a new integration, please
include

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

---------

Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-02 17:15:46 -04:00
Qingchuan Hao
5cd4083457 community: make bing web search as the only option (#23523)
This PR make bing web search as the option for BingSearchAPIWrapper to
facilitate and simply the user interface on Langchain.
This is a follow-up work of
https://github.com/langchain-ai/langchain/pull/23306.
2024-07-02 17:13:54 -04:00
William W Wang
76e7e4e9e6 Update docs: LangChain agent memory (#23673)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


**Description:** Update docs content on agent memory

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-02 17:06:32 -04:00
ccurme
7c1cddf1b7 anthropic[patch]: release 0.1.18 (#23778) 2024-07-02 16:46:47 -04:00
ccurme
c9dac59008 anthropic[patch]: fix model name in some integration tests (#23779) 2024-07-02 20:45:52 +00:00
Bagatur
7a6c06cadd anthropic[patch]: tool output parser fix (#23647) 2024-07-02 16:33:22 -04:00
ccurme
46cbf0e4aa anthropic[patch]: use core output parsers for structured output (#23776)
Also add to standard tests for structured output.
2024-07-02 16:15:26 -04:00
kiarina
dc396835ed langchain_anthropic: add stop_reason in ChatAnthropic stream result (#23689)
`ChatAnthropic` can get `stop_reason` from the resulting `AIMessage` in
`invoke` and `ainvoke`, but not in `stream` and `astream`.
This is a different behavior from `ChatOpenAI`.
It is possible to get `stop_reason` from `stream` as well, since it is
needed to determine the next action after the LLM call. This would be
easier to handle in situations where only `stop_reason` is needed.

- Issue: NA
- Dependencies: NA
- Twitter handle: https://x.com/kiarina37
2024-07-02 15:16:20 -04:00
Bagatur
27ce58f86e docs: google genai standard page (#23766)
Part of #22296
2024-07-02 13:54:34 -04:00
maang-h
e4e28a6ff5 community[patch]: Fix MiniMaxChat validate_environment error (#23770)
- **Description:** Fix some issues in MiniMaxChat 
  - Fix `minimax_api_host` not in `values` error
- Remove `minimax_group_id` from reading environment variables, the
`minimax_group_id` no longer use in MiniMaxChat
  - Invoke callback prior to yielding token, the issus #16913
2024-07-02 13:23:32 -04:00
SN
acc457f645 core[patch]: fix nested sections for mustache templating (#23747)
The prompt template variable detection only worked for singly-nested
sections because we just kept track of whether we were in a section and
then set that to false as soon as we encountered an end block. i.e. the
following:

```
{{#outerSection}}
    {{variableThatShouldntShowUp}}
    {{#nestedSection}}
        {{nestedVal}}
    {{/nestedSection}}
    {{anotherVariableThatShouldntShowUp}}
{{/outerSection}}
```

Would yield `['outerSection', 'anotherVariableThatShouldntShowUp']` as
input_variables (whereas it should just yield `['outerSection']`). This
fixes that by keeping track of the current depth and using a stack.
2024-07-02 10:20:45 -07:00
Karim Lalani
acc8fb3ead docs[patch]: Update OllamaFunctions docs to match chat model integration template (#23179)
Added Tool Calling Agent Example with langgraph to OllamaFunctions
documentation
2024-07-02 10:05:44 -07:00
Bagatur
79c07a8ade docs: standardize bedrock page (#23738)
Part of #22296
2024-07-02 12:03:36 -04:00
Teja Hara
a77a263e24 Added langchain-community installation (#23741)
PR title: Docs enhancement

- Description: Adding installation instructions for integrations
requiring langchain-community package since 0.2
- Issue: https://github.com/langchain-ai/langchain/issues/22005

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-02 11:03:07 -04:00
Eugene Yurtsev
46ff0f7a3c community[patch]: Update @root_validators to use explicit pre=True or pre=False (#23737) 2024-07-02 10:47:21 -04:00
Igor Drozdov
b664dbcc36 feat(community): add support for tool_calls response (#23765)
When `model_kwargs={"tools": tools}` are passed to `ChatLiteLLM`, they
are executed, but the response is not recognized correctly

Let's add `tool_calls` to the `additional_kwargs`

Thank you for contributing to LangChain!

## ChatAnthropic

I used the following example to verify the output of llm with tools:

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_anthropic import ChatAnthropic

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

llm = ChatAnthropic(model="claude-3-sonnet-20240229")
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
print(ai_msg.tool_calls)
```

I get the following response:

```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01UfDA89knrhw3vFV9X47neT'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01NrYVRYae7m7z7tBgyPb3Gd'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01EPFEpDgzL6vV2dTpD9SVP5'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01B5J6tPJXgwwfhQX9BHP2dt'}]
```

## LiteLLM

Based on https://litellm.vercel.app/docs/completion/function_call

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
import litellm

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]

response = litellm.completion(model="claude-3-sonnet-20240229", messages=[{'role': 'user', 'content': prompt}], tools=tools)
print(response.choices[0].message.tool_calls)
```

```python
[ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetWeather'), id='toolu_01HeDWV5vP7BDFfytH5FJsja', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetWeather'), id='toolu_01EiLesUSEr3YK1DaE2jxsQv', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetPopulation'), id='toolu_01Xz26zvkBDRxEUEWm9pX6xa', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetPopulation'), id='toolu_01SDqKnsLjvUXuBsgAZdEEpp', type='function')]
```

## ChatLiteLLM

When I try the following

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]

llm = ChatLiteLLM(model="claude-3-sonnet-20240229", model_kwargs={"tools": tools})
ai_msg = llm.invoke(prompt)
print(ai_msg)
print(ai_msg.tool_calls)
```

```python
content="Okay, let's find out the current weather and populations for Los Angeles and New York City:" response_metadata={'token_usage': Usage(prompt_tokens=329, completion_tokens=193, total_tokens=522), 'model': 'claude-3-sonnet-20240229', 'finish_reason': 'tool_calls'} id='run-748b7a84-84f4-497e-bba1-320bd4823937-0'
[]
```

---

When I apply the changes of this PR, the output is

```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_017D2tGjiaiakB1HadsEFZ4e'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01WrDpJfVqLkPejWzonPCbLW'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_016UKyYrVAV9Pz99iZGgGU7V'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01Sgv1imExFX1oiR1Cw88zKy'}]
```

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
2024-07-02 10:42:08 -04:00
Eugene Yurtsev
338cef35b4 community[patch]: update @root_validator in utilities namespace (#23768)
Update all utilities to use `pre=True` or `pre=False`

https://github.com/langchain-ai/langchain/issues/22819
2024-07-02 14:33:01 +00:00
wenngong
ee5eedfa04 partners: support reading HuggingFace params from env (#23309)
Description: 
1. partners/HuggingFace module support reading params from env. Not
adjust langchain_community/.../huggingfaceXX modules since they are
deprecated.
  2. pydantic 2 @root_validator migration.

Issue: #22448 #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-02 10:12:45 -04:00
antonpibm
ffde8a6a09 Milvus vectorstore: fix pass ids as argument after upsert (#23761)
**Description**: Milvus vectorstore supports both `add_documents` via
the base class and `upsert` method which deletes and re-adds documents
based on their ids

**Issue**: Due to mismatch in the interfaces the ids used by `upsert`
are neglected in `add_documents`, as `ids` are passed as argument in
`upsert` but via `kwargs` is `add_documents`

This caused exceptions and inconsistency in the DB, tested with
`auto_id=False`

**Fix**: pass `ids` via `kwargs` to `add_documents`
2024-07-02 13:45:30 +00:00
Eugene Yurtsev
d084172b63 community[patch]: root validator set explicit pre=False or pre=True (#23764)
See issue: https://github.com/langchain-ai/langchain/issues/22819
2024-07-02 09:42:05 -04:00
Khelan Modi
4457e64e13 Update azure_cosmos_db for mongodb documentation (#23740)
added pre-filtering documentation

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: 
    - **Description:** added filter vector search 
    - **Issue:** N/A
    - **Dependencies:** N/A
    - **Twitter handle:**: n/a


- [x] **Add tests and docs**: If you're adding a new integration, please
include - No need for tests, just a simple doc update
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-02 12:53:05 +00:00
panwg3
bc98f90ba3 update wrong words (#23749)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-02 08:50:20 -04:00
mattthomps1
cc55823486 docs: updated PPLX model (#23723)
Description: updated pplx docs to reference a currently [supported
model](https://docs.perplexity.ai/docs/model-cards). pplx-70b-online
->llama-3-sonar-small-32k-online

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-02 08:48:49 -04:00
Bagatur
aa165539f6 docs: standardize cohere page (#23739)
Part of #22296
2024-07-01 19:34:13 -04:00
Jacob Lee
7791d92711 community[patch]: Fix requests alias for load_tools (#23734)
CC @baskaryan
2024-07-01 15:02:14 -07:00
Eugene Yurtsev
f24e38876a community[patch]: Update root_validators to use explicit pre=True or pre=False (#23736) 2024-07-01 17:13:23 -04:00
Yannick Stephan
5b1de2ae93 mistralai: Fixed streaming in MistralAI with ainvoke and callbacks (#22000)
# Fix streaming in mistral with ainvoke 
- [x] **PR title**
- [x] **PR message**
- [x] **Add tests and docs**:
  1. [x] Added a test for the fixed integration.
2. [x] An example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Ran `make format`, `make lint` and `make test`
from the root of the package(s) I've modified.

Hello 

* I Identified an issue in the mistral package where the callback
streaming (see on_llm_new_token) was not functioning correctly when the
streaming parameter was set to True and call with `ainvoke`.
* The root cause of the problem was the streaming not taking into
account. ( I think it's an oversight )
* To resolve the issue, I added the `streaming` attribut.
* Now, the callback with streaming works as expected when the streaming
parameter is set to True.

## How to reproduce

```
from langchain_mistralai.chat_models import ChatMistralAI
chain = ChatMistralAI(streaming=True)
# Add a callback
chain.ainvoke(..)

