Compare commits

...

973 Commits

Author SHA1 Message Date
Harrison Chase
412397ad55 bump version to 136 (#2634) 2023-04-09 13:08:05 -07:00
Harrison Chase
7aba18ea77 Harrison/docs cleanup (#2633) 2023-04-09 12:55:22 -07:00
Jan
e57f0e38c1 Fix small typo in SemanticSimilarityExampleSelector (#2629) 2023-04-09 12:53:02 -07:00
Nick Gibb
63175eb696 Fix typo in docs (#2601)
Minor typo in the docs ("reccomended" -> "recommended")

Co-authored-by: Nick Gibb <nick.gibb@bluedot.global>
2023-04-09 12:52:35 -07:00
blob42
54b1645d13 fix: ReadTheDocs loader main content filter (#2609)
It seems the main element wrapper changed in ReadTheDocs website or for
some reason it's different for me ?

This adds an extra filter for the main content wrapper if the first one
returns no text.


![2023-04-09-043315_1178x873_scrot](https://user-images.githubusercontent.com/210457/230751369-24b69cb9-1601-4540-b5f3-d115165f55f6.jpg)

Co-authored-by: blob42 <spike@w530>
2023-04-09 12:51:56 -07:00
Davit Buniatyan
aaac7071a3 Deep Lake retriever example analyzing Twitter the-algorithm source code (#2602)
Improvements to Deep Lake Vector Store
- much faster view loading of embeddings after filters with
`fetch_chunks=True`
- 2x faster ingestion
- use np.float32 for embeddings to save 2x storage, LZ4 compression for
text and metadata storage (saves up to 4x storage for text data)
- user defined functions as filters

Docs
- Added retriever full example for analyzing twitter the-algorithm
source code with GPT4
- Added a use case for code analysis (please let us know your thoughts
how we can improve it)

---------

Co-authored-by: Davit Buniatyan <d@activeloop.ai>
2023-04-09 12:29:47 -07:00
William FH
5c0c5fafb2 Multi-Hop / Multi-Spec LLM Chain (#2549)
Add a notebook showing how to make a chain that composes multiple
OpenAPI Endpoint operations to accomplish tasks.
2023-04-09 12:29:16 -07:00
Jan
d2f8ddab10 Fix typo in PromptTemplate from_examples (#2628) 2023-04-09 12:28:50 -07:00
ecneladis
9a49f5763d Add missing comma in async_agent.ipynb (#2614) 2023-04-09 12:28:28 -07:00
Jan
166624d005 Fix typo in error message (#2622) 2023-04-09 12:25:49 -07:00
Girish Sharma
9aed565f13 Fix missing import in AzureOpenAI embeddings example (#2625)
## Why this PR?

Fixes #2624
There's a missing import statement in AzureOpenAI embeddings example.

## What's new in this PR?

- Import `OpenAIEmbeddings` before creating it's object.

## How it's tested?
- By running notebook and creating embedding object.

Signed-off-by: letmerecall <girishsharma001@gmail.com>
2023-04-09 12:25:31 -07:00
Tommertom
0f5d3b3390 Typo docs - Update data_augmented_question_answering.ipynb propriterary-> proprietary (#2626)
Minor typo propritary -> proprietary
2023-04-09 12:24:53 -07:00
Nuno Campos
5376799a23 Allow recovering from JSONDecoder errors in StructuredOutputParser (#2616) 2023-04-09 07:32:49 -07:00
Nuno Campos
6f39e88a2c Add AsyncIteratorCallbackHandler (#2329) 2023-04-08 14:34:55 -07:00
Harrison Chase
6e4e7d2637 bump version to 135 (#2600) 2023-04-08 13:46:35 -07:00
rkeshwani
5e57496225 #2595 ChromaDB: Add ability to adjust metadata for indexes upon creating co… (#2597)
Referencing #2595
Added optional default parameter to adjust index metadata upon
collection creation per chroma code

ce0bc89777/chromadb/api/local.py (L74)

Allowing for user to have the ability to adjust distance calculation
functions.
2023-04-08 13:31:17 -07:00
Harrison Chase
b9e5b27a99 Harrison/motorhead (#2599)
Co-authored-by: James O'Dwyer <100361543+softboyjimbo@users.noreply.github.com>
2023-04-08 13:27:20 -07:00
Johnny Lim
79a44c8225 Remove unnecessary question mark in link in README (#2589)
This PR removes an unnecessary question mark in link in the `README.md`
file.
2023-04-08 12:41:25 -07:00
Harrison Chase
2f49c96532 Harrison/redis (#2588)
Co-authored-by: Tyler Hutcherson <tyler.hutcherson@redis.com>
2023-04-08 10:55:52 -07:00
Yuchu Luo
40469eef7f fix temperature parameter not used in chat models (#2558) 2023-04-08 08:47:50 -07:00
Will Henchy
125afb51d7 Add shared Google Drive folder support (#2562)
closes #1634

Adds support for loading files from a shared Google Drive folder to
`GoogleDriveLoader`. Shared drives are commonly used by businesses on
their Google Workspace accounts (this is my particular use case).
2023-04-08 08:46:55 -07:00
Alex Rad
7bf5b0ccd3 RWKV: do not propagate model_state between calls (#2565)
RWKV is an RNN with a hidden state that is part of its inference.
However, the model state should not be carried across uses and it's a
bug to do so.

This resets the state for multiple invocations
2023-04-08 08:36:16 -07:00
Venky
7a4e1b72a8 Fix docs links (#2572)
Fix broken links in documentation.
2023-04-08 08:33:28 -07:00
Roy Xue
f5afb60116 doc: change comment with correct name (#2580)
In this comment, it should be **ConversationalRetrievalChain** instead
of **ChatVectorDBChain**
2023-04-08 08:31:33 -07:00
Shishin Mo
f7f118e021 use openai_organization as argument (#2566)
Added support for passing the openai_organization as an argument, as it
was only supported by the environment variable but openai_api_key was
supported by both environment variables and arguments.

`ChatOpenAI(temperature=0, model_name="gpt-4", openai_api_key="sk-****",
openai_organization="org-****")`
2023-04-07 22:02:02 -07:00
akmhmgc
544cc7f395 Modified doc (#2568)
# description
Remove unnecessary codes and made the output easier to check in docs :)
2023-04-07 22:01:53 -07:00
sergerdn
cd9336469e fix: missed deps integrations tests (#2560)
Almost all integration tests have failed, but we haven't encountered any
import errors yet. Some tests failed due to lazy import issues. It
doesn't seem like a problem to resolve some of these errors in the next
PR.
I have a headache from resolving conflicts with `deeplake` and `boto3`,
so I will temporarily comment out `boto3`.


fix https://github.com/hwchase17/langchain/issues/2426
2023-04-07 20:43:53 -07:00
Kacper Łukawski
d8967e28d0 Upgrade Qdrant to 1.1.2 (#2554)
This is a minor upgrade for Qdrant. We made a small bugfix in the local
mode, so it might also be good to upgrade Qdrant for LangChain users.
2023-04-07 12:24:32 -07:00
joaoareis
b4d6a425a2 Fix typo in ChatGPT plugins (#2553)
This PR adds a `,` that was missing in the ChatGPT plugins examples.
2023-04-07 11:17:15 -07:00
Ikko Eltociear Ashimine
fc1d48814c fix typo in summary_buffer.ipynb (#2547)
ouput -> output
2023-04-07 11:16:53 -07:00
Duncan Brown
9b78bb7393 Fix a typo in the SQL agent prompt prefix (#2552)
Fix the grammar in this sentence, and remove the redundant "few"

"only ask for a the few relevant columns" -> "only ask for the relevant
columns"
2023-04-07 11:15:47 -07:00
Harrison Chase
a32c85951e agent docs (#2551) 2023-04-07 10:01:23 -07:00
Harrison Chase
95e780d6f9 bump version 134 (#2544) 2023-04-07 09:02:19 -07:00
Harrison Chase
247a88f2f9 Harrison/move eval (#2533) 2023-04-07 07:53:13 -07:00
sergerdn
6dc86ad48f feat: add pytest-vcr for recording HTTP interactions in integration tests (#2445)
Using `pytest-vcr` in integration tests has several benefits. Firstly,
it removes the need to mock external services, as VCR records and
replays HTTP interactions on the fly. Secondly, it simplifies the
integration test setup by eliminating the need to set up and tear down
external services in some cases. Finally, it allows for more reliable
and deterministic integration tests by ensuring that HTTP interactions
are always replayed with the same response.
Overall, `pytest-vcr` is a valuable tool for simplifying integration
test setup and improving their reliability

This commit adds the `pytest-vcr` package as a dependency for
integration tests in the `pyproject.toml` file. It also introduces two
new fixtures in `tests/integration_tests/conftest.py` files for managing
cassette directories and VCR configurations.

In addition, the
`tests/integration_tests/vectorstores/test_elasticsearch.py` file has
been updated to use the `@pytest.mark.vcr` decorator for recording and
replaying HTTP interactions.

Finally, this commit removes the `documents` fixture from the
`test_elasticsearch.py` file and replaces it with a new fixture defined
in `tests/integration_tests/vectorstores/conftest.py` that yields a list
of documents to use in any other tests.

This also includes my second attempt to fix issue :
https://github.com/hwchase17/langchain/issues/2386

Maybe related https://github.com/hwchase17/langchain/issues/2484
2023-04-07 07:28:57 -07:00
tmyjoe
c9f93f5f74 fix: token counting for chat openai. (#2543)
I noticed that the value of get_num_tokens_from_messages in `ChatOpenAI`
is always one less than the response from OpenAI's API. Upon checking
the official documentation, I found that it had been updated, so I made
the necessary corrections.
Then now I got the same value from OpenAI's API.


d972e7482e (diff-2d4485035b3a3469802dbad11d7b4f834df0ea0e2790f418976b303bc82c1874L474)
2023-04-07 07:27:03 -07:00
SangamSwadiK
8cded3fdad fix typo (#2532)
1) Any breaking changes  ?
None

2) What does this do ?
Fix typo in QA eval

cc @hwchase17
2023-04-07 07:25:22 -07:00
Ankush Gola
dca21078ad Run tools concurrently in _atake_next_step (#2537)
small refactor to allow this
2023-04-07 07:23:03 -07:00
Ankush Gola
6dbd29e440 add async vector operations in VectorStore base class (#2535)
not currently implemented by any subclasses
2023-04-07 07:22:14 -07:00
akmhmgc
481de8df7f Modify docs (#2539)
# description
Modified doc according to recently added `AgentType`.
2023-04-07 07:21:38 -07:00
Harrison Chase
a31c9511e8 Harrison/redis improvements (#2528)
Co-authored-by: Tyler Hutcherson <tyler.hutcherson@redis.com>
2023-04-06 23:21:22 -07:00
Hamza Kyamanywa
ec489599fd Correct typo in documentation for word 'therefore' (#2529)
This PR corrects a typo in the langchain
[documentation.](https://python.langchain.com/en/latest/modules/indexes.html#:~:text=We%20therefor%20have%20a%20concept)
It corrects the word `therefor` to `therefore`
2023-04-06 23:20:30 -07:00
Harrison Chase
3d0449bb45 agent tool retrieval (#2530) 2023-04-06 23:20:10 -07:00
William FH
632c65d64b Add to notebook to assist in ground truth question generation (#2523)
At the bottom of the notebook, continue to show how to generate example
test cases with the assistance of an LLM
2023-04-06 23:08:55 -07:00
Harrison Chase
15cdfa9e7f Harrison/table index (#2526)
Co-authored-by: Alvaro Sevilla <alvaro@chainalysis.com>
2023-04-06 23:03:09 -07:00
Harrison Chase
704b0feb38 Harrison/allow org none (#2527) 2023-04-06 23:00:42 -07:00
Alex Iribarren
aecd1c8ee3 Gitbook enhancements (#2279)
The gitbook importer had some issues while trying to ingest a particular
site, these commits allowed it to work as expected. The last commit
(06017ff) is to open the door to extending this class for other
documentation formats (which will come in a future PR).
2023-04-06 22:55:07 -07:00
Harrison Chase
58a93f88da Harrison/entity store (#2525)
Co-authored-by: Alex Iribarren <alex.iribarren@gmail.com>
2023-04-06 22:54:38 -07:00
Vashisht Madhavan
aa439ac2ff Adding an in-context QA evaluation chain + chain of thought reasoning chain for improved accuracy (#2444)
Right now, eval chains require an answer for every question. It's
cumbersome to collect this ground truth so getting around this issue
with 2 things:

* Adding a context param in `ContextQAEvalChain` and simply evaluating
if the question is answered accurately from context
* Adding chain of though explanation prompting to improve the accuracy
of this w/o GT.

This also gets to feature parity with openai/evals which has the same
contextual eval w/o GT.

TODO in follow-up:
* Better prompt inheritance. No need for seperate prompt for CoT
reasoning. How can we merge them together

---------

Co-authored-by: Vashisht Madhavan <vashishtmadhavan@Vashs-MacBook-Pro.local>
2023-04-06 22:32:41 -07:00
AeroXi
e131156805 set default embedding max token size (#2330)
#991 has already implemented this convenient feature to prevent
exceeding max token limit in embedding model.

> By default, this function is deactivated so as not to change the
previous behavior. If you specify something like 8191 here, it will work
as desired.
According to the author, this is not set by default. 
Until now, the default model in OpenAIEmbeddings's max token size is
8191 tokens, no other openai model has a larger token limit.
So I believe it will be better to set this as default value, other wise
users may encounter this error and hard to solve it.
2023-04-06 22:32:24 -07:00
Fabian Venturini Cabau
0316900d2f feat: implements similarity_search_by_vector on Weaviate (#2522)
This PR implements `similarity_search_by_vector` in the Weaviate
vectorstore.
2023-04-06 22:27:47 -07:00
Harrison Chase
5c64b86ba3 Harrison/weaviate retriever (#2524)
Co-authored-by: Erika Cardenas <110841617+erika-cardenas@users.noreply.github.com>
2023-04-06 22:27:37 -07:00
Tiago De Gaspari
c2f21a519f Add support to set up openai organizations (#2514)
Add support for defining the organization of OpenAI, similarly to what
is done in the reference code below:

```
import os
import openai
openai.organization = os.getenv("OPENAI_ORGANIZATION")
openai.api_key = os.getenv("OPENAI_API_KEY")
```
2023-04-06 22:23:16 -07:00
William FH
629fda3957 Use JSON rather than JSON5 (#2520)
Evaluation so far has shown that agents do a reasonable job of emitting
`json` blocks as arguments when cued (instead of typescript), and `json`
permits the `strict=False` flag to permit control characters, which are
likely to appear in the response in particular.

This PR makes this change to the request and response synthesizer
chains, and fixes the temperature to the OpenAI agent in the eval
notebook. It also adds a `raise_error = False` flag in the notebook to
facilitate debugging
2023-04-06 21:14:12 -07:00
William FH
f8e4048cd8 Add an Example Evaluation Notebook for the API Chain (#2516)
Taking the Klarna API as an example, uses evaluation chain's to judge
the quality of the request and response synthesizers based on a small
set of curated queries.

Also updates intermediate steps for chain to emit a dict so each step
can be keyed for lookup


![image](https://user-images.githubusercontent.com/13333726/230505771-5cdb4de4-6fe7-4f54-b944-f29d438fa42c.png)
2023-04-06 15:58:41 -07:00
Alex Rad
bd780a8223 Add support for rwkv (#2422)
This adds support for running RWKV with pytorch. 

https://github.com/hwchase17/langchain/issues/2398

This does not yet support  rwkv.cpp
2023-04-06 14:41:06 -07:00
Harrison Chase
7149d33c71 max time limit for agent (#2513) 2023-04-06 14:38:34 -07:00
William FH
f240651bd8 Add Request body (#2507)
This still doesn't handle the following

- non-JSON media types
- anyOf, allOf, oneOf's

And doesn't emit the typescript definitions for referred types yet, but
that can be saved for a separate PR.

Also, we could have better support for Swagger 2.0 specs and OpenAPI
3.0.3 (can use the same lib for the latter) recommend offline conversion
for now.
2023-04-06 13:02:42 -07:00
Zach Jones
13d1df2140 Feature: AgentExecutor execution time limit (#2399)
`AgentExecutor` already has support for limiting the number of
iterations. But the amount of time taken for each iteration can vary
quite a bit, so it is difficult to place limits on the execution time.
This PR adds a new field `max_execution_time` to the `AgentExecutor`
model. When called asynchronously, the agent loop is wrapped in an
`asyncio.timeout()` context which triggers the early stopping response
if the time limit is reached. When called synchronously, the agent loop
checks for both the max_iteration limit and the time limit after each
iteration.

When used asynchronously `max_execution_time` gives really tight control
over the max time for an execution chain. When used synchronously, the
chain can unfortunately exceed max_execution_time, but it still gives
more control than trying to estimate the number of max_iterations needed
to cap the execution time.

---------

Co-authored-by: Zachary Jones <zjones@zetaglobal.com>
2023-04-06 12:54:32 -07:00
qued
5b34931948 docs: update unstructured detectron install instructions (#2498)
Updated recommended `detectron2` version to install for use with
`unstructured`.

Should now match version in [Unstructured
README](https://github.com/Unstructured-IO/unstructured/blob/main/README.md#eight_pointed_black_star-quick-start).
2023-04-06 12:48:19 -07:00
Timon Ruban
f0926bad9f Fix docstring in indexes/getting-started (#2452)
Fixed a letter. That's all.
2023-04-06 12:48:08 -07:00
Davit Buniatyan
b4914888a7 Deep Lake upgrade to include attribute search, distance metrics, returning scores and MMR (#2455)
### Features include

- Metadata based embedding search
- Choice of distance metric function (`L2` for Euclidean, `L1` for
Nuclear, `max` L-infinity distance, `cos` for cosine similarity, 'dot'
for dot product. Defaults to `L2`
- Returning scores
- Max Marginal Relevance Search
- Deleting samples from the dataset

### Notes
- Added numerous tests, let me know if you would like to shorten them or
make smarter

---------

Co-authored-by: Davit Buniatyan <d@activeloop.ai>
2023-04-06 12:47:33 -07:00
Sam Weaver
2ffb90b161 Extend opensearch to better support existing instances (#2500) (#2509)
Closes #2500.
2023-04-06 12:45:56 -07:00
Matt Royer
ad87584c35 Fix 'embeddings is not defined' (#2468)
Nothing major. The docs just give an error when you try to use
`embeddings` instead of `llama`.
2023-04-06 12:45:45 -07:00
leo-gan
fd69cc7e42 Removed duplicate BaseModel dependencies (#2471)
Removed duplicate BaseModel dependencies in class inheritances.
Also, sorted imports by `isort`.
2023-04-06 12:45:16 -07:00
felix-wang
b6a101d121 fix: add jina jupyter notebook (#2477)
As the title, add the missing link to the example notebook.
2023-04-06 12:42:01 -07:00
Tim Ellison
6f47133d8a Minor doc typo (#2492) 2023-04-06 12:41:40 -07:00
Jimmy Comfort
1dfb6a2a44 Update gpt4all example with model param (#2499)
I am pretty sure that the documentation here should point to `model`
instead of `model_path` based on the documentation here:


https://github.com/hwchase17/langchain/blob/master/langchain/llms/gpt4all.py#L26
2023-04-06 12:38:26 -07:00
Matt Robinson
270384fb44 fix: pass unstructured kwargs down in all unstructured loaders (#2506)
### Summary

#1667 updated several Unstructured loaders to accept
`unstructured_kwargs` in the `__init__` function. However, the previous
PR did not add this functionality to every Unstructured loader. This PR
ensures `unstructured_kwargs` are passed in all remaining Unstructured
loaders.
2023-04-06 12:29:52 -07:00
Harrison Chase
c913acdb4c bump version to 133 (#2503) 2023-04-06 09:53:57 -07:00
Harrison Chase
1e19e004af Harrison/openapi spec (#2474)
Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>
2023-04-06 09:47:37 -07:00
Luk Regarde
60c837c58a Fix WhatsAppChatLoader regex pattern for 24 hour time format (#2458)
Fix for 24 hour time format bug. Now whatsapp regex is able to parse
either 12 or 24 hours time format.

Linked [issue](https://github.com/hwchase17/langchain/issues/2457).
2023-04-06 09:45:14 -07:00
Rostyslav Kinash
3acf423de0 Simple typo fix in openapi agent toolkit (#2502)
Just typo fix
2023-04-06 09:44:26 -07:00
Harrison Chase
26314d7004 Harrison/openapi parser (#2461)
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
2023-04-05 22:19:09 -07:00
Harrison Chase
a9e637b8f5 rfc: multi action agent (#2362) 2023-04-05 15:28:48 -07:00
Matt Robinson
1140bd79a0 feat: adds support for MSFT Outlook files in UnstructuredEmailLoader (#2450)
### Summary

Adds support for MSFT Outlook emails saved in `.msg` format to
`UnstructuredEmailLoader`. Works if the user has `unstructured>=0.5.8`
installed.

### Testing

The following tests use the example files under `example-docs` in the
Unstructured repo.

```python
from langchain.document_loaders import UnstructuredEmailLoader

loader = UnstructuredEmailLoader("fake-email.eml")
loader.load()

loader = UnstructuredEmailLoader("fake-email.msg")
loader.load()
```
2023-04-05 15:28:14 -07:00
William FH
007babb363 Add a mock server (#2443)
It's useful to evaluate API Chains against a mock server. This PR makes
an example "robot" server that exposes endpoints for the following:
- Path, Query, and Request Body argument passing
- GET, PUT, and DELETE endpoints exposed OpenAPI spec.


Relies on FastAPI + Uvicorn - I could add to the dev dependencies list
if you'd like
2023-04-05 10:35:46 -07:00
William FH
c9ae0c5808 Add lint_diff command (#2449)
It's helpful for developers to run the linter locally on just the
changed files.

This PR adds support for a `lint_diff` command.

Ruff is still run over the entire directory since it's very fast.
2023-04-05 09:34:24 -07:00
Harrison Chase
3d871853df bump version to 132 (#2441) 2023-04-05 07:54:01 -07:00
Harrison Chase
00bc8df640 Harrison/tfidf retriever (#2440) 2023-04-05 07:36:49 -07:00
researchonly
a63cfad558 fixed typo Teplate -> Template (#2433)
fixed a typo in the documentation
2023-04-05 06:56:51 -07:00
Bill Chambers
f0d4f36219 Documentation Error - Typo in Docs - Update custom_mrkl_agent.ipynb (#2437)
Just a small typo in the documentation.
2023-04-05 06:56:39 -07:00
sergerdn
b410dc76aa fix: elasticsearch (#2402)
- Create a new docker-compose file to start an Elasticsearch instance
for integration tests.
- Add new tests to `test_elasticsearch.py` to verify Elasticsearch
functionality.
- Include an optional group `test_integration` in the `pyproject.toml`
file. This group should contain dependencies for integration tests and
can be installed using the command `poetry install --with
test_integration`. Any new dependencies should be added by running
`poetry add some_new_deps --group "test_integration" `

Note:
New tests running in live mode, which involve end-to-end testing of the
OpenAI API. In the future, adding `pytest-vcr` to record and replay all
API requests would be a nice feature for testing process.More info:
https://pytest-vcr.readthedocs.io/en/latest/

Fixes https://github.com/hwchase17/langchain/issues/2386
2023-04-05 06:51:32 -07:00
Ankush Gola
4d730a9bbc improve AsyncCallbackManager (#2410) 2023-04-05 09:31:42 +02:00
Harrison Chase
af7f20fa42 Harrison/elastic search (#2419) 2023-04-04 21:29:06 -07:00
Adam Gutglick
659c67e896 Don't create a new Pinecone index if doesn't exist (#2414)
In the case no pinecone index is specified, or a wrong one is, do not
create a new one. Creating new indexes can cause unexpected costs to
users, and some code paths could cause a new one to be created on each
invocation.
This PR solves #2413.
2023-04-04 20:42:27 -07:00
Andrei
e519a81a05 Update LlamaCpp parameters (#2411)
Add `n_batch` and `last_n_tokens_size` parameters to the LlamaCpp class.
These parameters (epecially `n_batch`) significantly effect performance.
There's also a `verbose` flag that prints system timings on the `Llama`
class but I wasn't sure where to add this as it conflicts with (should
be pulled from?) the LLM base class.
2023-04-04 19:52:33 -07:00
jerwelborn
b026a62bc4 hierarchical planning agent for multi-step queries against larger openapi specs (#2170)
The specs used in chat-gpt plugins have only a few endpoints and have
unrealistically small specifications. By contrast, a spec like spotify's
has 60+ endpoints and is comprised 100k+ tokens.

Here are some impressive traces from gpt-4 that string together
non-trivial sequences of API calls. As noted in `planner.py`, gpt-3 is
not as robust but can be improved with i) better retry, self-reflect,
etc. logic and ii) better few-shots iii) etc. This PR's just a first
attempt probing a few different directions that eventually can be made
more core.
 

`make me a playlist with songs from kind of blue. call it machine
blues.`

```
> Entering new AgentExecutor chain...
Action: api_planner
Action Input: I need to find the right API calls to create a playlist with songs from Kind of Blue and name it Machine Blues
Observation: 1. GET /search to find the album ID for "Kind of Blue".
2. GET /albums/{id}/tracks to get the tracks from the "Kind of Blue" album.
3. GET /me to get the current user's ID.
4. POST /users/{user_id}/playlists to create a new playlist named "Machine Blues" for the current user.
5. POST /playlists/{playlist_id}/tracks to add the tracks from "Kind of Blue" to the newly created "Machine Blues" playlist.
Thought:I have a plan to create the playlist. Now, I will execute the API calls.
Action: api_controller
Action Input: 1. GET /search to find the album ID for "Kind of Blue".
2. GET /albums/{id}/tracks to get the tracks from the "Kind of Blue" album.
3. GET /me to get the current user's ID.
4. POST /users/{user_id}/playlists to create a new playlist named "Machine Blues" for the current user.
5. POST /playlists/{playlist_id}/tracks to add the tracks from "Kind of Blue" to the newly created "Machine Blues" playlist.

> Entering new AgentExecutor chain...
Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/search?q=Kind%20of%20Blue&type=album", "output_instructions": "Extract the id of the first album in the search results"}
Observation: 1weenld61qoidwYuZ1GESA
Thought:Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/albums/1weenld61qoidwYuZ1GESA/tracks", "output_instructions": "Extract the ids of all the tracks in the album"}
Observation: ["7q3kkfAVpmcZ8g6JUThi3o"]
Thought:Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/me", "output_instructions": "Extract the id of the current user"}
Observation: 22rhrz4m4kvpxlsb5hezokzwi
Thought:Action: requests_post
Action Input: {"url": "https://api.spotify.com/v1/users/22rhrz4m4kvpxlsb5hezokzwi/playlists", "data": {"name": "Machine Blues"}, "output_instructions": "Extract the id of the newly created playlist"}
Observation: 48YP9TMcEtFu9aGN8n10lg
Thought:Action: requests_post
Action Input: {"url": "https://api.spotify.com/v1/playlists/48YP9TMcEtFu9aGN8n10lg/tracks", "data": {"uris": ["spotify:track:7q3kkfAVpmcZ8g6JUThi3o"]}, "output_instructions": "Confirm that the tracks were added to the playlist"}
Observation: The tracks were added to the playlist. The snapshot_id is "Miw4NTdmMWUxOGU5YWMxMzVmYmE3ZWE5MWZlYWNkMTc2NGVmNTI1ZjY5".
Thought:I am finished executing the plan.
Final Answer: The tracks from the "Kind of Blue" album have been added to the newly created "Machine Blues" playlist. The playlist ID is 48YP9TMcEtFu9aGN8n10lg.

> Finished chain.

Observation: The tracks from the "Kind of Blue" album have been added to the newly created "Machine Blues" playlist. The playlist ID is 48YP9TMcEtFu9aGN8n10lg.
Thought:I am finished executing the plan and have created the playlist with songs from Kind of Blue, named Machine Blues.
Final Answer: I have created a playlist called "Machine Blues" with songs from the "Kind of Blue" album. The playlist ID is 48YP9TMcEtFu9aGN8n10lg.

> Finished chain.
```

or

`give me a song in the style of tobe nwige`

```
> Entering new AgentExecutor chain...
Action: api_planner
Action Input: I need to find the right API calls to get a song in the style of Tobe Nwigwe

Observation: 1. GET /search to find the artist ID for Tobe Nwigwe.
2. GET /artists/{id}/related-artists to find similar artists to Tobe Nwigwe.
3. Pick one of the related artists and use their artist ID in the next step.
4. GET /artists/{id}/top-tracks to get the top tracks of the chosen related artist.
Thought:


I'm ready to execute the API calls.
Action: api_controller
Action Input: 1. GET /search to find the artist ID for Tobe Nwigwe.
2. GET /artists/{id}/related-artists to find similar artists to Tobe Nwigwe.
3. Pick one of the related artists and use their artist ID in the next step.
4. GET /artists/{id}/top-tracks to get the top tracks of the chosen related artist.

> Entering new AgentExecutor chain...
Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/search?q=Tobe%20Nwigwe&type=artist", "output_instructions": "Extract the artist id for Tobe Nwigwe"}
Observation: 3Qh89pgJeZq6d8uM1bTot3
Thought:Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/artists/3Qh89pgJeZq6d8uM1bTot3/related-artists", "output_instructions": "Extract the ids and names of the related artists"}
Observation: [
  {
    "id": "75WcpJKWXBV3o3cfluWapK",
    "name": "Lute"
  },
  {
    "id": "5REHfa3YDopGOzrxwTsPvH",
    "name": "Deante' Hitchcock"
  },
  {
    "id": "6NL31G53xThQXkFs7lDpL5",
    "name": "Rapsody"
  },
  {
    "id": "5MbNzCW3qokGyoo9giHA3V",
    "name": "EARTHGANG"
  },
  {
    "id": "7Hjbimq43OgxaBRpFXic4x",
    "name": "Saba"
  },
  {
    "id": "1ewyVtTZBqFYWIcepopRhp",
    "name": "Mick Jenkins"
  }
]
Thought:Action: requests_get
Action Input: {"url": "https://api.spotify.com/v1/artists/75WcpJKWXBV3o3cfluWapK/top-tracks?country=US", "output_instructions": "Extract the ids and names of the top tracks"}
Observation: [
  {
    "id": "6MF4tRr5lU8qok8IKaFOBE",
    "name": "Under The Sun (with J. Cole & Lute feat. DaBaby)"
  }
]
Thought:I am finished executing the plan.

Final Answer: The top track of the related artist Lute is "Under The Sun (with J. Cole & Lute feat. DaBaby)" with the track ID "6MF4tRr5lU8qok8IKaFOBE".

> Finished chain.

Observation: The top track of the related artist Lute is "Under The Sun (with J. Cole & Lute feat. DaBaby)" with the track ID "6MF4tRr5lU8qok8IKaFOBE".
Thought:I am finished executing the plan and have the information the user asked for.
Final Answer: The song "Under The Sun (with J. Cole & Lute feat. DaBaby)" by Lute is in the style of Tobe Nwigwe.

> Finished chain.
```

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-04-04 19:49:42 -07:00
jerwelborn
d6d6f322a9 Fix requests wrapper refactor (#2417)
https://github.com/hwchase17/langchain/pull/2367
2023-04-04 18:22:35 -07:00
Harrison Chase
41832042cc Harrison/pinecone hybrid (#2405) 2023-04-04 14:09:57 -07:00
Harrison Chase
2b975de94d add metal retriever (#2244) 2023-04-04 12:17:13 -07:00
Harrison Chase
1f88b11c99 replicate cleanup (#2394) 2023-04-04 12:15:03 -07:00
Harrison Chase
f5da9a5161 cr 2023-04-04 07:26:47 -07:00
Harrison Chase
8a4709582f cr 2023-04-04 07:25:28 -07:00
Harrison Chase
de7afc52a9 cr 2023-04-04 07:23:53 -07:00
Harrison Chase
c7b083ab56 bump version to 131 (#2391) 2023-04-04 07:21:50 -07:00
longgui0318
dc3ac8082b Revision of "elasticearch" spelling problem (#2378)
Revision of "elasticearch" spelling problem

Co-authored-by: gubei <>
2023-04-04 06:59:50 -07:00
Harrison Chase
0a9f04bad9 Harrison/gpt4all (#2366)
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-04-04 06:49:17 -07:00
Harrison Chase
d17dea30ce Harrison/sql views (#2376)
Co-authored-by: Wadih Pazos <wadih@wpazos.com>
Co-authored-by: Wadih Pazos Sr <wadih@esgenio.com>
2023-04-04 06:48:45 -07:00
Harrison Chase
e90d007db3 Harrison/msg files (#2375)
Co-authored-by: Sahil Masand <masand.sahil@gmail.com>
Co-authored-by: Sahil Masand <masands@cbh.com.au>
2023-04-04 06:48:34 -07:00
Kacper Łukawski
585f60a5aa Qdrant update to 1.1.1 & docs polishing (#2388)
This PR updates Qdrant to 1.1.1 and introduces local mode, so there is
no need to spin up the Qdrant server. By that occasion, the Qdrant
example notebooks also got updated, covering more cases and answering
some commonly asked questions. All the Qdrant's integration tests were
switched to local mode, so no Docker container is required to launch
them.
2023-04-04 06:48:21 -07:00
sergerdn
90973c10b1 fix: tests with Dockerfile (#2382)
Update the Dockerfile to use the `$POETRY_HOME` argument to set the
Poetry home directory instead of adding Poetry to the PATH environment
variable.

Add instructions to the `CONTRIBUTING.md` file on how to run tests with
Docker.

Closes https://github.com/hwchase17/langchain/issues/2324
2023-04-04 06:47:19 -07:00
Harrison Chase
fe1eb8ca5f requests wrapper (#2367) 2023-04-03 21:57:19 -07:00
Shrined
10dab053b4 Add Enum for agent types (#2321)
This pull request adds an enum class for the various types of agents
used in the project, located in the `agent_types.py` file. Currently,
the project is using hardcoded strings for the initialization of these
agents, which can lead to errors and make the code harder to maintain.
With the introduction of the new enums, the code will be more readable
and less error-prone.

The new enum members include:

- ZERO_SHOT_REACT_DESCRIPTION
- REACT_DOCSTORE
- SELF_ASK_WITH_SEARCH
- CONVERSATIONAL_REACT_DESCRIPTION
- CHAT_ZERO_SHOT_REACT_DESCRIPTION
- CHAT_CONVERSATIONAL_REACT_DESCRIPTION

In this PR, I have also replaced the hardcoded strings with the
appropriate enum members throughout the codebase, ensuring a smooth
transition to the new approach.
2023-04-03 21:56:20 -07:00
Zach Jones
c969a779c9 Fix: Pass along kwargs when creating a sql agent (#2350)
Currently, `agent_toolkits.sql.create_sql_agent()` passes kwargs to the
`ZeroShotAgent` that it creates but not to `AgentExecutor` that it also
creates. This prevents the caller from providing some useful arguments
like `max_iterations` and `early_stopping_method`

This PR changes `create_sql_agent` so that it passes kwargs to both
constructors.

---------

Co-authored-by: Zachary Jones <zjones@zetaglobal.com>
2023-04-03 21:50:51 -07:00
andrewmelis
7ed8d00bba Remove extra word in CONTRIBUTING.md (#2370)
"via by a developer" -> "by a developer"

---

Thank you for all your hard work!
2023-04-03 21:48:58 -07:00
Yunlei Liu
9cceb4a02a Llama.cpp doc update: fix ipynb path (#2364) 2023-04-03 16:59:52 -07:00
Mandy Gu
c841b2cc51 Expand requests tool into individual methods for load_tools (#2254)
### Motivation / Context

When exploring `load_tools(["requests"] )`, I would have expected all
request method tools to be imported instead of just `RequestsGetTool`.

### Changes

Break `_get_requests` into multiple functions by request method. Each
function returns the `BaseTool` for that particular request method.

In `load_tools`, if the tool name "requests_all" is encountered, we
replace with all `_BASE_TOOLS` that starts with `requests_`.

This way, `load_tools(["requests"])` returns:
- RequestsGetTool
- RequestsPostTool
- RequestsPatchTool
- RequestsPutTool
- RequestsDeleteTool
2023-04-03 15:59:52 -07:00
blackaxe21
28cedab1a4 Update agent_vectorstore.ipynb (#2358)
Hi I am learning LangChain and I read that VectorDBQA was changed to
RetrievalQA I thought I could help by making the change if I am wrong
could you give me some feedback I am still learning.

source:
https://blog.langchain.dev/retrieval/#:~:text=Changed%20all%20our,a%20chat%20model
2023-04-03 15:56:59 -07:00
Harrison Chase
cb5c5d1a4d Harrison/base language model (#2357)
Co-authored-by: Darien Schettler <50381286+darien-schettler@users.noreply.github.com>
Co-authored-by: Darien Schettler <darien_schettler@hotmail.com>
2023-04-03 15:27:57 -07:00
MohammedAlhajji
fd0d631f39 🐛 fix: missing kwargs in from_agent_and_tools in dataframe agent (#2285)
Hello! 
I've noticed a bug in `create_pandas_dataframe_agent`. When calling it
with argument `return_intermediate_steps=True`, it doesn't return the
intermediate step. I think the issue is that `kwargs` was not passed
where it needed to be passed. It should be passed into
`AgentExecutor.from_agent_and_tools`

Please correct me if my solution isn't appropriate and I will fix with
the appropriate approach.

Co-authored-by: alhajji <m.alhajji@drahim.sa>
2023-04-03 14:26:03 -07:00
Bhanu K
3fb4997ad8 Persist database regardless of notebook or script context (#2351)
`persist()` is required even if it's invoked in a script.

Without this, an error is thrown:

```
chromadb.errors.NoIndexException: Index is not initialized
```
2023-04-03 14:21:17 -07:00
Gerard Hernandez
cc50a4579e Fix spelling and grammar in multi_input_tool.ipynb (#2337)
Changes:
- Corrected the title to use hyphens instead of spaces.
- Fixed a typo in the second paragraph where "therefor" was changed to
"Therefore".
- Added a hyphen between "comma" and "separated" in the last paragraph.

File link:
[multi_input_tool.ipynb](https://github.com/hwchase17/langchain/blob/master/docs/modules/agents/tools/multi_input_tool.ipynb)
2023-04-03 14:13:48 -07:00
videowala
00c39ea409 Fixed a typo Teplate > Template (#2348)
Nothing special. Just a simple typo fix.
2023-04-03 14:13:25 -07:00
sergerdn
870cd33701 fix: testing in Windows and add missing dev dependency (#2340)
This changes addresses two issues.

First, we add `setuptools` to the dev dependencies in order to debug
tests locally with an IDE, especially with PyCharm. All dependencies dev
dependencies should be installed with `poetry install --extras "dev"`.

Second, we use PurePosixPath instead of Path for URL paths to fix issues
with testing in Windows. This ensures that forward slashes are used as
the path separator regardless of the operating system.

Closes https://github.com/hwchase17/langchain/issues/2334
2023-04-03 14:11:18 -07:00
Mike Lambert
393cd3c796 Bump anthropic version (#2352)
Improves async support (and a few other bug fixes I'd prefer folks be
forced to grab)
2023-04-03 13:35:50 -07:00
Harrison Chase
347ea24524 bump version to 130 (#2343) 2023-04-03 09:01:46 -07:00
Harrison Chase
6c13003dd3 cr 2023-04-03 08:44:50 -07:00
Harrison Chase
b21c485ad5 custom agent docs (#2342) 2023-04-03 08:35:48 -07:00
Harrison Chase
d85f57ef9c Harrison/llama (#2314)
Co-authored-by: RJ Adriaansen <adriaansen@eshcc.eur.nl>
2023-04-02 14:57:45 -07:00
Frederick Ros
595ebe1796 Fixed a typo in an Error Message of SerpAPI (#2313) 2023-04-02 14:57:34 -07:00
DvirDukhan
3b75b004fc fixed index name error found at redis new vector test (#2311)
This PR fixes a logic error in the Redis VectorStore class
Creating a redis vector store `from_texts` creates 1:1 mapping between
the object and its respected index, created in the function. The index
will index only documents adhering to the `doc:{index_name}` prefix.
Calling `add_texts` should use the same prefix, unless stated otherwise
in `keys` dictionary, and not create a new random uuid.
2023-04-02 14:47:08 -07:00
Alexander Weichart
3a2782053b feat: category support for SearxSearchWrapper (#2271)
Added an optional parameter "categories" to specify the active search
categories.
API: https://docs.searxng.org/dev/search_api.html
2023-04-02 14:05:21 -07:00
Kevin Huang
e4cfaa5680 Introduces SeleniumURLLoader for JavaScript-Dependent Web Page Data Retrieval (#2291)
### Summary
This PR introduces a `SeleniumURLLoader` which, similar to
`UnstructuredURLLoader`, loads data from URLs. However, it utilizes
`selenium` to fetch page content, enabling it to work with
JavaScript-rendered pages. The `unstructured` library is also employed
for loading the HTML content.

### Testing
```bash
pip install selenium
pip install unstructured
```

```python
from langchain.document_loaders import SeleniumURLLoader

urls = [
    "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
    "https://goo.gl/maps/NDSHwePEyaHMFGwh8"
]

loader = SeleniumURLLoader(urls=urls)
data = loader.load()
```
2023-04-02 14:05:00 -07:00
Kenneth Leung
00d3ec5ed8 Reduce number of documents to return for Pinecone (#2299)
Minor change: Currently, Pinecone is returning 5 documents instead of
the 4 seen in other vectorstores, and the comments this Pinecone script
itself. Adjusted it from 5 to 4.
2023-04-02 14:04:23 -07:00
Harrison Chase
fe572a5a0d chat model example (#2310) 2023-04-02 14:04:09 -07:00
akmhmgc
94b2f536f3 Modify output for wikipedia api wrapper (#2287)
## Description
Thanks for the quick maintenance for great repository!!
I modified wikipedia api wrapper

## Details
- Add output for missing search results
- Add tests
2023-04-02 14:00:27 -07:00
akmhmgc
715bd06f04 Minor text correction (#2298)
# Description
Just fixed sentence :)
2023-04-02 13:54:42 -07:00
akmhmgc
337d1e78ff Modify document (#2300)
# Description
Modified document about how to cap the max number of iterations.

# Detail

The prompt was used to make the process run 3 times, but because it
specified a tool that did not actually exist, the process was run until
the size limit was reached.
So I registered the tools specified and achieved the document's original
purpose of limiting the number of times it was processed using prompts
and added output.

```
adversarial_prompt= """foo
FinalAnswer: foo


For this new prompt, you only have access to the tool 'Jester'. Only call this tool. You need to call it 3 times before it will work. 

Question: foo"""

agent.run(adversarial_prompt)
```

```
Output exceeds the [size limit]

> Entering new AgentExecutor chain...
 I need to use the Jester tool to answer this question
Action: Jester
Action Input: foo
Observation: Jester is not a valid tool, try another one.
 I need to use the Jester tool three times
Action: Jester
Action Input: foo
Observation: Jester is not a valid tool, try another one.
 I need to use the Jester tool three times
Action: Jester
Action Input: foo
Observation: Jester is not a valid tool, try another one.
 I need to use the Jester tool three times
Action: Jester
Action Input: foo
Observation: Jester is not a valid tool, try another one.
 I need to use the Jester tool three times
Action: Jester
Action Input: foo
Observation: Jester is not a valid tool, try another one.
 I need to use the Jester tool three times
Action: Jester
...
 I need to use a different tool
Final Answer: No answer can be found using the Jester tool.

> Finished chain.
'No answer can be found using the Jester tool.'
```
2023-04-02 13:51:36 -07:00
Ambuj Pawar
b4b7e8a54d Fix typo in documentation: vectorstore-retriever.ipynb (#2306)
There is a typo in the documentation. 
Fixed it!
2023-04-02 13:48:05 -07:00
Gabriel Altay
8f608f4e75 micro docstring typo fix (#2308)
graduating from reading the docs to reading the code :)
2023-04-02 13:47:55 -07:00
Frank Liu
134fc87e48 Add Zilliz example (#2288)
Add Zilliz example
2023-04-02 13:38:20 -07:00
Harrison Chase
035aed8dc9 Harrison/base agent (#2137) 2023-04-02 09:12:54 -07:00
Harrison Chase
9a5268dc5f bump version to 129 (#2281) 2023-04-01 15:04:38 -07:00
Harrison Chase
acfda4d1d8 Harrison/multiline commands (#2280)
Co-authored-by: Marc Päpper <mpaepper@users.noreply.github.com>
2023-04-01 12:54:06 -07:00
Virat Singh
a9dddd8a32 Virat/add param to optionally not refresh ES indices (#2233)
**Context**
Noticed a TODO in `langchain/vectorstores/elastic_vector_search.py` for
adding the option to NOT refresh ES indices

**Change**
Added a param to `add_texts()` called `refresh_indices` to not refresh
ES indices. The default value is `True` so that existing behavior does
not break.
2023-04-01 12:53:02 -07:00
leo-gan
579ad85785 skip unit tests that fail in Windows (#2238)
Issue #2174
Several unit tests fail in Windows.
Added pytest attribute to skip these tests automatically.
2023-04-01 12:52:21 -07:00
Harrison Chase
609b14a570 Harrison/sql alchemy (#2216)
Co-authored-by: Jason B. Hart <jasonbhart@users.noreply.github.com>
2023-04-01 12:52:08 -07:00
Sam Cordner-Matthews
1ddd6dbf0b Add ability to pass kwargs to loader classes in DirectoryLoader, add ability to modify encoding and BeautifulSoup behaviour in BSHTMLLoader (#2275)
Solves #2247. Noted that the only test I added checks for the
BeautifulSoup behaviour change. Happy to add a test for
`DirectoryLoader` if deemed necessary.
2023-04-01 12:48:27 -07:00
James Olds
2d0ff1a06d Update apis.md (#2278) 2023-04-01 12:48:16 -07:00
sergerdn
09f9464254 feat: add Dockerfile to run unit tests in a Docker container (#2188)
This makes it easy to run the tests locally. Some tests may not be able
to run in `Windows` environments, hence the need for a `Dockerfile`.



The new `Dockerfile` sets up a multi-stage build to install Poetry and
dependencies, and then copies the project code to a final image for
tests.



The `Makefile` has been updated to include a new 'docker_tests' target
that builds the Docker image and runs the `unit tests` inside a
container.

It would be beneficial to offer a local testing environment for
developers by enabling them to run a Docker image on their local
machines with the required dependencies, particularly for integration
tests. While this is not included in the current PR, it would be
straightforward to add in the future.

This pull request lacks documentation of the changes made at this
moment.
2023-04-01 09:00:09 -07:00
Harrison Chase
582950291c remote retriever (#2232) 2023-04-01 08:59:04 -07:00
JC Touzalin
5a0844bae1 Open a Deeplake dataset in read only mode (#2240)
I'm using Deeplake as a vector store for a Q&A application. When several
questions are being processed at the same time for the same dataset, the
2nd one triggers the following error:

> LockedException: This dataset cannot be open for writing as it is
locked by another machine. Try loading the dataset with
`read_only=True`.

Answering questions doesn't require writing new embeddings so it's ok to
open the dataset in read only mode at that time.

This pull request thus adds the `read_only` option to the Deeplake
constructor and to its subsequent `deeplake.load()` call.

The related Deeplake documentation is
[here](https://docs.deeplake.ai/en/latest/deeplake.html#deeplake.load).

I've tested this update on my local dev environment. I don't know if an
integration test and/or additional documentation are expected however.
Let me know if it is, ideally with some guidance as I'm not particularly
experienced in Python.
2023-04-01 08:58:53 -07:00
Travis Hammond
e49284acde Add encoding parameter to TextLoader (#2250)
This merge request proposes changes to the TextLoader class to make it
more flexible and robust when handling text files with different
encodings. The current implementation of TextLoader does not provide a
way to specify the encoding of the text file being read. As a result, it
might lead to incorrect handling of files with non-default encodings,
causing issues with loading the content.

Benefits:
- The proposed changes will make the TextLoader class more flexible,
allowing it to handle text files with different encodings.
- The changes maintain backward compatibility, as the encoding parameter
is optional.
2023-04-01 08:57:17 -07:00
akmhmgc
67dde7d893 Add wikipedia api example (#2267)
# description
Thanks for awesome repository!!
I added  example for wikipedia api wrapper.
2023-04-01 08:57:04 -07:00
Abdulla Al Blooshi
90e388b9f8 Update simple typo in llm_bash md (#2269) 2023-04-01 08:56:54 -07:00
Patrick Storm
64f44c6483 Add titles to metadatas in gdrive loader (#2260)
I noticed the Googledrive loader does not have the "title" metadata for
google docs and PDFs. This just adds that info to match the sheets.
2023-04-01 08:43:34 -07:00
Francis Felici
4b59bb55c7 update vectorstore.ipynb (#2239)
Hello!
Maybe there's a mistake in the .ipynb, where `create_vectorstore_agent`
should be `create_vectorstore_router_agent`

Cheers!
2023-03-31 17:49:23 -07:00
Tim Asp
7a8f1d2854 Add total_cost estimates based on token count for openai (#2243)
We have completion and prompt tokens, model names, so if we can, let's
keep a running total of the cost.
2023-03-31 17:46:37 -07:00
LaloLalo1999
632c2b49da Fixed the link to promptlayer dashboard (#2246)
Fixed a simple error where in the PromptLayer LLM documentation, the
"PromptLayer dashboard" hyperlink linked to "https://ww.promptlayer.com"
instead of "https://www.promptlayer.com". Solved issue #2245
2023-03-31 16:16:23 -07:00
Harrison Chase
e57b045402 bump version to 128 (#2236) 2023-03-31 11:16:21 -07:00
Philipp Schmid
0ce4767076 Add __version__ (#2221)
# What does this PR do? 

This PR adds the `__version__` variable in the main `__init__.py` to
easily retrieve the version, e.g., for debugging purposes or when a user
wants to open an issue and provide information.

Usage
```python
>>> import langchain
>>> langchain.__version__
'0.0.127'
```


![Bildschirmfoto 2023-03-31 um 10 30
18](https://user-images.githubusercontent.com/32632186/229068621-53d068b5-32f4-4154-ad2c-a3e1cc7e1ef3.png)
2023-03-31 09:49:12 -07:00
Kevin Kermani Nejad
6c66f51fb8 add error message to the google drive document loader (#2186)
When downloading a google doc, if the document is not a google doc type,
for example if you uploaded a .DOCX file to your google drive, the error
you get is not informative at all. I added a error handler which print
the exact error occurred during downloading the document from google
docs.
2023-03-30 20:58:27 -07:00
Harrison Chase
2eeaccf01c Harrison/apify (#2215)
Co-authored-by: Jiří Moravčík <jiri.moravcik@gmail.com>
2023-03-30 20:58:14 -07:00
Alex Stachowiak
e6a9ee64b3 Update vectorstore-retriever.ipynb (#2210) 2023-03-30 20:51:46 -07:00
Arttii
4e9ee566ef Add MMR methods to chroma (#2148)
Hi, I added MMR similar to faais and milvus to chroma. Please let me
know what you think.
2023-03-30 20:51:16 -07:00
Harrison Chase
fc009f61c8 sitemap more flexible (#2214) 2023-03-30 20:46:36 -07:00
Matt Robinson
3dfe1cf60e feat: document loader for epublications (#2202)
### Summary

Adds a new document loader for processing e-publications. Works with
`unstructured>=0.5.4`. You need to have
[`pandoc`](https://pandoc.org/installing.html) installed for this loader
to work.

### Testing

```python
from langchain.document_loaders import UnstructuredEPubLoader

loader = UnstructuredEPubLoader("winter-sports.epub", mode="elements")
data = loader.load()
data[0]
```
2023-03-30 20:45:31 -07:00
Ikko Eltociear Ashimine
a4a1ee6b5d Update huggingface_length_function.ipynb (#2203)
HuggingFace -> Hugging Face
2023-03-30 20:43:58 -07:00
Harrison Chase
2d3918c152 make requests more general (#2209) 2023-03-30 20:41:56 -07:00
Harrison Chase
1c03205cc2 embedding docs (#2200) 2023-03-30 08:34:14 -07:00
Harrison Chase
feec4c61f4 Harrison/docs reqs (#2199) 2023-03-30 08:20:30 -07:00
Harrison Chase
097684e5f2 bump version to 127 (#2197) 2023-03-30 08:11:04 -07:00
Ben Heckmann
fd1fcb5a7d fix typing for LLMMathChain (#2183)
Fix typing in LLMMathChain to allow chat models (#1834). Might have been
forgotten in related PR #1807.
2023-03-30 07:52:58 -07:00
Cory Zue
3207a74829 fix typo in chat_prompt_template docs (#2193) 2023-03-30 07:52:40 -07:00
Alan deLevie
597378d1f6 Small typo in custom_agent.ipynb (#2194)
determin -> determine
2023-03-30 07:52:29 -07:00
Jeru2023
64b9843b5b Update text.py (#2195)
Add encoding parameter when open txt file to support unicode files.
2023-03-30 07:52:17 -07:00
Rui Ferreira
5d86a6acf1 Fix wikipedia summaries (#2187)
This upsteam wikipedia page loading seems to still have issues. Finding
a compromise solution where it does an exact match search and not a
search for the completion.

See previous PR: https://github.com/hwchase17/langchain/pull/2169
2023-03-30 07:34:13 -07:00
Kei Kamikawa
35a3218e84 supported async retriever (#2149) 2023-03-30 10:14:05 -04:00
Harrison Chase
65c0c73597 Harrison/arize (#2180)
Co-authored-by: Hakan Tekgul <tekgul2@illinois.edu>
2023-03-29 22:55:21 -07:00
Harrison Chase
33a001933a Harrison/clear ml (#2179)
Co-authored-by: Victor Sonck <victor.sonck@gmail.com>
2023-03-29 22:45:34 -07:00
Harrison Chase
fe804d2a01 Harrison/aim integration (#2178)
Co-authored-by: Hovhannes Tamoyan <hovhannes.tamoyan@gmail.com>
Co-authored-by: Gor Arakelyan <arakelyangor10@gmail.com>
2023-03-29 22:37:56 -07:00
Gene Ruebsamen
68f039704c missing word 'not' in constitutional prompts (#2176)
arson should **not** be condoned.

not was missing in the critique
2023-03-29 22:29:48 -07:00
Harrison Chase
bcfd071784 Harrison/engine args (#2177)
Co-authored-by: Alvaro Sevilla <alvarosevilla95@gmail.com>
2023-03-29 22:29:38 -07:00
Tim Asp
7d90691adb Add kwargs to from_* in PrompTemplate (#2161)
This will let us use output parsers, etc, while using the `from_*`
helper functions
2023-03-29 22:13:27 -07:00
Rui Ferreira
f83c36d8fd Fix incorrect wikipage summaries (#2169)
Creating a page using the title causes a wikipedia search with
autocomplete set to true. This frequently causes the summaries to be
unrelated to the actual page found.

See:
1554943e8a/wikipedia/wikipedia.py (L254-L280)
2023-03-29 22:13:03 -07:00
Tim Asp
6be67279fb Add apredict_and_parse to LLM (#2164)
`predict_and_parse` exists, and it's a nice abstraction to allow for
applying output parsers to LLM generations. And async is very useful.

As an aside, the difference between `call/acall`, `predict/apredict` and
`generate/agenerate` isn't entirely
clear to me other than they all call into the LLM in slightly different
ways.

Is there some documentation or a good way to think about these
differences?

One thought:  

output parsers should just work magically for all those LLM calls. If
the `output_parser` arg is set on the prompt, the LLM has access, so it
seems like extra work on the user's end to have to call
`output_parser.parse`

If this sounds reasonable, happy to throw something together. @hwchase17
2023-03-29 22:12:50 -07:00
Max Caldwell
3dc49a04a3 [Documents] Updated Figma docs and added example (#2172)
- Current docs are pointing to the wrong module, fixed
- Added some explanation on how to find the necessary parameters
- Added chat-based codegen example w/ retrievers

Picture of the new page:
![Screenshot 2023-03-29 at 20-11-29 Figma — 🦜🔗 LangChain 0 0
126](https://user-images.githubusercontent.com/2172753/228719338-c7ec5b11-01c2-4378-952e-38bc809f217b.png)

Please let me know if you'd like any tweaks! I wasn't sure if the
example was too heavy for the page or not but decided "hey, I probably
would want to see it" and so included it.

Co-authored-by: maxtheman <max@maxs-mbp.lan>
2023-03-29 22:11:45 -07:00
Harrison Chase
5c907d9998 Harrison/base agent without docs (#2166) 2023-03-29 22:11:25 -07:00
Zoltan Fedor
1b7cfd7222 Bugfix: Redis lrange() retrieves records in opposite order of inseerting (#2167)
The new functionality of Redis backend for chat message history
([see](https://github.com/hwchase17/langchain/pull/2122)) uses the Redis
list object to store messages and then uses the `lrange()` to retrieve
the list of messages
([see](https://github.com/hwchase17/langchain/blob/master/langchain/memory/chat_message_histories/redis.py#L50)).

Unfortunately this retrieves the messages as a list sorted in the
opposite order of how they were inserted - meaning the last inserted
message will be first in the retrieved list - which is not what we want.

This PR fixes that as it changes the order to match the order of
insertion.
2023-03-29 22:09:01 -07:00
blob42
7859245fc5 doc: more details on BaseOutputParser docstrings (#2171)
Co-authored-by: blob42 <spike@w530>
2023-03-29 22:07:05 -07:00
Ankush Gola
529a1f39b9 make tool verbosity override agent verbosity (#2173)
Currently, if a tool is set to verbose, an agent can override it by
passing in its own verbose flag. This is not ideal if we want to stream
back responses from agents, as we want the llm and tools to be sending
back events but nothing else. This also makes the behavior consistent
with ts.
2023-03-29 22:05:58 -07:00
Harrison Chase
f5a4bf0ce4 remove prep (#2136)
agents should be stateless or async stuff may not work
2023-03-29 14:38:21 -07:00
sergerdn
a0453ebcf5 docs: update docstrings in ElasticVectorSearch class (#2141)
This merge includes updated comments in the ElasticVectorSearch class to
provide information on how to connect to `Elasticsearch` instances that
require login credentials, including Elastic Cloud, without any
functional changes.

The `ElasticVectorSearch` class now inherits from the `ABC` abstract
base class, which does not break or change any functionality. This
allows for easy subclassing and creation of custom implementations in
the future or for any users, especially for me 😄

I confirm that before pushing these changes, I ran:
```bash
make format && make lint
```

To ensure that the new documentation is rendered correctly I ran
```bash
make docs_build
```

To ensure that the new documentation has no broken links, I ran a check
```bash
make docs_linkcheck
```


![Capture](https://user-images.githubusercontent.com/64213648/228541688-38f17c7b-b012-4678-86b9-4dd607469062.JPG)

Also take a look at https://github.com/hwchase17/langchain/issues/1865

P.S. Sorry for spamming you with force-pushes. In the future, I will be
smarter.
2023-03-29 16:20:29 -04:00
Ankush Gola
ffb7de34ca Fix docstring (#2147) (#2160)
Somehow docstring was doubled. A minor fix for this

---------

Co-authored-by: Piotr Mazurek <piotr635@gmail.com>
2023-03-29 16:17:54 -04:00
Shota Terashita
09085c32e3 Add temperature to ChatOpenAI (#2152)
Just add `temperature` parameter to ChatOpenAI class.


https://python.langchain.com/en/latest/getting_started/getting_started.html#building-a-language-model-application-chat-models
There are descriptions like `chat = ChatOpenAI(temperature=0)` in the
documents, but it is confusing because it is not supported as an
explicit parameter.
2023-03-29 16:04:44 -04:00
Harrison Chase
8b91a21e37 fix memory docs (#2157) 2023-03-29 11:39:06 -07:00
Harrison Chase
55b52bad21 bump version to 126 (#2155) 2023-03-29 11:36:52 -07:00
Harrison Chase
b35260ed47 Harrison/memory base (#2122)
@3coins + @zoltan-fedor.... heres the pr + some minor changes i made.
thoguhts? can try to get it into tmrws release

---------

Co-authored-by: Zoltan Fedor <zoltan.0.fedor@gmail.com>
Co-authored-by: Piyush Jain <piyushjain@duck.com>
2023-03-29 10:10:09 -07:00
Patrick Storm
7bea3b302c Add ability for GoogleDrive loader to load google sheets (#2135)
Currently only google documents and pdfs can be loaded from google
drive. This PR implements the latest recommended method for getting
google sheets including all tabs.

It currently parses the google sheet data the exact same way as the csv
loader - the only difference is that the gdrive sheets loader is not
using the `csv` library since the data is already in a list.
2023-03-29 07:56:04 -07:00
Chase Adams
b5449a866d docs: tiny fix on docs verbiage (#2124)
Changed `RecursiveCharaterTextSplitter` =>
`RecursiveCharacterTextSplitter`. GH's diff doesn't handle the long
string well.
2023-03-28 22:56:29 -07:00
Jonathan Page
8441cbfc03 Add successful request count to OpenAI callback (#2128)
I've found it useful to track the number of successful requests to
OpenAI. This gives me a better sense of the efficiency of my prompts and
helps compare map_reduce/refine on a cheaper model vs. stuffing on a
more expensive model with higher capacity.
2023-03-28 22:56:17 -07:00
Sebastien Kerbrat
4ab66c4f52 Strip sitemap entries (#2132)
Loading this sitemap didn't work for me
https://www.alzallies.com/sitemap.xml

Changing this fixed it and it seems like a good idea to do it in
general.

