Compare commits

..

435 Commits

Author SHA1 Message Date
Bagatur
098b4aa465 bump 281 (#10189) 2023-09-04 08:51:50 -07:00
Aashish Saini
699f58fb83 Fixed Import Error type (#10168)
I have restructured the code to ensure uniform handling of ImportError.
In place of previously used ValueError, I've adopted the standard
practice of raising ImportError with explanatory messages. This
modification enhances code readability and clarifies that any problems
stem from module importation.

---------

Co-authored-by: Aashish Saini <141953346+AashishSainiShorthillsAI@users.noreply.github.com>
Co-authored-by: AryamanJaiswalShorthillsAI <142397527+AryamanJaiswalShorthillsAI@users.noreply.github.com>
Co-authored-by: Adarsh Shrivastav <142413097+AdarshKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: Vishal <141389263+VishalYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: ChetnaGuptaShorthillsAI <142381084+ChetnaGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: PankajKumarShorthillsAI <142473460+PankajKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: AbhishekYadavShorthillsAI <142393903+AbhishekYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: AmitSinghShorthillsAI <142410046+AmitSinghShorthillsAI@users.noreply.github.com>
Co-authored-by: Aayush <142384656+AayushShorthillsAI@users.noreply.github.com>
Co-authored-by: AnujMauryaShorthillsAI <142393269+AnujMauryaShorthillsAI@users.noreply.github.com>
2023-09-04 08:43:28 -07:00
刘 方瑞
de9e545542 MyScale hot fix on type check (#10180)
Previous PR #9353 has incomplete type checks and deprecation warnings.
This PR will fix those type check and add deprecation warning to myscale
vectorstore
2023-09-04 08:40:58 -07:00
JunXiang
cb928ed3d5 Fix: the duplicate characters wrong results when using pdfplumber loader (#10165)
(Reopen PR #7706, hope this problem can fix.)

When using `pdfplumber`, some documents may be parsed incorrectly,
resulting in **duplicated characters**.

Taking the
[linked](https://bruusgaard.no/wp-content/uploads/2021/05/Datasheet1000-series.pdf)
document as an example:

## Before
```python
from langchain.document_loaders import PDFPlumberLoader

pdf_file = 'file.pdf'
loader = PDFPlumberLoader(pdf_file)
docs = loader.load()
print(docs[0].page_content)
```

Results:
```
11000000 SSeerriieess
PPoorrttaabbllee ssiinnggllee ggaass ddeetteeccttoorrss ffoorr HHyyddrrooggeenn aanndd CCoommbbuussttiibbllee ggaasseess
TThhee RRiikkeenn KKeeiikkii GGPP--11000000 iiss aa ccoommppaacctt aanndd
lliigghhttwweeiigghhtt ggaass ddeetteeccttoorr wwiitthh hhiigghh sseennssiittiivviittyy ffoorr
tthhee ddeetteeccttiioonn ooff hhyyddrrooccaarrbboonnss.. TThhee mmeeaassuurreemmeenntt
iiss ppeerrffoorrmmeedd ffoorr tthhiiss ppuurrppoossee bbyy mmeeaannss ooff ccaattaallyyttiicc
sseennssoorr.. TThhee GGPP--11000000 hhaass aa bbuuiilltt--iinn ppuummpp wwiitthh
ppuummpp bboooosstteerr ffuunnccttiioonn aanndd aa ddiirreecctt sseelleeccttiioonn ffrroomm
aa lliisstt ooff 2255 hhyyddrrooccaarrbboonnss ffoorr eexxaacctt aalliiggnnmmeenntt ooff tthhee
ttaarrggeett ggaass -- OOnnllyy ccaalliibbrraattiioonn oonn CCHH iiss nneecceessssaarryy..
44
FFeeaattuurreess
TThhee RRiikkeenn KKeeiikkii 110000vvvvttaabbllee ssiinnggllee HHyyddrrooggeenn aanndd
CCoommbbuussttiibbllee ggaass ddeetteeccttoorrss..
TThheerree aarree 33 ssttaannddaarrdd mmooddeellss::
GGPP--11000000:: 00--1100%%LLEELL // 00--110000%%LLEELL ›› LLEELL ddeetteeccttoorr
NNCC--11000000:: 00--11000000ppppmm // 00--1100000000ppppmm ›› PPPPMM
ddeetteeccttoorr
DDiirreecctt rreeaaddiinngg ooff tthhee ccoonncceennttrraattiioonn vvaalluueess ooff
ccoommbbuussttiibbllee ggaasseess ooff 2255 ggaasseess ((55 NNPP--11000000))..
EEaassyy ooppeerraattiioonn ffeeaattuurree ooff cchhaannggiinngg tthhee ggaass nnaammee
ddiissppllaayy wwiitthh 11 sswwiittcchh bbuuttttoonn..
LLoonngg ddiissttaannccee ddrraawwiinngg ppoossssiibbllee wwiitthh tthhee ppuummpp
bboooosstteerr ffuunnccttiioonn..
VVaarriioouuss ccoommbbuussttiibbllee ggaasseess ccaann bbee mmeeaassuurreedd bbyy tthhee
ppppmm oorrddeerr wwiitthh NNCC--11000000..
www.bruusgaard.no postmaster@bruusgaard.no +47 67 54 93 30 Rev: 446-2
```

We can see that there are a large number of duplicated characters in the
text, which can cause issues in subsequent applications.

## After

Therefore, based on the
[solution](https://github.com/jsvine/pdfplumber/issues/71) provided by
the `pdfplumber` source project. I added the `"dedupe_chars()"` method
to address this problem. (Just pass the parameter `dedupe` to `True`)

```python
from langchain.document_loaders import PDFPlumberLoader

pdf_file = 'file.pdf'
loader = PDFPlumberLoader(pdf_file, dedupe=True)
docs = loader.load()
print(docs[0].page_content)
```

Results:

```
1000 Series
Portable single gas detectors for Hydrogen and Combustible gases
The Riken Keiki GP-1000 is a compact and
lightweight gas detector with high sensitivity for
the detection of hydrocarbons. The measurement
is performed for this purpose by means of catalytic
sensor. The GP-1000 has a built-in pump with
pump booster function and a direct selection from
a list of 25 hydrocarbons for exact alignment of the
target gas - Only calibration on CH is necessary.
4
Features
The Riken Keiki 100vvtable single Hydrogen and
Combustible gas detectors.
There are 3 standard models:
GP-1000: 0-10%LEL / 0-100%LEL › LEL detector
NC-1000: 0-1000ppm / 0-10000ppm › PPM
detector
Direct reading of the concentration values of
combustible gases of 25 gases (5 NP-1000).
Easy operation feature of changing the gas name
display with 1 switch button.
Long distance drawing possible with the pump
booster function.
Various combustible gases can be measured by the
ppm order with NC-1000.
www.bruusgaard.no postmaster@bruusgaard.no +47 67 54 93 30 Rev: 446-2
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-04 08:37:00 -07:00
Aashish Saini
27944cb611 Fixed Import Error (#10167)
I have restructured the code to ensure uniform handling of ImportError.
In place of previously used ValueError, I've adopted the standard
practice of raising ImportError with explanatory messages. This
modification enhances code readability and clarifies that any problems
stem from module importation.

---------

Co-authored-by: Aashish Saini <141953346+AashishSainiShorthillsAI@users.noreply.github.com>
Co-authored-by: AryamanJaiswalShorthillsAI <142397527+AryamanJaiswalShorthillsAI@users.noreply.github.com>
Co-authored-by: Adarsh Shrivastav <142413097+AdarshKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: Vishal <141389263+VishalYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: ChetnaGuptaShorthillsAI <142381084+ChetnaGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: PankajKumarShorthillsAI <142473460+PankajKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: AbhishekYadavShorthillsAI <142393903+AbhishekYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: AmitSinghShorthillsAI <142410046+AmitSinghShorthillsAI@users.noreply.github.com>
Co-authored-by: Aayush <142384656+AayushShorthillsAI@users.noreply.github.com>
Co-authored-by: AnujMauryaShorthillsAI <142393269+AnujMauryaShorthillsAI@users.noreply.github.com>
2023-09-04 00:32:09 -07:00
Massimiliano Pronesti
10e0431e48 feat(llms): add model_kwargs to hf tgi (#10139)
@baskaryan
Following what we discussed in #9724 and your suggestion, I've added a
`model_kwargs` parameter to hf tgi.
2023-09-04 00:24:13 -07:00
Eugene Yurtsev
e0f6ba08d6 FileSysteBlobLoader: Expand user path (#10133)
Fix for: https://github.com/langchain-ai/langchain/issues/10019

Verified fix manually
2023-09-04 00:21:33 -07:00
Krish Dholakia
31bbe80758 add additional model support to chatlitellm (#10134)
---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-09-04 00:16:40 -07:00
IlyaKIS1
de3322609e Implemented Milvus translator for self-querying (#10162)
- Implemented the MilvusTranslator for self-querying using Milvus vector
store
- Made unit tests to test its functionality
- Documented the Milvus self-querying
2023-09-04 00:16:18 -07:00
Aashish Saini
7403faa063 Fixed typo in get_started.mdx (#10163)
Fix typo: 'Whats up' -> 'What's up'

Thanks
CC: @baskaryan, @eyurtsev, @rlancemartin.

---------

Co-authored-by: Aashish Saini <141953346+AashishSainiShorthillsAI@users.noreply.github.com>
Co-authored-by: AryamanJaiswalShorthillsAI <142397527+AryamanJaiswalShorthillsAI@users.noreply.github.com>
Co-authored-by: Adarsh Shrivastav <142413097+AdarshKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: Vishal <141389263+VishalYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: ChetnaGuptaShorthillsAI <142381084+ChetnaGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: PankajKumarShorthillsAI <142473460+PankajKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: AbhishekYadavShorthillsAI <142393903+AbhishekYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: AmitSinghShorthillsAI <142410046+AmitSinghShorthillsAI@users.noreply.github.com>
Co-authored-by: Aayush <142384656+AayushShorthillsAI@users.noreply.github.com>
2023-09-04 00:09:50 -07:00
Aashish Saini
f6f0b0f975 Fixed typo in bittensor.mdx (#10160)
Fixed Typo in bittenaor.mdx

---------

Co-authored-by: Aashish Saini <141953346+AashishSainiShorthillsAI@users.noreply.github.com>
Co-authored-by: AryamanJaiswalShorthillsAI <142397527+AryamanJaiswalShorthillsAI@users.noreply.github.com>
Co-authored-by: Adarsh Shrivastav <142413097+AdarshKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: Vishal <141389263+VishalYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: ChetnaGuptaShorthillsAI <142381084+ChetnaGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: PankajKumarShorthillsAI <142473460+PankajKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: AbhishekYadavShorthillsAI <142393903+AbhishekYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: Aayush <142384656+AayushShorthillsAI@users.noreply.github.com>
2023-09-03 21:49:33 -07:00
Christophe Bornet
803d0d9656 Add the possibility to configure boto3 in the S3 loaders (#9304)
- Description: this PR adds the possibility to configure boto3 in the S3
loaders. Any named argument you add will be used to create the Boto3
session. This is useful when the AWS credentials can't be passed as env
variables or can't be read from the credentials file.
  - Issue: N/A
  - Dependencies: N/A
  - Tag maintainer: ?
  - Twitter handle: cbornet_

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-03 21:06:49 -07:00
Leonid Ganeline
03174c91d0 docs: MLflow API and examples (#9547)
Added docs and links to the API and examples provided by MLflow itself
2023-09-03 20:52:20 -07:00
Xiaoyu Xee
9bcfd58580 Add dashvector self query retriever (#9684)
## Description
Add `Dashvector` retriever and self-query retriever

## How to use
```python
from langchain.vectorstores.dashvector import DashVector