# Oberve on_llm_new_token
# Now, the callback is given as streaming tokens, before it was in grouped format.
```

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-01 20:53:09 +00:00
Jacob Lee
f4b2e553e7 docs[patch]: Update Unstructured loader notebooks and install instructions (#23726)
CC @baskaryan @MthwRobinson
2024-07-01 13:36:48 -07:00
Eugene Yurtsev
5d2262af34 community[patch]: Update root_validators to use pre=True or pre=False (#23731)
Update root_validators in preparation for pydantic 2 migration.
2024-07-01 20:10:15 +00:00
Erick Friis
6019147b66 infra: filter template check (#23727) 2024-07-01 13:00:33 -07:00
Eugene Yurtsev
ebcee4f610 core[patch]: Add versionadded to get_by_ids (#23728) 2024-07-01 15:16:00 -04:00
Eugene Yurtsev
e800f6bb57 core[minor]: Create BaseMedia object (#23639)
This PR implements a BaseContent object from which Document and Blob
objects will inherit proposed here:
https://github.com/langchain-ai/langchain/pull/23544

Alternative: Create a base object that only has an identifier and no
metadata.

For now decided against it, since that refactor can be done at a later
time. It also feels a bit odd since our IDs are optional at the moment.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-01 15:07:30 -04:00
1919 changed files with 83726 additions and 30363 deletions

View File

@@ -5,10 +5,10 @@ services:
dockerfile: libs/langchain/dev.Dockerfile
context: ..
volumes:
# Update this to wherever you want VS Code to mount the folder of your project
# Update this to wherever you want VS Code to mount the folder of your project
- ..:/workspaces/langchain:cached
networks:
- langchain-network
- langchain-network
# environment:
# MONGO_ROOT_USERNAME: root
# MONGO_ROOT_PASSWORD: example123
@@ -28,5 +28,3 @@ services:
networks:
langchain-network:
driver: bridge

View File

@@ -4,9 +4,6 @@ contact_links:
- name: 🤔 Question or Problem
about: Ask a question or ask about a problem in GitHub Discussions.
url: https://www.github.com/langchain-ai/langchain/discussions/categories/q-a
- name: Discord
url: https://discord.gg/6adMQxSpJS
about: General community discussions
- name: Feature Request
url: https://www.github.com/langchain-ai/langchain/discussions/categories/ideas
about: Suggest a feature or an idea

View File

@@ -350,11 +350,7 @@ def get_graphql_pr_edges(*, settings: Settings, after: Union[str, None] = None):
print("Querying PRs...")
else:
print(f"Querying PRs with cursor {after}...")
data = get_graphql_response(
settings=settings,
query=prs_query,
after=after
)
data = get_graphql_response(settings=settings, query=prs_query, after=after)
graphql_response = PRsResponse.model_validate(data)
return graphql_response.data.repository.pullRequests.edges
@@ -484,10 +480,16 @@ def get_contributors(settings: Settings):
lines_changed = pr.additions + pr.deletions
score = _logistic(files_changed, 20) + _logistic(lines_changed, 100)
contributor_scores[pr.author.login] += score
three_months_ago = (datetime.now(timezone.utc) - timedelta(days=3*30))
three_months_ago = datetime.now(timezone.utc) - timedelta(days=3 * 30)
if pr.createdAt > three_months_ago:
recent_contributor_scores[pr.author.login] += score
return contributors, contributor_scores, recent_contributor_scores, reviewers, authors
return (
contributors,
contributor_scores,
recent_contributor_scores,
reviewers,
authors,
)
def get_top_users(
@@ -524,9 +526,13 @@ if __name__ == "__main__":
# question_commentors, question_last_month_commentors, question_authors = get_experts(
# settings=settings
# )
contributors, contributor_scores, recent_contributor_scores, reviewers, pr_authors = get_contributors(
settings=settings
)
(
contributors,
contributor_scores,
recent_contributor_scores,
reviewers,
pr_authors,
) = get_contributors(settings=settings)
# authors = {**question_authors, **pr_authors}
authors = {**pr_authors}
maintainers_logins = {
@@ -559,7 +565,7 @@ if __name__ == "__main__":
maintainers.append(
{
"login": login,
"count": contributors[login], #+ question_commentors[login],
"count": contributors[login], # + question_commentors[login],
"avatarUrl": user.avatarUrl,
"twitterUsername": user.twitterUsername,
"url": user.url,
@@ -615,9 +621,7 @@ if __name__ == "__main__":
new_people_content = yaml.dump(
people, sort_keys=False, width=200, allow_unicode=True
)
if (
people_old_content == new_people_content
):
if people_old_content == new_people_content:
logging.info("The LangChain People data hasn't changed, finishing.")
sys.exit(0)
people_path.write_text(new_people_content, encoding="utf-8")
@@ -630,9 +634,7 @@ if __name__ == "__main__":
logging.info(f"Creating a new branch {branch_name}")
subprocess.run(["git", "checkout", "-B", branch_name], check=True)
logging.info("Adding updated file")
subprocess.run(
["git", "add", str(people_path)], check=True
)
subprocess.run(["git", "add", str(people_path)], check=True)
logging.info("Committing updated file")
message = "👥 Update LangChain people data"
result = subprocess.run(["git", "commit", "-m", message], check=True)
@@ -641,4 +643,4 @@ if __name__ == "__main__":
logging.info("Creating PR")
pr = repo.create_pull(title=message, body=message, base="master", head=branch_name)
logging.info(f"Created PR: {pr.number}")
logging.info("Finished")
logging.info("Finished")

View File

@@ -1,11 +1,12 @@
import glob
import json
import sys
import os
from typing import Dict, List, Set
import sys
import tomllib
from collections import defaultdict
import glob
from typing import Dict, List, Set
from pathlib import Path
LANGCHAIN_DIRS = [
"libs/core",
@@ -15,22 +16,58 @@ LANGCHAIN_DIRS = [
"libs/experimental",
]
def all_package_dirs() -> Set[str]:
return {"/".join(path.split("/")[:-1]) for path in glob.glob("./libs/**/pyproject.toml", recursive=True)}
return {
"/".join(path.split("/")[:-1]).lstrip("./")
for path in glob.glob("./libs/**/pyproject.toml", recursive=True)
if "libs/cli" not in path and "libs/standard-tests" not in path
}
def dependents_graph() -> dict:
"""
Construct a mapping of package -> dependents, such that we can
run tests on all dependents of a package when a change is made.
"""
dependents = defaultdict(set)
for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
if "template" in path:
continue
# load regular and test deps from pyproject.toml
with open(path, "rb") as f:
pyproject = tomllib.load(f)['tool']['poetry']
pyproject = tomllib.load(f)["tool"]["poetry"]
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
for dep in pyproject['dependencies']:
for dep in [
*pyproject["dependencies"].keys(),
*pyproject["group"]["test"]["dependencies"].keys(),
]:
if "langchain" in dep:
dependents[dep].add(pkg_dir)
continue
# load extended deps from extended_testing_deps.txt
package_path = Path(path).parent
extended_requirement_path = package_path / "extended_testing_deps.txt"
if extended_requirement_path.exists():
with open(extended_requirement_path, "r") as f:
extended_deps = f.read().splitlines()
for depline in extended_deps:
if depline.startswith("-e "):
# editable dependency
assert depline.startswith(
"-e ../partners/"
), "Extended test deps should only editable install partner packages"
partner = depline.split("partners/")[1]
dep = f"langchain-{partner}"
else:
dep = depline.split("==")[0]
if "langchain" in dep:
dependents[dep].add(pkg_dir)
return dependents
@@ -47,6 +84,58 @@ def add_dependents(dirs_to_eval: Set[str], dependents: dict) -> List[str]:
return list(updated)
def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
if dir_ == "libs/core":
return [
{"working-directory": dir_, "python-version": f"3.{v}"}
for v in range(8, 13)
]
min_python = "3.8"
max_python = "3.12"
# custom logic for specific directories
if dir_ == "libs/partners/milvus":
# milvus poetry doesn't allow 3.12 because they
# declare deps in funny way
max_python = "3.11"
if dir_ in ["libs/community", "libs/langchain"] and job == "extended-tests":
# community extended test resolution in 3.12 is slow
# even in uv
max_python = "3.11"
if dir_ == "libs/community" and job == "compile-integration-tests":
# community integration deps are slow in 3.12
max_python = "3.11"
return [
{"working-directory": dir_, "python-version": min_python},
{"working-directory": dir_, "python-version": max_python},
]
def _get_configs_for_multi_dirs(
job: str, dirs_to_run: List[str], dependents: dict
) -> List[Dict[str, str]]:
if job == "lint":
dirs = add_dependents(
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"],
dependents,
)
elif job in ["test", "compile-integration-tests", "dependencies"]:
dirs = add_dependents(
dirs_to_run["test"] | dirs_to_run["extended-test"], dependents
)
elif job == "extended-tests":
dirs = list(dirs_to_run["extended-test"])
else:
raise ValueError(f"Unknown job: {job}")
return [
config for dir_ in dirs for config in _get_configs_for_single_dir(job, dir_)
]
if __name__ == "__main__":
files = sys.argv[1:]
@@ -120,14 +209,23 @@ if __name__ == "__main__":
dependents = dependents_graph()
outputs = {
"dirs-to-lint": add_dependents(
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"], dependents
),
"dirs-to-test": add_dependents(dirs_to_run["test"] | dirs_to_run["extended-test"], dependents),
"dirs-to-extended-test": list(dirs_to_run["extended-test"]),
"docs-edited": "true" if docs_edited else "",
# we now have dirs_by_job
# todo: clean this up
map_job_to_configs = {
job: _get_configs_for_multi_dirs(job, dirs_to_run, dependents)
for job in [
"lint",
"test",
"extended-tests",
"compile-integration-tests",
"dependencies",
]
}
for key, value in outputs.items():
map_job_to_configs["test-doc-imports"] = (
[{"python-version": "3.12"}] if docs_edited else []
)
for key, value in map_job_to_configs.items():
json_output = json.dumps(value)
print(f"{key}={json_output}")

View File

@@ -0,0 +1,35 @@
import sys
import tomllib
if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
# read toml file
with open(toml_file, "rb") as file:
toml_data = tomllib.load(file)
# see if we're releasing an rc
version = toml_data["tool"]["poetry"]["version"]
releasing_rc = "rc" in version
# if not, iterate through dependencies and make sure none allow prereleases
if not releasing_rc:
dependencies = toml_data["tool"]["poetry"]["dependencies"]
for lib in dependencies:
dep_version = dependencies[lib]
dep_version_string = (
dep_version["version"] if isinstance(dep_version, dict) else dep_version
)
if "rc" in dep_version_string:
raise ValueError(
f"Dependency {lib} has a prerelease version. Please remove this."
)
if isinstance(dep_version, dict) and dep_version.get(
"allow-prereleases", False
):
raise ValueError(
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
)

View File

@@ -1,6 +1,11 @@
import sys
import tomllib
if sys.version_info >= (3, 11):
import tomllib
else:
# for python 3.10 and below, which doesnt have stdlib tomllib
import tomli as tomllib
from packaging.version import parse as parse_version
import re
@@ -9,8 +14,11 @@ MIN_VERSION_LIBS = [
"langchain-community",
"langchain",
"langchain-text-splitters",
"SQLAlchemy",
]
SKIP_IF_PULL_REQUEST = ["langchain-core"]
def get_min_version(version: str) -> str:
# base regex for x.x.x with cases for rc/post/etc
@@ -37,7 +45,7 @@ def get_min_version(version: str) -> str:
raise ValueError(f"Unrecognized version format: {version}")
def get_min_version_from_toml(toml_path: str):
def get_min_version_from_toml(toml_path: str, versions_for: str):
# Parse the TOML file
with open(toml_path, "rb") as file:
toml_data = tomllib.load(file)
@@ -50,6 +58,10 @@ def get_min_version_from_toml(toml_path: str):
# Iterate over the libs in MIN_VERSION_LIBS
for lib in MIN_VERSION_LIBS:
if versions_for == "pull_request" and lib in SKIP_IF_PULL_REQUEST:
# some libs only get checked on release because of simultaneous
# changes
continue
# Check if the lib is present in the dependencies
if lib in dependencies:
# Get the version string
@@ -70,10 +82,10 @@ def get_min_version_from_toml(toml_path: str):
if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
versions_for = sys.argv[2]
assert versions_for in ["release", "pull_request"]
# Call the function to get the minimum versions
min_versions = get_min_version_from_toml(toml_file)
min_versions = get_min_version_from_toml(toml_file, versions_for)
print(
" ".join([f"{lib}=={version}" for lib, version in min_versions.items()])
)
print(" ".join([f"{lib}=={version}" for lib, version in min_versions.items()]))

View File

@@ -7,6 +7,10 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -17,22 +21,14 @@ jobs:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
name: "poetry run pytest -m compile tests/integration_tests #${{ matrix.python-version }}"
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: compile-integration

View File

@@ -11,6 +11,10 @@ on:
required: false
type: string
description: "Relative path to the langchain library folder"
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -21,22 +25,14 @@ jobs:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
name: dependency checks ${{ matrix.python-version }}
name: dependency checks ${{ inputs.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: pydantic-cross-compat

View File

@@ -6,6 +6,10 @@ on:
working-directory:
required: true
type: string
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -16,19 +20,14 @@ jobs:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.11"
name: Python ${{ matrix.python-version }}
name: Python ${{ inputs.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core

View File

@@ -11,6 +11,10 @@ on:
required: false
type: string
description: "Relative path to the langchain library folder"
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -21,27 +25,15 @@ env:
jobs:
build:
name: "make lint #${{ matrix.python-version }}"
name: "make lint #${{ inputs.python-version }}"
runs-on: ubuntu-latest
strategy:
matrix:
# Only lint on the min and max supported Python versions.
# It's extremely unlikely that there's a lint issue on any version in between
# that doesn't show up on the min or max versions.
#
# GitHub rate-limits how many jobs can be running at any one time.
# Starting new jobs is also relatively slow,
# so linting on fewer versions makes CI faster.
python-version:
- "3.8"
- "3.12"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: lint-with-extras
@@ -86,7 +78,7 @@ jobs:
with:
path: |
${{ env.WORKDIR }}/.mypy_cache
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
@@ -120,7 +112,7 @@ jobs:
with:
path: |
${{ env.WORKDIR }}/.mypy_cache_test
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}

View File

@@ -122,7 +122,6 @@ jobs:
fi
{
echo 'release-body<<EOF'
echo "# Release $TAG"
echo $PREAMBLE
echo
git log --format="%s" "$PREV_TAG"..HEAD -- $WORKING_DIR
@@ -190,7 +189,7 @@ jobs:
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION" || \
( \
sleep 5 && \
sleep 15 && \
poetry run pip install \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION" \
@@ -222,12 +221,17 @@ jobs:
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: Check for prerelease versions
working-directory: ${{ inputs.working-directory }}
run: |
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
poetry run pip install packaging
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
@@ -286,6 +290,7 @@ jobs:
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
UNSTRUCTURED_API_KEY: ${{ secrets.UNSTRUCTURED_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -11,6 +11,10 @@ on:
required: false
type: string
description: "Relative path to the langchain library folder"
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -21,22 +25,14 @@ jobs:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
name: "make test #${{ matrix.python-version }}"
name: "make test #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
@@ -69,3 +65,22 @@ jobs:
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
poetry run pip install packaging tomli
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
# Temporarily disabled until we can get the minimum versions working
# - name: Run unit tests with minimum dependency versions
# if: ${{ steps.min-version.outputs.min-versions != '' }}
# env:
# MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
# run: |
# poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
# make tests
# working-directory: ${{ inputs.working-directory }}

View File

@@ -2,6 +2,11 @@ name: test_doc_imports
on:
workflow_call:
inputs:
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -9,18 +14,14 @@ env:
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.12"
name: "check doc imports #${{ matrix.python-version }}"
name: "check doc imports #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: core

View File

@@ -33,91 +33,96 @@ jobs:
run: |
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
outputs:
dirs-to-lint: ${{ steps.set-matrix.outputs.dirs-to-lint }}
dirs-to-test: ${{ steps.set-matrix.outputs.dirs-to-test }}
dirs-to-extended-test: ${{ steps.set-matrix.outputs.dirs-to-extended-test }}
docs-edited: ${{ steps.set-matrix.outputs.docs-edited }}
lint: ${{ steps.set-matrix.outputs.lint }}
test: ${{ steps.set-matrix.outputs.test }}
extended-tests: ${{ steps.set-matrix.outputs.extended-tests }}
compile-integration-tests: ${{ steps.set-matrix.outputs.compile-integration-tests }}
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
test-doc-imports: ${{ steps.set-matrix.outputs.test-doc-imports }}
lint:
name: cd ${{ matrix.working-directory }}
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-lint != '[]' }}
if: ${{ needs.build.outputs.lint != '[]' }}
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-lint) }}
job-configs: ${{ fromJson(needs.build.outputs.lint) }}
uses: ./.github/workflows/_lint.yml
with:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
test:
name: cd ${{ matrix.working-directory }}
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
if: ${{ needs.build.outputs.test != '[]' }}
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
job-configs: ${{ fromJson(needs.build.outputs.test) }}
uses: ./.github/workflows/_test.yml
with:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
test-doc-imports:
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' || needs.build.outputs.docs-edited }}
uses: ./.github/workflows/_test_doc_imports.yml
secrets: inherit
compile-integration-tests:
name: cd ${{ matrix.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
if: ${{ needs.build.outputs.test-doc-imports != '[]' }}
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
job-configs: ${{ fromJson(needs.build.outputs.test-doc-imports) }}
uses: ./.github/workflows/_test_doc_imports.yml
secrets: inherit
with:
python-version: ${{ matrix.job-configs.python-version }}
compile-integration-tests:
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.compile-integration-tests != '[]' }}
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.compile-integration-tests) }}
uses: ./.github/workflows/_compile_integration_test.yml
with:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
dependencies:
name: cd ${{ matrix.working-directory }}
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
if: ${{ needs.build.outputs.dependencies != '[]' }}
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
job-configs: ${{ fromJson(needs.build.outputs.dependencies) }}
uses: ./.github/workflows/_dependencies.yml
with:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
extended-tests:
name: "cd ${{ matrix.working-directory }} / make extended_tests #${{ matrix.python-version }}"
name: "cd ${{ matrix.job-configs.working-directory }} / make extended_tests #${{ matrix.job-configs.python-version }}"
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-extended-test != '[]' }}
if: ${{ needs.build.outputs.extended-tests != '[]' }}
strategy:
matrix:
# note different variable for extended test dirs
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-extended-test) }}
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
job-configs: ${{ fromJson(needs.build.outputs.extended-tests) }}
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ matrix.job-configs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ matrix.job-configs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
cache-key: extended
- name: Install dependencies

View File

@@ -26,6 +26,11 @@ jobs:
python-version: '3.10'
- id: files
uses: Ana06/get-changed-files@v2.2.0
with:
filter: |
*.ipynb
*.md
*.mdx
- name: Check new docs
run: |
python docs/scripts/check_templates.py ${{ steps.files.outputs.added }}

View File

@@ -27,7 +27,6 @@ jobs:
- "libs/partners/groq"
- "libs/partners/mistralai"
- "libs/partners/together"
- "libs/partners/cohere"
- "libs/partners/google-vertexai"
- "libs/partners/google-genai"
- "libs/partners/aws"
@@ -40,10 +39,6 @@ jobs:
with:
repository: langchain-ai/langchain-google
path: langchain-google
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-cohere
path: langchain-cohere
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-aws
@@ -53,11 +48,9 @@ jobs:
run: |
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai \
langchain/libs/partners/cohere
langchain/libs/partners/google-vertexai
mv langchain-google/libs/genai langchain/libs/partners/google-genai
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-cohere/libs/cohere langchain/libs/partners/cohere
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: Set up Python ${{ matrix.python-version }}
@@ -116,7 +109,6 @@ jobs:
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai \
langchain/libs/partners/cohere \
langchain/libs/partners/aws
- name: Ensure the tests did not create any additional files

View File

@@ -7,11 +7,9 @@
[![PyPI - License](https://img.shields.io/pypi/l/langchain-core?style=flat-square)](https://opensource.org/licenses/MIT)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-core?style=flat-square)](https://pypistats.org/packages/langchain-core)
[![GitHub star chart](https://img.shields.io/github/stars/langchain-ai/langchain?style=flat-square)](https://star-history.com/#langchain-ai/langchain)
[![Dependency Status](https://img.shields.io/librariesio/github/langchain-ai/langchain?style=flat-square)](https://libraries.io/github/langchain-ai/langchain)
[![Open Issues](https://img.shields.io/github/issues-raw/langchain-ai/langchain?style=flat-square)](https://github.com/langchain-ai/langchain/issues)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode&style=flat-square)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/langchain-ai/langchain)
[![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).

View File

@@ -64,7 +64,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
"! pip install -U langchain openai langchain-chroma langchain-experimental # (newest versions required for multi-modal)"
]
},
{
@@ -355,7 +355,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -37,7 +37,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -U --quiet langchain langchain_community openai chromadb langchain-experimental\n",
"%pip install -U --quiet langchain langchain-chroma langchain-community openai langchain-experimental\n",
"%pip install --quiet \"unstructured[all-docs]\" pypdf pillow pydantic lxml pillow matplotlib chromadb tiktoken"
]
},
@@ -344,8 +344,8 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import VertexAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"\n",

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"pip install -U langchain umap-learn scikit-learn langchain_community tiktoken langchain-openai langchainhub chromadb langchain-anthropic"
"pip install -U langchain umap-learn scikit-learn langchain_community tiktoken langchain-openai langchainhub langchain-chroma langchain-anthropic"
]
},
{
@@ -645,7 +645,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"\n",
"# Initialize all_texts with leaf_texts\n",
"all_texts = leaf_texts.copy()\n",

View File

@@ -36,6 +36,7 @@ Notebook | Description
[llm_symbolic_math.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_symbolic_math.ipynb) | Solve algebraic equations with the help of llms (language learning models) and sympy, a python library for symbolic mathematics.
[meta_prompt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/meta_prompt.ipynb) | Implement the meta-prompt concept, which is a method for building self-improving agents that reflect on their own performance and modify their instructions accordingly.
[multi_modal_output_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_modal_output_agent.ipynb) | Generate multi-modal outputs, specifically images and text.
[multi_modal_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_modal_RAG_vdms.ipynb) | Perform retrieval-augmented generation (rag) on documents including text and images, using unstructured for parsing, Intel's Visual Data Management System (VDMS) as the vectorstore, and chains.
[multi_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_player_dnd.ipynb) | Simulate multi-player dungeons & dragons games, with a custom function determining the speaking schedule of the agents.
[multiagent_authoritarian.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_authoritarian.ipynb) | Implement a multi-agent simulation where a privileged agent controls the conversation, including deciding who speaks and when the conversation ends, in the context of a simulated news network.
[multiagent_bidding.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_bidding.ipynb) | Implement a multi-agent simulation where agents bid to speak, with the highest bidder speaking next, demonstrated through a fictitious presidential debate example.
@@ -57,4 +58,6 @@ Notebook | Description
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
[rag-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag-locally-on-intel-cpu.ipynb) | Perform Retrieval-Augmented-Generation (RAG) on locally downloaded open-source models using langchain and open source tools and execute it on Intel Xeon CPU. We showed an example of how to apply RAG on Llama 2 model and enable it to answer the queries related to Intel Q1 2024 earnings release.
[visual_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/visual_RAG_vdms.ipynb) | Performs Visual Retrieval-Augmented-Generation (RAG) using videos and scene descriptions generated by open source models.

View File

@@ -39,7 +39,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain unstructured[all-docs] pydantic lxml langchainhub"
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml langchainhub"
]
},
{
@@ -320,7 +320,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -59,7 +59,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain unstructured[all-docs] pydantic lxml"
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml"
]
},
{
@@ -375,7 +375,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -59,7 +59,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain unstructured[all-docs] pydantic lxml"
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml"
]
},
{
@@ -378,8 +378,8 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import GPT4AllEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"# The vectorstore to use to index the child chunks\n",

View File

@@ -19,7 +19,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
"! pip install -U langchain openai langchain_chroma langchain-experimental # (newest versions required for multi-modal)"
]
},
{
@@ -132,7 +132,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"baseline = Chroma.from_texts(\n",

View File

@@ -28,7 +28,7 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",

View File

@@ -14,7 +14,7 @@
}
],
"source": [
"%pip install -qU langchain-airbyte"
"%pip install -qU langchain-airbyte langchain_chroma"
]
},
{
@@ -123,7 +123,7 @@
"outputs": [],
"source": [
"import tiktoken\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"enc = tiktoken.get_encoding(\"cl100k_base\")\n",

View File

@@ -39,7 +39,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub chromadb hnswlib --upgrade --quiet"
"! pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub langchain-chroma hnswlib --upgrade --quiet"
]
},
{
@@ -547,7 +547,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores.chroma import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -84,7 +84,7 @@
}
],
"source": [
"%pip install --quiet pypdf chromadb tiktoken openai \n",
"%pip install --quiet pypdf langchain-chroma tiktoken openai \n",
"%pip uninstall -y langchain-fireworks\n",
"%pip install --editable /mnt/disks/data/langchain/libs/partners/fireworks"
]
@@ -138,7 +138,7 @@
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_fireworks.embeddings import FireworksEmbeddings\n",
"\n",
"vectorstore = Chroma.from_documents(\n",

View File

@@ -170,7 +170,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",
"with open(\"../../state_of_the_union.txt\") as f:\n",

File diff suppressed because one or more lines are too long

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph"
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph"
]
},
{
@@ -30,8 +30,8 @@
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"urls = [\n",

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph tavily-python"
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph tavily-python"
]
},
{
@@ -77,8 +77,8 @@
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"urls = [\n",
@@ -180,8 +180,8 @@
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema import Document\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.tools.tavily_search import TavilySearchResults\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.messages import BaseMessage, FunctionMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph"
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph"
]
},
{
@@ -86,8 +86,8 @@
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"urls = [\n",
@@ -188,7 +188,7 @@
"from langchain.output_parsers import PydanticOutputParser\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.messages import BaseMessage, FunctionMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",

View File

@@ -58,7 +58,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
"! pip install -U langchain openai langchain-chroma langchain-experimental # (newest versions required for multi-modal)"
]
},
{
@@ -187,7 +187,7 @@
"\n",
"import chromadb\n",
"import numpy as np\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
"from PIL import Image as _PILImage\n",
"\n",

View File

@@ -18,26 +18,7 @@
"* Use of multimodal embeddings (such as [CLIP](https://openai.com/research/clip)) to embed images and text\n",
"* Use of [VDMS](https://github.com/IntelLabs/vdms/blob/master/README.md) as a vector store with support for multi-modal\n",
"* Retrieval of both images and text using similarity search\n",
"* Passing raw images and text chunks to a multimodal LLM for answer synthesis \n",
"\n",
"\n",
"## Packages\n",
"\n",
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
"metadata": {},
"outputs": [],
"source": [
"# (newest versions required for multi-modal)\n",
"! pip install --quiet -U vdms langchain-experimental\n",
"\n",
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml open_clip_torch"
"* Passing raw images and text chunks to a multimodal LLM for answer synthesis "
]
},
{
@@ -53,7 +34,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 1,
"id": "5f483872",
"metadata": {},
"outputs": [
@@ -61,8 +42,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"docker: Error response from daemon: Conflict. The container name \"/vdms_rag_nb\" is already in use by container \"0c19ed281463ac10d7efe07eb815643e3e534ddf24844357039453ad2b0c27e8\". You have to remove (or rename) that container to be able to reuse that name.\n",
"See 'docker run --help'.\n"
"a1b9206b08ef626e15b356bf9e031171f7c7eb8f956a2733f196f0109246fe2b\n"
]
}
],
@@ -75,9 +55,32 @@
"vdms_client = VDMS_Client(port=55559)"
]
},
{
"cell_type": "markdown",
"id": "2498a0a1",
"metadata": {},
"source": [
"## Packages\n",
"\n",
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet -U vdms langchain-experimental\n",
"\n",
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml open_clip_torch"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "78ac6543",
"metadata": {},
"outputs": [],
@@ -95,14 +98,9 @@
"\n",
"### Partition PDF text and images\n",
" \n",
"Let's look at an example pdf containing interesting images.\n",
"Let's use famous photographs from the PDF version of Library of Congress Magazine in this example.\n",
"\n",
"Famous photographs from library of congress:\n",
"\n",
"* https://www.loc.gov/lcm/pdf/LCM_2020_1112.pdf\n",
"* We'll use this as an example below\n",
"\n",
"We can use `partition_pdf` below from [Unstructured](https://unstructured-io.github.io/unstructured/introduction.html#key-concepts) to extract text and images."
"We can use `partition_pdf` from [Unstructured](https://unstructured-io.github.io/unstructured/introduction.html#key-concepts) to extract text and images."
]
},
{
@@ -116,8 +114,8 @@
"\n",
"import requests\n",
"\n",
"# Folder with pdf and extracted images\n",
"datapath = Path(\"./multimodal_files\").resolve()\n",
"# Folder to store pdf and extracted images\n",
"datapath = Path(\"./data/multimodal_files\").resolve()\n",
"datapath.mkdir(parents=True, exist_ok=True)\n",
"\n",
"pdf_url = \"https://www.loc.gov/lcm/pdf/LCM_2020_1112.pdf\"\n",
@@ -174,14 +172,8 @@
"source": [
"## Multi-modal embeddings with our document\n",
"\n",
"We will use [OpenClip multimodal embeddings](https://python.langchain.com/docs/integrations/text_embedding/open_clip).\n",
"\n",
"We use a larger model for better performance (set in `langchain_experimental.open_clip.py`).\n",
"\n",
"```\n",
"model_name = \"ViT-g-14\"\n",
"checkpoint = \"laion2b_s34b_b88k\"\n",
"```"
"In this section, we initialize the VDMS vector store for both text and images. For better performance, we use model `ViT-g-14` from [OpenClip multimodal embeddings](https://python.langchain.com/docs/integrations/text_embedding/open_clip).\n",
"The images are stored as base64 encoded strings with `vectorstore.add_images`.\n"
]
},
{
@@ -200,9 +192,7 @@
"vectorstore = VDMS(\n",
" client=vdms_client,\n",
" collection_name=\"mm_rag_clip_photos\",\n",
" embedding_function=OpenCLIPEmbeddings(\n",
" model_name=\"ViT-g-14\", checkpoint=\"laion2b_s34b_b88k\"\n",
" ),\n",
" embedding=OpenCLIPEmbeddings(model_name=\"ViT-g-14\", checkpoint=\"laion2b_s34b_b88k\"),\n",
")\n",
"\n",
"# Get image URIs with .jpg extension only\n",
@@ -233,7 +223,7 @@
"source": [
"## RAG\n",
"\n",
"`vectorstore.add_images` will store / retrieve images as base64 encoded strings."
"Here we define helper functions for image results."
]
},
{
@@ -392,7 +382,8 @@
"id": "1566096d-97c2-4ddc-ba4a-6ef88c525e4e",
"metadata": {},
"source": [
"## Test retrieval and run RAG"
"## Test retrieval and run RAG\n",
"Now let's query for a `woman with children` and retrieve the top results."
]
},
{
@@ -452,6 +443,14 @@
" print(doc.page_content)"
]
},
{
"cell_type": "markdown",
"id": "15e9b54d",
"metadata": {},
"source": [
"Now let's use the `multi_modal_rag_chain` to process the same query and display the response."
]
},
{
"cell_type": "code",
"execution_count": 11,
@@ -462,10 +461,10 @@
"name": "stdout",
"output_type": "stream",
"text": [
"1. Detailed description of the visual elements in the image: The image features a woman with children, likely a mother and her family, standing together outside. They appear to be poor or struggling financially, as indicated by their attire and surroundings.\n",
"2. Historical and cultural context of the image: The photo was taken in 1936 during the Great Depression, when many families struggled to make ends meet. Dorothea Lange, a renowned American photographer, took this iconic photograph that became an emblem of poverty and hardship experienced by many Americans at that time.\n",
"3. Interpretation of the image's symbolism and meaning: The image conveys a sense of unity and resilience despite adversity. The woman and her children are standing together, displaying their strength as a family unit in the face of economic challenges. The photograph also serves as a reminder of the importance of empathy and support for those who are struggling.\n",
"4. Connections between the image and the related text: The text provided offers additional context about the woman in the photo, her background, and her feelings towards the photograph. It highlights the historical backdrop of the Great Depression and emphasizes the significance of this particular image as a representation of that time period.\n"
" The image depicts a woman with several children. The woman appears to be of Cherokee heritage, as suggested by the text provided. The image is described as having been initially regretted by the subject, Florence Owens Thompson, due to her feeling that it did not accurately represent her leadership qualities.\n",
"The historical and cultural context of the image is tied to the Great Depression and the Dust Bowl, both of which affected the Cherokee people in Oklahoma. The photograph was taken during this period, and its subject, Florence Owens Thompson, was a leader within her community who worked tirelessly to help those affected by these crises.\n",
"The image's symbolism and meaning can be interpreted as a representation of resilience and strength in the face of adversity. The woman is depicted with multiple children, which could signify her role as a caregiver and protector during difficult times.\n",
"Connections between the image and the related text include Florence Owens Thompson's leadership qualities and her regretted feelings about the photograph. Additionally, the mention of Dorothea Lange, the photographer who took this photo, ties the image to its historical context and the broader narrative of the Great Depression and Dust Bowl in Oklahoma. \n"
]
}
],
@@ -492,14 +491,6 @@
"source": [
"! docker kill vdms_rag_nb"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ba652da",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -518,7 +509,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -58,7 +58,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain"
"! pip install -U langchain-nomic langchain-chroma langchain-community tiktoken langchain-openai langchain"
]
},
{
@@ -167,7 +167,7 @@
"source": [
"import os\n",
"\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_nomic import NomicEmbeddings\n",

View File

@@ -56,7 +56,7 @@
},
"outputs": [],
"source": [
"! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain # (newest versions required for multi-modal)"
"! pip install -U langchain-nomic langchain-chroma langchain-community tiktoken langchain-openai langchain # (newest versions required for multi-modal)"
]
},
{
@@ -194,7 +194,7 @@
"\n",
"import chromadb\n",
"import numpy as np\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_nomic import NomicEmbeddings\n",
"from PIL import Image as _PILImage\n",
"\n",

View File

@@ -20,8 +20,8 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter"
]

View File

@@ -80,7 +80,7 @@
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings()"

View File

@@ -0,0 +1,756 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "10f50955-be55-422f-8c62-3a32f8cf02ed",
"metadata": {},
"source": [
"# RAG application running locally on Intel Xeon CPU using langchain and open-source models"
]
},
{
"cell_type": "markdown",
"id": "48113be6-44bb-4aac-aed3-76a1365b9561",
"metadata": {},
"source": [
"Author - Pratool Bharti (pratool.bharti@intel.com)"
]
},
{
"cell_type": "markdown",
"id": "8b10b54b-1572-4ea1-9c1e-1d29fcc3dcd9",
"metadata": {},
"source": [
"In this cookbook, we use langchain tools and open source models to execute locally on CPU. This notebook has been validated to run on Intel Xeon 8480+ CPU. Here we implement a RAG pipeline for Llama2 model to answer questions about Intel Q1 2024 earnings release."
]
},
{
"cell_type": "markdown",
"id": "acadbcec-3468-4926-8ce5-03b678041c0a",
"metadata": {},
"source": [
"**Create a conda or virtualenv environment with python >=3.10 and install following libraries**\n",
"<br>\n",
"\n",
"`pip install --upgrade langchain langchain-community langchainhub langchain-chroma bs4 gpt4all pypdf pysqlite3-binary` <br>\n",
"`pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu`"
]
},
{
"cell_type": "markdown",
"id": "84c392c8-700a-42ec-8e94-806597f22e43",
"metadata": {},
"source": [
"**Load pysqlite3 in sys modules since ChromaDB requires sqlite3.**"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "145cd491-b388-4ea7-bdc8-2f4995cac6fd",
"metadata": {},
"outputs": [],
"source": [
"__import__(\"pysqlite3\")\n",
"import sys\n",
"\n",
"sys.modules[\"sqlite3\"] = sys.modules.pop(\"pysqlite3\")"
]
},
{
"cell_type": "markdown",
"id": "14dde7e2-b236-49b9-b3a0-08c06410418c",
"metadata": {},
"source": [
"**Import essential components from langchain to load and split data**"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "887643ba-249e-48d6-9aa7-d25087e8dfbf",
"metadata": {},
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_community.document_loaders import PyPDFLoader"
]
},
{
"cell_type": "markdown",
"id": "922c0eba-8736-4de5-bd2f-3d0f00b16e43",
"metadata": {},
"source": [
"**Download Intel Q1 2024 earnings release**"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2d6a2419-5338-4188-8615-a40a65ff8019",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2024-07-15 15:04:43-- https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf\n",
"Resolving proxy-dmz.intel.com (proxy-dmz.intel.com)... 10.7.211.16\n",
"Connecting to proxy-dmz.intel.com (proxy-dmz.intel.com)|10.7.211.16|:912... connected.\n",
"Proxy request sent, awaiting response... 200 OK\n",
"Length: 133510 (130K) [application/pdf]\n",
"Saving to: intel_q1_2024_earnings.pdf\n",
"\n",
"intel_q1_2024_earni 100%[===================>] 130.38K --.-KB/s in 0.005s \n",
"\n",
"2024-07-15 15:04:44 (24.6 MB/s) - intel_q1_2024_earnings.pdf saved [133510/133510]\n",
"\n"
]
}
],
"source": [
"!wget 'https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf' -O intel_q1_2024_earnings.pdf"
]
},
{
"cell_type": "markdown",
"id": "e3612627-e105-453d-8a50-bbd6e39dedb5",
"metadata": {},
"source": [
"**Loading earning release pdf document through PyPDFLoader**"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "cac6278e-ebad-4224-a062-bf6daca24cb0",
"metadata": {},
"outputs": [],
"source": [
"loader = PyPDFLoader(\"intel_q1_2024_earnings.pdf\")\n",
"data = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "a7dca43b-1c62-41df-90c7-6ed2904f823d",
"metadata": {},
"source": [
"**Splitting entire document in several chunks with each chunk size is 500 tokens**"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4486adbe-0d0e-4685-8c08-c1774ed6e993",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)"
]
},
{
"cell_type": "markdown",
"id": "af142346-e793-4a52-9a56-63e3be416b3d",
"metadata": {},
"source": [
"**Looking at the first split of the document**"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e4240fd1-898e-4bfc-a377-02c9bc25b56e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(metadata={'source': 'intel_q1_2024_earnings.pdf', 'page': 0}, page_content='Intel Corporation\\n2200 Mission College Blvd.\\nSanta Clara, CA 95054-1549\\n \\nNews Release\\n Intel Reports First -Quarter 2024 Financial Results\\nNEWS SUMMARY\\n▪First-quarter revenue of $12.7 billion , up 9% year over year (YoY).\\n▪First-quarter GAAP earnings (loss) per share (EPS) attributable to Intel was $(0.09) ; non-GAAP EPS \\nattributable to Intel was $0.18 .')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_splits[0]"
]
},
{
"cell_type": "markdown",
"id": "b88d2632-7c1b-49ef-a691-c0eb67d23e6a",
"metadata": {},
"source": [
"**One of the major step in RAG is to convert each split of document into embeddings and store in a vector database such that searching relevant documents are efficient.** <br>\n",
"**For that, importing Chroma vector database from langchain. Also, importing open source GPT4All for embedding models**"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9ff99dd7-9d47-4239-ba0a-d775792334ba",
"metadata": {},
"outputs": [],
"source": [
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import GPT4AllEmbeddings"
]
},
{
"cell_type": "markdown",
"id": "b5d1f4dd-dd8d-4a20-95d1-2dbdd204375a",
"metadata": {},
"source": [
"**In next step, we will download one of the most popular embedding model \"all-MiniLM-L6-v2\". Find more details of the model at this link https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2**"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "05db3494-5d8e-4a13-9941-26330a86f5e5",
"metadata": {},
"outputs": [],
"source": [
"model_name = \"all-MiniLM-L6-v2.gguf2.f16.gguf\"\n",
"gpt4all_kwargs = {\"allow_download\": \"True\"}\n",
"embeddings = GPT4AllEmbeddings(model_name=model_name, gpt4all_kwargs=gpt4all_kwargs)"
]
},
{
"cell_type": "markdown",
"id": "4e53999e-1983-46ac-8039-2783e194c3ae",
"metadata": {},
"source": [
"**Store all the embeddings in the Chroma database**"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "0922951a-9ddf-4761-973d-8e9a86f61284",
"metadata": {},
"outputs": [],
"source": [
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=embeddings)"
]
},
{
"cell_type": "markdown",
"id": "29f94fa0-6c75-4a65-a1a3-debc75422479",
"metadata": {},
"source": [
"**Now, let's find relevant splits from the documents related to the question**"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "88c8152d-ec7a-4f0b-9d86-877789407537",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n"
]
}
],
"source": [
"question = \"What is Intel CCG revenue in Q1 2024\"\n",
"docs = vectorstore.similarity_search(question)\n",
"print(len(docs))"
]
},
{
"cell_type": "markdown",
"id": "53330c6b-cb0f-43f9-b379-2e57ac1e5335",
"metadata": {},
"source": [
"**Look at the first retrieved document from the vector database**"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "43a6d94f-b5c4-47b0-a353-2db4c3d24d9c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(metadata={'page': 1, 'source': 'intel_q1_2024_earnings.pdf'}, page_content='Client Computing Group (CCG) $7.5 billion up31%\\nData Center and AI (DCAI) $3.0 billion up5%\\nNetwork and Edge (NEX) $1.4 billion down 8%\\nTotal Intel Products revenue $11.9 billion up17%\\nIntel Foundry $4.4 billion down 10%\\nAll other:\\nAltera $342 million down 58%\\nMobileye $239 million down 48%\\nOther $194 million up17%\\nTotal all other revenue $775 million down 46%\\nIntersegment eliminations $(4.4) billion\\nTotal net revenue $12.7 billion up9%\\nIntel Products Highlights')"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[0]"
]
},
{
"cell_type": "markdown",
"id": "64ba074f-4b36-442e-b7e2-b26d6e2815c3",
"metadata": {},
"source": [
"**Download Lllama-2 model from Huggingface and store locally** <br>\n",
"**You can download different quantization variant of Lllama-2 model from the link below. We are using Q8 version here (7.16GB).** <br>\n",
"https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8dd0811-6f43-4bc6-b854-2ab377639c9a",
"metadata": {},
"outputs": [],
"source": [
"!huggingface-cli download TheBloke/Llama-2-7b-Chat-GGUF llama-2-7b-chat.Q8_0.gguf --local-dir . --local-dir-use-symlinks False"
]
},
{
"cell_type": "markdown",
"id": "3895b1f5-f51d-4539-abf0-af33d7ca48ea",
"metadata": {},
"source": [
"**Import langchain components required to load downloaded LLMs model**"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "fb087088-aa62-44c0-8356-061e9b9f1186",
"metadata": {},
"outputs": [],
"source": [
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"from langchain_community.llms import LlamaCpp"
]
},
{
"cell_type": "markdown",
"id": "5a8a111e-2614-4b70-b034-85cd3e7304cb",
"metadata": {},
"source": [
"**Loading the local Lllama-2 model using Llama-cpp library**"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "fb917da2-c0d7-4995-b56d-26254276e0da",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from llama-2-7b-chat.Q8_0.gguf (version GGUF V2)\n",
"llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n",
"llama_model_loader: - kv 0: general.architecture str = llama\n",
"llama_model_loader: - kv 1: general.name str = LLaMA v2\n",
"llama_model_loader: - kv 2: llama.context_length u32 = 4096\n",
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008\n",
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32\n",
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001\n",
"llama_model_loader: - kv 10: general.file_type u32 = 7\n",
"llama_model_loader: - kv 11: tokenizer.ggml.model str = llama\n",
"llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
"llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
"llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
"llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1\n",
"llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2\n",
"llama_model_loader: - kv 17: tokenizer.ggml.unknown_token_id u32 = 0\n",
"llama_model_loader: - kv 18: general.quantization_version u32 = 2\n",
"llama_model_loader: - type f32: 65 tensors\n",
"llama_model_loader: - type q8_0: 226 tensors\n",
"llm_load_vocab: special tokens cache size = 259\n",
"llm_load_vocab: token to piece cache size = 0.1684 MB\n",
"llm_load_print_meta: format = GGUF V2\n",
"llm_load_print_meta: arch = llama\n",
"llm_load_print_meta: vocab type = SPM\n",
"llm_load_print_meta: n_vocab = 32000\n",
"llm_load_print_meta: n_merges = 0\n",
"llm_load_print_meta: vocab_only = 0\n",
"llm_load_print_meta: n_ctx_train = 4096\n",
"llm_load_print_meta: n_embd = 4096\n",
"llm_load_print_meta: n_layer = 32\n",
"llm_load_print_meta: n_head = 32\n",
"llm_load_print_meta: n_head_kv = 32\n",
"llm_load_print_meta: n_rot = 128\n",
"llm_load_print_meta: n_swa = 0\n",
"llm_load_print_meta: n_embd_head_k = 128\n",
"llm_load_print_meta: n_embd_head_v = 128\n",
"llm_load_print_meta: n_gqa = 1\n",
"llm_load_print_meta: n_embd_k_gqa = 4096\n",
"llm_load_print_meta: n_embd_v_gqa = 4096\n",
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
"llm_load_print_meta: f_norm_rms_eps = 1.0e-06\n",
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
"llm_load_print_meta: f_logit_scale = 0.0e+00\n",
"llm_load_print_meta: n_ff = 11008\n",
"llm_load_print_meta: n_expert = 0\n",
"llm_load_print_meta: n_expert_used = 0\n",
"llm_load_print_meta: causal attn = 1\n",
"llm_load_print_meta: pooling type = 0\n",
"llm_load_print_meta: rope type = 0\n",
"llm_load_print_meta: rope scaling = linear\n",
"llm_load_print_meta: freq_base_train = 10000.0\n",
"llm_load_print_meta: freq_scale_train = 1\n",
"llm_load_print_meta: n_ctx_orig_yarn = 4096\n",
"llm_load_print_meta: rope_finetuned = unknown\n",
"llm_load_print_meta: ssm_d_conv = 0\n",
"llm_load_print_meta: ssm_d_inner = 0\n",
"llm_load_print_meta: ssm_d_state = 0\n",
"llm_load_print_meta: ssm_dt_rank = 0\n",
"llm_load_print_meta: model type = 7B\n",
"llm_load_print_meta: model ftype = Q8_0\n",
"llm_load_print_meta: model params = 6.74 B\n",
"llm_load_print_meta: model size = 6.67 GiB (8.50 BPW) \n",
"llm_load_print_meta: general.name = LLaMA v2\n",
"llm_load_print_meta: BOS token = 1 '<s>'\n",
"llm_load_print_meta: EOS token = 2 '</s>'\n",
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
"llm_load_print_meta: max token length = 48\n",
"llm_load_tensors: ggml ctx size = 0.14 MiB\n",
"llm_load_tensors: CPU buffer size = 6828.64 MiB\n",
"...................................................................................................\n",
"llama_new_context_with_model: n_ctx = 2048\n",
"llama_new_context_with_model: n_batch = 512\n",
"llama_new_context_with_model: n_ubatch = 512\n",
"llama_new_context_with_model: flash_attn = 0\n",
"llama_new_context_with_model: freq_base = 10000.0\n",
"llama_new_context_with_model: freq_scale = 1\n",
"llama_kv_cache_init: CPU KV buffer size = 1024.00 MiB\n",
"llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB\n",
"llama_new_context_with_model: CPU output buffer size = 0.12 MiB\n",
"llama_new_context_with_model: CPU compute buffer size = 164.01 MiB\n",
"llama_new_context_with_model: graph nodes = 1030\n",
"llama_new_context_with_model: graph splits = 1\n",
"AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 | \n",
"Model metadata: {'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.context_length': '4096', 'general.name': 'LLaMA v2', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '11008', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'llama.rope.dimension_count': '128', 'llama.attention.head_count': '32', 'tokenizer.ggml.bos_token_id': '1', 'llama.block_count': '32', 'llama.attention.head_count_kv': '32', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '7'}\n",
"Using fallback chat format: llama-2\n"
]
}
],
"source": [
"llm = LlamaCpp(\n",
" model_path=\"llama-2-7b-chat.Q8_0.gguf\",\n",
" n_gpu_layers=-1,\n",
" n_batch=512,\n",
" n_ctx=2048,\n",
" f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
" verbose=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "43e06f56-ef97-451b-87d9-8465ea442aed",
"metadata": {},
"source": [
"**Now let's ask the same question to Llama model without showing them the earnings release.**"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "1033dd82-5532-437d-a548-27695e109589",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"?\n",
"(NASDAQ:INTC)\n",
"Intel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"llama_print_timings: load time = 131.20 ms\n",
"llama_print_timings: sample time = 16.05 ms / 68 runs ( 0.24 ms per token, 4236.76 tokens per second)\n",
"llama_print_timings: prompt eval time = 131.14 ms / 16 tokens ( 8.20 ms per token, 122.01 tokens per second)\n",
"llama_print_timings: eval time = 3225.00 ms / 67 runs ( 48.13 ms per token, 20.78 tokens per second)\n",
"llama_print_timings: total time = 3466.40 ms / 83 tokens\n"
]
},
{
"data": {
"text/plain": [
"\"?\\n(NASDAQ:INTC)\\nIntel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year.\""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.invoke(question)"
]
},
{
"cell_type": "markdown",
"id": "75f5cb10-746f-4e37-9386-b85a4d2b84ef",
"metadata": {},
"source": [
"**As you can see, model is giving wrong information. Correct asnwer is CCG revenue in Q1 2024 is $7.5B. Now let's apply RAG using the earning release document**"
]
},
{
"cell_type": "markdown",
"id": "0f4150ec-5692-4756-b11a-22feb7ab88ff",
"metadata": {},
"source": [
"**in RAG, we modify the input prompt by adding relevent documents with the question. Here, we use one of the popular RAG prompt**"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "226c14b0-f43e-4a1f-a1e4-04731d467ec4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], template=\"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\\nQuestion: {question} \\nContext: {context} \\nAnswer:\"))]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import hub\n",
"\n",
"rag_prompt = hub.pull(\"rlm/rag-prompt\")\n",
"rag_prompt.messages"
]
},
{
"cell_type": "markdown",
"id": "77deb6a0-0950-450a-916a-f2a029676c20",
"metadata": {},
"source": [
"**Appending all retreived documents in a single document**"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "2dbc3327-6ef3-4c1f-8797-0c71964b0921",
"metadata": {},
"outputs": [],
"source": [
"def format_docs(docs):\n",
" return \"\\n\\n\".join(doc.page_content for doc in docs)"
]
},
{
"cell_type": "markdown",
"id": "2e2d9f18-49d0-43a3-bea8-78746ffa86b7",
"metadata": {},
"source": [
"**The last step is to create a chain using langchain tool that will create an e2e pipeline. It will take question and context as an input.**"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "427379c2-51ff-4e0f-8278-a45221363299",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough, RunnablePick\n",
"\n",
"# Chain\n",
"chain = (\n",
" RunnablePassthrough.assign(context=RunnablePick(\"context\") | format_docs)\n",
" | rag_prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "095d6280-c949-4d00-8e32-8895a82d245f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Llama.generate: prefix-match hit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"llama_print_timings: load time = 131.20 ms\n",
"llama_print_timings: sample time = 7.74 ms / 31 runs ( 0.25 ms per token, 4004.13 tokens per second)\n",
"llama_print_timings: prompt eval time = 2529.41 ms / 674 tokens ( 3.75 ms per token, 266.46 tokens per second)\n",
"llama_print_timings: eval time = 1542.94 ms / 30 runs ( 51.43 ms per token, 19.44 tokens per second)\n",
"llama_print_timings: total time = 4123.68 ms / 704 tokens\n"
]
},
{
"data": {
"text/plain": [
"' Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%.'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"context\": docs, \"question\": question})"
]
},
{
"cell_type": "markdown",
"id": "638364b2-6bd2-4471-9961-d3a1d1b9d4ee",
"metadata": {},
"source": [
"**Now we see the results are correct as it is mentioned in earnings release.** <br>\n",
"**To further automate, we will create a chain that will take input as question and retriever so that we don't need to retrieve documents seperately**"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "4654e5b7-635f-4767-8b31-4c430164cdd5",
"metadata": {},
"outputs": [],
"source": [
"retriever = vectorstore.as_retriever()\n",
"qa_chain = (\n",
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
" | rag_prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0979f393-fd0a-4e82-b844-68371c6ad68f",
"metadata": {},
"source": [
"**Now we only need to pass the question to the chain and it will fetch the contexts directly from the vector database to generate the answer**\n",
"<br>\n",
"**Let's try with another question**"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "3ea07b82-e6ec-4084-85f4-191373530172",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Llama.generate: prefix-match hit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"llama_print_timings: load time = 131.20 ms\n",
"llama_print_timings: sample time = 6.28 ms / 31 runs ( 0.20 ms per token, 4937.88 tokens per second)\n",
"llama_print_timings: prompt eval time = 2681.93 ms / 730 tokens ( 3.67 ms per token, 272.19 tokens per second)\n",
"llama_print_timings: eval time = 1471.07 ms / 30 runs ( 49.04 ms per token, 20.39 tokens per second)\n",
"llama_print_timings: total time = 4206.77 ms / 760 tokens\n"
]
},
{
"data": {
"text/plain": [
"' According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%.'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"qa_chain.invoke(\"what is Intel DCAI revenue in Q1 2024?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9407f2a0-4a35-4315-8e96-02fcb80f210c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "rag-on-intel",
"language": "python",
"name": "rag-on-intel"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -36,10 +36,10 @@
"from bs4 import BeautifulSoup as Soup\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryByteStore, LocalFileStore\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders.recursive_url_loader import (\n",
" RecursiveUrlLoader,\n",
")\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"# For our example, we'll load docs from the web\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
@@ -370,13 +370,14 @@
],
"source": [
"import torch\n",
"from langchain.llms.huggingface_pipeline import HuggingFacePipeline\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
"from langchain_huggingface.llms import HuggingFacePipeline\n",
"from optimum.intel.ipex import IPEXModelForCausalLM\n",
"from transformers import AutoTokenizer, pipeline\n",
"\n",
"model_id = \"Intel/neural-chat-7b-v3-3\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
"model = AutoModelForCausalLM.from_pretrained(\n",
" model_id, device_map=\"auto\", torch_dtype=torch.bfloat16\n",
"model = IPEXModelForCausalLM.from_pretrained(\n",
" model_id, torch_dtype=torch.bfloat16, export=True\n",
")\n",
"\n",
"pipe = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, max_new_tokens=100)\n",
@@ -581,7 +582,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
"version": "3.10.14"
}
},
"nbformat": 4,

View File

@@ -740,7 +740,7 @@ Even this relatively large model will most likely fail to generate more complica
```bash
poetry run pip install pyyaml chromadb
poetry run pip install pyyaml langchain_chroma
import yaml
```
@@ -994,7 +994,7 @@ from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
from langchain_community.vectorstores import Chroma
from langchain_chroma import Chroma
example_prompt = PromptTemplate(
input_variables=["table_info", "input", "sql_cmd", "sql_result", "answer"],

View File

@@ -22,7 +22,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet pypdf chromadb tiktoken openai langchain-together"
"! pip install --quiet pypdf tiktoken openai langchain-chroma langchain-together"
]
},
{
@@ -45,8 +45,8 @@
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"\"\"\"\n",
"from langchain_together.embeddings import TogetherEmbeddings\n",

File diff suppressed because one or more lines are too long

View File

@@ -13,7 +13,7 @@ OUTPUT_NEW_DOCS_DIR = $(OUTPUT_NEW_DIR)/docs
PYTHON = .venv/bin/python
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm" | tr '\n' ' ')
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm|couchbase" | tr '\n' ' ')
PORT ?= 3001
@@ -38,8 +38,14 @@ generate-files:
$(PYTHON) scripts/model_feat_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/tool_feat_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/document_loader_feat_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/kv_store_feat_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/partner_pkg_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/copy_templates.py $(INTERMEDIATE_DIR)
wget -q https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O $(INTERMEDIATE_DIR)/langserve.md
@@ -63,10 +69,13 @@ render:
md-sync:
rsync -avm --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --include="*/_category_.yml" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR)
append-related:
$(PYTHON) scripts/append_related_links.py $(OUTPUT_NEW_DOCS_DIR)
generate-references:
$(PYTHON) scripts/generate_api_reference_links.py --docs_dir $(OUTPUT_NEW_DOCS_DIR)
build: install-py-deps generate-files copy-infra render md-sync
build: install-py-deps generate-files copy-infra render md-sync append-related
vercel-build: install-vercel-deps build generate-references
rm -rf docs

View File

@@ -178,3 +178,10 @@ autosummary_generate = True
html_copy_source = False
html_show_sourcelink = False
# Set canonical URL from the Read the Docs Domain
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "")
# Tell Jinja2 templates the build is running on Read the Docs
if os.environ.get("READTHEDOCS", "") == "True":
html_context["READTHEDOCS"] = True

View File

@@ -78,7 +78,7 @@ def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
continue
if inspect.isclass(type_):
# The clasification of the class is used to select a template
# The type of the class is used to select a template
# for the object when rendering the documentation.
# See `templates` directory for defined templates.
# This is a hacky solution to distinguish between different

View File

@@ -55,6 +55,7 @@ A developer platform that lets you debug, test, evaluate, and monitor LLM applic
dark: useBaseUrl('/svg/langchain_stack_062024_dark.svg'),
}}
title="LangChain Framework Overview"
style={{ width: "100%" }}
/>
## LangChain Expression Language (LCEL)
@@ -85,8 +86,13 @@ Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas i
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
With LCEL, **all** steps are automatically logged to [LangSmith](https://docs.smith.langchain.com/) for maximum observability and debuggability.
[**Seamless LangServe deployment**](/docs/langserve)
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).
LCEL aims to provide consistency around behavior and customization over legacy subclassed chains such as `LLMChain` and
`ConversationalRetrievalChain`. Many of these legacy chains hide important details like prompts, and as a wider variety
of viable models emerge, customization has become more and more important.
If you are currently using one of these legacy chains, please see [this guide for guidance on how to migrate](/docs/versions/migrating_chains).
For guides on how to do specific tasks with LCEL, check out [the relevant how-to guides](/docs/how_to/#langchain-expression-language-lcel).
### Runnable interface
<span data-heading-keywords="invoke,runnable"></span>
@@ -159,7 +165,7 @@ Some important things to note:
ChatModels also accept other parameters that are specific to that integration. To find all the parameters supported by a ChatModel head to the API reference for that model.
:::important
**Tool Calling** Some chat models have been fine-tuned for tool calling and provide a dedicated API for tool calling.
Some chat models have been fine-tuned for **tool calling** and provide a dedicated API for it.
Generally, such models are better at tool calling than non-fine-tuned models, and are recommended for use cases that require tool calling.
Please see the [tool calling section](/docs/concepts/#functiontool-calling) for more information.
:::
@@ -230,7 +236,7 @@ This is where information like log-probs and token usage may be stored.
These represent a decision from an language model to call a tool. They are included as part of an `AIMessage` output.
They can be accessed from there with the `.tool_calls` property.
This property returns a list of dictionaries. Each dictionary has the following keys:
This property returns a list of `ToolCall`s. A `ToolCall` is a dictionary with the following arguments:
- `name`: The name of the tool that should be called.
- `args`: The arguments to that tool.
@@ -240,13 +246,18 @@ This property returns a list of dictionaries. Each dictionary has the following
This represents a system message, which tells the model how to behave. Not every model provider supports this.
#### FunctionMessage
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
#### ToolMessage
This represents the result of a tool call. This is distinct from a FunctionMessage in order to match OpenAI's `function` and `tool` message types. In addition to `role` and `content`, this message has a `tool_call_id` parameter which conveys the id of the call to the tool that was called to produce this result.
This represents the result of a tool call. In addition to `role` and `content`, this message has:
- a `tool_call_id` field which conveys the id of the call to the tool that was called to produce this result.
- an `artifact` field which can be used to pass along arbitrary artifacts of the tool execution which are useful to track but which should not be sent to the model.
#### (Legacy) FunctionMessage
This is a legacy message type, corresponding to OpenAI's legacy function-calling API. `ToolMessage` should be used instead to correspond to the updated tool-calling API.
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
### Prompt templates
@@ -487,36 +498,130 @@ Retrievers accept a string query as input and return a list of Document's as out
For specifics on how to use retrievers, see the [relevant how-to guides here](/docs/how_to/#retrievers).
### Key-value stores
For some techniques, such as [indexing and retrieval with multiple vectors per document](/docs/how_to/multi_vector/) or
[caching embeddings](/docs/how_to/caching_embeddings/), having a form of key-value (KV) storage is helpful.
LangChain includes a [`BaseStore`](https://api.python.langchain.com/en/latest/stores/langchain_core.stores.BaseStore.html) interface,
which allows for storage of arbitrary data. However, LangChain components that require KV-storage accept a
more specific `BaseStore[str, bytes]` instance that stores binary data (referred to as a `ByteStore`), and internally take care of
encoding and decoding data for their specific needs.
This means that as a user, you only need to think about one type of store rather than different ones for different types of data.
#### Interface
All [`BaseStores`](https://api.python.langchain.com/en/latest/stores/langchain_core.stores.BaseStore.html) support the following interface. Note that the interface allows
for modifying **multiple** key-value pairs at once:
- `mget(key: Sequence[str]) -> List[Optional[bytes]]`: get the contents of multiple keys, returning `None` if the key does not exist
- `mset(key_value_pairs: Sequence[Tuple[str, bytes]]) -> None`: set the contents of multiple keys
- `mdelete(key: Sequence[str]) -> None`: delete multiple keys
- `yield_keys(prefix: Optional[str] = None) -> Iterator[str]`: yield all keys in the store, optionally filtering by a prefix
For key-value store implementations, see [this section](/docs/integrations/stores/).
### Tools
<span data-heading-keywords="tool,tools"></span>
Tools are interfaces that an agent, a chain, or a chat model / LLM can use to interact with the world.
Tools are utilities designed to be called by a model: their inputs are designed to be generated by models, and their outputs are designed to be passed back to models.
Tools are needed whenever you want a model to control parts of your code or call out to external APIs.
A tool consists of the following components:
A tool consists of:
1. The name of the tool
2. A description of what the tool does
3. JSON schema of what the inputs to the tool are
4. The function to call
5. Whether the result of a tool should be returned directly to the user (only relevant for agents)
1. The name of the tool.
2. A description of what the tool does.
3. A JSON schema defining the inputs to the tool.
4. A function (and, optionally, an async variant of the function).
The name, description and JSON schema are provided as context
to the LLM, allowing the LLM to determine how to use the tool
appropriately.
When a tool is bound to a model, the name, description and JSON schema are provided as context to the model.
Given a list of tools and a set of instructions, a model can request to call one or more tools with specific inputs.
Typical usage may look like the following:
Given a list of available tools and a prompt, an LLM can request
that one or more tools be invoked with appropriate arguments.
```python
tools = [...] # Define a list of tools
llm_with_tools = llm.bind_tools(tools)
ai_msg = llm_with_tools.invoke("do xyz...")
# -> AIMessage(tool_calls=[ToolCall(...), ...], ...)
```
Generally, when designing tools to be used by a chat model or LLM, it is important to keep in mind the following:
The `AIMessage` returned from the model MAY have `tool_calls` associated with it.
Read [this guide](/docs/concepts/#aimessage) for more information on what the response type may look like.
- Chat models that have been fine-tuned for tool calling will be better at tool calling than non-fine-tuned models.
- Non fine-tuned models may not be able to use tools at all, especially if the tools are complex or require multiple tool calls.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas.
- Simpler tools are generally easier for models to use than more complex tools.
Once the chosen tools are invoked, the results can be passed back to the model so that it can complete whatever task
it's performing.
There are generally two different ways to invoke the tool and pass back the response:
For specifics on how to use tools, see the [relevant how-to guides here](/docs/how_to/#tools).
#### Invoke with just the arguments
When you invoke a tool with just the arguments, you will get back the raw tool output (usually a string).
This generally looks like:
```python
# You will want to previously check that the LLM returned tool calls
tool_call = ai_msg.tool_calls[0]
# ToolCall(args={...}, id=..., ...)
tool_output = tool.invoke(tool_call["args"])
tool_message = ToolMessage(
content=tool_output,
tool_call_id=tool_call["id"],
name=tool_call["name"]
)
```
Note that the `content` field will generally be passed back to the model.
If you do not want the raw tool response to be passed to the model, but you still want to keep it around,
you can transform the tool output but also pass it as an artifact (read more about [`ToolMessage.artifact` here](/docs/concepts/#toolmessage))
```python
... # Same code as above
response_for_llm = transform(response)
tool_message = ToolMessage(
content=response_for_llm,
tool_call_id=tool_call["id"],
name=tool_call["name"],
artifact=tool_output
)
```
#### Invoke with `ToolCall`
The other way to invoke a tool is to call it with the full `ToolCall` that was generated by the model.
When you do this, the tool will return a ToolMessage.
The benefits of this are that you don't have to write the logic yourself to transform the tool output into a ToolMessage.
This generally looks like:
```python
tool_call = ai_msg.tool_calls[0]
# -> ToolCall(args={...}, id=..., ...)
tool_message = tool.invoke(tool_call)
# -> ToolMessage(
content="tool result foobar...",
tool_call_id=...,
name="tool_name"
)
```
If you are invoking the tool this way and want to include an [artifact](/docs/concepts/#toolmessage) for the ToolMessage, you will need to have the tool return two things.
Read more about [defining tools that return artifacts here](/docs/how_to/tool_artifacts/).
#### Best practices
When designing tools to be used by a model, it is important to keep in mind that:
- Chat models that have explicit [tool-calling APIs](/docs/concepts/#functiontool-calling) will be better at tool calling than non-fine-tuned models.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This another form of prompt engineering.
- Simple, narrowly scoped tools are easier for models to use than complex tools.
#### Related
For specifics on how to use tools, see the [tools how-to guides](/docs/how_to/#tools).
To use a pre-built tool, see the [tool integration docs](/docs/integrations/tools/).
### Toolkits
<span data-heading-keywords="toolkit,toolkits"></span>
Toolkits are collections of tools that are designed to be used together for specific tasks. They have convenient loading methods.
@@ -761,6 +866,61 @@ units (like words or subwords) that carry meaning, rather than individual charac
to learn and understand the structure of the language, including grammar and context.
Furthermore, using tokens can also improve efficiency, since the model processes fewer units of text compared to character-level processing.
### Function/tool calling
:::info
We use the term tool calling interchangeably with function calling. Although
function calling is sometimes meant to refer to invocations of a single function,
we treat all models as though they can return multiple tool or function calls in
each message.
:::
Tool calling allows a [chat model](/docs/concepts/#chat-models) to respond to a given prompt by generating output that
matches a user-defined schema.
While the name implies that the model is performing
some action, this is actually not the case! The model only generates the arguments to a tool, and actually running the tool (or not) is up to the user.
One common example where you **wouldn't** want to call a function with the generated arguments
is if you want to [extract structured output matching some schema](/docs/concepts/#structured-output)
from unstructured text. You would give the model an "extraction" tool that takes
parameters matching the desired schema, then treat the generated output as your final
result.
![Diagram of a tool call by a chat model](/img/tool_call.png)
Tool calling is not universal, but is supported by many popular LLM providers, including [Anthropic](/docs/integrations/chat/anthropic/),
[Cohere](/docs/integrations/chat/cohere/), [Google](/docs/integrations/chat/google_vertex_ai_palm/),
[Mistral](/docs/integrations/chat/mistralai/), [OpenAI](/docs/integrations/chat/openai/), and even for locally-running models via [Ollama](/docs/integrations/chat/ollama/).
LangChain provides a standardized interface for tool calling that is consistent across different models.
The standard interface consists of:
* `ChatModel.bind_tools()`: a method for specifying which tools are available for a model to call. This method accepts [LangChain tools](/docs/concepts/#tools) as well as [Pydantic](https://pydantic.dev/) objects.
* `AIMessage.tool_calls`: an attribute on the `AIMessage` returned from the model for accessing the tool calls requested by the model.
#### Tool usage
After the model calls tools, you can use the tool by invoking it, then passing the arguments back to the model.
LangChain provides the [`Tool`](/docs/concepts/#tools) abstraction to help you handle this.
The general flow is this:
1. Generate tool calls with a chat model in response to a query.
2. Invoke the appropriate tools using the generated tool call as arguments.
3. Format the result of the tool invocations as [`ToolMessages`](/docs/concepts/#toolmessage).
4. Pass the entire list of messages back to the model so that it can generate a final answer (or call more tools).
![Diagram of a complete tool calling flow](/img/tool_calling_flow.png)
This is how tool calling [agents](/docs/concepts/#agents) perform tasks and answer queries.
Check out some more focused guides below:
- [How to use chat models to call tools](/docs/how_to/tool_calling/)
- [How to pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model/)
- [Building an agent with LangGraph](https://langchain-ai.github.io/langgraph/tutorials/introduction/)
### Structured output
LLMs are capable of generating arbitrary text. This enables the model to respond appropriately to a wide
@@ -776,14 +936,54 @@ a few ways to get structured output from models in LangChain.
#### `.with_structured_output()`
For convenience, some LangChain chat models support a `.with_structured_output()` method.
This method only requires a schema as input, and returns a dict or Pydantic object.
For convenience, some LangChain chat models support a [`.with_structured_output()`](/docs/how_to/structured_output/#the-with_structured_output-method)
method. This method only requires a schema as input, and returns a dict or Pydantic object.
Generally, this method is only present on models that support one of the more advanced methods described below,
and will use one of them under the hood. It takes care of importing a suitable output parser and
formatting the schema in the right format for the model.
Here's an example:
```python
from typing import Optional
from langchain_core.pydantic_v1 import BaseModel, Field
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
```
```
Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)
```
We recommend this method as a starting point when working with structured output:
- It uses other model-specific features under the hood, without the need to import an output parser.
- For the models that use tool calling, no special prompting is needed.
- If multiple underlying techniques are supported, you can supply a `method` parameter to
[toggle which one is used](/docs/how_to/structured_output/#advanced-specifying-the-method-for-structuring-outputs).
You may want or need to use other techniques if:
- The chat model you are using does not support tool calling.
- You are working with very complex schemas and the model is having trouble generating outputs that conform.
For more information, check out this [how-to guide](/docs/how_to/structured_output/#the-with_structured_output-method).
You can also check out [this table](/docs/integrations/chat/#advanced-features) for a list of models that support
`with_structured_output()`.
#### Raw prompting
The most intuitive way to get a model to structure output is to ask nicely.
@@ -806,9 +1006,8 @@ for smooth parsing can be surprisingly difficult and model-specific.
Some may be better at interpreting [JSON schema](https://json-schema.org/), others may be best with TypeScript definitions,
and still others may prefer XML.
While we'll next go over some ways that you can take advantage of features offered by
model providers to increase reliability, prompting techniques remain important for tuning your
results no matter what method you choose.
While features offered by model providers may increase reliability, prompting techniques remain important for tuning your
results no matter which method you choose.
#### JSON mode
<span data-heading-keywords="json mode"></span>
@@ -818,10 +1017,11 @@ Some models, such as [Mistral](/docs/integrations/chat/mistralai/), [OpenAI](/do
support a feature called **JSON mode**, usually enabled via config.
When enabled, JSON mode will constrain the model's output to always be some sort of valid JSON.
Often they require some custom prompting, but it's usually much less burdensome and along the lines of,
`"you must always return JSON"`, and the [output is easier to parse](/docs/how_to/output_parser_json/).
Often they require some custom prompting, but it's usually much less burdensome than completely raw prompting and
more along the lines of, `"you must always return JSON"`. The [output also generally easier to parse](/docs/how_to/output_parser_json/).
It's also generally simpler and more commonly available than tool calling.
It's also generally simpler to use directly and more commonly available than tool calling, and can give
more flexibility around prompting and shaping results than tool calling.
Here's an example:
@@ -853,48 +1053,48 @@ chain.invoke({ "question": "What is the powerhouse of the cell?" })
For a full list of model providers that support JSON mode, see [this table](/docs/integrations/chat/#advanced-features).
#### Function/tool calling
#### Tool calling {#structured-output-tool-calling}
:::info
We use the term tool calling interchangeably with function calling. Although
function calling is sometimes meant to refer to invocations of a single function,
we treat all models as though they can return multiple tool or function calls in
each message
:::
For models that support it, [tool calling](/docs/concepts/#functiontool-calling) can be very convenient for structured output. It removes the
guesswork around how best to prompt schemas in favor of a built-in model feature.
Tool calling allows a model to respond to a given prompt by generating output that
matches a user-defined schema. While the name implies that the model is performing
some action, this is actually not the case! The model is coming up with the
arguments to a tool, and actually running the tool (or not) is up to the user -
for example, if you want to [extract output matching some schema](/docs/tutorials/extraction)
from unstructured text, you could give the model an "extraction" tool that takes
parameters matching the desired schema, then treat the generated output as your final
result.
It works by first binding the desired schema either directly or via a [LangChain tool](/docs/concepts/#tools) to a
[chat model](/docs/concepts/#chat-models) using the `.bind_tools()` method. The model will then generate an `AIMessage` containing
a `tool_calls` field containing `args` that match the desired shape.
For models that support it, tool calling can be very convenient. It removes the
guesswork around how best to prompt schemas in favor of a built-in model feature. It can also
more naturally support agentic flows, since you can just pass multiple tool schemas instead
of fiddling with enums or unions.
There are several acceptable formats you can use to bind tools to a model in LangChain. Here's one example:
Many LLM providers, including [Anthropic](https://www.anthropic.com/),
[Cohere](https://cohere.com/), [Google](https://cloud.google.com/vertex-ai),
[Mistral](https://mistral.ai/), [OpenAI](https://openai.com/), and others,
support variants of a tool calling feature. These features typically allow requests
to the LLM to include available tools and their schemas, and for responses to include
calls to these tools. For instance, given a search engine tool, an LLM might handle a
query by first issuing a call to the search engine. The system calling the LLM can
receive the tool call, execute it, and return the output to the LLM to inform its
response. LangChain includes a suite of [built-in tools](/docs/integrations/tools/)
and supports several methods for defining your own [custom tools](/docs/how_to/custom_tools).
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
LangChain provides a standardized interface for tool calling that is consistent across different models.
class ResponseFormatter(BaseModel):
"""Always use this tool to structure your response to the user."""
The standard interface consists of:
answer: str = Field(description="The answer to the user's question")
followup_question: str = Field(description="A followup question the user could ask")
* `ChatModel.bind_tools()`: a method for specifying which tools are available for a model to call. This method accepts [LangChain tools](/docs/concepts/#tools) here.
* `AIMessage.tool_calls`: an attribute on the `AIMessage` returned from the model for accessing the tool calls requested by the model.
model = ChatOpenAI(
model="gpt-4o",
temperature=0,
)
The following how-to guides are good practical resources for using function/tool calling:
model_with_tools = model.bind_tools([ResponseFormatter])
ai_msg = model_with_tools.invoke("What is the powerhouse of the cell?")
ai_msg.tool_calls[0]["args"]
```
```
{'answer': "The powerhouse of the cell is the mitochondrion. It generates most of the cell's supply of adenosine triphosphate (ATP), which is used as a source of chemical energy.",
'followup_question': 'How do mitochondria generate ATP?'}
```
Tool calling is a generally consistent way to get a model to generate structured output, and is the default technique
used for the [`.with_structured_output()`](/docs/concepts/#with_structured_output) method when a model supports it.
The following how-to guides are good practical resources for using function/tool calling for structured output:
- [How to return structured data from an LLM](/docs/how_to/structured_output/)
- [How to use a model to call tools](/docs/how_to/tool_calling)
@@ -975,7 +1175,7 @@ See our [blog post overview](https://blog.langchain.dev/query-construction/) and
#### Indexing
Fouth, consider the design of your document index. A simple and powerful idea is to **decouple the documents that you index for retrieval from the documents that you pass to the LLM for generation.** Indexing frequently uses embedding models with vector stores, which [compress the semantic information in documents to fixed-size vectors](/docs/concepts/#embedding-models).
Fourth, consider the design of your document index. A simple and powerful idea is to **decouple the documents that you index for retrieval from the documents that you pass to the LLM for generation.** Indexing frequently uses embedding models with vector stores, which [compress the semantic information in documents to fixed-size vectors](/docs/concepts/#embedding-models).
Many RAG approaches focus on splitting documents into chunks and retrieving some number based on similarity to an input question for the LLM. But chunk size and chunk number can be difficult to set and affect results if they do not provide full context for the LLM to answer a question. Furthermore, LLMs are increasingly capable of processing millions of tokens.
@@ -1083,7 +1283,7 @@ Table columns:
| Token | [many classes](/docs/how_to/split_by_token/) | Tokens | | Splits text on tokens. There exist a few different ways to measure tokens. |
| Character | [CharacterTextSplitter](/docs/how_to/character_text_splitter/) | A user defined character | | Splits text based on a user defined character. One of the simpler methods. |
| Semantic Chunker (Experimental) | [SemanticChunker](/docs/how_to/semantic-chunker/) | Sentences | | First splits on sentences. Then combines ones next to each other if they are semantically similar enough. Taken from [Greg Kamradt](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb) |
| Integration: AI21 Semantic | [AI21SemanticTextSplitter](/docs/integrations/document_transformers/ai21_semantic_text_splitter/) | ✅ | Identifies distinct topics that form coherent pieces of text and splits along those. |
| Integration: AI21 Semantic | [AI21SemanticTextSplitter](/docs/integrations/document_transformers/ai21_semantic_text_splitter/) | | ✅ | Identifies distinct topics that form coherent pieces of text and splits along those. |
### Evaluation
<span data-heading-keywords="evaluation,evaluate"></span>

