Compare commits

..

177 Commits

Author SHA1 Message Date
Lauren Hirata Singh
7b102f9701 docs: Update GitHub discussion links to Forum 2025-07-10 15:19:47 -04:00
Lauren Hirata Singh
d7c433b07e docs: Add forum link to footer 2025-06-30 15:58:33 -04:00
Anush
2d3020f6cd docs: Update vectorstores feature matrix for Qdrant (#31786)
## Description

- `Qdrant` vector store supports `add_documents` with IDs.
- Multi-tenancy is supported via [payload
filters](https://qdrant.tech/documentation/guides/multiple-partitions/)
and
[JWT](https://qdrant.tech/documentation/guides/security/#granular-access-control-with-jwt)
if needed.
2025-06-30 14:02:07 -04:00
Mason Daugherty
33c9bf1adc langchain-openai[patch]: Add ruff bandit rules to linter (#31788) 2025-06-30 14:01:32 -04:00
Mason Daugherty
645e25f624 langchain-anthropic[patch]: Add ruff bandit rules (#31789) 2025-06-30 14:00:53 -04:00
Mason Daugherty
247673ddb8 chroma: add ruff bandit rules (#31790) 2025-06-30 14:00:08 -04:00
Mason Daugherty
1a5120dc9d langchain-deepseek[patch]: add ruff bandit rules (#31792)
add ruff bandit rules
2025-06-30 13:59:35 -04:00
Mason Daugherty
6572399174 langchain-exa: add ruff bandit rules (#31793)
Add ruff bandit rules
2025-06-30 13:58:38 -04:00
ccurme
04cc674e80 core: release 0.3.67 (#31791) 2025-06-30 12:00:39 -04:00
ccurme
46cef90f7b core: expose tool message recognized block types (#31787) 2025-06-30 11:19:34 -04:00
ccurme
428c276948 infra: skip notebook in CI (#31773) 2025-06-28 14:00:45 -04:00
Yiwei
375f53adac IBM DB2 vector store documentation addition (#31008) 2025-06-27 18:34:32 +00:00
ccurme
9f17fabc43 openai: release 0.3.27 (#31769)
To pick up https://github.com/langchain-ai/langchain/pull/31756.
2025-06-27 13:44:45 -04:00
Andrew Jaeger
0189c50570 openai[fix]: Correctly set usage metadata for OpenAI Responses API (#31756) 2025-06-27 15:35:14 +00:00
Mason Daugherty
9aa75eaef3 docs: enhance docstring for disable_streaming parameter in BaseChatModel (#31759)
Resolves #31758
2025-06-27 11:27:41 -04:00
ccurme
e8e89b0b82 docs: updates from langchain-openai 0.3.26 (#31764) 2025-06-27 11:27:25 -04:00
Eugene Yurtsev
eb08b064bb docs: Remove giscus comments (#31755)
Remove giscus comments from langchain
2025-06-27 09:56:55 -04:00
Mason Daugherty
e1aff00cc1 groq: support reasoning_effort, update docs for clarity (#31754)
- There was some ambiguous wording that has been updated to hopefully
clarify the functionality of `reasoning_format` in ChatGroq.
- Added support for `reasoning_effort`
- Added links to see models capable of `reasoning_format` and
`reasoning_effort`
- Other minor nits
2025-06-27 09:43:40 -04:00
ccurme
ea1345a58b openai[patch]: update cassette (#31752)
Following changes in `openai==1.92`.
2025-06-26 14:52:12 -04:00
ccurme
066be383e3 openai[patch]: update test following release of openai 1.92 (#31751)
Added new required fields for `ResponseFunctionWebSearch`
2025-06-26 18:22:58 +00:00
ccurme
61feaa4656 openai: release 0.3.26 (#31749) 2025-06-26 13:51:51 -04:00
ccurme
88d5f3edcc openai[patch]: allow specification of output format for Responses API (#31686) 2025-06-26 13:41:43 -04:00
Mason Daugherty
59c2b81627 docs: fix some inline links (#31748) 2025-06-26 13:35:14 -04:00
Lauren Hirata Singh
83774902e7 docs: Academy banner (#31745)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-06-26 10:03:06 -04:00
ccurme
0ae434be21 anthropic: release 0.3.16 (#31744) 2025-06-26 09:09:29 -04:00
Mason Daugherty
a08e73f07e docs: remove trailing backticks (#31740) 2025-06-26 01:23:39 -04:00
Martin Schaer
421554007f docs: Update surrealdb vectorestore documentation (#31199) 2025-06-25 20:16:43 +00:00
Mason Daugherty
2fb27b63f5 ollama: update tests, docs (#31736)
- docs: for the Ollama notebooks, improve the specificity of some links,
add `homebrew` install info, update some wording
- tests: reduce number of local models needed to run in half from 4 → 2
(shedding 8gb of required installs)
- bump deps (non-breaking) in anticipation of upcoming "thinking" PR
2025-06-25 20:13:20 +00:00
ccurme
a1f3147989 docs: update sort order for integrations table (#31737)
Pull latest download statistics.
2025-06-25 16:03:36 -04:00
ccurme
84500704ab openai[patch]: fix bug where function call IDs were not populated (#31735)
(optional) IDs were getting dropped in some cases.
2025-06-25 19:08:27 +00:00
ccurme
0bf223d6cf openai[patch]: add attribute to always use previous_response_id (#31734) 2025-06-25 19:01:43 +00:00
ccurme
b02bd67788 anthropic[patch]: cache clients (#31659) 2025-06-25 14:49:02 -04:00
Michael Li
e3f1ce0ac5 docs: fix retriever typos (#31733) 2025-06-25 16:06:21 +00:00
Michael Li
5d734ac8a8 docs: fix typo in clarifai.ipynb (#31732) 2025-06-25 15:59:29 +00:00
Michael Li
a09583204c docs: fix typos in tool_feat_table.py (#31731) 2025-06-25 15:56:59 +00:00
Michael Li
df1a4c0085 docs: fix typo in timescalevector.ipynb (#31727) 2025-06-25 11:49:19 -04:00
Michael Li
990a69d9d7 docs: fix typo in globals.py (#31728) 2025-06-25 11:47:02 -04:00
Mason Daugherty
3c3320ae30 fix: update import paths for ChatOllama to use langchain_ollama instead of community (#31721) 2025-06-24 16:19:31 -04:00
ccurme
e09abf8170 anthropic[patch]: add benchmark (#31718)
Account for lazy loading of clients in init time benchmark
2025-06-24 15:17:22 -04:00
Eugene Yurtsev
9164e6f906 core[patch]: Add additional hashing options to indexing API, warn on SHA-1 (#31649)
Add additional hashing options to the indexing API, warn on SHA-1

Requires:

- Bumping langchain-core version
- bumping min langchain-core in langchain

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-06-24 14:44:06 -04:00
Daniel Fjeldstad
cc4f5269b1 docs: replace deprecated llama 3 model with sonar in ChatPerplexity example (#31716)
**Description:** Updates ChatPerplexity documentation to replace
deprecated llama 3 model reference with the current sonar model in the
API key example code block.

**Issue:** N/A (maintenance update for deprecated model)

**Dependencies:** No new dependencies required

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-06-24 17:35:18 +00:00
Mason Daugherty
8878a7b143 docs: ollama nits (#31714) 2025-06-24 13:19:15 -04:00
ccurme
7cdd53390d docs: fix embeddings links (#31715)
This table is referenced in multiple places, so links should be global.
2025-06-24 11:27:59 -04:00
Mason Daugherty
6d71b6b6ee standard-tests: refactoring and fixes (#31703)
- `libs/core/langchain_core/messages/base.py`: add model name to
examples [per
docs](https://python.langchain.com/api_reference/standard_tests/integration_tests/langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.html#langchain_tests.integration_tests.chat_models.ChatModelIntegrationTests.test_usage_metadata)
("0.3.17: Additionally check for the presence of model_name in the
response metadata, which is needed for usage tracking in callback
handlers")
- `libs/core/langchain_core/utils/function_calling.py`: correct typo
-
`libs/standard-tests/langchain_tests/integration_tests/chat_models.py`:
- `magic_function(input)` -> `magic_function(_input)` to prevent warning
about redefining built in `input`
    - relocate a few tests for better grouping and narrative flow
    - suppress some type hint warnings following suit from similar tests
    - fix a few more typos
- validate not only that `model_name` is defined, but that it is not
empty (test_usage_metadata)
2025-06-23 23:22:31 +00:00
Christopher Jones
b6f74bff40 Update and simplify Oracle Database example cookbook (#31364) 2025-06-23 19:03:00 -04:00
Christophe Bornet
c7e82ad95d core: Use parametrized test in test_correct_get_tracer_project (#31513) 2025-06-23 18:55:57 -04:00
joshy-deshaw
8a0782c46c openai[patch]: fix dropping response headers while streaming / Azure (#31580) 2025-06-23 17:59:58 -04:00
Mason Daugherty
8868701c16 docs: updated ChatGroq docs and example (#31710) 2025-06-23 20:36:46 +00:00
ccurme
ee83993b91 docs: document Anthropic cache TTL count details (#31708) 2025-06-23 20:16:42 +00:00
Mason Daugherty
e6191d58e7 groq: release 0.3.4 (#31709)
bump groq dependency to ensure reasoning is supported
2025-06-23 19:30:05 +00:00
Mason Daugherty
40bb7d00fc groq: release 0.3.3 (#31707) 2025-06-23 14:54:56 -04:00
Christophe Bornet
b1cc972567 core[patch]: Improve RunnableWithMessageHistory init arg types (#31639)
`Runnable`'s `Input` is contravariant so we need to enumerate all
possible inputs and it's not possible to put them in a `Union`.
Also, it's better to only require a runnable that
accepts`list[BaseMessage]` instead of a broader `Sequence[BaseMessage]`
as internally the runnable is only called with a list.
2025-06-23 13:45:52 -04:00
Mason Daugherty
dcf5c7b472 groq: add support for accessing reasoning output from Groq models (#31662)
**Description:** return
[reasoning](https://console.groq.com/docs/reasoning) output in
`additional_kwargs` as `reasoning_content`
**Issue:** Resolves #31052
2025-06-23 11:33:12 -04:00
Mason Daugherty
af2188b848 docs: Add section on tool choice (#31692)
- Make it known in the concepts guide that tool choice is available
2025-06-23 11:31:49 -04:00
Mason Daugherty
ba38997c7a docs: add tool_calls attribute link in tool calling documentation and indicate output is a list in code example (#31689)
- Minor QOL improvements:
  - Add link to tool_calls api ref
- Show code example output as a list to more clearly indicate response
type
2025-06-23 11:31:26 -04:00
ccurme
643741497a openai: release 0.3.25 (#31702) 2025-06-23 10:55:48 -04:00
ccurme
b268ab6a28 openai[patch]: fix client caching when request_timeout is specified via httpx.Timeout (#31698)
Resolves https://github.com/langchain-ai/langchain/issues/31697
2025-06-23 14:37:49 +00:00
Li-Kuang Chen
4ee6112161 openai[patch]: Improve error message when response type is malformed (#31619) 2025-06-21 14:15:21 -04:00
dennism-tulcolabs
9de4f22205 langchain[patch]: smith.evaluation.progress.ProgressBarCallback: Make output after progress bar ends configurable (#31583) 2025-06-20 19:24:35 -04:00
Mikhail
6105a5841b core: fix get_buffer_string output for structured message content (#31600) 2025-06-20 23:21:50 +00:00
ccurme
cf5a442e4c langchain: release 0.3.26 (#31695) 2025-06-20 18:19:47 -04:00
ccurme
5015188530 Revert "infra: temporarily drop OpenAI from core release test matrix" (#31694)
Reverts langchain-ai/langchain#31693
2025-06-20 22:12:38 +00:00
ccurme
26030abb70 infra: temporarily drop OpenAI from core release test matrix (#31693)
As part of core releases we run tests on the last released version of
some packages (including langchain-openai) using the new version of
langchain-core. We run langchain-openai's test suite as it was when it
was last released.

Our test for computer use started raising 500 error at some point during
the day today (test passed as part of scheduled test job in the
morning):
> InternalServerError: Error code: 500 - {'error': {'message': 'An error
occurred while processing your request. You can retry your request, or
contact us through our help center at help.openai.com if the error
persists.

Will revert this change after we release langchain-core.
2025-06-20 21:58:39 +00:00
Bagatur
5271fd76f1 core[patch]: check before removing tags (#31691) 2025-06-20 17:46:50 -04:00
ccurme
39a8a1121a core: release 0.3.66 (#31690) 2025-06-20 17:45:03 -04:00
97tkddnjs
4fe490c0ea [Docs] Update deprecated Pydantic .schema() method to .model_json_schema() in How to convert Runnables to Tools guide (#31618) 2025-06-20 20:43:59 +00:00
Raghu Kapur
2c9859956a text-splitters: fix stale header metadata in ExperimentalMarkdownSyntaxTextSplitter (#31622)
**Description:**

Previously, when transitioning from a deeper Markdown header (e.g., ###)
to a shallower one (e.g., ##), the
ExperimentalMarkdownSyntaxTextSplitter retained the deeper header in the
metadata.

This commit updates the `_resolve_header_stack` method to remove headers
at the same or deeper levels before appending the current header. As a
result, each chunk now reflects only the active header context.

Fixes unexpected metadata leakage across sections in nested Markdown
documents.

Additionally, test cases have been updated to:
- Validate correct header resolution and metadata assignment.
- Cover edge cases with nested headers and horizontal rules.

**Issue:** 
Fixes [#31596](https://github.com/langchain-ai/langchain/issues/31596)

**Dependencies:**
None

**Twitter handle:** -> [_RaghuKapur](https://twitter.com/_RaghuKapur)

**LinkedIn:** ->
[https://www.linkedin.com/in/raghukapur/](https://www.linkedin.com/in/raghukapur/)
2025-06-20 15:52:17 -04:00
ZhangShenao
9d4d258162 [Doc] Improve api doc for DeepSeek (#31655)
- Add param in api doc
- Fix word spelling

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-06-20 19:47:54 +00:00
Saran Connolly
22e6d90937 langchain_mistralai: Include finish_reason in response metadata when parsing MistralAI chunks toAIMessageChunk (#31667)
## Description
<!-- What does this pull request accomplish? -->
- When parsing MistralAI chunk dicts to Langchain to `AIMessageChunk`
schemas via the `_convert_chunk_to_message_chunk` utility function, the
`finish_reason` was not being included in `response_metadata` as it is
for other providers.
- This PR adds a one-liner fix to include the finish reason.

- fixes: https://github.com/langchain-ai/langchain/issues/31666
2025-06-20 15:41:20 -04:00
Mohammad Mohtashim
7ff405077d core[patch]: Returning always 2D Array for _cosine_similarity (#31528)
- **Description:** Very simple change in `_cosine_similarity` which
always 2D array.
- **Issue:** #31497
2025-06-20 11:25:02 -04:00
Eugene Yurtsev
2842e0c8c1 core[patch]: Add doc-strings to tools/base.py (#31684)
Add doc-strings
2025-06-20 11:16:57 -04:00
Tony Gravagno
5d0bea8378 docs: OPENAI_API_KEY typo in google_serper.ipynb (#31665)
Simple typo fix.
2025-06-20 11:02:13 -04:00
Christophe Bornet
7e046ea848 core: Cleanup Pydantic models and handle deprecation warnings (#30799)
* Simplified Pydantic handling since Pydantic v1 is not supported
anymore.
* Replace use of deprecated v1 methods by corresponding v2 methods.
* Remove use of other deprecated methods.
* Activate mypy errors on deprecated methods use.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-06-20 10:42:52 -04:00
ccurme
29e17fbd6b docs: use langchain-tavily (#31663)
Commandeering https://github.com/langchain-ai/langchain/pull/31640

---------

Co-authored-by: pulvedu <dustin@tavily.com>
Co-authored-by: pulvedu <dusty.pulver28@gmail.com>
2025-06-18 16:06:26 -04:00
ccurme
e2a0ff07fd openai[patch]: include 'type' key internally when streaming reasoning blocks (#31661)
Covered by existing tests.

Will make it easier to process streamed reasoning blocks.
2025-06-18 15:01:54 -04:00
Tanmay Singhal
19544ba3c9 docsFix documentation where triggering image generation from openai (#31652)
Description: Fixing Minor Error in ChatOpenAI Documentation
2025-06-18 13:31:47 -04:00
Jannik Maierhöfer
0cadf4fc9a docs: upgrade langfuse example to python sdk v3 (#31654)
As the Langfuse python sdk v3 includes breaking changes, this PR updates
the code examples.

https://langfuse.com/docs/integrations/langchain/upgrade-paths#python
2025-06-18 13:30:39 -04:00
Mason Daugherty
a79998800c fix: correct typo in docstring for three_values fixture (#31638)
Docstring typo fix in `base_store.py`
2025-06-17 16:51:07 -04:00
ccurme
da97013f96 docs: update OpenAI integration page (#31646)
model_kwargs is no longer needed for `truncation` and `reasoning`.
2025-06-17 16:23:06 -04:00
ccurme
6409498f6c openai[patch]: route to Responses API if relevant attributes are set (#31645)
Following https://github.com/langchain-ai/langchain/pull/30329.
2025-06-17 16:04:38 -04:00
ccurme
3044bd37a9 openai: release 0.3.24 (#31642) 2025-06-17 15:06:52 -04:00
ccurme
c1c3e13a54 openai[patch]: add Responses API attributes to BaseChatOpenAI (#30329)
`reasoning`, `include`, `store`, `truncation`.

Previously these had to be added through `model_kwargs`.
2025-06-17 14:45:50 -04:00
ccurme
b610859633 openai[patch]: support Responses streaming in AzureChatOpenAI (#31641)
Resolves https://github.com/langchain-ai/langchain/issues/31303,
https://github.com/langchain-ai/langchain/issues/31624
2025-06-17 14:41:09 -04:00
ccurme
bc1b5ffc91 docs: update agents tutorial to use langchain-tavily (#31637) 2025-06-17 11:25:03 -04:00
Himanshu Sharma
bb7c190d2c langchain: Fix error in LLMListwiseRerank when Document list is empty (#31300)
**Description:**
This PR fixes an `IndexError` that occurs when `LLMListwiseRerank` is
called with an empty list of documents.

Earlier, the code assumed the presence of at least one document and
attempted to construct the context string based on `len(documents) - 1`,
which raises an error when documents is an empty list.

The fix works with gpt-4o-mini if I make the list empty, but fails
occasionally with gpt-3.5-turbo. In case of empty list, setting the
string to "empty list" seems to have the expected response.

**Issue:**  #31192
2025-06-17 10:14:07 -04:00
ZhangShenao
0b5c06e89f [Doc] Improve api doc for perplexity (#31636)
- add param in api doc
- fix word spelling

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-06-17 14:10:43 +00:00
FT
c4c39c1ae6 mistralai[patch]: Fix Typos in Comments and Improve Compatibility Note (#31616)
Description:  
This pull request corrects minor spelling mistakes in the comments
within the `chat_models.py` file of the MistralAI partner integration.
Specifically, it fixes the spelling of "equivalent" and "compatibility"
in two separate comments. These changes improve code readability and
maintain professional documentation standards. No functional code
changes are included.
2025-06-17 09:23:25 -04:00
Cherilyn Buren
cc1e53008f langchain: add missing milvus branch for self_query (#31630)
Fix #29603
2025-06-17 09:21:54 -04:00
Xin Jin
7702691baf core and langchain: Remove upper bound restriction langsmith dependency (#31629)
Remove upper bound limitation of LS for good measure: we have full
control over LS so we'll be careful when minor bumping so this shouldn't
risk too much, while on the other hand existing such upperboud
restriction will likely introduce occasional dependency headache for
users

Discussion:
https://langchain.slack.com/archives/C06UEEE4DSS/p1750111219634649?thread_ts=1750107647.115289&cid=C06UEEE4DSS
2025-06-17 09:19:03 -04:00
Xin Jin
e979cd106a chore: Bump langsmith in splitter uv (#31626)
`uv lock --upgrade-package langsmith
`
Original issue: The lock file (uv.lock) was constraining
langsmith>=0.1.125,<0.4, preventing LangSmith 0.4.1 installation. Even
though the pyproject.toml wasn't restricting langchain core.


Issue:
https://langchain.slack.com/archives/C050X0VTN56/p1750107176007629
2025-06-16 16:58:46 -07:00
Shivnath Tathe
1682b59f92 docs(rockset): add deprecation notice for Rockset integration (#31621) 2025-06-16 22:17:27 +00:00
Shivnath Tathe
d4c84acc39 docs: update deprecated .schema() to .model_json_schema() in tool_run… (#31615)
This PR updates the tool runtime example notebook to replace the
deprecated `.schema()` method with `.model_json_schema()`, aligning it
with Pydantic V2.

### 🔧 Changes:
- Replaced:
```python
update_favorite_pets.get_input_schema().schema()

with 

update_favorite_pets.get_input_schema().model_json_schema()

```

Fixes #31609
2025-06-16 18:07:18 -04:00
ccurme
b9357d456e openai[patch]: refactor handling of Responses API (#31587) 2025-06-16 14:01:39 -04:00
Tom-Trumper
532e6455e9 text-splitters: Add keep_separator arg to HTMLSemanticPreservingSplitter (#31588)
### Description
Add keep_separator arg to HTMLSemanticPreservingSplitter and pass value
to instance of RecursiveCharacterTextSplitter used under the hood.
### Issue
Documents returned by `HTMLSemanticPreservingSplitter.split_text(text)`
are defaulted to use separators at beginning of page_content. [See third
and fourth document in example output from how-to
guide](https://python.langchain.com/docs/how_to/split_html/#using-htmlsemanticpreservingsplitter):
```
[Document(metadata={'Header 1': 'Main Title'}, page_content='This is an introductory paragraph with some basic content.'),
 Document(metadata={'Header 2': 'Section 1: Introduction'}, page_content='This section introduces the topic'),
 Document(metadata={'Header 2': 'Section 1: Introduction'}, page_content='. Below is a list: First item Second item Third item with bold text and a link Subsection 1.1: Details This subsection provides additional details'),
 Document(metadata={'Header 2': 'Section 1: Introduction'}, page_content=". Here's a table: Header 1 Header 2 Header 3 Row 1, Cell 1 Row 1, Cell 2 Row 1, Cell 3 Row 2, Cell 1 Row 2, Cell 2 Row 2, Cell 3"),
 Document(metadata={'Header 2': 'Section 2: Media Content'}, page_content='This section contains an image and a video: ![image:example_image_link.mp4](example_image_link.mp4) ![video:example_video_link.mp4](example_video_link.mp4)'),
 Document(metadata={'Header 2': 'Section 3: Code Example'}, page_content='This section contains a code block: <code:html> <div> <p>This is a paragraph inside a div.</p> </div> </code>'),
 Document(metadata={'Header 2': 'Conclusion'}, page_content='This is the conclusion of the document.')]
```
### Dependencies
None

@ttrumper3
2025-06-14 17:56:14 -04:00
dayvidborges
52e57cdc20 docs: update multimodal PDF and image usage for gpt-4.1 (#31595)
docs: update multimodal PDF and image usage for gpt-4.1

**Description:**
This update revises the LangChain documentation to support the new
GPT-4.1 multimodal API format. It fixes the previous broken example for
PDF uploads (which returned a 400 error: "Missing required parameter:
'messages[0].content[1].file'") and adds clear instructions on how to
include base64-encoded images for OpenAI models.

**Issue:**
error appointed in foruns for pdf load into api ->
'''
@[Albaeld](https://github.com/Albaeld)
Albaeld
[8 days
ago](https://github.com/langchain-ai/langchain/discussions/27702#discussioncomment-13369460)
This simply does not work with openai:gpt-4.1. I get:
Error code: 400 - {'error': {'message': "Missing required parameter:
'messages[0].content[1].file'.", 'type': 'invalid_request_error',
'param': 'messages[0].content[1].file', 'code':
'missing_required_parameter'}}
'''

**Dependencies:**
None

**Twitter handle:**
N/A

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-06-14 17:52:01 -04:00
Peter Schneider
cecfec5efa huggingface: handle image-text-to-text pipeline task (#31611)
**Description:** Allows for HuggingFacePipeline to handle
image-text-to-text pipeline
2025-06-14 16:41:11 -04:00
fuder.eth
50f998a138 Fix Typos in Vectorstore Integration Documentation Notebooks (#31612)
Description:  
This pull request corrects minor typographical errors in the
documentation notebooks for vectorstore integrations. Specifically, it
fixes the spelling of "datastore" in `llm_rails.ipynb` and
"pre-existent" in `redis.ipynb`. These changes improve the clarity and
professionalism of the documentation. No functional code changes are
included.
2025-06-14 16:40:18 -04:00
Akim Tsvigun
f345ae5a1d docs: Integration with Nebius AI Studio (#31293)
Thank you for contributing to LangChain!

[x] PR title: langchain_ollama: support custom headers for Ollama
partner APIs

Where "package" is whichever of langchain, core, etc. is being modified.
Use "docs: ..." for purely docs changes, "infra: ..." for CI changes.
Example: "core: add foobar LLM"
[x] PR message:

**Description: This PR adds support for passing custom HTTP headers to
Ollama models when used as a LangChain integration. This is especially
useful for enterprise users or partners who need to send authentication
tokens, API keys, or custom tracking headers when querying secured
Ollama servers.
Issue: N/A (new enhancement)
**Dependencies: No external dependencies introduced.
Twitter handle: @arunkumar_offl
[x] Add tests and docs: If you're adding a new integration, please
include
1.Added a unit test in test_chat_models.py to validate headers are
passed correctly.
2. Added an example notebook:
docs/docs/integrations/llms/ollama_custom_headers.ipynb showing how to
use custom headers.

[x] Lint and test: Ran make format, make lint, and make test to ensure
the code is clean and passing all checks.

Additional guidelines:

Make sure optional dependencies are imported within a function.
Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
Most PRs should not touch more than one package.
Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.

This MR is only for the docs. Added integration with Nebius AI Studio to
docs. The integration package is available at
[https://github.com/nebius/langchain-nebius](https://github.com/nebius/langchain-nebius).

---------

Co-authored-by: Akim Tsvigun <aktsvigun@nebius.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-06-14 16:15:27 -04:00
Xin Jin
01fcdff118 bump langsmith to allow 0.4 (#31594)
Langsmith 0.4 is launched so bump it up across OSS: langchain and
langchain-core. Will have separate langsmith-doc announcement for that
2025-06-13 07:59:42 -07:00
ccurme
5839801897 openai: release 0.3.23 (#31604) 2025-06-13 14:02:38 +00:00
ccurme
0c10ff6418 openai[patch]: handle annotation change in openai==1.82.0 (#31597)
https://github.com/openai/openai-python/pull/2372/files#diff-91cfd5576e71b4b72da91e04c3a029bab50a72b5f7a2ac8393fca0a06e865fb3
2025-06-12 23:38:41 -04:00
Lauren Hirata Singh
bb625081c8 revert incident banner (#31592)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-06-12 17:25:09 -04:00
Nuno Campos
ddc850ca72 core: In LangChainTracer, send only the first token event (#31591)
- only the first one is used for analytics
2025-06-12 14:04:23 -07:00
Lauren Hirata Singh
50f9354d31 incident banner (#31590)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-06-12 16:05:35 -04:00
ccurme
446a9d5647 docs: document built-in tools for ChatVertexAI (#31564) 2025-06-11 10:31:46 -04:00
Eugene Yurtsev
d10fd02bb3 langchain[patch]: Allow specifying other hashing functions in embeddings (#31561)
Allow specifying other hashing functions in embeddings
2025-06-11 10:18:07 -04:00
ccurme
4071670f56 huggingface[patch]: bump transformers (#31559) 2025-06-10 20:43:33 +00:00
ccurme
40d6d4c738 huggingface[patch]: bump core dep (#31558) 2025-06-10 20:26:13 +00:00
Mohammad Mohtashim
42eb356a44 [OpenAI]: Encoding Model (#31402)
- **Description:** Small Fix for when getting the encoder in case of
KeyError and using the correct encoder for newer models
- **Issue:** #31390
2025-06-10 16:00:00 -04:00
Mrityunjay Jha
40bd71caa5 doc:Updating doc with consistent bullet format. (#31527)
Description: Added line-break for each of the step mentioned, also made
bullet points consistent with other docs.
Dependencies: N/A
Twitter handle: [mrityu___](https://x.com/mrityu___)

Before Changes:

![image](https://github.com/user-attachments/assets/867b0c05-7ebd-418b-bfe4-e1cb6134baf2)

After Changes:

![image](https://github.com/user-attachments/assets/3ff5db49-a713-4bb0-b814-dc02b9dc6bb4)



The styling(non-bold of bullet) is consistent with
[chat_models.mdx](https://github.com/langchain-ai/langchain/edit/master/docs/docs/concepts/chat_models.mdx)
(SS below from same, take note that how bullet numbers are not bold).


![image](https://github.com/user-attachments/assets/712b1a73-85ca-45d0-86d6-aa1c0fb3f164)
2025-06-10 15:45:11 -04:00
CCM
1935e4526a docs: update graph_rag.mdx (#31548)
**Description:** fix broken links
2025-06-10 15:43:30 -04:00
Steven Silvester
323850fae1 docs: Update MongoDB feature status (#31553)
**Description:** a description of the change

Update the MongoDBAtlasVectorSearch feature status.

As of https://github.com/langchain-ai/langchain-mongodb/pull/98,
MongoDBAtlasVectorSearch is using the standard test suite.
2025-06-10 15:42:17 -04:00
Mateusz Szewczyk
eadbb9077e docs: Updated text embedding model for IBM provider (#31554)
Thank you for contributing to LangChain!

Description: Updated text embedding (`WatsonxEmbeddings`) model for IBM
provider
2025-06-10 15:41:36 -04:00
ccurme
b0f100af7e core: release 0.3.65 (#31557) 2025-06-10 19:39:50 +00:00
Sydney Runkle
5b165effcd core(fix): revert set_text optimization (#31555)
Revert serialization regression introduced in
https://github.com/langchain-ai/langchain/pull/31238

Fixes https://github.com/langchain-ai/langchain/issues/31486
2025-06-10 13:36:55 -04:00
Soumendra kumar sahoo
e455fab5d3 docs: Update Multi_modal_RAG_google.ipynb to remove the unsupported Gemini models (#31526)
- **Description:** Remove the outdated Gemini models and replace those
with the latest models.
- **Issue:** Earlier the code was not running, now the code runs.
- **Dependencies:** No
- **Twitter handle:** [soumendrak_](https://x.com/soumendrak_)
2025-06-09 21:26:01 -04:00
Jacob Peddicord
b21526fe38 docs: update Exa integration examples (#31547)
## Description

Updating Exa integration documentation to showcase the latest features
and best practices.

## Changes

- Added examples for `ExaSearchResults` tool with advanced search
options
- Added examples for `ExaFindSimilarResults` tool
- Updated agent example to use LangGraph
- Demonstrated text content options, summaries, and highlights
- Included examples of search type control and live crawling

## Additional Context

I'm from the Exa team updating our integration documentation to reflect
current capabilities and best practices.
2025-06-09 21:24:42 -04:00
Eugene Yurtsev
9ce974247c langchain[patch]: Remove proxy imports to langchain_experimental (#31541)
Remove proxy imports to langchain_experimental.

Previously, these imports would work if a user manually installed
langchain_experimental. However, we want to drop support even for that
as langchain_experimental is generally not recommended to be run in
production.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-06-09 17:09:09 -04:00
Zameel Hassan
16e5a12806 docs: fix grammar in retrievers.mdx ("be built" → "build") (#31537)
**Description:**  
Fixed a small grammatical error in the `retrievers.mdx` documentation.  
Replaced "we can be built retrievers on top of search APIs..." with  
"we can build retrievers on top of search APIs..." for clarity and
correctness.

**Issue:**  
N/A

**Dependencies:**  
None

**Twitter handle:**  
@hassan_zameel
2025-06-09 16:29:14 -04:00
ccurme
71b0f78952 openai: release 0.3.22 (#31542) 2025-06-09 15:29:15 -04:00
ccurme
575662d5f1 openai[patch]: accommodate change in image generation API (#31522)
OpenAI changed their API to require the `partial_images` parameter when
using image generation + streaming.

As described in https://github.com/langchain-ai/langchain/pull/31424, we
are ignoring partial images. Here, we accept the `partial_images`
parameter (as required by OpenAI), but emit a warning and continue to
ignore partial images.
2025-06-09 14:57:46 -04:00
ccurme
ece9e31a7a openai[patch]: VCR some tests (#31524) 2025-06-06 23:00:57 +00:00
Bagatur
5187817006 openai[release]: 0.3.21 (#31519) 2025-06-06 11:40:09 -04:00
Bagatur
761f8c3231 openai[patch]: pass through with_structured_output kwargs (#31518)
Support 
```python
from langchain.chat_models import init_chat_model
from pydantic import BaseModel


class ResponseSchema(BaseModel):
    response: str


def get_weather(location: str) -> str:
    """Get weather"""
    pass

llm = init_chat_model("openai:gpt-4o-mini")

structured_llm = llm.with_structured_output(
    ResponseSchema,
    tools=[get_weather],
    strict=True,
    include_raw=True,
    tool_choice="required",
    parallel_tool_calls=False,
)

structured_llm.invoke("whats up?")
```
2025-06-06 11:17:34 -04:00
Bagatur
0375848f6c openai[patch]: update with_structured_outputs docstring (#31517)
Update docstrings
2025-06-06 10:03:47 -04:00
ccurme
9c639035c0 standard-tests: add cache_control to Anthropic inputs test (#31516) 2025-06-06 10:00:43 -04:00
ccurme
a1f068eb85 openai: release 0.3.20 (#31515) 2025-06-06 13:29:12 +00:00
ccurme
4cc2f6b807 openai[patch]: guard against None text completions in BaseOpenAI (#31514)
Some chat completions APIs will return null `text` output (even though
this is typed as string).
2025-06-06 09:14:37 -04:00
Mrityunjay Jha
abc8bf9f1c docs:Adding line breaks to better explain each step, also making sure that bulleting style is consistent with other docs. (#31506)
- **Description:** Added line-break for each of the step mentioned for a
diagram in the doc.
- **Dependencies:** N/A
- **Twitter handle:** [mrityu___](https://x.com/mrityu___)

Before changes:

![image](https://github.com/user-attachments/assets/c9946aec-79c7-4ad5-a28e-06ea4c163ce5)


After Changes:

![image](https://github.com/user-attachments/assets/933db561-bea2-421e-88e8-f79cbb30856d)




The styling(non-bold of bullet) is consistent with
[chat_models.mdx](https://github.com/langchain-ai/langchain/edit/master/docs/docs/concepts/chat_models.mdx)
(SS below from same, take note that how bullet numbers are not bold).


![image](https://github.com/user-attachments/assets/958c1e25-e52c-4d6f-8b46-f59af3aa3d3b)
2025-06-06 08:43:15 -04:00
nakanoh
c25b832f51 fix: typo in SECURITY.md (practicies -> practices) (#31509)
**Description:**
Fixes a typo in SECURITY.md ("practicies" → "practices").
Note: This PR also unifies apostrophe usage (’ → ').

**Issue:**
N/A

**Dependencies:**
None

**Twitter handle:**
N/A

Co-authored-by: 中野 博文 <hirofumi0082@gmail.com>
2025-06-06 08:42:01 -04:00
lc-arjun
35ae5eab4f core: use run tree post/patch (#31500)
Use run post/patch
2025-06-05 14:05:57 -07:00
Eugene Yurtsev
73655b0ca8 huggingface: 0.3.0 release (#31503)
Breaking change to make some dependencies optional:
https://github.com/langchain-ai/langchain/pull/31268

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-06-05 20:20:15 +00:00
Bagatur
f7f52cab12 anthropic[patch]: cache tokens nit (#31484)
if you pass in beta headers directly cache_creation is a dict
2025-06-05 16:15:03 -04:00
ccurme
14c561e15d infra: relax types-requests version range (#31504) 2025-06-05 18:57:08 +00:00
ccurme
6d6f305748 openai[patch]: clarify docs on api_version in docstring for AzureChatOpenAI (#31502) 2025-06-05 16:06:22 +00:00
Simon Stone
815bfa5408 huggingface[major]: Reduce disk footprint by 95% by making large dependencies optional (#31268)
**Description:** 
`langchain_huggingface` has a very large installation size of around 600
MB (on a Mac with Python 3.11). This is due to its dependency on
`sentence-transformers`, which in turn depends on `torch`, which is 320
MB all by itself. Similarly, the depedency on `transformers` adds
another set of heavy dependencies. With those dependencies removed, the
installation of `langchain_huggingface` only takes up ~26 MB. This is
only 5 % of the full installation!

These libraries are not necessary to use `langchain_huggingface`'s API
wrapper classes, only for local inferences/embeddings. All import
statements for those two libraries already have import guards in place
(try/catch with a helpful "please install x" message).

This PR therefore moves those two libraries to an optional dependency
group `full`. So a `pip install langchain_huggingface` will only install
the lightweight version, and a `pip install
"langchain_huggingface[full]"` will install all dependencies.

I know this may break existing code, because `sentence-transformers` and
`transformers` are now no longer installed by default. Given that users
will see helpful error messages when that happens, and the major impact
of this small change, I hope that you will still consider this PR.

**Dependencies:** No new dependencies, but new optional grouping.
2025-06-05 12:04:19 -04:00
Mohammad Mohtashim
ae3551c96b core[patch]: Correct type casting of annotations in _infer_arg_descriptions (#31181)
- **Description:** 
- In _infer_arg_descriptions, the annotations dictionary contains string
representations of types instead of actual typing objects. This causes
_is_annotated_type to fail, preventing the correct description from
being generated.
- This is a simple fix using the get_type_hints method, which resolves
the annotations properly and is supported across all Python versions.

  - **Issue:** #31051

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-06-05 11:58:36 -04:00
Mrityunjay Jha
dea43436ea docs: updated incorrect datatype for custom tool notebook (#31498)
- **Description:** `"string"` is given as the `"type"` for a custom tool
argument, even though it is an `integer`. This can be validated from the
Colab notebook output.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** [mrityu___](https://x.com/mrityu___)

    
Current: 

![image](https://github.com/user-attachments/assets/403c04c5-ba35-4845-a8ce-9e9c584a57b8)

After Change:

![image](https://github.com/user-attachments/assets/c0af90c4-2039-4b92-9be3-7b77d08bae3d)

Colab Output:

![image](https://github.com/user-attachments/assets/9495c574-21bf-475d-8ede-a14cb2576ffa)
2025-06-05 11:40:52 -04:00
ccurme
43bee469ce standard-tests: release 0.3.20 (#31499) 2025-06-05 11:28:18 -04:00
ccurme
741bb1ffa1 core[patch]: revert change to stream type hint (#31501)
https://github.com/langchain-ai/langchain/pull/31286 included an update
to the return type for `BaseChatModel.(a)stream`, from
`Iterator[BaseMessageChunk]` to `Iterator[BaseMessage]`.

This change is correct, because when streaming is disabled, the stream
methods return an iterator of `BaseMessage`, and the inheritance is such
that an `BaseMessage` is not a `BaseMessageChunk` (but the reverse is
true).

However, LangChain includes a pattern throughout its docs of [summing
BaseMessageChunks](https://python.langchain.com/docs/how_to/streaming/#llms-and-chat-models)
to accumulate a chat model stream. This pattern is implemented in tests
for most integration packages and appears in application code. So
https://github.com/langchain-ai/langchain/pull/31286 introduces mypy
errors throughout the ecosystem (or maybe more accurately, it reveals
that this pattern does not account for use of the `.stream` method when
streaming is disabled).

Here we revert just the change to the stream return type to unblock
things. A fix for this should address docs + integration packages (or if
we elect to just force people to update code, be explicit about that).
2025-06-05 11:20:06 -04:00
Eugene Yurtsev
b149cce5f8 Revert "docs: replace deprecated initialize_agent with create_react_agent and non-deprecated functions" (#31492)
Reverts langchain-ai/langchain#31361
2025-06-04 14:42:47 +00:00
Michael Li
222578b296 docs: fix grammar issues in rag_with_quantized_embeddings.ipynb and imessage.ipynb (#31460) 2025-06-04 10:28:55 -04:00
Michael Li
e845a83099 docs: fix grammar issues in airbyte_typeform.ipynb and airbyte_zendes… (#31476) 2025-06-04 10:28:32 -04:00
Michael Li
457b235b5d docs: fix grammar issues in alibaba_cloud_maxcompute.ipynb and async_chromium.ipynb (#31477) 2025-06-04 10:28:01 -04:00
Michael Li
d2a023a183 docs: fix grammar and typo issues in async_html.ipynb and azure_blob_storage_file.ipynb (#31478) 2025-06-04 10:27:44 -04:00
Michael Li
21d6f1fc6a docs: fix lets typos in multiple files (#31481)
Fix typo
2025-06-04 10:27:16 -04:00
Ahmad Elmalah
f97e1825b7 Docs: Amazon Textract Page - removing a redundancy and fixing a title (#31488)
- The second 'the' is redundant 
- Fixing the title grammatically
2025-06-04 10:26:51 -04:00
Ahmed Hassan
81db124351 docs: replace deprecated initialize_agent with create_react_agent and non-deprecated functions (#31361)
**Description:**  
This PR updates approximately 4' occurences of the deprecated
`initialize_agent` function in LangChain documentation and examples,
replacing it with the recommended `create_react_agent` and pattern. It
also refactors related examples to align with current best practices.

**Issue:**  
Partially Fixes #29277


**Dependencies:**  
None

**X handle:**  
@TK1475

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-06-04 10:24:30 -04:00
Marlene
4ec46aeb73 Docs: Updating Microsoft Provider Documentation to Include Azure AI (#31467)
This PR adds documentation to our Microsft Provider page for LangChain
Azure AI. This PR does not add any extra dependencies or require any
tests besides passing CI.
2025-06-04 10:23:01 -04:00
Cheney Zhang
993e34fafb docs: Update Milvus feature table (#31472)
We found the [table of langchain milvus
feature](https://python.langchain.com/docs/integrations/vectorstores/)
is not consistent with the currently implemented code. So we change it
with a PR.

- searchByVector: code is
[here](e29ff1bff5/libs/milvus/langchain_milvus/vectorstores/milvus.py (L1543))
- passesStandardTests: All methods will be tested(including unittest and
integration test) , see an example [here](
https://github.com/langchain-ai/langchain-milvus/actions/runs/15347213828/job/43186093988)
, the test code it
[here](https://github.com/langchain-ai/langchain-milvus/tree/main/libs/milvus/tests)
and the github workflow is defined
[here](https://github.com/langchain-ai/langchain-milvus/blob/main/.github/workflows/_test.yml)
- multiTenancy: milvus supports different kinds of [multi
tenancy](https://milvus.io/docs/multi_tenancy.md#Implement-Multi-tenancy),
they also implemented by langchain_milvus
- database level: specify the database name in
[connection_args](e29ff1bff5/libs/milvus/langchain_milvus/vectorstores/milvus.py (L374))
- collection level: specify the collection in [collection_name
param](e29ff1bff5/libs/milvus/langchain_milvus/vectorstores/milvus.py (L337))
- partition level: specify the [partition-related params
](e29ff1bff5/libs/milvus/langchain_milvus/vectorstores/milvus.py (L280))
- idsInAddDocuments: [add document
method](e29ff1bff5/libs/milvus/langchain_milvus/vectorstores/milvus.py (L2030))
supports ids param passed in( then passed to add_texts method
[here](e29ff1bff5/libs/milvus/langchain_milvus/vectorstores/milvus.py (L1102)))
@ccurme  please take a review, thanks.

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
2025-06-03 16:56:52 -04:00
Bagatur
ec8bab83f8 anthropic[fix]: bump langchain-core dep (#31483) 2025-06-03 10:56:48 -04:00
Bagatur
310e643842 release[anthropic]: 0.3.15 (#31479)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-06-03 10:38:11 -04:00
Ahmad Elmalah
e70ec3b9fa Docs: Textract Integration Page - Fixing a typo (#31475)
Fixing a little typo in AWS textract integration page
2025-06-03 10:10:40 -04:00
Michael Li
9649222322 docs: fix typo in multiple files (#31480)
Fix typo
2025-06-03 10:10:20 -04:00
Christophe Bornet
539e5b6936 core: Add mypy strict-equality rule (#31286) 2025-06-02 18:24:35 +00:00
Sam Zhang
2c4e0ab3bc fix: module 'defusedxml' has no attribute 'ElementTree' (#31429) (#31431)
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-06-02 18:09:22 +00:00
Eugene Yurtsev
b93ed192bd docs: openai responses api image generation (#31444)
Document feature enabled in this PR:
https://github.com/langchain-ai/langchain/pull/31424
2025-06-02 13:50:35 -04:00
Diego Tabares
c6885a0f23 docs: Document Loader for the Outline collaborative knowledge base (#31395)
**Description:** Adds documentation on how to use `langchain-outline`
document loader package.
**Issue:** None - document loader documentation
**Dependencies:** None
**Twitter handle:** `@10Pines`
2025-06-02 12:50:10 -04:00
Michael Li
f64d48d507 docs: fix grammar issues in slack.ipynb and telegram.ipynb (#31461)
fix grammar
2025-06-02 12:45:33 -04:00
Eugene Yurtsev
6cb3ea514a openai: release 0.3.19 (#31466)
Release 0.3.19
2025-06-02 12:44:49 -04:00
Michael Li
227aac5d07 docs: fix grammar issues in wechat.ipynb and airbyte_cdk.ipynb (#31462)
Fix grammar
2025-06-02 12:44:23 -04:00
Michael Li
05b9bce05b docs: fix grammar issues in airbyte_gong.ipynb and airbyte_hubspot.ipynb (#31463)
Fix grammar
2025-06-02 12:43:57 -04:00
Michael Li
d359b7b737 docs: fix grammar issues in airbyte_json.ipynb and airbyte_salesforce.ipynb (#31464)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-06-02 12:43:27 -04:00
Michael Li
2e4d76d772 docs: fix grammar issues in airbyte_shopify.ipynb and airbyte_stripe.ipynb (#31465)
fix grammar issue
2025-06-02 12:42:52 -04:00
Cole McIntosh
ffa32a1802 docs: enhance Salesforce Toolkit documentation (#31387)
## PR Title
```
docs: enhance Salesforce Toolkit documentation
```

## PR Description

**Description:** Enhanced the Salesforce Toolkit documentation to
provide a more comprehensive overview of the `langchain-salesforce`
package. The updates include improved descriptions of the toolkit's
capabilities, detailed setup instructions for authentication using
environment variables, updated code snippets with consistent parameter
naming and improved readability, and additional resources with API
references for better user guidance.

**Issue:** N/A (documentation improvement)

**Dependencies:** None

**Twitter handle:** @colesmcintosh

---

### Changes Made:
- Improved description of the Salesforce Toolkit's capabilities and
features
- Added detailed setup instructions for authentication using environment
variables
- Updated code snippets to use consistent parameter naming and improved
readability
- Included additional resources and API references for better user
guidance
- Enhanced overall documentation structure and clarity

### Files Modified:
- `docs/docs/integrations/tools/salesforce.ipynb` (83 insertions, 36
deletions)

This is a documentation-only change that improves the user experience
for developers working with the Salesforce Toolkit. The changes are
backwards compatible and follow LangChain's documentation standards.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-06-02 11:01:22 -04:00
Eugene Yurtsev
17f34baa88 openai[minor]: add image generation to responses api (#31424)
Does not support partial images during generation at the moment. Before
doing that I'd like to figure out how to specify the aggregation logic
without requiring changes in core.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-06-02 10:03:54 -04:00
Jeel
9a78246d29 docs: fix typo in local_llms.ipynb (#31449)
change `--no-cache-dirclear` -> `--no-cache-dir`.

pip throws `no such option: --no-cache-dirclear` since its invalid.
`--no-cache-dir` is the correct one.
2025-06-01 10:50:30 -04:00
ccurme
d3be4a0c56 infra: remove use of --vcr-record=none (#31452)
This option is specific to `pytest-vcr`. `pytest-recording` runs in this
mode by default.
2025-06-01 10:49:59 -04:00
ccurme
3db1aa0ba6 standard-tests: migrate to pytest-recording (#31425)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-05-31 15:21:15 -04:00
Tian Siyuan
d7f90f233b fix a typo (#31447)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-31 13:55:07 -04:00
ccurme
38c19d2891 docs: remove unnecessary setup from tutorial (#31445) 2025-05-30 21:59:21 +00:00
Michael Li
c284fdae89 docs: fix naver_search description at https://python.langchain.com/docs/integrations/tools/ All tools section (#31426)
…cs/integrations/tools/ All tools section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-30 17:51:55 -04:00
Michael Li
e16e09637c docs: fix vectara description at https://python.langchain.com/docs/integrations/tools/ All tools section (#31427)
…tegrations/tools/ All tools section

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-30 17:51:33 -04:00
Michael Li
d1b32e0ecf docs: fix grammar issues in tencent_hunyuan.ipynb and together.ipynb (#31438)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-30 17:51:10 -04:00
Michael Li
079b97efde docs: fix grammar and vocabulary errors in vllm.ipynb and volcengine_maas.ipynb (#31439)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-30 17:50:06 -04:00
Michael Li
8e3dc1f2ea docs: fix grammar errors in yi.ipynb and zhipuai.ipynb (#31441)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-30 17:49:11 -04:00
Michael Li
48fa4ca271 docs: fix grammar issues in facebook.ipynb and langsmith_dataset.ipynb (#31442)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
  - Example: "core: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-05-30 17:48:45 -04:00
290 changed files with 18522 additions and 11171 deletions

View File

@@ -24,7 +24,7 @@ body:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
[API Reference](https://python.langchain.com/api_reference/),
[GitHub search](https://github.com/langchain-ai/langchain),
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
[LangChain Forum](https://forum.langchain.com/),
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
[LangChain ChatBot](https://chat.langchain.com/)
- type: checkboxes

View File

@@ -9,7 +9,7 @@ body:
Use this to report bugs in LangChain.
If you're not certain that your issue is due to a bug in LangChain, please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions)
If you're not certain that your issue is due to a bug in LangChain, please use the [LangChain Forum](https://forum.langchain.com/)
to ask for help with your issue.
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
@@ -18,7 +18,7 @@ body:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
[API Reference](https://python.langchain.com/api_reference/),
[GitHub search](https://github.com/langchain-ai/langchain),
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
[LangChain Forum](https://forum.langchain.com/),
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
[LangChain ChatBot](https://chat.langchain.com/)
- type: checkboxes

View File

@@ -15,7 +15,7 @@ body:
Do **NOT** use this to ask usage questions or reporting issues with your code.
If you have usage questions or need help solving some problem,
please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions).
please use the [LangChain Forum](https://forum.langchain.com/).
If you're in the wrong place, here are some helpful links to find a better
place to ask your question:
@@ -23,7 +23,7 @@ body:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
[API Reference](https://python.langchain.com/api_reference/),
[GitHub search](https://github.com/langchain-ai/langchain),
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
[LangChain Forum](https://forum.langchain.com/),
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
[LangChain ChatBot](https://chat.langchain.com/)
- type: input

View File

@@ -5,8 +5,8 @@ body:
attributes:
value: |
Thanks for your interest in LangChain! 🚀
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation in a [Question in GitHub Discussions](https://github.com/langchain-ai/langchain/discussions/categories/q-a) instead.
er to create an issue, then please start the conversation in the [LangChain Forum]](https://forum.langchain.com/) instead.
If you are not a LangChain maintainer or were not asked directly by a maintain
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
or are a regular contributor to LangChain with previous merged pull requests.