vectorstore = DashVector.from_documents(docs, embeddings)
retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
```

---------

Co-authored-by: smallrain.xuxy <smallrain.xuxy@alibaba-inc.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-09-03 20:51:04 -07:00
Leonid Ganeline
056e59672b docs: DeepLake example (#9663)
Updated the `Deep Lake` example. Added a link to an example provided by
Activeloop.
2023-09-03 20:42:52 -07:00
Sajal Sharma
0b6993987f feature: add verbosity to create_qa_with_sources_chain (#9742)
Adds a verbose parameter to the create_qa_with_sources_chain and
create_qa_with_structure_chain functions
2023-09-03 20:42:20 -07:00
Jayson Ng
68f2363f5d Allow specifying arbitrary keyword arguments in langchain.llms.VLLM (#9683)
Description: add arbitrary keyword arguments for VLLM
Issue: https://github.com/langchain-ai/langchain/issues/9682
Dependencies: none
Tag maintainer: @hwchase17, @baskaryan
2023-09-03 20:40:06 -07:00
seamusp
43c4c6dfcc docs: misc modelIO fixes (#9734)
Various improvements to the Model I/O section of the documentation

- Changed "Chat Model" to "chat model" in a few spots for internal
consistency
- Minor spelling & grammar fixes to improve readability & comprehension
2023-09-03 20:33:20 -07:00
Ackermann Yuriy
c585351bdc Fixed query/instruction typoes (#10158)
Fixed typoes in embedding parameters.
2023-09-03 20:31:37 -07:00
Nino Risteski
433c4a721e typo in locall llms fixed (#9755)
Hi, 

I noticed a typo in the local_llms.ipynb file and fixed it. The word
challenge is without 'a' in the original file.
@baskaryan , @eyurtsev

Thanks.

Co-authored-by: Fliprise <fliprise@Fliprises-MacBook-Pro.local>
2023-09-03 20:29:41 -07:00
Stefano Lottini
c9ff0ab2e9 Cassandra support for LLM cache (exact-match and semantic) (#9772)
This PR implements two new classes in the cache module: `CassandraCache`
and `CassandraSemanticCache`, similar in structure and functionality to
their Redis counterpart: providing a cache for the response to a
(prompt, llm) pair.

Integration tests are included. Moreover, linting and type checks are
all passing on my machine.

Dependencies: the `pyproject.toml` and `poetry.lock` have the newest
version of cassIO (the very same as in the Cassandra vector store
metadata PR, submitted as #9280).

If I may suggest, this issue and #9280 might be reviewed together (as
they bring the same poetry changes along), so I'm tagging @baskaryan who
already helped out a little with poetry-related conflicts there. (Thank
you!)

I'd be happy to add a short notebook if this is deemed necessary (but it
seems to me that, contrary e.g. to vector stores, caches are not covered
in specific notebooks).

Thank you!

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-09-03 20:27:02 -07:00
seamusp
16945c9922 docs: misc retrievers fixes (#9791)
Various miscellaneous fixes to most pages in the 'Retrievers' section of
the documentation:
- "VectorStore" and "vectorstore" changed to "vector store" for
consistency
- Various spelling, grammar, and formatting improvements for readability

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-09-03 20:26:49 -07:00
Terry Tan
8bc452a466 Enhance Google search tool SerpApi response (#10157)
Enhance SerpApi response which potential to have more relevant output.

<img width="345" alt="Screenshot 2023-09-01 at 8 26 13 AM"
src="https://github.com/langchain-ai/langchain/assets/10222402/80ff684d-e02e-4143-b218-5c1b102cbf75">

Query: What is the weather in Pomfret?

**Before:**

> I should look up the current weather conditions.
...
Final Answer: The current weather in Pomfret is 73°F with 1% chance of
precipitation and winds at 10 mph.

**After:**

> I should look up the current weather conditions.
...
Final Answer: The current weather in Pomfret is 62°F, 1% precipitation,
61% humidity, and 4 mph wind.

---

Query: Top team in english premier league?

**Before:**

> I need to find out which team is currently at the top of the English
Premier League
...
Final Answer: Liverpool FC is currently at the top of the English
Premier League.

**After:**

> I need to find out which team is currently at the top of the English
Premier League
...
Final Answer: Man City is currently at the top of the English Premier
League.

---

Query: Top team in english premier league?

**Before:**

> I need to find out which team is currently at the top of the English
Premier League
...
Final Answer: Liverpool FC is currently at the top of the English
Premier League.


**After:**

> I need to find out which team is currently at the top of the English
Premier League
...
Final Answer: Man City is currently at the top of the English Premier
League.

---

Query: Any upcoming events in Paris?

**Before:**

> I should look for events in Paris
Action: Search
...
Final Answer: Upcoming events in Paris this month include Whit Sunday &
Whit Monday (French National Holiday), Makeup in Paris, Paris Jazz
Festival, Fete de la Musique, and Salon International de la Maison de.

**After:**

> I should look for events in Paris
Action: Search
...
Final Answer: Upcoming events in Paris include Elektric Park 2023, The
Aces, and BEING AS AN OCEAN.
2023-09-03 20:24:19 -07:00
Aashish Saini
fe0e191fb3 Made some Grammatical error fixes (#10156)
Made some Grammatical error fixes.
CC: @baskaryan, @eyurtsev, @rlancemartin.

---------

Co-authored-by: Aashish Saini <141953346+AashishSainiShorthillsAI@users.noreply.github.com>
Co-authored-by: AryamanJaiswalShorthillsAI <142397527+AryamanJaiswalShorthillsAI@users.noreply.github.com>
Co-authored-by: Adarsh Shrivastav <142413097+AdarshKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: Vishal <141389263+VishalYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: ChetnaGuptaShorthillsAI <142381084+ChetnaGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: PankajKumarShorthillsAI <142473460+PankajKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: AbhishekYadavShorthillsAI <142393903+AbhishekYadavShorthillsAI@users.noreply.github.com>
2023-09-03 20:21:46 -07:00
liunux4odoo
7d48c2884e Update json_loader.py: encoding bug (#9785)
JSONLoader.load does not specify `encoding` in
`self.file_path.read_text()` as `self.file_path.open()`

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-09-03 16:16:02 -07:00
Geonwoo Kim
e34dde3d15 docs: Fix CustomLLM and Question_answering docs (#9782)
### Description
- Update `CustomLLM._call`: Corrected the _call method in CustomLLM to
include **kwargs, ensuring consistency with parent class.
- Update `Question_answering`: To fix `Page not found` error
- https://python.langchain.com/docs/use_cases/code ->
https://python.langchain.com/docs/use_cases/code_understanding

### Issue
N/A

### Dependencies
N/A

### Tag maintainer
N/A

### Twitter handle
N/A
2023-09-03 16:15:46 -07:00
Aashish Saini
94efede93c Fixed Typos and grammatical issues in document files (#9789)
Fixed typos and grammatical issues in document files.

@baskaryan , @eyurtsev

---------

Co-authored-by: Aashish Saini <141953346+AashishSainiShorthillsAI@users.noreply.github.com>
Co-authored-by: AryamanJaiswalShorthillsAI <142397527+AryamanJaiswalShorthillsAI@users.noreply.github.com>
Co-authored-by: Adarsh Shrivastav <142413097+AdarshKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: Vishal <141389263+VishalYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: ChetnaGuptaShorthillsAI <142381084+ChetnaGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: PankajKumarShorthillsAI <142473460+PankajKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: AbhishekYadavShorthillsAI <142393903+AbhishekYadavShorthillsAI@users.noreply.github.com>
2023-09-03 16:09:14 -07:00
Harrison Chase
c0518be1f1 fix syntax (#10155) 2023-09-03 16:08:43 -07:00
Juhee Kim
50ca44c79f fix multipart email body retrieval (#9790)
Description: 
Gmail message retrieval in GmailGetMessage and GmailSearch returned an
empty string when encountering multipart emails. This change correctly
extracts the email body for multipart emails.

Dependencies: None

@hwchase17 @vowelparrot
2023-09-03 16:04:36 -07:00
Cameron Hutchison
7d8bb78e5c Extraction Chain - Custom Prompt (#9828)
# Description

This change allows you to customize the prompt used in
`create_extraction_chain` as well as `create_extraction_chain_pydantic`.

It also adds the `verbose` argument to
`create_extraction_chain_pydantic` - because `create_extraction_chain`
had it already and `create_extraction_chain_pydantic` did not.

# Issue
N/A

# Dependencies
N/A

# Twitter
https://twitter.com/CamAHutchison
2023-09-03 16:01:55 -07:00
mgvalverde
33f43cc1b0 Bugfix/jsonloader metadata (#9793)
Hi,

  - Description: 
    - Solves the issue #6478. 
    - Includes some additional rework on the `JSONLoader` class:
      - Getting metadata is decoupled from `_get_text`
- Validating metadata_func is perform now by `_validate_metadata_func`,
instead of `_validate_content_key`
  - Issue: #6478 
  - Dependencies: NA
  - Tag maintainer: @hwchase17
2023-09-03 16:01:43 -07:00
Dane Summers
7d1b0fbe79 Adds dataview fields and tags to metadata #9800 (#9801)
Description: Adds tags and dataview fields to ObsidianLoader doc
metadata.
  - Issue: #9800, #4991
  - Dependencies: none
- Tag maintainer: My best guess is @hwchase17 looking through the git
logs
  - Twitter handle: I don't use twitter, sorry!
2023-09-03 15:56:48 -07:00
Harrison Chase
ce47124e8f add numbered list parser (#9837) 2023-09-03 15:55:31 -07:00
Philippe PRADOS
f59e5d48ed Google drive integration (lite) (#9999)
My other
[pull-request](https://github.com/langchain-ai/langchain/pull/5135) is
too big to be acceptable.
I propose another 'lite' version.

I update only notebook to propose an integration with the external
project
[`langchain-googledrive`](https://github.com/pprados/langchain-googledrive).

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-09-03 15:54:42 -07:00
Viktor Zhemchuzhnikov
507e46844e Extend SQLChatMessageHistory (#9849)
### Description

There is a really nice class for saving chat messages into a database -
SQLChatMessageHistory.
It leverages SqlAlchemy to be compatible with any supported database (in
contrast with PostgresChatMessageHistory, which is basically the same
but is limited to Postgres).

However, the class is not really customizable in terms of what you can
store. I can imagine a lot of use cases, when one will need to save a
message date, along with some additional metadata.

To solve this, I propose to extract the converting logic from
BaseMessage to SQLAlchemy model (and vice versa) into a separate class -
message converter. So instead of rewriting the whole
SQLChatMessageHistory class, a user will only need to write a custom
model and a simple mapping class, and pass its instance as a parameter.

I also noticed that there is no documentation on this class, so I added
that too, with an example of custom message converter.

### Issue

N/A

### Dependencies

N/A

### Tag maintainer

Not yet

### Twitter handle

N/A
2023-09-03 15:49:53 -07:00
Jon Bennion
fed137a8a9 adding new chain for logical fallacy removal from model output in chain (#9887)
Description: new chain for logical fallacy removal from model output in
chain and docs
Issue: n/a see above
Dependencies: none
Tag maintainer: @hinthornw in past from my end but not sure who that
would be for maintenance of chains
Twitter handle: no twitter feel free to call out my git user if shout
out j-space-b

Note: created documentation in docs/extras

---------

Co-authored-by: Jon Bennion <jb@Jons-MacBook-Pro.local>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-09-03 15:44:27 -07:00
Harrison Chase
794ff2dae8 Harrison/hf lru (#10154)
Co-authored-by: Pascal Bro <git@pascalbrokmeier.de>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-03 15:39:25 -07:00
Stanko Kuveljic
4765c09703 Pinecone upsert parallelization (#9859)
Issue: closes #9855

* consolidates `from_texts` and `add_texts` functions for pinecone
upsert
* adds two types of batching (one for embeddings and one for index
upsert)
* adds thread pool size when instantiating pinecone index
2023-09-03 15:37:41 -07:00
Lance Martin
16a27ab244 Add prompt hub for various use-cases (#9879)
Use prompt hub in our use-case docs and guides.
2023-09-03 15:32:22 -07:00
Lorenzo
00a7c31ffd Fix: Nested Dicts Handling of Document Metadata (#9880)
## Description
When the `MultiQueryRetriever` is used to get the list of documents
relevant according to a query, inside a vector store, and at least one
of these contain metadata with nested dictionaries, a `TypeError:
unhashable type: 'dict'` exception is thrown.
This is caused by the `unique_union` function which, to guarantee the
uniqueness of the returned documents, tries, unsuccessfully, to hash the
nested dictionaries and use them as a part of key.
```python
unique_documents_dict = {
    (doc.page_content, tuple(sorted(doc.metadata.items()))): doc
    for doc in documents
}
```

## Issue
#9872 (MultiQueryRetriever (get_relevant_documents) raises TypeError:
unhashable type: 'dict' with dic metadata)

## Solution
A possible solution is to dump the metadata dict to a string and use it
as a part of hashed key.
```python
unique_documents_dict = {
    (doc.page_content, json.dumps(doc.metadata, sort_keys=True)): doc
    for doc in documents
}
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-03 15:27:46 -07:00
Leonid Ganeline
a52fe9528e docs: fixed title in Bittensor example (#9893)
Fixed title in the `Bittensor` example. The old title brakes the sorted
order of items in the navbar.
Added some formatting.
2023-09-03 15:10:42 -07:00
Davide Menini
b8baead70c fix (Html2TextTransformer): allow configuration of html2text (#9914)
Hi, this PR enables configuring the html2text package, instead of being
bound to use the hardcoded values. While simply passing `ignore_links`
and `ignore_images` to the `transform_documents` method was possible, I
preferred passing them to the `__init__` method for 2 reasons:

1. It is more efficient in case of subsequent calls to
`transform_documents`.
2. It allows to move the "complexity" to the instantiation, keeping the
actual execution simple and general enough. IMO the transformers should
all follow this pattern, allowing something like this:
```python
# Instantiate transformers
transformers = [
    TransformerA(foo='bar'),
    TransformerB(bar='foo'),
    # others
]

# During execution, call them sequentially
documents = ...
for tr in transformers:
    documents = tr.transform_documents(documents)
```

Thanks for the reviews!

---------

Co-authored-by: taamedag <Davide.Menini@swisscom.com>
2023-09-03 15:10:25 -07:00
seamusp
abd8681341 docs: chains & memory fixes (#9895)
Various improvements to the Chains & Memory sections of the
documentation including formatting, spelling, and grammar fixes to
improve readability.
2023-09-03 15:06:20 -07:00
Frédéric Lepied
4dc47bd3ac time_weighted_retriever: use a timestamp if needed (#9906)
If last_accessed_at metadata is a float use it as a timestamp. This
allows to support vector stores that do not store datetime objects like
ChromaDb.

Fixes: https://github.com/langchain-ai/langchain/issues/3685

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-09-03 15:05:30 -07:00
Josh White
bc8cceebf7 Extend DynamoDBChatMessageHistory to support composite keys (#9896)
- Description: Adds two optional parameters to the
DynamoDBChatMessageHistory class to enable users to pass in a name for
their PrimaryKey, or a Key object itself to enable the use of composite
keys, a common DynamoDB paradigm.
  
[AWS DynamoDB Key
docs](https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/)
  
  - Issue: N/A
  - Dependencies: N/A
  - Twitter handle: N/A

---------

Co-authored-by: Josh White <josh@ctrlstack.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-03 15:05:16 -07:00
Programmers Emperor
872d829201 Update __init__.py (#9955)
Add SQLDatabaseSequentialChain Class to __init__.py so it can be
accessed and used

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- Description: SQLDatabaseSequentialChain is not found when importing
Langchain_experimental package, when I open __init__.py
Langchain_expermental.sql, I found that SQLDatabaseSequentialChain is
imported and add to __all__ list
- Issue: SQLDatabaseSequentialChain is not found in
Langchain_experimental package
  - Dependencies: None,
  - Tag maintainer: None,
  - Twitter handle: None,

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-09-03 15:02:58 -07:00
Lucas Rodrigues Pereira
5c7afe8aae Fix json parsing error of MULTI_PROMPT_ROUTER_TEMPLATE (#9944)
The output at times lacks the closing markdown code block. The prompt is
changed to explicitly request the closing backticks.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-09-03 15:00:50 -07:00
Lance Martin
387813bfb2 Sort by most recent chatIDs (#9946)
When we `lazy_load` iMessage chats, return chats w/ most recent msg
first (matches what is visualized in app).
2023-09-03 15:00:20 -07:00
German Martin
cf5a50469f TextGen is missing async methods. (#9986)
Adding _acall and _astream method that were missing. Preventing
streaming during async executions.

 @rlancemartin.
2023-09-03 14:57:40 -07:00
Blake (Yung Cher Ho)
f4bed8a04c Takeoff baseurl support (#10091)
## Description
This PR introduces a minor change to the TitanTakeoff integration. 
Instead of specifying a port on localhost, this PR will allow users to
specify a baseURL instead. This will allow users to use the integration
if they have TitanTakeoff deployed externally (not on localhost). This
removes the hardcoded reference to localhost "http://localhost:{port}".

### Info about Titan Takeoff
Titan Takeoff is an inference server created by
[TitanML](https://www.titanml.co/) that allows you to deploy large
language models locally on your hardware in a single command. Most
generative model architectures are included, such as Falcon, Llama 2,
GPT2, T5 and many more.

Read more about Titan Takeoff here:
-
[Blog](https://medium.com/@TitanML/introducing-titan-takeoff-6c30e55a8e1e)
- [Docs](https://docs.titanml.co/docs/titan-takeoff/getting-started)

### Dependencies
No new dependencies are introduced. However, users will need to install
the titan-iris package in their local environment and start the Titan
Takeoff inferencing server in order to use the Titan Takeoff
integration.

Thanks for your help and please let me know if you have any questions.
cc: @hwchase17 @baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-09-03 14:45:59 -07:00
Pu Cao
05664a6f20 docs(text_splitter): update document of character splitter with tiktoken (#10001)
The current document has not mentioned that splits larger than chunk
size would happen. I update the related document and explain why it
happens and how to solve it.

related issue #1349 #3838 #2140
2023-09-03 14:45:45 -07:00
Eddie Cohen
565c021730 Add ne comparator (#10006)
Description: Adds the not comparator and operator to pinecone, chroma
and deeplake.
Issue: Not a registered issue but when using a selfqueryretriever with
pinecone I got this error + stacktrace when I entered a query that asked
to not include specific data:
 
>  raised following `error:`
> Received unrecognized function ne. Valid functions are [<Operator.AND:
'and'>, <Operator.OR: 'or'>, <Operator.NOT: 'not'>, <Comparator.EQ:
'eq'>, <Comparator.GT: 'gt'>, <Comparator.GTE: 'gte'>, <Comparator.LT:
'lt'>, <Comparator.LTE: 'lte'>]

I noticed that chroma and deeplake also support not equals/not filtering
so I added it there as well



[pinecone](https://docs.pinecone.io/docs/metadata-filtering#metadata-query-language)
[chroma](https://docs.trychroma.com/usage-guide#filtering-by-metadata)

[deeplake](https://docs.activeloop.ai/enterprise-features/compute-engine/querying-datasets/query-syntax#and-or-not)
2023-09-03 14:45:11 -07:00
Leonid Ganeline
2221194450 Yahoo Finance News tool (#10014)
Added:
- the `Yahoo Finance News` tool
- Ut-s
- An example
2023-09-03 14:43:57 -07:00
Ismail Pelaseyed
5c3e9c9083 Add example of running Q&A over structured data using the Airbyte loaders and pandas (#10069)
- Description: Added example of running Q&A over structured data using
the `Airbyte` loaders and `pandas`
  - Dependencies: any dependencies required for this change,
  - Tag maintainer: @hwchase17 
  - Twitter handle: @pelaseyed
2023-09-03 14:32:33 -07:00
Lars von Wedel
6d82503eb1 Add parser and loader for Azure document intelligence service. (#10136)
Hi,

this PR contains loader / parser for Azure Document intelligence which
is a ML-based service to ingest arbitrary PDFs / images, even if
scanned. The loader generates Documents by pages of the original
document. This is my first contribution to LangChain.