View File

@@ -33,6 +33,8 @@ Some examples include:
- [Build a Simple LLM Application with LCEL](/docs/tutorials/llm_chain/)
- [Build a Retrieval Augmented Generation (RAG) App](/docs/tutorials/rag/)
A good structural rule of thumb is to follow the structure of this [example from Numpy](https://numpy.org/numpy-tutorials/content/tutorial-svd.html).
Here are some high-level tips on writing a good tutorial:

View File

@@ -11,7 +11,7 @@ There are a few different places you can contribute integrations for LangChain:
- **Community**: For lighter-weight integrations that are primarily maintained by LangChain and the Open Source Community.
- **Partner Packages**: For independent packages that are co-maintained by LangChain and a partner.
For the most part, new integrations should be added to the Community package. Partner packages require more maintenance as separate packages, so please confirm with the LangChain team before creating a new partner package.
For the most part, **new integrations should be added to the Community package**. Partner packages require more maintenance as separate packages, so please confirm with the LangChain team before creating a new partner package.
In the following sections, we'll walk through how to contribute to each of these packages from a fake company, `Parrot Link AI`.
@@ -60,6 +60,10 @@ And add documentation to:
## Partner package in LangChain repo
:::caution
Before starting a **partner** package, please confirm your intent with the LangChain team. Partner packages require more maintenance as separate packages, so we will close PRs that add new partner packages without prior discussion. See the above section for how to add a community integration.
:::
Partner packages can be hosted in the `LangChain` monorepo or in an external repo.
Partner package in the `LangChain` repo is placed in `libs/partners/{partner}`

Binary file not shown.

View File

@@ -153,7 +153,7 @@
"\n",
" def parse(self, text: str) -> List[str]:\n",
" lines = text.strip().split(\"\\n\")\n",
" return lines\n",
" return list(filter(None, lines)) # Remove empty lines\n",
"\n",
"\n",
"output_parser = LineListOutputParser()\n",

View File

@@ -0,0 +1,342 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to dispatch custom callback events\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [Callbacks](/docs/concepts/#callbacks)\n",
"- [Custom callback handlers](/docs/how_to/custom_callbacks)\n",
"- [Astream Events API](/docs/concepts/#astream_events) the `astream_events` method will surface custom callback events.\n",
":::\n",
"\n",
"In some situations, you may want to dipsatch a custom callback event from within a [Runnable](/docs/concepts/#runnable-interface) so it can be surfaced\n",
"in a custom callback handler or via the [Astream Events API](/docs/concepts/#astream_events).\n",
"\n",
"For example, if you have a long running tool with multiple steps, you can dispatch custom events between the steps and use these custom events to monitor progress.\n",
"You could also surface these custom events to an end user of your application to show them how the current task is progressing.\n",
"\n",
"To dispatch a custom event you need to decide on two attributes for the event: the `name` and the `data`.\n",
"\n",
"| Attribute | Type | Description |\n",
"|-----------|------|----------------------------------------------------------------------------------------------------------|\n",
"| name | str | A user defined name for the event. |\n",
"| data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. |\n",
"\n",
"\n",
":::{.callout-important}\n",
"* Dispatching custom callback events requires `langchain-core>=0.2.15`.\n",
"* Custom callback events can only be dispatched from within an existing `Runnable`.\n",
"* If using `astream_events`, you must use `version='v2'` to see custom events.\n",
"* Sending or rendering custom callbacks events in LangSmith is not yet supported.\n",
":::\n",
"\n",
"\n",
":::caution COMPATIBILITY\n",
"LangChain cannot automatically propagate configuration, including callbacks necessary for astream_events(), to child runnables if you are running async code in python<=3.10. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
"\n",
"If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n",
"\n",
"If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in other Python versions.\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain-core"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Astream Events API\n",
"\n",
"The most useful way to consume custom events is via the [Astream Events API](/docs/concepts/#astream_events).\n",
"\n",
"We can use the `async` `adispatch_custom_event` API to emit custom events in an async setting. \n",
"\n",
"\n",
":::{.callout-important}\n",
"\n",
"To see custom events via the astream events API, you need to use the newer `v2` API of `astream_events`.\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'foo', 'tags': [], 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'metadata': {}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
"{'event': 'on_chain_stream', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
]
}
],
"source": [
"from langchain_core.callbacks.manager import (\n",
" adispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"@RunnableLambda\n",
"async def foo(x: str) -> str:\n",
" await adispatch_custom_event(\"event1\", {\"x\": x})\n",
" await adispatch_custom_event(\"event2\", 5)\n",
" return x\n",
"\n",
"\n",
"async for event in foo.astream_events(\"hello world\", version=\"v2\"):\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In python <= 3.10, you must propagate the config manually!"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'bar', 'tags': [], 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'metadata': {}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
"{'event': 'on_chain_stream', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
]
}
],
"source": [
"from langchain_core.callbacks.manager import (\n",
" adispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"@RunnableLambda\n",
"async def bar(x: str, config: RunnableConfig) -> str:\n",
" \"\"\"An example that shows how to manually propagate config.\n",
"\n",
" You must do this if you're running python<=3.10.\n",
" \"\"\"\n",
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
" return x\n",
"\n",
"\n",
"async for event in bar.astream_events(\"hello world\", version=\"v2\"):\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Async Callback Handler\n",
"\n",
"You can also consume the dispatched event via an async callback handler."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n",
"Received event event2 with data: 5, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n"
]
},
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Any, Dict, List, Optional\n",
"from uuid import UUID\n",
"\n",
"from langchain_core.callbacks import AsyncCallbackHandler\n",
"from langchain_core.callbacks.manager import (\n",
" adispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"class AsyncCustomCallbackHandler(AsyncCallbackHandler):\n",
" async def on_custom_event(\n",
" self,\n",
" name: str,\n",
" data: Any,\n",
" *,\n",
" run_id: UUID,\n",
" tags: Optional[List[str]] = None,\n",
" metadata: Optional[Dict[str, Any]] = None,\n",
" **kwargs: Any,\n",
" ) -> None:\n",
" print(\n",
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
" )\n",
"\n",
"\n",
"@RunnableLambda\n",
"async def bar(x: str, config: RunnableConfig) -> str:\n",
" \"\"\"An example that shows how to manually propagate config.\n",
"\n",
" You must do this if you're running python<=3.10.\n",
" \"\"\"\n",
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
" return x\n",
"\n",
"\n",
"async_handler = AsyncCustomCallbackHandler()\n",
"await foo.ainvoke(1, {\"callbacks\": [async_handler], \"tags\": [\"foo\", \"bar\"]})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sync Callback Handler\n",
"\n",
"Let's see how to emit custom events in a sync environment using `dispatch_custom_event`.\n",
"\n",
"You **must** call `dispatch_custom_event` from within an existing `Runnable`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n",
"Received event event2 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n"
]
},
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Any, Dict, List, Optional\n",
"from uuid import UUID\n",
"\n",
"from langchain_core.callbacks import BaseCallbackHandler\n",
"from langchain_core.callbacks.manager import (\n",
" dispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"class CustomHandler(BaseCallbackHandler):\n",
" def on_custom_event(\n",
" self,\n",
" name: str,\n",
" data: Any,\n",
" *,\n",
" run_id: UUID,\n",
" tags: Optional[List[str]] = None,\n",
" metadata: Optional[Dict[str, Any]] = None,\n",
" **kwargs: Any,\n",
" ) -> None:\n",
" print(\n",
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
" )\n",
"\n",
"\n",
"@RunnableLambda\n",
"def foo(x: int, config: RunnableConfig) -> int:\n",
" dispatch_custom_event(\"event1\", {\"x\": x})\n",
" dispatch_custom_event(\"event2\", {\"x\": x})\n",
" return x\n",
"\n",
"\n",
"handler = CustomHandler()\n",
"foo.invoke(1, {\"callbacks\": [handler], \"tags\": [\"foo\", \"bar\"]})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"You've seen how to emit custom events, you can check out the more in depth guide for [astream events](/docs/how_to/streaming/#using-stream-events) which is the easiest way to leverage custom events."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,146 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "dcf87b32",
"metadata": {},
"source": [
"# How to handle rate limits\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"- [Chat models](/docs/concepts/#chat-models)\n",
"- [LLMs](/docs/concepts/#llms)\n",
":::\n",
"\n",
"\n",
"You may find yourself in a situation where you are getting rate limited by the model provider API because you're making too many requests.\n",
"\n",
"For example, this might happen if you are running many parallel queries to benchmark the chat model on a test dataset.\n",
"\n",
"If you are facing such a situation, you can use a rate limiter to help match the rate at which you're making request to the rate allowed\n",
"by the API.\n",
"\n",
":::info Requires ``langchain-core >= 0.2.24``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.24``. Please make sure your package is up to date.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "cbc3c873-6109-4e03-b775-b73c1003faea",
"metadata": {},
"source": [
"## Initialize a rate limiter\n",
"\n",
"Langchain comes with a built-in in memory rate limiter. This rate limiter is thread safe and can be shared by multiple threads in the same process.\n",
"\n",
"The provided rate limiter can only limit the number of requests per unit time. It will not help if you need to also limited based on the size\n",
"of the requests."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "aa9c3c8c-0464-4190-a8c5-d69d173505a6",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.rate_limiters import InMemoryRateLimiter\n",
"\n",
"rate_limiter = InMemoryRateLimiter(\n",
" requests_per_second=0.1, # <-- Super slow! We can only make a request once every 10 seconds!!\n",
" check_every_n_seconds=0.1, # Wake up every 100 ms to check whether allowed to make a request,\n",
" max_bucket_size=10, # Controls the maximum burst size.\n",
")"
]
},
{
"cell_type": "markdown",
"id": "8e058bde-9413-4b08-8cc6-0c9cb638f19f",
"metadata": {},
"source": [
"## Choose a model\n",
"\n",
"Choose any model and pass to it the rate_limiter via the `rate_limiter` attribute."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0f880a3a-c047-4e94-a323-fff2a4c0e96d",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import time\n",
"from getpass import getpass\n",
"\n",
"if \"ANTHROPIC_API_KEY\" not in os.environ:\n",
" os.environ[\"ANTHROPIC_API_KEY\"] = getpass()\n",
"\n",
"\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"model = ChatAnthropic(model_name=\"claude-3-opus-20240229\", rate_limiter=rate_limiter)"
]
},
{
"cell_type": "markdown",
"id": "80c9ab3a-299a-460f-985c-90280a046f52",
"metadata": {},
"source": [
"Let's confirm that the rate limiter works. We should only be able to invoke the model once per 10 seconds."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d074265c-9f32-4c5f-b914-944148993c4d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11.599073648452759\n",
"10.7502121925354\n",
"10.244257926940918\n",
"8.83088755607605\n",
"11.645203590393066\n"
]
}
],
"source": [
"for _ in range(5):\n",
" tic = time.time()\n",
" model.invoke(\"hello\")\n",
" toc = time.time()\n",
" print(toc - tic)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -15,6 +15,12 @@
"\n",
"Make sure you have the integration packages installed for any model providers you want to support. E.g. you should have `langchain-openai` installed to init an OpenAI model.\n",
"\n",
":::\n",
"\n",
":::info Requires ``langchain >= 0.2.8``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.8``. Please make sure your package is up to date.\n",
"\n",
":::"
]
},
@@ -25,7 +31,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain langchain-openai langchain-anthropic langchain-google-vertexai"
"%pip install -qU langchain>=0.2.8 langchain-openai langchain-anthropic langchain-google-vertexai"
]
},
{
@@ -76,32 +82,6 @@
"print(\"Gemini 1.5: \" + gemini_15.invoke(\"what's your name\").content + \"\\n\")"
]
},
{
"cell_type": "markdown",
"id": "fff9a4c8-b6ee-4a1a-8d3d-0ecaa312d4ed",
"metadata": {},
"source": [
"## Simple config example"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "75c25d39-bf47-4b51-a6c6-64d9c572bfd6",
"metadata": {},
"outputs": [],
"source": [
"user_config = {\n",
" \"model\": \"...user-specified...\",\n",
" \"model_provider\": \"...user-specified...\",\n",
" \"temperature\": 0,\n",
" \"max_tokens\": 1000,\n",
"}\n",
"\n",
"llm = init_chat_model(**user_config)\n",
"llm.invoke(\"what's your name\")"
]
},
{
"cell_type": "markdown",
"id": "f811f219-5e78-4b62-b495-915d52a22532",
@@ -125,12 +105,215 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "da07b5c0-d2e6-42e4-bfcd-2efcfaae6221",
"cell_type": "markdown",
"id": "476a44db-c50d-4846-951d-0f1c9ba8bbaa",
"metadata": {},
"outputs": [],
"source": []
"source": [
"## Creating a configurable model\n",
"\n",
"You can also create a runtime-configurable model by specifying `configurable_fields`. If you don't specify a `model` value, then \"model\" and \"model_provider\" be configurable by default."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6c037f27-12d7-4e83-811e-4245c0e3ba58",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_d576307f90', 'finish_reason': 'stop', 'logprobs': None}, id='run-5428ab5c-b5c0-46de-9946-5d4ca40dbdc8-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"configurable_model = init_chat_model(temperature=0)\n",
"\n",
"configurable_model.invoke(\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_012XvotUJ3kGLXJUWKBVxJUi', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-1ad1eefe-f1c6-4244-8bc6-90e2cb7ee554-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"configurable_model.invoke(\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}}\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7f3b3d4a-4066-45e4-8297-ea81ac8e70b7",
"metadata": {},
"source": [
"### Configurable model with default values\n",
"\n",
"We can create a configurable model with default model values, specify which parameters are configurable, and add prefixes to configurable params:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "814a2289-d0db-401e-b555-d5116112b413",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_ce0793330f', 'finish_reason': 'stop', 'logprobs': None}, id='run-3923e328-7715-4cd6-b215-98e4b6bf7c9d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"first_llm = init_chat_model(\n",
" model=\"gpt-4o\",\n",
" temperature=0,\n",
" configurable_fields=(\"model\", \"model_provider\", \"temperature\", \"max_tokens\"),\n",
" config_prefix=\"first\", # useful when you have a chain with multiple models\n",
")\n",
"\n",
"first_llm.invoke(\"what's your name\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "6c8755ba-c001-4f5a-a497-be3f1db83244",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_01RyYR64DoMPNCfHeNnroMXm', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-22446159-3723-43e6-88df-b84797e7751d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"first_llm.invoke(\n",
" \"what's your name\",\n",
" config={\n",
" \"configurable\": {\n",
" \"first_model\": \"claude-3-5-sonnet-20240620\",\n",
" \"first_temperature\": 0.5,\n",
" \"first_max_tokens\": 100,\n",
" }\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0072b1a3-7e44-4b4e-8b07-efe1ba91a689",
"metadata": {},
"source": [
"### Using a configurable model declaratively\n",
"\n",
"We can call declarative operations like `bind_tools`, `with_structured_output`, `with_configurable`, etc. on a configurable model and chain a configurable model in the same way that we would a regularly instantiated chat model object."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "067dabee-1050-4110-ae24-c48eba01e13b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'GetPopulation',\n",
" 'args': {'location': 'Los Angeles, CA'},\n",
" 'id': 'call_sYT3PFMufHGWJD32Hi2CTNUP'},\n",
" {'name': 'GetPopulation',\n",
" 'args': {'location': 'New York, NY'},\n",
" 'id': 'call_j1qjhxRnD3ffQmRyqjlI1Lnk'}]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class GetWeather(BaseModel):\n",
" \"\"\"Get the current weather in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"class GetPopulation(BaseModel):\n",
" \"\"\"Get the current population in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"llm = init_chat_model(temperature=0)\n",
"llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])\n",
"\n",
"llm_with_tools.invoke(\n",
" \"what's bigger in 2024 LA or NYC\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
").tool_calls"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e57dfe9f-cd24-4e37-9ce9-ccf8daf78f89",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'GetPopulation',\n",
" 'args': {'location': 'Los Angeles, CA'},\n",
" 'id': 'toolu_01CxEHxKtVbLBrvzFS7GQ5xR'},\n",
" {'name': 'GetPopulation',\n",
" 'args': {'location': 'New York City, NY'},\n",
" 'id': 'toolu_013A79qt5toWSsKunFBDZd5S'}]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tools.invoke(\n",
" \"what's bigger in 2024 LA or NYC\",\n",
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}},\n",
").tool_calls"
]
}
],
"metadata": {
@@ -149,7 +332,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -16,7 +16,7 @@
"\n",
"Tracking token usage to calculate cost is an important part of putting your app in production. This guide goes over how to obtain this information from your LangChain model calls.\n",
"\n",
"This guide requires `langchain-openai >= 0.1.8`."
"This guide requires `langchain-openai >= 0.1.9`."
]
},
{
@@ -153,7 +153,7 @@
"\n",
"#### OpenAI\n",
"\n",
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.8` and can be enabled by setting `stream_options={\"include_usage\": True}`.\n",
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
"\n",
"```{=mdx}\n",
":::note\n",
@@ -172,18 +172,18 @@
"name": "stdout",
"output_type": "stream",
"text": [
"content='' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='Hello' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='!' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' How' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' can' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' I' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' assist' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' you' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' today' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='?' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='' response_metadata={'finish_reason': 'stop'} id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}\n"
"content='' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='Hello' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='!' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' How' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' can' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' I' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' assist' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' you' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' today' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='?' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-3.5-turbo-0125'} id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}\n"
]
}
],
@@ -191,7 +191,7 @@
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n",
"\n",
"aggregate = None\n",
"for chunk in llm.stream(\"hello\", stream_options={\"include_usage\": True}):\n",
"for chunk in llm.stream(\"hello\", stream_usage=True):\n",
" print(chunk)\n",
" aggregate = chunk if aggregate is None else aggregate + chunk"
]
@@ -229,7 +229,7 @@
"id": "7dba63e8-0ed7-4533-8f0f-78e19c38a25c",
"metadata": {},
"source": [
"To disable streaming token counts for OpenAI, set `\"include_usage\"` to False in `stream_options`, or omit it from the parameters:"
"To disable streaming token counts for OpenAI, set `stream_usage` to False, or omit it from the parameters:"
]
},
{
@@ -242,17 +242,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"content='' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content='Hello' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content='!' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' How' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' can' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' I' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' assist' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' you' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' today' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content='?' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content='' response_metadata={'finish_reason': 'stop'} id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n"
"content='' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content='Hello' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content='!' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' How' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' can' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' I' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' assist' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' you' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' today' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content='?' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-3.5-turbo-0125'} id='run-8e758550-94b0-4cca-a298-57482793c25d'\n"
]
}
],
@@ -267,7 +267,7 @@
"id": "6a5d9617-be3a-419a-9276-de9c29fa50ae",
"metadata": {},
"source": [
"You can also enable streaming token usage by setting `model_kwargs` when instantiating the chat model. This can be useful when incorporating chat models into LangChain [chains](/docs/concepts#langchain-expression-language-lcel): usage metadata can be monitored when [streaming intermediate steps](/docs/how_to/streaming#using-stream-events) or using tracing software such as [LangSmith](https://docs.smith.langchain.com/).\n",
"You can also enable streaming token usage by setting `stream_usage` when instantiating the chat model. This can be useful when incorporating chat models into LangChain [chains](/docs/concepts#langchain-expression-language-lcel): usage metadata can be monitored when [streaming intermediate steps](/docs/how_to/streaming#using-stream-events) or using tracing software such as [LangSmith](https://docs.smith.langchain.com/).\n",
"\n",
"See the below example, where we return output structured to a desired schema, but can still observe token usage streamed from intermediate steps."
]
@@ -275,7 +275,7 @@
{
"cell_type": "code",
"execution_count": 8,
"id": "57dec1fb-bd9c-4c98-8798-8fbbe67f6b2c",
"id": "0b1523d8-127e-4314-82fa-bd97aca37f9a",
"metadata": {},
"outputs": [
{
@@ -301,7 +301,7 @@
"\n",
"llm = ChatOpenAI(\n",
" model=\"gpt-3.5-turbo-0125\",\n",
" model_kwargs={\"stream_options\": {\"include_usage\": True}},\n",
" stream_usage=True,\n",
")\n",
"# Under the hood, .with_structured_output binds tools to the\n",
"# chat model and appends a parser.\n",
@@ -341,7 +341,7 @@
{
"cell_type": "code",
"execution_count": 9,
"id": "31667d54",
"id": "b04a4486-72fd-48ce-8f9e-5d281b441195",
"metadata": {},
"outputs": [
{
@@ -361,7 +361,11 @@
"\n",
"from langchain_community.callbacks.manager import get_openai_callback\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
"llm = ChatOpenAI(\n",
" model=\"gpt-3.5-turbo-0125\",\n",
" temperature=0,\n",
" stream_usage=True,\n",
")\n",
"\n",
"with get_openai_callback() as cb:\n",
" result = llm.invoke(\"Tell me a joke\")\n",
@@ -379,14 +383,14 @@
{
"cell_type": "code",
"execution_count": 10,
"id": "e09420f4",
"id": "05f22a1d-b021-490f-8840-f628a07459f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"55\n"
"54\n"
]
}
],
@@ -397,37 +401,29 @@
" print(cb.total_tokens)"
]
},
{
"cell_type": "markdown",
"id": "9ac51188-c8f4-4230-90fd-3cd78cdd955d",
"metadata": {},
"source": [
"```{=mdx}\n",
":::note\n",
"Cost information is currently not available in streaming mode. This is because model names are currently not propagated through chunks in streaming mode, and the model name is used to look up the correct pricing. Token counts however are available:\n",
":::\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b241069a-265d-4497-af34-b0a5f95ae67f",
"id": "c00c9158-7bb4-4279-88e6-ea70f46e6ac2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"28\n"
"Tokens Used: 27\n",
"\tPrompt Tokens: 11\n",
"\tCompletion Tokens: 16\n",
"Successful Requests: 1\n",
"Total Cost (USD): $2.95e-05\n"
]
}
],
"source": [
"with get_openai_callback() as cb:\n",
" for chunk in llm.stream(\"Tell me a joke\", stream_options={\"include_usage\": True}):\n",
" for chunk in llm.stream(\"Tell me a joke\"):\n",
" pass\n",
" print(cb.total_tokens)"
" print(cb)"
]
},
{
@@ -457,21 +453,7 @@
")\n",
"tools = load_tools([\"wikipedia\"])\n",
"agent = create_tool_calling_agent(llm, tools, prompt)\n",
"agent_executor = AgentExecutor(\n",
" agent=agent, tools=tools, verbose=True, stream_runnable=False\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9c1ae74d-8300-4041-9ff4-66093ee592b1",
"metadata": {},
"source": [
"```{=mdx}\n",
":::note\n",
"We have to set `stream_runnable=False` for cost information, as described above. By default the AgentExecutor will stream the underlying agent so that you can get the most granular results when streaming events via AgentExecutor.stream_events.\n",
":::\n",
"```"
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)"
]
},
{
@@ -503,36 +485,30 @@
"\n",
"\n",
"\n",
"Page: Anna's hummingbird\n",
"Summary: Anna's hummingbird (Calypte anna) is a North American species of hummingbird. It was named after Anna Masséna, Duchess of Rivoli.\n",
"It is native to western coastal regions of North America. In the early 20th century, Anna's hummingbirds bred only in northern Baja California and Southern California. The transplanting of exotic ornamental plants in residential areas throughout the Pacific coast and inland deserts provided expanded nectar and nesting sites, allowing the species to expand its breeding range. Year-round residence of Anna's hummingbirds in the Pacific Northwest is an example of ecological release dependent on acclimation to colder winter temperatures, introduced plants, and human provision of nectar feeders during winter.\n",
"These birds feed on nectar from flowers using a long extendable tongue. They also consume small insects and other arthropods caught in flight or gleaned from vegetation.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Page: Allen's hummingbird\n",
"Summary: Allen's hummingbird (Selasphorus sasin) is a species of hummingbird that breeds in the western United States. It is one of seven species in the genus Selasphorus.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Invoking: `wikipedia` with `{'query': 'fastest bird species'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3mPage: List of birds by flight speed\n",
"Summary: This is a list of the fastest flying birds in the world. A bird's velocity is necessarily variable; a hunting bird will reach much greater speeds while diving to catch prey than when flying horizontally. The bird that can achieve the greatest airspeed is the peregrine falcon (Falco peregrinus), able to exceed 320 km/h (200 mph) in its dives. A close relative of the common swift, the white-throated needletail (Hirundapus caudacutus), is commonly reported as the fastest bird in level flight with a reported top speed of 169 km/h (105 mph). This record remains unconfirmed as the measurement methods have never been published or verified. The record for the fastest confirmed level flight by a bird is 111.5 km/h (69.3 mph) held by the common swift.\n",
"\n",
"\n",
"\n",
"Page: Fastest animals\n",
"Summary: This is a list of the fastest animals in the world, by types of animal.\n",
"\n",
"\n",
"\n",
"Page: Falcon\n",
"Summary: Falcons () are birds of prey in the genus Falco, which includes about 40 species. Falcons are widely distributed on all continents of the world except Antarctica, though closely related raptors did occur there in the Eocene.\n",
"Adult falcons have thin, tapered wings, which enable them to fly at high speed and change direction rapidly. Fledgling falcons, in their first year of flying, have longer flight feathers, which make their configuration more like that of a general-purpose bird such as a broad wing. This makes flying easier while learning the exceptional skills required to be effective hunters as adults.\n",
"The falcons are the largest genus in the Falconinae subfamily of Falconidae, which itself also includes another subfamily comprising caracaras and a few other species. All these birds kill with their beaks, using a tomial \"tooth\" on the side of their beaks—unlike the hawks, eagles, and other birds of prey in the Accipitridae, which use their feet.\n",
"The largest falcon is the gyrfalcon at up to 65 cm in length. The smallest falcon species is the pygmy falcon, which measures just 20 cm. As with hawks and owls, falcons exhibit sexual dimorphism, with the females typically larger than the males, thus allowing a wider range of prey species.\n",
"Some small falcons with long, narrow wings are called \"hobbies\" and some which hover while hunting are called \"kestrels\".\n",
"As is the case with many birds of prey, falcons have exceptional powers of vision; the visual acuity of one species has been measured at 2.6 times that of a normal human. Peregrine falcons have been recorded diving at speeds of 320 km/h (200 mph), making them the fastest-moving creatures on Earth; the fastest recorded dive attained a vertical speed of 390 km/h (240 mph).\u001b[0m\u001b[32;1m\u001b[1;3mThe scientific name for a hummingbird is Trochilidae. The fastest bird species is the peregrine falcon (Falco peregrinus), which can exceed speeds of 320 km/h (200 mph) in its dives.\u001b[0m\n",
"As is the case with many birds of prey, falcons have exceptional powers of vision; the visual acuity of one species has been measured at 2.6 times that of a normal human. Peregrine falcons have been recorded diving at speeds of 320 km/h (200 mph), making them the fastest-moving creatures on Earth; the fastest recorded dive attained a vertical speed of 390 km/h (240 mph).\u001b[0m\u001b[32;1m\u001b[1;3mThe scientific name for a hummingbird is Trochilidae. The fastest bird species in level flight is the common swift, which holds the record for the fastest confirmed level flight by a bird at 111.5 km/h (69.3 mph). The peregrine falcon is known to exceed speeds of 320 km/h (200 mph) in its dives, making it the fastest bird in terms of diving speed.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"Total Tokens: 1787\n",
"Prompt Tokens: 1687\n",
"Completion Tokens: 100\n",
"Total Cost (USD): $0.0009935\n"
"Total Tokens: 1675\n",
"Prompt Tokens: 1538\n",
"Completion Tokens: 137\n",
"Total Cost (USD): $0.0009745000000000001\n"
]
}
],

View File

@@ -54,7 +54,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "9e4144de-d925-4d4c-91c3-685ef8baa57c",
"id": "2bb9c73f-9d00-4a19-a81f-cab2f0fd921a",
"metadata": {},
"outputs": [],
"source": [
@@ -63,7 +63,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"id": "a9e37aa1",
"metadata": {},
"outputs": [],
@@ -300,7 +300,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 2,
"id": "ac9295d3",
"metadata": {},
"outputs": [],
@@ -312,10 +312,8 @@
"\n",
"## Quick Install\n",
"\n",
"```bash\n",
"# Hopefully this code block isn't split\n",
"pip install langchain\n",
"```\n",
"\n",
"As an open-source project in a rapidly developing field, we are extremely open to contributions.\n",
"\"\"\""
@@ -323,7 +321,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 3,
"id": "3a0cb17a",
"metadata": {},
"outputs": [
@@ -332,15 +330,14 @@
"text/plain": [
"[Document(page_content='# 🦜️🔗 LangChain'),\n",
" Document(page_content='⚡ Building applications with LLMs through composability ⚡'),\n",
" Document(page_content='## Quick Install\\n\\n```bash'),\n",
" Document(page_content='## Quick Install'),\n",
" Document(page_content=\"# Hopefully this code block isn't split\"),\n",
" Document(page_content='pip install langchain'),\n",
" Document(page_content='```'),\n",
" Document(page_content='As an open-source project in a rapidly developing field, we'),\n",
" Document(page_content='are extremely open to contributions.')]"
]
},
"execution_count": 9,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -721,8 +718,44 @@
"php_splitter = RecursiveCharacterTextSplitter.from_language(\n",
" language=Language.PHP, chunk_size=50, chunk_overlap=0\n",
")\n",
"haskell_docs = php_splitter.create_documents([PHP_CODE])\n",
"haskell_docs"
"php_docs = php_splitter.create_documents([PHP_CODE])\n",
"php_docs"
]
},
{
"cell_type": "markdown",
"id": "e9fa62c1",
"metadata": {},
"source": [
"## PowerShell\n",
"Here's an example using the PowerShell text splitter:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7e6893ad",
"metadata": {},
"outputs": [],
"source": [
"POWERSHELL_CODE = \"\"\"\n",
"$directoryPath = Get-Location\n",
"\n",
"$items = Get-ChildItem -Path $directoryPath\n",
"\n",
"$files = $items | Where-Object { -not $_.PSIsContainer }\n",
"\n",
"$sortedFiles = $files | Sort-Object LastWriteTime\n",
"\n",
"foreach ($file in $sortedFiles) {\n",
" Write-Output (\"Name: \" + $file.Name + \" | Last Write Time: \" + $file.LastWriteTime)\n",
"}\n",
"\"\"\"\n",
"powershell_splitter = RecursiveCharacterTextSplitter.from_language(\n",
" language=Language.POWERSHELL, chunk_size=100, chunk_overlap=0\n",
")\n",
"powershell_docs = powershell_splitter.create_documents([POWERSHELL_CODE])\n",
"powershell_docs"
]
}
],

View File

@@ -48,20 +48,10 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "40ed76a2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n",
"You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
]
}
],
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai\n",
"\n",

View File

@@ -220,6 +220,57 @@
"pretty_print_docs(compressed_docs)"
]
},
{
"cell_type": "markdown",
"id": "14002ec8-7ee5-4f91-9315-dd21c3808776",
"metadata": {},
"source": [
"### `LLMListwiseRerank`\n",
"\n",
"[LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n",
"\n",
"Note that `LLMListwiseRerank` requires a model with the [with_structured_output](/docs/integrations/chat/) method implemented."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4ab9ee9f-917e-4d6f-9344-eb7f01533228",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Document 1:\n",
"\n",
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.\n"
]
}
],
"source": [
"from langchain.retrievers.document_compressors import LLMListwiseRerank\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
"\n",
"_filter = LLMListwiseRerank.from_llm(llm, top_n=1)\n",
"compression_retriever = ContextualCompressionRetriever(\n",
" base_compressor=_filter, base_retriever=retriever\n",
")\n",
"\n",
"compressed_docs = compression_retriever.invoke(\n",
" \"What did the president say about Ketanji Jackson Brown\"\n",
")\n",
"pretty_print_docs(compressed_docs)"
]
},
{
"cell_type": "markdown",
"id": "7194da42",
@@ -295,7 +346,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"id": "617a1756",
"metadata": {},
"outputs": [],