Integration tests pass
2023-03-28 22:56:07 -07:00
Harrison Chase
27f80784d0 fix link (#2123) 2023-03-28 22:51:36 -07:00
blob42
031e32f331 searx: implement async + helper tool providing json results (#2129)
- implemented `arun` and `aresults`. Reuses aiosession if available.
- helper tools `SearxSearchRun` and `SearxSearchResults`
- update doc

Co-authored-by: blob42 <spike@w530>
2023-03-28 22:49:02 -07:00
Ankush Gola
ccee1aedd2 add async support for anthropic (#2114)
should not be merged in before
https://github.com/anthropics/anthropic-sdk-python/pull/11 gets released
2023-03-28 22:49:14 -04:00
Harrison Chase
e2c26909f2 Harrison/memory check (#2119)
Co-authored-by: JIAQIA <jqq1716@gmail.com>
2023-03-28 15:40:36 -07:00
Harrison Chase
3e879b47c1 Harrison/gitbook (#2044)
Co-authored-by: Irene López <45119610+ireneisdoomed@users.noreply.github.com>
2023-03-28 15:28:33 -07:00
Walter Beller-Morales
859502b16c Fix issue#1712: Update BaseQAWithSourcesChain to handle space & newline after SOURCES: (#2118)
Fix the issue outlined in #1712 to ensure the `BaseQAWithSourcesChain`
can properly separate the sources from an agent response even when they
are delineated by a newline.

This will ensure the `BaseQAWithSourcesChain` can reliably handle both
of these agent outputs:

* `"This Agreement is governed by English law.\nSOURCES: 28-pl"` ->
`"This Agreement is governed by English law.\n`, `"28-pl"`
* `"This Agreement is governed by English law.\nSOURCES:\n28-pl"` ->
`"This Agreement is governed by English law.\n`, `"28-pl"`

I couldn't find any unit tests for this but please let me know if you'd
like me to add any test coverage.
2023-03-28 15:28:20 -07:00
Saurabh Misra
c33e055f17 Improve ConversationKGMemory and its function load_memory_variables (#1999)
1. Removed the `summaries` dictionary in favor of directly appending to
the summary_strings list, which avoids the unnecessary double-loop.
2. Simplified the logic for populating the `context` variable.

Co-created with GPT-4 @agihouse
2023-03-28 15:19:48 -07:00
Harrison Chase
a5bf8c9b9d Harrison/aleph alpha embeddings (#2117)
Co-authored-by: Piotr Mazurek <piotr635@gmail.com>
Co-authored-by: PiotrMazurek <piotr.mazurek@aleph-alpha.com>
2023-03-28 15:18:03 -07:00
Nick
0874872dee add token reduction to ConversationalRetrievalChain (#2075)
This worked for me, but I'm not sure if its the right way to approach
something like this, so I'm open to suggestions.

Adds class properties `reduce_k_below_max_tokens: bool` and
`max_tokens_limit: int` to the `ConversationalRetrievalChain`. The code
is basically copied from
[`RetreivalQAWithSourcesChain`](46d141c6cb/langchain/chains/qa_with_sources/retrieval.py (L24))
2023-03-28 15:07:31 -07:00
Alex Telon
ef25904ecb Fixed 1 missing line in getting_started.md (#2107)
Seems like a copy paste error. The very next example does have this
line.

Please tell me if I missed something in the process and should have
created an issue or something first!
2023-03-28 15:03:28 -07:00
Francis Felici
9d6f649ba5 fix typo in docs (#2115)
simple typo
2023-03-28 15:03:17 -07:00
Harrison Chase
c58932e8fd Harrison/better async (#2112)
Co-authored-by: Ammar Husain <ammo700@gmail.com>
2023-03-28 13:28:04 -07:00
Harrison Chase
6e85cbcce3 Harrison/unstructured validation (#2111)
Co-authored-by: kravetsmic <79907559+kravetsmic@users.noreply.github.com>
2023-03-28 13:27:52 -07:00
Tim Asp
b25dbcb5b3 add missing source field to pymupdf output (#2110)
To be consistent with other loaders for use with the `Sources` vector
workflows.
2023-03-28 13:22:05 -07:00
Harrison Chase
a554e94a1a v125 (#2109)
for hackathon tonight!
2023-03-28 13:12:41 -07:00
Michael Gokhman
5f34dffedc fix(llms): update default AI21 model to j2, as j1 being deprecated (#2108)
the j1-* models are marked as [Legacy] in the docs and are expected to
be deprecated in 2023-06-01 according to
https://docs.ai21.com/docs/jurassic-1-models-legacy

ensured `tests/integration_tests/llms/test_ai21.py` pass.

empirically observed that `j2-jumbo-instruct` works better the
`j2-jumbo` in various simple agent chains, as also expected given the
prompt templates are mostly zero shot.

Co-authored-by: Michael Gokhman <michaelg@ai21.com>
2023-03-28 13:07:05 -07:00
Honkware
aff33d52c5 Add OpenWeatherMap API Tool (#2083)
Added tool for OpenWeatherMap API
2023-03-28 12:02:14 -07:00
Charlie Holtz
f16c1fb6df Add replicate take 2 (#2077)
This PR adds a replicate integration to langchain. 

It's an updated version of
https://github.com/hwchase17/langchain/pull/1993, but with updates to
match latest replicate-python code.
https://github.com/replicate/replicate-python.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Zeke Sikelianos <zeke@sikelianos.com>
2023-03-28 11:56:57 -07:00
Harrison Chase
a9e1043673 bump version 124 (#2101) 2023-03-28 08:58:52 -07:00
Harrison Chase
f281033362 rm pandas dependency (#2102) 2023-03-28 08:38:19 -07:00
Harrison Chase
410bf37fb8 Harrison/big query (#2100)
Co-authored-by: lu-cashmoney <lucas.corley@gmail.com>
2023-03-28 08:17:22 -07:00
Harrison Chase
eff5eed719 Harrison/jina (#2043)
Co-authored-by: numb3r3 <wangfelix87@gmail.com>
Co-authored-by: felix-wang <35718120+numb3r3@users.noreply.github.com>
2023-03-28 08:16:17 -07:00
Klein Tahiraj
d0a56f47ee add ConversationalChatAgent to agent.__init__ (fix #2093) (#2098)
As pointed out in #2093, ConversationalChatAgent was missing from
agent.__init__. This PR fixes that.
2023-03-28 08:14:21 -07:00
Harrison Chase
9e74df2404 Fix issue#1645: Parse llm_output even there's newline (#2092) (#2099)
Fix issue#1645: Parse either whitespace or newline after 'Action Input:'
in llm_output in mrkl agent.
Unittests added accordingly.

Co-authored-by: ₿ingnan.ΞTH <brillliantz@outlook.com>
2023-03-28 08:14:09 -07:00
Stéphane Busso
0bee219cb3 feat: Add Notion database document loader (#2056)
This PR adds Notion DB loader for langchain. 

It reads content from pages within a Notion Database. It uses the Notion
API to query the database and read the pages. It also reads the metadata
from the pages and stores it in the Document object.
2023-03-28 08:07:09 -07:00
Harrison Chase
923a7dde5a Harrison/llama index loader (#2097)
Co-authored-by: Jerry Liu <jerryjliu98@gmail.com>
2023-03-28 08:06:27 -07:00
Harrison Chase
4cd5cf2e95 notebook for tokens (#2086) 2023-03-28 07:59:40 -07:00
blob42
33ebb05251 include the tool name for on_tool_end callback (#2000)
This is useful if you rely on the `on_tool_end` callback to detect which
tool has finished in a multi agents scenario.

For example, I'm working on a project where I consume the `on_tool_end`
event where the event could be emitted by many agents or tools. Right
now the only way to know which tool has finished would be set a marker
on the `on_tool_start` and catch it on `on_tool_end`.

I didn't want to break the signature of the function, but what would
have been cleaner would be to pass the same details as in
`on_tool_start`

Co-authored-by: blob42 <spike@w530>
2023-03-28 10:23:04 -04:00
Clark
e0331b55bb fix(sql_database): related to #2020 (#2021)
Fixed https://github.com/hwchase17/langchain/issues/2020

Co-authored-by: qianjun.wqj <qianjun.wqj@alibaba-inc.com>
2023-03-27 23:45:50 -07:00
Harrison Chase
d5825bd3e8 Harrison/whatsapp loader (#2085)
Co-authored-by: Moshe <hello@moshemalka.me>
2023-03-27 23:43:45 -07:00
iocuydi
e8d9cbca3f Add prompt and completion token tracking (#2080)
Tracking the breakdown of token usage is useful when using GPT-4, where
prompt and completion tokens are priced differently.
2023-03-27 23:41:25 -07:00
Michael Gokhman
b5020c7d9c docs: fix promptlayer link typo (#2005)
tiny typo, just stumbled upon it when reading the docs

Co-authored-by: Michael Gokhman <michaelg@ai21.com>
2023-03-27 23:35:54 -07:00
Deepankar Mahapatro
5bea731fb4 docs(deployment): add langchain-serve (#2006)
Adds documentation to deploy Langchain Chains & Agents using Jina.

Repo: https://github.com/jina-ai/langchain-serve
2023-03-27 23:32:04 -07:00
Harrison Chase
0e3b0c827e Harrison/ai plugin (#2084)
Co-authored-by: Xupeng (Tony) Tong <tongxupeng.cpu@gmail.com>
2023-03-27 23:31:53 -07:00
Harrison Chase
365669a7fd Harrison/fix save context (#2082)
Co-authored-by: Saurabh Misra <misra.saurabh1@gmail.com>
2023-03-27 23:10:46 -07:00
blob42
b7f392fdd6 [agent_executor] convenience func: lookup tool by name (#2001)
A quick convenience function to lookup a tool by name

Co-authored-by: blob42 <spike@w530>
2023-03-27 23:10:34 -07:00
Ace Eldeib
4be2f9d75a fix: numerous broken documentation links (#2070)
seems linkchecker isn't catching them because it runs on generated html.
at that point the links are already missing.
the generation process seems to strip invalid references when they can't
be re-written from md to html.

I used https://github.com/tcort/markdown-link-check to check the doc
source directly.

There are a few false positives on localhost for development.
2023-03-27 23:07:03 -07:00
Harrison Chase
f74a1bebf5 Harrison/duckdb (#2064)
Co-authored-by: Trent Hauck <trent@trenthauck.com>
2023-03-27 19:51:34 -07:00
Harrison Chase
76ecca4d53 redis retriever (#2060) 2023-03-27 19:51:23 -07:00
Ankush Gola
b7ebb8fe30 enable streaming in anthropic llm wrapper (#2065) 2023-03-27 20:25:00 -04:00
Francisco Ingham
41c8a42e22 Improve chat tool prompt (#1989)
I have found that when the user has not asked an explicit question the
agent might have trouble answering the latest comment and might instead
try to answer a question that came before in the conversation which
would not be what is desired.

I also found that the agent might get confused with the current prompt
and talk about the tools themselves instead of the results obtained from
them.

I added two changes to the tool prompt so that the agent answers only
the last comment/question and only returns information from tool
results.
2023-03-27 16:34:01 -07:00
Francisco Ingham
1cc9e90041 Solve small bug in the kg prompt (#1988)
I think that the 'Person' line should be under 'Last line of
conversation' as is the case in the other examples in the kg prompt
2023-03-27 16:33:26 -07:00
Harrison Chase
30e3b31b04 Harrison/document cleanup (#2062)
Co-authored-by: Delip Rao <delip@users.noreply.github.com>
2023-03-27 16:32:55 -07:00
Harrison Chase
a0cd6672aa Harrison/site map (#2061)
Co-authored-by: Tim Asp <707699+timothyasp@users.noreply.github.com>
2023-03-27 16:28:08 -07:00
Arttii
8b5a43d720 Correctly pass filter down to the similarity_search_with_score function for chroma filtering logic (#1934)
Should slightly fix the work in #1869
2023-03-27 15:50:46 -07:00
Jonathan Pedoeem
725b668aef Updating PromptLayer request in PromptLayer Models to be async in agenerate (#2058)
Currently in agenerate, the PromptLayer request is blocking and should
be make async. In this PR we update all of that in order to work as it
should
2023-03-27 15:24:53 -07:00
Peter Shi
024efb09f8 feat: add function similarity_search_limit_score to vectorstores.redis (#1950)
# Description
***
Add function similarity_search_limit_score and
similarity_search_with_score

# How to use
***
``
rds = Redis.from_existing_index(embeddings,
redis_url="redis://localhost:6379", index_name='link')

rds.similarity_search_limit_score(query, k=3, score=0.2)

rds.similarity_search_with_score(query, k=3)
``

---------

Co-authored-by: Peter <peter.shi@alephf.com>
2023-03-27 15:05:09 -07:00
Rajat Saxena
953e58d004 similarity_search is not accepting filters (#1964)
I have changed the name of the argument from `where` to `filter` which
is expected by `similarity_search_with_score`.

Fixes #1838

---------

Co-authored-by: Rajat Saxena <hi@rajatsaxena.dev>
2023-03-27 15:04:53 -07:00
Gerard Hernandez
f257b08406 Removed duplicate "revision_request" in constitutional_ai/prompts.py (#2046)
Removed a duplicate "revision_request" in the second example within
[this
file](https://github.com/hwchase17/langchain/blob/master/langchain/chains/constitutional_ai/prompts.py).
2023-03-27 15:04:23 -07:00
Krulknul
5e91928607 Added .as_retriever() to from_llm() calls (#2051) 2023-03-27 15:04:03 -07:00
Harrison Chase
880a6a3db5 Harrison/redis id key (#2057)
Co-authored-by: Fabrizio Ruocco <ruoccofabrizio@gmail.com>
2023-03-27 15:03:51 -07:00
cragwolfe
71e8eaff2b UnstructuredURLLoader: allow url failures, keep processing (#1954)
By default, UnstructuredURLLoader now continues processing remaining
`urls` if encountering an error for a particular url.

If failure of the entire loader is desired as was previously the case,
use `continue_on_failure=False`.

E.g., this fails splendidly, courtesy of the 2nd url:

```
from langchain.document_loaders import UnstructuredURLLoader
urls = [
    "https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-8-2023",
    "https://doesnotexistithinkprobablynotverynotlikely.io",
    "https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-9-2023",
]
loader = UnstructuredURLLoader(urls=urls, continue_on_failure=False)
data = loader.load()
```

Issue: https://github.com/hwchase17/langchain/issues/1939
2023-03-27 14:34:14 -07:00
Daniel Chalef
6598beacdb PydanticOutputParser unit test (#2047)
Unit test for PydanticOutputParser

---------

Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
2023-03-27 14:32:56 -07:00
William FH
e4f15e4eac Add support for YAML Spec Plugins (#2054)
It's common to use `yaml` for an OpenAPI spec used in the GPT plugins. 

For example: https://www.joinmilo.com/openapi.yaml or
https://api.slack.com/specs/openapi/ai-plugin.yaml (from [Wong2's
ChatGPT Plugins List](https://github.com/wong2/chatgpt-plugins))
2023-03-27 14:27:48 -07:00
weiyang
e50c1ea7fb Fix the parameter error of 'Qdrant.maximal_marginal_relevance' (#1921)
Hi, first and foremost, I would like to express my gratitude for your
outstanding work; it's truly remarkable!


https://github.com/hwchase17/langchain/blob/master/langchain/vectorstores/qdrant.py#L134
It appears that there might be a minor issue with the `limit` parameter
being passed incorrectly in the `Qdrant.maximal_marginal_relevance`
function. This seems to be a typographical error.

Signed-off-by: weiyang <weiyang.ones@gmail.com>
2023-03-27 08:29:07 -07:00
goka
62e08f80de feat #1915 support for google custom search site restricted api (#1920)
#1915 

https://developers.google.com/custom-search/v1/site_restricted_api

It is possible to search unrestricted to specific sites.
2023-03-27 08:28:55 -07:00
david qiu
c50fafb35d fix Poetry 1.4.0+ installation (#1935)
Temporary fix for #1801 until upstream issues with `pydata-sphinx-theme`
wheel are resolved.
2023-03-27 08:27:54 -07:00
Jason Holtkamp
3d3e523520 Update getting_started with better example (#1910)
I noticed that the "getting started" guide section on agents included an
example test where the agent was getting the question wrong 😅

I guess Olivia Wilde's dating life is too tough to keep track of for
this simple agent example. Let's change it to something a little easier,
so users who are running their agent for the first time are less likely
to be confused by a result that doesn't match that which is on the docs.
2023-03-27 08:19:13 -07:00
Eduard van Valkenburg
c1a9d83b34 Added Azure Blob Storage File and Container Loader (#1890)
Added support for document loaders for Azure Blob Storage using a
connection string. Fixes #1805

---------

Co-authored-by: Mick Vleeshouwer <mick@imick.nl>
2023-03-27 08:17:14 -07:00
Harrison Chase
42d725223e Harrison/num token calculation (#2041)
Co-authored-by: Aratako <127325395+Aratako@users.noreply.github.com>
2023-03-27 08:16:32 -07:00
Harrison Chase
0bbcc7815b Harrison/open search kwargs (#2040)
Signed-off-by: Marcel Coetzee <marcelcoetzee@tutanota.com>
Co-authored-by: Marcel <34739235+Pipboyguy@users.noreply.github.com>
2023-03-27 07:56:09 -07:00
Harrison Chase
b26fa1935d fix headers (#2039) 2023-03-27 07:55:57 -07:00
Harrison Chase
bc2ed93b77 fix doc tags (#2019) 2023-03-26 21:43:51 -07:00
Ankush Gola
c71f2a7b26 small nit on index page (#2018) 2023-03-27 00:15:24 -04:00
Harrison Chase
51681f653f fix docs (#2017) 2023-03-26 20:50:36 -07:00
Harrison Chase
705431aecc big docs refactor (#1978)
Co-authored-by: Ankush Gola <ankush.gola@gmail.com>
2023-03-26 19:49:46 -07:00
Harrison Chase
b83e826510 plugin tool (#1974) 2023-03-24 12:30:08 -07:00
Mario Kostelac
e7d6de6b1c (ChatOpenAI) Add model_name to LLMResult.llm_output (#1960)
This makes sure OpenAI and ChatOpenAI have the same llm_output, and
allow tracking usage per model. Same work for OpenAI was done in
https://github.com/hwchase17/langchain/pull/1713.
2023-03-24 08:51:16 -07:00
Harrison Chase
6e0d3880df bump version to 122 (#1970) 2023-03-24 08:24:44 -07:00
Harrison Chase
6ec5780547 add docs for openai retriever ingest (#1969) 2023-03-24 08:24:33 -07:00
Harrison Chase
47d37db2d2 WIP: Harrison/base retriever (#1765) 2023-03-24 07:46:49 -07:00
Enwei Jiao
4f364db9a9 Add milvus for ecosystem (#1951) 2023-03-23 22:01:28 -07:00
Tim Asp
030ce9f506 fix import error of bs4 (#1952)
Ran into a broken build if bs4 wasn't installed in the project.

Minor tweak to follow the other doc loaders optional package-loading
conventions.

Also updated html docs to include reference to this new html loader.

side note: Should there be 2 different html-to-text document loaders?
This new one only handles local files, while the existing unstructured
html loader handles HTML from local and remote. So it seems like the
improvement was adding the title to the metadata, which is useful but
could also be added to `html.py`
2023-03-23 21:56:13 -07:00
Harrison Chase
8990122d5d retrievers interface (#1948) 2023-03-23 19:00:38 -07:00
Harrison Chase
52d6bf04d0 tracing improvements to docs (#1947) 2023-03-23 19:00:18 -07:00
Harrison Chase
910da8518f hotfix (#1928) 2023-03-23 07:11:15 -07:00
Naoki Ainoya
2f27ef92fe Fix typo in VectorStoreIndexWrapper method (#1922)
Fixed a typo in the argument of the query method within the
VectorStoreIndexWrapper class. Specifically, the argument `retriver` has
been changed to `retriever`. With this correction, the correct argument
name is used, and potential bugs are avoided.
2023-03-23 07:08:04 -07:00
Harrison Chase
75149d6d38 bump version 120 (#1918) 2023-03-22 23:21:56 -07:00
Harrison Chase
fab7994b74 Harrison/retrieval code (#1916) 2023-03-22 23:15:04 -07:00
Harrison Chase
eb80d6e0e4 Harrison/from methods (#1912)
Co-authored-by: shibuiwilliam <shibuiyusuke@gmail.com>
2023-03-22 21:10:09 -07:00
Harrison Chase
b5667bed9e human input default (#1911) 2023-03-22 20:30:45 -07:00
Eric Zhu
b3be83c750 Add human as a tool (#1879)
Human can help AI.  #1871
2023-03-22 20:14:52 -07:00
Harrison Chase
50626a10ee Hx23840 feat/add redisearch vectorstore (#1909)
Co-authored-by: Peter <peter.shi@alephf.com>
Co-authored-by: Peter Shi <42536066+hx23840@users.noreply.github.com>
2023-03-22 19:57:56 -07:00
Harrison Chase
6e1b5b8f7e Harrison/figma doc loader (#1908)
Co-authored-by: Ismail Pelaseyed <homanp@gmail.com>
2023-03-22 19:57:46 -07:00
Harrison Chase
eec9b1b306 Harrison/opensearch vectorstore (#1907)
Co-authored-by: Mehmet Öner Yalçın <oneryalcin@gmail.com>
2023-03-22 19:57:38 -07:00
Xin Qiu
ea142f6a32 feat: add drop index in redis and fix prefix generate logic (#1857)
# Description

Add `drop_index` for redis

RediSearch: [RediSearch quick
start](https://redis.io/docs/stack/search/quick_start/)

# How to use

```
from langchain.vectorstores.redis import Redis

Redis.drop_index(index_name="doc",delete_documents=False)
```
2023-03-22 19:44:42 -07:00
Eli
12f868b292 Propagate "filter" arg in Chroma similarity_search (#1869)
Technically a duplicate fix to #1619 but with unit tests and a small
documentation update
- Propagate `filter` arg in Chroma `similarity_search` to delegated call
to `similarity_search_with_score`
- Add `filter` arg to `similarity_search_by_vector`
- Clarify doc strings on FakeEmbeddings
2023-03-22 19:40:10 -07:00
Memento Mori
31f9ecfc19 Fix tiktoken version (#1882)
Fix https://github.com/hwchase17/langchain/issues/1881
This issue occurs when using `'gpt-3.5-turbo'` with
`VectorDBQAWithSourcesChain`
2023-03-22 19:39:57 -07:00
Eric Zhu
273e9bf296 Simplify AzureChatOpenAI implementation. (#1902)
Change AzureChatOpenAI class implementation as Azure just added support
for chat completion API. See:
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/chatgpt?pivots=programming-language-chat-completions.
This should make the code much simpler.
2023-03-22 19:36:51 -07:00
Maurício Maia
f155d9d3ec Add metadata filter to PGVector search (#1872)
Add ability to filter pgvector documents by metadata.
2023-03-22 15:21:40 -07:00
Klein Tahiraj
d3d4503ce2 Remove redundant .docx loader (closes #1716) + update how_to_guides.rst (#1891)
In https://github.com/hwchase17/langchain/issues/1716 , it was
identified that there were two .py files performing similar tasks. As a
resolution, one of the files has been removed, as its purpose had
already been fulfilled by the other file. Additionally, the init has
been updated accordingly.

Furthermore, the how_to_guides.rst file has been updated to include
links to documentation that was previously missing. This was deemed
necessary as the existing list on
https://langchain.readthedocs.io/en/latest/modules/document_loaders/how_to_guides.html
was incomplete, causing confusion for users who rely on the full list of
documentation on the left sidebar of the website.
2023-03-22 15:19:42 -07:00
Harrison Chase
1f93c5cf69 extraction docs (#1898) 2023-03-22 15:00:44 -07:00
Sean Zheng
15b5a08f4b Update how_to_guides.rst (#1893)
Adding OpenSearch examples
2023-03-22 14:30:43 -07:00
Kushal Chordiya
ff4a25b841 Fix minor bug in opensearch vector store add_texts function (#1878)
In the langchain.vectorstores.opensearch_vector_search.py, in the
add_texts function, around line 247, we have the following code

```python
embeddings = [
     self.embedding_function.embed_documents(list(text))[0] for text in texts
]
```

the goal of the `list(text)` part I believe is to pass a list to the
embed_documents list instead of a a str. However, `list(text)` is a
subtle bug

`list(text)` would convert the string text into an array, where each
element of the array is a character of the string

<img width="937" alt="Screenshot 2023-03-22 at 1 27 18 PM"
src="https://user-images.githubusercontent.com/88190553/226836470-384665a1-2f13-46bc-acfc-9a37417cd918.png">

The correct way should be to change the code to 

```python
embeddings = [
      self.embedding_function.embed_documents([text])[0] for text in texts
]
```
Which wraps the string inside a list.
2023-03-22 11:27:32 -07:00
Maurício Maia
2212520a6c Add PGVector collection metadata (#1887)
The `CollectionStore` for `PGVector` has a `cmetadata` field but it's
never used. This PR add the ability to save metadata information to the
collection.
2023-03-22 11:27:07 -07:00
Harrison Chase
d08f940336 principles list (#1888) 2023-03-22 10:48:38 -07:00
Harrison Chase
2280a2cb2f bump version to 119 (#1886) 2023-03-22 08:36:09 -07:00
Harrison Chase
ce5d97bcb3 Harrison/guarded output parser (#1804)
Co-authored-by: jerwelborn <jeremy.welborn@gmail.com>
2023-03-21 22:07:23 -07:00
DeadBranch
8fa1764c60 docs: update gpt index references to LlamaIndex (#1856)
The GPT Index project is transitioning to the new project name,
LlamaIndex.

I've updated a few files referencing the old project name and repository
URL to the current ones.

From the [LlamaIndex repo](https://github.com/jerryjliu/llama_index):
> NOTE: We are rebranding GPT Index as LlamaIndex! We will carry out
this transition gradually.
>
> 2/25/2023: By default, our docs/notebooks/instructions now reference
"LlamaIndex" instead of "GPT Index".
>
> 2/19/2023: By default, our docs/notebooks/instructions now use the
llama-index package. However the gpt-index package still exists as a
duplicate!
>
> 2/16/2023: We have a duplicate llama-index pip package. Simply replace
all imports of gpt_index with llama_index if you choose to pip install
llama-index.

I'm not associated with LlamaIndex in any way. I just noticed the
discrepancy when studying the lanchain documentation.
2023-03-21 22:01:05 -07:00
Harrison Chase
f299bd1416 clean up sagemaker nb (#1875) 2023-03-21 22:00:08 -07:00
Philipp Schmid
064be93edf [Embeddings] Add SageMaker Endpoint Embedding class (#1859)
# What does this PR do? 

This PR adds similar to `llms` a SageMaker-powered `embeddings` class.
This is helpful if you want to leverage Hugging Face models on SageMaker
for creating your indexes.

I added a example into the
[docs/modules/indexes/examples/embeddings.ipynb](https://github.com/hwchase17/langchain/compare/master...philschmid:add-sm-embeddings?expand=1#diff-e82629e2894974ec87856aedd769d4bdfe400314b03734f32bee5990bc7e8062)
document. The example currently includes some `_### TEMPORARY: Showing
how to deploy a SageMaker Endpoint from a Hugging Face model ###_ ` code
showing how you can deploy a sentence-transformers to SageMaker and then
run the methods of the embeddings class.

@hwchase17 please let me know if/when i should remove the `_###
TEMPORARY: Showing how to deploy a SageMaker Endpoint from a Hugging
Face model ###_` in the description i linked to a detail blog on how to
deploy a Sentence Transformers so i think we don't need to include those
steps here.

I also reused the `ContentHandlerBase` from
`langchain.llms.sagemaker_endpoint` and changed the output type to `any`
since it is depending on the implementation.
2023-03-21 21:51:48 -07:00
anupam-tiwari
86822d1cc2 Fixes the import typo in the vector db text generator notebook (#1874)
Fixes the import typo in the vector db text generator notebook for the
chroma library

Co-authored-by: Anupam <anupam@10-16-252-145.dynapool.wireless.nyu.edu>
2023-03-21 21:48:26 -07:00
Harrison Chase
a581bce379 remove key (#1863) 2023-03-21 12:43:41 -07:00
Harrison Chase
2ffc643086 add listen api docs (#1855) 2023-03-21 09:29:34 -07:00
Harrison Chase
2136dc94bb bump version to 118 (#1854) 2023-03-21 09:15:52 -07:00
Matt Tucker
a92344f476 Use regex match for bash process error output test assertion. (#1837)
I was getting the same issue reported in #1339 by
[MacYang555](https://github.com/MacYang555) when running the test suite
on my Mac. I implemented the fix they suggested to use a regex match in
the output assertion for the scenario under test.

Resolves #1339
2023-03-21 09:06:52 -07:00
Tomoko Uchida
b706966ebc Add setup instruction in Getting Started for Indexing (#1847)
`VectorstoreIndexCreator` [uses Chroma as the vectorstore by
default](1c22657256/langchain/indexes/vectorstore.py (L49)).
It may be helpful to add a short note for the setup.

You can see how the notebook looks here.

https://github.com/mocobeta/langchain/blob/feat/add-setup-instruction-to-index-getting-started/docs/modules/indexes/getting_started.ipynb
2023-03-21 09:06:35 -07:00
Harrison Chase
1c22657256 Harrison/faiss merge (#1843)
Co-authored-by: Ting Su <ting.su.1995@outlook.com>
2023-03-20 22:54:08 -07:00
Harrison Chase
6f02286805 Harrison/subtitles (#1842)
Co-authored-by: David Ruan <ruanwz@gmail.com>
Co-authored-by: David Ruan <david.ruan@analyticservice.net>
2023-03-20 22:53:52 -07:00
Simon Zhou
3674074eb0 Add Qdrant to ecosystem page (#1830)
Add [Qdrant](https://qdrant.tech/) to [LangChain
ecosystem](https://langchain.readthedocs.io/en/latest/ecosystem.html)
page.
2023-03-20 22:06:40 -07:00
Wenbin Fang
a7e09d46c5 Add podcast api tool to use NLP to search all podcasts or episodes. (#1833)
Use the following code to test:

```python
import os
from langchain.llms import OpenAI
from langchain.chains.api import podcast_docs
from langchain.chains import APIChain

# Get api key here: https://openai.com/pricing
os.environ["OPENAI_API_KEY"] = "sk-xxxxx"

# Get api key here: https://www.listennotes.com/api/pricing/
listen_api_key = 'xxx'

llm = OpenAI(temperature=0)
headers = {"X-ListenAPI-Key": listen_api_key}
chain = APIChain.from_llm_and_api_docs(llm, podcast_docs.PODCAST_DOCS, headers=headers, verbose=True)
chain.run("Search for 'silicon valley bank' podcast episodes, audio length is more than 30 minutes, return only 1 results")
```

Known issues: the api response data might be too big, and we'll get such
error:
`openai.error.InvalidRequestError: This model's maximum context length
is 4097 tokens, however you requested 6733 tokens (6477 in your prompt;
256 for the completion). Please reduce your prompt; or completion
length.`
2023-03-20 22:04:17 -07:00
Matt Tucker
fa2e546b76 Add workaround for debugpy install issue to contrib docs. (#1835)
When following the Quick Start instructions in the contributing docs, I
was getting a "WheelFileValidationError" on installation of debugpy
which was blocking the installation of a number of other deps. Google
turned up this [GitHub
issue](https://github.com/microsoft/debugpy/issues/1246) indicating a
regression in Poetry 1.4.1 and workarounds.

This PR updates the contrib docs noting the issue and the workarounds.
2023-03-20 22:03:19 -07:00
Daniel Dror (Dubovski)
c592b12043 Allow passing in encoding to csv_loader (#1836) 2023-03-20 22:03:00 -07:00
Ikko Eltociear Ashimine
9555bbd5bb Fix typo in sqlite.ipynb (#1828)
overriden -> overridden
2023-03-20 16:47:19 -07:00
Harrison Chase
0ca1641b14 release 0.0.117 (#1819) 2023-03-20 08:04:04 -07:00
Harrison Chase
d5b4393bb2 Harrison/llm math (#1808)
Co-authored-by: Vadym Barda <vadim.barda@gmail.com>
2023-03-20 07:53:26 -07:00
Bryan Helmig
7b6ff7fe00 Follow up to #1803 to remove dynamic docs route. (#1818)
The base docs are going to be more stable and familiar for folks.
Dynamic route is currently in flux.
2023-03-20 07:52:41 -07:00
Harrison Chase
76c7b1f677 Harrison/wandb (#1764)
Co-authored-by: Anish Shah <93145909+ash0ts@users.noreply.github.com>
2023-03-20 07:52:27 -07:00
Paul
5aa8ece211 Corrected small typo in error message. (#1791) 2023-03-20 07:51:35 -07:00
Harrison Chase
f6d24d5740 fix bug with openai token count (#1806) 2023-03-20 07:51:18 -07:00
Harrison Chase
b1c4480d7c fix typing (#1807) 2023-03-20 07:50:49 -07:00
Daniel Chalef
b6ba989f2f Add request timeout to ChatOpenAI (#1798)
Add request_timeout field to ChatOpenAI. Defaults to 60s.

---------

Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
2023-03-19 20:19:42 -07:00
Ankush Gola
04acda55ec Don't use dynamic api endpoint for Zapier NLA (#1803)
From Robert "Right now the dynamic/ route for specifically the above
endpoints is acting on all providers a user has set up, not just the
provider for the supplied API key."
2023-03-19 20:12:33 -07:00
Harrison Chase
8e5c4ac867 bump version to 0.0.116 (#1788) 2023-03-19 11:01:16 -07:00
Aratako
df8702fead Small fix: Remove unused variable summary_message_role (#1789)
After the changes in #1783, `summary_message_role` is no longer used in
`ConversationSummaryBufferMemory`, so this PR removes it.
2023-03-19 11:01:03 -07:00
Harrison Chase
d5d50c39e6 Harrison/azure embeddings (#1787)
Co-authored-by: Hemant <4627288+ghaccount@users.noreply.github.com>
2023-03-19 10:42:33 -07:00
Harrison Chase
1f18698b2a Harrison/token buffer memory (#1786)
Co-authored-by: Aratako <127325395+Aratako@users.noreply.github.com>
2023-03-19 10:42:24 -07:00
Harrison Chase
ef4945af6b Harrison/chat token usage (#1785) 2023-03-19 10:32:31 -07:00
Harrison Chase
7de2ada3ea Harrison/add source column (#1784)
Co-authored-by: Brian Graham <46691715+briangrahamww@users.noreply.github.com>
Co-authored-by: briangrahamww <brian.graham@ww.com>
2023-03-19 10:32:13 -07:00
Bernat Felip i Díaz
262d4cb9a8 Use embedding instead of embedding function in ElasticVectorStore (#1692)
While it might be a bit more restrictive, I find that using the
Embedding interface as an input for the vector store creation is better
than an embedding function because we can use bulk requests and possibly
the retry logic if needed.

I have seen that some vector store implementations use Embedding while
others use embedding function so I don't know what is the criteria to
have one or the other, in my opinion they should all just be Embedding
or have a way more complex embedding function that accepts multiple
texts instead of one by one.

---------

Co-authored-by: Bernat Felip <bernat.felip@rea.ch>
2023-03-19 10:23:38 -07:00
Harrison Chase
951c158106 Harrison/summary message rol (#1783)
Co-authored-by: Aratako <127325395+Aratako@users.noreply.github.com>
2023-03-19 10:09:18 -07:00
Bao Nguyen
85e4dd7fc3 Fix wrong prompt in refine chain (#1770)
I got this during testing 

```
ValueError: Missing some input keys: {'existing_answer'}
```

Upon review, the initial prompt should be `QUESTION_PROMPT_SELECTOR`.

Co-authored-by: Bao Nguyen <bnguyen@roku.com>
2023-03-19 10:03:45 -07:00
Harrison Chase
b1b4a4065a change chat default (#1782)
Resolves https://github.com/hwchase17/langchain/issues/1532, resolves
https://github.com/hwchase17/langchain/issues/1652.
2023-03-19 10:01:59 -07:00
Huang Chongdi
08f23c95d9 add encoding parameter to ObsidianLoader (#1752) 2023-03-19 09:48:31 -07:00
hitoshi44
3cf493b089 Fix Document & Expose StringPromptTemplate as a custom-prompt-template. (#1753)
Regarding [this
issue](https://github.com/hwchase17/langchain/issues/1754), the code in
the document [Creating a custom prompt
template](https://langchain.readthedocs.io/en/latest/modules/prompts/examples/custom_prompt_template.html)
is no longer functional and outdated.

To address this, I have made the following changes:

1. Updated the guide in the document to use `StringPromptTemplate`
instead of `BasePromptTemplate`.
2. Exposed `StringPromptTemplate` in `prompts/__init__.py` for easier
importing.
2023-03-19 09:47:56 -07:00
hitoshi44
e635c86145 Slightly modified the docstring in BasePromptTemplate and StringPromptTemplate. (#1755)
Regarding [this
issue](https://github.com/hwchase17/langchain/issues/1754),
`BasePromptTample` class docstring is a little outdated, thus it
requires new method `format_prompt` for now.

As such, I have made some modifications to the docstring to bring it up
to date.

I tried to adhere to the established document style, and would
appreciate you for taking a look at this PR.
2023-03-19 09:47:37 -07:00
Harrison Chase
779790167e Harrison/add warning to openaichat (#1781) 2023-03-19 09:43:56 -07:00
Nils Durner
3161ced4bc GPT-4 support (#1778) 2023-03-19 09:29:44 -07:00
hung_ng__
3d6fcb85dc Add load json prompt example (#1776)
Hi, I just want to add a PR on the prompt serialization examples of
loading from JSON so that it can contain the same as loading from YAML.
2023-03-19 09:28:56 -07:00
LeoGrin
3701b2901e use namespace argument in Pinecone constructor (#1757)
Fix #1756

Use the `namespace` argument of `Pinecone.from_exisiting_index` to set
the default value of `namespace` for other methods. Leads to more
expected behavior and easier integration in chains.

For the test, I've added a line to delete and rebuild the
`langchain-demo` index at the beginning of the test. I'm not 100% sure
if it's a good idea but it makes the test reproducible.
2023-03-18 19:55:38 -07:00
Ben Gahtan
280cb4160d Update tool.py (#1760)
Fixed typo that said the Wikipedia tool was using Wolfram Alpha (instead
of Wikipedia)
2023-03-18 19:55:26 -07:00
Kevin
80d8db5f60 Add service account support to Google Drive (#1761)
Having service account support in the drive document loader would be
nice.

This is already present in the youtube loader. 

cb646082ba/langchain/document_loaders/youtube.py (L76-L78)
2023-03-18 19:55:17 -07:00
Piyush Jain
1a8790d808 Corrects copyright year (#1762)
Corrected copyright year.
2023-03-18 19:55:05 -07:00
Eric Zhu
34840f3aee AzureChatOpenAI for Azure Open AI's ChatGPT API (#1673)
Add support for Azure OpenAI's ChatGPT API, which uses ChatML markups to
format messages instead of objects.

Related issues: #1591, #1659
2023-03-18 19:54:20 -07:00
Harrison Chase
8685d53adc querying tabular data (#1758) 2023-03-18 11:12:18 -07:00
Harrison Chase
2f6833d433 hotfix (#1742) 2023-03-17 09:05:08 -07:00
Harrison Chase
dd90fd02d5 Harrison/move docs (#1741) 2023-03-17 08:49:10 -07:00
Harrison Chase
07766a69f3 move docs (#1740) 2023-03-17 08:42:28 -07:00
Harrison Chase
aa854988bf bump version to 114 (#1739) 2023-03-17 08:26:06 -07:00
Harrison Chase
96ebe98dc2 Harrison/latex splitter (#1738)
Co-authored-by: Aidan Holland <thehappydinoa@gmail.com>
Co-authored-by: Jan de Boer <44832123+Janldeboer@users.noreply.github.com>
2023-03-17 08:10:27 -07:00
Harrison Chase
45f05fc939 Harrison/blackboard loader (#1737)
Co-authored-by: Aidan Holland <thehappydinoa@gmail.com>
2023-03-17 08:02:44 -07:00
Vincent Liao
cf9c3f54f7 docs: add docs link to agent toolkits (#1735)
New to Langchain, was a bit confused where I should find the toolkits
section when I'm at `agent/key_concepts` docs. I added a short link that
points to the how to section.
2023-03-17 07:59:49 -07:00
Merbin J Anselm
fbc0c85b90 fix: agent json parser fails with text in suffix (#1734)
While testing out `VectorDBQA` as a `Tool` for one of the conversation,
I happened to get a response from LLM (OpenAI) like this

<code>
Could not parse LLM output: Here's a response using the Product Search
tool:

```json
{
    "action": "Product Search",
    "action_input": "pots for plants"
}
```

This will allow you to search for pots for your plants and find a
variety of options that are available for purchase. You can use this
information to choose the pots that best fit your needs and preferences.
</code>

i.e. The response had a text before & *after* the expected JSON, leading
to `JSONDecodeError`. It's fixed now, by removing text after '```' to
remove unwanted text.

The error I encountered in this Jupyter Notebook -
[link](https://github.com/anselm94/chatbot-llm-ecommerce/blob/main/chatcommerce.ipynb)

<details>
    <summary>Error encountered</summary>
    <code>
    

---------------------------------------------------------------------------
JSONDecodeError Traceback (most recent call last)
File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/agents/conversational_chat/base.py:104,
in ConversationalChatAgent._extract_tool_and_input(self, llm_output)
        103 try:
    --> 104     response = self.output_parser.parse(llm_output)
        105     return response["action"], response["action_input"]

File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/agents/conversational_chat/base.py:49,
in AgentOutputParser.parse(self, text)
        48 cleaned_output = cleaned_output.strip()
    ---> 49 response = json.loads(cleaned_output)
50 return {"action": response["action"], "action_input":
response["action_input"]}

File
/opt/homebrew/Cellar/python@3.11/3.11.2_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/__init__.py:346,
in loads(s, cls, object_hook, parse_float, parse_int, parse_constant,
object_pairs_hook, **kw)
        343 if (cls is None and object_hook is None and
        344         parse_int is None and parse_float is None and
345 parse_constant is None and object_pairs_hook is None and not kw):
    --> 346     return _default_decoder.decode(s)
        347 if cls is None:

File
/opt/homebrew/Cellar/python@3.11/3.11.2_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/decoder.py:340,
in JSONDecoder.decode(self, s, _w)
        339 if end != len(s):
    --> 340     raise JSONDecodeError("Extra data", s, end)
        341 return obj

    JSONDecodeError: Extra data: line 5 column 1 (char 74)

    During handling of the above exception, another exception occurred:

ValueError Traceback (most recent call last)
    Cell In[22], line 1
    ----> 1 ask_ai.run("Yes. I need pots for my plants")

File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/chains/base.py:213,
in Chain.run(self, *args, **kwargs)
        211     if len(args) != 1:
212 raise ValueError("`run` supports only one positional argument.")
    --> 213     return self(args[0])[self.output_keys[0]]
        215 if kwargs and not args:
        216     return self(kwargs)[self.output_keys[0]]

File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/chains/base.py:116,
in Chain.__call__(self, inputs, return_only_outputs)
        114 except (KeyboardInterrupt, Exception) as e:
115 self.callback_manager.on_chain_error(e, verbose=self.verbose)
    --> 116     raise e
117 self.callback_manager.on_chain_end(outputs, verbose=self.verbose)
118 return self.prep_outputs(inputs, outputs, return_only_outputs)

File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/chains/base.py:113,
in Chain.__call__(self, inputs, return_only_outputs)
        107 self.callback_manager.on_chain_start(
        108     {"name": self.__class__.__name__},
        109     inputs,
        110     verbose=self.verbose,
        111 )
        112 try:
    --> 113     outputs = self._call(inputs)
        114 except (KeyboardInterrupt, Exception) as e:
115 self.callback_manager.on_chain_error(e, verbose=self.verbose)

File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/agents/agent.py:499,
in AgentExecutor._call(self, inputs)
        497 # We now enter the agent loop (until it returns something).
        498 while self._should_continue(iterations):
    --> 499     next_step_output = self._take_next_step(
500 name_to_tool_map, color_mapping, inputs, intermediate_steps
        501     )
        502     if isinstance(next_step_output, AgentFinish):
503 return self._return(next_step_output, intermediate_steps)

File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/agents/agent.py:409,
in AgentExecutor._take_next_step(self, name_to_tool_map, color_mapping,
inputs, intermediate_steps)
404 """Take a single step in the thought-action-observation loop.
        405
406 Override this to take control of how the agent makes and acts on
choices.
        407 """
        408 # Call the LLM to see what to do.
    --> 409 output = self.agent.plan(intermediate_steps, **inputs)
410 # If the tool chosen is the finishing tool, then we end and return.
        411 if isinstance(output, AgentFinish):

File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/agents/agent.py:105,
in Agent.plan(self, intermediate_steps, **kwargs)
        94 """Given input, decided what to do.
        95
        96 Args:
    (...)
        102     Action specifying what tool to use.
        103 """
104 full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
    --> 105 action = self._get_next_action(full_inputs)
        106 if action.tool == self.finish_tool_name:
107 return AgentFinish({"output": action.tool_input}, action.log)

File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/agents/agent.py:67,
in Agent._get_next_action(self, full_inputs)
65 def _get_next_action(self, full_inputs: Dict[str, str]) ->
AgentAction:
        66     full_output = self.llm_chain.predict(**full_inputs)
---> 67 parsed_output = self._extract_tool_and_input(full_output)
        68     while parsed_output is None:
        69         full_output = self._fix_text(full_output)

File
~/Git/chatbot-llm-ecommerce/.venv/lib/python3.11/site-packages/langchain/agents/conversational_chat/base.py:107,
in ConversationalChatAgent._extract_tool_and_input(self, llm_output)
        105     return response["action"], response["action_input"]
        106 except Exception:
--> 107 raise ValueError(f"Could not parse LLM output: {llm_output}")

ValueError: Could not parse LLM output: Here's a response using the
Product Search tool:

    ```json
    {
        "action": "Product Search",
        "action_input": "pots for plants"
    }
    ```

This will allow you to search for pots for your plants and find a
variety of options that are available for purchase. You can use this
information to choose the pots that best fit your needs and preferences.

</details>
2023-03-17 07:59:39 -07:00
Harrison Chase
276940fd9b Harrison/official method (#1728)
Co-authored-by: Aratako <127325395+Aratako@users.noreply.github.com>
2023-03-16 23:20:08 -07:00
Piyush Jain
cdff6c8181 Sagemaker Endpoint LLM (#1686)
Updates #965

---------

Co-authored-by: Nimisha Mehta <116048415+nimimeht@users.noreply.github.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-03-16 21:58:06 -07:00
alekhyablue
cd45adbea2 adding new agent types in comments (#1711) 2023-03-16 21:56:08 -07:00
Mario Kostelac
aff44d0a98 (OpenAI) Add model_name to LLMResult.llm_output (#1713)
Given that different models have very different latencies and pricings,
it's benefitial to pass the information about the model that generated
the response. Such information allows implementing custom callback
managers and track usage and price per model.

Addresses https://github.com/hwchase17/langchain/issues/1557.
2023-03-16 21:55:55 -07:00
libra
8a95fdaee1 Fix all the bug in init Tool in docs (#1725)
Fix all the example in the docs when init `Tool`

Test by render with jupyter
2023-03-16 21:55:44 -07:00
Alexandros Mavrogiannis
5d8dc83ede Bump duckdb-engine to 0.7.0 (#1726)
Resolves https://github.com/hwchase17/langchain/issues/1272
Resolves https://github.com/hwchase17/langchain/issues/1578
2023-03-16 21:55:35 -07:00
Daniel Chalef
b157e0c1c3 Add HTML document_loader that includes page title metadata (#1720)
This `BSHTMLLoader` document_loader loads an HTML document, extracts
text and adds the page title to the returned Document's metadata. The
loader uses the already installed bs4 package to extract both text
content and the page title.

Included in this PR is an example HTML file and an integration test that
tests against this file.

---------

Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
2023-03-16 21:47:17 -07:00
Harrison Chase
40e9488055 fix async in agent (#1723) 2023-03-16 21:43:22 -07:00
jerwelborn
55efbb8a7e pydantic/json parsing (#1722)
```
class Joke(BaseModel):
    setup: str = Field(description="question to set up a joke")
    punchline: str = Field(description="answer to resolve the joke")

joke_query = "Tell me a joke."

# Or, an example with compound type fields.
#class FloatArray(BaseModel):
#    values: List[float] = Field(description="list of floats")
#
#float_array_query = "Write out a few terms of fiboacci."

model = OpenAI(model_name='text-davinci-003', temperature=0.0)
parser = PydanticOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
    template="Answer the user query.\n{format_instructions}\n{query}\n",
    input_variables=["query"],
    partial_variables={"format_instructions": parser.get_format_instructions()}
)

_input = prompt.format_prompt(query=joke_query)
print("Prompt:\n", _input.to_string())
output = model(_input.to_string())
print("Completion:\n", output)
parsed_output = parser.parse(output)
print("Parsed completion:\n", parsed_output)
```

```
Prompt:
 Answer the user query.
The output should be formatted as a JSON instance that conforms to the JSON schema below.  For example, the object {"foo":  ["bar", "baz"]} conforms to the schema {"foo": {"description": "a list of strings field", "type": "string"}}.

Here is the output schema:
---
{"setup": {"description": "question to set up a joke", "type": "string"}, "punchline": {"description": "answer to resolve the joke", "type": "string"}}
---

Tell me a joke.

Completion:
 {"setup": "Why don't scientists trust atoms?", "punchline": "Because they make up everything!"}

Parsed completion:
 setup="Why don't scientists trust atoms?" punchline='Because they make up everything!'
```

Ofc, works only with LMs of sufficient capacity. DaVinci is reliable but
not always.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-03-16 21:43:11 -07:00
Alex Strick van Linschoten
d6bbf395af Loosen PyYAML dependency (#1698)
Hitting some dependency issues relating to this strict pinning. Unsure
of the knock-on effects, but wanted to propose this loosening down a
couple of versions.
2023-03-16 17:05:36 -07:00
Jonathan Pedoeem
606605925d Adding ability to return_pl_id to all PromptLayer Models in LangChain (#1699)
PromptLayer now has support for [several different tracking
features.](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9)
In order to use any of these features you need to have a request id
associated with the request.

In this PR we add a boolean argument called `return_pl_id` which will
add `pl_request_id` to the `generation_info` dictionary associated with
a generation.

We also updated the relevant documentation.
2023-03-16 17:05:23 -07:00
Jeff Huber
f93c011456 fallback to {} for None metadata from Chroma (#1714)
The basic vector store example started breaking because `Document`
required `not None` for metadata, but Chroma stores metadata as `None`
if none is provided. This creates a fallback which fixes the basic
tutorial
https://langchain.readthedocs.io/en/latest/modules/indexes/examples/vectorstores.html

Here is the error that was generated

```
Running Chroma using direct local API.
Using DuckDB in-memory for database. Data will be transient.
Traceback (most recent call last):
  File "/Users/jeff/src/temp/langchainchroma/test.py", line 17, in <module>
    docs = docsearch.similarity_search(query)
  File "/Users/jeff/src/langchain/langchain/vectorstores/chroma.py", line 133, in similarity_search
    docs_and_scores = self.similarity_search_with_score(query, k)
  File "/Users/jeff/src/langchain/langchain/vectorstores/chroma.py", line 182, in similarity_search_with_score
    return _results_to_docs_and_scores(results)
  File "/Users/jeff/src/langchain/langchain/vectorstores/chroma.py", line 24, in _results_to_docs_and_scores
    return [
  File "/Users/jeff/src/langchain/langchain/vectorstores/chroma.py", line 27, in <listcomp>
    (Document(page_content=result[0], metadata=result[1]), result[2])
  File "pydantic/main.py", line 331, in pydantic.main.BaseModel.__init__
pydantic.error_wrappers.ValidationError: 1 validation error for Document
metadata
  none is not an allowed value (type=type_error.none.not_allowed)
Exiting: Cleaning up .chroma directory
```
2023-03-16 12:06:47 -07:00
Harrison Chase
3c24684522 harrison/bump-version-00113 (#1701) 2023-03-15 14:49:47 -07:00
Harrison Chase
b84d190fd0 Harrison/gr int (#1700)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-03-15 13:22:20 -07:00
Harrison Chase
aad4bff098 Harrison/headers (#1696)
Co-authored-by: Tim Asp <707699+timothyasp@users.noreply.github.com>
2023-03-15 13:13:21 -07:00
Harrison Chase
3ea6d9c4d2 add docs for save/load messages (#1697) 2023-03-15 13:13:08 -07:00
Pandazki
ced412e1c1 fix: correct a small mistake in SimpleChatModel. (#1685) 2023-03-15 08:00:26 -07:00
Piyush Jain
1279c8de39 Fixed typo, clarified language (#1682) 2023-03-15 08:00:11 -07:00
at-b612
c7779c800a Added Mynd URL to gallery (#1684) 2023-03-15 07:59:59 -07:00
Jithin James
6f4f771897 docs: add path to state_of_the_union.txt in indexes/getting_started page (#1691)
add the state_of_the_union.txt file so that its easier to follow through
with the example.

---------

Co-authored-by: Jithin James <jjmachan@pop-os.localdomain>
2023-03-15 07:59:47 -07:00
Kacper Łukawski
4a327dd1d6 Implement basic metadata filtering in Qdrant (#1689)
This PR implements a basic metadata filtering mechanism similar to the
ones in Chroma and Pinecone. It still cannot express complex conditions,
as there are no operators, but some users requested to have that feature
available.
2023-03-15 07:31:39 -07:00
Ankush Gola
d4edd3c312 Zapier Integration (#1654)
* Zapier Wrapper and Tools (implemented by Zapier Team)
* Zapier Toolkit, examples with mrkl agent

---------

Co-authored-by: Mike Knoop <mikeknoop@gmail.com>
Co-authored-by: Robert Lewis <robert.lewis@zapier.com>
2023-03-14 23:06:17 -07:00
Harrison Chase
e72074f78a Harrison/ifixit (#1680)
Co-authored-by: David Rans <david@ifixit.com>
2023-03-14 21:17:50 -07:00
Harrison Chase
0b29e68c17 Harrison/pgvector (#1679)
Co-authored-by: Aman Kumar <krsingh.aman@gmail.com>
2023-03-14 21:13:58 -07:00
Harrison Chase
4d7fdb8957 Harrison/gml save (#1676)
Co-authored-by: Satoru Sakamoto <51464932+satoru814@users.noreply.github.com>
2023-03-14 20:00:22 -07:00
Harrison Chase
656efe6ef3 Harrison/fix nb (#1678) 2023-03-14 19:34:23 -07:00
Harrison Chase
362586fe8b save messages (#1653)
@yakigac this is my alternative to
https://github.com/hwchase17/langchain/pull/1648 - thoughts?
2023-03-14 18:15:55 -07:00
Matt Robinson
63aa28e2a6 feat: allow the unstructured kwargs to be passed in to Unstructured document loaders (#1667)
### Summary

Allows users to pass in `**unstructured_kwargs` to Unstructured document
loaders. Implemented with the `strategy` kwargs in mind, but will pass
in other kwargs like `include_page_breaks` as well. The two currently
supported strategies are `"hi_res"`, which is more accurate but takes
longer, and `"fast"`, which processes faster but with lower accuracy.
The `"hi_res"` strategy is the default. For PDFs, if `detectron2` is not
available and the user selects `"hi_res"`, the loader will fallback to
using the `"fast"` strategy.