Unfortunately I could not find the correct place for test cases. Happy
to add one if you can point me to the location, but as this is a
cloud-based service, a test would require network access and credentials
- so might be of limited help.

Dependencies: The needed dependency was already part of pyproject.toml,
no change.
Twitter: feel free to mention @LarsAC on the announcement
2023-09-03 14:25:39 -07:00
Harrison Chase
4abe85be57 Harrison/string inplace (#10153)
Co-authored-by: Wrick Talukdar <wrick.talukdar@gmail.com>
Co-authored-by: Anjan Biswas <anjanavb@amazon.com>
Co-authored-by: Jha <nikjha@amazon.com>
Co-authored-by: Lucky-Lance <77819606+Lucky-Lance@users.noreply.github.com>
Co-authored-by: 陆徐东 <luxudong@MacBook-Pro.local>
2023-09-03 14:25:29 -07:00
Harrison Chase
f5af756397 fake messages list model (#10152)
create a fake chat model that you can configure with list of messages
2023-09-03 13:49:43 -07:00
Harrison Chase
9e6cc7b236 make hub push public by default (#10138) 2023-09-03 13:04:58 -07:00
Nino Risteski
0c0a7d19eb Update openai_multi_functions_agent.ipynb (#10144)
typo fix
2023-09-03 13:00:48 -07:00
Nino Risteski
f968b86652 Update apis.ipynb (#10145)
few typo fixes
2023-09-03 13:00:22 -07:00
Guy Korland
765ef3b486 Add FalkorDB to imports (#10151) 2023-09-03 12:52:28 -07:00
Nino Risteski
746c6ff9c3 Update index.mdx (#10142)
fixed typos
2023-09-02 22:36:26 -07:00
Nino Risteski
fdebd3e02f Update chat_vector_db.mdx (#10141)
typo fix
2023-09-02 22:36:09 -07:00
Bagatur
0e4c5dd176 bump 13 (#10130) 2023-09-02 10:22:31 -07:00
Bagatur
42582adb66 bump 280 (#10117) 2023-09-01 17:43:14 -07:00
Bagatur
9e196cb470 rm sqlite3 import (#10115) 2023-09-01 17:14:06 -07:00
Arpan Pokharel
f8bca156d4 Add where filter in weaviate similarity search with score (#9978)
- Description: Add where filter in weaviate similarity search with score
  - Issue: #9853 
  - Dependencies: -
  - Tag maintainer: -
  - Twitter handle: -
2023-09-01 16:09:19 -07:00
Leonid Kuligin
30239b3025 added support for inference from Model Garden (#9367)
#8850

---------

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-09-01 15:58:21 -07:00
Leonid Ganeline
54a8df87b9 📖 docs: fixed integration/llms navbar (#9277)
Fixed navbar:
- renamed several files, so ToC is sorted correctly
- made ToC items consistent: formatted several Titles
- added several links
- reformatted several docs to a consistent format
- renamed several files (removed `_example` suffix)
- added renamed files to the `docs/docs_skeleton/vercel.json`
2023-09-01 15:30:37 -07:00
Bagatur
b485c3048b rm base64 images from docs (#10110)
Causing problems indexing docs and notebook images don't render after markdown conversion anyways
2023-09-01 15:15:12 -07:00
William FH
f2fc4173c3 Update redirects meta tags (#10109) 2023-09-01 15:14:34 -07:00
Leonid Ganeline
37e435bd00 docs: youtube_search tool example update (#9958)
Added a link to source package; updated title, description.
2023-09-01 13:32:27 -07:00
Leonid Ganeline
3b8ee74e38 docs: google-drive-tool example fix (#10000)
This notebook was mistakenly placed in the `toolkits` folder and appears
within `Agents & Toolkits` menu. But it should be in `Tools`.
Moved example into `tools/`; updated title to consistent format.
2023-09-01 13:31:26 -07:00
seamusp
afd96b2460 docs: agents & callbacks fixes (#10066)
Various improvements to the Agents & Callbacks sections of the
documentation including formatting, spelling, and grammar fixes to
improve readability.
2023-09-01 13:28:55 -07:00
Benjamin Matson
58d7d86e51 feat: add bedrock chat model (#8017)
Replace this comment with:
  - Description: Add Bedrock implementation of Anthropic Claude for Chat
  - Tag maintainer: @hwchase17, @baskaryan
  - Twitter handle: @bwmatson

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-01 13:16:57 -07:00
Massimiliano Pronesti
a7c9bd30d4 feat(llms): add missing params to huggingface text-generation (#9724)
This small PR aims at supporting the following missing parameters in the
`HuggingfaceTextGen` LLM:
- `return_full_text` - sometimes useful for completion tasks
- `do_sample` - quite handy to control the randomness of the model.
- `watermark`

@hwchase17 @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-01 13:16:27 -07:00
KyrianC
491089754d EdenAI LLM update. Add models name option (#8963)
This PR follows the **Eden AI (LLM + embeddings) integration**. #8633 

We added an optional parameter to choose different AI models for
providers (like 'text-bison' for provider 'google', 'text-davinci-003'
for provider 'openai', etc.).

Usage:

```python
llm = EdenAI(
    feature="text",
    provider="google",
    params={
        "model": "text-bison",  # new
        "temperature": 0.2,
        "max_tokens": 250,
    },
)

```

You can also change the provider + model after initialization
```python
llm = EdenAI(
    feature="text",
    provider="google",
    params={
        "temperature": 0.2,
        "max_tokens": 250,
    },
)

prompt = """
hi 
"""

llm(prompt, providers='openai', model='text-davinci-003')  # change provider & model
```

The jupyter notebook as been updated with an example well.


Ping: @hwchase17, @baskaryan

---------

Co-authored-by: RedhaWassim <rwasssim@gmail.com>
Co-authored-by: sam <melaine.samy@gmail.com>
2023-09-01 12:11:33 -07:00
maks-operlejn-ds
b5a74fb973 Temporarily remove language selection (#10097)
Adapting Microsoft Presidio to other languages requires a bit more work,
so for now it will be good idea to remove the language option to choose,
so as not to cause errors and confusion.
https://microsoft.github.io/presidio/analyzer/languages/

I will handle different languages after the weekend 😄
2023-09-01 11:30:48 -07:00
Bagatur
71c418725f index rename delete_mode -> cleanup (#10103) 2023-09-01 11:12:10 -07:00
Nuno Campos
427f696fb0 Nc/runnables seqmap tags (#9753) 2023-09-01 18:53:10 +01:00
Bagatur
b927277809 Bagatur/eden type 2 (#10102) 2023-09-01 10:27:27 -07:00
Bagatur
d4380339c1 eden tool nb nit (#10101) 2023-09-01 10:16:39 -07:00
Harrison Chase
d7bf7dc412 add repr for not serializable (#10071)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-09-01 09:18:32 -07:00
Bagatur
355ff09cce bump 279 (#10098) 2023-09-01 08:49:26 -07:00
Pihplipe Oegr
3dafbd852e Add sqlite-vss as a vector database (#10047)
This adds sqlite-vss as an option for a vector database. Contains the
code and a few tests. Tests are passing and the library sqlite-vss is
added as optional as explained in the contributing guidelines. I
adjusted the code for lint/black/ and mypy. It looks that everything is
currently passing.

Adding sqlite-vss was mentioned in this issue:
https://github.com/langchain-ai/langchain/issues/1019.
Also mentioned here in the sqlite-vss repo for the curious:
https://github.com/asg017/sqlite-vss/issues/66

Maintainer tag: @baskaryan

---------

Co-authored-by: Philippe Oger <philippe.oger@adevinta.com>
2023-09-01 08:36:34 -07:00
KyrianC
c7a5504789 Add EdenAI Tools (#9764)
This PR follows the Eden AI (LLM + embeddings) integration. #8633

We added different Tools to empower agents with new capabilities :

- text: explicit content detection

- image: explicit content detection

- image: object detection

- OCR: invoice parsing

- OCR: ID parsing

- audio: speech to text

- audio: text to speech

 
We plan to add more in the future (like translation, language detection,
+ others).


Usage:

```python
llm=EdenAI(feature="text",provider="openai", params={"temperature" : 0.2,"max_tokens" : 250})

tools = [
    EdenAiTextModerationTool(providers=["openai"],language="en"),
    EdenAiObjectDetectionTool(providers=["google","api4ai"]),
    EdenAiTextToSpeechTool(providers=["amazon"],language="en",voice="MALE"),
    EdenAiExplicitImageTool(providers=["amazon","google"]),
    EdenAiSpeechToTextTool(providers=["amazon"]),
    EdenAiParsingIDTool(providers=["amazon","klippa"],language="en"),
    EdenAiParsingInvoiceTool(providers=["amazon","google"],language="en"),
]

agent_chain = initialize_agent(
    tools,
    llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True,
    return_intermediate_steps=True,
)

result = agent_chain(""" i have this text : 'i want to slap you' 
                   first : i want to know if this text contains explicit content or not .
                   second : if it does contain explicit content i want to know what is the explicit content in this text, 
                   third : i want to make the text into speech .
                   if there is URL in the observations , you will always put it in the output (final answer) .
                   """)
```

output: 
>  Entering new AgentExecutor chain...
> I need to extract the information from the ID and then convert it to
text and then to speech
> Action: edenai_identity_parsing
> Action Input:
"https://www.citizencard.com/images/citizencard-uk-id-card-2023.jpg"
> Observation: last_name : 
>   value : ANGELA
> given_names : 
>   value : GREENE
> birth_place : 
> birth_date : 
>   value : 2000-11-09
> issuance_date : 
> expire_date : 
> document_id : 
> issuing_state : 
> address : 
> age : 
> country : 
> document_type : 
>   value : DRIVER LICENSE FRONT
> gender : 
> image_id : 
> image_signature : 
> mrz : 
> nationality : 
> Thought: I now need to convert the information to text and then to
speech
> Action: edenai_text_to_speech
> Action Input: "Welcome Angela Greene!"
> Observation:
https://d14uq1pz7dzsdq.cloudfront.net/0c494819-0bbc-4433-bfa4-6e99bd9747ea_.mp3?Expires=1693316851&Signature=YcMoVQgPuIMEOuSpFuvhkFM8JoBMSoGMcZb7MVWdqw7JEf5~67q9dEI90o5todE5mYXB5zSYoib6rGrmfBl4Rn5~yqDwZ~Tmc24K75zpQZIEyt5~ZSnHuXy4IFWGmlIVuGYVGMGKxTGNeCRNUXDhT6TXGZlr4mwa79Ei1YT7KcNyc1dsTrYB96LphnsqOERx4X9J9XriSwxn70X8oUPFfQmLcitr-syDhiwd9Wdpg6J5yHAJjf657u7Z1lFTBMoXGBuw1VYmyno-3TAiPeUcVlQXPueJ-ymZXmwaITmGOfH7HipZngZBziofRAFdhMYbIjYhegu5jS7TxHwRuox32A__&Key-Pair-Id=K1F55BTI9AHGIK
> Thought: I now know the final answer
> Final Answer:
https://d14uq1pz7dzsdq.cloudfront.net/0c494819-0bbc-4433-bfa4-6e99bd9747ea_.mp3?Expires=1693316851&Signature=YcMoVQgPuIMEOuSpFuvhkFM8JoBMSoGMcZb7MVWdqw7JEf5~67q9dEI90o5todE5mYXB5zSYoib6rGrmfBl4Rn5~yqDwZ~Tmc24K75zpQZIEyt5~ZSnHuXy4IFWGmlIVuGYVGMGKxTGNeCRNUXDhT6TXGZlr4mwa79Ei1YT7KcNyc1dsTrYB96LphnsqOERx4X9J9XriSwxn70X8oUPFfQmLcitr-syDhiwd9Wdpg6J5y
> 
>  Finished chain.

Other examples are available in the jupyter notebook.


This PR is made in parallel with  EdenAI LLM update #8963 
I apologize for the messy PR. While working in implementing Tools we
realized there was a few problems we needed to fix on LLM as well.

Ping: @hwchase17, @baskaryan

---------

Co-authored-by: RedhaWassim <rwasssim@gmail.com>
2023-09-01 08:26:56 -07:00
Bagatur
5f1c67b47c Mv LCEL docs up a level (#10073) 2023-09-01 08:20:55 -07:00
Nuno Campos
561ac17248 Add root run wrapping call to RunnableEach() (#9864)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-09-01 15:57:33 +01:00
Nuno Campos
5569385ee1 Lint 2023-09-01 15:53:54 +01:00
Nuno Campos
b1c87da2b0 Nc/runnables retry (#9711)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-09-01 15:52:20 +01:00
Nuno Campos
e17275ee57 Add root run wrapping call to RunnableEach() 2023-09-01 15:51:29 +01:00
Nuno Campos
63306899a2 PR review suggestions 2023-09-01 15:50:04 +01:00
Nuno Campos
7966af1e9c Lint 2023-09-01 15:50:04 +01:00
Nuno Campos
4c0e1e501c Re-implement retry, adding a root run, and implement return_exception for batch() and abatch() 2023-09-01 15:50:04 +01:00
Nuno Campos
0eba80912f Lint 2023-09-01 15:49:31 +01:00
Nuno Campos
af2e4ce2cd Use a non-inheritable tag 2023-09-01 15:49:31 +01:00
Nuno Campos
85088dc5df Lint 2023-09-01 15:49:31 +01:00
Nuno Campos
4eecf90f33 Lint 2023-09-01 15:49:31 +01:00
Nuno Campos
2242e2160f Lint 2023-09-01 15:49:31 +01:00
Nuno Campos
b2ac835466 Add .with_retry() to Runnables 2023-09-01 15:49:31 +01:00
Nuno Campos
50a5c5bcf8 Add .with_config() method to Runnables, Add run_id, run_name to RunnableConfig (#9694)
- with_config() allows binding any config values to a Runnable, like
.bind() does for kwargs

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-09-01 15:48:46 +01:00
Nuno Campos
81ebcc161e Lint 2023-09-01 15:46:53 +01:00
Nuno Campos
fc42726ea0 Styling 2023-09-01 15:32:43 +01:00
Nuno Campos
897f791940 Remove run_id from patch 2023-09-01 15:32:37 +01:00
William Fu-Hinthorn
4d7cd6db5f add cm 2023-09-01 15:32:37 +01:00
Nuno Campos
f9a845b382 Lint 2023-09-01 15:31:08 +01:00
Nuno Campos
06e89c1caa Lint 2023-09-01 15:31:08 +01:00
Nuno Campos
738d93215d Allow patching run_name and max_concurrency 2023-09-01 15:31:08 +01:00
Nuno Campos
9a07032055 Lint 2023-09-01 15:31:08 +01:00
Nuno Campos
5426712311 Adjust merge logic 2023-09-01 15:31:08 +01:00
Nuno Campos
f95bd0bcd9 Fix issue 2023-09-01 15:31:08 +01:00
Nuno Campos
f69155b4f7 Add run_id, run_name to RunnableConfig 2023-09-01 15:31:08 +01:00
Nuno Campos
a3c69cf41d Add .with_config() method to Runnables which allows binding any config values to a Runnable 2023-09-01 15:31:08 +01:00
jmhayes3
324c86acd5 fix typo in web_research.py (#10076)
fix spelling
2023-08-31 22:19:03 -07:00
Davide Menini
3f8f3de28e fix (parsers/json): do not escape double quotes if already escaped (#9916)
This PR fixes an issues I found when upgrading to a more recent version
of Langchain. I was using 0.0.142 before, and this issue popped up
already when the `_custom_parser` was added to `output_parsers/json`.