View File

@@ -0,0 +1,549 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "9a8bceb3-95bd-4496-bb9e-57655136e070",
"metadata": {},
"source": [
"# How to convert Runnables as Tools\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [Runnables](/docs/concepts#runnable-interface)\n",
"- [Tools](/docs/concepts#tools)\n",
"- [Agents](/docs/tutorials/agents)\n",
"\n",
":::\n",
"\n",
"Here we will demonstrate how to convert a LangChain `Runnable` into a tool that can be used by agents, chains, or chat models.\n",
"\n",
"## Dependencies\n",
"\n",
"**Note**: this guide requires `langchain-core` >= 0.2.13. We will also use [OpenAI](/docs/integrations/platforms/openai/) for embeddings, but any LangChain embeddings should suffice. We will use a simple [LangGraph](https://langchain-ai.github.io/langgraph/) agent for demonstration purposes."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "92341f48-2c29-4ce9-8ab8-0a7c7a7c98a1",
"metadata": {},
"outputs": [],
"source": [
"%%capture --no-stderr\n",
"%pip install -U langchain-core langchain-openai langgraph"
]
},
{
"cell_type": "markdown",
"id": "2b0dcc1a-48e8-4a81-b920-3563192ce076",
"metadata": {},
"source": [
"LangChain [tools](/docs/concepts#tools) are interfaces that an agent, chain, or chat model can use to interact with the world. See [here](/docs/how_to/#tools) for how-to guides covering tool-calling, built-in tools, custom tools, and more information.\n",
"\n",
"LangChain tools-- instances of [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n",
"\n",
"- Their inputs are constrained to be serializable, specifically strings and Python `dict` objects;\n",
"- They contain names and descriptions indicating how and when they should be used;\n",
"- They may contain a detailed [args_schema](https://python.langchain.com/v0.2/docs/how_to/custom_tools/) for their arguments. That is, while a tool (as a `Runnable`) might accept a single `dict` input, the specific keys and type information needed to populate a dict should be specified in the `args_schema`.\n",
"\n",
"Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments."
]
},
{
"cell_type": "markdown",
"id": "b4d76680-1b6b-4862-8c4f-22766a1d41f2",
"metadata": {},
"source": [
"## Basic usage\n",
"\n",
"With typed `dict` input:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b2cc4231-64a3-4733-a284-932dcbf2fcc3",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain_core.runnables import RunnableLambda\n",
"from typing_extensions import TypedDict\n",
"\n",
"\n",
"class Args(TypedDict):\n",
" a: int\n",
" b: List[int]\n",
"\n",
"\n",
"def f(x: Args) -> str:\n",
" return str(x[\"a\"] * max(x[\"b\"]))\n",
"\n",
"\n",
"runnable = RunnableLambda(f)\n",
"as_tool = runnable.as_tool(\n",
" name=\"My tool\",\n",
" description=\"Explanation of when to use tool.\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "57f2d435-624d-459a-903d-8509fbbde610",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Explanation of when to use tool.\n"
]
},
{
"data": {
"text/plain": [
"{'title': 'My tool',\n",
" 'type': 'object',\n",
" 'properties': {'a': {'title': 'A', 'type': 'integer'},\n",
" 'b': {'title': 'B', 'type': 'array', 'items': {'type': 'integer'}}},\n",
" 'required': ['a', 'b']}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(as_tool.description)\n",
"\n",
"as_tool.args_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "54ae7384-a03d-4fa4-8cdf-9604a4bc39ee",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'6'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"as_tool.invoke({\"a\": 3, \"b\": [1, 2]})"
]
},
{
"cell_type": "markdown",
"id": "9038f587-4613-4f50-b349-135f9e7e3b15",
"metadata": {},
"source": [
"Without typing information, arg types can be specified via `arg_types`:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "169f733c-4936-497f-8577-ee769dc16b88",
"metadata": {},
"outputs": [],
"source": [
"from typing import Any, Dict\n",
"\n",
"\n",
"def g(x: Dict[str, Any]) -> str:\n",
" return str(x[\"a\"] * max(x[\"b\"]))\n",
"\n",
"\n",
"runnable = RunnableLambda(g)\n",
"as_tool = runnable.as_tool(\n",
" name=\"My tool\",\n",
" description=\"Explanation of when to use tool.\",\n",
" arg_types={\"a\": int, \"b\": List[int]},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "32b1a992-8997-4c98-8eb2-c9fe9431b799",
"metadata": {},
"source": [
"Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eb102705-89b7-48dc-9158-d36d5f98ae8e",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class GSchema(BaseModel):\n",
" \"\"\"Apply a function to an integer and list of integers.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"Integer\")\n",
" b: List[int] = Field(..., description=\"List of ints\")\n",
"\n",
"\n",
"runnable = RunnableLambda(g)\n",
"as_tool = runnable.as_tool(GSchema)"
]
},
{
"cell_type": "markdown",
"id": "7c474d85-4e01-4fae-9bba-0c6c8c26475c",
"metadata": {},
"source": [
"String input is also supported:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c475282a-58d6-4c2b-af7d-99b73b7d8a13",
"metadata": {},
"outputs": [],
"source": [
"def f(x: str) -> str:\n",
" return x + \"a\"\n",
"\n",
"\n",
"def g(x: str) -> str:\n",
" return x + \"z\"\n",
"\n",
"\n",
"runnable = RunnableLambda(f) | g\n",
"as_tool = runnable.as_tool()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ad6d8d96-3a87-40bd-a2ac-44a8acde0a8e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'baz'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"as_tool.invoke(\"b\")"
]
},
{
"cell_type": "markdown",
"id": "89fdb3a7-d228-48f0-8f73-262af4febb58",
"metadata": {},
"source": [
"## In agents\n",
"\n",
"Below we will incorporate LangChain Runnables as tools in an [agent](/docs/concepts/#agents) application. We will demonstrate with:\n",
"\n",
"- a document [retriever](/docs/concepts/#retrievers);\n",
"- a simple [RAG](/docs/tutorials/rag/) chain, allowing an agent to delegate relevant queries to it.\n",
"\n",
"We first instantiate a chat model that supports [tool calling](/docs/how_to/tool_calling/):\n",
"\n",
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs customVarName=\"llm\" />\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d06c9f2a-4475-450f-9106-54db1d99623b",
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "e8a2038a-d762-4196-b5e3-fdb89c11e71d",
"metadata": {},
"source": [
"Following the [RAG tutorial](/docs/tutorials/rag/), let's first construct a retriever:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "23d2a47e-6712-4294-81c8-2c1d76b4bb81",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.documents import Document\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"documents = [\n",
" Document(\n",
" page_content=\"Dogs are great companions, known for their loyalty and friendliness.\",\n",
" ),\n",
" Document(\n",
" page_content=\"Cats are independent pets that often enjoy their own space.\",\n",
" ),\n",
"]\n",
"\n",
"vectorstore = InMemoryVectorStore.from_documents(\n",
" documents, embedding=OpenAIEmbeddings()\n",
")\n",
"\n",
"retriever = vectorstore.as_retriever(\n",
" search_type=\"similarity\",\n",
" search_kwargs={\"k\": 1},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9ba737ac-43a2-4a6f-b855-5bd0305017f1",
"metadata": {},
"source": [
"We next create use a simple pre-built [LangGraph agent](https://python.langchain.com/v0.2/docs/tutorials/agents/) and provide it the tool:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "c939cf2a-60e9-4afd-8b47-84d76ccb13f5",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"tools = [\n",
" retriever.as_tool(\n",
" name=\"pet_info_retriever\",\n",
" description=\"Get information about pets.\",\n",
" )\n",
"]\n",
"agent = create_react_agent(llm, tools)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "be29437b-a187-4a0a-9a5d-419c56f2434e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD', 'function': {'arguments': '{\"__arg1\":\"dogs\"}', 'name': 'pet_info_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 60, 'total_tokens': 79}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d7f81de9-1fb7-4caf-81ed-16dcdb0b2ab4-0', tool_calls=[{'name': 'pet_info_retriever', 'args': {'__arg1': 'dogs'}, 'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD'}], usage_metadata={'input_tokens': 60, 'output_tokens': 19, 'total_tokens': 79})]}}\n",
"----\n",
"{'tools': {'messages': [ToolMessage(content=\"[Document(id='86f835fe-4bbe-4ec6-aeb4-489a8b541707', page_content='Dogs are great companions, known for their loyalty and friendliness.')]\", name='pet_info_retriever', tool_call_id='call_W8cnfOjwqEn4cFcg19LN9mYD')]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='Dogs are known for being great companions, known for their loyalty and friendliness.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 134, 'total_tokens': 152}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9ca5847a-a5eb-44c0-a774-84cc2c5bbc5b-0', usage_metadata={'input_tokens': 134, 'output_tokens': 18, 'total_tokens': 152})]}}\n",
"----\n"
]
}
],
"source": [
"for chunk in agent.stream({\"messages\": [(\"human\", \"What are dogs known for?\")]}):\n",
" print(chunk)\n",
" print(\"----\")"
]
},
{
"cell_type": "markdown",
"id": "96f2ac9c-36f4-4b7a-ae33-f517734c86aa",
"metadata": {},
"source": [
"See [LangSmith trace](https://smith.langchain.com/public/44e438e3-2faf-45bd-b397-5510fc145eb9/r) for the above run."
]
},
{
"cell_type": "markdown",
"id": "a722fd8a-b957-4ba7-b408-35596b76835f",
"metadata": {},
"source": [
"Going further, we can create a simple [RAG](/docs/tutorials/rag/) chain that takes an additional parameter-- here, the \"style\" of the answer."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "bea518c9-c711-47c2-b8cc-dbd102f71f09",
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"system_prompt = \"\"\"\n",
"You are an assistant for question-answering tasks.\n",
"Use the below context to answer the question. If\n",
"you don't know the answer, say you don't know.\n",
"Use three sentences maximum and keep the answer\n",
"concise.\n",
"\n",
"Answer in the style of {answer_style}.\n",
"\n",
"Question: {question}\n",
"\n",
"Context: {context}\n",
"\"\"\"\n",
"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system_prompt)])\n",
"\n",
"rag_chain = (\n",
" {\n",
" \"context\": itemgetter(\"question\") | retriever,\n",
" \"question\": itemgetter(\"question\"),\n",
" \"answer_style\": itemgetter(\"answer_style\"),\n",
" }\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "955a23db-5218-4c34-8486-450a2ddb3443",
"metadata": {},
"source": [
"Note that the input schema for our chain contains the required arguments, so it converts to a tool without further specification:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "2c9f6e61-80ed-4abb-8e77-84de3ccbc891",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'RunnableParallel<context,question,answer_style>Input',\n",
" 'type': 'object',\n",
" 'properties': {'question': {'title': 'Question'},\n",
" 'answer_style': {'title': 'Answer Style'}}}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rag_chain.input_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "a3f9cf5b-8c71-4b0f-902b-f92e028780c9",
"metadata": {},
"outputs": [],
"source": [
"rag_tool = rag_chain.as_tool(\n",
" name=\"pet_expert\",\n",
" description=\"Get information about pets.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "4570615b-8f96-4d97-ae01-1c08b14be584",
"metadata": {},
"source": [
"Below we again invoke the agent. Note that the agent populates the required parameters in its `tool_calls`:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "06409913-a2ad-400f-a202-7b8dd2ef483a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_17iLPWvOD23zqwd1QVQ00Y63', 'function': {'arguments': '{\"question\":\"What are dogs known for according to pirates?\",\"answer_style\":\"quote\"}', 'name': 'pet_expert'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 28, 'prompt_tokens': 59, 'total_tokens': 87}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-7fef44f3-7bba-4e63-8c51-2ad9c5e65e2e-0', tool_calls=[{'name': 'pet_expert', 'args': {'question': 'What are dogs known for according to pirates?', 'answer_style': 'quote'}, 'id': 'call_17iLPWvOD23zqwd1QVQ00Y63'}], usage_metadata={'input_tokens': 59, 'output_tokens': 28, 'total_tokens': 87})]}}\n",
"----\n",
"{'tools': {'messages': [ToolMessage(content='\"Dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.\"', name='pet_expert', tool_call_id='call_17iLPWvOD23zqwd1QVQ00Y63')]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='According to pirates, dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 119, 'total_tokens': 146}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5a30edc3-7be0-4743-b980-ca2f8cad9b8d-0', usage_metadata={'input_tokens': 119, 'output_tokens': 27, 'total_tokens': 146})]}}\n",
"----\n"
]
}
],
"source": [
"agent = create_react_agent(llm, [rag_tool])\n",
"\n",
"for chunk in agent.stream(\n",
" {\"messages\": [(\"human\", \"What would a pirate say dogs are known for?\")]}\n",
"):\n",
" print(chunk)\n",
" print(\"----\")"
]
},
{
"cell_type": "markdown",
"id": "96cc9bc3-e79e-49a8-9915-428ea225358b",
"metadata": {},
"source": [
"See [LangSmith trace](https://smith.langchain.com/public/147ae4e6-4dfb-4dd9-8ca0-5c5b954f08ac/r) for the above run."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -131,7 +131,7 @@
"source": [
"## Base Chat Model\n",
"\n",
"Let's implement a chat model that echoes back the first `n` characetrs of the last message in the prompt!\n",
"Let's implement a chat model that echoes back the first `n` characters of the last message in the prompt!\n",
"\n",
"To do so, we will inherit from `BaseChatModel` and we'll need to implement the following:\n",
"\n",

View File

@@ -5,7 +5,7 @@
"id": "5436020b",
"metadata": {},
"source": [
"# How to create custom tools\n",
"# How to create tools\n",
"\n",
"When constructing an agent, you will need to provide it with a list of `Tool`s that it can use. Besides the actual function that is called, the Tool consists of several components:\n",
"\n",
@@ -16,13 +16,15 @@
"| args_schema | Pydantic BaseModel | Optional but recommended, can be used to provide more information (e.g., few-shot examples) or validation for expected parameters |\n",
"| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n",
"\n",
"LangChain provides 3 ways to create tools:\n",
"LangChain supports the creation of tools from:\n",
"\n",
"1. Using [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool) -- the simplest way to define a custom tool.\n",
"2. Using [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method -- this is similar to the `@tool` decorator, but allows more configuration and specification of both sync and async implementations.\n",
"1. Functions;\n",
"2. LangChain [Runnables](/docs/concepts#runnable-interface);\n",
"3. By sub-classing from [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
"\n",
"The `@tool` or the `StructuredTool.from_function` class method should be sufficient for most use cases.\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
"\n",
"In this guide we provide an overview of these methods.\n",
"\n",
":::{.callout-tip}\n",
"\n",
@@ -35,7 +37,9 @@
"id": "c7326b23",
"metadata": {},
"source": [
"## @tool decorator\n",
"## Creating tools from functions\n",
"\n",
"### @tool decorator\n",
"\n",
"This `@tool` decorator is the simplest way to define a custom tool. The decorator uses the function name as the tool name by default, but this can be overridden by passing a string as the first argument. Additionally, the decorator will use the function's docstring as the tool's description - so a docstring MUST be provided. "
]
@@ -51,7 +55,7 @@
"output_type": "stream",
"text": [
"multiply\n",
"multiply(a: int, b: int) -> int - Multiply two numbers.\n",
"Multiply two numbers.\n",
"{'a': {'title': 'A', 'type': 'integer'}, 'b': {'title': 'B', 'type': 'integer'}}\n"
]
}
@@ -96,6 +100,57 @@
" return a * b"
]
},
{
"cell_type": "markdown",
"id": "8f0edc51-c586-414c-8941-c8abe779943f",
"metadata": {},
"source": [
"Note that `@tool` supports parsing of annotations, nested schemas, and other features:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5626423f-053e-4a66-adca-1d794d835397",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'multiply_by_maxSchema',\n",
" 'description': 'Multiply a by the maximum of b.',\n",
" 'type': 'object',\n",
" 'properties': {'a': {'title': 'A',\n",
" 'description': 'scale factor',\n",
" 'type': 'string'},\n",
" 'b': {'title': 'B',\n",
" 'description': 'list of ints over which to take maximum',\n",
" 'type': 'array',\n",
" 'items': {'type': 'integer'}}},\n",
" 'required': ['a', 'b']}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Annotated, List\n",
"\n",
"\n",
"@tool\n",
"def multiply_by_max(\n",
" a: Annotated[str, \"scale factor\"],\n",
" b: Annotated[List[int], \"list of ints over which to take maximum\"],\n",
") -> int:\n",
" \"\"\"Multiply a by the maximum of b.\"\"\"\n",
" return a * max(b)\n",
"\n",
"\n",
"multiply_by_max.args_schema.schema()"
]
},
{
"cell_type": "markdown",
"id": "98d6eee9",
@@ -106,7 +161,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"id": "9216d03a-f6ea-4216-b7e1-0661823a4c0b",
"metadata": {},
"outputs": [
@@ -115,7 +170,7 @@
"output_type": "stream",
"text": [
"multiplication-tool\n",
"multiplication-tool(a: int, b: int) -> int - Multiply two numbers.\n",
"Multiply two numbers.\n",
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n",
"True\n"
]
@@ -145,17 +200,82 @@
},
{
"cell_type": "markdown",
"id": "b63fcc3b",
"id": "33a9e94d-0b60-48f3-a4c2-247dce096e66",
"metadata": {},
"source": [
"## StructuredTool\n",
"\n",
"The `StrurcturedTool.from_function` class method provides a bit more configurability than the `@tool` decorator, without requiring much additional code."
"#### Docstring parsing"
]
},
{
"cell_type": "markdown",
"id": "6d0cb586-93d4-4ff1-9779-71df7853cb68",
"metadata": {},
"source": [
"`@tool` can optionally parse [Google Style docstrings](https://google.github.io/styleguide/pyguide.html#383-functions-and-methods) and associate the docstring components (such as arg descriptions) to the relevant parts of the tool schema. To toggle this behavior, specify `parse_docstring`:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"id": "336f5538-956e-47d5-9bde-b732559f9e61",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'fooSchema',\n",
" 'description': 'The foo.',\n",
" 'type': 'object',\n",
" 'properties': {'bar': {'title': 'Bar',\n",
" 'description': 'The bar.',\n",
" 'type': 'string'},\n",
" 'baz': {'title': 'Baz', 'description': 'The baz.', 'type': 'integer'}},\n",
" 'required': ['bar', 'baz']}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@tool(parse_docstring=True)\n",
"def foo(bar: str, baz: int) -> str:\n",
" \"\"\"The foo.\n",
"\n",
" Args:\n",
" bar: The bar.\n",
" baz: The baz.\n",
" \"\"\"\n",
" return bar\n",
"\n",
"\n",
"foo.args_schema.schema()"
]
},
{
"cell_type": "markdown",
"id": "f18a2503-5393-421b-99fa-4a01dd824d0e",
"metadata": {},
"source": [
":::{.callout-caution}\n",
"By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html) for detail and examples.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "b63fcc3b",
"metadata": {},
"source": [
"### StructuredTool\n",
"\n",
"The `StructuredTool.from_function` class method provides a bit more configurability than the `@tool` decorator, without requiring much additional code."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "564fbe6f-11df-402d-b135-ef6ff25e1e63",
"metadata": {},
"outputs": [
@@ -198,7 +318,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"id": "6bc055d4-1fbe-4db5-8881-9c382eba6b1b",
"metadata": {},
"outputs": [
@@ -208,7 +328,7 @@
"text": [
"6\n",
"Calculator\n",
"Calculator(a: int, b: int) -> int - multiply numbers\n",
"multiply numbers\n",
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n"
]
}
@@ -239,6 +359,63 @@
"print(calculator.args)"
]
},
{
"cell_type": "markdown",
"id": "5517995d-54e3-449b-8fdb-03561f5e4647",
"metadata": {},
"source": [
"## Creating tools from Runnables\n",
"\n",
"LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n",
"\n",
"Example usage:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8ef593c5-cf72-4c10-bfc9-7d21874a0c24",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'answer_style': {'title': 'Answer Style', 'type': 'string'}}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.language_models import GenericFakeChatModel\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"human\", \"Hello. Please respond in the style of {answer_style}.\")]\n",
")\n",
"\n",
"# Placeholder LLM\n",
"llm = GenericFakeChatModel(messages=iter([\"hello matey\"]))\n",
"\n",
"chain = prompt | llm | StrOutputParser()\n",
"\n",
"as_tool = chain.as_tool(\n",
" name=\"Style responder\", description=\"Description of when to use tool.\"\n",
")\n",
"as_tool.args"
]
},
{
"cell_type": "markdown",
"id": "0521b787-a146-45a6-8ace-ae1ac4669dd7",
"metadata": {},
"source": [
"See [this guide](/docs/how_to/convert_runnable_to_tool) for more detail."
]
},
{
"cell_type": "markdown",
"id": "b840074b-9c10-4ca0-aed8-626c52b2398f",
@@ -251,7 +428,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 10,
"id": "1dad8f8e",
"metadata": {},
"outputs": [],
@@ -300,7 +477,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 11,
"id": "bb551c33",
"metadata": {},
"outputs": [
@@ -351,7 +528,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 12,
"id": "6615cb77-fd4c-4676-8965-f92cc71d4944",
"metadata": {},
"outputs": [
@@ -383,7 +560,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 13,
"id": "bb2af583-eadd-41f4-a645-bf8748bd3dcd",
"metadata": {},
"outputs": [
@@ -428,7 +605,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 14,
"id": "4ad0932c-8610-4278-8c57-f9218f654c8a",
"metadata": {},
"outputs": [
@@ -473,7 +650,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 15,
"id": "7094c0e8-6192-4870-a942-aad5b5ae48fd",
"metadata": {},
"outputs": [],
@@ -496,7 +673,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 16,
"id": "b4d22022-b105-4ccc-a15b-412cb9ea3097",
"metadata": {},
"outputs": [
@@ -506,7 +683,7 @@
"'Error: There is no city by the name of foobar.'"
]
},
"execution_count": 12,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -530,7 +707,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 17,
"id": "3fad1728-d367-4e1b-9b54-3172981271cf",
"metadata": {},
"outputs": [
@@ -540,7 +717,7 @@
"\"There is no such city, but it's probably above 0K there!\""
]
},
"execution_count": 13,
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -564,7 +741,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 18,
"id": "ebfe7c1f-318d-4e58-99e1-f31e69473c46",
"metadata": {},
"outputs": [
@@ -574,7 +751,7 @@
"'The following errors occurred during tool execution: `Error: There is no city by the name of foobar.`'"
]
},
"execution_count": 14,
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
@@ -591,13 +768,189 @@
"\n",
"get_weather_tool.invoke({\"city\": \"foobar\"})"
]
},
{
"cell_type": "markdown",
"id": "1a8d8383-11b3-445e-956f-df4e96995e00",
"metadata": {},
"source": [
"## Returning artifacts of Tool execution\n",
"\n",
"Sometimes there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns custom objects like Documents, we may want to pass some view or metadata about this output to the model without passing the raw output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
"\n",
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
"\n",
":::info Requires ``langchain-core >= 0.2.19``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
"\n",
":::\n",
"\n",
"If we want our tool to distinguish between message content and other artifacts, we need to specify `response_format=\"content_and_artifact\"` when defining our tool and make sure that we return a tuple of (content, artifact):"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "14905425-0334-43a0-9de9-5bcf622ede0e",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"from typing import List, Tuple\n",
"\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool(response_format=\"content_and_artifact\")\n",
"def generate_random_ints(min: int, max: int, size: int) -> Tuple[str, List[int]]:\n",
" \"\"\"Generate size random ints in the range [min, max].\"\"\"\n",
" array = [random.randint(min, max) for _ in range(size)]\n",
" content = f\"Successfully generated array of {size} random ints in [{min}, {max}].\"\n",
" return content, array"
]
},
{
"cell_type": "markdown",
"id": "49f057a6-8938-43ea-8faf-ae41e797ceb8",
"metadata": {},
"source": [
"If we invoke our tool directly with the tool arguments, we'll get back just the content part of the output:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0f2e1528-404b-46e6-b87c-f0957c4b9217",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Successfully generated array of 10 random ints in [0, 9].'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke({\"min\": 0, \"max\": 9, \"size\": 10})"
]
},
{
"cell_type": "markdown",
"id": "1e62ebba-1737-4b97-b61a-7313ade4e8c2",
"metadata": {},
"source": [
"If we invoke our tool with a ToolCall (like the ones generated by tool-calling models), we'll get back a ToolMessage that contains both the content and artifact generated by the Tool:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cc197777-26eb-46b3-a83b-c2ce116c6311",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[1, 4, 2, 5, 3, 9, 0, 4, 7, 7])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke(\n",
" {\n",
" \"name\": \"generate_random_ints\",\n",
" \"args\": {\"min\": 0, \"max\": 9, \"size\": 10},\n",
" \"id\": \"123\", # required\n",
" \"type\": \"tool_call\", # required\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "dfdc1040-bf25-4790-b4c3-59452db84e11",
"metadata": {},
"source": [
"We can do the same when subclassing BaseTool:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fe1a09d1-378b-4b91-bb5e-0697c3d7eb92",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import BaseTool\n",
"\n",
"\n",
"class GenerateRandomFloats(BaseTool):\n",
" name: str = \"generate_random_floats\"\n",
" description: str = \"Generate size random floats in the range [min, max].\"\n",
" response_format: str = \"content_and_artifact\"\n",
"\n",
" ndigits: int = 2\n",
"\n",
" def _run(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" range_ = max - min\n",
" array = [\n",
" round(min + (range_ * random.random()), ndigits=self.ndigits)\n",
" for _ in range(size)\n",
" ]\n",
" content = f\"Generated {size} floats in [{min}, {max}], rounded to {self.ndigits} decimals.\"\n",
" return content, array\n",
"\n",
" # Optionally define an equivalent async method\n",
"\n",
" # async def _arun(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" # ..."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8c3d16f6-1c4a-48ab-b05a-38547c592e79",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.4277, 0.7578, 2.4871])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rand_gen = GenerateRandomFloats(ndigits=4)\n",
"\n",
"rand_gen.invoke(\n",
" {\n",
" \"name\": \"generate_random_floats\",\n",
" \"args\": {\"min\": 0.1, \"max\": 3.3333, \"size\": 3},\n",
" \"id\": \"123\",\n",
" \"type\": \"tool_call\",\n",
" }\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv-311",
"language": "python",
"name": "python3"
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
@@ -609,7 +962,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
},
"vscode": {
"interpreter": {

View File

@@ -23,12 +23,12 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install \"unstructured[html]\""
"%pip install unstructured"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "7d167ca3-c7c7-4ef0-b509-080629f0f482",
"metadata": {},
"outputs": [
@@ -36,14 +36,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='My First Heading\\n\\nMy first paragraph.', metadata={'source': '../../../docs/integrations/document_loaders/example_data/fake-content.html'})]\n"
"[Document(page_content='My First Heading\\n\\nMy first paragraph.', metadata={'source': '../../docs/integrations/document_loaders/example_data/fake-content.html'})]\n"
]
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredHTMLLoader\n",
"\n",
"file_path = \"../../../docs/integrations/document_loaders/example_data/fake-content.html\"\n",
"file_path = \"../../docs/integrations/document_loaders/example_data/fake-content.html\"\n",
"\n",
"loader = UnstructuredHTMLLoader(file_path)\n",
"data = loader.load()\n",
@@ -73,7 +73,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"id": "0a2050a8-6df6-4696-9889-ba367d6f9caa",
"metadata": {},
"outputs": [
@@ -81,7 +81,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='\\nTest Title\\n\\n\\nMy First Heading\\nMy first paragraph.\\n\\n\\n', metadata={'source': '../../../docs/integrations/document_loaders/example_data/fake-content.html', 'title': 'Test Title'})]\n"
"[Document(page_content='\\nTest Title\\n\\n\\nMy First Heading\\nMy first paragraph.\\n\\n\\n', metadata={'source': '../../docs/integrations/document_loaders/example_data/fake-content.html', 'title': 'Test Title'})]\n"
]
}
],
@@ -111,7 +111,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -21,12 +21,12 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": null,
"id": "c8b147fb-6877-4f7a-b2ee-ee971c7bc662",
"metadata": {},
"outputs": [],
"source": [
"# !pip install \"unstructured[md]\""
"%pip install \"unstructured[md]\""
]
},
{
@@ -39,7 +39,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"id": "80c50cc4-7ce9-4418-81b9-29c52c7b3627",
"metadata": {},
"outputs": [
@@ -62,7 +62,7 @@
"from langchain_community.document_loaders import UnstructuredMarkdownLoader\n",
"from langchain_core.documents import Document\n",
"\n",
"markdown_path = \"../../../../README.md\"\n",
"markdown_path = \"../../../README.md\"\n",
"loader = UnstructuredMarkdownLoader(markdown_path)\n",
"\n",
"data = loader.load()\n",
@@ -84,7 +84,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"id": "a986bbce-7fd3-41d1-bc47-49f9f57c7cd1",
"metadata": {},
"outputs": [
@@ -92,11 +92,11 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Number of documents: 65\n",
"Number of documents: 66\n",
"\n",
"page_content='🦜️🔗 LangChain' metadata={'source': '../../../../README.md', 'last_modified': '2024-04-29T13:40:19', 'page_number': 1, 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': '../../../..', 'filename': 'README.md', 'category': 'Title'}\n",
"page_content='🦜️🔗 LangChain' metadata={'source': '../../../README.md', 'category_depth': 0, 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'Title'}\n",
"\n",
"page_content='⚡ Build context-aware reasoning applications ⚡' metadata={'source': '../../../../README.md', 'last_modified': '2024-04-29T13:40:19', 'page_number': 1, 'languages': ['eng'], 'parent_id': 'c3223b6f7100be08a78f1e8c0c28fde1', 'filetype': 'text/markdown', 'file_directory': '../../../..', 'filename': 'README.md', 'category': 'NarrativeText'}\n",
"page_content='⚡ Build context-aware reasoning applications ⚡' metadata={'source': '../../../README.md', 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'parent_id': '200b8a7d0dd03f66e4f13456566d2b3a', 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'NarrativeText'}\n",
"\n"
]
}
@@ -121,7 +121,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"id": "75abc139-3ded-4e8e-9f21-d0c8ec40fdfc",
"metadata": {},
"outputs": [
@@ -129,13 +129,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'Title', 'NarrativeText', 'ListItem'}\n"
"{'ListItem', 'NarrativeText', 'Title'}\n"
]
}
],
"source": [
"print(set(document.metadata[\"category\"] for document in data))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "223b4c11",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -154,7 +162,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.10.5"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -58,6 +58,8 @@
}
],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import Runnable, RunnablePassthrough, chain\n",
@@ -86,7 +88,7 @@
" # NOTE: This is returning another Runnable, not an actual output.\n",
" return contextualize_question\n",
" else:\n",
" return RunnablePassthrough()\n",
" return RunnablePassthrough() | itemgetter(\"question\")\n",
"\n",
"\n",
"@chain\n",

View File

@@ -67,15 +67,16 @@ If you'd prefer not to set an environment variable you can pass the key in direc
```python
from langchain_cohere import CohereEmbeddings
embeddings_model = CohereEmbeddings(cohere_api_key="...")
embeddings_model = CohereEmbeddings(cohere_api_key="...", model='embed-english-v3.0')
```
Otherwise you can initialize without any params:
Otherwise you can initialize simply as shown below:
```python
from langchain_cohere import CohereEmbeddings
embeddings_model = CohereEmbeddings()
embeddings_model = CohereEmbeddings(model='embed-english-v3.0')
```
Do note that it is mandatory to pass the model parameter while initializing the CohereEmbeddings class.
</TabItem>
<TabItem value="huggingface" label="Hugging Face">

View File

@@ -9,11 +9,13 @@
"source": [
"# Hybrid Search\n",
"\n",
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, ...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, Qdrant...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
"\n",
"**Step 1: Make sure the vectorstore you are using supports hybrid search**\n",
"\n",
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`. By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`.\n",
"\n",
"By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
"\n",
"**Step 2: Add that parameter as a configurable field for the chain**\n",
"\n",

View File

@@ -31,6 +31,8 @@ This highlights functionality that is core to using LangChain.
[**LCEL cheatsheet**](/docs/how_to/lcel_cheatsheet/): For a quick overview of how to use the main LCEL primitives.
[**Migration guide**](/docs/versions/migrating_chains): For migrating legacy chain abstractions to LCEL.
- [How to: chain runnables](/docs/how_to/sequence)
- [How to: stream runnables](/docs/how_to/streaming)
- [How to: invoke runnables in parallel](/docs/how_to/parallel/)
@@ -43,6 +45,7 @@ This highlights functionality that is core to using LangChain.
- [How to: create a dynamic (self-constructing) chain](/docs/how_to/dynamic_chain/)
- [How to: inspect runnables](/docs/how_to/inspect)
- [How to: add fallbacks to a runnable](/docs/how_to/fallbacks)
- [How to: pass runtime secrets to a runnable](/docs/how_to/runnable_runtime_secrets)
## Components
@@ -79,12 +82,13 @@ These are the core building blocks you can use when building applications.
- [How to: stream a response back](/docs/how_to/chat_streaming)
- [How to: track token usage](/docs/how_to/chat_token_usage_tracking)
- [How to: track response metadata across providers](/docs/how_to/response_metadata)
- [How to: let your end users choose their model](/docs/how_to/chat_models_universal_init/)
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: stream tool calls](/docs/how_to/tool_streaming)
- [How to: handle rate limits](/docs/how_to/chat_model_rate_limiting)
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
- [How to: bind model-specific formated tools](/docs/how_to/tools_model_specific)
- [How to: force specific tool call](/docs/how_to/tool_choice)
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
- [How to: force a specific tool call](/docs/how_to/tool_choice)
- [How to: work with local models](/docs/how_to/local_llms)
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
### Messages
@@ -103,7 +107,7 @@ What LangChain calls [LLMs](/docs/concepts/#llms) are older forms of language mo
- [How to: create a custom LLM class](/docs/how_to/custom_llm)
- [How to: stream a response back](/docs/how_to/streaming_llm)
- [How to: track token usage](/docs/how_to/llm_token_usage_tracking)
- [How to: work with local LLMs](/docs/how_to/local_llms)
- [How to: work with local models](/docs/how_to/local_llms)
### Output parsers
@@ -182,17 +186,23 @@ Indexing is the process of keeping your vectorstore in-sync with the underlying
### Tools
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call.
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call. Refer [here](/docs/integrations/tools/) for a list of pre-buit tools.
- [How to: create custom tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and built-in toolkits](/docs/how_to/tools_builtin)
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: pass tool results back to model](/docs/how_to/tool_results_pass_to_model)
- [How to: add ad-hoc tool calling capability to LLMs and chat models](/docs/how_to/tools_prompting)
- [How to: create tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)
- [How to: use chat models to call tools](/docs/how_to/tool_calling)
- [How to: pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model)
- [How to: pass run time values to tools](/docs/how_to/tool_runtime)
- [How to: add a human in the loop to tool usage](/docs/how_to/tools_human)
- [How to: handle errors when calling tools](/docs/how_to/tools_error)
- [How to: disable parallel tool calling](/docs/how_to/tool_choice)
- [How to: add a human-in-the-loop for tools](/docs/how_to/tools_human)
- [How to: handle tool errors](/docs/how_to/tools_error)
- [How to: force models to call a tool](/docs/how_to/tool_choice)
- [How to: disable parallel tool calling](/docs/how_to/tool_calling_parallel)
- [How to: access the `RunnableConfig` from a tool](/docs/how_to/tool_configure)
- [How to: stream events from a tool](/docs/how_to/tool_stream_events)
- [How to: return artifacts from a tool](/docs/how_to/tool_artifacts/)
- [How to: convert Runnables to tools](/docs/how_to/convert_runnable_to_tool)
- [How to: add ad-hoc tool calling capability to models](/docs/how_to/tools_prompting)
- [How to: pass in runtime secrets](/docs/how_to/runnable_runtime_secrets)
### Multimodal
@@ -204,7 +214,7 @@ LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to p
:::note
For in depth how-to guides for agents, please check out [LangGraph](https://github.com/langchain-ai/langgraph) documentation.
For in depth how-to guides for agents, please check out [LangGraph](https://langchain-ai.github.io/langgraph/) documentation.
:::
@@ -220,6 +230,7 @@ For in depth how-to guides for agents, please check out [LangGraph](https://gith
- [How to: pass callbacks into a module constructor](/docs/how_to/callbacks_constructor)
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
- [How to: use callbacks in async environments](/docs/how_to/callbacks_async)
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
### Custom
@@ -232,6 +243,7 @@ All of LangChain components can easily be extended to support your own versions.
- [How to: write a custom output parser class](/docs/how_to/output_parser_custom)
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
- [How to: define a custom tool](/docs/how_to/custom_tools)
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
### Serialization
- [How to: save and load LangChain objects](/docs/how_to/serialization)

View File

@@ -60,7 +60,7 @@
" * document addition by id (`add_documents` method with `ids` argument)\n",
" * delete by id (`delete` method with `ids` argument)\n",
"\n",
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MongoDBAtlasVectorSearch`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SingleStoreDB`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
" \n",
"## Caution\n",
"\n",

View File

@@ -15,7 +15,23 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "25b0b0fa",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain_openai langchain_community\n",
"\n",
"import os\n",
"from getpass import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"# Please manually enter OpenAI Key"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0aa6d335",
"metadata": {},
"outputs": [],
@@ -23,13 +39,14 @@
"from langchain.globals import set_llm_cache\n",
"from langchain_openai import OpenAI\n",
"\n",
"# To make the caching really obvious, lets use a slower model.\n",
"llm = OpenAI(model_name=\"gpt-3.5-turbo-instruct\", n=2, best_of=2)"
"# To make the caching really obvious, lets use a slower and older model.\n",
"# Caching supports newer chat models as well.\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\", n=2, best_of=2)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 3,
"id": "f168ff0d",
"metadata": {},
"outputs": [
@@ -37,17 +54,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 13.7 ms, sys: 6.54 ms, total: 20.2 ms\n",
"Wall time: 330 ms\n"
"CPU times: user 546 ms, sys: 379 ms, total: 925 ms\n",
"Wall time: 1.11 s\n"
]
},
{
"data": {
"text/plain": [
"\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was two-tired!\""
"\"\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything!\""
]
},
"execution_count": 12,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -59,12 +76,12 @@
"set_llm_cache(InMemoryCache())\n",
"\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"llm.predict(\"Tell me a joke\")"
"llm.invoke(\"Tell me a joke\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 4,
"id": "ce7620fb",
"metadata": {},
"outputs": [
@@ -72,17 +89,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 436 µs, sys: 921 µs, total: 1.36 ms\n",
"Wall time: 1.36 ms\n"
"CPU times: user 192 µs, sys: 77 µs, total: 269 µs\n",
"Wall time: 270 µs\n"
]
},
{
"data": {
"text/plain": [
"\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was two-tired!\""
"\"\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything!\""
]
},
"execution_count": 13,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -90,7 +107,7 @@
"source": [
"%%time\n",
"# The second time it is, so it goes faster\n",
"llm.predict(\"Tell me a joke\")"
"llm.invoke(\"Tell me a joke\")"
]
},
{
@@ -103,7 +120,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 5,
"id": "2e65de83",
"metadata": {},
"outputs": [],
@@ -113,7 +130,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 6,
"id": "0be83715",
"metadata": {},
"outputs": [],
@@ -126,7 +143,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 7,
"id": "9b427ce7",
"metadata": {},
"outputs": [
@@ -134,17 +151,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 29.3 ms, sys: 17.3 ms, total: 46.7 ms\n",
"Wall time: 364 ms\n"
"CPU times: user 10.6 ms, sys: 4.21 ms, total: 14.8 ms\n",
"Wall time: 851 ms\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nWhy did the tomato turn red?\\n\\nBecause it saw the salad dressing!'"
"\"\\n\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything!\""
]
},
"execution_count": 10,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -152,12 +169,12 @@
"source": [
"%%time\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"llm.predict(\"Tell me a joke\")"
"llm.invoke(\"Tell me a joke\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 8,
"id": "87f52611",
"metadata": {},
"outputs": [
@@ -165,17 +182,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 4.58 ms, sys: 2.23 ms, total: 6.8 ms\n",
"Wall time: 4.68 ms\n"
"CPU times: user 59.7 ms, sys: 63.6 ms, total: 123 ms\n",
"Wall time: 134 ms\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nWhy did the tomato turn red?\\n\\nBecause it saw the salad dressing!'"
"\"\\n\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything!\""
]
},
"execution_count": 11,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -183,7 +200,7 @@
"source": [
"%%time\n",
"# The second time it is, so it goes faster\n",
"llm.predict(\"Tell me a joke\")"
"llm.invoke(\"Tell me a joke\")"
]
},
{
@@ -211,7 +228,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -5,11 +5,11 @@
"id": "b8982428",
"metadata": {},
"source": [
"# Run LLMs locally\n",
"# Run models locally\n",
"\n",
"## Use case\n",
"\n",
"The popularity of projects like [PrivateGPT](https://github.com/imartinez/privateGPT), [llama.cpp](https://github.com/ggerganov/llama.cpp), [Ollama](https://github.com/ollama/ollama), [GPT4All](https://github.com/nomic-ai/gpt4all), [llamafile](https://github.com/Mozilla-Ocho/llamafile), and others underscore the demand to run LLMs locally (on your own device).\n",
"The popularity of projects like [llama.cpp](https://github.com/ggerganov/llama.cpp), [Ollama](https://github.com/ollama/ollama), [GPT4All](https://github.com/nomic-ai/gpt4all), [llamafile](https://github.com/Mozilla-Ocho/llamafile), and others underscore the demand to run LLMs locally (on your own device).\n",
"\n",
"This has at least two important benefits:\n",
"\n",
@@ -66,6 +66,12 @@
"\n",
"![Image description](../../static/img/llama_t_put.png)\n",
"\n",
"### Formatting prompts\n",
"\n",
"Some providers have [chat model](/docs/concepts/#chat-models) wrappers that takes care of formatting your input prompt for the specific local model you're using. However, if you are prompting local models with a [text-in/text-out LLM](/docs/concepts/#llms) wrapper, you may need to use a prompt tailed for your specific model.\n",
"\n",
"This can [require the inclusion of special tokens](https://huggingface.co/blog/llama2#how-to-prompt-llama-2). [Here's an example for LLaMA 2](https://smith.langchain.com/hub/rlm/rag-prompt-llama).\n",
"\n",
"## Quickstart\n",
"\n",
"[`Ollama`](https://ollama.ai/) is one way to easily run inference on macOS.\n",
@@ -73,10 +79,20 @@
"The instructions [here](https://github.com/jmorganca/ollama?tab=readme-ov-file#ollama) provide details, which we summarize:\n",
" \n",
"* [Download and run](https://ollama.ai/download) the app\n",
"* From command line, fetch a model from this [list of options](https://github.com/jmorganca/ollama): e.g., `ollama pull llama2`\n",
"* From command line, fetch a model from this [list of options](https://github.com/jmorganca/ollama): e.g., `ollama pull llama3.1:8b`\n",
"* When the app is running, all models are automatically served on `localhost:11434`\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "29450fc9",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain_ollama"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -86,7 +102,7 @@
{
"data": {
"text/plain": [
"' The first man on the moon was Neil Armstrong, who landed on the moon on July 20, 1969 as part of the Apollo 11 mission. obviously.'"
"'...Neil Armstrong!\\n\\nOn July 20, 1969, Neil Armstrong became the first person to set foot on the lunar surface, famously declaring \"That\\'s one small step for man, one giant leap for mankind\" as he stepped off the lunar module Eagle onto the Moon\\'s surface.\\n\\nWould you like to know more about the Apollo 11 mission or Neil Armstrong\\'s achievements?'"
]
},
"execution_count": 2,
@@ -95,51 +111,78 @@
}
],
"source": [
"from langchain_community.llms import Ollama\n",
"from langchain_ollama import OllamaLLM\n",
"\n",
"llm = OllamaLLM(model=\"llama3.1:8b\")\n",
"\n",
"llm = Ollama(model=\"llama2\")\n",
"llm.invoke(\"The first man on the moon was ...\")"
]
},
{
"cell_type": "markdown",
"id": "343ab645",
"id": "674cc672",
"metadata": {},
"source": [
"Stream tokens as they are being generated."
"Stream tokens as they are being generated:"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "9cd83603",
"execution_count": 3,
"id": "1386a852",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" The first man to walk on the moon was Neil Armstrong, an American astronaut who was part of the Apollo 11 mission in 1969. февруари 20, 1969, Armstrong stepped out of the lunar module Eagle and onto the moon's surface, famously declaring \"That's one small step for man, one giant leap for mankind\" as he took his first steps. He was followed by fellow astronaut Edwin \"Buzz\" Aldrin, who also walked on the moon during the mission."
"...|"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Neil| Armstrong|,| an| American| astronaut|.| He| stepped| out| of| the| lunar| module| Eagle| and| onto| the| surface| of| the| Moon| on| July| |20|,| |196|9|,| famously| declaring|:| \"|That|'s| one| small| step| for| man|,| one| giant| leap| for| mankind|.\"||"
]
}
],
"source": [
"for chunk in llm.stream(\"The first man on the moon was ...\"):\n",
" print(chunk, end=\"|\", flush=True)"
]
},
{
"cell_type": "markdown",
"id": "e5731060",
"metadata": {},
"source": [
"Ollama also includes a chat model wrapper that handles formatting conversation turns:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f14a778a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' The first man to walk on the moon was Neil Armstrong, an American astronaut who was part of the Apollo 11 mission in 1969. февруари 20, 1969, Armstrong stepped out of the lunar module Eagle and onto the moon\\'s surface, famously declaring \"That\\'s one small step for man, one giant leap for mankind\" as he took his first steps. He was followed by fellow astronaut Edwin \"Buzz\" Aldrin, who also walked on the moon during the mission.'"
"AIMessage(content='The answer is a historic one!\\n\\nThe first man to walk on the Moon was Neil Armstrong, an American astronaut and commander of the Apollo 11 mission. On July 20, 1969, Armstrong stepped out of the lunar module Eagle onto the surface of the Moon, famously declaring:\\n\\n\"That\\'s one small step for man, one giant leap for mankind.\"\\n\\nArmstrong was followed by fellow astronaut Edwin \"Buzz\" Aldrin, who also walked on the Moon during the mission. Michael Collins remained in orbit around the Moon in the command module Columbia.\\n\\nNeil Armstrong passed away on August 25, 2012, but his legacy as a pioneering astronaut and engineer continues to inspire people around the world!', response_metadata={'model': 'llama3.1:8b', 'created_at': '2024-08-01T00:38:29.176717Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 10681861417, 'load_duration': 34270292, 'prompt_eval_count': 19, 'prompt_eval_duration': 6209448000, 'eval_count': 141, 'eval_duration': 4432022000}, id='run-7bed57c5-7f54-4092-912c-ae49073dcd48-0', usage_metadata={'input_tokens': 19, 'output_tokens': 141, 'total_tokens': 160})"
]
},
"execution_count": 40,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler\n",
"from langchain_ollama import ChatOllama\n",
"\n",
"llm = Ollama(\n",
" model=\"llama2\", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])\n",
")\n",
"llm.invoke(\"The first man on the moon was ...\")"
"chat_model = ChatOllama(model=\"llama3.1:8b\")\n",
"\n",
"chat_model.invoke(\"Who was the first man on the moon?\")"
]
},
{
@@ -199,7 +242,7 @@
"\n",
"With [Ollama](https://github.com/jmorganca/ollama), fetch a model via `ollama pull <model family>:<tag>`:\n",
"\n",
"* E.g., for Llama-7b: `ollama pull llama2` will download the most basic version of the model (e.g., smallest # parameters and 4 bit quantization)\n",
"* E.g., for Llama 2 7b: `ollama pull llama2` will download the most basic version of the model (e.g., smallest # parameters and 4 bit quantization)\n",
"* We can also specify a particular version from the [model list](https://github.com/jmorganca/ollama?tab=readme-ov-file#model-library), e.g., `ollama pull llama2:13b`\n",
"* See the full set of parameters on the [API reference page](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.ollama.Ollama.html)"
]
@@ -222,9 +265,7 @@
}
],
"source": [
"from langchain_community.llms import Ollama\n",
"\n",
"llm = Ollama(model=\"llama2:13b\")\n",
"llm = OllamaLLM(model=\"llama2:13b\")\n",
"llm.invoke(\"The first man on the moon was ... think step by step\")"
]
},
@@ -268,11 +309,7 @@
"cell_type": "code",
"execution_count": null,
"id": "5eba38dc",
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"metadata": {},
"outputs": [],
"source": [
"%env CMAKE_ARGS=\"-DLLAMA_METAL=on\"\n",
@@ -542,7 +579,6 @@
}
],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.chains.prompt_selector import ConditionalPromptSelector\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
@@ -613,9 +649,9 @@
],
"source": [
"# Chain\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"chain = prompt | llm\n",
"question = \"What NFL team won the Super Bowl in the year that Justin Bieber was born?\"\n",
"llm_chain.run({\"question\": question})"
"chain.invoke({\"question\": question})"
]
},
{
@@ -666,7 +702,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -63,6 +63,38 @@
"Notice that if the contents of one of the messages to merge is a list of content blocks then the merged message will have a list of content blocks. And if both messages to merge have string contents then those are concatenated with a newline character."
]
},
{
"cell_type": "markdown",
"id": "11f7e8d3",
"metadata": {},
"source": [
"The `merge_message_runs` utility also works with messages composed together using the overloaded `+` operation:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b51855c5",
"metadata": {},
"outputs": [],
"source": [
"messages = (\n",
" SystemMessage(\"you're a good assistant.\")\n",
" + SystemMessage(\"you always respond with a joke.\")\n",
" + HumanMessage([{\"type\": \"text\", \"text\": \"i wonder why it's called langchain\"}])\n",
" + HumanMessage(\"and who is harrison chasing anyways\")\n",
" + AIMessage(\n",
" 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n",
" )\n",
" + AIMessage(\n",
" \"Why, he's probably chasing after the last cup of coffee in the office!\"\n",
" )\n",
")\n",
"\n",
"merged = merge_message_runs(messages)\n",
"print(\"\\n\\n\".join([repr(x) for x in merged]))"
]
},
{
"cell_type": "markdown",
"id": "1b2eee74-71c8-4168-b968-bca580c25d18",