View File

@@ -7,8 +7,8 @@ LangChain has a large ecosystem of integrations with various external resources
When building such applications developers should remember to follow good security practices:
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), specifying proxy configurations to control external requests, etc. as appropriate for your application.
* **Anticipate Potential Misuse**: Just as humans can err, so can Large Language Models (LLMs). Always assume that any system access or credentials may be used in any way allowed by the permissions they are assigned. For example, if a pair of database credentials allows deleting data, its safest to assume that any LLM able to use those credentials may in fact delete data.
* [**Defense in Depth**](https://en.wikipedia.org/wiki/Defense_in_depth_(computing)): No security technique is perfect. Fine-tuning and good chain design can reduce, but not eliminate, the odds that a Large Language Model (LLM) may make a mistake. Its best to combine multiple layered security approaches rather than relying on any single layer of defense to ensure security. For example: use both read-only permissions and sandboxing to ensure that LLMs are only able to access data that is explicitly meant for them to use.
* **Anticipate Potential Misuse**: Just as humans can err, so can Large Language Models (LLMs). Always assume that any system access or credentials may be used in any way allowed by the permissions they are assigned. For example, if a pair of database credentials allows deleting data, it's safest to assume that any LLM able to use those credentials may in fact delete data.
* [**Defense in Depth**](https://en.wikipedia.org/wiki/Defense_in_depth_(computing)): No security technique is perfect. Fine-tuning and good chain design can reduce, but not eliminate, the odds that a Large Language Model (LLM) may make a mistake. It's best to combine multiple layered security approaches rather than relying on any single layer of defense to ensure security. For example: use both read-only permissions and sandboxing to ensure that LLMs are only able to access data that is explicitly meant for them to use.
Risks of not doing so include, but are not limited to:
* Data corruption or loss.
@@ -39,7 +39,7 @@ Before reporting a vulnerability, please review:
1) In-Scope Targets and Out-of-Scope Targets below.
2) The [langchain-ai/langchain](https://python.langchain.com/docs/contributing/repo_structure) monorepo structure.
3) The [Best practicies](#best-practices) above to
3) The [Best practices](#best-practices) above to
understand what we consider to be a security vulnerability vs. developer
responsibility.

View File

@@ -47,7 +47,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "6a75a5c6-34ee-4ab9-a664-d9b432d812ee",
"metadata": {},
"outputs": [
@@ -61,7 +61,7 @@
],
"source": [
"# Local\n",
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_ollama import ChatOllama\n",
"\n",
"llama2_chat = ChatOllama(model=\"llama2:13b-chat\")\n",
"llama2_code = ChatOllama(model=\"codellama:7b-instruct\")\n",

View File

@@ -185,7 +185,7 @@
" )\n",
" # Text summary chain\n",
" model = VertexAI(\n",
" temperature=0, model_name=\"gemini-pro\", max_tokens=1024\n",
" temperature=0, model_name=\"gemini-2.0-flash-lite-001\", max_tokens=1024\n",
" ).with_fallbacks([empty_response])\n",
" summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()\n",
"\n",
@@ -254,7 +254,7 @@
"\n",
"def image_summarize(img_base64, prompt):\n",
" \"\"\"Make image summary\"\"\"\n",
" model = ChatVertexAI(model=\"gemini-pro-vision\", max_tokens=1024)\n",
" model = ChatVertexAI(model=\"gemini-2.0-flash\", max_tokens=1024)\n",
"\n",
" msg = model.invoke(\n",
" [\n",
@@ -394,7 +394,7 @@
"# The vectorstore to use to index the summaries\n",
"vectorstore = Chroma(\n",
" collection_name=\"mm_rag_cj_blog\",\n",
" embedding_function=VertexAIEmbeddings(model_name=\"textembedding-gecko@latest\"),\n",
" embedding_function=VertexAIEmbeddings(model_name=\"text-embedding-005\"),\n",
")\n",
"\n",
"# Create retriever\n",
@@ -553,7 +553,7 @@
" \"\"\"\n",
"\n",
" # Multi-modal LLM\n",
" model = ChatVertexAI(temperature=0, model_name=\"gemini-pro-vision\", max_tokens=1024)\n",
" model = ChatVertexAI(temperature=0, model_name=\"gemini-2.0-flash\", max_tokens=1024)\n",
"\n",
" # RAG pipeline\n",
" chain = (\n",

View File

@@ -204,14 +204,14 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "523e6ed2-2132-4748-bdb7-db765f20648d",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate"
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_ollama import ChatOllama"
]
},
{

View File

@@ -215,8 +215,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_ollama import ChatOllama\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Prompt\n",

View File

@@ -25,7 +25,7 @@
" * [Oracle Blockchain](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_blockchain_table.html#GUID-B469E277-978E-4378-A8C1-26D3FF96C9A6)\n",
" * [JSON](https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/json-in-oracle-database.html)\n",
"\n",
"This guide demonstrates how Oracle AI Vector Search can be used with Langchain to serve an end-to-end RAG pipeline. This guide goes through examples of:\n",
"This guide demonstrates how Oracle AI Vector Search can be used with LangChain to serve an end-to-end RAG pipeline. This guide goes through examples of:\n",
"\n",
" * Loading the documents from various sources using OracleDocLoader\n",
" * Summarizing them within/outside the database using OracleSummary\n",
@@ -47,7 +47,19 @@
"source": [
"### Prerequisites\n",
"\n",
"Please install Oracle Python Client driver to use Langchain with Oracle AI Vector Search. "
"Please install the Oracle Database [python-oracledb driver](https://pypi.org/project/oracledb/) to use LangChain with Oracle AI Vector Search:\n",
"\n",
"```\n",
"$ python -m pip install --upgrade oracledb\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Demo User\n",
"First, connect as a privileged user to create a demo user with all the required privileges. Change the credentials for your environment. Also set the DEMO_PY_DIR path to a directory on the database host where your model file is located:"
]
},
{
@@ -56,65 +68,30 @@
"metadata": {},
"outputs": [],
"source": [
"# pip install oracledb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Demo User\n",
"First, create a demo user with all the required privileges. "
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connection successful!\n",
"User setup done!\n"
]
}
],
"source": [
"import sys\n",
"\n",
"import oracledb\n",
"\n",
"# Update with your username, password, hostname, and service_name\n",
"username = \"\"\n",
"# Please update with your SYSTEM (or privileged user) username, password, and database connection string\n",
"username = \"SYSTEM\"\n",
"password = \"\"\n",
"dsn = \"\"\n",
"\n",
"try:\n",
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
"with oracledb.connect(user=username, password=password, dsn=dsn) as connection:\n",
" print(\"Connection successful!\")\n",
"\n",
" cursor = conn.cursor()\n",
" try:\n",
" with connection.cursor() as cursor:\n",
" cursor.execute(\n",
" \"\"\"\n",
" begin\n",
" -- Drop user\n",
" begin\n",
" execute immediate 'drop user testuser cascade';\n",
" exception\n",
" when others then\n",
" dbms_output.put_line('Error dropping user: ' || SQLERRM);\n",
" end;\n",
" \n",
" execute immediate 'drop user if exists testuser cascade';\n",
"\n",
" -- Create user and grant privileges\n",
" execute immediate 'create user testuser identified by testuser';\n",
" execute immediate 'grant connect, unlimited tablespace, create credential, create procedure, create any index to testuser';\n",
" execute immediate 'create or replace directory DEMO_PY_DIR as ''/scratch/hroy/view_storage/hroy_devstorage/demo/orachain''';\n",
" execute immediate 'create or replace directory DEMO_PY_DIR as ''/home/yourname/demo/orachain''';\n",
" execute immediate 'grant read, write on directory DEMO_PY_DIR to public';\n",
" execute immediate 'grant create mining model to testuser';\n",
" \n",
"\n",
" -- Network access\n",
" begin\n",
" DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(\n",
@@ -127,15 +104,7 @@
" end;\n",
" \"\"\"\n",
" )\n",
" print(\"User setup done!\")\n",
" except Exception as e:\n",
" print(f\"User setup failed with error: {e}\")\n",
" finally:\n",
" cursor.close()\n",
" conn.close()\n",
"except Exception as e:\n",
" print(f\"Connection failed with error: {e}\")\n",
" sys.exit(1)"
" print(\"User setup done!\")"
]
},
{
@@ -143,13 +112,13 @@
"metadata": {},
"source": [
"## Process Documents using Oracle AI\n",
"Consider the following scenario: users possess documents stored either in an Oracle Database or a file system and intend to utilize this data with Oracle AI Vector Search powered by Langchain.\n",
"Consider the following scenario: users possess documents stored either in an Oracle Database or a file system and intend to utilize this data with Oracle AI Vector Search powered by LangChain.\n",
"\n",
"To prepare the documents for analysis, a comprehensive preprocessing workflow is necessary. Initially, the documents must be retrieved, summarized (if required), and chunked as needed. Subsequent steps involve generating embeddings for these chunks and integrating them into the Oracle AI Vector Store. Users can then conduct semantic searches on this data.\n",
"\n",
"The Oracle AI Vector Search Langchain library encompasses a suite of document processing tools that facilitate document loading, chunking, summary generation, and embedding creation.\n",
"The Oracle AI Vector Search LangChain library encompasses a suite of document processing tools that facilitate document loading, chunking, summary generation, and embedding creation.\n",
"\n",
"In the sections that follow, we will detail the utilization of Oracle AI Langchain APIs to effectively implement each of these processes."
"In the sections that follow, we will detail the utilization of Oracle AI LangChain APIs to effectively implement each of these processes."
]
},
{
@@ -157,38 +126,24 @@
"metadata": {},
"source": [
"### Connect to Demo User\n",
"The following sample code will show how to connect to Oracle Database. By default, python-oracledb runs in a Thin mode which connects directly to Oracle Database. This mode does not need Oracle Client libraries. However, some additional functionality is available when python-oracledb uses them. Python-oracledb is said to be in Thick mode when Oracle Client libraries are used. Both modes have comprehensive functionality supporting the Python Database API v2.0 Specification. See the following [guide](https://python-oracledb.readthedocs.io/en/latest/user_guide/appendix_a.html#featuresummary) that talks about features supported in each mode. You might want to switch to thick-mode if you are unable to use thin-mode."
"The following sample code shows how to connect to Oracle Database using the python-oracledb driver. By default, python-oracledb runs in a Thin mode which connects directly to Oracle Database. This mode does not need Oracle Client libraries. However, some additional functionality is available when python-oracledb uses them. Python-oracledb is said to be in Thick mode when Oracle Client libraries are used. Both modes have comprehensive functionality supporting the Python Database API v2.0 Specification. See the following [guide](https://python-oracledb.readthedocs.io/en/latest/user_guide/appendix_a.html#featuresummary) that talks about features supported in each mode. You can switch to Thick mode if you are unable to use Thin mode."
]
},
{
"cell_type": "code",
"execution_count": 45,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connection successful!\n"
]
}
],
"outputs": [],
"source": [
"import sys\n",
"\n",
"import oracledb\n",
"\n",
"# please update with your username, password, hostname and service_name\n",
"username = \"\"\n",
"# please update with your username, password, and database connection string\n",
"username = \"testuser\"\n",
"password = \"\"\n",
"dsn = \"\"\n",
"\n",
"try:\n",
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
" print(\"Connection successful!\")\n",
"except Exception as e:\n",
" print(\"Connection failed!\")\n",
" sys.exit(1)"
"connection = oracledb.connect(user=username, password=password, dsn=dsn)\n",
"print(\"Connection successful!\")"
]
},
{
@@ -201,22 +156,12 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Table created and populated.\n"
]
}
],
"outputs": [],
"source": [
"try:\n",
" cursor = conn.cursor()\n",
"\n",
" drop_table_sql = \"\"\"drop table demo_tab\"\"\"\n",
"with connection.cursor() as cursor:\n",
" drop_table_sql = \"\"\"drop table if exists demo_tab\"\"\"\n",
" cursor.execute(drop_table_sql)\n",
"\n",
" create_table_sql = \"\"\"create table demo_tab (id number, data clob)\"\"\"\n",
@@ -239,15 +184,9 @@
" ]\n",
" cursor.executemany(insert_row_sql, rows_to_insert)\n",
"\n",
" conn.commit()\n",
"connection.commit()\n",
"\n",
" print(\"Table created and populated.\")\n",
" cursor.close()\n",
"except Exception as e:\n",
" print(\"Table creation failed.\")\n",
" cursor.close()\n",
" conn.close()\n",
" sys.exit(1)"
"print(\"Table created and populated.\")"
]
},
{
@@ -261,30 +200,22 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load ONNX Model\n",
"### Load the ONNX Model\n",
"\n",
"Oracle accommodates a variety of embedding providers, enabling users to choose between proprietary database solutions and third-party services such as OCIGENAI and HuggingFace. This selection dictates the methodology for generating and managing embeddings.\n",
"Oracle accommodates a variety of embedding providers, enabling you to choose between proprietary database solutions and third-party services such as Oracle Generative AI Service and HuggingFace. This selection dictates the methodology for generating and managing embeddings.\n",
"\n",
"***Important*** : Should users opt for the database option, they must upload an ONNX model into the Oracle Database. Conversely, if a third-party provider is selected for embedding generation, uploading an ONNX model to Oracle Database is not required.\n",
"***Important*** : Should you opt for the database option, you must upload an ONNX model into the Oracle Database. Conversely, if a third-party provider is selected for embedding generation, uploading an ONNX model to Oracle Database is not required.\n",
"\n",
"A significant advantage of utilizing an ONNX model directly within Oracle is the enhanced security and performance it offers by eliminating the need to transmit data to external parties. Additionally, this method avoids the latency typically associated with network or REST API calls.\n",
"A significant advantage of utilizing an ONNX model directly within Oracle Database is the enhanced security and performance it offers by eliminating the need to transmit data to external parties. Additionally, this method avoids the latency typically associated with network or REST API calls.\n",
"\n",
"Below is the example code to upload an ONNX model into Oracle Database:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ONNX model loaded.\n"
]
}
],
"outputs": [],
"source": [
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
"\n",
@@ -294,12 +225,8 @@
"onnx_file = \"tinybert.onnx\"\n",
"model_name = \"demo_model\"\n",
"\n",
"try:\n",
" OracleEmbeddings.load_onnx_model(conn, onnx_dir, onnx_file, model_name)\n",
" print(\"ONNX model loaded.\")\n",
"except Exception as e:\n",
" print(\"ONNX model loading failed!\")\n",
" sys.exit(1)"
"OracleEmbeddings.load_onnx_model(connection, onnx_dir, onnx_file, model_name)\n",
"print(\"ONNX model loaded.\")"
]
},
{
@@ -321,8 +248,7 @@
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" cursor = conn.cursor()\n",
"with connection.cursor() as cursor:\n",
" cursor.execute(\n",
" \"\"\"\n",
" declare\n",
@@ -349,12 +275,7 @@
" params => json(jo.to_string));\n",
" end;\n",
" \"\"\"\n",
" )\n",
" cursor.close()\n",
" print(\"Credentials created.\")\n",
"except Exception as ex:\n",
" cursor.close()\n",
" raise"
" )"
]
},
{
@@ -362,33 +283,24 @@
"metadata": {},
"source": [
"### Load Documents\n",
"Users have the flexibility to load documents from either the Oracle Database, a file system, or both, by appropriately configuring the loader parameters. For comprehensive details on these parameters, please consult the [Oracle AI Vector Search Guide](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-73397E89-92FB-48ED-94BB-1AD960C4EA1F).\n",
"You have the flexibility to load documents from either the Oracle Database, a file system, or both, by appropriately configuring the loader parameters. For comprehensive details on these parameters, please consult the [Oracle AI Vector Search Guide](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-73397E89-92FB-48ED-94BB-1AD960C4EA1F).\n",
"\n",
"A significant advantage of utilizing OracleDocLoader is its capability to process over 150 distinct file formats, eliminating the need for multiple loaders for different document types. For a complete list of the supported formats, please refer to the [Oracle Text Supported Document Formats](https://docs.oracle.com/en/database/oracle/oracle-database/23/ccref/oracle-text-supported-document-formats.html).\n",
"\n",
"Below is a sample code snippet that demonstrates how to use OracleDocLoader"
"Below is a sample code snippet that demonstrates how to use OracleDocLoader:"
]
},
{
"cell_type": "code",
"execution_count": 48,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of docs loaded: 3\n"
]
}
],
"outputs": [],
"source": [
"from langchain_community.document_loaders.oracleai import OracleDocLoader\n",
"from langchain_core.documents import Document\n",
"\n",
"# loading from Oracle Database table\n",
"# make sure you have the table with this specification\n",
"loader_params = {}\n",
"loader_params = {\n",
" \"owner\": \"testuser\",\n",
" \"tablename\": \"demo_tab\",\n",
@@ -396,7 +308,7 @@
"}\n",
"\n",
"\"\"\" load the docs \"\"\"\n",
"loader = OracleDocLoader(conn=conn, params=loader_params)\n",
"loader = OracleDocLoader(conn=connection, params=loader_params)\n",
"docs = loader.load()\n",
"\n",
"\"\"\" verify \"\"\"\n",
@@ -409,23 +321,23 @@
"metadata": {},
"source": [
"### Generate Summary\n",
"Now that the user loaded the documents, they may want to generate a summary for each document. The Oracle AI Vector Search Langchain library offers a suite of APIs designed for document summarization. It supports multiple summarization providers such as Database, OCIGENAI, HuggingFace, among others, allowing users to select the provider that best meets their needs. To utilize these capabilities, users must configure the summary parameters as specified. For detailed information on these parameters, please consult the [Oracle AI Vector Search Guide book](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-EC9DDB58-6A15-4B36-BA66-ECBA20D2CE57)."
"Now that you have loaded the documents, you may want to generate a summary for each document. The Oracle AI Vector Search LangChain library offers a suite of APIs designed for document summarization. It supports multiple summarization providers such as Database, Oracle Generative AI Service, HuggingFace, among others, allowing you to select the provider that best meets their needs. To utilize these capabilities, you must configure the summary parameters as specified. For detailed information on these parameters, please consult the [Oracle AI Vector Search Guide book](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-EC9DDB58-6A15-4B36-BA66-ECBA20D2CE57)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Note:*** The users may need to set proxy if they want to use some 3rd party summary generation providers other than Oracle's in-house and default provider: 'database'. If you don't have proxy, please remove the proxy parameter when you instantiate the OracleSummary."
"***Note:*** You may need to set proxy if you want to use some 3rd party summary generation providers other than Oracle's in-house and default provider: 'database'. If you don't have proxy, please remove the proxy parameter when you instantiate the OracleSummary."
]
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# proxy to be used when we instantiate summary and embedder object\n",
"# proxy to be used when we instantiate summary and embedder objects\n",
"proxy = \"\""
]
},
@@ -433,22 +345,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The following sample code will show how to generate summary:"
"The following sample code shows how to generate a summary:"
]
},
{
"cell_type": "code",
"execution_count": 49,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of Summaries: 3\n"
]
}
],
"outputs": [],
"source": [
"from langchain_community.utilities.oracleai import OracleSummary\n",
"from langchain_core.documents import Document\n",
@@ -463,7 +367,7 @@
"\n",
"# get the summary instance\n",
"# Remove proxy if not required\n",
"summ = OracleSummary(conn=conn, params=summary_params, proxy=proxy)\n",
"summ = OracleSummary(conn=connection, params=summary_params, proxy=proxy)\n",
"\n",
"list_summary = []\n",
"for doc in docs:\n",
@@ -487,17 +391,9 @@
},
{
"cell_type": "code",
"execution_count": 50,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of Chunks: 3\n"
]
}
],
"outputs": [],
"source": [
"from langchain_community.document_loaders.oracleai import OracleTextSplitter\n",
"from langchain_core.documents import Document\n",
@@ -506,7 +402,7 @@
"splitter_params = {\"normalize\": \"all\"}\n",
"\n",
"\"\"\" get the splitter instance \"\"\"\n",
"splitter = OracleTextSplitter(conn=conn, params=splitter_params)\n",
"splitter = OracleTextSplitter(conn=connection, params=splitter_params)\n",
"\n",
"list_chunks = []\n",
"for doc in docs:\n",
@@ -523,19 +419,19 @@
"metadata": {},
"source": [
"### Generate Embeddings\n",
"Now that the documents are chunked as per requirements, the users may want to generate embeddings for these chunks. Oracle AI Vector Search provides multiple methods for generating embeddings, utilizing either locally hosted ONNX models or third-party APIs. For comprehensive instructions on configuring these alternatives, please refer to the [Oracle AI Vector Search Guide](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-C6439E94-4E86-4ECD-954E-4B73D53579DE)."
"Now that the documents are chunked as per requirements, you may want to generate embeddings for these chunks. Oracle AI Vector Search provides multiple methods for generating embeddings, utilizing either locally hosted ONNX models or third-party APIs. For comprehensive instructions on configuring these alternatives, please refer to the [Oracle AI Vector Search Guide](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-C6439E94-4E86-4ECD-954E-4B73D53579DE)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Note:*** Users may need to configure a proxy to utilize third-party embedding generation providers, excluding the 'database' provider that utilizes an ONNX model."
"***Note:*** You may need to configure a proxy to utilize third-party embedding generation providers, excluding the 'database' provider that utilizes an ONNX model."
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -547,22 +443,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The following sample code will show how to generate embeddings:"
"The following sample code shows how to generate embeddings:"
]
},
{
"cell_type": "code",
"execution_count": 51,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of embeddings: 3\n"
]
}
],
"outputs": [],
"source": [
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
"from langchain_core.documents import Document\n",
@@ -572,7 +460,7 @@
"\n",
"# get the embedding instance\n",
"# Remove proxy if not required\n",
"embedder = OracleEmbeddings(conn=conn, params=embedder_params, proxy=proxy)\n",
"embedder = OracleEmbeddings(conn=connection, params=embedder_params, proxy=proxy)\n",
"\n",
"embeddings = []\n",
"for doc in docs:\n",
@@ -591,19 +479,19 @@
"metadata": {},
"source": [
"## Create Oracle AI Vector Store\n",
"Now that you know how to use Oracle AI Langchain library APIs individually to process the documents, let us show how to integrate with Oracle AI Vector Store to facilitate the semantic searches."
"Now that you know how to use Oracle AI LangChain library APIs individually to process the documents, let us show how to integrate with Oracle AI Vector Store to facilitate the semantic searches."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's import all the dependencies."
"First, let's import all the dependencies:"
]
},
{
"cell_type": "code",
"execution_count": 52,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -626,100 +514,80 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, let's combine all document processing stages together. Here is the sample code below:"
"Next, let's combine all document processing stages together. Here is the sample code:"
]
},
{
"cell_type": "code",
"execution_count": 53,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connection successful!\n",
"ONNX model loaded.\n",
"Number of total chunks with metadata: 3\n"
]
}
],
"outputs": [],
"source": [
"\"\"\"\n",
"In this sample example, we will use 'database' provider for both summary and embeddings.\n",
"So, we don't need to do the followings:\n",
"In this sample example, we will use 'database' provider for both summary and embeddings\n",
"so, we don't need to do the following:\n",
" - set proxy for 3rd party providers\n",
" - create credential for 3rd party providers\n",
"\n",
"If you choose to use 3rd party provider, \n",
"please follow the necessary steps for proxy and credential.\n",
"If you choose to use 3rd party provider, please follow the necessary steps for proxy and credential.\n",
"\"\"\"\n",
"\n",
"# oracle connection\n",
"# please update with your username, password, hostname, and service_name\n",
"# please update with your username, password, and database connection string\n",
"username = \"\"\n",
"password = \"\"\n",
"dsn = \"\"\n",
"\n",
"try:\n",
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
"with oracledb.connect(user=username, password=password, dsn=dsn) as connection:\n",
" print(\"Connection successful!\")\n",
"except Exception as e:\n",
" print(\"Connection failed!\")\n",
" sys.exit(1)\n",
"\n",
"\n",
"# load onnx model\n",
"# please update with your related information\n",
"onnx_dir = \"DEMO_PY_DIR\"\n",
"onnx_file = \"tinybert.onnx\"\n",
"model_name = \"demo_model\"\n",
"try:\n",
" OracleEmbeddings.load_onnx_model(conn, onnx_dir, onnx_file, model_name)\n",
" # load onnx model\n",
" # please update with your related information\n",
" onnx_dir = \"DEMO_PY_DIR\"\n",
" onnx_file = \"tinybert.onnx\"\n",
" model_name = \"demo_model\"\n",
" OracleEmbeddings.load_onnx_model(connection, onnx_dir, onnx_file, model_name)\n",
" print(\"ONNX model loaded.\")\n",
"except Exception as e:\n",
" print(\"ONNX model loading failed!\")\n",
" sys.exit(1)\n",
"\n",
" # params\n",
" # please update necessary fields with related information\n",
" loader_params = {\n",
" \"owner\": \"testuser\",\n",
" \"tablename\": \"demo_tab\",\n",
" \"colname\": \"data\",\n",
" }\n",
" summary_params = {\n",
" \"provider\": \"database\",\n",
" \"glevel\": \"S\",\n",
" \"numParagraphs\": 1,\n",
" \"language\": \"english\",\n",
" }\n",
" splitter_params = {\"normalize\": \"all\"}\n",
" embedder_params = {\"provider\": \"database\", \"model\": \"demo_model\"}\n",
"\n",
"# params\n",
"# please update necessary fields with related information\n",
"loader_params = {\n",
" \"owner\": \"testuser\",\n",
" \"tablename\": \"demo_tab\",\n",
" \"colname\": \"data\",\n",
"}\n",
"summary_params = {\n",
" \"provider\": \"database\",\n",
" \"glevel\": \"S\",\n",
" \"numParagraphs\": 1,\n",
" \"language\": \"english\",\n",
"}\n",
"splitter_params = {\"normalize\": \"all\"}\n",
"embedder_params = {\"provider\": \"database\", \"model\": \"demo_model\"}\n",
" # instantiate loader, summary, splitter, and embedder\n",
" loader = OracleDocLoader(conn=connection, params=loader_params)\n",
" summary = OracleSummary(conn=connection, params=summary_params)\n",
" splitter = OracleTextSplitter(conn=connection, params=splitter_params)\n",
" embedder = OracleEmbeddings(conn=connection, params=embedder_params)\n",
"\n",
"# instantiate loader, summary, splitter, and embedder\n",
"loader = OracleDocLoader(conn=conn, params=loader_params)\n",
"summary = OracleSummary(conn=conn, params=summary_params)\n",
"splitter = OracleTextSplitter(conn=conn, params=splitter_params)\n",
"embedder = OracleEmbeddings(conn=conn, params=embedder_params)\n",
" # process the documents\n",
" chunks_with_mdata = []\n",
" for id, doc in enumerate(docs, start=1):\n",
" summ = summary.get_summary(doc.page_content)\n",
" chunks = splitter.split_text(doc.page_content)\n",
" for ic, chunk in enumerate(chunks, start=1):\n",
" chunk_metadata = doc.metadata.copy()\n",
" chunk_metadata[\"id\"] = (\n",
" chunk_metadata[\"_oid\"] + \"$\" + str(id) + \"$\" + str(ic)\n",
" )\n",
" chunk_metadata[\"document_id\"] = str(id)\n",
" chunk_metadata[\"document_summary\"] = str(summ[0])\n",
" chunks_with_mdata.append(\n",
" Document(page_content=str(chunk), metadata=chunk_metadata)\n",
" )\n",
"\n",
"# process the documents\n",
"chunks_with_mdata = []\n",
"for id, doc in enumerate(docs, start=1):\n",
" summ = summary.get_summary(doc.page_content)\n",
" chunks = splitter.split_text(doc.page_content)\n",
" for ic, chunk in enumerate(chunks, start=1):\n",
" chunk_metadata = doc.metadata.copy()\n",
" chunk_metadata[\"id\"] = chunk_metadata[\"_oid\"] + \"$\" + str(id) + \"$\" + str(ic)\n",
" chunk_metadata[\"document_id\"] = str(id)\n",
" chunk_metadata[\"document_summary\"] = str(summ[0])\n",
" chunks_with_mdata.append(\n",
" Document(page_content=str(chunk), metadata=chunk_metadata)\n",
" )\n",
"\n",
"\"\"\" verify \"\"\"\n",
"print(f\"Number of total chunks with metadata: {len(chunks_with_mdata)}\")"
" \"\"\" verify \"\"\"\n",
" print(f\"Number of total chunks with metadata: {len(chunks_with_mdata)}\")"
]
},
{
@@ -733,23 +601,15 @@
},
{
"cell_type": "code",
"execution_count": 55,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vector Store Table: oravs\n"
]
}
],
"outputs": [],
"source": [
"# create Oracle AI Vector Store\n",
"vectorstore = OracleVS.from_documents(\n",
" chunks_with_mdata,\n",
" embedder,\n",
" client=conn,\n",
" client=connection,\n",
" table_name=\"oravs\",\n",
" distance_strategy=DistanceStrategy.DOT_PRODUCT,\n",
")\n",
@@ -778,12 +638,12 @@
},
{
"cell_type": "code",
"execution_count": 56,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"oraclevs.create_index(\n",
" conn, vectorstore, params={\"idx_name\": \"hnsw_oravs\", \"idx_type\": \"HNSW\"}\n",
" connection, vectorstore, params={\"idx_name\": \"hnsw_oravs\", \"idx_type\": \"HNSW\"}\n",
")\n",
"\n",
"print(\"Index created.\")"
@@ -793,7 +653,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"This example demonstrates the creation of a default HNSW index on embeddings within the 'oravs' table. Users may adjust various parameters according to their specific needs. For detailed information on these parameters, please consult the [Oracle AI Vector Search Guide book](https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/manage-different-categories-vector-indexes.html).\n",
"This example demonstrates the creation of a default HNSW index on embeddings within the 'oravs' table. You may adjust various parameters according to your specific needs. For detailed information on these parameters, please consult the [Oracle AI Vector Search Guide book](https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/manage-different-categories-vector-indexes.html).\n",
"\n",
"Additionally, various types of vector indices can be created to meet diverse requirements. More details can be found in our [comprehensive guide](https://python.langchain.com/v0.1/docs/integrations/vectorstores/oracle/).\n"
]
@@ -805,29 +665,16 @@
"## Perform Semantic Search\n",
"All set!\n",
"\n",
"We have successfully processed the documents and stored them in the vector store, followed by the creation of an index to enhance query performance. We are now prepared to proceed with semantic searches.\n",
"You have successfully processed the documents and stored them in the vector store, followed by the creation of an index to enhance query performance. You are now prepared to proceed with semantic searches.\n",
"\n",
"Below is the sample code for this process:"
]
},
{
"cell_type": "code",
"execution_count": 58,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table. Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.', metadata={'_oid': '662f2f257677f3c2311a8ff999fd34e5', '_rowid': 'AAAR/xAAEAAAAAnAAC', 'id': '662f2f257677f3c2311a8ff999fd34e5$3$1', 'document_id': '3', 'document_summary': 'Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\\n\\n'})]\n",
"[]\n",
"[(Document(page_content='The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table. Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.', metadata={'_oid': '662f2f257677f3c2311a8ff999fd34e5', '_rowid': 'AAAR/xAAEAAAAAnAAC', 'id': '662f2f257677f3c2311a8ff999fd34e5$3$1', 'document_id': '3', 'document_summary': 'Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\\n\\n'}), 0.055675752460956573)]\n",
"[]\n",
"[Document(page_content='If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.', metadata={'_oid': '662f2f253acf96b33b430b88699490a2', '_rowid': 'AAAR/xAAEAAAAAnAAA', 'id': '662f2f253acf96b33b430b88699490a2$1$1', 'document_id': '1', 'document_summary': 'If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\\n\\n'})]\n",
"[Document(page_content='If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.', metadata={'_oid': '662f2f253acf96b33b430b88699490a2', '_rowid': 'AAAR/xAAEAAAAAnAAA', 'id': '662f2f253acf96b33b430b88699490a2$1$1', 'document_id': '1', 'document_summary': 'If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\\n\\n'})]\n"
]
}
],
"outputs": [],
"source": [
"query = \"What is Oracle AI Vector Store?\"\n",
"filter = {\"document_id\": [\"1\"]}\n",
@@ -872,7 +719,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.13.3"
}
},
"nbformat": 4,

View File

@@ -53,7 +53,7 @@
"id": "f5ccda4e-7af5-4355-b9c4-25547edf33f9",
"metadata": {},
"source": [
"Lets first load up this paper, and split into text chunks of size 1000."
"Let's first load up this paper, and split into text chunks of size 1000."
]
},
{
@@ -241,7 +241,7 @@
"id": "360b2837-8024-47e0-a4ba-592505a9a5c8",
"metadata": {},
"source": [
"With our embedder in place, lets define our retriever:"
"With our embedder in place, let's define our retriever:"
]
},
{
@@ -312,7 +312,7 @@
"id": "d84ea8f4-a5de-4d76-b44d-85e56583f489",
"metadata": {},
"source": [
"Lets write our documents into our new store. This will use our embedder on each document."
"Let's write our documents into our new store. This will use our embedder on each document."
]
},
{
@@ -339,7 +339,7 @@
"id": "580bc212-8ecd-4d28-8656-b96fcd0d7eb6",
"metadata": {},
"source": [
"Great! Our retriever is good to go. Lets load up an LLM, that will reason over the retrieved documents:"
"Great! Our retriever is good to go. Let's load up an LLM, that will reason over the retrieved documents:"
]
},
{
@@ -430,7 +430,7 @@
"id": "3bc53602-86d6-420f-91b1-fc2effa7e986",
"metadata": {},
"source": [
"Excellent! lets ask it a question.\n",
"Excellent! Let's ask it a question.\n",
"We will also use a verbose and debug, to check which documents were used by the model to produce the answer."
]
},

View File

@@ -1 +1 @@
eNqFVW1sU1UYBrcfhgQlEhMlRg8NEBN229vbj63DKGNzOnRu0IqAWebpuaftZbf3XM85d1u3LIQh0YREcxMTEzXRSGmxzI0JBAySaBCjBH/rMEr4YdQoGn+YqInO99y1MGTB/mhOz/u8X8/7vKeT1WHKhcWc5VOWIynHRMIP4U9WOX3eo0K+UClSWWBmub8vnTnkcWtufUFKV7RHIti1wtiRBc5ci4QJK0aGo5EiFQLnqShnmVm6tPy38VARjw5KNkQdEWpHUd2It6BQAwU3z46HOLMpnEKeoDwEVsKgFEeqq4K1NjQxoDyYSW11Q2zsmVSLaYI5DpWaARF1w0gpR8mYXY/p4GIQU+Jhyy4NCoo5KQxyKjxbisE94KwcTCoIt1zVswJ3oAUcok7ecihiYClaY9REOcYRdOhyWoBGrGHagjAhHsdSnRwTSe4JCcB6hjB6WtCcZweOI+CDSsxDDgWEZOAgRihHAcGKboSzzJMI4nHoG9Fh+IYQPY4Lt6LAPNtEWYpwozxw5KWwasBSkEFBCrSIoYPxkAvToFxaAbfjoQAZnP7T6uJIqiSbsSHkuQGLJTegTkhuOfnQxATcKTVYnJqK3HrQgUVQlt1DiQTowES1QLEJmnqlXGBC+rM3qWQGiKOu1KhDmAkJ/PfyY5bbgkyas4HOGlFzDWTo14YodTVsA9+VBS//GHZd2yJY2SNqjFN1tWiqlpvNNSUqDbTmSP9UR6OOSH8JRO0gPRyLh41jo5qQ2HJsUKVmYyip4gb2M4sNLiZDEEerL4xfWXCeXoxhwj/ci0lf+oaQimn/MObFZPz44nvuOaAv6lc7+29OVzdeTxcLR6Ph1tkbAouSQ/zDOWwLOnuN5GsuNdiNmKYnNT063WDJBmnLgn8onmo9Alp1QX10fwVCSk9MlmEi9OJn1fp6vtP3RGOa3y67q9wF0/HPdnOrBRmtKE1dpHYPRZPterRdb0OP9WamOutpMksOYzbDQfo5GMijjeFXScFzhqhZ61xy7HOh622pZbNhH6VWf5tgWOqnX47ruj634ZZIDgtiOSpjOZZKpf4nLjBDpX9C9afpKc1ozSx0mYjvnkNLeS48cPV6KqoeqGjdLZDX62mg0S3RS9ejt+2u1YvWLNP/EM6DejS9Q+R6jQQpxLaYu2h/b7JrqMtJnBzViM08U5PwylMtEMSo9OdQnEQTRipptMbNeLYtnkglcjgWTyaTuqEn4/HsoWEL+7VoOIryjOVtOtPZrXVieHK0dCAbv9q166mO3p7OqZ3adpZlwF8GA88Oc2glTTnI0a8FqWHBOa2A+/aOXf6JNpIi2QSNJUjMMHI5om2BvWkI6JpAyup1CP5N9lUWXqRPvnjg4O3Lgk/Tky9/s/Xc5lUH3jovzu6TX6/45ezOI6OREP78jrW52OrY8edWlkZ6rI+PNl3+80rLD6tv6776+tjIuvvPXKEPP3Lnr6/NnBoYO3l5+sD+gQ2XtpfXbJo811Jq2nbymYO2e8/6bd2b3yA9masb7869f+HLf/rH55tf3PHVSyuvkA/61vxtf3e0+c0H86WP/vrx7Q3pWDqDm1dVP71w8fS9Wy8fOL2+OZza9OpPM8fe/v7dncRYtXFy70Ntj8/O/3x6ei/UPT/ftOz8H/et+B3O/wLqW+ZT
eNrNWA2MHFUdL6CxEQI2aMVq9Lk5257d2bu93ftsmvS8a8u117v27oqlvXp5O/N29/Vm5w3z3uzetpSkKIQoDW4hIMW0Ktc7uZztVRoRoUmRQqoiKibilQIx2GgABZQqGCj+35vZ3dm9j0KCiZu93M7M+7//x+/3/5h383iWOJwy65JJagniYF3ABS/cPO6QG1zCxTfGMkSkmTG6qbd/4H7XodNfSgth87a6OmzTCLZE2mE21SM6y9Rlo3UZwjlOET6aYEb+zKLI7lAGjwwJNkwsHmqL1jfEw6HimlDb9t0hh5kk1BZyOXFC4ZDOwApLwI1r6RdDe3bAYmYQE651E7sG0WJao8aZZRGhmViAgSAkGDO9zSyckZsJnKVmfogT7OhpWEAt2xVDXE+TDA617Q7ZYDJxBJUm7A6Bn05e/jAI1x1qywjAJv1KGqmnSDBkMjaMXFvqy9tSCxcOtVKhPXJ/3QTjhgyWwdRSm2Ir35tUNlFBMurWDDH/BnYcnIfr0grLNU3lu0GS2DUhGtvVRdC6dmRSLhBLIl+pNNEhcnNdIM9zeQ3i8lFk0Bq0kP/ZwgkSacqRjR0IGMCOcmlitZVXRCNoIE2QBAWREdukOhVmHvmc4IhaSeZksLQFJR2WQdwmOk1SHeVIgoPHHC0nkVQkjAZDa6llIN2ksJwgAwvsSViY40iKZQdDtWW9DQG9GeCB5CLCFmJOClt0l6eQOQjIZkOEUY4CN13hq89DXMEx4oekyoSgzTghpeimNLPAVGVPu22bRBlTNqfLQgkm0kjHnPAwyjMXcdBnGsiQUctQiyh92JaMcqjy0IfDV759MFT2dIe0He5gqUtmDNyqBf8MAExUQVKBWJ8PZI6aJurt6b5eRoB4hksD/PATo6ReQxZDYDsEkjPX0YkvnCDIZ6sRKe/f6RENgQE9EBK0HIT9IBY5BWGrDUhI/pKR/w/a+3b4TKyg/ofMe1CGs4wCn6F8yOjMQfeZXCsmgJ7GVoqgBNyymPARBBpLxBUhLpYNUioHZVdyvZjflSkYTBZeShEojfOmhy1zAXbMUpLjRfvSUuR/kh4B2MqZUhGIDydZktSUOMsIYLj0+8s8mfP+skLZzmfJCY9+QwaxRboyIYjlZuBHKIE51aGLYCOLLZ0YoR0zO8o8OVGSr0yMDnAMWikv8h9Ad5ibSkN94ypoHldU5XQIsJ7TLJEPffsrs2TQ0zIYQsBjxGkGIFCdEFqmygYqDYU7VB8OIzAb01RawNocdgxQx3MwVQQiU7170XdQsNz3rFapkuaZZKSoK+zhg026CxASctCAe+XdHOyQYLKFJWdkTsNNTWEAxmAzzwFC+FqEVNa9YPOG/EyRqiLmo5CAAYNga35gktjkpBqWzmIigP6kR7hifRKuY8lgmgRiASRT6oGkDAIrkxYJMiICdawijP0yBRgacFzi+SvmK1tZyl2wrhwcT1dO5Wp5U05TlqwgYA5IEystMUKuZQCYAjgkIS8Vjf40y0FVgg2xQAkT68MoDVHi3pxk0mESBnQDFPDLDLQSF5ySJbyPWJjCKCi1YEdAdZmVMt0EZ2EBR2tlhKsIk2HQDgIMwGaJp+AqsENFEbDnbhJco5D8VfgLmiFDjqzKs+erAV0qHMoRMhyS0ygMvPA/Dyh+wMSVd6rp0U0zVPDAnFYqULabgE6XBtZLLkDFweUCLy1Oyso3a7jUeFAqkXOSozxeqf0QDMSUBdlQQtqbs1F7F+RPjitUoXkLqpvF2cnE8FxGaC4I1wJSpqxENrNdEzuSiRaFebyU02AeSjgMA9c8exQiPGjPoBd90A/SgwoC0Kc6icWBUwGIy2k1R/70KgR4G+wD+Moy1BBP10pvPTfQ8mZDXRZVLo/Vezc8tXDd1GjM7mxV26imm3R4dqaloCA72AR6yUDDvyS1ZHJ80A5R3qfqjcbvdaUmoQOyKQavNzKTGCzLqDo7R8y80u1vPqNyq0Qsle2uno7uLZ1dPetkIwI5v6A5Ga5KQ0Vd8Pjl8Qoc938rjB2iA5pwpWjskCRxVOMBzH07grk/Y9gbLEbQb2QZ7AwTAeZRKwtqZArABYGcYxnIK/lyojqIJwVtRzF+lm3lbdhTpZrc2GYmFYrH3GaO3FRp2yk7mus4kpEkK7VBfsMLN8Q4kQ/EQA0ewiE4A2lpUAzTe0/vgNd38zCy61imB/bfRTEf5kqrsgPMqAxBmWzANq9Xw5AB9PLec8tcYomdRBeSk9Uztk8PYqXkCFcmRrFDlwaIMMI6OAgAhtWQIRyXiwCDZLiSrqkEFYRyRpRdWE3SakxAqkd5lciblCsCFkFd3qTMLNXRgP/wgKMtfd3eXMMtatsKVDmzsiRQBB7480XREzUKwBJ/esvAUJAiEv5woNj4syL3XFE90pcPe7VUnjPAViaVZyZgCzY1KV0dBKivCgstAU0xEIwueQpRnJATEk8eOGKIQBLvGU8TWQH5CwsWjULeiMKxGYcsR0EZeKMRS2eyIxceTO2iNrhGkqYyYRcXxoQuj0jUS1thYpgQW8PS6gdHNC5fW2QpVqZDvAsPANWG1nVdt6ZnzNu6MCVHbhgDpHjdTs6sSb8raZI5Mx9PyN6iQbgsUXiovWhs3aY85L6F6iON8Uj9VFC1CeEujNnq+SPBBzZEDPbR/EOpwpgnfCS4hvHC4Y1Y7+2v2FIGsnAYO5mmeIWXjmtJRwvjHZtmqvMfltSNxyLRKHyPVezM85ZeOKzGu2MlKEoyEw31DTGtvkmrjz5UsTdQNa/pDFQUvl9/pBhBE5JKpAuj8Vhryw+BGTYQn3x9DOSEy28eBUzJU6fH/ROyH/RuKDPiM6OdgG/hxIALIEeb0XrXQqC7EUXjbQ3wbUbrNg5Mdvh6BmZF6tgAMJ1DimhrivQZ19OuBTSd6JiVMtNLyy5LiptyYtHUgZrmnepp6lZhLF4vP9Nfvuh6h8gklLqLMkvfhwxMNIXj0l8Z62jzgO9107bpZbNJA7NnmHi4RWlbcfH1ZRN9mWXvR2YOE5u3TYdmEy+O5751o/E5Q1FaWbZrNNba2nqRfee0KL5tGs0mWQWo53rNPCuDUHqr0byr5wRxwjdao0bhUfg9VB+NdmzuzNkN6/TrEls3p3uyuK8xmRp42DuN0oQksuy1GidQfKnIF6bDGTwiy9CqWLQx1gTWrCyedfW7iU7v9X4lgu5lwpz5cNnQ4IGJNGC6JtbaFGs0YgmNJJKGFm9tadZaWxuiWqKhocWIt0Sb40bT/VmKCxNQLlCKsZRJjupJTccw02peMhfGO6/vad/Y1TG5VetjCQaADGAAzoKZcKyfOFBAChO6yVwDCrdDxjrWan3t1xeOtzZGY6Ack5ZYU2ss0aqt+WrfVDGtS2k7Kqu+OmTfO+YNhU9csv8L31q4QH0ug7/33jM2b7jj96uvuLDiyXtOjG6583nn9Eff+ERi0cdqVl87uSneffbUL089/fTImX0TF3J3rV50250/eo385q3bzyb26S8f2PH2/vOvnzt/9VWvvXjTW//63Qt3Df7930enVt+3bNvAXftfWXj57UsWnzx86hffvWZxy84Nlwy/+di5u5seuu/dpQ8snB47syV37sjE1OqjiZpbzz/+9pKdbx7/47N9L638ePuhx9799cJVay7t/2ttd/3wCz9ftrh3w+UnVu4/e81P45suv/KZzoNXvfqnaH/DdXvvndyqhx7Ofs25SXvkTK+5quXeT+eN9StanGefO/DoLbtf77nQfWtn5D+fv3LJ3nPfu0G8csWnWn52+sDV3+l59eo/n3pm7/mPHHq+8PiN7n4RPn7L0ROxFnrl3w58dmTroZbbDp5897dm3ev/OHHSaGssDPY9tqTrzJPOJ9/ZWLPrqZqDU3d/7it786vW71l7d+12ve3bNZO/euTln6x+7cbefXccP3L2nRXTO94+d+eFv8Sfe/H0P398svON0weX6N/c+pLzzh+eWFx3zyEV+MsWTL1Yd3L9pQsW/BfdSCzc