Anyway, the issue is that the parser tries to escape quotes when they
are double-escaped (e.g. `\\"`), leading to OutputParserException.
This is particularly undesired in my app, because I have an Agent that
uses a single input Tool, which expects as input a JSON string with the
structure:
```python
{
    "foo": string,
    "bar": string
}
```
The LLM (GPT3.5) response is (almost) always something like
`"action_input": "{\\"foo\\": \\"bar\\", \\"bar\\": \\"foo\\"}"` and
since the upgrade this is not correctly parsed.

---------

Co-authored-by: taamedag <Davide.Menini@swisscom.com>
2023-08-31 17:11:52 -07:00
Harrison Chase
ad9e242a7a add snippet for max concurrency (#9892) 2023-08-31 16:52:28 -07:00
Harrison Chase
566ce06f4a add async support for tools (#10058) 2023-08-31 16:52:05 -07:00
Stefano Lottini
c710c7303f fix wrong import line in cassandra doc page for vector store (#10041)
This fixes the exampe import line in the general "cassandra" doc page
mdx file. (it was erroneously a copy of the chat message history import
statement found below).
2023-08-31 16:05:46 -07:00
Jon Bennion
cc6a20d3e6 updated prompt name in documentation for sequential chain (#10048)
Description: updated the prompt name in a sequential chain example so
that it is not overwritten by the same prompt name in the next chain
(this is a sequential chain example)
Issue: n/a
Dependencies: none
Tag maintainer: not known
Twitter handle: not on twitter, feel free to use my git username for
anything
2023-08-31 16:05:18 -07:00
Jiří Moravčík
86646ec555 feat: Add ApifyWrapper class (#10067)
If you look at documentation
https://python.langchain.com/docs/integrations/tools/apify (or the
actual file
https://github.com/langchain-ai/langchain/blob/master/docs/extras/integrations/tools/apify.ipynb
), there's a class `ApifyWrapper` mentioned. It seems it got lost in
some refactoring, i.e. it does not exist in the codebase ATM.

I just propose to add it back.
It would fix issues e.g.
https://github.com/langchain-ai/langchain/issues/8307 or
https://github.com/langchain-ai/langchain/issues/8201

To add, Apify is a wanted integration, e.g. see
https://twitter.com/hwchase17/status/1695490295914545626 or
https://twitter.com/hwchase17/status/1695470765343461756

Lastly, I offer taking ownership of the Apify-related parts of the
codebase, so you can tag me if anything is needed.
2023-08-31 15:47:44 -07:00
Robert Perrotta
02e51f4217 update_forward_refs for Run (#9969)
Adds a call to Pydantic's `update_forward_refs` for the `Run` class (in
addition to the `ChainRun` and `ToolRun` classes, for which that method
is already called). Without it, the self-reference of child classes
(type `List[Run]`) is problematic. For example:

```python
from langchain.callbacks import StdOutCallbackHandler
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from wandb.integration.langchain import WandbTracer

llm = OpenAI()
prompt = PromptTemplate.from_template("1 + {number} = ")

chain = LLMChain(llm=llm, prompt=prompt, callbacks=[StdOutCallbackHandler(), WandbTracer()])
print(chain.run(number=2))

```

results in the following output before the change

```
WARNING:root:Error in on_chain_start callback: field "child_runs" not yet prepared so type is still a ForwardRef, you might need to call Run.update_forward_refs().

> Entering new LLMChain chain...
Prompt after formatting:
1 + 2 = 
WARNING:root:Error in on_chain_end callback: No chain Run found to be traced

> Finished chain.

3
```

but afterwards the callback error messages are gone.
2023-08-31 15:25:59 -07:00
Eugene Yurtsev
74fcfed4e2 lint for pydantic imports (#9937)
Catch pydantic imports
2023-08-31 15:55:29 -04:00
Zizhong Zhang
641b71e2cd refactor: rename to OpaquePrompts (#10013)
Renamed to OpaquePrompts

cc @baskaryan Thanks in advance!
2023-08-31 12:21:24 -07:00
Bagatur
8d66b00c73 Data anonymizer notebook nit (#10062) 2023-08-31 10:58:13 -07:00
Bagatur
19400ba253 bump 278 (#10052) 2023-08-31 07:35:42 -07:00
Bagatur
29270e0378 fix #3117 (#9957)
fix #3117
2023-08-31 07:29:49 -07:00
Bagatur
5b913003e0 bump 2023-08-31 07:27:56 -07:00
Bagatur
4b15328767 Add indexing support for postgresql (#9933)
Add support to postgresql for the SQL Manager Record

This code was tested locally. I'm looking at how to add testing with
postgres in a separate PR.
2023-08-31 07:27:09 -07:00
Bagatur
e60e1cdf23 fixed openai_functions api_response format args err (#9968)
root cause: args may not have a key (params) resulting in an error
2023-08-31 00:49:19 -07:00
Bagatur
3efab8d3df implement vectorstores by tencent vectordb (#9989)
Hi there!
I'm excited to open this PR to add support for using 'Tencent Cloud
VectorDB' as a vector store.

Tencent Cloud VectorDB is a fully-managed, self-developed,
enterprise-level distributed database service designed for storing,
retrieving, and analyzing multi-dimensional vector data. The database
supports multiple index types and similarity calculation methods, with a
single index supporting vector scales up to 1 billion and capable of
handling millions of QPS with millisecond-level query latency. Tencent
Cloud VectorDB not only provides external knowledge bases for large
models to improve their accuracy, but also has wide applications in AI
fields such as recommendation systems, NLP services, computer vision,
and intelligent customer service.

The PR includes:
 Implementation of Vectorstore.

I have read your [contributing
guidelines](72b7d76d79/.github/CONTRIBUTING.md).
And I have passed the tests below

 make format
 make lint
 make coverage
 make test
2023-08-31 00:48:25 -07:00
Bagatur
d43a36c32a Bagatur/dereference tool schema (#10007)
fix for #9375
2023-08-31 00:48:12 -07:00
Bagatur
6b5a970949 refactor(document_loaders): abstract page evaluation logic in PlaywrightURLLoader (#9995)
This PR brings structural updates to `PlaywrightURLLoader`, aiming at
making the code more readable and extensible through the abstraction of
page evaluation logic. These changes also align this implementation with
a similar structure used in LangChain.js.

The key enhancements include:

1. Introduction of 'PlaywrightEvaluator', an abstract base class for all
evaluators.
2. Creation of 'UnstructuredHtmlEvaluator', a concrete class
implementing 'PlaywrightEvaluator', which uses `unstructured` library
for processing page's HTML content.
3. Extension of 'PlaywrightURLLoader' constructor to optionally accept
an evaluator of the type 'PlaywrightEvaluator'. It defaults to
'UnstructuredHtmlEvaluator' if no evaluator is provided.
4. Refactoring of 'load' and 'aload' methods to use the 'evaluate' and
'evaluate_async' methods of the provided 'PageEvaluator' for page
content handling.

This update brings flexibility to 'PlaywrightURLLoader' as it can now
utilize different evaluators for page processing depending on the
requirement. The abstraction also improves code maintainability and
readability.

Twitter: @ywkim
2023-08-31 00:45:33 -07:00
Bagatur
b1644bc9ad cr 2023-08-31 00:43:34 -07:00
Hunsmore
13fef1e5d3 add bloomz_7b, llama-2-7b, llama-2-13b, llama-2-70b to ErnieBotChat (#10024)
- Description: Add bloomz_7b, llama-2-7b, llama-2-13b, llama-2-70b to
ErnieBotChat, which only supported ERNIE-Bot-turbo and ERNIE-Bot.
  - Issue: #10022,
  - Dependencies: no extra dependencies

---------

Co-authored-by: hetianfeng <hetianfeng@meituan.com>
2023-08-31 00:38:55 -07:00
Cameron Vetter
e37d51cab6 fix scoring profile example (#10016)
- Description: A change in the documentation example for Azure Cognitive
Vector Search with Scoring Profile so the example works as written
  - Issue: #10015 
  - Dependencies: None
  - Tag maintainer: @baskaryan @ruoccofabrizio
  - Twitter handle: @poshporcupine
2023-08-31 00:35:06 -07:00
skspark
52a3e8a261 Add integration TCs on bing search (#8068) (#10021)
## Description
Added integration TCs on bing search utility

## Issue
#8068 

## Dependencies
None
2023-08-31 00:34:06 -07:00
Hyeokjun seo
e2e05ad89e Fix Typo : openai_api_key -> serpapi_api_key (#10020)
Fixed typo in the comments Notebook. (which says `openai_api_key` for
SerpAPI)
2023-08-31 00:33:13 -07:00
Tomaz Bratanic
f2e8399cc8 Fix link in Neo4j provider page (#10023) 2023-08-31 00:32:42 -07:00
William FH
5341b04d68 Update error message (#9970)
in evals
2023-08-30 17:42:55 -07:00
William FH
b82ad19ed2 Check memory address (#9971)
Don't want to dup the collector but can have multiple
2023-08-30 15:30:22 -07:00
Bagatur
e805f8e263 add tests 2023-08-30 15:23:02 -07:00
Bagatur
1f5c579ef4 add 2023-08-30 13:37:50 -07:00
Bagatur
240cc289e6 wip 2023-08-30 13:37:39 -07:00
Bagatur
7fa82900cb guides docs nits (#10005) 2023-08-30 11:07:42 -07:00
Bagatur
2f03e71e67 rename local llm guide (#10004) 2023-08-30 10:52:46 -07:00
Bagatur
781f274d19 make privacy guide section (#10003) 2023-08-30 10:49:20 -07:00
maks-operlejn-ds
a8f804a618 Add data anonymizer (#9863)
### Description

The feature for anonymizing data has been implemented. In order to
protect private data, such as when querying external APIs (OpenAI), it
is worth pseudonymizing sensitive data to maintain full privacy.

Anonynization consists of two steps:

1. **Identification:** Identify all data fields that contain personally
identifiable information (PII).
2. **Replacement**: Replace all PIIs with pseudo values or codes that do
not reveal any personal information about the individual but can be used
for reference. We're not using regular encryption, because the language
model won't be able to understand the meaning or context of the
encrypted data.

We use *Microsoft Presidio* together with *Faker* framework for
anonymization purposes because of the wide range of functionalities they
provide. The full implementation is available in `PresidioAnonymizer`.

### Future works

- **deanonymization** - add the ability to reverse anonymization. For
example, the workflow could look like this: `anonymize -> LLMChain ->
deanonymize`. By doing this, we will retain anonymity in requests to,
for example, OpenAI, and then be able restore the original data.
- **instance anonymization** - at this point, each occurrence of PII is
treated as a separate entity and separately anonymized. Therefore, two
occurrences of the name John Doe in the text will be changed to two
different names. It is therefore worth introducing support for full
instance detection, so that repeated occurrences are treated as a single
object.

### Twitter handle
@deepsense_ai / @MaksOpp

---------

Co-authored-by: MaksOpp <maks.operlejn@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-30 10:39:44 -07:00
Bagatur
98cce7dcd3 update moderation docs (#10002) 2023-08-30 10:34:25 -07:00
Bagatur
b3e3a31240 bump 277 (#9997) 2023-08-30 08:29:51 -07:00
Bagatur
9828701de1 mv base cache to schema (#9953)
if you remove all other imports from langchain.init it exposes a
circular dep
2023-08-30 08:10:51 -07:00
Christophe Bornet
9870bfb9cd Add bucket and object key to metadata in S3 loader (#9317)
- Description: this PR adds `s3_object_key` and `s3_bucket` to the doc
metadata when loading an S3 file. This is particularly useful when using
`S3DirectoryLoader` to remove the files from the dir once they have been
processed (getting the object keys from the metadata `source` field
seems brittle)
  - Dependencies: N/A
  - Tag maintainer: ?
  - Twitter handle: _cbornet

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-30 11:03:24 -04:00
Eugene Yurtsev
6da158388b Merge branch 'master' into ywkim/master 2023-08-30 10:46:26 -04:00
Guy Korland
24c0b01c38 Extend the FalkorDB QA demo (#9992)
- Description: Extend the FalkorDB QA demo
  - Tag maintainer: @baskaryan
2023-08-30 10:13:18 -04:00
Eugene Yurtsev
588237ef30 Make document serializable, create utility to create a docstore (#9674)
This PR makes the following changes:

1. Documents become serializable using langhchain serialization
2. Make a utility to create a docstore kw store

Will help to address issue here:
https://github.com/langchain-ai/langchain/issues/9345
2023-08-30 09:45:04 -04:00
Eugene Yurtsev
e8f29be350 x 2023-08-30 09:36:27 -04:00
Buckler89
a28e888b36 fix call _get_keys for custom_evaluator (#9763)
In the function _load_run_evaluators the function _get_keys was not
called if only custom_evaluators parameter is used


- Description: In the function _load_run_evaluators the function
_get_keys was not called if only custom_evaluators parameter is used,
  - Issue: no issue created for this yet,
  - Dependencies: None,
  - Tag maintainer: @vowelparrot,
  - Twitter handle: Buckler89

---------

Co-authored-by: ddroghini <d.droghini@mflgroup.com>
2023-08-30 06:35:23 -07:00
Eugene Yurtsev
cafce9ed23 x 2023-08-30 09:35:00 -04:00
wlleiiwang
8c4e29240c implement vectorstores by tencent vectordb 2023-08-30 16:40:58 +08:00
Bagatur
2d2b097fab mv chat history (#9725) 2023-08-29 21:41:32 -07:00
Bagatur
d762a6b51f rm mutable defaults (#9974) 2023-08-29 20:36:27 -07:00
Arjun Aravindan
6a51672164 Update SeleniumURLLoader to use webdriver Service in favor of deprecated executable_path parameter (#9814)
Description: This commit uses the new Service object in Selenium
webdriver as executable_path has been [deprecated and removed in
selenium version
4.11.2](9f5801c82f)
Issue: https://github.com/langchain-ai/langchain/issues/9808
Tag Maintainer: @eyurtsev
2023-08-29 19:45:18 -07:00
William FH
c844aaa7a6 Weakref to tracer (#9954)
Prevent memory/thread leakage
2023-08-29 19:27:22 -07:00
Jurik-001
a05fed9369 Fix add callbacks to spark_sql due to depreciation of callback_manager (#9831)
Description: Due to depreciation (regarding to line 109 in
[langchain/libs/langchain/langchain/chains/base.py](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/chains/base.py)
of callback_manager i replaced several parts

Issue: None
Dependencies: 
Maintainer: @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-29 19:23:44 -07:00
dafu
c26deb6b38 fixed openai_functions api_response format args err
root cause: args may not have a key (params) resulting in an error
2023-08-30 09:58:24 +08:00
axiangcoding
ffa5625134 feat(llms): improve ERNIE-Bot chat model (#9833)
- Description: improve ERNIE-Bot chat model, add request timeout and
more testcases.
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-29 18:20:06 -07:00
Bagatur
bdccb1215a docs: integrations/tools consistency (#9965)
Updated titles, descriptions into consistent format.
2023-08-29 18:04:01 -07:00
Bagatur
d966ba63e2 fixed GoogleCloudEnterpriseSearchRetriever returning an empty array (#9858)
`GoogleCloudEnterpriseSearchRetriever` returned an empty array of
documents earlier, fixed
2023-08-29 17:49:48 -07:00
Bagatur
ec362ecbe2 Fixed regex bug in RetrievalQAWithSources in previous update (#9898)
- Description: In my previous PR, I had modified the code to catch all
kinds of [SOURCES, sources, Source, Sources]. However, this change
included checking for a colon or a white space which should actually
have been only checking for a colon.
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
2023-08-29 17:32:24 -07:00
Nikhil Suresh
56a0165a4e cleaned up unit test example 2023-08-29 23:37:54 +00:00
William FH
cedfad541d don't emit none from eval config (#9963) 2023-08-29 16:14:32 -07:00
Nikhil Suresh
b31475c622 minor updates to regex 2023-08-29 23:13:31 +00:00
Leonid Ganeline
d03d6f6fd9 Merge branch 'master' into docs-tools-menu 2023-08-29 15:57:25 -07:00
Bagatur
8fb0a9594c Add LLMonitor Callback Handler Integration - open-source observability & analytics (#9870)
Adds support for [llmonitor](https://llmonitor.com) callbacks.