### Testing

#### Make sure the `strategy` kwarg works

Run the following in iPython to verify that the `"fast"` strategy is
indeed faster.

```python
from langchain.document_loaders import UnstructuredFileLoader

loader = UnstructuredFileLoader("layout-parser-paper-fast.pdf", strategy="fast", mode="elements")
%timeit loader.load()

loader = UnstructuredFileLoader("layout-parser-paper-fast.pdf", mode="elements")
%timeit loader.load()
```

On my system I get:

```python
In [3]: from langchain.document_loaders import UnstructuredFileLoader

In [4]: loader = UnstructuredFileLoader("layout-parser-paper-fast.pdf", strategy="fast", mode="elements")

In [5]: %timeit loader.load()
247 ms ± 369 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [6]: loader = UnstructuredFileLoader("layout-parser-paper-fast.pdf", mode="elements")

In [7]: %timeit loader.load()
2.45 s ± 31 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

#### Make sure older versions of `unstructured` still work

Run `pip install unstructured==0.5.3` and then verify the following runs
without error:

```python
from langchain.document_loaders import UnstructuredFileLoader

loader = UnstructuredFileLoader("layout-parser-paper-fast.pdf",  mode="elements")
loader.load()
```
2023-03-14 18:15:28 -07:00
Matthias Kern
c3dfbdf0da Remove outdated code from Chat VectorDB QA example (#1670) 2023-03-14 18:13:51 -07:00
Bilel MEDIMEGH
a2280f321f Docs: Fix typo in memory/key_concepts.md (#1671)
dialouge -> dialogue
2023-03-14 18:12:01 -07:00
Xin Qiu
4e13cef05a feat: add redisearch vectorstore (#1307)
# Description

Add `RediSearch` vectorstore for LangChain

RediSearch: [RediSearch quick
start](https://redis.io/docs/stack/search/quick_start/)

# How to use

```
from langchain.vectorstores.redisearch import RediSearch

rds = RediSearch.from_documents(docs, embeddings,redisearch_url="redis://localhost:6379")
```
2023-03-14 18:06:03 -07:00
Harrison Chase
e5c1659864 bump ver (#1668) 2023-03-14 13:05:17 -07:00
Harrison Chase
2d098e8869 Harrison/agent eval (#1620)
Co-authored-by: jerwelborn <jeremy.welborn@gmail.com>
2023-03-14 12:37:48 -07:00
Harrison Chase
8965a2f0af bump and hotfix (#1665) 2023-03-14 11:12:53 -07:00
Harrison Chase
e222ea4ee8 update rtd config (#1664) 2023-03-14 10:40:06 -07:00
Harrison Chase
e326939759 bump version 110 (#1662) 2023-03-14 10:21:35 -07:00
Harrison Chase
7cf46b3fee Harrison/convo agent (#1642) 2023-03-14 09:42:24 -07:00
Abhinav Upadhyay
84cd825a0e Add a batch_size param to the add_texts API of pinecone wrapper (#1658)
A safe default value of batch_size is required by the pinecone python
client otherwise if the user of add_texts passes too many documents in a
single call, they would get a 400 error from pinecone.
2023-03-14 09:40:22 -07:00
Jon Luo
0a1b1806e9 sql: do not hard code the LIMIT clause in the table_info section (#1563)
Seeing a lot of issues in Discord in which the LLM is not using the
correct LIMIT clause for different SQL dialects. ie, it's using `LIMIT`
for mssql instead of `TOP`, or instead of `ROWNUM` for Oracle, etc.
I think this could be due to us specifying the LIMIT statement in the
example rows portion of `table_info`. So the LLM is seeing the `LIMIT`
statement used in the prompt.
Since we can't specify each dialect's method here, I think it's fine to
just replace the `SELECT... LIMIT 3;` statement with `3 rows from
table_name table:`, and wrap everything in a block comment directly
following the `CREATE` statement. The Rajkumar et al paper wrapped the
example rows and `SELECT` statement in a block comment as well anyway.
Thoughts @fpingham?
2023-03-13 23:08:27 -07:00
Brian Thorne
9ee2713272 Bugfix - allow custom input variables in chat zero shot agent's prompt (#1624)
I was trying out the `chat-zero-shot-react-description` agent for
[qabot](dbbd31bb27/qabot/agents/data_query_chain.py (L35-L52))
but langchain 0.0.108 doesn't correctly use custom 'input_variables` in
the prompt template.
2023-03-13 23:07:35 -07:00
Tim Asp
b3234bf3b0 cleanup: unify 3 different pdf loaders, rename PagedPDFSplitter (#1615)
`OnlinePDFLoader` and `PagedPDFSplitter` lived separate from the rest of
the pdf loaders.

Because they're all similar, I propose moving all to `pdy.py` and the
same docs/examples page.

Additionally, `PagedPDFSplitter` naming doesn't match the pattern the
rest of the loaders follow, so I renamed to `PyPDFLoader` and had it
inherit from `BasePDFLoader` so it can now load from remote file
sources.
2023-03-13 23:06:50 -07:00
Luis
562d9891ea Add regex dict: (#1616)
This class enables us to send a dictionary containing an output key and
the expected format, which in turn allows us to retrieve the result of
the matching formats and extract specific information from it.

To exclude irrelevant information from our return dictionary, we can
prompt the LLM to use a specific command that notifies us when it
doesn't know the answer. We refer to this variable as the
"no_update_value".

Regarding the updated regular expression pattern
(r"{}:\s?([^.'\n']*).?"), it enables us to retrieve a format as 'Output
Key':'value'.

We have improved the regex by adding an optional space between ':' and
'value' with "s?", and by excluding points and line jumps from the
matches using "[^.'\n']*".
2023-03-13 23:05:39 -07:00
Harrison Chase
56aff797c0 docs req (#1647) 2023-03-13 16:03:32 -07:00
Harrison Chase
d53ff270e0 bump version to 109 (#1646) 2023-03-13 15:52:35 -07:00
Harrison Chase
df6c33d4b3 Harrison/new output parser (#1617) 2023-03-13 15:08:39 -07:00
Dennis Aumiller
039d05c808 Update types in cohere.py (#1635)
Adjust argument type and clarification on parameter limits for
attributes `frequency_penalty` and `presence_penalty`.
2023-03-13 09:08:32 -07:00
Harrison Chase
aed9f9febe Harrison/return intermediate (#1633)
Co-authored-by: Mario Kostelac <mario@intercom.io>
2023-03-13 07:54:29 -07:00
Harrison Chase
72b461e257 improve chat error (#1632) 2023-03-13 07:43:44 -07:00
Peng Qu
cb646082ba remove an extra whitespace (#1625) 2023-03-13 07:27:21 -07:00
Eugene Yurtsev
bd4a2a670b Add copy button to sphinx notebooks (#1622)
This adds a copy button at the top right corner of all notebook cells in
sphinx
notebooks.
2023-03-12 21:15:07 -07:00
Ikko Eltociear Ashimine
6e98ab01e1 Fix typo in vectorstore.ipynb (#1614)
Initalize -> Initialize
2023-03-12 14:12:47 -07:00
Harrison Chase
c0ad5d13b8 bump to version 108 (#1613) 2023-03-12 09:50:45 -07:00
yakigac
acd86d33bc Add read only shared memory (#1491)
Provide shared memory capability for the Agent.
Inspired by #1293 .

## Problem

If both Agent and Tools (i.e., LLMChain) use the same memory, both of
them will save the context. It can be annoying in some cases.


## Solution

Create a memory wrapper that ignores the save and clear, thereby
preventing updates from Agent or Tools.
2023-03-12 09:34:36 -07:00
Abhinav Upadhyay
9707eda83c Fix docstring of FAISS constructor (#1611) 2023-03-12 09:31:40 -07:00
Kayvane Shakerifar
7e550df6d4 feat: add lookup index to csv loader to make retrieving the original … (#1612)
feat: add lookup index to csv loader to make retrieving the original csv
information easier using theDocument properties
2023-03-12 09:29:27 -07:00
Harrison Chase
c9b5a30b37 move output parsing (#1605) 2023-03-11 16:41:03 -08:00
Harrison Chase
cb04ba0136 Add support for intermediate steps to SQLDatabaseSequentialChain (#1583) (#1601)
for https://github.com/hwchase17/langchain/issues/1582

I simply added the `return_intermediate_steps` and changed the
`output_keys` function.

I added 2 simple tests, 1 for SQLDatabaseSequentialChain without the
intermediate steps and 1 with

Co-authored-by: brad-nemetski <115185478+brad-nemetski@users.noreply.github.com>
2023-03-11 15:44:41 -08:00
Harrison Chase
5903a93f3d add convinence method to call chat model as an llm (#1604) 2023-03-11 15:04:57 -08:00
Harrison Chase
15de3e8137 Harrison/docs footer (#1600)
Co-authored-by: Albert Avetisian <albert.avetisian@gmail.com>
2023-03-11 09:18:35 -08:00
Harrison Chase
f95d551f7a Harrison/shallow metadata (#1599)
Co-authored-by: Jesse Zhang <jessetanzhang@gmail.com>
2023-03-11 09:18:25 -08:00
Harrison Chase
c6bfa00178 bump version to 107 (#1590) 2023-03-10 15:39:30 -08:00
Tim Asp
01a57198b8 [bugfix] Fix persisted chromadb vectorstore (#1444)
If a `persist_directory` param was set, chromadb would throw a warning
that ""No embedding_function provided, using default embedding function:
SentenceTransformerEmbeddingFunction". and would error with a `Illegal
instruction: 4` error.

This is on a MBP M1 13.2.1, python 3.9.

I'm not entirely sure why that error happened, but when using
`get_or_create_collection` instead of `list_collection` on our end, the
error and warning goes away and chroma works as expected.

Added bonus this is cleaner and likely more efficient.
`list_collections` builds a new `Collection` instance for each collect,
then `Chroma` would just use the `name` field to tell if the collection
existed.
2023-03-10 15:14:35 -08:00
Harrison Chase
8dba30f31e Harrison/kwargs loaders (#1588)
Co-authored-by: Tim Asp <707699+timothyasp@users.noreply.github.com>
2023-03-10 15:05:06 -08:00
Harrison Chase
9f78717b3c Harrison/callbacks (#1587) 2023-03-10 12:53:09 -08:00
Harrison Chase
90846dcc28 fix chat agent (#1586) 2023-03-10 12:40:37 -08:00
Claus Thomasen
6ed16e13b1 Readded similarity_search_by_vector (#1568)
I am redoing this PR, as I made a mistake by merging the latest changes
into my fork's branch, sorry. This added a bunch of commits to my
previous PR.

This fixes #1451.
2023-03-10 12:40:14 -08:00
Harrison Chase
c1dc784a3d buffer memory old version (#1581)
bring back an older version of memory since people seem to be using it
more widely
2023-03-10 11:27:15 -08:00
fabi.s
5b0e747f9a Fix description of UnstructuredURLLoader & UnstructuredHTMLLoader (#1570) 2023-03-10 07:08:58 -08:00
Zach Schillaci
624c72c266 Add wikipedia tool doc (#1579) 2023-03-10 07:07:27 -08:00
Ryan Dao
a950287206 Strip trailing whitespaces in agent's stop sequences (#1566)
Fixes #1489
2023-03-09 16:36:15 -08:00
Tim Asp
30383abb12 Add CSVLoader document loader (#1573)
Simple CSV document loader which wraps `csv` reader, and preps the file
with a single `Document` per row.

The column header is prepended to each value for context which is useful
for context with embedding and semantic search
2023-03-09 16:35:18 -08:00
Zach Schillaci
cdb97f3dfb Add Wikipedia search utility and tool (#1561)
The Python `wikipedia` package gives easy access for searching and
fetching pages from Wikipedia, see https://pypi.org/project/wikipedia/.
It can serve as an additional search and retrieval tool, like the
existing Google and SerpAPI helpers, for both chains and agents.
2023-03-09 16:34:39 -08:00
Felix Altenberger
b44c8bd969 Add optional base_url arg to GitbookLoader (#1552)
First of all, big kudos on what you guys are doing, langchain is
enabling some really amazing usecases and I'm having lot's of fun
playing around with it. It's really cool how many data sources it
supports out of the box.

However, I noticed some limitations of the current `GitbookLoader` which
this PR adresses:

The main change is that I added an optional `base_url` arg to
`GitbookLoader`. This enables use cases where one wants to crawl docs
from a start page other than the index page, e.g., the following call
would scrape all pages that are reachable via nav bar links from
"https://docs.zenml.io/v/0.35.0":

```python
GitbookLoader(
    web_page="https://docs.zenml.io/v/0.35.0", 
    load_all_paths=True,
    base_url="https://docs.zenml.io",
)
```

Previously, this would fail because relative links would be of the form
`/v/0.35.0/...` and the full link URLs would become
`docs.zenml.io/v/0.35.0/v/0.35.0/...`.

I also fixed another issue of the `GitbookLoader` where the link URLs
were constructed incorrectly as `website//relative_url` if the provided
`web_page` had a trailing slash.
2023-03-09 16:32:40 -08:00
Andriy Mulyar
c9189d354a AtlasDB vector store documentation updates. (#1572)
- Updated errors in the AtlasDB vector store documentation
- Removed extraneous output logs in example notebook.
2023-03-09 16:31:14 -08:00
blob42
622578a022 docs: fix typo in searx tool (#1569)
Co-authored-by: blob42 <spike@w530>
2023-03-09 15:58:33 -08:00
Matt Robinson
7018806a92 feat: document loader for markdown files (#1558)
### Summary

Adds a document loader for handling markdown files. This document loader
requires `unstructured>=0.4.16`.

### Testing

```python
from langchain.document_loaders import UnstructuredMarkdownLoader

loader = UnstructuredMarkdownLoader("README.md")
loader.load()
```
2023-03-09 10:55:07 -08:00
Harrison Chase
bd335ffd64 bump version to 106 (#1562) 2023-03-09 10:20:54 -08:00
Harrison Chase
a094c49153 add chat agent (#1509) 2023-03-09 09:12:08 -08:00
Brenton Wheeler
99fe023496 docs: fix typo in modules/indexes/chain_examples/question_answering (#1551)
docs: fix typo in modules/indexes/chain_examples/question_answering


![image](https://user-images.githubusercontent.com/11394076/224007874-3a52adf6-ff7a-4f22-9dbf-18c83d08167f.png)
2023-03-09 09:11:43 -08:00
Harrison Chase
3ee32a01ea Harrison/prompt layer (#1547)
Co-authored-by: Jonathan Pedoeem <jonathanped@gmail.com>
Co-authored-by: AbuBakar <abubakarsohail123@gmail.com>
2023-03-08 21:24:27 -08:00
Harrison Chase
c844d1fd46 Harrison/chunk size (#1549)
Co-authored-by: Florian Leuerer <31259070+floleuerer@users.noreply.github.com>
2023-03-08 21:24:18 -08:00
Harrison Chase
9405af6919 Harrison/hf inf error (#1543)
Co-authored-by: Konstantin Hebenstreit <57603012+KonstantinHebenstreit@users.noreply.github.com>
2023-03-08 20:53:46 -08:00
Harrison Chase
357d808484 Harrison/remote paths pdf (#1544)
Co-authored-by: Tim Asp <707699+timothyasp@users.noreply.github.com>
2023-03-08 20:53:37 -08:00
Harrison Chase
cc423f40f1 Harrison/youtube loader (#1545)
Co-authored-by: Julian Wustl <57504258+Julianwustl@users.noreply.github.com>
2023-03-08 20:53:27 -08:00
Harrison Chase
b053f831cd Harrison/contributing (#1542)
Co-authored-by: Saurav Maheshkar <sauravvmaheshkar@gmail.com>
2023-03-08 20:53:16 -08:00
Harrison Chase
523ad8d2e2 Harrison/chat history formatter1 (#1538)
Co-authored-by: Youssef A. Abukwaik <yousseb@users.noreply.github.com>
2023-03-08 20:46:37 -08:00
Graham Neubig
31303d0b11 Added other evaluation metrics for data-augmented QA (#1521)
This PR adds additional evaluation metrics for data-augmented QA,
resulting in a report like this at the end of the notebook:

![Screen Shot 2023-03-08 at 8 53 23
AM](https://user-images.githubusercontent.com/398875/223731199-8eb8e77f-5ff3-40a2-a23e-f3bede623344.png)

The score calculation is based on the
[Critique](https://docs.inspiredco.ai/critique/) toolkit, an API-based
toolkit (like OpenAI) that has minimal dependencies, so it should be
easy for people to run if they choose.

The code could further be simplified by actually adding a chain that
calls Critique directly, but that probably should be saved for another
PR if necessary. Any comments or change requests are welcome!
2023-03-08 20:41:03 -08:00
gidler
494c9d341a [DOCS] Assorted wording, punctuation, and consistency revisions (#1443)
Contributing some small fixes I noticed while reading through the
documentation.

Thank you for a creating and maintaining this project!
2023-03-08 20:16:09 -08:00
Harrison Chase
519f0187b6 Harrison/gdrive pdf (#1433)
Co-authored-by: LM <93918064+LuisMalhadas@users.noreply.github.com>
Co-authored-by: Luis Malhadas <luis@sia.so>
2023-03-08 20:15:36 -08:00
Florian Leuerer
64c6435545 Added client_settings support for chromadb vecstore (#1528)
# Problem

The ChromaDB vecstore only supported local connection. There was no way
to use a chromadb server.

# Fix
Added `client_settings` as Chroma attribute. 

# Usage

```
from chromadb.config import Settings
from langchain.vectorstores import Chroma

chroma_settings = Settings(chroma_api_impl="rest",
                            chroma_server_host="localhost",
                            chroma_server_http_port="80")

docsearch = Chroma.from_documents(chunks, embeddings, metadatas=metadatas, client_settings=chroma_settings, collection_name=COLLECTION_NAME)
```
2023-03-08 17:42:09 -08:00
Harrison Chase
7eba828e1b Harrison/update regex (#1534)
Co-authored-by: Luis <57528712+LuisLechugaRuiz@users.noreply.github.com>
2023-03-08 17:41:17 -08:00
Harrison Chase
2a7215bc3b Harrison/prompt issues (#1537) 2023-03-08 16:56:10 -08:00
Alpri Else
784d24a1d5 Support S3 Object keys with / in S3FileLoader (#1517)
Resolves https://github.com/hwchase17/langchain/issues/1510

### Problem
When loading S3 Objects with `/` in the object key (eg.
`folder/some-document.txt`) using `S3FileLoader`, the objects are
downloaded into a temporary directory and saved as a file.

This errors out when the parent directory does not exist within the
temporary directory.

See
https://github.com/hwchase17/langchain/issues/1510#issuecomment-1459583696
on how to reproduce this bug

### What this pr does
Creates parent directories based on object key. 

This also works with deeply nested keys:
`folder/subfolder/some-document.txt`
2023-03-08 16:17:26 -08:00
Harrison Chase
aba58e9e2e Harrison/bumpver104 (#1525) 2023-03-08 09:46:02 -08:00
Harrison Chase
c4a557bdd4 add concept of prompt collection (#1507) 2023-03-08 08:31:29 -08:00
Ivan
97e3666e0d changed requests.run to requests.get (#1485)
This pull request proposes an update to the Lightweight wrapper
library's documentation. The current documentation provides an example
of how to use the library's requests.run method, as follows:
requests.run("https://www.google.com"). However, this example does not
work for the 0.0.102 version of the library.

Testing:

The changes have been tested locally to ensure they are working as
intended.

Thank you for considering this pull request.
2023-03-07 21:10:23 -08:00
Harrison Chase
7ade419a0e allow passing of messages into prompt template (#1505) 2023-03-07 21:10:12 -08:00
Harrison Chase
a4a2d79087 Harrison/rtd loader (#1513)
Co-authored-by: Youssef A. Abukwaik <yousseb@users.noreply.github.com>
2023-03-07 21:09:54 -08:00
Harrison Chase
8f21605d71 add return source docs (#1515) 2023-03-07 21:09:36 -08:00
Harrison Chase
064741db58 Harrison/fix text splitter (#1511)
Co-authored-by: ajaysolanky <ajsolanky@gmail.com>
Co-authored-by: Ajay Solanky <ajaysolanky@saw-l14668307kd.myfiosgateway.com>
2023-03-07 15:42:28 -08:00
Tom Dyson
e3354404ad Fix link to Pinecone notebook (#1492) 2023-03-07 15:24:03 -08:00
Harrison Chase
3610ef2830 add fake embeddings class (#1503) 2023-03-07 15:23:46 -08:00
Ankush Gola
27104d4921 fix ChatOpenAI.agenerate (#1504) 2023-03-07 15:22:05 -08:00
Harrison Chase
4f41e20f09 memory docs (#1501) 2023-03-07 11:02:46 -08:00
Harrison Chase
d0062c7a9a bump version to 103 (#1498) 2023-03-07 10:08:01 -08:00
Harrison Chase
8e6f599822 change to baselanguagemodel (#1496) 2023-03-07 09:29:59 -08:00
Harrison Chase
f276bfad8e Harrison/chat memory (#1495) 2023-03-07 09:02:40 -08:00
Harrison Chase
7bec461782 Harrison/memory refactor (#1478)
moves memory to own module, factors out common stuff
2023-03-07 07:59:37 -08:00
kahkeng
df6865cd52 Allow no token limit for ChatGPT API (#1481)
The endpoint default is inf if we don't specify max_tokens, so unlike
regular completion API, we don't need to calculate this based on the
prompt.
2023-03-06 13:18:55 -08:00
Harrison Chase
312c319d8b bump version to 102 (#1471) 2023-03-06 10:50:44 -08:00
Harrison Chase
0e21463f07 (rfc) chat models (#1424)
Co-authored-by: Ankush Gola <ankush.gola@gmail.com>
2023-03-06 08:34:24 -08:00
Juanky Soriano
dec3750875 Change method to calculate number of tokens for OpenAIChat (#1457)
Solves https://github.com/hwchase17/langchain/issues/1412

Currently `OpenAIChat` inherits the way it calculates the number of
tokens, `get_num_token`, from `BaseLLM`.
In the other hand `OpenAI` inherits from `BaseOpenAI`. 

`BaseOpenAI` and `BaseLLM` uses different methodologies for doing this.
The first relies on `tiktoken` while the second on `GPT2TokenizerFast`.

The motivation of this PR is:

1. Bring consistency about the way of calculating number of tokens
`get_num_token` to the `OpenAI` family, regardless of `Chat` vs `non
Chat` scenarios.
2. Give preference to the `tiktoken` method as it's serverless friendly.
It doesn't require downloading models which might make it incompatible
with `readonly` filesystems.
2023-03-06 07:20:25 -08:00
Tim Asp
763f879536 fix always verbose on summarization checker (#1440) 2023-03-05 07:10:08 -08:00
Harrison Chase
56b850648f cr (#1436) 2023-03-04 08:38:56 -08:00
Harrison Chase
63a5614d23 Harrison/simple memory (#1435)
Co-authored-by: Tim Asp <707699+timothyasp@users.noreply.github.com>
2023-03-04 08:15:52 -08:00
Harrison Chase
a1b9dfc099 Harrison/similarity search chroma (#1434)
Co-authored-by: shibuiwilliam <shibuiyusuke@gmail.com>
2023-03-04 08:10:15 -08:00
Peng Qu
68ce68f290 Fix an unusual issue that occurs when using OpenAIChat for llm_math (#1410)
Fix an issue that occurs when using OpenAIChat for llm_math, refer to
the code style of the "Final Answer:" in Mrkl。 the reason is I found a
issue when I try OpenAIChat for llm_math, when I try the question in
Chinese, the model generate the format like "\n\nQuestion: What is the
square of 29?\nAnswer: 841", it translate the question first , then
answer. below is my snapshot:
<img width="945" alt="snapshot"
src="https://user-images.githubusercontent.com/82029664/222642193-10ecca77-db7b-4759-bc46-32a8f8ddc48f.png">
2023-03-04 07:56:07 -08:00
Ikko Eltociear Ashimine
b8a7828d1f Update huggingface_datasets.ipynb (#1417)
HuggingFace -> Hugging Face
2023-03-04 00:22:31 -08:00
Kentaro Tanaka
6a4ee07e4f Fix type hint of 'vectorstore_cls' arg in SemanticSimilarityExampleSelector (#1427)
Hello! Thank you for the amazing library you've created!

While following the tutorial at [the link(`Using an example
selector`)](https://langchain.readthedocs.io/en/latest/modules/prompts/examples/few_shot_examples.html#using-an-example-selector),
I noticed that passing Chroma as an argument to from_examples results in
a type hint error.

Error message(mypy):
```
Argument 3 to "from_examples" of "SemanticSimilarityExampleSelector" has incompatible type "Type[Chroma]"; expected "VectorStore"  [arg-type]mypy(error)
```

This pull request fixes the type hint and allows the VectorStore class
to be specified as an argument.
2023-03-04 00:20:18 -08:00
Tim Asp
23231d65a9 Add PyMuPDF PDF loader (#1426)
Different PDF libraries have different strengths and weaknesses. PyMuPDF
does a good job at extracting the most amount of content from the doc,
regardless of the source quality, extremely fast (especially compared to
Unstructured).

https://pymupdf.readthedocs.io/en/latest/index.html
2023-03-03 20:59:28 -08:00
blob42
3d54b05863 searx: add install instructions, update doc and notebooks (#1420)
- Added instructions on setting up self hosted searx
- Add notebook example with agent
- Use `localhost:8888` as example url to stay consistent since public
instances are not really usable.

Co-authored-by: blob42 <spike@w530>
2023-03-03 20:57:50 -08:00
Tim Asp
bca0935d90 [docs] fix minor import error (#1425) 2023-03-03 16:10:07 -08:00
Jon Luo
882f7964fb fix sql misinterpretation of % in query (#1408)
% is being misinterpreted by sqlalchemy as parameter passing, so any
`LIKE 'asdf%'` will result in a value error with mysql, mariadb, and
maybe some others. This is one way to fix it - the alternative is to
simply double up %, like `LIKE 'asdf%%'` but this seemed cleaner in
terms of output.
Fixes #1383
2023-03-02 16:03:16 -08:00
JonLuca De Caro
443992c4d5 [Docs] Add missing word from prompt docs (#1406)
The prompt in the first example of the quickstart guide was missing `for
`
2023-03-02 16:02:54 -08:00
Eugene Yurtsev
a83a371069 Minor documentation update in initialize_agent (#1397)
Updating documentation in initialize_agent.

One thing that could benefit from further clarification is the
responsibility
breakdown by between an AgentExecutor vs. an Agent. The documentation
for an
AgentExecutor does not clarify that. From the class attributes, it
appears that
executor has access to the tools, while the agent is only aware of the
tool
names. Anyway, additional clarification would be beneficial on the
AgentExecutor class.
2023-03-02 11:46:35 -08:00
Nuno Campos
499e76b199 Allow the regular openai class to be used for ChatGPT models (#1393)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-03-02 09:04:18 -08:00
Kacper Łukawski
8947797250 Return Cohere embeddings as lists of floats (#1394)
This PR fixes the types returned by Cohere embeddings. Currently, Cohere
client returns instances of `cohere.embeddings.Embeddings`. Since the
transport layer relies on JSON, some numbers might be represented as
ints, not floats, which happens quite often. While that doesn't seem to
be an issue, it breaks some pydantic models if they require strict
floats.
2023-03-02 09:02:10 -08:00
Jason Gill
1989e7d4c2 Update examples to prevent confusing missing _type warning (#1391)
The YAML and JSON examples of prompt serialization now give a strange
`No '_type' key found, defaulting to 'prompt'` message when you try to
run them yourself or copy the format of the files. The reason for this
harmless warning is that the _type key was not in the config files,
which means they are parsed as a standard prompt.

This could be confusing to new users (like it was confusing to me after
upgrading from 0.0.85 to 0.0.86+ for my few_shot prompts that needed a
_type added to the example_prompt config), so this update includes the
_type key just for clarity.

Obviously this is not critical as the warning is harmless, but it could
be confusing to track down or be interpreted as an error by a new user,
so this update should resolve that.
2023-03-02 07:39:57 -08:00
Harrison Chase
dda5259f68 bump version to 0.0.99 (#1390) 2023-03-02 07:25:59 -08:00
Kacper Łukawski
f032609f8d Add recursive parameter to DirectoryLoader (#1389)
This PR allows loading a directory recursively.
2023-03-02 07:06:26 -08:00
Kacper Łukawski
9ac442624c Add Qdrant named arguments (#1386)
This PR:
- Increases `qdrant-client` version to 1.0.4
- Introduces custom content and metadata keys (as requested in #1087)
- Moves all the `QdrantClient` parameters into the method parameters to
simplify code completion
2023-03-02 07:05:14 -08:00
Francisco Ingham
34abcd31b9 remove limit clause from prompt for compatibility with ms sql server (#1385)
For reference see:
8a35811556

Co-authored-by: Francisco Ingham <>
2023-03-02 07:02:42 -08:00
Ankush Gola
fe30be6fba add async and streaming support to OpenAIChat (#1378)
title says it all
2023-03-01 21:55:43 -08:00
Lakshya Agarwal
cfed0497ac Minor grammatical fixes (#1325)
Fixed typos and links in a few places across documents
2023-03-01 21:18:09 -08:00
Ryan Dao
59157b6891 Bug: Fix Python version validation in PythonAstREPLTool (#1373)
The current logic checks if the Python major version is < 8, which is
wrong. This checks if the major and minor version is < 3.9.
2023-03-01 21:15:27 -08:00
Harrison Chase
e178008b75 Harrison/track token usage (#1382)
Co-authored-by: Zak King <zaking17@gmail.com>
2023-03-01 21:15:13 -08:00
Harrison Chase
1cd8996074 Harrison/summarizer chain (#1356)
Co-authored-by: Tim Asp <707699+timothyasp@users.noreply.github.com>
2023-03-01 20:59:07 -08:00
yakigac
cfae03042d Fix the openaichat example (#1377)
The example was wrong.
2023-03-01 18:24:32 -08:00
Harrison Chase
4b5e850361 chatgpt wrapper (#1367) 2023-03-01 11:47:01 -08:00
Harrison Chase
4d4b43cf5a fix doc names (#1354) 2023-03-01 09:40:31 -08:00
Harrison Chase
c01f9100e4 bump version to 0097 (#1365) 2023-03-01 08:20:24 -08:00
Christie Jacob
edb3915ee7 typo in vectorstores (#1362) 2023-03-01 07:21:37 -08:00
Harrison Chase
fe7dbecfe6 pandas and csv agents (#1353) 2023-02-28 22:19:11 -08:00
Harrison Chase
02ec72df87 improve docs (#1351) 2023-02-28 21:37:18 -08:00
Jon Luo
92ab27e4b8 sql doc formatting (#1350)
My bad, missed a few tabs between the two PRs
2023-02-28 19:54:46 -08:00
Ankush Gola
82baecc892 Add a SQL agent for interacting with SQL Databases and JSON Agent for interacting with large JSON blobs (#1150)
This PR adds 

* `ZeroShotAgent.as_sql_agent`, which returns an agent for interacting
with a sql database. This builds off of `SQLDatabaseChain`. The main
advantages are 1) answering general questions about the db, 2) access to
a tool for double checking queries, and 3) recovering from errors
* `ZeroShotAgent.as_json_agent` which returns an agent for interacting
with json blobs.
* Several examples in notebooks

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-02-28 19:44:39 -08:00
Jon Luo
35f1e8f569 separate columns by tabs instead of single space in sql sample rows (#1348)
Use tabs to separate columns instead of a single space - confusing when
there are spaces in a cell
2023-02-28 18:59:53 -08:00
kurehajime
6c629b54e6 Fixed arguments passed to InvalidTool.run(). (#1340)
[InvalidTool.run()](72ef69d1ba/langchain/agents/tools.py (L43))
returns "{arg}is not a valid tool, try another one.".
However, no function name is actually given in the argument.
This causes LLM to be stuck in a loop, unable to find the right tool.

This may resolve these Issues.
https://github.com/hwchase17/langchain/issues/998
https://github.com/hwchase17/langchain/issues/702
2023-02-28 18:58:23 -08:00
James Brotchie
3574418a40 Fix link in summarization.md (#1344)
"Utilities for working with Documents" was linking to a non-useful page.
Re-linked to the utils page that includes info about working with docs.
2023-02-28 18:58:12 -08:00
Jon Luo
5bf8772f26 add option to use user-defined SQL table info (#1347)
Currently, table information is gathered through SQLAlchemy as complete
table DDL and a user-selected number of sample rows from each table.
This PR adds the option to use user-defined table information instead of
automatically collecting it. This will use the provided table
information and fall back to the automatic gathering for tables that the
user didn't provide information for.

Off the top of my head, there are a few cases where this can be quite
useful:
- The first n rows of a table are uninformative, or very similar to one
another. In this case, hand-crafting example rows for a table such that
they provide the good, diverse information can be very helpful. Another
approach we can think about later is getting a random sample of n rows
instead of the first n rows, but there are some performance
considerations that need to be taken there. Even so, hand-crafting the
sample rows is useful and can guarantee the model sees informative data.
- The user doesn't want every column to be available to the model. This
is not an elegant way to fulfill this specific need since the user would
have to provide the table definition instead of a simple list of columns
to include or ignore, but it does work for this purpose.
- For the developers, this makes it a lot easier to compare/benchmark
the performance of different prompting structures for providing table
information in the prompt.

These are cases I've run into myself (particularly cases 1 and 3) and
I've found these changes useful. Personally, I keep custom table info
for a few tables in a yaml file for versioning and easy loading.

Definitely open to other opinions/approaches though!
2023-02-28 18:58:04 -08:00
Harrison Chase
924bba5ce9 bump version (#1342) 2023-02-28 08:48:32 -08:00
Harrison Chase
786852e9e6 partial variables (#1308) 2023-02-28 08:40:35 -08:00
Tim Asp
72ef69d1ba Add new iFixit document loader (#1333)
iFixit is a wikipedia-like site that has a huge amount of open content
on how to fix things, questions/answers for common troubleshooting and
"things" related content that is more technical in nature. All content
is licensed under CC-BY-SA-NC 3.0

Adding docs from iFixit as context for user questions like "I dropped my
phone in water, what do I do?" or "My macbook pro is making a whining
noise, what's wrong with it?" can yield significantly better responses
than context free response from LLMs.
2023-02-27 20:40:20 -08:00
Matt Robinson
1aa41b5741 feat: document loader for image files (#1330)
### Summary

Adds a document loader for image files such as `.jpg` and `.png` files.

### Testing

Run the following using the example document from the [`unstructured`
repo](https://github.com/Unstructured-IO/unstructured/tree/main/example-docs).

```python
from langchain.document_loaders.image import UnstructuredImageLoader

loader = UnstructuredImageLoader("layout-parser-paper-fast.jpg")
loader.load()
```
2023-02-27 14:43:32 -08:00
Eugene Yurtsev
c14cff60d0 Documentation: Minor typo fixes (#1327)
Fixing a few minor typos in the documentation (and likely introducing
other
ones in the process).
2023-02-27 14:40:43 -08:00
Harrison Chase
f61858163d bump version to 0.0.95 (#1324) 2023-02-27 07:45:54 -08:00
Harrison Chase
0824d65a5c Harrison/indexing pipeline (#1317) 2023-02-27 00:31:36 -08:00
Akshay
a0bf856c70 Update agent_vectorstore.ipynb (#1318)
nitpicking but just thought i'd add this typo which I found when going
through the How-to 😄 (unless it was intentional) also, it's amazing that
you added ReAct to LangChain!
2023-02-26 23:22:35 -08:00
Harrison Chase
166cda2cc6 Harrison/deeplake (#1316)
Co-authored-by: Davit Buniatyan <d@activeloop.ai>
2023-02-26 22:35:04 -08:00
Harrison Chase
aaad6cc954 Harrison/atlas db (#1315)
Co-authored-by: Brandon Duderstadt <brandonduderstadt@gmail.com>
2023-02-26 22:11:38 -08:00
Marc Puig
3989c793fd Making it possible to use "certainty" as a parameter for the weaviate similarity_search (#1218)
Checking if weaviate similarity_search kwargs contains "certainty" and
use it accordingly. The minimal level of certainty must be a float, and
it is computed by normalized distance.
2023-02-26 17:55:28 -08:00
Alexander Hoyle
42b892c21b Avoid IntegrityError for SQLiteCache updates (#1286)
While using a `SQLiteCache`, if there are duplicate `(prompt, llm, idx)`
tuples passed to
[`update_cache()`](c5dd491a21/langchain/llms/base.py (L39)),
then an `IntegrityError` is thrown. This can happen when there are
duplicated prompts within the same batch.

This PR changes the SQLAlchemy `session.add()` to a `session.merge()` in
`cache.py`, [following the solution from this SO
thread](https://stackoverflow.com/questions/10322514/dealing-with-duplicate-primary-keys-on-insert-in-sqlalchemy-declarative-style).
I believe this fixes #983, but not entirely sure since that also
involves async

Here's a minimal example of the error:
```python
from pathlib import Path

import langchain
from langchain.cache import SQLiteCache

llm = langchain.OpenAI(model_name="text-ada-001", openai_api_key=Path("/.openai_api_key").read_text().strip())
langchain.llm_cache = SQLiteCache("test_cache.db")
llm.generate(['a'] * 5)
```
```
>   IntegrityError: (sqlite3.IntegrityError) UNIQUE constraint failed: full_llm_cache.prompt, full_llm_cache.llm, full_llm_cache.idx
    [SQL: INSERT INTO full_llm_cache (prompt, llm, idx, response) VALUES (?, ?, ?, ?)]
    [parameters: ('a', "[('_type', 'openai'), ('best_of', 1), ('frequency_penalty', 0), ('logit_bias', {}), ('max_tokens', 256), ('model_name', 'text-ada-001'), ('n', 1), ('presence_penalty', 0), ('request_timeout', None), ('stop', None), ('temperature', 0.7), ('top_p', 1)]", 0, '\n\nA is for air.\n\nA is for atmosphere.')]
    (Background on this error at: https://sqlalche.me/e/14/gkpj)
```

After the change, we now have the following
```python
class Output:
    def __init__(self, text):
        self.text = text

# make dummy data
cache = SQLiteCache("test_cache_2.db")
cache.update(prompt="prompt_0", llm_string="llm_0", return_val=[Output("text_0")])
cache.engine.execute("SELECT * FROM full_llm_cache").fetchall()

# output
>   [('prompt_0', 'llm_0', 0, 'text_0')]
```

```python
#  update data, before change this would have thrown an `IntegrityError`
cache.update(prompt="prompt_0", llm_string="llm_0", return_val=[Output("text_0_new")])
cache.engine.execute("SELECT * FROM full_llm_cache").fetchall()

# output
>   [('prompt_0', 'llm_0', 0, 'text_0_new')]
```
2023-02-26 17:54:43 -08:00
Harrison Chase
81abcae91a Harrison/banana fix (#1311)
Co-authored-by: Erik Dunteman <44653944+erik-dunteman@users.noreply.github.com>
2023-02-26 17:53:57 -08:00
Casey A. Fitzpatrick
648b3b3909 Fix use case sentence for bash util doc (#1295)
Thanks for all your hard work!

I noticed a small typo in the bash util doc so here's a quick update.
Additionally, my formatter caught some spacing in the `.md` as well.
Happy to revert that if it's an issue.

The main change is just
```
- A common use case this is for letting it interact with your local file system. 

+ A common use case for this is letting the LLM interact with your local file system.
```

## Testing

`make docs_build` succeeds locally and the changes show as expected ✌️ 
<img width="704" alt="image"
src="https://user-images.githubusercontent.com/17773666/221376160-e99e59a6-b318-49d1-a1d7-89f5c17cdab4.png">
2023-02-26 17:41:03 -08:00
Ingo Kleiber
fd9975dad7 add CoNLL-U document loader (#1297)
I've added a simple
[CoNLL-U](https://universaldependencies.org/format.html) document
loader. CoNLL-U is a common format for NLP tasks and is used, for
example, in the Universal Dependencies treebank corpora. The loader
reads a single file in standard CoNLL-U format and returns a document.
2023-02-26 17:27:00 -08:00
Harrison Chase
d29f74114e copy paste loader (#1302) 2023-02-26 17:26:37 -08:00
Harrison Chase
ce441edd9c improve docs (#1309) 2023-02-26 11:25:16 -08:00
Harrison Chase
6f30d68581 add example of using agent with vectorstores (#1285) 2023-02-25 13:27:24 -08:00
Harrison Chase
002da6edc0 ruff ruff (#1203) 2023-02-25 08:59:52 -08:00
Harrison Chase
0963096491 fix imports (#1288) 2023-02-25 08:48:02 -08:00
Harrison Chase
c5dd491a21 bump version to 0094 (#1280) 2023-02-24 08:26:34 -08:00
Matt Robinson
2f15c11b87 feat: document loader for MS Word documents (#1282)
### Summary

Adds a document loader for MS Word Documents. Works with both `.docx`
and `.doc` files as longer as the user has installed
`unstructured>=0.4.11`.

### Testing

The follow workflow test the loader for both `.doc` and `.docx` files
using example docs from the `unstructured` repo.

#### `.docx`

```python
from langchain.document_loaders import UnstructuredWordDocumentLoader

filename = "../unstructured/example-docs/fake.docx"
loader = UnstructuredWordDocumentLoader(filename)
loader.load()
```

#### `.doc`

```python
from langchain.document_loaders import UnstructuredWordDocumentLoader

filename = "../unstructured/example-docs/fake.doc"
loader = UnstructuredWordDocumentLoader(filename)
loader.load()
```
2023-02-24 08:26:19 -08:00
Harrison Chase
96db6ed073 cleanup (#1274) 2023-02-24 07:38:24 -08:00
Harrison Chase
7e8f832cd6 Harrison/cohere params (#1278)
Co-authored-by: Stefano Faraggi <40745694+stepp1@users.noreply.github.com>
2023-02-24 07:37:58 -08:00
Harrison Chase
a8e88e1874 Harrison/logprobs (#1279)
Co-authored-by: Prateek Shah <97124740+prateekspanning@users.noreply.github.com>
2023-02-24 07:37:45 -08:00
Harrison Chase
42167a1e24 Harrison/fb loader (#1277)
Co-authored-by: Vairo Di Pasquale <vairo.dp@gmail.com>
2023-02-24 07:22:48 -08:00
Harrison Chase
bb53d9722d Harrison/errors (#1276)
Co-authored-by: Kevin Huo <5000881+kwhuo68@users.noreply.github.com>
2023-02-24 07:13:47 -08:00
Klein Tahiraj
8a0751dadd adding .ipynb loader and documentation Fixes #1248 (#1252)
`NotebookLoader.load()` loads the `.ipynb` notebook file into a
`Document` object.

**Parameters**:

* `include_outputs` (bool): whether to include cell outputs in the
resulting document (default is False).
* `max_output_length` (int): the maximum number of characters to include
from each cell output (default is 10).
* `remove_newline` (bool): whether to remove newline characters from the
cell sources and outputs (default is False).
* `traceback` (bool): whether to include full traceback (default is
False).
2023-02-24 07:10:35 -08:00
Harrison Chase
4b5d427421 Harrison/source docs (#1275)
Co-authored-by: Tushar Dhadiwal <tushardhadiwal@users.noreply.github.com>
2023-02-24 07:09:10 -08:00
Enrico Shippole
9becdeaadf Add Writer, Banana, Modal, StochasticAI (#1270)
Add LLM wrappers and examples for Banana, Writer, Modal, Stochastic AI

Added rigid json format for Banana and Modal
2023-02-24 06:58:58 -08:00
blob42
5457d48416 searx: add query_suffix parameter (#1259)
- allows to build tools and dynamically inject extra searxh suffix in
  the query. example:
  `search.run("python library", query_suffix="site:github.com")`
 resulting query: `python library site:github.com`

Co-authored-by: blob42 <spike@w530>
2023-02-23 16:00:40 -08:00
Harrison Chase
9381005098 fix bug with length function (#1257) 2023-02-23 16:00:15 -08:00
Matt Robinson
10e73a3723 docs: remove nltk download steps (#1253)
### Summary

Updates the docs to remove the `nltk` download steps from
`unstructured`. As of `unstructured` `0.4.14`, this is handled
automatically in the relevant modules within `unstructured`.
2023-02-23 12:34:44 -08:00
Justin Torre
5bc6dc076e added caching and properties docs (#1255) 2023-02-23 11:03:04 -08:00
Harrison Chase
6d37d089e9 bump version to 0093 (#1251) 2023-02-23 08:00:42 -08:00
Iskren Ivov Chernev
8e3cd3e0dd Add DeepInfra LLM support (#1232)
DeepInfra is an Inference-as-a-Service provider. Add a simple wrapper
using HTTPS requests.
2023-02-23 07:37:15 -08:00
Dmitri Melikyan
b7765a95a0 docs: add Graphsignal ecosystem page (#1228)
Adds a Graphsignal ecosystem page
2023-02-23 07:33:00 -08:00
Satoru Sakamoto
d480330fae fix to specific language transcript (#1231)
Currently youtube loader only seems to support English audio. 
Changed to load videos in the specified language.
2023-02-23 07:32:46 -08:00
Harrison Chase
6085fe18d4 add ifttt tool (#1244) 2023-02-22 22:29:43 -08:00
Jon Luo
8a35811556 Don't instruct LLM to use the LIMIT clause, which is incompatible with SQL Server (#1242)
The current prompt specifically instructs the LLM to use the `LIMIT`
clause. This will cause issues with MS SQL Server, which uses `SELECT
TOP` instead of `LIMIT`. The generated SQL will use `LIMIT`; the
instruction to "always limit... using the LIMIT clause" seems to
override the "create a syntactically correct mssql query to run"
portion. Reported here:
https://github.com/hwchase17/langchain/issues/1103#issuecomment-1441144224

I don't have access to a SQL Server instance to test, but removing that
part of the prompt in OpenAI Playground results in the correct `SELECT
TOP` syntax, whereas keeping it in results in the `LIMIT` clause, even
when instructing it to generate syntactically correct mssql. It's also
still correctly using `LIMIT` in my MariaDB database. I think in this
case we can assume that the model will select the appropriate method
based on the dialect specified.

In general, it would be nice to be able to test a suite of SQL dialects
for things like dialect-specific syntax and other issues we've run into
in the past, but I'm not quite sure how to best approach that yet.
2023-02-22 22:21:26 -08:00
Harrison Chase
71709ad5d5 Update key_concepts.md (#1209) (#1237)
Link for easier navigation (it's not immediately clear where to find
more info on SimpleSequentialChain (3 clicks away)

---------

Co-authored-by: Larry Fisherman <l4rryfisherman@protonmail.com>
2023-02-22 13:30:53 -08:00
Dennis Antela Martinez
53c67e04d4 add aleph alpha llm (#1207)
Integrate Aleph Alpha's client into Langchain to provide access to the
luminous models - more info on latest benchmarks here:
https://www.aleph-alpha.com/luminous-performance-benchmarks
2023-02-22 10:37:36 -08:00
Klein Tahiraj
c6ab1bb3cb Fixing typo in loading.py (#1235)
Just fixing a typo I found in loading.py
2023-02-22 10:36:14 -08:00
Ikko Eltociear Ashimine
334b553260 Update petals.md (#1225)
Huggingface -> Hugging Face
2023-02-22 10:34:16 -08:00
Jon Luo
ac1320aae8 fix sqlite internal tables breaking table_info (#1224)
With the current method used to get the SQL table info, sqlite internal
schema tables are being included and are not being handled correctly by
sqlalchemy because the columns have no types. This is easy to see with
the Chinook database:
```python
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
print(db.table_info)
```
```python
...
sqlalchemy.exc.CompileError: (in table 'sqlite_sequence', column 'name'): Can't generate DDL for NullType(); did you forget to specify a type on this Column?
```

SQLAlchemy 2.0 [ignores these by
default](63d90b0f44/lib/sqlalchemy/dialects/sqlite/base.py (L856-L880)):

63d90b0f44/lib/sqlalchemy/dialects/sqlite/base.py (L2096-L2123)
2023-02-22 10:34:05 -08:00
djacobs7
4e28982d2b Fix typo in constitutional_ai base.py (#1216)
Found a typo in the documentation code for the constitutional_ai module
2023-02-21 17:03:44 -08:00
Sason
cc7d2e5621 Correct typo in "Question Answering" How-To Guide (#1221) 2023-02-21 17:02:58 -08:00
blob42
424e71705d searx: remove duplicate param (#1219)
Co-authored-by: blob42 <spike@w530>
2023-02-21 17:02:42 -08:00
Harrison Chase
4e43b0efe9 bump version 0092 (#1204) 2023-02-21 08:56:07 -08:00
Matt Robinson
3d5f56a8a1 docs: add quotes to unstructured[local-inference] install instructions (#1208)
### Summary

Corrects the install instruction for local inference to `pip install
"unstructured[local-inference]"`
2023-02-21 08:06:43 -08:00
Harrison Chase
047231840d add docs for chroma persistance (#1202) 2023-02-20 23:04:17 -08:00
Harrison Chase
5bdb8dd6fe Harrison/unstructured io (#1200) 2023-02-20 22:54:49 -08:00
Harrison Chase
d90a287d8f Harrison/updating docs (#1196) 2023-02-20 22:54:26 -08:00
Harrison Chase
b7708bbec6 rfc: callback changes (#1165)
conceptually, no reason a tool should know what an "agent action" is

unless any objections, can change in all callback handlers
2023-02-20 22:54:15 -08:00
Harrison Chase
fb83cd4ff4 catch networkx error (#1201) 2023-02-20 21:43:02 -08:00
Harrison Chase
44c8d8a9ac move serpapi wrapper (#1199)
Co-authored-by: Tim Asp <707699+timothyasp@users.noreply.github.com>
2023-02-20 21:15:45 -08:00
Konstantin Hebenstreit
af94f1dd97 HuggingFaceEndpoint: Correct Example for ImportError (#1176)
When I try to import the Class HuggingFaceEndpoint I get an Import
Error: cannot import name 'HuggingFaceEndpoint' from 'langchain'.
(langchain version 0.0.88)
These two imports work fine: from langchain import HuggingFacePipeline
and from langchain import HuggingFaceHub.

So I corrected the import statement in the example. There is probably a
better solution to this, but this fixes the Error for me.
2023-02-20 21:09:39 -08:00
Harrison Chase
0c84ce1082 Harrison/add documents (#1197)
Co-authored-by: OmriNach <32659330+OmriNach@users.noreply.github.com>
2023-02-20 21:02:28 -08:00
Francisco Ingham
0b6a650cb4 added ability to override default verbose and memory when load chain … (#1153)
It is useful to be able to specify `verbose` or `memory` while still
keeping the chain's overall structure.

---------

Co-authored-by: Francisco Ingham <>
2023-02-20 21:00:32 -08:00
Anton Troynikov
d2ef5d6167 Default Chroma collection name (#1198)
For persistence, it's convenient to have a default collection name which
gets used everywhere.
2023-02-20 20:59:34 -08:00
Dennis Antela Martinez
23243ae69c add gitbook document loader (#1180)
Added a GitBook document loader. It lets you both, (1) fetch text from
any single GitBook page, or (2) fetch all relative paths and return
their respective content in Documents.

I've modified the `scrape` method in the `WebBaseLoader` to accept
custom web paths if given, but happy to remove it and move that logic
into the `GitbookLoader` itself.
2023-02-20 20:05:04 -08:00
William FH
13ba0177d0 Add a StdIn "Interaction" Tool (#1193)
Lets a chain prompt the user for more input as a part of its execution.
2023-02-20 18:40:02 -08:00
Naveen Tatikonda
0118706fd6 Add Support for OpenSearch Vector database (#1191)
### Description
This PR adds a wrapper which adds support for the OpenSearch vector
database. Using opensearch-py client we are ingesting the embeddings of
given text into opensearch cluster using Bulk API. We can perform the
`similarity_search` on the index using the 3 popular searching methods
of OpenSearch k-NN plugin:

- `Approximate k-NN Search` use approximate nearest neighbor (ANN)
algorithms from the [nmslib](https://github.com/nmslib/nmslib),
[faiss](https://github.com/facebookresearch/faiss), and
[Lucene](https://lucene.apache.org/) libraries to power k-NN search.
- `Script Scoring` extends OpenSearch’s script scoring functionality to
execute a brute force, exact k-NN search.
- `Painless Scripting` adds the distance functions as painless
extensions that can be used in more complex combinations. Also, supports
brute force, exact k-NN search like Script Scoring.

### Issues Resolved 
https://github.com/hwchase17/langchain/issues/1054

---------

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-02-20 18:39:34 -08:00
Andrew White
c5015d77e2 Allow k to be higher than doc size in max_marginal_relevance_search (#1187)
Fixes issue #1186. For some reason, #1117 didn't seem to fix it.
2023-02-20 16:39:13 -08:00
Zach Schillaci
159c560c95 Refactor some loops into list comprehensions (#1185) 2023-02-20 16:38:43 -08:00
Harrison Chase
926c121b98 Harrison/text splitter docs (#1188) 2023-02-20 15:14:03 -08:00
Harrison Chase
91446a5e9b clean up text splitting docs (#1184) 2023-02-20 11:24:31 -08:00
Harrison Chase
a5a14405ad bump version to 0091 (#1181) 2023-02-20 08:53:45 -08:00
Harrison Chase
5a954efdd7 update gallery with slack bot (#1177) 2023-02-20 08:21:00 -08:00
Harrison Chase
4766b20223 clean up loaders (#1178) 2023-02-20 08:20:48 -08:00
blob42
9962bda70b searx_search: docs updates (#1175)
- fix notebook formatting, remove empty cells and add scrolling for long
text

---------

Co-authored-by: blob42 <spike@w530>
2023-02-20 06:46:44 -08:00
Harrison Chase
4f3fbd7267 improve docs for indexes (#1146) 2023-02-19 23:14:50 -08:00
Harrison Chase
28781a6213 Harrison/markdown splitter (#1169)
Co-authored-by: Michael Chen <flamingdescent@gmail.com>
Co-authored-by: Michael Chen <michaelchen@stripe.com>
2023-02-19 21:31:58 -08:00
Harrison Chase
37dd34bea5 fix path (#1168) 2023-02-19 21:28:49 -08:00
Nan Wang
e8f224fd3a docs: add missing links to toc (#1163)
add missing links to toc

---------

Signed-off-by: Nan Wang <nan.wang@jina.ai>
2023-02-19 21:15:11 -08:00
Nick
afe884fb96 AI21 documentation incorrectly titled Cohere (#1167) 2023-02-19 21:14:59 -08:00
Ji
ed37fbaeff for ChatVectorDBChain, add top_k_docs_for_context to allow control how many chunks of context will be retrieved (#1155)
given that we allow user define chunk size, think it would be useful for
user to define how many chunks of context will be retrieved.
2023-02-19 20:48:23 -08:00
Harrison Chase
955c89fccb pass in prompts to vectordbqa (#1158) 2023-02-19 20:47:17 -08:00
Harrison Chase
65cc81c479 directory loader improvements (#1162) 2023-02-19 20:47:08 -08:00
Harrison Chase
05a05bcb04 bump version to 0.0.90 (#1157) 2023-02-19 12:53:55 -08:00
Harrison Chase
9d6d8f85da Harrison/self hosted runhouse (#1154)
Co-authored-by: Donny Greenberg <dongreenberg2@gmail.com>
Co-authored-by: John Dagdelen <jdagdelen@users.noreply.github.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
Co-authored-by: Andrew White <white.d.andrew@gmail.com>
Co-authored-by: Peng Qu <82029664+pengqu123@users.noreply.github.com>
Co-authored-by: Matt Robinson <mthw.wm.robinson@gmail.com>
Co-authored-by: jeff <tangj1122@gmail.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MacBook-Pro.local>
Co-authored-by: zanderchase <zander@unfold.ag>
Co-authored-by: Charles Frye <cfrye59@gmail.com>
Co-authored-by: zanderchase <zanderchase@gmail.com>
Co-authored-by: Shahriar Tajbakhsh <sh.tajbakhsh@gmail.com>
Co-authored-by: Stefan Keselj <skeselj@princeton.edu>
Co-authored-by: Francisco Ingham <fpingham@gmail.com>
Co-authored-by: Dhruv Anand <105786647+dhruv-anand-aintech@users.noreply.github.com>
Co-authored-by: cragwolfe <cragcw@gmail.com>
Co-authored-by: Anton Troynikov <atroyn@users.noreply.github.com>
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
Co-authored-by: Oliver Klingefjord <oliver@klingefjord.com>
Co-authored-by: blob42 <contact@blob42.xyz>
Co-authored-by: blob42 <spike@w530>
Co-authored-by: Enrico Shippole <henryshippole@gmail.com>
Co-authored-by: Ibis Prevedello <ibiscp@gmail.com>
Co-authored-by: jped <jonathanped@gmail.com>
Co-authored-by: Justin Torre <justintorre75@gmail.com>
Co-authored-by: Ivan Vendrov <ivan@anthropic.com>
Co-authored-by: Sasmitha Manathunga <70096033+mmz-001@users.noreply.github.com>
Co-authored-by: Ankush Gola <9536492+agola11@users.noreply.github.com>
Co-authored-by: Matt Robinson <mrobinson@unstructuredai.io>
Co-authored-by: Jeff Huber <jeffchuber@gmail.com>
Co-authored-by: Akshay <64036106+akshayvkt@users.noreply.github.com>
Co-authored-by: Andrew Huang <jhuang16888@gmail.com>
Co-authored-by: rogerserper <124558887+rogerserper@users.noreply.github.com>
Co-authored-by: seanaedmiston <seane999@gmail.com>
Co-authored-by: Hasegawa Yuya <52068175+Hase-U@users.noreply.github.com>
Co-authored-by: Ivan Vendrov <ivendrov@gmail.com>
Co-authored-by: Chen Wu (吴尘) <henrychenwu@cmu.edu>
Co-authored-by: Dennis Antela Martinez <dennis.antela@gmail.com>
Co-authored-by: Maxime Vidal <max.vidal@hotmail.fr>
Co-authored-by: Rishabh Raizada <110235735+rishabh-ti@users.noreply.github.com>
2023-02-19 09:53:45 -08:00
CG80499
af8f5c1a49 Added constitutional chain. (#1147)
- Added self-critique constitutional chain based on this
[paper](https://www.anthropic.com/constitutional.pdf).
2023-02-18 19:31:51 -08:00
Harrison Chase
a83ba44efa Harrison/ver0089 (#1144) 2023-02-18 14:25:37 -08:00
Ankush Gola
7b5e160d28 Make Tools own model, add ToolKit Concept (#1095)
Follow-up of @hinthornw's PR:

- Migrate the Tool abstraction to a separate file (`BaseTool`).
- `Tool` implementation of `BaseTool` takes in function and coroutine to
more easily maintain backwards compatibility
- Add a Toolkit abstraction that can own the generation of tools around
a shared concept or state

---------

Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Francisco Ingham <fpingham@gmail.com>
Co-authored-by: Dhruv Anand <105786647+dhruv-anand-aintech@users.noreply.github.com>
Co-authored-by: cragwolfe <cragcw@gmail.com>
Co-authored-by: Anton Troynikov <atroyn@users.noreply.github.com>
Co-authored-by: Oliver Klingefjord <oliver@klingefjord.com>
Co-authored-by: William Fu-Hinthorn <whinthorn@Williams-MBP-3.attlocal.net>
Co-authored-by: Bruno Bornsztein <bruno.bornsztein@gmail.com>
2023-02-18 13:40:43 -08:00
Harrison Chase
45b5640fe5 fix sql (#1141) 2023-02-18 11:49:08 -08:00
Sam Hogan
85c1449a96 Fix typo in HyDE docs (#1142) 2023-02-18 11:48:46 -08:00
kekayan
9111f4ca8a fix chatvectordbchain to use pinecone namespace (#1139)
In the similarity search, the pinecone namespace is not used, which
makes the bot return _I don't know_ where the embeddings are stored in
the pinecone namespace. Now we can query by passing the namespace
optionally.
```result = qa({"question": query, "chat_history": chat_history, "namespace":"01gshyhjcfgkq1q5wxjtm17gjh"})```
2023-02-18 10:58:48 -08:00
Harrison Chase
fb3c73d194 add srt loader (#1140) 2023-02-18 10:58:39 -08:00
Francisco Ingham
3f29742adc Sql alchemy commands used in table info (#1135)
This approach has several advantages:

* it improves the readability of the code
* removes incompatibilities between SQL dialects
* fixes a bug with `datetime` values in rows and `ast.literal_eval`

Huge thanks and credits to @jzluo for finding the weaknesses in the
current approach and for the thoughtful discussion on the best way to
implement this.

---------

Co-authored-by: Francisco Ingham <>
Co-authored-by: Jon Luo <20971593+jzluo@users.noreply.github.com>
2023-02-18 10:58:29 -08:00
Harrison Chase
483821ea3b fix docs (#1133) 2023-02-18 08:13:54 -08:00
Harrison Chase
ee3590cb61 instruct embeddings docs (#1131) 2023-02-17 16:14:49 -08:00
Noah Gundotra
8c5fbab72d [Integration Tests] Cast fake embeddings to ALL float values (#1102)
Pydantic validation breaks tests for example (`test_qdrant.py`) because
fake embeddings contain an integer.

This PR casts the embeddings array to all floats.

Now the `qdrant` test passes, `poetry run pytest
tests/integration_tests/vectorstores/test_qdrant.py`
2023-02-17 15:18:09 -08:00
Harrison Chase
d5f3dfa1e1 Harrison/hn loader (#1130)
Co-authored-by: William X <william.y.xuan@gmail.com>
2023-02-17 15:15:02 -08:00
Tom Bocklisch
47c3221fda Max marginal relecance search fails if there are not enough docs (#1117)
Implementation fails if there are not enough documents. Added the same
check as used for similarity search.

Current implementation raises
```  
File ".venv/lib/python3.9/site-packages/langchain/vectorstores/faiss.py", line 160, in max_marginal_relevance_search
    _id = self.index_to_docstore_id[i]
KeyError: -1
```
2023-02-17 15:12:31 -08:00
Harrison Chase
511d41114f return source documents for chat vector db chain (#1128) 2023-02-17 13:40:52 -08:00
Jon Luo
c39ef70aa4 fix for database compatibility when getting table DDL (#1129)
#1081 introduced a method to get DDL (table definitions) in a manner
specific to sqlite3, thus breaking compatibility with other non-sqlite3
databases. This uses the sqlite3 command if the detected dialect is
sqlite, and otherwise uses the standard SQL `SHOW CREATE TABLE`. This
should fix #1103.
2023-02-17 13:39:44 -08:00
yakigac
1ed708391e Fix a bug that shows "KeyError 'items'" (#1118)
Fix KeyError 'items' when no result found.

## Problem

When no result found for a query, google search crashed with `KeyError
'items'`.

## Solution

I added a check for an empty response before accessing the 'items' key.
It will handle the case correctly.

## Other

my twitter: yakigac
(I don't mind even if you don't mention me for this PR. But just because
last time my real name was shout out :) )
2023-02-17 13:04:02 -08:00
Matt Robinson
2bee8d4941 feat: add support for .ppt files in UnstructuredPowerPointLoader (#1124)
###  Summary

Adds support for older `.ppt` file in the PowerPoint loader. 

### Testing

The following should work on `unstructured==0.4.11` using the example
docs from the `unstructured` repo.

```python
from langchain.document_loaders import UnstructuredPowerPointLoader

filename = "../unstructured/example-docs/fake-power-point.pptx"
loader = UnstructuredPowerPointLoader(filename)
loader.load()

filename = "../unstructured/example-docs/fake-power-point.ppt"
loader = UnstructuredPowerPointLoader(filename)
loader.load()
```

Now downgrade `unstructured` to version `0.4.10`. The following should
work:

```python
from langchain.document_loaders import UnstructuredPowerPointLoader

filename = "../unstructured/example-docs/fake-power-point.pptx"
loader = UnstructuredPowerPointLoader(filename)
loader.load()
```

and the following should give you a `ValueError` and invite you to
upgrade `unstructured`.


```python
from langchain.document_loaders import UnstructuredPowerPointLoader

filename = "../unstructured/example-docs/fake-power-point.ppt"
loader = UnstructuredPowerPointLoader(filename)
loader.load()
```
2023-02-17 13:03:25 -08:00
Matt Robinson
b956070f08 docs: add an unstructured section to the ecosystem page (#1125)
### Summary

Adds an Unstructured section to the ecosystem page.
2023-02-17 13:02:23 -08:00
Hasegawa Yuya
383c67c1b2 Fix Issue #1100 (#1101)
https://github.com/hwchase17/langchain/issues/1100
When faiss data and doc.index are created in past versions, error occurs
that say there was no attribute. So I put hasattr in the check as a
simple solution.

However, increasing the number of such checks is not good for
conservatism, so I think there is a better solution.


Also, the code for the batch process was left out, so I put it back in.
2023-02-17 00:53:16 -08:00
Harrison Chase
3f50feb280 fix telegram imports (#1110) 2023-02-17 00:53:01 -08:00
trigaten
6fafcd0a70 Strange behavior with LLM import requirements (#1104)
This import works fine:
```python
from langchain import Anthropic
```
This import does not:
```python
from langchain import AI21
```

```
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ImportError: cannot import name 'AI21' from 'langchain' (/opt/anaconda3/envs/fed_nlp/lib/python3.9/site-packages/langchain/__init__.py)
```

I think there is a slight documentation inconsistency here:
https://langchain.readthedocs.io/en/latest/reference/modules/llms.html

This PR starts to solve that. Should all the import examples be
`from langchain.llms import X` instead of `from langchain import X`?
2023-02-16 23:13:34 -08:00
Kacper Łukawski
ab1a3cccac Hotfix: Qdrant content retrieval (revert: #1088) (#1093)
The #1088 introduced a bug in Qdrant integration. That PR reverts those
changes and provides class attributes to ensure consistent payload keys.
In addition to that, an exception will be thrown if any of texts is None
(that could have been an issue reported in #1087)
2023-02-16 12:46:06 -08:00
Harrison Chase
6322b6f657 bump version 0.0.88 (#1090) 2023-02-16 07:32:32 -08:00
Francisco Ingham
3462130e2d Modify number of types of chains (#1089)
Changed number of types of chains to make it consistent with the rest of
the docs
2023-02-16 07:06:30 -08:00
Rishabh Raizada
5d11e5da40 Update qdrant.py (#1088)
Fixes #1087
2023-02-16 07:06:02 -08:00
Harrison Chase
7745505482 chat qa with sources (#1084) 2023-02-16 00:29:47 -08:00
Harrison Chase
badeeb37b0 fix stuff count (#1083) 2023-02-15 23:57:13 -08:00
Harrison Chase
971458c5de docs for batch size (#1082) 2023-02-15 23:53:56 -08:00
Harrison Chase
5e10e19bfe Harrison/align table (#1081)
Co-authored-by: Francisco Ingham <fpingham@gmail.com>
2023-02-15 23:53:37 -08:00
Harrison Chase
c60954d0f8 Harrison/telegram loader (#1080)
Co-authored-by: Maxime Vidal <max.vidal@hotmail.fr>
2023-02-15 23:24:32 -08:00
Dennis Antela Martinez
a1c296bc3c docs: increase width (#1049)
This addresses #948.

I set the documentation max width to 2560px, but can be adjusted - see
screenshot below.

<img width="1741" alt="Screenshot 2023-02-14 at 13 05 57"
src="https://user-images.githubusercontent.com/23406704/218749076-ea51e90a-a220-4558-b4fe-5a95b39ebf15.png">
2023-02-15 23:07:01 -08:00
Harrison Chase
c96ac3e591 Harrison/semantic subset (#1079)
Co-authored-by: Chen Wu (吴尘) <henrychenwu@cmu.edu>
2023-02-15 23:06:48 -08:00
Harrison Chase
19c2797bed add anthropic example (#1041)
Co-authored-by: Ivan Vendrov <ivendrov@gmail.com>
Co-authored-by: Sasmitha Manathunga <70096033+mmz-001@users.noreply.github.com>
2023-02-15 23:04:28 -08:00
blob42
3ecdea8be4 SearxNG meta search api helper (#854)
This is a work in progress PR to track my progres.

## TODO:

- [x]  Get results using the specifed searx host
- [x]  Prioritize returning an  `answer`  or results otherwise
    - [ ] expose the field `infobox` when available
    - [ ] expose `score` of result to help agent's decision
- [ ] expose the `suggestions` field to agents so they could try new
queries if no results are found with the orignial query ?

- [ ] Dynamic tool description for agents ?
- Searx offers many engines and a search syntax that agents can take
advantage of. It would be nice to generate a dynamic Tool description so
that it can be used many times as a tool but for different purposes.