View File

@@ -41,7 +41,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "662fac50",
"metadata": {},
"outputs": [],
@@ -50,6 +50,26 @@
"%pip install -U langgraph langchain langchain-openai"
]
},
{
"cell_type": "markdown",
"id": "6f8ec38f",
"metadata": {},
"source": [
"Then, set your OpenAI API key."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5fca87ef",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"sk-...\""
]
},
{
"cell_type": "markdown",
"id": "8e50635c-1671-46e6-be65-ce95f8167c2f",
@@ -62,7 +82,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "1e425fea-2796-4b99-bee6-9a6ffe73f756",
"metadata": {},
"outputs": [],
@@ -95,7 +115,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "03ea357c-9c36-4464-b2cc-27bd150e1554",
"metadata": {},
"outputs": [
@@ -106,7 +126,7 @@
" 'output': 'The value of `magic_function(3)` is 5.'}"
]
},
"execution_count": 2,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -142,7 +162,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"id": "53a3737a-d167-4255-89bf-20ac37f89a3e",
"metadata": {},
"outputs": [
@@ -153,7 +173,7 @@
" 'output': 'The value of `magic_function(3)` is 5.'}"
]
},
"execution_count": 3,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -173,7 +193,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"id": "74ecebe3-512e-409c-a661-bdd5b0a2b782",
"metadata": {},
"outputs": [
@@ -181,10 +201,10 @@
"data": {
"text/plain": [
"{'input': 'Pardon?',\n",
" 'output': 'The result of applying `magic_function` to the input 3 is 5.'}"
" 'output': 'The value you get when you apply `magic_function` to the input 3 is 5.'}"
]
},
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -223,7 +243,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"id": "a9a11ccd-75e2-4c11-844d-a34870b0ff91",
"metadata": {},
"outputs": [
@@ -234,7 +254,7 @@
" 'output': 'El valor de `magic_function(3)` es 5.'}"
]
},
"execution_count": 5,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -263,19 +283,19 @@
"source": [
"Now, let's pass a custom system message to [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent).\n",
"\n",
"LangGraph's prebuilt `create_react_agent` does not take a prompt template directly as a parameter, but instead takes a [`messages_modifier`](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) parameter. This modifies messages before they are passed into the model, and can be one of four values:\n",
"LangGraph's prebuilt `create_react_agent` does not take a prompt template directly as a parameter, but instead takes a [`state_modifier`](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) parameter. This modifies the graph state before the llm is called, and can be one of four values:\n",
"\n",
"- A `SystemMessage`, which is added to the beginning of the list of messages.\n",
"- A `string`, which is converted to a `SystemMessage` and added to the beginning of the list of messages.\n",
"- A `Callable`, which should take in a list of messages. The output is then passed to the language model.\n",
"- Or a [`Runnable`](/docs/concepts/#langchain-expression-language-lcel), which should should take in a list of messages. The output is then passed to the language model.\n",
"- A `Callable`, which should take in full graph state. The output is then passed to the language model.\n",
"- Or a [`Runnable`](/docs/concepts/#langchain-expression-language-lcel), which should take in full graph state. The output is then passed to the language model.\n",
"\n",
"Here's how it looks in action:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"id": "a9486805-676a-4d19-a5c4-08b41b172989",
"metadata": {},
"outputs": [],
@@ -287,7 +307,7 @@
"# This could also be a SystemMessage object\n",
"# system_message = SystemMessage(content=\"You are a helpful assistant. Respond only in Spanish.\")\n",
"\n",
"app = create_react_agent(model, tools, messages_modifier=system_message)\n",
"app = create_react_agent(model, tools, state_modifier=system_message)\n",
"\n",
"\n",
"messages = app.invoke({\"messages\": [(\"user\", query)]})"
@@ -304,7 +324,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"id": "d369ab45-0c82-45f4-9d3e-8efb8dd47e2c",
"metadata": {},
"outputs": [
@@ -317,8 +337,8 @@
}
],
"source": [
"from langchain_core.messages import AnyMessage\n",
"from langgraph.prebuilt import create_react_agent\n",
"from langgraph.prebuilt.chat_agent_executor import AgentState\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
@@ -328,13 +348,13 @@
")\n",
"\n",
"\n",
"def _modify_messages(messages: list[AnyMessage]):\n",
" return prompt.invoke({\"messages\": messages}).to_messages() + [\n",
"def _modify_state_messages(state: AgentState):\n",
" return prompt.invoke({\"messages\": state[\"messages\"]}).to_messages() + [\n",
" (\"user\", \"Also say 'Pandamonium!' after the answer.\")\n",
" ]\n",
"\n",
"\n",
"app = create_react_agent(model, tools, messages_modifier=_modify_messages)\n",
"app = create_react_agent(model, tools, state_modifier=_modify_state_messages)\n",
"\n",
"\n",
"messages = app.invoke({\"messages\": [(\"human\", query)]})\n",
@@ -351,15 +371,23 @@
"id": "68df3a09",
"metadata": {},
"source": [
"## Memory\n",
"## Memory"
]
},
{
"cell_type": "markdown",
"id": "96e7ffc8",
"metadata": {},
"source": [
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could add chat [Memory](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.memory) so it can engage in a multi-turn conversation."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1fb52a2c",
"execution_count": 9,
"id": "b97beba5-8f74-430c-9399-91b77c8fa15c",
"metadata": {},
"outputs": [
{
@@ -368,7 +396,7 @@
"text": [
"Hi Polly! The output of the magic function for the input 3 is 5.\n",
"---\n",
"Yes, I remember your name, Polly! How can I assist you further?\n",
"Yes, your name is Polly!\n",
"---\n",
"The output of the magic function for the input 3 is 5.\n"
]
@@ -376,14 +404,14 @@
],
"source": [
"from langchain.agents import AgentExecutor, create_tool_calling_agent\n",
"from langchain_community.chat_message_histories import ChatMessageHistory\n",
"from langchain_core.chat_history import InMemoryChatMessageHistory\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from langchain_core.tools import tool\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-4o\")\n",
"memory = ChatMessageHistory(session_id=\"test-session\")\n",
"memory = InMemoryChatMessageHistory(session_id=\"test-session\")\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a helpful assistant.\"),\n",
@@ -439,7 +467,7 @@
"id": "c2a5a32f",
"metadata": {},
"source": [
"#### In LangGraph\n",
"### In LangGraph\n",
"\n",
"Memory is just [persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/), aka [checkpointing](https://langchain-ai.github.io/langgraph/reference/checkpoints/).\n",
"\n",
@@ -448,24 +476,23 @@
},
{
"cell_type": "code",
"execution_count": 9,
"id": "035e1253",
"execution_count": 10,
"id": "baca3dc6-678b-4509-9275-2fd653102898",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hi Polly! The output of the magic_function for the input 3 is 5.\n",
"Hi Polly! The output of the magic_function for the input of 3 is 5.\n",
"---\n",
"Yes, your name is Polly!\n",
"---\n",
"The output of the magic_function for the input 3 was 5.\n"
"The output of the magic_function for the input of 3 was 5.\n"
]
}
],
"source": [
"from langchain_core.messages import SystemMessage\n",
"from langgraph.checkpoint import MemorySaver # an in-memory checkpointer\n",
"from langgraph.prebuilt import create_react_agent\n",
"\n",
@@ -475,7 +502,7 @@
"\n",
"memory = MemorySaver()\n",
"app = create_react_agent(\n",
" model, tools, messages_modifier=system_message, checkpointer=memory\n",
" model, tools, state_modifier=system_message, checkpointer=memory\n",
")\n",
"\n",
"config = {\"configurable\": {\"thread_id\": \"test-thread\"}}\n",
@@ -510,21 +537,23 @@
"source": [
"## Iterating through steps\n",
"\n",
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could iterate over the steps using the [stream](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) (or async `astream`) methods or the [iter](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter) method. LangGraph supports stepwise iteration using [stream](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) "
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "d640feb3",
"execution_count": 11,
"id": "e62843c4-1107-41f0-a50b-aea256e28053",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'actions': [ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_q9MgGFjqJbV2xSUX93WqxmOt', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'}, id='run-c68fd76f-a3c3-4c3c-bfd7-748c171ed4b8', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_q9MgGFjqJbV2xSUX93WqxmOt'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_q9MgGFjqJbV2xSUX93WqxmOt', 'index': 0}])], tool_call_id='call_q9MgGFjqJbV2xSUX93WqxmOt')], 'messages': [AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_q9MgGFjqJbV2xSUX93WqxmOt', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'}, id='run-c68fd76f-a3c3-4c3c-bfd7-748c171ed4b8', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_q9MgGFjqJbV2xSUX93WqxmOt'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_q9MgGFjqJbV2xSUX93WqxmOt', 'index': 0}])]}\n",
"{'steps': [AgentStep(action=ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_q9MgGFjqJbV2xSUX93WqxmOt', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'}, id='run-c68fd76f-a3c3-4c3c-bfd7-748c171ed4b8', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_q9MgGFjqJbV2xSUX93WqxmOt'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_q9MgGFjqJbV2xSUX93WqxmOt', 'index': 0}])], tool_call_id='call_q9MgGFjqJbV2xSUX93WqxmOt'), observation=5)], 'messages': [FunctionMessage(content='5', name='magic_function')]}\n",
"{'actions': [ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518'}, id='run-5664e138-7085-4da7-a49e-5656a87b8d78', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'index': 0, 'type': 'tool_call_chunk'}])], tool_call_id='call_1exy0rScfPmo4fy27FbQ5qJ2')], 'messages': [AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518'}, id='run-5664e138-7085-4da7-a49e-5656a87b8d78', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'index': 0, 'type': 'tool_call_chunk'}])]}\n",
"{'steps': [AgentStep(action=ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518'}, id='run-5664e138-7085-4da7-a49e-5656a87b8d78', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_1exy0rScfPmo4fy27FbQ5qJ2', 'index': 0, 'type': 'tool_call_chunk'}])], tool_call_id='call_1exy0rScfPmo4fy27FbQ5qJ2'), observation=5)], 'messages': [FunctionMessage(content='5', name='magic_function')]}\n",
"{'output': 'The value of `magic_function(3)` is 5.', 'messages': [AIMessage(content='The value of `magic_function(3)` is 5.')]}\n"
]
}
@@ -568,30 +597,30 @@
"id": "46ccbcbf",
"metadata": {},
"source": [
"#### In LangGraph\n",
"### In LangGraph\n",
"\n",
"In LangGraph, things are handled natively using [stream](https://langchain-ai.github.io/langgraph/reference/graphs/#langgraph.graph.graph.CompiledGraph.stream) or the asynchronous `astream` method."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "86abbe07",
"execution_count": 12,
"id": "076ebc85-f804-4093-a25a-a16334c9898e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_yTjXXibj76tyFyPRa1soLo0S', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 70, 'total_tokens': 84}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-b275f314-c42e-4e77-9dec-5c23f7dbd53b-0', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_yTjXXibj76tyFyPRa1soLo0S'}])]}}\n",
"{'tools': {'messages': [ToolMessage(content='5', name='magic_function', id='41c5f227-528d-4483-a313-b03b23b1d327', tool_call_id='call_yTjXXibj76tyFyPRa1soLo0S')]}}\n",
"{'agent': {'messages': [AIMessage(content='The value of `magic_function(3)` is 5.', response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 93, 'total_tokens': 107}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'stop', 'logprobs': None}, id='run-0ef12b6e-415d-4758-9b62-5e5e1b350072-0')]}}\n"
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_my9rzFSKR4T1yYKwCsfbZB8A', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 61, 'total_tokens': 75}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_bc2a86f5f5', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-dd705555-8fae-4fb1-a033-5d99a23e3c22-0', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_my9rzFSKR4T1yYKwCsfbZB8A', 'type': 'tool_call'}], usage_metadata={'input_tokens': 61, 'output_tokens': 14, 'total_tokens': 75})]}}\n",
"{'tools': {'messages': [ToolMessage(content='5', name='magic_function', tool_call_id='call_my9rzFSKR4T1yYKwCsfbZB8A')]}}\n",
"{'agent': {'messages': [AIMessage(content='The value of `magic_function(3)` is 5.', response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 84, 'total_tokens': 98}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'stop', 'logprobs': None}, id='run-698cad05-8cb2-4d08-8c2a-881e354f6cc7-0', usage_metadata={'input_tokens': 84, 'output_tokens': 14, 'total_tokens': 98})]}}\n"
]
}
],
"source": [
"from langchain_core.messages import AnyMessage\n",
"from langgraph.prebuilt import create_react_agent\n",
"from langgraph.prebuilt.chat_agent_executor import AgentState\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
@@ -601,12 +630,11 @@
")\n",
"\n",
"\n",
"def _modify_messages(messages: list[AnyMessage]):\n",
" return prompt.invoke({\"messages\": messages}).to_messages()\n",
"def _modify_state_messages(state: AgentState):\n",
" return prompt.invoke({\"messages\": state[\"messages\"]}).to_messages()\n",
"\n",
"\n",
"app = create_react_agent(model, tools, messages_modifier=_modify_messages)\n",
"\n",
"app = create_react_agent(model, tools, state_modifier=_modify_state_messages)\n",
"\n",
"for step in app.stream({\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"):\n",
" print(step)"
@@ -619,20 +647,22 @@
"source": [
"## `return_intermediate_steps`\n",
"\n",
"### In LangChain\n",
"\n",
"Setting this parameter on AgentExecutor allows users to access intermediate_steps, which pairs agent actions (e.g., tool invocations) with their outcomes.\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "4eff44bc-a620-4c8a-97b1-268692a842bb",
"id": "a2f720f3-c121-4be2-b498-92c16bb44b0a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_ABI4hftfEdnVgKyfF6OzZbca', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'}, id='run-837e794f-cfd8-40e0-8abc-4d98ced11b75', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_ABI4hftfEdnVgKyfF6OzZbca'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_ABI4hftfEdnVgKyfF6OzZbca', 'index': 0}])], tool_call_id='call_ABI4hftfEdnVgKyfF6OzZbca'), 5)]\n"
"[(ToolAgentAction(tool='magic_function', tool_input={'input': 3}, log=\"\\nInvoking: `magic_function` with `{'input': 3}`\\n\\n\\n\", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_uPZ2D1Bo5mdED3gwgaeWURrf', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518'}, id='run-a792db4a-278d-4090-82ae-904a30eada93', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_uPZ2D1Bo5mdED3gwgaeWURrf', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'magic_function', 'args': '{\"input\":3}', 'id': 'call_uPZ2D1Bo5mdED3gwgaeWURrf', 'index': 0, 'type': 'tool_call_chunk'}])], tool_call_id='call_uPZ2D1Bo5mdED3gwgaeWURrf'), 5)]\n"
]
}
],
@@ -647,22 +677,24 @@
"id": "594f7567-302f-4fa8-85bb-025ac8322162",
"metadata": {},
"source": [
"### In LangGraph\n",
"\n",
"By default the [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) in LangGraph appends all messages to the central state. Therefore, it is easy to see any intermediate steps by just looking at the full state."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "4f4364ea-dffe-4d25-bdce-ef7d0020b880",
"id": "ef23117a-5ccb-42ce-80c3-ea49a9d3a942",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'messages': [HumanMessage(content='what is the value of magic_function(3)?', id='0f63e437-c4d8-4da9-b6f5-b293ebfe4a64'),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_S96v28LlI6hNkQrNnIio0JPh', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 64, 'total_tokens': 78}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-ffef7898-14b1-4537-ad90-7c000a8a5d25-0', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_S96v28LlI6hNkQrNnIio0JPh'}]),\n",
" ToolMessage(content='5', name='magic_function', id='fbd9df4e-1dda-4d3e-9044-b001f7875476', tool_call_id='call_S96v28LlI6hNkQrNnIio0JPh'),\n",
" AIMessage(content='The value of `magic_function(3)` is 5.', response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 87, 'total_tokens': 101}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'stop', 'logprobs': None}, id='run-e5d94c54-d9f4-45cd-be8e-a9101a8d88d6-0')]}"
"{'messages': [HumanMessage(content='what is the value of magic_function(3)?', id='cd7d0f49-a0e0-425a-b2b0-603a716058ed'),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_VfZ9287DuybOSrBsQH5X12xf', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-a1e965cd-bf61-44f9-aec1-8aaecb80955f-0', tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_VfZ9287DuybOSrBsQH5X12xf', 'type': 'tool_call'}], usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69}),\n",
" ToolMessage(content='5', name='magic_function', id='20d5c2fe-a5d8-47fa-9e04-5282642e2039', tool_call_id='call_VfZ9287DuybOSrBsQH5X12xf'),\n",
" AIMessage(content='The value of `magic_function(3)` is 5.', response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 78, 'total_tokens': 92}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'stop', 'logprobs': None}, id='run-abf9341c-ef41-4157-935d-a3be5dfa2f41-0', usage_metadata={'input_tokens': 78, 'output_tokens': 14, 'total_tokens': 92})]}"
]
},
"execution_count": 13,
@@ -687,16 +719,14 @@
"source": [
"## `max_iterations`\n",
"\n",
"`AgentExecutor` implements a `max_iterations` parameter, whereas this is controlled via `recursion_limit` in LangGraph.\n",
"### In LangChain\n",
"\n",
"Note that in AgentExecutor, an \"iteration\" includes a full turn of tool invocation and execution. In LangGraph, each step contributes to the recursion limit, so we will need to multiply by two (and add one) to get equivalent results.\n",
"\n",
"If the recursion limit is reached, LangGraph raises a specific exception type, that we can catch and manage similarly to AgentExecutor."
"`AgentExecutor` implements a `max_iterations` parameter, allowing users to abort a run that exceeds a specified number of iterations."
]
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 16,
"id": "16f189a7-fc78-4cb5-aa16-a94ca06401a6",
"metadata": {},
"outputs": [],
@@ -712,7 +742,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 17,
"id": "c96aefd7-6f6e-4670-aca6-1ac3d4e7871f",
"metadata": {},
"outputs": [
@@ -727,11 +757,7 @@
"Invoking: `magic_function` with `{'input': '3'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3mSorry, there was an error. Please try again.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Invoking: `magic_function` with `{'input': '3'}`\n",
"responded: Parece que hubo un error al intentar obtener el valor de `magic_function(3)`. Permíteme intentarlo de nuevo.\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3mSorry, there was an error. Please try again.\u001b[0m\u001b[32;1m\u001b[1;3mAún no puedo obtener el valor de `magic_function(3)`. ¿Hay algo más en lo que pueda ayudarte?\u001b[0m\n",
"\u001b[0m\u001b[36;1m\u001b[1;3mSorry, there was an error. Please try again.\u001b[0m\u001b[32;1m\u001b[1;3mParece que hubo un error al intentar calcular el valor de la función mágica. ¿Te gustaría que lo intente de nuevo?\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
@@ -740,10 +766,10 @@
"data": {
"text/plain": [
"{'input': 'what is the value of magic_function(3)?',\n",
" 'output': 'Aún no puedo obtener el valor de `magic_function(3)`. ¿Hay algo más en lo que pueda ayudarte?'}"
" 'output': 'Parece que hubo un error al intentar calcular el valor de la función mágica. ¿Te gustaría que lo intente de nuevo?'}"
]
},
"execution_count": 15,
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -769,9 +795,23 @@
"agent_executor.invoke({\"input\": query})"
]
},
{
"cell_type": "markdown",
"id": "dd3a933f",
"metadata": {},
"source": [
"### In LangGraph\n",
"\n",
"In LangGraph this is controlled via `recursion_limit` configuration parameter.\n",
"\n",
"Note that in `AgentExecutor`, an \"iteration\" includes a full turn of tool invocation and execution. In LangGraph, each step contributes to the recursion limit, so we will need to multiply by two (and add one) to get equivalent results.\n",
"\n",
"If the recursion limit is reached, LangGraph raises a specific exception type, that we can catch and manage similarly to AgentExecutor."
]
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 18,
"id": "b974a91f-6ae8-4644-83d9-73666258a6db",
"metadata": {},
"outputs": [
@@ -779,12 +819,12 @@
"name": "stdout",
"output_type": "stream",
"text": [
"('human', 'what is the value of magic_function(3)?')\n",
"content='' additional_kwargs={'tool_calls': [{'id': 'call_pFdKcCu5taDTtOOfX14vEDRp', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 64, 'total_tokens': 78}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-25836468-ba7e-43be-a7cf-76bba06a2a08-0' tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_pFdKcCu5taDTtOOfX14vEDRp'}]\n",
"content='Sorry, there was an error. Please try again.' name='magic_function' id='1a08b883-9c7b-4969-9e9b-67ce64cdcb5f' tool_call_id='call_pFdKcCu5taDTtOOfX14vEDRp'\n",
"content='It seems there was an error when trying to apply the magic function. Let me try again.' additional_kwargs={'tool_calls': [{'id': 'call_DA0lpDIkBFg2GHy4WsEcZG4K', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 34, 'prompt_tokens': 97, 'total_tokens': 131}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-d571b774-0ea3-4e35-8b7d-f32932c3f3cc-0' tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_DA0lpDIkBFg2GHy4WsEcZG4K'}]\n",
"content='Sorry, there was an error. Please try again.' name='magic_function' id='0b45787b-c82a-487f-9a5a-de129c30460f' tool_call_id='call_DA0lpDIkBFg2GHy4WsEcZG4K'\n",
"content='It appears that there is a consistent issue when trying to apply the magic function to the input \"3.\" This could be due to various reasons, such as the input not being in the correct format or an internal error.\\n\\nIf you have any other questions or if there\\'s something else you\\'d like to try, please let me know!' response_metadata={'token_usage': {'completion_tokens': 66, 'prompt_tokens': 153, 'total_tokens': 219}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'stop', 'logprobs': None} id='run-50a962e6-21b7-4327-8dea-8e2304062627-0'\n"
"content='what is the value of magic_function(3)?' id='74e2d5e8-2b59-4820-979c-8d11ecfc14c2'\n",
"content='' additional_kwargs={'tool_calls': [{'id': 'call_ihtrH6IG95pDXpKluIwAgi3J', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-5a35e465-8a08-43dd-ac8b-4a76dcace305-0' tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_ihtrH6IG95pDXpKluIwAgi3J', 'type': 'tool_call'}] usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69}\n",
"content='Sorry, there was an error. Please try again.' name='magic_function' id='8c37c19b-3586-46b1-aab9-a045786801a2' tool_call_id='call_ihtrH6IG95pDXpKluIwAgi3J'\n",
"content='It seems there was an error in processing the request. Let me try again.' additional_kwargs={'tool_calls': [{'id': 'call_iF0vYWAd6rfely0cXSqdMOnF', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 31, 'prompt_tokens': 88, 'total_tokens': 119}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-eb88ec77-d492-43a5-a5dd-4cefef9a6920-0' tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_iF0vYWAd6rfely0cXSqdMOnF', 'type': 'tool_call'}] usage_metadata={'input_tokens': 88, 'output_tokens': 31, 'total_tokens': 119}\n",
"content='Sorry, there was an error. Please try again.' name='magic_function' id='c9ff261f-a0f1-4c92-a9f2-cd749f62d911' tool_call_id='call_iF0vYWAd6rfely0cXSqdMOnF'\n",
"content='I am currently unable to process the request with the input \"3\" for the `magic_function`. If you have any other questions or need assistance with something else, please let me know!' response_metadata={'token_usage': {'completion_tokens': 39, 'prompt_tokens': 141, 'total_tokens': 180}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'stop', 'logprobs': None} id='run-d42508aa-f286-4b57-80fb-f8a76736d470-0' usage_metadata={'input_tokens': 141, 'output_tokens': 39, 'total_tokens': 180}\n"
]
}
],
@@ -814,12 +854,14 @@
"source": [
"## `max_execution_time`\n",
"\n",
"### In LangChain\n",
"\n",
"`AgentExecutor` implements a `max_execution_time` parameter, allowing users to abort a run that exceeds a total time limit."
]
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 19,
"id": "4b8498fc-a7af-4164-a401-d8714f082306",
"metadata": {},
"outputs": [
@@ -846,7 +888,7 @@
" 'output': 'Agent stopped due to max iterations.'}"
]
},
"execution_count": 17,
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
@@ -880,6 +922,8 @@
"id": "d02eb025",
"metadata": {},
"source": [
"### In LangGraph\n",
"\n",
"With LangGraph's react agent, you can control timeouts on two levels. \n",
"\n",
"You can set a `step_timeout` to bound each **step**:"
@@ -887,7 +931,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 20,
"id": "a2b29113-e6be-4f91-aa4c-5c63dea3e423",
"metadata": {},
"outputs": [
@@ -895,7 +939,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_HaQkeCwD5QskzJzFixCBacZ4', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 64, 'total_tokens': 78}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-596c9200-771f-436d-8576-72fcb81620f1-0', tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_HaQkeCwD5QskzJzFixCBacZ4'}])]}}\n",
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_FKiTkTd0Ffd4rkYSzERprf1M', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-b842f7b6-ec10-40f8-8c0e-baa220b77e91-0', tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_FKiTkTd0Ffd4rkYSzERprf1M', 'type': 'tool_call'}], usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69})]}}\n",
"------\n",
"{'input': 'what is the value of magic_function(3)?', 'output': 'Agent stopped due to max iterations.'}\n"
]
@@ -926,7 +970,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 21,
"id": "e9eb55f4-a321-4bac-b52d-9e43b411cf92",
"metadata": {},
"outputs": [
@@ -934,7 +978,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_4agJXUHtmHrOOMogjF6ZuzAv', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 64, 'total_tokens': 78}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-a1c77db7-405f-43d9-8d57-751f2ca1a58c-0', tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_4agJXUHtmHrOOMogjF6ZuzAv'}])]}}\n",
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_WoOB8juagB08xrP38twYlYKR', 'function': {'arguments': '{\"input\":\"3\"}', 'name': 'magic_function'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-73dee47e-30ab-42c9-bb0c-6f227cac96cd-0', tool_calls=[{'name': 'magic_function', 'args': {'input': '3'}, 'id': 'call_WoOB8juagB08xrP38twYlYKR', 'type': 'tool_call'}], usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69})]}}\n",
"------\n",
"Task Cancelled.\n"
]
@@ -968,12 +1012,14 @@
"source": [
"## `early_stopping_method`\n",
"\n",
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could configure an [early_stopping_method](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.early_stopping_method) to either return a string saying \"Agent stopped due to iteration limit or time limit.\" (`\"force\"`) or prompt the LLM a final time to respond (`\"generate\"`)."
]
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 22,
"id": "3f6e2cf2",
"metadata": {},
"outputs": [
@@ -1028,14 +1074,14 @@
"id": "706e05c4",
"metadata": {},
"source": [
"#### In LangGraph\n",
"### In LangGraph\n",
"\n",
"In LangGraph, you can explicitly handle the response behavior outside the agent, since the full state can be accessed."
]
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 23,
"id": "73cabbc4",
"metadata": {},
"outputs": [
@@ -1043,10 +1089,10 @@
"name": "stdout",
"output_type": "stream",
"text": [
"('human', 'what is the value of magic_function(3)?')\n",
"content='' additional_kwargs={'tool_calls': [{'id': 'call_bTURmOn9C8zslmn0kMFeykIn', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 64, 'total_tokens': 78}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-0844a504-7e6b-4ea6-a069-7017e38121ee-0' tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_bTURmOn9C8zslmn0kMFeykIn'}]\n",
"content='Sorry there was an error, please try again.' name='magic_function' id='00d5386f-eb23-4628-9a29-d9ce6a7098cc' tool_call_id='call_bTURmOn9C8zslmn0kMFeykIn'\n",
"content='' additional_kwargs={'tool_calls': [{'id': 'call_JYqvvvWmXow2u012DuPoDHFV', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 96, 'total_tokens': 110}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-b73b1b1c-c829-4348-98cd-60b315c85448-0' tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_JYqvvvWmXow2u012DuPoDHFV'}]\n",
"content='what is the value of magic_function(3)?' id='4fa7fbe5-758c-47a3-9268-717665d10680'\n",
"content='' additional_kwargs={'tool_calls': [{'id': 'call_ujE0IQBbIQnxcF9gsZXQfdhF', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 55, 'total_tokens': 69}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-65d689aa-baee-4342-a5d2-048feefab418-0' tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_ujE0IQBbIQnxcF9gsZXQfdhF', 'type': 'tool_call'}] usage_metadata={'input_tokens': 55, 'output_tokens': 14, 'total_tokens': 69}\n",
"content='Sorry there was an error, please try again.' name='magic_function' id='ef8ddf1d-9ad7-4ac0-b784-b673c4d94bbd' tool_call_id='call_ujE0IQBbIQnxcF9gsZXQfdhF'\n",
"content='It seems there was an issue with the previous attempt. Let me try that again.' additional_kwargs={'tool_calls': [{'id': 'call_GcsAfCFUHJ50BN2IOWnwTbQ7', 'function': {'arguments': '{\"input\":3}', 'name': 'magic_function'}, 'type': 'function'}]} response_metadata={'token_usage': {'completion_tokens': 32, 'prompt_tokens': 87, 'total_tokens': 119}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'tool_calls', 'logprobs': None} id='run-54527c4b-8ff0-4ee8-8abf-224886bd222e-0' tool_calls=[{'name': 'magic_function', 'args': {'input': 3}, 'id': 'call_GcsAfCFUHJ50BN2IOWnwTbQ7', 'type': 'tool_call'}] usage_metadata={'input_tokens': 87, 'output_tokens': 32, 'total_tokens': 119}\n",
"{'input': 'what is the value of magic_function(3)?', 'output': 'Agent stopped due to max iterations.'}\n"
]
}
@@ -1077,6 +1123,8 @@
"source": [
"## `trim_intermediate_steps`\n",
"\n",
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), you could trim the intermediate steps of long-running agents using [trim_intermediate_steps](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.trim_intermediate_steps), which is either an integer (indicating the agent should keep the last N steps) or a custom function.\n",
"\n",
"For instance, we could trim the value so the agent only sees the most recent intermediate step."
@@ -1084,7 +1132,7 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 24,
"id": "b94bb169",
"metadata": {},
"outputs": [
@@ -1180,14 +1228,14 @@
"id": "3d450c5a",
"metadata": {},
"source": [
"#### In LangGraph\n",
"### In LangGraph\n",
"\n",
"We can use the [`messages_modifier`](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) just as before when passing in [prompt templates](#prompt-templates)."
"We can use the [`state_modifier`](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) just as before when passing in [prompt templates](#prompt-templates)."
]
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 25,
"id": "b309ba9a",
"metadata": {},
"outputs": [
@@ -1212,9 +1260,9 @@
}
],
"source": [
"from langchain_core.messages import AnyMessage\n",
"from langgraph.errors import GraphRecursionError\n",
"from langgraph.prebuilt import create_react_agent\n",
"from langgraph.prebuilt.chat_agent_executor import AgentState\n",
"\n",
"magic_step_num = 1\n",
"\n",
@@ -1231,12 +1279,12 @@
"tools = [magic_function]\n",
"\n",
"\n",
"def _modify_messages(messages: list[AnyMessage]):\n",
"def _modify_state_messages(state: AgentState):\n",
" # Give the agent amnesia, only keeping the original user query\n",
" return [(\"system\", \"You are a helpful assistant\"), messages[0]]\n",
" return [(\"system\", \"You are a helpful assistant\"), state[\"messages\"][0]]\n",
"\n",
"\n",
"app = create_react_agent(model, tools, messages_modifier=_modify_messages)\n",
"app = create_react_agent(model, tools, state_modifier=_modify_state_messages)\n",
"\n",
"try:\n",
" for step in app.stream({\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"):\n",
@@ -1274,7 +1322,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.10.4"
}
},
"nbformat": 4,

View File

@@ -1,27 +1,97 @@
# How to use LangChain with different Pydantic versions
- Pydantic v2 was released in June, 2023 (https://docs.pydantic.dev/2.0/blog/pydantic-v2-final/)
- v2 contains has a number of breaking changes (https://docs.pydantic.dev/2.0/migration/)
- Pydantic v2 and v1 are under the same package name, so both versions cannot be installed at the same time
- Pydantic v2 was released in June, 2023 (https://docs.pydantic.dev/2.0/blog/pydantic-v2-final/).
- v2 contains has a number of breaking changes (https://docs.pydantic.dev/2.0/migration/).
- Pydantic 1 End of Life was in June 2024. LangChain will be dropping support for Pydantic 1 in the near future,
and likely migrating internally to Pydantic 2. The timeline is tentatively September. This change will be accompanied by a minor version bump in the main langchain packages to version 0.3.x.
## LangChain Pydantic migration plan
As of `langchain>=0.0.267`, LangChain allows users to install either Pydantic V1 or V2.
As of `langchain>=0.0.267`, LangChain will allow users to install either Pydantic V1 or V2.
* Internally LangChain will continue to [use V1](https://docs.pydantic.dev/latest/migration/#continue-using-pydantic-v1-features).
* During this time, users can pin their pydantic version to v1 to avoid breaking changes, or start a partial
migration using pydantic v2 throughout their code, but avoiding mixing v1 and v2 code for LangChain (see below).
Internally, LangChain continues to use the [Pydantic V1](https://docs.pydantic.dev/latest/migration/#continue-using-pydantic-v1-features) via
the v1 namespace of Pydantic 2.
User can either pin to pydantic v1, and upgrade their code in one go once LangChain has migrated to v2 internally, or they can start a partial migration to v2, but must avoid mixing v1 and v2 code for LangChain.
Because Pydantic does not support mixing .v1 and .v2 objects, users should be aware of a number of issues
when using LangChain with Pydantic.
## 1. Passing Pydantic objects to LangChain APIs
Most LangChain APIs that accept Pydantic objects have been updated to accept both Pydantic v1 and v2 objects.
* Pydantic v1 objects correspond to subclasses of `pydantic.BaseModel` if `pydantic 1` is installed or subclasses of `pydantic.v1.BaseModel` if `pydantic 2` is installed.
* Pydantic v2 objects correspond to subclasses of `pydantic.BaseModel` if `pydantic 2` is installed.
| API | Pydantic 1 | Pydantic 2 |
|----------------------------------------|------------|----------------------------------------------------------------|
| `BaseChatModel.bind_tools` | Yes | langchain-core>=0.2.23, appropriate version of partner package |
| `BaseChatModel.with_structured_output` | Yes | langchain-core>=0.2.23, appropriate version of partner package |
| `Tool.from_function` | Yes | langchain-core>=0.2.23 |
| `StructuredTool.from_function` | Yes | langchain-core>=0.2.23 |
Partner packages that accept pydantic v2 objects via `bind_tools` or `with_structured_output` APIs:
| Package Name | pydantic v1 | pydantic v2 |
|---------------------|-------------|-------------|
| langchain-mistralai | Yes | >=0.1.11 |
| langchain-anthropic | Yes | >=0.1.21 |
| langchain-robocorp | Yes | >=0.0.10 |
| langchain-openai | Yes | >=0.1.19 |
| langchain-fireworks | Yes | >=0.1.5 |
Additional partner packages will be updated to accept Pydantic v2 objects in the future.
If you are still seeing issues with these APIs or other APIs that accept Pydantic objects, please open an issue, and we'll
address it.
Example:
Prior to `langchain-core<0.2.23`, use Pydantic v1 objects when passing to LangChain APIs.
```python
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel # <-- Note v1 namespace
class Person(BaseModel):
"""Personal information"""
name: str
model = ChatOpenAI()
model = model.with_structured_output(Person)
model.invoke('Bob is a person.')
```
After `langchain-core>=0.2.23`, use either Pydantic v1 or v2 objects when passing to LangChain APIs.
```python
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
class Person(BaseModel):
"""Personal information"""
name: str
model = ChatOpenAI()
model = model.with_structured_output(Person)
model.invoke('Bob is a person.')
```
## 2. Sub-classing LangChain models
Because LangChain internally uses Pydantic v1, if you are sub-classing LangChain models, you should use Pydantic v1
primitives.
Below are two examples of showing how to avoid mixing pydantic v1 and v2 code in
the case of inheritance and in the case of passing objects to LangChain.
**Example 1: Extending via inheritance**
**YES**
```python
from pydantic.v1 import root_validator, validator
from pydantic.v1 import validator
from langchain_core.tools import BaseTool
class CustomTool(BaseTool): # BaseTool is v1 code
@@ -70,38 +140,33 @@ CustomTool(
)
```
**Example 2: Passing objects to LangChain**
**YES**
## 3. Disable run-time validation for LangChain objects used inside Pydantic v2 models
e.g.,
```python
from langchain_core.tools import Tool
from pydantic.v1 import BaseModel, Field # <-- Uses v1 namespace
from typing import Annotated
class CalculatorInput(BaseModel):
question: str = Field()
from langchain_openai import ChatOpenAI # <-- ChatOpenAI uses pydantic v1
from pydantic import BaseModel, SkipValidation
Tool.from_function( # <-- tool uses v1 namespace
func=lambda question: 'hello',
name="Calculator",
description="useful for when you need to answer questions about math",
args_schema=CalculatorInput
)
class Foo(BaseModel): # <-- BaseModel is from Pydantic v2
model: Annotated[ChatOpenAI, SkipValidation()]
Foo(model=ChatOpenAI(api_key="hello"))
```
**NO**
## 4: LangServe cannot generate OpenAPI docs if running Pydantic 2
```python
from langchain_core.tools import Tool
from pydantic import BaseModel, Field # <-- Uses v2 namespace
If you are using Pydantic 2, you will not be able to generate OpenAPI docs using LangServe.
class CalculatorInput(BaseModel):
question: str = Field()
If you need OpenAPI docs, your options are to either install Pydantic 1:
Tool.from_function( # <-- tool uses v1 namespace
func=lambda question: 'hello',
name="Calculator",
description="useful for when you need to answer questions about math",
args_schema=CalculatorInput
)
```
`pip install pydantic==1.10.17`
or else to use the `APIHandler` object in LangChain to manually create the
routes for your API.
See: https://python.langchain.com/v0.2/docs/langserve/#pydantic