It enables:
- Requests tracking / logging / analytics
- Error debugging
- Cost analytics
- User tracking

Let me know if anythings neds to be changed for merge.

Thank you!
2023-08-29 15:49:01 -07:00
Bagatur
4eeba88905 Use unified Python setup steps for release workflow. (#9861)
Using the same Python setup GitHub Action step as the lint and test
workflows.
2023-08-29 15:46:25 -07:00
leo-gan
8c1678a8c7 Updated titles, descriptions. 2023-08-29 15:42:28 -07:00
William FH
d799963870 Wfh/async tool (#9878)
Co-authored-by: Daniel Brenot <dbrenot@pelmorex.com>
Co-authored-by: Daniel <daniel.alexander.brenot@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-29 15:37:41 -07:00
Bagatur
7bba1d911b Fix typo in code_understanding.ipynb (#9899)
seperate -> separate
2023-08-29 15:21:32 -07:00
Bagatur
2e65434568 docs: Fix the syntax error, replace "dotenv.load_env()" with "dotenv.… (#9900)
Description: The documents incorrectly mentions "dotenv.load_env()", but
it should actually be "dotenv.load_dotenv()". You can see the screenshot
below for reference:

python-dotenv: 1.0.0


![image](https://github.com/langchain-ai/langchain/assets/2959046/94dc4b51-cc2f-412d-92e9-16b8ff0d513e)
2023-08-29 15:20:24 -07:00
Bagatur
b416f5c0c8 fix a link name format to the dependents document (#9928) 2023-08-29 15:20:06 -07:00
Bagatur
8f199239b8 docs: llms/google vertex AI example update (#9960)
Updated title, description, added sections.
2023-08-29 15:07:18 -07:00
Bagatur
2a03a0087d docs: memory menu (#9947)
The [Memory](https://python.langchain.com/docs/modules/memory/) menu is
clogged with unnecessary wording.
I've made it more concise by simplifying titles of the example
notebooks.
As results, menu is shorter and better for comprehend.
2023-08-29 15:06:11 -07:00
Bagatur
f7cc125cac docs: memory types menu (#9949)
The [Memory
Types](https://python.langchain.com/docs/modules/memory/types/) menu is
clogged with unnecessary wording.
I've made it more concise by simplifying titles of the example
notebooks.
As results, menu is shorter and better for comprehend.
2023-08-29 15:05:23 -07:00
Bagatur
16eb935469 Fix for similarity_search_with_score (#9903)
- Description: the implementation for similarity_search_with_score did
not actually include a score or logic to filter. Now fixed.
- Tag maintainer: @rlancemartin
- Twitter handle: @ofermend
2023-08-29 15:04:48 -07:00
Bagatur
c70bb0ec28 Activeloopai runtime arg (#9961) 2023-08-29 15:01:46 -07:00
Bagatur
0f85671630 fmt 2023-08-29 14:55:25 -07:00
Bagatur
78c014399f fmt 2023-08-29 14:53:15 -07:00
Fredrik Gullberg
f69d236a4a docs: Fix spelling mistakes in apis.ipynb (#9911)
- Description: Fix spelling mistakes in apis.ipynb
- Issue: [#9910](https://github.com/langchain-ai/langchain/issues/9910)

Co-authored-by: Fredrik Gullberg <fredrik.gullberg@klarna.com>
2023-08-29 14:53:00 -07:00
Nate Nethercott
0024824a6e docs: Fix spelling mistakes in retrievers/get_started.mdx (#9920)
Description: Fix spelling mistakes in retrievers/get_started.mdx
2023-08-29 14:50:07 -07:00
leo-gan
210de0c66b Updated title, description, added sections 2023-08-29 14:31:33 -07:00
Eugene Yurtsev
5cce6529a4 Speed up openai tests (#9943)
Saves ~8-10 seconds from total unit tests times

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-29 14:30:41 -07:00
Cameron Hutchison
bcc3463ff4 docs: Azure AD Authentication for Azure OpenAI (#9951)
# Description
This PR adds additional documentation on how to use Azure Active
Directory to authenticate to an OpenAI service within Azure. This method
of authentication allows organizations with more complex security
requirements to use Azure OpenAI.

# Issue
N/A

# Dependencies
N/A

# Twitter
https://twitter.com/CamAHutchison
2023-08-29 14:29:27 -07:00
Guy Korland
7cbe872af8 Add support for Falkordb (ex-RedisGraph) (#9821)
Replace this entire comment with:
  - Description: Add support for Falkordb (ex-RedisGraph)
  - Tag maintainer: @hwchase17
  - Twitter handle: @g_korland
2023-08-29 14:22:33 -07:00
Bagatur
9f2d908316 cr 2023-08-29 14:16:48 -07:00
Bagatur
3c1547925a fix 2023-08-29 14:02:13 -07:00
William FH
fbd792ac7c Fix import (#9945) 2023-08-29 12:38:42 -07:00
Zizhong Zhang
8bd7a9d18e feat: PromptGuard takes a list of str (#9948)
Recently we made the decision that PromptGuard takes a list of strings
instead of a string.
@ggroode implemented the integration change.

---------

Co-authored-by: ggroode <ggroode@berkeley.edu>
Co-authored-by: ggroode <46691276+ggroode@users.noreply.github.com>
2023-08-29 12:22:30 -07:00
Bagatur
ede45f535e fix intro docs (#9950) 2023-08-29 11:50:07 -07:00
Leonid Ganeline
393816e7bd Merge branch 'master' into docs-memory-type-menu 2023-08-29 11:46:29 -07:00
Corvus Lee
0fb95ebe66 Docs: enrich SageMaker endpoint embeddings with docstrings and examples (#9924)
Description: added comments to address the relationship between
input/output transformations and the customised inference.py script.
2023-08-29 11:38:52 -07:00
leo-gan
7c7ae34eeb updated .mdx titles and text. 2023-08-29 11:33:30 -07:00
leo-gan
d578efba35 updated notebook titles and text. 2023-08-29 11:25:53 -07:00
Predrag Gruevski
8dbf4cbe80 Add notice about security-sensitive experimental code to experimental README. (#9936)
It renders like this:
https://github.com/langchain-ai/langchain/tree/pg/experimental-readme/libs/experimental


![image](https://github.com/langchain-ai/langchain/assets/2348618/a5f9569d-96f6-44c6-8559-921adb3e337d)
2023-08-29 14:21:30 -04:00
Predrag Gruevski
b5cd1e0fed Add security notices on PAL and CPAL experimental chains. (#9938)
Clearly document that the PAL and CPAL techniques involve generating
code, and that such code must be properly sandboxed and given
appropriate narrowly-scoped credentials in order to ensure security.

While our implementations include some mitigations, Python and SQL
sandboxing is well-known to be a very hard problem and our mitigations
are no replacement for proper sandboxing and permissions management. The
implementation of such techniques must be performed outside the scope of
the Python process where this package's code runs, so its correct setup
and administration must therefore be the responsibility of the user of
this code.
2023-08-29 13:51:56 -04:00
Leonid Ganeline
6eae6df76f Merge branch 'master' into docs-memory-menu 2023-08-29 10:31:17 -07:00
Jan-Luca Barthel
f5faac8859 addition of cosine distance function for faiss (#9939)
- Description: added the _cosine_relevance_score_fn to
_select_relevance_score_fn of faiss.py to enable the use of cosine
distance for similarity for this vector store and to comply with the
Error Message, that implies, that cosine should be a valid distance
strategy
- Issue: no relevant Issue found, but needed this function myself and
tested it in a private repo
  - Dependencies: none
2023-08-29 10:29:51 -07:00
Leonid Ganeline
4b6e41a939 Merge branch 'master' into docs-memory-menu 2023-08-29 10:24:07 -07:00
Tomaz Bratanic
6092422e10 Add neo4j provider page (#9941) 2023-08-29 10:09:51 -07:00
leo-gan
c906041aa8 updated notebook titles and text. 2023-08-29 09:58:26 -07:00
Eugene Yurtsev
880bf06290 x 2023-08-29 11:15:41 -04:00
Eugene Yurtsev
9efc29e3d1 x 2023-08-29 11:13:42 -04:00
Bagatur
d6957921f0 bump 276 (#9931) 2023-08-29 08:00:38 -07:00
Tomaz Bratanic
db13fba7ea Add neo4j vector support (#9770)
Neo4j has added vector index integration just recently. To allow both
ingestion and integrating it as vector RAG applications, I wrapped it as
a vector store as the implementation is completely different from
`GraphCypherQAChain`. Here, we are not generating any Cypher statements
at query time, we are simply doing the vector similarity search using
the new vector index as if we were dealing with a vector database.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-29 07:54:20 -07:00
Bagatur
49ebbe4bcd fix pydantic import (#9930) 2023-08-29 07:53:01 -07:00
Tudor Golubenco
171b0b183b Pre-release Xata version no longer required (#9915)
Tiny PR: Since we've released version 1.0.0 of the python SDK, we no
longer need to specify the pre-release version when pip installing.
2023-08-29 07:21:22 -07:00
Mike Nitsenko
c80e406e95 Cube semantic loader: allow cubes processing (#9927)
We've started to receive feedback (after launch) that using only views
is confusing.
We're considering this as a good practice, as a view serves as a
"facade" for your data - however, we decided to let users decide this on
their own.

Solves the questions from:
- https://github.com/cube-js/cube/issues/7028
- https://github.com/langchain-ai/langchain/pull/9690
2023-08-29 07:21:01 -07:00
Nikhil Suresh
dd10cf945c fixed minor linting issues 2023-08-29 14:15:59 +00:00
LiaoKong
8f8455b24d fix a link name format to the dependents document 2023-08-29 21:55:05 +08:00
adilkhan
bbae8cb88f Added runtime argument 2023-08-29 12:12:49 +06:00
Ofer Mendelevitch
4454204455 reformat black 2023-08-28 23:04:57 -07:00
Ofer Mendelevitch
318a21e267 fixed typo in spelling 2023-08-28 23:01:11 -07:00
hughcrt
e71f4760db Change multiline comment width 2023-08-29 07:55:10 +02:00
Ofer Mendelevitch
a5450be32e fixed lint 2023-08-28 22:31:39 -07:00
Ofer Mendelevitch
8b8d2a6535 fixed similarity_search_with_score to really use a score
updated unit test with a test for score threshold
Updated demo notebook
2023-08-28 22:26:55 -07:00
Ofer Mendelevitch
1b6947e56c Merge branch 'langchain-ai:master' into master 2023-08-28 21:42:47 -07:00
hughcrt
7979cef06a Replace | by Union 2023-08-29 06:22:50 +02:00
Nikhil Suresh
23ef836b48 matches colon and any number of white spaces after colon 2023-08-29 04:18:33 +00:00
Ikko Eltociear Ashimine
766bbd6c6b Fix typo in code_understanding.ipynb
seperate -> separate
2023-08-29 12:57:19 +09:00
Nikhil Suresh
64eb5a6082 removed unnecessary white space in regex that breaks qa with sources chain 2023-08-29 03:54:38 +00:00
Nikhil Suresh
8a4670e127 updated formatting changes 2023-08-29 03:54:38 +00:00
Nikhil Suresh
b1f649bca5 fixed issue with white space and added unit tests 2023-08-29 03:54:38 +00:00
Nikhil Suresh
6d3485e798 fixed regex to match sources for all cases, also includes source 2023-08-29 03:54:25 +00:00
tongtie
82a3c2a557 docs: Fix the syntax error, replace "dotenv.load_env()" with "dotenv.load_dotenv()". 2023-08-29 11:52:50 +08:00
Mazhar (Taha) Mumbaiwala
e80834d783 docs: Fix spelling mistakes in Etherscan.ipynb (#9845) 2023-08-28 19:30:00 -07:00
Philippe PRADOS
7fdb7439e0 Update google drive notebooks (#9851)
Update google drive doc loader and retriever notebooks. Show how to use with langchain-googledrive package.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-28 19:29:35 -07:00
Xiaobing Mi
5d47833ae1 Fix typo in web_scraping.ipynb (#9835) 2023-08-28 19:26:23 -07:00
Leonid Ganeline
b1bffea9c7 docs: fix for title of llm_caching nb (#9891)
Fixed title for the `extras/integrations/llms/llm_caching.ipynb`.
Existing title breaks the sorted order of items in the navbar.
Updated some formatting.
2023-08-28 18:34:04 -07:00
Leonid Ganeline
e01b00aa54 docs: ainetwork update (#9871)
* Added links to the AI Network
* Made title consistent to other tool kits
* Added `integrations/providers/` integration card page
* **No changes** in the example code!
2023-08-28 18:16:22 -07:00
Predrag Gruevski
47499c6db4 Avoid type: ignore suppression by adding mypy type hint. (#9881)
Mypy was not able to determine a good type for `type_to_loader_dict`,
since the values in the dict are functions whose return types are
related to each other in a complex way. One can see this by adding a
line like `reveal_type(type_to_loader_dict)` and running mypy, which
will get mypy to show what type it has inferred for that value.

Adding an explicit type hint to help out mypy avoids the need for a mypy
suppression and allows the code to type-check cleanly.
2023-08-28 17:53:33 -07:00
maks-operlejn-ds
f327535eda Add conftest file to langchain experimental (#9886)
In order to use `requires` marker in langchain-experimental, there's a
need for *conftest.py* file inside. Everything is identical to the main
langchain module.