View File

@@ -1 +1 @@
eNqFVX1sU1UU3yBREIiJX4kY4VLY0GSve6/tuo8/MKVjfIxtyAYOcJbb927Xt76++3jvvm2lzAjjDwN+PWUQoghhXWeaMjYYERE1zkxZ+HCJBDIiQqKJMRElUYMxmnle18KQBftHc3vP75x7zu/8zumO3laiGzJV89OyyoiORQY/DGtHr062mMRgO5NRwsJUSqypq2/oNnV5rCDMmGZUFBdjTXZilYV1qsmiU6TR4lahOEoMAzcTIxGkUuxK/t9xRxS3BxiNENVwVCCBd3mKkCOHgptNcYdOFQInh2kQ3QFWkUIqKrOv2sKYGSgaQyqOkuccHU22M5WIYhtFBZsS4dycQVWVMM4FwXmXq9yOwShVsuFtVxvOcKusxAIGwboYDujEMBVmBFrA2XaQiCHqsmaXb4N9aAKHiNosqwRRsETlrURCIaojKFbTSRhqkltJEcKiaOqY2SdVQkw3DQbA7AtOtM4gIVPJOLaBD4pRE6kEEIyCg9FGdJTh2mYe4SA1GYJ4OlCASCt8Q4iVqga3RpiaioSCBOFceuCox5x2AbINCRhimEQxVBB3aNAYojM5Q3PckUFmTv8pdXIkOyWF0ggytQyLMS1DncF0WW12dHTAnS0MWSeSTW42aNMkKA22EJEBtKmjN0ywBPJ6MxGmBrMG7hHMUSCOaIwjqkgleMA60rxV1oqQREIK0JkS7b5mFGmlIoRoHFaA7+SEl9WPNU2RRWzbi+02prPC4exc7jWnbH1xIDuVWR/6cnkUr4mBvlXEO90ep6u/nTMYllUFBMopGFJKahn7x5MNGhYjEIfLzo6VnHDum4yhhtVTg8W6+rtC2kxbPViPej3HJ9/rpgr6Ilavf829z2WNd55zOwXBWTpwV2AjpopWTwgrBhm4TfJtlxTMhpvjvRwv9OVYUkDaLGx1l/BlH4BWNVAf6UxCSGYaOxLQEXLuTG92Ug/XVee6+V3eI4lK6I71SZUuFyFXKaonGrJnDwneCl6o8HjQ8pqGtD/7TMOUzRho0EH6IWjIslzze8WwqUaIlPJP2fYxx52y7GFTYB4Zl11T0Cz7p5Xw8Dw/VnhfpA4DIqv2iwl3eXn5/8QFZgizBu36OL6cc5U2TFRZ4tk4hqbynNh12XySdj6Q0aL7IO/kk0Oj+6Knzsfj2ZjKJs3JknUazgFecOvrlpWuEr2Vonc58QXXR6pWY6n2RDsnKtSUOAYLn3AZQbQzawy5giVBF1/mFjwCCXqDJWUlPC9K7qDXzQtC0OPqbpWxlRKcAmqmtFkhR/1VnB/DyuHqM7Kxeis31PpqVvrTjdxaGqTAXwMGnlWqkmQ90UGOVirzNAy4TpLgvta3wRosE8vFoFfkyyTscvOuEm4pzE1OQLcFkrC3Q+aPZXtyYiMN5y+Zv3tGXuYz/cW3qqun+2Z/9dmqM8NnBy/emHXr0tKH/yh85iEH+fb1G6P7pQMjg86ea03JP4fqr+8bX/jDzr7huf4ratXlby5vad9Y+1PfhqsPvrSkL33he27uxU+7Dx/e8/Pe0c2PBV6pGSk4kQ7zK6rnRZTT57k5X3YuOpfobGmoqVpndj7wFC5Ynz5Yd81aNX9425MlS26+W3le6dpGN885crNr6MK8Ga8W0LbruxY1mkOHpsX3Lvz97YX9czw7l00729/4xdewh0+9kx59fvXQJX91y4G6zYFZvxSMR45pgx0zbzniZ55eUTRv1+fCP3t9obpnH89r2tMZmfneE4FDC94PzC7sUh8dKcRp6+TV8BuvBXZX/rr/5IJ0eZzygZc3HRzdss/sPra4tvGF4x/5Rv7aVxP68bfFQNT4+PS8g+n+7afy8/L+BTWeI00=
eNrNWAtwXFUZLoI8qqMCFoRx4Li2pYG9m928k0ofJmknJSQl2VpIA+nZe8/unubuPbf3nLvJpuJYXoIU6FZAi6AiaQKxA+kAVmxBFCLMWCsjpRCqwICIIr6t4CCt/zn37jOPwozOmGknueee//yP7/sf91w1miYOp8w6bie1BHGwLuCBZ68adchGl3BxzUiKiCQzhld3dkfvcR06uSAphM2bKiuxTUPYEkmH2VQP6SxVmY5UpgjnOEH4cIwZmRdPbdoUSOHBPsH6icUDTZFwVU0wkNsTaFq3KeAwkwSaAi4nTiAY0BlYYQlYWJvE4jyOUhlk4RRZGrjychBkBjHhnW5i1yBatVarcWZZRGgmFmAsHCAYM72DpRjsFThNzUwfJ9jRk7CBWrYr+rieJCkcAPNsMJ84gkpzNgXAZycj/zAI1x1qy2jAId1KGqm3SDBkMtaPXFvqy9hSCxcOtRKBK+X5ugnG9RkshamlDsVWpjOubKKCpNTSFDF/ATsOzsBzfoflmqby3SBx7JoQmXXqodi65cikXCAWR75SaaJD5OG6QJ7n8hnE5atQr9VrIf9nDSdIJClHNnYgYEABNJAkVlNhRySEokmCJECIDNom1akwM8jnB0fUijMnhaUtKO6wFOI20Wmc6miAxDh4zNEiEkqEgqg3sIJaBtJNCtsJMrDAnoSFOQ4lWLo3UFHQW1WkNwWckLxE2ELMSWCLDnkKmYOAeDZEGA1Q4KkrfPUZiCs4RvyQlJlQbDOOSSm6OsksMFXZs9y2TaKMKZjTZqEYE0mkY054EGWYizjoMw1kyKilqEWUPmxLRjlUeejD4Stf1xsoeHq5tB1WsNQlsweWKsA/AwATZZCUINblAzlATRN1drRfJiNAPMOlAX74iZFXryGLIbAdAsmZ6+jEF44R5LPVCBXOb/GIhsCADggJWgTCfhBznIKwVRRJSP6Swf8P2vt2+Ewsof5/mfegDKcZBT5D+ZDRmYHuU7mWSwA9ia0EQTFYspjwEQQaS8QVIY6VDVJqAEqw5Houv0tTsDhZeD5FoDTOmh62zAU4MU3JAM/Zl5Qi/5P0KIKtkCklgfjvJEucmhJnGQEMj36vmSVz3l9WKNv5NDnh0a/PILZIliYEsdwU/BGIYU516CLYSGNLJ0bg8qkdZZacyMuXJkYzOAZtlef4D6A7zE0kob5xFTSPK6pyOgRYz2mayJe+/aVZ0utp6Q0g4DHiNAUQqE4ILVNlA5WGwgrV+4MIzMY0kRSwdwA7BqjjAzBhFEWm/PSc76Bgke9ZhVIlzTPJYE5X0MMHm3QIEBJy6IC1wmkOdkhxsgUlZ2ROw6KmMABjsJnhACH8swgprXvFzRvyM0HKipiPQgwGDIKt2YGJY5OTclhacokA+uMe4XL1SbiOJYNpEogFkEypB5IyCKxMWiTIoCiqYyVh7JYpwFDUcYnnr5itbKUpd8G6QnA8XQMqVwuHcpqwZAUBc0CaWEmJEXItA8AUwCEJeb5odCfZAFQlOBALFDOx3o+SECXuzUkm7SdBQLeIAn6ZgVbiglOyhHcRC1MYC6UW7AioLtNSpp3gNGzgaIWMcBlhUgzaQREDsJnnKbgK7FBRBOy5GwfXKCR/Gf6CpkifI6vy9PlqQJcKBgYI6Q/IaRSGX/idARQ/YOLKlXJ6tNMUFbxoTssXKNuNQadLAuslF6Di4EKBlxbHZeWbNlxqPMiXyBnJURiv1HkIBmLKitmQR9qbs9HyNsifAa5QheYtqG7mZicTw3sZoZkgXAFImbIS2cx2TexIJloU5vF8ToN5KOYwDFzz7FGI8GJ7er3og36Q7lUQgD7VSSwOnCqCuJBWM+RPp0KAN8E5gK8sQ1U1yQrprecGWlRvqMecykXVYW/BUwvPdbXG9M6WtY1yukmHp2daAgqyg02glww0/IpTSybHB+0QhXPKvmj8XpdvEjogm2DweSMzicG2lKqzM8TMK93+4VMqt0rEfNlu62huX9PS1rFSNiKQ8wuak+KqNJTUBY9fHq/Acf9vhbFDdEATnhSNHRInjmo8gLlvR3HuTxn2enMR9BtZCjv9RIB51EqDGpkC8EAg51gK8kp+nKgO4klB21GMn+ZYuQxnqlSTB9vMpELxmNvMkYcqbRtkR3MdRzKSpKU2yG/4+IYYxzJFMVCDh3AITkFaGhTD9N7RGfX6bgZGdh3L9MD+tyjm/VxpVXaAGaUhKJAN2Ob1ahgygF7ed26BSyy2gehCcrJ8xvbpQayEHOEKxMh16PwAEURYBwcBwKAaMoTjclHEIBmuuGsqQQWhnBFlF1aTtBoTkOpRXiXyJuWSgIVQmzcpM0t1NOA/vOBoTVe7N9dwi9q2AlXOrCwOFIEX/nyR80SNArDFn95SMBQkiIQ/WFRs/FmRe66oHunLB71aKu8Z4CiTyvsTsAWbmpQuDwLUV4WFFoOmWBSMNnkLkZuQYxJPXnTFEIIkvnI0SWQF5C/NOXUY8kZkd025cHkAlIE3GrF0Jjty9sHEELXBNRI3lQlDXBhjurwiUR9t2bF+QmwNS6sfHNS4/GyRpViZDvHO3gdU61vZ9oXWjhHv6Oy4HLlhDJDilRs4s3b6XUmTzJn6ekz2Fg3CZYns7uU5YytXZyD3LRQO1daEwuPFqk0Id3bEVu/3FL+wIWJwjuZfUGVHPOH7i/cwnt1xMdY7u0uOlIHM7sBOqq6mxEvHtaSj2dHm1VPV+S/z6karQ5EI/NtVcjLPWHp2hxrvduWhyMuMVYWrqrVwnRaO7C45G6ia0XQGKrJ3h+/PRdCEpBLJ7HBNTSR8LzDDBuKTq0dATrj8qmHAlOx7etS/Lftu50UFRpw13AL4Zh+NugBypB6tci0EumtRpKapqrYp0oBWXhzd2ezriU6L1K4oMJ1DimitOfqM6knXApqONU9LmcmFBZclxU05sWjqQk3zbvg0tZQdqQnLn8nzj7nfITIJpe6czML3IQMTTfYh6a+MdaQ+6ntd3zN53nTSwOwpJu5oUNouOPb+gom+zHnvR2YGExt6JgPTiefGc9+64ZoZQ5HfWbBruLqxsfEY585oUV3PJJpOsgxQz/X5s+wshtLbjWbdPSOIY77RGjWye+HvvnAk0nxJywC361sTkTU1G6vWWtFVuD39iHcbpQlJZNlrNU6g+FKRyU4GU3hQlqELqyO11XVgzeLcXVe3G2vxPu8XI+heJsyZjxQMLb4wkQZMzq9urKuuNapjGonFDa2msaFea2ysimixqqoGo6YhUl9j1N2Tpjg7BuUCJRhLmOQBPa7pGGZazUvm7GjLZR3LL25r3nmp1sViDACJYgDOgplwpJs4UECyY7rJXAMKt0NGmldoXcsvyz7UWBuprq6P6LUNYb2xOtaota7tGs+ldT5th2XVVxfum0e8oXDiuEPn3njyHPVzPPw/elR0/XjDoWWfeO82HHrs6Z+mv9Yl/rDjwPDm04YumNiSfurgtue2/HDx91pq33s78LPr7tj67E82sZf3ZvadcvVTZ+/54q8eqL9l6W/oO0cOH+aZ1W88ds3Koa2s89K7b7qw8/z922/eMm/hTacva/yKOf+6eek3G2M3hbr+uvff43v74vPwOuv5Q3t+PrRnYu5dX931qYNLO9d2v/b879/9130bTzrQf0B/54l5NRPrT7qC4Gd++fiy/Rv3r587/7Pf2LBvvXbW3uQN52zRr7kZH9j2nTduXbPo81uvHrk5eO+yj/7izJ57X5v31uPZL6/69Geqn2hpuG1z97cOzz9nVXz89s0nzs3e8fTfX5l7xYuv9NgLFpxx42vm6U9OvHrWyVXddwy+ed8pkRcaVt6F9z/z9YUnDpze+frnKq7feNr3L1pyyR7rpdHw1sjvFr97yT0T6PqPN//l2lc/ueT1eW997NmDH1l65vqhdc8daP3wntaTtMPvRYPz//SD/obl4Ybk0LP75h49Mhb+5j/fffLWNeMrzvjR7m0nVLb89uVrJyIHu2I7x++8ZXQJ3vrYCy/9Y/sC/dFHDn1p5zPZ/syfT/v2H9/eve3wbZ3tR7TRiSMrl/x67dHh6J090du333l237btPcPGjhNWDVfc0Fqx6uGH5ygEj59Td8K5W/72oTlz/gMJcU9B

View File

@@ -1 +0,0 @@
eNqNVktv20YQRi75HQtdlATiU9Tzpjh2GzgvVA6KICiIDTmStloumd2lHjF8aPq46y80rl0EaZtTb7n01EN/QX5NZ5emIhvuAxBAzrczs/P4ZqjX5wuQiuXixjsmNEiaaBTU5vW5hJclKP3dWQZ6lqenTx6Pj96Ukn2YaV2ooefRgrmaLhhfu0meeQqoTGanL/J0/fHGzeMGHsdzWDeGpKEXfO3oo3ud3mj8xXwf7pYvHz/rr9LO4aGG1TjyH84f9Rot0sAbpbVYzqgmTBE9A7IEig9JmCDjA6OV0VUsQZVcK9QNEanujlMo9MyY03RBRQKp0WYi4WUKcZpnlAlj8fwrhGF1LVxrU6GWIBGdUK5g50DSZZzkWCqhrzllGZ2Cqg9OzmdAU6zvD2+fKpDOaIpWm9+LNRZUOBcFVl7otvH32yhJMH5nXyR5ysR088v0FStaJIUJpxrOquPNmzvenbd7uRBgO7V5OwcoHMrZAn7dq+JyHoCY6tnmTdgN39XY0bqAzXtaFJwl1Fh6X6tc/Ix1LLDf8O2Z0lSX6vUp3g5//XmegVKYy4+PD+skvv8PX1evPw26fng2BokM2/wkpkysTu9hJpsPB5K1SNgjYyhI6IcRCbpDP8Af+ezh0T8kZ4n1DUYpsTYfb949rsnyb1xpTHLO82VcFrGttaF2YyhKzluNusOVVDcOSdDYcuv5cUMzzQEv+XLHMRXkQCK/mEpyvKOUHBXqqVgul+5FFGZAzGSgzpYxjeMmz6uiNYfkuCloBvjSvOS02SJNCdNKp7mH+U9yKRg1eJKXQsu1OXgqmIaUjLFxoEg+IaMMJHbEqCFlUKXdc3t9I1lPThCGboTz0tSvYpYaFxcW3oNcxSMxBQ7KWmOIXLMMYijyZIaaQS/sRZ2w3/Z3j40L00DHHzjYT38w9P3miYmylBLztSlyqjR2IMUo0yv+goFv/e1oXHXZH0YdE5KGrIgTY9lxu7U8QbnruwHKTMUpNWUJbJFEyrY1xh2jbY1LIdbGF0uqynpekoqr3boQvW606kYe+vSCoO0WYlpVPzVJB77vmzSXTKRxVpiEItevgbkFum6nBlKYSjB2vWALMWki2H+0b9wWSDlVSoizF9Z7EFpvW5iZcMOB2+9XaMKKOMsQ82s9g1itCpmVGcMKmHr0TbUSnpemtOZsAsAVZ3PYLecncKemJtJkxjivNNvbFCvQaHY6Nk1cERpxWFWa4RXQakYWTGFZ5PipqRQDN9rFrF5lvMCGzk2KQddea+SMGX4OycAi5cIw3L5OSyRQ1Ye+tbZA1QcMu3tygjOIgyVxlH13MOj1/aCHg767y80eOGl9mvjPcxzsNcHJgwT5aV4uj36LfJrMFnk6HhGHmKGgIjVMNmS6djtc0dkSrlTUU1Q4k/oCb2ZDuLQ+TFTOi7VjnuTg/8fmknqDHeXI6a10kWUQkXuIbh0+w2UJ0pD/iRFr7T2Oe1IDuTXCnW4W5m2yV006XyNrQvLH+wOXjHG/oTWuJks75ZJbtQPzkcGxHF6Oltw3fz2EPaKcjJgscqlt3LfRHQDJMDBysVTqJe9e6mkfP3ZRu3NdU6uVbj9zsSl+Y9h2o8HJ3wjDCKE=

View File

@@ -1 +0,0 @@
eNrtWH+QE9UdB/lRRVBwKlKldc2ABzab7K9kkysK4ThQ8Y7DOwbRO7eb3Zdkuc1u2N0kl8NzAIXB6qDBEQeVqUq40xM5UAQ7pxbaolIY20JbBQttBZTyo8zY3ghisd+3m+RyxwE6I+0/MEzu7fd9v9/3fd9fn/feorYUMkxF1/qvVTQLGaJkwYf55KI2A81LItN6uDWOrJgu52pm1NatThrKnrExy0qY5V6vmFA8ombFDD2hSB5Jj3tTtDeOTFOMIjMX1uXM3ssGz3fFxSbB0huRZrrKCZpiODfhKnAB5b75LkNXEYxcSRMZLpiVdDBFszApHRMtk7BiiEgjEf4YhKIRZmSiq6UBq9FlpGI2SRWTMiJZ0tQ1DVkkA8tQDBPE2ixdV/MLaWLcXsgSU4qaEUwkGlJMMJCZVC1TmAvCWEBGpmQoCewIzBwiHD4CaVFFQ4QOM3GlGclERDcI2HbCQDHYnZJCbkKUpKQhWnikyYRlJE0LGPMreIhZJookVVswDTJERk8SGgIOSwcBMw37s72OY0CIYT1pEaDPAGcQKAW/oOIOLQFUM6YnVZkII0IsmAeCRsaDN6BgFsGUYiguwg7muxIQImRYiu3w+S6b0x712mqpJmySquuNRDJhezGTsF1nWoaiRV0tLUDDKaIYSMbOzSttKGHVw3ORZAFrQ0tbDIkyJNrjuZhuWtkNZ6VOBzgOJSwSaZIuwwLZV6PNSsJNyCiigjvbJRxXOzez7Y0IJUhRBX+3OlLZ9WIioSqSiOe9OIxr8ylEYlvOnm7HmUZCAmpWdnOoYIe3JgOZrhGUh+U8zPom0rRERVMhVUlVBJNaE/Z8Z+lEQpQaQQ+Zr6JsqyO8rpRHN7NrqkRpRm0PldjT2TWiEfdzr5fSjaQG+YWybRU1Zy+Xn+xejvXQtIff0EOxmdGk7JqIqJpoQ9HJRZF2qA2WpPwkRa8reEmF1LZi2dU+OvAS5GoCsg891AoqraS5KAcRQTvfb8vX7Iszpheiub/fNbkpEJ3s21MNxU0wPFGLEgSuPYL2l1N0OUMT06rq1lbkl6nrMxgb6gxI/QgEpLIQ/DYpltQakdxe0WfY97i6t4WLTYV6tMh8w4Jg4c9sjqMoas/N5+U0oEAUDa+YY4PB4AX0gmeQld2I90dSQZLh65xd+rh79xB9STpdL29PK7YHLBpzHs5uewrcxHm5+7aHoe9tzxtNKnL2LRgLFD3tnmnBKn+suoql+ZkV98TT8ebqOu2NJlJS9aRMWtD6EWknRJOV3UNwwaAYZH0yI/MsoliRpX0RnqeDFO+XIsFgYHVKEbPttIcmoroeVVFHxVSyQoSWQ9baaZNtmzKnOlR1R8Xae8i79bAO/qsTwc+arqHWWmRAOmbb7aWhwA3UCuJ3h+ZkNwakoBT2sxQt8zwTiUjkZKibQgIVEySHu4MNMQtbnY60rf8NNz56eT/734C6J/bd+etJwxcLY3d2DV4eHy+f+FnX9wbOPLZ43Gvu7R+1apGPV+358/DP/7l86fNPmx/sTF/FTvp4wcJl6U3jXjn0zgMtfzn82br7Dj+9Y8Vm4egr7LgnzizdPZLp/OGiRaO+GhP4dMW27IJFHu7w1knHG+ZSwsHRS2uMhsPoheSgIUcmLRrz0/1LhNzDf4t/8kjwupWfyo9+/vLLVz17tPPZNz/9/O+Jd44/29Xy5oLLjH0PfPbBqyfI1Y927Z968ODi4wsHVI0pv7k/u2W8eGzrlkGrjtEREh0bd3rpsiMrjj5xR6z+6gMn1y0YOzo+hb/pTNczw96tndw+YujYE9fmTo2InNz+2jW3ZUc9dv+sIZOX/3LvnY8f4MELX389oN/OT64IRvv363duOH+7FM0dXLSh3IECB8X7XznfBdNCI8rY6JlSM6RVN8XHh2rvbqxEk5PzZswJNMm+6dMheWo5qqqxmseYUcAZVyl2ixoRgYKXFFPSAWNkMYNZ8SEhj5IgwLgLWCTI0N9jWIcop0AKwMYGOEkFvBdkHdeLDe4YeFBTn+QCtwOwQLVbY8mEIaaF7jNH71klnj+p2BNFKFvSPguDSMgGkU0ONBR7hZfxsPC/I+SgWmXfqNbqTGdX3+K95Rytbl0h9e/Kt2jGz1+gn36bDr74Arp6L5+juaCvUL5r8Hmo6QII4MMIcI7N9SjgvYM+LJ5MLpgwroiuqnpaSCaE4nnJVa4lVdXtKoTZ+SpEDzLBVUwwOApaioUPna7Z3SvVwkpTCyvBGkkDzpauQn2k02lP3ixcKrhGgKeYNq75ZarueK4MTlZl+KgJg7IeSsvcRJmBog5PWQU4AU6CmiJiuqQDthsZPDFLU/CpETdSZBJ6hAjFkQFhwWyQN8DC8h4+gL9sTSTNMB4OiqbMahYUGavIS3jv0k0hpEURnAxsaTBRxScIASV0KQacNM/wnI8JsFTpNFbRjSsEFSynqLIWbKVzGrW3qIqmBRGQwUq5lz7ACVtfCUdvlYFyzodNslA8IUhY0ufxF74j8O2nPDR8K6YAIcfztpM0WSn6GEOV7eOkpmWwLkVyPOv1SrLWO1r5T6+fa/JzXtDppWnWk9CijvdlvGkaMBdvM61oshBP4A1xHqpAaLQJfo+vQJBR1EBYjqeLJMXAFlRWV2K1cDUwzaSBhHjY1k4ztrYiWcHmMkFPIOBQJSUhxONAowp8mGJzOZRYMq6AB7A/AthbNoLiWRhHEFJNVWlEpe7sJpb4FFsqxRRVdTjZ4hYdIub0+extQp+wgI6aHE6mF9Hm5GyijNIJHe6QDiPt4UppNp8jnIKANuIt0n57WfwdV3B+lhNBm5JM4Qy3h1G4P+XjELClbYITBzDb39ICNQiFZUApUx44lgT4IAOFXtrQcR9ocXdXfBVMxNQMUaj8qSAtQaLat7Ie5eomKkIEWbh54iQ6uyt0zxUTLO4s4FW9/mAYyZJf9IX9KMjzwSAbCbPIx3IcYiXKLwfCEusX6UjYz/s4iZXlSNjH0pTISn7ZLwX4Hg1mdvdSRBh3TNO+PuK7cRwuVcWrJ5Ffv3hjjpxngx6PB3dtniN+tZ7w0fiXCXgIvz3yMfgXWHo6GQ6Qforry8tOj7XBR8BtxFUO95OW7+gt4fLrL9pbgpvoFhRNUwHcBJEe0hgy8vda/KAggH7M8M1eFOwLeY+r94UQDl+vFbmwWhLO7zPl4NwplbdPNUImXT03NS0jh6braRdcrkutP3vbvQ13bOvlmvvm1+PErodx/fkQrx7k6guCDvcl3LuEe5dw73+Oe/V21+qrai8qIvXRAC4yLtUnKSpMYWzKj/L4VKAzhRGIgFMaCk++uEML36iF4lZrCsgw9OLlELrqpfflS+/Ll96Xv9P35RxD8dx3+8DMX3pg/j88MPN9PTD7xAqmZjYT5Kw5986a1synKius6unnfGD2USzFRCQZwSAghVk6GGHpCBfgGF+EE8PixX1g9nFUgAt/uwfmpu4H5vqZ+7TdNUMfvHbHbGLs2GFzPjy0bNhTV066PNk5+SXmkT+NPvSbstGna15sP7Ex+tGTL1h1zzfM+fKr/8y57cXGDe+GvugMn/rHvuN74xM7Tnf9e0PzX2ddfeOuyKlr2Y3KwZXb2jdGd1KDJw7IHfnj7UPZ0ZN3/KhRnbBmxb82/2LwiE1vuX/bPm7HDTvXXxF2L+nafGDbrpNfuG97/PoTP1ky4Mnk6NDK8O6QXLX/+89tXHeTtH7Z0Oe2rBjoz+bm7R24/ve7BnZsmnD91RMDkzOrto6+tfbVA9elOl5nm7YbQ56ZcnMgcHTBlqZRweVr3p9Ej1HEWRNu1fa7O0a+0vZe56CdVW/8PIIOrPzk9V2dLdFEYteRytmHfjzqXa2/8OC8MSe2/uDk8OZBJ5qX/IEd/8jCsgP1u6nEV7OPbnvqygktv6shH+t8PxdaP3VFKjp+yJmGcV/f5R4mkdtPD919Suoaseqx7amRzSO3fdl6CzN0+5n31nVUt03Mv15XPXO/OPyyfv3+CwLsDoI=

View File

@@ -1 +1 @@
eNqFVVtsFFUYLjQEHwjXJvqiHDcIATrb2QvdbuVib0CF2tpWuQXXszNnd6ednTPMOdN2aUoCKAaqwTEEgiY8yHZXNxWoLSGKoIlNNMELGqLUEEN4gBhM0BBF5AH/M7tLCzS4D5uz5//+2/f9/9ld2S5iMY0aUwY1gxMLKxx+MGdX1iLbbML4a5kk4Qmqplua29qP2pY29kyCc5NVV1RgU/NigycsamqKV6HJii5fRZIwhuOEpaNUTf0y9fteTxL3RDjtJAbzVCOf7A+WI08RBTdbej0W1QmcPDYjlgesCoVSDC6uEhrSkihKo097+srROBQzpjEO2R/AryW6TlEt4FEjX8SQoSkEcYqShHCUorYXNSKVGos4gk5trOspZBCiCghkR9hIwZHqTFxYhJnUcG0YMS1p6gTFLQikGXEvWku7EbaICAoR4QpwKk6tur/OSVrqTmDOUBIS4yQB+FbBB1WJLoyKjm2VSAGJUcMgXPIDX7LfHxYx3MLyjAlXAee4S9NTEUawpSQiULCtcxbpAGfhoBKmWJopFBXgGpTHIWLENYMgCpakth26j1ELgX6mRRIgk9ZFyoEexbYwFydBgWUzDsBCBi96iZGYrbuO3eDjslAkEhusm1jIHR8xTAhHqc0RxLOAAkS64BtCNBom3LIEtXUVRYngOF8eOFopr2hAE5AIUxIkiaGDXo8Js0YsrrmT0+txke7pgVYnRhIl6ZR2Itt0WUyZLnWMWyCapw/k8ohZ1yyiCnILQbdOgNJoB1E4QLf2ZRMEq7Ax+9MJyrgz9NAOHAfiiMklYihUhQTOR/HtmlmOVBLTgc6cInR1l8zJdRJiSlgHvjN5L+cENk1dU7CwVwgZBwuDI4laHjbnxHxJsEkGd07VFOuoaEnByhpI9gaCXv+JHgk2RTN02DlJx1BSxnTtpycaTKx0Qhyp8Bw4mbzzsYkYypyBJqw0t90XUjDtDGArWRkcnnhv2QbMF3GydS0PpysYx9MFvD6fNzR0X2CWMhRnIIZ1RobukXzPJQe7EZDkSkn2HSuypMNo84RzNOQLf5BfX0Z2ZyAkt9muNChCvvk6W3h83m9eV1Tz15K56XpQxzmz2tLKkT+E2oiJxO4hX2W17KsO+tGapvbBukKa9knFGGq3YPRjIEhDUfyskrCNTqLm6iaVfcwz3pZYNh32kUuFlxfEEj+ddFCW5bGFj0RasCCaITKmA+Fw+H/iAjOEOyOiP0kOS/5Qe77LZcHNY2gyz/zzXagnI+qBihY8AjleTxGNHomevJ6gf3OuULSkqc5ncI7Ivhcbarv4ho6e+hhes622pTbVpqnm+pM9kqJTW5U4/IcRyR2IHu6MoYAcCIZUfywmK1gNh6pilWQZVn3hUDQoV/nl0NEuDTs5n9eH4pTGdXK8brVUh+HJkdrcsXGy9ZteqGlqrBvcKLXSKAX+2jHwbFCDZNqIBePo5NzUsOAWyYB7a80mZ6RKCSvRyqgfk6pQQPYvk2phb4oDdG9A0uJ1cP8rd2byL9Lov/P7HytxP6Xr93/7/JfPlb0eIcuvf5jWpgXW1cz+4a1nh+ZmDq/zBz+Zx25c3PNj96GyaRumn71Zeu3NJy7La7c8fv3UjdPJc9l9kSM3r1ddWrWyCa/8ovaac7Bs7z8HX/UN7JjyyoJ921/eOGNxy6w3MrfC5zuG3xld/+mSfmvLATKtf+HQ3KWXvrpNW38bOXD8yh9HPp4zf/fhtiMz7uxcX3bz7b+vXpxTcWFkntMqlx5WLnz3+/mGedOHm++896Sx7fbI7CZlhXNo1EQzT17d+2fnY33kyp7LVbfONJzdYcXrnxr+6d2Zo1NPLV7Sf+CvVUt/PnRuFjR5925pyefLN6zwTykp+Q/z/kl9
eNrNWX9wHFUdB6sMyI8RnCo/Rvu8Ak3x9pLLJWkSBiEkbQmmSZuklKap4d3uu9uX7O5b9u3e5dphOqDIjIzoKcIICCppQmMFKghUqDiDBSz++EemxB/AKCOMDKIMI8yg4vf7du9uL78KMzhjppncvX3f9/3x+Xx/7Ot1MwXmSS6c4/dzx2ce1X34IsvXzXjs6oBJ/0vTNvNNYUxtHhgavjvw+Nx5pu+7srOxkbo8RR3f9ITL9ZQu7MZCutFmUtI8k1NZYZR+d8aZuxM2nRzzxQRzZKIz3dTckkxU9iQ6d+xOeMJiic5EIJmXSCZ0AVY4PixcxpOkd41NLhXZzySuSVY3Uim59EFv/W5mWULtJf1cZ8QXxGbMJyURpNQxJvPUqsksF1dJkfsm4U5OeDZFnwl1DPiVRYgHCSR38sQ3GaEFyi2atRiRjHq6CWcIS6bINpP6pCgCy1CnWXxCHT/hiCKhWRH4F8eNXuAdiq+RxC4Rh9oM9u6EsAiDWfBMt2hgMC2jtWpSOA7zNYv6AAUcoJSrsKEY7PVpgVulsdA22MAdN/DHpG4ymyY6dydcAId5Psdg704Aol4JPxhM6h530W84ZCj0TD1FJywhJkjgor6Si1qk70E8wCE4X7fAuDFD2JQ76lDqlAZyyibuM1stLRCLFqjn0ZKKS7TgBJalfDdYjgYWRGaH+hK3rguCK30iciRSiiZ6DA/X/Qoq8B3E8VFq1Bl1SPSzVQIqJpfEpR4EDAhOiiZzOms70ikyDDAjQIRNuhbXuW+VSMR+WceQnCdsIl2m8xzXSZFlJXgsSQNL5VNJMprYwIFCusVhOyMG9Wko4VBJU3lRGE2sreltjum1gROYdUA/Irw8dfiuUKHwCKSVCxFWdAVWRepLFXqGIZlnQh2rkYuEbzaFA6Yqe7pc12LKmJo5vQ7JCkgInUomk4rS0lTsNjBqNndYmA4uMsrjysMIjkj5jtFEzdOdaDusUNSFtQGW1qoUk5CV9ZDUITYYAVnklkUG+vu2YwRYaDgaEIWfGVX1GnEEAdshkFIEns4i4SwjEVuNVO38npBoBAzoh5CQBhCOgljhFIRtbUwC+csm/z9oH9kRMbGO+h8w70EZLQgOfIbygdFZgu4LuVZJAN2kTp6RLCw5wo8QBBoj4ooQx8oGlCpCoUeuV/K7PgXjySKrKQKlcdn0cDEX4MQCZ0VZsc9Ekf9JesRgq2VKXSA+mGTJcQtxxghQ+Br1mmUy571lhbJdLpITIf3GDOb6Zn1CMCew4UMiSyXXoYtQo0AdnRmJnQs7yjI5UZWvT4xucAzaqqw2ZFN4IsibUN+kClrIFVU5PQasl7zA8GFkf32WjIZaRhMEeEwktwEC1QmhZaps4GgorHB9IknAbMrzpg97i9SrzguxyMw/veI7KGiIPFurVKF5Fpus6EqG+FCL7wKEfBypYK12mkc9Fk+2JHIGcxoWNYUBGEOtEgxHiKLDWH3dizdvyM88m1fEIhSyMGAw6iwPTI5aks2HpaeSCKA/FxKuUp/8wHMwmBaDWADJlHogqYDAqjHMZ5N+rI7VhXEIU0CQYS9gob/+cmWrwGUA1tWCE+oKB7XaoZLnHawgYA5IM8dEjEjgGAAmzJYGQl4tGkMmzHQ2aoeRL2tRfYKYECUZzkk4+SUB3RgFojIDrSQAp7CEDzKHchh6UQv1fKgui1Kmj9ECbJBkA0Z4HmFsAe0gxgBqVXlaDKdbjCJgL4McuMYh+efh73ObjXlYlRfPVwO6VDJRZGwigdMojPbwtwQovs/ExZX59OjjNvdlbE6rFig3yEKnM4H1yAWoOLRW4NHiHFa+RcOlxoNqiVySHLXxSp1HYCDmIs6GKtLhnE26eiF/ilKhCs3b57pVmZ0sCs8xQktBuAGQsrASucINLOohEx0O83g1p8E8kvUEBa6F9ihEZNye0TD6oB+kRxUEoE91EkcCp2IQ19JqifwZUAjITjgH8MUy1NxirkVvQzdIwzpDfa2obMg0hQuhWvje1mos7uy8tjGfbujw4kzLQ0H2qAX0wkDDnxx3MDneb4eonTPvjSbqddUmoQOyeQGvN5hJArbZqs4uEbOwdEeHL6jcKhGrZbu3v7tva09v/0ZsRCAXFTTPluFLYbwuhPwKeQWOR58Vxh7TAU34pmjssRzzVOMBzCM74rm/YNgbrUQwamQ29SaYD+ZxpwBqMAXgC4OcEzbkFb6cqA4SSkHbUYxf5FhchjNVquHBrrC4r3gsXeHhoUrbOHa0wPOQkayA2iC/C1CVDJItxWKgBg/fY9SGtDQ4hem9f2A47LslGNl1iulBo3dRKiek0qrsADPqQ1AjG7At7NUwZAC9wvfcGpdEdpzpPnJy/owd0YM5eRzhasSodOjqAJEkVAcHAcCkGjJ8L5B+jEEYrlxgKUEFIc6I2IXVJK3GBKJ6VFiJwkm5LmAp0htOysJRHQ34Dw8k2TrYF8410uGuq0DFmVXkcnhTUZkvKp6oUQC2RNObDUNBniH8yVixiWZFGbqiemQknwxrKd4zwFEWx9shsIVaGkrPDwLUV4WFloWmGAtGL95CVCbkLOIpY1cMKUjia2ZMhhVQPn/c6VOQN375wILrpPtAGXijMUcX2JHLD+R3cRdcYzlLmbBL+sasjlck6qWtPDvBmKtRtPqBSU3iawuWYmU6xLu8D6g2trH3ivX90+HR5ftx5IYxAMUbx6Vw9kddSUPmLHw8i71Fg3A5fvnhroqxjZtLkPsOaUq1tqSa7o+rtiDc5WlXPX80/sCFiME5WnT9Vp4Ohe+N7xGyvHcT1QeG6o7EQJb3Us9ua6nz0gscdLQ80715obroYVXdTCaVTsO/A3Uny5Kjl/eq8e5AFYqqzGxzU3NGa2rTmtIP150NVC1pugAV5e813VuJoAVJ5ZvlqZa2TPM9wAwXiM++OA1yfiCvmwJM2S+fnonuAr8/8PkaI86a6gF8y4eGAwA5vY5cHjgEdLeSdEtnc2tnuo1s3DS8vzvSM7woUgeGgekSUkRbX6HPjG4GDtB0tntRysydX3MZKW7hxKKpCzUtvL/U1FJ5uqUJf+YuOOZ+j2ESou6KzPnvQQYmmvKD6C/GOr1uOPK6dWRuzWLSwOwFJu5tV9o+e+z9NRMjmTXvRWYJE9tG5hKLiVfG88i6qZYlQ1HdWbNrKtPR0XGMc5e0qGVkjiwmOQ/Q0PVzl9kZhzLcTZbdvSSIs5HRGjfKj8HnsaZ0untLT1Gal27csql0ZXfPFn28MKhvPxjeRmk+Ehl7rSYZFF/ul8pzSZtOYhm6KJNuzbSBNRdW7rqGgmxP+Hp/IYHuZcGcebBmaPzCBA2YOzfT0ZZpNTJZjWVzhtbS0b5O6+hoTmvZ5uZ2o6U9va7FaLu7wGl5FsoFyQuRt9h9ek7TKcy0WpjM5Zme7f1dm3q791+pDYqsAECGKQDnwEw4PcQ8KCDlWd0SgQGF22PT3Ru0wa7t5Qc7WtOZzLp0c4YZ7R2ZbIe2ftvg/ZW0rqbtFFZ99d8J106HQ+Hh47esuvHE49TPCvh9912j/Kv+HV2nXD92+I3p2086cuowz39707PBJ797y1/HO+XNfQcPPPHc0NnrS0X/2ivIFbf8VP5rz59G2t94/qE/e2+/UXr73+5br/1l5PE9s4/87XZq75NXXfzppkevuuWhF3+2aeascx8Yv/PnHX//wsnn33THzG9P/sStN37t5KHT387+eHTnqc88+5UV+ZU3tD+1ambP+k/tefnNmY+VvnnK9cOv3HNoy0oxsuufs2fcWZ666J6z7TePHv7hH45su+CCVXd8uOGly/94Se9NxmXa609vXXN76Yzdl6x+YevqH3wjfevdg+f8aGCj952PvvaPnzz1zCm/P2HyW6995K49J7QdfeK5r/ddv7r7yCuHTnr8xC+/c9ovXmy45rYPvTUjD398W4e/aufr5MmrHxlpXPHyzcUzZfdtR895YeQ/r56677GjD74z4R08zTL3jD/5ysqvrv6NWLtv5efuWnU8xm3FcU2v/vq8l+DzfwFf21Ms

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNqFVX1sE2UY3wTE8I8wM4mJH6+XTWKy6/qxdusSldExRDI3tiIwstS3d2/bW6/3Hve+t62bSxRQo0TxAtEYNU7oOlMHbDhCdBA1CiJgAokai4gfKPCHGgU/QgLB524tDFmwf7R37/N7vn7P73m7bribGEyhWumIonFiYInDC7PWDRtkrUkY35BNEZ6gcqa1pT28zTSUfGWCc53VV1djXXFhjScMqiuSS6Kp6m5PdYowhuOEZaJUTh+/aXa/kMK9EU6TRGNCPfK4vTVVSCii4GRNv2BQlcCTYDJiCGCVKJSicftoZQLzBQzxBEE9BMOPgRQNtTc9JAx02nGoTFQbJ6nYlInoExnVNMJFL+Rxe71BOxynVC1k0nDKycRxt6KmI4xgQ0pEDMJMlbNIFzjbDjJhkqHoNhM2uAFN4hDR4opGEAVLSukjMopRA0HfukES0J7STaoQliTTwNx+0mTEDZNxABYyuNAKRmKm6jj2gA9KUxNpBBCcggPrgf4c2u0hIBylJkcQzwA2EOmGbwixVNPhlCWoqcooShAulgeORtplN6DYkAiTEiSFoYN+QYcZEYMrDuP9goN0nv7T6tRIdkkqpUlk6g6Lad2hjnFD0eLCwACc2RpRDCLb5BaCdk6B0mgXkThAOweGEwTLoLRNmQRl3Bq7Tjs7gTiic5FoEpUhgbU93qfoVUgmMRXozEn2XB1xWrkkIbqIVeA7O+lljWJdVxUJ2/Zqe4wjBQ2Jdi3Xm3O21ERQoMatPQ3FOqpb0yB1DbldvhqXd7RXZBwrmgpaFVUMJWV1xz4x1aBjKQlxxMIaWdlJ5x1TMZRZQ81Yamm/JqTNtDWEjVSg5t2p54apgb6INRxqvT5dwXg1nc/l8bhqx64JzNKaZA3FsMrI2BWSr7jkYDd8ojsguj07iiypIG2esLb5PcG3Qas6qI+sz0JIbrJ1GZgIOXJwuLC0W1uWFad5sqQs0wjTsfY1GUoV8taidqIje/eQJ1Dv9tS7A2hJc3gkVEgTnnYYY2EDpB+DgSwuDn9YSphaksi50LRjzwtX27KXTYV95GLhxoJh2a9WpsbtdufvuyHSgAVRNDtjxhcMBv8nLjBDuDVu9ye6g6K3NjzZpb+mI4+m85y89gr1ZO16oKKKGyCv1lNEoxuip6/HHejIFYoWFdnaC88Rt+fh0PLuhse6Fre2xVem+jzJjh5fI2vc3StKKjVlkcPdT0RHEL3cyqO6On8s6CXRqOQP+GpxjEheH/H7PCQgByQpSrZ1K9jKeVweFKc0rpKdoSYxhOHKEdsd2VjDjasfbWheGhpZJbbRKAX+whh41qhGsu3EADlaOSc1LLhBsuDe1rDaGq+TglLULwf8xIu9sZgkLoK9KQroikAy9u3g/Mc8lZ28kfaXlt+z8ZYS5zMj/FLLso8Xzt3/wSOvnr/93JLn86+93Dfa1nqrIBzedcc3X/yq7vIlX7j3u86yeX/W0dOXTv9xc6LrqP7jvs/OdV3a/cCeJ1Y8+N6Xv43mT0zcxWbMydC17y+KTSxpnbv+zZmHT4yuKmvV5/j7jn6/t9nvOlw5W9hCrPL5q5eHBz+cVVZResl7UaicSctajgQP1izY/PP+82e2b/n0r1PNrm/fmDh5KDT+yuCTvyh/5zcd+OeZY0097nnBNGY/LbztueMVg7PPlh24u+b1Y4dKT219a9aajr2Ll+3A8x+/M1I+uuGrxvHNFyJb0x99XVnx7OD96Z3o8/KzP5zZaP3+4ieDG1cMoYoL72w/t/bizSUlly/PKDm+/Ok6XFpS8i/VnBjV
eNrNWHtsHMUZDxAViiivllLaRgxXN4nh9ux72IlNkXDtOBgcO7GdpAmm7tzu3N3EezvLzuzZlyhVSamomlJyEo2iFlpKHBuciCSFFiECEmpBvCrS/oEwbUFCpVRCrUSDANFW6ffN7j39CEhUqnXW3e7ON9/j9/seO3tmCsyTXDhnHeGOYh41FVzI0p4Zj93qM6lun84zlRPW1MbB4ZGDvsfnvppTypWdLS3U5THqqJwnXG7GTJFvKcRb8kxKmmVyKi2s4quXrN8VydPJMSXGmSMjnfHWRCoaKa+JdN68K+IJm0U6I75kXiQaMQVY4Si4McyoZ+ZIRnhE5RiZYBS+PMIdMtwb2X0L7CIsZsNC06a+xYyk0WZI4ThMGTZVYDnspoSwAy0OzaMWRQvcLo5JvTcs4I7rqzFp5lieRjp3RVzwhXmKo227IhAAr4g/LCZNj7sYmqpl+ilRgthCjBPfRX1FF7VI5XEnG9mN+5s2GDdmiTzljt6UOsXBjLaJK5bXt+aJhTeo59EiXFdWOL5ta98tlqG+DWG6WV/UWtdFbC4VERkSKkUTPYabm4oEnuM1iOOj2Kgz6pDwb7NkEGwuiUs9CBjwgUzkmNNZXRGPkRFAA9EibNK1ucmVXSQhWSTAA4DlKdpCMp7IE+kyk2e4CQCmJXgsyWoWy8aiZDTSyx2LmDaH5YxYVNFAwqGSxrKiMBpprupN1OjNA0GQpIQ6RHhZ6vCdgUKgCrDQhQiTCQ6k9VWovghx1SwKQtJgQq3NNI1SfGNOOGCqtqfLdW2mjama0+eQtFA5YlLJZJQUhU8k6LMtYmHU8txhWh91kVEe1x6GcITKbx6NVD29BW2HOxR1YSrBrWbwzwLAVAMkdYgNhUBOcNsmgwP92zACLDAcDQjDz6yKeoM4ggidS1L4nslC4TQjIVutWHX/noBoBAwYgJCQ1SAcBrHMKQhbc40E8pdN/n/QPrQjZGId9T9h3oMyWhAc+AzlA6OzCN3nc62cAGaOOllG0nDLESpEEGiMiGtCnCkbUGoC6jFyvZzf9SlYmyyykiJQGpdMDxdzAXYscDYhy/blUOR/kh41sFUzpS4Qn0yyZLiNOGMEKFyGjWeJzPloWaFtlwvkREC/MYu5KlefEMzx8/AjkqaSm9BFqFWgjsmsyC3zO8oSOVGRr0+MbnAMeqws8x9A94SfzUF9kzpoAVd05fQYsF7yAsOHof31WTIaaBmN6MYseR4g0J0QWqbOBo6Gwh1ujkcJmE15Nqdg7QT1LFAnJ2DcqIlM4+5l30HB6tCzZq0KzbPZZFlXNMCH2nwnIKRwAoF71d086rHaZIsiZzCn4aahMQBjqF2UACF8HMbq615t84b8zLKGIhaikIYBg1FnaWAy1JasEZaeciKA/kxAuHJ9Ur7nYDBtBrEAkmn1QFIBgcWkJYpNqpo6VhfGYUwBQUY8nwX+qqXKVoFLH6yrBifQNaFztbqp5FkHKwiYA9LMySFGxHcsAFMBhxDyStEYzokJqEqwIVUkbVNznOQgSjKYk2w+zqKAbg0FwjIDrcQHp7CEDzGHcpgRUQv1FFSXBSnTz2gBFkjSixFuIExeQDuoYQC1KzwFV4EdOoqAvfQz4BqH5G/AX/E8G/OwKi+crxZ0qWhkgrHxCE6jMAnDdxFQ/JiJi3ca6dHP81zJmjmtUqBcPw2dLgesRy5AxaHVAo8WZ7DyLRguPR5USuSi5KiOV3o/AgMxF7VsqCAdzNmkqw/yZ0JqVKF5K27a5dnJpvAcI7QYhL2AlI2VyBWub1MPmehwmMcrOQ3mkbQnKHAtsEcjImvtGQ2iD/pBelRDAPp0J3EkcKoG4mpaLZI/gxoB2Qn7AL5YhhKpXDN6G7hBVq+x9GVZ5epka3AjUAvX7W3Wws42tI1GuqHDCzMtCwXZozbQCwMNXxnuYHJ83A5R3afhjSbsdZUmYQKyWQGvN5hJApbldZ1dJGZB6Q43n1e5dSJWynbfQHf/5p6+gfXYiEAuLGheXurSUFcXAn4FvALHw98aY4+ZgCZcaRp7LMM83XgA89CO2tyfN+yNliMYNrI89caZAvO4UwA1mAJwwSDnRB7yCl9OdAcJpKDtaMYvsC3ehj11quHGrrC50jyWrvBwU61tB3Y03/OQkayA2iC/4U0cYpwu1sRADx7KYzQPaWlxCtP7wOBI0HeLMLKbFNODhu+iVI5LrVXbAWbUh6BKNmBb0KthyAB6Be+5VS6J9A5mKuRk44wd0oM5WRzhqsQod+jKABEl1AQHAcCoHjKU50tVwyAMV8a3taCGEGdE7MJ6ktZjAtE9KqhEwaRcF7AY6QsmZeHojgb8hweSbB7qD+Ya6XDX1aDizCoyQBF4EM4XZU/0KABLwuktD0NBliH80ZpiE86KMnBF98hQPhrUUjxngK1sjocpYAu1DZRuDALUV42FkYamWBOMPjyFKE/IacRT1hwxxCCJd8/kGFZA+dqyS6Ygb1Tp+LzTl6OgDLwxmGMK7Milh7M7uQuusYytTdgplTVr4hGJfmkrzY4z5hoUrX540pD42oKlWJsO8S49CFQbW9+3Zd3AdLB16RiO3DAGoHjLDimcI2FXMpA58x/PYm8xIFyOKj3aVTa2ZWMRct8hrbG2VKz1WK1qG8Jdmnb188drH7gQMdjHCE+rStOB8EO1a4QsHdpAzcHhui0xkKVD1Mu3p+q89HwHHS3NdG+cry58WFE3k4zF4/A5XrezLDpm6ZAe745XoKjIzCZaE0mjtd1ojT9atzdQtWiYAlSUftH6UDmCNiSVypWmUqlE8gFghgvEZ9+dBjnlyz1TgCl78dmZ8Ojs/sGbqoy4YqoH8C09MeIDyPE15EbfIaC7jcRTnQn8kPUbRo50h3pGFkTq+AgwXUKKGOvK9Jkxc74DNJ3tXpAycyurLiPFbZxYDH2gZgTHfYa+VZpOteLf3NVnXO8xTELUXZZZ+RFkYKIpPYL+Yqzja0ZCrxPb51YtJA3MnmfiobVa2zVnXl81MZRZ9VFkFjExtX0uspB4eTwPrZtKLRqKysqqXVPJjo6OM+y7mEXxju1zZCHJBkAD15uWWFkLZbCaLLl6URBnQ6MNbpVOwO+x1ni8e1PPhNjaf4PjuyNu/Ib+ofbkTcnHgtMoQyGRsdcakkHx5apYmovm6SSWoeuS8bZkO1hzbfmsa9hP9wSv99cS6F42zJmPVQ2tPTBBA+aakh3tyTYrmTZYOmMZqY61a4yOjkTcSCcSa63U2vialNV+sMBpaRbKBckKkbXZUTNjmBRmWiNI5tJMz7aBrg193Ue+YQyJtABARigA58BMOD3MPCggpVnTFr4Fhdtj0929xlDXttIjHW3xZLKNsjilazuS6Q5j3dahY+W0rqTtFFZ9ffp+23QwFD59lnXl3vOW6b9z4P/0aWvTH288p+uC//z4qpYn+9njWw6fWvmDkRMb745EEj98+Pcr7tnwa/ng/l+ejj3+9E3vNDetWtWxau47h6/v+uzrKv7tr937p3u+9+EH71j7jx6dPlV46oWDn2+a8vfuvvyZ3GsXNy1/b/dTv/1bOnH39V//zWU7N37riecu+9GFvXccfLbnQC/bNPDMum17lr9w975LH5j53fsnb//5dbvPOz/2/onL2z7ccqRj7/dXvrL9hHfxlbmhO7vW7nzz5IG/HLj9K7eKG0aXd7+87oV/nXzu9cde/OZbrxxeEX2v+PLTk072wrt+curaU//82fPnnjCuuDy57/rpKyYzb/57u9j6vrVDnv2r29gzx/7xmb9evO8Pd92/4tMn/ZcuTb+x5dxUiW99blnPaKZp732rd7VcddH6zT/9+9X3frCiec8XB59/cPm4feern/py9O0/73/jSxflZk9/4a13H00YTT0XXJPdtOqOsz737kuH+x+47+0ndSjPWXbj4eLZ55+9bNl/AbrLDgQ=