View File

@@ -0,0 +1,78 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "6fcd2994-0092-4fa3-9bb1-c9c84babadc5",
"metadata": {},
"source": [
"# How to pass runtime secrets to runnables\n",
"\n",
":::info Requires `langchain-core >= 0.2.22`\n",
"\n",
":::\n",
"\n",
"We can pass in secrets to our runnables at runtime using the `RunnableConfig`. Specifically we can pass in secrets with a `__` prefix to the `configurable` field. This will ensure that these secrets aren't traced as part of the invocation:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "92e42e91-c277-49de-aa7a-dfb5c993c817",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.runnables import RunnableConfig\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def foo(x: int, config: RunnableConfig) -> int:\n",
" \"\"\"Sum x and a secret int\"\"\"\n",
" return x + config[\"configurable\"][\"__top_secret_int\"]\n",
"\n",
"\n",
"foo.invoke({\"x\": 5}, {\"configurable\": {\"__top_secret_int\": 2, \"traced_key\": \"bar\"}})"
]
},
{
"cell_type": "markdown",
"id": "ae3a4fb9-2ce7-46b2-b654-35dff0ae7197",
"metadata": {},
"source": [
"Looking at the LangSmith trace for this run, we can see that \"traced_key\" was recorded (as part of Metadata) while our secret int was not: https://smith.langchain.com/public/aa7e3289-49ca-422d-a408-f6b927210170/r"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-311",
"language": "python",
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -452,7 +452,7 @@
"source": [
"#### Generator Functions\n",
"\n",
"Le'ts fix the streaming using a generator function that can operate on the **input stream**.\n",
"Let's fix the streaming using a generator function that can operate on the **input stream**.\n",
"\n",
":::{.callout-tip}\n",
"A generator function (a function that uses `yield`) allows writing code that operates on **input streams**\n",

View File

@@ -43,7 +43,7 @@
"\n",
"This is the easiest and most reliable way to get structured outputs. `with_structured_output()` is implemented for models that provide native APIs for structuring outputs, like tool/function calling or JSON mode, and makes use of these capabilities under the hood.\n",
"\n",
"This method takes a schema as input which specifies the names, types, and descriptions of the desired output attributes. The method returns a model-like Runnable, except that instead of outputting strings or Messages it outputs objects corresponding to the given schema. The schema can be specified as a [JSON Schema](https://json-schema.org/) or a Pydantic class. If JSON Schema is used then a dictionary will be returned by the Runnable, and if a Pydantic class is used then Pydantic objects will be returned.\n",
"This method takes a schema as input which specifies the names, types, and descriptions of the desired output attributes. The method returns a model-like Runnable, except that instead of outputting strings or Messages it outputs objects corresponding to the given schema. The schema can be specified as a TypedDict class, [JSON Schema](https://json-schema.org/) or a Pydantic class. If TypedDict or JSON Schema are used then a dictionary will be returned by the Runnable, and if a Pydantic class is used then a Pydantic object will be returned.\n",
"\n",
"As an example, let's get a model to generate a joke and separate the setup from the punchline:\n",
"\n",
@@ -58,7 +58,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 3,
"id": "6d55008f",
"metadata": {},
"outputs": [],
@@ -68,7 +68,7 @@
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-4-0125-preview\", temperature=0)"
"llm = ChatOpenAI(model=\"gpt-4o\", temperature=0)"
]
},
{
@@ -76,22 +76,24 @@
"id": "a808a401-be1f-49f9-ad13-58dd68f7db5f",
"metadata": {},
"source": [
"If we want the model to return a Pydantic object, we just need to pass in the desired Pydantic class:"
"### Pydantic class\n",
"\n",
"If we want the model to return a Pydantic object, we just need to pass in the desired Pydantic class. The key advantage of using Pydantic is that the model-generated output will be validated. Pydantic will raise an error if any required fields are missing or if any fields are of the wrong type."
]
},
{
"cell_type": "code",
"execution_count": 38,
"execution_count": 4,
"id": "070bf702",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)"
"Joke(setup='Why was the cat sitting on the computer?', punchline='Because it wanted to keep an eye on the mouse!', rating=7)"
]
},
"execution_count": 38,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -102,12 +104,15 @@
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"# Pydantic\n",
"class Joke(BaseModel):\n",
" \"\"\"Joke to tell user.\"\"\"\n",
"\n",
" setup: str = Field(description=\"The setup of the joke\")\n",
" punchline: str = Field(description=\"The punchline to the joke\")\n",
" rating: Optional[int] = Field(description=\"How funny the joke is, from 1 to 10\")\n",
" rating: Optional[int] = Field(\n",
" default=None, description=\"How funny the joke is, from 1 to 10\"\n",
" )\n",
"\n",
"\n",
"structured_llm = llm.with_structured_output(Joke)\n",
@@ -130,12 +135,73 @@
"id": "deddb6d3",
"metadata": {},
"source": [
"We can also pass in a [JSON Schema](https://json-schema.org/) dict if you prefer not to use Pydantic. In this case, the response is also a dict:"
"### TypedDict or JSON Schema\n",
"\n",
"If you don't want to use Pydantic, explicitly don't want validation of the arguments, or want to be able to stream the model outputs, you can define your schema using a TypedDict class. We can optionally use a special `Annotated` syntax supported by LangChain that allows you to specify the default value and description of a field. Note, the default value is *not* filled in automatically if the model doesn't generate it, it is only used in defining the schema that is passed to the model.\n",
"\n",
":::info Requirements\n",
"\n",
"- Core: `langchain-core>=0.2.26`\n",
"- Typing extensions: It is highly recommended to import `Annotated` and `TypedDict` from `typing_extensions` instead of `typing` to ensure consistent behavior across Python versions.\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "70d82891-42e8-424a-919e-07d83bcfec61",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'setup': 'Why was the cat sitting on the computer?',\n",
" 'punchline': 'Because it wanted to keep an eye on the mouse!',\n",
" 'rating': 7}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing_extensions import Annotated, TypedDict\n",
"\n",
"\n",
"# TypedDict\n",
"class Joke(TypedDict):\n",
" \"\"\"Joke to tell user.\"\"\"\n",
"\n",
" setup: Annotated[str, ..., \"The setup of the joke\"]\n",
"\n",
" # Alternatively, we could have specified setup as:\n",
"\n",
" # setup: str # no default, no description\n",
" # setup: Annotated[str, ...] # no default, no description\n",
" # setup: Annotated[str, \"foo\"] # default, no description\n",
"\n",
" punchline: Annotated[str, ..., \"The punchline of the joke\"]\n",
" rating: Annotated[Optional[int], None, \"How funny the joke is, from 1 to 10\"]\n",
"\n",
"\n",
"structured_llm = llm.with_structured_output(Joke)\n",
"\n",
"structured_llm.invoke(\"Tell me a joke about cats\")"
]
},
{
"cell_type": "markdown",
"id": "e4d7b4dc-f617-4ea8-aa58-847c228791b4",
"metadata": {},
"source": [
"Equivalently, we can pass in a [JSON Schema](https://json-schema.org/) dict. This requires no imports or classes and makes it very clear exactly how each parameter is documented, at the cost of being a bit more verbose."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6700994a",
"metadata": {},
"outputs": [
@@ -144,10 +210,10 @@
"text/plain": [
"{'setup': 'Why was the cat sitting on the computer?',\n",
" 'punchline': 'Because it wanted to keep an eye on the mouse!',\n",
" 'rating': 8}"
" 'rating': 7}"
]
},
"execution_count": 8,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -169,6 +235,7 @@
" \"rating\": {\n",
" \"type\": \"integer\",\n",
" \"description\": \"How funny the joke is, from 1 to 10\",\n",
" \"default\": None,\n",
" },\n",
" },\n",
" \"required\": [\"setup\", \"punchline\"],\n",
@@ -185,7 +252,7 @@
"source": [
"### Choosing between multiple schemas\n",
"\n",
"The simplest way to let the model choose from multiple schemas is to create a parent Pydantic class that has a Union-typed attribute:"
"The simplest way to let the model choose from multiple schemas is to create a parent schema that has a Union-typed attribute:"
]
},
{
@@ -209,6 +276,17 @@
"from typing import Union\n",
"\n",
"\n",
"# Pydantic\n",
"class Joke(BaseModel):\n",
" \"\"\"Joke to tell user.\"\"\"\n",
"\n",
" setup: str = Field(description=\"The setup of the joke\")\n",
" punchline: str = Field(description=\"The punchline to the joke\")\n",
" rating: Optional[int] = Field(\n",
" default=None, description=\"How funny the joke is, from 1 to 10\"\n",
" )\n",
"\n",
"\n",
"class ConversationalResponse(BaseModel):\n",
" \"\"\"Respond in a conversational manner. Be kind and helpful.\"\"\"\n",
"\n",
@@ -260,7 +338,7 @@
"source": [
"### Streaming\n",
"\n",
"We can stream outputs from our structured model when the output type is a dict (i.e., when the schema is specified as a JSON Schema dict). \n",
"We can stream outputs from our structured model when the output type is a dict (i.e., when the schema is specified as a TypedDict class or JSON Schema dict). \n",
"\n",
":::info\n",
"\n",
@@ -271,7 +349,7 @@
},
{
"cell_type": "code",
"execution_count": 43,
"execution_count": 9,
"id": "aff89877-28a3-472f-a1aa-eff893fe7736",
"metadata": {},
"outputs": [
@@ -302,12 +380,24 @@
"{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the'}\n",
"{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse'}\n",
"{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!'}\n",
"{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!', 'rating': 8}\n"
"{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!', 'rating': 7}\n"
]
}
],
"source": [
"structured_llm = llm.with_structured_output(json_schema)\n",
"from typing_extensions import Annotated, TypedDict\n",
"\n",
"\n",
"# TypedDict\n",
"class Joke(TypedDict):\n",
" \"\"\"Joke to tell user.\"\"\"\n",
"\n",
" setup: Annotated[str, ..., \"The setup of the joke\"]\n",
" punchline: Annotated[str, ..., \"The punchline of the joke\"]\n",
" rating: Annotated[Optional[int], None, \"How funny the joke is, from 1 to 10\"]\n",
"\n",
"\n",
"structured_llm = llm.with_structured_output(Joke)\n",
"\n",
"for chunk in structured_llm.stream(\"Tell me a joke about cats\"):\n",
" print(chunk)"
@@ -327,7 +417,7 @@
},
{
"cell_type": "code",
"execution_count": 47,
"execution_count": 11,
"id": "283ba784-2072-47ee-9b2c-1119e3c69e8e",
"metadata": {},
"outputs": [
@@ -335,11 +425,11 @@
"data": {
"text/plain": [
"{'setup': 'Woodpecker',\n",
" 'punchline': \"Woodpecker goes 'knock knock', but don't worry, they never expect you to answer the door!\",\n",
" 'rating': 8}"
" 'punchline': \"Woodpecker who? Woodpecker who can't find a tree is just a bird with a headache!\",\n",
" 'rating': 7}"
]
},
"execution_count": 47,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -377,7 +467,7 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": 12,
"id": "d7381cb0-b2c3-4302-a319-ed72d0b9e43f",
"metadata": {},
"outputs": [
@@ -385,11 +475,11 @@
"data": {
"text/plain": [
"{'setup': 'Crocodile',\n",
" 'punchline': \"Crocodile 'see you later', but in a while, it becomes an alligator!\",\n",
" 'punchline': 'Crocodile be seeing you later, alligator!',\n",
" 'rating': 7}"
]
},
"execution_count": 46,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -491,35 +581,73 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 15,
"id": "df0370e3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Joke(setup='Why was the cat sitting on the computer?', punchline='Because it wanted to keep an eye on the mouse!', rating=None)"
"{'setup': 'Why was the cat sitting on the computer?',\n",
" 'punchline': 'Because it wanted to keep an eye on the mouse!'}"
]
},
"execution_count": 6,
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"structured_llm = llm.with_structured_output(Joke, method=\"json_mode\")\n",
"structured_llm = llm.with_structured_output(None, method=\"json_mode\")\n",
"\n",
"structured_llm.invoke(\n",
" \"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "91e95aa2",
"metadata": {},
"source": [
"### (Advanced) Raw outputs\n",
"\n",
"LLMs aren't perfect at generating structured output, especially as schemas become complex. You can avoid raising exceptions and handle the raw output yourself by passing `include_raw=True`. This changes the output format to contain the raw message output, the `parsed` value (if successful), and any resulting errors:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "10ed2842",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_f25ZRmh8u5vHlOWfTUw8sJFZ', 'function': {'arguments': '{\"setup\":\"Why was the cat sitting on the computer?\",\"punchline\":\"Because it wanted to keep an eye on the mouse!\",\"rating\":7}', 'name': 'Joke'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 33, 'prompt_tokens': 93, 'total_tokens': 126}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'stop', 'logprobs': None}, id='run-d880d7e2-df08-4e9e-ad92-dfc29f2fd52f-0', tool_calls=[{'name': 'Joke', 'args': {'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!', 'rating': 7}, 'id': 'call_f25ZRmh8u5vHlOWfTUw8sJFZ', 'type': 'tool_call'}], usage_metadata={'input_tokens': 93, 'output_tokens': 33, 'total_tokens': 126}),\n",
" 'parsed': {'setup': 'Why was the cat sitting on the computer?',\n",
" 'punchline': 'Because it wanted to keep an eye on the mouse!',\n",
" 'rating': 7},\n",
" 'parsing_error': None}"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"structured_llm = llm.with_structured_output(Joke, include_raw=True)\n",
"\n",
"structured_llm.invoke(\"Tell me a joke about cats\")"
]
},
{
"cell_type": "markdown",
"id": "5e92a98a",
"metadata": {},
"source": [
"## Prompting and parsing model directly\n",
"## Prompting and parsing model outputs directly\n",
"\n",
"Not all models support `.with_structured_output()`, since not all models have tool calling or JSON mode support. For such models you'll need to directly prompt the model to use a specific format, and use an output parser to extract the structured response from the raw model output.\n",
"\n",
@@ -787,9 +915,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-2",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "poetry-venv-2"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -801,7 +929,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,396 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "503e36ae-ca62-4f8a-880c-4fe78ff5df93",
"metadata": {},
"source": [
"# How to return artifacts from a tool\n",
"\n",
":::info Prerequisites\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [ToolMessage](/docs/concepts/#toolmessage)\n",
"- [Tools](/docs/concepts/#tools)\n",
"- [Function/tool calling](/docs/concepts/#functiontool-calling)\n",
"\n",
":::\n",
"\n",
"Tools are utilities that can be called by a model, and whose outputs are designed to be fed back to a model. Sometimes, however, there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns a custom object, a dataframe or an image, we may want to pass some metadata about this output to the model without passing the actual output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
"\n",
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
"\n",
":::info Requires ``langchain-core >= 0.2.19``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
"\n",
":::\n",
"\n",
"## Defining the tool\n",
"\n",
"If we want our tool to distinguish between message content and other artifacts, we need to specify `response_format=\"content_and_artifact\"` when defining our tool and make sure that we return a tuple of (content, artifact):"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "762b9199-885f-4946-9c98-cc54d72b0d76",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU \"langchain-core>=0.2.19\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b9eb179d-1f41-4748-9866-b3d3e8c73cd0",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"from typing import List, Tuple\n",
"\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool(response_format=\"content_and_artifact\")\n",
"def generate_random_ints(min: int, max: int, size: int) -> Tuple[str, List[int]]:\n",
" \"\"\"Generate size random ints in the range [min, max].\"\"\"\n",
" array = [random.randint(min, max) for _ in range(size)]\n",
" content = f\"Successfully generated array of {size} random ints in [{min}, {max}].\"\n",
" return content, array"
]
},
{
"cell_type": "markdown",
"id": "0ab05d25-af4a-4e5a-afe2-f090416d7ee7",
"metadata": {},
"source": [
"## Invoking the tool with ToolCall\n",
"\n",
"If we directly invoke our tool with just the tool arguments, you'll notice that we only get back the content part of the Tool output:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5e7d5e77-3102-4a59-8ade-e4e699dd1817",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Successfully generated array of 10 random ints in [0, 9].'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Failed to batch ingest runs: LangSmithRateLimitError('Rate limit exceeded for https://api.smith.langchain.com/runs/batch. HTTPError(\\'429 Client Error: Too Many Requests for url: https://api.smith.langchain.com/runs/batch\\', \\'{\"detail\":\"Monthly unique traces usage limit exceeded\"}\\')')\n"
]
}
],
"source": [
"generate_random_ints.invoke({\"min\": 0, \"max\": 9, \"size\": 10})"
]
},
{
"cell_type": "markdown",
"id": "30db7228-f04c-489e-afda-9a572eaa90a1",
"metadata": {},
"source": [
"In order to get back both the content and the artifact, we need to invoke our model with a ToolCall (which is just a dictionary with \"name\", \"args\", \"id\" and \"type\" keys), which has additional info needed to generate a ToolMessage like the tool call ID:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "da1d939d-a900-4b01-92aa-d19011a6b034",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[2, 8, 0, 6, 0, 0, 1, 5, 0, 0])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke(\n",
" {\n",
" \"name\": \"generate_random_ints\",\n",
" \"args\": {\"min\": 0, \"max\": 9, \"size\": 10},\n",
" \"id\": \"123\", # required\n",
" \"type\": \"tool_call\", # required\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a3cfc03d-020b-42c7-b0f8-c824af19e45e",
"metadata": {},
"source": [
"## Using with a model\n",
"\n",
"With a [tool-calling model](/docs/how_to/tool_calling/), we can easily use a model to call our Tool and generate ToolMessages:\n",
"\n",
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
"/>\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "74de0286-b003-4b48-9cdd-ecab435515ca",
"metadata": {},
"outputs": [],
"source": [
"# | echo: false\n",
"# | output: false\n",
"\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8a67424b-d19c-43df-ac7b-690bca42146c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'generate_random_ints',\n",
" 'args': {'min': 1, 'max': 24, 'size': 6},\n",
" 'id': 'toolu_01EtALY3Wz1DVYhv1TLvZGvE',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tools = llm.bind_tools([generate_random_ints])\n",
"\n",
"ai_msg = llm_with_tools.invoke(\"generate 6 positive ints less than 25\")\n",
"ai_msg.tool_calls"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "00c4e906-3ca8-41e8-a0be-65cb0db7d574",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Successfully generated array of 6 random ints in [1, 24].', name='generate_random_ints', tool_call_id='toolu_01EtALY3Wz1DVYhv1TLvZGvE', artifact=[2, 20, 23, 8, 1, 15])"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke(ai_msg.tool_calls[0])"
]
},
{
"cell_type": "markdown",
"id": "ddef2690-70de-4542-ab20-2337f77f3e46",
"metadata": {},
"source": [
"If we just pass in the tool call args, we'll only get back the content:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f4a6c9a6-0ffc-4b0e-a59f-f3c3d69d824d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Successfully generated array of 6 random ints in [1, 24].'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke(ai_msg.tool_calls[0][\"args\"])"
]
},
{
"cell_type": "markdown",
"id": "98d6443b-ff41-4d91-8523-b6274fc74ee5",
"metadata": {},
"source": [
"If we wanted to declaratively create a chain, we could do this:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "eb55ec23-95a4-464e-b886-d9679bf3aaa2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ToolMessage(content='Successfully generated array of 1 random ints in [1, 5].', name='generate_random_ints', tool_call_id='toolu_01FwYhnkwDPJPbKdGq4ng6uD', artifact=[5])]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from operator import attrgetter\n",
"\n",
"chain = llm_with_tools | attrgetter(\"tool_calls\") | generate_random_ints.map()\n",
"\n",
"chain.invoke(\"give me a random number between 1 and 5\")"
]
},
{
"cell_type": "markdown",
"id": "4df46be2-babb-4bfe-a641-91cd3d03ffaf",
"metadata": {},
"source": [
"## Creating from BaseTool class\n",
"\n",
"If you want to create a BaseTool object directly, instead of decorating a function with `@tool`, you can do so like this:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9a9129e1-6aee-4a10-ad57-62ef3bf0276c",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import BaseTool\n",
"\n",
"\n",
"class GenerateRandomFloats(BaseTool):\n",
" name: str = \"generate_random_floats\"\n",
" description: str = \"Generate size random floats in the range [min, max].\"\n",
" response_format: str = \"content_and_artifact\"\n",
"\n",
" ndigits: int = 2\n",
"\n",
" def _run(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" range_ = max - min\n",
" array = [\n",
" round(min + (range_ * random.random()), ndigits=self.ndigits)\n",
" for _ in range(size)\n",
" ]\n",
" content = f\"Generated {size} floats in [{min}, {max}], rounded to {self.ndigits} decimals.\"\n",
" return content, array\n",
"\n",
" # Optionally define an equivalent async method\n",
"\n",
" # async def _arun(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" # ..."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d7322619-f420-4b29-8ee5-023e693d0179",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rand_gen = GenerateRandomFloats(ndigits=4)\n",
"rand_gen.invoke({\"min\": 0.1, \"max\": 3.3333, \"size\": 3})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0892f277-23a6-4bb8-a0e9-59f533ac9750",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.5789, 2.464, 2.2719])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rand_gen.invoke(\n",
" {\n",
" \"name\": \"generate_random_floats\",\n",
" \"args\": {\"min\": 0.1, \"max\": 3.3333, \"size\": 3},\n",
" \"id\": \"123\",\n",
" \"type\": \"tool_call\",\n",
" }\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-311",
"language": "python",
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -17,77 +17,48 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to use a model to call tools\n",
"# How to use chat models to call tools\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [Chat models](/docs/concepts/#chat-models)\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [Tool calling](/docs/concepts/#functiontool-calling)\n",
"- [Tools](/docs/concepts/#tools)\n",
"- [Output parsers](/docs/concepts/#output-parsers)\n",
":::\n",
"\n",
"[Tool calling](/docs/concepts/#functiontool-calling) allows a chat model to respond to a given prompt by \"calling a tool\".\n",
"\n",
"Remember, while the name \"tool calling\" implies that the model is directly performing some action, this is actually not the case! The model only generates the arguments to a tool, and actually running the tool (or not) is up to the user.\n",
"\n",
"Tool calling is a general technique that generates structured output from a model, and you can use it even when you don't intend to invoke any tools. An example use-case of that is [extraction from unstructured text](/docs/tutorials/extraction/).\n",
"\n",
"![Diagram of calling a tool](/img/tool_call.png)\n",
"\n",
"If you want to see how to use the model-generated tool call to actually run a tool [check out this guide](/docs/how_to/tool_results_pass_to_model/).\n",
"\n",
":::note Supported models\n",
"\n",
"Tool calling is not universal, but is supported by many popular LLM providers. You can find a [list of all models that support tool calling here](/docs/integrations/chat/).\n",
"\n",
":::\n",
"\n",
":::info Tool calling vs function calling\n",
"\n",
"We use the term tool calling interchangeably with function calling. Although\n",
"function calling is sometimes meant to refer to invocations of a single function,\n",
"we treat all models as though they can return multiple tool or function calls in \n",
"each message.\n",
"\n",
":::\n",
"\n",
":::info Supported models\n",
"\n",
"You can find a [list of all models that support tool calling](/docs/integrations/chat/).\n",
"\n",
":::\n",
"\n",
"Tool calling allows a chat model to respond to a given prompt by \"calling a tool\".\n",
"While the name implies that the model is performing \n",
"some action, this is actually not the case! The model generates the \n",
"arguments to a tool, and actually running the tool (or not) is up to the user.\n",
"For example, if you want to [extract output matching some schema](/docs/how_to/structured_output/) \n",
"from unstructured text, you could give the model an \"extraction\" tool that takes \n",
"parameters matching the desired schema, then treat the generated output as your final \n",
"result.\n",
"\n",
":::note\n",
"\n",
"If you only need formatted values, try the [.with_structured_output()](/docs/how_to/structured_output/#the-with_structured_output-method) chat model method as a simpler entrypoint.\n",
"\n",
":::\n",
"\n",
"However, tool calling goes beyond [structured output](/docs/how_to/structured_output/)\n",
"since you can pass responses from called tools back to the model to create longer interactions.\n",
"For instance, given a search engine tool, an LLM might handle a \n",
"query by first issuing a call to the search engine with arguments. The system calling the LLM can \n",
"receive the tool call, execute it, and return the output to the LLM to inform its \n",
"response. LangChain includes a suite of [built-in tools](/docs/integrations/tools/) \n",
"and supports several methods for defining your own [custom tools](/docs/how_to/custom_tools). \n",
"\n",
"Tool calling is not universal, but many popular LLM providers, including [Anthropic](https://www.anthropic.com/), \n",
"[Cohere](https://cohere.com/), [Google](https://cloud.google.com/vertex-ai), \n",
"[Mistral](https://mistral.ai/), [OpenAI](https://openai.com/), and others, \n",
"support variants of a tool calling feature.\n",
"\n",
"LangChain implements standard interfaces for defining tools, passing them to LLMs, \n",
"and representing tool calls. This guide and the other How-to pages in the Tool section will show you how to use tools with LangChain."
"LangChain implements standard interfaces for defining tools, passing them to LLMs, and representing tool calls.\n",
"This guide will cover how to bind tools to an LLM, then invoke the LLM to generate these arguments."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Passing tools to chat models\n",
"## Defining tool schemas\n",
"\n",
"Chat models that support tool calling features implement a `.bind_tools` method, which \n",
"receives a list of LangChain [tool objects](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n",
"and binds them to the chat model in its expected format. Subsequent invocations of the \n",
"chat model will include tool schemas in its calls to the LLM.\n",
"For a model to be able to call tools, we need to pass in tool schemas that describe what the tool does and what it's arguments are. Chat models that support tool calling features implement a `.bind_tools()` method for passing tool schemas to the model. Tool schemas can be passed in as Python functions (with typehints and docstrings), Pydantic models, TypedDict classes, or LangChain [Tool objects](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool). Subsequent invocations of the model will pass in these tool schemas along with the prompt.\n",
"\n",
"For example, we can define the schema for custom tools using the `@tool` decorator \n",
"on Python functions:"
"### Python functions\n",
"Our tool schemas can be Python functions:"
]
},
{
@@ -96,29 +67,41 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"# The function name, type hints, and docstring are all part of the tool\n",
"# schema that's passed to the model. Defining good, descriptive schemas\n",
"# is an extension of prompt engineering and is an important part of\n",
"# getting models to perform well.\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Adds a and b.\"\"\"\n",
" \"\"\"Add two integers.\n",
"\n",
" Args:\n",
" a: First integer\n",
" b: Second integer\n",
" \"\"\"\n",
" return a + b\n",
"\n",
"\n",
"@tool\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiplies a and b.\"\"\"\n",
" return a * b\n",
" \"\"\"Multiply two integers.\n",
"\n",
"\n",
"tools = [add, multiply]"
" Args:\n",
" a: First integer\n",
" b: Second integer\n",
" \"\"\"\n",
" return a * b"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or below, we define the schema using [Pydantic](https://docs.pydantic.dev):"
"### LangChain Tool\n",
"\n",
"LangChain also implements a `@tool` decorator that allows for further control of the tool schema, such as tool names and argument descriptions. See the how-to guide [here](/docs/how_to/custom_tools/#creating-tools-from-functions) for details.\n",
"\n",
"### Pydantic class\n",
"\n",
"You can equivalently define the schemas without the accompanying functions using [Pydantic](https://docs.pydantic.dev):"
]
},
{
@@ -130,30 +113,65 @@
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"# Note that the docstrings here are crucial, as they will be passed along\n",
"# to the model along with the class name.\n",
"class Add(BaseModel):\n",
" \"\"\"Add two integers together.\"\"\"\n",
"class add(BaseModel):\n",
" \"\"\"Add two integers.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"First integer\")\n",
" b: int = Field(..., description=\"Second integer\")\n",
"\n",
"\n",
"class Multiply(BaseModel):\n",
" \"\"\"Multiply two integers together.\"\"\"\n",
"class multiply(BaseModel):\n",
" \"\"\"Multiply two integers.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"First integer\")\n",
" b: int = Field(..., description=\"Second integer\")\n",
"\n",
"\n",
"tools = [Add, Multiply]"
" b: int = Field(..., description=\"Second integer\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can bind them to chat models as follows:\n",
"### TypedDict class\n",
"\n",
":::info Requires `langchain-core>=0.2.25`\n",
":::\n",
"\n",
"Or using TypedDicts and annotations:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from typing_extensions import Annotated, TypedDict\n",
"\n",
"\n",
"class add(TypedDict):\n",
" \"\"\"Add two integers.\"\"\"\n",
"\n",
" # Annotations must have the type and can optionally include a default value and description (in that order).\n",
" a: Annotated[int, ..., \"First integer\"]\n",
" b: Annotated[int, ..., \"Second integer\"]\n",
"\n",
"\n",
"class multiply(BaseModel):\n",
" \"\"\"Multiply two integers.\"\"\"\n",
"\n",
" a: Annotated[int, ..., \"First integer\"]\n",
" b: Annotated[int, ..., \"Second integer\"]\n",
"\n",
"\n",
"tools = [add, multiply]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To actually bind those schemas to a chat model, we'll use the `.bind_tools()` method. This handles converting\n",
"the `add` and `multiply` schemas to the proper format for the model. The tool schema will then be passed it in each time the model is invoked.\n",
"\n",
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
@@ -162,11 +180,7 @@
" customVarName=\"llm\"\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n",
"```\n",
"\n",
"We'll use the `.bind_tools()` method to handle converting\n",
"`Multiply` to the proper format for the model, then and bind it (i.e.,\n",
"passing it in each time the model is invoked)."
"```"
]
},
{
@@ -187,21 +201,21 @@
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
"llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_g4RuAijtDcSeM96jXyCuiLSN', 'function': {'arguments': '{\"a\":3,\"b\":12}', 'name': 'Multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 95, 'total_tokens': 113}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-5157d15a-7e0e-4ab1-af48-3d98010cd152-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_g4RuAijtDcSeM96jXyCuiLSN'}], usage_metadata={'input_tokens': 95, 'output_tokens': 18, 'total_tokens': 113})"
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_BwYJ4UgU5pRVCBOUmiu7NhF9', 'function': {'arguments': '{\"a\":3,\"b\":12}', 'name': 'multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 80, 'total_tokens': 97}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_ba606877f9', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-7f05e19e-4561-40e2-a2d0-8f4e28e9a00f-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_BwYJ4UgU5pRVCBOUmiu7NhF9', 'type': 'tool_call'}], usage_metadata={'input_tokens': 80, 'output_tokens': 17, 'total_tokens': 97})"
]
},
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -218,7 +232,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"As we can see, even though the prompt didn't really suggest a tool call, our LLM made one since it was forced to do so. You can look at the docs for [bind_tools()](https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.BaseChatOpenAI.html#langchain_openai.chat_models.base.BaseChatOpenAI.bind_tools) to learn about all the ways to customize how your LLM selects tools."
"As we can see our LLM generated arguments to a tool! You can look at the docs for [bind_tools()](https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.BaseChatOpenAI.html#langchain_openai.chat_models.base.BaseChatOpenAI.bind_tools) to learn about all the ways to customize how your LLM selects tools, as well as [this guide on how to force the LLM to call a tool](/docs/how_to/tool_choice/) rather than letting it decide."
]
},
{
@@ -242,21 +256,23 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'Multiply',\n",
"[{'name': 'multiply',\n",
" 'args': {'a': 3, 'b': 12},\n",
" 'id': 'call_TnadLbWJu9HwDULRb51RNSMw'},\n",
" {'name': 'Add',\n",
" 'id': 'call_rcdMie7E89Xx06lEKKxJyB5N',\n",
" 'type': 'tool_call'},\n",
" {'name': 'add',\n",
" 'args': {'a': 11, 'b': 49},\n",
" 'id': 'call_Q9vt1up05sOQScXvUYWzSpCg'}]"
" 'id': 'call_nheGN8yfvSJsnIuGZaXihou3',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 5,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -278,31 +294,49 @@
"are populated in the `.invalid_tool_calls` attribute. An `InvalidToolCall` can have \n",
"a name, string arguments, identifier, and error message.\n",
"\n",
"If desired, [output parsers](/docs/how_to#output-parsers) can further \n",
"process the output. For example, we can convert existing values populated on the `.tool_calls` attribute back to the original Pydantic class using the\n",
"\n",
"## Parsing\n",
"\n",
"If desired, [output parsers](/docs/how_to#output-parsers) can further process the output. For example, we can convert existing values populated on the `.tool_calls` to Pydantic objects using the\n",
"[PydanticToolsParser](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.openai_tools.PydanticToolsParser.html):"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Multiply(a=3, b=12), Add(a=11, b=49)]"
"[multiply(a=3, b=12), add(a=11, b=49)]"
]
},
"execution_count": 6,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.output_parsers import PydanticToolsParser\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"chain = llm_with_tools | PydanticToolsParser(tools=[Multiply, Add])\n",
"\n",
"class add(BaseModel):\n",
" \"\"\"Add two integers.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"First integer\")\n",
" b: int = Field(..., description=\"Second integer\")\n",
"\n",
"\n",
"class multiply(BaseModel):\n",
" \"\"\"Multiply two integers.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"First integer\")\n",
" b: int = Field(..., description=\"Second integer\")\n",
"\n",
"\n",
"chain = llm_with_tools | PydanticToolsParser(tools=[add, multiply])\n",
"chain.invoke(query)"
]
},
@@ -312,26 +346,26 @@
"source": [
"## Next steps\n",
"\n",
"Now you've learned how to bind tool schemas to a chat model and to call those tools. Next, you can learn more about how to use tools:\n",
"Now you've learned how to bind tool schemas to a chat model and have the model call the tool.\n",
"\n",
"Next, check out this guide on actually using the tool by invoking the function and passing the results back to the model:\n",
"\n",
"- Few shot promting [with tools](/docs/how_to/tools_few_shot/)\n",
"- Stream [tool calls](/docs/how_to/tool_streaming/)\n",
"- Bind [model-specific tools](/docs/how_to/tools_model_specific/)\n",
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)\n",
"- Pass [tool results back to model](/docs/how_to/tool_results_pass_to_model)\n",
"\n",
"You can also check out some more specific uses of tool calling:\n",
"\n",
"- Building [tool-using chains and agents](/docs/how_to#tools)\n",
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
"- Getting [structured outputs](/docs/how_to/structured_output/) from models\n",
"- Few shot prompting [with tools](/docs/how_to/tools_few_shot/)\n",
"- Stream [tool calls](/docs/how_to/tool_streaming/)\n",
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv-311",
"language": "python",
"name": "python3"
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
@@ -343,7 +377,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -4,7 +4,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Disabling parallel tool calling (OpenAI only)\n",
"# How to disable parallel tool calling\n",
"\n",
":::info OpenAI-specific\n",
"\n",
"This API is currently only supported by OpenAI.\n",
"\n",
":::\n",
"\n",
"OpenAI tool calling performs tool calling in parallel by default. That means that if we ask a question like \"What is the weather in Tokyo, New York, and Chicago?\" and we have a tool for getting the weather, it will call the tool 3 times in parallel. We can force it to call only a single tool once by using the ``parallel_tool_call`` parameter."
]
@@ -99,10 +105,24 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -4,7 +4,15 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to force tool calling behavior\n",
"# How to force models to call a tool\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"- [Chat models](/docs/concepts/#chat-models)\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [How to use a model to call tools](/docs/how_to/tool_calling)\n",
":::\n",
"\n",
"In order to force our LLM to spelect a specific tool, we can use the `tool_choice` parameter to ensure certain behavior. First, let's define our model and tools:"
]
@@ -117,10 +125,24 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -0,0 +1,132 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to access the RunnableConfig from a tool\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [Custom tools](/docs/how_to/custom_tools)\n",
"- [LangChain Expression Language (LCEL)](/docs/concepts/#langchain-expression-language-lcel)\n",
"- [Configuring runnable behavior](/docs/how_to/configure/)\n",
"\n",
":::\n",
"\n",
"If you have a tool that call chat models, retrievers, or other runnables, you may want to access internal events from those runnables or configure them with additional properties. This guide shows you how to manually pass parameters properly so that you can do this using the `astream_events()` method.\n",
"\n",
"Tools are runnables, and you can treat them the same way as any other runnable at the interface level - you can call `invoke()`, `batch()`, and `stream()` on them as normal. However, when writing custom tools, you may want to invoke other runnables like chat models or retrievers. In order to properly trace and configure those sub-invocations, you'll need to manually access and pass in the tool's current [`RunnableConfig`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.config.RunnableConfig.html) object. This guide show you some examples of how to do that.\n",
"\n",
":::caution Compatibility\n",
"\n",
"This guide requires `langchain-core>=0.2.16`.\n",
"\n",
":::\n",
"\n",
"## Inferring by parameter type\n",
"\n",
"To access reference the active config object from your custom tool, you'll need to add a parameter to your tool's signature typed as `RunnableConfig`. When you invoke your tool, LangChain will inspect your tool's signature, look for a parameter typed as `RunnableConfig`, and if it exists, populate that parameter with the correct value.\n",
"\n",
"**Note:** The actual name of the parameter doesn't matter, only the typing.\n",
"\n",
"To illustrate this, define a custom tool that takes a two parameters - one typed as a string, the other typed as `RunnableConfig`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain_core"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.runnables import RunnableConfig\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"async def reverse_tool(text: str, special_config_param: RunnableConfig) -> str:\n",
" \"\"\"A test tool that combines input text with a configurable parameter.\"\"\"\n",
" return (text + special_config_param[\"configurable\"][\"additional_field\"])[::-1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, if we invoke the tool with a `config` containing a `configurable` field, we can see that `additional_field` is passed through correctly:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'321cba'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await reverse_tool.ainvoke(\n",
" {\"text\": \"abc\"}, config={\"configurable\": {\"additional_field\": \"123\"}}\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"You've now seen how to configure and stream events from within a tool. Next, check out the following guides for more on using tools:\n",
"\n",
"- [Stream events from child runs within a custom tool](/docs/how_to/tool_stream_events/)\n",
"- Pass [tool results back to a model](/docs/how_to/tool_results_pass_to_model)\n",
"\n",
"You can also check out some more specific uses of tool calling:\n",
"\n",
"- Building [tool-using chains and agents](/docs/how_to#tools)\n",
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -4,14 +4,63 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to pass tool outputs to the model\n",
"# How to pass tool outputs to chat models\n",
"\n",
"If we're using the model-generated tool invocations to actually call tools and want to pass the tool results back to the model, we can do so using `ToolMessage`s. First, let's define our tools and our model."
":::info Prerequisites\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [Function/tool calling](/docs/concepts/#functiontool-calling)\n",
"- [Using chat models to call tools](/docs/how_to/tool_calling)\n",
"- [Defining custom tools](/docs/how_to/custom_tools/)\n",
"\n",
":::\n",
"\n",
"Some models are capable of [**tool calling**](/docs/concepts/#functiontool-calling) - generating arguments that conform to a specific user-provided schema. This guide will demonstrate how to use those tool cals to actually call a function and properly pass the results back to the model.\n",
"\n",
"![Diagram of a tool call invocation](/img/tool_invocation.png)\n",
"\n",
"![Diagram of a tool call result](/img/tool_results.png)\n",
"\n",
"First, let's define our tools and our model:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"import os\n",
"from getpass import getpass\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -30,23 +79,8 @@
" return a * b\n",
"\n",
"\n",
"tools = [add, multiply]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"tools = [add, multiply]\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
"llm_with_tools = llm.bind_tools(tools)"
]
},
@@ -54,55 +88,102 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can use ``ToolMessage`` to pass back the output of the tool calls to the model."
"Now, let's get the model to call a tool. We'll add it to a list of messages that we'll treat as conversation history:"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_GPGPE943GORirhIAYnWv00rK', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_dm8o64ZrY3WFZHAvCh1bEJ6i', 'type': 'tool_call'}]\n"
]
}
],
"source": [
"from langchain_core.messages import HumanMessage\n",
"\n",
"query = \"What is 3 * 12? Also, what is 11 + 49?\"\n",
"\n",
"messages = [HumanMessage(query)]\n",
"\n",
"ai_msg = llm_with_tools.invoke(messages)\n",
"\n",
"print(ai_msg.tool_calls)\n",
"\n",
"messages.append(ai_msg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next let's invoke the tool functions using the args the model populated!\n",
"\n",
"Conveniently, if we invoke a LangChain `Tool` with a `ToolCall`, we'll automatically get back a `ToolMessage` that can be fed back to the model:\n",
"\n",
":::caution Compatibility\n",
"\n",
"This functionality was added in `langchain-core == 0.2.19`. Please make sure your package is up to date.\n",
"\n",
"If you are on earlier versions of `langchain-core`, you will need to extract the `args` field from the tool and construct a `ToolMessage` manually.\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?'),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_svc2GLSxNFALbaCAbSjMI9J8', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'Multiply'}, 'type': 'function'}, {'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 105, 'total_tokens': 155}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-a79ad1dd-95f1-4a46-b688-4c83f327a7b3-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_svc2GLSxNFALbaCAbSjMI9J8'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_r8jxte3zW6h3MEGV3zH2qzFh'}]),\n",
" ToolMessage(content='36', tool_call_id='call_svc2GLSxNFALbaCAbSjMI9J8'),\n",
" ToolMessage(content='60', tool_call_id='call_r8jxte3zW6h3MEGV3zH2qzFh')]"
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_loT2pliJwJe3p7nkgXYF48A1', 'function': {'arguments': '{\"a\": 3, \"b\": 12}', 'name': 'multiply'}, 'type': 'function'}, {'id': 'call_bG9tYZCXOeYDZf3W46TceoV4', 'function': {'arguments': '{\"a\": 11, \"b\": 49}', 'name': 'add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 87, 'total_tokens': 137}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_661538dc1f', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-e3db3c46-bf9e-478e-abc1-dc9a264f4afe-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_loT2pliJwJe3p7nkgXYF48A1', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_bG9tYZCXOeYDZf3W46TceoV4', 'type': 'tool_call'}], usage_metadata={'input_tokens': 87, 'output_tokens': 50, 'total_tokens': 137}),\n",
" ToolMessage(content='36', name='multiply', tool_call_id='call_loT2pliJwJe3p7nkgXYF48A1'),\n",
" ToolMessage(content='60', name='add', tool_call_id='call_bG9tYZCXOeYDZf3W46TceoV4')]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "display_data"
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.messages import HumanMessage, ToolMessage\n",
"\n",
"query = \"What is 3 * 12? Also, what is 11 + 49?\"\n",
"\n",
"messages = [HumanMessage(query)]\n",
"ai_msg = llm_with_tools.invoke(messages)\n",
"messages.append(ai_msg)\n",
"for tool_call in ai_msg.tool_calls:\n",
" selected_tool = {\"add\": add, \"multiply\": multiply}[tool_call[\"name\"].lower()]\n",
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))\n",
" tool_msg = selected_tool.invoke(tool_call)\n",
" messages.append(tool_msg)\n",
"\n",
"messages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And finally, we'll invoke the model with the tool results. The model will use this information to generate a final answer to our original query:"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 171, 'total_tokens': 189}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_d9767fc5b9', 'finish_reason': 'stop', 'logprobs': None}, id='run-20b52149-e00d-48ea-97cf-f8de7a255f8c-0')"
"AIMessage(content='The result of \\\\(3 \\\\times 12\\\\) is 36, and the result of \\\\(11 + 49\\\\) is 60.', response_metadata={'token_usage': {'completion_tokens': 31, 'prompt_tokens': 153, 'total_tokens': 184}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_661538dc1f', 'finish_reason': 'stop', 'logprobs': None}, id='run-87d1ef0a-1223-4bb3-9310-7b591789323d-0', usage_metadata={'input_tokens': 153, 'output_tokens': 31, 'total_tokens': 184})"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "display_data"
"output_type": "execute_result"
}
],
"source": [
@@ -113,15 +194,39 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that we pass back the same `id` in the `ToolMessage` as the what we receive from the model in order to help the model match tool responses with tool calls."
"Note that each `ToolMessage` must include a `tool_call_id` that matches an `id` in the original tool calls that the model generates. This helps the model match tool responses with tool calls.\n",
"\n",
"Tool calling agents, like those in [LangGraph](https://langchain-ai.github.io/langgraph/tutorials/introduction/), use this basic flow to answer queries and solve tasks.\n",
"\n",
"## Related\n",
"\n",
"- [LangGraph quickstart](https://langchain-ai.github.io/langgraph/tutorials/introduction/)\n",
"- Few shot prompting [with tools](/docs/how_to/tools_few_shot/)\n",
"- Stream [tool calls](/docs/how_to/tool_streaming/)\n",
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)\n",
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -4,29 +4,22 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to pass run time values to a tool\n",
"# How to pass run time values to tools\n",
"\n",
":::info Prerequisites\n",
"import Prerequisites from \"@theme/Prerequisites\";\n",
"import Compatibility from \"@theme/Compatibility\";\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"- [Chat models](/docs/concepts/#chat-models)\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [How to create tools](/docs/how_to/custom_tools)\n",
"- [How to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling)\n",
":::\n",
"<Prerequisites titlesAndLinks={[\n",
" [\"Chat models\", \"/docs/concepts/#chat-models\"],\n",
" [\"LangChain Tools\", \"/docs/concepts/#tools\"],\n",
" [\"How to create tools\", \"/docs/how_to/custom_tools\"],\n",
" [\"How to use a model to call tools\", \"/docs/how_to/tool_calling\"],\n",
"]} />\n",
"\n",
":::{.callout-info} Supported models\n",
"\n",
"This how-to guide uses models with native tool calling capability.\n",
"You can find a [list of all models that support tool calling](/docs/integrations/chat/).\n",
"\n",
":::\n",
"\n",
":::{.callout-info} Using with LangGraph\n",
"\n",
"If you're using LangGraph, please refer to [this how-to guide](https://langchain-ai.github.io/langgraph/how-tos/pass-run-time-values-to-tools/)\n",
"which shows how to create an agent that keeps track of a given user's favorite pets.\n",
":::\n",
"<Compatibility packagesAndVersions={[\n",
" [\"langchain-core\", \"0.2.21\"],\n",
"]} />\n",
"\n",
"You may need to bind values to a tool that are only known at runtime. For example, the tool logic may require using the ID of the user who made the request.\n",
"\n",
@@ -34,7 +27,13 @@
"\n",
"Instead, the LLM should only control the parameters of the tool that are meant to be controlled by the LLM, while other parameters (such as user ID) should be fixed by the application logic.\n",
"\n",
"This how-to guide shows a simple design pattern that creates the tool dynamically at run time and binds to them appropriate values."
"This how-to guide shows you how to prevent the model from generating certain tool arguments and injecting them in directly at runtime.\n",
"\n",
":::info Using with LangGraph\n",
"\n",
"If you're using LangGraph, please refer to [this how-to guide](https://langchain-ai.github.io/langgraph/how-tos/pass-run-time-values-to-tools/)\n",
"which shows how to create an agent that keeps track of a given user's favorite pets.\n",
":::"
]
},
{
@@ -57,23 +56,12 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain langchain_openai\n",
"# %pip install -qU langchain langchain_openai\n",
"\n",
"import os\n",
"from getpass import getpass\n",
@@ -90,10 +78,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Passing request time information\n",
"## Hiding arguments from the model\n",
"\n",
"The idea is to create the tool dynamically at request time, and bind to it the appropriate information. For example,\n",
"this information may be the user ID as resolved from the request itself."
"We can use the InjectedToolArg annotation to mark certain parameters of our Tool, like `user_id` as being injected at runtime, meaning they shouldn't be generated by the model"
]
},
{
@@ -104,46 +91,88 @@
"source": [
"from typing import List\n",
"\n",
"from langchain_core.output_parsers import JsonOutputParser\n",
"from langchain_core.tools import BaseTool, tool"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import InjectedToolArg, tool\n",
"from typing_extensions import Annotated\n",
"\n",
"user_to_pets = {}\n",
"\n",
"\n",
"def generate_tools_for_user(user_id: str) -> List[BaseTool]:\n",
" \"\"\"Generate a set of tools that have a user id associated with them.\"\"\"\n",
"@tool(parse_docstring=True)\n",
"def update_favorite_pets(\n",
" pets: List[str], user_id: Annotated[str, InjectedToolArg]\n",
") -> None:\n",
" \"\"\"Add the list of favorite pets.\n",
"\n",
" @tool\n",
" def update_favorite_pets(pets: List[str]) -> None:\n",
" \"\"\"Add the list of favorite pets.\"\"\"\n",
" user_to_pets[user_id] = pets\n",
" Args:\n",
" pets: List of favorite pets to set.\n",
" user_id: User's ID.\n",
" \"\"\"\n",
" user_to_pets[user_id] = pets\n",
"\n",
" @tool\n",
" def delete_favorite_pets() -> None:\n",
" \"\"\"Delete the list of favorite pets.\"\"\"\n",
" if user_id in user_to_pets:\n",
" del user_to_pets[user_id]\n",
"\n",
" @tool\n",
" def list_favorite_pets() -> None:\n",
" \"\"\"List favorite pets if any.\"\"\"\n",
" return user_to_pets.get(user_id, [])\n",
"@tool(parse_docstring=True)\n",
"def delete_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:\n",
" \"\"\"Delete the list of favorite pets.\n",
"\n",
" return [update_favorite_pets, delete_favorite_pets, list_favorite_pets]"
" Args:\n",
" user_id: User's ID.\n",
" \"\"\"\n",
" if user_id in user_to_pets:\n",
" del user_to_pets[user_id]\n",
"\n",
"\n",
"@tool(parse_docstring=True)\n",
"def list_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:\n",
" \"\"\"List favorite pets if any.\n",
"\n",
" Args:\n",
" user_id: User's ID.\n",
" \"\"\"\n",
" return user_to_pets.get(user_id, [])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Verify that the tools work correctly"
"If we look at the input schemas for these tools, we'll see that user_id is still listed:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_petsSchema',\n",
" 'description': 'Add the list of favorite pets.',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}},\n",
" 'user_id': {'title': 'User Id',\n",
" 'description': \"User's ID.\",\n",
" 'type': 'string'}},\n",
" 'required': ['pets', 'user_id']}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"update_favorite_pets.get_input_schema().schema()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But if we look at the tool call schema, which is what is passed to the model for tool-calling, user_id has been removed:"
]
},
{
@@ -152,46 +181,60 @@
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'eugene': ['cat', 'dog']}\n",
"['cat', 'dog']\n"
]
"data": {
"text/plain": [
"{'title': 'update_favorite_pets',\n",
" 'description': 'Add the list of favorite pets.',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}}},\n",
" 'required': ['pets']}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"update_pets, delete_pets, list_pets = generate_tools_for_user(\"eugene\")\n",
"update_pets.invoke({\"pets\": [\"cat\", \"dog\"]})\n",
"print(user_to_pets)\n",
"print(list_pets.invoke({}))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"\n",
"def handle_run_time_request(user_id: str, query: str):\n",
" \"\"\"Handle run time request.\"\"\"\n",
" tools = generate_tools_for_user(user_id)\n",
" llm_with_tools = llm.bind_tools(tools)\n",
" prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", \"You are a helpful assistant.\")],\n",
" )\n",
" chain = prompt | llm_with_tools\n",
" return llm_with_tools.invoke(query)"
"update_favorite_pets.tool_call_schema.schema()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This code will allow the LLM to invoke the tools, but the LLM is **unaware** of the fact that a **user ID** even exists!"
"So when we invoke our tool, we need to pass in user_id:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'123': ['lizard', 'dog']}\n",
"['lizard', 'dog']\n"
]
}
],
"source": [
"user_id = \"123\"\n",
"update_favorite_pets.invoke({\"pets\": [\"lizard\", \"dog\"], \"user_id\": user_id})\n",
"print(user_to_pets)\n",
"print(list_favorite_pets.invoke({\"user_id\": user_id}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But when the model calls the tool, no user_id argument will be generated:"
]
},
{
@@ -204,7 +247,8 @@
"text/plain": [
"[{'name': 'update_favorite_pets',\n",
" 'args': {'pets': ['cats', 'parrots']},\n",
" 'id': 'call_jJvjPXsNbFO5MMgW0q84iqCN'}]"
" 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 6,
@@ -213,28 +257,347 @@
}
],
"source": [
"ai_message = handle_run_time_request(\n",
" \"eugene\", \"my favorite animals are cats and parrots.\"\n",
")\n",
"ai_message.tool_calls"
"tools = [\n",
" update_favorite_pets,\n",
" delete_favorite_pets,\n",
" list_favorite_pets,\n",
"]\n",
"llm_with_tools = llm.bind_tools(tools)\n",
"ai_msg = llm_with_tools.invoke(\"my favorite animals are cats and parrots\")\n",
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
":::{.callout-important}\n",
"## Injecting arguments at runtime"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we want to actually execute our tools using the model-generated tool call, we'll need to inject the user_id ourselves:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'update_favorite_pets',\n",
" 'args': {'pets': ['cats', 'parrots'], 'user_id': '123'},\n",
" 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from copy import deepcopy\n",
"\n",
"Chat models only output requests to invoke tools, they don't actually invoke the underlying tools.\n",
"from langchain_core.runnables import chain\n",
"\n",
"To see how to invoke the tools, please refer to [how to use a model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling).\n",
":::"
"\n",
"@chain\n",
"def inject_user_id(ai_msg):\n",
" tool_calls = []\n",
" for tool_call in ai_msg.tool_calls:\n",
" tool_call_copy = deepcopy(tool_call)\n",
" tool_call_copy[\"args\"][\"user_id\"] = user_id\n",
" tool_calls.append(tool_call_copy)\n",
" return tool_calls\n",
"\n",
"\n",
"inject_user_id.invoke(ai_msg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And now we can chain together our model, injection code, and the actual tools to create a tool-executing chain:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ToolMessage(content='null', name='update_favorite_pets', tool_call_id='call_HUyF6AihqANzEYxQnTUKxkXj')]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tool_map = {tool.name: tool for tool in tools}\n",
"\n",
"\n",
"@chain\n",
"def tool_router(tool_call):\n",
" return tool_map[tool_call[\"name\"]]\n",
"\n",
"\n",
"chain = llm_with_tools | inject_user_id | tool_router.map()\n",
"chain.invoke(\"my favorite animals are cats and parrots\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looking at the user_to_pets dict, we can see that it's been updated to include cats and parrots:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'123': ['cats', 'parrots']}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"user_to_pets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Other ways of annotating args\n",
"\n",
"Here are a few other ways of annotating our tool args:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'UpdateFavoritePetsSchema',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}},\n",
" 'user_id': {'title': 'User Id',\n",
" 'description': \"User's ID.\",\n",
" 'type': 'string'}},\n",
" 'required': ['pets', 'user_id']}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"from langchain_core.tools import BaseTool\n",
"\n",
"\n",
"class UpdateFavoritePetsSchema(BaseModel):\n",
" \"\"\"Update list of favorite pets\"\"\"\n",
"\n",
" pets: List[str] = Field(..., description=\"List of favorite pets to set.\")\n",
" user_id: Annotated[str, InjectedToolArg] = Field(..., description=\"User's ID.\")\n",
"\n",
"\n",
"@tool(args_schema=UpdateFavoritePetsSchema)\n",
"def update_favorite_pets(pets, user_id):\n",
" user_to_pets[user_id] = pets\n",
"\n",
"\n",
"update_favorite_pets.get_input_schema().schema()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_pets',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}}},\n",
" 'required': ['pets']}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"update_favorite_pets.tool_call_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'UpdateFavoritePetsSchema',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}},\n",
" 'user_id': {'title': 'User Id',\n",
" 'description': \"User's ID.\",\n",
" 'type': 'string'}},\n",
" 'required': ['pets', 'user_id']}"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Optional, Type\n",
"\n",
"\n",
"class UpdateFavoritePets(BaseTool):\n",
" name: str = \"update_favorite_pets\"\n",
" description: str = \"Update list of favorite pets\"\n",
" args_schema: Optional[Type[BaseModel]] = UpdateFavoritePetsSchema\n",
"\n",
" def _run(self, pets, user_id):\n",
" user_to_pets[user_id] = pets\n",
"\n",
"\n",
"UpdateFavoritePets().get_input_schema().schema()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_pets',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'description': 'List of favorite pets to set.',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}}},\n",
" 'required': ['pets']}"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"UpdateFavoritePets().tool_call_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_petsSchema',\n",
" 'description': 'Use the tool.\\n\\nAdd run_manager: Optional[CallbackManagerForToolRun] = None\\nto child implementations to enable tracing.',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}},\n",
" 'user_id': {'title': 'User Id', 'type': 'string'}},\n",
" 'required': ['pets', 'user_id']}"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"class UpdateFavoritePets2(BaseTool):\n",
" name: str = \"update_favorite_pets\"\n",
" description: str = \"Update list of favorite pets\"\n",
"\n",
" def _run(self, pets: List[str], user_id: Annotated[str, InjectedToolArg]) -> None:\n",
" user_to_pets[user_id] = pets\n",
"\n",
"\n",
"UpdateFavoritePets2().get_input_schema().schema()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'update_favorite_pets',\n",
" 'description': 'Update list of favorite pets',\n",
" 'type': 'object',\n",
" 'properties': {'pets': {'title': 'Pets',\n",
" 'type': 'array',\n",
" 'items': {'type': 'string'}}},\n",
" 'required': ['pets']}"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"UpdateFavoritePets2().tool_call_schema.schema()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
@@ -248,7 +611,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,302 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to stream events from a tool\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [Custom tools](/docs/how_to/custom_tools)\n",
"- [Using stream events](/docs/how_to/streaming/#using-stream-events)\n",
"- [Accessing RunnableConfig within a custom tool](/docs/how_to/tool_configure/)\n",
"\n",
":::\n",
"\n",
"If you have tools that call chat models, retrievers, or other runnables, you may want to access internal events from those runnables or configure them with additional properties. This guide shows you how to manually pass parameters properly so that you can do this using the `astream_events()` method.\n",
"\n",
":::caution Compatibility\n",
"\n",
"LangChain cannot automatically propagate configuration, including callbacks necessary for `astream_events()`, to child runnables if you are running `async` code in `python<=3.10`. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
"\n",
"If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n",
"\n",
"If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in older Python versions.\n",
"\n",
"This guide also requires `langchain-core>=0.2.16`.\n",
":::\n",
"\n",
"Say you have a custom tool that calls a chain that condenses its input by prompting a chat model to return only 10 words, then reversing the output. First, define it in a naive way:\n",
"\n",
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs customVarName=\"model\" />\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain langchain_anthropic langchain_core\n",
"\n",
"import os\n",
"from getpass import getpass\n",
"\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"if \"ANTHROPIC_API_KEY\" not in os.environ:\n",
" os.environ[\"ANTHROPIC_API_KEY\"] = getpass()\n",
"\n",
"model = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"async def special_summarization_tool(long_text: str) -> str:\n",
" \"\"\"A tool that summarizes input text using advanced techniques.\"\"\"\n",
" prompt = ChatPromptTemplate.from_template(\n",
" \"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n{long_text}\"\n",
" )\n",
"\n",
" def reverse(x: str):\n",
" return x[::-1]\n",
"\n",
" chain = prompt | model | StrOutputParser() | reverse\n",
" summary = await chain.ainvoke({\"long_text\": long_text})\n",
" return summary"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Invoking the tool directly works just fine:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'.yad noitaudarg rof tiftuo sesoohc yrraB ;scisyhp seifed eeB'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"LONG_TEXT = \"\"\"\n",
"NARRATOR:\n",
"(Black screen with text; The sound of buzzing bees can be heard)\n",
"According to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\n",
"BARRY BENSON:\n",
"(Barry is picking out a shirt)\n",
"Yellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\n",
"JANET BENSON:\n",
"Barry! Breakfast is ready!\n",
"BARRY:\n",
"Coming! Hang on a second.\n",
"\"\"\"\n",
"\n",
"await special_summarization_tool.ainvoke({\"long_text\": LONG_TEXT})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But if you wanted to access the raw output from the chat model rather than the full tool, you might try to use the [`astream_events()`](/docs/how_to/streaming/#using-stream-events) method and look for an `on_chat_model_end` event. Here's what happens:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"stream = special_summarization_tool.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
")\n",
"\n",
"async for event in stream:\n",
" if event[\"event\"] == \"on_chat_model_end\":\n",
" # Never triggers in python<=3.10!\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You'll notice (unless you're running through this guide in `python>=3.11`) that there are no chat model events emitted from the child run!\n",
"\n",
"This is because the example above does not pass the tool's config object into the internal chain. To fix this, redefine your tool to take a special parameter typed as `RunnableConfig` (see [this guide](/docs/how_to/tool_configure) for more details). You'll also need to pass that parameter through into the internal chain when executing it:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.runnables import RunnableConfig\n",
"\n",
"\n",
"@tool\n",
"async def special_summarization_tool_with_config(\n",
" long_text: str, config: RunnableConfig\n",
") -> str:\n",
" \"\"\"A tool that summarizes input text using advanced techniques.\"\"\"\n",
" prompt = ChatPromptTemplate.from_template(\n",
" \"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n{long_text}\"\n",
" )\n",
"\n",
" def reverse(x: str):\n",
" return x[::-1]\n",
"\n",
" chain = prompt | model | StrOutputParser() | reverse\n",
" # Pass the \"config\" object as an argument to any executed runnables\n",
" summary = await chain.ainvoke({\"long_text\": long_text}, config=config)\n",
" return summary"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And now try the same `astream_events()` call as before with your new tool:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chat_model_end', 'data': {'output': AIMessage(content='Bee defies physics; Barry chooses outfit for graduation day.', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-d23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', usage_metadata={'input_tokens': 182, 'output_tokens': 16, 'total_tokens': 198}), 'input': {'messages': [[HumanMessage(content=\"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n\\nNARRATOR:\\n(Black screen with text; The sound of buzzing bees can be heard)\\nAccording to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\\nBARRY BENSON:\\n(Barry is picking out a shirt)\\nYellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\\nJANET BENSON:\\nBarry! Breakfast is ready!\\nBARRY:\\nComing! Hang on a second.\\n\")]]}}, 'run_id': 'd23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['f25c41fe-8972-4893-bc40-cecf3922c1fa']}\n"
]
}
],
"source": [
"stream = special_summarization_tool_with_config.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
")\n",
"\n",
"async for event in stream:\n",
" if event[\"event\"] == \"on_chat_model_end\":\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Awesome! This time there's an event emitted.\n",
"\n",
"For streaming, `astream_events()` automatically calls internal runnables in a chain with streaming enabled if possible, so if you wanted to a stream of tokens as they are generated from the chat model, you could simply filter to look for `on_chat_model_stream` events with no other changes:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 182, 'output_tokens': 0, 'total_tokens': 182})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' def', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='ies physics', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=';', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' cho', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='oses outfit', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' for', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' day', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='.', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 0, 'output_tokens': 16, 'total_tokens': 16})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n"
]
}
],
"source": [
"stream = special_summarization_tool_with_config.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
")\n",
"\n",
"async for event in stream:\n",
" if event[\"event\"] == \"on_chat_model_stream\":\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"You've now seen how to stream events from within a tool. Next, check out the following guides for more on using tools:\n",
"\n",
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)\n",
"- Pass [tool results back to a model](/docs/how_to/tool_results_pass_to_model)\n",
"- [Dispatch custom callback events](/docs/how_to/callbacks_custom_events)\n",
"\n",
"You can also check out some more specific uses of tool calling:\n",
"\n",
"- Building [tool-using chains and agents](/docs/how_to#tools)\n",
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -228,7 +228,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -419,13 +419,13 @@
"Invoking: `exponentiate` with `{'base': 405, 'exponent': 2}`\n",
"\n",
"\n",
"\u001b[0m\u001b[38;5;200m\u001b[1;3m164025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of taking 3 to the fifth power is 243. \n",
"\u001b[0m\u001b[38;5;200m\u001b[1;3m13286025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of taking 3 to the fifth power is 243. \n",
"\n",
"The sum of twelve and three is 15. \n",
"\n",
"Multiplying 243 by 15 gives 3645. \n",
"\n",
"Finally, squaring 3645 gives 164025.\u001b[0m\n",
"Finally, squaring 3645 gives 13286025.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
@@ -434,7 +434,7 @@
"data": {
"text/plain": [
"{'input': 'Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result',\n",
" 'output': 'The result of taking 3 to the fifth power is 243. \\n\\nThe sum of twelve and three is 15. \\n\\nMultiplying 243 by 15 gives 3645. \\n\\nFinally, squaring 3645 gives 164025.'}"
" 'output': 'The result of taking 3 to the fifth power is 243. \\n\\nThe sum of twelve and three is 15. \\n\\nMultiplying 243 by 15 gives 3645. \\n\\nFinally, squaring 3645 gives 13286025.'}"
]
},
"execution_count": 18,