Co-authored-by: maks-operlejn-ds <maks.operlejn@gmail.com>
2023-08-28 17:52:16 -07:00
Leonid Ganeline
cf122b6269 docs: Infino example fix (#9888)
- Fixed a broken link in the `integrations/providers/infino.mdx`
- Fixed a title in the `integration/collbacks/infino.ipynb` example
- Updated text format in this example.
2023-08-28 17:42:11 -07:00
Piyush Jain
fe1b9ee6b8 Updated notebook for comprehend moderation (#9875)
### Description
Updated the notebook for comprehend moderation.

cc @baskaryan
2023-08-28 16:01:43 -07:00
William FH
907c57e324 Add collect_runs callback (#9885) 2023-08-28 15:30:41 -07:00
William FH
3103f07e03 Use existing required args obj if specified (#9883)
We always overwrote the required args but we infer them by default.
Doing it only the old way makes it so the llm guesses even if an arg is
optional (e.g., for uuids)
2023-08-28 14:40:22 -07:00
William FH
b14d74dd4d iMessage loader (#9832)
Add an iMessage chat loader
2023-08-28 13:43:59 -07:00
Lance Martin
8393ba9dab Add instructions for GGUF (#9874)
llama.cpp migrated to GGUF model format, and new releases (e.g.,
[here](https://huggingface.co/TheBloke)) now use GGUF.
2023-08-28 12:56:46 -07:00
Predrag Gruevski
eb3d1fa93c Add security warning to experimental SQLDatabaseChain class. (#9867)
The most reliable way to not have a chain run an undesirable SQL command
is to not give it database permissions to run that command. That way the
database itself performs the rule enforcement, so it's much easier to
configure and use properly than anything we could add in ourselves.
2023-08-28 13:53:27 -04:00
hughcrt
3a4d4c940c Change video width 2023-08-28 19:26:33 +02:00
hughcrt
97741d41c5 Add LLMonitorCallbackHandler 2023-08-28 19:24:50 +02:00
eryk-dsai
7f5713b80a feat: grammar-based sampling in llama-cpp (#9712)
## Description 

The following PR enables the [grammar-based
sampling](https://github.com/ggerganov/llama.cpp/tree/master/grammars)
in llama-cpp LLM.

In short, loading file with formal grammar definition will constrain
model outputs. For instance, one can force the model to generate valid
JSON or generate only python lists.

In the follow-up PR we will add:
* docs with some description why it is cool and how it works
* maybe some code sample for some task such as in llama repo

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-28 09:52:55 -07:00
William FH
cb642ef658 Return feedback (#9629)
Return the feedback values in an eval run result

Also made a helper method to display as a dataframe but it may be
overkill
2023-08-28 09:15:05 -07:00
Bagatur
5e2d0cf54e bump 275 (#9860) 2023-08-28 07:27:07 -07:00
Predrag Gruevski
9aaa0fdce0 Use unified Python setup steps for release workflow. 2023-08-28 14:20:48 +00:00
Leonid Kuligin
00baddf34c fixed enterprise search returning an empty array 2023-08-28 15:38:56 +02:00
XUEYANZ
f97d3a76e7 Update CONTRIBUTING.md (#9817)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->

Hi LangChain :) Thank you for such a great project! 
I was going through the CONTRIBUTING.md and found a few minor issues.
2023-08-28 09:38:34 -04:00
Eugene Yurtsev
5edf819524 Qdrant Client: Expose instance for creating client (#9706)
Expose classmethods to convenient initialize the vectostore.

The purpose of this PR is to make it easy for users to initialize an
empty vectorstore that's properly pre-configured without having to index
documents into it via `from_documents`.

This will make it easier for users to rely on the following indexing
code: https://github.com/langchain-ai/langchain/pull/9614
to help manage data in the qdrant vectorstore.
2023-08-28 09:30:59 -04:00
Harrison Chase
610f46d83a accept openai terms (#9826) 2023-08-27 17:18:24 -07:00
Harrison Chase
c1badc1fa2 add gmail loader (#9810) 2023-08-27 17:18:09 -07:00
Bagatur
0d01cede03 bump 274 (#9805) 2023-08-26 12:16:26 -07:00
Vikas Sheoran
63921e327d docs: Fix a spelling mistake in adding_memory.ipynb (#9794)
# Description 
This pull request fixes a small spelling mistake found while reading
docs.
2023-08-26 12:04:43 -07:00
Rosário P. Fernandes
aab01b55db typo: funtions --> functions (#9784)
Minor typo in the extractions use-case
2023-08-26 11:47:47 -07:00
Nikhil Suresh
0da5803f5a fixed regex to match sources for all cases, also includes source (#9775)
- Description: Updated the regex to handle all the different cases for
string matching (SOURCES, sources, Sources),
  - Issue: https://github.com/langchain-ai/langchain/issues/9774
  - Dependencies: N/A
2023-08-25 18:10:33 -07:00
Sam Partee
a28eea5767 Redis metadata filtering and specification, index customization (#8612)
### Description

The previous Redis implementation did not allow for the user to specify
the index configuration (i.e. changing the underlying algorithm) or add
additional metadata to use for querying (i.e. hybrid or "filtered"
search).

This PR introduces the ability to specify custom index attributes and
metadata attributes as well as use that metadata in filtered queries.
Overall, more structure was introduced to the Redis implementation that
should allow for easier maintainability moving forward.

# New Features

The following features are now available with the Redis integration into
Langchain

## Index schema generation

The schema for the index will now be automatically generated if not
specified by the user. For example, the data above has the multiple
metadata categories. The the following example

```python

from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores.redis import Redis

embeddings = OpenAIEmbeddings()


rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users"
)
```

Loading the data in through this and the other ``from_documents`` and
``from_texts`` methods will now generate index schema in Redis like the
following.

view index schema with the ``redisvl`` tool. [link](redisvl.com)

```bash
$ rvl index info -i users
```


Index Information:
| Index Name | Storage Type | Prefixes | Index Options | Indexing |

|--------------|----------------|---------------|-----------------|------------|
| users | HASH | ['doc:users'] | [] | 0 |
Index Fields:
| Name | Attribute | Type | Field Option | Option Value |

|----------------|----------------|---------|----------------|----------------|
| user | user | TEXT | WEIGHT | 1 |
| job | job | TEXT | WEIGHT | 1 |
| credit_score | credit_score | TEXT | WEIGHT | 1 |
| content | content | TEXT | WEIGHT | 1 |
| age | age | NUMERIC | | |
| content_vector | content_vector | VECTOR | | |


### Custom Metadata specification

The metadata schema generation has the following rules
1. All text fields are indexed as text fields.
2. All numeric fields are index as numeric fields.

If you would like to have a text field as a tag field, users can specify
overrides like the following for the example data

```python

# this can also be a path to a yaml file
index_schema = {
    "text": [{"name": "user"}, {"name": "job"}],
    "tag": [{"name": "credit_score"}],
    "numeric": [{"name": "age"}],
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users"
)
```
This will change the index specification to 

Index Information:
| Index Name | Storage Type | Prefixes | Index Options | Indexing |

|--------------|----------------|----------------|-----------------|------------|
| users2 | HASH | ['doc:users2'] | [] | 0 |
Index Fields:
| Name | Attribute | Type | Field Option | Option Value |

|----------------|----------------|---------|----------------|----------------|
| user | user | TEXT | WEIGHT | 1 |
| job | job | TEXT | WEIGHT | 1 |
| content | content | TEXT | WEIGHT | 1 |
| credit_score | credit_score | TAG | SEPARATOR | , |
| age | age | NUMERIC | | |
| content_vector | content_vector | VECTOR | | |


and throw a warning to the user (log output) that the generated schema
does not match the specified schema.

```text
index_schema does not match generated schema from metadata.
index_schema: {'text': [{'name': 'user'}, {'name': 'job'}], 'tag': [{'name': 'credit_score'}], 'numeric': [{'name': 'age'}]}
generated_schema: {'text': [{'name': 'user'}, {'name': 'job'}, {'name': 'credit_score'}], 'numeric': [{'name': 'age'}]}
```

As long as this is on purpose,  this is fine.

The schema can be defined as a yaml file or a dictionary

```yaml

text:
  - name: user
  - name: job
tag:
  - name: credit_score
numeric:
  - name: age

```

and you pass in a path like

```python
rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users3",
    index_schema=Path("sample1.yml").resolve()
)
```

Which will create the same schema as defined in the dictionary example


Index Information:
| Index Name | Storage Type | Prefixes | Index Options | Indexing |

|--------------|----------------|----------------|-----------------|------------|
| users3 | HASH | ['doc:users3'] | [] | 0 |
Index Fields:
| Name | Attribute | Type | Field Option | Option Value |

|----------------|----------------|---------|----------------|----------------|
| user | user | TEXT | WEIGHT | 1 |
| job | job | TEXT | WEIGHT | 1 |
| content | content | TEXT | WEIGHT | 1 |
| credit_score | credit_score | TAG | SEPARATOR | , |
| age | age | NUMERIC | | |
| content_vector | content_vector | VECTOR | | |



### Custom Vector Indexing Schema

Users with large use cases may want to change how they formulate the
vector index created by Langchain

To utilize all the features of Redis for vector database use cases like
this, you can now do the following to pass in index attribute modifiers
like changing the indexing algorithm to HNSW.

```python
vector_schema = {
    "algorithm": "HNSW"
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users3",
    vector_schema=vector_schema
)

```

A more complex example may look like

```python
vector_schema = {
    "algorithm": "HNSW",
    "ef_construction": 200,
    "ef_runtime": 20
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users3",
    vector_schema=vector_schema
)
```

All names correspond to the arguments you would set if using Redis-py or
RedisVL. (put in doc link later)


### Better Querying

Both vector queries and Range (limit) queries are now available and
metadata is returned by default. The outputs are shown.

```python
>>> query = "foo"
>>> results = rds.similarity_search(query, k=1)
>>> print(results)
[Document(page_content='foo', metadata={'user': 'derrick', 'job': 'doctor', 'credit_score': 'low', 'age': '14', 'id': 'doc:users:657a47d7db8b447e88598b83da879b9d', 'score': '7.15255737305e-07'})]

>>> results = rds.similarity_search_with_score(query, k=1, return_metadata=False)
>>> print(results) # no metadata, but with scores
[(Document(page_content='foo', metadata={}), 7.15255737305e-07)]

>>> results = rds.similarity_search_limit_score(query, k=6, score_threshold=0.0001)
>>> print(len(results)) # range query (only above threshold even if k is higher)
4
```

### Custom metadata filtering

A big advantage of Redis in this space is being able to do filtering on
data stored alongside the vector itself. With the example above, the
following is now possible in langchain. The equivalence operators are
overridden to describe a new expression language that mimic that of
[redisvl](redisvl.com). This allows for arbitrarily long sequences of
filters that resemble SQL commands that can be used directly with vector
queries and range queries.

There are two interfaces by which to do so and both are shown. 

```python

>>> from langchain.vectorstores.redis import RedisFilter, RedisNum, RedisText

>>> age_filter = RedisFilter.num("age") > 18
>>> age_filter = RedisNum("age") > 18 # equivalent
>>> results = rds.similarity_search(query, filter=age_filter)
>>> print(len(results))
3

>>> job_filter = RedisFilter.text("job") == "engineer" 
>>> job_filter = RedisText("job") == "engineer" # equivalent
>>> results = rds.similarity_search(query, filter=job_filter)
>>> print(len(results))
2

# fuzzy match text search
>>> job_filter = RedisFilter.text("job") % "eng*"
>>> results = rds.similarity_search(query, filter=job_filter)
>>> print(len(results))
2


# combined filters (AND)
>>> combined = age_filter & job_filter
>>> results = rds.similarity_search(query, filter=combined)
>>> print(len(results))
1

# combined filters (OR)
>>> combined = age_filter | job_filter
>>> results = rds.similarity_search(query, filter=combined)
>>> print(len(results))
4
```

All the above filter results can be checked against the data above.


### Other

  - Issue: #3967 
  - Dependencies: No added dependencies
  - Tag maintainer: @hwchase17 @baskaryan @rlancemartin 
  - Twitter handle: @sampartee

---------

Co-authored-by: Naresh Rangan <naresh.rangan0@walmart.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 17:22:50 -07:00
Anish Shah
fa0b8f3368 fix broken wandb link in debugging page (#9771)
- Description: Fix broken hyperlink in debugging page
2023-08-25 15:34:08 -07:00
Monami Sharma
12a373810c Fixing broken links to Moderation and Constitutional chain (#9768)
- Description: Fixing broken links for Moderation and Constitutional
chain
  - Issue: N/A
  - Twitter handle: MonamiSharma
2023-08-25 15:19:32 -07:00
nikhilkjha
d57d08fd01 Initial commit for comprehend moderator (#9665)
This PR implements a custom chain that wraps Amazon Comprehend API
calls. The custom chain is aimed to be used with LLM chains to provide
moderation capability that let’s you detect and redact PII, Toxic and
Intent content in the LLM prompt, or the LLM response. The
implementation accepts a configuration object to control what checks
will be performed on a LLM prompt and can be used in a variety of setups
using the LangChain expression language to not only detect the
configured info in chains, but also other constructs such as a
retriever.
The included sample notebook goes over the different configuration
options and how to use it with other chains.

###  Usage sample
```python
from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters

moderation_config = { 
        "filters":[ 
                BaseModerationFilters.PII, 
                BaseModerationFilters.TOXICITY,
                BaseModerationFilters.INTENT
        ],
        "pii":{ 
                "action": BaseModerationActions.ALLOW, 
                "threshold":0.5, 
                "labels":["SSN"],
                "mask_character": "X"
        },
        "toxicity":{ 
                "action": BaseModerationActions.STOP, 
                "threshold":0.5
        },
        "intent":{ 
                "action": BaseModerationActions.STOP, 
                "threshold":0.5
        }
}

comp_moderation_with_config = AmazonComprehendModerationChain(
    moderation_config=moderation_config, #specify the configuration
    client=comprehend_client,            #optionally pass the Boto3 Client
    verbose=True
)

template = """Question: {question}

Answer:"""

prompt = PromptTemplate(template=template, input_variables=["question"])

responses = [
    "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", 
    "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here."
]
llm = FakeListLLM(responses=responses)

llm_chain = LLMChain(prompt=prompt, llm=llm)

chain = ( 
    prompt 
    | comp_moderation_with_config 
    | {llm_chain.input_keys[0]: lambda x: x['output'] }  
    | llm_chain 
    | { "input": lambda x: x['text'] } 
    | comp_moderation_with_config 
)

response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"})

print(response['output'])


```
### Output
```
> Entering new AmazonComprehendModerationChain chain...
Running AmazonComprehendModerationChain...
Running pii validation...
Found PII content..stopping..
The prompt contains PII entities and cannot be processed
```

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Anjan Biswas <anjanavb@amazon.com>
Co-authored-by: Jha <nikjha@amazon.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 15:11:27 -07:00
Lance Martin
4339d21cf1 Code LLaMA in code understanding use case (#9779)
Update Code Understanding use case doc w/ Code-llama.
2023-08-25 14:24:38 -07:00
William FH
1960ac8d25 token chunks (#9739)
Co-authored-by: Andrew <abatutin@gmail.com>
2023-08-25 12:52:07 -07:00
Lance Martin
2ab04a4e32 Update agent docs, move to use-case sub-directory (#9344)
Re-structure and add new agent page
2023-08-25 11:28:55 -07:00
Lance Martin
985873c497 Update RAG use case (move to ntbk) (#9340) 2023-08-25 11:27:27 -07:00
Harrison Chase
709a67d9bf multivector notebook (#9740) 2023-08-25 07:07:27 -07:00
Bagatur
9731ce5a40 bump 273 (#9751) 2023-08-25 03:05:04 -07:00
Fabrizio Ruocco
cacaf487c3 Azure Cognitive Search - update sdk b8, mod user agent, search with scores (#9191)
Description: Update Azure Cognitive Search SDK to version b8 (breaking
change)
Customizable User Agent.
Implemented Similarity search with scores 

@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 02:34:09 -07:00
Sergey Kozlov
135cb86215 Fix QuestionListOutputParser (#9738)
This PR fixes `QuestionListOutputParser` text splitting.