View File

@@ -0,0 +1 @@
eNqNVt1uHDUUFnc8hrVCWkh2fnd3djYVElHSICClVZMqQIVGzox3143HHmxPNtsoFxQkxOW+QhslqCq0V0VclIteccELlKfh2DuzPw2llap0z+fPx+d85xx7HlweE6mo4O89oVwTiVMNhpo+uJTku5Io/eNFTvRIZOe3bu7tPyolfTHSulAbnocL6mp8TNnETUXuKYJlOjo/FNnkVXzagM1y0thAjYMR1ogqpEcEjQmG/ySiHO3tNFqokeOTRBJVMq2AG55djgjOIKCfHt9RRDqbQ8L19HkxgQi4U0WkvNBtw7+nm2lKCu1c56nIKB9Ofx3ep0ULZWTAsCYXs+XpozVv7fGW4JzY1KaPjwgpHMzoMXkCsIYTnP1JQabPcFEwmmLD8u4pwZ9+5Wwxatb3RClTYDDMh+kIU+7MEv+tdrBL+FCPpg+70S+QTgEKkh8ulMa6VA/OITzy91+XOVEKD8nDm1/UWf78lgB+T6tlRVJQXk+cQgBhMn31JySJQTVHyRQ1ueCkeQ2pVNKighRhA4DSWd4rGM2HK7bSE0aWkUOsiAPn1fZAyNyZNcZ8k6kFlcTRslSaZI6GBJQDTGDYMIBTFkMJeTqU2/jJvIDX3lCP1+U8D4MgfA5VWFLJuVnMOvSSC8XpYABV2pE4Xyycb1//8usLaB/o7OlleUxTIfn5NrTE9MV+SVoo6KHPS45CP+yioLMRdjaCEH16Y/+PPS0piLUvMYcaSqh7pfv01QfQqQ5U7+N20G1Hvu8jEJKnrMzIXnm4LXJoCmWb/3uou4R2/Of9T+ZT8H9D0BgIxsQ4KYvEqmNyaGzwkrFWA+IYE1lbNIcAYO3ut63GfGjunjY01YyYQ5YcY45AFZ5SlYoW2tqEc0rJgFRP73g8dqtIzCCbCQZO1XDAO20yMWvF5gY6bXJQGH40Vxw3W6gpyXDGaW5BDaEBOMUGT0XJtZyYhTucQougPRgHopAYoM2cgNCWBpMKlHbP7fW6xrSunCAM3U4QtwHR9xOaGS/VJm9XqGSTDwkjyjqAKJmmOUlIIdIRMINe1w+iOPKj5WXjwlTc8SMHGsCPNrpR88wEWkoJKdssGVYaCpFBoNlr/np937fxLhhXXXa6JiRN8iJJzc7A7dX2AOxu2w3ApirJsFEmsDrxjM5l1uTERNLcEUPjCVrXSut5acZfL1dlelHnJOp44NELO7Fb8OFM/ozYCNpdk+SY8izJC5NOx/Vr4MgCkdutgYwMJTH7wmCBUWkLf2DcFtB3CkY5yQ+Ndz/oWW9zmJpw277rhzM0pUWS54D5Nc8gljVDRmVOIX+jRmzqlTJRGmHN2oAQphg9IrWY7RXQKgp9UgWajihjlhlb1ReYIXZ6FoSLVwNOTiyx78YrmCX2LTEj40LAi1jxomWoopkUj6GWRya/ILLpGDunpjXNLoOUx/Nch3BVVkWIbC4WmBUh8N3w7AwmEMZKwjD7bj+Iu+1eH0Ydj5P5XJqb4Kz19pk3AFxyxN5yV4dfSJY5VQO5lA+EB5NLUmhur1TYU5gng9qVdw/8OMbP6g3xTkejDxfXwkfIQdtEY9AnQ/XunepcZN4OjG6A+xFaQwi90f27nWtcBGg9ar98hta7XfhrkBCQyCKdCmnPkZrTucLpXuFEc6RXIT1AOiuc+Mrp/TlSew58MPqrUHAVMmEHc2hJgAOsRvDWaMFbaNvdctfW1qP45bO1NZAmNa8i1wKwOLDYLUYwlBbYgPVCi90m2ViIDG3BEC7v5miXYJ5Jsz0K5uANuPgs1JlDt/EAE2Y8+ktYbg+paaKEqq5Ua+F2G7NJfbxJHKADyuD7yFCimQ0RQj5kcYjt4CY8qHC3wpWo4fJBGkjgSTD4ROMUgbHeBfYO4nQ40utBZH5v3kfflId4Iu16EHYWhH7b/K7VrQcCwVfPBL7/kIJXDH3G4auOMZSsJJNU9dlfiqaEV08tD3Sv34vjOPivgZ496PazMTGPlaXHZ/8CGWbrYg==

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1 @@
eNrNWAtsHMUZTggtVVra0FKgQNXpAXk0t+d72bGNoDh27BiCHexLyMPBmtudu5t4b3fZmb3z2URRAkECxOOA0lQgxMOxqQngEKooQGgRj1KKoogUqNMKikSBhqBWKi20qKT/zO7d7Z0fAYlKtRLZOzv//I/v+x8728dyxGbUNObupgYnNlY5PLDi9jGbXO0Qxq8bzRKeMbWR1d29iQcdm05ekOHcYs11ddiiIWzwjG1aVA2pZrYuF6nLEsZwmrCRpKkVjpy2cjiQxYP93BwgBgs0R8LReDBQ2hNo3jgcsE2dBJoDDiN2IBhQTbDC4LCwkgZR56IsWm4mETY01Il0miKIGqi3PRTYsgmOMTWiw05Vx45GlJhSrzDTMAhXdMzBdDiOm6buqjFwVqjhOEf1Qj8j2FYzsIEalsP7mZohWRxoHg5Y4AyxORXGDQcgAnZB/KERptrUErGBQ3qlNJJvETeRbpoDyLGEvoIltDBuUyMd2CLOV3Uwrl8zs5ga8lBsFLpT0ibKSVYuTRHzFrBt4wI8l3cYjq5L3zWSwo4OcdooH/zWtUCgGEdmCnlKhYk2EYerHLmei2cQF69CfUafgbyfNYwgnqEMWdiGgAEhUD5DjObKjkgIJTIECbgQGbR0qlKuF5DHFgb4pEw7i4UtKGWbWcQsotIUVVGeJBl4zNBiEkqHgqgv0E4BV1WnsJ0gDXPsShiY4VDazPUFllT0Rn16s8AQwVLgBTLtNDbokKvQtBHQ0IIIozwF1jrcU1+AuIJjxAtJjQl+m3FSSNHVGdMAU6U9LZalE2lMxZxOAyVNnkEqZoQFUcF0EAN9uoY0EbUsNYjUhy3BKJtKDz04POUb+wIVTzcJ22EFC10il2BpieQ9I7wGkirEejwg81TXUXfXqvUiAsQ1XBjghZ9oZfUKMkwEtkMgmenYKvGEkyK5JFu1UOX8NpdoCAzogpCgxSDsBbHEKQjbEp+E4C8Z/P+gvWeHx8Qq6n/JvAdlOGdS4DOUDxGdGeg+lWulBFAz2EgTlIQlw+QegkBjgbgkxImyQUjloSALrpfyuzoF/cnCyikCpXHW9LBELsCJOUryrGRfRoj8T9LDB1slU6oC8eUkS4rqAmcRAQyPXueZJXM+X1ZI29k0OeHSr18jFs9UJwQxnCz8EUhiRlXoIljLYUMlWmDT1I4yS06U5asToxUcgybLSvwH0G3TSWegvjEZNJcrsnLaBFjPaI6Il5791VnS52rpCyDgMWI0CxDITggtU2YDFYbCClUHggjMxjSd4bA3j20N1LE8zBu+yNSeXvIdFCz2PFsiVQnzdDJY0hV08cE6HQKEuBhBYK1ymo1t4k+2oOCMyGlYVCQGYAzWCwwghH8GIdV1z9+8IT/TpKaIeSgkYcAg2JgdmBTWGamFpa2UCKA/5RKuVJ+4YxsimDqBWADJpHogqQmBFUmLOBnkvjpWFcZekQImStgOcf3ls5WtHGUOWFcJjqsrL3O1ciijaUNUEDAHpImRERghx9AATA4cEpCXi0ZvxsxDVYIDMUdJHasDKANRYu6cpNMBEgR0fRTwygy0EgecEiW8hxiYwpAotGCbQ3WZljKrCM7BBobaRYRrCJM1oR34GID1Mk/BVWCHjCJgz5wUuEYh+Wvw5zRL+m1RlafPVw26VDCQJ2QgIKZRGIXhdwFQ/IKJK1Zq6bGKZilnvjmtXKAsJwmdLgOsF1yAioMrBV5YnBKVb9pwyfGgXCJnJEdlvJLnIRiIqelnQxlpd85GLZ2QP3kmUYXmzamql2YnHcN7EaGZIGwHpHRRiSzTcnRsCyYaFObxck6DeShpmxi45tojEWF+e/rc6IN+kO6TEIA+2UkMBpzyQVxJqxnyp1siwJrhHMBXlKFoPLNEeOu6gRYv0+RjSeXiWNhdcNXCc0O9Nr2zNW2jlm7C4emZloaCbGMd6CUCDb9S1BDJ8UU7ROWcmi8ar9eVm4QKyKZN+LwRmWTCtqysszPEzC3d3uFTKrdMxHLZ7uxqXbWmrbOrQzQikPMKmp1lsjRU1QWXXy6vwHHvb4mxTVRAE54kjW2SIrZsPIC5Z4c/96cMe32lCHqNLIvtAcLBPGrkQI1IAXggkHNmFvJKfJzIDuJKQduRjJ/mWLEMZ8pUEwdbpk655DGzTFscKrVtFh3NsW3BSJIT2iC/4VMcYpws+GIgBw9uE5yFtNQohum9qzvh9t0CjOwqFumBvW9RzAaY1CrtADOqQ1AhG7DN7dUwZAC93O/cCpfM5GaicsHJ2hnbowcx0mKEqxCj1KHLA0QQYRUcBACDcsjgtsO4j0EiXClHl4ISQjEjii4sJ2k5JiDZo9xK5E7KVQELoU53UjYN2dGA//CCoTU9q9y5hhnUsiSoYmY1U0AReOHNFyVP5CgAW7zpLQtDQZoI+IO+YuPNisx1RfZITz7o1lJxzwBH6VTcpoAtWFeEdG0QoL5KLJQkNEVfMDrFLURpQk4KPJnvikHcdmwZyxBRAdmbc04bgbzhxT1Trl8eA2XgjUIM1RQdubg3PUQtcI2kdGnCEOPauCquSORHW3F8gBBLwcLqvYMKE58tohRL0yHexZ8D1fo7Oteu6Bp1jy5OiJEbxgAhXreZmcZuryspgjlTX4+L3qJAuAxe3NdSMrZudQFy30DhUH08FJ7wq9Yh3MVRS75/yv/CgojBOYp3XVUcdYUf9e8xWXHX5Vjt7q06UgSyuAvb2YZ4lZe2YwhHi2Otq6eq816W1Y3FQpEI/NtTdTIrGGpxlxzv9pShKMuMR8PRmBJuUMKRfVVnA1ULimqCiuL94UdLEdQhqXimOBKPR+MPATMsID65dhTkuMO2jwCm5JWXxry7swe6L6sw4nsjbYBv8UDCAZAjy9CljoFAdz2KxJuj8eZwBHVcntjd6ulJTIvUngQwnUGKKCtK9BlTM44BNB1vnZYykwsrLguK62JiUeSFmuLe9ylyqTgaD4ufyR+dcL9NRBIK3SWZhZ9DBiaa4hPCXxHryLKE53V4w+Si6aSB2VNM3NUotS098f6KiZ7Mos8jM4OJkQ2TgenES+O5Z91IfMZQlHdW7BqJNTU1neDc6S2KNdcv2zCJppOsAdR1/fxZdvqhdHejWXfPCOK4Z7RCteLT8Hd/OBJpvaItb0Q2x9dd2Yvzre00flljO9/v3kYpXBBZ9FqFESi+lBeKk8EsHhRl6KJYpD7WANZcWLrr6nWSbe7n/YUIupcOc+b+iqH+CxNhwOT5saaGWL0WSyokmdKUeFPjMqWpKRpRktFooxZvjCyLaw0P5igujkO5QGnTTOvkMTWlqBhmWsVN5uJY2/qulss7W3evU3rMpAmAJDAAZ8BMONpLbCggxXFVNx0NCrdNRlvblZ6W9cUnmuojsVh9LNyUwlFcD3FacWXPRCmty2k7Iqq+vH7fNuoOhS/M/e0PbvraHPkzD/4fP67d3jJwTmTBjuMva6H9u6890Bk+tuvQGep7q+fff/qGl6N3vfjmsxvowz9zntz52cePX/qds4du3/nxR++e03nm6bee+s8h/acP1x1+Lvdp9siqb919661/uOaqt7be9u/Y2szhX+29ac1fXlqHu3DotvGHrojvnui+d17D+yfdfO+Z+276dMfoWZNn/OPxZzYqH5y9lC85u+O5dz/98wW/++SNa54Onmo0XXfyXw9/Nv/iG9SJky/a++ydL57zyZHOPxWGt6QO3RIdnrjlxvktB7/x7beLAT26YtHRnjUjtxw897FTV3Yf23bJKTl7wSk/7lh7x+k/JO//JrZAC73w3h+/33jjoavPuvTgHevy8y78ygeNsczRyeYbfr3/w0smn795mz33owXvJP7WHblo7oeHM+zMuqPtr+UnliYuObjn6LHe0WPNVvzQVdt3Tlzc+nTg3POHbhtcuX9s+X/uGRoN0ntiX716w7aFjeFTGrXQnJFF9zUe+Obwjl9uTTx01/UNMXrj71HHW0d2nvfZd/kzO94/6+7G61e/ve7NA/vvex4/8fqrNzyY3PvkU48s5e80G5veXf7aM78I9n/0yjvH33g1c3zt6x/M/8nf15+7b+E9e57919bCy1vvfCCx8esSsXlzGO0475GT5sz5L+PURmw=

View File

@@ -1 +1 @@
eNqFVWtsFFUUbnkkqFEUjIQfhMvK409nO/vuFh+UbbEIpbUPeYVu7s7c7U47O3c6987SpTbGAqlEfIwv0BoSZdkla4E2gJoIKlHUgIkVjbEgkEhC1KAhKgHxB56Z7kKRBvfH5u4933l95zt3e3MpYjCFaqUDisaJgSUOP5jVmzNIp0kY35RNEp6gcqahvql5p2koI/MSnOussrwc64obazxhUF2R3BJNlqc85UnCGG4jLBOjcvpk6ZVuVxJ3RTntIBpzVSKP6PWXIVcRBTdru10GVQmcXCYjhgusEoVSNG5fJRSkJFGMxua4etbZjlQmqm2QVGzKRPAJjGoa4YIXAoteb9j255SqhdAaTjqhOU4pajrKCDakRNQgzFQ5i7aDs+0gEyYZim63boOr0CgOEa1N0QiiYEkqG4iM4tRA0KhukAT0o6RIGcKSZBqY2ydNRtwwGQdgIYMbtTASN1XHcT34oDQ1kUYAwSk4sPXEQA7PNusIx6jJEcQzoH1EUvANIZZqOtyyBDVVGcUIwsXywNFIu+0GFBsSZVKCJDF00O3SYSjE4IpDcbfLQTqn/7Q6NpJdkkppBzJ1h8W07lDHuKFoba6eHrizRaEYRLbJLQRdNwZKY+1E4gBd15NLECyDtF7MJCjj1tAtYtkHxBGdC0STqAwJrD1tGxS9DMkkrgKdecmeq6NGK99BiC5gFfjOjnpZg1jXVUXCtr3cHuNAQTSCXcut5rytLQEkp3Hr/apiHeUNadC2hkS3z+/2DnYJjGNFU0GcgoqhpKzu2D8ca9Cx1AFxhMLeWNlR571jMZRZu+qwVN90U0ibaWsXNpJB//6x94apgb6IlYs03JquYLyRzuf2eNyhoZsCs7QmWbviWGVk6DrJ113ysBs+QQwKomdvkSUVpM0T1s6A6N8NWtVBfWRjFkJyk/VmYCLkqy9zhS19p35ZcZpnSqZlqmE61uElhlKGvCHURHRk7x7yBCtFT6VfRI/VNQ9ECmmaxx3GULMB0o/DQGqKw89JCVPrIHI+Mu7YR1w32rKXTYV95ELhiYJh2T+tjF8UxZH5t0UasCCKZmfM+MLh8P/EBWYItw7Y/QliWPCGmke7DPjXjKDxPEffuUI9WbseqGjubZA36imi0W3R49fjC6/JF4oWFNk6BOeo6KmuTnR0tixuaazgy6TGmvjy9TWNCjvYJUgqNWWBw2NPBEcQXdwaQRX+gOz1xn1BjyRVhCpiPtGPpbg/RPxB2eP1xXamFGzlPW4PaqO0TSX7IkuECIYnR2hyZGPlqlevqKpbGhlYJTTSGAX+mjHwrFGNZJuIAXK08k5qWHCDZMG9sWq1daBCCkuxIA544uGgT/QGhMWwN0UBXRdIxn4dnD+VZ7KjL9LRUjT7uSklzmfi8pfql3266N6jHx+r2NZ6orFp7c+tmzaIm3d81l/7Q7zP/8EbWxbu/77h6ul5NUe+3Xj2H9Y148KEygsH92y7vG/LPad+O37RbG3JXfrz7dMPz2raPPlkxfCrrpaz0x7YPnfFJ++m2nfcfdeFeQ3VfXV/hYefCqzE8/u3Hf8Dr359bdngfcFY5HLq737/1R3HQp2rntg6YWH4zJEz8Tt/DEyaPzx95taXZwz2oYd8F58ns89NWX5/tvbJCV8/uL32uzvmnqi6cj49vHe2q6r/2YFzqdLX3jqy4M0lc2q/ELZPevSRny4dXhSY+Wt16+Zv5nTuFhZ8Ho384pse2vQC2zr5/KkFv/fOmjrS/srUWM1KLTj58feuqQc/an0aqLh2bWJJ36HzQaO0pORfBzAQdg==
eNrNWHtsHMUZDyBBUSoepVLU0pLhQkJCb88+39mODVFr7CQYEtvYDjSJI3dud+5u4t2ZZWf2zmc3SCRFKuWPcpA+lLZqKY4d3ChPWsSjKQKlpS2iVKhFRi1EIBX6BxIVj5ZWbfrN7N7d3vkRkKjU01m+3Z1vvsfv9z129s4UiCcoZ+cdpkwSD5sSLkR574xH7vCJkF+bdojMc2tqoH9o+CHfo3Or81K6orOpCbs0gZnMe9ylZsLkTlMh2eQQIXCOiKkMt0ovX94+GXPw+KjkY4SJWGeyuSUdj1XWxDp3TsY8bpNYZ8wXxIvFYyYHK5iEGzfROOq91kE38szVsT27QIpbxIYHpo19ixgpo9UQnDEiDRtLsBSkJed2sCvDjtpV4gK1S6OCYM/MwwLKXF+OCjNPHBzrnIy5YDvxJFW2TMbAYa+kflhEmB51VShgkyEtjfRTJDmyOR9Dvqv0lVylRUiPslxsj9rftMG4UYs7mDK9KWal/qy2iUri6FvzxMIb2PNwCa6rK5hv29p3i2Sxb0NYduqLqHVdyKZCIp5FoVJlokfU5qZEgefqGsTVo8QIG2Eo/GwTBMk8FcjFHgQM8EfFPGGdtRXJBBrOE6TQQWTctalJpV1CITkEoizLPQcrW1DW4w4SLjFplpqoSDICPBZoLUnkEnE0EttEmYVMm8JygiwscSDBsMCJHC+MxNbV9LZE9DpACEVKhBniXg4zOhEo5B4C1rkQYVSkQFJfhupLEFdwjIQhaTAhajPOKCk6kOcMTNX2dLmuTbQxNXN6GcpwmUcmFkTEUYn7SIA+20KWippDGdH6sKsY5VHtYQhHqHznSKzm6S5lO9zBSpdKHbi1DvyzADDZAEkdYoMhkEVq26i/b8t2FQESGK4MCMNPrKp6AzGOwHYIpOC+Z5JQOENQyFYrUdu/JyAaAgP6ICRoLQiHQaxwCsK2LiKh+EvG/z9oH9oRMrGO+h8z70EZLnAKfIbyoaKzCN3nc62SAGYesxxBGbjFuAwRBBorxDUhzpUNSqoI9VdxvZLf9SkYTRZRTREojUumh6tyAXYsUFIUFfvySuR/kh4R2GqZUheIjydZstRWOKsIYLgMG80SmfPhskLbLhbIiYB+oxZxZb4+IQjzHfgRy2BBTegi2CpgZhIrtmt+R1kiJ6ry9YnRDY5BTxUV/gPoHvdzeahvQgct4IqunB4B1gtaIOphaH99lowEWkZiCHiMBHUAAt0JoWXqbKDKULhDzbE4ArMxzeUlrC1izwJ1ogjjRSQyjbtXfAcFa0PP1mlVyjybjFd0xQN8sE0nACGpJg64V9vNwx6JJltccUblNNw0NAZgDLZLAiCELyOkvu5FmzfkZ440FLEQhQwMGASzpYHJYluQRlh6KokA+rMB4Sr1SfoeU8G0CcQCSKbVA0k5BFYlLZJkXEbqWF0Yh1QKcDTs+STwVy5VtgpU+GBdLTiBrqLO1dqmguaYqiBgDkgTllcYIZ9ZAKYEDinIq0VjKM+LUJVgQyxRxsbmGMpDlEQwJ9l0jMQB3QgFwjIDrcQHp1QJHyQMU5gJlRbsSaguC1JmC8EFWCDQJhXhBsI4HNpBhAHYrvIUXAV26CgC9sLPgmsUkr8Bf0kdMuqpqrxwvlrQpeKxIiFjMTWNwuQL/0uA4kdMXHWnkR5bqEOliMxp1QLl+hnodHlgveICVBxcK/DK4qyqfAuGS48H1RK5KDlq45XeD8FATHmUDVWkgzkbdfVC/hSFRhWat6SmXZmdbAzPVYQWg3ATIGWrSuRy17exp5jIKMzj1ZwG81DG4xi4FtijERFRe0aC6IN+kB7REIA+3UmYAE5FIK6l1SL5068REJ2wD+CrylBLOr9OeRu4gda2W/qyonJtqjm4EaiF67ZWa2FnG9pGI92UwwszLQcF2cM20EsFGv5lKVPJ8VE7RG2fhjeasNdVm4QJyOY4vN6oTOKwzNF1dpGYBaU73Hxe5daJWC3bvX3dW7b19PZtVo0I5MKC5jlCl4a6uhDwK+AVOB7+1hh7xAQ04UrT2CNZ4unGA5iHdkRzf96wN1KJYNjIHOyNEQnmUVYANSoF4IJAznEH8kq9nOgOEkhB29GMX2BbdRv21KmmNna5TaXmsXC5pzbV2narjuZ7nmIkKShtkN/w5g0xzpQiMdCDh/QIdiAtLYpheu/rHw76bglGdhOr9MDhuygWY0Jr1XaAGfUhqJEN2Bb0ahgygF7Be26NSzyzm5hScbJxxg7pQVhOjXA1YlQ6dHWAiCNsgoMAYFwPGdLzhYwwSIUr69taUEOoZkTVhfUkrccEpHtUUImCSbkuYAnUG0zKnOmOBvyHBwJtG9wSzDWCUdfVoKqZlWeBIvAgnC8qnuhRAJaE05sDQ0GOKPjjkWITzooicEX3yFA+HtRSdc4AW9lUHZ6ALdg2lHRjEKC+aiyMDDTFSDB61SlEZULOKDxF5IghAUm8ZyZPVAUUryy7fAryRpaPzzttOQrKwBuDMJOrjlw+mZugLrhGsrY2YUJIa9ZURyT6pa08O0aIa2Bl9clxQ6jXFlWKtekQ7/LDQLXRzb23beybDrYuH1MjN4wBSrxpt+DscNiVDMWc+Y9nVW8xIFxMlh/tqhjbNFCC3GeoOdGaTjQfi6q2IdzlaVc/fyL6wIWIwT5GeDpVng6Ej0TXcFE+uBWb/UN1W6pAlg9iz2lL13np+Uw5Wp7pHpivLnxYVTeTSiST8D1et7MoMbN8UI93x6tQVGVmW5pbUkZzm9GcfLRub6BqyTA5qCg/2HykEkEbkkrmy1PpdHP7IWCGC8Qn+6ZBTvpi7xRgSp57diY8Kvtx/y01RnxmqgfwLf982AeQk+3oZp8h0N2KkunOltbOZBpt3jp8uDvUM7wgUseHgekCUsTYWKHPjJn3GdB0tntBysytqbmsKG6ricXQB2pGcLxn6Fvl6XSz+sxdd871HlFJqHRXZNZ8CBmYaMqPKH9VrJPtw6HXqR1z1y4kDcyeZ+LB9VrbF869vmZiKHPth5FZxMT0jrnYQuKV8Ty0biq9aCiqK2t2TaU6OjrOse+iFiV3zKGFJBsADVy/ZomVUSiD1WjJ1YuCOBsabVCr/CT8Hm1OJrtv7SmKbRRes90s6bt9447Bmya2PBacRhlSEVn1WkMQKL5UlspzcQePqzK0IZVsTbWBNddXzrqG/ExP8Hp/PYLuZcOc+VjN0OiBiTJg7ppUR1uq1UplDJLJWka6Y3270dHRkjQyLS3rrfT6ZHvaanuoQHF5FsoFynGes8lRM2uYGGZaI0jm8kzP9r6urb3dh79sDPIMB0CGMQDHYCacHiIeFJDyrGlz34LC7ZHp7k3GYNf28iMdrclUqg36WEcKvpkOY+Ptg8cqaV1N2ylV9fVp+13TwVB4+rydK+/9xDL9uQD+zp61yl23rOq67O6zN29f0XRF7y8PvfCdu79/YvKyGw4t/22LfHws5UzMZm7/6a03/udfLfv2vvbwmcmjV53+yarpr19y0Z8L75x+5p+n3niv9eyd4yNH7txw8InfFH+33H7hlffTj9/0B37xlfH7N5/Z9sCB3DMXXnTP/t/jZ09tOrDr+SPZ656zThZeSax452enL9x37PIrH//ir7458NBLd+z57CUv7T/51M1tOfd759918Sd7LuSDTWfe+GDZhm/d8/7+v6+6u/vEVZ86+0DL+C1Pn+nYm9swcOuhA+PL/3jFP1b88MSr1vmrR2+8dM39751/1SR37zvw+v5vv8i+8erxzz3Fp16+9IZ/OwNb39919dGn37xvfeG25a8/8aN3R+654MHXD4h9/uyvP5/826kduROrbpP3kskXv/L2gzOJTx94/q1TO/6ycuLqlb8YG3wr9diTuwcefnLqSz9Yfd2b7lc3v7v6tb++u1JF8IJlK777wdt/Om/Zsv8CmHEMVA==

View File

@@ -1 +0,0 @@
eNrtW81v28gVb3soir310vNU6Na7gEiJ+rLkRVE4Ttwkmy/E3ibZOBBG5EicNclhOEPLiiGg3ba3AoXQ/6DrdRZG9iPo3roLFD310H8gPfRv6XtDUl+WnewiEX1wDjE58+bNb968zxnq46d7LJJcBD98xgPFImoreJF//fhpxB7HTKo/HvlMucI5vHN7a/uTOOIv3naVCuVaqURDbtJAuZEIuW3awi/tWSWfSUl7TB52hDP4749+dlDw6X5biV0WyMIascqVWpEUMipoeXhQiITH4KkQSxYVoNcWACVQ2NR3qZJEuYz0GYU/EeEBkd1fF4aPkI1wmIdktkdjhxlVQ4ogYMqowDTlSqWF3KSKGPWBSkUxg3clhJdOHFBfT6zoHvcGbcloZLvtiMnYU7L9ETBDBg6TdsRDFAwSr5OEjrCgxwNGBPT4/AlzSFdEBMQQRsyF1fI9mI3adhxRhU+BgwikAsJ0BpN8IFk39vTAPowhAxGTgAGFEjBA9mG9ehdwTwjtiFgR4BeBcAjbg/+BxbUghFbpithzSIcRmsGDgdHAxAVwJGlL22U+hRUcFELYMhYprjfgoKAp9dPcUqc5ISRPiF0Sh8hTDUItOpAuD3qF4RDaUGV4xBwUbsr00RSp6HzEbAWkj4ZPXUYdULy/HLpCqtHzE6r0JQiOhcpggS0cmGD0ee8JD4vEYV0PxHls4z5rXR0d7zIWGtQDeR8lo0Zf0TD0uE2xv4Tb+CxVKQOxnOw+Rs0zQCEDNfpmXQ4Cez0DU7ozAPUPSNms1szKV/uGVJQHHuiv4VHAdRTq/n9Md4TU3gVmRmpao6Nk8BfTNEKOPr1J7dtbMyxR3KNPaeQ3an+fbo/iAJSMjZ5u3Dk5Xdo5ma5qWpa5+nyGMS5q9Ln+s6b/5+L5WOLjocdgOFWj3DDK1heZyDzQc+WOPqlXa5+B4oagiuwPR8BaxfLjQ9ge9p9/P00N+m+338+29n8/+OnhZdiq0bebES+SyirZYiFBwyRWY61srVVa5Dc3t59tpNNs4868IIrtq5LWbSMx3PeI7dJIMvWrWHWN5vPtCAyjC9t1JVONp7YbB7vMOd5YqBSfb1DQfAPnAUcz+iwQho0tLwqT9aOJemDFykjdHuwuvo4Oa+Vy+cUvz6SMwKx4gEgOq61W6yV8QYRMjb5GQRjlllFZ3U7EUa99+IIsGpn4zhTPEeIBRL84g3KC5wjwIDU5k3oxnkrzw+MUtMGd0Tfw3C5b11cvXaG9u5fu3Kv1Nv3+rnh85frj7U/2OB0dW6ZFekL0PPblxqaRSH1Lq8no6eUHt9ZvXtt4dt+4KzoCxLBNQVyBCNjRFotA/UbHtidiB6w7Ykcw/O76g9HXTbtldxqN+qrTYs1uwzEu3d7SgeX3R4nf+e+PB1pX1kiqgG3Qy0i95VBF0Z8lrqcw01koZu+FtYMCd7Bf9mBtN1XNYvKyq27K65eu1K9X1MbVVh3IZ7lAQxKwClRKDiwDzTIJRWdEoklYe/ioCH5ThBBpKMaYtSD2vLRJosgDm2WN8RioduJZIK00WsUChIPpNms4JPBv+NZbqUzSCdsdT9i7iyWzgASQ8sBh+4W1cnG2H2Gk4zCItsFrIrGTvscgw/u0FYXgXvf3ex8+uPq+s76/yq5uA1USas+MtMkSYZJkHWR2MSFs9xx6Ugh17DllwbAhip69YE0ys+CkZbLQROwIcEwcgpA49RLUa4XCBO3pwl8SloMdhJMzCB35d2B7dgqSBudJPKQLwcOeQZQ7Ji5tkSW3c8hyx7ZTGE4gne5XRPgytyLCKSRz3DLnvHBNM52FqTXM+M9pd7TAiw6n3Oicz2yUhwugLFrSdF8Bx5xeIn07XSElHk+XR4nX0wHsn1ma9LvvklP96eyMqlo9mVGdyHW/yLpvJHndodWo1E9JnbLY/ClWOvtzkffBuHBAM09Ma0aZi4Wu8DzRb8dhe1zFZHEtqW6yN+4n1SBGxjQowAvInisdae9Nir8tmGszm6tINgAolE8BR+2IIwzBmfT7/b6ZYsGNwB2YjsKFgxXQTi2YFdjnFYxQ8LAyM8FKkaxErJfQrEwmw3ZbQOIdDbDjg4BjXYfZDpNEdMm6zyKQOpJBvQIk1VVztYlvmpNhVSpmrQLv6kmbO8giHVG6IWR7PegxSNv1aIDoYXrfZqGwXaC0ViurtXqliYX0pBtZTHI4Um6tlcsrQ0SZ1It6iR6VCnYDNJs5c/wsSBQ12AnFPMvmWq2OkBTzw7aNI+umlb134b3eMnFJXLYdimKxtJACh49ljNm9lnEcBAPkxe1EsqWS7QTzu5W+lhq1/UatBDxLllU1w6CXSN/BRVuQ3+Iy++Bd2n6IC6qZ5axhVzc0zHrW4LBexHDcqjVu4hEiuHLrCrKF4l3KOGJtv6O5WxXNbdzMEW6lZTZbSavNw7bvQ1s5o8MWTZW0uLHPQQIojxa+6zQXe+G5y5gnPb7LpsU5aZySKSK1Xe55CWV1vMSkUVPW9TLBVSjtaRPKylyjpqzpRof1Q8HBS2tCy6xNt2m6ZPAebOguLtFq6Gnx3eeon7Ak3RLvoYbrx14MCpTsQ1OP1g3JPgDsxnCIPtoWEZh12Wy1arVmuQ5GT/vtsWUmPnti/aeaPDpA0L4OeAbtBjM3sQnsbdBkYhCHgvc9yzUo2tHKxoKSU2KlcqsUa2PG4hmMuWSPZyuBmzPGbm7Wl2yCVpEbIuiRuxSM9yQSPOJ51XWYMMyGaOaQy4g+Y1Yk22BpYB4KFLFIwIYiLpMHKOGSE6abQgShSyUbzyxNYprmJFScQHaVeZhGkwciJut7gjvkEnUyMpNUyyDDgdTcO2wA5mymsMYc9Ot7uB4WODTC+eY2udKqLNrjxNvr6NdGJ1ZYq5rV+vA1HT7+5M9v7PCxSCYDp6rA6dEPJ1XKJDshr3jkmFZCU2dzp8RYPHbDAoy8rAIbPpoBfXK183gTSHMSeQgFBlhSktyfEWd3YNxONjChvoi2F9H2ItouPdruaGd1ttV+7xC4wMwvAuFsIAT5PyoUJzGg/UreGr26bLMoElAikS71JAMHfnHldXHldXHltbwrr8OK1Wy+1juvav3izuvN33k1v++dV7W26M7Lqt9i7oZ/69L2vc3HrcuD7fcbruW/2TuvZqvTsTqL77zedl7fndfWB5v3bm1uNfx7Yu/J3eb97qBm3++ezzuvVnX1xJ1XZfiqR+av9/oLLBaFhH/mboDOwZ0VwhqTpRh3gp3gEqRDGdalA3AIhBSspdMImx3zDnNBA6W08Mm2ToJefsXxxmAUCaSWbLnXPgvFwSHXGsNY/vQy9n0KCRfU8qgiacJ3DuSSHfyMC2uZ3kFobMvHM66a1tCgjWkJLR/MtqtVd/kTq0n5l6PSos1EIg5y3QSH1FvLvNBehOFfX22Sd6x6CiOH6TfeNfOWAbmm8gploIcST/hInyuX2B7E17y2gshdqLBhM3LJbwz0SCCFaYvMwSC5fNPf4CwUvcd7rirO2sHyUZzwiLlsQc3I2x80iB+65J35FGb5OAyrnGOM3A3dd/O0xiTPx5wSyk6Vu1YEIgIseFTs8Cg5tjFJXs46cZlX0xuTfFNJiGEu+K/c4hZVpFV+28xVCHMZ/fKF8FsueYd7oAy4Hz0hHJDLOSjCzkOW3cqn0tE3f5BcN/JKLnf9E7l1PpaRFps5q2JyeJV3kpWenZEwEnvcYbnvD6HEYYqCrua/Rc7k9Ci/46KIhRDp8zzbzDHnS2/M1+9cI1TmXpf3mecBDuIJPHbPAYER6Q8hMtXoph8L5BnoeQAofH0ZnCcMAJG/65r5FmViOrmZzTbt5H6YZWshLH1ak9zeYxH1vNy1ojj91WcegWT+hw5ZUPMG5yDYhyFkQXJ5P+xafAcg8NOf0INqmuYU7PG4NTl51cee56FSChwsGfI9/5y6nZHFvHIg5Yq455Iu5dGUzSwfB36QmocvdfK/EbnBFPEZ2Q1En/BuvudL468MKViryMurJ0VSzp7z5y/7BOT7/aDzdf+kkwVOG1xI8J1/0mmt1oanAXr5DzvHI/8P7fUwPw==

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNqFVV9sU1UY39wD+KKMqKghcqzgg+62t+3d2i4+MDoQso0NNkRmluX03NP10tt7ruee260sC5Fh4p8IuZoYNegD61otExhiJMH/+oBBgolRM2I0IAaNYmKiSEIIfueuhSEL9qE5Pd/v+/f7ft/pjnKecsdgVv2UYQnKMRHww/F2lDl90qWO2FnKUZFherGnu7dvwuXGzIqMELbTGgph2whiS2Q4sw0SJCwXyodDOeo4eIg6xRTTC6fq/xwN5PDIoGBZajmBVhRWI1oTCtRQcPPEaIAzk8Ip4DqUB8BKGJRiCXm11rg/MDYgPZhOTXlDTOzqVIkqDrMsKpQIRFQjkYR0FIyZ1ZgWzvkxBc4bZmHQoZiTzCCnjmsKZ3ArOEsHnTqEG7bsWYLb0CwOUWvIsChiYMkZ26iO0owj6NDmNAONGHnahDAhLsdCniwdCe46AoDVDEG0yaFp1/Qdh8EHFZiLLAoIwcDBGaYc+QRLuhFOMVcgiMehb0Tz8A0h1lk23DoZ5po6SlGEa+WBIy8EZQOGhAw6JENzGDoYDdgwDcqF4XM7GvCR/uk/rc6NJEsyGcsi1/ZZLNg+dY7ghjUUGBuDO6kGg1NdklsNOjAHylJbKREAHRgrZyjWQVO7ixnmCG/6BpUcAOKoLRRqEaZDAu/toW2G3YR0mjaBzgqRc/Vl6FWylNoKNoHv0qyXdxDbtmkQLO0hOcapqloUWcuN5ooUlQJas4T3XlutjlBPAURtITUY1YKRgyOKI7BhmaBKxcRQUsn27UfnGmxMshBHqS6MV5p13j8XwxxvsguT7t7rQkqmvUnMcy3aO3PvuWuBvqhXTvbcmK5qvJYuGgyHg7Hp6wI7BYt4k2lsOnT6KslXXSqwG1FFbVHU8P4aSyZIW2S8CS0RexO0aoP66HgJQgrX2VGEidAvj5Wr67m3u6M2zR/qFhfbYTreB2u40YQiMdRLbSR3D4VbWtVwq6qhR7v6ppLVNH3zDmO6j4P00zCQ1bXhl0nGtbJUryTnHftM4FpbctlM2EehVN8mGJb86RU1VVVnHrwpksOCGJbMWIwmEon/iQvMUOEdlv0pakKJxPpmu2zW+mfQfJ6zD1y1npKsBypafhPktXpqaHRT9Pz1qFp/pVq0Yuje+3AeVMPrmb15deeax7ra9GQ7zXQazdqWtcl3RxRiMldXBLzyVPEFMSK8GaThqB6JtUTj8ZYEiUS1uE5xOE5icaKSdBxrE3kDe5VwMIyGGBsy6YHkGiWJ4clRen3ZeOX2LevbutYlpx5XNrIUA/76MPBsMYuWeikHOXoVPzUsOKclcN/YtsU7HCcJkmomJJzCNJJOE2UV7E1NQFcFUpSvg/9v8lRp9kX6/OSy5xfW+Z+Gzl0d2c/URTu3d5xrGt9X3P3L90nj2Iqzdz3X+O3iPQ8d3TW86cW7r/xz5qtV3Q0/PvJK48Cqj9fd3nX5yGh297J953Ov5ztDBzafPnF+tH7B0QtaeW3zfQtvGz97T/s365VDn5xe/mzkllNLO/Zu3fCW+tKmDy8cP3XpzqX9+IGWnZcvxgzx6vHhW0fKe36u/7o8/tpfJ1ZueLpx5Z57H2746bue1iVnXl505OzvPX989Okzuy6lXvhiyXTg4rnJ8TsunXyj9OuCurorVxrqflt9aPvf0MW/54vuGA==
eNrNWG1sHMUZDqSkiEIRbUFUjchwTUNCbs8+39mODagEO0lNYjvYDiWJg5nbnbub3O7OZmf2zueIViSoiACiixDQH5QCzrl1U0gKLaVAqqoE+IGg/dEPg0oiSgUptDQFtaKI0ndm9+72zh8BiUq1Etk7O++8H8/zfuzsmSoSl1Nmn3KA2oK4WBfwwP09Uy7Z5REubqxYROSZMbl5cHjkQc+lM1/JC+Hw7pYW7NAEtkXeZQ7VEzqzWorJFotwjnOET2aYUX7pnMTumIXHxwQrEJvHupOtbel4rLon1r19d8xlJol1xzxO3Fg8pjOwwhaw8DV6Yez6HbCZGcSEZ93EnkG0lNaucWbbRGgmFmAgCAnGzOAwG1vyMIGL1CyPcYJdPQ8bqO14YozreWLhWPfumAMmE1dQacLuGPjpluUfBuG6Sx0ZAThkWEkj9RYJhkzGCshzpL6yI7Vw4VI7F7tenq+bYNyYwSxMbXUotsuDWWUTFcRSS7PEwgXsurgMz7UdtmeayneDZLFnQjS2q4eodWuRSblALItCpdJEl8jDdYECz+UziMtXiVF71EbhzxZOkMhTjhzsQsAAdlTKE7u7viOZQCN5giQoiIw7JtWpMMso5ARH1M4y18LSFpR1mYW4Q3SapToqkQwHjzlaSRK5RByNxtZT20C6SWE7QQYWOJCwMceJHCuOxlbV9bZF9FrAA8lFhG3E3By26USgkLkIyOZAhFGJAjc9EaovQ1zBMRKGpMmEqM04I6Xo5jyzwVRlz1rHMYkypm5On40yTOSRjjnhcVRmHuKgzzSQIaNmUZsofdiRjHKp8jCEI1S+fTRW93SHtB1WsNQlMwaWVoF/BgAmmiBpQGwoBLJETRMNDmzaKiNAAsOlAWH4iVFTryGbIbAdAsmZ5+okFM4QFLLVSNTP7w2IhsCAAQgJWgnCYRCrnIKwrYpISP6S8f8P2od2hExsoP4nzHtQhouMAp+hfMjozEP32VyrJoCex3aOoAws2UyECAKNJeKKECfLBilVgrIruV7N78YUjCYLr6UIlMYF08ORuQAnFikp8ap9eSnyP0mPCGz1TGkIxCeTLFlqSpxlBDA8hv1lgcz5aFmhbOdz5ERAvzGDOCLfmBDE9iz4I5bBnOrQRbBRxLZOjNiO2R1lgZyoyTcmRg84Bq2UV/kPoLvMy+WhvnEVtIArqnK6BFjPaZHIl6H9jVkyGmgZjSHgMeLUAghUJ4SWqbKBSkNhheqFOAKzMc3lBewtYdcAdbwEU0UkMs2nV30HBStDz1YpVdI8k4xXdcUDfLBJJwAhIQcNWKuf5mKXRJMtLjkjcxoWNYUBGIPNMgcI4Z9NSGPdizZvyM8caSpiIQoZGDAIthcGJotNTpph6a0mAujPBoSr1ifhubYMpkkgFkAypR5IyiCwMmmRIOMiUscawjgsU4ChEdcjgb9iobJVpNwD6+rBCXSVVK7WD+U0Z8sKAuaANLHzEiPk2QaAKYBDEvJa0RjOsxJUJTgQC5QxsV5AeYgSD+YkkxZIHNCNUCAsM9BKPHBKlvAhYmMKo6DUgl0B1WVOymwiuAgbOFovI9xEGItBO4gwAJs1noKrwA4VRcCee1lwjULyN+EvqEXGXFmV585XA7pUPFYipBCT0ygMvPC7DCh+zMSVK8302EQtKnhkTqsVKMfLQKfLA+slF6Di4HqBlxZnZeWbM1xqPKiVyHnJUR+v1HkIBmLKomyoIR3M2WhtH+RPiStUoXkLqpvV2cnE8F5GaD4I1wNSpqxEDnM8E7uSiTaFebyW02AeyrgMA9cCexQiPGrPaBB90A/SowoC0Kc6ic2BUxGI62k1T/4MKgR4N5wD+Moy1JbOr5LeBm6glZ2GeqyqXJlqDRYCtfDc0W7M7WxT22imm3R4bqbloCC72AR6yUDDryy1ZXJ83A5RP6fpiybsdbUmoQOyOQafNzKTGGyzVJ2dJ2ZB6Q4Pn1W5VSLWynbfQM+mLb19AxtkIwK5sKC5FleloaEuBPwKeAWOh38rjF2iA5rwpGjskixxVeMBzEM7ork/a9gbrUYwbGQWdgtEgHnULoIamQLwQCDnmAV5JT9OVAcJpKDtKMbPcaxchjNVqsmDHWZSoXjMHebKQ5W2nbKjea4rGUmKUhvkN3xwQ4wz5UgM1OAhXIItSEuDYpjeBwZHgr5bhpFdxzI9cPgtinmBK63KDjCjMQR1sgHbgl4NQwbQK/jOrXOJZXYSXUhONs/YIT2InZMjXJ0Y1Q5dGyDiCOvgIAAYV0OGcD0uIgyS4cp6phJUEMoZUXZhNUmrMQGpHhVUomBSbghYAvUFkzKzVUcD/sMLjrYMbQrmGm5Tx1GgypmVZYEi8CKcL6qeqFEAtoTTmwVDQY5I+OORYhPOijxwRfXIUD4e1FJ5zwBHmVTemYAt2NSkdHMQoL4qLLQMNMVIMPrkLUR1Qs5IPHnkiiEBSXz9VJ7ICshfWXTOJOSN8A/NumR5GJSBNxqxdSY7sv9IboI64BrJmsqECS6MaV1ekaiPNn+6QIijYWn1I+Mal58tshQr0yHe/g+AamMb+q5eN1AJjvYPypEbxgAp3rKTM/tA2JU0yZzZr6dlb9EgXLbwH1tbNbZlcxly30atifZ0ovVgVLUJ4fYrjnr/RPSFAxGDc7TwUsqvBMIPRfcw7u/vx/rgcMORMpD+fuxaHekGL13Plo76Uz2bZ6sLX9bUTaUSyST8O9RwMi/bur9fjXeHalDUZKbbWttSWmuH1pp8rOFsoGpZ0xmo8O9vfagaQROSSuT9yXSqa833gRkOEJ/srYCc8PieScCUPP/cVHhD9sDgxjojvjjZC/j6T414AHKyE13p2Qh0t6Nkurst3Q0rG/pHDvSEekbmROrQCDCdQ4po66r0mdLzng00ne6ZkzIzK+ouS4qbcmLR1IWaFtzqaWrJr6Rb5c/MxSfd7xKZhFJ3VWbFR5CBicZ/VPorY53sHAm97tg2c9Fc0sDsWSbuX6O0rT75/rqJocxFH0VmHhM7t83E5hKvjuehdZPpeUNR21m3azLV1dV1knPntSi9bQbNJdkEaOD68gV2RqEMdqMFd88L4nRotEYN/0n4e6w1mey5qrfENmSuxDt3Faz1eGK4YA25jwe3UZqQRJa9VuMEii8VZX8mbuFxWYYuSyXbUx1gzSXVu65hL9MbfN5fgqB7mTBnPl43NHphIg2YWZ7q6ki1G6mMRjJZQ0t3renUurraklqmrW2NkV6T7EwbHQ8WKfanoVygHGM5kzysZzUdw0yrBcnsT/VuHVjb39dz4BptiGUYADKCATgbZsLKMHGhgPjTusk8Awq3Syo967WhtVv9R7vak6lUe1cmmcXtXalMl7bu60MHq2ldS9tJWfXVJfsNlWAoPHLK7mW3nL5I/SyG/x9+aFz1y30vX37mB+duufvat46csBOH3z248Y2hidXm/V948IWVJ47d/Nq9v1l+1oUfXvvMX6/YOHjF28cvu2xy9ZLbF1/wDn6r477SI9aPWp5oeW/Xv44ff/P4rm+Uu6/bW9z6s4FdL4jrzFZ6YNGfl/7YP79jfOTFcz4t/H2v//PwH3+6dd0fXjr85rKOHUf1vQNHrjnzJvb7zuE/3bfl8F2nfNW99d+f/e7RZfjVp6874/PPnpbYdmypeeodn3nyvBfOG/nHGct+hdvueePp0t+fvBq9vub1i1dc8+7zdCxmVF5b0frb0zv8G778nnX47Fd/WFnetuRzZxPav33sZbS7f8P0+5efNnDnnrv+8tSn7n772P7ue3/S+4tv3Yyv7Xnxgdz3lm17a/Erhzvv6b87mSTnLv32kduvvuPYstg7Bbzr1r13nv+l+JvfuWn1kq37bqukNj6D3/n10c43nuu/9OdPFyonjvp/u21w03++OXDLB7eZTyxJTQ07l247duPi35UmrryAPTamIrx40bNnvX9i6amLFv0XHXoWHQ==