View File

@@ -7,9 +7,18 @@
"source": [
"# How to handle tool errors\n",
"\n",
"Using a model to invoke a tool has some obvious potential failure modes. Firstly, the model needs to return a output that can be parsed at all. Secondly, the model needs to return tool arguments that are valid.\n",
":::info Prerequisites\n",
"\n",
"We can build error handling into our chains to mitigate these failure modes."
"This guide assumes familiarity with the following concepts:\n",
"- [Chat models](/docs/concepts/#chat-models)\n",
"- [LangChain Tools](/docs/concepts/#tools)\n",
"- [How to use a model to call tools](/docs/how_to/tool_calling)\n",
"\n",
":::\n",
"\n",
"Calling tools with an LLM is generally more reliable than pure prompting, but it isn't perfect. The model may try to call a tool that doesn't exist or fail to return arguments that match the requested schema. Strategies like keeping schemas simple, reducing the number of tools you pass at once, and having good names and descriptions can help mitigate this risk, but aren't foolproof.\n",
"\n",
"This guide covers some ways to build error handling into your chains to mitigate these failure modes."
]
},
{
@@ -42,7 +51,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "08785b6d-722d-4620-b6ec-36deb3842c69",
"metadata": {},
"outputs": [],
@@ -72,7 +81,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"id": "86258950-5e61-4340-81b9-84a5d26e8773",
"metadata": {},
"outputs": [],
@@ -82,12 +91,14 @@
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"id": "1d20604e-c4d1-4d21-841b-23e4f61aec36",
"metadata": {},
"outputs": [],
@@ -99,28 +110,13 @@
"@tool\n",
"def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int:\n",
" \"\"\"Do something complex with a complex tool.\"\"\"\n",
" return int_arg * float_arg"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "553c2c13-28c8-4451-8a3a-6c31d52dc31d",
"metadata": {},
"outputs": [],
"source": [
" return int_arg * float_arg\n",
"\n",
"\n",
"llm_with_tools = llm.bind_tools(\n",
" [complex_tool],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "802b2eca-9f79-4d6c-8257-85139ca5c752",
"metadata": {},
"outputs": [],
"source": [
")\n",
"\n",
"# Define chain\n",
"chain = llm_with_tools | (lambda msg: msg.tool_calls[0][\"args\"]) | complex_tool"
]
@@ -135,7 +131,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 6,
"id": "d354664c-ac44-4967-a35f-8912b3ad9477",
"metadata": {},
"outputs": [
@@ -146,14 +142,14 @@
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muse complex tool. the args are 5, 2.1, empty dictionary. don\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt forget dict_arg\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 3\u001b[0m \u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:2499\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m 2497\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 2498\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msteps):\n\u001b[0;32m-> 2499\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2500\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2501\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# mark each step as a child run\u001b[39;49;00m\n\u001b[1;32m 2502\u001b[0m \u001b[43m \u001b[49m\u001b[43mpatch_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2503\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseq:step:\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mi\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2504\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2505\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2506\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 2507\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:241\u001b[0m, in \u001b[0;36mBaseTool.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 234\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 235\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 236\u001b[0m \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, Dict],\n\u001b[1;32m 237\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 238\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 239\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 240\u001b[0m config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[0;32m--> 241\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 242\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 243\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallbacks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 244\u001b[0m \u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtags\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 245\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 246\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 247\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 248\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 249\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:387\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 385\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ValidationError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 386\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error:\n\u001b[0;32m--> 387\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 388\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error, \u001b[38;5;28mbool\u001b[39m):\n\u001b[1;32m 389\u001b[0m observation \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTool input validation error\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
"File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:378\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 364\u001b[0m run_manager \u001b[38;5;241m=\u001b[39m callback_manager\u001b[38;5;241m.\u001b[39mon_tool_start(\n\u001b[1;32m 365\u001b[0m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdescription\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdescription},\n\u001b[1;32m 366\u001b[0m tool_input \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(tool_input, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mstr\u001b[39m(tool_input),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 376\u001b[0m )\n\u001b[1;32m 377\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 378\u001b[0m parsed_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_parse_input\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 379\u001b[0m tool_args, tool_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_to_args_and_kwargs(parsed_input)\n\u001b[1;32m 380\u001b[0m observation \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run(\u001b[38;5;241m*\u001b[39mtool_args, run_manager\u001b[38;5;241m=\u001b[39mrun_manager, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs)\n\u001b[1;32m 382\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m 383\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run(\u001b[38;5;241m*\u001b[39mtool_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs)\n\u001b[1;32m 384\u001b[0m )\n",
"File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:283\u001b[0m, in \u001b[0;36mBaseTool._parse_input\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 282\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m input_args \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 283\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43minput_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_obj\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 284\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m {\n\u001b[1;32m 285\u001b[0m k: \u001b[38;5;28mgetattr\u001b[39m(result, k)\n\u001b[1;32m 286\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m result\u001b[38;5;241m.\u001b[39mdict()\u001b[38;5;241m.\u001b[39mitems()\n\u001b[1;32m 287\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m tool_input\n\u001b[1;32m 288\u001b[0m }\n\u001b[1;32m 289\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tool_input\n",
"File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/pydantic/v1/main.py:526\u001b[0m, in \u001b[0;36mBaseModel.parse_obj\u001b[0;34m(cls, obj)\u001b[0m\n\u001b[1;32m 524\u001b[0m exc \u001b[38;5;241m=\u001b[39m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m expected dict not \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mobj\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 525\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ValidationError([ErrorWrapper(exc, loc\u001b[38;5;241m=\u001b[39mROOT_KEY)], \u001b[38;5;28mcls\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[0;32m--> 526\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/pydantic/v1/main.py:341\u001b[0m, in \u001b[0;36mBaseModel.__init__\u001b[0;34m(__pydantic_self__, **data)\u001b[0m\n\u001b[1;32m 339\u001b[0m values, fields_set, validation_error \u001b[38;5;241m=\u001b[39m validate_model(__pydantic_self__\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m, data)\n\u001b[1;32m 340\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m validation_error:\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m validation_error\n\u001b[1;32m 342\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 343\u001b[0m object_setattr(__pydantic_self__, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__dict__\u001b[39m\u001b[38;5;124m'\u001b[39m, values)\n",
"Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muse complex tool. the args are 5, 2.1, empty dictionary. don\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt forget dict_arg\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 3\u001b[0m \u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/runnables/base.py:2572\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 2570\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 2571\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2572\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2573\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 2574\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:380\u001b[0m, in \u001b[0;36mBaseTool.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 373\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 374\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 375\u001b[0m \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, Dict],\n\u001b[1;32m 376\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 377\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 378\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 379\u001b[0m config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[0;32m--> 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallbacks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 383\u001b[0m \u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtags\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 384\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 385\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 386\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 387\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 388\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 389\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:537\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, **kwargs)\u001b[0m\n\u001b[1;32m 535\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ValidationError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 536\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error:\n\u001b[0;32m--> 537\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 538\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error, \u001b[38;5;28mbool\u001b[39m):\n\u001b[1;32m 539\u001b[0m observation \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTool input validation error\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:526\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, **kwargs)\u001b[0m\n\u001b[1;32m 524\u001b[0m context \u001b[38;5;241m=\u001b[39m copy_context()\n\u001b[1;32m 525\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, child_config)\n\u001b[0;32m--> 526\u001b[0m parsed_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_parse_input\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 527\u001b[0m tool_args, tool_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_to_args_and_kwargs(parsed_input)\n\u001b[1;32m 528\u001b[0m observation \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 529\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(\n\u001b[1;32m 530\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run, \u001b[38;5;241m*\u001b[39mtool_args, run_manager\u001b[38;5;241m=\u001b[39mrun_manager, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 533\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m context\u001b[38;5;241m.\u001b[39mrun(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run, \u001b[38;5;241m*\u001b[39mtool_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs)\n\u001b[1;32m 534\u001b[0m )\n",
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:424\u001b[0m, in \u001b[0;36mBaseTool._parse_input\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 422\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 423\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m input_args \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 424\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43minput_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_obj\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 425\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m {\n\u001b[1;32m 426\u001b[0m k: \u001b[38;5;28mgetattr\u001b[39m(result, k)\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m result\u001b[38;5;241m.\u001b[39mdict()\u001b[38;5;241m.\u001b[39mitems()\n\u001b[1;32m 428\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m tool_input\n\u001b[1;32m 429\u001b[0m }\n\u001b[1;32m 430\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tool_input\n",
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/pydantic/main.py:526\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.parse_obj\u001b[0;34m()\u001b[0m\n",
"File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/pydantic/main.py:341\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mValidationError\u001b[0m: 1 validation error for complex_toolSchema\ndict_arg\n field required (type=value_error.missing)"
]
}
@@ -176,10 +172,26 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 8,
"id": "8fedb550-683d-45ae-8876-ae7acb332019",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Calling tool with arguments:\n",
"\n",
"{'int_arg': 5, 'float_arg': 2.1}\n",
"\n",
"raised the following error:\n",
"\n",
"<class 'pydantic.error_wrappers.ValidationError'>: 1 validation error for complex_toolSchema\n",
"dict_arg\n",
" field required (type=value_error.missing)\n"
]
}
],
"source": [
"from typing import Any\n",
"\n",
@@ -193,32 +205,8 @@
" return f\"Calling tool with arguments:\\n\\n{tool_args}\\n\\nraised the following error:\\n\\n{type(e)}: {e}\"\n",
"\n",
"\n",
"chain = llm_with_tools | (lambda msg: msg.tool_calls[0][\"args\"]) | try_except_tool"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "71a2c98d-c0be-4c0a-bb3d-41ad4596526c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Calling tool with arguments:\n",
"\n",
"{'int_arg': 5, 'float_arg': 2.1}\n",
"\n",
"raised the following error:\n",
"\n",
"<class 'pydantic.v1.error_wrappers.ValidationError'>: 1 validation error for complex_toolSchema\n",
"dict_arg\n",
" field required (type=value_error.missing)\n"
]
}
],
"source": [
"chain = llm_with_tools | (lambda msg: msg.tool_calls[0][\"args\"]) | try_except_tool\n",
"\n",
"print(\n",
" chain.invoke(\n",
" \"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg\"\n",
@@ -238,7 +226,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 10,
"id": "02cc4223-35fa-4240-976a-012299ca703c",
"metadata": {},
"outputs": [
@@ -248,19 +236,22 @@
"10.5"
]
},
"execution_count": 17,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain = llm_with_tools | (lambda msg: msg.tool_calls[0][\"args\"]) | complex_tool\n",
"\n",
"better_model = ChatOpenAI(model=\"gpt-4-1106-preview\", temperature=0).bind_tools(\n",
" [complex_tool], tool_choice=\"complex_tool\"\n",
")\n",
"\n",
"better_chain = better_model | (lambda msg: msg.tool_calls[0][\"args\"]) | complex_tool\n",
"\n",
"chain_with_fallback = chain.with_fallbacks([better_chain])\n",
"\n",
"chain_with_fallback.invoke(\n",
" \"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg\"\n",
")"
@@ -271,7 +262,7 @@
"id": "412f8c4e-cc83-4d87-84a1-5ba2f8edb1e9",
"metadata": {},
"source": [
"Looking at the [Langsmith trace](https://smith.langchain.com/public/00e91fc2-e1a4-4b0f-a82e-e6b3119d196c/r) for this chain run, we can see that the first chain call fails as expected and it's the fallback that succeeds."
"Looking at the [LangSmith trace](https://smith.langchain.com/public/00e91fc2-e1a4-4b0f-a82e-e6b3119d196c/r) for this chain run, we can see that the first chain call fails as expected and it's the fallback that succeeds."
]
},
{
@@ -286,17 +277,13 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 11,
"id": "b5659956-9454-468a-9753-a3ff9052b8f5",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from typing import Any\n",
"\n",
"from langchain_core.messages import AIMessage, HumanMessage, ToolCall, ToolMessage\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"\n",
"class CustomToolException(Exception):\n",
@@ -336,7 +323,7 @@
"# affect the prompt at all, but gives us the option to insert an arbitrary list of Messages\n",
"# into the prompt if needed. We'll use this on retries to insert the error message.\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"human\", \"{input}\"), MessagesPlaceholder(\"last_output\", optional=True)]\n",
" [(\"human\", \"{input}\"), (\"placeholder\", \"{last_output}\")]\n",
")\n",
"chain = prompt | llm_with_tools | tool_custom_exception\n",
"\n",
@@ -348,7 +335,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 12,
"id": "4c45f5bd-cbb4-47d5-b4b6-aec50673c750",
"metadata": {},
"outputs": [
@@ -358,7 +345,7 @@
"10.5"
]
},
"execution_count": 14,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -378,6 +365,24 @@
"source": [
"And our chain succeeds! Looking at the [LangSmith trace](https://smith.langchain.com/public/c11e804c-e14f-4059-bd09-64766f999c14/r), we can see that indeed our initial chain still fails, and it's only on retrying that the chain succeeds."
]
},
{
"cell_type": "markdown",
"id": "6b97af9f",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"Now you've seen some strategies how to handle tool calling errors. Next, you can learn more about how to use tools:\n",
"\n",
"- Few shot prompting [with tools](/docs/how_to/tools_few_shot/)\n",
"- Stream [tool calls](/docs/how_to/tool_streaming/)\n",
"- Pass [runtime values to tools](/docs/how_to/tool_runtime)\n",
"\n",
"You can also check out some more specific uses of tool calling:\n",
"\n",
"- Getting [structured outputs](/docs/how_to/structured_output/) from models"
]
}
],
"metadata": {
@@ -396,7 +401,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -17,26 +17,25 @@
"source": [
"# ChatAI21\n",
"\n",
"## Overview\n",
"\n",
"This notebook covers how to get started with AI21 chat models.\n",
"Note that different chat models support different parameters. See the ",
"[AI21 documentation](https://docs.ai21.com/reference) to learn more about the parameters in your chosen model.\n",
"Note that different chat models support different parameters. See the [AI21 documentation](https://docs.ai21.com/reference) to learn more about the parameters in your chosen model.\n",
"[See all AI21's LangChain components.](https://pypi.org/project/langchain-ai21/) \n",
"## Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4c3bef91",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-15T06:50:44.929635Z",
"start_time": "2024-02-15T06:50:41.209704Z"
}
},
"outputs": [],
"source": [
"!pip install -qU langchain-ai21"
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatAI21](https://api.python.langchain.com/en/latest/chat_models/langchain_ai21.chat_models.ChatAI21.html#langchain_ai21.chat_models.ChatAI21) | [langchain-ai21](https://api.python.langchain.com/en/latest/ai21_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ai21?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ai21?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"\n",
"\n",
"## Setup"
]
},
{
@@ -44,10 +43,9 @@
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Environment Setup\n",
"### Credentials\n",
"\n",
"We'll need to get an [AI21 API key](https://docs.ai21.com/) and set the ",
"`AI21_API_KEY` environment variable:\n"
"We'll need to get an [AI21 API key](https://docs.ai21.com/) and set the `AI21_API_KEY` environment variable:\n"
]
},
{
@@ -67,48 +65,166 @@
},
{
"cell_type": "markdown",
"id": "4828829d3da430ce",
"metadata": {
"collapsed": false
},
"id": "f6844fff-3702-4489-ab74-732f69f3b9d7",
"metadata": {},
"source": [
"## Usage"
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "39353473fce5dd2e",
"execution_count": null,
"id": "7c2e19d3-7c58-4470-9e1a-718b27a32056",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "98e22f31-8acc-42d6-916d-415d1263c56e",
"metadata": {},
"source": [
"### Installation"
]
},
{
"cell_type": "markdown",
"id": "f9699cd9-58f2-450e-aa64-799e66906c0f",
"metadata": {},
"source": [
"!pip install -qU langchain-ai21"
]
},
{
"cell_type": "markdown",
"id": "4828829d3da430ce",
"metadata": {
"collapsed": false
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c40756fb-cbf8-4d44-a293-3989d707237e",
"metadata": {},
"outputs": [],
"source": [
"from langchain_ai21 import ChatAI21\n",
"\n",
"llm = ChatAI21(model=\"jamba-instruct\", temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "2bdc5d68-2a19-495e-8c04-d11adc86d3ae",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "46b982dc-5d8a-46da-a711-81c03ccd6adc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Bonjour, comment vas-tu?')"
"AIMessage(content=\"J'adore programmer.\", id='run-2e8d16d6-a06e-45cb-8d0c-1c8208645033-0')"
]
},
"execution_count": 1,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "markdown",
"id": "10a30f84-b531-4fd5-8b5b-91512fbdc75b",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "39353473fce5dd2e",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe das Programmieren.', id='run-e1bd82dc-1a7e-4b2e-bde9-ac995929ac0f-0')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_ai21 import ChatAI21\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"chat = ChatAI21(model=\"jamba-instruct\")\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\"system\", \"You are a helpful assistant that translates English to French.\"),\n",
" (\"human\", \"Translate this sentence from English to French. {english_text}.\"),\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | chat\n",
"chain.invoke({\"english_text\": \"Hello, how are you?\"})"
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e79de691-9dd6-4697-b57e-59a4a3cc073a",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatAI21 features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_ai21.chat_models.ChatAI21.html"
]
}
],
@@ -128,7 +244,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.10.4"
}
},
"nbformat": 4,