`QuestionListOutputParser` incorrectly splits numbered list text into
lines. If text doesn't end with `\n` , the regex doesn't capture the
last item. So it always returns `n - 1` items, and
`WebResearchRetriever.llm_chain` generates less queries than requested
in the search prompt.

How to reproduce:

```python
from langchain.retrievers.web_research import QuestionListOutputParser

parser = QuestionListOutputParser()

good = parser.parse(
    """1. This is line one.
    2. This is line two.
    """  # <-- !
)

bad = parser.parse(
    """1. This is line one.
    2. This is line two."""    # <-- No new line.
)

assert good.lines == ['1. This is line one.\n', '2. This is line two.\n'], good.lines
assert bad.lines == ['1. This is line one.\n', '2. This is line two.'], bad.lines
```

NOTE: Last item will not contain a line break but this seems ok because
the items are stripped in the
`WebResearchRetriever.clean_search_query()`.
2023-08-25 01:47:17 -07:00
Jurik-001
d04fe0d3ea remove Value error "pyspark is not installed. Please install it with `pip i… (#9723)
Description: You cannot execute spark_sql with versions prior to 3.4 due
to the introduction of pyspark.errors in version 3.4.
And if you are below you get 3.4 "pyspark is not installed. Please
install it with pip nstall pyspark" which is not helpful. Also if you
not have pyspark installed you get already the error in init. I would
return all errors. But if you have a different idea feel free to
comment.

Issue: None
Dependencies: None
Maintainer:

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-24 22:18:55 -07:00
Margaret Qian
30151c99c7 Update Mosaic endpoint input/output api (#7391)
As noted in prior PRs (https://github.com/hwchase17/langchain/pull/6060,
https://github.com/hwchase17/langchain/pull/7348), the input/output
format has changed a few times as we've stabilized our inference API.
This PR updates the API to the latest stable version as indicated in our
docs: https://docs.mosaicml.com/en/latest/inference.html

The input format looks like this:

`{"inputs": [<prompt>]}
`

The output format looks like this:
`
{"outputs": [<output_text>]}
`
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-24 22:13:17 -07:00
Harrison Chase
ade482c17e add twitter chat loader doc (#9737) 2023-08-24 21:55:22 -07:00
Leonid Kuligin
87da56fb1e Added a pdf parser based on DocAI (#9579)
#9578

---------

Co-authored-by: Leonid Kuligin <kuligin@google.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-24 21:44:49 -07:00
Naama Magami
adb21782b8 Add del vector pgvector + adding modification time to confluence and google drive docs (#9604)
Description:
- adding implementation of delete for pgvector
- adding modification time in docs metadata for confluence and google
drive.

Issue:
https://github.com/langchain-ai/langchain/issues/9312

Tag maintainer: @baskaryan, @eyurtsev, @hwchase17, @rlancemartin.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-24 21:09:30 -07:00
Erick Friis
3e5cda3405 Hub Push Ergonomics (#9731)
Improves the hub pushing experience, returning a url instead of just a
commit hash.

Requires hub sdk 0.1.8
2023-08-24 17:41:54 -07:00
Tudor Golubenco
dc30edf51c Xata as a chat message memory store (#9719)
This adds Xata as a memory store also to the python version of
LangChain, similar to the [one for
LangChain.js](https://github.com/hwchase17/langchainjs/pull/2217).

I have added a Jupyter Notebook with a simple and a more complex example
using an agent.

To run the integration test, you need to execute something like:

```
XATA_API_KEY='xau_...' XATA_DB_URL="https://demo-uni3q8.eu-west-1.xata.sh/db/langchain"  poetry run pytest tests/integration_tests/memory/test_xata.py
```

Where `langchain` is the database you create in Xata.
2023-08-24 17:37:46 -07:00
William FH
dff00ea91e Chat Loaders (#9708)
Still working out interface/notebooks + need discord data dump to test
out things other than copy+paste

Update:
- Going to remove the 'user_id' arg in the loaders themselves and just
standardize on putting the "sender" arg in the extra kwargs. Then can
provide a utility function to map these to ai and human messages
- Going to move the discord one into just a notebook since I don't have
a good dump to test on and copy+paste maybe isn't the greatest thing to
support in v0
- Need to do more testing on slack since it seems the dump only includes
channels and NOT 1 on 1 convos
-

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-24 17:23:27 -07:00
Bagatur
0f48e6c36e fix integration deps (#9722) 2023-08-24 15:06:53 -07:00
Bagatur
a0800c9f15 rm google api core and add more dependency testing (#9721) 2023-08-24 14:20:58 -07:00
Andrew White
2bcf581a23 Added search parameters to qdrant max_marginal_relevance_search (#7745)
Adds the qdrant search filter/params to the
`max_marginal_relevance_search` method, which is present on others. I
did not add `offset` for pagination, because it's behavior would be
ambiguous in this setting (since we fetch extra and down-select).

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Kacper Łukawski <lukawski.kacper@gmail.com>
2023-08-24 14:11:30 -07:00
Bagatur
22b6549a34 sort api classes (#9710) 2023-08-24 13:53:50 -07:00
Tomaz Bratanic
dacf96895a Add the option to use separate LLMs for GraphCypherQA chain (#9689)
The Graph Chains are different in the way that it uses two LLMChains
instead of one like the retrievalQA chains. Therefore, sometimes you
want to use different LLM to generate the database query and to generate
the final answer.

This feature would make it more convenient to use different LLMs in the
same chain.

I have also renamed the Graph DB QA Chain to Neo4j DB QA Chain in the
documentation only as it is used only for Neo4j. The naming was
ambigious as it was the first graphQA chain added and wasn't sure how do
you want to spin it.
2023-08-24 11:50:38 -07:00
Lance Martin
c37be7f5fb Add Code LLaMA to code QA use case (#9713)
Use [Ollama integration](https://ollama.ai/blog/run-code-llama-locally).
2023-08-24 11:03:35 -07:00
Leonid Ganeline
cf792891f1 📖 docs: compact api reference (#8651)
Updated design of the "API Reference" text
Here is an example of the current format:

![image](https://github.com/langchain-ai/langchain/assets/2256422/8727f2ba-1b69-497f-aa07-07f939b6da3b)

It changed to
`langchain.retrievers.ElasticSearchBM25Retriever` format. The same
format as it is in the API Reference Toc.

It also resembles code: 
`from langchain.retrievers import ElasticSearchBM25Retriever` (namespace
THEN class_name)

Current format is
`ElasticSearchBM25Retriever from langchain.retrievers` (class_name THEN
namespace)

This change is in line with other formats and improves readability.

 @baskaryan
2023-08-24 09:01:52 -07:00
Bagatur
f5ea725796 bump 272 (#9704) 2023-08-24 07:46:15 -07:00
Patrick Loeber
6bedfdf25a Fix docs for AssemblyAIAudioTranscriptLoader (shorter import path) (#9687)
Uses the shorter import path

`from langchain.document_loaders import` instead of the full path
`from langchain.document_loaders.assemblyai`

Applies those changes to the docs and the unit test.

See #9667 that adds this new loader.
2023-08-24 07:24:53 -07:00
了空
7cf5c582d2 Added a link to the dependencies document (#9703) 2023-08-24 07:23:48 -07:00
Nuno Campos
9666e752b1 Do not share executors between parent and child tasks (#9701)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-24 16:17:07 +02:00
Nuno Campos
78ffcdd9a9 Lint 2023-08-24 16:09:38 +02:00
Nuno Campos
20d2c0571c Do not share executors between parent and child tasks 2023-08-24 16:05:10 +02:00
Harrison Chase
9963b32e59 Harrison/multi vector (#9700) 2023-08-24 06:42:42 -07:00
Leonid Ganeline
b048236c1a 📖 docs: integrations/agent_toolkits (#9333)
Note: There are no changes in the file names!

- The group name on the main navbar changed: `Agent toolkits` -> `Agents
& Toolkits`. Examples here are the mix of the Agent and Toolkit examples
because Agents and Toolkits in examples are always used together.
- Titles changed: removed "Agent" and "Toolkit" suffixes. The reason is
the same.
- Formatting: mostly cleaning the header structure, so it could be
better on the right-side navbar.

Main navbar is looking much cleaner now.
2023-08-23 23:17:47 -07:00
Leonid Ganeline
c19888c12c docstrings: vectorstores consistency (#9349)
 
- updated the top-level descriptions to a consistent format;
- changed several `ValueError` to `ImportError` in the import cases;
- changed the format of several internal functions from "name" to
"_name". So, these functions are not shown in the Top-level API
Reference page (with lists of classes/functions)
2023-08-23 23:17:05 -07:00
Kim Minjong
d0ff0db698 Update ChatOpenAI._stream to respect finish_reason (#9672)
Currently, ChatOpenAI._stream does not reflect finish_reason to
generation_info. Change it to reflect that.

Same patch as https://github.com/langchain-ai/langchain/pull/9431 , but
also applies to _stream.
2023-08-23 22:58:14 -07:00
Patrick Loeber
5990651070 Add new document_loader: AssemblyAIAudioTranscriptLoader (#9667)
This PR adds a new document loader `AssemblyAIAudioTranscriptLoader`
that allows to transcribe audio files with the [AssemblyAI
API](https://www.assemblyai.com) and loads the transcribed text into
documents.

- Add new document_loader with class `AssemblyAIAudioTranscriptLoader`
- Add optional dependency `assemblyai`
- Add unit tests (using a Mock client)
- Add docs notebook

This is the equivalent to the JS integration already available in
LangChain.js. See the [LangChain JS docs AssemblyAI
page](https://js.langchain.com/docs/modules/data_connection/document_loaders/integrations/web_loaders/assemblyai_audio_transcription).

At its simplest, you can use the loader to get a transcript back from an
audio file like this:

```python
from langchain.document_loaders.assemblyai import AssemblyAIAudioTranscriptLoader

loader =  AssemblyAIAudioTranscriptLoader(file_path="./testfile.mp3")
docs = loader.load()
```

To use it, it needs the `assemblyai` python package installed, and the
environment variable `ASSEMBLYAI_API_KEY` set with your API key.
Alternatively, the API key can also be passed as an argument.

Twitter handles to shout out if so kindly 🙇
[@AssemblyAI](https://twitter.com/AssemblyAI) and
[@patloeber](https://twitter.com/patloeber)

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-23 22:51:19 -07:00
seamusp
25f2c82ae8 docs:misc fixes (#9671)
Improve internal consistency in LangChain documentation
- Change occurrences of eg and eg. to e.g.
- Fix headers containing unnecessary capital letters.
- Change instances of "few shot" to "few-shot".
- Add periods to end of sentences where missing.
- Minor spelling and grammar fixes.
2023-08-23 22:36:54 -07:00
Nuno Campos
6283f3b63c Resolve circular imports in runnables (#9675)
These are about to cause circular imports.
2023-08-24 06:05:51 +01:00
Eugene Yurtsev
9e1dbd4b49 x 2023-08-23 22:51:49 -04:00
Eugene Yurtsev
b88dfcb42a Add indexing support (#9614)
This PR introduces a persistence layer to help with indexing workflows
into
vectostores.

The indexing code helps users to:

1. Avoid writing duplicated content into the vectostore
2. Avoid over-writing content if it's unchanged

Importantly, this keeps on working even if the content being written is
derived
via a set of transformations from some source content (e.g., indexing
children
documents that were derived from parent documents by chunking.)

The two main components are:

1. Persistence layer that keeps track of which keys were updated and
when.
Keeping track of the timestamp of updates, allows to clean up old
content
   safely, and with minimal complexity.
2. HashedDocument which is used to hash the contents (including
metadata) of
   the documents. We rely on the hashes for identifying duplicates.


The indexing code works with **ANY** document loader. To add
transformations
to the documents, users for now can add a custom document loader
that composes an existing loader together with document transformers.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 21:41:38 -04:00
刘 方瑞
c215481531 Update default index type and metric type for MyScale vector store (#9353)
We update the default index type from `IVFFLAT` to `MSTG`, a new vector
type developed by MyScale.
2023-08-23 18:26:29 -07:00
Joshua Sundance Bailey
a9c86774da Anthropic: Allow the use of kwargs consistent with ChatOpenAI. (#9515)
- Description: ~~Creates a new root_validator in `_AnthropicCommon` that
allows the use of `model_name` and `max_tokens` keyword arguments.~~
Adds pydantic field aliases to support `model_name` and `max_tokens` as
keyword arguments. Ultimately, this makes `ChatAnthropic` more
consistent with `ChatOpenAI`, making the two classes more
interchangeable for the developer.
  - Issue: https://github.com/langchain-ai/langchain/issues/9510

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 18:23:21 -07:00
Lakshay Kansal
a8c916955f Updates to Nomic Atlas and GPT4All documentation (#9414)
Description: Updates for Nomic AI Atlas and GPT4All integrations
documentation.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 17:49:44 -07:00
Bagatur
342087bdfa fix integration test imports (#9669) 2023-08-23 16:47:01 -07:00
Keras Conv3d
cbaea8d63b tair fix distance_type error, and add hybrid search (#9531)
- fix: distance_type error, 
- feature: Tair add hybrid search

---------

Co-authored-by: thw <hanwen.thw@alibaba-inc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 16:38:31 -07:00
Eugene Yurtsev
cd81e8a8f2 Add exclude to GenericLoader.from_file_system (#9539)
support exclude param in GenericLoader.from_filesystem

---------

Co-authored-by: Kyle Pancamo <50267605+KylePancamo@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 16:09:10 -07:00
Jacob Lee
278ef0bdcf Adds ChatOllama (#9628)
@rlancemartin

---------

Co-authored-by: Adilkhan Sarsen <54854336+adolkhan@users.noreply.github.com>
Co-authored-by: Kim Minjong <make.dirty.code@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 13:02:26 -07:00
Nuno Campos
fa05e18278 Nc/runnable lambda recurse (#9390)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-23 20:07:08 +01:00
Nuno Campos
20ce283fa7 Format 2023-08-23 20:03:35 +01:00
Nuno Campos
6424b3cde0 Add another test 2023-08-23 20:02:35 +01:00
William FH
da18e177f1 Update libs/langchain/langchain/schema/runnable/base.py
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-23 20:00:16 +01:00
Nuno Campos
c326751085 Lint 2023-08-23 20:00:16 +01:00
Nuno Campos
6d19709b65 RunnableLambda, if func returns a Runnable, run it 2023-08-23 20:00:16 +01:00
Nuno Campos
677da6a0fd Add support for async funcs in RunnableSequence 2023-08-23 19:54:48 +01:00
Nuno Campos
64a958c85d Runnables: Add .map() method (#9445)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-23 19:54:12 +01:00
Nuno Campos
1751fe114d Add one more test 2023-08-23 19:52:13 +01:00
Nuno Campos
882b97cfd2 Lint 2023-08-23 19:50:20 +01:00
Nuno Campos
3ddabe8b2c Code review 2023-08-23 19:48:33 +01:00
Nuno Campos
fdcd50aab4 Extend test 2023-08-23 19:48:33 +01:00
Nuno Campos
9777c2801d Update method and docstring 2023-08-23 19:48:33 +01:00
Nuno Campos
93bbf67afc WIP
Add test

Add test

Lint
2023-08-23 19:48:33 +01:00
Nuno Campos
c184be5511 Use a shared executor for all parallel calls 2023-08-23 19:48:33 +01:00
Nuno Campos
dacd5dcba8 Runnables: Use a shared executor for all parallel calls (sync) (#9443)
Async equivalent coming in future PR

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-23 19:47:35 +01:00
Bagatur
80dd162e0d mv embedding cache docs (#9664) 2023-08-23 11:46:04 -07:00
Nuno Campos
db4b256a28 Add error for batch of 0 2023-08-23 19:39:46 +01:00
Nuno Campos
3458489936 Lint 2023-08-23 19:39:46 +01:00
Nuno Campos
e420bf22b6 Lint 2023-08-23 19:39:46 +01:00
Nuno Campos
cc83f54694 L:int 2023-08-23 19:39:46 +01:00
Nuno Campos
d414d47c78 Use a shared executor for all parallel calls 2023-08-23 19:39:46 +01:00
Bagatur
a40c12bb88 Update the nlpcloud connector after some changes on the NLP Cloud API (#9586)
- Description: remove some text generation deprecated parameters and
update the embeddings doc,
- Tag maintainer: @rlancemartin
2023-08-23 11:35:08 -07:00
Bagatur
d8e2dd4c89 mv 2023-08-23 11:30:44 -07:00
Bagatur
e2e582f1f6 Fixed source key name for docugami loader (#8598)
The Docugami loader was not returning the source metadata key. This was
triggering this exception when used with retrievers, per
https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/schema/prompt_template.py#L193C1-L195C41

The fix is simple and just updates the metadata key name for the
document each chunk is sourced from, from "name" to "source" as
expected.