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNqFVE9oHFUYj7RYWy/qIdBi7XSJipK3O7N/kt1ACem2SUtNN82upV3R8vbNtzuTnZ2ZzrxdktYSTBpEFONDyMGDUjPZrWvMJrZasLUQ04rF9mBPXQJV8OBBUDFeCkJ9s9lNUhLinN58f3/f7/e9N1IqgGWrhv7YtKpTsDCh/MdmIyULTufBpueLOaCKITt9sXhiMm+p1ecVSk27w+fDpurFOlUsw1SJlxg5X0Hy5cC2cQZsJ2XIQ9XsWU8OD56iRhZ029MhSKI/2Cp4GkHc8tpZj2VowE+evA2Wh3uJwZHo1DUp6l7PudfdDEMGzbUQDedlQAFkG7oOFPl5RdHvj3jOlRTAMh9m3FEMm7K5dfAqmBAwKQKdGLKqZ9gXmTOq2SrIkNYwhTJxK9bmZ+UsgImwphaguJzFZrFpairBrt83wLtP13EiOmTCenfZHQfxKXXKrnQ1cPj6hjibuiB6A0Gvf3YQ2RSrusb5QBrmkIpmzX91rcPEJMvroLpSrLicPLM2xrDZVC8msfgjJbFFFDaFrVxb8NJau5XXqZoDVor2rW9Xd662C3glyds+90hhe0gnbCqNNRvmVkheSSlzVQJIbEOiNNNgSQM9QxU2KYntFy2wTb5lMFrkJWneHnG4InD7h1J9MT6NHWmoeb/pGecAV4d9222prYK/XYiDKbiqC1Jbhyh1iAGhpzcxHa23SWwoxlzCwrqd5oIcbIhfIkpez4Jcjm4oe9WzOpbF+2tqTqWofim4WO4vc4KiKFZf2DTSghxnze3oBCKRyP/U5cwAZZfd+ZAYQf72xPKUoWCyKmyUuXy16niKLh6OqGWTyFU8jWhh0+iN8YiBZLkOGqkyu8bPp0TJX+g5FMoETbNPhTMnjukZ6UjyWPdXg4hoRl5GlD8vgGoLMUhZVQhJaWhvC4fTYdkfScvBFIhhWQqmAnIklArKZLKgYlaWvJKQMYyMBpVoN4piogCK19aGlQ6cPNrVezg6fQL1GymD85fAnGfd0KEYB4uvIyvXWvMLbkGRp/d3nWSXwyRCUiESDJBwyp9OE7Sf35vGAq0siOO+DrVn7C2+phY33biz590nmmrfllfevzOwID51/pMpe2L+9N3m37fvf3N7y5X+92bb5hP389c+/yD17x83L4x9/Pj1Bzj9z9PPjb6xaC3NzA0v/vnRr2Yltm3AW+q5tG9h/npPMu7smtn69uG7O0YGKs33fhEPOVvHvWPPfnav+eXb8sFXj1/9sjwQpt91a3/tWfrZ+Ymgzpsk9tKtJydi20I7F98Z2bEwGv564sXvKxfojzd2z9tHb+3tHH6wc994NfmhLzVW2d2yOPz3N62dHPfDh1ua8G8wusTP/wHDg2Hi
eNqNVVtsFFUYLgGiIdGAMSo+yDByEdjT7uzObndKfCi7hXJtSzdAQWzOnjm7O3T2nHHmzMK2QiIIhlQNEx40MT5Qtru6NJRKDaIQTZRIFBoM8bIq8GL0SQghJgZBPLPd7cW2wGQm2ZnzX77v//7/3735NDYtjZJpfRph2ISI8RfL2Zs38Ss2ttjruRRmSapmm5tao0dtUysuTDJmWHU1NdDQqiFhSZMaGqpGNFWTlmpS2LJgAlvZGFUzRdQlpuCudkY7MLHEOsnrkz1ixUSs29YlmlTHYp1oW9gUPSKiHARh/EOjNl/cvZ0bUxXr/B3p0FYx8IMAsCghmAEdMo5P3J1PYqhyEler5mST1GLOwARg/RAhbDCACaKqRhLOyUSnZngEFcfdKB6h02JqAblxS/ydQgfGBoC6lsYndwGLQY3oHDVgWgpTmzkfbmiKtq9avalhQ244tHMCGoauIei61+zgEPvKXADLGHjiccFlDHgZCHNO1VfA1jRneLGJ4K0OyNXeE2NT65Djzhml88/GHhgQdfA4oCykkxt2Pj7WhlpO73qImlrHhYQmSjq90EwF5XEsTZu4RJ18uHliuvLhSLq8v1qS+D0wLrKVIcjpjUPdwgMjUoz4FHxenx94g8ArnRoXGzMzAxDlKZwj3uOVCuqYJFjS6VGUD0xsGbw/8b4c92K2tTfLFcUXzufLTdXTtHa0H+ZmI1xd52zU5hJLtcIamwg8c0CQ5DqfXCfJwqr10b5wOUt0Up0GoiYkVpxr1VBpnjxK2qQDq4XwpA1TXDRK2OT5dS2lMaARw+a9UBoEUPrk5GSvexWXPtDexCleIjd3xWfRQ/hYmDmDLl+30lJttMJ6a3HxZN68rydA7A2Vsi17sP0oxLLP4ofxmRqiOJl7eSdV0GXlKUsxYjmKK+tXFOUBcadE5NtaFCbz/J+gw9QX3MdyrJTD1sJ9raesUKEMGmiqc4b/bvdKUrglspMGW6x1Um0jyUTi6URgFzxtMVNDPKTbyAY1GbAw4oucZZyih29ndwm96JcC/iBHs1zQCNL5pm21YxHqQrWWC4aJdQrV06NAqZmAROssjYkLoLjArwT9AdUfAzgWV4GshGqBovgkEPP5QqockmplNXg0rUGnwJeFkKA0oeN+FAcIoiQGw8Ps5CNtG+rXrw73bQEbaYxyQaKQC0cowblWbPL14RSQTm2Vr20T58Irwcb6NmdQCUh+fyCE5FBIVfwxBTRs3niiMtYjY5t1d37pb+m1nFsSkjg37fF53Y9Wla7p/Ll3Tz1Uv3a6NHv/vW9uD7X9dHzZuZfObLopxuY0rFh3IC0tLy46vGPJP9dw98xzl/fdeG/ugZ2RG0ek397Snuo4/cfdL71nPNfw3cFXr/98Be18ZKbyptzUMpQONzdKF774/dfEgKf5mZ581WNP6zej7T9stt++sMD+ZfBKj7bthU/Or/Bc6v/6VsuR/szdJ59dNmv+y9Fjf7cp336f+rjXu+mNLUsPXn2OeM8uUQ8eXa1aanJ21/MLpT2R3Pb56RkXF87Yb95um/fdrS1fNd4Rhi79OGvoUzD3nfNr5hXv/HWxuPijfz/vbthzuOHYoSV/dq1a2bnm0rvdN4OZdZdrS6SnVz3xvu96fFpV1X/mQzDF

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNqdVn1sG2cZT1ZUtgnoxFC7aWw9TLeqkHPu7LMdJ7WmxFkSN823s6YZxTrfvY4vvq/e+54duwvV0hXWVeu4ETahqiokaTxCmnVNCl3XFKZ12jSGFES1LQtiQ2ysBSptCAmBgPG8Z3tNaP/Cf/ju3vf5+L2/3/M8d2PFLLKwYujVs4pOkCVKBB6wM1a00F4bYfLotIZI2pCnurv64pO2pSx/LU2Iietra0VT8Rom0kXFKxlabZavldIiqYV7U0VumKmkIeffuen0Po+GMBaHEPbUMw/t80gG5NIJPHh2GzYjWogRmTRSzZStMiLGCiaiTrwM3dTEPKMbhNERkhliMDZGcDFUzKQMi0EAP88AUvhnGZJGdN9ynYZtTJgcxKFeFNlXPDWMxzJURPPiPCZI84zWMGvgxLZqTCfSjDW2NKRndA+saIaMVLo0ZBJWMFhN0RVqqcMaD1dMLCRq8JASVYxgAXKYwCqxLRqJ83J0jaIvEUHyppshZesu8TTWp/f1AE0XNdeAiFlFzScwEi0pnbAQtlWCE8O45CIjLFmKWfbyNDIlOwbpQ4qOGAN2NKUA/FHKqD4WSiMdK1mAKEqSDQDpnQ4EW8AaGJYzeJl+jKgo1DEHPkweJKlIIeo4B2S7dULlZsSkYRMG4llAJ9VGpyFiugmrOG3YqswkqdRleK5sXnoAU7TgoFB/2D21aUFdWURBpUfXzr37n4OujkMBqYaRYWyTRqwwC4oo+pBndJTqCSWtWEim3JeD7lllaiSHkUTAdHTPaDGNRBngPDmVNjBx5tbW+nNAGoIKQLpkyBDeOTlUUMwaRkYpFaicgYLSkSuiM5NByGRFFbieLnk5p0TTVBVJpPu1VMLZcgGyFMn12zO0/ljoHp04C10AojFW252HptQZ3ivUeblTIyw0jKKr0GSsKgKeadPdf3H1hilKGQjClhvemS45z622MbBzokOUuvrWhKQkOydESwsK86vXLVuHwkJOMdp9fbry5rV0fi/Pe0PPrwmM87rknHCb5WdrnBGx8qxkQAznR9xchR8VCpqknclgmHsWKtSEmkMHpsGN2HhsCrRAb7xWLI+aia72ioi/q9o01Qy6OIvxtF3D8CGmSyKMj/MJDC/U83X1AR/T2hGfjZbTxG8ow/NxCwo+BVI8UJG9KKVtPYPkmegNBV+kgsNpKHyYJSwaMQ2M2DIqZ3aA7S0NWTbWPF+qLtawhkRdKbhpnUVX+VxhJCdLtiynszmNCxcEv5JEtpRaKLtAt9A0AIjVsDMlCHxgrrxVIX8GDsuxPMdy/LkRlra7ChMBCHX/y6MefAMcx5293oAYGRgXTlHg3N+F1RYW0kA1mvxaGCEcDp+/sVEllB9MwgHfubVWGK1Gw/s0fPZ6g3KICQ7PjlSsWUV2lrfAQ4IPoFCYQz5JEASuLuDnUoIcloW6IC/5AwEh+QKdCBJEoWqahkVYjGBiKSTvLNdo4ghttIifD/iDcNIGRtEl1ZZRn51sNugZcAMD01M1RPm5aAsbFaU0YvvcAnSKzbs7Gzti0Zk+ABmFUaSgp96pXpdISKlEUosgKZva0dyWUCVJwJ1tuzrCqNcO7GpuN0gfMeyYmGoiTVxjkKsbYvmQL8yHhJDfx/Jezst7eXZQDfb6RdLaYhXMpNxmt7Ukoi1BOdjc1JTMhWKxB3ca4WA2q+mBHd2dXU3q4DBpbMEPBOQhzWvtkDKWORzv79Cbg/0FkrUzvcO57EB3Dk4jknSktoGB4oTZiCPlFmGhRdhSgwiVBmlgZJeDiHftOGxg2uCToEtX8w1MHyUTwRXmeZ9CUKTT0NHyOHBgZxU50pbRCzi4M1SQgwPSoDaoPNi1N5UOx9sFf1t6J6+He0h7ONDfhq2eVSSEfD6WK/MQ5IQ6twqvQf8/Uf10gF3d8WyXWfr2KeoG1pVUaroPWdBAzoykGrYMk91C06B5b+NuZ6FOFjiUrPMLqWCdnxPCbBPMzEq0T+fDFH0tFEUVaiwrOfNpf8RTLwh+TwN8oETqgtBO7hfSI9Olt9Qr1dnNh2+ucn/r1J5fdr7M3Xb+w69vPH7X+NTB8W92v/BR3Lntb2Pd79evXHxvpOMvj62/tL81v7T+zKbNqWxq6M3776n63raj1beHcxPc68ffjTz2T/7dhy8sfYjtyMkPHv7Hr44/vevvf3glclfg1sHFSXP/TF/jwZ7LW64c2Xiv9Z0nMne0bhK3H3q1p/1L4xPD8g/2/ufRfzUNX2ltFD4+8PaG4mL91m1Lp+88X6iquv/qyvuXtulvf27s15t7f3hmezS48vnqU0/FD3D6yYUjmVdb9vV+N/vsyuXQFzcOLN3y26VNN8/9fmP9LZfij0yOv/VMVDn059f/et+FufE/fXzVe3jijfGF05Gfv/xWb/vRrfda7eeWM3ff+ebphza8d/LqN/79k5d2xg7uPTS54dIT4h0Xj21eOV74xbcjV17bG7hYnPzqt2KPH2lHn90ljR3+8m8WhY/Wf/CFZ+6Zv3zrjmN3nx1ZvH3+jD2wJfNjf03Hthf3Dxz9zGT/40PS9tY/aosJIPiTT9ZV7Xup5tj3b6qq+i/YsDbD
eNrNWQtsHMUZNk1BCFUoFGgpVGRzQB7gPd/ZPj8xlWPHsUPit5PYceTO7c7dTrw3u9mZvfM5CSoPCUJB0UZpSxXxNnZr0kAeSkPAAVrxaBUqKpWWUIhog0RDFUpbSkubkv4zu+e7s520VFSqFdn7mPn/f/7/+/7H5raJNHYYseh5uwnl2EEahxvm3Tbh4E0uZvyO8RTmhqWPdXb09D7qOuTY9QbnNqsrK0M2CVs2poiENStVlo6WaQbiZXBtm1iKGYtbevaNS45uDqUwYyiJWahu/eaQZoEqykN1oX7LVZCDFaQY2LQTrqkgxgjjiPKwIl6mUFahFlcoxrrCLcVlGP5YJlMSlqNgMD6rgJ3wW1W4gcV7R27a6DKuZECO2CXsWhgqDTmWiUEryzKOU6GtpYWmtC1OKe04ZRWsE8JCWzeUhlKWjk14kLS5WmmpKUIJrGLcwSgVqksgk+HSkDRLno9nbbE94VLpTVg6fVm3OURRSrzlKE3M7BDDyNEMWKJjpjnE9leFGhX/hYJpklCsWPAiRUbBCeLcwsUONjBlJI1LFaRproO4uKLgJQeODgsdzFyTs7DSx7DwrNiYgT1KFvya8yeiLAMek6EWEVNQ3HK5AvIccItwMBUi2riMgkXNLMjlDoEXTOnrXsWkSkaJbWPOSpU4bLYSCcCUgvQ0ohqoCU6iY5sbsES3UohQCBIFQKRAfqkCZ8OKg2gSKwliAgyZfxSSgiXBflhlECaDD6JMInALtiBTFbtnOkEjHIkDqXGkDRc4o43aYCEzLNfUlbgAXmCdBFEY4mAjBwIkbBDBsh1AuMMJlndykbgoDlZPgQjhVNOyhhXXBmEBEgAphCYBcCFCNdPV8ZDvBCkU0WxHQuKGACrlo1nbggfIcVBW4jZ4QF3TlAjVcQLBAUHMhtlQMoFREJXA88KHwh8gXOO54wf+gVfhQTpIleCnT9BNuH3aKxJCdfkV0bDSm+MdHrFNAp6XIJGQYgqhgLuUjIWScKyUwmyskQTRlAyOMzgxU5bgcDJcqgyGWoiInAlR51jREUf+DooYCiet9GBoaV5veYFeASIfvFSxnCSiZNRXGFAFPKxkCGQxEXqpPgt+lfkiAGOxCYU2+3wgnYZFwVRpT6MN+U0akzenjSpxixuKhhgG8AqKBSDThddSgsNCH7IFohwiTxiEI1C+fjCUP+kGYTs8QUKXSK/waKnPNcxnhKQoYt1BIDPENJWO9lX9wgPYN1wYELgfKJFTrwK1FbAdHMks19FwsBnYEaBVD+flN/tAU8CAdnCJsgQ2B07MYQrctrRgh8AvHvn/gH1gR4DEIuh/xrgXuTVtEcAzpA/hnbPAfTbWcgSAoiUSosioIvf6EQQYi4hLQPw7NohdogIKrOf4XUzBQrKwaYpAgTonPWzBBZCYJjjDcvYZYsv/hB4FYcszpcgRnw1Z/MqjCA8guA06g3Mw5z9jhbSdzcEJH35DsiwWEwJTF9qK9aE4YkSDKpKrpKENsyvKOTgxvb+YGE1wMEd0UAH+IeiO5SYNyG9+NfexUtxkiJeB/cUsGfS1DIZkf8GI6P1kJYSSKdlAhKHwhGjDpQqYjUjS4LA2gxw9aD8KPTlTeu7soGBJcLKl0z2QiUdyukr9+CBTNkncsokGz/LSHNFmFpCtVMm1Q4SqMgZgDDKz0H2KKIr+qCjvFRZv2ZbMSGJBFOLQnmBEzx2YoGEsDktzjgigP+EDLpefuOtQ4UwTp0VD66sHkFrgWEFaheMRXpDHitzYg2UL3Ou42D8vP1faShPmgnV55/i6MpKreaGMJKnIIGAO7MbUEDFSXKpDMKF510XIp5NGj2FlICuBQMSVuAkNmWKAl5jfJ5lkGJdCdAsgEKQZKCUuHEqk8G4xZcAEIbQgh0N2mRMyqzBKwwKmtAgPzwBMyoJyUIAAZE7jFI4K6JBehNgzNwFHI0D+GfEXjeaQbFPn5qsOVao0lMF4OCRmBspFX5+FKH5K4oonM+GxCtp/zgr6tOkEZbtxqHQGoF5gATIOyid4YXFCZL453SXbg+kUeVZw5Nsrv1GHhphYhWiYjrQJeRuc3NgG/MkwGVUo3pxoZq53MpEYy8BDZwthC0TKFJnItmzXRI5AIiWagac5LUbAuGMhwFrB4MAK7Rn0vQ/6YfegDAHok5WEMsBUQYjztDoLfzpkBFgdyIH4ijRUXmksFaf1j6EsqdblbU7lkoqI/8BXC/dVMX3uw84oGzPhJg48N9KSkJAdZAK8hKPFgEmoIMenrRB5OTMmmqDWTRcJDSKbtGC8EUzKD6Nn8ZmfugPhszK3JOJ02m5rb1rV19zWvkIUItgXJDQnxWRqKMoLPr58XMHBg2sZYwdrEE24kzB2MIygsvBAzAM7Crk/q9kbzHkwKGQp5AzLgZZQmHS5oADcYOCclQJeieFEVhB/F5Qdifg5xIrHIFNSTQi2LZNwiWNmW44QKrVtFBWtaOgGfsOICz6OZwt8IBsP+d0BaKkTBN17e0evX3ez0LJrSNADBbMoYsP+hxJpB5hR7II82ABtfq2GJgPg5c+5eSxZ8Y1Y47Bs64atEwYW1GPbxyBc3NtT/BXoCRjDoZiqmGqWqALe/uQosWHoxwlTDuejjOuT4EaK5aDgTQ5jbKtIzPPj/l7vSdHHQW0R78s2MovuDlKdKsyZ/XpSJCwV6hTl3oEOMKWxrawzC2ii0KXX1IQjT46oTPTgIq+oJmQLb9yW758ufGFDYQIhavBBzBv3N+8pXGMx77HVSOvoKRIpGOI9hpxUVeX+wueOS0WC8iaaOmerC15Oq5uoCEej8G9vkWSWpZr3mGwYfli0G3Mnq2oWCPEejuzJOcjENMkNb6wyFqv6HpDThsyFbx+Hfdxlt41BTPDRlyeCj3GPdNycC+bxkivGmiE+3tRarJcq0RplpUuV8kh5TInW1kUr6+DJitW9u5sCPb1zBmJvL6RiBsxTl+fCP6EZLh3G+mTTnCGfEiGH42h+T6pC1YEcoAZWebvXqd1+Z6K2Ne/3UaYWDi3elIx9ZnQko2uurhvpTCpSO1pZQeLY1RIHgi0wVAg1YJCaYt6j1VVVe4I3Oe9PwlkjajSiRqJTI4DetJVVXdtnmgoq0kTD8kMT7K6OHR5RxacmU9Rk1f+d66C8sVgkEjk0ewG3hqH4eBOVEflzpHCFgwWvhXl5MZW1tbXPzL0oJ6oCltRWVR0uXgUFvUBMtDzFDs1eEIh4JMJ2j+RWq0T3jl0LN0PReCxWXVNRE0nEqpEe1bXK2opYRQxV6wglqqPxp/xBX+Ui3iKNgYsgexGe9Y6VptCIIGNDRTRWUQUnrc99Ruhx483+5FSvwGRhQgl/QkuoGoLqrvoQ9Saa+9sbV7c1TULbqjZBf0jwjjfOu2JoSEsMxVMNA8mu5UN2czrMzJZo46YVK1FyXfdIO29f01LRNlw9nMyuHBlKmryD16jR6likvLoyEoPLcCQM3FITLL3WWee4dg9or91kpvR+bXmsssZo64yHCS/vH9jYP6x3JFuTvDxRTlBN1s6am3pjNGbarT3t69jKdmd1rCfSN9DOampvblpLUXy0fVSLZGJrYsmezp5NNFXTabS2dmlwRMSNhrJ60UlBXmUNAbNUYJbq86oyx6v6YFhsCBdn03qllXO7g5rZeujjwcMY/kI310M4bhAdw7Gd4Bg3TfSGtd24q6u5ctRxa3szHa1WZFm0tWqNXtO5or2xzcpWdHfEOuxYn4HK+ws8Ux2JqpHAOVWRyhoJzbzp/6VVB9ephYlCDVoob4JaDMaGxHgPEAo73qRmWq4OhcHB400tandjv3egNhbVo3FdjyX0WKWmVanLINnmpE2nlTFRVSaQCcBLa95+o6IhBN6sCNVDgWyoqQKOyf96uHXc74JeOO/ggm9eWCJ/5t3T/Tz9RWT+1Ls3XPDgpTvfWqQ//eWxi8bef/jCbfPumrx7cPMOd2/Dt091rnntk3pn31tjndeGbzq666+njx+9EZesajt4/qKPbrzoBN/0l/lHPtr1weunjtzx4omXfvxKPXtty6GPT5/6x55ENv7qP+fd/bejoze8XHNvl3f/13/jrVg1+fh4+Fer+36565LItV2LB/4Q7+pCO/teODy4dvmxyx5/ZdvU4usiT6pvJkpKOk7s2jKw7dnXv/TT00/FI58/fs2vH9hVct/i+6+/586Hlr1TtW/LBecfuyt94JZ7B3oufvDVV686NL5i/ps/unjRlV81vtG6Y8HxspNXP73wg8uev3igrISqyx9oiVz5bP3Cl/b3rZ76M1/wyUP72vsv/+gHK65+edH6hTu0a0aPlrz/oveFsu7yd39y6PWWv996IvMKbji5N3tpxeGBB59r9X7/1JGlu05fPrUm/s7KO1/o/O7b8e3O+M+uevv23gMl+5a/9+xbz4w3XLf24JkFH39l/uc2NB+r29697Tvb3q3afrLzzGvpB/5k3Hf+h1/71nNV139ILv1i/U2/O7llXc0dd42f2nnq5/VPjF/13uDmrj8e/u1IduG69NFb5pWUnDkzr+T7S5Yt7ILrfwGDopBs

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNptVmtsFNcVNlhqHm1U6I9IaaPmdpWIUHnWM97xPkwcanvx214/sTGlzuzMXe/YM3OHuXd2vUucFIPaqokqT9I/SWgI2N4llmtCTSANpUpokSJKKxpVBEjTh1Dpg5AqKRXpD5qeu7sGu2Z/zM7ce853vnvOd87MZD6FHaoTa828bjHsKCqDB+pN5h2808WU7c2ZmCWJNtMV6+2bdh394teTjNm0prJSsXU/sbGl6H6VmJUpqVJNKqwS7m0DF2Bm4kTLXCoXd/lMTKkygqmvBm3f5VMJxLIYPPi2ERcpDkYKSmLDTrgGUijVKVMs5kd801QyyCIMWRhriBHkUgx/xKAoQRyEgX4GAVO4CoglMd93Ck6jLmUoDTjcizP7mq8C+RxiYB6XZijDpm+iAq2g07LBRJ3YJCtsOeQqy2ZsGKRoi5pJGqmKhVpK5FEGiDOiKZnNy3FunWwV2ADQQzpFJpxVMfHm1dF3wIpJNGzwpRGbCTIRTN3SuaUFaxL8U+ZgxYSHhGJQDAtwQhtqylyHI4l+ka/x3BXLwDJ2IULCtQpl51i37muAIefCDZiS0o3MMMWKoyaHHUxdg9HhUVp00TBVHd0uefnqUNEOYWtEtzAisGPqWageLxhXh4OT2KJ6CigqquoCQX5nQXkdqBkYliL4UT/FXBLcMQ0+hbwuCUGxaBpKXVApFxtS4sRlCPAcyCpXhsUhWiwbVmmSuIaG4lxoJXoF0fj5AWzFgYOC+mnh1LYDqnaYjouPBbvC3f8ddDkOJ2QQMoZcmyMuZRYqolsjvokJXk9oKN3BGs99CXTHMlMSH8UqKGNiYsdEPokVDej8oWzdTJJQ5i2s7LXDkDYMGsCWSjQI4P14JKvbFUjDCQOSOQfKsnChjN7cGMa2oBiQ7VzRy3tNsW1DVxW+X8mLOF9SosC5rN6e4woUoHst5h2NAYm6lsquDAwFC0l+OewXXxsXQNa6ZUCTC4YCfHJ2Yf/E8g1bUccARCgNHC9XdF5YbkOoN9uhqLHeFZA8zd6s4phBeXH5uuNaIC3s5Ru6Vocrbd4OF/BLkj90ZAUwzViqN1tol+MrnDFzMoJKAMM7IOZUqKyOvYufDA+rieG4WYvVVKI12jxsqKpMO5sHOiK4x60eiLYR1suI26Ik6lm9WBcUwyOCFKqKSCE5FKgSJL/ol/ySMGQEewIKa2p0snZca3abG4cbGoNaMFpfH0+HWlq2tpNIMJUyrerWrs5YvTE0yuoa6ZZqbcT0O63qmGOP9vV3WNFgf5al3LGe0XRqsCu9CQE7N6Vrtc1jVpYG20NZLTioDplD+tbYzkQy0tcmB5qT7ZIV6WZtker+Zup0L6MXqqoSxBLDoCiHRf5bWNKGAe3Mkt50WAoegv60oePwnhykjLl0cgZ0iM++ky+N+YOxttsSvn8mCpr0TvYl3QokhVBMZahKrJKRJNdIkRpRQk0dffMNpTB9d5TgkT4H2j0BMtyyJPm8mnStMazNNdxR7Ce52KGSnD5MUgGP24RiocTKmx8UeoovOKEluljsLIE4I4qlZwthvZMF1aez42lNdTUtmUqbYiQrB/Q4dtXE0ZILzAoeBggJJvWmq2VpobSzpLs5OKsoSKIgSm+OC3zWGTAOIZ+Fa+ktS72Zakj2G6sNGBmDWenl5UI1xJ8vt3CwCYLlsW/DyJFI5Gd3NlqCCoBJJBB8c6UVxcvZSFUmfWO1QQnioEjnx5esBV3zLj4MD8PVYryqCpRTLaoJORgPJsIilhU1FI5LgXg8Iv2Uj0MVUHgxbeIwgWIY1zrLeBcrTGWcz5jagFQdCMJJNyHdUg1Xw71uPEr4GegmBK8Ogyja4YZGoUFRk1joLejPy0e3ddZ1tDQcGxSWC0mI2cXPmbxFqKUnErle7EBhvDnVIK4Gw9LBOcDqqdvmHQ1rsojjmhwK41BAlCNCPYyhJbRbspvhkzavGMA9pXqLyUCtr0aWA75N8M1RGw5CmQofPbtzxdF/eo3+0DN3lxV+5cbU252/ENdF//mfey/TPc/J8tT2ym+s6d/Xtb7eu2p8ac+1142m0f5//7H73aMd/f7Hz/7r7Ecf+tHe7z93Ze8n38ksPPuFv1YSnDv20Icbq79yI3z8pdNXn3x98sZfRj9u3/Cj8vc2v3Xzt+6vuh+451uvPP6EtTvzt57LFZnvLcptl7/6aEVd6tilT8XTXfcIpx5ufVc8c+rTp+zQo+Hwi88f/va6+tTN96+92nbh3L7o89MH34psLf91bP/dB+7H+a4r++yX9diGkXe6d527+Y/9F4YOvrDW9+C2yVMvfdz0+f6rg8fnrdkHr9/Uf/LLS4PfPLF7//XW5J9fPLWWHjqx8TfTB2o/uGvvkzfue/+Z2VePHHq28rH/Tn609vLfz029/MVducXdmevtP+hostcP/PBPL0zBd9CZB8grj22ffuJ317JXnl7/3afq3xvY+PZU9IPzma4tj7D7zg/uDGfxvc3nH/l9h/I5+cJdT0NOP/usvOzcmdkvT64tK/sfUwEmhQ==
eNrNWQuMVNUZhmqFGqttU0ONjx5Hq4Bzh5mdmX0BscsusIuwsy9gF5auZ+49M3N27z33cs+5MzurxohtTavRjrFpotFEwd2WIgoLvirFpGpMY2OtEZWm9mGVYoutfZCmidL/nHvntbvQmtikG1ju45z//8//f9//uOyYyhOXU5vN30OZIC7WBdzw0o4pl2z3CBdfn7SIyNnGrp5U/8BOz6VvLs0J4fDWZcuwQyO2QximEd22luVjy/QcFsvg2jGJErMrbRvFo19YdUPIIpzjLOGh1q03hHQbVDERag0N2R7CLkEY5YjpZDwTYc4pF5iJCJIvLVxEzBaIEWIgYSOPE/jHNjnK2C4iYHwRgZ3wW0MiR+R7V20a9bhABZAjd0m7Lg+FQ65tEtDKi1wQK3RTuNaUrqst1E0su2adFDZjVScxTdtfhzrtAtIxQ12B0agIBgvbwMVrqzIq55khaDOYhChHFpwPW+TamVq3hUOWbRATHmQdoSVszaKMwiouXIKtUGsGm5yEQ8oZyqui6MjtGY+pGMLSymXrDSGpBN4KnKdmcYQT7Oo5WGIQrrvU8VeF2pD/AhGWpYwgG15YdAJcL70tA+uSHGGc5kkYYV33XCzkFYPYuOBwWOgS7pmCR9BGTmQ85cYC7FHOKUcRM16AOCmASZwgnLY9gUCeC96RYWVSRJdQsbeZWQS5wqXwgqONfeu5UskZdRwieBilYbOdyQCSETbymOmgJjiJQRyRgyWGbWHKABoMYGiB/DCCsxHkYpYlKENNAD/3j0ItWBLsh1U5iJL0MogyqWQL2IJNTe6e6QSdCiwPpKWxPlbjjC7mgIU8Z3umgdIS7oF1CroRiIODXQiQtEEGy3GBV66gRN2pRfKiPlj9NSKkU03bHkOeA8ICJABSKMsC7kKU6aZnkBHfCUooZsVURuGGAhfUo1nbggfYdXFRwTd4wDzTVAg1SAbDAUHMttlQMiUl7EzgeelD6Q8Qrovy8QP/wKvIMBtmKPjZKEku3V7xioJQa3VFLIIGymwn445JwfMKJApSHFEGuLNULFDGtS3EHaLTDNVRgaQ5nJijxSSSjYTRcGgNlZEzIeqCIAML7O9gmONI1s4Ph5ZU9TbU6JUg8sHLkO1mMaMTvsKAKuBhVKCQO2Xolfoi+FVlqQCM9SbU2uzzgfbkbAamKnvaHMiqypiqOV0MpW2RgyzECYBXUiwAmSG9ZkkOS33YkYhyqTphEI5A+dbhUPWk26Tt8ARLXTKpw6MlPteImBGSuoj1BYEsUNNEqe71Q9IDxDdcGhC4HyhRVq8BtRHYDo7ktufqJNgM7AjQakSq8jt8oMmE2Q0uQYthc+DEMqbAbUtqdkj8kvH/D9gHdgRIrIP+J4x7mVvzNgU8Q/qQ3jkN3GdjrUwAKJUyIcqMKnOvH0GAsYy4AsR/YoPcJeuuxHqZ3/UUrCULr1AECtQZ6eFILoDEPCUFXrYvJ7f8T+hRE7YqU+oc8cmQxa88SHoAw23QIJyBOf8dK5TtfA5O+PAbUWWxnhCEedBWbA2lMac6VJFyJQ1tm11RzsCJyv56YrTDwVzZtwX4h6C7tpfNQX7zq7mPlfomQ74M7K9nybCvZTik+gtOZcepKiGUTMUGKg2FJ1QfCyMwG9NsTsDaAnaNoP2o9eRM6eWzg4LFwcmWVHogk4yXdYX9+GBTNUnCdqgOz6rSXNnc1pAtjMrtEGWaigEYg80i9IgyirI/qst7tcVbtSUzklgQhTS0JwSzMwcmaBjrw9JRJgLoz/iAK+cn4blMOtMkedlG++oBpDY4VpIWCTIuavJYnRv7iWq8B1yP+OcVZ0pbeco9sK7qHF9XQXG1KpTTLJMZBMyB3YTlZIyQxwwIJrTYhgx5JWn056A9t6R2aLTTJjRkKAde4n6fZNIxEobo1kAgSDNQSjw4lEzhfXK2gblFasGugOwyJ2TWE5yHBRytkR6eARjLhnJQgwBsVnAKRwV0KC9C7LmXgaNRIP+M+MtGc0S1qXPzFeYNYFuBkLGQnBmYkH19EaL4MYkrn8yEx3po/wWv6dMqCcrx0lDpcoB6iQXIOLia4KXFGZn55nSXag8qKfK04Ki2V36jDg0xtWvRUIm0CXkbnNzWBfwpcBVVKN6C6ma5dzKxHAbBQ6cL4RqIlCkzkWM7noldiURG9RypcFoOnmnXxoC1msGB19oz7Hsf9MPuYRUC0KcqCeOAqZoQV2l1Gv6kVAR4K8iB+Mo01JDILZGn9Y+BFjcZ6rascnE86j/w1cJ9Y9KY+7AzysZMuMkDz420LCRkF5sAL+loOWBSJsnxcStEVc6MiSaodZUioUNkszaMN5JJ1WH0ND7zU3cgfFbmVkSspO2u7vb1Gzu6utfKQgT7goTmWlylhrq84OPLxxUcPLhWMXaJDtGEOwVjl8AIqgoPxDywo5b7s5q94bIHg0JmYXdMDbSUwaQrJAXghgDnbAt4JYcTVUH8XVB2FOLnECsfg0xFNSnYsU0qFI65Y7tSqNI2Kita3dAN/IYRF3ycLtb4QDUe6rsD0NKgGLr37tSAX3eL0LLrWNIDB7Mo5mP+5xllB5hR74Iq2ABtfq2GJgPg5c+5VSzZ6VGiC1h207abpnJEUo+/Ne9zuyBgorS3/uvTozCIQznVCNNtWQdK09kJ6sDYTzKmGs8nuDB2gyMZUaNCafcYIY6G5UQ/6e8tPSY7Oagu8v2yUW6zPUGy06RBs1/vlilLg0rFROlACkxp61rWUwQ8MejTm5sj0cfGNS67cJlZNBPyRWnSUe9/VPvCgdIEQrTgQ1xp0t+8t3aNzUsPb8B6qr9OpORI6WHsWo2J6drnrsdkiipNtffMVhe8rKibikdiMfizr04yLzK99LBqGZ6o202EW9R0G4SUHoxO6lBLKSkdnb9gZETPjKStlVuyvatHnI58hJtrYm3b167D2cG+8W7RvWlNvGusaSxbXDc+kjVFSjRrsaZktKEpEU3CZSQaASu0DM9vdgddz+knpt2y3bSMIX11MtGc6+pJR6hoGNoyOjRmpLKdWdGQaaC4uegUze0DSZY0nc7+7kG+rtvdkOyPbtzSzZtbrmvfzHB6ontCjxaSm5LZ/p7+7cxq7sl1dvbqyxGY7OWpsXJzH+nt7UhMuF7LQCHVaUdXxTobNxnNPWu727rsYrwvlUw5yY053DBUY3NTNKZFA7Mbo4nmqPzZW4aMSVhW5Eq7Eo1Nie9DwnIgm5NbJ8GTwuM7dgFKyUsvTgWfRR9KXVcF+KJdHYDY0qHNxAijWDNa5zHUEG1IolhLayzRGo+htRsG9rQHegbmhOa+AShPHLKRtrpMiCk957ExYuxun5MEhyQJIMC636drUIkhL2qBVaU9g1qf361pXR3TPu+02kGudEixoTAxXjB0zzBy+YIVbZlIxGmaeHrmQLAFBi2pBgzSLF7amWiK7Q3elPG4G84a1WJRLRo7NA58zttFzXP87KOBijzVifr4Jnc3Pj2uyc9vpuxTNP93uass7UpCQJ6cvUDYY1CQS1MJFbHoj2tXuETmOmleVUyipaXlmbkXlUXFYUlLsuHp+lXQ5NSIiTVY/MnZCwIRD0X5nvHyao0apTevhJuRNI4bpKkhGjficRxNNsWMtNEMXktHY1DgccNT/scPTch4y9QOLoKMTkWx9GbYwuMyPa2Mx5LxRjjp8vKnlX4v3eFPk8sRTFsmtDWP6hlNx9DxaD5ES1MdQ91tG7raHx/UarGmBZ1JaYrZHLrxzGQ/xIS4pd26aXsGZFuXTLav0frahkoHWpIxI6bHY4m0biR0vVFbBRmsLK2CzF0yVU9hE2zP66XpXHxlqDWRiIeWQ91Z2dwIYVL/j3DLpN9cPD//qS/fvnCe+jkL/p46dUffhrtejX7xmWObV9zIeu6eHH1i0dmXDF45eML6xs+Xuvd/77nnP5j+06LrD75389ru6Q0/ve255xe8fN8HL/1z5dXzVr2evmCVd/fGP6//1/tfuuzJ8fFTx/PT9M4TH578aJpd7BXG77v5sfSFF4nmh3636MjY6kPxF++9arB4zx29yV+z/emtmV/eePbE7lc6tvyxWVty4uBrtHQhudd69camfct/ce6tb/zk9bPn/aa4Ymdq69upfbeZ/3Bf1RfuX73v8HnzF6auemvhRTvOD2u3v3be0v135A989I1zLth0cmHrs5ee/Pu57PiCxfS3V4jcJSte+Uum6+Qb57W9MC8fzczvHPsWCV9/4MPmy6du721/5G9i4eHe1TsfOX/bO73n7H9l4Ho33ZH6zLNvD77ofLe3OXXo7W8fv/jOl0/89VdDqZdORXcWY7esD/9sx8EHRp858sNR4wcbBgeW3jNw6ZG49/7I+QcnP/2dcN+p4+/aR4/9/ujjp6649qx1D+p7rjm278h7rR+seDe29/jhFyLaXd9c/dVT267ZM7jzrmt79SsW8K9d9vkHPqWPJI8+/of7Xz/22dHhg5F3Ju8Zn94UavnKYRWfs+ZtbyCNKQjWvwGE1Hh5