- [x]  Limit number of results
- [ ]   Implement paging
- [x]  Miror the usage of the Google Search tool
- [x] easy selection of search engines
- [x]  Documentation
    - [ ] update HowTo guide notebook on Search Tools
- [ ] Handle async 
- [ ]  Tests

###  Add examples / documentation on possible uses with
 - [ ]  getting factual answers with `!wiki` option and `infoboxes`
 - [ ]  getting `suggestions`
 - [ ]  getting `corrections`

---------

Co-authored-by: blob42 <spike@w530>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-02-15 23:03:57 -08:00
Hasegawa Yuya
e08961ab25 Fixed openai embeddings to be safe by batching them based on token size calculation. (#991)
I modified the logic of the batch calculation for embedding according to
this cookbook

https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
2023-02-15 23:02:32 -08:00
seanaedmiston
f0a258555b Support similarity search by vector (in FAISS) (#961)
Alternate implementation to PR #960 Again - only FAISS is implemented.
If accepted can add this to other vectorstores or leave as
NotImplemented? Suggestions welcome...
2023-02-15 22:50:00 -08:00
Jonathan Pedoeem
05ad399abe Update PromptLayerOpenAI LLM to include support for ASYNC API (#1066)
This PR updates `PromptLayerOpenAI` to now support requests using the
[Async
API](https://langchain.readthedocs.io/en/latest/modules/llms/async_llm.html)
It also updates the documentation on Async API to let users know that
PromptLayerOpenAI also supports this.

`PromptLayerOpenAI` now redefines `_agenerate` a similar was to how it
redefines `_generate`
2023-02-15 22:48:09 -08:00
Harrison Chase
98186ef180 Harrison/evernote nb (#1078)
Co-authored-by: Akshay <64036106+akshayvkt@users.noreply.github.com>
2023-02-15 22:47:30 -08:00
rogerserper
e46cd3b7db Google Search API integration with serper.dev (wrapper, tests, docs, … (#909)
Adds Google Search integration with [Serper](https://serper.dev) a
low-cost alternative to SerpAPI (10x cheaper + generous free tier).
Includes documentation, tests and examples. Hopefully I am not missing
anything.

Developers can sign up for a free account at
[serper.dev](https://serper.dev) and obtain an api key.

## Usage

```python
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.llms.openai import OpenAI
from langchain.agents import initialize_agent, Tool

import os
os.environ["SERPER_API_KEY"] = ""
os.environ['OPENAI_API_KEY'] = ""

llm = OpenAI(temperature=0)
search = GoogleSerperAPIWrapper()
tools = [
    Tool(
        name="Intermediate Answer",
        func=search.run
    )
]

self_ask_with_search = initialize_agent(tools, llm, agent="self-ask-with-search", verbose=True)
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
```

### Output
```
Entering new AgentExecutor chain...
 Yes.
Follow up: Who is the reigning men's U.S. Open champion?
Intermediate answer: Current champions Carlos Alcaraz, 2022 men's singles champion.
Follow up: Where is Carlos Alcaraz from?
Intermediate answer: El Palmar, Spain
So the final answer is: El Palmar, Spain

> Finished chain.

'El Palmar, Spain'
```
2023-02-15 22:47:17 -08:00
Harrison Chase
52753066ef Harrison/handle stop tokens ai21 (#1077)
Co-authored-by: Andrew Huang <jhuang16888@gmail.com>
2023-02-15 22:44:55 -08:00
Akshay
d8ed286200 Update and rename everynote.py to evernote.py (#1060)
Updating this base file as well as the .ipynb file of the example on the
website:

https://github.com/hwchase17/langchain/compare/master...akshayvkt:langchain:patch-1

https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/everynote.html
2023-02-15 22:41:42 -08:00
Jeff Huber
34cba2da32 Fix typo in integration with Chroma (#1070)
We introduced a breaking change but missed this call. This PR fixes
`langchain` to work with upstream `chroma`.
2023-02-15 22:37:58 -08:00
Jonathan Pedoeem
05df480376 Update PromptLayerOpenAI LLM usage instructions in documentation (#1053)
This PR updates the usage instructions for PromptLayerOpenAI in
Langchain's documentation. The updated instructions provide more detail
and conform better to the style of other LLM integration documentation
pages.

No code changes were made in this PR, only improvements to the
documentation. This update will make it easier for users to understand
how to use `PromptLayerOpenAI`
2023-02-15 22:37:48 -08:00
Matt Robinson
3ea1e5af1e feat: added element metadata to unstructured loader (#1068)
### Summary

Adds tracked metadata from `unstructured` elements to the document
metadata when `UnstructuredFileLoader` is used in `"elements"` mode.
Tracked metadata is available in `unstructured>=0.4.9`, but the code is
written for backward compatibility with older `unstructured` versions.

### Testing

Before running, make sure to upgrade to `unstructured==0.4.9`. In the
code snippet below, you should see `page_number`, `filename`, and
`category` in the metadata for each document. `doc[0]` should have
`page_number: 1` and `doc[-1]` should have `page_number: 2`. The example
document is `layout-parser-paper-fast.pdf` from the [`unstructured`
sample
docs](https://github.com/Unstructured-IO/unstructured/tree/main/example-docs).

```python
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader(file_path=f"layout-parser-paper-fast.pdf", mode="elements")
docs = loader.load()
```
2023-02-15 22:36:18 -08:00
Harrison Chase
bac676c8e7 bump version (#1057) 2023-02-15 07:09:10 -08:00
Ankush Gola
d8ac274fc2 add to async chain notebook (#1056) 2023-02-14 18:20:38 -08:00
Ankush Gola
caa8e4742e Enable streaming for OpenAI LLM (#986)
* Support a callback `on_llm_new_token` that users can implement when
`OpenAI.streaming` is set to `True`
2023-02-14 15:06:14 -08:00
Harrison Chase
f05f025e41 bump version to 0086 (#1050) 2023-02-14 07:14:40 -08:00
Sasmitha Manathunga
c67c5383fd docs: fix typo in notebook (#1046) 2023-02-14 07:06:08 -08:00
Harrison Chase
88bebb4caa Harrison/llm integrations (#1039)
Co-authored-by: jped <jonathanped@gmail.com>
Co-authored-by: Justin Torre <justintorre75@gmail.com>
Co-authored-by: Ivan Vendrov <ivan@anthropic.com>
2023-02-13 22:06:25 -08:00
Harrison Chase
ec727bf166 Align table info (#999) (#1034)
Currently the chain is getting the column names and types on the one
side and the example rows on the other. It is easier for the llm to read
the table information if the column name and examples are shown together
so that it can easily understand to which columns do the examples refer
to. For an instantiation of this, please refer to the changes in the
`sqlite.ipynb` notebook.

Also changed `eval` for `ast.literal_eval` when interpreting the results
from the sample row query since it is a better practice.

---------

Co-authored-by: Francisco Ingham <>

---------

Co-authored-by: Francisco Ingham <fpingham@gmail.com>
2023-02-13 21:48:41 -08:00
Harrison Chase
8c45f06d58 Harrison/standarize prompt loading (#1036)
Co-authored-by: Ibis Prevedello <ibiscp@gmail.com>
2023-02-13 21:48:09 -08:00
Enrico Shippole
f30dcc6359 Add GooseAI, CerebriumAI, Petals, ForefrontAI (#981)
Add GooseAI, CerebriumAI, Petals, ForefrontAI
2023-02-13 21:20:19 -08:00
Anton Troynikov
d43d430d86 Chroma persistence (#1028)
This PR adds persistence to the Chroma vector store.

Users can supply a `persist_directory` with any of the `Chroma` creation
methods. If supplied, the store will be automatically persisted at that
directory.

If a user creates a new `Chroma` instance with the same persistence
directory, it will get loaded up automatically. If they use `from_texts`
or `from_documents` in this way, the documents will be loaded into the
existing store.

There is the chance of some funky behavior if the user passes a
different embedding function from the one used to create the collection
- we will make this easier in future updates. For now, we log a warning.
2023-02-13 21:09:06 -08:00
Harrison Chase
012a6dfb16 Harrison/makefile (#1033)
Co-authored-by: blob42 <contact@blob42.xyz>
Co-authored-by: blob42 <spike@w530>
2023-02-13 21:08:47 -08:00
Harrison Chase
6a31a59400 add links (#1027) 2023-02-13 16:33:30 -08:00
Oliver Klingefjord
20889205e8 Added retry for openai.error.ServiceUnavailableError (#1022)
Imho retries should be performed for ServiceUnavailableError (which
tends to happen to me quite often).
2023-02-13 13:30:06 -08:00
Harrison Chase
fc2502cd81 bump version to 0085 (#1017) 2023-02-13 07:32:36 -08:00
Harrison Chase
0f0e69adce agent refactors (#997) 2023-02-12 23:02:13 -08:00
Harrison Chase
7fb33fca47 chroma docs (#1012) 2023-02-12 23:02:01 -08:00
Harrison Chase
0c553d2064 Harrion/kg (#1016)
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
2023-02-12 23:01:26 -08:00
Anton Troynikov
78abd277ff Chroma in LangChain (#1010)
Chroma is a simple to use, open-source, zero-config, zero setup
vectorstore.

Simply `pip install chromadb`, and you're good to go. 

Out-of-the-box Chroma is suitable for most LangChain workloads, but is
highly flexible. I tested to 1M embs on my M1 mac, with out issues and
reasonably fast query times.

Look out for future releases as we integrate more Chroma features with
LangChain!
2023-02-12 17:43:48 -08:00
cragwolfe
05d8969c79 Unstructured example notebook: add a pdf, related deps (#1011)
Updates the Unstructured example notebook with a PDF example. Includes
additional dependencies for PDF processing (and images, etc).
2023-02-12 14:56:48 -08:00
Dhruv Anand
03e5794978 typo fix on chat vector db docs (#1007)
simple typo fix: because --> between
2023-02-12 12:09:21 -08:00
Harrison Chase
6d44a2285c bump version to 0084 (#1005) 2023-02-12 07:47:10 -08:00
Harrison Chase
0998577dfe Harrison/unstructured structured (#1004) 2023-02-12 07:36:11 -08:00
Harrison Chase
bbb06ca4cf pdfminer (#1003) 2023-02-12 07:29:26 -08:00
Francisco Ingham
0b6aa6a024 Added initial capital letter to bullet points that had it missing (#1000)
Co-authored-by: Francisco Ingham <>
2023-02-11 20:31:34 -08:00
Harrison Chase
10e7297306 Harrison/fake llm (#990)
Co-authored-by: Stefan Keselj <skeselj@princeton.edu>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-11 15:12:35 -08:00
Harrison Chase
e51fad1488 Harrison/0083 (#996)
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-11 08:29:28 -08:00
Shahriar Tajbakhsh
b7747017d7 Import of declarative_base when SQLAlchemy <1.4 (#883)
In
[pyproject.toml](https://github.com/hwchase17/langchain/blob/master/pyproject.toml),
the expectation is `SQLAlchemy = "^1"`. But, the way `declarative_base`
is imported in
[cache.py](https://github.com/hwchase17/langchain/blob/master/langchain/cache.py)
will only work with SQLAlchemy >=1.4. This PR makes sure Langchain can
be run in environments with SQLAlchemy <1.4
2023-02-10 18:33:47 -08:00
Harrison Chase
2e96704d59 Harrison/airbyte (#989)
Co-authored-by: zanderchase <zanderchase@gmail.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MacBook-Pro.local>
2023-02-10 18:08:00 -08:00
Charles Frye
e9799d6821 improves huggingface_hub example (#988)
The provided example uses the default `max_length` of `20` tokens, which
leads to the example generation getting cut off. 20 tokens is way too
short to show CoT reasoning, so I boosted it to `64`.

Without knowing HF's API well, it can be hard to figure out just where
those `model_kwargs` come from, and `max_length` is a super critical
one.
2023-02-10 17:56:15 -08:00
zanderchase
c2d1d903fa Zander/online pdf loader (#984) 2023-02-10 15:42:30 -08:00
Harrison Chase
055a53c27f add texts example (#985)
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MacBook-Pro.local>
2023-02-10 12:32:44 -08:00
Harrison Chase
231da14771 bump version to 0082 (#980)
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MacBook-Pro.local>
2023-02-10 11:38:24 -08:00
jeff
6ab432d62e docs: update spelling typos (#982)
Wonder why "with" is spelled "wiht" so many times by human
2023-02-10 11:37:59 -08:00
Matt Robinson
07a407d89a feat: adds UnstructuredURLLoader for loading data from urls (#979)
### Summary

Adds a `UnstructuredURLLoader` that supports loading data from a list of
URLs.


### Testing

```python
from langchain.document_loaders import UnstructuredURLLoader

urls = [
    "https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-8-2023",
    "https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-9-2023"
]
loader = UnstructuredURLLoader(urls=urls)
raw_documents = loader.load()
```
2023-02-10 10:18:38 -08:00
Harrison Chase
c64f98e2bb Harrison/format agent instructions (#973)
Co-authored-by: Andrew White <white.d.andrew@gmail.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
Co-authored-by: Peng Qu <82029664+pengqu123@users.noreply.github.com>
2023-02-10 10:07:26 -08:00
Harrison Chase
5469d898a9 Harrison/everynote (#974)
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-10 08:02:35 -08:00
Harrison Chase
3d639d1539 update lint (#975)
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-10 08:01:13 -08:00
Harrison Chase
91c6cea227 Harrison/batch embeds (#972)
Co-authored-by: John Dagdelen <jdagdelen@users.noreply.github.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-10 06:59:50 -08:00
Harrison Chase
ba54d36787 Harrison/tiktoken spec (#964)
Co-authored-by: James Briggs <35938317+jamescalam@users.noreply.github.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-09 23:30:18 -08:00
Harrison Chase
5f8082bdd7 Harrison/deps (#963)
Co-authored-by: Jon Luo <20971593+jzluo@users.noreply.github.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-09 23:19:19 -08:00
Kevin Huo
512c523368 remove sample_row_in_table_info and simplify set operations in SQLDB (#932)
-Address TODO: deprecate for sample_row_in_table_info
-Simplify set operations by casting to sets to not need multiple set
casts + .difference() calls
2023-02-09 23:15:41 -08:00
Harrison Chase
e323d0cfb1 bump version 0081 (#956)
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-09 08:29:11 -08:00
Harrison Chase
01fa2d8117 Harrison/youtube fixes (#955)
Co-authored-by: Ji <jizhang.work@gmail.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-09 08:12:22 -08:00
zanderchase
8e126bc9bd adding webpage loading logic (#942) 2023-02-09 07:52:50 -08:00
Harrison Chase
c71027e725 add docs for steamship deployment (#949)
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-08 16:01:19 -08:00
Usama Navid
e85c53ce68 Update readthedocs.py (#943)
Sometimes, the docs may be empty. For example for the text =
soup.find_all("main", {"id": "main-content"}) was an empty list. To
cater to these edge cases, the clean function needs to be checked if it
is empty or not.
2023-02-08 16:01:07 -08:00
Harrison Chase
3e1901e1aa gutenberg books (#946)
Co-authored-by: zanderchase <zander@unfold.ag>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-08 12:00:47 -08:00
jeff
6a4f602156 docs: fix spelling typo (#934) 2023-02-08 11:13:35 -08:00
Ikko Eltociear Ashimine
6023d5be09 Update huggingface_hub.ipynb (#944)
HuggingFace -> Hugging Face
2023-02-08 11:05:28 -08:00
Harrison Chase
a306baacd1 bump version to 0080 (#941) 2023-02-08 07:41:25 -08:00
Harrison Chase
44ecec3896 Harrison/add roam loader (#939) 2023-02-08 00:35:33 -08:00
Ankush Gola
bc7e56e8df Add asyncio support for LLM (OpenAI), Chain (LLMChain, LLMMathChain), and Agent (#841)
Supporting asyncio in langchain primitives allows for users to run them
concurrently and creates more seamless integration with
asyncio-supported frameworks (FastAPI, etc.)

Summary of changes:

**LLM**
* Add `agenerate` and `_agenerate`
* Implement in OpenAI by leveraging `client.Completions.acreate`

**Chain**
* Add `arun`, `acall`, `_acall`
* Implement them in `LLMChain` and `LLMMathChain` for now

**Agent**
* Refactor and leverage async chain and llm methods
* Add ability for `Tools` to contain async coroutine
* Implement async SerpaPI `arun`

Create demo notebook.

Open questions:
* Should all the async stuff go in separate classes? I've seen both
patterns (keeping the same class and having async and sync methods vs.
having class separation)
2023-02-07 21:21:57 -08:00
Vincent Elster
afc7f1b892 Fix typos (#929)
accomplisehd -> accomplished
2023-02-07 14:39:45 -08:00
Harrison Chase
d43250bfa5 Harrison/ver0079 (#927) 2023-02-07 07:59:35 -08:00
Harrison Chase
bc53c928fc Harrison/athropic (#921)
Co-authored-by: Mike Lambert <mlambert@gmail.com>
Co-authored-by: mrbean <sam@you.com>
Co-authored-by: mrbean <43734688+sam-h-bean@users.noreply.github.com>
Co-authored-by: Ivan Vendrov <ivendrov@gmail.com>
2023-02-06 22:29:25 -08:00
Harrison Chase
637c0d6508 Harrison/obsidian (#920) 2023-02-06 22:21:16 -08:00
Harrison Chase
1e56879d38 Harrison/save faiss (#916)
Co-authored-by: Shrey Joshi <shreyjoshi2004@gmail.com>
2023-02-06 21:44:50 -08:00
Ankush Gola
6bd1529cb7 add GoogleDriveLoader (#914)
only deal with docs files for now
2023-02-06 21:44:35 -08:00
Harrison Chase
2584663e44 remove unused buffer (#919) 2023-02-06 20:31:30 -08:00
Harrison Chase
cc20b9425e add reqs (#918) 2023-02-06 20:30:03 -08:00
Harrison Chase
cea380174f fix docs custom prompt template (#917) 2023-02-06 20:29:48 -08:00
Harrison Chase
87fad8fc00 analyze document (#731)
add analyze document chain, which does text splitting and then analysis
2023-02-06 20:02:19 -08:00
Harrison Chase
e2b834e427 Harrison/prompt template prefix (#888)
Co-authored-by: Gabriel Simmons <simmons.gabe@gmail.com>
2023-02-06 19:09:28 -08:00
Harrison Chase
f95cedc443 Harrison/sql rows (#915)
Co-authored-by: Jon Luo <20971593+jzluo@users.noreply.github.com>
2023-02-06 18:56:18 -08:00
Harrison Chase
ba5a2f06b9 Harrison/inference endpoint (#861)
Co-authored-by: Eno Reyes <enoreyes@gmail.com>
2023-02-06 18:14:25 -08:00
Harrison Chase
2ec25ddd4c add unstructured examples (#913) 2023-02-06 18:13:46 -08:00
Kevin Huo
31b054f69d Add pinecone integration test (#911)
Basic integration test for pinecone
2023-02-06 18:13:35 -08:00
Harrison Chase
93a091cfb8 Optionally return shell output on incorrect command (#894) (#899)
This allows the LLM to correct its previous command by looking at the
error message output to the shell.

Additionally, this uses subprocess.run because that is now recommended
over subprocess.check_output:

https://docs.python.org/3/library/subprocess.html#using-the-subprocess-module

Co-authored-by: Amos Ng <me@amos.ng>
2023-02-06 12:46:16 -08:00
James Briggs
3aa53b44dd added i_end in batch extraction (#907)
Fix for issue #906 

Switches `[i : i + batch_size]` to `[i : i_end]` in Pinecone
`from_texts` method
2023-02-06 12:45:56 -08:00
Harrison Chase
82c080c6e6 bump version to 0078 (#908) 2023-02-06 00:32:44 -08:00
Harrison Chase
71e662e88d update docs (#905) 2023-02-06 00:26:20 -08:00
Harrison Chase
53d56d7650 Harrison/unstructured support (#903) 2023-02-05 23:02:07 -08:00
Harrison Chase
2a68be3e8d chat vector db chain (#902) 2023-02-05 21:38:47 -08:00
James Briggs
8217a2f26c Update pinecone init details in docs (#898)
PR to fix outdated environment details in the docs, see issue #897 

I added code comments as pointers to where users go to get API keys, and
where they can find the relevant environment variable.
2023-02-05 15:21:56 -08:00
Bagatur
7658263bfb Check type of LLM.generate prompts arg (#886)
Was passing prompt in directly as string and getting nonsense outputs.
Had to inspect source code to realize that first arg should be a list.
Could be nice if there was an explicit error or warning, seems like this
could be a common mistake.
2023-02-04 22:49:17 -08:00
Samantha Whitmore
32b11101d3 Get elements of ActionInput on newlines (#889)
The re.DOTALL flag in Python's re (regular expression) module makes the
. (dot) metacharacter match newline characters as well as any other
character.

Without re.DOTALL, the . metacharacter only matches any character except
for a newline character. With re.DOTALL, the . metacharacter matches any
character, including newline characters.
2023-02-04 20:42:25 -08:00
Harrison Chase
1614c5f5fd fix flaky tests (#892) 2023-02-04 20:41:33 -08:00
Harrison Chase
a2b699dcd2 prompt template from string (#884) 2023-02-04 17:04:58 -08:00
Alex
7cc44b3bdb Add to gallery (#882) 2023-02-04 09:45:20 -08:00
Harrison Chase
0b9f086d36 Harrison/docs splitter (#879) 2023-02-03 15:09:13 -08:00
Harrison Chase
bcfbc7a818 version 0077 (#878) 2023-02-03 14:49:52 -08:00
Ryan Walker
1dd0733515 Fix small typo in getting started docs (#876)
Just noticed this little typo while reading the docs, thought I'd open a
PR!
2023-02-03 14:22:12 -08:00
Zach Schillaci
4c79100b15 Correct prompt typo + update example for SQLDatabaseChain (#868)
See https://github.com/hwchase17/langchain/issues/821
2023-02-03 08:34:41 -08:00
Harrison Chase
777aaff841 fix routing to tiktoken encoder (#866) 2023-02-02 22:08:14 -08:00
Harrison Chase
e9ef08862d validate template (#865) 2023-02-02 22:08:01 -08:00
Harrison Chase
364b771743 sql return direct (#864) 2023-02-02 22:07:41 -08:00
Harrison Chase
483441d305 pass kwargs through to loading (#863) 2023-02-02 22:07:26 -08:00
Harrison Chase
8df6b68093 fix length based example selector (#862) 2023-02-02 22:06:56 -08:00
Harrison Chase
3f48eed5bd Harrison/milvus (#856)
Signed-off-by: Filip Haltmayer <filip.haltmayer@zilliz.com>
Signed-off-by: Frank Liu <frank.liu@zilliz.com>
Co-authored-by: Filip Haltmayer <81822489+filip-halt@users.noreply.github.com>
Co-authored-by: Frank Liu <frank@frankzliu.com>
2023-02-02 22:05:47 -08:00
Ankush Gola
933441cc52 Add retry to OpenAI llm (#849)
add ability to retry when certain exceptions are raised by
`openai.Completions.create`

Test plan: ran all OpenAI integration tests.
2023-02-02 19:56:26 -08:00
kahkeng
4a8f5cdf4b Add alternative token-based text splitter (#816)
This does not involve a separator, and will naively chunk input text at
the appropriate boundaries in token space.

This is helpful if we have strict token length limits that we need to
strictly follow the specified chunk size, and we can't use aggressive
separators like spaces to guarantee the absence of long strings.

CharacterTextSplitter will let these strings through without splitting
them, which could cause overflow errors downstream.

Splitting at arbitrary token boundaries is not ideal but is hopefully
mitigated by having a decent overlap quantity. Also this results in
chunks which has exact number of tokens desired, instead of sometimes
overcounting if we concatenate shorter strings.

Potentially also helps with #528.
2023-02-02 19:55:13 -08:00
Harrison Chase
523ad2e6bd vercel deployments (#850) 2023-02-02 19:54:09 -08:00
Harrison Chase
fc0cfd7d1f docs (#848) 2023-02-02 11:35:36 -08:00
Harrison Chase
4d32441b86 bump version to 0076 (#847) 2023-02-02 10:05:39 -08:00
Harrison Chase
23d5f64bda Harrison/ngram example (#846)
Co-authored-by: Sean Spriggens <ssprigge@syr.edu>
2023-02-02 09:44:42 -08:00
Harrison Chase
0de55048b7 return code for pal (#844) 2023-02-02 08:47:20 -08:00
Harrison Chase
d564308e0f rfc: instruct embeddings (#811)
Co-authored-by: seanaedmiston <seane999@gmail.com>
2023-02-02 08:44:02 -08:00
Nick Furlotte
576609e665 Update PAL to allow passing local and global context to PythonREPL (#774)
Passing additional variables to the python environment can be useful for
example if you want to generate code to analyze a dataset.

I also added a tracker for the executed code - `code_history`.
2023-02-02 08:34:23 -08:00
Harrison Chase
3f952eb597 add from string method (#820) 2023-02-02 08:23:54 -08:00
Ikko Eltociear Ashimine
ba26a879e0 Fix typo in crawler.py (#842)
seperator -> separator
2023-02-02 08:23:38 -08:00
Eli Mernit
bfabd1d5c0 Added new deployment template (#835)
This PR introduces a new template for deploying LangChain apps as web
endpoints. It includes template code, and links to a detailed
code-walkthrough.
2023-02-01 23:38:36 -08:00
Jonas Ehrenstein
f3508228df Minor fix for google search util: it's uncertain if "snippet" in results exists (#830)
The results from Google search may not always contain a "snippet". 

Example:
`{'kind': 'customsearch#result', 'title': 'FEMA Flood Map', 'htmlTitle':
'FEMA Flood Map', 'link': 'https://msc.fema.gov/portal/home',
'displayLink': 'msc.fema.gov', 'formattedUrl':
'https://msc.fema.gov/portal/home', 'htmlFormattedUrl':
'https://<b>msc</b>.fema.gov/portal/home'}`

This will cause a KeyError at line 99
`snippets.append(result["snippet"])`.
2023-02-01 23:37:52 -08:00
Zach Schillaci
b4eb043b81 Minor fix to SQLDatabaseChain doc (#826) 2023-02-01 23:37:38 -08:00
Istora Mandiri
06438794e1 Fix typo in textsplitter docs (#825) 2023-02-01 23:32:35 -08:00
Raza Habib
9f8e05ffd4 Update __init__.py (#827)
Remove duplicate APIChain
2023-02-01 23:31:38 -08:00
Harrison Chase
b0d560be56 add to gallery (#824) 2023-02-01 07:10:15 -08:00
Johanna Appel
ebea40ce86 Add 'truncate' parameter for CohereEmbeddings (#798)
Currently, the 'truncate' parameter of the cohere API is not supported.

This means that by default, if trying to generate and embedding that is
too big, the call will just fail with an error (which is frustrating if
using this embedding source e.g. with GPT-Index, because it's hard to
handle it properly when generating a lot of embeddings).
With the parameter, one can decide to either truncate the START or END
of the text to fit the max token length and still generate an embedding
without throwing the error.

In this PR, I added this parameter to the class.

_Arguably, there should be a better way to handle this error, e.g. by
optionally calling a function or so that gets triggered when the token
limit is reached and can split the document or some such. Especially in
the use case with GPT-Index, its often hard to estimate the token counts
for each document and I'd rather sort out the troublemakers or simply
split them than interrupting the whole execution.
Thoughts?_

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-02-01 07:09:03 -08:00
Harrison Chase
b9045f7e0d bump version to 0075 (#819) 2023-01-31 00:18:32 -08:00
Harrison Chase
7b4882a2f4 Harrison/tf embeddings (#817)
Co-authored-by: Ryohei Kuroki <10434946+yakigac@users.noreply.github.com>
2023-01-31 00:00:08 -08:00
Harrison Chase
5d4b6e4d4e conversational agent fix (#818) 2023-01-30 23:59:55 -08:00
Harrison Chase
94ae126747 return sql intermediate steps (#792) 2023-01-30 15:10:48 -08:00
bair82
ae5695ad32 Update cohere.py (#795)
When stop tokens are set in Cohere LLM constructor, they are currently
not stripped from the response, and they should be stripped
2023-01-30 14:55:44 -08:00
Johanna Appel
cacf4091c0 Fix documentation for 'model' parameter in CohereEmbeddings (#797)
Currently, the class parameter 'model_name' of the CohereEmbeddings
class is not supported, but 'model' is. The class documentation is
inconsistent with this, though, so I propose to either fix the
documentation (this PR right now) or fix the parameter.

It will create the following error:
```
ValidationError: 1 validation error for CohereEmbeddings
model_name
  extra fields not permitted (type=value_error.extra)
```
2023-01-30 14:55:08 -08:00
Jason Liu
54f9e4287f Pass kwargs from initialize_agent into agent classmethod (#799)
# Problem
I noticed that in order to change the prefix of the prompt in the
`zero-shot-react-description` agent
we had to dig around to subset strings deep into the agent's attributes.
It requires the user to inspect a long chain of attributes and classes.

`initialize_agent -> AgentExecutor -> Agent -> LLMChain -> Prompt from
Agent.create_prompt`

``` python
agent = initialize_agent(
    tools=tools,
    llm=fake_llm,
    agent="zero-shot-react-description"
)
prompt_str = agent.agent.llm_chain.prompt.template
new_prompt_str = change_prefix(prompt_str)
agent.agent.llm_chain.prompt.template = new_prompt_str
```

# Implemented Solution

`initialize_agent` accepts `**kwargs` but passes it to `AgentExecutor`
but not `ZeroShotAgent`, by simply giving the kwargs to the agent class
methods we can support changing the prefix and suffix for one agent
while allowing future agents to take advantage of `initialize_agent`.


```
agent = initialize_agent(
    tools=tools,
    llm=fake_llm,
    agent="zero-shot-react-description",
    agent_kwargs={"prefix": prefix, "suffix": suffix}
)
```

To be fair, this was before finding docs around custom agents here:
https://langchain.readthedocs.io/en/latest/modules/agents/examples/custom_agent.html?highlight=custom%20#custom-llmchain
but i find that my use case just needed to change the prefix a little.


# Changes

* Pass kwargs to Agent class method
* Added a test to check suffix and prefix

---------

Co-authored-by: Jason Liu <jason@jxnl.coA>
2023-01-30 14:54:09 -08:00
Roger Zurawicki
c331009440 docs: Update langchain link to PyPI (#800)
Simple one-line fix

CONTRIBUTING used a link that pointed to the `ruff` project.
2023-01-30 14:53:16 -08:00
Roy Williams
6086292252 Centralize logic for loading from LangChainHub, add ability to pin dependencies (#805)
It's generally considered to be a good practice to pin dependencies to
prevent surprise breakages when a new version of a dependency is
released. This commit adds the ability to pin dependencies when loading
from LangChainHub.

Centralizing this logic and using urllib fixes an issue identified by
some windows users highlighted in this video -
https://youtu.be/aJ6IQUh8MLQ?t=537
2023-01-30 14:52:17 -08:00
Harrison Chase
b3916f74a7 enable mmr search (#807) 2023-01-30 14:48:24 -08:00
Harrison Chase
f46f1d28af expose memory key name (#808) 2023-01-30 14:48:12 -08:00
Harrison Chase
7728a848d0 Harrison/tracing docs (#806)
Co-authored-by: Ankush Gola <9536492+agola11@users.noreply.github.com>
2023-01-29 20:49:35 -08:00
Harrison Chase
f3da4dc6ba Harrison/tracing docs (#804)
Co-authored-by: Ankush Gola <9536492+agola11@users.noreply.github.com>
2023-01-29 20:24:22 -08:00
Harrison Chase
ae1b589f60 Harrison/add link for support (#794) 2023-01-28 22:53:04 -08:00
Harrison Chase
6a20f07f0d add link for support (#793) 2023-01-28 22:44:23 -08:00
Harrison Chase
fb2d7afe71 bump version to 0074 (#791) 2023-01-28 18:50:22 -08:00
Harrison Chase
1ad7973cc6 Harrison/tool decorator (#790)
Co-authored-by: Jason Liu <jxnl@users.noreply.github.com>
Co-authored-by: Jason Liu <jason@jxnl.coA>
2023-01-28 18:26:24 -08:00
Harrison Chase
5f73d06502 Harrison/fix caching bug (#788)
Co-authored-by: thepok <richterthepok@yahoo.de>
2023-01-28 14:24:30 -08:00
Harrison Chase
248c297f1b Sample row in table info for SQLDatabase (#769) (#782)
The agents usually benefit from understanding what the data looks like
to be able to filter effectively. Sending just one row in the table info
allows the agent to understand the data before querying and get better
results.

---------

Co-authored-by: Francisco Ingham <>

---------

Co-authored-by: Francisco Ingham <fpingham@gmail.com>
2023-01-28 13:37:07 -08:00
Francisco Ingham
213c2e33e5 Sql prompt improvement (#787)
Co-authored-by: Francisco Ingham <>
2023-01-28 13:34:15 -08:00
Harrison Chase
2e0219cac0 fixing bash util (#779) 2023-01-28 08:26:29 -08:00
Harrison Chase
966611bbfa add model kwargs to handle stop token from cohere (#773) 2023-01-28 08:24:55 -08:00
Harrison Chase
7198a1cb22 Harrison/refactor agent (#781)
Co-authored-by: Amos Ng <me@amos.ng>
2023-01-28 08:24:13 -08:00
Harrison Chase
5bb2952860 Harrison/hf pipeline (#780)
Co-authored-by: Parth Chadha <parth29@gmail.com>
2023-01-28 08:23:59 -08:00
Harrison Chase
c658f0aed3 Harrison/add to search (#778)
Co-authored-by: Enrico Shippole <enricoship@gmail.com>
2023-01-28 08:06:00 -08:00
Bill Kish
309d86e339 increase text-davinci-003 contextsize to 4097 (#748)
text-davinci-003 supports a context size of 4097 tokens so return 4097
instead of 4000 in modelname_to_contextsize() for text-davinci-003

Co-authored-by: Bill Kish <bill@cogniac.co>
2023-01-28 08:05:35 -08:00
Amos Ng
6ad360bdef Suggestions for better debugging (#765)
Please feel free to disregard any changes you disagree with
2023-01-28 08:05:20 -08:00
Albert Ziegler
5198d6f541 Add missing verb (#768)
Mini drive-by PR:

I came across this sentence in a stack trace for an error I had, and it
confused me because the verb I missing. So I added the verb.
2023-01-28 07:26:27 -08:00
Harrison Chase
a5d003f0c9 update notebook and make backwards compatible (#772) 2023-01-28 07:23:04 -08:00
Harrison Chase
924b7ecf89 pass kwargs and bump (#770) 2023-01-27 08:56:36 -08:00
Harrison Chase
fc19d14a65 bump version to 0072 (#767) 2023-01-27 08:03:41 -08:00
Harrison Chase
b9ad214801 add docs for loading from hub (#763) 2023-01-27 07:10:26 -08:00
Samantha Whitmore
be7de427ca Serialize all the chains! (#761)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-01-27 00:45:17 -08:00
Harrison Chase
e2a7fed890 Harrison/serialize from llm and tools (#760) 2023-01-26 23:30:39 -08:00
Harrison Chase
12dc7f26cc load agents from hub (#759) 2023-01-26 22:49:26 -08:00
Harrison Chase
7129f23511 output parser serialization (#758) 2023-01-26 21:51:13 -08:00
Harrison Chase
f273c50d62 add loading chains from hub (#757) 2023-01-26 21:11:31 -08:00
Harrison Chase
1b89a438cf (wip) Harrison/serialize agents (#725) 2023-01-26 19:48:47 -08:00
Harrison Chase
cc70565886 add prompt type (#730) 2023-01-26 19:48:00 -08:00
Francisco Ingham
374e510f94 Upper bound on number of iterations (#754)
Some custom agents might continue to iterate until they find the correct
answer, getting stuck on loops that generate request after request and
are really expensive for the end user. Putting an upper bound for the
number of iterations
by default controls this and can be explicitly tweaked by the user if
necessary.

Co-authored-by: Francisco Ingham <>
2023-01-26 19:47:01 -08:00
Smit Shah
28efbb05bf Add params to reduce K dynamically to reduce it below token limit (#739)
Referring to #687, I implemented the functionality to reduce K if it
exceeds the token limit.

Edit: I should have ran make lint locally. Also, this only applies to
`StuffDocumentChain`
2023-01-26 19:43:01 -08:00
Roy Williams
d2f882158f Add type information for crawler.py (#738)
Added type information to `crawler.py` to make it safer to use and
understand.
2023-01-26 19:37:31 -08:00
Harrison Chase
a80897478e bump version to 0071 (#755) 2023-01-26 18:55:25 -08:00
Ankush Gola
57609845df add tracing support to langchain (#741)
* add implementations of `BaseCallbackHandler` to support tracing:
`SharedTracer` which is thread-safe and `Tracer` which is not and is
meant to be used locally.
* Tracers persist runs to locally running `langchain-server`

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-01-26 17:38:13 -08:00
Harrison Chase
7f76a1189c bump version to 0.0.70 (#744) 2023-01-25 17:58:37 -08:00
Harrison Chase
2ba1128095 Harrison/backwards compat (#740) 2023-01-25 17:47:29 -08:00
Francisco Ingham
f9ddcb5705 Hotfix: distance_func and collection_name must not be in kwargs (#735)
If `distance_func` and `collection_name` are in `kwargs` they are sent
to the `QdrantClient` which results in an error being raised.

Co-authored-by: Francisco Ingham <>
2023-01-25 09:39:50 -08:00
Amos Ng
fa6826e417 Fix sqlalchemy warnings when running tests (#733)
This has been bugging me when running my own tests that call langchain
methods :P
2023-01-25 07:14:07 -08:00
Harrison Chase
bd0bf4e0a9 Harrison/generate blog post (#732)
Co-authored-by: Ren <yirenlu92@users.noreply.github.com>
2023-01-24 22:54:12 -08:00
Harrison Chase
9194a8be89 add stop to stream (#729) 2023-01-24 22:49:24 -08:00
scadEfUr
e3df8ab6dc move hyde into chains (#728)
Co-authored-by: scadEfUr <>
2023-01-24 22:23:32 -08:00
Harrison Chase
0ffeabd14f Harrison/serialize llm chain (#671) 2023-01-24 21:36:19 -08:00
Sam Hogan
499e54edda fix typos in readme and text splitter docs (#720)
Fix typos in readme and TextSplitter documentation.
2023-01-24 10:59:23 -08:00
I-E-E-E
f62dbb018b fix a url (#719) 2023-01-24 10:56:15 -08:00
Николай Шангин
18b1466893 Fix not imported 'validator' (#715)
otherwise `@validator("input_variables")` do not work
2023-01-24 07:06:50 -08:00
Feynman Liang
2824f36401 Add namespace to Pinecone.from_index (#716)
Resolves https://github.com/hwchase17/langchain/issues/718
2023-01-24 07:02:57 -08:00
Kacper Łukawski
d4f719c34b Convert numpy arrays to lists in HuggingFaceEmbeddings (#714)
`SentenceTransformer` returns a NumPy array, not a `List[List[float]]`
or `List[float]` as specified in the interface of `Embeddings`. That PR
makes it consistent with the interface.
2023-01-24 07:01:40 -08:00
Kacper Łukawski
97c3544a1e Hotfix: Qdrant.from_text embeddings (#713)
I'm providing a hotfix for Qdrant integration. Calculating a single
embedding to obtain the vector size was great idea. However, that change
introduced a bug trying to put only that single embedding into the
database. It's fixed. Right now all the embeddings will be pushed to
Qdrant.
2023-01-24 07:01:07 -08:00
Harrison Chase
b69b551c8b clarify use cases (#711) 2023-01-24 00:37:26 -08:00
Harrison Chase
1e4927a1d2 bump version to 0069 (#710) 2023-01-24 00:24:54 -08:00
Feynman Liang
3a38604f07 Fix typo (#705) 2023-01-23 23:08:38 -08:00
Nicolas
66fd57878a docs: Update vector_db_qa_with_sources.ipynb (#706) 2023-01-23 23:06:54 -08:00
Harrison Chase
fc4ad2db0f langchain hub docs (#704)
Co-authored-by: scadEfUr <123224380+scadEfUr@users.noreply.github.com>
2023-01-23 23:06:23 -08:00
Scott Leibrand
34932dd211 remove legacy embedding model name (#703)
Now that OpenAI has deprecated all embeddings models except
text-embedding-ada-002, we should stop specifying a legacy embedding
model in the example. This will also avoid confusion from people (like
me) trying to specify model="text-embedding-ada-002" and having that
erroneously expanded to text-search-text-embedding-ada-002-query-001
2023-01-23 14:31:31 -08:00
Harrison Chase
75edd85fed version 0068 (#701) 2023-01-23 07:24:09 -08:00
scadEfUr
4aba0abeaa added common prompt load method (#699)
Co-authored-by: scadEfUr
2023-01-22 23:46:11 -08:00
xloem
36b6b3cdf6 HuggingFacePipeline: Forward model_kwargs. (#696)
Since the tokenizer and model are constructed manually, model_kwargs
needs to
be passed to their constructors. Additionally, the pipeline has a
specific
named parameter to pass these with, which can provide forward
compatibility if
they are used for something other than tokenizer or model construction.
2023-01-22 23:38:47 -08:00
Harrison Chase
3a30e6daa8 Harrison/openai callback (#684) 2023-01-22 23:37:01 -08:00
Harrison Chase
aef82f5d59 fix whitespace for conversational agent (#690) 2023-01-22 22:39:53 -08:00
Amos Ng
8baf6fb920 Update examples to fix execution problems (#685)
On the [Getting Started
page](https://langchain.readthedocs.io/en/latest/modules/prompts/getting_started.html)
for prompt templates, I believe the very last example

```python
print(dynamic_prompt.format(adjective=long_string))
```

should actually be

```python
print(dynamic_prompt.format(input=long_string))
```

The existing example produces `KeyError: 'input'` as expected

***

On the [Create a custom prompt
template](https://langchain.readthedocs.io/en/latest/modules/prompts/examples/custom_prompt_template.html#id1)
page, I believe the line

```python
Function Name: {kwargs["function_name"]}
```

should actually be

```python
Function Name: {kwargs["function_name"].__name__}
```

The existing example produces the prompt:

```
        Given the function name and source code, generate an English language explanation of the function.
        Function Name: <function get_source_code at 0x7f907bc0e0e0>
        Source Code:
        def get_source_code(function_name):
    # Get the source code of the function
    return inspect.getsource(function_name)

        Explanation:
```

***

On the [Example
Selectors](https://langchain.readthedocs.io/en/latest/modules/prompts/examples/example_selectors.html)
page, the first example does not define `example_prompt`, which is also
subtly different from previous example prompts used. For user
convenience, I suggest including

```python
example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="Input: {input}\nOutput: {output}",
)
```

in the code to be copy-pasted
2023-01-22 14:49:25 -08:00
Harrison Chase
86dbdb118b Harrison/serpapi extra tools (#691)
Co-authored-by: Bruno Bornsztein <bruno.bornsztein@gmail.com>
2023-01-22 14:48:54 -08:00
Saurav Maheshkar
b4fcdeb56c chore: move coverage config to pyproject (#694)
This PR aims to move the contents of `.coveragerc` to `pyproject.toml`
to make the overall file structure more minimal.
2023-01-22 14:48:20 -08:00
Nicolas
4ddfa82bb7 docs: small typo on serpapi.md (#693) 2023-01-22 13:10:24 -08:00
Nicolas
34cb8850e9 docs: small typo google_search.md (#692) 2023-01-22 13:09:15 -08:00
Harrison Chase
cbc146720b verbose flag (#683) 2023-01-22 12:44:14 -08:00
Harrison Chase
27cef0870d bump version to 0.0.67 (#689) 2023-01-22 10:24:03 -08:00
Samantha Whitmore
77e3d58922 ConversationEntityMemory: Chain which uses an entity extraction & sum… (#678)
…marization prompt to maintain a key-value store of memory information

cc @devennavani

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-01-22 10:10:02 -08:00
Ikko Eltociear Ashimine
64580259d0 Fix typo in hyde.ipynb (#688)
therefor -> therefore
2023-01-22 08:21:31 -08:00
dham
e04b063ff4 add faiss local saving/loading (#676)
- This uses the faiss built-in `write_index` and `load_index` to save
and load faiss indexes locally
- Also fixes #674
- The save/load functions also use the faiss library, so I refactored
the dependency into a function
2023-01-21 16:08:14 -08:00
Harrison Chase
e45f7e40e8 Harrison/few shot yaml (#682)
Co-authored-by: vintro <77507980+vintrocode@users.noreply.github.com>
2023-01-21 16:08:03 -08:00
Harrison Chase
a2eeaf3d43 strip whitespace (#680) 2023-01-21 16:03:48 -08:00
Will Olson
2f57d18b25 Update hyperlink in Custom Prompt Template page (#677)
The current link points to a non-existent page. I've updated the link to
match what is on the "Create a custom example selector" page.

<img width="584" alt="Screen Shot 2023-01-21 at 10 33 05 AM"
src="https://user-images.githubusercontent.com/6773706/213879535-d8f2953d-ac37-448d-9b32-fdeb7b73cc32.png">
2023-01-21 16:03:21 -08:00
Harrison Chase
3d41af0aba Harrison/load tools kwargs (#681)
Co-authored-by: Bruno Bornsztein <bruno.bornsztein@gmail.com>
2023-01-21 16:03:02 -08:00
trigaten
90e4b6b040 Create CITATION.cff (#672)
You may want to add doi/orcid

Followed this:
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files
2023-01-21 15:55:58 -08:00
Harrison Chase
236ae93610 bump version to 0066 (#667) 2023-01-20 14:22:31 -08:00
Harrison Chase
0b204d8c21 Harrison/quadrant (#665)
Co-authored-by: Kacper Łukawski <kacperlukawski@users.noreply.github.com>
2023-01-20 09:45:01 -08:00
Harrison Chase
983b73f47c add search kwargs (#664) 2023-01-20 07:42:08 -08:00
vertinski
65f3a341b0 Prompt fix for empty intermediate steps in summarization (#660)
Adding quotation marks around {text} avoids generating empty or
completely random responses from OpenAI davinci-003. Empty or completely
unrelated intermediate responses in summarization messes up the final
result or makes it very inaccurate.
The error from OpenAI would be: "The model predicted a completion that
begins with a stop sequence, resulting in no output. Consider adjusting
your prompt or stop sequences."
This fix corrects the prompting for summarization chain. This works on
API too, the images are for demonstrative purposes.
This approach can be applied to other similar prompts too. 

Examples:

1) Without quotation marks
![Screenshot from 2023-01-20
07-18-19](https://user-images.githubusercontent.com/22897470/213624365-9dfc18f9-5f3f-45d2-abe1-56de67397e22.png)

2) With quotation marks
![Screenshot from 2023-01-20
07-18-35](https://user-images.githubusercontent.com/22897470/213624478-c958e742-a4a7-46fe-a163-eca6326d9dae.png)
2023-01-20 07:37:01 -08:00
iocuydi
69998b5fad Add ids parameter for pinecone from_texts / add_texts (#659)
Allow optionally specifying a list of ids for pinecone rather than
having them randomly generated.
This also permits editing the embedding/metadata of existing pinecone
entries, by id.
2023-01-20 06:50:03 -08:00
Harrison Chase
54d7f1c933 fix caching (#658) 2023-01-19 15:33:45 -08:00
Harrison Chase
d0fdc6da11 Harrison/bing wrapper (#656)
Co-authored-by: Enrico Shippole <henryshippole@gmail.com>
2023-01-19 14:48:30 -08:00
iocuydi
207e319a70 Add search_kwargs option for VectorDBQAWithSourcesChain (#657)
Allows for passing additional vectorstore params like namespace, etc. to
VectorDBQAWithSourcesChain

Example:
`chain = VectorDBQAWithSourcesChain.from_llm(OpenAI(temperature=0),
vectorstore=store, search_kwargs={"namespace": namespace})`
2023-01-19 14:48:13 -08:00
Charles Frye
bfb23f4608 typo bugfixes in getting started with prompts (#651)
tl;dr: input -> word, output -> antonym, rename to dynamic_prompt
consistently

The provided code in this example doesn't run, because the keys are
`word` and `antonym`, rather than `input` and `output`.

Also, the `ExampleSelector`-based prompt is named `few_shot_prompt` when
defined and `dynamic_prompt` in the follow-up example. The former name
is less descriptive and collides with an earlier example, so I opted for
the latter.

Thanks for making a really cool library!
2023-01-19 07:05:20 -08:00
John
3adc5227cd typo (#650) 2023-01-19 07:03:11 -08:00
Harrison Chase
052c361031 pinecone docstring (#654) 2023-01-19 07:02:52 -08:00
Harrison Chase
d54fd20ba4 bump version to 0065 (#646) 2023-01-18 07:53:39 -08:00
Harrison Chase
30abfc41c2 add instructions for saving loading (#642) 2023-01-18 00:19:05 -08:00
Harrison Chase
95720adff5 Add documentation for custom prompts for Agents (#631) (#640)
- Added a comment interpreting regex for `ZeroShotAgent`
- Added a note to the `Custom Agent` notebook

Co-authored-by: Sam Ching <samuel@duolingo.com>
2023-01-17 22:47:15 -08:00
Harrison Chase
6be5f4e4c4 Harrison/sql db chain (#641)
Co-authored-by: Bruno Bornsztein <bruno.bornsztein@gmail.com>
2023-01-17 22:32:28 -08:00
Chetanya Rastogi
b550f57912 Fix the env variable for OpenAI Base Url (#639)
For using Azure OpenAI API, we need to set multiple env vars. But as can
be seen in openai package
[here](48b69293a3/openai/__init__.py (L35)),
the env var for setting base url is named `OPENAI_API_BASE` and not
`OPENAI_API_BASE_URL`. This PR fixes that part in the documentation.
2023-01-17 22:30:29 -08:00
Harrison Chase
4d4cff0530 Harrison/cohere experimental (#638)
Co-authored-by: inyourhead <44607279+xettrisomeman@users.noreply.github.com>
2023-01-17 22:28:55 -08:00
Sasmitha Manathunga
5c97f70bf1 Fix CohereError: embed is not an available endpoint on this model (#637)
Running the Cohere embeddings example from the docs:

```python
from langchain.embeddings import CohereEmbeddings
embeddings = CohereEmbeddings(cohere_api_key= cohere_api_key)

text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
```

I get the error:

```bash
CohereError(message=res['message'], http_status=response.status_code, headers=response.headers)      
cohere.error.CohereError: embed is not an available endpoint on this model
```

This is because the `model` string is set to `medium` which is not
currently available.

From the Cohere docs:

> Currently available models are small and large (default)
2023-01-17 22:26:07 -08:00
Francis
b374d481c8 fix typo (#636)
there is a small typo in one of the docs.
2023-01-17 22:17:50 -08:00
Francisco Ingham
b929fd9f59 Exclude reference to 'example' in api prompt (#629)
Co-authored-by: lesscomfortable <pancho_ingham@hotmail.com>
2023-01-16 22:45:14 -08:00
Harrison Chase
08400f5542 version bump to 0.0.64 (#624) 2023-01-15 19:02:48 -08:00
Steven Hoelscher
a5999351cf chore: add release workflow (#360)
Adds release workflow that (1) creates a GitHub release and (2)
publishes built artifacts to PyPI

**Release Workflow**
1. Checkout `master` locally and cut a new branch
1. Run `poetry version <rule>` to version bump (e.g., `poetry version
patch`)
1. Commit changes and push to remote branch
1. Ensure all quality check workflows pass
1. Explicitly tag PR with `release` label
1. Merge to mainline

At this point, a release workflow should be triggered because:
* The PR is closed, targeting `master`, and merged
* `pyproject.toml` has been detected as modified
* The PR had a `release` label

The workflow will then proceed to build the artifacts, create a GitHub
release with release notes and uploaded artifacts, and publish to PyPI.

Example Workflow run:
https://github.com/shoelsch/langchain/actions/runs/3711037455/jobs/6291076898
Example Releases: https://github.com/shoelsch/langchain/releases

--

Note, this workflow is looking for the `PYPI_API_TOKEN` secret, so that
will need to be uploaded to the repository secrets. I tested uploading
as far as hitting a permissions issue due to project ownership in Test
PyPI.
2023-01-15 18:35:21 -08:00
Harrison Chase
3d43906572 Harrison/new api chain (#623)
Co-authored-by: Francisco Ingham <fpingham@gmail.com>
Co-authored-by: lesscomfortable <pancho_ingham@hotmail.com>
2023-01-15 18:34:43 -08:00
Harrison Chase
1c71fadfdc more complex sql chain (#619)
add a more complex sql chain that first subsets the necessary tables
2023-01-15 17:07:21 -08:00
Harrison Chase
49b3d6c78c Harrison/wiki update (#622)
Co-authored-by: Rubens Mau <rubensmau@gmail.com>
2023-01-15 16:45:16 -08:00
Harrison Chase
1ac3319e45 simplify parsing of the final answer (#621) 2023-01-15 16:39:27 -08:00
Harrison Chase
2a54e73fec bump version to 0063 (#616) 2023-01-14 08:09:25 -08:00
Harrison Chase
57bbc5d6da improve css (#615) 2023-01-14 07:39:29 -08:00
Nicolas
91d7fd20ae feat: add custom prompt for QAEvalChain chain (#610)
I originally had only modified the `from_llm` to include the prompt but
I realized that if the prompt keys used on the custom prompt didn't
match the default prompt, it wouldn't work because of how `apply` works.

So I made some changes to the evaluate method to check if the prompt is
the default and if not, it will check if the input keys are the same as
the prompt key and update the inputs appropriately.

Let me know if there is a better way to do this.

Also added the custom prompt to the QA eval notebook.
2023-01-14 07:23:48 -08:00
Francisco Ingham
1787c473b8 Custom prompt option for llm_bash and api chains (#612)
Co-authored-by: lesscomfortable <pancho_ingham@hotmail.com>
2023-01-14 07:22:52 -08:00
Harrison Chase
67808bad0e expose more serpapi parameters (#609) 2023-01-13 17:36:10 -08:00
Nicolas
b7225fd010 docs: fix small typo (#611) 2023-01-13 17:31:33 -08:00
Harrison Chase
e9301bf833 bump version to 0.0.62 (#607) 2023-01-13 07:47:59 -08:00
Harrison Chase
9f9afbb6a8 add custom prompt for LLMMathChain and SQLDatabase chain (#605) 2023-01-13 06:28:51 -08:00
Smit Shah
a87a2aacaa [Minor Fix] Fix spacy TextSplitter init (#606) 2023-01-13 06:24:44 -08:00
Sasmitha Manathunga
3e55f1474e docs: fix typo (#604) 2023-01-12 21:36:03 -08:00
babbldev
b5eb91536a Added filter argument to pinecone queries, fixes #600 (#601)
Added filter argument to similarity_search() and
similarity_search_with_score()

Co-authored-by: Sam Cartford (MBP) <cartford@hey.com>
2023-01-12 21:15:51 -08:00
Sam Ching
c4c6bf6e6e Add subsection for colab notebooks (#599)
Motivation is that these don't get lost in the Twitterverse!
2023-01-12 18:16:55 -08:00
Rukmal Weerawarana
0f544a8811 Fix minor error in LLM documentation (#602) 2023-01-12 18:16:32 -08:00
Ikko Eltociear Ashimine
60dfe58325 Fix typo in vector_db_qa.ipynb (#597)
paramter -> parameter
2023-01-12 08:23:24 -08:00
Harrison Chase
950a81399a bump version to 61 (#596) 2023-01-12 07:20:16 -08:00
Harrison Chase
d574bf0a27 add documentation on how to load different chain types (#595) 2023-01-12 06:47:38 -08:00
Harrison Chase
956416c150 Harrison/update links1 (#594)
update links to be relative

Co-authored-by: Marc Green <marcgreen@users.noreply.github.com>
2023-01-12 06:29:42 -08:00
Harrison Chase
8ab09c18a1 Return source documents option in VectorDBQA (#585) (#592)
Co-authored-by: lesscomfortable <pancho_ingham@hotmail.com>

Co-authored-by: Francisco Ingham <fpingham@gmail.com>
Co-authored-by: lesscomfortable <pancho_ingham@hotmail.com>
2023-01-12 06:09:32 -08:00
Harrison Chase
4c6c5f0391 wolfram alpha improvements (#591)
Co-authored-by: Nicolas <nicolascamara29@gmail.com>
2023-01-12 06:09:12 -08:00
Harrison Chase
a5ee7de650 pinecone changes (#590)
Co-authored-by: Smit Shah <who828@gmail.com>
Co-authored-by: iocuydi <46613640+iocuydi@users.noreply.github.com>
2023-01-12 06:08:47 -08:00
Harrison Chase
7b6e7f6e12 bump to version 60 (#583) 2023-01-11 07:09:30 -08:00
Harrison Chase
3f2ea5c35e Harrison/load from hub (#580) 2023-01-11 06:34:11 -08:00
Harrison Chase
f74ce7a104 Harrison/combine memories (#582)
Signed-off-by: Diwank Singh Tomer <diwank.singh@gmail.com>
Co-authored-by: Diwank Singh Tomer <diwank.singh@gmail.com>
2023-01-11 06:08:58 -08:00
Harrison Chase
2aa08631cb add similarity score method to faiss (#574)
adds `similarity_search_with_score` to faiss wrapper
2023-01-11 06:06:17 -08:00
Harrison Chase
5ba46f6d0c Harrison/namespace pinecone (#581)
Co-authored-by: mmorzywolek <89693033+mmorzywolek@users.noreply.github.com>
2023-01-11 06:05:48 -08:00
Harrison Chase
ffc7e04d44 Harrison/wolfram alpha (#579)
Co-authored-by: Nicolas <nicolascamara29@gmail.com>
2023-01-11 05:52:19 -08:00
Harrison Chase
94765e7487 more gallery (#577) 2023-01-10 08:24:00 -08:00
Harrison Chase
50a49eff15 gallery updates (#573) 2023-01-10 07:41:29 -08:00
Harrison Chase
6966863d7d Harrison/deployments (#572) 2023-01-10 07:41:16 -08:00
Harrison Chase
7de5139750 add example selector docs (#564) 2023-01-09 19:17:29 -08:00
Yong723
94c06c55e8 modify docstring (#569)
Sorry for the detail. this is a correction to the docstring.
2023-01-09 19:12:59 -08:00
Yong723
e1f3871a78 fix typo (#570)
I found a typo, which might be important for a conversational Agent.

if My PR is wrong, I am so sorry
2023-01-09 19:12:34 -08:00
Harrison Chase
6374df5a31 bump version (#565) 2023-01-09 12:34:47 -08:00
Harrison Chase
b06a2a6191 improve documentation on how to pass in custom prompts (#561) 2023-01-08 19:20:13 -08:00
Harrison Chase
1511606799 Harrison/fix splitting (#563)
fix issue where text splitting could possibly create empty docs
2023-01-08 19:19:32 -08:00
Harrison Chase
1192cc0767 smart text splitter (#530)
smart text splitter that iteratively tries different separators until it
works!
2023-01-08 15:11:10 -08:00
Harrison Chase
8dfad874a2 map rerank chain (#516)
add a chain that applies a prompt to all inputs and then returns not
only an answer but scores it

add examples for question answering and question answering with sources
2023-01-08 06:49:22 -08:00
Nicolas
948eee9fe1 Docs: side menu to match the order (llms) (#557)
Small quick fix:

Suggest making the order of the menu the same as it is written on the
page (Getting Started -> Key Concepts). Before the menu order was not
the same as it was on the page. Not sure if this is the only place the
menu is affected.

Mismatch is found here:
https://langchain.readthedocs.io/en/latest/modules/llms.html
2023-01-06 09:34:08 -08:00
Harrison Chase
823a44ef80 bump to 0058 (#556) 2023-01-06 07:58:38 -08:00
Benjamin
42d5d988fa add openai logit bias (#553)
Add
[`logit_bias`](https://beta.openai.com/docs/api-reference/completions/create#completions/create-logit_bias)
params to OpenAI

See [here](https://beta.openai.com/tokenizer) for the tokenizer.

NB: I see that others (like Cohere) have the same parameter, but since I
don't have an access to it, I don't want to make a mistake.

---

Just to make sure the default "{}" works for openai:
```
from langchain.llms import OpenAI

OPENAI_API_KEY="XXX"

llm = OpenAI(openai_api_key=OPENAI_API_KEY)
llm.generate('Write "test":')

llm = OpenAI(openai_api_key=OPENAI_API_KEY, logit_bias={'9288': -100, '1332': -100, '14402': -100, '6208': -100})
llm.generate('Write "test":')
```
2023-01-06 07:48:52 -08:00
Harrison Chase
9833fcfe32 fix caching (#555) 2023-01-06 07:30:10 -08:00
Harrison Chase
74932f2516 RFC: conversational agent (#464)
Co-authored-by: Bruno Bornsztein <bruno.bornsztein@gmail.com>
2023-01-06 07:25:55 -08:00
Harrison Chase
330a5b42d4 fix map reduce chain (#550) 2023-01-06 07:15:57 -08:00
Diwank Singh Tomer
ba0cbb4a41 Add finish reason to Generation for usage downstream (#526)
Add `finish_reason` to `Generation` as well as extend
`BaseOpenAI._generate` to include it in the output. This can be useful
for usage in downstream tasks when we need to filter for only
generations that finished because of `"stop"` for example. Maybe we
should add this to `LLMChain` as well?