View File

@@ -115,7 +115,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
@@ -123,8 +123,8 @@
"from langchain_openai import AzureChatOpenAI\n",
"\n",
"llm = AzureChatOpenAI(\n",
" azure_deployment=\"YOUR-DEPLOYMENT\",\n",
" api_version=\"2024-05-01-preview\",\n",
" azure_deployment=\"gpt-35-turbo\", # or your deployment\n",
" api_version=\"2023-06-01-preview\", # or your api version\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
@@ -143,7 +143,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "62e0dbc3",
"metadata": {
"tags": []
@@ -152,10 +152,10 @@
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore la programmation.\", response_metadata={'token_usage': {'completion_tokens': 8, 'prompt_tokens': 31, 'total_tokens': 39}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-a6a732c2-cb02-4e50-9a9c-ab30eab034fc-0', usage_metadata={'input_tokens': 31, 'output_tokens': 8, 'total_tokens': 39})"
"AIMessage(content=\"J'adore la programmation.\", response_metadata={'token_usage': {'completion_tokens': 8, 'prompt_tokens': 31, 'total_tokens': 39}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-bea4b46c-e3e1-4495-9d3a-698370ad963d-0', usage_metadata={'input_tokens': 31, 'output_tokens': 8, 'total_tokens': 39})"
]
},
"execution_count": 4,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -174,7 +174,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 4,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
@@ -202,17 +202,17 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 5,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe das Programmieren.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 26, 'total_tokens': 32}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-084967d7-06f2-441f-b5c1-477e2a9e9d03-0', usage_metadata={'input_tokens': 26, 'output_tokens': 6, 'total_tokens': 32})"
"AIMessage(content='Ich liebe das Programmieren.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 26, 'total_tokens': 32}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-cbc44038-09d3-40d4-9da2-c5910ee636ca-0', usage_metadata={'input_tokens': 26, 'output_tokens': 6, 'total_tokens': 32})"
]
},
"execution_count": 12,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -264,8 +264,8 @@
},
{
"cell_type": "code",
"execution_count": 5,
"id": "84c411b0-1790-4798-8bb7-47d8ece4c2dc",
"execution_count": 6,
"id": "2ca02d23-60d0-43eb-8d04-070f61f8fefd",
"metadata": {},
"outputs": [
{
@@ -288,22 +288,22 @@
},
{
"cell_type": "code",
"execution_count": 6,
"id": "21234693-d92b-4d69-8a7f-55aa062084bf",
"execution_count": 7,
"id": "e1b07ae2-3de7-44bd-bfdc-b76f4ba45a35",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total Cost (USD): $0.000078\n"
"Total Cost (USD): $0.000074\n"
]
}
],
"source": [
"llm_0301 = AzureChatOpenAI(\n",
" azure_deployment=\"YOUR-DEPLOYMENT\",\n",
" api_version=\"2024-05-01-preview\",\n",
" azure_deployment=\"gpt-35-turbo\", # or your deployment\n",
" api_version=\"2023-06-01-preview\", # or your api version\n",
" model_version=\"0301\",\n",
")\n",
"with get_openai_callback() as cb:\n",
@@ -338,7 +338,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.10.4"
}
},
"nbformat": 4,

View File

@@ -2,86 +2,125 @@
"cells": [
{
"cell_type": "raw",
"id": "fbc66410",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Bedrock\n",
"sidebar_label: AWS Bedrock\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatBedrock\n",
"\n",
">[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that offers a choice of \n",
"> high-performing foundation models (FMs) from leading AI companies like `AI21 Labs`, `Anthropic`, `Cohere`, \n",
"> `Meta`, `Stability AI`, and `Amazon` via a single API, along with a broad set of capabilities you need to \n",
"> build generative AI applications with security, privacy, and responsible AI. Using `Amazon Bedrock`, \n",
"> you can easily experiment with and evaluate top FMs for your use case, privately customize them with \n",
"> your data using techniques such as fine-tuning and `Retrieval Augmented Generation` (`RAG`), and build \n",
"> agents that execute tasks using your enterprise systems and data sources. Since `Amazon Bedrock` is \n",
"> serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy \n",
"> generative AI capabilities into your applications using the AWS services you are already familiar with."
"This doc will help you get started with AWS Bedrock [chat models](/docs/concepts/#chat-models). Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon via a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI. Using Amazon Bedrock, you can easily experiment with and evaluate top FMs for your use case, privately customize them with your data using techniques such as fine-tuning and Retrieval Augmented Generation (RAG), and build agents that execute tasks using your enterprise systems and data sources. Since Amazon Bedrock is serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy generative AI capabilities into your applications using the AWS services you are already familiar with.\n",
"\n",
"For more information on which models are accessible via Bedrock, head to the [AWS docs](https://docs.aws.amazon.com/bedrock/latest/userguide/models-features.html).\n",
"\n",
"For detailed documentation of all ChatBedrock features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/bedrock) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatBedrock](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html) | [langchain-aws](https://api.python.langchain.com/en/latest/aws_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-aws?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-aws?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"To access Bedrock models you'll need to create an AWS account, set up the Bedrock API service, get an access key ID and secret key, and install the `langchain-aws` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to the [AWS docs](https://docs.aws.amazon.com/bedrock/latest/userguide/setting-up.html) to sign up to AWS and setup your credentials. You'll also need to turn on model access for your account, which you can do by following [these instructions](https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d51edc81",
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --upgrade --quiet langchain-aws"
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Bedrock integration lives in the `langchain-aws` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-aws"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_aws import ChatBedrock\n",
"from langchain_core.messages import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat = ChatBedrock(\n",
"\n",
"llm = ChatBedrock(\n",
" model_id=\"anthropic.claude-3-sonnet-20240229-v1:0\",\n",
" model_kwargs={\"temperature\": 0.1},\n",
" model_kwargs=dict(temperature=0),\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"execution_count": 5,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
@@ -89,38 +128,30 @@
{
"data": {
"text/plain": [
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", additional_kwargs={'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, response_metadata={'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0', 'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, id='run-994f0362-0e50-4524-afad-3c4f5bb11328-0')"
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", additional_kwargs={'usage': {'prompt_tokens': 29, 'completion_tokens': 21, 'total_tokens': 50}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, response_metadata={'usage': {'prompt_tokens': 29, 'completion_tokens': 21, 'total_tokens': 50}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, id='run-fdb07dc3-ff72-430d-b22b-e7824b15c766-0', usage_metadata={'input_tokens': 29, 'output_tokens': 21, 'total_tokens': 50})"
]
},
"execution_count": 12,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"chat.invoke(messages)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a4a4f4d4",
"metadata": {},
"source": [
"### Streaming\n",
"\n",
"To stream responses, you can use the runnable `.stream()` method."
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d9e52838",
"execution_count": 6,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
@@ -129,84 +160,124 @@
"text": [
"Voici la traduction en français :\n",
"\n",
"J'aime la programmation."
"J'aime la programmation.\n"
]
}
],
"source": [
"for chunk in chat.stream(messages):\n",
" print(chunk.content, end=\"\", flush=True)"
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "c36575b3",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"### LLM Caching with OpenSearch Semantic Cache\n",
"## Chaining\n",
"\n",
"Use OpenSearch as a semantic cache to cache prompts and responses and evaluate hits based on semantic similarity.\n",
"\n"
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "375d4e56",
"execution_count": 7,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren.', additional_kwargs={'usage': {'prompt_tokens': 23, 'completion_tokens': 11, 'total_tokens': 34}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, response_metadata={'usage': {'prompt_tokens': 23, 'completion_tokens': 11, 'total_tokens': 34}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, id='run-5ad005ce-9f31-4670-baa0-9373d418698a-0', usage_metadata={'input_tokens': 23, 'output_tokens': 11, 'total_tokens': 34})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.globals import set_llm_cache\n",
"from langchain_aws import BedrockEmbeddings, ChatBedrock\n",
"from langchain_community.cache import OpenSearchSemanticCache\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"bedrock_embeddings = BedrockEmbeddings(\n",
" model_id=\"amazon.titan-embed-text-v1\", region_name=\"us-east-1\"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chat = ChatBedrock(\n",
" model_id=\"anthropic.claude-3-haiku-20240307-v1:0\", model_kwargs={\"temperature\": 0.5}\n",
")\n",
"\n",
"# Enable LLM cache. Make sure OpenSearch is set up and running. Update URL accordingly.\n",
"set_llm_cache(\n",
" OpenSearchSemanticCache(\n",
" opensearch_url=\"http://localhost:9200\", embedding=bedrock_embeddings\n",
" )\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bb5d25bb",
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"messages = [HumanMessage(content=\"tell me about Amazon Bedrock\")]\n",
"response_text = chat.invoke(messages)\n",
"## ***Beta***: Bedrock Converse API\n",
"\n",
"print(response_text)"
"AWS has recently recently the Bedrock Converse API which provides a unified conversational interface for Bedrock models. This API does not yet support custom models. You can see a list of all [models that are supported here](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html). To improve reliability the ChatBedrock integration will switch to using the Bedrock Converse API as soon as it has feature parity with the existing Bedrock API. Until then a separate [ChatBedrockConverse](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html#langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse) integration has been released in beta for users who do not need to use custom models.\n",
"\n",
"You can use it like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6cfb3086",
"execution_count": 8,
"id": "ae728e59-94d4-40cf-9d24-25ad8723fc59",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/bagatur/langchain/libs/core/langchain_core/_api/beta_decorator.py:87: LangChainBetaWarning: The class `ChatBedrockConverse` is in beta. It is actively being worked on, so the API may change.\n",
" warn_beta(\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", response_metadata={'ResponseMetadata': {'RequestId': '122fb1c8-c3c5-4b06-941e-c95d210bfbc7', 'HTTPStatusCode': 200, 'HTTPHeaders': {'date': 'Mon, 01 Jul 2024 21:48:25 GMT', 'content-type': 'application/json', 'content-length': '243', 'connection': 'keep-alive', 'x-amzn-requestid': '122fb1c8-c3c5-4b06-941e-c95d210bfbc7'}, 'RetryAttempts': 0}, 'stopReason': 'end_turn', 'metrics': {'latencyMs': 830}}, id='run-0e3df22f-fcd8-4fbb-a4fb-565227e7e430-0', usage_metadata={'input_tokens': 29, 'output_tokens': 21, 'total_tokens': 50})"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"# The second time, while not a direct hit, the question is semantically similar to the original question,\n",
"# so it uses the cached result!\n",
"from langchain_aws import ChatBedrockConverse\n",
"\n",
"messages = [HumanMessage(content=\"what is amazon bedrock\")]\n",
"response_text = chat.invoke(messages)\n",
"llm = ChatBedrockConverse(\n",
" model=\"anthropic.claude-3-sonnet-20240229-v1:0\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" # other params...\n",
")\n",
"\n",
"print(response_text)"
"llm.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatBedrock features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html\n",
"\n",
"For detailed documentation of all ChatBedrockConverse features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html"
]
}
],
@@ -226,7 +297,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -82,7 +82,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 5,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
@@ -95,14 +95,14 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 13,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat = ChatCohere(model=\"command\")"
"chat = ChatCohere()"
]
},
{
@@ -237,6 +237,95 @@
"source": [
"chain.invoke({\"topic\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"id": "12db8d69",
"metadata": {},
"source": [
"## Tool calling\n",
"\n",
"Cohere supports tool calling functionalities!"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "337e24af",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import (\n",
" HumanMessage,\n",
" ToolMessage,\n",
")\n",
"from langchain_core.tools import tool"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "74d292e7",
"metadata": {},
"outputs": [],
"source": [
"@tool\n",
"def magic_function(number: int) -> int:\n",
" \"\"\"Applies a magic operation to an integer\n",
" Args:\n",
" number: Number to have magic operation performed on\n",
" \"\"\"\n",
" return number + 10\n",
"\n",
"\n",
"def invoke_tools(tool_calls, messages):\n",
" for tool_call in tool_calls:\n",
" selected_tool = {\"magic_function\": magic_function}[tool_call[\"name\"].lower()]\n",
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))\n",
" return messages\n",
"\n",
"\n",
"tools = [magic_function]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ecafcbc6",
"metadata": {},
"outputs": [],
"source": [
"llm_with_tools = chat.bind_tools(tools=tools)\n",
"messages = [HumanMessage(content=\"What is the value of magic_function(2)?\")]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "aa34fc39",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The value of magic_function(2) is 12.', additional_kwargs={'documents': [{'id': 'magic_function:0:2:0', 'output': '12', 'tool_name': 'magic_function'}], 'citations': [ChatCitation(start=34, end=36, text='12', document_ids=['magic_function:0:2:0'])], 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '96a55791-0c58-4e2e-bc2a-8550e137c46d', 'token_count': {'input_tokens': 998, 'output_tokens': 59}}, response_metadata={'documents': [{'id': 'magic_function:0:2:0', 'output': '12', 'tool_name': 'magic_function'}], 'citations': [ChatCitation(start=34, end=36, text='12', document_ids=['magic_function:0:2:0'])], 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '96a55791-0c58-4e2e-bc2a-8550e137c46d', 'token_count': {'input_tokens': 998, 'output_tokens': 59}}, id='run-f318a9cf-55c8-44f4-91d1-27cf46c6a465-0')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = llm_with_tools.invoke(messages)\n",
"while res.tool_calls:\n",
" messages.append(res)\n",
" messages = invoke_tools(res.tool_calls, messages)\n",
" res = llm_with_tools.invoke(messages)\n",
"\n",
"res"
]
}
],
"metadata": {
@@ -255,7 +344,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@@ -36,7 +36,7 @@
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"| | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"\n",
"### Supported Methods\n",
"\n",
@@ -395,6 +395,66 @@
"chat_model_external.invoke(\"How to use Databricks?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Function calling on Databricks"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Databricks Function Calling is OpenAI-compatible and is only available during model serving as part of Foundation Model APIs.\n",
"\n",
"See [Databricks function calling introduction](https://docs.databricks.com/en/machine-learning/model-serving/function-calling.html#supported-models) for supported models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.databricks import ChatDatabricks\n",
"\n",
"llm = ChatDatabricks(endpoint=\"databricks-meta-llama-3-70b-instruct\")\n",
"tools = [\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
" },\n",
" \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"]},\n",
" },\n",
" },\n",
" },\n",
" }\n",
"]\n",
"\n",
"# supported tool_choice values: \"auto\", \"required\", \"none\", function name in string format,\n",
"# or a dictionary as {\"type\": \"function\", \"function\": {\"name\": <<tool_name>>}}\n",
"model = llm.bind_tools(tools, tool_choice=\"auto\")\n",
"\n",
"messages = [{\"role\": \"user\", \"content\": \"What is the current temperature of Chicago?\"}]\n",
"print(model.invoke(messages))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See [Databricks Unity Catalog](docs/integrations/tools/databricks.ipynb) about how to use UC functions in chains."
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "raw",
"id": "529aeba9",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
@@ -11,190 +11,236 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "642fd21c-600a-47a1-be96-6e1438b421a9",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatFireworks\n",
"\n",
">[Fireworks](https://app.fireworks.ai/) accelerates product development on generative AI by creating an innovative AI experiment and production platform. \n",
"This doc help you get started with Fireworks AI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatFireworks features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_fireworks.chat_models.ChatFireworks.html).\n",
"\n",
"This example goes over how to use LangChain to interact with `ChatFireworks` models."
]
},
{
"cell_type": "raw",
"id": "4a7c795e",
"metadata": {},
"source": [
"%pip install langchain-fireworks"
"Fireworks AI is an AI inference platform to run and customize models. For a list of all models served by Fireworks see the [Fireworks docs](https://fireworks.ai/models).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/fireworks) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatFireworks](https://api.python.langchain.com/en/latest/chat_models/langchain_fireworks.chat_models.ChatFireworks.html) | [langchain-fireworks](https://api.python.langchain.com/en/latest/fireworks_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-fireworks?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-fireworks?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | \n",
"\n",
"## Setup\n",
"\n",
"To access Fireworks models you'll need to create a Fireworks account, get an API key, and install the `langchain-fireworks` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to (ttps://fireworks.ai/login to sign up to Fireworks and generate an API key. Once you've done this set the FIREWORKS_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d00d850917865298",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_fireworks import ChatFireworks"
]
},
{
"cell_type": "markdown",
"id": "f28ebf8b-f14f-46c7-9962-8b8dc42e31be",
"metadata": {},
"source": [
"# Setup\n",
"\n",
"1. Make sure the `langchain-fireworks` package is installed in your environment.\n",
"2. Sign in to [Fireworks AI](http://fireworks.ai) for the an API Key to access our models, and make sure it is set as the `FIREWORKS_API_KEY` environment variable.\n",
"3. Set up your model using a model id. If the model is not set, the default model is fireworks-llama-v2-7b-chat. See the full, most up-to-date model list on [app.fireworks.ai](https://app.fireworks.ai)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d096fb14-8acc-4047-9cd0-c842430c3a1d",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if \"FIREWORKS_API_KEY\" not in os.environ:\n",
" os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Fireworks API Key:\")\n",
"\n",
"# Initialize a Fireworks chat model\n",
"chat = ChatFireworks(model=\"accounts/fireworks/models/mixtral-8x7b-instruct\")"
"os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Enter your Fireworks API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d8f13144-37cf-47a5-b5a0-e3cdf76d9a72",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"# Calling the Model Directly\n",
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"You can call the model directly with a system and human message to get answers."
"The LangChain Fireworks integration lives in the `langchain-fireworks` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-fireworks"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:\n",
"\n",
"- TODO: Update model instantiation with relevant params."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_fireworks import ChatFireworks\n",
"\n",
"llm = ChatFireworks(\n",
" model=\"accounts/fireworks/models/llama-v3-70b-instruct\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore la programmation.\", response_metadata={'token_usage': {'prompt_tokens': 35, 'total_tokens': 44, 'completion_tokens': 9}, 'model_name': 'accounts/fireworks/models/llama-v3-70b-instruct', 'system_fingerprint': '', 'finish_reason': 'stop', 'logprobs': None}, id='run-df28e69a-ff30-457e-a743-06eb14d01cb0-0', usage_metadata={'input_tokens': 35, 'output_tokens': 9, 'total_tokens': 44})"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "72340871-ae2f-415f-b399-0777d32dc379",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Hello! I'm an AI language model, a helpful assistant designed to chat and assist you with any questions or information you might need. I'm here to make your experience as smooth and enjoyable as possible. How can I assist you today?\")"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ChatFireworks Wrapper\n",
"system_message = SystemMessage(content=\"You are to chat with the user.\")\n",
"human_message = HumanMessage(content=\"Who are you?\")\n",
"\n",
"chat.invoke([system_message, human_message])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "68c6b1fa-2ff7-4a63-8d88-3cec302180b8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm an AI and do not have the ability to experience the weather firsthand. However,\")"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Setting additional parameters: temperature, max_tokens, top_p\n",
"chat = ChatFireworks(\n",
" model=\"accounts/fireworks/models/mixtral-8x7b-instruct\",\n",
" temperature=1,\n",
" max_tokens=20,\n",
")\n",
"system_message = SystemMessage(content=\"You are to chat with the user.\")\n",
"human_message = HumanMessage(content=\"How's the weather today?\")\n",
"chat.invoke([system_message, human_message])"
]
},
{
"cell_type": "markdown",
"id": "8c44cb36",
"metadata": {},
"source": [
"# Tool Calling\n",
"\n",
"Fireworks offers the `FireFunction-v2` tool calling model. You can use it for structured output and function calling use cases:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "ee2db682",
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'function': {'arguments': '{\"name\": \"Erick\", \"age\": 27}',\n",
" 'name': 'ExtractFields'},\n",
" 'id': 'call_J0WYP2TLenaFw3UeVU0UnWqx',\n",
" 'index': 0,\n",
" 'type': 'function'}\n"
"J'adore la programmation.\n"
]
}
],
"source": [
"from pprint import pprint\n",
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"\n",
"\n",
"class ExtractFields(BaseModel):\n",
" name: str\n",
" age: int\n",
"\n",
"\n",
"chat = ChatFireworks(\n",
" model=\"accounts/fireworks/models/firefunction-v2\",\n",
").bind_tools([ExtractFields])\n",
"\n",
"result = chat.invoke(\"I am a 27 year old named Erick\")\n",
"\n",
"pprint(result.additional_kwargs[\"tool_calls\"][0])"
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2321a4e6",
"execution_count": 4,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe das Programmieren.', response_metadata={'token_usage': {'prompt_tokens': 30, 'total_tokens': 37, 'completion_tokens': 7}, 'model_name': 'accounts/fireworks/models/llama-v3-70b-instruct', 'system_fingerprint': '', 'finish_reason': 'stop', 'logprobs': None}, id='run-ff3f91ad-ed81-4acf-9f59-7490dc8d8f48-0', usage_metadata={'input_tokens': 30, 'output_tokens': 7, 'total_tokens': 37})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatFireworks features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_fireworks.chat_models.ChatFireworks.html"
]
}
],
"metadata": {
@@ -213,7 +259,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -2,298 +2,259 @@
"cells": [
{
"cell_type": "raw",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Groq\n",
"keywords: [chatgroq]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# Groq\n",
"# ChatGroq\n",
"\n",
"LangChain supports integration with [Groq](https://groq.com/) chat models. Groq specializes in fast AI inference.\n",
"This will help you getting started with Groq [chat models](../../concepts.mdx#chat-models). For detailed documentation of all ChatGroq features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_groq.chat_models.ChatGroq.html). For a list of all Groq models, visit this [link](https://console.groq.com/docs/models).\n",
"\n",
"To get started, you'll first need to install the langchain-groq package:"
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/groq) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatGroq](https://api.python.langchain.com/en/latest/chat_models/langchain_groq.chat_models.ChatGroq.html) | [langchain-groq](https://api.python.langchain.com/en/latest/groq_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-groq?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-groq?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](../../how_to/tool_calling.ipynb) | [Structured output](../../how_to/structured_output.ipynb) | JSON mode | [Image input](../../how_to/multimodal_inputs.ipynb) | Audio input | Video input | [Token-level streaming](../../how_to/chat_streaming.ipynb) | Native async | [Token usage](../../how_to/chat_token_usage_tracking.ipynb) | [Logprobs](../../how_to/logprobs.ipynb) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | \n",
"\n",
"## Setup\n",
"\n",
"To access Groq models you'll need to create a Groq account, get an API key, and install the `langchain-groq` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to the [Groq console](https://console.groq.com/keys) to sign up to Groq and generate an API key. Once you've done this set the GROQ_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-groq"
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"GROQ_API_KEY\"] = getpass.getpass(\"Enter your Groq API key: \")"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"Request an [API key](https://wow.groq.com) and set it as an environment variable:\n",
"\n",
"```bash\n",
"export GROQ_API_KEY=<YOUR API KEY>\n",
"```\n",
"\n",
"Alternatively, you may configure the API key when you initialize ChatGroq.\n",
"\n",
"Here's an example of it in action:"
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 2,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Low latency is crucial for Large Language Models (LLMs) because it directly impacts the user experience, model performance, and overall efficiency. Here are some reasons why low latency is essential for LLMs:\\n\\n1. **Real-time Interaction**: LLMs are often used in applications that require real-time interaction, such as chatbots, virtual assistants, and language translation. Low latency ensures that the model responds quickly to user input, providing a seamless and engaging experience.\\n2. **Conversational Flow**: In conversational AI, latency can disrupt the natural flow of conversation. Low latency helps maintain a smooth conversation, allowing users to respond quickly and naturally, without feeling like they're waiting for the model to catch up.\\n3. **Model Performance**: High latency can lead to increased error rates, as the model may struggle to keep up with the input pace. Low latency enables the model to process information more efficiently, resulting in better accuracy and performance.\\n4. **Scalability**: As the number of users and requests increases, low latency becomes even more critical. It allows the model to handle a higher volume of requests without sacrificing performance, making it more scalable and efficient.\\n5. **Resource Utilization**: Low latency can reduce the computational resources required to process requests. By minimizing latency, you can optimize resource allocation, reduce costs, and improve overall system efficiency.\\n6. **User Experience**: High latency can lead to frustration, abandonment, and a poor user experience. Low latency ensures that users receive timely responses, which is essential for building trust and satisfaction.\\n7. **Competitive Advantage**: In applications like customer service or language translation, low latency can be a key differentiator. It can provide a competitive advantage by offering a faster and more responsive experience, setting your application apart from others.\\n8. **Edge Computing**: With the increasing adoption of edge computing, low latency is critical for processing data closer to the user. This reduces latency even further, enabling real-time processing and analysis of data.\\n9. **Real-time Analytics**: Low latency enables real-time analytics and insights, which are essential for applications like sentiment analysis, trend detection, and anomaly detection.\\n10. **Future-Proofing**: As LLMs continue to evolve and become more complex, low latency will become even more critical. By prioritizing low latency now, you'll be better prepared to handle the demands of future LLM applications.\\n\\nIn summary, low latency is vital for LLMs because it ensures a seamless user experience, improves model performance, and enables efficient resource utilization. By prioritizing low latency, you can build more effective, scalable, and efficient LLM applications that meet the demands of real-time interaction and processing.\", response_metadata={'token_usage': {'completion_tokens': 541, 'prompt_tokens': 33, 'total_tokens': 574, 'completion_time': 1.499777658, 'prompt_time': 0.008344704, 'queue_time': None, 'total_time': 1.508122362}, 'model_name': 'llama3-70b-8192', 'system_fingerprint': 'fp_87cbfbbc4d', 'finish_reason': 'stop', 'logprobs': None}, id='run-49dad960-ace8-4cd7-90b3-2db99ecbfa44-0')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_groq import ChatGroq\n",
"\n",
"chat = ChatGroq(\n",
" temperature=0,\n",
" model=\"llama3-70b-8192\",\n",
" # api_key=\"\" # Optional if not set as an environment variable\n",
")\n",
"\n",
"system = \"You are a helpful assistant.\"\n",
"human = \"{text}\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"\n",
"chain = prompt | chat\n",
"chain.invoke({\"text\": \"Explain the importance of low latency for LLMs.\"})"
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"You can view the available models [here](https://console.groq.com/docs/models).\n",
"### Installation\n",
"\n",
"## Tool calling\n",
"\n",
"Groq chat models support [tool calling](/docs/how_to/tool_calling) to generate output matching a specific schema. The model may choose to call multiple tools or the same tool multiple times if appropriate.\n",
"\n",
"Here's an example:"
"The LangChain Groq integration lives in the `langchain-groq` package:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'get_current_weather',\n",
" 'args': {'location': 'San Francisco', 'unit': 'Celsius'},\n",
" 'id': 'call_pydj'},\n",
" {'name': 'get_current_weather',\n",
" 'args': {'location': 'Tokyo', 'unit': 'Celsius'},\n",
" 'id': 'call_jgq3'}]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Optional\n",
"\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def get_current_weather(location: str, unit: Optional[str]):\n",
" \"\"\"Get the current weather in a given location\"\"\"\n",
" return \"Cloudy with a chance of rain.\"\n",
"\n",
"\n",
"tool_model = chat.bind_tools([get_current_weather], tool_choice=\"auto\")\n",
"\n",
"res = tool_model.invoke(\"What is the weather like in San Francisco and Tokyo?\")\n",
"\n",
"res.tool_calls"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### `.with_structured_output()`\n",
"\n",
"You can also use the convenience [`.with_structured_output()`](/docs/how_to/structured_output/#the-with_structured_output-method) method to coerce `ChatGroq` into returning a structured output.\n",
"Here is an example:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Joke(setup='Why did the cat join a band?', punchline='Because it wanted to be the purr-cussionist!', rating=None)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class Joke(BaseModel):\n",
" \"\"\"Joke to tell user.\"\"\"\n",
"\n",
" setup: str = Field(description=\"The setup of the joke\")\n",
" punchline: str = Field(description=\"The punchline to the joke\")\n",
" rating: Optional[int] = Field(description=\"How funny the joke is, from 1 to 10\")\n",
"\n",
"\n",
"structured_llm = chat.with_structured_output(Joke)\n",
"\n",
"structured_llm.invoke(\"Tell me a joke about cats\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Behind the scenes, this takes advantage of the above tool calling functionality.\n",
"\n",
"## Async"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Here is a limerick about the sun:\\n\\nThere once was a sun in the sky,\\nWhose warmth and light caught the eye,\\nIt shone bright and bold,\\nWith a fiery gold,\\nAnd brought life to all, as it flew by.', response_metadata={'token_usage': {'completion_tokens': 51, 'prompt_tokens': 18, 'total_tokens': 69, 'completion_time': 0.144614022, 'prompt_time': 0.00585394, 'queue_time': None, 'total_time': 0.150467962}, 'model_name': 'llama3-70b-8192', 'system_fingerprint': 'fp_2f30b0b571', 'finish_reason': 'stop', 'logprobs': None}, id='run-e42340ba-f0ad-4b54-af61-8308d8ec8256-0')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatGroq(temperature=0, model=\"llama3-70b-8192\")\n",
"prompt = ChatPromptTemplate.from_messages([(\"human\", \"Write a Limerick about {topic}\")])\n",
"chain = prompt | chat\n",
"await chain.ainvoke({\"topic\": \"The Sun\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Streaming"
]
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 3,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Silvery glow bright\n",
"Luna's gentle light shines down\n",
"Midnight's gentle queen"
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"chat = ChatGroq(temperature=0, model=\"llama3-70b-8192\")\n",
"prompt = ChatPromptTemplate.from_messages([(\"human\", \"Write a haiku about {topic}\")])\n",
"chain = prompt | chat\n",
"for chunk in chain.stream({\"topic\": \"The Moon\"}):\n",
" print(chunk.content, end=\"\", flush=True)"
"%pip install -qU langchain-groq"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Passing custom parameters\n",
"## Instantiation\n",
"\n",
"You can pass other Groq-specific parameters using the `model_kwargs` argument on initialization. Here's an example of enabling JSON mode:"
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 4,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_groq import ChatGroq\n",
"\n",
"llm = ChatGroq(\n",
" model=\"mixtral-8x7b-32768\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='{ \"response\": \"That\\'s a tough question! There are eight species of bears found in the world, and each one is unique and amazing in its own way. However, if I had to pick one, I\\'d say the giant panda is a popular favorite among many people. Who can resist those adorable black and white markings?\", \"followup_question\": \"Would you like to know more about the giant panda\\'s habitat and diet?\" }', response_metadata={'token_usage': {'completion_tokens': 89, 'prompt_tokens': 50, 'total_tokens': 139, 'completion_time': 0.249032839, 'prompt_time': 0.011134497, 'queue_time': None, 'total_time': 0.260167336}, 'model_name': 'llama3-70b-8192', 'system_fingerprint': 'fp_2f30b0b571', 'finish_reason': 'stop', 'logprobs': None}, id='run-558ce67e-8c63-43fe-a48f-6ecf181bc922-0')"
"AIMessage(content='I enjoy programming. (The French translation is: \"J\\'aime programmer.\")\\n\\nNote: I chose to translate \"I love programming\" as \"J\\'aime programmer\" instead of \"Je suis amoureux de programmer\" because the latter has a romantic connotation that is not present in the original English sentence.', response_metadata={'token_usage': {'completion_tokens': 73, 'prompt_tokens': 31, 'total_tokens': 104, 'completion_time': 0.1140625, 'prompt_time': 0.003352463, 'queue_time': None, 'total_time': 0.117414963}, 'model_name': 'mixtral-8x7b-32768', 'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop', 'logprobs': None}, id='run-64433c19-eadf-42fc-801e-3071e3c40160-0', usage_metadata={'input_tokens': 31, 'output_tokens': 73, 'total_tokens': 104})"
]
},
"execution_count": 15,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatGroq(\n",
" model=\"llama3-70b-8192\", model_kwargs={\"response_format\": {\"type\": \"json_object\"}}\n",
")\n",
"\n",
"system = \"\"\"\n",
"You are a helpful assistant.\n",
"Always respond with a JSON object with two string keys: \"response\" and \"followup_question\".\n",
"\"\"\"\n",
"human = \"{question}\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"\n",
"chain = prompt | chat\n",
"\n",
"chain.invoke({\"question\": \"what bear is best?\"})"
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"I enjoy programming. (The French translation is: \"J'aime programmer.\")\n",
"\n",
"Note: I chose to translate \"I love programming\" as \"J'aime programmer\" instead of \"Je suis amoureux de programmer\" because the latter has a romantic connotation that is not present in the original English sentence.\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](../../how_to/sequence.ipynb) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='That\\'s great! I can help you translate English phrases related to programming into German.\\n\\n\"I love programming\" can be translated as \"Ich liebe Programmieren\" in German.\\n\\nHere are some more programming-related phrases translated into German:\\n\\n* \"Programming language\" = \"Programmiersprache\"\\n* \"Code\" = \"Code\"\\n* \"Variable\" = \"Variable\"\\n* \"Function\" = \"Funktion\"\\n* \"Array\" = \"Array\"\\n* \"Object-oriented programming\" = \"Objektorientierte Programmierung\"\\n* \"Algorithm\" = \"Algorithmus\"\\n* \"Data structure\" = \"Datenstruktur\"\\n* \"Debugging\" = \"Fehlersuche\"\\n* \"Compile\" = \"Kompilieren\"\\n* \"Link\" = \"Verknüpfen\"\\n* \"Run\" = \"Ausführen\"\\n* \"Test\" = \"Testen\"\\n* \"Deploy\" = \"Bereitstellen\"\\n* \"Version control\" = \"Versionskontrolle\"\\n* \"Open source\" = \"Open Source\"\\n* \"Software development\" = \"Softwareentwicklung\"\\n* \"Agile methodology\" = \"Agile Methodik\"\\n* \"DevOps\" = \"DevOps\"\\n* \"Cloud computing\" = \"Cloud Computing\"\\n\\nI hope this helps! Let me know if you have any other questions or if you need further translations.', response_metadata={'token_usage': {'completion_tokens': 331, 'prompt_tokens': 25, 'total_tokens': 356, 'completion_time': 0.520006542, 'prompt_time': 0.00250165, 'queue_time': None, 'total_time': 0.522508192}, 'model_name': 'mixtral-8x7b-32768', 'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop', 'logprobs': None}, id='run-74207fb7-85d3-417d-b2b9-621116b75d41-0', usage_metadata={'input_tokens': 25, 'output_tokens': 331, 'total_tokens': 356})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatGroq features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_groq.chat_models.ChatGroq.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -307,9 +268,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 5
}

View File

@@ -4,18 +4,67 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Hugging Face\n",
"---\n",
"sidebar_label: Hugging Face\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ChatHuggingFace\n",
"\n",
"This notebook shows how to get started using `Hugging Face` LLM's as chat models.\n",
"## Overview\n",
"\n",
"This notebook shows how to get started using Hugging Face LLMs as chat models.\n",
"\n",
"In particular, we will:\n",
"1. Utilize the [HuggingFaceEndpoint](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/llms/huggingface_endpoint.py) integrations to instantiate an `LLM`.\n",
"1. Utilize the [HuggingFaceEndpoint](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/llms/huggingface_endpoint.py) integrations to instantiate an LLM.\n",
"2. Utilize the `ChatHuggingFace` class to enable any of these LLMs to interface with LangChain's [Chat Messages](/docs/concepts/#message-types) abstraction.\n",
"3. Explore tool calling with the `ChatHuggingFace`.\n",
"4. Demonstrate how to use an open-source LLM to power an `ChatAgent` pipeline\n",
"\n",
"### Integration details\n",
"\n",
"> Note: To get started, you'll need to have a [Hugging Face Access Token](https://huggingface.co/docs/hub/security-tokens) saved as an environment variable: `HUGGINGFACEHUB_API_TOKEN`."
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatHuggingFace](https://api.python.langchain.com/en/latest/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html) | [langchain-huggingface](https://api.python.langchain.com/en/latest/huggingface_api_reference.html) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_huggingface?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_huggingface?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"To access Hugging Face models you'll need to create a Hugging Face account, get an API key, and install the `langchain-huggingface` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Generate a [Hugging Face Access Token](https://huggingface.co/docs/hub/security-tokens) and store it as an environment variable: `HUGGINGFACEHUB_API_TOKEN`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"HUGGINGFACEHUB_API_TOKEN\"):\n",
" os.environ[\"HUGGINGFACEHUB_API_TOKEN\"] = getpass.getpass(\"Enter your token: \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"Below we install additional packages as well for demonstration purposes:"
]
},
{
@@ -31,7 +80,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Instantiate an LLM"
"## Instantiation"
]
},
{
@@ -80,6 +129,7 @@
" max_new_tokens=512,\n",
" do_sample=False,\n",
" repetition_penalty=1.03,\n",
" return_full_text=False,\n",
" ),\n",
")"
]
@@ -118,7 +168,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Instantiate the `ChatHuggingFace` to apply chat templates"
"## Invocation"
]
},
{
@@ -249,7 +299,44 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Explore the tool calling with `ChatHuggingFace`\n",
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tool calling with `ChatHuggingFace`\n",
"\n",
"`text-generation-inference` supports tool with open source LLMs starting from v2.0.1"
]
@@ -313,7 +400,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Take it for a spin as an agent!\n",
"## Use with agents\n",
"\n",
"Here we'll test out `Zephyr-7B-beta` as a zero-shot `ReAct` Agent. \n",
"\n",
@@ -458,6 +545,15 @@
"\n",
"It's exciting to see how far open-source LLM's can go as general purpose reasoning agents. Give it a try yourself!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatHuggingFace features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html"
]
}
],
"metadata": {
@@ -476,7 +572,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.10.4"
}
},
"nbformat": 4,

View File

@@ -454,7 +454,7 @@
"\n",
"Please note that `ChatWatsonx.bind_tools` is on beta state, so right now we only support `mistralai/mixtral-8x7b-instruct-v01` model.\n",
"\n",
"You should also redefine `max_new_tokens` parameter to get the entire model response. By default `max_new_tokens` is set ot 20."
"You should also redefine `max_new_tokens` parameter to get the entire model response. By default `max_new_tokens` is set to 20."
]
},
{
@@ -577,7 +577,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
"version": "3.1.undefined"
}
},
"nbformat": 4,

Some files were not shown because too many files have changed in this diff Show More