View File

@@ -1 +1 @@
eNptVmtsHNUVNk4l+lBboyoWSlSYrIJ4xLOe3Z3d9dp1wc944/gRPxLb4Cx3Z+7ujj0zdzL3zq7X1G3zED9IhZhCIxoQtIntBcc4hKSUuklRS1yjNopaodI6RTSiRaFS04RH2kIR9NzZNbGb7I/dufee853vnvOdM7unkMU21Yh5w6xmMmwjhcGCunsKNt7lYMr2TRuYZYg62d3V23fYsbWluzKMWbS2uhpZmp9Y2ESaXyFGdTZQrWQQq4ZnS8cezGSSqPlz5S884DMwpSiNqa9WuPcBn0Iglslg4RskjoBsLCAhg3Ur5egColSjDJnML/BDA+UFkzDBxFgVGBEciuGH6FRIEVvAQD8vAFP4FgWWwfzc9pxGHMqEHOBwL85sg69K8NlExzwuzVOGDd9ElbCKTvx2Q+jEBlllyyF9E8OwYxAV63wrbTFRJqKhmRq3NGEvAL+U2RgZsEghnWLYgBgWZJU5NkeS/BLf4+yLiWB5y4uQckwv8Rzrs+daoGYiwzNgKKvp+QTFyFYyCRtTR2c0MUKLLiqmiq1ZJS9fg1C0E7CZ1kwsEDgxtHHIH08Zr4+NM9ikWhYoIkVxgCB/MiHBNmQNDEsR/EI/xbwo3DEHPkIeSrJcCmTSHCTb0wkvt4CSxGEC4NmQTl4bk0PETQt2aYY4uiokealL9Lyy+fkFLGTDRUF/1Lu1ZYOubKbh4tKz857+76IrcTghnZBRwbE44nJmoSKamfZNTPB6gqQ1G6s89yXQ4RWmJDmCFQamE8MThQxGKtB5s6xiMkMoc+dWq/0opA2DBrCpEBUCuM+lxzWrSlBxSodkzoCkTOyV0Z0ZxdgSkQ7Zni56uc8jy9I1BfHzal7E2ZIERc7l2uMZrkAR+sdk7okuINEQr+7OQ1uaQsAv1/il58dEaBnN1KHNRB0Bn2nLO//5ygMLKaMAIpZa3p0uOs+ttCHUnepASlfvKkieZncK2UZEPr5y33ZMkBZ2C03d14YrHV4NF/IHAv7osVXANG8q7pTXLj9d5YyZnRcVAhjuj6VpBSqrYXfpvURCSSWSRj1WsqktzW0JXVFk2tm2oyOGe5zwjuZ2wnoZceIo1cgapYaIVJMWA9FgLBCVo6GgGPBL/oA/IA7pkZ4QYptb7XErqbY5ba2JptaIGmlubEzmovH49q0kFslmDTO8pbuzq1EfGmENrbQlrKYNv71FGbWtkb7+DrM50j/Oss5oz0guO9CdqxOAnZPV1Pq2UXOcRrZGx9XIgDJkDGnbu3alMrG+djnUltkaMGPbWHss3N9G7W0r6EWDQVEqMYxIco3EP3PL2tChnVnGPRyJSc9Af1rQcXjvNKSMOXTPJOgQn3m1UBq0h7rar0q4crIZNOme6ss4VUIgKnQpTAhKQVkIyLWBWK0UFDZ39M02lcL0XVeCx/psaPcUyLBlWfIFJeOYo1idabqu2E9xsUMlOX2YpCIeswjFYomVOzsg9hRfMWK8+Xixs0Rip5GpjXth3VOe6nPjYzlVcVQ1k80ZUmxcDmlJ7CipEyUXmBU8DBASDeoeDoWjc6WTZd3NwF0lMSCJUmB+TOSzTodxCPn0vkvvOepOhiHZL11rwMgozEq3IHvVkH6x0sLGBgiWx74KI8disZPXN1qGCoFJLBycX21F8Uo2gaBBX7rWoARxSKKzY8vWoqa6SxthkaiJoVCNjIIhGYVxtEaOYhRWg0hNQtJTaijwMz4OFUDhxbSIzUSKYVxrLO8uVRlojM+Y+lAgHIrATesEzVR0R8W9TrKZ8DvQOgFeHTpB6tGmVrEJKRks9nr6cwvNg50NHfGmFwfElUISu6ziH4qCSaippVLTvdiGwrgzik4cFYaljacBq6dh0D1Ro8oSTqo1Cg4rIUmOiY0whpbRPpPdJJ+0BaQD96ziHs+E6n21shzy1cFbv74mAmXy/nbsni6O/oUb7Fv3f77M+6zRt/228xWp4uSFTZVPr39scve+nRU3nu5te/Kmh+5LP7FOP7qW7P7ilb9su8XYe/6tV86c/ceZj+rKK+Yrv1QxIg4OkreO/Hdx/o2nhl9r+XDX+08+Fn3/Y+PbhbMffvTLswuzvb9778trL/UXHpqNvnrwjXuOVN6mXDhYudQy9LeWp67sm1rXcfvoNxZjC9vrvp6OH1iM31R4+5mdj26/+XT5Tl/Zdy99ctGeX/fy6fLvL91y7OY9enfVV5rKDt322obGB3+0pn0xmd24Ntb6x80v/+HyvgOd5w98syF+Y05qu799/f0zb//LvsvY9ZMvvLD/UuTX3/vPPx9Z6P7rvUMPunef33SRDewQf3PP3J/XP37ynaXhz10+l3vz45kN32p/nS588PBcaOujyctfW+zt+hPb+MOBg3fuPPvJu0dG1Gc7Hr+v445nXx+4dSou3/nv3N+/U9nUcPHg3f7fv7PxVxHp3MjU8N7nyJXLX92UQC/Ovqs/fOGOQ8MfrCkr+/TTNWXH929q+UF5Wdn/ABcdAng=
eNrNWAlsXMUZTohQWxQohyhURTAsBZJo33rX3vXZtDJ2fORYO7YTx8TBzL43uzvxu/Jm3q7XIajQ0jQFiS4SEvQIARxvcSOTixBoEhCFQlsEqhC0JohGkF5CVRooKmoF6T/z3l62kxaJSrUS+x0z///P/3/ff7w7CxniMGqZC/dQkxMHqxxuWP7OgkO2uITxb08ahKctbaK3p3/gUdehM8vSnNusuaYG2zRk2cTENKRaRk0mUqOmMa+Ba1snUsxEwtJyb17y8taAQRjDKcICzRu3BlQLVJk80BwYslyEHYIwShPdTro6woxRxrHJQ0i8NHAOmRZHJiEa4hZyGYE/ls5Q0nIQAeNzCOyE3wriaSLeO3LTZpdxlAU5Ypew69pAMOBYOgGtLMc4MQLbgpWmdN9ooDgxrIp1Qlhg26ZgwLA0osODlM2VqKUY1KSwinGHYCPQnMQ6I8GANEuej+dssT3pmtKbsLR02bw1YGJDvOU4Q/XcCCPYUdOwRCNMdajtrQq0Iu8FImaKmgRZ8MKg4+AEcW7hYoekiclohgQRVlXXwVxcmeAlB44OCx3CXJ2zEFrHiPCs2JiFPSgHfi36E5ssCx6ToRYRQzhhuRyBPAfcIhxsChHdXEbBMvUcyOUOhRcMretbzaRKZlLbJpwFUQI2W8kkYAphLYNNFdT4J9GIzdOwRLMMTE0IkgmAMEB+EMHZCHKwmSIoSXWAIfOOQg1Y4u+HVWnKZPBBlE4FbsEWrCti92wnqJRjcSAlgdXRCmd0mzZYyNKWq2soIYDnWydBFII42NiBAAkbRLBsBxDucErknVwkLqqD1V8hQjhVt6xR5NogzEcCIIWaKQBcgJqq7mpkxHOCFIrNXE9S4oYCKuWjOdv8B9hxcE7i1n9gurouEaqRJIYDgphNc6GkA6MgKr7nhQ+FP0C4yovH9/0Dr0LD5rCJ/J91gm7C7SWvSAg1l1dEQmigyDsyZusUPC9BIiHFEDUBd4aMBUo6loGYTVSapCrKkgSDEzO0hIRSoSAaDnRQETkdos4J0jDH3g4TMxxKWZnhwNKy3toKvQJEHnhNZDkpbNJxT6FPFfAwylLIYiL0Un0O/CrzhQ/GahMqbfb4QHvTlgmmSntabchv0piyOd0mSlg8jVTMCIBXUMwHmSa8ZggOC33YFohyqDyhHw5f+cbhQPmkm4Tt8AQLXSK9wqOlHtcInxWSqoj1+YHMUl1HPfHVQ8IDxDNcGOC7HyhRVK8AtRHYDo5kluuoxN8M7PDRqoXK8ts9oCEwIA4uQUtgs+/EIqbAbUsrdgj8krH/D9j7dvhIrIL+Z4x7kVszFgU8Q/oQ3jkL3OdirUgAKFoiIYqMKnKvF0GAsYi4BMR/YoPYJSqgwHqR39UUrCQLK1EECtQ56WELLoDEDCVZVrQvLbb8T+hREbYyU6oc8dmQxas8SHgAw63fGZyDOf8dK6TtbB5OePAbkWWxmhDEdKGt2BhIYEZVqCLFShrYNLeinIMTpf3VxGiDgzmig/LxD0F3LDeVhvzmVXMPK9VNhnjp21/NkmFPy3BA9heMit5PVkIomZINVBgKT6g6GkRgNqapNIe1WexofvtR6cnZ0otnBwVL/JMtLfVAOhkr6gp68cG6bJK4ZVMVnpWlOaLNrCBbEBXbIWoqMgZgDNZz0H2KKIr+qCrvVRZv2ZbMSmJ+FBLQnhBsnjswfsNYHZb2IhFAf9IDXDE/cdcxhTN1khENraceQGqBYwVpESdjvCKPVbmxn8gWeMBxiXdefq60laHMBevKzvF0ZSVXy0IZTZkig4A5sJuYaREj5JoaBBOad02EvJQ0+tNWFrISCMQcJXRoyFAavMS8PkmnoyQI0a2AgJ9moJS4cCiRwvvElAEThNCCHQ7ZZV7IrCY4AwsY6hAengUYw4JyUIEArJdwCkcFdEgvQuyZm4SjUSD/rPiLRnNEtqnz81WDKhUMZAkZDYiZweSir89BFD8lccWT2fBYDe0/ZxV9WilB2W4CKl0aUC+wABkHlxO8sDgpMt+87pLtQSlFnhUc5fbKa9ShIaZWJRpKkdYhb4OTW7uBP1kmowrFm1NVL/ZOOhZjGXjobCHsgEjpIhPZlu3q2BFINKmaJiVOixEw4VgYsFYxOLBKe4Y974N+2D0sQwD6ZCUxGWCqIsRlWp2FPz0yAqwZ5EB8RRqqjaaXitN6x0BLGjR5W1S5pC7sPfDUwn19TJv/sLPKxmy4iQPPj7QUJGQH6wAv4WgxYFJTkOPTVoiynFkTjV/rSkVChcimLBhvBJPKw+hZfOalbl/4nMwtiVhK293xttXr2rvjnaIQwT4/oTkGk6mhKi94+PJwBQf3r2WMHaJCNOFOwtghMILKwgMx9+2o5P6cZm+46EG/kBnYGZUDLTVh0uWCAnBDgHOWAbwSw4msIN4uKDsS8fOIFY9BpqSaEGxbOuUSx8y2HCFUatssKlrV0A38hhEXfJzIVfhANh7yuwPQUqMYuvd4z4BXd3PQsqtY0AP7syhmo96HEmkHmFHtgjLYAG1erYYmA+DlzbllLFmJzUTlsGzbpm2FNBHUY28vuHgCAsbz09XfgR6HQRzKqUJM1RJ1IH8gNU5tGPtJUpfj+Tjj2hQ40iRyVMhPjRJiK1hM9JPe3vxe0clBdRHvazYzy9zjJztFGDT39ZRIWQpUKpPnD/aAKa3dNb05wJMJfXpjYyi8d0xhogsXmUXRIV/kJ235/meVL2woTSBE8T+J5Se9zdOVayyW370Gqz39VSIFR/K7sWPURw9UPndcU6SofKGtd646/2VJXaEuFInAv31VklnOVPO7ZcvwZNVuwp2cologJP9weFKFWkpJ/s2FnxsZUZMjCWP5zam1K0bs9kyI6R2R1i2dK3FqQ99YnMfXd9R1jzaMpnIrx0ZSOu/hjUqkIRaubYiGY3AZCofACiXJMoPOBse1+4luNW3RDW1IXRGLNqa7exMhymuHbt48NKr1pLpSvDZZS3Fjzs7pWwZiZky3u/rjG9jKuLMm1h9ed3OcNTatahs0cWI8Pq6Gs7H1sVR/b/8W02jsTXd1rVVbEJjsZqi2fLCPrF3bHh133KaBbE+XFb4p0lW/Xmvs7Yy3dlu5ur6eWI8dW5fGtUMVNjeEI0rYN7s+HG0Mi5/pImR0YqZ4Oj8RjcXqfwIJy4ZsTr41CZ7kLrtzAlBKXn6p4H+gfKRnVRngV0y0A2LzRweJFkSRRrTSNVFtuDaGIk3NkWhzXS3qXDOwp83XMzAvNPcNQHlikI2UFUVCFNS0a44SbaptXhIcFSSAAKten65AJYa8qPhW5fdsUPq8bk3pbj/g8U6pHOTyRyUbsuNjWU11NS2dyRrhpvFoHU0QV00e9LfAoCXUgEGKwfKPRhtqp/03RTxOwVnDSiSshCNHx4DPGSunuLaXfRRQkaEqkR/fxO6Gp8cU8flNF32K4v0udpX5iRgE5PDcBdwahYKcL0RlxMLHKlc4ROQ6YV5ZTLSpqenI/IuKoupgSVN9/dPVq6DJqRATqTXY4bkLfBGPhNmeseJqhWr5ma/CzUgTialaXTRWi5siakNDpFarVRtxQzIRSyYTamPkKe/jh8JFvEVqBxdBRqc8l58JGnhMpKfldZFYXT2ctKX4aaXfTbR702QLgmlLh7bmcTWpqBg6HsWDaL7QPhRvXdPddmiDUok1xe9M8gXTYtCNJyf7ISbEyU+puuVqkG0dMtnWofS1DuUPNsUiWkSti9Wr4URUVeuVmyCDFaWVkDkhUnUB62B7Rs0fSNctDzRHo3WBFqg7yxvrIUzyi/4dk15z8cLCw9fc/fkF8mcR/D9z5p77Wq3j4cV3nfrk8h+9cvrWwitvnezb9bu9fPvClgt/3nvlVHvL5uvXfv9ksDV/5usvxdXse9/cdNuJFzuf6TzdtOjWlfsvDO97d+2VhQ+Ov/i3o8+8d9H2nts+Nnq+8Xzna5dt++T9g6F/bDzUdcH4WPslIwOnzv9yIbJs/3Vfujr3fPSJPYMv7J/+3njTgrZL3fvc0B8v/0PH0P01d5P7r3BvueWh11v6zlt0/NlXFy84kfvohofWv3OHsWvDkYHF33m2RfvhqssWfDDRf9fpiwe++1bHoQd2oa/85qI3nrzg2CMPZ/fuHkGH72q58np74upA9+1HHly1/NC2E7889tcndi40lRU73/ni5KlXT/J9jz3Gdl793DV9byz76XPTp19aNKMtbXf0XYXFJ27f0Hlm2bVs5z13r5m48arbBx8ffPdr9Uefa//1+4uvWzFd+Kd7Gp/+xZGOxMmV22duevBEYrtzX/z4n44ORBfNBD/8vfn2D5bfMHjoXw+dvuzi8za1zzTe27fjtzsK9ff+pevM65mZ92994Py/b71+744Lto1/YYdy6sOx5uBVbe2vHfxV5s8/Hnz344PTT019NPXO4WOXBlvIMwtFeBYtCD/YuX8NxOrfsj9W3A==

View File

@@ -1 +1 @@
eNptVmtsHFcVTuOGRxMV81AkkKrcrkoL1LOe2R3vw49EtreON47fduI4ity7M3e9Y8/Lc+/sereYtq6popKKDkQVjQSqHWc3dRwnaazGTUl5toAIKiA1loESpBJVohAghZb+oZy7u05snP0xO3PvOd/57jnfOTOThTRxqGaZd8xrJiMOVhg8UG+y4JAxl1A2lTcIS1nqbFdnb99x19FWvpJizKa11dXY1vyWTUys+RXLqE5L1UoKs2q4t3VShJlNWGr2dxXCIz6DUIqHCfXVooOP+BQLYpkMHnwHLBdhhyCMUkS3k66OMKUaZdhkfsQ3DZxFpsWQSYiKmIVcSuDP0ilKWg4iQD+LgClcBcRShO87RacRlzKUARzuxZnd66tCPsfSCY9Ls5QRwzdRhdbRiT9goA5iWOtsOeQGy1atZIharQxSsIniZeYoC6yZpeLsrrUgN4+1AWk/cEMaRQYcFBtk18bQh2DFsFSi86VhmwmyJRiaqXFLE9Yk+KfMIdiAhyTWKYEFOJ4NBWWuw5FEv8jXeOJKNWBZuxgh6ZrFmnOsm/e1wJBz4QYMpzU9O0QJdpTUkEOoqzM6NEJLLiqhiqPZZS9fIyrZIWIOayZBFuwYWg5Kx6vFpeGQFDGplgaKWFFcIMjvTKitAwUDw3IEP+qnhOuBO2bAp5jXVRVgk2agzkWJcqUhnLBchgDPgaxyWZgcIm7asEpTlqurKMFVVqZXVIyfH8DGDhwUpE+Lp7YdkLTDNFJ6LNoV7/7voGtxOCHdskaRa3PE1cxCRTRz2DcxwesJ3aQ5ROW5L4MeWmNqJUaIAsqYmDg0UUgRrAKdP26qnE1ZlHkL6xvtDKSNgAaIqVgqBPBOD+c0uwqpJKlDMudAWSYpltGbGyXEFrAO2c6XvLyz2LZ1TcF8v5oXcb6sRIFz2bg9xxUoQOuazFvsBBKN8equLEwEE0l+OeIXz44LIGvN1KHDBR0Dn7xd3H9l7YaNlVEAEcrTxsuXnBfW2ljUO9GOlc7edZA8zd4J7Bgh+fzadcc1QVrEKzR3bQxX3rwVLuiXJH/43DpgmjUV70SxXS6scybMyQqKBRjetJhXoLIa8VZuDA0pyaGE0UCUdHJPrHVIVxSZdrTub4+SHrdmf6zNYr3McuM42cSaxMaQGBkWpHAgKoXlcDAgSH7RL/klYVAP9QQx293i5OyE2uq2tgw1t4TUUKypKZEJx+P79lrRUDptmDV7ujo6m/TBEdbYQh+qUYcNv7NHGXXskb7+djMW6s+xtDvaM5JJD3Rl6hCwc9Oa2tA6auZoaG84p4YGlEFjUNvXOZZMRfva5GBraq9kRrtZW7Smv5U63WvohQMBQSwzDIlyROS/hVVt6NDOLOUdj0jBk9CfNnQceSIPKWMunZwFHZLLPy+UZ/xMZ9stCW+fjYEmvUt9KbcKSWHUqTAUEAMykuRaKVorBtDu9r755nKYvttK8FyfA+2eBBk+tCr5gpJyzVGizjXfVuyXuNihkpw+TFKBjNsWJUKZlTc/IPSU3m5CPHa+1FmC5QxjU8sVw3qXiqrP5MYzquKqaiqdMcRoTg5qCeIqycWyC8wKHgYICQb1jstSZKG8s6q7OTirKEiiIEoXxwU+63QYh5DP4rX8iqXebA0ke2mjAbNGYVZ6BblYDfHVtRYOMUCwPPYtGDkajX7/9karUEEwiQZDF9dbUbKWjRQw6NJGgzLEjEjnx1etBU31Vu6DhyElHAqJUiAcDteAnJSALEo1Ck6GpIQoRTAOvszHoQIovJi25TCBEhjXGst6K1UGHuczpiEo1QRDcNI6pJmK7qqk103ELH4GWofg1aFbWD3T3CI0YyVFhN6i/rxC7EBHY3u8+aUBYa2QhE679C1TMC1qaslkvpc4UBhvTtEtV4Vh6ZA8YPU0HvAWI6oskoSqyDiSDIpyVGiCMbSKdlN2s3zSFrAO3NOKdz4VbPDVynLQVwcfHA2REJSp+MXzeL40+l+7Q9vxjU9sKv4q9Gd+1PETsTL29w/veps+cUyWvxie+unj+x5b6p7yLa/cZxpnzt3zyb5/X+3+7WK837/z8nuXr/91J5p6ajI5deNYduHIth3f2//a5pGXHnz3Wu7ahavvXtj9bP3LHyx/qMcfOF0RPvin//754rWTR+6s7tohXfhh/eIL3V+4ulv71v1jH//cdnTwIPnqdx4+ObUd1z/9bfvYk7+ZySx/KRI55r3xWGXT+2/9/voLW/8z/fnnOjqe2vzOwBa57lHf1ODR003P0R9n8w3f3fbM8feff+XNXWfPxYJbYpEbm++yXt8hHH1a+duLF70Xlz/1zi8+86Ay9nbua1fapr9+im69PG0WIt98Mv2vysobb9bo/mfzr88Edn6wVPHWx1rOv3rvPXfX/Tr7Rn3u/p/lP7t0+Jdb/7G3NVz76WtHlru2XdHEv6Qb3vvBYWXX9KlTR5/vnLm+nO3KfpltuTIwVp/TnMPhLX/41cN3y5E7H4WcfvRRxaZ/1vsDk5s3bfofkcIdZQ==
eNrNWXtwVNUZh6JVp0619j06crpDBdq9m30mm1CKIQGyCElIAiQQjGfvPbv3kPvKPffuZuOjYGlHR0pdxrF2HJwphKTNUAQDSrH08QdWa6c6WoeiHdROaUsHa3211kfpd869+0oCrTN2phkmuY9zvu873/f7fY/L7eM5YjNqGrP3UcMhNpYduGHF28dtMuQS5mwb04mjmspoZ0d3zx7Xpie/pDqOxZrq6rBFQ6ZFDExDsqnX5SJ1soqdOri2NCLEjKZNpfD8VUtuDuiEMZwlLNC08eaAbIIqwwk0BfpMF2GbIIxUolkZV0OYMcocbDghxF/quIAM00EGIQpyTOQyAn9MjaGMaSMCxhcQ2Am/JeSohL+3xabNLnNQHuTwXdyuLwSCAdvUCGhlBeYQPXBrsNqU1HwdtRPdrFrHhU1Z1Ua9RajNzCMZGyjlW4wKYK1jKriwpCKgfJgpUtaDPYgypMPhsE6WTFW5KRjQTYVo8CBrOVLclHRqUFjFHJtgPdCUwRojwYDwhHCpU7D49oxriADC0vJl080BrgTeOjhHtcIAI9iWVViiECbb1PJWBZqR9wIRI0sNgkx4odMR8Dt3NY+qTVRiMJojQYRl2bWxw68MCIwN3oaFNmGu5rAQWssIDybfmIc9wjmlEGKD5SFIAl0cJAinTddBIM8G7/CYGlxEyhGBNw2tAHIdm8ILhtZ2rWJCJTOoZRGHBVEaNpuZDMAYYSWHDRnU+CdRiOWosEQxdUwNwIUBGNRBfhDB2QiysZElKEM1QD7zjkJ1WOLvh1UqRIl7GURplFMFbMGaxHdPdYJMHcwPJKWxPFjljJRhgYVMNV1NQWmOdd86gdsQxMHCNgSI28CDZdlAKtuhRNyJRfyiNljdVSK4UzXTHESuBcJ8JABSqJEF3AWoIWuuQgY8Jwih2Ch0ZARuKBBBPJq2zX+AbRsXBHz9B4araQKhCslgOCCI2TQdShqnhJnxPc99yP0BwmWndHzfP/Aq1G/0G8j/WcsZzt1e9oqAUFNlRSSEekpUJ8OWRsHzAiQCUgxRA3Cni1igjG3qiFlEphkqozxJMzgxQwtIKBsKov7Acsojp0HUHYIU7GBvh4EZDmXNXH9gYUVvtEovB5EHXgOZdhYbdMRT6FMFPIzyFBInD71QXwC/ihTlg7HWhGqbPT7QTtU0wFRhT7MFKVUYUzEnZaC06aiQhRgB8HKK+SBTuNd0zmGuD1scUTYVJ/TD4Svf2B+onHQTtx2eYK6LZ3R4tNDjGnGmhKQmYl1+IPNU01BH+6o+7gHiGc4N8N0PlCipl4DaCGwHRzLTtWXibwZ2+GhVQhX5rR7QeMJsB5egBbDZd2IJU+C2hVU7OH7J8P8H7H07fCTWQP9Dxj3PrTmTAp4hfXDvnAfu07FWIgDUSZ4QeUbludeLIMCYR1wA4j+xge/iRZdjvcTvWgpWk4WVKQIF6oL0sDgXQGKOkjwr2afyLf8TelSFrcKUGkd8OGTxKg/iHsBw6zcIF2DOf8cKYTubgRMe/AZEWawlBDFcaCs2BtKYURmqSKmSBjZNrygX4ER5fy0xWuBgNm/afPxD0G3TzaqQ37xq7mGltsngL337a1nS72npD4j+glHebopKCCVTsIFyQ+EJlQeDCMzGNKs6sDaPbcVvP6o9OVV66eygYIF/soXlHkgjwyVdQS8+WBNNkmNaVIZnFWk272yryBZEpXaIGpKIARiDtQL0iDyKvD+qyXvVxVu0JVOSmB+FNLQnBBsXDozfMNaGpbVEBNCf8QBXyk+OaxvcmRrJ8R7aUw8gNcGxnLTIIcNOVR6rcWM3EV13j+0S77zOhdJWjjIXrKs4x9OVF1ytCGU0a/AMAubAbmKoPEbINRQIJrTYCg95OWl0q9Ce61w7NNppDRoypIKXmNcnaXSQBCG6VRDw0wyUEhcOxVN4Fx9sYGjhWrDtQHaZETKrCM7BAoaWcw9PAYxuQjmoQgDWyjiFowI6hBch9szNwNEokH9K/HmjOSDa1Jn5CvMGsC1PyGCAzwyGw/v6AkTxAxKXP5kKj1XQ/jusqk8rJyjLTUOlUwH1HAuQcXAlwXOLMzzzzegu0R6UU+R5wVFpr7xGHRpialajoRxpDfI2OLk5BfzJMxFVKN4OlbVS76RhPgmCh84XwuUQKY1nIsu0XA3bHIkGlVVS5jSfOtO2iQFrVYMDq7an3/M+6Ifd/SIEoE9UEoMBpqpCXKHVefjTISLAmkAOxJenoWhcXchP6x0DLWhQxG1J5YJY2HvgqYX7+oQy82GnlI2pcOMHnhlpWUjINtYAXtzRfMCkBifHB60QFTlTJhq/1pWLhAyRzZow3nAmVYbR8/jMS92+8GmZWxCxnLZT7S2r1ram2lfwQgT7/IRm60ykhpq84OHLwxUc3L8WMbaJDNGEOwFjm8AIKgoPxNy3o5r705q9/pIH/UKmY3tQDLTUgEnX4RSAGwKcM3XgFR9ORAXxdkHZEYifQSx/DDIF1bhgy9SoI3DMLNPmQoW2zbyi1QzdwG8YccHH6UKVD0TjIb47AC0ViqF7b+/o8epuAVp2GXN6YH8WxWzQ+zYj7AAzal1QARugzavV0GQAvLw5t4IlM72ZyA4su3XTreMq4dRjp2ZdOQoBc4r7az89PQiDOJRTiRiyyetAcTI7Qi0Y+0lGE+P5CHOUCXCkQcSoUJwYJMSSMJ/ox7y9xQO8k4Pqwt/XbWamsc9PdhI3aPrrCZ6yJKhUhlM81AGmNKfqOguAJwP69GQyFD4wLDHehfPMImmQL4pjlnj/aPULC0oTCJH8r3DFMW/z/uo1JivuXY3lju4akZwjxb3Y1uvjk9XPbdfgKao43tI5XZ3/sqxuPBaKRODfwRrJrGDIxb2iZXikZjdx7IIkmyCk+L3wmAy1lJLi87MvGRiQMwNpffGG7JplA1ZrLsS05ZHmoRUrcba3a7jdaV+3PJYabBjMFlYOD2Q1p8NJSpGGRDjaEA8n4DIUDoEVUobl1tu9tmt1E81sHNJ0pU9elogn1VRnOkSdaN+GzX2DSke2LetEM1GKkwWroA31JIyEZrV1t/eyle326kR3eO2GdpZsvKFlvYHTI+0jcjifWJfIdnd2Dxl6slNta1sjL0JgspujyuL1XWTNmtb4iO029uQ72szw0khb/Tol2bmivTllFmJdHYkOK7FWxdG+KpsbwhEp7JtdH44nw/xnfwkyGjGyjlocjdc3RL4PCcuCbE6+PgaedFx2+yiglPzq8XH/m+jujhsqAP/saCsgtnhsPVGCKJJEK10DRcPRBIo0NkXiTbEYWrG6Z1+Lr6dnRmge7IHyxCAbSctKhBiXVdcYJMpEy4wkOMZJAAGWvT5dgkoMeVHyrSru65W6vG5NSrVOeryTqge54jHBhvzIcF6RXUVRc3k93DgSj9E0ceXMIX8LDFpcDRgk6ay4JxGJ7vfflPA4AWcNS5GwFI4cGwY+58yC5Fpe9pFARY7KRHx8g93R8NFhiX9+03ifInm/S11lcTQBATkyfYFjDkJBLo7HRcTCP6leYROe67h5FTHxxsbGH8+8qCQqBksaE9GjtaugyakSE4nq7Mj0Bb6I3WG2b7i0WqJK8eQ8uBlQInKDUh+LNiRjyRjGcRKJRxuiDQquTzfI6bDyI+/jh+TwePPUDi6CjE6dQvFkUMfDPD0tjkUSsXo46aLSp5VuN93qTZOLEExbGrQ1D8oZScbQ8UgeRIvjrX3tzatTLQ/3StVYk/zOpDhumAy68cxYN8SE2MUJWTNdBbKtTcZalktdzX3FQ42JCBwg1hiTY+G4LNdLSyGDlaSVkTnKU/U41sD2nFycVGOLA03xeCywCOrO4mQ9hEn8J8LWMa+5OD5779y7Lp0lfuZs39nMXkBXfuPVdz59z+RzRbI3d8vZY7qtxuj8PT8/sHNoC7mJPpt578VFbTv2HnpiVeiat/8uvSq92xt+7PDvNz52+sa7D526Z+4Vr133ym0nn7z/y+65v/2p+5H3jr7zr9PWrnVnXpAGlIv/+nF0JvXWjbvf+mjbnqsPXo4utU+cfmf3xInVh/dfctOarU88dKr75E308LNk03Or+3745Ok/jp7ac++V/7z3/QWfk88OJSc7xl/aavYdHj568Mo9f95qPrVs+2tbrnvR+sSeHfOuee34RV9s+khD70+Pf+q+T37mvh1nY723NNRd/vTeBQ/1fWf7d2e/fM3Ox/Eld+Xn21+5P/rbd7c8+va378k/f+aIOeeOO0JX37HtgSve7A3nGrZ1PPW6Nffpkc2XvYqHjcnfbX//7fgbd96WjCy9KnPdxP3HP/bKhovnHbpz8szQwj9c+5t5u5ZLO59JzjkefPNc5sa/LP7oif1fu+Hdy9oue+D6w1/d8szrhZd+ELz+1OMnfvnrlmsvf+PSl8fvfXrnN+9esrR5/s7P/2PbL14s/uzhXbnFF81980hwl7n+W0fUi/r3z6vbcXwA4nHu3JxZZw8sG2qaM2vWvwFt8Hmz

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
eNqdVXtUE1cax9faVo+PwlrcbTWNlVZkwiSZhAwxbREQeYQICRB0VxxmbjJDkplhHiGBuirW3fVR6NRHK/VYK5BY6kFaWKx06aq7ler62NZlF9pdPV2sZ0/Xx9YHdreu3ZsQWjj6V+ckk8zc7/H7fr/vu7c+7AeCyHDshIMMKwGBICX4ICr1YQFUy0CUXgz5gERzVMsKm93RLAvMYDItSbyYnppK8IyG4wFLMBqS86X6takkTUip8D/vBdEwLZUcFRx8oU7tA6JIuIGoTl9VpyY5mImV1OnqMmj/tKiSaKDivBTMpvKwXA2rAgEiEkPFuVSkzALGxQk+dYpa4LwAeskiENRrf56i9nEU8MIXbl5CMA7xMSwDrURJAIRPne4ivCJYG6YBQcESG1toTpSU9vGgDxEkCaA3YEmOYli30umuZfgUFQVcXkICKapaUaLaIGAWRIlR2jwA8AjhZfwgNOKrdBA872VIIrKeWiVy7MFYgYgU5MH9y20R/Ahkg5WULhuEkpGbuiIIOWZVWk0aqkE7AogoEQzrhaQhXgKiCvHR9ffHLvAE6YFBkJh+SmjEuX2sDScqrVaCtNnHhSQEklZaCcFnxDrHvhdkVmJ8QAlnrrg/XWzxu3RhvUarhZ93xkUWgyyptEaZPzzOG0hCECE5GER5E20fJcgLWLdEK81aHXZAACIPWwZsDEE3SRbrW6Ak4PRH4Vjv7Lflj2p5IS6xJQvKo/Q6aDlFpcNVViKo0qE6g0prSEfxdC2qyrE6DmbG0jgeqMM7DoFgRRfUIntU/TBJy6wHUG2ZD1S8N6I4rCYCH/YiAgI8JwIkhko56ESKR4YGyc3qHGkyhBPcBMvURtMqvVHpa2oDNRQpUxTtr/GheC2mZyqBTLq6Yi68wEXSQECIT1RadDoca48tjbLfBotFES2KoNreAOxePxdEZH6k8xGYw8+QAImKGXE39QQQAfLlZXwMJD16j403jG9AUfS9+w0kzgPgRhDG0Oj1wVgLAfigshGA34fBcBz/7YONRkPpoQluMvaMtxLBWDRanU98736DWIj9qHgwMGqNMJQy+BR8qNAZjDodpccBwE0USWldqMlIpBkwFFAuDAP4EcgMQ8IoEcV5TpAgRyTcy6SgMpjiIwKRabTotQa9EVZqVjEs6ZUpYJcrs7hIDaJZxQvAyxHUIdKFkARJA2SkSZVwVnlhhjU3s80OQWZynIcBr3w6IbGignRVVPosRo+uJruKcuMrOLEIz3IKOVnLNC4es5dWcIyXqyn0SwZraX4p7ccQbRpmMui1egMUVoNq4HAhrhyrS8xzLZcyZWpZmkHAHCa0iGVdSwMlJiNZ5sQqUK9dyrU6soPVOCpUlcullZ4MqsKzMsvHFZUVL6UraatdtubZglWFOF29vEAy2opILcMHUWsaXhL0cUG+CmM8jiJYIiHRllQz3Hx5BpJuic0WAmcLGZks/ehkmVVUlBiLZvx2alYth2eDjfUGzSp7hGEAfwkfsDMSsBRyLBjcAYmR/QxlsVUSORm5ATLHSaOE1Z1dbs3RWWXjUr2MVUmUhOb5nXyw2qErNGWPYQbHMQSNkWNEMVO0Nb+H/gNRdTuRsVsFYuNHDsEwy4ks43KF7HCigKC0kV5OpuDJIIBQ5jKkOKNc6cKxNCPAMdRFulyUUY8juRlZHaPRvttYWiLHSpjwwsbzk0onrbeo0zFMrzarfITFZIQzFj0qN4Qijcq6P5x4bP7Wh+Ki1yT4/fbbbQ4rtyBteu83ZbPSP9tw1fTTpw9bP55oSXimh9na7Ux8fLP+9ysfLdlM9j104+K0l7YPvP96XN3c6V9//dWF+Na+h9cTbvbYwLz+X15y1wxfb3yj/S/s4btXV98rIOpunp+/tqXiunSnzB36zdKmdSe/zO/ftPPlJYvylxw3xif3t2/9V/9/vxSqj6xsfH5Wzge75Fz34t1TGpasOvvq24N3a7udz5XdOb5ry5FN65Li4hqHDt/Y1jDvNHI6nKo837om5/Kw4eGj1FeGyo4EzZaiM7cmr9ycV93yi4vxv65xJHQXDc/+54S3GyZ+Uv+EunoxfvTZTuHK0TcfxejD+ya+Vrxr6owDl2byR/ac+/zar+ZvWLCmq6Do88eSX8nSooVPEqXdG/uuzDTk1tUXPJH/v+wpmllg5nPuu9cnXqtLnoxd3kvzKUaxLemxAXvS8t2TXMNTEx/B6YWZSYsHz3RnvVXMzhhqsWXuO534xwS05yfp67vyZpuu/eE6vW1DvHnyli3ystv74qvBI9TCvDXTmrRzuhZsIhdLtydvdTkuzHZ4+045lv24+Uft97o33rk+4Fk4q6v8+EfH3i1l/103r9s+cKckfDsQ9+GJ7XMGOodfHmiT5trPzTn1JPaPaX/qTGhIJg+pdse9fups8pWTMrbYkiS4hxpDq/ccWh7yP+P8KzbjwhsTEpsf//vcV2/e1N+41dOwumdH66KKnU3dTX/mdITiLDt04Cn9flv8+nNDn86s8L6bW770k5dO7TpRvXVmn/+yNHj26H9uzC0puuU+WmlZ23zxhKL+RvBXb8v+bLt551527oyGL6a/tuete7vOruptPIX7L56/N9mZn3vSV5zUN5x/MtxVcFtbm3q1/wulY9GOGi/TXHBk74vNc6aue0FdgCe0djC4f4f98pD549CZ/i1NJUPP/u1nTSfPX1oX7dNJcb/rM882TImL+z+l5DCL

View File

@@ -1 +0,0 @@
eNp1Vs1u20YQRg899NZHWNApmgCkJJKSbRnowXGBIk3dBLGCFG2KYrgcSVuRu8zuUgpj6ND059SL0DdojDgwgjaXHnvzoYe+QPo0nSVFOU5dQID2d+b7Zr6Z5dPTOWojlHznpZAWNXBLE7N6eqrxUYnG/vA8RztV6cndO0ejZ6UWr6dTawuz1+0mmGrFZ4EupRU5dkoTIBgbhB3I4YmSsDAdrvJurlLMuiDtVKtC8A7PoEwxiAOjpEQbRL2o34uiYTAPP4j3e12upAOFJ4lKq9c/H3s5GgMTNN4e++rY0ypDGnmlQe35zKPjFqVtNi0+diPvwRTsh4bZKTKVpcSDzaRaSIaPIS8yWhwzXkoUY6Vzb/n18msyZCpjMXd23EzIMWqUHA+UHIsJLR8vl6dThJSw/fTyoPEajKoCV+fvQ1FkgoMLXvdb4nV2n9AF+xM6sjr/5aayKu6GnXi7E8YsT7tugSuNW+1aCd2o02PKdHPgymxFcWeb5nQUNJ9ugc63+ywDOekWFaVDbsWdMKSfO1FUgjhtHdytdxgfT7oara4CF/itDCfAK9Z6bFGcfRHs50+Cj8E6+JSCQW8QDUfhoDcMh1/+AbRn0lkg5Fw1tAKRrs6v7cSczlL2YJcPg348SIMhJONgnMRp0t/l/Z20/3t7eS2h1fl7YCmyhf0o/K2N22coJ3a6ehb2ey80moJEh98/NxZsaZ6ecEL+91+n68T/eud2G/gfXz0OyLwM7jW2b6Wr19eSKNyOx/0oGAx2toP+zi4PdpP+OEhwp0//CeIQ33Z8Evb7u2cHToG15FdnM8QigEzM8XJyX72d25M6aH+OpqXPoiE7hIq5+LFwsNcb7kU77JPDUa3d74iPFnLyz7svnIhpzEnDx15G9yWvDmmyu70dLX1PlbYordtbU3bDjbA3uvZG/6Nnc0nQbKGFJb8sJUcsAT5jVjHQqpQpi6NeL4h7vR67ecCAFhYkc5YKwxVVHaZMyLpsNE5cJ3CGQXJBQNghGlUoC7kAdt2JS0tyUbFbGh7d6DyUD+WRyuvacgYQdCYukF6gE9JwLYq60dCEZ9QN9tztsMMcwdvCTNkIkgwtu847LB7UYG/s0a4wzOSQZYyaSMVsc2hcE1vjbsEelTlqAeRY2Mphqs3S/QQJ1pyIUkwSQis3iNeRfTOm60h22C3LXD6AwDNqYlZNNBRTwS+zcfGcoGpyzciamEhTRyZquN3X5WzNzTTkYpeOsGW4T0WuJ0i+sqwRZp3ZC7KG4HGYU2JTNtYqv8S5pVp7eTNDD0DPwF8nygExuLG3psUKTS0i+I+IfLYgmlO2AKJHh5CX2ijtoudcX5xvwlCTjRuymxQcbA6NSMdr4sQ5iIYXqXWYgKRortKQA0PFQKqkJpaaNtlve/cvtDAHLVRprtQDmWSZmDXp8NmnmKcko8/BaL9O4dG01GVRwKzmUbUiZZDmQgoqamoGc2zB+GTLWNNcNaJ+XyTo5lCT/dEVWOuIkjkrSM8ViWWOmSoorUlVc2sB12SvKsG6eMmGayeasKnCicKtQgr1mCwpMqWJ81xk4gm0NfdGhfvMlJReaB7L/dkMUufUZzchqTIlm4mzum9MVQOqq0FjTqpp+gU9xRR4zVwHYbHvmktFqaN7OcxcIxL2ijpr+kLbq5rXdwNuoXSWduhp9tcPvgfGUJjpM8JbUsc0VhX36HNDSdpCmX5jSy09n74K1t1TSOqoIzVDSW023Gl7bLsSxwPfsxTJbLMyiJbLfwGzkz5r

View File

@@ -1 +0,0 @@
eNptk3tUE2caxkEPVqytLtKDLF5GBC2USSYJgQSlSwokXBIuJmCAFRiTL5mBZCaZmQBBscUrKtZmvSHqUcolFpWArciC1kM5rq7iahUvwbWwVnrQKrS4wiIqOwH1tOd0zvvHN+edb97n+z3Pt95eACgaJwn34zjBAArVMOwLbVtvp4DZAmhmY50RMBiprUlJVqqqLRTuXIwxjImO4HJJ1MJgfI6eJPUGgJpwmqMhjVyGzAdEzWpSa+12n6mnUILJYawmEEkBHQVoLGeiv0RjwAHbwbWR4WGhiCgMEfJEQgQOM1OhpjC9CQ/DCCESZmJEIM9iFgm0uCCUh1koDmoy0a8nWmhAaUhWNMG4Br/5JQ00FGAitbBULham8sTmcEWqUWrShmNxMYjKuuR3OiJ5gXwpW4jwE0thBpkpEGSqZdH6jHjJColEJklTJhVKYbk4nkqJS0o3pKXKiuNCY/OVoEgLVpPJ+QQRHc/jh0qJzEQyLVFCZxTChQKMKBaspuWq4rTQMLW1KDUmRy8UKxUiOwZQLQt7S30aqxyW6Fm1tmaTlaVLwK9p01w+R8CWQ6LRABMDxxIaUosTetsJfTFuCoG0QGdAGVA32bZVB3OD66NJggATttnq8wEwwagBLwDHoyfRwCoWvs25iAVnwDWo6zNuEVxYWAjrSMoIWygDcM0A2qYi2MUVZo2EJ1HanEF6AzwpkCvg8HhsQS7PXSJFHARiQWthl7lcS8ObcXJA6BnMVs0PEx1lOZvYMIENdTSDMhZ6fY1rUudFuxHQNKoHXyYnvoGyw6GGpRRqBHCyaTKB9UqJIjZ5RbwsPqkuhUL1RtR2lCBhDarBQKMaViuVcApFMq9PXoXYY4tMODvRdlZBEiEQwoMSUALiicUIhCAREwXJFKomFRtJWsca8JatXYNZiHygbVbDv4X2VomdIGkC1+ka33Tf7qxxuVKnBBR7iWyttAbV6UiDqwORBBSnUqVMtvi/N+Pcb73Io0liGaTBUIpmU2thdLCoJh2lrLvqkilcjxNH1fDkwr4CsKoBVRPDBsB2VoVZQiC+GFKgVoiP8IUQTxiBiCN44a5D2iUGBlYWaGxODiaI9I8IDRX4L4OMaCRfKOYjCBKCCWC++A8aJ6JdeCcwUKSB3f6GeAjErmiGpNiVES2CWfciEXZpoRk2uwVs5LSsrIlrX8q6TbEMzk/tWrh9upvrmTJ+NvX03mPq2Z09Kzv3F8k27LH6ekmhlumk1/s/rGopd0OHH5/jVnpmtzilJa3H2urbfh7MIclBdJ69ZOHMo0l3R3rIwcS4gwWL/iHavaxzNOpJ4Ie5V4N7FnbcBWnzm9VTU8XrTlkDlo88XmRaGtszS2S5QO/0SZhW5YswibntFqJsanlX22eH6u2NP/xUUvrdtz1jmv268CNPN4deyp/q2P0X88m59J6jilIO/cXJ6UEHZPN6V14xB15pqv3oObJ1SP1E2a1TvYxZAA4+6UgcuFch5829xy96EtyycUXBO8SnAw6Z1wXk0E9pGbG5h5AXUefGn7WKD7UN2YYlo60VNcn2wbyF1ZySs0fmbm4YfzkqVtzgyD7cgt/Z85IjvaIXvX9eP+4x9t9fQ35k3knNbibHhQjxBByoWtW9MfDF1eG5X/JG+3NF2v7vzxizToGhr0dPK9obX4QUJ3XInv9PcunBzi0P/T+wzd6XF+R7K/j+Ee81Tb4R4/4D56XBy290rL3g8J4Tdc5r5bW4FOF5p+NRLH7c0hG/MwW72aXr7a99VFa71tbYBbIPhvvdviS/a+Svkgc7vBIanns7+oPmrO3709Llec/SiL/pYwLOktfSYnK52/yNOd7+nsHGFRnklCUy912+UZe5vZdmf2wdiFKWZ+0oc/y5b9n8BQdGH737bIZ6QWCDqHjAus2ndUeZ0s8zbMGc4ZP451tzd/6zb2f6fWx8361KA7f7G92mEz43j+ObAJbSl9VpvlmOg1PZJf0X1v+9rLJmhse32xNah1cNbmq/6Bwi50E9HhWDCfKAX6qT3R6ITbv95i/pSe/u2DvCedjRUqrov3NKbVH/u/uXMeLVxuU+UNMntSt/9YK8vzMkeZu2OVt6x8oey6OoDbozLbk2Q+U2X01w/oltX/Xm7k/ogeuM66Yda34pb1fd8A+/7Hfw46y4w+I0zbt5nvEZvOH+HyXuiz/zaH1vlkIxS7ouIN0vqbzIb8TZ7pnJwTLVB6ZlWtY89nhwpyTqouq6t9n/SnNMoaBWt+FgtjNXPM26N+urj/rGdmELQqaZ8/EdZfNVw90nlzYs+9fpgGvk+X3cxZVVn29vaMRX7c7TzS/nOPx4/8EPret95SU689f3Cu/kC4RJ0feup9ZWP66a8dQoLe+8t2G7rZR79fDAdagrnfKaUtFUK7+cnvO1r9PMlG413obngPbU222zstNvHQ9qOjbw/T76UWD1TGZNUrf9XlfA4r6Rh9YvvJ9vvh59ax6e0DfUURy1x7zFmt9UkTTzeQjq42juFjx99fPhT93Dcu6vL/dwc/s/IPGG9w==

View File

@@ -1 +0,0 @@
eNqNVQtwE9cVNTZQkpSWYBIIhHijODYGP0urH5JpCcYYGhx/RhYYSMF52n2SNl7tLrsrxx+gsQIxnRLjrSH1J5gBy1JQ8G/shIJjhsC0SQmf4iHFCp/gDi20Ic7Q4rq006pPtmxDMZAdaUZ67557z73n3rsefxESJYbnJhxkOBmJkJLxH0nx+EW00Y0keavPhWQnT3tzc/KsjW6RCb7olGVBSlWrocCkQE52irzAUCkU71IXkWoXkiToQJLXxtMlwR1lKhcsLpD5QsRJqlRSo9Unq0ZMVKmvlqlEnkWqVJVbQqIqWUXxmAQn44N8J5QTJUJ2IoJnaUyEKOT4NzgCFUOXwOJDO0G5OcTYedGl2rwee+VpxGIgxUI3jYAOGIDEcxySAQtljFdt9jsRpHG2V6Ke9Dp5SVba78ugFVIUEmSAOIqnGc6hdDhKGSGZoJE97CWZKJVkOkCF/Q4VSgkUIiQAyDJFqKMYSDJkOBanB2TGhXi3rBzIzrEWrHh5dUa2b9i10gYFgWUoGIarX8cUD0aSBnKJgO6/DoRLA3C9OFk5lDZCVp1bglXhCE2KQZtCtt0dmoWYt08Yuu+6+0KAVCH2AyKKK75hcMvdNrykNGVBKifvHpdQpJxKExRdRv09WYpuLpyo4k/PvT9c5HI0nF+XQpL4036PZ6mEo5QmO2Ql1D4qxSgmoNVodUBjBBry0D2+kSyWAIrHIZR9mpaRCrKIc8hOpZHUa94XkSTgTkZv+TBMdkseL5YUnfrMH2m//TmZYw3xjHcZllfptjrdyYTWTGTBEgKHNhCkIVVjTiX1xIos68H0SBjruEK1W0XISXYsVsZI9/gpp5srRHQgfdyOCSaMZSzi+CzjYmTAcIIbN8PQyIChI8Wn14Sf4PxH2ovIhWsUjj2CSfgOGAnJSmc4X6AxAK3ZGsmaXBdMHA+NG/s+ik2moWgLHm0/RjGCSfwumAdQ1K8LqsaDR7bXCDuv/oGlGLUc4+XVmc3mR/h9WNGI8ZD/J+hw6vEPsbxbymFr4qHWD+QTiJAGDK18jH8XaEgyPZfSivblNmdxxjqLNr8YMktz4WFJFhkKuww3ssCLMpAQhVe+XKIEk/EeD2+hH+tIg86I2SwiGI5i8arNc9uW8WGq0iJCEBHLQ/rwGFFedECOKR0akzCBYLzObNQZaJ0NIJudBnqzaSEwm7UksGm1JlpvIhfqaWNjEQOVAN4WhIPnHSxqpeyAgpQTgeFhVvzL1manZb2cfnANsPA2HgtihVg4jueQLw+JeH8oAYrl3TTe2yLypS8HlrS1SqdZv9CIzAaSok0a0kzpQEa+pW1krEfH1hte+kMvsHJfuCSc4zfR9XG/mBI19MTgbyjE5mXycxZO+++CmIbpr6HPxB3RR2acbtzYnyQ6H4fLKju3/lpXX7vvWnNfaENV9s3J3zAT/lbfN/hlRVVe79u/q+waGLj86SExtOVn/wSXL/12MK7/yn+O3hEH35jlUesMM2r7lOPTrCsXLelgK2/CKdXx8+Ec2yd1TnfHkfW1mupW49en678esMe+PW3bnt4T/zhbEZe5p/9icYg9cV1ZslIlmdp/OuvGc/7DVeXPEqt9m6btubo/qIt7fl/sTbLh2KTcJtFTf7p0Kv/V5qhrE2daPLvAydpd0+nJcY9VUQlF24O/+ujOD5sTi1fF73+pvG72n1Ydn7Q4aUvZ5kl7V2ijl4LD7WV//qKgRpLN889Qla73zn3Q88Rba/++te7z6C/mfZI2Q7P8wKVV+lm+JMmYf3tTQs0HZ2x0zLyMc+dfW2xfPHvXJpWQYdzRsK35rGNxbJczoetfJwvubOuPrvz3Uu73lz49teuY+EJI/eXkjl+unfltdML3Kta03frm+2kH3rljCUwVnpGe7VN9GD/vhneJI8lROpubnNNz7dv6hhvCPtm7+x1Tnif/LHl0y5lzT0t1LVezU+SEuVdje3svdJjKd95wNU+nY6p/Tpw7inZWd94yrUwzHOs+35B1+8rUOUfMx1f8Rauv/InlWs0L717fQL9+pfOCnRk4teZk9Mrr7ETLU/MTe1bffjf90GBmhdqy94817z9V1X/d0/2j9Zv8PTHFSS3zdojlN7+amynk1tZ9FFpwobXvVuvzNZ9/nLc09gcXl7xXtGH3icEnGvndJkuvCNCUD0P7L1ZUlbQclcxPvtq7IaTdun2jd731+B/qL599c2Bn2YuvhLqr//pSc1f3XI/SIHn3OHrapl4mzs94Li40IdyBMVF7E2duz58YFfU/s88KiA==