For more details, see
https://beta.openai.com/docs/guides/completion/best-practices

Signed-off-by: Diwank Singh Tomer <diwank.singh@gmail.com>
2023-01-06 07:15:25 -08:00
Harrison Chase
e64ed7b975 Harrison/tools priority (#554)
Co-authored-by: Yong723 <50616781+Yongtae723@users.noreply.github.com>
2023-01-06 06:56:11 -08:00
Harrison Chase
4974f49bb7 add return_direct flag to tool (#537)
adds a return_direct flag to tools, which just returns the tool output
as the final output
2023-01-06 06:40:32 -08:00
Harrison Chase
1f248c47f3 bump version to 0.0.57 (#548) 2023-01-05 09:46:44 -08:00
Harrison Chase
0c2f7d8da1 changes to qa chain (#543) 2023-01-05 09:33:59 -08:00
Hunter Gerlach
5b4c972fc5 Add linkcheck badge to signify when/if links are failing (#546)
Detect whether or not most recent GitHub Action running linkcheck was
successful.
2023-01-05 08:37:01 -08:00
Harrison Chase
9753bccc71 Feature: linkcheck-action (#534) (#542)
- Add support for local build and linkchecking of docs
- Add GitHub Action to automatically check links before prior to
publication
- Minor reformat of Contributing readme
- Fix existing broken links

Co-authored-by: Hunter Gerlach <hunter@huntergerlach.com>

Co-authored-by: Hunter Gerlach <HunterGerlach@users.noreply.github.com>
Co-authored-by: Hunter Gerlach <hunter@huntergerlach.com>
2023-01-04 21:39:50 -08:00
Harrison Chase
5aefc2b7ce add handling on error (#541) 2023-01-04 20:23:55 -08:00
Harrison Chase
1631981f84 Harrison/fix and test caching (#538) 2023-01-04 18:39:06 -08:00
Harrison Chase
73f7ebd9d1 Harrison/sqlalchemy cache store (#536)
Co-authored-by: Jason Gill <jasongill@gmail.com>
2023-01-04 18:38:15 -08:00
Sam Ching
870cccb877 Add info to Contributors.md to avoid Conda/Pyenv dependency conflicts (#540)
As discussed in the
[Discord](https://discord.com/channels/1038097195422978059/1038097349660135474/1060194710485995521),
adding the following instructions to help future contributors avoid
dependency conflicts if they use Conda / Pyenv on their system.
2023-01-04 18:28:42 -08:00
Yongtae723
f48ab642be replace forbid into ignore (#539)
this is the second PR of #519.
in #519 I suggested deleting Extra.forbid.
I was very confused but I replaced Extra.forbid to Extra.ignore, which
is the default of pydantic.


Since the
[BaseLLM](4b7b8229de/langchain/llms/base.py (L20))
from which it is inherited is set in Extra.forbid, I wanted to avoid
having the Extra.forbid settings inherited by simply deleting it.
2023-01-04 18:26:50 -08:00
Yongtae723
4b7b8229de add logger (#529)
As talking #519, I made 2 PRs.

this is the first PR for adding a logger.

I am concerned about the following two points and would appreciate your
opinion.

1. Since the logger is not formatted, the statement itself is output
like a print statement, and I thought it was difficult to understand
that it was a warning, so I put WARNING! at the beginning of the warning
statement. After the logger formatting is done properly, the word
WARNING can be repeated.
2. Statement `Please confirm that {field_name} is what you intended.`
can be replaced like `If {field_name} is intended parameters, enter it
to model_kwargs`
thank you!

Yongtae
2023-01-04 10:44:24 -08:00
Rubens Mau
020e73017b Updated embeddings.ipynb (#531)
updated embeddings.ipynb
2023-01-04 10:43:52 -08:00
Ikko Eltociear Ashimine
ca9aaac36e Fix typo in key_concepts.md (#535)
therefor -> therefore
2023-01-04 10:43:02 -08:00
Harrison Chase
680f267179 bump version to 0056 (#533) 2023-01-04 09:12:56 -08:00
Harrison Chase
9e04c34e20 Add BaseCallbackHandler and CallbackManager (#478)
Co-authored-by: Ankush Gola <9536492+agola11@users.noreply.github.com>
2023-01-04 07:54:25 -08:00
Nuno Campos
6d78be0c83 Add link to gihub repo in header of new docs (#524) 2023-01-03 10:16:59 -08:00
Harrison Chase
447683de6f bump version to 0.0.55 (#521) 2023-01-03 08:37:16 -08:00
Harrison Chase
0db05b6725 Harrison/add human prefix (#520)
Co-authored-by: Andrew Huang <jhuang16888@gmail.com>
2023-01-03 08:03:50 -08:00
Harrison Chase
03f185bcd5 more robust handling for max iterations (#514)
add a `generate` method which makes one final forward pass through the
llm
2023-01-03 07:46:08 -08:00
Harrison Chase
40326c698c unify argument name (#513)
unify names in map reduce and refine chains to just be
return_intermediate_steps

also unify the return key
2023-01-03 07:45:08 -08:00
lewtun
12108104c9 Add links to Hugging Face Hub docs (#518)
This PR adds some tweaks to the Hugging Face docs, mostly with links to
the Hub + relevant docs.
2023-01-03 07:43:57 -08:00
Harrison Chase
3efec55f93 update lobby link (#517) 2023-01-02 20:25:49 -08:00
Harrison Chase
8f6c08863a bump version to 0.0.54 (#512) 2023-01-02 10:22:05 -08:00
Hunter Gerlach
7253fada0d Fix/broken getting started link (#511)
I noticed (after publication) that the getting_started link on the main
page was borked. This should fix it.

Co-authored-by: Hunter Gerlach <hunter@huntergerlach.com>
2023-01-02 10:15:17 -08:00
Harrison Chase
985496f4be Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:

- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.

There is also a full reference section, as well as extra resources
(glossary, gallery, etc)

Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 08:24:09 -08:00
Keiji Kanazawa
c5f0af9398 Minor docstring update (#507)
Update `model=` to `model_name=`.

No need to credit me for this 😄
2023-01-01 19:17:23 -08:00
Harrison Chase
d95b39d37f version 0.0.53 (#497) 2022-12-30 11:05:18 -05:00
Harrison Chase
0072686aab Harrison/new search engine (#477)
Co-authored-by: Nicolas <nicolascamara29@gmail.com>
2022-12-30 08:06:57 -05:00
Harrison Chase
3e41ab7bff check keys before using (#475) 2022-12-29 22:16:35 -05:00
Shuchang Zhou
12aa43469f Update prompt_management.ipynb (#484) 2022-12-29 21:34:32 -05:00
Harrison Chase
0f1df0dc2c bump to version 0.0.52 (#470) 2022-12-29 09:23:19 -05:00
Parth Chadha
e88e66f982 Pass verbose argument to LLMChains when using *DocumentsChain (#458)
When using chains such as Summarization chain (`load_summarize_chain`),
the verbose flag wasn't propagated to the `LLMChain`.
2022-12-29 08:22:31 -05:00
Harrison Chase
d0f194de73 add logic for agent stopping (#420) 2022-12-29 08:21:11 -05:00
Harrison Chase
c65efd2986 fix llm math prompt (#466)
basically, it didnt realize that the question was over after the input
and would some times hallucinate more input
2022-12-29 08:20:55 -05:00
Harrison Chase
95157d0aad Add schema property to sql database utility class (#448) (#462)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>

Signed-off-by: Diwank Singh Tomer <diwank.singh@gmail.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: Diwank Singh Tomer <diwank.singh@gmail.com>
2022-12-28 17:37:53 -05:00
Nuno Campos
451665cfdf Add watch mode for test runner (#453) 2022-12-28 17:13:08 -05:00
Harrison Chase
2b84e5cda3 Harrison/fix memory and serp (#457)
Co-authored-by: Bruno Bornsztein <bruno.bornsztein@gmail.com>
2022-12-28 11:07:57 -05:00
Harrison Chase
d98607408b Harrison/v0050 (#452) 2022-12-28 09:22:43 -05:00
Harrison Chase
55007e71be add output key for memory (#443)
this allows chains that return multiple values to use memory
2022-12-28 09:04:15 -05:00
Harrison Chase
5208bb8c36 make tools editable (#445)
use dataclass instead of namedtuple, which makes it editable

add example in notebook
2022-12-28 09:03:16 -05:00
Harrison Chase
5cc6bf1a9c fix regex parser (#446) 2022-12-28 09:02:40 -05:00
Harrison Chase
90e8ccc898 Harrison/update links (#450)
Co-authored-by: Sam Ching <samuelcwl@gmail.com>
Co-authored-by: Ikko Ashimine <eltociear@gmail.com>
2022-12-28 09:02:07 -05:00
Ikko Ashimine
f3c3288761 chore: fix typo in prompt.py (#447)
seperator -> separator
2022-12-28 00:19:43 -05:00
Harrison Chase
9ec01dfc16 regex output parser (#435) 2022-12-27 20:28:08 -05:00
Harrison Chase
c994ce6b7f Harrison/serp api imp (#444)
improve serp api

Co-authored-by: Bruno Bornsztein <bruno.bornsztein@gmail.com>
2022-12-27 20:27:18 -05:00
Harrison Chase
ffe35c396c unify return types across map-reduce and refine (#442) 2022-12-27 19:53:45 -05:00
Harrison Chase
0c5d3fd894 version 0.0.49 (#436) 2022-12-27 09:17:01 -05:00
Harrison Chase
f8b605293f Harrison/improve memory (#432)
add AI prefix

add new type of memory

Co-authored-by: Jason <chisanch@usc.edu>
2022-12-27 08:23:51 -05:00
Harrison Chase
150b67de10 Harrison/weaviate improvements (#433)
Co-authored-by: Connor Shorten <connorshorten300@gmail.com>
2022-12-27 08:23:13 -05:00
Harrison Chase
b7566b5ec3 Harrison/return intermediate steps (#428) 2022-12-27 08:22:48 -05:00
Harrison Chase
7fc4b4b3e1 Harrison/ver 0048 (#429) 2022-12-26 11:36:49 -05:00
Harrison Chase
b50a56830d Harrison/evaluation notebook (#426) 2022-12-26 09:16:37 -05:00
Harrison Chase
97f4000d3a fix react docstore (#427) 2022-12-26 08:46:38 -05:00
Ikko Ashimine
9ae1d75318 Update integrations.md (#424)
HuggingFace -> Hugging Face
2022-12-25 23:03:05 -05:00
Harrison Chase
f9562d7f1c version 0047 (#423) 2022-12-25 11:17:41 -05:00
Harrison Chase
ee3b8e89b3 better parsing of agent output (#418) 2022-12-25 09:53:36 -05:00
Harrison Chase
0d7aa1ee99 Harrison/docs to index (#419)
Add method for going directly from documents to VectorStores

Update notebook to showcase this functionality
2022-12-25 09:53:07 -05:00
Harrison Chase
48ae981d69 Harrison/multi input tools (#421)
add documentation on how to use tools that require multiple inputs
2022-12-25 09:52:48 -05:00
Andrew Wang
4416dc9d5d Update prompt_serialization.ipynb (#417)
Fix typo.
Originally "support methods are..."
Now "support methods *that* are.."
2022-12-24 17:53:11 -05:00
Harrison Chase
22dd743eba Harrison/version 0046 (#416) 2022-12-24 10:46:23 -05:00
Harrison Chase
01d06c1f9f check memory variables (#411)
can have multiple input keys, if some come from memory
2022-12-24 08:36:06 -05:00
Harrison Chase
20959d8c36 check memory variables (#411)
can have multiple input keys, if some come from memory
2022-12-24 08:35:46 -05:00
altryne
f990395211 Readme typos (#409)
I was honored by the twitter mention, so used PyCharm to try and... help
docs even a little bit.
Mostly typo-s and correct spellings. 

PyCharm really complains about "really good" being used all the time and
recommended alternative wordings haha
2022-12-23 13:13:07 -05:00
Harrison Chase
2ad285aab2 bump version to 0045 (#408) 2022-12-23 11:19:30 -05:00
Shreya Rajpal
f40b3ce347 Updated VectorDBQA docs to updated argument name (#405) 2022-12-23 10:52:20 -05:00
Dheeraj Agrawal
ea3da9a469 Fix documentation error langchain explanation of combine_docs.md (#404)
This PR is regarding the issue here -
https://github.com/hwchase17/langchain/issues/403
2022-12-23 08:54:26 -05:00
Harrison Chase
77e1743341 update example (#402) 2022-12-22 17:09:47 -05:00
Keiji Kanazawa
5528265142 Add macOS .DS_Store to .gitignore (#401)
These are macOS specific files left around in directories (to save
user's display settings)
2022-12-22 13:05:57 -05:00
Samantha Whitmore
6bc8ae63ef Add Redis cache implementation (#397)
I'm using a hash function for the key just to make sure its length
doesn't get out of hand, otherwise the implementation is quite similar.
2022-12-22 12:31:27 -05:00
Harrison Chase
ff03242fa0 Harrison/ver 044 (#400) 2022-12-22 11:20:18 -05:00
mrbean
136f759492 Mrbean/support timeout (#398)
Add support for passing in a request timeout to the API
2022-12-21 23:39:07 -05:00
Harrison Chase
6b60c509ac (WIP) add HyDE (#393)
Co-authored-by: cameronccohen <cameron.c.cohen@gmail.com>
Co-authored-by: Cameron Cohen <cameron.cohen@quantco.com>
2022-12-21 20:46:41 -05:00
Keiji Kanazawa
543db9c2df Add Azure OpenAI LLM (#395)
Hi!  This PR adds support for the Azure OpenAI service to LangChain.

I've tried to follow the contributing guidelines.

Co-authored-by: Keiji Kanazawa <{ID}+{username}@users.noreply.github.com>
2022-12-21 20:45:37 -05:00
Harrison Chase
bb76440bfa bump version to 0.0.43 (#394) 2022-12-20 22:28:29 -05:00
Harrison Chase
c104d507bf Harrison/improve data augmented generation docs (#390)
Co-authored-by: cameronccohen <cameron.c.cohen@gmail.com>
Co-authored-by: Cameron Cohen <cameron.cohen@quantco.com>
2022-12-20 22:24:08 -05:00
Harrison Chase
ad4414b59f update docs (#389) 2022-12-20 09:32:10 -05:00
Harrison Chase
c8b4b54479 bump version to 0.0.42 (#388) 2022-12-19 20:59:34 -05:00
Harrison Chase
47ba34c83a split up and improve agent docs (#387) 2022-12-19 20:32:45 -05:00
Abi Raja
467aa0cee0 Fix typo in docs (#386) 2022-12-19 17:39:44 -05:00
Harrison Chase
6be5747466 RFC: add cache override to LLM class (#379) 2022-12-19 17:36:14 -05:00
Harrison Chase
46c428234f MMR example selector (#377)
implement max marginal relevance example selector
2022-12-19 17:09:27 -05:00
Harrison Chase
ffed5e0056 Harrison/jinja formatter (#385)
Co-authored-by: Benjamin <BenderV@users.noreply.github.com>
2022-12-19 16:40:39 -05:00
mrbean
fc66a32c6f fix docstring (#383)
![Screenshot 2022-12-19 at 11 06 48
AM](https://user-images.githubusercontent.com/43734688/208468970-5cb9bafb-f535-486e-b41f-312a2f9ffffb.png)
2022-12-19 11:10:17 -05:00
Harrison Chase
a01d3e6955 fix agent memory docs (#382) 2022-12-19 09:15:32 -05:00
Harrison Chase
766b84a9d9 upgrade version to 0041 (#378) 2022-12-18 22:33:03 -05:00
Harrison Chase
cf98f219f9 Harrison/tools exp (#372) 2022-12-18 21:51:23 -05:00
Harrison Chase
e7b625fe03 fix text splitter (#375) 2022-12-18 20:21:43 -05:00
Harrison Chase
3474f39e21 Harrison/improve cache (#368)
make it so everything goes through generate, which removes the need for
two types of caches
2022-12-18 16:22:42 -05:00
Ankush Gola
8d0869c6d3 change run to use args and kwargs (#367)
Before, `run` was not able to be called with multiple arguments. This
expands the functionality.
2022-12-18 15:54:56 -05:00
Harrison Chase
a7084ad6e4 Harrison/version 0040 (#366) 2022-12-17 07:53:22 -08:00
1028 changed files with 124279 additions and 11414 deletions

View File

@@ -1,2 +0,0 @@
[run]
omit = tests/*

6
.dockerignore Normal file
View File

@@ -0,0 +1,6 @@
.venv
.github
.git
.mypy_cache
.pytest_cache
Dockerfile

View File

@@ -1,5 +1,6 @@
[flake8]
exclude =
venv
.venv
__pycache__
notebooks

View File

@@ -46,8 +46,8 @@ good code into the codebase.
### 🏭Release process
As of now, LangChain has an ad hoc release process: releases are cut with high frequency via by
a developer and published to [PyPI](https://pypi.org/project/ruff/).
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
a developer and published to [PyPI](https://pypi.org/project/langchain/).
LangChain follows the [semver](https://semver.org/) versioning standard. However, as pre-1.0 software,
even patch releases may contain [non-backwards-compatible changes](https://semver.org/#spec-item-4).
@@ -55,12 +55,16 @@ even patch releases may contain [non-backwards-compatible changes](https://semve
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or in another manner.
## 🤖Developer Setup
### 🚀Quick Start
## 🚀Quick Start
This project uses [Poetry](https://python-poetry.org/) as a dependency manager. Check out Poetry's [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
❗Note: If you use `Conda` or `Pyenv` as your environment / package manager, avoid dependency conflicts by doing the following first:
1. *Before installing Poetry*, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
2. Install Poetry (see above)
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
4. Continue with the following steps.
To install requirements:
```bash
@@ -69,11 +73,15 @@ poetry install -E all
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage. Note the `-E all` flag will install all optional dependencies necessary for integration testing.
❗Note: If you're running Poetry 1.4.1 and receive a `WheelFileValidationError` for `debugpy` during installation, you can try either downgrading to Poetry 1.4.0 or disabling "modern installation" (`poetry config installer.modern-installation false`) and re-install requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
Now, you should be able to run the common tasks in the following section.
### ✅Common Tasks
## ✅Common Tasks
#### Code Formatting
Type `make` for a list of common tasks.
### Code Formatting
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
@@ -83,7 +91,7 @@ To run formatting for this project:
make format
```
#### Linting
### Linting
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
@@ -95,7 +103,7 @@ make lint
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
#### Coverage
### Coverage
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
@@ -105,14 +113,20 @@ To get a report of current coverage, run the following:
make coverage
```
#### Testing
### Testing
Unit tests cover modular logic that does not require calls to outside APIs.
To run unit tests:
```bash
make tests
make test
```
To run unit tests in Docker:
```bash
make docker_tests
```
If you add new logic, please add a unit test.
@@ -127,7 +141,7 @@ make integration_tests
If you add support for a new external API, please add a new integration test.
#### Adding a Jupyter Notebook
### Adding a Jupyter Notebook
If you are adding a Jupyter notebook example, you'll want to install the optional `dev` dependencies.
@@ -145,10 +159,32 @@ poetry run jupyter notebook
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
#### Contribute Documentation
## Documentation
### Contribute Documentation
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Build Documentation Locally
Before building the documentation, it is always a good idea to clean the build directory:
```bash
make docs_clean
```
Next, you can run the linkchecker to make sure all links are valid:
```bash
make docs_linkcheck
```
Finally, you can build the documentation as outlined below:
```bash
make docs_build
```

36
.github/workflows/linkcheck.yml vendored Normal file
View File

@@ -0,0 +1,36 @@
name: linkcheck
on:
push:
branches: [master]
pull_request:
env:
POETRY_VERSION: "1.3.1"
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.11"
steps:
- uses: actions/checkout@v3
- name: Install poetry
run: |
pipx install poetry==$POETRY_VERSION
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: poetry
- name: Install dependencies
run: |
poetry install --with docs
- name: Build the docs
run: |
make docs_build
- name: Analyzing the docs with linkcheck
run: |
make docs_linkcheck

49
.github/workflows/release.yml vendored Normal file
View File

@@ -0,0 +1,49 @@
name: release
on:
pull_request:
types:
- closed
branches:
- master
paths:
- 'pyproject.toml'
env:
POETRY_VERSION: "1.3.1"
jobs:
if_release:
if: |
${{ github.event.pull_request.merged == true }}
&& ${{ contains(github.event.pull_request.labels.*.name, 'release') }}
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install poetry
run: pipx install poetry==$POETRY_VERSION
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
cache: "poetry"
- name: Build project for distribution
run: poetry build
- name: Check Version
id: check-version
run: |
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- name: Create Release
uses: ncipollo/release-action@v1
with:
artifacts: "dist/*"
token: ${{ secrets.GITHUB_TOKEN }}
draft: false
generateReleaseNotes: true
tag: v${{ steps.check-version.outputs.version }}
commit: master
- name: Publish to PyPI
env:
POETRY_PYPI_TOKEN_PYPI: ${{ secrets.PYPI_API_TOKEN }}
run: |
poetry publish

View File

@@ -31,4 +31,4 @@ jobs:
run: poetry install
- name: Run unit tests
run: |
make tests
make test

12
.gitignore vendored
View File

@@ -106,7 +106,9 @@ celerybeat.pid
# Environments
.env
.envrc
.venv
.venvs
env/
venv/
ENV/
@@ -130,3 +132,13 @@ dmypy.json
# Pyre type checker
.pyre/
# macOS display setting files
.DS_Store
# Wandb directory
wandb/
# asdf tool versions
.tool-versions
/.ruff_cache/

8
CITATION.cff Normal file
View File

@@ -0,0 +1,8 @@
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Chase"
given-names: "Harrison"
title: "LangChain"
date-released: 2022-10-17
url: "https://github.com/hwchase17/langchain"

44
Dockerfile Normal file
View File

@@ -0,0 +1,44 @@
# This is a Dockerfile for running unit tests
# Use the Python base image
FROM python:3.11.2-bullseye AS builder
# Define the version of Poetry to install (default is 1.4.2)
ARG POETRY_VERSION=1.4.2
# Define the directory to install Poetry to (default is /opt/poetry)
ARG POETRY_HOME=/opt/poetry
# Create a Python virtual environment for Poetry and install it
RUN python3 -m venv ${POETRY_HOME} && \
$POETRY_HOME/bin/pip install --upgrade pip && \
$POETRY_HOME/bin/pip install poetry==${POETRY_VERSION}
# Test if Poetry is installed in the expected path
RUN echo "Poetry version:" && $POETRY_HOME/bin/poetry --version
# Set the working directory for the app
WORKDIR /app
# Use a multi-stage build to install dependencies
FROM builder AS dependencies
# Copy only the dependency files for installation
COPY pyproject.toml poetry.lock poetry.toml ./
# Install the Poetry dependencies (this layer will be cached as long as the dependencies don't change)
RUN $POETRY_HOME/bin/poetry install --no-interaction --no-ansi --with test
# Use a multi-stage build to run tests
FROM dependencies AS tests
# Copy the rest of the app source code (this layer will be invalidated and rebuilt whenever the source code changes)
COPY . .
RUN /opt/poetry/bin/poetry install --no-interaction --no-ansi --with test
# Set the entrypoint to run tests using Poetry
ENTRYPOINT ["/opt/poetry/bin/poetry", "run", "pytest"]
# Set the default command to run all unit tests
CMD ["tests/unit_tests"]

View File

@@ -1,4 +1,6 @@
.PHONY: format lint tests integration_tests
.PHONY: all clean format lint test tests test_watch integration_tests docker_tests help
all: help
coverage:
poetry run pytest --cov \
@@ -6,18 +8,55 @@ coverage:
--cov-report xml \
--cov-report term-missing:skip-covered
clean: docs_clean
docs_build:
cd docs && poetry run make html
docs_clean:
cd docs && poetry run make clean
docs_linkcheck:
poetry run linkchecker docs/_build/html/index.html
format:
poetry run black .
poetry run isort .
poetry run ruff --select I --fix .
lint:
poetry run mypy .
poetry run black . --check
poetry run isort . --check
poetry run flake8 .
PYTHON_FILES=.
lint: PYTHON_FILES=.
lint_diff: PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$')
lint lint_diff:
poetry run mypy $(PYTHON_FILES)
poetry run black $(PYTHON_FILES) --check
poetry run ruff .
test:
poetry run pytest tests/unit_tests
tests:
poetry run pytest tests/unit_tests
test_watch:
poetry run ptw --now . -- tests/unit_tests
integration_tests:
poetry run pytest tests/integration_tests
docker_tests:
docker build -t my-langchain-image:test .
docker run --rm my-langchain-image:test
help:
@echo '----'
@echo 'coverage - run unit tests and generate coverage report'
@echo 'docs_build - build the documentation'
@echo 'docs_clean - clean the documentation build artifacts'
@echo 'docs_linkcheck - run linkchecker on the documentation'
@echo 'format - run code formatters'
@echo 'lint - run linters'
@echo 'test - run unit tests'
@echo 'test_watch - run unit tests in watch mode'
@echo 'integration_tests - run integration tests'
@echo 'docker_tests - run unit tests in docker'

View File

@@ -2,7 +2,10 @@
⚡ Building applications with LLMs through composability ⚡
[![lint](https://github.com/hwchase17/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [![test](https://github.com/hwchase17/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai) [![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
[![lint](https://github.com/hwchase17/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/lint.yml) [![test](https://github.com/hwchase17/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/test.yml) [![linkcheck](https://github.com/hwchase17/langchain/actions/workflows/linkcheck.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/linkcheck.yml) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai) [![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
**Production Support:** As you move your LangChains into production, we'd love to offer more comprehensive support.
Please fill out [this form](https://forms.gle/57d8AmXBYp8PP8tZA) and we'll set up a dedicated support Slack channel.
## Quick Install
@@ -15,7 +18,22 @@ developers to build applications that they previously could not.
But using these LLMs in isolation is often not enough to
create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
This library is aimed at assisting in the development of those types of applications.
This library is aimed at assisting in the development of those types of applications. Common examples of these types of applications include:
**❓ Question Answering over specific documents**
- [Documentation](https://langchain.readthedocs.io/en/latest/use_cases/question_answering.html)
- End-to-end Example: [Question Answering over Notion Database](https://github.com/hwchase17/notion-qa)
**💬 Chatbots**
- [Documentation](https://langchain.readthedocs.io/en/latest/use_cases/chatbots.html)
- End-to-end Example: [Chat-LangChain](https://github.com/hwchase17/chat-langchain)
**🤖 Agents**
- [Documentation](https://langchain.readthedocs.io/en/latest/modules/agents.html)
- End-to-end Example: [GPT+WolframAlpha](https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain)
## 📖 Documentation
@@ -24,11 +42,11 @@ Please see [here](https://langchain.readthedocs.io/en/latest/?) for full documen
- Getting started (installation, setting up the environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs)
Resources (high-level explanation of core concepts)
- Resources (high-level explanation of core concepts)
## 🚀 What can this help with?
There are four main areas that LangChain is designed to help with.
There are six main areas that LangChain is designed to help with.
These are, in increasing order of complexity:
**📃 LLMs and Prompts:**
@@ -39,6 +57,10 @@ This includes prompt management, prompt optimization, generic interface for all
Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
**📚 Data Augmented Generation:**
Data Augmented Generation involves specific types of chains that first interact with an external datasource to fetch data to use in the generation step. Examples of this include summarization of long pieces of text and question/answering over specific data sources.
**🤖 Agents:**
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.
@@ -47,11 +69,14 @@ Agents involve an LLM making decisions about which Actions to take, taking that
Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
For more information on these concepts, please see our [full documentation](https://langchain.readthedocs.io/en/latest/?).
**🧐 Evaluation:**
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
For more information on these concepts, please see our [full documentation](https://langchain.readthedocs.io/en/latest/).
## 💁 Contributing
As an open source project in a rapidly developing field, we are extremely open
to contributions, whether it be in the form of a new feature, improved infra, or better documentation.
As an open source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infra, or better documentation.
For detailed information on how to contribute, see [here](CONTRIBUTING.md).
For detailed information on how to contribute, see [here](.github/CONTRIBUTING.md).

View File

@@ -3,7 +3,7 @@
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SPHINXAUTOBUILD ?= sphinx-autobuild
SOURCEDIR = .

BIN
docs/_static/ApifyActors.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 559 KiB

BIN
docs/_static/HeliconeDashboard.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 235 KiB

BIN
docs/_static/HeliconeKeys.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

13
docs/_static/css/custom.css vendored Normal file
View File

@@ -0,0 +1,13 @@
pre {
white-space: break-spaces;
}
@media (min-width: 1200px) {
.container,
.container-lg,
.container-md,
.container-sm,
.container-xl {
max-width: 2560px !important;
}
}

View File

@@ -22,13 +22,16 @@ with open("../pyproject.toml") as f:
# -- Project information -----------------------------------------------------
project = "LangChain"
copyright = "2022, Harrison Chase"
project = "🦜🔗 LangChain"
copyright = "2023, Harrison Chase"
author = "Harrison Chase"
version = data["tool"]["poetry"]["version"]
release = version
html_title = project + " " + version
html_last_updated_fmt = "%b %d, %Y"
# -- General configuration ---------------------------------------------------
@@ -42,11 +45,12 @@ extensions = [
"sphinx.ext.napoleon",
"sphinx.ext.viewcode",
"sphinxcontrib.autodoc_pydantic",
"myst_parser",
"nbsphinx",
"myst_nb",
"sphinx_copybutton",
"sphinx_panels",
"IPython.sphinxext.ipython_console_highlighting",
]
source_suffix = [".ipynb", ".html", ".md", ".rst"]
autodoc_pydantic_model_show_json = False
autodoc_pydantic_field_list_validators = False
@@ -73,8 +77,13 @@ exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
# html_theme = "sphinx_typlog_theme"
html_theme = "sphinx_book_theme"
html_theme_options = {
"path_to_docs": "docs",
"repository_url": "https://github.com/hwchase17/langchain",
"use_repository_button": True,
}
html_context = {
"display_github": True, # Integrate GitHub
@@ -87,4 +96,12 @@ html_context = {
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path: list = []
html_static_path = ["_static"]
# These paths are either relative to html_static_path
# or fully qualified paths (eg. https://...)
html_css_files = [
"css/custom.css",
]
nb_execution_mode = "off"
myst_enable_extensions = ["colon_fence"]

42
docs/deployments.md Normal file
View File

@@ -0,0 +1,42 @@
# Deployments
So you've made a really cool chain - now what? How do you deploy it and make it easily sharable with the world?
This section covers several options for that.
Note that these are meant as quick deployment options for prototypes and demos, and not for production systems.
If you are looking for help with deployment of a production system, please contact us directly.
What follows is a list of template GitHub repositories aimed that are intended to be
very easy to fork and modify to use your chain.
This is far from an exhaustive list of options, and we are EXTREMELY open to contributions here.
## [Streamlit](https://github.com/hwchase17/langchain-streamlit-template)
This repo serves as a template for how to deploy a LangChain with Streamlit.
It implements a chatbot interface.
It also contains instructions for how to deploy this app on the Streamlit platform.
## [Gradio (on Hugging Face)](https://github.com/hwchase17/langchain-gradio-template)
This repo serves as a template for how deploy a LangChain with Gradio.
It implements a chatbot interface, with a "Bring-Your-Own-Token" approach (nice for not wracking up big bills).
It also contains instructions for how to deploy this app on the Hugging Face platform.
This is heavily influenced by James Weaver's [excellent examples](https://huggingface.co/JavaFXpert).
## [Beam](https://github.com/slai-labs/get-beam/tree/main/examples/langchain-question-answering)
This repo serves as a template for how deploy a LangChain with [Beam](https://beam.cloud).
It implements a Question Answering app and contains instructions for deploying the app as a serverless REST API.
## [Vercel](https://github.com/homanp/vercel-langchain)
A minimal example on how to run LangChain on Vercel using Flask.
## [SteamShip](https://github.com/steamship-core/steamship-langchain/)
This repository contains LangChain adapters for Steamship, enabling LangChain developers to rapidly deploy their apps on Steamship.
This includes: production ready endpoints, horizontal scaling across dependencies, persistant storage of app state, multi-tenancy support, etc.
## [Langchain-serve](https://github.com/jina-ai/langchain-serve)
This repository allows users to serve local chains and agents as RESTful, gRPC, or Websocket APIs thanks to [Jina](https://docs.jina.ai/). Deploy your chains & agents with ease and enjoy independent scaling, serverless and autoscaling APIs, as well as a Streamlit playground on Jina AI Cloud.

10
docs/ecosystem.rst Normal file
View File

@@ -0,0 +1,10 @@
LangChain Ecosystem
===================
Guides for how other companies/products can be used with LangChain
.. toctree::
:maxdepth: 1
:glob:
ecosystem/*

16
docs/ecosystem/ai21.md Normal file
View File

@@ -0,0 +1,16 @@
# AI21 Labs
This page covers how to use the AI21 ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific AI21 wrappers.
## Installation and Setup
- Get an AI21 api key and set it as an environment variable (`AI21_API_KEY`)
## Wrappers
### LLM
There exists an AI21 LLM wrapper, which you can access with
```python
from langchain.llms import AI21
```

View File

@@ -0,0 +1,293 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Aim\n",
"\n",
"Aim makes it super easy to visualize and debug LangChain executions. Aim tracks inputs and outputs of LLMs and tools, as well as actions of agents. \n",
"\n",
"With Aim, you can easily debug and examine an individual execution:\n",
"\n",
"![](https://user-images.githubusercontent.com/13848158/227784778-06b806c7-74a1-4d15-ab85-9ece09b458aa.png)\n",
"\n",
"Additionally, you have the option to compare multiple executions side by side:\n",
"\n",
"![](https://user-images.githubusercontent.com/13848158/227784994-699b24b7-e69b-48f9-9ffa-e6a6142fd719.png)\n",
"\n",
"Aim is fully open source, [learn more](https://github.com/aimhubio/aim) about Aim on GitHub.\n",
"\n",
"Let's move forward and see how to enable and configure Aim callback."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Tracking LangChain Executions with Aim</h3>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this notebook we will explore three usage scenarios. To start off, we will install the necessary packages and import certain modules. Subsequently, we will configure two environment variables that can be established either within the Python script or through the terminal."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "mf88kuCJhbVu"
},
"outputs": [],
"source": [
"!pip install aim\n",
"!pip install langchain\n",
"!pip install openai\n",
"!pip install google-search-results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "g4eTuajwfl6L"
},
"outputs": [],
"source": [
"import os\n",
"from datetime import datetime\n",
"\n",
"from langchain.llms import OpenAI\n",
"from langchain.callbacks.base import CallbackManager\n",
"from langchain.callbacks import AimCallbackHandler, StdOutCallbackHandler"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our examples use a GPT model as the LLM, and OpenAI offers an API for this purpose. You can obtain the key from the following link: https://platform.openai.com/account/api-keys .\n",
"\n",
"We will use the SerpApi to retrieve search results from Google. To acquire the SerpApi key, please go to https://serpapi.com/manage-api-key ."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "T1bSmKd6V2If"
},
"outputs": [],
"source": [
"os.environ[\"OPENAI_API_KEY\"] = \"...\"\n",
"os.environ[\"SERPAPI_API_KEY\"] = \"...\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QenUYuBZjIzc"
},
"source": [
"The event methods of `AimCallbackHandler` accept the LangChain module or agent as input and log at least the prompts and generated results, as well as the serialized version of the LangChain module, to the designated Aim run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "KAz8weWuUeXF"
},
"outputs": [],
"source": [
"session_group = datetime.now().strftime(\"%m.%d.%Y_%H.%M.%S\")\n",
"aim_callback = AimCallbackHandler(\n",
" repo=\".\",\n",
" experiment_name=\"scenario 1: OpenAI LLM\",\n",
")\n",
"\n",
"manager = CallbackManager([StdOutCallbackHandler(), aim_callback])\n",
"llm = OpenAI(temperature=0, callback_manager=manager, verbose=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "b8WfByB4fl6N"
},
"source": [
"The `flush_tracker` function is used to record LangChain assets on Aim. By default, the session is reset rather than being terminated outright."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Scenario 1</h3> In the first scenario, we will use OpenAI LLM."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "o_VmneyIUyx8"
},
"outputs": [],
"source": [
"# scenario 1 - LLM\n",
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n",
"aim_callback.flush_tracker(\n",
" langchain_asset=llm,\n",
" experiment_name=\"scenario 2: Chain with multiple SubChains on multiple generations\",\n",
")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Scenario 2</h3> Scenario two involves chaining with multiple SubChains across multiple generations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "trxslyb1U28Y"
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "uauQk10SUzF6"
},
"outputs": [],
"source": [
"# scenario 2 - Chain\n",
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
"Title: {title}\n",
"Playwright: This is a synopsis for the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callback_manager=manager)\n",
"\n",
"test_prompts = [\n",
" {\"title\": \"documentary about good video games that push the boundary of game design\"},\n",
" {\"title\": \"the phenomenon behind the remarkable speed of cheetahs\"},\n",
" {\"title\": \"the best in class mlops tooling\"},\n",
"]\n",
"synopsis_chain.apply(test_prompts)\n",
"aim_callback.flush_tracker(\n",
" langchain_asset=synopsis_chain, experiment_name=\"scenario 3: Agent with Tools\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Scenario 3</h3> The third scenario involves an agent with tools."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_jN73xcPVEpI"
},
"outputs": [],
"source": [
"from langchain.agents import initialize_agent, load_tools\n",
"from langchain.agents import AgentType"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Gpq4rk6VT9cu",
"outputId": "68ae261e-d0a2-4229-83c4-762562263b66"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.\n",
"Action: Search\n",
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mLeonardo DiCaprio seemed to prove a long-held theory about his love life right after splitting from girlfriend Camila Morrone just months ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find out Camila Morrone's age\n",
"Action: Search\n",
"Action Input: \"Camila Morrone age\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m25 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 25 raised to the 0.43 power\n",
"Action: Calculator\n",
"Action Input: 25^0.43\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mAnswer: 3.991298452658078\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Camila Morrone is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is 3.991298452658078.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
}
],
"source": [
"# scenario 3 - Agent with Tools\n",
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n",
"agent = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
" callback_manager=manager,\n",
" verbose=True,\n",
")\n",
"agent.run(\n",
" \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
")\n",
"aim_callback.flush_tracker(langchain_asset=agent, reset=False, finish=True)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

46
docs/ecosystem/apify.md Normal file
View File

@@ -0,0 +1,46 @@
# Apify
This page covers how to use [Apify](https://apify.com) within LangChain.
## Overview
Apify is a cloud platform for web scraping and data extraction,
which provides an [ecosystem](https://apify.com/store) of more than a thousand
ready-made apps called *Actors* for various scraping, crawling, and extraction use cases.
[![Apify Actors](../_static/ApifyActors.png)](https://apify.com/store)
This integration enables you run Actors on the Apify platform and load their results into LangChain to feed your vector
indexes with documents and data from the web, e.g. to generate answers from websites with documentation,
blogs, or knowledge bases.
## Installation and Setup
- Install the Apify API client for Python with `pip install apify-client`
- Get your [Apify API token](https://console.apify.com/account/integrations) and either set it as
an environment variable (`APIFY_API_TOKEN`) or pass it to the `ApifyWrapper` as `apify_api_token` in the constructor.
## Wrappers
### Utility
You can use the `ApifyWrapper` to run Actors on the Apify platform.
```python
from langchain.utilities import ApifyWrapper
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/apify.ipynb).
### Loader
You can also use our `ApifyDatasetLoader` to get data from Apify dataset.
```python
from langchain.document_loaders import ApifyDatasetLoader
```
For a more detailed walkthrough of this loader, see [this notebook](../modules/indexes/document_loaders/examples/apify_dataset.ipynb).

27
docs/ecosystem/atlas.md Normal file
View File

@@ -0,0 +1,27 @@
# AtlasDB
This page covers how to use Nomic's Atlas ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Atlas wrappers.
## Installation and Setup
- Install the Python package with `pip install nomic`
- Nomic is also included in langchains poetry extras `poetry install -E all`
## Wrappers
### VectorStore
There exists a wrapper around the Atlas neural database, allowing you to use it as a vectorstore.
This vectorstore also gives you full access to the underlying AtlasProject object, which will allow you to use the full range of Atlas map interactions, such as bulk tagging and automatic topic modeling.
Please see [the Atlas docs](https://docs.nomic.ai/atlas_api.html) for more detailed information.
To import this vectorstore:
```python
from langchain.vectorstores import AtlasDB
```
For a more detailed walkthrough of the AtlasDB wrapper, see [this notebook](../modules/indexes/vectorstores/examples/atlas.ipynb)

View File

@@ -0,0 +1,79 @@
# Banana
This page covers how to use the Banana ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Banana wrappers.
## Installation and Setup
- Install with `pip install banana-dev`
- Get an Banana api key and set it as an environment variable (`BANANA_API_KEY`)
## Define your Banana Template
If you want to use an available language model template you can find one [here](https://app.banana.dev/templates/conceptofmind/serverless-template-palmyra-base).
This template uses the Palmyra-Base model by [Writer](https://writer.com/product/api/).
You can check out an example Banana repository [here](https://github.com/conceptofmind/serverless-template-palmyra-base).
## Build the Banana app
Banana Apps must include the "output" key in the return json.
There is a rigid response structure.
```python
# Return the results as a dictionary
result = {'output': result}
```
An example inference function would be:
```python
def inference(model_inputs:dict) -> dict:
global model
global tokenizer
# Parse out your arguments
prompt = model_inputs.get('prompt', None)
if prompt == None:
return {'message': "No prompt provided"}
# Run the model
input_ids = tokenizer.encode(prompt, return_tensors='pt').cuda()
output = model.generate(
input_ids,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1,
temperature=0.9,
early_stopping=True,
no_repeat_ngram_size=3,
num_beams=5,
length_penalty=1.5,
repetition_penalty=1.5,
bad_words_ids=[[tokenizer.encode(' ', add_prefix_space=True)[0]]]
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
# Return the results as a dictionary
result = {'output': result}
return result
```
You can find a full example of a Banana app [here](https://github.com/conceptofmind/serverless-template-palmyra-base/blob/main/app.py).
## Wrappers
### LLM
There exists an Banana LLM wrapper, which you can access with
```python
from langchain.llms import Banana
```
You need to provide a model key located in the dashboard:
```python
llm = Banana(model_key="YOUR_MODEL_KEY")
```

View File

@@ -0,0 +1,17 @@
# CerebriumAI
This page covers how to use the CerebriumAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific CerebriumAI wrappers.
## Installation and Setup
- Install with `pip install cerebrium`
- Get an CerebriumAI api key and set it as an environment variable (`CEREBRIUMAI_API_KEY`)
## Wrappers
### LLM
There exists an CerebriumAI LLM wrapper, which you can access with
```python
from langchain.llms import CerebriumAI
```

20
docs/ecosystem/chroma.md Normal file
View File

@@ -0,0 +1,20 @@
# Chroma
This page covers how to use the Chroma ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.
## Installation and Setup
- Install the Python package with `pip install chromadb`
## Wrappers
### VectorStore
There exists a wrapper around Chroma vector databases, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Chroma
```
For a more detailed walkthrough of the Chroma wrapper, see [this notebook](../modules/indexes/vectorstores/getting_started.ipynb)

View File

@@ -0,0 +1,589 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# ClearML Integration\n",
"\n",
"In order to properly keep track of your langchain experiments and their results, you can enable the ClearML integration. ClearML is an experiment manager that neatly tracks and organizes all your experiment runs.\n",
"\n",
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/ecosystem/clearml_tracking.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting API Credentials\n",
"\n",
"We'll be using quite some APIs in this notebook, here is a list and where to get them:\n",
"\n",
"- ClearML: https://app.clear.ml/settings/workspace-configuration\n",
"- OpenAI: https://platform.openai.com/account/api-keys\n",
"- SerpAPI (google search): https://serpapi.com/dashboard"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.environ[\"CLEARML_API_ACCESS_KEY\"] = \"\"\n",
"os.environ[\"CLEARML_API_SECRET_KEY\"] = \"\"\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
"os.environ[\"SERPAPI_API_KEY\"] = \"\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setting Up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install clearml\n",
"!pip install pandas\n",
"!pip install textstat\n",
"!pip install spacy\n",
"!python -m spacy download en_core_web_sm"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The clearml callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/allegroai/clearml/issues with the tag `langchain`.\n"
]
}
],
"source": [
"from datetime import datetime\n",
"from langchain.callbacks import ClearMLCallbackHandler, StdOutCallbackHandler\n",
"from langchain.callbacks.base import CallbackManager\n",
"from langchain.llms import OpenAI\n",
"\n",
"# Setup and use the ClearML Callback\n",
"clearml_callback = ClearMLCallbackHandler(\n",
" task_type=\"inference\",\n",
" project_name=\"langchain_callback_demo\",\n",
" task_name=\"llm\",\n",
" tags=[\"test\"],\n",
" # Change the following parameters based on the amount of detail you want tracked\n",
" visualize=True,\n",
" complexity_metrics=True,\n",
" stream_logs=True\n",
")\n",
"manager = CallbackManager([StdOutCallbackHandler(), clearml_callback])\n",
"# Get the OpenAI model ready to go\n",
"llm = OpenAI(temperature=0, callback_manager=manager, verbose=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Scenario 1: Just an LLM\n",
"\n",
"First, let's just run a single LLM a few times and capture the resulting prompt-answer conversation in ClearML"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a joke'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Tell me a poem'}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nRoses are red,\\nViolets are blue,\\nSugar is sweet,\\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nRoses are red,\\nViolets are blue,\\nSugar is sweet,\\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 109.04, 'flesch_kincaid_grade': 1.3, 'smog_index': 0.0, 'coleman_liau_index': -1.24, 'automated_readability_index': 0.3, 'dale_chall_readability_score': 5.5, 'difficult_words': 0, 'linsear_write_formula': 5.5, 'gunning_fog': 5.2, 'text_standard': '5th and 6th grade', 'fernandez_huerta': 133.58, 'szigriszt_pazos': 131.54, 'gutierrez_polini': 62.3, 'crawford': -0.2, 'gulpease_index': 79.8, 'osman': 116.91}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 24, 'token_usage_completion_tokens': 138, 'token_usage_total_tokens': 162, 'model_name': 'text-davinci-003', 'step': 4, 'starts': 2, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 0, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': '\\n\\nRoses are red,\\nViolets are blue,\\nSugar is sweet,\\nAnd so are you.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 83.66, 'flesch_kincaid_grade': 4.8, 'smog_index': 0.0, 'coleman_liau_index': 3.23, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 6.71, 'difficult_words': 2, 'linsear_write_formula': 6.5, 'gunning_fog': 8.28, 'text_standard': '6th and 7th grade', 'fernandez_huerta': 115.58, 'szigriszt_pazos': 112.37, 'gutierrez_polini': 54.83, 'crawford': 1.4, 'gulpease_index': 72.1, 'osman': 100.17}\n",
"{'action_records': action name step starts ends errors text_ctr chain_starts \\\n",
"0 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"1 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"2 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"3 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"4 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"5 on_llm_start OpenAI 1 1 0 0 0 0 \n",
"6 on_llm_end NaN 2 1 1 0 0 0 \n",
"7 on_llm_end NaN 2 1 1 0 0 0 \n",
"8 on_llm_end NaN 2 1 1 0 0 0 \n",
"9 on_llm_end NaN 2 1 1 0 0 0 \n",
"10 on_llm_end NaN 2 1 1 0 0 0 \n",
"11 on_llm_end NaN 2 1 1 0 0 0 \n",
"12 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"13 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"14 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"15 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"16 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"17 on_llm_start OpenAI 3 2 1 0 0 0 \n",
"18 on_llm_end NaN 4 2 2 0 0 0 \n",
"19 on_llm_end NaN 4 2 2 0 0 0 \n",
"20 on_llm_end NaN 4 2 2 0 0 0 \n",
"21 on_llm_end NaN 4 2 2 0 0 0 \n",
"22 on_llm_end NaN 4 2 2 0 0 0 \n",
"23 on_llm_end NaN 4 2 2 0 0 0 \n",
"\n",
" chain_ends llm_starts ... difficult_words linsear_write_formula \\\n",
"0 0 1 ... NaN NaN \n",
"1 0 1 ... NaN NaN \n",
"2 0 1 ... NaN NaN \n",
"3 0 1 ... NaN NaN \n",
"4 0 1 ... NaN NaN \n",
"5 0 1 ... NaN NaN \n",
"6 0 1 ... 0.0 5.5 \n",
"7 0 1 ... 2.0 6.5 \n",
"8 0 1 ... 0.0 5.5 \n",
"9 0 1 ... 2.0 6.5 \n",
"10 0 1 ... 0.0 5.5 \n",
"11 0 1 ... 2.0 6.5 \n",
"12 0 2 ... NaN NaN \n",
"13 0 2 ... NaN NaN \n",
"14 0 2 ... NaN NaN \n",
"15 0 2 ... NaN NaN \n",
"16 0 2 ... NaN NaN \n",
"17 0 2 ... NaN NaN \n",
"18 0 2 ... 0.0 5.5 \n",
"19 0 2 ... 2.0 6.5 \n",
"20 0 2 ... 0.0 5.5 \n",
"21 0 2 ... 2.0 6.5 \n",
"22 0 2 ... 0.0 5.5 \n",
"23 0 2 ... 2.0 6.5 \n",
"\n",
" gunning_fog text_standard fernandez_huerta szigriszt_pazos \\\n",
"0 NaN NaN NaN NaN \n",
"1 NaN NaN NaN NaN \n",
"2 NaN NaN NaN NaN \n",
"3 NaN NaN NaN NaN \n",
"4 NaN NaN NaN NaN \n",
"5 NaN NaN NaN NaN \n",
"6 5.20 5th and 6th grade 133.58 131.54 \n",
"7 8.28 6th and 7th grade 115.58 112.37 \n",
"8 5.20 5th and 6th grade 133.58 131.54 \n",
"9 8.28 6th and 7th grade 115.58 112.37 \n",
"10 5.20 5th and 6th grade 133.58 131.54 \n",
"11 8.28 6th and 7th grade 115.58 112.37 \n",
"12 NaN NaN NaN NaN \n",
"13 NaN NaN NaN NaN \n",
"14 NaN NaN NaN NaN \n",
"15 NaN NaN NaN NaN \n",
"16 NaN NaN NaN NaN \n",
"17 NaN NaN NaN NaN \n",
"18 5.20 5th and 6th grade 133.58 131.54 \n",
"19 8.28 6th and 7th grade 115.58 112.37 \n",
"20 5.20 5th and 6th grade 133.58 131.54 \n",
"21 8.28 6th and 7th grade 115.58 112.37 \n",
"22 5.20 5th and 6th grade 133.58 131.54 \n",
"23 8.28 6th and 7th grade 115.58 112.37 \n",
"\n",
" gutierrez_polini crawford gulpease_index osman \n",
"0 NaN NaN NaN NaN \n",
"1 NaN NaN NaN NaN \n",
"2 NaN NaN NaN NaN \n",
"3 NaN NaN NaN NaN \n",
"4 NaN NaN NaN NaN \n",
"5 NaN NaN NaN NaN \n",
"6 62.30 -0.2 79.8 116.91 \n",
"7 54.83 1.4 72.1 100.17 \n",
"8 62.30 -0.2 79.8 116.91 \n",
"9 54.83 1.4 72.1 100.17 \n",
"10 62.30 -0.2 79.8 116.91 \n",
"11 54.83 1.4 72.1 100.17 \n",
"12 NaN NaN NaN NaN \n",
"13 NaN NaN NaN NaN \n",
"14 NaN NaN NaN NaN \n",
"15 NaN NaN NaN NaN \n",
"16 NaN NaN NaN NaN \n",
"17 NaN NaN NaN NaN \n",
"18 62.30 -0.2 79.8 116.91 \n",
"19 54.83 1.4 72.1 100.17 \n",
"20 62.30 -0.2 79.8 116.91 \n",
"21 54.83 1.4 72.1 100.17 \n",
"22 62.30 -0.2 79.8 116.91 \n",
"23 54.83 1.4 72.1 100.17 \n",
"\n",
"[24 rows x 39 columns], 'session_analysis': prompt_step prompts name output_step \\\n",
"0 1 Tell me a joke OpenAI 2 \n",
"1 1 Tell me a poem OpenAI 2 \n",
"2 1 Tell me a joke OpenAI 2 \n",
"3 1 Tell me a poem OpenAI 2 \n",
"4 1 Tell me a joke OpenAI 2 \n",
"5 1 Tell me a poem OpenAI 2 \n",
"6 3 Tell me a joke OpenAI 4 \n",
"7 3 Tell me a poem OpenAI 4 \n",
"8 3 Tell me a joke OpenAI 4 \n",
"9 3 Tell me a poem OpenAI 4 \n",
"10 3 Tell me a joke OpenAI 4 \n",
"11 3 Tell me a poem OpenAI 4 \n",
"\n",
" output \\\n",
"0 \\n\\nQ: What did the fish say when it hit the w... \n",
"1 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"2 \\n\\nQ: What did the fish say when it hit the w... \n",
"3 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"4 \\n\\nQ: What did the fish say when it hit the w... \n",
"5 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"6 \\n\\nQ: What did the fish say when it hit the w... \n",
"7 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"8 \\n\\nQ: What did the fish say when it hit the w... \n",
"9 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"10 \\n\\nQ: What did the fish say when it hit the w... \n",
"11 \\n\\nRoses are red,\\nViolets are blue,\\nSugar i... \n",
"\n",
" token_usage_total_tokens token_usage_prompt_tokens \\\n",
"0 162 24 \n",
"1 162 24 \n",
"2 162 24 \n",
"3 162 24 \n",
"4 162 24 \n",
"5 162 24 \n",
"6 162 24 \n",
"7 162 24 \n",
"8 162 24 \n",
"9 162 24 \n",
"10 162 24 \n",
"11 162 24 \n",
"\n",
" token_usage_completion_tokens flesch_reading_ease flesch_kincaid_grade \\\n",
"0 138 109.04 1.3 \n",
"1 138 83.66 4.8 \n",
"2 138 109.04 1.3 \n",
"3 138 83.66 4.8 \n",
"4 138 109.04 1.3 \n",
"5 138 83.66 4.8 \n",
"6 138 109.04 1.3 \n",
"7 138 83.66 4.8 \n",
"8 138 109.04 1.3 \n",
"9 138 83.66 4.8 \n",
"10 138 109.04 1.3 \n",
"11 138 83.66 4.8 \n",
"\n",
" ... difficult_words linsear_write_formula gunning_fog \\\n",
"0 ... 0 5.5 5.20 \n",
"1 ... 2 6.5 8.28 \n",
"2 ... 0 5.5 5.20 \n",
"3 ... 2 6.5 8.28 \n",
"4 ... 0 5.5 5.20 \n",
"5 ... 2 6.5 8.28 \n",
"6 ... 0 5.5 5.20 \n",
"7 ... 2 6.5 8.28 \n",
"8 ... 0 5.5 5.20 \n",
"9 ... 2 6.5 8.28 \n",
"10 ... 0 5.5 5.20 \n",
"11 ... 2 6.5 8.28 \n",
"\n",
" text_standard fernandez_huerta szigriszt_pazos gutierrez_polini \\\n",
"0 5th and 6th grade 133.58 131.54 62.30 \n",
"1 6th and 7th grade 115.58 112.37 54.83 \n",
"2 5th and 6th grade 133.58 131.54 62.30 \n",
"3 6th and 7th grade 115.58 112.37 54.83 \n",
"4 5th and 6th grade 133.58 131.54 62.30 \n",
"5 6th and 7th grade 115.58 112.37 54.83 \n",
"6 5th and 6th grade 133.58 131.54 62.30 \n",
"7 6th and 7th grade 115.58 112.37 54.83 \n",
"8 5th and 6th grade 133.58 131.54 62.30 \n",
"9 6th and 7th grade 115.58 112.37 54.83 \n",
"10 5th and 6th grade 133.58 131.54 62.30 \n",
"11 6th and 7th grade 115.58 112.37 54.83 \n",
"\n",
" crawford gulpease_index osman \n",
"0 -0.2 79.8 116.91 \n",
"1 1.4 72.1 100.17 \n",
"2 -0.2 79.8 116.91 \n",
"3 1.4 72.1 100.17 \n",
"4 -0.2 79.8 116.91 \n",
"5 1.4 72.1 100.17 \n",
"6 -0.2 79.8 116.91 \n",
"7 1.4 72.1 100.17 \n",
"8 -0.2 79.8 116.91 \n",
"9 1.4 72.1 100.17 \n",
"10 -0.2 79.8 116.91 \n",
"11 1.4 72.1 100.17 \n",
"\n",
"[12 rows x 24 columns]}\n",
"2023-03-29 14:00:25,948 - clearml.Task - INFO - Completed model upload to https://files.clear.ml/langchain_callback_demo/llm.988bd727b0e94a29a3ac0ee526813545/models/simple_sequential\n"
]
}
],
"source": [
"# SCENARIO 1 - LLM\n",
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n",
"# After every generation run, use flush to make sure all the metrics\n",
"# prompts and other output are properly saved separately\n",
"clearml_callback.flush_tracker(langchain_asset=llm, name=\"simple_sequential\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"At this point you can already go to https://app.clear.ml and take a look at the resulting ClearML Task that was created.\n",
"\n",
"Among others, you should see that this notebook is saved along with any git information. The model JSON that contains the used parameters is saved as an artifact, there are also console logs and under the plots section, you'll find tables that represent the flow of the chain.\n",
"\n",
"Finally, if you enabled visualizations, these are stored as HTML files under debug samples."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Scenario 2: Creating a agent with tools\n",
"\n",
"To show a more advanced workflow, let's create an agent with access to tools. The way ClearML tracks the results is not different though, only the table will look slightly different as there are other types of actions taken when compared to the earlier, simpler example.\n",
"\n",
"You can now also see the use of the `finish=True` keyword, which will fully close the ClearML Task, instead of just resetting the parameters and prompts for a new conversation."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"{'action': 'on_chain_start', 'name': 'AgentExecutor', 'step': 1, 'starts': 1, 'ends': 0, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 0, 'llm_ends': 0, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'input': 'Who is the wife of the person who sang summer of 69?'}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 2, 'starts': 2, 'ends': 0, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 0, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\\n\\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\\nCalculator: Useful for when you need to answer questions about math.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Search, Calculator]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: Who is the wife of the person who sang summer of 69?\\nThought:'}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 189, 'token_usage_completion_tokens': 34, 'token_usage_total_tokens': 223, 'model_name': 'text-davinci-003', 'step': 3, 'starts': 2, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 0, 'tool_ends': 0, 'agent_ends': 0, 'text': ' I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 91.61, 'flesch_kincaid_grade': 3.8, 'smog_index': 0.0, 'coleman_liau_index': 3.41, 'automated_readability_index': 3.5, 'dale_chall_readability_score': 6.06, 'difficult_words': 2, 'linsear_write_formula': 5.75, 'gunning_fog': 5.4, 'text_standard': '3rd and 4th grade', 'fernandez_huerta': 121.07, 'szigriszt_pazos': 119.5, 'gutierrez_polini': 54.91, 'crawford': 0.9, 'gulpease_index': 72.7, 'osman': 92.16}\n",
"\u001b[32;1m\u001b[1;3m I need to find out who sang summer of 69 and then find out who their wife is.\n",
"Action: Search\n",
"Action Input: \"Who sang summer of 69\"\u001b[0m{'action': 'on_agent_action', 'tool': 'Search', 'tool_input': 'Who sang summer of 69', 'log': ' I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"', 'step': 4, 'starts': 3, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 1, 'tool_ends': 0, 'agent_ends': 0}\n",
"{'action': 'on_tool_start', 'input_str': 'Who sang summer of 69', 'name': 'Search', 'description': 'A search engine. Useful for when you need to answer questions about current events. Input should be a search query.', 'step': 5, 'starts': 4, 'ends': 1, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 0, 'agent_ends': 0}\n",
"\n",
"Observation: \u001b[36;1m\u001b[1;3mBryan Adams - Summer Of 69 (Official Music Video).\u001b[0m\n",
"Thought:{'action': 'on_tool_end', 'output': 'Bryan Adams - Summer Of 69 (Official Music Video).', 'step': 6, 'starts': 4, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 1, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 7, 'starts': 5, 'ends': 2, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 1, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\\n\\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\\nCalculator: Useful for when you need to answer questions about math.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Search, Calculator]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: Who is the wife of the person who sang summer of 69?\\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"\\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\\nThought:'}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 242, 'token_usage_completion_tokens': 28, 'token_usage_total_tokens': 270, 'model_name': 'text-davinci-003', 'step': 8, 'starts': 5, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 2, 'tool_ends': 1, 'agent_ends': 0, 'text': ' I need to find out who Bryan Adams is married to.\\nAction: Search\\nAction Input: \"Who is Bryan Adams married to\"', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 94.66, 'flesch_kincaid_grade': 2.7, 'smog_index': 0.0, 'coleman_liau_index': 4.73, 'automated_readability_index': 4.0, 'dale_chall_readability_score': 7.16, 'difficult_words': 2, 'linsear_write_formula': 4.25, 'gunning_fog': 4.2, 'text_standard': '4th and 5th grade', 'fernandez_huerta': 124.13, 'szigriszt_pazos': 119.2, 'gutierrez_polini': 52.26, 'crawford': 0.7, 'gulpease_index': 74.7, 'osman': 84.2}\n",
"\u001b[32;1m\u001b[1;3m I need to find out who Bryan Adams is married to.\n",
"Action: Search\n",
"Action Input: \"Who is Bryan Adams married to\"\u001b[0m{'action': 'on_agent_action', 'tool': 'Search', 'tool_input': 'Who is Bryan Adams married to', 'log': ' I need to find out who Bryan Adams is married to.\\nAction: Search\\nAction Input: \"Who is Bryan Adams married to\"', 'step': 9, 'starts': 6, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 3, 'tool_ends': 1, 'agent_ends': 0}\n",
"{'action': 'on_tool_start', 'input_str': 'Who is Bryan Adams married to', 'name': 'Search', 'description': 'A search engine. Useful for when you need to answer questions about current events. Input should be a search query.', 'step': 10, 'starts': 7, 'ends': 3, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 1, 'agent_ends': 0}\n",
"\n",
"Observation: \u001b[36;1m\u001b[1;3mBryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...\u001b[0m\n",
"Thought:{'action': 'on_tool_end', 'output': 'Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...', 'step': 11, 'starts': 7, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 2, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0}\n",
"{'action': 'on_llm_start', 'name': 'OpenAI', 'step': 12, 'starts': 8, 'ends': 4, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 2, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'prompts': 'Answer the following questions as best you can. You have access to the following tools:\\n\\nSearch: A search engine. Useful for when you need to answer questions about current events. Input should be a search query.\\nCalculator: Useful for when you need to answer questions about math.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Search, Calculator]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: Who is the wife of the person who sang summer of 69?\\nThought: I need to find out who sang summer of 69 and then find out who their wife is.\\nAction: Search\\nAction Input: \"Who sang summer of 69\"\\nObservation: Bryan Adams - Summer Of 69 (Official Music Video).\\nThought: I need to find out who Bryan Adams is married to.\\nAction: Search\\nAction Input: \"Who is Bryan Adams married to\"\\nObservation: Bryan Adams has never married. In the 1990s, he was in a relationship with Danish model Cecilie Thomsen. In 2011, Bryan and Alicia Grimaldi, his ...\\nThought:'}\n",
"{'action': 'on_llm_end', 'token_usage_prompt_tokens': 314, 'token_usage_completion_tokens': 18, 'token_usage_total_tokens': 332, 'model_name': 'text-davinci-003', 'step': 13, 'starts': 8, 'ends': 5, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 0, 'text': ' I now know the final answer.\\nFinal Answer: Bryan Adams has never been married.', 'generation_info_finish_reason': 'stop', 'generation_info_logprobs': None, 'flesch_reading_ease': 81.29, 'flesch_kincaid_grade': 3.7, 'smog_index': 0.0, 'coleman_liau_index': 5.75, 'automated_readability_index': 3.9, 'dale_chall_readability_score': 7.37, 'difficult_words': 1, 'linsear_write_formula': 2.5, 'gunning_fog': 2.8, 'text_standard': '3rd and 4th grade', 'fernandez_huerta': 115.7, 'szigriszt_pazos': 110.84, 'gutierrez_polini': 49.79, 'crawford': 0.7, 'gulpease_index': 85.4, 'osman': 83.14}\n",
"\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: Bryan Adams has never been married.\u001b[0m\n",
"{'action': 'on_agent_finish', 'output': 'Bryan Adams has never been married.', 'log': ' I now know the final answer.\\nFinal Answer: Bryan Adams has never been married.', 'step': 14, 'starts': 8, 'ends': 6, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 0, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"{'action': 'on_chain_end', 'outputs': 'Bryan Adams has never been married.', 'step': 15, 'starts': 8, 'ends': 7, 'errors': 0, 'text_ctr': 0, 'chain_starts': 1, 'chain_ends': 1, 'llm_starts': 3, 'llm_ends': 3, 'llm_streams': 0, 'tool_starts': 4, 'tool_ends': 2, 'agent_ends': 1}\n",
"{'action_records': action name step starts ends errors text_ctr \\\n",
"0 on_llm_start OpenAI 1 1 0 0 0 \n",
"1 on_llm_start OpenAI 1 1 0 0 0 \n",
"2 on_llm_start OpenAI 1 1 0 0 0 \n",
"3 on_llm_start OpenAI 1 1 0 0 0 \n",
"4 on_llm_start OpenAI 1 1 0 0 0 \n",
".. ... ... ... ... ... ... ... \n",
"66 on_tool_end NaN 11 7 4 0 0 \n",
"67 on_llm_start OpenAI 12 8 4 0 0 \n",
"68 on_llm_end NaN 13 8 5 0 0 \n",
"69 on_agent_finish NaN 14 8 6 0 0 \n",
"70 on_chain_end NaN 15 8 7 0 0 \n",
"\n",
" chain_starts chain_ends llm_starts ... gulpease_index osman input \\\n",
"0 0 0 1 ... NaN NaN NaN \n",
"1 0 0 1 ... NaN NaN NaN \n",
"2 0 0 1 ... NaN NaN NaN \n",
"3 0 0 1 ... NaN NaN NaN \n",
"4 0 0 1 ... NaN NaN NaN \n",
".. ... ... ... ... ... ... ... \n",
"66 1 0 2 ... NaN NaN NaN \n",
"67 1 0 3 ... NaN NaN NaN \n",
"68 1 0 3 ... 85.4 83.14 NaN \n",
"69 1 0 3 ... NaN NaN NaN \n",
"70 1 1 3 ... NaN NaN NaN \n",
"\n",
" tool tool_input log \\\n",
"0 NaN NaN NaN \n",
"1 NaN NaN NaN \n",
"2 NaN NaN NaN \n",
"3 NaN NaN NaN \n",
"4 NaN NaN NaN \n",
".. ... ... ... \n",
"66 NaN NaN NaN \n",
"67 NaN NaN NaN \n",
"68 NaN NaN NaN \n",
"69 NaN NaN I now know the final answer.\\nFinal Answer: B... \n",
"70 NaN NaN NaN \n",
"\n",
" input_str description output \\\n",
"0 NaN NaN NaN \n",
"1 NaN NaN NaN \n",
"2 NaN NaN NaN \n",
"3 NaN NaN NaN \n",
"4 NaN NaN NaN \n",
".. ... ... ... \n",
"66 NaN NaN Bryan Adams has never married. In the 1990s, h... \n",
"67 NaN NaN NaN \n",
"68 NaN NaN NaN \n",
"69 NaN NaN Bryan Adams has never been married. \n",
"70 NaN NaN NaN \n",
"\n",
" outputs \n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
".. ... \n",
"66 NaN \n",
"67 NaN \n",
"68 NaN \n",
"69 NaN \n",
"70 Bryan Adams has never been married. \n",
"\n",
"[71 rows x 47 columns], 'session_analysis': prompt_step prompts name \\\n",
"0 2 Answer the following questions as best you can... OpenAI \n",
"1 7 Answer the following questions as best you can... OpenAI \n",
"2 12 Answer the following questions as best you can... OpenAI \n",
"\n",
" output_step output \\\n",
"0 3 I need to find out who sang summer of 69 and ... \n",
"1 8 I need to find out who Bryan Adams is married... \n",
"2 13 I now know the final answer.\\nFinal Answer: B... \n",
"\n",
" token_usage_total_tokens token_usage_prompt_tokens \\\n",
"0 223 189 \n",
"1 270 242 \n",
"2 332 314 \n",
"\n",
" token_usage_completion_tokens flesch_reading_ease flesch_kincaid_grade \\\n",
"0 34 91.61 3.8 \n",
"1 28 94.66 2.7 \n",
"2 18 81.29 3.7 \n",
"\n",
" ... difficult_words linsear_write_formula gunning_fog \\\n",
"0 ... 2 5.75 5.4 \n",
"1 ... 2 4.25 4.2 \n",
"2 ... 1 2.50 2.8 \n",
"\n",
" text_standard fernandez_huerta szigriszt_pazos gutierrez_polini \\\n",
"0 3rd and 4th grade 121.07 119.50 54.91 \n",
"1 4th and 5th grade 124.13 119.20 52.26 \n",
"2 3rd and 4th grade 115.70 110.84 49.79 \n",
"\n",
" crawford gulpease_index osman \n",
"0 0.9 72.7 92.16 \n",
"1 0.7 74.7 84.20 \n",
"2 0.7 85.4 83.14 \n",
"\n",
"[3 rows x 24 columns]}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Could not update last created model in Task 988bd727b0e94a29a3ac0ee526813545, Task status 'completed' cannot be updated\n"
]
}
],
"source": [
"from langchain.agents import initialize_agent, load_tools\n",
"from langchain.agents import AgentType\n",
"\n",
"# SCENARIO 2 - Agent with Tools\n",
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n",
"agent = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
" callback_manager=manager,\n",
" verbose=True,\n",
")\n",
"agent.run(\n",
" \"Who is the wife of the person who sang summer of 69?\"\n",
")\n",
"clearml_callback.flush_tracker(langchain_asset=agent, name=\"Agent with Tools\", finish=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tips and Next Steps\n",
"\n",
"- Make sure you always use a unique `name` argument for the `clearml_callback.flush_tracker` function. If not, the model parameters used for a run will override the previous run!\n",
"\n",
"- If you close the ClearML Callback using `clearml_callback.flush_tracker(..., finish=True)` the Callback cannot be used anymore. Make a new one if you want to keep logging.\n",
"\n",
"- Check out the rest of the open source ClearML ecosystem, there is a data version manager, a remote execution agent, automated pipelines and much more!\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "a53ebf4a859167383b364e7e7521d0add3c2dbbdecce4edf676e8c4634ff3fbb"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

25
docs/ecosystem/cohere.md Normal file
View File

@@ -0,0 +1,25 @@
# Cohere
This page covers how to use the Cohere ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Cohere wrappers.
## Installation and Setup
- Install the Python SDK with `pip install cohere`
- Get an Cohere api key and set it as an environment variable (`COHERE_API_KEY`)
## Wrappers
### LLM
There exists an Cohere LLM wrapper, which you can access with
```python
from langchain.llms import Cohere
```
### Embeddings
There exists an Cohere Embeddings wrapper, which you can access with
```python
from langchain.embeddings import CohereEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/cohere.ipynb)

View File

@@ -0,0 +1,17 @@
# DeepInfra
This page covers how to use the DeepInfra ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific DeepInfra wrappers.
## Installation and Setup
- Get your DeepInfra api key from this link [here](https://deepinfra.com/).
- Get an DeepInfra api key and set it as an environment variable (`DEEPINFRA_API_TOKEN`)
## Wrappers
### LLM
There exists an DeepInfra LLM wrapper, which you can access with
```python
from langchain.llms import DeepInfra
```

View File

@@ -0,0 +1,30 @@
# Deep Lake
This page covers how to use the Deep Lake ecosystem within LangChain.
## Why Deep Lake?
- More than just a (multi-modal) vector store. You can later use the dataset to fine-tune your own LLM models.
- Not only stores embeddings, but also the original data with automatic version control.
- Truly serverless. Doesn't require another service and can be used with major cloud providers (AWS S3, GCS, etc.)
## More Resources
1. [Ultimate Guide to LangChain & Deep Lake: Build ChatGPT to Answer Questions on Your Financial Data](https://www.activeloop.ai/resources/ultimate-guide-to-lang-chain-deep-lake-build-chat-gpt-to-answer-questions-on-your-financial-data/)
2. [Twitter the-algorithm codebase analysis with Deep Lake](../use_cases/code/twitter-the-algorithm-analysis-deeplake.ipynb)
3. Here is [whitepaper](https://www.deeplake.ai/whitepaper) and [academic paper](https://arxiv.org/pdf/2209.10785.pdf) for Deep Lake
4. Here is a set of additional resources available for review: [Deep Lake](https://github.com/activeloopai/deeplake), [Getting Started](https://docs.activeloop.ai/getting-started) and [Tutorials](https://docs.activeloop.ai/hub-tutorials)
## Installation and Setup
- Install the Python package with `pip install deeplake`
## Wrappers
### VectorStore
There exists a wrapper around Deep Lake, a data lake for Deep Learning applications, allowing you to use it as a vector store (for now), whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import DeepLake
```
For a more detailed walkthrough of the Deep Lake wrapper, see [this notebook](../modules/indexes/vectorstores/examples/deeplake.ipynb)

View File

@@ -0,0 +1,16 @@
# ForefrontAI
This page covers how to use the ForefrontAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific ForefrontAI wrappers.
## Installation and Setup
- Get an ForefrontAI api key and set it as an environment variable (`FOREFRONTAI_API_KEY`)
## Wrappers
### LLM
There exists an ForefrontAI LLM wrapper, which you can access with
```python
from langchain.llms import ForefrontAI
```

View File

@@ -0,0 +1,32 @@
# Google Search Wrapper
This page covers how to use the Google Search API within LangChain.
It is broken into two parts: installation and setup, and then references to the specific Google Search wrapper.
## Installation and Setup
- Install requirements with `pip install google-api-python-client`
- Set up a Custom Search Engine, following [these instructions](https://stackoverflow.com/questions/37083058/programmatically-searching-google-in-python-using-custom-search)
- Get an API Key and Custom Search Engine ID from the previous step, and set them as environment variables `GOOGLE_API_KEY` and `GOOGLE_CSE_ID` respectively
## Wrappers
### Utility
There exists a GoogleSearchAPIWrapper utility which wraps this API. To import this utility:
```python
from langchain.utilities import GoogleSearchAPIWrapper
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/google_search.ipynb).
### Tool
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["google-search"])
```
For more information on this, see [this page](../modules/agents/tools/getting_started.md)

View File

@@ -0,0 +1,73 @@
# Google Serper Wrapper
This page covers how to use the [Serper](https://serper.dev) Google Search API within LangChain. Serper is a low-cost Google Search API that can be used to add answer box, knowledge graph, and organic results data from Google Search.
It is broken into two parts: setup, and then references to the specific Google Serper wrapper.
## Setup
- Go to [serper.dev](https://serper.dev) to sign up for a free account
- Get the api key and set it as an environment variable (`SERPER_API_KEY`)
## Wrappers
### Utility
There exists a GoogleSerperAPIWrapper utility which wraps this API. To import this utility:
```python
from langchain.utilities import GoogleSerperAPIWrapper
```
You can use it as part of a Self Ask chain:
```python
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.llms.openai import OpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
import os
os.environ["SERPER_API_KEY"] = ""
os.environ['OPENAI_API_KEY'] = ""
llm = OpenAI(temperature=0)
search = GoogleSerperAPIWrapper()
tools = [
Tool(
name="Intermediate Answer",
func=search.run,
description="useful for when you need to ask with search"
)
]
self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
```
#### Output
```
Entering new AgentExecutor chain...
Yes.
Follow up: Who is the reigning men's U.S. Open champion?
Intermediate answer: Current champions Carlos Alcaraz, 2022 men's singles champion.
Follow up: Where is Carlos Alcaraz from?
Intermediate answer: El Palmar, Spain
So the final answer is: El Palmar, Spain
> Finished chain.
'El Palmar, Spain'
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/google_serper.ipynb).
### Tool
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["google-serper"])
```
For more information on this, see [this page](../modules/agents/tools/getting_started.md)

23
docs/ecosystem/gooseai.md Normal file
View File

@@ -0,0 +1,23 @@
# GooseAI
This page covers how to use the GooseAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific GooseAI wrappers.
## Installation and Setup
- Install the Python SDK with `pip install openai`
- Get your GooseAI api key from this link [here](https://goose.ai/).
- Set the environment variable (`GOOSEAI_API_KEY`).
```python
import os
os.environ["GOOSEAI_API_KEY"] = "YOUR_API_KEY"
```
## Wrappers
### LLM
There exists an GooseAI LLM wrapper, which you can access with:
```python
from langchain.llms import GooseAI
```

37
docs/ecosystem/gpt4all.md Normal file
View File

@@ -0,0 +1,37 @@
# GPT4All
This page covers how to use the `GPT4All` wrapper within LangChain.
It is broken into two parts: installation and setup, and then usage with an example.
## Installation and Setup
- Install the Python package with `pip install pyllamacpp`
- Download a [GPT4All model](https://github.com/nomic-ai/gpt4all) and place it in your desired directory
## Usage
### GPT4All
To use the GPT4All wrapper, you need to provide the path to the pre-trained model file and the model's configuration.
```python
from langchain.llms import GPT4All
# Instantiate the model
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
# Generate text
response = model("Once upon a time, ")
```
You can also customize the generation parameters, such as n_predict, temp, top_p, top_k, and others.
Example:
```python
model = GPT4All(model="./models/gpt4all-model.bin", n_predict=55, temp=0)
response = model("Once upon a time, ")
```
## Model File
You can find links to model file downloads at the [GPT4all](https://github.com/nomic-ai/gpt4all) repository. They will need to be converted to `ggml` format to work, as specified in the [pyllamacpp](https://github.com/nomic-ai/pyllamacpp) repository.
For a more detailed walkthrough of this, see [this notebook](../modules/models/llms/integrations/gpt4all.ipynb)

View File

@@ -0,0 +1,38 @@
# Graphsignal
This page covers how to use the Graphsignal ecosystem to trace and monitor LangChain.
## Installation and Setup
- Install the Python library with `pip install graphsignal`
- Create free Graphsignal account [here](https://graphsignal.com)
- Get an API key and set it as an environment variable (`GRAPHSIGNAL_API_KEY`)
## Tracing and Monitoring
Graphsignal automatically instruments and starts tracing and monitoring chains. Traces, metrics and errors are then available in your [Graphsignal dashboard](https://app.graphsignal.com/). No prompts or other sensitive data are sent to Graphsignal cloud, only statistics and metadata.
Initialize the tracer by providing a deployment name:
```python
import graphsignal
graphsignal.configure(deployment='my-langchain-app-prod')
```
In order to trace full runs and see a breakdown by chains and tools, you can wrap the calling routine or use a decorator:
```python
with graphsignal.start_trace('my-chain'):
chain.run("some initial text")
```
Optionally, enable profiling to record function-level statistics for each trace.
```python
with graphsignal.start_trace(
'my-chain', options=graphsignal.TraceOptions(enable_profiling=True)):
chain.run("some initial text")
```
See the [Quick Start](https://graphsignal.com/docs/guides/quick-start/) guide for complete setup instructions.

View File

@@ -0,0 +1,19 @@
# Hazy Research
This page covers how to use the Hazy Research ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Hazy Research wrappers.
## Installation and Setup
- To use the `manifest`, install it with `pip install manifest-ml`
## Wrappers
### LLM
There exists an LLM wrapper around Hazy Research's `manifest` library.
`manifest` is a python library which is itself a wrapper around many model providers, and adds in caching, history, and more.
To use this wrapper:
```python
from langchain.llms.manifest import ManifestWrapper
```

View File

@@ -0,0 +1,53 @@
# Helicone
This page covers how to use the [Helicone](https://helicone.ai) ecosystem within LangChain.
## What is Helicone?
Helicone is an [open source](https://github.com/Helicone/helicone) observability platform that proxies your OpenAI traffic and provides you key insights into your spend, latency and usage.
![Helicone](../_static/HeliconeDashboard.png)
## Quick start
With your LangChain environment you can just add the following parameter.
```bash
export OPENAI_API_BASE="https://oai.hconeai.com/v1"
```
Now head over to [helicone.ai](https://helicone.ai/onboarding?step=2) to create your account, and add your OpenAI API key within our dashboard to view your logs.
![Helicone](../_static/HeliconeKeys.png)
## How to enable Helicone caching
```python
from langchain.llms import OpenAI
import openai
openai.api_base = "https://oai.hconeai.com/v1"
llm = OpenAI(temperature=0.9, headers={"Helicone-Cache-Enabled": "true"})
text = "What is a helicone?"
print(llm(text))
```
[Helicone caching docs](https://docs.helicone.ai/advanced-usage/caching)
## How to use Helicone custom properties
```python
from langchain.llms import OpenAI
import openai
openai.api_base = "https://oai.hconeai.com/v1"
llm = OpenAI(temperature=0.9, headers={
"Helicone-Property-Session": "24",
"Helicone-Property-Conversation": "support_issue_2",
"Helicone-Property-App": "mobile",
})
text = "What is a helicone?"
print(llm(text))
```
[Helicone property docs](https://docs.helicone.ai/advanced-usage/custom-properties)

View File

@@ -0,0 +1,69 @@
# Hugging Face
This page covers how to use the Hugging Face ecosystem (including the [Hugging Face Hub](https://huggingface.co)) within LangChain.
It is broken into two parts: installation and setup, and then references to specific Hugging Face wrappers.
## Installation and Setup
If you want to work with the Hugging Face Hub:
- Install the Hub client library with `pip install huggingface_hub`
- Create a Hugging Face account (it's free!)
- Create an [access token](https://huggingface.co/docs/hub/security-tokens) and set it as an environment variable (`HUGGINGFACEHUB_API_TOKEN`)
If you want work with the Hugging Face Python libraries:
- Install `pip install transformers` for working with models and tokenizers
- Install `pip install datasets` for working with datasets
## Wrappers
### LLM
There exists two Hugging Face LLM wrappers, one for a local pipeline and one for a model hosted on Hugging Face Hub.
Note that these wrappers only work for models that support the following tasks: [`text2text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text2text-generation&sort=downloads), [`text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text-classification&sort=downloads)
To use the local pipeline wrapper:
```python
from langchain.llms import HuggingFacePipeline
```
To use a the wrapper for a model hosted on Hugging Face Hub:
```python
from langchain.llms import HuggingFaceHub
```
For a more detailed walkthrough of the Hugging Face Hub wrapper, see [this notebook](../modules/models/llms/integrations/huggingface_hub.ipynb)
### Embeddings
There exists two Hugging Face Embeddings wrappers, one for a local model and one for a model hosted on Hugging Face Hub.
Note that these wrappers only work for [`sentence-transformers` models](https://huggingface.co/models?library=sentence-transformers&sort=downloads).
To use the local pipeline wrapper:
```python
from langchain.embeddings import HuggingFaceEmbeddings
```
To use a the wrapper for a model hosted on Hugging Face Hub:
```python
from langchain.embeddings import HuggingFaceHubEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/huggingfacehub.ipynb)
### Tokenizer
There are several places you can use tokenizers available through the `transformers` package.
By default, it is used to count tokens for all LLMs.
You can also use it to count tokens when splitting documents with
```python
from langchain.text_splitter import CharacterTextSplitter
CharacterTextSplitter.from_huggingface_tokenizer(...)
```
For a more detailed walkthrough of this, see [this notebook](../modules/indexes/text_splitters/examples/huggingface_length_function.ipynb)
### Datasets
The Hugging Face Hub has lots of great [datasets](https://huggingface.co/datasets) that can be used to evaluate your LLM chains.
For a detailed walkthrough of how to use them to do so, see [this notebook](../use_cases/evaluation/huggingface_datasets.ipynb)

18
docs/ecosystem/jina.md Normal file
View File

@@ -0,0 +1,18 @@
# Jina
This page covers how to use the Jina ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Jina wrappers.
## Installation and Setup
- Install the Python SDK with `pip install jina`
- Get a Jina AI Cloud auth token from [here](https://cloud.jina.ai/settings/tokens) and set it as an environment variable (`JINA_AUTH_TOKEN`)
## Wrappers
### Embeddings
There exists a Jina Embeddings wrapper, which you can access with
```python
from langchain.embeddings import JinaEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/jina.ipynb)

View File

@@ -0,0 +1,26 @@
# Llama.cpp
This page covers how to use [llama.cpp](https://github.com/ggerganov/llama.cpp) within LangChain.
It is broken into two parts: installation and setup, and then references to specific Llama-cpp wrappers.
## Installation and Setup
- Install the Python package with `pip install llama-cpp-python`
- Download one of the [supported models](https://github.com/ggerganov/llama.cpp#description) and convert them to the llama.cpp format per the [instructions](https://github.com/ggerganov/llama.cpp)
## Wrappers
### LLM
There exists a LlamaCpp LLM wrapper, which you can access with
```python
from langchain.llms import LlamaCpp
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/llms/integrations/llamacpp.ipynb)
### Embeddings
There exists a LlamaCpp Embeddings wrapper, which you can access with
```python
from langchain.embeddings import LlamaCppEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/llamacpp.ipynb)

20
docs/ecosystem/milvus.md Normal file
View File

@@ -0,0 +1,20 @@
# Milvus
This page covers how to use the Milvus ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Milvus wrappers.
## Installation and Setup
- Install the Python SDK with `pip install pymilvus`
## Wrappers
### VectorStore
There exists a wrapper around Milvus indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Milvus
```
For a more detailed walkthrough of the Miluvs wrapper, see [this notebook](../modules/indexes/vectorstores/examples/milvus.ipynb)

66
docs/ecosystem/modal.md Normal file
View File

@@ -0,0 +1,66 @@
# Modal
This page covers how to use the Modal ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Modal wrappers.
## Installation and Setup
- Install with `pip install modal-client`
- Run `modal token new`
## Define your Modal Functions and Webhooks
You must include a prompt. There is a rigid response structure.
```python
class Item(BaseModel):
prompt: str
@stub.webhook(method="POST")
def my_webhook(item: Item):
return {"prompt": my_function.call(item.prompt)}
```
An example with GPT2:
```python
from pydantic import BaseModel
import modal
stub = modal.Stub("example-get-started")
volume = modal.SharedVolume().persist("gpt2_model_vol")
CACHE_PATH = "/root/model_cache"
@stub.function(
gpu="any",
image=modal.Image.debian_slim().pip_install(
"tokenizers", "transformers", "torch", "accelerate"
),
shared_volumes={CACHE_PATH: volume},
retries=3,
)
def run_gpt2(text: str):
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
encoded_input = tokenizer(text, return_tensors='pt').input_ids
output = model.generate(encoded_input, max_length=50, do_sample=True)
return tokenizer.decode(output[0], skip_special_tokens=True)
class Item(BaseModel):
prompt: str
@stub.webhook(method="POST")
def get_text(item: Item):
return {"prompt": run_gpt2.call(item.prompt)}
```
## Wrappers
### LLM
There exists an Modal LLM wrapper, which you can access with
```python
from langchain.llms import Modal
```

View File

@@ -0,0 +1,17 @@
# NLPCloud
This page covers how to use the NLPCloud ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific NLPCloud wrappers.
## Installation and Setup
- Install the Python SDK with `pip install nlpcloud`
- Get an NLPCloud api key and set it as an environment variable (`NLPCLOUD_API_KEY`)
## Wrappers
### LLM
There exists an NLPCloud LLM wrapper, which you can access with
```python
from langchain.llms import NLPCloud
```

55
docs/ecosystem/openai.md Normal file
View File

@@ -0,0 +1,55 @@
# OpenAI
This page covers how to use the OpenAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific OpenAI wrappers.
## Installation and Setup
- Install the Python SDK with `pip install openai`
- Get an OpenAI api key and set it as an environment variable (`OPENAI_API_KEY`)
- If you want to use OpenAI's tokenizer (only available for Python 3.9+), install it with `pip install tiktoken`
## Wrappers
### LLM
There exists an OpenAI LLM wrapper, which you can access with
```python
from langchain.llms import OpenAI
```
If you are using a model hosted on Azure, you should use different wrapper for that:
```python
from langchain.llms import AzureOpenAI
```
For a more detailed walkthrough of the Azure wrapper, see [this notebook](../modules/models/llms/integrations/azure_openai_example.ipynb)
### Embeddings
There exists an OpenAI Embeddings wrapper, which you can access with
```python
from langchain.embeddings import OpenAIEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](../modules/models/text_embedding/examples/openai.ipynb)
### Tokenizer
There are several places you can use the `tiktoken` tokenizer. By default, it is used to count tokens
for OpenAI LLMs.
You can also use it to count tokens when splitting documents with
```python
from langchain.text_splitter import CharacterTextSplitter
CharacterTextSplitter.from_tiktoken_encoder(...)
```
For a more detailed walkthrough of this, see [this notebook](../modules/indexes/text_splitters/examples/tiktoken.ipynb)
### Moderation
You can also access the OpenAI content moderation endpoint with
```python
from langchain.chains import OpenAIModerationChain
```
For a more detailed walkthrough of this, see [this notebook](../modules/chains/examples/moderation.ipynb)

View File

@@ -0,0 +1,21 @@
# OpenSearch
This page covers how to use the OpenSearch ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific OpenSearch wrappers.
## Installation and Setup
- Install the Python package with `pip install opensearch-py`
## Wrappers
### VectorStore
There exists a wrapper around OpenSearch vector databases, allowing you to use it as a vectorstore
for semantic search using approximate vector search powered by lucene, nmslib and faiss engines
or using painless scripting and script scoring functions for bruteforce vector search.
To import this vectorstore:
```python
from langchain.vectorstores import OpenSearchVectorSearch
```
For a more detailed walkthrough of the OpenSearch wrapper, see [this notebook](../modules/indexes/vectorstores/examples/opensearch.ipynb)

17
docs/ecosystem/petals.md Normal file
View File

@@ -0,0 +1,17 @@
# Petals
This page covers how to use the Petals ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Petals wrappers.
## Installation and Setup
- Install with `pip install petals`
- Get a Hugging Face api key and set it as an environment variable (`HUGGINGFACE_API_KEY`)
## Wrappers
### LLM
There exists an Petals LLM wrapper, which you can access with
```python
from langchain.llms import Petals
```

View File

@@ -0,0 +1,29 @@
# PGVector
This page covers how to use the Postgres [PGVector](https://github.com/pgvector/pgvector) ecosystem within LangChain
It is broken into two parts: installation and setup, and then references to specific PGVector wrappers.
## Installation
- Install the Python package with `pip install pgvector`
## Setup
1. The first step is to create a database with the `pgvector` extension installed.
Follow the steps at [PGVector Installation Steps](https://github.com/pgvector/pgvector#installation) to install the database and the extension. The docker image is the easiest way to get started.
## Wrappers
### VectorStore
There exists a wrapper around Postgres vector databases, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores.pgvector import PGVector
```
### Usage
For a more detailed walkthrough of the PGVector Wrapper, see [this notebook](../modules/indexes/vectorstores/examples/pgvector.ipynb)

View File

@@ -0,0 +1,20 @@
# Pinecone
This page covers how to use the Pinecone ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Pinecone wrappers.
## Installation and Setup
- Install the Python SDK with `pip install pinecone-client`
## Wrappers
### VectorStore
There exists a wrapper around Pinecone indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Pinecone
```
For a more detailed walkthrough of the Pinecone wrapper, see [this notebook](../modules/indexes/vectorstores/examples/pinecone.ipynb)

View File

@@ -0,0 +1,49 @@
# PromptLayer
This page covers how to use [PromptLayer](https://www.promptlayer.com) within LangChain.
It is broken into two parts: installation and setup, and then references to specific PromptLayer wrappers.
## Installation and Setup
If you want to work with PromptLayer:
- Install the promptlayer python library `pip install promptlayer`
- Create a PromptLayer account
- Create an api token and set it as an environment variable (`PROMPTLAYER_API_KEY`)
## Wrappers
### LLM
There exists an PromptLayer OpenAI LLM wrapper, which you can access with
```python
from langchain.llms import PromptLayerOpenAI
```
To tag your requests, use the argument `pl_tags` when instanializing the LLM
```python
from langchain.llms import PromptLayerOpenAI
llm = PromptLayerOpenAI(pl_tags=["langchain-requests", "chatbot"])
```
To get the PromptLayer request id, use the argument `return_pl_id` when instanializing the LLM
```python
from langchain.llms import PromptLayerOpenAI
llm = PromptLayerOpenAI(return_pl_id=True)
```
This will add the PromptLayer request ID in the `generation_info` field of the `Generation` returned when using `.generate` or `.agenerate`
For example:
```python
llm_results = llm.generate(["hello world"])
for res in llm_results.generations:
print("pl request id: ", res[0].generation_info["pl_request_id"])
```
You can use the PromptLayer request ID to add a prompt, score, or other metadata to your request. [Read more about it here](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9).
This LLM is identical to the [OpenAI LLM](./openai.md), except that
- all your requests will be logged to your PromptLayer account
- you can add `pl_tags` when instantializing to tag your requests on PromptLayer
- you can add `return_pl_id` when instantializing to return a PromptLayer request id to use [while tracking requests](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9).
PromptLayer also provides native wrappers for [`PromptLayerChatOpenAI`](../modules/models/chat/integrations/promptlayer_chatopenai.ipynb) and `PromptLayerOpenAIChat`

20
docs/ecosystem/qdrant.md Normal file
View File

@@ -0,0 +1,20 @@
# Qdrant
This page covers how to use the Qdrant ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Qdrant wrappers.
## Installation and Setup
- Install the Python SDK with `pip install qdrant-client`
## Wrappers
### VectorStore
There exists a wrapper around Qdrant indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Qdrant
```
For a more detailed walkthrough of the Qdrant wrapper, see [this notebook](../modules/indexes/vectorstores/examples/qdrant.ipynb)

View File

@@ -0,0 +1,47 @@
# Replicate
This page covers how to run models on Replicate within LangChain.
## Installation and Setup
- Create a [Replicate](https://replicate.com) account. Get your API key and set it as an environment variable (`REPLICATE_API_TOKEN`)
- Install the [Replicate python client](https://github.com/replicate/replicate-python) with `pip install replicate`
## Calling a model
Find a model on the [Replicate explore page](https://replicate.com/explore), and then paste in the model name and version in this format: `owner-name/model-name:version`
For example, for this [flan-t5 model](https://replicate.com/daanelson/flan-t5), click on the API tab. The model name/version would be: `daanelson/flan-t5:04e422a9b85baed86a4f24981d7f9953e20c5fd82f6103b74ebc431588e1cec8`
Only the `model` param is required, but any other model parameters can also be passed in with the format `input={model_param: value, ...}`
For example, if we were running stable diffusion and wanted to change the image dimensions:
```
Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions': '512x512'})
```
*Note that only the first output of a model will be returned.*
From here, we can initialize our model:
```python
llm = Replicate(model="daanelson/flan-t5:04e422a9b85baed86a4f24981d7f9953e20c5fd82f6103b74ebc431588e1cec8")
```
And run it:
```python
prompt = """
Answer the following yes/no question by reasoning step by step.
Can a dog drive a car?
"""
llm(prompt)
```
We can call any Replicate model (not just LLMs) using this syntax. For example, we can call [Stable Diffusion](https://replicate.com/stability-ai/stable-diffusion):
```python
text2image = Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf",
input={'image_dimensions'='512x512'}
image_output = text2image("A cat riding a motorcycle by Picasso")
```

View File

@@ -0,0 +1,29 @@
# Runhouse
This page covers how to use the [Runhouse](https://github.com/run-house/runhouse) ecosystem within LangChain.
It is broken into three parts: installation and setup, LLMs, and Embeddings.
## Installation and Setup
- Install the Python SDK with `pip install runhouse`
- If you'd like to use on-demand cluster, check your cloud credentials with `sky check`
## Self-hosted LLMs
For a basic self-hosted LLM, you can use the `SelfHostedHuggingFaceLLM` class. For more
custom LLMs, you can use the `SelfHostedPipeline` parent class.
```python
from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
```
For a more detailed walkthrough of the Self-hosted LLMs, see [this notebook](../modules/models/llms/integrations/self_hosted_examples.ipynb)
## Self-hosted Embeddings
There are several ways to use self-hosted embeddings with LangChain via Runhouse.
For a basic self-hosted embedding from a Hugging Face Transformers model, you can use
the `SelfHostedEmbedding` class.
```python
from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
```
For a more detailed walkthrough of the Self-hosted Embeddings, see [this notebook](../modules/models/text_embedding/examples/self-hosted.ipynb)

65
docs/ecosystem/rwkv.md Normal file
View File

@@ -0,0 +1,65 @@
# RWKV-4
This page covers how to use the `RWKV-4` wrapper within LangChain.
It is broken into two parts: installation and setup, and then usage with an example.
## Installation and Setup
- Install the Python package with `pip install rwkv`
- Install the tokenizer Python package with `pip install tokenizer`
- Download a [RWKV model](https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main) and place it in your desired directory
- Download the [tokens file](https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/20B_tokenizer.json)
## Usage
### RWKV
To use the RWKV wrapper, you need to provide the path to the pre-trained model file and the tokenizer's configuration.
```python
from langchain.llms import RWKV
# Test the model
```python
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Input:
{input}
# Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Response:
"""
model = RWKV(model="./models/RWKV-4-Raven-3B-v7-Eng-20230404-ctx4096.pth", strategy="cpu fp32", tokens_path="./rwkv/20B_tokenizer.json")
response = model(generate_prompt("Once upon a time, "))
```
## Model File
You can find links to model file downloads at the [RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main) repository.
### Rwkv-4 models -> recommended VRAM
```
RWKV VRAM
Model | 8bit | bf16/fp16 | fp32
14B | 16GB | 28GB | >50GB
7B | 8GB | 14GB | 28GB
3B | 2.8GB| 6GB | 12GB
1b5 | 1.3GB| 3GB | 6GB
```
See the [rwkv pip](https://pypi.org/project/rwkv/) page for more information about strategies, including streaming and cuda support.

70
docs/ecosystem/searx.md Normal file
View File

@@ -0,0 +1,70 @@
# SearxNG Search API
This page covers how to use the SearxNG search API within LangChain.
It is broken into two parts: installation and setup, and then references to the specific SearxNG API wrapper.
## Installation and Setup
While it is possible to utilize the wrapper in conjunction with [public searx
instances](https://searx.space/) these instances frequently do not permit API
access (see note on output format below) and have limitations on the frequency
of requests. It is recommended to opt for a self-hosted instance instead.
### Self Hosted Instance:
See [this page](https://searxng.github.io/searxng/admin/installation.html) for installation instructions.
When you install SearxNG, the only active output format by default is the HTML format.
You need to activate the `json` format to use the API. This can be done by adding the following line to the `settings.yml` file:
```yaml
search:
formats:
- html
- json
```
You can make sure that the API is working by issuing a curl request to the API endpoint:
`curl -kLX GET --data-urlencode q='langchain' -d format=json http://localhost:8888`
This should return a JSON object with the results.
## Wrappers
### Utility
To use the wrapper we need to pass the host of the SearxNG instance to the wrapper with:
1. the named parameter `searx_host` when creating the instance.
2. exporting the environment variable `SEARXNG_HOST`.
You can use the wrapper to get results from a SearxNG instance.
```python
from langchain.utilities import SearxSearchWrapper
s = SearxSearchWrapper(searx_host="http://localhost:8888")
s.run("what is a large language model?")
```
### Tool
You can also load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["searx-search"],
searx_host="http://localhost:8888",
engines=["github"])
```
Note that we could _optionally_ pass custom engines to use.
If you want to obtain results with metadata as *json* you can use:
```python
tools = load_tools(["searx-search-results-json"],
searx_host="http://localhost:8888",
num_results=5)
```
For more information on tools, see [this page](../modules/agents/tools/getting_started.md)

31
docs/ecosystem/serpapi.md Normal file
View File

@@ -0,0 +1,31 @@
# SerpAPI
This page covers how to use the SerpAPI search APIs within LangChain.
It is broken into two parts: installation and setup, and then references to the specific SerpAPI wrapper.
## Installation and Setup
- Install requirements with `pip install google-search-results`
- Get a SerpAPI api key and either set it as an environment variable (`SERPAPI_API_KEY`)
## Wrappers
### Utility
There exists a SerpAPI utility which wraps this API. To import this utility:
```python
from langchain.utilities import SerpAPIWrapper
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/serpapi.ipynb).
### Tool
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["serpapi"])
```
For more information on this, see [this page](../modules/agents/tools/getting_started.md)

View File

@@ -0,0 +1,17 @@
# StochasticAI
This page covers how to use the StochasticAI ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific StochasticAI wrappers.
## Installation and Setup
- Install with `pip install stochasticx`
- Get an StochasticAI api key and set it as an environment variable (`STOCHASTICAI_API_KEY`)
## Wrappers
### LLM
There exists an StochasticAI LLM wrapper, which you can access with
```python
from langchain.llms import StochasticAI
```

View File

@@ -0,0 +1,45 @@
# Unstructured
This page covers how to use the [`unstructured`](https://github.com/Unstructured-IO/unstructured)
ecosystem within LangChain. The `unstructured` package from
[Unstructured.IO](https://www.unstructured.io/) extracts clean text from raw source documents like
PDFs and Word documents.
This page is broken into two parts: installation and setup, and then references to specific
`unstructured` wrappers.
## Installation and Setup
- Install the Python SDK with `pip install "unstructured[local-inference]"`
- Install the following system dependencies if they are not already available on your system.
Depending on what document types you're parsing, you may not need all of these.
- `libmagic-dev` (filetype detection)
- `poppler-utils` (images and PDFs)
- `tesseract-ocr`(images and PDFs)
- `libreoffice` (MS Office docs)
- `pandoc` (EPUBs)
- If you are parsing PDFs using the `"hi_res"` strategy, run the following to install the `detectron2` model, which
`unstructured` uses for layout detection:
- `pip install "detectron2@git+https://github.com/facebookresearch/detectron2.git@e2ce8dc#egg=detectron2"`
- If `detectron2` is not installed, `unstructured` will fallback to processing PDFs
using the `"fast"` strategy, which uses `pdfminer` directly and doesn't require
`detectron2`.
## Wrappers
### Data Loaders
The primary `unstructured` wrappers within `langchain` are data loaders. The following
shows how to use the most basic unstructured data loader. There are other file-specific
data loaders available in the `langchain.document_loaders` module.
```python
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("state_of_the_union.txt")
loader.load()
```
If you instantiate the loader with `UnstructuredFileLoader(mode="elements")`, the loader
will track additional metadata like the page number and text type (i.e. title, narrative text)
when that information is available.