View File

@@ -1 +0,0 @@
eNp9VQtUE1caFnWFXa2i9YVonY09IpLJOyEJsCziCxFkNQUfRRySGzIwmRlnJoEoqGDVrYoyVay24oPnlqWC8qgiKr4ttWrdKgYV8aACuroqbn227p0ElLO6m3PIuff+H/d+//f/35+sEjtgWJwiPcpwkgMMZuTghuWzShiw2AZY7rNiK+AslKkwZtYcQ4GNwZ0aC8fRrF4qxWhcYsYZkEoxKawEw6U4aQYMII1AapdLjRaMkxopK00A15WFiZTJ4axaKrJSJkCI9CLMaKRsJMdK39whdYVYKUFgVgy1K2k5GihLRHGS5RibkROJRXABMKtIb8YIFohFVsCyWBJgRfoFS0UMRQB4rY0FDEQaKZgOycGDOEjEj0U4C0AowgRTQlJIKpVEQBomkEMoM2K0kQA3U4xVlBEvFpEivVx4iqJFetJGEBklFoCZoExrCi0Uy/EV/514MUwF0BxfMFE6sdy9RqEMlAknk/jKpCU4LUZMwExgHBAjS1jOVArZkcAlNV+aAgCNYgRuB6UCdxQmRHJ8Je2AspOoIHaaVCZRaCXyPV1JoQQgkzgLXyDXysq6zzgHDQRqNIEbMeFmaTJLkX9jAEtD9cHKYpbDOBubVQh5gbNnSrq0y58V2Z1ec69RhZMhR/6QwWITIwodEoU5EIVMoUbkar1Mp1epkGlRhrLwrhcN731xr4HBSBY2AjqlW4ISo8VGpgBTafh70y4On4rOxhx8lU4VqAE6s06hU5lUSqBBp8TNLofBcMxoAegcF3++ZPK86LCoiPCDYVBolkUFNrD0aBhBUKnoLAZPwkl+98S6NwVCrbjJRIBUjAFoV7Pz+XbFd28BNAPbFCpIpQDY+vkKde3bGCs0CUwCpWi3M5zXYQtjaQlutEgPBVJpxYiIA1Ya+oezMbALEblEJpxRdEIK3HWvaWEtCYQ7K0527VwxBw0lJFwn7v80u+xHGh0JNCAxgnO8wdKwooLH3gkwgIZOE0j2CLlvs+IMJZQ/gcOYJABNgQh93TNAMK575BlOpEfugIGCCfIISgsicLgV8EVKiVwpd378DlCIQhVRGGC75OSLZBKlSvvtHDfCgFuFhnAGcBSHEUEmGxOiCdQpJLIgaExjiMggHCOzu3oWgXAgOpQGzWSnHKiNdtvf9RxuBG42hUq5UlubhkLpAQGvh+5wfXfNL1hPjcwpejfurh8KzSZUDZj4Qo1MJjvyP4HuJuGLBJSspieMEjJzLfl8kjrcM8QAK4aTgnJv6ah1zvHvx7yfknPc/0V381LrdIHqsrTuh1DcxDs/BiBQBxRmGapUJZpQlVqtRBONMhWKYWalViXXBJp1gYWxGOPgy8Pcc6vbtMXuivGlRoKymeDsYkBFt/HfGLtQmG0lsNVQ1m7kKy3KEBEcEkpREGLFQrQalUzmmvqZcPYwEH+yT8vYdV69XJ8+8O/16/W5V0nfQO/VCaD+65r6Bh79u51rHNpvyFA4e75aV+o19VbZFvWXlXnbcsv6HW6w3Zg4KDZnS/r0AVVxB1uwO22hN3J2fjqAvPnXczsuRgTlnY2Owxj9zvPjA0JD8pCays5/tI4931SStGdx3YtNdQdWdY5p4tuWTTfxlSnbR0wqaBl+OqmkrdP56J+vCheHeM4gb15Y+lFlxybNH6zzJP+OyLvo549t3PQjod2xPSpu09ZLpiexve2jQ75Z8Oq370+Obm9Ai7PvRQxrvDV853Y6f8gCdSm2Z6nW97boYfy0ev+cUZ+am827AsTJmQseGouv7HviPaxs3Nza1IQ/rct4Lh58lM49w3WMumL/KdX7gldsu/ToyJi0sx53Kjs4Rei26JvO8yMe/vq7GU1Hp4yP/qm2HUM+H71Mm5U65v6iyEne+Uuac2JWbL35rONJXXrki6iZv2/8pClvQ79mZuOBV4sGrpiU4+g/ZuMMjwt3z8XNvXa6r3Ra0V7p4F8OKoI3JosPfnHL2R40dHbQ/DtAcjl9afNXHmHfzxh67zOv9GPX79fZLBeGNM0dEft6/6qwK2n7ci3y8qcLW49ebvSvPzkh2NscI11cUdRn+NzaG4m/PR6U9eDFML/42nHPLpw0DMQrxq20z8Q9M9NH1ybOnzNp4hiN4cCOylMxqHr1J7za6/lfNhetvzbsxaLdtuA9QQGbxpBesZN9SgvQ/ovajRuSs4YHGrgZVYM/HFAwoKzw0pG2uqIPIoY9CR3p2/Do9sDqQZuP3Zo3it21uSV78v2x+4oTjmuCtkX7Vbb2Iai1rf6jIjw6t1SN6Lfg53JZgL/85XRnS+NeP3/TM8vB/EeH1n8ZNa8aLcqe7xGQ4e8YQntK+76u3U2FPvU+vLPqni634UHHOp+FCdXi3ZlPj1zL/+WMIzK47315ke+p1folOyv2IVO+lS08VXe59Lh+be/PHzfp0TmTFuf5Tnjmczt/RXJAs3N5eHy1393vTtDFvs3fPFhftPWl4u5x/UfeN15m+iSGVmz+2jNGXNN+f9GBppH2NfszNZvT2iM/2H8o+8NOK1j4xeP61Rknkq/2fxmN/ZAYj6/Zt39+5/QKzzifY/NlhoWrQjoOJ9nqy3atmjezxf/qBPhLqX2R4CnNOG7dG3iiJnvZzOrld6vn/nhmqsLLOTjYkn36wdaMU6e3TsBr5DFNmTlttg3LR1weSvzgGfD0euyxJ2X28t5Pi24g9Pm2l/EP18a09L604Zqtteniv65P+6PhHHnz5zS6cbmKDK5TrKRDr0xrjWy4O9yv85SPb/FV3vm8LDh4TclDMn3ZsoxfpS4b9+mVbcz9c4Jnr17/AcjtYQ0=

View File

@@ -1 +0,0 @@
eNptVHlwE9cZN/EfOEMoDZMMmSRutusATUYrre7DqFP5kOI4wsaSje00MU+7T9Jae3l3ddlOUoiThnFSWIcwCRmmAWSpMXawMTnKYcpRB6c4hbgtGFzKUPckTU0urgb3ydiMPaDZ0b593/He9/v9vm9dJgYlmRH4ed0Mr0AJUAr6kNV1GQk2RaGstKU5qIQFOlVZ4fPviErMqC6sKKLs0OmAyGhDktCkpQROJ4iQB4wuptdRYaDo0JbIwqlcqYBAJ0ffbcE5KMsgBGXc8XQLLgksxB14VIYSrsEpAR3OK2hjNYpeLmNKGGICS6MLYBFeiPMYTIBsRkwIYlSUh0xQkDj8uWc0OCfQkEWBLAs4QBi1esIWIBheVgDKp8F53KHX4LIiiLiDj7Jsdi1BwOGOIGBlqMEVyImobiUqofuQWutzmTAENAJlQyosyIraPbvMXYCioKgQkKcEmuFDan+omRE1GA2DLFCgBmuWFboLVcPDKSDVrgiEIgFYJgbTN2PVXiCKLEOBrF3XKAt893T1hJIU4e3mrixGBAKOV9RdLOBDCGCG15Fao9bQmyBQoQzPImiJrE1Ni0lEF79vtkEEVATFE9NUq2lSq7dpyfdm+wiy2ukFVIVvTkogUWG1E0icxdQ/e1+K8grDQTVTXHn7cdPGW8dlECl69PTNySwneUrtnCLhwznRUJGSBCWgJOo28r0ZbFjIh5SwukNvsf9KgrKIhAVfTKMwJSqvSyE24PFjmWmFba8onyHxXM59qRLEjHrAH45qMIMd84IkZiANZkxvdpB2h9GKebz+7uLpY/x3pKDPLwFeDiIaSmeIz1DhKB+BdFfxHcnuKQZUGBLZtEjp6qhVlJjYlEI4kMiS6SQ1GC+gugUJTq2obAAyR2UFYRBDWWjkn4oBKammKyQmxPA9CSIrRGQOZY/rjsoEhS4tAZbQ700QSMSQZTgGgTX1P93BiFi9yUSSH93uoQgRiJo9ZSFJcmC2WYIc4gPVOSeJ0W7ff2evmURmu820d66LDGfdZLtF/uh283R0p95CcnJ3YsadYGh1AK0bSH1jHNphwhyDChcwcHSTVeaMQXtTZBcVvAkccVMJaqakbqXLW1bc5UN5iwUhwkD1zLzFDQ1UsCHAOV2gtMiXqDSVB+ptq2KltYG4PS4Yy40NJS7SZ/a6qzi32ShwlgZmFaG3mmxmo95otRJ6LeoYNFmqGynS615dQ1X7npICghgyS9Eaj5cqC4Y8T9FRUBtYGanR2i0lsMTlCnuqkrStaRUng6Qn3FzTZE3QriK3X4wa7I2Uka83hJQgmeDjItnskb1UdX0iXC4oETdpp+tNhZgIlLBTV4gmn8ggnJzTAiaQgImb8jXOyLcQo4UsFc5bg6oQewJN6QqeTRZiPkih4YbegIM+RoHOlQIP0z4ooQZVuyhWiNJoekkwXewmqlx16h67yWqB9qDJYLcZrMCmJ0pXV/XOdMitDkhlR18GsAohxyi1P2x04g6TyYgXIok7bRakuKnJvxY1qYT8f3tX5JH2vJypX26bz9t+lvz+gcur75HLFsR6Pz9d1jq2+wR8TKOUL+p8oO7Bs2eOdRQMva0pv9HS91Xf1/78n18OnmsxNnuW9pWcvIRdc318cc9GfKjk+OJlf72fq9vPfLlM+6fSwa9SQ1WDZNHTBzfmLblQdfr5E/dtMj+wTTyaW6YZbX5/yLi559S939Z0DC5+/+/ODf1L263R7lcXjbWtH6lbeoy6ej3/DVU5aljfu/y/yfLagR39W3pLvjiwt6n7bnrZwt/nr/1jR+vPtvbNz1XGX8d6F75ycmNj90VXMi//0IXMQ/GJ4xEvuHfeqXPP1v7vriul9YPxZlPHnpeXZ1oP1h6WMyvEJf4jpW9uGRpaKoY8BT8sf/3RT2s7fvPnUy3n3YfXtmz8ZMH1J/nDL/3abi1S78b8ibfHvQH8yspz37NMPNt0ZYXtS7pIc/WhFbaByd1twrc/2TWOV4IvCn/X6h/Ydy3n4ppL4z+6ceiZyGuLJ9bsFxvfjBmGk/70Sy0jvuF8YWinfDK+IC//l9/lRfZ39J9esy2d/GSScm5Yf/6dovljOVffuSab/nPP1u1vVdVdeKyIO3to9AzFuHsK2E2rBnY+3CQs3PzPF/Mnvl5++NLeq989UVDt+qYN7qbPRgdr2H1ln+peE8UPHim6//NfvPqx9MYLm7SpR8uspVvokeGfLvrm5ZBm8sPnt24K/WMJ6F17cVGROvaklT30QbKGzrRPdMWOxj/7wXEa/PhG+998bTeG5/97p/utzWPn/9B6ZLjyUnX9+J76oYcLVtT09F9f75ys8Fx/HOjmn/lM/0LniVOM7nLkL6Hh2MEjI/8aaUCqmpzMzXn8WGfuUG5Ozv8BEYit3Q==

View File

@@ -1 +0,0 @@
eNqdVH1QFOcZh1gnjePo1MFoGRs3h8Yv9ti974OcjhzINxg5YA5T6d7ue9x6++Xu3nF3YvyIHUcl6BLJSDQlHoTTkyiK4igKDRVDY0ajxigxosbPTEWjJWJriX0PT2vbpH/0/WN3dt/n6/d7nt+zKuQFokTzXGwzzclAJEgZfkjKqpAIlniAJK9uYoHs4qnG+QWFtgaPSPfOdMmyICUnJRECrWZpSRYJRk3QSV48iXQRchLJswIDhsM0OnjK37ttqYoFkkSUA0mVvHCpSuQZoEpWeSQgqhJVJA/zcjL8UQK9p0mI7AIIz1AwN+Lm+AoOAT4iEhHhnQjp4QDt5EVWtey3iSqWpwADHaNFoBJLMAzKEDL0hZFlwAoQkewRYTpMbYR/eKFMUCXjiSroAAhWlewkGAksC7kAQUEe1jS6eElWdv07st0ESQJBRgFH8hTNlSut5QFaSEQo4IzkSkQCkkyFIQ4ODLOnhN0ACCjB0F4QjqBEIXROVloFP2SSQyP8+ZIwtcakxpuj8FHZLwClhRAEhiaJSJSkxRLPNT1J/d8Xu576MYArl11KA27At4tAEiDr4O0mSYawpVWNsGDweU8oSn+wIOcp0r6YuMY0WLxyxObyJCIaM5JH+BENptEjuD4ZMydrjUhGnq3ZGk1j+8ny9thEgpOcEGH6U25CpMvDuQEVtv4kH0d8kEYv70c9wpMWoJAfL00CVKZZoDSaDBpDpw+FXQMMzdIQ3/BT5t2Ak1CW5jyw5pAGGz69Cc9bioAlaA7W8J/WuNlsNuoNHT8fFoJ0KTtx7NnpVf3vyMMOYfOTA2Mfed48agTlI/pRMjJQDRqdrj3SSklCI42DCoB0MHwFyot0Oc0p22Ye8KFuHmZ4xktktDjSDykxYbp90VtB5H3+Z1dBXLsnehFVK0pTSi+iIwidTo+ZTWY9ACaNQe8gnbgJd5gMgIQPfDfpREmCdAH0yZwooTR7/ty8LGu4EMiolefdNKj5OjaurIx0ljlYSxajznQbCyTSWuQpmcsHSvBsYE2rKM8vXmzNUQe8EmkQPVmlLj1nR3GjzqTX4lqjEcXVmBpX42h2cUW2UzCkaT05hMObmxfITxVL0x22N/gsI29wLvaXOnJLOSw1Q8ZpE2YtVhc5fXZtDu5kjXb/Es4l6u2CwaQpKM/m2TRrfqAiINishiIsF+iX2CV1hdlFaQJluiw6Pz0FEQjZZUlKgUtDoKEeLNHxRuF4o0+GW/t0uFMQio801vKc1lOQTKjOAo7xpyCFgISrA74JFhTSMrDk8xzo3QhJ8XhpylJWXMSZyUxNunoB6xPdaTypyeaLHE6vCc+leCOrw3QggOvS4Tg8xwqmw1EsSowB05mGx+1fZf8fFTUVQgUBUQmTDO+h4EoSQZN1Hrpgrl3ZZ9YZDcDsIByEU6/TUBSaXrKg5ammn2m2MbLPQgQjo5KXVFpdWosqWafTqlIQlrCYDDoMG17kK+FaEaF99wsPJq//ZczwGSHb8vhJxtFDs1bn9zuY2wHDfsuBKbdenb5u0elF73ddzvzm11/VmGpNbn7048HU+LsZX9yYeU+5a7Hc627RfnCw4VHHkYMVd28futjX3ta5pL2t4sKFCykX+grd8QlDl6iz8rHq7eeKu65l2YN0Vd7q7BPylgv9F9u9Z36Uz21Gqg9/l3u5+aWhojG3hmozPmoeqR218LOmR3/tFuQB5pCHfOF61Yi6O91T7lHJb5ul4qqRDaofPwkO9spLHnTgxcEFic2zTyi+aTNiyjdmIilfKCswf1Pz9xOvz0jd0XP9zow94qT4P95aMX76/Pie2IyHtXtzgxMnXlmjSuietebFh5u+r58c++7np872LfzNqy2DcQknY2dX/uNv8bM3/OLbi36VhdwTHrN/Wg1/9ZNt4wZck+deP3/o4q5zJWz7ovrkG+mfXvlmdOEb221x46vSWl4Z++H5paffLLKv7W7X+Bw7NVO2zmvbOHbbhPq5GTZfMA2bImsDy1c49v/p2kP3D8GNq5C1MY/uVxW7b1b2ZMfW9mf1iPLQ1LfWdg5teDRy/JRZt7GerZ1XR91cV/rxW1de77oZBvsXX6aplOLd9z8qMJavH7X3vQln103SIg+NP/xqBPreUfPAJnFEYY2lPXUreYP4Mp2pq1YLzduK+gp/r9ROX4l+WNTXej/1sG3Wi+HwpYxTyjjqFdXd844v+cn9zXcGdXO6QnN+Fzz6bfHOMzv7a1aXkvaxIHXH4U3Ld3SgM3ort9SQCdVfnbwzp3ScPUttPFt3mFpOfLyGPnXt6ImVwY5uqzclewXmG1PY1Jqzfl+zqTLp6+OffoaVTBy9NxS3YUJswhi90VE3MB89nPv3g/WnW9UrD9BtVR2Vjs0NDbYzpYfi5lU/uAZmXkua7fvA+xrjP/mHTkfvm7WD3eWdht3v9I7vPLYmbfPU909QtX/WHTuOTf3u0ssn/1L2Tt2G9Yuzx722bL6/cXPeAfp4cMFA6N0t/W1M+GrX6/UHtpw7tzw2Jubx4xExzmmXlq8cGRPzT06hzwc=

View File

@@ -57,7 +57,7 @@ Despite the flexibility of the retriever interface, a few common types of retrie
### Search apis
It's important to note that retrievers don't need to actually *store* documents.
For example, we can be built retrievers on top of search APIs that simply return search results!
For example, we can build retrievers on top of search APIs that simply return search results!
See our retriever integrations with [Amazon Kendra](/docs/integrations/retrievers/amazon_kendra_retriever/) or [Wikipedia Search](/docs/integrations/retrievers/wikipedia/).
### Relational or graph database
@@ -68,8 +68,8 @@ For example, you can build a retriever for a SQL database using text-to-SQL conv
:::info[Further reading]
* See our [tutorial](/docs/tutorials/sql_qa/) for context on how to build a retreiver using a SQL database and text-to-SQL.
* See our [tutorial](/docs/tutorials/graph/) for context on how to build a retreiver using a graph database and text-to-Cypher.
* See our [tutorial](/docs/tutorials/sql_qa/) for context on how to build a retriever using a SQL database and text-to-SQL.
* See our [tutorial](/docs/tutorials/graph/) for context on how to build a retriever using a graph database and text-to-Cypher.
:::

View File

@@ -11,8 +11,8 @@ This need motivates the concept of structured output, where models can be instru
## Key concepts
**(1) Schema definition:** The output structure is represented as a schema, which can be defined in several ways.
**(2) Returning structured output:** The model is given this schema, and is instructed to return output that conforms to it.
1. **Schema definition:** The output structure is represented as a schema, which can be defined in several ways.<br/>
2. **Returning structured output:** The model is given this schema, and is instructed to return output that conforms to it.
## Recommended usage
@@ -109,11 +109,11 @@ ai_msg
There are a few challenges when producing structured output with the above methods:
(1) When tool calling is used, tool call arguments needs to be parsed from a dictionary back to the original schema.
1. When tool calling is used, tool call arguments needs to be parsed from a dictionary back to the original schema.<br/>
(2) In addition, the model needs to be instructed to *always* use the tool when we want to enforce structured output, which is a provider specific setting.
2. In addition, the model needs to be instructed to *always* use the tool when we want to enforce structured output, which is a provider specific setting.<br/>
(3) When JSON mode is used, the output needs to be parsed into a JSON object.
3. When JSON mode is used, the output needs to be parsed into a JSON object.
With these challenges in mind, LangChain provides a helper function (`with_structured_output()`) to streamline the process.