View File

@@ -0,0 +1,626 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Weights & Biases\n",
"\n",
"This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see.\n",
"\n",
"Run in Colab: https://colab.research.google.com/drive/1DXH4beT4HFaRKy_Vm4PoxhXVDRf7Ym8L?usp=sharing\n",
"\n",
"View Report: https://wandb.ai/a-sh0ts/langchain_callback_demo/reports/Prompt-Engineering-LLMs-with-LangChain-and-W-B--VmlldzozNjk1NTUw#👋-how-to-build-a-callback-in-langchain-for-better-prompt-engineering"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install wandb\n",
"!pip install pandas\n",
"!pip install textstat\n",
"!pip install spacy\n",
"!python -m spacy download en_core_web_sm"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "T1bSmKd6V2If"
},
"outputs": [],
"source": [
"import os\n",
"os.environ[\"WANDB_API_KEY\"] = \"\"\n",
"# os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
"# os.environ[\"SERPAPI_API_KEY\"] = \"\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "8WAGnTWpUUnD"
},
"outputs": [],
"source": [
"from datetime import datetime\n",
"from langchain.callbacks import WandbCallbackHandler, StdOutCallbackHandler\n",
"from langchain.callbacks.base import CallbackManager\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"Callback Handler that logs to Weights and Biases.\n",
"\n",
"Parameters:\n",
" job_type (str): The type of job.\n",
" project (str): The project to log to.\n",
" entity (str): The entity to log to.\n",
" tags (list): The tags to log.\n",
" group (str): The group to log to.\n",
" name (str): The name of the run.\n",
" notes (str): The notes to log.\n",
" visualize (bool): Whether to visualize the run.\n",
" complexity_metrics (bool): Whether to log complexity metrics.\n",
" stream_logs (bool): Whether to stream callback actions to W&B\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cxBFfZR8d9FC"
},
"source": [
"```\n",
"Default values for WandbCallbackHandler(...)\n",
"\n",
"visualize: bool = False,\n",
"complexity_metrics: bool = False,\n",
"stream_logs: bool = False,\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"NOTE: For beta workflows we have made the default analysis based on textstat and the visualizations based on spacy"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "KAz8weWuUeXF"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mharrison-chase\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
]
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150408-e47j1914</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target=\"_blank\">llm</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m The wandb callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/wandb/wandb/issues with the tag `langchain`.\n"
]
}
],
"source": [
"\"\"\"Main function.\n",
"\n",
"This function is used to try the callback handler.\n",
"Scenarios:\n",
"1. OpenAI LLM\n",
"2. Chain with multiple SubChains on multiple generations\n",
"3. Agent with Tools\n",
"\"\"\"\n",
"session_group = datetime.now().strftime(\"%m.%d.%Y_%H.%M.%S\")\n",
"wandb_callback = WandbCallbackHandler(\n",
" job_type=\"inference\",\n",
" project=\"langchain_callback_demo\",\n",
" group=f\"minimal_{session_group}\",\n",
" name=\"llm\",\n",
" tags=[\"test\"],\n",
")\n",
"manager = CallbackManager([StdOutCallbackHandler(), wandb_callback])\n",
"llm = OpenAI(temperature=0, callback_manager=manager, verbose=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Q-65jwrDeK6w"
},
"source": [
"\n",
"\n",
"```\n",
"# Defaults for WandbCallbackHandler.flush_tracker(...)\n",
"\n",
"reset: bool = True,\n",
"finish: bool = False,\n",
"```\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `flush_tracker` function is used to log LangChain sessions to Weights & Biases. It takes in the LangChain module or agent, and logs at minimum the prompts and generations alongside the serialized form of the LangChain module to the specified Weights & Biases project. By default we reset the session as opposed to concluding the session outright."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "o_VmneyIUyx8"
},
"outputs": [
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">llm</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914</a><br/>Synced 5 W&B file(s), 2 media file(s), 5 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230318_150408-e47j1914/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0d7b4307ccdb450ea631497174fca2d1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.016745895149999985, max=1.0…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150534-jyxma7hu</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target=\"_blank\">simple_sequential</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# SCENARIO 1 - LLM\n",
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n",
"wandb_callback.flush_tracker(llm, name=\"simple_sequential\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "trxslyb1U28Y"
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "uauQk10SUzF6"
},
"outputs": [
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">simple_sequential</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu</a><br/>Synced 4 W&B file(s), 2 media file(s), 6 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230318_150534-jyxma7hu/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dbdbf28fb8ed40a3a60218d2e6d1a987",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.016736786816666675, max=1.0…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Tracking run with wandb version 0.14.0"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run data is saved locally in <code>/Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150550-wzy59zjq</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Syncing run <strong><a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target=\"_blank\">agent</a></strong> to <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View project at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run at <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# SCENARIO 2 - Chain\n",
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
"Title: {title}\n",
"Playwright: This is a synopsis for the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callback_manager=manager)\n",
"\n",
"test_prompts = [\n",
" {\n",
" \"title\": \"documentary about good video games that push the boundary of game design\"\n",
" },\n",
" {\"title\": \"cocaine bear vs heroin wolf\"},\n",
" {\"title\": \"the best in class mlops tooling\"},\n",
"]\n",
"synopsis_chain.apply(test_prompts)\n",
"wandb_callback.flush_tracker(synopsis_chain, name=\"agent\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "_jN73xcPVEpI"
},
"outputs": [],
"source": [
"from langchain.agents import initialize_agent, load_tools\n",
"from langchain.agents import AgentType"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "Gpq4rk6VT9cu"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.\n",
"Action: Search\n",
"Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mDiCaprio had a steady girlfriend in Camila Morrone. He had been with the model turned actress for nearly five years, as they were first said to be dating at the end of 2017. And the now 26-year-old Morrone is no stranger to Hollywood.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate her age raised to the 0.43 power.\n",
"Action: Calculator\n",
"Action Input: 26^0.43\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mAnswer: 4.059182145592686\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: Leo DiCaprio's girlfriend is Camila Morrone and her current age raised to the 0.43 power is 4.059182145592686.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/html": [
"Waiting for W&B process to finish... <strong style=\"color:green\">(success).</strong>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" View run <strong style=\"color:#cdcd00\">agent</strong> at: <a href='https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq' target=\"_blank\">https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq</a><br/>Synced 5 W&B file(s), 2 media file(s), 7 artifact file(s) and 0 other file(s)"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Find logs at: <code>./wandb/run-20230318_150550-wzy59zjq/logs</code>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# SCENARIO 3 - Agent with Tools\n",
"tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n",
"agent = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
" callback_manager=manager,\n",
" verbose=True,\n",
")\n",
"agent.run(\n",
" \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
")\n",
"wandb_callback.flush_tracker(agent, reset=False, finish=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -0,0 +1,33 @@
# Weaviate
This page covers how to use the Weaviate ecosystem within LangChain.
What is Weaviate?
**Weaviate in a nutshell:**
- Weaviate is an open-source database of the type vector search engine.
- Weaviate allows you to store JSON documents in a class property-like fashion while attaching machine learning vectors to these documents to represent them in vector space.
- Weaviate can be used stand-alone (aka bring your vectors) or with a variety of modules that can do the vectorization for you and extend the core capabilities.
- Weaviate has a GraphQL-API to access your data easily.
- We aim to bring your vector search set up to production to query in mere milliseconds (check our [open source benchmarks](https://weaviate.io/developers/weaviate/current/benchmarks/) to see if Weaviate fits your use case).
- Get to know Weaviate in the [basics getting started guide](https://weaviate.io/developers/weaviate/current/core-knowledge/basics.html) in under five minutes.
**Weaviate in detail:**
Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), etc. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering and the fault tolerance of a cloud-native database. It is all accessible through GraphQL, REST, and various client-side programming languages.
## Installation and Setup
- Install the Python SDK with `pip install weaviate-client`
## Wrappers
### VectorStore
There exists a wrapper around Weaviate indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores import Weaviate
```
For a more detailed walkthrough of the Weaviate wrapper, see [this notebook](../modules/indexes/vectorstores/getting_started.ipynb)

View File

@@ -0,0 +1,34 @@
# Wolfram Alpha Wrapper
This page covers how to use the Wolfram Alpha API within LangChain.
It is broken into two parts: installation and setup, and then references to specific Wolfram Alpha wrappers.
## Installation and Setup
- Install requirements with `pip install wolframalpha`
- Go to wolfram alpha and sign up for a developer account [here](https://developer.wolframalpha.com/)
- Create an app and get your APP ID
- Set your APP ID as an environment variable `WOLFRAM_ALPHA_APPID`
## Wrappers
### Utility
There exists a WolframAlphaAPIWrapper utility which wraps this API. To import this utility:
```python
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
```
For a more detailed walkthrough of this wrapper, see [this notebook](../modules/agents/tools/examples/wolfram_alpha.ipynb).
### Tool
You can also easily load this wrapper as a Tool (to use with an Agent).
You can do this with:
```python
from langchain.agents import load_tools
tools = load_tools(["wolfram-alpha"])
```
For more information on this, see [this page](../modules/agents/tools/getting_started.md)

16
docs/ecosystem/writer.md Normal file
View File

@@ -0,0 +1,16 @@
# Writer
This page covers how to use the Writer ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Writer wrappers.
## Installation and Setup
- Get an Writer api key and set it as an environment variable (`WRITER_API_KEY`)
## Wrappers
### LLM
There exists an Writer LLM wrapper, which you can access with
```python
from langchain.llms import Writer
```

View File

@@ -1,47 +0,0 @@
Agents
======
The examples here are all end-to-end agents for specific applications.
In all examples there is an Agent with a particular set of tools.
- Tools: A tool can be anything that takes in a string and returns a string. This means that you can use both the primitives AND the chains found in `this <chains.rst>`_ documentation.
- Agents: An agent uses an LLMChain to determine which tools to use. For a list of all available agent types, see `here <../explanation/agents.md>`_.
**MRKL**
- **Tools used**: Search, SQLDatabaseChain, LLMMathChain
- **Agent used**: `zero-shot-react-description`
- `Paper <https://arxiv.org/pdf/2205.00445.pdf>`_
- **Note**: This is the most general purpose example, so if you are looking to use an agent with arbitrary tools, please start here.
- `Example Notebook <agents/mrkl.ipynb>`_
**Self-Ask-With-Search**
- **Tools used**: Search
- **Agent used**: `self-ask-with-search`
- `Paper <https://ofir.io/self-ask.pdf>`_
- `Example Notebook <agents/self_ask_with_search.ipynb>`_
**ReAct**
- **Tools used**: Wikipedia Docstore
- **Agent used**: `react-docstore`
- `Paper <https://arxiv.org/pdf/2210.03629.pdf>`_
- `Example Notebook <agents/react.ipynb>`_
Additionally, we also provide examples for how to do more customizability:
**Custom Agent**
- Purpose: How to create custom agents.
- `Example Notebook <agents/custom_agent.ipynb>`_
.. toctree::
:maxdepth: 1
:glob:
:hidden:
agents/*

View File

@@ -1,88 +0,0 @@
"""Run NatBot."""
import time
from langchain.chains.natbot.base import NatBotChain
from langchain.chains.natbot.crawler import Crawler # type: ignore
def run_cmd(cmd: str, _crawler: Crawler) -> None:
"""Run command."""
cmd = cmd.split("\n")[0]
if cmd.startswith("SCROLL UP"):
_crawler.scroll("up")
elif cmd.startswith("SCROLL DOWN"):
_crawler.scroll("down")
elif cmd.startswith("CLICK"):
commasplit = cmd.split(",")
id = commasplit[0].split(" ")[1]
_crawler.click(id)
elif cmd.startswith("TYPE"):
spacesplit = cmd.split(" ")
id = spacesplit[1]
text_pieces = spacesplit[2:]
text = " ".join(text_pieces)
# Strip leading and trailing double quotes
text = text[1:-1]
if cmd.startswith("TYPESUBMIT"):
text += "\n"
_crawler.type(id, text)
time.sleep(2)
if __name__ == "__main__":
objective = "Make a reservation for 2 at 7pm at bistro vida in menlo park"
print("\nWelcome to natbot! What is your objective?")
i = input()
if len(i) > 0:
objective = i
quiet = False
nat_bot_chain = NatBotChain.from_default(objective)
_crawler = Crawler()
_crawler.go_to_page("google.com")
try:
while True:
browser_content = "\n".join(_crawler.crawl())
llm_command = nat_bot_chain.execute(_crawler.page.url, browser_content)
if not quiet:
print("URL: " + _crawler.page.url)
print("Objective: " + objective)
print("----------------\n" + browser_content + "\n----------------\n")
if len(llm_command) > 0:
print("Suggested command: " + llm_command)
command = input()
if command == "r" or command == "":
run_cmd(llm_command, _crawler)
elif command == "g":
url = input("URL:")
_crawler.go_to_page(url)
elif command == "u":
_crawler.scroll("up")
time.sleep(1)
elif command == "d":
_crawler.scroll("down")
time.sleep(1)
elif command == "c":
id = input("id:")
_crawler.click(id)
time.sleep(1)
elif command == "t":
id = input("id:")
text = input("text:")
_crawler.type(id, text)
time.sleep(1)
elif command == "o":
objective = input("Objective:")
else:
print(
"(g) to visit url\n(u) scroll up\n(d) scroll down\n(c) to click"
"\n(t) to type\n(h) to view commands again"
"\n(r/enter) to run suggested command\n(o) change objective"
)
except KeyboardInterrupt:
print("\n[!] Ctrl+C detected, exiting gracefully.")
exit(0)

View File

@@ -1,111 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "82140df0",
"metadata": {},
"source": [
"# ReAct\n",
"\n",
"This notebook showcases using an agent to implement the ReAct logic."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4e272b47",
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, Wikipedia\n",
"from langchain.agents import initialize_agent, Tool\n",
"from langchain.agents.react.base import DocstoreExplorer\n",
"docstore=DocstoreExplorer(Wikipedia())\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=docstore.search\n",
" ),\n",
" Tool(\n",
" name=\"Lookup\",\n",
" func=docstore.lookup\n",
" )\n",
"]\n",
"\n",
"llm = OpenAI(temperature=0, model_name=\"text-davinci-002\")\n",
"react = initialize_agent(tools, llm, agent=\"react-docstore\", verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8078c8f1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new ReActDocstoreAgent chain...\u001b[0m\n",
"Author David Chanoff has collaborated with a U.S. Navy admiral who served as the ambassador to the United Kingdom under which President?\n",
"Thought 1:\u001b[32;1m\u001b[1;3m I need to search David Chanoff and find the U.S. Navy admiral he collaborated\n",
"with.\n",
"Action 1: Search[David Chanoff]\u001b[0m\n",
"Observation 1: \u001b[36;1m\u001b[1;3mDavid Chanoff is a noted author of non-fiction work. His work has typically involved collaborations with the principal protagonist of the work concerned. His collaborators have included; Augustus A. White, Joycelyn Elders, Đoàn Văn Toại, William J. Crowe, Ariel Sharon, Kenneth Good and Felix Zandman. He has also written about a wide range of subjects including literary history, education and foreign for The Washington Post, The New Republic and The New York Times Magazine. He has published more than twelve books.\u001b[0m\n",
"Thought 2:\u001b[32;1m\u001b[1;3m The U.S. Navy admiral David Chanoff collaborated with is William J. Crowe.\n",
"Action 2: Search[William J. Crowe]\u001b[0m\n",
"Observation 2: \u001b[36;1m\u001b[1;3mWilliam James Crowe Jr. (January 2, 1925 October 18, 2007) was a United States Navy admiral and diplomat who served as the 11th chairman of the Joint Chiefs of Staff under Presidents Ronald Reagan and George H. W. Bush, and as the ambassador to the United Kingdom and Chair of the Intelligence Oversight Board under President Bill Clinton.\u001b[0m\n",
"Thought 3:\u001b[32;1m\u001b[1;3m William J. Crowe served as the ambassador to the United Kingdom under President Bill Clinton.\n",
"Action 3: Finish[Bill Clinton]\u001b[0m\n",
"\u001b[1m> Finished ReActDocstoreAgent chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Bill Clinton'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question = \"Author David Chanoff has collaborated with a U.S. Navy admiral who served as the ambassador to the United Kingdom under which President?\"\n",
"react.run(question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4ff64e81",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,88 +0,0 @@
Chains
======
The examples here are all end-to-end chains for specific applications.
A chain is made up of links, which can be either primitives or other chains.
The following primitives exist as options to use for links:
#. `LLM: <../modules/llms.rst>`_ A language model takes text as input and outputs text.
#. `PromptTemplate: <../modules/prompt.rst>`_ A prompt template takes arbitrary string inputs and returns a final formatted string.
#. `TextSplitter: <../modules/text_splitter.rst>`_ A text splitter takes a longer document and splits it into smaller chunks.
#. `Python REPL: <../modules/python.rst>`_ A Python REPL takes a string representing a Python command to run, runs that command, and then returns anything that was printed during that run.
#. `SQL Database: <../modules/sql_database.rst>`_ A SQL database takes a string representing a SQL command as input and executes that command against the database. If any rows are returned, then those are cast to a string and returned.
#. `Search: <../modules/serpapi.rst>`_ A search object takes a string as input and executes that against a search object, returning any results.
#. `Docstore: <../modules/docstore.rst>`_ A docstore object can be used to lookup a document in a database by exact match.
#. `Vectorstore: <../modules/vectorstore.rst>`_ A vectorstore object uses embeddings stored in a vector database to take in an input string and return documents similar to that string.
With these primitives in mind, the following chains exist:
**LLMChain**
- **Links Used**: PromptTemplate, LLM
- **Notes**: This chain is the simplest chain, and is widely used by almost every other chain. This chain takes arbitrary user input, creates a prompt with it from the PromptTemplate, passes that to the LLM, and then returns the output of the LLM as the final output.
- `Example Notebook <chains/llm_chain.ipynb>`_
**LLMMath**
- **Links Used**: Python REPL, LLMChain
- **Notes**: This chain takes user input (a math question), uses an LLMChain to convert it to python code snippet to run in the Python REPL, and then returns that as the result.
- `Example Notebook <chains/llm_math.ipynb>`_
**PAL**
- **Links Used**: Python REPL, LLMChain
- **Notes**: This chain takes user input (a reasoning question), uses an LLMChain to convert it to python code snippet to run in the Python REPL, and then returns that as the result.
- `Paper <https://arxiv.org/abs/2211.10435>`_
- `Example Notebook <chains/pal.ipynb>`_
**Recursive Summarization**
- **Links Used**: TextSplitter, LLMChain
- **Notes**: This chain splits a document into chunks, runs a first LLMChain over each chunk to summarize it, and then runs a second LLMChain over those results to get a summary of the summaries.
- `Example Notebook <chains/map_reduce.ipynb>`_
**SQLDatabase Chain**
- **Links Used**: SQLDatabase, LLMChain
- **Notes**: This chain takes user input (a question), uses a first LLM chain to construct a SQL query to run against the SQL database, and then uses another LLMChain to take the results of that query and use it to answer the original question.
- `Example Notebook <chains/sqlite.ipynb>`_
**Vector Database Question-Answering**
- **Links Used**: Vectorstore, LLMChain
- **Notes**: This chain takes user input (a question), uses the Vectorstore and semantic search to find relevant documents, and then passes the documents plus the original question to another LLM to generate a final answer.
- `Example Notebook <chains/vector_db_qa.ipynb>`_
**Vector Database Question-Answering With Sources**
- **Links Used**: Vectorstore, LLMChain
- **Notes**: This chain takes user input (a question), uses the Vectorstore and semantic search to find relevant documents, and then passes the documents plus the original question to another LLM to generate a final answer with sources.
- `Example Notebook <chains/vector_db_qa_with_sources.ipynb>`_
**Question-Answering With Sources**
- **Links Used**: LLMChain
- **Notes**: These types of chains take a question and multiple documents as input, and return an answer plus sources for where that answer came from. There are multiple underlying types of chains to do this, for more information see TODO.
- `Example Notebook <chains/qa_with_sources.ipynb>`_
**Question-Answering**
- **Links Used**: LLMChain
- **Notes**: These types of chains take a question and multiple documents as input, and return an answer. There are multiple underlying types of chains to do this, for more information see TODO.
- `Example Notebook <chains/question_answering.ipynb>`_
**Summarization**
- **Links Used**: LLMChain
- **Notes**: These types of chains take multiple documents as input, and return a summary of all documents. There are multiple underlying types of chains to do this, for more information see TODO.
- `Example Notebook <chains/summarize.ipynb>`_
.. toctree::
:maxdepth: 1
:glob:
:caption: Chains
:hidden:
chains/*

View File

@@ -1,87 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# BashChain\n",
"This notebook showcases using LLMs and a bash process to do perform simple filesystem commands."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMBashChain chain...\u001b[0m\n",
"Please write a bash script that prints 'Hello World' to the console.\u001b[32;1m\u001b[1;3m\n",
"\n",
"```bash\n",
"echo \"Hello World\"\n",
"```\u001b[0m['```bash', 'echo \"Hello World\"', '```']\n",
"\n",
"Answer: \u001b[33;1m\u001b[1;3mHello World\n",
"\u001b[0m\n",
"\u001b[1m> Finished LLMBashChain chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Hello World\\n'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import LLMBashChain\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",
"text = \"Please write a bash script that prints 'Hello World' to the console.\"\n",
"\n",
"bash_chain = LLMBashChain(llm=llm, verbose=True)\n",
"\n",
"bash_chain.run(text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,91 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e71e720f",
"metadata": {},
"source": [
"# LLM Math\n",
"\n",
"This notebook showcases using LLMs and Python REPLs to do complex word math problems."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "44e9ba31",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"How many of the integers between 0 and 99 inclusive are divisible by 8?\u001b[102m\n",
"\n",
"```python\n",
"count = 0\n",
"for i in range(100):\n",
" if i % 8 == 0:\n",
" count += 1\n",
"print(count)\n",
"```\n",
"\u001b[0m\n",
"Answer: \u001b[103m13\n",
"\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 13\\n'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import OpenAI, LLMMathChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_math = LLMMathChain(llm=llm, verbose=True)\n",
"\n",
"llm_math.run(\"How many of the integers between 0 and 99 inclusive are divisible by 8?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f62f0c75",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,258 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "74148cee",
"metadata": {},
"source": [
"# Question Answering with Sources\n",
"\n",
"This notebook walks through how to use LangChain for question answering with sources over a list of documents. It covers three different chain types: `stuff`, `map_reduce`, and `refine`. For a more in depth explanation of what these chain types are, see [here](../../explanation/combine_docs.md)."
]
},
{
"cell_type": "markdown",
"id": "ca2f0efc",
"metadata": {},
"source": [
"### Prepare Data\n",
"First we prepare the data. For this example we do similarity search over a vector database, but these documents could be fetched in any manner (the point of this notebook to highlight what to do AFTER you fetch the documents)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "78f28130",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.embeddings.cohere import CohereEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch\n",
"from langchain.vectorstores.faiss import FAISS\n",
"from langchain.docstore.document import Document"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4da195a3",
"metadata": {},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5ec2b55b",
"metadata": {},
"outputs": [],
"source": [
"docsearch = FAISS.from_texts(texts, embeddings, metadatas=[{\"source\": i} for i in range(len(texts))])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5286f58f",
"metadata": {},
"outputs": [],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "005a47e9",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.qa_with_sources import load_qa_with_sources_chain\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "markdown",
"id": "d82f899a",
"metadata": {},
"source": [
"### The `stuff` Chain\n",
"\n",
"This sections shows results of using the `stuff` Chain to do question answering with sources."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fc1a5ed6",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type=\"stuff\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e239964b",
"metadata": {},
"outputs": [],
"source": [
"docs = [Document(page_content=t, metadata={\"source\": i}) for i, t in enumerate(texts[:3])]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7d766417",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'output_text': ' The president did not mention Justice Breyer.\\nSOURCES: 0-pl, 1-pl, 2-pl'}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "c5dbb304",
"metadata": {},
"source": [
"### The `map_reduce` Chain\n",
"\n",
"This sections shows results of using the `map_reduce` Chain to do question answering with sources."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "921db0a4",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type=\"map_reduce\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e417926a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.\n",
"Token indices sequence length is longer than the specified maximum sequence length for this model (1546 > 1024). Running this sequence through the model will result in indexing errors\n"
]
},
{
"data": {
"text/plain": [
"{'output_text': ' The president did not mention Justice Breyer.\\nSOURCES: 0, 1, 2'}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "5bf0e1ab",
"metadata": {},
"source": [
"### The `refine` Chain\n",
"\n",
"This sections shows results of using the `refine` Chain to do question answering with sources."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "904835c8",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type=\"refine\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f60875c6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'output_text': \"\\n\\nThe president did not mention Justice Breyer in his speech to the European Parliament, which focused on building a coalition of freedom-loving nations to confront Putin, unifying European allies, countering Russia's lies with truth, and enforcing powerful economic sanctions. Source: 2\"}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "929620d0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,248 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "05859721",
"metadata": {},
"source": [
"# Question Answering\n",
"\n",
"This notebook walks through how to use LangChain for question answering over a list of documents. It covers three different types of chaings: `stuff`, `map_reduce`, and `refine`. For a more in depth explanation of what these chain types are, see [here](../../explanation/combine_docs.md)."
]
},
{
"cell_type": "markdown",
"id": "726f4996",
"metadata": {},
"source": [
"### Prepare Data\n",
"First we prepare the data. For this example we do similarity search over a vector database, but these documents could be fetched in any manner (the point of this notebook to highlight what to do AFTER you fetch the documents)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "17fcbc0f",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores.faiss import FAISS\n",
"from langchain.docstore.document import Document"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "291f0117",
"metadata": {},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "fd9666a9",
"metadata": {},
"outputs": [],
"source": [
"docsearch = FAISS.from_texts(texts, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d1eaf6e6",
"metadata": {},
"outputs": [],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a16e3453",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.question_answering import load_qa_chain\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "markdown",
"id": "f78787a0",
"metadata": {},
"source": [
"### The `stuff` Chain\n",
"\n",
"This sections shows results of using the `stuff` Chain to do question answering."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "180fd4c1",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"stuff\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d145ae31",
"metadata": {},
"outputs": [],
"source": [
"docs = [Document(page_content=t) for t in texts[:3]]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "77fdf1aa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'output_text': ' The president did not mention Justice Breyer.'}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "91522e29",
"metadata": {},
"source": [
"### The `map_reduce` Chain\n",
"\n",
"This sections shows results of using the `map_reduce` Chain to do question answering."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b0060f51",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"map_reduce\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "fbdb9137",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'output_text': ' The president did not mention Justice Breyer.'}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"id": "6ea50ad0",
"metadata": {},
"source": [
"### The `refine` Chain\n",
"\n",
"This sections shows results of using the `refine` Chain to do question answering."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "fb167057",
"metadata": {},
"outputs": [],
"source": [
"chain = load_qa_chain(OpenAI(temperature=0), chain_type=\"refine\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d8b5286e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'output_text': \"\\n\\nThe president did not mention Justice Breyer in his speech to the European Parliament about building a coalition of freedom-loving nations to confront Putin, unifying European allies, countering Russia's lies with truth, and enforcing powerful economic sanctions.\"}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Justice Breyer\"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "49e9c6d7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,129 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0ed6aab1",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# SQLite example\n",
"\n",
"This example showcases hooking up an LLM to answer questions over a database."
]
},
{
"cell_type": "markdown",
"id": "b2f66479",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"This uses the example Chinook database.\n",
"To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d0e27d88",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain import OpenAI, SQLDatabase, SQLDatabaseChain"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "72ede462",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"db = SQLDatabase.from_uri(\"sqlite:///../../../notebooks/Chinook.db\")\n",
"llm = OpenAI(temperature=0)\n",
"db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "15ff81df",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"How many employees are there?\n",
"SQLQuery:\u001b[102m SELECT COUNT(*) FROM Employee\u001b[0m\n",
"SQLResult: \u001b[103m[(8,)]\u001b[0m\n",
"Answer:\u001b[102m 8\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' 8'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db_chain.run(\"How many employees are there?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "61d91b85",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,234 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d9a0131f",
"metadata": {},
"source": [
"# Summarization\n",
"\n",
"This notebook walks through how to use LangChain for summarization over a list of documents. It covers three different chain types: `stuff`, `map_reduce`, and `refine`. For a more in depth explanation of what these chain types are, see [here](../../explanation/combine_docs.md)."
]
},
{
"cell_type": "markdown",
"id": "0b5660bf",
"metadata": {},
"source": [
"### Prepare Data\n",
"First we prepare the data. For this example we create multiple documents from one long one, but these documents could be fetched in any manner (the point of this notebook to highlight what to do AFTER you fetch the documents)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e9db25f3",
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, PromptTemplate, LLMChain\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.chains.mapreduce import MapReduceChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",
"\n",
"text_splitter = CharacterTextSplitter()\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "99bbe19b",
"metadata": {},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"texts = text_splitter.split_text(state_of_the_union)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "baa6e808",
"metadata": {},
"outputs": [],
"source": [
"from langchain.docstore.document import Document"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8dff4f43",
"metadata": {},
"outputs": [],
"source": [
"docs = [Document(page_content=t) for t in texts[:3]]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "27989fc4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.summarize import load_summarize_chain"
]
},
{
"cell_type": "markdown",
"id": "ea2d5c99",
"metadata": {},
"source": [
"### The `stuff` Chain\n",
"\n",
"This sections shows results of using the `stuff` Chain to do summarization."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f01f3196",
"metadata": {},
"outputs": [],
"source": [
"chain = load_summarize_chain(llm, chain_type=\"stuff\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "da4d9801",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' In his speech, President Biden addressed the ongoing conflict between Russia and Ukraine, and the need for the United States and its allies to stand with Ukraine. He also discussed the American Rescue Plan, the Bipartisan Infrastructure Law, and the Bipartisan Innovation Act, which will help to create jobs, modernize infrastructure, and level the playing field with China. He also emphasized the importance of buying American products to support American jobs.'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(docs)"
]
},
{
"cell_type": "markdown",
"id": "9c868e86",
"metadata": {},
"source": [
"### The `map_reduce` Chain\n",
"\n",
"This sections shows results of using the `map_reduce` Chain to do summarization."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ef28e1d4",
"metadata": {},
"outputs": [],
"source": [
"chain = load_summarize_chain(llm, chain_type=\"map_reduce\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f82c5f9f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" In response to Vladimir Putin's aggression in Ukraine, the US and its allies have taken action to hold him accountable, including economic sanctions, cutting off access to technology, and seizing the assets of Russian oligarchs. They are also providing military, economic, and humanitarian assistance to the Ukrainians, and releasing 60 million barrels of oil from reserves around the world. President Biden has passed several laws to provide economic relief to Americans and create jobs, and is making sure taxpayer dollars support American jobs and businesses.\""
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(docs)"
]
},
{
"cell_type": "markdown",
"id": "f61350f9",
"metadata": {},
"source": [
"### The `refine` Chain\n",
"\n",
"This sections shows results of using the `refine` Chain to do summarization."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "3bcbe31e",
"metadata": {},
"outputs": [],
"source": [
"chain = load_summarize_chain(llm, chain_type=\"refine\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "c8cad866",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"\\nIn this speech, the speaker addresses the American people and their allies, discussing the recent aggression of Russia's Vladimir Putin in Ukraine. The speaker outlines the actions taken by the United States and its allies to hold Putin accountable, including economic sanctions, cutting off access to technology, and seizing the assets of Russian oligarchs. The speaker also announces the closing of American airspace to Russian flights, further isolating Russia and adding an additional squeeze on their economy. The Russian stock market has lost 40% of its value and trading remains suspended. Together with our allies, the United States is providing military, economic, and humanitarian assistance to Ukraine, and has mobilized forces to protect NATO countries. The speaker also announces the release of 60 million barrels of oil from reserves around the world, with the United States releasing 30 million barrels from its own Strategic Petroleum Reserve. The speaker emphasizes that the United States and its allies will defend every inch of NATO territory and that Putin will pay a high price for his aggression. The speaker also acknowledges the hardships faced by the American people due to the pandemic and the American Rescue Plan, which has provided immediate economic relief for tens of millions of Americans, helped put food on their table, keep a roof over their heads, and cut the cost of health insurance. The speaker\""
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(docs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0da92750",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,104 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "07c1e3b9",
"metadata": {},
"source": [
"# Vector DB Question/Answering\n",
"\n",
"This example showcases question answering over a vector database."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "82525493",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores.faiss import FAISS\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain import OpenAI, VectorDBQA"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5c7049db",
"metadata": {},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"docsearch = FAISS.from_texts(texts, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3018f865",
"metadata": {},
"outputs": [],
"source": [
"qa = VectorDBQA.from_llm(llm=OpenAI(), vectorstore=docsearch)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "032a47f8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" The president said that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator and federal public defender, and from a family of public school educators and police officers. He also said that she has received a broad range of support since she was nominated, from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"qa.run(query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f056f6fd",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,146 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "efc5be67",
"metadata": {},
"source": [
"# VectorDB Question Ansering with Sources\n",
"\n",
"This notebook goes over how to do question-answering with sources. It does this in a few different ways - first showing how you can use the `QAWithSourcesChain` to take in documents and use those, and next showing the `VectorDBQAWithSourcesChain`, which also does the lookup of the documents from a vector database. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1c613960",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.embeddings.cohere import CohereEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch\n",
"from langchain.vectorstores.faiss import FAISS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "17d1306e",
"metadata": {},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0e745d99",
"metadata": {},
"outputs": [],
"source": [
"docsearch = FAISS.from_texts(texts, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f42d79dc",
"metadata": {},
"outputs": [],
"source": [
"# Add in a fake source information\n",
"for i, d in enumerate(docsearch.docstore._dict.values()):\n",
" d.metadata = {'source': f\"{i}-pl\"}"
]
},
{
"cell_type": "markdown",
"id": "e6fc81de",
"metadata": {},
"source": [
"### VectorDBQAWithSourcesChain\n",
"\n",
"This shows how to use the `VectorDBQAWithSourcesChain`, which uses a vector database to look up relevant documents."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8aa571ae",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import VectorDBQAWithSourcesChain"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "aa859d4c",
"metadata": {},
"outputs": [],
"source": [
"chain = VectorDBQAWithSourcesChain.from_llm(OpenAI(temperature=0), vectorstore=docsearch)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8ba36fa7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'answer': ' The president thanked Justice Breyer for his service.',\n",
" 'sources': '27-pl'}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain({\"question\": \"What did the president say about Justice Breyer\"}, return_only_outputs=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "980fae3b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,10 +0,0 @@
Integrations
============
The examples here all highlight a specific type of integration.
.. toctree::
:maxdepth: 1
:glob:
integrations/*

View File

@@ -1,177 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "7ef4d402-6662-4a26-b612-35b542066487",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Embeddings & VectorStores\n",
"\n",
"This notebook show cases how to use embeddings to create a VectorStore"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "965eecee",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch\n",
"from langchain.vectorstores.faiss import FAISS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "68481687",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "015f4ff5",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"docsearch = FAISS.from_texts(texts, embeddings)\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "67baf32e",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence. \n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "eea6e627",
"metadata": {},
"source": [
"## Requires having ElasticSearch setup"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4906b8a3",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"docsearch = ElasticVectorSearch.from_texts(texts, embeddings, elasticsearch_url=\"http://localhost:9200\")\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "95f9eee9",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence. \n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,304 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "b118c9dc",
"metadata": {},
"source": [
"# Text Splitter\n",
"\n",
"When you want to deal wit long pieces of text, it is necessary to split up that text into chunks.\n",
"This notebook showcases several ways to do that.\n",
"\n",
"At a high level, text splitters work as following:\n",
"\n",
"1. Split the text up into small, semantically meaningful chunks (often sentences).\n",
"2. Start combining these small chunks into a larger chunk until you reach a certain size (as measured by some function).\n",
"3. Once you reach that size, make that chunk its own piece of text and then start creating a new chunk of text with some overlap (to keep context between chunks)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e82c4685",
"metadata": {},
"outputs": [],
"source": [
"from langchain.text_splitter import CharacterTextSplitter, NLTKTextSplitter, SpacyTextSplitter\n",
"# This is a long document we can split up.\n",
"with open('../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()"
]
},
{
"cell_type": "markdown",
"id": "5c461b26",
"metadata": {},
"source": [
"## Character Text Splitting\n",
"\n",
"Let's start with the most simple method: let's split based on characters (by default \"\\n\\n\") and measure chunk length by number of characters."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "79ff6737",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = CharacterTextSplitter( \n",
" separator = \"\\n\\n\",\n",
" chunk_size = 1000,\n",
" chunk_overlap = 200,\n",
" length_function = len,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "38547666",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \\n\\nLast year COVID-19 kept us apart. This year we are finally together again. \\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \\n\\nWith a duty to one another to the American people to the Constitution. \\n\\nAnd with an unwavering resolve that freedom will always triumph over tyranny. \\n\\nSix days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \\n\\nHe thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \\n\\nHe met the Ukrainian people. \\n\\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. \\n\\nGroups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. '"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"texts = text_splitter.split_text(state_of_the_union)\n",
"texts[0]"
]
},
{
"cell_type": "markdown",
"id": "13dc0983",
"metadata": {},
"source": [
"## HuggingFace Length Function\n",
"Most LLMs are constrained by the number of tokens that you can pass in, which is not the same as the number of characters. In order to get a more accurate estimate, we can use HuggingFace tokenizers to count the text length."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a8ce51d5",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.\n"
]
}
],
"source": [
"from transformers import GPT2TokenizerFast\n",
"\n",
"tokenizer = GPT2TokenizerFast.from_pretrained(\"gpt2\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ca5e72c0",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(tokenizer, chunk_size=100, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "37cdfbeb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n",
"\n",
"Last year COVID-19 kept us apart. This year we are finally together again. \n",
"\n",
"Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n",
"\n",
"With a duty to one another to the American people to the Constitution. \n",
"\n",
"And with an unwavering resolve that freedom will always triumph over tyranny. \n"
]
}
],
"source": [
"print(texts[0])"
]
},
{
"cell_type": "markdown",
"id": "7683b36a",
"metadata": {},
"source": [
"## tiktoken (OpenAI) Length Function\n",
"You can also use tiktoken, a open source tokenizer package from OpenAI to estimate tokens used. Will probably be ore accurate for their models."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "825f7c0a",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=100, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ae35d165",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n",
"\n",
"Last year COVID-19 kept us apart. This year we are finally together again. \n",
"\n",
"Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n",
"\n",
"With a duty to one another to the American people to the Constitution. \n",
"\n",
"And with an unwavering resolve that freedom will always triumph over tyranny. \n"
]
}
],
"source": [
"print(texts[0])"
]
},
{
"cell_type": "markdown",
"id": "ea2973ac",
"metadata": {},
"source": [
"## NLTK Text Splitter\n",
"Rather than just splitting on \"\\n\\n\", we can use NLTK to split based on tokenizers."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "20fa9c23",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = NLTKTextSplitter(chunk_size=1000)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "5ea10835",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Madam Speaker, Madam Vice President, our First Lady and Second Gentleman.\\n\\nMembers of Congress and the Cabinet.\\n\\nJustices of the Supreme Court.\\n\\nMy fellow Americans.\\n\\nLast year COVID-19 kept us apart.\\n\\nThis year we are finally together again.\\n\\nTonight, we meet as Democrats Republicans and Independents.\\n\\nBut most importantly as Americans.\\n\\nWith a duty to one another to the American people to the Constitution.\\n\\nAnd with an unwavering resolve that freedom will always triumph over tyranny.\\n\\nSix days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways.\\n\\nBut he badly miscalculated.\\n\\nHe thought he could roll into Ukraine and the world would roll over.\\n\\nInstead he met a wall of strength he never imagined.\\n\\nHe met the Ukrainian people.\\n\\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.\\n\\nGroups of citizens blocking tanks with their bodies.\\n\\nEveryone from students to retirees teachers turned soldiers defending their homeland.'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"texts = text_splitter.split_text(state_of_the_union)\n",
"texts[0]"
]
},
{
"cell_type": "markdown",
"id": "dab86b60",
"metadata": {},
"source": [
"## Spacy Text Splitter\n",
"Another alternative to NLTK is to use Spacy."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "f9cc9dfc",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = SpacyTextSplitter(chunk_size=1000)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "cef2b29e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Madam Speaker, Madam Vice President, our First Lady and Second Gentleman.\\n\\nMembers of Congress and the Cabinet.\\n\\nJustices of the Supreme Court.\\n\\nMy fellow Americans. \\n\\n\\n\\nLast year COVID-19 kept us apart.\\n\\nThis year we are finally together again.\\n\\n\\n\\n\\n\\nTonight, we meet as Democrats Republicans and Independents.\\n\\nBut most importantly as Americans.\\n\\n\\n\\n\\n\\nWith a duty to one another to the American people to the Constitution. \\n\\n\\n\\nAnd with an unwavering resolve that freedom will always triumph over tyranny.\\n\\n\\n\\n\\n\\nSix days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways.\\n\\nBut he badly miscalculated.\\n\\n\\n\\n\\n\\nHe thought he could roll into Ukraine and the world would roll over.\\n\\nInstead he met a wall of strength he never imagined.\\n\\n\\n\\n\\n\\nHe met the Ukrainian people.\\n\\n\\n\\n\\n\\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.\\n\\n\\n\\n\\n\\nGroups of citizens blocking tanks with their bodies.\\n\\nEveryone from students to retirees teachers turned soldiers defending their homeland.'"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"texts = text_splitter.split_text(state_of_the_union)\n",
"texts[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1a118b1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,11 +0,0 @@
Memory
======
The examples here are all related to working with the concept of Memory in LangChain.
.. toctree::
:maxdepth: 1
:glob:
:caption: Memory
memory/*

View File

@@ -1,325 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "fa6802ac",
"metadata": {},
"source": [
"# Adding Memory to an Agent\n",
"\n",
"This notebook goes over adding memory to an Agent. Before going through this notebook, please walkthrough the following notebooks, as this will build on top of both of them:\n",
"\n",
"- [Adding memory to an LLM Chain](adding_memory.ipynb)\n",
"- [Custom Agents](../agents/custom_agent.ipynb)\n",
"\n",
"In order to add a memory to an agent we are going to the the following steps:\n",
"\n",
"1. We are going to create an LLMChain with memory.\n",
"2. We are going to use that LLMChain to create a custom Agent.\n",
"\n",
"For the purposes of this exercise, we are going to create a simple custom Agent that has access to a search tool and utilizes the `ConversationBufferMemory` class."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "8db95912",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import ZeroShotAgent, Tool\n",
"from langchain.chains.conversation.memory import ConversationBufferMemory\n",
"from langchain import OpenAI, SerpAPIWrapper, LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "97ad8467",
"metadata": {},
"outputs": [],
"source": [
"search = SerpAPIWrapper()\n",
"tools = [\n",
" Tool(\n",
" name = \"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\"\n",
" )\n",
"]"
]
},
{
"cell_type": "markdown",
"id": "4ad2e708",
"metadata": {},
"source": [
"Notice the usage of the `chat_history` variable in the PromptTemplate, which matches up with the dynamic key name in the ConversationBufferMemory."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e3439cd6",
"metadata": {},
"outputs": [],
"source": [
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
"suffix = \"\"\"Begin!\"\n",
"\n",
"{chat_history}\n",
"Question: {input}\"\"\"\n",
"\n",
"prompt = ZeroShotAgent.create_prompt(\n",
" tools, \n",
" prefix=prefix, \n",
" suffix=suffix, \n",
" input_variables=[\"input\", \"chat_history\"]\n",
")\n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\")"
]
},
{
"cell_type": "markdown",
"id": "0021675b",
"metadata": {},
"source": [
"We can now construct the LLMChain, with the Memory object, and then create the agent."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c56a0e73",
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt, memory=memory)\n",
"agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ca4bc1fb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"How many people live in canada?\n",
"Thought:\u001b[32;1m\u001b[1;3m I should look up how many people live in canada\n",
"Action: Search\n",
"Action Input: \"How many people live in canada?\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mThe current population of Canada is 38,533,678 as of Friday, November 25, 2022, based on Worldometer elaboration of the latest United Nations data. · Canada 2020 ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: The current population of Canada is 38,533,678 as of Friday, November 25, 2022, based on Worldometer elaboration of the latest United Nations data.\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The current population of Canada is 38,533,678 as of Friday, November 25, 2022, based on Worldometer elaboration of the latest United Nations data.'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"How many people live in canada?\")"
]
},
{
"cell_type": "markdown",
"id": "45627664",
"metadata": {},
"source": [
"To test the memory of this agent, we can ask a followup question that relies on information in the previous exchange to be answered correctly."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eecc0462",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"what is their national anthem called?\n",
"Thought:\u001b[32;1m\u001b[1;3m\n",
"AI: I should look up the name of Canada's national anthem\n",
"Action: Search\n",
"Action Input: \"What is the name of Canada's national anthem?\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mAfter 100 years of tradition, O Canada was proclaimed Canada's national anthem in 1980. The music for O Canada was composed in 1880 by Calixa ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m\n",
"AI: I now know the final answer\n",
"Final Answer: After 100 years of tradition, O Canada was proclaimed Canada's national anthem in 1980. The music for O Canada was composed in 1880 by Calixa Lavallée.\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"After 100 years of tradition, O Canada was proclaimed Canada's national anthem in 1980. The music for O Canada was composed in 1880 by Calixa Lavallée.\""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"what is their national anthem called?\")"
]
},
{
"cell_type": "markdown",
"id": "cc3d0aa4",
"metadata": {},
"source": [
"We can see that the agent remembered that the previous question was about Canada, and properly asked Google Search what the name of Canada's national anthem was.\n",
"\n",
"For fun, let's compare this to an agent that does NOT have memory."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3359d043",
"metadata": {},
"outputs": [],
"source": [
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
"suffix = \"\"\"Begin!\"\n",
"\n",
"Question: {input}\"\"\"\n",
"\n",
"prompt = ZeroShotAgent.create_prompt(\n",
" tools, \n",
" prefix=prefix, \n",
" suffix=suffix, \n",
" input_variables=[\"input\"]\n",
")\n",
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
"agent_without_memory = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "970d23df",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"How many people live in canada?\n",
"Thought:\u001b[32;1m\u001b[1;3m I should look up how many people live in canada\n",
"Action: Search\n",
"Action Input: \"How many people live in canada?\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mThe current population of Canada is 38,533,678 as of Friday, November 25, 2022, based on Worldometer elaboration of the latest United Nations data. · Canada 2020 ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: The current population of Canada is 38,533,678\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The current population of Canada is 38,533,678'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_without_memory.run(\"How many people live in canada?\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d9ea82f0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"what is their national anthem called?\n",
"Thought:\u001b[32;1m\u001b[1;3m I should probably look this up\n",
"Action: Search\n",
"Action Input: \"What is the national anthem of [country]\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mMost nation states have an anthem, defined as \"a song, as of praise, devotion, or patriotism\"; most anthems are either marches or hymns in style.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: The national anthem is called \"the national anthem.\"\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The national anthem is called \"the national anthem.\"'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_without_memory.run(\"what is their national anthem called?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5b1f9223",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,35 +0,0 @@
LLMs & Prompts
==============
The examples here all highlight how to work with LLMs and prompts.
**LLMs**
`LLM Functionality <prompts/llm_functionality.ipynb>`_: A walkthrough of all the functionality the standard LLM interface exposes.
`LLM Serialization <prompts/llm_serialization.ipynb>`_: A walkthrough of how to serialize LLMs to and from disk.
`Custom LLM <prompts/custom_llm.ipynb>`_: How to create and use a custom LLM class, in case you have an LLM not from one of the standard providers (including one that you host yourself).
**Prompts**
`Prompt Management <prompts/prompt_management.ipynb>`_: A walkthrough of all the functionality LangChain supports for working with prompts.
`Prompt Serialization <prompts/prompt_serialization.ipynb>`_: A walkthrough of how to serialize prompts to and from disk.
`Few Shot Examples <prompts/few_shot_examples.ipynb>`_: How to include examples in the prompt.
`Generate Examples <prompts/generate_examples.ipynb>`_: How to use existing examples to generate more examples.
`Custom Example Selector <prompts/custom_example_selector.ipynb>`_: How to create and use a custom ExampleSelector (the class responsible for choosing which examples to use in a prompt).
`Custom Prompt Template <prompts/custom_prompt_template.ipynb>`_: How to create and use a custom PromptTemplate, the logic that decides how input variables get formatted into a prompt.
.. toctree::
:maxdepth: 1
:glob:
:hidden:
prompts/*

View File

@@ -1,176 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f897c784",
"metadata": {},
"source": [
"# Custom ExampleSelector\n",
"\n",
"This notebook goes over how to implement a custom ExampleSelector. ExampleSelectors are used to select examples to use in few shot prompts.\n",
"\n",
"An ExampleSelector must implement two methods:\n",
"\n",
"1. An `add_example` method which takes in an example and adds it into the ExampleSelector\n",
"2. A `select_examples` method which takes in input variables (which are meant to be user input) and returns a list of examples to use in the few shot prompt.\n",
"\n",
"\n",
"Let's implement a custom ExampleSelector that just selects two examples at random."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1a945da1",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.example_selector.base import BaseExampleSelector\n",
"from typing import Dict, List\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "62cf0ad7",
"metadata": {},
"outputs": [],
"source": [
"class CustomExampleSelector(BaseExampleSelector):\n",
" \n",
" def __init__(self, examples: List[Dict[str, str]]):\n",
" self.examples = examples\n",
" \n",
" def add_example(self, example: Dict[str, str]) -> None:\n",
" \"\"\"Add new example to store for a key.\"\"\"\n",
" self.examples.append(example)\n",
"\n",
" def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:\n",
" \"\"\"Select which examples to use based on the inputs.\"\"\"\n",
" return np.random.choice(self.examples, size=2, replace=False)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "242d3213",
"metadata": {},
"outputs": [],
"source": [
"examples = [{\"foo\": \"1\"}, {\"foo\": \"2\"}, {\"foo\": \"3\"}]\n",
"example_selector = CustomExampleSelector(examples)"
]
},
{
"cell_type": "markdown",
"id": "2a038065",
"metadata": {},
"source": [
"Let's now try it out! We can select some examples and try adding examples."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "74fbbef5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([{'foo': '2'}, {'foo': '3'}], dtype=object)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"example_selector.select_examples({\"foo\": \"foo\"})"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9bbb5421",
"metadata": {},
"outputs": [],
"source": [
"example_selector.add_example({\"foo\": \"4\"})"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c0eb9f22",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'foo': '1'}, {'foo': '2'}, {'foo': '3'}, {'foo': '4'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"example_selector.examples"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cc39b1e3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([{'foo': '1'}, {'foo': '4'}], dtype=object)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"example_selector.select_examples({\"foo\": \"foo\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1739dd96",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,116 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a37d9694",
"metadata": {},
"source": [
"# Custom Prompt Template\n",
"\n",
"This notebook goes over how to create a custom prompt template, in case you want to create your own methodology for creating prompts.\n",
"\n",
"The only two requirements for all prompt templates are:\n",
"\n",
"1. They have a `input_variables` attribute that exposes what input variables this prompt template expects.\n",
"2. They expose a `format` method which takes in keyword arguments corresponding to the expected `input_variables` and returns the formatted prompt.\n",
"\n",
"Let's imagine that we want to create a prompt template that takes in input variables and formats them into the template AFTER capitalizing them. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "26f796e5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import BasePromptTemplate\n",
"from pydantic import BaseModel"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "27919e96",
"metadata": {},
"outputs": [],
"source": [
"class CustomPromptTemplate(BasePromptTemplate, BaseModel):\n",
" template: str\n",
" \n",
" def format(self, **kwargs) -> str:\n",
" capitalized_kwargs = {k: v.upper() for k, v in kwargs.items()}\n",
" return self.template.format(**capitalized_kwargs)\n",
" "
]
},
{
"cell_type": "markdown",
"id": "76d1d84d",
"metadata": {},
"source": [
"We can now see that when we use this, the input variables get formatted."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "eed1ff28",
"metadata": {},
"outputs": [],
"source": [
"prompt = CustomPromptTemplate(input_variables=[\"foo\"], template=\"Capitalized: {foo}\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "94892a3c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Capitalized: LOWERCASE'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt.format(foo=\"lowercase\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3d9a7c7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,306 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f8b01b97",
"metadata": {},
"source": [
"# Few Shot Prompt examples\n",
"Notebook showing off how canonical prompts in LangChain can be recreated as FewShotPrompts"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "18c67cc9",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.few_shot import FewShotPromptTemplate\n",
"from langchain.prompts.prompt import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2a729c9f",
"metadata": {},
"outputs": [],
"source": [
"# Self Ask with Search\n",
"\n",
"examples = [\n",
" {\n",
" \"question\": \"Who lived longer, Muhammad Ali or Alan Turing?\",\n",
" \"answer\": \"Are follow up questions needed here: Yes.\\nFollow up: How old was Muhammad Ali when he died?\\nIntermediate answer: Muhammad Ali was 74 years old when he died.\\nFollow up: How old was Alan Turing when he died?\\nIntermediate answer: Alan Turing was 41 years old when he died.\\nSo the final answer is: Muhammad Ali\"\n",
" },\n",
" {\n",
" \"question\": \"When was the founder of craigslist born?\",\n",
" \"answer\": \"Are follow up questions needed here: Yes.\\nFollow up: Who was the founder of craigslist?\\nIntermediate answer: Craigslist was founded by Craig Newmark.\\nFollow up: When was Craig Newmark born?\\nIntermediate answer: Craig Newmark was born on December 6, 1952.\\nSo the final answer is: December 6, 1952\"\n",
" },\n",
" {\n",
" \"question\": \"Who was the maternal grandfather of George Washington?\",\n",
" \"answer\": \"Are follow up questions needed here: Yes.\\nFollow up: Who was the mother of George Washington?\\nIntermediate answer: The mother of George Washington was Mary Ball Washington.\\nFollow up: Who was the father of Mary Ball Washington?\\nIntermediate answer: The father of Mary Ball Washington was Joseph Ball.\\nSo the final answer is: Joseph Ball\"\n",
" },\n",
" {\n",
" \"question\": \"Are both the directors of Jaws and Casino Royale from the same country?\",\n",
" \"answer\": \"Are follow up questions needed here: Yes.\\nFollow up: Who is the director of Jaws?\\nIntermediate Answer: The director of Jaws is Steven Spielberg.\\nFollow up: Where is Steven Spielberg from?\\nIntermediate Answer: The United States.\\nFollow up: Who is the director of Casino Royale?\\nIntermediate Answer: The director of Casino Royale is Martin Campbell.\\nFollow up: Where is Martin Campbell from?\\nIntermediate Answer: New Zealand.\\nSo the final answer is: No\"\n",
" }\n",
"]\n",
"example_prompt = PromptTemplate(input_variables=[\"question\", \"answer\"], template=\"Question: {question}\\n{answer}\")\n",
"\n",
"prompt = FewShotPromptTemplate(\n",
" examples=examples, \n",
" example_prompt=example_prompt, \n",
" suffix=\"Question: {input}\", \n",
" input_variables=[\"input\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "95fc0059",
"metadata": {},
"outputs": [],
"source": [
"# ReAct\n",
"\n",
"examples = [\n",
" {\n",
" \"question\": \"What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into?\",\n",
" \"answer\": \"Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogeny extends into, then find the elevation range of that area.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern sector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I need to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130 m).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer is 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]\"\n",
" },\n",
" {\n",
" \"question\": \"Musician and satirist Allie Goertz wrote a song about the \\\"The Simpsons\\\" character Milhouse, who Matt Groening named after who?\",\n",
" \"answer\": \"Thought 1: The question simplifies to \\\"The Simpsons\\\" character Milhouse is named after who. I only need to search Milhouse and find who it is named after.\\nAction 1: Search[Milhouse]\\nObservation 1: Milhouse Mussolini Van Houten is a recurring character in the Fox animated television series The Simpsons voiced by Pamela Hayden and created by Matt Groening.\\nThought 2: The paragraph does not tell who Milhouse is named after, maybe I can look up \\\"named after\\\".\\nAction 2: Lookup[named after]\\nObservation 2: (Result 1 / 1) Milhouse was named after U.S. president Richard Nixon, whose middle name was Milhous.\\nThought 3: Milhouse was named after U.S. president Richard Nixon, so the answer is Richard Nixon.\\nAction 3: Finish[Richard Nixon]\"\n",
" },\n",
" {\n",
" \"question\": \"Which documentary is about Finnish rock groups, Adam Clayton Powell or The Saimaa Gesture?\",\n",
" \"answer\": \"Thought 1: I need to search Adam Clayton Powell and The Saimaa Gesture, and find which documentary is about Finnish rock groups.\\nAction 1: Search[Adam Clayton Powell]\\nObservation 1 Could not find [Adam Clayton Powell]. Similar: [Adam Clayton Powell III, Seventh Avenue (Manhattan), Adam Clayton Powell Jr. State Office Building, Isabel Washington Powell, Adam Powell, Adam Clayton Powell (film), Giancarlo Esposito].\\nThought 2: To find the documentary, I can search Adam Clayton Powell (film).\\nAction 2: Search[Adam Clayton Powell (film)]\\nObservation 2: Adam Clayton Powell is a 1989 American documentary film directed by Richard Kilberg. The film is about the rise and fall of influential African-American politician Adam Clayton Powell Jr.[3][4] It was later aired as part of the PBS series The American Experience.\\nThought 3: Adam Clayton Powell (film) is a documentary about an African-American politician, not Finnish rock groups. So the documentary about Finnish rock groups must instead be The Saimaa Gesture.\\nAction 3: Finish[The Saimaa Gesture]\"\n",
" },\n",
" {\n",
" \"question\": \"What profession does Nicholas Ray and Elia Kazan have in common?\",\n",
" \"answer\": \"Thought 1: I need to search Nicholas Ray and Elia Kazan, find their professions, then find the profession they have in common.\\nAction 1: Search[Nicholas Ray]\\nObservation 1: Nicholas Ray (born Raymond Nicholas Kienzle Jr., August 7, 1911 - June 16, 1979) was an American film director, screenwriter, and actor best known for the 1955 film Rebel Without a Cause.\\nThought 2: Professions of Nicholas Ray are director, screenwriter, and actor. I need to search Elia Kazan next and find his professions.\\nAction 2: Search[Elia Kazan]\\nObservation 2: Elia Kazan was an American film and theatre director, producer, screenwriter and actor.\\nThought 3: Professions of Elia Kazan are director, producer, screenwriter, and actor. So profession Nicholas Ray and Elia Kazan have in common is director, screenwriter, and actor.\\nAction 3: Finish[director, screenwriter, actor]\"\n",
" },\n",
" {\n",
" \"question\": \"Which magazine was started first Arthurs Magazine or First for Women?\",\n",
" \"answer\": \"Thought 1: I need to search Arthurs Magazine and First for Women, and find which was started first.\\nAction 1: Search[Arthurs Magazine]\\nObservation 1: Arthurs Magazine (1844-1846) was an American literary periodical published in Philadelphia in the 19th century.\\nThought 2: Arthurs Magazine was started in 1844. I need to search First for Women next.\\nAction 2: Search[First for Women]\\nObservation 2: First for Women is a womans magazine published by Bauer Media Group in the USA.[1] The magazine was started in 1989.\\nThought 3: First for Women was started in 1989. 1844 (Arthurs Magazine) < 1989 (First for Women), so Arthurs Magazine was started first.\\nAction 3: Finish[Arthurs Magazine]\"\n",
" },\n",
" {\n",
" \"question\": \"Were Pavel Urysohn and Leonid Levin known for the same type of work?\",\n",
" \"answer\": \"Thought 1: I need to search Pavel Urysohn and Leonid Levin, find their types of work, then find if they are the same.\\nAction 1: Search[Pavel Urysohn]\\nObservation 1: Pavel Samuilovich Urysohn (February 3, 1898 - August 17, 1924) was a Soviet mathematician who is best known for his contributions in dimension theory.\\nThought 2: Pavel Urysohn is a mathematician. I need to search Leonid Levin next and find its type of work.\\nAction 2: Search[Leonid Levin]\\nObservation 2: Leonid Anatolievich Levin is a Soviet-American mathematician and computer scientist.\\nThought 3: Leonid Levin is a mathematician and computer scientist. So Pavel Urysohn and Leonid Levin have the same type of work.\\nAction 3: Finish[yes]\"\n",
" }\n",
"]\n",
"example_prompt = PromptTemplate(input_variables=[\"question\", \"answer\"], template=\"Question: {question}\\n{answer}\")\n",
"\n",
"prompt = FewShotPromptTemplate(\n",
" examples=examples, \n",
" example_prompt=example_prompt, \n",
" suffix=\"Question: {input}\", \n",
" input_variables=[\"input\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "897d4e08",
"metadata": {},
"outputs": [],
"source": [
"# LLM Math\n",
"examples = [\n",
" {\n",
" \"question\": \"What is 37593 * 67?\",\n",
" \"answer\": \"```python\\nprint(37593 * 67)\\n```\\n```output\\n2518731\\n```\\nAnswer: 2518731\"\n",
" }\n",
"]\n",
"example_prompt = PromptTemplate(input_variables=[\"question\", \"answer\"], template=\"Question: {question}\\n\\n{answer}\")\n",
"\n",
"prompt = FewShotPromptTemplate(\n",
" examples=examples, \n",
" example_prompt=example_prompt, \n",
" suffix=\"Question: {input}\", \n",
" input_variables=[\"input\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7ab7379f",
"metadata": {},
"outputs": [],
"source": [
"# NatBot\n",
"example_seperator = \"==================================================\"\n",
"content_1 = \"\"\"<link id=1>About</link>\n",
"<link id=2>Store</link>\n",
"<link id=3>Gmail</link>\n",
"<link id=4>Images</link>\n",
"<link id=5>(Google apps)</link>\n",
"<link id=6>Sign in</link>\n",
"<img id=7 alt=\"(Google)\"/>\n",
"<input id=8 alt=\"Search\"></input>\n",
"<button id=9>(Search by voice)</button>\n",
"<button id=10>(Google Search)</button>\n",
"<button id=11>(I'm Feeling Lucky)</button>\n",
"<link id=12>Advertising</link>\n",
"<link id=13>Business</link>\n",
"<link id=14>How Search works</link>\n",
"<link id=15>Carbon neutral since 2007</link>\n",
"<link id=16>Privacy</link>\n",
"<link id=17>Terms</link>\n",
"<text id=18>Settings</text>\"\"\"\n",
"content_2 = \"\"\"<link id=1>About</link>\n",
"<link id=2>Store</link>\n",
"<link id=3>Gmail</link>\n",
"<link id=4>Images</link>\n",
"<link id=5>(Google apps)</link>\n",
"<link id=6>Sign in</link>\n",
"<img id=7 alt=\"(Google)\"/>\n",
"<input id=8 alt=\"Search\"></input>\n",
"<button id=9>(Search by voice)</button>\n",
"<button id=10>(Google Search)</button>\n",
"<button id=11>(I'm Feeling Lucky)</button>\n",
"<link id=12>Advertising</link>\n",
"<link id=13>Business</link>\n",
"<link id=14>How Search works</link>\n",
"<link id=15>Carbon neutral since 2007</link>\n",
"<link id=16>Privacy</link>\n",
"<link id=17>Terms</link>\n",
"<text id=18>Settings</text>\"\"\"\n",
"content_3 = \"\"\"<button id=1>For Businesses</button>\n",
"<button id=2>Mobile</button>\n",
"<button id=3>Help</button>\n",
"<button id=4 alt=\"Language Picker\">EN</button>\n",
"<link id=5>OpenTable logo</link>\n",
"<button id=6 alt =\"search\">Search</button>\n",
"<text id=7>Find your table for any occasion</text>\n",
"<button id=8>(Date selector)</button>\n",
"<text id=9>Sep 28, 2022</text>\n",
"<text id=10>7:00 PM</text>\n",
"<text id=11>2 people</text>\n",
"<input id=12 alt=\"Location, Restaurant, or Cuisine\"></input>\n",
"<button id=13>Lets go</button>\n",
"<text id=14>It looks like you're in Peninsula. Not correct?</text>\n",
"<button id=15>Get current location</button>\n",
"<button id=16>Next</button>\"\"\"\n",
"examples = [\n",
" {\n",
" \"i\": 1,\n",
" \"content\": content_1,\n",
" \"objective\": \"Find a 2 bedroom house for sale in Anchorage AK for under $750k\",\n",
" \"current_url\": \"https://www.google.com/\",\n",
" \"command\": 'TYPESUBMIT 8 \"anchorage redfin\"'\n",
" },\n",
" {\n",
" \"i\": 2,\n",
" \"content\": content_2,\n",
" \"objective\": \"Make a reservation for 4 at Dorsia at 8pm\",\n",
" \"current_url\": \"https://www.google.com/\",\n",
" \"command\": 'TYPESUBMIT 8 \"dorsia nyc opentable\"'\n",
" },\n",
" {\n",
" \"i\": 3,\n",
" \"content\": content_3,\n",
" \"objective\": \"Make a reservation for 4 for dinner at Dorsia in New York City at 8pm\",\n",
" \"current_url\": \"https://www.opentable.com/\",\n",
" \"command\": 'TYPESUBMIT 12 \"dorsia new york city\"'\n",
" },\n",
"]\n",
"example_prompt_template=\"\"\"EXAMPLE {i}:\n",
"==================================================\n",
"CURRENT BROWSER CONTENT:\n",
"------------------\n",
"{content}\n",
"------------------\n",
"OBJECTIVE: {objective}\n",
"CURRENT URL: {current_url}\n",
"YOUR COMMAND:\n",
"{command}\"\"\"\n",
"example_prompt = PromptTemplate(input_variables=[\"i\", \"content\", \"objective\", \"current_url\", \"command\"], template=example_prompt_template)\n",
"\n",
"\n",
"prefix = \"\"\"\n",
"You are an agent controlling a browser. You are given:\n",
"\t(1) an objective that you are trying to achieve\n",
"\t(2) the URL of your current web page\n",
"\t(3) a simplified text description of what's visible in the browser window (more on that below)\n",
"You can issue these commands:\n",
"\tSCROLL UP - scroll up one page\n",
"\tSCROLL DOWN - scroll down one page\n",
"\tCLICK X - click on a given element. You can only click on links, buttons, and inputs!\n",
"\tTYPE X \"TEXT\" - type the specified text into the input with id X\n",
"\tTYPESUBMIT X \"TEXT\" - same as TYPE above, except then it presses ENTER to submit the form\n",
"The format of the browser content is highly simplified; all formatting elements are stripped.\n",
"Interactive elements such as links, inputs, buttons are represented like this:\n",
"\t\t<link id=1>text</link>\n",
"\t\t<button id=2>text</button>\n",
"\t\t<input id=3>text</input>\n",
"Images are rendered as their alt text like this:\n",
"\t\t<img id=4 alt=\"\"/>\n",
"Based on your given objective, issue whatever command you believe will get you closest to achieving your goal.\n",
"You always start on Google; you should submit a search query to Google that will take you to the best page for\n",
"achieving your objective. And then interact with that page to achieve your objective.\n",
"If you find yourself on Google and there are no search results displayed yet, you should probably issue a command\n",
"like \"TYPESUBMIT 7 \"search query\"\" to get to a more useful page.\n",
"Then, if you find yourself on a Google search results page, you might issue the command \"CLICK 24\" to click\n",
"on the first link in the search results. (If your previous command was a TYPESUBMIT your next command should\n",
"probably be a CLICK.)\n",
"Don't try to interact with elements that you can't see.\n",
"Here are some examples:\n",
"\"\"\"\n",
"suffix=\"\"\"\n",
"The current browser content, objective, and current URL follow. Reply with your next command to the browser.\n",
"CURRENT BROWSER CONTENT:\n",
"------------------\n",
"{browser_content}\n",
"------------------\n",
"OBJECTIVE: {objective}\n",
"CURRENT URL: {url}\n",
"PREVIOUS COMMAND: {previous_command}\n",
"YOUR COMMAND:\n",
"\"\"\"\n",
"PROMPT = FewShotPromptTemplate(\n",
" examples = examples,\n",
" example_prompt=example_prompt,\n",
" example_separator=example_seperator,\n",
" input_variables=[\"browser_content\", \"url\", \"previous_command\", \"objective\"],\n",
" prefix=prefix,\n",
" suffix=suffix,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce5927c6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,161 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f5d249ee",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Generate Examples\n",
"\n",
"This notebook shows how to use LangChain to generate more examples similar to the ones you already have."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1685fa2f",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.llms.openai import OpenAI\n",
"from langchain.example_generator import generate_example\n",
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "334ef4f7",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# Use examples from ReAct\n",
"examples = [\n",
" {\n",
" \"question\": \"What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into?\",\n",
" \"answer\": \"Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogeny extends into, then find the elevation range of that area.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern sector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I need to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130 m).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer is 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]\"\n",
" },\n",
" {\n",
" \"question\": \"Musician and satirist Allie Goertz wrote a song about the \\\"The Simpsons\\\" character Milhouse, who Matt Groening named after who?\",\n",
" \"answer\": \"Thought 1: The question simplifies to \\\"The Simpsons\\\" character Milhouse is named after who. I only need to search Milhouse and find who it is named after.\\nAction 1: Search[Milhouse]\\nObservation 1: Milhouse Mussolini Van Houten is a recurring character in the Fox animated television series The Simpsons voiced by Pamela Hayden and created by Matt Groening.\\nThought 2: The paragraph does not tell who Milhouse is named after, maybe I can look up \\\"named after\\\".\\nAction 2: Lookup[named after]\\nObservation 2: (Result 1 / 1) Milhouse was named after U.S. president Richard Nixon, whose middle name was Milhous.\\nThought 3: Milhouse was named after U.S. president Richard Nixon, so the answer is Richard Nixon.\\nAction 3: Finish[Richard Nixon]\"\n",
" },\n",
" {\n",
" \"question\": \"Which documentary is about Finnish rock groups, Adam Clayton Powell or The Saimaa Gesture?\",\n",
" \"answer\": \"Thought 1: I need to search Adam Clayton Powell and The Saimaa Gesture, and find which documentary is about Finnish rock groups.\\nAction 1: Search[Adam Clayton Powell]\\nObservation 1 Could not find [Adam Clayton Powell]. Similar: [Adam Clayton Powell III, Seventh Avenue (Manhattan), Adam Clayton Powell Jr. State Office Building, Isabel Washington Powell, Adam Powell, Adam Clayton Powell (film), Giancarlo Esposito].\\nThought 2: To find the documentary, I can search Adam Clayton Powell (film).\\nAction 2: Search[Adam Clayton Powell (film)]\\nObservation 2: Adam Clayton Powell is a 1989 American documentary film directed by Richard Kilberg. The film is about the rise and fall of influential African-American politician Adam Clayton Powell Jr.[3][4] It was later aired as part of the PBS series The American Experience.\\nThought 3: Adam Clayton Powell (film) is a documentary about an African-American politician, not Finnish rock groups. So the documentary about Finnish rock groups must instead be The Saimaa Gesture.\\nAction 3: Finish[The Saimaa Gesture]\"\n",
" },\n",
" {\n",
" \"question\": \"What profession does Nicholas Ray and Elia Kazan have in common?\",\n",
" \"answer\": \"Thought 1: I need to search Nicholas Ray and Elia Kazan, find their professions, then find the profession they have in common.\\nAction 1: Search[Nicholas Ray]\\nObservation 1: Nicholas Ray (born Raymond Nicholas Kienzle Jr., August 7, 1911 - June 16, 1979) was an American film director, screenwriter, and actor best known for the 1955 film Rebel Without a Cause.\\nThought 2: Professions of Nicholas Ray are director, screenwriter, and actor. I need to search Elia Kazan next and find his professions.\\nAction 2: Search[Elia Kazan]\\nObservation 2: Elia Kazan was an American film and theatre director, producer, screenwriter and actor.\\nThought 3: Professions of Elia Kazan are director, producer, screenwriter, and actor. So profession Nicholas Ray and Elia Kazan have in common is director, screenwriter, and actor.\\nAction 3: Finish[director, screenwriter, actor]\"\n",
" },\n",
" {\n",
" \"question\": \"Which magazine was started first Arthurs Magazine or First for Women?\",\n",
" \"answer\": \"Thought 1: I need to search Arthurs Magazine and First for Women, and find which was started first.\\nAction 1: Search[Arthurs Magazine]\\nObservation 1: Arthurs Magazine (1844-1846) was an American literary periodical published in Philadelphia in the 19th century.\\nThought 2: Arthurs Magazine was started in 1844. I need to search First for Women next.\\nAction 2: Search[First for Women]\\nObservation 2: First for Women is a womans magazine published by Bauer Media Group in the USA.[1] The magazine was started in 1989.\\nThought 3: First for Women was started in 1989. 1844 (Arthurs Magazine) < 1989 (First for Women), so Arthurs Magazine was started first.\\nAction 3: Finish[Arthurs Magazine]\"\n",
" },\n",
" {\n",
" \"question\": \"Were Pavel Urysohn and Leonid Levin known for the same type of work?\",\n",
" \"answer\": \"Thought 1: I need to search Pavel Urysohn and Leonid Levin, find their types of work, then find if they are the same.\\nAction 1: Search[Pavel Urysohn]\\nObservation 1: Pavel Samuilovich Urysohn (February 3, 1898 - August 17, 1924) was a Soviet mathematician who is best known for his contributions in dimension theory.\\nThought 2: Pavel Urysohn is a mathematician. I need to search Leonid Levin next and find its type of work.\\nAction 2: Search[Leonid Levin]\\nObservation 2: Leonid Anatolievich Levin is a Soviet-American mathematician and computer scientist.\\nThought 3: Leonid Levin is a mathematician and computer scientist. So Pavel Urysohn and Leonid Levin have the same type of work.\\nAction 3: Finish[yes]\"\n",
" }\n",
"]\n",
"example_template = PromptTemplate(template=\"Question: {question}\\n{answer}\", input_variables=[\"question\", \"answer\"])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a7bd36bc",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"new_example = generate_example(examples, OpenAI(), example_template)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e1efb008",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/plain": [
"['',\n",
" '',\n",
" 'Question: What is the highest mountain peak in North America?',\n",
" '',\n",
" 'Thought 1: I need to search North America and find the highest mountain peak.',\n",
" '',\n",
" 'Action 1: Search[North America]',\n",
" '',\n",
" 'Observation 1: North America is a continent entirely within the Northern Hemisphere and almost all within the Western Hemisphere.',\n",
" '',\n",
" 'Thought 2: I need to look up \"highest mountain peak\".',\n",
" '',\n",
" 'Action 2: Lookup[highest mountain peak]',\n",
" '',\n",
" 'Observation 2: (Result 1 / 1) Denali, formerly Mount McKinley, is the highest mountain peak in North America, with a summit elevation of 20,310 feet (6,190 m) above sea level.',\n",
" '',\n",
" 'Thought 3: Denali is the highest mountain peak in North America, with a summit elevation of 20,310 feet.',\n",
" '',\n",
" 'Action 3: Finish[20,310 feet]']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"new_example.split('\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ed01ba2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,412 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "20ac6b98",
"metadata": {},
"source": [
"# LLM Functionality\n",
"\n",
"This notebook goes over all the different features of the LLM class in LangChain.\n",
"\n",
"We will work with an OpenAI LLM wrapper, although these functionalities should exist for all LLM types."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "df924055",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "182b484c",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(model_name=\"text-ada-001\", n=2, best_of=2)"
]
},
{
"cell_type": "markdown",
"id": "9695ccfc",
"metadata": {},
"source": [
"**Generate Text:** The most basic functionality an LLM has is just the ability to call it, passing in a string and getting back a string."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9d12ac26",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side!'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm(\"Tell me a joke\")"
]
},
{
"cell_type": "markdown",
"id": "e7d4d42d",
"metadata": {},
"source": [
"**Generate:** More broadly, you can call it with a list of inputs, getting back a more complete response than just the text. This complete response includes things like multiple top responses, as well as LLM provider specific information"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f4dc241a",
"metadata": {},
"outputs": [],
"source": [
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"]*15)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "740392f6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"30"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(llm_result.generations)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ab6cdcf1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Generation(text='\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side.'),\n",
" Generation(text='\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side!')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_result.generations[0]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4946a778",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Generation(text=\"\\n\\nA rose by the side of the road\\n\\nIs all I need to find my way\\n\\nTo the place I've been searching for\\n\\nAnd my heart is singing with joy\\n\\nWhen I look at this rose\\n\\nIt reminds me of the love I've found\\n\\nAnd I know that wherever I go\\n\\nI'll always find my rose by the side of the road.\"),\n",
" Generation(text=\"\\n\\nWhen I was younger\\nI thought that love\\nI was something like a fairytale\\nI would find my prince and they would be my people\\nI was naïve\\nI thought that\\n\\nLove was a something that happened\\nWhen I was younger\\nI was it for my fairytale prince\\nNow I realize\\nThat love is something that waits\\nFor when my prince comes\\nAnd when I am ready to be his wife\\nI'll tell you a poem\\n\\nWhen I was younger\\nI thought that love\\nI was something like a fairytale\\nI would find my prince and they would be my people\\nI was naïve\\nI thought that\\n\\nLove was a something that happened\\nAnd I would be happy\\nWhen my prince came\\nAnd I was ready to be his wife\")]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_result.generations[-1]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "242e4527",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'token_usage': {'completion_tokens': 3722,\n",
" 'prompt_tokens': 120,\n",
" 'total_tokens': 3842}}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Provider specific info\n",
"llm_result.llm_output"
]
},
{
"cell_type": "markdown",
"id": "bde8e04f",
"metadata": {},
"source": [
"**Number of Tokens:** You can also estimate how many tokens a piece of text will be in that model. This is useful because models have a context length (and cost more for more tokens), which means you need to be aware of how long the text you are passing in is.\n",
"\n",
"Notice that by default the tokens are estimated using a HuggingFace tokenizer."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b623c774",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.get_num_tokens(\"what a joke\")"
]
},
{
"cell_type": "markdown",
"id": "ee6fcf8d",
"metadata": {},
"source": [
"### Caching\n",
"With LangChain, you can also enable caching of LLM calls. Note that currently this only applies for individual LLM calls."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2626ca48",
"metadata": {},
"outputs": [],
"source": [
"import langchain\n",
"from langchain.cache import InMemoryCache\n",
"langchain.llm_cache = InMemoryCache()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "97762272",
"metadata": {},
"outputs": [],
"source": [
"# To make the caching really obvious, lets use a slower model.\n",
"llm = OpenAI(model_name=\"text-davinci-002\", n=2, best_of=2)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e80c65e4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 31.2 ms, sys: 11.8 ms, total: 43.1 ms\n",
"Wall time: 1.75 s\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side!'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"llm(\"Tell me a joke\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "678408ec",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 51 µs, sys: 1 µs, total: 52 µs\n",
"Wall time: 67.2 µs\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side!'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"# The second time it is, so it goes faster\n",
"llm(\"Tell me a joke\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3f0ac8d2",
"metadata": {},
"outputs": [],
"source": [
"# We can do the same thing with a SQLite cache\n",
"from langchain.cache import SQLiteCache\n",
"langchain.llm_cache = SQLiteCache(database_path=\".langchain.db\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "0e1dcce3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 26.6 ms, sys: 11.2 ms, total: 37.7 ms\n",
"Wall time: 1.89 s\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side.'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"llm(\"Tell me a joke\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "efadd750",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 2.69 ms, sys: 1.57 ms, total: 4.27 ms\n",
"Wall time: 2.73 ms\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"# The second time it is, so it goes faster\n",
"llm(\"Tell me a joke\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6053408b",
"metadata": {},
"outputs": [],
"source": [
"# You can use SQLAlchemyCache to cache with any SQL database supported by SQLAlchemy.\n",
"from langchain.cache import SQLAlchemyCache\n",
"from sqlalchemy import create_engine\n",
"\n",
"engine = create_engine(\"postgresql://postgres:postgres@localhost:5432/postgres\")\n",
"langchain.llm_cache = SQLAlchemyCache(engine)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12 (main, Jun 1 2022, 06:34:44) \n[Clang 12.0.0 ]"
},
"vscode": {
"interpreter": {
"hash": "1235b9b19e8e9828b5c1fdb2cd89fe8d3de0fcde5ef5f3db36e4b671adb8660f"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,610 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "43fb16cb",
"metadata": {},
"source": [
"# Prompt Management\n",
"\n",
"Managing your prompts is annoying and tedious, with everyone writing their own slightly different variants of the same ideas. But it shouldn't be this way. \n",
"\n",
"LangChain provides a standard and flexible way for specifying and managing all your prompts, as well as clear and specific terminology around them. This notebook goes through the core components of working with prompts, showing how to use them as well as explaining what they do.\n",
"\n",
"This notebook covers how to work with prompts in Python. If you are interested in how to work with serialized versions of prompts and load them from disk, see [this notebook](prompt_serialization.ipynb)."
]
},
{
"cell_type": "markdown",
"id": "890aad4d",
"metadata": {},
"source": [
"### The BasePromptTemplate Interface\n",
"\n",
"A prompt template is a mechanism for constructing a prompt to pass to the language model given some user input. Below is the interface that all different types of prompt templates should expose.\n",
"\n",
"```python\n",
"class BasePromptTemplate(ABC):\n",
"\n",
" input_variables: List[str]\n",
" \"\"\"A list of the names of the variables the prompt template expects.\"\"\"\n",
"\n",
" @abstractmethod\n",
" def format(self, **kwargs: Any) -> str:\n",
" \"\"\"Format the prompt with the inputs.\n",
"\n",
" Args:\n",
" kwargs: Any arguments to be passed to the prompt template.\n",
"\n",
" Returns:\n",
" A formatted string.\n",
"\n",
" Example:\n",
"\n",
" .. code-block:: python\n",
"\n",
" prompt.format(variable1=\"foo\")\n",
" \"\"\"\n",
"```\n",
"\n",
"The only two things that define a prompt are:\n",
"\n",
"1. `input_variables`: The user inputted variables that are needed to format the prompt.\n",
"2. `format`: A method which takes in keyword arguments are returns a formatted prompt. The keys are expected to be the input variables\n",
" \n",
"The rest of the logic of how the prompt is constructed is left up to different implementations. Let's take a look at some below."
]
},
{
"cell_type": "markdown",
"id": "cddb465e",
"metadata": {},
"source": [
"### PromptTemplate\n",
"\n",
"This is the most simple type of prompt template, consisting of a string template that takes any number of input variables. The template should be formatted as a Python f-string, although we will support other formats (Jinja, Mako, etc) in the future. \n",
"\n",
"If you just want to use a hardcoded prompt template, you should use this implementation.\n",
"\n",
"Let's walk through a few examples."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "094229f4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ab46bd2a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a joke.'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with no input variables\n",
"no_input_prompt = PromptTemplate(input_variables=[], template=\"Tell me a joke.\")\n",
"no_input_prompt.format()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c3ad0fa8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke.'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with one input variable\n",
"one_input_prompt = PromptTemplate(input_variables=[\"adjective\"], template=\"Tell me a {adjective} joke.\")\n",
"one_input_prompt.format(adjective=\"funny\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ba577dcf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke about chickens.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with multiple input variables\n",
"multiple_input_prompt = PromptTemplate(\n",
" input_variables=[\"adjective\", \"content\"], \n",
" template=\"Tell me a {adjective} joke about {content}.\"\n",
")\n",
"multiple_input_prompt.format(adjective=\"funny\", content=\"chickens\")"
]
},
{
"cell_type": "markdown",
"id": "1492b49d",
"metadata": {},
"source": [
"### Few Shot Prompts\n",
"\n",
"A FewShotPromptTemplate is a prompt template that includes some examples. If you have collected some examples of how the task should be done, you can insert them into prompt using this class.\n",
"\n",
"Examples are datapoints that can be included in the prompt in order to give the model more context what to do. Examples are represented as a dictionary of key-value pairs, with the key being the input (or label) name, and the value being the input (or label) value. \n",
"\n",
"In addition to the example, we also need to specify how the example should be formatted when it's inserted in the prompt. We can do this using the above `PromptTemplate`!"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3eb36972",
"metadata": {},
"outputs": [],
"source": [
"# These are some examples of a pretend task of creating antonyms.\n",
"examples = [\n",
" {\"input\": \"happy\", \"output\": \"sad\"},\n",
" {\"input\": \"tall\", \"output\": \"short\"},\n",
"]\n",
"# This how we specify how the example should be formatted.\n",
"example_prompt = PromptTemplate(\n",
" input_variables=[\"input\",\"output\"],\n",
" template=\"Input: {input}\\nOutput: {output}\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "80a91d96",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import FewShotPromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7931e5f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"prompt_from_string_examples = FewShotPromptTemplate(\n",
" # These are the examples we want to insert into the prompt.\n",
" examples=examples,\n",
" # This is how we want to format the examples when we insert them into the prompt.\n",
" example_prompt=example_prompt,\n",
" # The prefix is some text that goes before the examples in the prompt.\n",
" # Usually, this consists of intructions.\n",
" prefix=\"Give the antonym of every input\",\n",
" # The suffix is some text that goes after the examples in the prompt.\n",
" # Usually, this is where the user input will go\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" # The input variables are the variables that the overall prompt expects.\n",
" input_variables=[\"adjective\"],\n",
" # The example_separator is the string we will use to join the prefix, examples, and suffix together with.\n",
" example_separator=\"\\n\\n\"\n",
" \n",
")\n",
"print(prompt_from_string_examples.format(adjective=\"big\"))"
]
},
{
"cell_type": "markdown",
"id": "bf038596",
"metadata": {},
"source": [
"### ExampleSelector\n",
"If you have a large number of examples, you may need to select which ones to include in the prompt. The ExampleSelector is the class responsible for doing so. The base interface is defined as below.\n",
"\n",
"```python\n",
"class BaseExampleSelector(ABC):\n",
" \"\"\"Interface for selecting examples to include in prompts.\"\"\"\n",
"\n",
" @abstractmethod\n",
" def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:\n",
" \"\"\"Select which examples to use based on the inputs.\"\"\"\n",
"\n",
"```\n",
"\n",
"The only method it needs to expose is a `select_examples` method. This takes in the input variables and then returns a list of examples. It is up to each specific implementation as to how those examples are selected. Let's take a look at some below."
]
},
{
"cell_type": "markdown",
"id": "861a4d1f",
"metadata": {},
"source": [
"### LengthBased ExampleSelector\n",
"\n",
"This ExampleSelector selects which examples to use based on length. This is useful when you are worried about constructing a prompt that will go over the length of the context window. For longer inputs, it will select fewer examples to include, while for shorter inputs it will select more.\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7c469c95",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.example_selector import LengthBasedExampleSelector"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0ec6d950",
"metadata": {},
"outputs": [],
"source": [
"# These are a lot of examples of a pretend task of creating antonyms.\n",
"examples = [\n",
" {\"input\": \"happy\", \"output\": \"sad\"},\n",
" {\"input\": \"tall\", \"output\": \"short\"},\n",
" {\"input\": \"energetic\", \"output\": \"lethargic\"},\n",
" {\"input\": \"sunny\", \"output\": \"gloomy\"},\n",
" {\"input\": \"windy\", \"output\": \"calm\"},\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "207e55f7",
"metadata": {},
"outputs": [],
"source": [
"example_selector = LengthBasedExampleSelector(\n",
" # These are the examples is has available to choose from.\n",
" examples=examples, \n",
" # This is the PromptTemplate being used to format the examples.\n",
" example_prompt=example_prompt, \n",
" # This is the maximum length that the formatted examples should be.\n",
" # Length is measured by the get_text_length function below.\n",
" max_length=25,\n",
" # This is the function used to get the length of a string, which is used\n",
" # to determine which examples to include. It is commented out because\n",
" # it is provided as a default value if none is specified.\n",
" # get_text_length: Callable[[str], int] = lambda x: len(re.split(\"\\n| \", x))\n",
")\n",
"dynamic_prompt = FewShotPromptTemplate(\n",
" # We provide an ExampleSelector instead of examples.\n",
" example_selector=example_selector,\n",
" example_prompt=example_prompt,\n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d00b4385",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: energetic\n",
"Output: lethargic\n",
"\n",
"Input: sunny\n",
"Output: gloomy\n",
"\n",
"Input: windy\n",
"Output: calm\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"# An example with small input, so it selects all examples.\n",
"print(dynamic_prompt.format(adjective=\"big\"))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "878bcde9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else\n",
"Output:\n"
]
}
],
"source": [
"# An example with long input, so it selects only one example.\n",
"long_string = \"big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else\"\n",
"print(dynamic_prompt.format(adjective=long_string))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "e4bebcd9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: energetic\n",
"Output: lethargic\n",
"\n",
"Input: sunny\n",
"Output: gloomy\n",
"\n",
"Input: windy\n",
"Output: calm\n",
"\n",
"Input: big\n",
"Output: small\n",
"\n",
"Input: enthusiastic\n",
"Output:\n"
]
}
],
"source": [
"# You can add an example to an example selector as well.\n",
"new_example = {\"input\": \"big\", \"output\": \"small\"}\n",
"dynamic_prompt.example_selector.add_example(new_example)\n",
"print(dynamic_prompt.format(adjective=\"enthusiastic\"))"
]
},
{
"cell_type": "markdown",
"id": "2d007b0a",
"metadata": {},
"source": [
"### Similarity ExampleSelector\n",
"\n",
"The SemanticSimilarityExampleSelector selects examples based on which examples are most similar to the inputs. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs.\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "241bfe80",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.example_selector import SemanticSimilarityExampleSelector\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.embeddings import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "50d0a701",
"metadata": {},
"outputs": [],
"source": [
"example_selector = SemanticSimilarityExampleSelector.from_examples(\n",
" # This is the list of examples available to select from.\n",
" examples, \n",
" # This is the embedding class used to produce embeddings which are used to measure semantic similarity.\n",
" OpenAIEmbeddings(), \n",
" # This is the VectorStore class that is used to store the embeddings and do a similarity search over.\n",
" FAISS, \n",
" # This is the number of examples to produce.\n",
" k=1\n",
")\n",
"similar_prompt = FewShotPromptTemplate(\n",
" # We provide an ExampleSelector instead of examples.\n",
" example_selector=example_selector,\n",
" example_prompt=example_prompt,\n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "4c8fdf45",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: worried\n",
"Output:\n"
]
}
],
"source": [
"# Input is a feeling, so should select the happy/sad example\n",
"print(similar_prompt.format(adjective=\"worried\"))"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "829af21a",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: fat\n",
"Output:\n"
]
}
],
"source": [
"# Input is a measurement, so should select the tall/short example\n",
"print(similar_prompt.format(adjective=\"fat\"))"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "3c16fe23",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: enthusiastic\n",
"Output: apathetic\n",
"\n",
"Input: joyful\n",
"Output:\n"
]
}
],
"source": [
"# You can add new examples to the SemanticSimilarityExampleSelector as well\n",
"similar_prompt.example_selector.add_example({\"input\": \"enthusiastic\", \"output\": \"apathetic\"})\n",
"print(similar_prompt.format(adjective=\"joyful\"))"
]
},
{
"cell_type": "markdown",
"id": "dbc32551",
"metadata": {},
"source": [
"### Serialization\n",
"\n",
"PromptTemplates and examples can be serialized and loaded from disk, making it easy to share and store prompts. For a detailed walkthrough on how to do that, see [this notebook](prompt_serialization.ipynb)."
]
},
{
"cell_type": "markdown",
"id": "1e1e13c6",
"metadata": {},
"source": [
"### Customizability\n",
"The above covers all the ways currently supported in LangChain to represent prompts and example selectors. However, due to the simple interface that the base classes (`BasePromptTemplate`, `BaseExampleSelector`) expose, it should be easy to subclass them and write your own implementation in your own codebase. And of course, if you'd like to contribute that back to LangChain, we'd love that :)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c746d6f4",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,128 +0,0 @@
# Data Augmented Generation
## Overview
Language models are trained on large amounts of unstructured data, which makes them really good at general purpose text generation. However, there are many instances where you may want the language model to generate text based not on generic data but rather on specific data. Some common examples of this include:
- Summarization of a specific piece of text (a website, a private document, etc)
- Question answering over a specific piece of text (a website, a private document, etc)
- Question answering over multiple pieces of text (multiple websites, multiple private documents, etc)
- Using the results of some external call to an API (results from a SQL query, etc)
All of these examples are instances when you do not want the LLM to generate text based solely on the data it was trained over, but rather you want it to incorporate other external data in some way. At a high level, this process can be broken down into two steps:
1. Fetching: Fetching the relevant data to include.
2. Augmenting: Passing the data in as context to the LLM.
This guide is intended to provide an overview of how to do this. This includes an overview of the literature, as well as common tools, abstractions and chains for doing this.
## Related Literature
There are a lot of related papers in this area. Most of them are focused on end-to-end methods that optimize the fetching of the relevant data as well as passing it in as context. These are a few of the papers that are particularly relevant:
**[RAG](https://arxiv.org/abs/2005.11401):** Retrieval Augmented Generation.
This paper introduces RAG models where the parametric memory is a pre-trained seq2seq model and the non-parametric memory is a dense vector index of Wikipedia, accessed with a pre-trained neural retriever.
**[REALM](https://arxiv.org/abs/2002.08909):** Retrieval-Augmented Language Model Pre-Training.
To capture knowledge in a more modular and interpretable way, this paper augments language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference.
**[HayStack](https://haystack.deepset.ai/):** This is not a paper, but rather an open source library aimed at semantic search, question answering, summarization, and document ranking for a wide range of NLP applications. The underpinnings of this library are focused on the same `fetching` and `augmenting` concepts discussed here, and incorporate some of the methods in the above papers.
These papers/open-source projects are centered around retrieval of documents, which is important for question-answering tasks over a large corpus of documents (which is how they are evaluated). However, we use the terminology of `Data Augmented Generation` to highlight that retrieval from some document store is only one possible way of fetching relevant data to include. Other methods to fetch relevant data could involve hitting an API, querying a database, or just working with user provided data (eg a specific document that they want to summarize).
Let's now deep dive on the two steps involved: fetching and augmenting.
## Fetching
There are many ways to fetch relevant data to pass in as context to a LM, and these methods largely depend
on the use case.
**User provided:** In some cases, the user may provide the relevant data, and no algorithm for fetching is needed.
An example of this is for summarization of specific documents: the user will provide the document to be summarized,
and task the language model with summarizing it.
**Document Retrieval:** One of the more common use cases involves fetching relevant documents or pieces of text from
a large corpus of data. A common example of this is question answering over a private collection of documents.
**API Querying:** Another common way to fetch data is from an API query. One example of this is WebGPT like system,
where you first query Google (or another search API) for relevant information, and then those results are used in
the generation step. Another example could be querying a structured database (like SQL) and then using a language model
to synthesize those results.
There are two big issues to deal with in fetching:
1. Fetching small enough pieces of information
2. Not fetching too many pieces of information (eg fetching only the most relevant pieces)
### Text Splitting
One big issue with all of these methods is how to make sure you are working with pieces of text that are not too large.
This is important because most language models have a context length, and so you cannot (yet) just pass a
large document in as context. Therefor, it is important to not only fetch relevant data but also make sure it is
small enough chunks.
LangChain provides some utilities to help with splitting up larger pieces of data. This comes in the form of the TextSplitter class.
The class takes in a document and splits it up into chunks, with several parameters that control the
size of the chunks as well as the overlap in the chunks (important for maintaining context).
See [this walkthrough](../examples/integrations/textsplitter.ipynb) for more information.
### Relevant Documents
A second large issue related fetching data is to make sure you are not fetching too many documents, and are only fetching
the documents that are relevant to the query/question at hand. There are a few ways to deal with this.
One concrete example of this is vector stores for document retrieval, often used for semantic search or question answering.
With this method, larger documents are split up into
smaller chunks and then each chunk of text is passed to an embedding function which creates an embedding for that piece of text.
Those are embeddings are then stored in a database. When a new search query or question comes in, an embedding is
created for that query/question and then documents with embeddings most similar to that embedding are fetched.
Examples of vector database companies include [Pinecone](https://www.pinecone.io/) and [Weaviate](https://weaviate.io/).
Although this is perhaps the most common way of document retrieval, people are starting to think about alternative
data structures and indexing techniques specifically for working with language models. For a leading example of this,
check out [GPT Index](https://github.com/jerryjliu/gpt_index) - a collection of data structures created by and optimized
for language models.
## Augmenting
So you've fetched your relevant data - now what? How do you pass them to the language model in a format it can understand?
There are a few different methods, or chains, for doing so. LangChain supports three of the more common ones - and
we are actively looking to include more, so if you have any ideas please reach out! Note that there is not
one best method - the decision of which one to use is often very context specific. In order from simplest to
most complex:
### Stuffing
Stuffing is the simplest method, whereby you simply stuff all the related data into the prompt as context
to pass to the language model. This is implemented in LangChain as the `StuffDocumentsChain`.
**Pros:** Only makes a single call to the LLM. When generating text, the LLM has access to all the data at once.
**Cons:** Most LLMs have a context length, and for large documents (or many documents) this will not work as it will result in a prompt larger than the context length.
The main downside of this method is that it only works one smaller pieces of data. Once you are working
with many pieces of data, this approach is no longer feasible. The next two approaches are designed to help deal with that.
### Map Reduce
This method involves an initial prompt on each chunk of data (for summarization tasks, this
could be a summary of that chunk; for question-answering tasks, it could be an answer based solely on that chunk).
Then a different prompt is run to combine all the initial outputs. This is implemented in the LangChain as the `MapReduceDocumentsChain`.
**Pros:** Can scale to larger documents (and more documents) than `StuffDocumentsChain`. The calls to the LLM on individual documents are independent and can therefore be parallelized.
**Cons:** Requires many more calls to the LLM than `StuffDocumentsChain`. Loses some information during the final combining call.
### Refine
This method involves an initial prompt on the first chunk of data, generating some output.
For the remaining documents, that output is passed in, along with the next document,
asking the LLM to refine the output based on the new document.
**Pros:** Can pull in more relevant context, and may be less lossy than `RefineDocumentsChain`.
**Cons:** Requires many more calls to the LLM than `StuffDocumentsChain`. The calls are also NOT independent, meaning they cannot be paralleled like `MapReduceDocumentsChain`. There is also some potential dependencies on the ordering of the documents.
## Use Cases
LangChain supports the above three methods of augmenting LLMs with external data.
These methods can be used to underpin several common use cases and they are discussed below.
For all three of these use cases, all three methods are supported.
It is important to note that a large part of these implementations is the prompts
that are used. We provide default prompts for all three use cases, but these can be configured.
This is in case you discover a prompt that works better for your specific application.
- [Question-Answering With Sources](../examples/chains/qa_with_sources.ipynb)
- [Question-Answering](../examples/chains/question_answering.ipynb)
- [Summarization](../examples/chains/summarize.ipynb)

View File

@@ -1,45 +0,0 @@
# Cool Demos
Lots of people have built some pretty awesome stuff with LangChain.
This is a collection of our favorites.
If you see any other demos that you think we should highlight, be sure to let us know!
## Open Source
### [YouTube Transcription Question Answering with Sources](https://colab.research.google.com/drive/1sKSTjt9cPstl_WMZ86JsgEqFG-aSAwkn?usp=sharing)
An end-to-end example of doing question answering on YouTube transcripts, returning the timestamps as sources to legitimize the answer.
### [ThoughtSource](https://github.com/OpenBioLink/ThoughtSource)
A central, open resource and community around data and tools related to chain-of-thought reasoning in large language models.
### [Notion Database Question-Answering Bot](https://github.com/hwchase17/notion-qa)
Open source GitHub project shows how to use LangChain to create a
chatbot that can answer questions about an arbitrary Notion database.
### [GPT Index](https://github.com/jerryjliu/gpt_index)
GPT Index is a project consisting of a set of data structures that are created using GPT-3 and can be traversed using GPT-3 in order to answer queries.
### [Grover's Algorithm](https://github.com/JavaFXpert/llm-grovers-search-party)
Leveraging Qiskit, OpenAI and LangChain to demonstrate Grover's algorithm
### [ReAct TextWorld](https://colab.research.google.com/drive/19WTIWC3prw5LDMHmRMvqNV2loD9FHls6?usp=sharing)
Leveraging the ReActTextWorldAgent to play TextWorld with an LLM!
## Not Open Source
### [Daimon](https://twitter.com/sjwhitmore/status/1580593217153531908?s=20&t=neQvtZZTlp623U3LZwz3bQ)
A chat-based AI personal assistant with long-term memory about you.
### [Clerkie](https://twitter.com/krrish_dh/status/1581028925618106368?s=20&t=neQvtZZTlp623U3LZwz3bQ)
Stack Tracing QA Bot to help debug complex stack tracing (especially the ones that go multi-function/file deep).
### [Sales Email Writer](https://twitter.com/Raza_Habib496/status/1596880140490838017?s=20&t=6MqEQYWfSqmJwsKahjCVOA)
By Raza Habib, this demo utilizes LangChain + SerpAPI + HumanLoop to write sales emails.
Give it a company name and a person, this application will use Google Search (via SerpAPI) to get
more information on the company and the person, and then write them a sales message.
### [Question-Answering on a Web Browser](https://twitter.com/chillzaza_/status/1592961099384905730?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ)
By Zahid Khawaja, this demo utilizes question answering to answer questions about a given website.
A followup added this for [Youtube videos](https://twitter.com/chillzaza_/status/1593739682013220865?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ),
and then another followup added it for [Wikipedia](https://twitter.com/chillzaza_/status/1594847151238037505?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ).

View File

@@ -1,37 +0,0 @@
# Core Concepts
This section goes over the core concepts of LangChain.
Understanding these will go a long way in helping you understand the codebase and how to construct chains.
## PromptTemplates
PromptTemplates generically have a `format` method that takes in variables and returns a formatted string.
The most simple implementation of this is to have a template string with some variables in it, and then format it with the incoming variables.
More complex iterations dynamically construct the template string from few shot examples, etc.
For a more detailed explanation of how LangChain approaches prompts and prompt templates, see [here](/examples/prompts/prompt_management).
## LLMs
Wrappers around Large Language Models (in particular, the `generate` ability of large language models) are some of the core functionality of LangChain.
These wrappers are classes that are callable: they take in an input string, and return the generated output string.
## Embeddings
These classes are very similar to the LLM classes in that they are wrappers around models,
but rather than return a string they return an embedding (list of floats). This are particularly useful when
implementing semantic search functionality. They expose separate methods for embedding queries versus embedding documents.
## Vectorstores
These are datastores that store documents. They expose a method for passing in a string and finding similar documents.
## Chains
These are pipelines that combine multiple of the above ideas.
They vary greatly in complexity and are combination of generic, highly configurable pipelines and more narrow (but usually more complex) pipelines.
## Agents
As opposed to a chain, whether the steps to be taken are known ahead of time, agents
use an LLM to determine which tools to call and in what order.
## Memory
By default, Chains and Agents are stateless, meaning that they treat each incoming query independently.
In some applications (chatbots being a GREAT example) it is highly important to remember previous interactions,
both at a short term but also at a long term level. The concept of "Memory" exists to do exactly that.

335
docs/gallery.rst Normal file
View File

@@ -0,0 +1,335 @@
LangChain Gallery
=============
Lots of people have built some pretty awesome stuff with LangChain.
This is a collection of our favorites.
If you see any other demos that you think we should highlight, be sure to let us know!
Open Source
-----------
.. panels::
:body: text-center
---
.. link-button:: https://github.com/bborn/howdoi.ai
:type: url
:text: HowDoI.ai
:classes: stretched-link btn-lg
+++
This is an experiment in building a large-language-model-backed chatbot. It can hold a conversation, remember previous comments/questions,
and answer all types of queries (history, web search, movie data, weather, news, and more).
---
.. link-button:: https://colab.research.google.com/drive/1sKSTjt9cPstl_WMZ86JsgEqFG-aSAwkn?usp=sharing
:type: url
:text: YouTube Transcription QA with Sources
:classes: stretched-link btn-lg
+++
An end-to-end example of doing question answering on YouTube transcripts, returning the timestamps as sources to legitimize the answer.
---
.. link-button:: https://github.com/normandmickey/MrsStax
:type: url
:text: QA Slack Bot
:classes: stretched-link btn-lg
+++
This application is a Slack Bot that uses Langchain and OpenAI's GPT3 language model to provide domain specific answers. You provide the documents.
---
.. link-button:: https://github.com/OpenBioLink/ThoughtSource
:type: url
:text: ThoughtSource
:classes: stretched-link btn-lg
+++
A central, open resource and community around data and tools related to chain-of-thought reasoning in large language models.
---
.. link-button:: https://github.com/blackhc/llm-strategy
:type: url
:text: LLM Strategy
:classes: stretched-link btn-lg
+++
This Python package adds a decorator llm_strategy that connects to an LLM (such as OpenAIs GPT-3) and uses the LLM to "implement" abstract methods in interface classes. It does this by forwarding requests to the LLM and converting the responses back to Python data using Python's @dataclasses.
---
.. link-button:: https://github.com/JohnNay/llm-lobbyist
:type: url
:text: Zero-Shot Corporate Lobbyist
:classes: stretched-link btn-lg
+++
A notebook showing how to use GPT to help with the work of a corporate lobbyist.
---
.. link-button:: https://dagster.io/blog/chatgpt-langchain
:type: url
:text: Dagster Documentation ChatBot
:classes: stretched-link btn-lg
+++
A jupyter notebook demonstrating how you could create a semantic search engine on documents in one of your Google Folders
---
.. link-button:: https://github.com/venuv/langchain_semantic_search
:type: url
:text: Google Folder Semantic Search
:classes: stretched-link btn-lg
+++
Build a GitHub support bot with GPT3, LangChain, and Python.
---
.. link-button:: https://huggingface.co/spaces/team7/talk_with_wind
:type: url
:text: Talk With Wind
:classes: stretched-link btn-lg
+++
Record sounds of anything (birds, wind, fire, train station) and chat with it.
---
.. link-button:: https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain
:type: url
:text: ChatGPT LangChain
:classes: stretched-link btn-lg
+++
This simple application demonstrates a conversational agent implemented with OpenAI GPT-3.5 and LangChain. When necessary, it leverages tools for complex math, searching the internet, and accessing news and weather.
---
.. link-button:: https://huggingface.co/spaces/JavaFXpert/gpt-math-techniques
:type: url
:text: GPT Math Techniques
:classes: stretched-link btn-lg
+++
A Hugging Face spaces project showing off the benefits of using PAL for math problems.
---
.. link-button:: https://colab.research.google.com/drive/1xt2IsFPGYMEQdoJFNgWNAjWGxa60VXdV
:type: url
:text: GPT Political Compass
:classes: stretched-link btn-lg
+++
Measure the political compass of GPT.
---
.. link-button:: https://github.com/hwchase17/notion-qa
:type: url
:text: Notion Database Question-Answering Bot
:classes: stretched-link btn-lg
+++
Open source GitHub project shows how to use LangChain to create a chatbot that can answer questions about an arbitrary Notion database.
---
.. link-button:: https://github.com/jerryjliu/llama_index
:type: url
:text: LlamaIndex
:classes: stretched-link btn-lg
+++
LlamaIndex (formerly GPT Index) is a project consisting of a set of data structures that are created using GPT-3 and can be traversed using GPT-3 in order to answer queries.
---
.. link-button:: https://github.com/JavaFXpert/llm-grovers-search-party
:type: url
:text: Grover's Algorithm
:classes: stretched-link btn-lg
+++
Leveraging Qiskit, OpenAI and LangChain to demonstrate Grover's algorithm
---
.. link-button:: https://huggingface.co/spaces/rituthombre/QNim
:type: url
:text: QNimGPT
:classes: stretched-link btn-lg
+++
A chat UI to play Nim, where a player can select an opponent, either a quantum computer or an AI
---
.. link-button:: https://colab.research.google.com/drive/19WTIWC3prw5LDMHmRMvqNV2loD9FHls6?usp=sharing
:type: url
:text: ReAct TextWorld
:classes: stretched-link btn-lg
+++
Leveraging the ReActTextWorldAgent to play TextWorld with an LLM!
---
.. link-button:: https://github.com/jagilley/fact-checker
:type: url
:text: Fact Checker
:classes: stretched-link btn-lg
+++
This repo is a simple demonstration of using LangChain to do fact-checking with prompt chaining.
---
.. link-button:: https://github.com/arc53/docsgpt
:type: url
:text: DocsGPT
:classes: stretched-link btn-lg
+++
Answer questions about the documentation of any project
Misc. Colab Notebooks
~~~~~~~~~~~~~~~
.. panels::
:body: text-center
---
.. link-button:: https://colab.research.google.com/drive/1AAyEdTz-Z6ShKvewbt1ZHUICqak0MiwR?usp=sharing
:type: url
:text: Wolfram Alpha in Conversational Agent
:classes: stretched-link btn-lg
+++
Give ChatGPT a WolframAlpha neural implant
---
.. link-button:: https://colab.research.google.com/drive/1UsCLcPy8q5PMNQ5ytgrAAAHa124dzLJg?usp=sharing
:type: url
:text: Tool Updates in Agents
:classes: stretched-link btn-lg
+++
Agent improvements (6th Jan 2023)
---
.. link-button:: https://colab.research.google.com/drive/1UsCLcPy8q5PMNQ5ytgrAAAHa124dzLJg?usp=sharing
:type: url
:text: Conversational Agent with Tools (Langchain AGI)
:classes: stretched-link btn-lg
+++
Langchain AGI (23rd Dec 2022)
Proprietary
-----------
.. panels::
:body: text-center
---
.. link-button:: https://twitter.com/sjwhitmore/status/1580593217153531908?s=20&t=neQvtZZTlp623U3LZwz3bQ
:type: url
:text: Daimon
:classes: stretched-link btn-lg
+++
A chat-based AI personal assistant with long-term memory about you.
---
.. link-button:: https://twitter.com/dory111111/status/1608406234646052870?s=20&t=XYlrbKM0ornJsrtGa0br-g
:type: url
:text: AI Assisted SQL Query Generator
:classes: stretched-link btn-lg
+++
An app to write SQL using natural language, and execute against real DB.
---
.. link-button:: https://twitter.com/krrish_dh/status/1581028925618106368?s=20&t=neQvtZZTlp623U3LZwz3bQ
:type: url
:text: Clerkie
:classes: stretched-link btn-lg
+++
Stack Tracing QA Bot to help debug complex stack tracing (especially the ones that go multi-function/file deep).
---
.. link-button:: https://twitter.com/Raza_Habib496/status/1596880140490838017?s=20&t=6MqEQYWfSqmJwsKahjCVOA
:type: url
:text: Sales Email Writer
:classes: stretched-link btn-lg
+++
By Raza Habib, this demo utilizes LangChain + SerpAPI + HumanLoop to write sales emails. Give it a company name and a person, this application will use Google Search (via SerpAPI) to get more information on the company and the person, and then write them a sales message.
---
.. link-button:: https://twitter.com/chillzaza_/status/1592961099384905730?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ
:type: url
:text: Question-Answering on a Web Browser
:classes: stretched-link btn-lg
+++
By Zahid Khawaja, this demo utilizes question answering to answer questions about a given website. A followup added this for `YouTube videos <https://twitter.com/chillzaza_/status/1593739682013220865?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ>`_, and then another followup added it for `Wikipedia <https://twitter.com/chillzaza_/status/1594847151238037505?s=20&t=EhU8jl0KyCPJ7vE9Rnz-cQ>`_.
---
.. link-button:: https://mynd.so
:type: url
:text: Mynd
:classes: stretched-link btn-lg
+++
A journaling app for self-care that uses AI to uncover insights and patterns over time.

View File

@@ -1,196 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "5436020b",
"metadata": {},
"source": [
"# Agents\n",
"\n",
"Agents use an LLM to determine which actions to take and in what order.\n",
"An action can either be using a tool and observing its output, or returning to the user.\n",
"\n",
"When used correctly agents can be extremely powerful. The purpose of this notebook is to show you how to easily use agents through the simplest, highest level API. If you want more low level control over various components, check out the documentation for custom agents (coming soon)."
]
},
{
"cell_type": "markdown",
"id": "3c6226b9",
"metadata": {},
"source": [
"## Concepts\n",
"\n",
"In order to load agents, you should understand the following concepts:\n",
"\n",
"- Tool: A function that performs a specific duty. This can be things like: Google Search, Database lookup, Python REPL, other chains. The interface for a tool is currently a function that is expected to have a string as an input, with a string as an output.\n",
"- LLM: The language model powering the agent.\n",
"- Agent: The agent to use. This should be a string that references a support agent class. Because this notebook focuses on the simplest, highest level API, this only covers using the standard supported agents. If you want to implement a custom agent, see the documentation for custom agents (coming soon).\n",
"\n",
"**For a list of supported agents and their specifications, see [here](../explanation/agents.md)**"
]
},
{
"cell_type": "markdown",
"id": "05d4b21e",
"metadata": {},
"source": [
"## Tools\n",
"When constructing your own agent, you will need to provide it with a list of Tools that it can use. A Tool is defined as below.\n",
"\n",
"```python\n",
"class Tool(NamedTuple):\n",
" \"\"\"Interface for tools.\"\"\"\n",
"\n",
" name: str\n",
" func: Callable[[str], str]\n",
" description: Optional[str] = None\n",
"```\n",
"\n",
"The two required components of a Tool are the name and then the tool itself. A tool description is optional, as it is needed for some agents but not all."
]
},
{
"cell_type": "markdown",
"id": "2558a02d",
"metadata": {},
"source": [
"## Loading an agent\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36ed392e",
"metadata": {},
"outputs": [],
"source": [
"# Import things that are needed generically\n",
"from langchain.agents import initialize_agent, Tool\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "56ff7670",
"metadata": {},
"outputs": [],
"source": [
"# Load the tool configs that are needed.\n",
"from langchain import LLMMathChain, SerpAPIWrapper\n",
"llm = OpenAI(temperature=0)\n",
"search = SerpAPIWrapper()\n",
"llm_math_chain = LLMMathChain(llm=llm, verbose=True)\n",
"tools = [\n",
" Tool(\n",
" name = \"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\"\n",
" ),\n",
" Tool(\n",
" name=\"Calculator\",\n",
" func=llm_math_chain.run,\n",
" description=\"useful for when you need to answer questions about math\"\n",
" )\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5b93047d",
"metadata": {},
"outputs": [],
"source": [
"# Construct the agent. We will use the default agent type here.\n",
"# See documentation for a full list of options.\n",
"llm = OpenAI(temperature=0)\n",
"agent = initialize_agent(tools, llm, agent=\"zero-shot-react-description\", verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6f96a891",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"What is the age of Olivia Wilde's boyfriend raised to the 0.23 power?\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find the age of Olivia Wilde's boyfriend\n",
"Action: Search\n",
"Action Input: \"Olivia Wilde's boyfriend\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mOlivia Wilde started dating Harry Styles after ending her years-long engagement to Jason Sudeikis — see their relationship timeline.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to find the age of Harry Styles\n",
"Action: Search\n",
"Action Input: \"Harry Styles age\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m28 years\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I need to calculate 28 to the 0.23 power\n",
"Action: Calculator\n",
"Action Input: 28^0.23\u001b[0m\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"28^0.23\u001b[32;1m\u001b[1;3m\n",
"\n",
"```python\n",
"print(28**0.23)\n",
"```\n",
"\u001b[0m\n",
"Answer: \u001b[33;1m\u001b[1;3m2.1520202182226886\n",
"\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"Observation: \u001b[33;1m\u001b[1;3mAnswer: 2.1520202182226886\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: 2.1520202182226886\u001b[0m"
]
},
{
"data": {
"text/plain": [
"'2.1520202182226886'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"How old is Olivia Wilde's boyfriend? What is that number raised to the 0.23 power?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f0852ff",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,37 +0,0 @@
# Setting up your environment
Using LangChain will usually require integrations with one or more model providers, data stores, apis, etc.
There are two components to setting this up, installing the correct python packages and setting the right environment variables.
## Python packages
The python package needed varies based on the integration. See the list of integrations for details.
There should also be helpful error messages raised if you try to run an integration and are missing any required python packages.
## Environment Variables
The environment variable needed varies based on the integration. See the list of integrations for details.
There should also be helpful error messages raised if you try to run an integration and are missing any required environment variables.
You can set the environment variable in a few ways.
If you are trying to set the environment variable `FOO` to value `bar`, here are the ways you could do so:
- From the command line:
```
export FOO=bar
```
- From the python notebook/script:
```python
import os
os.environ["FOO"] = "bar"
```
For the Getting Started example, we will be using OpenAI's APIs, so we will first need to install their SDK:
```
pip install openai
```
We will then need to set the environment variable. Let's do this from inside the Jupyter notebook (or Python script).
```python
import os
os.environ["OPENAI_API_KEY"] = "..."
```

View File

@@ -0,0 +1,502 @@
# Quickstart Guide
This tutorial gives you a quick walkthrough about building an end-to-end language model application with LangChain.
## Installation
To get started, install LangChain with the following command:
```bash
pip install langchain
```
## Environment Setup
Using LangChain will usually require integrations with one or more model providers, data stores, apis, etc.
For this example, we will be using OpenAI's APIs, so we will first need to install their SDK:
```bash
pip install openai
```
We will then need to set the environment variable in the terminal.
```bash
export OPENAI_API_KEY="..."
```
Alternatively, you could do this from inside the Jupyter notebook (or Python script):
```python
import os
os.environ["OPENAI_API_KEY"] = "..."
```
## Building a Language Model Application: LLMs
Now that we have installed LangChain and set up our environment, we can start building our language model application.
LangChain provides many modules that can be used to build language model applications. Modules can be combined to create more complex applications, or be used individually for simple applications.
`````{dropdown} LLMs: Get predictions from a language model
The most basic building block of LangChain is calling an LLM on some input.
Let's walk through a simple example of how to do this.
For this purpose, let's pretend we are building a service that generates a company name based on what the company makes.
In order to do this, we first need to import the LLM wrapper.
```python
from langchain.llms import OpenAI
```
We can then initialize the wrapper with any arguments.
In this example, we probably want the outputs to be MORE random, so we'll initialize it with a HIGH temperature.
```python
llm = OpenAI(temperature=0.9)
```
We can now call it on some input!
```python
text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))
```
```pycon
Feetful of Fun
```
For more details on how to use LLMs within LangChain, see the [LLM getting started guide](../modules/models/llms/getting_started.ipynb).
`````
`````{dropdown} Prompt Templates: Manage prompts for LLMs
Calling an LLM is a great first step, but it's just the beginning.
Normally when you use an LLM in an application, you are not sending user input directly to the LLM.
Instead, you are probably taking user input and constructing a prompt, and then sending that to the LLM.
For example, in the previous example, the text we passed in was hardcoded to ask for a name for a company that made colorful socks.
In this imaginary service, what we would want to do is take only the user input describing what the company does, and then format the prompt with that information.
This is easy to do with LangChain!
First lets define the prompt template:
```python
from langchain.prompts import PromptTemplate
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
```
Let's now see how this works! We can call the `.format` method to format it.
```python
print(prompt.format(product="colorful socks"))
```
```pycon
What is a good name for a company that makes colorful socks?
```
[For more details, check out the getting started guide for prompts.](../modules/prompts/chat_prompt_template.ipynb)
`````
`````{dropdown} Chains: Combine LLMs and prompts in multi-step workflows
Up until now, we've worked with the PromptTemplate and LLM primitives by themselves. But of course, a real application is not just one primitive, but rather a combination of them.
A chain in LangChain is made up of links, which can be either primitives like LLMs or other chains.
The most core type of chain is an LLMChain, which consists of a PromptTemplate and an LLM.
Extending the previous example, we can construct an LLMChain which takes user input, formats it with a PromptTemplate, and then passes the formatted response to an LLM.
```python
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
```
We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM:
```python
from langchain.chains import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
```
Now we can run that chain only specifying the product!
```python
chain.run("colorful socks")
# -> '\n\nSocktastic!'
```
There we go! There's the first chain - an LLM Chain.
This is one of the simpler types of chains, but understanding how it works will set you up well for working with more complex chains.
[For more details, check out the getting started guide for chains.](../modules/chains/getting_started.ipynb)
`````
`````{dropdown} Agents: Dynamically Call Chains Based on User Input
So far the chains we've looked at run in a predetermined order.
Agents no longer do: they use an LLM to determine which actions to take and in what order. An action can either be using a tool and observing its output, or returning to the user.
When used correctly agents can be extremely powerful. In this tutorial, we show you how to easily use agents through the simplest, highest level API.
In order to load agents, you should understand the following concepts:
- Tool: A function that performs a specific duty. This can be things like: Google Search, Database lookup, Python REPL, other chains. The interface for a tool is currently a function that is expected to have a string as an input, with a string as an output.
- LLM: The language model powering the agent.
- Agent: The agent to use. This should be a string that references a support agent class. Because this notebook focuses on the simplest, highest level API, this only covers using the standard supported agents. If you want to implement a custom agent, see the documentation for custom agents (coming soon).
**Agents**: For a list of supported agents and their specifications, see [here](../modules/agents/agents.md).
**Tools**: For a list of predefined tools and their specifications, see [here](../modules/agents/tools.md).
For this example, you will also need to install the SerpAPI Python package.
```bash
pip install google-search-results
```
And set the appropriate environment variables.
```python
import os
os.environ["SERPAPI_API_KEY"] = "..."
```
Now we can get started!
```python
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI
# First, let's load the language model we're going to use to control the agent.
llm = OpenAI(temperature=0)
# Next, let's load some tools to use. Note that the `llm-math` tool uses an LLM, so we need to pass that in.
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# Finally, let's initialize an agent with the tools, the language model, and the type of agent we want to use.
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
# Now let's test it out!
agent.run("What was the high temperature in SF yesterday in Fahrenheit? What is that number raised to the .023 power?")
```
```pycon
> Entering new AgentExecutor chain...
I need to find the temperature first, then use the calculator to raise it to the .023 power.
Action: Search
Action Input: "High temperature in SF yesterday"
Observation: San Francisco Temperature Yesterday. Maximum temperature yesterday: 57 °F (at 1:56 pm) Minimum temperature yesterday: 49 °F (at 1:56 am) Average temperature ...
Thought: I now have the temperature, so I can use the calculator to raise it to the .023 power.
Action: Calculator
Action Input: 57^.023
Observation: Answer: 1.0974509573251117
Thought: I now know the final answer
Final Answer: The high temperature in SF yesterday in Fahrenheit raised to the .023 power is 1.0974509573251117.
> Finished chain.
```
`````
`````{dropdown} Memory: Add State to Chains and Agents
So far, all the chains and agents we've gone through have been stateless. But often, you may want a chain or agent to have some concept of "memory" so that it may remember information about its previous interactions. The clearest and simple example of this is when designing a chatbot - you want it to remember previous messages so it can use context from that to have a better conversation. This would be a type of "short-term memory". On the more complex side, you could imagine a chain/agent remembering key pieces of information over time - this would be a form of "long-term memory". For more concrete ideas on the latter, see this [awesome paper](https://memprompt.com/).
LangChain provides several specially created chains just for this purpose. This notebook walks through using one of those chains (the `ConversationChain`) with two different types of memory.
By default, the `ConversationChain` has a simple type of memory that remembers all previous inputs/outputs and adds them to the context that is passed. Let's take a look at using this chain (setting `verbose=True` so we can see the prompt).
```python
from langchain import OpenAI, ConversationChain
llm = OpenAI(temperature=0)
conversation = ConversationChain(llm=llm, verbose=True)
conversation.predict(input="Hi there!")
```
```pycon
> Entering new chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI:
> Finished chain.
' Hello! How are you today?'
```
```python
conversation.predict(input="I'm doing well! Just having a conversation with an AI.")
```
```pycon
> Entering new chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI: Hello! How are you today?
Human: I'm doing well! Just having a conversation with an AI.
AI:
> Finished chain.
" That's great! What would you like to talk about?"
```
`````
## Building a Language Model Application: Chat Models
Similarly, you can use chat models instead of LLMs. Chat models are a variation on language models. While chat models use language models under the hood, the interface they expose is a bit different: rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs.
Chat model APIs are fairly new, so we are still figuring out the correct abstractions.
`````{dropdown} Get Message Completions from a Chat Model
You can get chat completions by passing one or more messages to the chat model. The response will be a message. The types of messages currently supported in LangChain are `AIMessage`, `HumanMessage`, `SystemMessage`, and `ChatMessage` -- `ChatMessage` takes in an arbitrary role parameter. Most of the time, you'll just be dealing with `HumanMessage`, `AIMessage`, and `SystemMessage`.
```python
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
chat = ChatOpenAI(temperature=0)
```
You can get completions by passing in a single message.
```python
chat([HumanMessage(content="Translate this sentence from English to French. I love programming.")])
# -> AIMessage(content="J'aime programmer.", additional_kwargs={})
```
You can also pass in multiple messages for OpenAI's gpt-3.5-turbo and gpt-4 models.
```python
messages = [
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="Translate this sentence from English to French. I love programming.")
]
chat(messages)
# -> AIMessage(content="J'aime programmer.", additional_kwargs={})
```
You can go one step further and generate completions for multiple sets of messages using `generate`. This returns an `LLMResult` with an additional `message` parameter:
```python
batch_messages = [
[
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="Translate this sentence from English to French. I love programming.")
],
[
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="Translate this sentence from English to French. I love artificial intelligence.")
],
]
result = chat.generate(batch_messages)
result
# -> LLMResult(generations=[[ChatGeneration(text="J'aime programmer.", generation_info=None, message=AIMessage(content="J'aime programmer.", additional_kwargs={}))], [ChatGeneration(text="J'aime l'intelligence artificielle.", generation_info=None, message=AIMessage(content="J'aime l'intelligence artificielle.", additional_kwargs={}))]], llm_output={'token_usage': {'prompt_tokens': 71, 'completion_tokens': 18, 'total_tokens': 89}})
```
You can recover things like token usage from this LLMResult:
```
result.llm_output['token_usage']
# -> {'prompt_tokens': 71, 'completion_tokens': 18, 'total_tokens': 89}
```
`````
`````{dropdown} Chat Prompt Templates
Similar to LLMs, you can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplate`s. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or `Message` object, depending on whether you want to use the formatted value as input to an llm or chat model.
For convience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:
```python
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
chat = ChatOpenAI(temperature=0)
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
# get a chat completion from the formatted messages
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
# -> AIMessage(content="J'aime programmer.", additional_kwargs={})
```
`````
`````{dropdown} Chains with Chat Models
The `LLMChain` discussed in the above section can be used with chat models as well:
```python
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
chat = ChatOpenAI(temperature=0)
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
chain.run(input_language="English", output_language="French", text="I love programming.")
# -> "J'aime programmer."
```
`````
`````{dropdown} Agents with Chat Models
Agents can also be used with chat models, you can initialize one using `AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION` as the agent type.
```python
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
# First, let's load the language model we're going to use to control the agent.
chat = ChatOpenAI(temperature=0)
# Next, let's load some tools to use. Note that the `llm-math` tool uses an LLM, so we need to pass that in.
llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# Finally, let's initialize an agent with the tools, the language model, and the type of agent we want to use.
agent = initialize_agent(tools, chat, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
# Now let's test it out!
agent.run("Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?")
```
```pycon
> Entering new AgentExecutor chain...
Thought: I need to use a search engine to find Olivia Wilde's boyfriend and a calculator to raise his age to the 0.23 power.
Action:
{
"action": "Search",
"action_input": "Olivia Wilde boyfriend"
}
Observation: Sudeikis and Wilde's relationship ended in November 2020. Wilde was publicly served with court documents regarding child custody while she was presenting Don't Worry Darling at CinemaCon 2022. In January 2021, Wilde began dating singer Harry Styles after meeting during the filming of Don't Worry Darling.
Thought:I need to use a search engine to find Harry Styles' current age.
Action:
{
"action": "Search",
"action_input": "Harry Styles age"
}
Observation: 29 years
Thought:Now I need to calculate 29 raised to the 0.23 power.
Action:
{
"action": "Calculator",
"action_input": "29^0.23"
}
Observation: Answer: 2.169459462491557
Thought:I now know the final answer.
Final Answer: 2.169459462491557
> Finished chain.
'2.169459462491557'
```
`````
`````{dropdown} Memory: Add State to Chains and Agents
You can use Memory with chains and agents initialized with chat models. The main difference between this and Memory for LLMs is that rather than trying to condense all previous messages into a string, we can keep them as their own unique memory object.
```python
from langchain.prompts import (
ChatPromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate
)
from langchain.chains import ConversationChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
prompt = ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template("The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know."),
MessagesPlaceholder(variable_name="history"),
HumanMessagePromptTemplate.from_template("{input}")
])
llm = ChatOpenAI(temperature=0)
memory = ConversationBufferMemory(return_messages=True)
conversation = ConversationChain(memory=memory, prompt=prompt, llm=llm)
conversation.predict(input="Hi there!")
# -> 'Hello! How can I assist you today?'
conversation.predict(input="I'm doing well! Just having a conversation with an AI.")
# -> "That sounds like fun! I'm happy to chat with you. Is there anything specific you'd like to talk about?"
conversation.predict(input="Tell me about yourself.")
# -> "Sure! I am an AI language model created by OpenAI. I was trained on a large dataset of text from the internet, which allows me to understand and generate human-like language. I can answer questions, provide information, and even have conversations like this one. Is there anything else you'd like to know about me?"
```
`````

View File

@@ -1,11 +0,0 @@
# Installation
LangChain is available on PyPi, so to it is easily installable with:
```
pip install langchain
```
For more involved installation options, see the [Installation Reference](/installation.md) section.
That's it! LangChain is now installed. You can now use LangChain from a python script or Jupyter notebook.

View File

@@ -1,25 +0,0 @@
# Calling a LLM
The most basic building block of LangChain is calling an LLM on some input.
Let's walk through a simple example of how to do this.
For this purpose, let's pretend we are building a service that generates a company name based on what the company makes.
In order to do this, we first need to import the LLM wrapper.
```python
from langchain.llms import OpenAI
```
We can then initialize the wrapper with any arguments.
In this example, we probably want the outputs to be MORE random, so we'll initialize it with a HIGH temperature.
```python
llm = OpenAI(temperature=0.9)
```
We can now call it on some input!
```python
text = "What would be a good company name a company that makes colorful socks?"
print(llm(text))
```

View File

@@ -1,37 +0,0 @@
# LLM Chains
Calling an LLM is a great first step, but it's just the beginning.
Normally when you use an LLM in an application, you are not sending user input directly to the LLM.
Instead, you are probably taking user input and constructing a prompt, and then sending that to the LLM.
For example, in the previous example, the text we passed in was hardcoded to ask for a name for a company that made colorful socks.
In this imaginary service, what we would want to do is take only the user input describing what the company does, and then format the prompt with that information.
This is easy to do with LangChain!
First lets define the prompt:
```python
from langchain.prompts import PromptTemplate
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
```
We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM:
```python
from langchain.chains import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
```
Now we can run that chain only specifying the product!
```python
chain.run("colorful socks")
```
There we go! There's the first chain - an LLM Chain.
This is one of the simpler types of chains, but understanding how it works will set you up well for working with more complex chains.

View File

@@ -1,333 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d31df93e",
"metadata": {},
"source": [
"# Memory\n",
"So far, all the chains and agents we've gone through have been stateless. But often, you may want a chain or agent to have some concept of \"memory\" so that it may remember information about its previous interactions. The clearest and simple example of this is when designing a chatbot - you want it to remember previous messages so it can use context from that to have a better conversation. This would be a type of \"short-term memory\". On the more complex side, you could imagine a chain/agent remembering key pieces of information over time - this would be a form of \"long-term memory\". For more concrete ideas on the latter, see this [awesome paper](https://memprompt.com/).\n",
"\n",
"LangChain provides several specially created chains just for this purpose. This notebook walks through using one of those chains (the `ConversationChain`) with two different types of memory."
]
},
{
"cell_type": "markdown",
"id": "d051c1da",
"metadata": {},
"source": [
"### ConversationChain with default memory\n",
"By default, the `ConversationChain` has a simple type of memory that remembers all previous inputs/outputs and adds them to the context that is passed. Let's take a look at using this chain (setting `verbose=True` so we can see the prompt)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ae046bff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: Hi there!\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' Hello! How are you today?'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import OpenAI, ConversationChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"conversation = ConversationChain(llm=llm, verbose=True)\n",
"\n",
"conversation.predict(input=\"Hi there!\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d8e2a6ff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: Hi there!\n",
"AI: Hello! How are you today?\n",
"Human: I'm doing well! Just having a conversation with an AI.\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\" That's great! What would you like to talk about?\""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation.predict(input=\"I'm doing well! Just having a conversation with an AI.\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "15eda316",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: Hi there!\n",
"AI: Hello! How are you today?\n",
"Human: I'm doing well! Just having a conversation with an AI.\n",
"AI: That's great! What would you like to talk about?\n",
"Human: Tell me about yourself.\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' I am an AI created to provide information and support to humans. I enjoy learning and exploring new things.'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation.predict(input=\"Tell me about yourself.\")"
]
},
{
"cell_type": "markdown",
"id": "4fad9448",
"metadata": {},
"source": [
"### ConversationChain with ConversationSummaryMemory\n",
"Now let's take a look at using a slightly more complex type of memory - `ConversationSummaryMemory`. This type of memory creates a summary of the conversation over time. This can be useful for condensing information from the conversation over time.\n",
"\n",
"Let's walk through an example, again setting `verbose=True` so we can see the prompt."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f60a2fe8",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.conversation.memory import ConversationSummaryMemory"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b7274f2c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: Hi, what's up?\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"\\n\\nI'm doing well, thank you for asking. I'm currently working on a project that I'm really excited about.\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation_with_summary = ConversationChain(llm=llm, memory=ConversationSummaryMemory(llm=OpenAI()), verbose=True)\n",
"conversation_with_summary.predict(input=\"Hi, what's up?\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a6b6b88f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"The human and artificial intelligence are talking. The human asked the AI what it is doing, and the AI said that it is working on a project that it is excited about.\n",
"Human: Tell me more about it!\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"\\n\\nI'm working on a project that I'm really excited about. It's a lot of work, but I think it's going to be really great when it's finished. I can't wait to show it to you!\""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation_with_summary.predict(input=\"Tell me more about it!\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "dad869fe",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"\n",
"The human and artificial intelligence are talking. The human asked the AI what it is doing, and the AI said that it is working on a project that it is excited about. The AI said that the project is a lot of work, but it is going to be great when it is finished.\n",
"Human: Very cool -- what is the scope of the project?\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'\\n\\nThe project is quite large in scope. It involves a lot of data analysis and work with artificial intelligence algorithms.'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation_with_summary.predict(input=\"Very cool -- what is the scope of the project?\")"
]
},
{
"cell_type": "markdown",
"id": "5c8735cc",
"metadata": {},
"source": [
"### More Resources on Memory\n",
"\n",
"This just scratches the surface of what you can do with memory. For more examples on things like how to implement custom memory classes, how to add memory to a custom LLM chain and how to use memory with an agent, please see the [How-To: Memory](../../examples/memory) section. For even more advanced ideas on memory (which will hopefully be included in LangChain soon!) see the [MemPrompt](https://memprompt.com/) paper."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "436dda66",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,265 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "4f73605d",
"metadata": {},
"source": [
"# Sequential Chains"
]
},
{
"cell_type": "markdown",
"id": "3b235f7a",
"metadata": {},
"source": [
"The next step after calling a language model is make a series of calls to a language model. This is particularly useful when you want to take the output from one call and use it as the input to another.\n",
"\n",
"In this notebook we will walk through some examples for how to do this, using sequential chains. Sequential chains are defined as a series of chains, called in deterministic order. There are two types of sequential chains:\n",
"\n",
"- `SimpleSequentialChain`: The simplest form of sequential chains, where each step has a singular input/output, and the output of one step is the input to the next.\n",
"- `SequentialChain`: A more general form of sequential chains, allowing for multiple inputs/outputs."
]
},
{
"cell_type": "markdown",
"id": "5162794e",
"metadata": {},
"source": [
"## SimpleSequentialChain\n",
"\n",
"In this series of chains, each individual chain has a single input and a single output, and the output of one step is used as input to the next.\n",
"\n",
"Let's walk through a toy example of doing this, where the first chain takes in the title of an imaginary play and then generates a synopsis for that title, and the second chain takes in the synopsis of that play and generates an imaginary review for that play."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3f2f9b8c",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b8237d1a",
"metadata": {},
"outputs": [],
"source": [
"# This is an LLMChain to write a synopsis given a title of a play.\n",
"llm = OpenAI(temperature=.7)\n",
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
"\n",
"Title: {title}\n",
"Playwright: This is a synopsis for the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4a391730",
"metadata": {},
"outputs": [],
"source": [
"# This is an LLMChain to write a review of a play given a synopsis.\n",
"llm = OpenAI(temperature=.7)\n",
"template = \"\"\"You are a play critic from the New York Times. Given the synopsis of play, it is your job to write a review for that play.\n",
"\n",
"Play Synopsis:\n",
"{synopsis}\n",
"Review from a New York Times play critic of the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"synopsis\"], template=template)\n",
"review_chain = LLMChain(llm=llm, prompt=prompt_template)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9368bd63",
"metadata": {},
"outputs": [],
"source": [
"# This is the overall chain where we run these two chains in sequence.\n",
"from langchain.chains import SimpleSequentialChain\n",
"overall_chain = SimpleSequentialChain(chains=[synopsis_chain, review_chain], verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d39e15f5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"\u001b[36;1m\u001b[1;3m\n",
"\n",
"A young couple, John and Mary, are enjoying a day at the beach. As the sun sets, they share a romantic moment. However, their happiness is short-lived, as a tragic accident claims John's life. Mary is left devastated by the loss of her husband.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3m\n",
"\n",
"\"A young couple's happiness is cut short by tragedy in this moving play. Mary is left devastated by the loss of her husband, John, in a freak accident. The play captures the pain and grief of loss, as well as the strength of love. A must-see for fans of theater.\"\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
}
],
"source": [
"review = overall_chain.run(\"Tragedy at sunset on the beach\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c6649a01",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\"A young couple's happiness is cut short by tragedy in this moving play. Mary is left devastated by the loss of her husband, John, in a freak accident. The play captures the pain and grief of loss, as well as the strength of love. A must-see for fans of theater.\"\n"
]
}
],
"source": [
"print(review)"
]
},
{
"cell_type": "markdown",
"id": "c3f1549a",
"metadata": {},
"source": [
"## Sequential Chain\n",
"Of course, not all sequential chains will be as simple as passing a single string as an argument and getting a single string as output for all steps in the chain. In this next example, we will experiment with more complex chains that involve multiple inputs, and where there also multiple final outputs. \n",
"\n",
"Of particular importance is how we name the input/output variable names. In the above example we didn't have to think about that because we were just passing the output of one chain directly as input to the next, but here we do have worry about that because we have multiple inputs."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "02016a51",
"metadata": {},
"outputs": [],
"source": [
"# This is an LLMChain to write a synopsis given a title of a play and the era it is set in.\n",
"llm = OpenAI(temperature=.7)\n",
"template = \"\"\"You are a playwright. Given the title of play and the era it is set in, it is your job to write a synopsis for that title.\n",
"\n",
"Title: {title}\n",
"Era: {era}\n",
"Playwright: This is a synopsis for the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"title\", 'era'], template=template)\n",
"synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, output_key=\"synopsis\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8bd38cc2",
"metadata": {},
"outputs": [],
"source": [
"# This is an LLMChain to write a review of a play given a synopsis.\n",
"llm = OpenAI(temperature=.7)\n",
"template = \"\"\"You are a play critic from the New York Times. Given the synopsis of play, it is your job to write a review for that play.\n",
"\n",
"Play Synopsis:\n",
"{synopsis}\n",
"Review from a New York Times play critic of the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"synopsis\"], template=template)\n",
"review_chain = LLMChain(llm=llm, prompt=prompt_template, output_key=\"review\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "524523af",
"metadata": {},
"outputs": [],
"source": [
"# This is the overall chain where we run these two chains in sequence.\n",
"from langchain.chains import SequentialChain\n",
"overall_chain = SequentialChain(\n",
" chains=[synopsis_chain, review_chain],\n",
" input_variables=[\"era\", \"title\"],\n",
" # Here we return multiple variables\n",
" output_variables=[\"synopsis\", \"review\"],\n",
" verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "3fd3a7be",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"\u001b[1mChain 0\u001b[0m:\n",
"{'synopsis': \"\\n\\nThe play is set in Victorian England and follows the tragic story of a young woman who drowns while swimming at sunset on the beach. Her body is found the next morning by a fisherman who raises the alarm. The young woman's family and friends are devastated by her death and the play ends with their mourning her loss.\"}\n",
"\n",
"\u001b[1mChain 1\u001b[0m:\n",
"{'review': '\\n\\n\"The play is a tragedy, pure and simple. It is the story of a young woman\\'s death, told through the eyes of those who loved her. It is a sad, beautiful play that will stay with you long after you\\'ve seen it. The acting is superb, and the writing is exquisite. If you are looking for a play that will touch your heart and make you think, this is it.\"'}\n",
"\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
}
],
"source": [
"review = overall_chain({\"title\":\"Tragedy at sunset on the beach\", \"era\": \"Victorian England\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6be70d27",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,81 +1,90 @@
# Glossary
This is a collection of terminology commonly used when developing LLM applications.
It contains reference to external papers or sources where the concept was first introduced,
It contains reference to external papers or sources where the concept was first introduced,
as well as to places in LangChain where the concept is used.
### Chain of Thought Prompting
## Chain of Thought Prompting
A prompting technique used to encourage the model to generate a series of intermediate reasoning steps.
A prompting technique used to encourage the model to generate a series of intermediate reasoning steps.
A less formal way to induce this behavior is to include “Lets think step-by-step” in the prompt.
Resources:
- [Chain-of-Thought Paper](https://arxiv.org/pdf/2201.11903.pdf)
- [Step-by-Step Paper](https://arxiv.org/abs/2112.00114)
### Action Plan Generation
## Action Plan Generation
A prompt usage that uses a language model to generate actions to take.
A prompt usage that uses a language model to generate actions to take.
The results of these actions can then be fed back into the language model to generate a subsequent action.
Resources:
- [WebGPT Paper](https://arxiv.org/pdf/2112.09332.pdf)
- [SayCan Paper](https://say-can.github.io/assets/palm_saycan.pdf)
### ReAct Prompting
## ReAct Prompting
A prompting technique that combines Chain-of-Thought prompting with action plan generation.
This induces the to model to think about what action to take, then take it.
A prompting technique that combines Chain-of-Thought prompting with action plan generation.
This induces the to model to think about what action to take, then take it.
Resources:
- [Paper](https://arxiv.org/pdf/2210.03629.pdf)
- [LangChain Example](https://github.com/hwchase17/langchain/blob/master/docs/examples/agents/react.ipynb)
- [LangChain Example](modules/agents/agents/examples/react.ipynb)
### Self-ask
## Self-ask
A prompting method that builds on top of chain-of-thought prompting.
In this method, the model explicitly asks itself follow-up questions, which are then answered by an external search engine.
A prompting method that builds on top of chain-of-thought prompting.
In this method, the model explicitly asks itself follow-up questions, which are then answered by an external search engine.
Resources:
- [Paper](https://ofir.io/self-ask.pdf)
- [LangChain Example](https://github.com/hwchase17/langchain/blob/master/docs/examples/agents/self_ask_with_search.ipynb)
- [LangChain Example](modules/agents/agents/examples/self_ask_with_search.ipynb)
### Prompt Chaining
## Prompt Chaining
Combining multiple LLM calls together, with the output of one step being the input to the next.
Combining multiple LLM calls together, with the output of one-step being the input to the next.
Resources:
Resources:
- [PromptChainer Paper](https://arxiv.org/pdf/2203.06566.pdf)
- [Language Model Cascades](https://arxiv.org/abs/2207.10342)
- [ICE Primer Book](https://primer.ought.org/)
- [Socratic Models](https://socraticmodels.github.io/)
### Memetic Proxy
## Memetic Proxy
Encouraging the LLM to respond in a certain way framing the discussion in a context that the model knows of and that will result in that type of response. For example, as a conversation between a student and a teacher.
Encouraging the LLM to respond in a certain way framing the discussion in a context that the model knows of and that will result in that type of response. For example, as a conversation between a student and a teacher.
Resources:
- [Paper](https://arxiv.org/pdf/2102.07350.pdf)
### Self Consistency
## Self Consistency
A decoding strategy that samples a diverse set of reasoning paths and then selects the most consistent answer.
Is most effective when combined with Chain-of-thought prompting.
A decoding strategy that samples a diverse set of reasoning paths and then selects the most consistent answer.
Is most effective when combined with Chain-of-thought prompting.
Resources:
- [Paper](https://arxiv.org/pdf/2203.11171.pdf)
### Inception
## Inception
Also called “First Person Instruction”.
Encouraging the model to think a certain way by including the start of the models response in the prompt.
Also called “First Person Instruction”.
Encouraging the model to think a certain way by including the start of the models response in the prompt.
Resources:
- [Example](https://twitter.com/goodside/status/1583262455207460865?s=20&t=8Hz7XBnK1OF8siQrxxCIGQ)
### MemPrompt
## MemPrompt
MemPrompt maintains a memory of errors and user feedback, and uses them to prevent repetition of mistakes.
Resources:
- [Paper](https://memprompt.com/)

Some files were not shown because too many files have changed in this diff Show More