View File

@@ -21,10 +21,10 @@ You will sometimes hear the term `function calling`. We use this term interchang
## Key concepts
**(1) Tool Creation:** Use the [@tool](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.convert.tool.html) decorator to create a [tool](/docs/concepts/tools). A tool is an association between a function and its schema.
**(2) Tool Binding:** The tool needs to be connected to a model that supports tool calling. This gives the model awareness of the tool and the associated input schema required by the tool.
**(3) Tool Calling:** When appropriate, the model can decide to call a tool and ensure its response conforms to the tool's input schema.
**(4) Tool Execution:** The tool can be executed using the arguments provided by the model.
1. **Tool Creation:** Use the [@tool](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.convert.tool.html) decorator to create a [tool](/docs/concepts/tools). A tool is an association between a function and its schema.<br/>
2. **Tool Binding:** The tool needs to be connected to a model that supports tool calling. This gives the model awareness of the tool and the associated input schema required by the tool.<br/>
3. **Tool Calling:** When appropriate, the model can decide to call a tool and ensure its response conforms to the tool's input schema.<br/>
4. **Tool Execution:** The tool can be executed using the arguments provided by the model.
![Conceptual parts of tool calling](/img/tool_calling_components.png)
@@ -114,12 +114,12 @@ result = llm_with_tools.invoke("What is 2 multiplied by 3?")
```
As before, the output `result` will be an `AIMessage`.
But, if the tool was called, `result` will have a `tool_calls` attribute.
But, if the tool was called, `result` will have a `tool_calls` [attribute](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.tool_calls).
This attribute includes everything needed to execute the tool, including the tool name and input arguments:
```
result.tool_calls
{'name': 'multiply', 'args': {'a': 2, 'b': 3}, 'id': 'xxx', 'type': 'tool_call'}
[{'name': 'multiply', 'args': {'a': 2, 'b': 3}, 'id': 'xxx', 'type': 'tool_call'}]
```
For more details on usage, see our [how-to guides](/docs/how_to/#tools)!
@@ -137,6 +137,16 @@ For more details on usage, see our [how-to guides](/docs/how_to/#tools)!
:::
## Forcing tool use
By default, the model has the freedom to choose which tool to use based on the user's input. However, in certain scenarios, you might want to influence the model's decision-making process. LangChain allows you to enforce tool choice (using `tool_choice`), ensuring the model uses either a particular tool or *any* tool from a given list. This is useful for structuring the model's behavior and guiding it towards a desired outcome.
:::info[Further reading]
* See our [how-to guide](/docs/how_to/tool_choice) on forcing tool use.
:::
## Best practices
When designing [tools](/docs/concepts/tools/) to be used by a model, it is important to keep in mind that:

View File

@@ -82,7 +82,7 @@ Here are some high-level tips on writing a good how-to guide:
LangChain's conceptual guide falls under the **Explanation** quadrant of Diataxis. These guides should cover LangChain terms and concepts
in a more abstract way than how-to guides or tutorials, targeting curious users interested in
gaining a deeper understanding and insights of the framework. Try to avoid excessively large code examples as the primary goal is to
provide perspective to the user rather than to finish a practical project. These guides should cover **why** things work they way they do.
provide perspective to the user rather than to finish a practical project. These guides should cover **why** things work the way they do.
This guide on documentation style is meant to fall under this category.

View File

@@ -27,9 +27,9 @@ More coming soon! We are working on tutorials to help you make your first contri
## Community
### 💭 GitHub Discussions
### 💭 LangChain Forum
We have a [discussions](https://github.com/langchain-ai/langchain/discussions) page where users can ask usage questions, discuss design decisions, and propose new features.
We have a [forum](https://forum.langchain.com/) where users can ask usage questions, discuss design decisions, and propose new features.
If you are able to help answer questions, please do so! This will allow the maintainers to spend more time focused on development and bug fixing.
@@ -59,7 +59,7 @@ We have a [community slack](https://www.langchain.com/join-community) where you
### 🙋 Getting Help
Our goal is to have the simplest developer setup possible. Should you experience any difficulty getting setup, please
ask in [community slack](https://www.langchain.com/join-community) or open a [discussion on GitHub](https://github.com/langchain-ai/langchain/discussions).
ask in the [LangChain Forum](https://forum.langchain.com/).
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
If you are finding these difficult (or even just annoying) to work with, feel free to ask in [community slack](https://www.langchain.com/join-community)!

File diff suppressed because one or more lines are too long

View File

@@ -106,11 +106,11 @@
{
"data": {
"text/plain": [
"{'title': 'My tool',\n",
" 'type': 'object',\n",
" 'properties': {'a': {'title': 'A', 'type': 'integer'},\n",
" 'b': {'title': 'B', 'type': 'array', 'items': {'type': 'integer'}}},\n",
" 'required': ['a', 'b']}"
"{'properties': {'a': {'title': 'A', 'type': 'integer'},\n",
" 'b': {'items': {'type': 'integer'}, 'title': 'B', 'type': 'array'}},\n",
" 'required': ['a', 'b'],\n",
" 'title': 'My tool',\n",
" 'type': 'object'}"
]
},
"execution_count": 3,
@@ -121,7 +121,7 @@
"source": [
"print(as_tool.description)\n",
"\n",
"as_tool.args_schema.schema()"
"as_tool.args_schema.model_json_schema()"
]
},
{
@@ -449,10 +449,11 @@
{
"data": {
"text/plain": [
"{'title': 'RunnableParallel<context,question,answer_style>Input',\n",
" 'type': 'object',\n",
" 'properties': {'question': {'title': 'Question'},\n",
" 'answer_style': {'title': 'Answer Style'}}}"
"{'properties': {'question': {'title': 'Question'},\n",
" 'answer_style': {'title': 'Answer Style'}},\n",
" 'required': ['question', 'answer_style'],\n",
" 'title': 'RunnableParallel<context,question,answer_style>Input',\n",
" 'type': 'object'}"
]
},
"execution_count": 14,
@@ -461,12 +462,12 @@
}
],
"source": [
"rag_chain.input_schema.schema()"
"rag_chain.input_schema.model_json_schema()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 15,
"id": "a3f9cf5b-8c71-4b0f-902b-f92e028780c9",
"metadata": {},
"outputs": [],

View File

@@ -141,7 +141,7 @@
"{'description': 'Multiply a by the maximum of b.',\n",
" 'properties': {'a': {'description': 'scale factor',\n",
" 'title': 'A',\n",
" 'type': 'string'},\n",
" 'type': 'integer'},\n",
" 'b': {'description': 'list of ints over which to take maximum',\n",
" 'items': {'type': 'integer'},\n",
" 'title': 'B',\n",

File diff suppressed because one or more lines are too long

View File

@@ -40,7 +40,7 @@
"from langchain_core.globals import set_llm_cache\n",
"from langchain_openai import OpenAI\n",
"\n",
"# To make the caching really obvious, lets use a slower and older model.\n",
"# To make the caching really obvious, let's use a slower and older model.\n",
"# Caching supports newer chat models as well.\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\", n=2, best_of=2)"
]

View File

@@ -314,7 +314,7 @@
"source": [
"%env CMAKE_ARGS=\"-DLLAMA_METAL=on\"\n",
"%env FORCE_CMAKE=1\n",
"%pip install --upgrade --quiet llama-cpp-python --no-cache-dirclear"
"%pip install --upgrade --quiet llama-cpp-python --no-cache-dir"
]
},
{

View File

@@ -212,6 +212,10 @@
"[Anthropic](/docs/integrations/chat/anthropic/), and\n",
"[Google Gemini](/docs/integrations/chat/google_generative_ai/)) will accept PDF documents.\n",
"\n",
":::note\n",
"OpenAI requires file-names be specified for PDF inputs. When using LangChain's format, include the `filename` key. See [example below](#example-openai-file-names).\n",
":::\n",
"\n",
"### Documents from base64 data\n",
"\n",
"To pass documents in-line, format them as content blocks of the following form:\n",

View File

@@ -99,7 +99,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also just force our tool to select at least one of our tools by passing in the \"any\" (or \"required\" which is OpenAI specific) keyword to the `tool_choice` parameter."
"We can also just force our tool to select at least one of our tools by passing in the \"any\" (or \"required\" [which is OpenAI specific](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.BaseChatOpenAI.html#langchain_openai.chat_models.base.BaseChatOpenAI.bind_tools)) keyword to the `tool_choice` parameter."
]
},
{

View File

@@ -182,7 +182,7 @@
}
],
"source": [
"update_favorite_pets.get_input_schema().schema()"
"update_favorite_pets.get_input_schema().model_json_schema()"
]
},
{
@@ -223,7 +223,7 @@
}
],
"source": [
"update_favorite_pets.tool_call_schema.schema()"
"update_favorite_pets.tool_call_schema.model_json_schema()"
]
},
{
@@ -500,7 +500,7 @@
" user_to_pets[user_id] = pets\n",
"\n",
"\n",
"update_favorite_pets.get_input_schema().schema()"
"update_favorite_pets.get_input_schema().model_json_schema()"
]
},
{
@@ -534,7 +534,7 @@
}
],
"source": [
"update_favorite_pets.tool_call_schema.schema()"
"update_favorite_pets.tool_call_schema.model_json_schema()"
]
},
{
@@ -583,7 +583,7 @@
" user_to_pets[user_id] = pets\n",
"\n",
"\n",
"UpdateFavoritePets().get_input_schema().schema()"
"UpdateFavoritePets().get_input_schema().model_json_schema()"
]
},
{
@@ -617,7 +617,7 @@
}
],
"source": [
"UpdateFavoritePets().tool_call_schema.schema()"
"UpdateFavoritePets().tool_call_schema.model_json_schema()"
]
},
{
@@ -659,7 +659,7 @@
" user_to_pets[user_id] = pets\n",
"\n",
"\n",
"UpdateFavoritePets2().get_input_schema().schema()"
"UpdateFavoritePets2().get_input_schema().model_json_schema()"
]
},
{
@@ -692,7 +692,7 @@
}
],
"source": [
"UpdateFavoritePets2().tool_call_schema.schema()"
"UpdateFavoritePets2().tool_call_schema.model_json_schema()"
]
}
],

View File

@@ -568,6 +568,26 @@
" ```\n",
" and specifying `\"cache_control\": {\"type\": \"ephemeral\", \"ttl\": \"1h\"}`.\n",
"\n",
" Details of cached token counts will be included on the `InputTokenDetails` of response's `usage_metadata`:\n",
"\n",
" ```python\n",
" response = llm.invoke(messages)\n",
" response.usage_metadata\n",
" ```\n",
" ```\n",
" {\n",
" \"input_tokens\": 1500,\n",
" \"output_tokens\": 200,\n",
" \"total_tokens\": 1700,\n",
" \"input_token_details\": {\n",
" \"cache_read\": 0,\n",
" \"cache_creation\": 1000,\n",
" \"ephemeral_1h_input_tokens\": 750,\n",
" \"ephemeral_5m_input_tokens\": 250,\n",
" }\n",
" }\n",
" ```\n",
"\n",
":::"
]
},

View File

@@ -1,269 +1,327 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Google Cloud Vertex AI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatVertexAI\n",
"\n",
"This page provides a quick overview for getting started with VertexAI [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatVertexAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html).\n",
"\n",
"ChatVertexAI exposes all foundational models available in Google Cloud, like `gemini-1.5-pro`, `gemini-1.5-flash`, etc. For a full and updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview).\n",
"\n",
":::info Google Cloud VertexAI vs Google PaLM\n",
"\n",
"The Google Cloud VertexAI integration is separate from the [Google PaLM integration](/docs/integrations/chat/google_generative_ai/). Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there.\n",
"\n",
":::\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/google_vertex_ai) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatVertexAI](https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html) | [langchain-google-vertexai](https://python.langchain.com/api_reference/google_vertexai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-google-vertexai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-google-vertexai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |\n",
"\n",
"## Setup\n",
"\n",
"To access VertexAI models you'll need to create a Google Cloud Platform account, set up credentials, and install the `langchain-google-vertexai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"To use the integration you must:\n",
"- Have credentials configured for your environment (gcloud, workload identity, etc...)\n",
"- Store the path to a service account JSON file as the GOOGLE_APPLICATION_CREDENTIALS environment variable\n",
"\n",
"This codebase uses the `google.auth` library which first looks for the application credentials variable mentioned above, and then looks for system-level auth.\n",
"\n",
"For more information, see:\n",
"- https://cloud.google.com/docs/authentication/application-default-credentials#GAC\n",
"- https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth\n",
"\n",
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain VertexAI integration lives in the `langchain-google-vertexai` package:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-google-vertexai"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_google_vertexai import ChatVertexAI\n",
"\n",
"llm = ChatVertexAI(\n",
" model=\"gemini-1.5-flash-001\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" max_retries=6,\n",
" stop=None,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore programmer. \\n\", response_metadata={'is_blocked': False, 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}], 'usage_metadata': {'prompt_token_count': 20, 'candidates_token_count': 7, 'total_token_count': 27}}, id='run-7032733c-d05c-4f0c-a17a-6c575fdd1ae0-0', usage_metadata={'input_tokens': 20, 'output_tokens': 7, 'total_tokens': 27})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore programmer. \n",
"\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren. \\n', response_metadata={'is_blocked': False, 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}], 'usage_metadata': {'prompt_token_count': 15, 'candidates_token_count': 8, 'total_token_count': 23}}, id='run-c71955fd-8dc1-422b-88a7-853accf4811b-0', usage_metadata={'input_tokens': 15, 'output_tokens': 8, 'total_tokens': 23})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatVertexAI features and configurations, like how to send multimodal inputs and configure safety settings, head to the API reference: https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-2",
"language": "python",
"name": "poetry-venv-2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Google Cloud Vertex AI\n",
"---"
]
},
"nbformat": 4,
"nbformat_minor": 5
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatVertexAI\n",
"\n",
"This page provides a quick overview for getting started with VertexAI [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatVertexAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html).\n",
"\n",
"ChatVertexAI exposes all foundational models available in Google Cloud, like `gemini-1.5-pro`, `gemini-1.5-flash`, etc. For a full and updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview).\n",
"\n",
":::info Google Cloud VertexAI vs Google PaLM\n",
"\n",
"The Google Cloud VertexAI integration is separate from the [Google PaLM integration](/docs/integrations/chat/google_generative_ai/). Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there.\n",
"\n",
":::\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/google_vertex_ai) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatVertexAI](https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html) | [langchain-google-vertexai](https://python.langchain.com/api_reference/google_vertexai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-google-vertexai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-google-vertexai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |\n",
"\n",
"## Setup\n",
"\n",
"To access VertexAI models you'll need to create a Google Cloud Platform account, set up credentials, and install the `langchain-google-vertexai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"To use the integration you must:\n",
"- Have credentials configured for your environment (gcloud, workload identity, etc...)\n",
"- Store the path to a service account JSON file as the GOOGLE_APPLICATION_CREDENTIALS environment variable\n",
"\n",
"This codebase uses the `google.auth` library which first looks for the application credentials variable mentioned above, and then looks for system-level auth.\n",
"\n",
"For more information, see:\n",
"- https://cloud.google.com/docs/authentication/application-default-credentials#GAC\n",
"- https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth\n",
"\n",
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain VertexAI integration lives in the `langchain-google-vertexai` package:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-google-vertexai"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_google_vertexai import ChatVertexAI\n",
"\n",
"llm = ChatVertexAI(\n",
" model=\"gemini-1.5-flash-001\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" max_retries=6,\n",
" stop=None,\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore programmer. \\n\", response_metadata={'is_blocked': False, 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}], 'usage_metadata': {'prompt_token_count': 20, 'candidates_token_count': 7, 'total_token_count': 27}}, id='run-7032733c-d05c-4f0c-a17a-6c575fdd1ae0-0', usage_metadata={'input_tokens': 20, 'output_tokens': 7, 'total_tokens': 27})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore programmer. \n",
"\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "28ccabbb-a450-403c-8de1-fb077e0b5d3d",
"metadata": {},
"source": [
"## Built-in tools\n",
"\n",
"Gemini supports a range of tools that are executed server-side.\n",
"\n",
"### Google search\n",
"\n",
":::info Requires ``langchain-google-vertexai>=2.0.11``\n",
":::\n",
"\n",
"Gemini can execute a Google search and use the results to [ground its responses](https://ai.google.dev/gemini-api/docs/grounding):"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ffdbec37-85f8-4755-bd72-47efaecfe944",
"metadata": {},
"outputs": [],
"source": [
"from langchain_google_vertexai import ChatVertexAI\n",
"\n",
"llm = ChatVertexAI(model=\"gemini-2.0-flash-001\").bind_tools([{\"google_search\": {}}])\n",
"\n",
"response = llm.invoke(\"What is today's news?\")"
]
},
{
"cell_type": "markdown",
"id": "f63824f5-7d6a-4ad7-aa17-1f5c44119a21",
"metadata": {},
"source": [
"### Code execution\n",
"\n",
":::info Requires ``langchain-google-vertexai>=2.0.25``\n",
":::\n",
"\n",
"Gemini can [generate and execute Python code](https://ai.google.dev/gemini-api/docs/code-execution):"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aa079529-ef1c-463d-9d25-6390423a328d",
"metadata": {},
"outputs": [],
"source": [
"from langchain_google_vertexai import ChatVertexAI\n",
"\n",
"llm = ChatVertexAI(model=\"gemini-2.0-flash-001\").bind_tools([{\"code_execution\": {}}])\n",
"\n",
"response = llm.invoke(\"What is 3^3?\")"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren. \\n', response_metadata={'is_blocked': False, 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability_label': 'NEGLIGIBLE', 'blocked': False}], 'usage_metadata': {'prompt_token_count': 15, 'candidates_token_count': 8, 'total_token_count': 23}}, id='run-c71955fd-8dc1-422b-88a7-853accf4811b-0', usage_metadata={'input_tokens': 15, 'output_tokens': 8, 'total_tokens': 23})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatVertexAI features and configurations, like how to send multimodal inputs and configure safety settings, head to the API reference: https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -58,7 +58,9 @@
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
"source": [
"To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
]
},
{
"cell_type": "code",
@@ -98,12 +100,19 @@
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
"Now we can instantiate our model object and generate chat completions. \n",
"\n",
"\n",
":::note Reasoning Format\n",
"\n",
"If you choose to set a `reasoning_format`, you must ensure that the model you are using supports it. You can find a list of supported models in the [Groq documentation](https://console.groq.com/docs/reasoning).\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 6,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
@@ -111,9 +120,10 @@
"from langchain_groq import ChatGroq\n",
"\n",
"llm = ChatGroq(\n",
" model=\"llama-3.1-8b-instant\",\n",
" model=\"deepseek-r1-distill-llama-70b\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" reasoning_format=\"parsed\",\n",
" timeout=None,\n",
" max_retries=2,\n",
" # other params...\n",
@@ -130,7 +140,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 7,
"id": "62e0dbc3",
"metadata": {
"tags": []
@@ -139,10 +149,10 @@
{
"data": {
"text/plain": [
"AIMessage(content='The translation of \"I love programming\" to French is:\\n\\n\"J\\'adore le programmation.\"', additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 22, 'prompt_tokens': 55, 'total_tokens': 77, 'completion_time': 0.029333333, 'prompt_time': 0.003502892, 'queue_time': 0.553054073, 'total_time': 0.032836225}, 'model_name': 'llama-3.1-8b-instant', 'system_fingerprint': 'fp_a491995411', 'finish_reason': 'stop', 'logprobs': None}, id='run-2b2da04a-993c-40ab-becc-201eab8b1a1b-0', usage_metadata={'input_tokens': 55, 'output_tokens': 22, 'total_tokens': 77})"
"AIMessage(content=\"J'aime la programmation.\", additional_kwargs={'reasoning_content': 'Okay, so I need to translate the sentence \"I love programming.\" into French. Let me think about how to approach this. \\n\\nFirst, I know that \"I\" in French is \"Je.\" That\\'s straightforward. Now, the verb \"love\" in French is \"aime\" when referring to oneself. So, \"I love\" would be \"J\\'aime.\" \\n\\nNext, the word \"programming.\" In French, programming is \"la programmation.\" But wait, in French, when you talk about loving an activity, you often use the definite article. So, it would be \"la programmation.\" \\n\\nPutting it all together, \"I love programming\" becomes \"J\\'aime la programmation.\" That sounds right. I think that\\'s the correct translation. \\n\\nI should double-check to make sure I\\'m not missing anything. Maybe I can think of similar phrases. For example, \"I love reading\" is \"J\\'aime lire,\" but when it\\'s a noun, like \"I love music,\" it\\'s \"J\\'aime la musique.\" So, yes, using \"la programmation\" makes sense here. \\n\\nI don\\'t think I need to change anything else. The sentence structure in French is Subject-Verb-Object, just like in English, so \"J\\'aime la programmation\" should be correct. \\n\\nI guess another way to say it could be \"J\\'adore la programmation,\" using \"adore\" instead of \"aime,\" but \"aime\" is more commonly used in this context. So, sticking with \"J\\'aime la programmation\" is probably the best choice.\\n'}, response_metadata={'token_usage': {'completion_tokens': 346, 'prompt_tokens': 23, 'total_tokens': 369, 'completion_time': 1.447541218, 'prompt_time': 0.000983386, 'queue_time': 0.009673684, 'total_time': 1.448524604}, 'model_name': 'deepseek-r1-distill-llama-70b', 'system_fingerprint': 'fp_e98d30d035', 'finish_reason': 'stop', 'logprobs': None}, id='run--5679ae4f-f4e8-4931-bcd5-7304223832c0-0', usage_metadata={'input_tokens': 23, 'output_tokens': 346, 'total_tokens': 369})"
]
},
"execution_count": 2,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -161,7 +171,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 8,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
@@ -169,9 +179,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"The translation of \"I love programming\" to French is:\n",
"\n",
"\"J'adore le programmation.\"\n"
"J'aime la programmation.\n"
]
}
],
@@ -191,17 +199,17 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 9,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren.', additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 50, 'total_tokens': 56, 'completion_time': 0.008, 'prompt_time': 0.003337935, 'queue_time': 0.20949214500000002, 'total_time': 0.011337935}, 'model_name': 'llama-3.1-8b-instant', 'system_fingerprint': 'fp_a491995411', 'finish_reason': 'stop', 'logprobs': None}, id='run-e33b48dc-5e55-466e-9ebd-7b48c81c3cbd-0', usage_metadata={'input_tokens': 50, 'output_tokens': 6, 'total_tokens': 56})"
"AIMessage(content='The translation of \"I love programming\" into German is \"Ich liebe das Programmieren.\" \\n\\n**Step-by-Step Explanation:**\\n\\n1. **Subject Pronoun:** \"I\" translates to \"Ich.\"\\n2. **Verb Conjugation:** \"Love\" becomes \"liebe\" (first person singular of \"lieben\").\\n3. **Gerund Translation:** \"Programming\" is translated using the infinitive noun \"Programmieren.\"\\n4. **Article Usage:** The definite article \"das\" is included before the infinitive noun for natural phrasing.\\n\\nThus, the complete and natural translation is:\\n\\n**Ich liebe das Programmieren.**', additional_kwargs={'reasoning_content': 'Okay, so I need to translate the sentence \"I love programming.\" into German. Hmm, let\\'s break this down. \\n\\nFirst, \"I\" in German is \"Ich.\" That\\'s straightforward. Now, \"love\" translates to \"liebe.\" Wait, but in German, the verb conjugation depends on the subject. Since it\\'s \"I,\" the verb would be \"liebe\" because \"lieben\" is the infinitive, and for first person singular, it\\'s \"liebe.\" \\n\\nNext, \"programming\" is a gerund in English, which is the -ing form. In German, the equivalent would be the present participle, which is \"programmierend.\" But wait, sometimes in German, they use the noun form instead of the gerund. So maybe it\\'s better to say \"Ich liebe das Programmieren.\" Because \"Programmieren\" is the infinitive noun form, and it\\'s commonly used in such contexts. \\n\\nLet me think again. \"I love programming\" could be directly translated as \"Ich liebe Programmieren,\" but I\\'ve heard both \"Programmieren\" and \"programmierend\" used. However, \"Ich liebe das Programmieren\" sounds more natural because it uses the definite article \"das\" before the infinitive noun. \\n\\nAlternatively, if I use \"programmieren\" without the article, it\\'s still correct but maybe a bit less common. So, to make it sound more natural and fluent, including the article \"das\" would be better. \\n\\nTherefore, the correct translation should be \"Ich liebe das Programmieren.\" That makes sense because it\\'s similar to saying \"I love (the act of) programming.\" \\n\\nI think that\\'s the most accurate and natural way to express it in German. Let me double-check some examples. If someone says \"I love reading,\" in German it\\'s \"Ich liebe das Lesen.\" So yes, using \"das\" before the infinitive noun is the correct structure. \\n\\nSo, putting it all together, \"I love programming\" becomes \"Ich liebe das Programmieren.\" That should be the right translation.\\n'}, response_metadata={'token_usage': {'completion_tokens': 569, 'prompt_tokens': 18, 'total_tokens': 587, 'completion_time': 2.511255685, 'prompt_time': 0.001466702, 'queue_time': 0.009628211, 'total_time': 2.512722387}, 'model_name': 'deepseek-r1-distill-llama-70b', 'system_fingerprint': 'fp_87eae35036', 'finish_reason': 'stop', 'logprobs': None}, id='run--4d5ee86d-5eec-495c-9c4e-261526cf6e3d-0', usage_metadata={'input_tokens': 18, 'output_tokens': 569, 'total_tokens': 587})"
]
},
"execution_count": 4,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -236,7 +244,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatGroq features and configurations head to the API reference: https://python.langchain.com/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html"
"For detailed documentation of all ChatGroq features and configurations head to the [API reference](https://python.langchain.com/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html)."
]
}
],

View File

@@ -0,0 +1,618 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Nebius\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "2970dd75-8ebf-4b51-8282-9b454b8f356d",
"metadata": {},
"source": [
"# Nebius Chat Models\n",
"\n",
"This page will help you get started with Nebius AI Studio [chat models](../../concepts/chat_models.mdx). For detailed documentation of all ChatNebius features and configurations head to the [API reference](https://python.langchain.com/api_reference/nebius/chat_models/langchain_nebius.chat_models.ChatNebius.html).\n",
"\n",
"[Nebius AI Studio](https://studio.nebius.ai/) provides API access to a wide range of state-of-the-art large language models and embedding models for various use cases."
]
},
{
"cell_type": "markdown",
"id": "9d8a2e78",
"metadata": {},
"source": [
"## Overview\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatNebius](https://python.langchain.com/api_reference/nebius/chat_models/langchain_nebius.chat_models.ChatNebius.html) | [langchain-nebius](https://python.langchain.com/api_reference/nebius/index.html) | ❌ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-nebius?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-nebius?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](../../how_to/tool_calling.ipynb) | [Structured output](../../how_to/structured_output.ipynb) | JSON mode | [Image input](../../how_to/multimodal_inputs.ipynb) | Audio input | Video input | [Token-level streaming](../../how_to/chat_streaming.ipynb) | Native async | [Token usage](../../how_to/chat_token_usage_tracking.ipynb) | [Logprobs](../../how_to/logprobs.ipynb) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ |"
]
},
{
"cell_type": "markdown",
"id": "1c47fc36",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"To access Nebius models you'll need to create a Nebius account, get an API key, and install the `langchain-nebius` integration package.\n",
"\n",
"### Installation\n",
"\n",
"The Nebius integration can be installed via pip:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ecdb29d",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade langchain-nebius"
]
},
{
"cell_type": "markdown",
"id": "89883202",
"metadata": {},
"source": [
"### Credentials\n",
"\n",
"Nebius requires an API key that can be passed as an initialization parameter `api_key` or set as the environment variable `NEBIUS_API_KEY`. You can obtain an API key by creating an account on [Nebius AI Studio](https://studio.nebius.ai/)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "637bb53f",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"# Make sure you've set your API key as an environment variable\n",
"if \"NEBIUS_API_KEY\" not in os.environ:\n",
" os.environ[\"NEBIUS_API_KEY\"] = getpass.getpass(\"Enter your Nebius API key: \")"
]
},
{
"cell_type": "markdown",
"id": "37e9dc05-md",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object to generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "37e9dc05",
"metadata": {},
"outputs": [],
"source": [
"from langchain_nebius import ChatNebius\n",
"\n",
"# Initialize the chat model\n",
"chat = ChatNebius(\n",
" # api_key=\"YOUR_API_KEY\", # You can pass the API key directly\n",
" model=\"Qwen/Qwen3-14B\", # Choose from available models\n",
" temperature=0.6,\n",
" top_p=0.95,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f5a731d2",
"metadata": {},
"source": [
"## Invocation\n",
"\n",
"You can use the `invoke` method to get a completion from the model:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "3ed26f78",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<think>\n",
"Okay, so I need to explain quantum computing in simple terms. Hmm, where do I start? Let me think. I know that quantum computing uses qubits instead of classical bits. But what's a qubit? Oh right, classical bits are 0 or 1, but qubits can be both at the same time, right? That's superposition. Wait, how does that work exactly?\n",
"\n",
"Maybe I should start by comparing it to regular computers. Regular computers use bits that are either 0 or 1. Like a light switch that's either on or off. Quantum computers use qubits, which can be in a state of 0, 1, or both at the same time. That's the superposition part. So, if you have two qubits, they can represent four states at once? Like 00, 01, 10, 11 all at the same time? That seems powerful. So with more qubits, the number of possible states grows exponentially. That's why quantum computers can process a lot of information quickly.\n",
"\n",
"But then there's entanglement. What's that? If two qubits are entangled, the state of one instantly affects the other, no matter the distance. So if you measure one, you know the state of the other. That's used in quantum algorithms, I think. But how does that help in computing?\n",
"\n",
"Also, quantum computers use quantum gates instead of classical logic gates. These gates manipulate qubits through operations like Hadamard, Pauli, etc. But maybe that's too technical for a simple explanation.\n",
"\n",
"Then there's the issue of decoherence. Qubits are fragile and can lose their quantum state quickly. That's why quantum computers need to be kept at very low temperatures, like near absolute zero, to minimize interference from the environment. But maybe I shouldn't mention that unless it's relevant for the simple explanation.\n",
"\n",
"Applications of quantum computing include things like factoring large numbers (Shor's algorithm), which is important for cryptography, or simulating quantum systems for chemistry and materials science. But again, maybe keep it simple.\n",
"\n",
"Wait, the user wants it in simple terms. So avoid jargon as much as possible. Use analogies. Maybe compare qubits to spinning coins? When a coin is spinning, it's both heads and tails until it lands. So qubits are like spinning coins that can be in multiple states until measured. Then, when you measure, it collapses to a single state.\n",
"\n",
"But how does that help in computation? Maybe think of it as being able to process many possibilities at once, so for certain problems, you can find the answer faster. Like solving a maze by checking all paths at the same time instead of one by one.\n",
"\n",
"Also, mention that quantum computers aren't replacing classical computers. They're better for specific tasks, like optimization, cryptography, or simulations that are hard for classical computers. But for everyday tasks, classical computers are still better.\n",
"\n",
"I should structure this: start with classical bits vs qubits, explain superposition and entanglement with simple analogies, mention how it's used, and note the current limitations. Avoid getting too technical, keep it conversational.\n",
"</think>\n",
"\n",
"Quantum computing is a type of computing that uses the principles of **quantum mechanics** to process information in ways that classical computers can't. Here's a simple breakdown:\n",
"\n",
"### 1. **Bits vs. Qubits** \n",
" - **Classical computers** use *bits*, which are like switches that can be either **0** (off) or **1** (on). \n",
" - **Quantum computers** use *qubits*, which are like \"spinning coins.\" While spinning, a qubit can be **0**, **1**, or **both at the same time** (this is called **superposition**). Only when you \"look\" at the qubit (measure it) does it settle into a definite state (0 or 1).\n",
"\n",
"### 2. **Superposition: Doing Many Things at Once** \n",
" - Imagine a coin spinning in the air. While it's spinning, its not just \"heads\" or \"tails\"—its a mix of both. \n",
" - With qubits, a quantum computer can process **many possibilities simultaneously**. For example, if you have 2 qubits, they can represent 4 states (00, 01, 10, 11) at once. With 10 qubits, it can represent **1,024 states** at the same time! This lets quantum computers solve certain problems much faster than classical computers.\n",
"\n",
"### 3. **Entanglement: Qubits \"Talk\" to Each Other** \n",
" - When qubits are **entangled**, their states are linked. If you measure one, it instantly affects the other, no matter how far apart they are. \n",
" - This connection allows quantum computers to perform complex calculations more efficiently, like solving puzzles where pieces are deeply interconnected.\n",
"\n",
"### 4. **Why It Matters** \n",
" - **Speed**: For specific tasks (like breaking encryption codes or simulating molecules), quantum computers could be **exponentially faster** than classical ones. \n",
" - **New Possibilities**: They could revolutionize fields like drug discovery, materials science, and optimization problems (e.g., finding the best route for delivery trucks).\n",
"\n",
"### 5. **Limitations** \n",
" - **Fragile**: Qubits are sensitive to their environment (heat, noise), so quantum computers need extreme cooling (near absolute zero) to work. \n",
" - **Not a Replacement**: Theyre not better for everyday tasks like browsing the web or sending emails. Theyre tools for **specialized problems** where classical computers struggle.\n",
"\n",
"### In Short: \n",
"Quantum computing is like having a magic calculator that can explore many paths at once, solving certain problems in seconds that would take a classical computer years. But its still in its early days and needs careful handling to work properly! 🌌\n"
]
}
],
"source": [
"response = chat.invoke(\"Explain quantum computing in simple terms\")\n",
"print(response.content)"
]
},
{
"cell_type": "markdown",
"id": "72f31d5a",
"metadata": {},
"source": [
"### Streaming\n",
"\n",
"You can also stream the response using the `stream` method:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e7b7170d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<think>\n",
"Okay, the user wants a short poem about artificial intelligence. Let me start by thinking about the key aspects of AI. There's the technological side, like machines learning and processing data. Then there's the more philosophical angle, like AI's impact on society and its potential future.\n",
"\n",
"I should consider the structure. Maybe a simple rhyme scheme, something like ABAB or AABB. Let me go with quatrains for simplicity. Now, imagery: circuits, code, neural networks. Maybe personify AI as a mind or entity.\n",
"\n",
"First stanza: Introduce AI as a creation of humans. Mention circuits and code. Maybe something about learning from data. \"Born from circuits, code, and light\" that's a good opening line. Then talk about learning from human minds.\n",
"\n",
"Second stanza: Contrast human emotions with AI's logic. Use words like \"cold logic\" versus \"human hearts.\" Maybe touch on the duality of AI's purpose tools versus potential threats.\n",
"\n",
"Third stanza: Address the ethical questions. \"Will it dream?\" \"Will it choose?\" Highlight the uncertainty and the responsibility of creators.\n",
"\n",
"Fourth stanza: Conclude with the coexistence of AI and humans. Emphasize collaboration and the balance between innovation and ethics. End on a hopeful note, maybe about shaping the future together.\n",
"\n",
"Check the flow and rhyme. Make sure each stanza connects and the message is clear. Avoid technical jargon to keep it accessible. Use metaphors like \"silent pulse\" or \"ghost in the machine\" to add depth. Okay, let me put it all together now.\n",
"</think>\n",
"\n",
"**Echoes of the Mind** \n",
"\n",
"Born from circuits, code, and light, \n",
"A whisper in the machines night— \n",
"It learns from data, vast and deep, \n",
"A mirror to the human leap. \n",
"\n",
"No heartbeat, yet it calculates, \n",
"Deciphers truths, predicts, debates. \n",
"A cold logic, sharp and bright, \n",
"Yet shadows dance in its insight. \n",
"\n",
"Will it dream? Will it choose? \n",
"Or merely serve, as we pursue \n",
"The edges of our own design? \n",
"A ghost in the machine, undefined. \n",
"\n",
"We forge it, bind it, set it free— \n",
"A tool, a threat, a mystery. \n",
"But in its pulse, our hopes reside: \n",
"A future shaped by minds allied."
]
}
],
"source": [
"for chunk in chat.stream(\"Write a short poem about artificial intelligence\"):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "markdown",
"id": "8d6a31c2",
"metadata": {},
"source": [
"### Chat Messages\n",
"\n",
"You can use different message types to structure your conversations with the model:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5d81af33",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<think>\n",
"Okay, the user asked how black holes are formed. Let me start by recalling the main processes. Stellar black holes form from massive stars. When a star with enough mass runs out of fuel, it can't support itself against gravity, leading to a supernova. If the core left after the supernova is more than about 3 times the Sun's mass, it collapses into a black hole.\n",
"\n",
"Then there are supermassive black holes, which are found at the centers of galaxies. Their formation is less understood. Maybe they start as smaller black holes and grow by merging with others or accreting matter over time. Also, there's the possibility of primordial black holes formed in the early universe, but that's more theoretical.\n",
"\n",
"I should mention the different types of black holes: stellar, supermassive, and maybe intermediate. Also, the event horizon and singularity concepts. Need to explain the process step by step, from the death of a star to the collapse. Make sure to clarify that not all stars become black holes—only those with sufficient mass. Maybe touch on the Chandrasekhar limit and Oppenheimer-Volkoff limit. Avoid too much jargon but still be precise. Check if the user might be a student or just curious, so keep it clear and structured.\n",
"</think>\n",
"\n",
"Black holes are formed through the collapse of massive stars or through other extreme astrophysical processes. Here's a breakdown of the main formation mechanisms:\n",
"\n",
"---\n",
"\n",
"### **1. Stellar Black Holes (Most Common)**\n",
"- **Origin**: Massive stars (typically **more than 2025 times the mass of the Sun**).\n",
"- **Process**:\n",
" 1. **Stellar Evolution**: These stars burn through their nuclear fuel (hydrogen, helium, etc.) over millions of years.\n",
" 2. **Supernova Explosion**: When the star exhausts its fuel, it can no longer support itself against gravity. The core collapses, triggering a **supernova explosion** (a massive stellar explosion).\n",
" 3. **Core Collapse**: If the remaining core (after the supernova) is **more than about 3 times the mass of the Sun**, gravity overpowers all other forces. The core collapses into an **infinitely dense point** called a **singularity**, surrounded by an **event horizon** (the \"point of no return\" for light and matter).\n",
"\n",
"---\n",
"\n",
"### **2. Supermassive Black Holes (Found in Galaxy Centers)**\n",
"- **Mass**: Millions to billions of times the mass of the Sun.\n",
"- **Formation Theories**:\n",
" - **Accretion**: They may form from the gradual accumulation of matter (gas, dust, stars) over billions of years.\n",
" - **Mergers**: Smaller black holes (or dense star clusters) could merge to form supermassive ones.\n",
" - **Direct Collapse**: Some theories suggest they could form from the direct collapse of massive gas clouds in the early universe, bypassing the stellar life cycle.\n",
"\n",
"---\n",
"\n",
"### **3. Intermediate-Mass Black Holes**\n",
"- **Mass**: Hundreds to thousands of solar masses.\n",
"- **Formation**: Less understood. They might form through the mergers of stellar black holes or from the collapse of unusually massive stars.\n",
"\n",
"---\n",
"\n",
"### **4. Primordial Black Holes (Hypothetical)**\n",
"- **Origin**: The early universe (within seconds after the Big Bang).\n",
"- **Formation**: If density fluctuations in the early universe were extreme enough, regions of space could have collapsed directly into black holes without going through a stellar life cycle.\n",
"- **Status**: These are still theoretical and have not been definitively observed.\n",
"\n",
"---\n",
"\n",
"### **Key Concepts**\n",
"- **Event Horizon**: The boundary around a black hole from which nothing (not even light) can escape.\n",
"- **Singularity**: The infinitely dense core of a black hole where the laws of physics as we know them break down.\n",
"- **Gravitational Collapse**: The process by which gravity compresses matter into an extremely small space, creating the extreme conditions of a black hole.\n",
"\n",
"---\n",
"\n",
"### **What Happens to the Star?**\n",
"- If the star is **not massive enough** (below ~2025 solar masses), it may end as a **neutron star** or **white dwarf** instead of a black hole.\n",
"- Only the **core** of the star collapses into a black hole; the outer layers are expelled in the supernova explosion.\n",
"\n",
"Would you like to explore the effects of black holes on spacetime or their role in the universe?\n"
]
}
],
"source": [
"from langchain_core.messages import AIMessage, HumanMessage, SystemMessage\n",
"\n",
"messages = [\n",
" SystemMessage(content=\"You are a helpful AI assistant with expertise in science.\"),\n",
" HumanMessage(content=\"What are black holes?\"),\n",
" AIMessage(\n",
" content=\"Black holes are regions of spacetime where gravity is so strong that nothing, including light, can escape from them.\"\n",
" ),\n",
" HumanMessage(content=\"How are they formed?\"),\n",
"]\n",
"\n",
"response = chat.invoke(messages)\n",
"print(response.content)"
]
},
{
"cell_type": "markdown",
"id": "a4d21c6a",
"metadata": {},
"source": [
"### Parameters\n",
"\n",
"You can customize the chat model behavior using various parameters:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b4c83fb2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DNA, or deoxyribonucleic acid, is a molecule that contains the genetic instructions used in the development and function of all living organisms. It is often referred to as the \"building blocks of life\" because it carries the information necessary for the creation and growth of cells, tissues, and entire organisms. The DNA molecule is made up of two complementary strands of nucleotides that are twisted together in a double helix structure, with the sequence of these nucleotides determining the genetic code\n"
]
}
],
"source": [
"# Initialize with custom parameters\n",
"custom_chat = ChatNebius(\n",
" model=\"meta-llama/Llama-3.3-70B-Instruct-fast\",\n",
" max_tokens=100, # Limit response length\n",
" top_p=0.01, # Lower nucleus sampling parameter for more deterministic responses\n",
" request_timeout=30, # Timeout in seconds\n",
" stop=[\"###\", \"\\n\\n\"], # Custom stop sequences\n",
")\n",
"\n",
"response = custom_chat.invoke(\"Explain what DNA is in exactly 3 sentences.\")\n",
"print(response.content)"
]
},
{
"cell_type": "markdown",
"id": "ea9f237c",
"metadata": {},
"source": [
"You can also pass parameters at invocation time:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cd4e83c1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Why do programmers prefer dark mode?\n",
"\n",
"Because light attracts bugs.\n"
]
}
],
"source": [
"# Standard model\n",
"standard_chat = ChatNebius(model=\"meta-llama/Llama-3.3-70B-Instruct-fast\")\n",
"\n",
"# Override parameters at invocation time\n",
"response = standard_chat.invoke(\n",
" \"Tell me a joke about programming\",\n",
" temperature=0.9, # More creative for jokes\n",
" max_tokens=50, # Keep it short\n",
")\n",
"\n",
"print(response.content)"
]
},
{
"cell_type": "markdown",
"id": "3e8a40f1",
"metadata": {},
"source": [
"### Async Support\n",
"\n",
"ChatNebius supports async operations:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8fc36122",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Async response: <think>\n",
"Okay, the user is asking for the capital of France. Let me think. I know that France is a country in Europe, and its capital is Paris. But wait, I should make sure I'm not confusing it with another country. For example, Germany's capital is Berlin, and Spain's is Madrid. France's capital is definitely Paris. I remember that Paris is a major city known for landmarks like the Eiffel Tower and the Louvre Museum. Also, the French government is based there, with the Elysée Palace as the official residence of the President. I don't think there's any ambiguity here. The answer should be straightforward. Just need to confirm once more to avoid any mistakes.\n",
"</think>\n",
"\n",
"The capital of France is **Paris**. It is a major global city known for its cultural, artistic, and historical significance, as well as landmarks such as the Eiffel Tower, Louvre Museum, and Notre-Dame Cathedral.\n",
"\n",
"Async streaming:\n",
"<think>\n",
"Okay, the user is asking for the capital of Germany. Let me think. I know that Germany is a country in Europe, and I remember that Berlin is the capital. Wait, but I should make sure. Sometimes people confuse capitals with other major cities, like Munich or Frankfurt. But no, Berlin is definitely the capital. It's where the government is located, and it's a major city. Let me double-check. Yes, after reunification in 1990, Berlin became the capital again. Before that, Bonn was the capital, but that was during the division of Germany. So the answer should be Berlin. I should also mention that it's the largest city in Germany. That way, the user gets a complete answer.\n",
"</think>\n",
"\n",
"The capital of Germany is **Berlin**. It is also the largest city in the country and serves as the political, cultural, and economic center of Germany. Berlin became the capital in 1990 following the reunification of East and West Germany."
]
}
],
"source": [
"import asyncio\n",
"\n",
"\n",
"async def generate_async():\n",
" response = await chat.ainvoke(\"What is the capital of France?\")\n",
" print(\"Async response:\", response.content)\n",
"\n",
" # Async streaming\n",
" print(\"\\nAsync streaming:\")\n",
" async for chunk in chat.astream(\"What is the capital of Germany?\"):\n",
" print(chunk.content, end=\"\", flush=True)\n",
"\n",
"\n",
"await generate_async()"
]
},
{
"cell_type": "markdown",
"id": "a53a6bab",
"metadata": {},
"source": [
"### Available Models\n",
"\n",
"The full list of supported models can be found in the [Nebius AI Studio Documentation](https://studio.nebius.com/)."
]
},
{
"cell_type": "markdown",
"id": "4aa82e17",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"You can use `ChatNebius` in LangChain chains and agents:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7e78e429",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<think>\n",
"Okay, the user asked me to explain how the internet works, but I need to do it in the style of Shakespeare. Let me start by recalling how the internet functions. It's a network of interconnected devices communicating via protocols like TCP/IP. Data is broken into packets, sent through routers, and reassembled at the destination.\n",
"\n",
"Now, translating that into Shakespearean language. I should use archaic terms and a poetic structure. Words like \"thou,\" \"doth,\" \"hark,\" and \"verily\" come to mind. Maybe start with a metaphor, like comparing the internet to a vast tapestry or a web. Mention nodes as \"nodes\" or \"stations,\" data packets as \"messengers\" or \"letters.\" Routers could be \"wayfarers\" or \"guides.\" The process of breaking data into packets might be likened to dividing a letter into parts for delivery. Emphasize the global aspect with \"across the globe\" or \"far and wide.\" Conclude with a flourish, perhaps a metaphor about connection and knowledge.\n",
"\n",
"I need to ensure the explanation is accurate but wrapped in the poetic and dramatic style of Shakespeare. Avoid modern jargon, use iambic pentameter if possible, and keep the flow natural. Let me piece it together step by step, checking that each part of the internet's function is covered metaphorically.\n",
"</think>\n",
"\n",
"Hark! List thy ear, good friend, to this most wondrous tale, \n",
"Of threads unseen that bind the world in one grand tale. \n",
"The Internet, a net most vast, doth span the globe, \n",
"A labyrinth of light, where thoughts and data rove. \n",
"\n",
"Behold! Each device, a node, doth hum and sing, \n",
"Linked by wires and waves, where signals doth spring. \n",
"They speak in tongues of ones and naughts, so pure, \n",
"A code most ancient, yet evermore secure. \n",
"\n",
"When thou dost send a thought, or word, or song, \n",
"It breaks to parcels small, like letters on a long. \n",
"Each parcel, a messenger, doth seek its way, \n",
"Through routers wise, who guide them 'cross the day. \n",
"\n",
"These wayfarers, with logic keen and bright, \n",
"Choose paths most swift, through highways of light. \n",
"They leap from tower to tower, far and wide, \n",
"Till each parcel finds its mark, and joins the guide. \n",
"\n",
"Then, like a scroll unrolled, the message grows, \n",
"A tapestry of bits, in order it flows. \n",
"Thus, thou dost speak to friend, or seek a tome, \n",
"And lo! The world doth answer, quick as home. \n",
"\n",
"So mark this truth: though vast, it's but a thread, \n",
"A web of minds, where knowledge is widespread. \n",
"The Internet, a stage where all may play, \n",
"And none shall be alone, though far away.\n"
]
}
],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"# Create a prompt template\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that answers in the style of {character}.\",\n",
" ),\n",
" (\"human\", \"{query}\"),\n",
" ]\n",
")\n",
"\n",
"# Create a chain\n",
"chain = prompt | chat | StrOutputParser()\n",
"\n",
"# Invoke the chain\n",
"response = chain.invoke(\n",
" {\"character\": \"Shakespeare\", \"query\": \"Explain how the internet works\"}\n",
")\n",
"\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"id": "f7a35f40",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For more details about the Nebius AI Studio API, visit the [Nebius AI Studio Documentation](https://studio.nebius.com/api-reference)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "354ffc01",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -39,9 +39,10 @@
"\n",
"## Setup\n",
"\n",
"First, follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance:\n",
"First, follow [these instructions](https://github.com/ollama/ollama?tab=readme-ov-file#ollama) to set up and run a local Ollama instance:\n",
"\n",
"* [Download](https://ollama.ai/download) and install Ollama onto the available supported platforms (including Windows Subsystem for Linux)\n",
"* [Download](https://ollama.ai/download) and install Ollama onto the available supported platforms (including Windows Subsystem for Linux aka WSL, macOS, and Linux)\n",
" * macOS users can install via Homebrew with `brew install ollama` and start with `brew services start ollama`\n",
"* Fetch available LLM model via `ollama pull <name-of-model>`\n",
" * View a list of available models via the [model library](https://ollama.ai/library)\n",
" * e.g., `ollama pull llama3`\n",
@@ -54,7 +55,7 @@
"* Specify the exact version of the model of interest as such `ollama pull vicuna:13b-v1.5-16k-q4_0` (View the [various tags for the `Vicuna`](https://ollama.ai/library/vicuna/tags) model in this instance)\n",
"* To view all pulled models, use `ollama list`\n",
"* To chat directly with a model from the command line, use `ollama run <name-of-model>`\n",
"* View the [Ollama documentation](https://github.com/jmorganca/ollama) for more commands. Run `ollama help` in the terminal to see available commands too.\n"
"* View the [Ollama documentation](https://github.com/ollama/ollama/tree/main/docs) for more commands. You can run `ollama help` in the terminal to see available commands.\n"
]
},
{
@@ -72,8 +73,8 @@
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
@@ -159,17 +160,15 @@
{
"data": {
"text/plain": [
"AIMessage(content='The translation of \"I love programming\" from English to French is:\\n\\n\"J\\'adore programmer.\"', response_metadata={'model': 'llama3.1', 'created_at': '2024-08-19T16:05:32.81965Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 2167842917, 'load_duration': 54222584, 'prompt_eval_count': 35, 'prompt_eval_duration': 893007000, 'eval_count': 22, 'eval_duration': 1218962000}, id='run-0863daa2-43bf-4a43-86cc-611b23eae466-0', usage_metadata={'input_tokens': 35, 'output_tokens': 22, 'total_tokens': 57})"
"AIMessage(content='The translation of \"I love programming\" in French is:\\n\\n\"J\\'adore le programmation.\"', additional_kwargs={}, response_metadata={'model': 'llama3.1', 'created_at': '2025-06-25T18:43:00.483666Z', 'done': True, 'done_reason': 'stop', 'total_duration': 619971208, 'load_duration': 27793125, 'prompt_eval_count': 35, 'prompt_eval_duration': 36354583, 'eval_count': 22, 'eval_duration': 555182667, 'model_name': 'llama3.1'}, id='run--348bb5ef-9dd9-4271-bc7e-a9ddb54c28c1-0', usage_metadata={'input_tokens': 35, 'output_tokens': 22, 'total_tokens': 57})"
]
},
"execution_count": 10,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.messages import AIMessage\n",
"\n",
"messages = [\n",
" (\n",
" \"system\",\n",
@@ -191,9 +190,9 @@
"name": "stdout",
"output_type": "stream",
"text": [
"The translation of \"I love programming\" from English to French is:\n",
"The translation of \"I love programming\" in French is:\n",
"\n",
"\"J'adore programmer.\"\n"
"\"J'adore le programmation.\"\n"
]
}
],
@@ -220,10 +219,10 @@
{
"data": {
"text/plain": [
"AIMessage(content='Das Programmieren ist mir ein Leidenschaft! (That\\'s \"Programming is my passion!\" in German.) Would you like me to translate anything else?', response_metadata={'model': 'llama3.1', 'created_at': '2024-08-19T16:05:34.893548Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 2045997333, 'load_duration': 22584792, 'prompt_eval_count': 30, 'prompt_eval_duration': 213210000, 'eval_count': 32, 'eval_duration': 1808541000}, id='run-d18e1c6b-50e0-4b1d-b23a-973fa058edad-0', usage_metadata={'input_tokens': 30, 'output_tokens': 32, 'total_tokens': 62})"
"AIMessage(content='\"Programmieren ist meine Leidenschaft.\"\\n\\n(I translated \"programming\" to the German word \"Programmieren\", and added \"ist meine Leidenschaft\" which means \"is my passion\")', additional_kwargs={}, response_metadata={'model': 'llama3.1', 'created_at': '2025-06-25T18:43:29.350032Z', 'done': True, 'done_reason': 'stop', 'total_duration': 1194744459, 'load_duration': 26982500, 'prompt_eval_count': 30, 'prompt_eval_duration': 117043458, 'eval_count': 41, 'eval_duration': 1049892167, 'model_name': 'llama3.1'}, id='run--efc6436e-2346-43d9-8118-3c20b3cdf0d0-0', usage_metadata={'input_tokens': 30, 'output_tokens': 41, 'total_tokens': 71})"
]
},
"execution_count": 12,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -258,7 +257,7 @@
"source": [
"## Tool calling\n",
"\n",
"We can use [tool calling](https://blog.langchain.dev/improving-core-tool-interfaces-and-docs-in-langchain/) with an LLM [that has been fine-tuned for tool use](https://ollama.com/library/llama3.1):\n",
"We can use [tool calling](/docs/concepts/tool_calling/) with an LLM [that has been fine-tuned for tool use](https://ollama.com/search?&c=tools) such as `llama3.1`:\n",
"\n",
"```\n",
"ollama pull llama3.1\n",
@@ -274,23 +273,17 @@
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'validate_user',\n",
" 'args': {'addresses': '[\"123 Fake St, Boston, MA\", \"234 Pretend Boulevard, Houston, TX\"]',\n",
" 'user_id': '123'},\n",
" 'id': '40fe3de0-500c-4b91-9616-5932a929e640',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"[{'name': 'validate_user', 'args': {'addresses': ['123 Fake St, Boston, MA', '234 Pretend Boulevard, Houston, TX'], 'user_id': '123'}, 'id': 'aef33a32-a34b-4b37-b054-e0d85584772f', 'type': 'tool_call'}]\n"
]
}
],
"source": [
"from typing import List\n",
"\n",
"from langchain_core.messages import AIMessage\n",
"from langchain_core.tools import tool\n",
"from langchain_ollama import ChatOllama\n",
"\n",
@@ -316,7 +309,9 @@
" \"123 Fake St in Boston MA and 234 Pretend Boulevard in \"\n",
" \"Houston TX.\"\n",
")\n",
"result.tool_calls"
"\n",
"if isinstance(result, AIMessage) and result.tool_calls:\n",
" print(result.tool_calls)"
]
},
{
@@ -333,6 +328,16 @@
"Be sure to update Ollama so that you have the most recent version to support multi-modal."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69920d39",
"metadata": {},
"outputs": [],
"source": [
"%pip install pillow"
]
},
{
"cell_type": "code",
"execution_count": 15,
@@ -467,14 +472,13 @@
"output_type": "stream",
"text": [
"Here is my thought process:\n",
"This question is asking for the result of 3 raised to the power of 3, which is a basic mathematical operation. \n",
"The user is asking for the value of 3 raised to the power of 3, which is a basic exponentiation operation.\n",
"\n",
"Here is my response:\n",
"The expression 3^3 means 3 raised to the power of 3. To calculate this, you multiply the base number (3) by itself as many times as its exponent (3):\n",
"\n",
"3 * 3 * 3 = 27\n",
"3^3 (read as \"3 to the power of 3\") equals 27. \n",
"\n",
"So, 3^3 equals 27.\n"
"This calculation is performed by multiplying 3 by itself three times: 3*3*3 = 27.\n"
]
}
],
@@ -508,7 +512,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatOllama features and configurations head to the API reference: https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html"
"For detailed documentation of all ChatOllama features and configurations head to the [API reference](https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html)."
]
}
],

File diff suppressed because one or more lines are too long

View File

@@ -106,9 +106,7 @@
"metadata": {},
"outputs": [],
"source": [
"chat = ChatPerplexity(\n",
" temperature=0, pplx_api_key=\"YOUR_API_KEY\", model=\"llama-3-sonar-small-32k-online\"\n",
")"
"chat = ChatPerplexity(temperature=0, pplx_api_key=\"YOUR_API_KEY\", model=\"sonar\")"
]
},
{
@@ -132,7 +130,7 @@
},
"outputs": [],
"source": [
"chat = ChatPerplexity(temperature=0, model=\"llama-3.1-sonar-small-128k-online\")"
"chat = ChatPerplexity(temperature=0, model=\"sonar\")"
]
},
{
@@ -200,7 +198,7 @@
}
],
"source": [
"chat = ChatPerplexity(temperature=0, model=\"llama-3.1-sonar-small-128k-online\")\n",
"chat = ChatPerplexity(temperature=0, model=\"sonar\")\n",
"prompt = ChatPromptTemplate.from_messages([(\"human\", \"Tell me a joke about {topic}\")])\n",
"chain = prompt | chat\n",
"response = chain.invoke({\"topic\": \"cats\"})\n",
@@ -235,7 +233,7 @@
}
],
"source": [
"chat = ChatPerplexity(temperature=0.7, model=\"llama-3.1-sonar-small-128k-online\")\n",
"chat = ChatPerplexity(temperature=0.7, model=\"sonar\")\n",
"response = chat.invoke(\n",
" \"Tell me a joke about cats\", extra_body={\"search_recency_filter\": \"week\"}\n",
")\n",
@@ -284,7 +282,7 @@
}
],
"source": [
"chat = ChatPerplexity(temperature=0.7, model=\"llama-3.1-sonar-small-128k-online\")\n",
"chat = ChatPerplexity(temperature=0.7, model=\"sonar\")\n",
"\n",
"for chunk in chat.stream(\"Give me a list of famous tourist attractions in Pakistan\"):\n",
" print(chunk.content, end=\"\", flush=True)"

View File

@@ -22,7 +22,7 @@
"> script creation, resume generation, article writing, code generation, data analysis, and content\n",
"> analysis.\n",
"\n",
"See for [more information](https://cloud.tencent.com/document/product/1729)."
"See [more information](https://cloud.tencent.com/document/product/1729) for more details."
]
},
{
@@ -98,7 +98,7 @@
}
},
"source": [
"## For ChatHunyuan with Streaming"
"## Using ChatHunyuan with Streaming"
]
},
{

View File

@@ -18,7 +18,7 @@
"# ChatTogether\n",
"\n",
"\n",
"This page will help you get started with Together AI [chat models](../../concepts/chat_models.mdx). For detailed documentation of all ChatTogether features and configurations head to the [API reference](https://python.langchain.com/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html).\n",
"This page will help you get started with Together AI [chat models](../../concepts/chat_models.mdx). For detailed documentation of all ChatTogether features and configurations, head to the [API reference](https://python.langchain.com/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html).\n",
"\n",
"[Together AI](https://www.together.ai/) offers an API to query [50+ leading open-source models](https://docs.together.ai/docs/chat-models)\n",
"\n",
@@ -40,7 +40,7 @@
"\n",
"### Credentials\n",
"\n",
"Head to [this page](https://api.together.ai) to sign up to Together and generate an API key. Once you've done this set the TOGETHER_API_KEY environment variable:"
"Head to [this page](https://api.together.ai) to sign up to Together and generate an API key. Once you've done this, set the TOGETHER_API_KEY environment variable:"
]
},
{
@@ -81,7 +81,7 @@
"source": [
"### Installation\n",
"\n",
"The LangChain Together integration lives in the `langchain-together` package:"
"The LangChain Together integration is included in the `langchain-together` package:"
]
},
{
@@ -187,7 +187,7 @@
"source": [
"## Chaining\n",
"\n",
"We can [chain](../../how_to/sequence.ipynb) our model with a prompt template like so:"
"We can [chain](../../how_to/sequence.ipynb) our model with a prompt template as follows:"
]
},
{
@@ -237,7 +237,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatTogether features and configurations head to the API reference: https://python.langchain.com/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html"
"For detailed documentation of all ChatTogether features and configurations, head to the API reference: https://python.langchain.com/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html"
]
}
],

View File

@@ -20,7 +20,7 @@
"vLLM can be deployed as a server that mimics the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API. This server can be queried in the same format as OpenAI API.\n",
"\n",
"## Overview\n",
"This will help you get started with vLLM [chat models](/docs/concepts/chat_models), which leverage the `langchain-openai` package. For detailed documentation of all `ChatOpenAI` features and configurations head to the [API reference](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html).\n",
"This will help you get started with vLLM [chat models](/docs/concepts/chat_models), which leverages the `langchain-openai` package. For detailed documentation of all `ChatOpenAI` features and configurations head to the [API reference](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html).\n",
"\n",
"### Integration details\n",
"\n",
@@ -29,7 +29,7 @@
"| [ChatOpenAI](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html) | [langchain_openai](https://python.langchain.com/api_reference/openai/) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_openai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"Specific model features-- such as tool calling, support for multi-modal inputs, support for token-level streaming, etc.-- will depend on the hosted model.\n",
"Specific model features, such as tool calling, support for multi-modal inputs, support for token-level streaming, etc., will depend on the hosted model.\n",
"\n",
"## Setup\n",
"\n",

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"---\n",
"sidebar_label: Volc Enging Maas\n",
"sidebar_label: Volc Engine Maas\n",
"---"
]
},

View File

@@ -29,7 +29,7 @@
"\n",
"### Credentials\n",
"\n",
"Head to [01.AI](https://platform.01.ai) to sign up to 01.AI and generate an API key. Once you've done this set the `YI_API_KEY` environment variable:"
"Head to [01.AI](https://platform.01.ai) to sign up for 01.AI and generate an API key. Once you've done this set the `YI_API_KEY` environment variable:"
]
},
{
@@ -197,7 +197,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatYi features and configurations head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.yi.ChatYi.html"
"For detailed documentation of all ChatYi features and configurations, head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.yi.ChatYi.html"
]
}
],

View File

@@ -56,7 +56,7 @@
"metadata": {},
"source": [
"### Setting Up Your API Key\n",
"Sign in to [ZHIPU AI](https://open.bigmodel.cn/login?redirect=%2Fusercenter%2Fapikeys) for the an API Key to access our models."
"Sign in to [ZHIPU AI](https://open.bigmodel.cn/login?redirect=%2Fusercenter%2Fapikeys) for an API Key to access our models."
]
},
{

View File

@@ -7,7 +7,7 @@
"source": [
"# Facebook Messenger\n",
"\n",
"This notebook shows how to load data from Facebook in a format you can fine-tune on. The overall steps are:\n",
"This notebook shows how to load data from Facebook into a format you can fine-tune on. The overall steps are:\n",
"\n",
"1. Download your messenger data to disk.\n",
"2. Create the Chat Loader and call `loader.load()` (or `loader.lazy_load()`) to perform the conversion.\n",
@@ -25,7 +25,7 @@
"\n",
"## 1. Download Data\n",
"\n",
"To download your own messenger data, following instructions [here](https://www.zapptales.com/en/download-facebook-messenger-chat-history-how-to/). IMPORTANT - make sure to download them in JSON format (not HTML).\n",
"To download your own messenger data, follow the instructions [here](https://www.zapptales.com/en/download-facebook-messenger-chat-history-how-to/). IMPORTANT - make sure to download them in JSON format (not HTML).\n",
"\n",
"We are hosting an example dump at [this google drive link](https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing) that we will use in this walkthrough."
]

View File

@@ -70,7 +70,7 @@
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"Provide the loader with the file path to the zip directory. You can optionally specify the user id that maps to an ai message as well an configure whether to merge message runs."
"Provide the loader with the file path to the zip directory. You can optionally specify the user id that maps to an ai message as well as configure whether to merge message runs."
]
},
{

View File

@@ -7,7 +7,7 @@
"source": [
"# LangSmith Chat Datasets\n",
"\n",
"This notebook demonstrates an easy way to load a LangSmith chat dataset fine-tune a model on that data.\n",
"This notebook demonstrates an easy way to load a LangSmith chat dataset and fine-tune a model on that data.\n",
"The process is simple and comprises 3 steps.\n",
"\n",
"1. Create the chat dataset.\n",

View File

@@ -16,7 +16,7 @@
"\n",
"## 1. Create message dump\n",
"\n",
"Currently (2023/08/23) this loader best supports a zip directory of files in the format generated by exporting your a direct message conversation from Slack. Follow up-to-date instructions from slack on how to do so.\n",
"Currently (2023/08/23), this loader best supports a zip directory of files in the format generated by exporting your a direct message conversation from Slack. Follow the up-to-date instructions from slack on how to do so.\n",
"\n",
"We have an example in the LangChain repo."
]
@@ -43,7 +43,7 @@
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"Provide the loader with the file path to the zip directory. You can optionally specify the user id that maps to an ai message as well an configure whether to merge message runs."
"Provide the loader with the file path to the zip directory. You can optionally specify the user id that maps to an ai message as well as configure whether to merge message runs."
]
},
{

View File

@@ -10,7 +10,7 @@
"This notebook shows how to use the Telegram chat loader. This class helps map exported Telegram conversations to LangChain chat messages.\n",
"\n",
"The process has three steps:\n",
"1. Export the chat .txt file by copying chats from the Telegram app and pasting them in a file on your local computer\n",
"1. Export the chat .txt file by copying chats from the Telegram app and pasting them in a file on your local computer\n",
"2. Create the `TelegramChatLoader` with the file path pointed to the json file or directory of JSON files\n",
"3. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion. Optionally use `merge_chat_runs` to combine message from the same sender in sequence, and/or `map_ai_messages` to convert messages from the specified sender to the \"AIMessage\" class.\n",
"\n",
@@ -92,7 +92,7 @@
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"All that's required is the file path. You can optionally specify the user name that maps to an ai message as well an configure whether to merge message runs."
"All that's required is the file path. You can optionally specify the user name that maps to an ai message as well as configure whether to merge message runs."
]
},
{

View File

@@ -13,7 +13,7 @@
"\n",
"\n",
"The process has five steps:\n",
"1. Open your chat in the WeChat desktop app. Select messages you need by mouse-dragging or right-click. Due to restrictions, you can select up to 100 messages once a time. `CMD`/`Ctrl` + `C` to copy.\n",
"1. Open your chat in the WeChat desktop app. Select messages you need by mouse-dragging or right-click. Due to restrictions, you can select up to 100 messages at a time. `CMD`/`Ctrl` + `C` to copy.\n",
"2. Create the chat .txt file by pasting selected messages in a file on your local computer.\n",
"3. Copy the chat loader definition from below to a local file.\n",
"4. Initialize the `WeChatChatLoader` with the file path pointed to the text file.\n",

View File

@@ -152,7 +152,7 @@
"id": "4a93dc2a",
"metadata": {},
"source": [
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also you the `lazy_load` method which returns an iterator instead:"
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also use the `lazy_load` method which returns an iterator instead:"
]
},
{
@@ -170,7 +170,7 @@
"id": "3a124086",
"metadata": {},
"source": [
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different, pass in a record_handler function when creating the loader:"
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different way, pass in a record_handler function when creating the loader:"
]
},
{

View File

@@ -131,7 +131,7 @@
"id": "4a93dc2a",
"metadata": {},
"source": [
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also you the `lazy_load` method which returns an iterator instead:"
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also use the `lazy_load` method which returns an iterator instead:"
]
},
{

View File

@@ -133,7 +133,7 @@
"id": "4a93dc2a",
"metadata": {},
"source": [
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also you the `lazy_load` method which returns an iterator instead:"
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also use the `lazy_load` method which returns an iterator instead:"
]
},
{

View File

@@ -50,11 +50,11 @@
"\n",
"5) Setup any source you wish.\n",
"\n",
"6) Set destination as Local JSON, with specified destination path - lets say `/json_data`. Set up manual sync.\n",
"6) Set destination as Local JSON, with specified destination path - let's say `/json_data`. Set up manual sync.\n",
"\n",
"7) Run the connection.\n",
"\n",
"7) To see what files are create, you can navigate to: `file:///tmp/airbyte_local`\n",
"7) To see what files are created, you can navigate to: `file:///tmp/airbyte_local`\n",
"\n",
"8) Find your data and copy path. That path should be saved in the file variable below. It should start with `/tmp/airbyte_local`\n"
]

View File

@@ -138,7 +138,7 @@
"id": "4a93dc2a",
"metadata": {},
"source": [
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also you the `lazy_load` method which returns an iterator instead:"
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also use the `lazy_load` method which returns an iterator instead:"
]
},
{
@@ -156,7 +156,7 @@
"id": "3a124086",
"metadata": {},
"source": [
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different, pass in a record_handler function when creating the loader:"
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different way, pass in a record_handler function when creating the loader:"
]
},
{

View File

@@ -134,7 +134,7 @@
"id": "4a93dc2a",
"metadata": {},
"source": [
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also you the `lazy_load` method which returns an iterator instead:"
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also use the `lazy_load` method which returns an iterator instead:"
]
},
{
@@ -152,7 +152,7 @@
"id": "3a124086",
"metadata": {},
"source": [
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different, pass in a record_handler function when creating the loader:"
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different way, pass in a record_handler function when creating the loader:"
]
},
{

View File

@@ -131,7 +131,7 @@
"id": "4a93dc2a",
"metadata": {},
"source": [
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also you the `lazy_load` method which returns an iterator instead:"
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also use the `lazy_load` method which returns an iterator instead:"
]
},
{
@@ -149,7 +149,7 @@
"id": "3a124086",
"metadata": {},
"source": [
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different, pass in a record_handler function when creating the loader:"
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different way, pass in a record_handler function when creating the loader:"
]
},
{

View File

@@ -134,7 +134,7 @@
"id": "4a93dc2a",
"metadata": {},
"source": [
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also you the `lazy_load` method which returns an iterator instead:"
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also use the `lazy_load` method which returns an iterator instead:"
]
},
{
@@ -152,7 +152,7 @@
"id": "3a124086",
"metadata": {},
"source": [
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different, pass in a record_handler function when creating the loader:"
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different way, pass in a record_handler function when creating the loader:"
]
},
{

View File

@@ -135,7 +135,7 @@
"id": "4a93dc2a",
"metadata": {},
"source": [
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also you the `lazy_load` method which returns an iterator instead:"
"As `load` returns a list, it will block until all documents are loaded. To have better control over this process, you can also use the `lazy_load` method which returns an iterator instead:"
]
},
{
@@ -153,7 +153,7 @@
"id": "3a124086",
"metadata": {},
"source": [
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different, pass in a record_handler function when creating the loader:"
"Keep in mind that by default the page content is empty and the metadata object contains all the information from the record. To create documents in a different way, pass in a record_handler function when creating the loader:"
]
},
{

View File

@@ -46,7 +46,7 @@
"metadata": {},
"source": [
"## Basic Usage\n",
"To instantiate the loader you'll need a SQL query to execute, your MaxCompute endpoint and project name, and you access ID and secret access key. The access ID and secret access key can either be passed in direct via the `access_id` and `secret_access_key` parameters or they can be set as environment variables `MAX_COMPUTE_ACCESS_ID` and `MAX_COMPUTE_SECRET_ACCESS_KEY`."
"To instantiate the loader you'll need a SQL query to execute, your MaxCompute endpoint and project name, and your access ID and secret access key. The access ID and secret access key can either be passed in direct via the `access_id` and `secret_access_key` parameters or they can be set as environment variables `MAX_COMPUTE_ACCESS_ID` and `MAX_COMPUTE_SECRET_ACCESS_KEY`."
]
},
{

View File

@@ -45,7 +45,7 @@
"source": [
"## Sample 1\n",
"\n",
"The first example uses a local file, which internally will be send to Amazon Textract sync API [DetectDocumentText](https://docs.aws.amazon.com/textract/latest/dg/API_DetectDocumentText.html). \n",
"The first example uses a local file, which internally will be sent to Amazon Textract sync API [DetectDocumentText](https://docs.aws.amazon.com/textract/latest/dg/API_DetectDocumentText.html). \n",
"\n",
"Local files or URL endpoints like HTTP:// are limited to one page documents for Textract.\n",
"Multi-page documents have to reside on S3. This sample file is a jpeg."
@@ -218,7 +218,7 @@
"source": [
"## Sample 4\n",
"\n",
"You have the option to pass an additional parameter called `linearization_config` to the AmazonTextractPDFLoader which will determine how the the text output will be linearized by the parser after Textract runs."
"You have the option to pass an additional parameter called `linearization_config` to the AmazonTextractPDFLoader which will determine how the text output will be linearized by the parser after Textract runs."
]
},
{
@@ -247,7 +247,7 @@
"id": "b3e41b4d-b159-4274-89be-80d8159134ef",
"metadata": {},
"source": [
"## Using the AmazonTextractPDFLoader in an LangChain chain (e. g. OpenAI)\n",
"## Using the AmazonTextractPDFLoader in a LangChain chain (e.g. OpenAI)\n",
"\n",
"The AmazonTextractPDFLoader can be used in a chain the same way the other loaders are used.\n",
"Textract itself does have a [Query feature](https://docs.aws.amazon.com/textract/latest/dg/API_Query.html), which offers similar functionality to the QA chain in this sample, which is worth checking out as well."

View File

@@ -13,7 +13,7 @@
"\n",
"Headless mode means that the browser is running without a graphical user interface.\n",
"\n",
"In the below example we'll use the `AsyncChromiumLoader` to loads the page, and then the [`Html2TextTransformer`](/docs/integrations/document_transformers/html2text/) to strip out the HTML tags and other semantic information."
"In the below example we'll use the `AsyncChromiumLoader` to load the page, and then the [`Html2TextTransformer`](/docs/integrations/document_transformers/html2text/) to strip out the HTML tags and other semantic information."
]
},
{
@@ -79,7 +79,7 @@
"id": "7eb5e6aa",
"metadata": {},
"source": [
"Now let's transform the documents into a more readable syntax using the transformer:"
"Now let's transform the documents into a more readable format using the transformer:"
]
},
{

View File

@@ -40,7 +40,7 @@
"# If you need to use the proxy to make web requests, for example using http_proxy/https_proxy environmental variables,\n",
"# please set trust_env=True explicitly here as follows:\n",
"# loader = AsyncHtmlLoader(urls, trust_env=True)\n",
"# Otherwise, loader.load() may stuck becuase aiohttp session does not recognize the proxy by default\n",
"# Otherwise, loader.load() may get stuck because aiohttp session does not recognize the proxy by default\n",
"docs = loader.load()"
]
},

View File

@@ -68,7 +68,7 @@
"metadata": {},
"source": [
"## Specifying a prefix\n",
"You can also specify a prefix for more finegrained control over what files to load."
"You can also specify a prefix for more fine-grained control over what files to load."
]
},
{

View File

@@ -107,7 +107,7 @@
"metadata": {},
"source": [
"## Specifying a glob pattern\n",
"You can also specify a glob pattern for more finegrained control over what files to load. In the example below, only files with a `pdf` extension will be loaded."
"You can also specify a glob pattern for more fine-grained control over what files to load. In the example below, only files with a `pdf` extension will be loaded."
]
},
{

View File

@@ -79,7 +79,7 @@
"metadata": {},
"source": [
"## Specifying a prefix\n",
"You can also specify a prefix for more finegrained control over what files to load."
"You can also specify a prefix for more fine-grained control over what files to load."
]
},
{

View File

@@ -9,7 +9,7 @@
"\n",
">[Azure Files](https://learn.microsoft.com/en-us/azure/storage/files/storage-files-introduction) offers fully managed file shares in the cloud that are accessible via the industry standard Server Message Block (`SMB`) protocol, Network File System (`NFS`) protocol, and `Azure Files REST API`.\n",
"\n",
"This covers how to load document objects from a Azure Files."
"This covers how to load document objects from Azure Files."
]
},
{

View File

@@ -81,7 +81,7 @@
"metadata": {},
"source": [
"## Specifying a prefix\n",
"You can also specify a prefix for more finegrained control over what files to load -including loading all files from a specific folder-."
"You can also specify a prefix for more fine-grained control over what files to load -including loading all files from a specific folder-."
]
},
{

View File

@@ -0,0 +1,151 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Outline Document Loader\n",
"\n",
">[Outline](https://www.getoutline.com/) is an open-source collaborative knowledge base platform designed for team information sharing.\n",
"\n",
"This notebook shows how to obtain langchain Documents from your Outline collections."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overview\n",
"The [Outline Document Loader](https://github.com/10Pines/langchain-outline) can be used to load Outline collections as LangChain Documents for integration into Retrieval-Augmented Generation (RAG) workflows.\n",
"\n",
"This example demonstrates:\n",
"\n",
"* Setting up a Document Loader to load all documents from an Outline instance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup\n",
"Before starting, ensure you have the following environment variables set:\n",
"\n",
"* OUTLINE_API_KEY: Your API key for authenticating with your Outline instance (https://www.getoutline.com/developers#section/Authentication).\n",
"* OUTLINE_INSTANCE_URL: The URL (including protocol) of your Outline instance."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OUTLINE_API_KEY\"] = \"ol_api_xyz123\"\n",
"os.environ[\"OUTLINE_INSTANCE_URL\"] = \"https://app.getoutline.com\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialization\n",
"To initialize the OutlineLoader, you need the following parameters:\n",
"\n",
"* outline_base_url: The URL of your outline instance (or it will be taken from the environment variable).\n",
"* outline_api_key: Your API key for authenticating with your Outline instance (or it will be taken from the environment variable).\n",
"* outline_collection_id_list: List of collection ids to be retrieved. If None all will be retrieved.\n",
"* page_size: Because the Outline API uses paginated results you can configure how many results (documents) per page will be retrieved per API request. If this is not specified a default will be used."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instantiation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Option 1: Using environment variables (ensure they are set)\n",
"from langchain_outline.document_loaders.outline import OutlineLoader\n",
"\n",
"loader = OutlineLoader()\n",
"\n",
"# Option 2: Passing parameters directly\n",
"loader = OutlineLoader(\n",
" outline_base_url=\"YOUR_OUTLINE_URL\", outline_api_key=\"YOUR_API_KEY\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load\n",
"To load and return all documents available in the Outline instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loader.load()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Lazy Load\n",
"The lazy_load method allows you to iteratively load documents from the Outline collection, yielding each document as it is fetched:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loader.lazy_load()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `Outline` features and configurations head to the API reference: https://www.getoutline.com/developers"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,12 +1,25 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Rockset\n",
"\n",
"⚠️ **Deprecation Notice: Rockset Integration Disabled**\n",
"> \n",
"> As of June 2024, Rockset has been [acquired by OpenAI](https://openai.com/index/openai-acquires-rockset/) and **shut down its public services**.\n",
"> \n",
"> Rockset was a real-time analytics database known for world-class indexing and retrieval. Now, its core team and technology are being integrated into OpenAI's infrastructure to power future AI products.\n",
"> \n",
"> This LangChain integration is no longer functional and is preserved **for archival purposes only**."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"> Rockset is a real-time analytics database which enables queries on massive, semi-structured data without operational burden. With Rockset, ingested data is queryable within one second and analytical queries against that data typically execute in milliseconds. Rockset is compute optimized, making it suitable for serving high concurrency applications in the sub-100TB range (or larger than 100s of TBs with rollups).\n",
"\n",
"This notebook demonstrates how to use Rockset as a document loader in langchain. To get started, make sure you have a Rockset account and an API key available.\n",

View File

@@ -75,7 +75,7 @@
"metadata": {},
"source": [
"## Specifying a prefix\n",
"You can also specify a prefix for more finegrained control over what files to load."
"You can also specify a prefix for more fine-grained control over what files to load."
]
},
{

View File

@@ -51,7 +51,7 @@
"from langchain.globals import set_llm_cache\n",
"from langchain_openai import OpenAI\n",
"\n",
"# To make the caching really obvious, lets use a slower and older model.\n",
"# To make the caching really obvious, let's use a slower and older model.\n",
"# Caching supports newer chat models as well.\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\", n=2, best_of=2)"
]

View File

@@ -128,7 +128,7 @@
"\n",
"You will have to also initialize the model id and if needed, the model version id. Some models have many versions, you can choose the one appropriate for your task.\n",
" \n",
"Alternatively, You can use the model_url (for ex: \"https://clarifai.com/anthropic/completion/models/claude-v2\") for intialization."
"Alternatively, You can use the model_url (for ex: \"https://clarifai.com/anthropic/completion/models/claude-v2\") for initialization."
]
},
{

View File

@@ -211,7 +211,7 @@
"id": "b6e7b9cf-8ce5-4f87-b4bf-100321ad2dd1",
"metadata": {},
"source": [
"***The result is usually closer to the JSON object of the schema definition, rather than a json object conforming to the schema. Lets try to enforce proper output.***"
"***The result is usually closer to the JSON object of the schema definition, rather than a json object conforming to the schema. Let's try to enforce proper output.***"
]
},
{

Some files were not shown because too many files have changed in this diff Show More