I tested by running the python notebook that has an end to end scenario
in it.

Tagging DataLoader maintainers @rlancemartin @eyurtsev
2023-08-23 11:24:55 -07:00
karynzv
5508baf1eb Add CrateDB prompt (#9657)
Adds a prompt template for the CrateDB SQL dialect.
2023-08-23 13:33:37 -04:00
Bagatur
0154958243 Runnable locals (#9662)
Add Runnables that manipulate state local to a RunnableSequence
2023-08-23 10:30:03 -07:00
Bagatur
a8e8a31b41 Merge branch 'master' into bagatur/locals_in_config 2023-08-23 10:26:11 -07:00
Bagatur
ef87affd4d Revert "Locals in config" (#9661)
Reverts langchain-ai/langchain#9007
2023-08-23 10:24:59 -07:00
Bagatur
1c64db575c Runnable locals(#9007)
Adds Runnables that can manipulate variables local to a RunnableSequence run

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-23 10:24:27 -07:00
Bagatur
ef2500584c fmt 2023-08-23 10:15:45 -07:00
Zizhong Zhang
8a03836160 docs: fix PromptGuard docs (#9659)
Fix PromptGuard docs. Noticed several trivial issues on the docs when
integrating the new class.
cc @baskaryan
2023-08-23 10:04:53 -07:00
Yong woo Song
f0ae10a20e Fix typo in tigris (#9637)
The link has a **typo** in [tigirs
docs](https://python.langchain.com/docs/integrations/providers/tigris),
so I couldn't access it. So, I have corrected it.
Thanks! ☺️
2023-08-23 07:15:18 -07:00
Guy Korland
39a5d02225 Cleanup of ruff warnings use isinstance() instead of type() (#9655)
Minor cosmetic PR just cleanup of `ruff` warnings use `isinstance()`
instead of `type()`
2023-08-23 07:14:31 -07:00
Junlin Zhou
5b9bdcac1b docs: fix link url (#9643)
This pull request corrects the URL links in the Async API documentation
to align with the updated project layout. The links had not been updated
despite the changes in layout.
2023-08-23 07:05:02 -07:00
Aashish Saini
eb92da84a1 Fixings grammatical errors in Doc Files (#9647)
Fixing some typos and grammatical error is doc file.

@eyurtsev , @baskaryan 

Thanks

---------

Co-authored-by: Aayush <142384656+AayushShorthillsAI@users.noreply.github.com>
Co-authored-by: Ishita Chauhan <136303787+IshitaChauhanShortHillsAI@users.noreply.github.com>
2023-08-23 07:04:29 -07:00
Joseph McElroy
2a06e7b216 ElasticsearchStore: improve error logging for adding documents (#9648)
Not obvious what the error is when you cannot index. This pr adds the
ability to log the first errors reason, to help the user diagnose the
issue.

Also added some more documentation for when you want to use the
vectorstore with an embedding model deployed in elasticsearch.

Credit: @elastic and @phoey1
2023-08-23 07:04:09 -07:00
Julien Salinas
f1072cc31f Merge branch 'master' into master 2023-08-23 14:42:40 +02:00
Jun Liu
b379c5f9c8 Fixed the error on ConfluenceLoader when content_format=VIEW and keep_markdown_format=True (#9633)
- Description: a description of the change

when I set `content_format=ContentFormat.VIEW` and
`keep_markdown_format=True` on ConfluenceLoader, it shows the following
error:
```
langchain/document_loaders/confluence.py", line 459, in process_page
    page["body"]["storage"]["value"], heading_style="ATX"
KeyError: 'storage'
```
The reason is because the content format was set to `view` but it was
still trying to get the content from `page["body"]["storage"]["value"]`.

Also added the other content formats which are supported by Atlassian
API

https://stackoverflow.com/questions/34353955/confluence-rest-api-expanding-page-body-when-retrieving-page-by-title/34363386#34363386

  - Issue: the issue # it fixes (if applicable),

Not applicable.

  - Dependencies: any dependencies required for this change,

Added optional dependency `markdownify` if anyone wants to extract in
markdown format.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-22 21:00:15 -07:00
Leonid Ganeline
e1f4f9ac3e docs: integrations/providers (#9631)
Added missed pages for `integrations/providers` from `vectorstores`.
Updated several `vectorstores` notebooks.
2023-08-22 20:28:11 -07:00
Gabriel Fu
b2d9970fc1 Allow specifying dtype in langchain.llms.VLLM (#9635)
- Description: add `dtype` argument for VLLM 
  - Issue: #9593 
  - Dependencies: none
  - Tag maintainer: @hwchase17, @baskaryan
2023-08-22 20:21:56 -07:00
anifort
900c1f3e8d Add support for structured data sources with google enterprise search (#9037)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: Added the capability to handles structured data from
google enterprise search,
- Issue: Retriever failed when underline search engine was integrated
with structured data,
  - Dependencies: google-api-core
  - Tag maintainer: @jarokaz
  - Twitter handle: anifort

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Christos Aniftos <aniftos@google.com>
Co-authored-by: Holt Skinner <13262395+holtskinner@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-22 23:18:10 -04:00
Harrison Chase
02545a54b3 python repl improvement for csv agent (#9618) 2023-08-22 17:06:18 -07:00
Jacob Lee
632a83c48e Update ChatOpenAI docs with fine-tuning example (#9632) 2023-08-22 16:56:53 -07:00
Erick Friis
fc64e6349e Hub stub updates (#9577)
Updates the hub stubs to not fail when no api key is found. For
supporting singleton tenants and default values from sdk 0.1.6.

Also adds the ability to define is_public and description for backup
repo creation on push.
2023-08-22 16:05:41 -07:00
Kim Minjong
ca8232a3c1 Update BaseChatModel.astream to respect generation_info (#9430)
Currently, generation_info is not respected by only reflecting messages
in chunks. Change it to add generations so that generation chunks are
merged properly.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-22 15:18:24 -07:00
Adilkhan Sarsen
f29312eb84 Fixing deeplake.mdx file as it uses outdates links (#9602)
deeplake.mdx was using old links and was not working properly, in the PR
we fix the issue.
2023-08-22 15:12:24 -07:00
Predrag Gruevski
c06f34fa35 Use new Python setup approach for scheduled tests. (#9626)
Using the same new unified Python setup as the regular tests and the
lint job, as set up in #9625.
2023-08-22 16:07:53 -04:00
Predrag Gruevski
83986ea98a Cache poetry install + unify Python/Poetry setup for lint and test jobs. (#9625)
With this PR:
- All lint and test jobs use the exact same Python + Poetry installation
approach, instead of lints doing it one way and tests doing it another
way.
- The Poetry installation itself is cached, which saves ~15s per run.
- We no longer pass shell commands as workflow arguments to a workflow
that just runs them in a shell. This makes our actions more resilient to
shell code injection.

If y'all like this approach, I can modify the scheduled tests workflow
and the release workflow to use this too.
2023-08-22 15:59:22 -04:00
Bagatur
81163e3c0c parent retriever nit (#9570)
if ids are nullable seems like they should have default val None.
mirrors VectorStore interface as well. cc @mcantillon21 @jacoblee93
2023-08-22 14:58:16 -04:00
seamusp
f3ba9ce7f4 Remove -E all from installation instructions (#9573)
Update installation instructions to only install test dependencies rather than all dependencies.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-22 14:57:58 -04:00
Myeongseop Kim
f1e602996a import tqdm.auto instead of tqdm tqdm for OpenAIEmbeddings (#9584)
- Description: current code does not work very well on jupyter notebook,
so I changed the code so that it imports `tqdm.auto` instead.
  - Issue: #9582 
  - Dependencies: N/A
  - Tag maintainer: @hwchase17, @baskaryan
  - Twitter handle: N/A

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-22 14:54:07 -04:00
Predrag Gruevski
35812d0096 Set up concurrency groups and workflow cancelation in CI. (#9564)
If another push to the same PR or branch happens while its CI is still
running, cancel the earlier run in favor of the next run.

There's no point in testing an outdated version of the code. GitHub only
allows a limited number of job runners to be active at the same time, so
it's better to cancel pointless jobs early so that more useful jobs can
run sooner.
2023-08-22 14:21:26 -04:00
Predrag Gruevski
d564ec944c poetry lock the experimental package. (#9478) 2023-08-22 14:09:35 -04:00
Predrag Gruevski
65e893b9cd poetry lock on langchain. (#9476) 2023-08-22 14:09:23 -04:00
Predrag Gruevski
64a54d8ad8 poetry lock the top-level environment. (#9477) 2023-08-22 14:09:11 -04:00
Predrag Gruevski
3c7cc4d440 Test experimental package with langchain on master branch. (#9621)
It's possible that langchain-experimental works fine with the latest
*published* langchain, but is broken with the langchain on `master`.
Unfortunately, you can see this is currently the case — this is why this
PR also includes a minor fix for the `langchain` package itself.

We want to catch situations like that *before* releasing a new
langchain, hence this test.
2023-08-22 13:35:21 -04:00
Eugene Yurtsev
3408810748 Add batch util (#9620)
Add `batch` utility to langchain
2023-08-22 12:31:18 -04:00
Predrag Gruevski
acb54d8b9d Reduce cache timeouts to ensure faster builds on timeout. (#9619)
The current timeouts are too long, and mean that if the GitHub cache
decides to act up, jobs get bogged down for 15min at a time. This has
happened 2-3 times already this week -- a tiny fraction of our total
workflows but really annoying when it happens to you. We can do better.

Installing deps on cache miss takes about ~4min, so it's not worth
waiting more than 4min for the deps cache. The black and mypy caches
save 1 and 2min, respectively, so wait only up to that long to download
them.
2023-08-22 12:11:38 -04:00
Predrag Gruevski
a1e89aa8d5 Explicitly add the contents: write permission for publishing releases. (#9617) 2023-08-22 08:38:18 -07:00
Predrag Gruevski
c75e1aa5ed Eliminate special-casing from test CI workflows. (#9562)
The previous approach was relying on `_test.yml` taking an input
parameter, and then doing almost completely orthogonal things for each
parameter value. I've separated out each of those test situations as its
own job or workflow file, which eliminated all the special-casing and,
in my opinion, improved maintainability by making it much more obvious
what code runs when.
2023-08-22 11:36:52 -04:00
Bagatur
2b663089b5 bump 271 (#9615) 2023-08-22 08:10:22 -07:00
klae01
b868ef23bc Add AINetwork blockchain toolkit integration (#9527)
# Description
This PR introduces a new toolkit for interacting with the AINetwork
blockchain. The toolkit provides a set of tools for performing various
operations on the AINetwork blockchain, such as transferring AIN,
reading and writing values to the blockchain database, managing apps,
setting rules and owners.

# Dependencies
[ain-py](https://github.com/ainblockchain/ain-py) >= 1.0.2

# Misc
The example notebook
(langchain/docs/extras/integrations/toolkits/ainetwork.ipynb) is in the
PR

---------

Co-authored-by: kriii <kriii@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-22 08:03:33 -07:00
Bagatur
e99ef12cb1 Bagatur/litellm model name (#9613)
Co-authored-by: ishaan-jaff <ishaanjaffer0324@gmail.com>
2023-08-22 07:44:00 -07:00
Harrison Chase
1720e99397 add variables for field names (#9563) 2023-08-22 07:43:21 -07:00
Anthony Mahanna
dfb9ff1079 bugfix: ArangoDB Empty Schema Case (#9574)
- Introduces a conditional in `ArangoGraph.generate_schema()` to exclude
empty ArangoDB Collections from the schema
- Add empty collection test case

Issue: N/A
Dependencies: None
2023-08-22 07:41:06 -07:00
Vanessa Arndorfer
1ea2f9adf4 Document AzureML Deployment Example (#9571)
Description: Link an example of deploying a Langchain app to an AzureML
online endpoint to the deployments documentation page.

Co-authored-by: Vanessa Arndorfer <vaarndor@microsoft.com>
2023-08-22 07:36:47 -07:00
Philippe PRADOS
d4c49b16e4 Fix ChatMessageHistory (#9594)
The initialization of the array of ChatMessageHistory is buggy.
The list is shared with all instances.
2023-08-22 07:36:36 -07:00
toddkim95
fba29f203a Add to support polars (#9610)
### Description
Polars is a DataFrame interface on top of an OLAP Query Engine
implemented in Rust.
Polars is faster to read than pandas, so I'm looking forward to seeing
it added to the document loader.

### Dependencies
polars (https://pola-rs.github.io/polars-book/user-guide/)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-22 07:36:24 -07:00
Aashish Saini
3c4f32c8b8 Replacing Exception type from ValueError to ImportError (#9588)
I have restructured the code to ensure uniform handling of ImportError.
In place of previously used ValueError, I've adopted the standard
practice of raising ImportError with explanatory messages. This
modification enhances code readability and clarifies that any problems
stem from module importation.

@eyurtsev , @baskaryan 

Thanks
2023-08-22 07:34:05 -07:00
Julien Salinas
4d0b7bb8e1 Remove Dolphin and GPT-J from the embeddings docs.
These models are not proposed anymore.
2023-08-22 09:28:22 +02:00
Julien Salinas
033b874701 Remove some deprecated text generation parameters. 2023-08-22 09:26:37 +02:00
Bagatur
4e7e6bfe0a revert 2023-08-21 18:01:49 -07:00
Bagatur
a9bf409a09 param 2023-08-21 17:37:07 -07:00
Bagatur
fa478638a9 Merge branch 'master' into bagatur/locals_in_config 2023-08-21 17:31:39 -07:00
Bagatur
182b059bf4 param 2023-08-21 17:31:38 -07:00
Jeremy Suriel
0fa4516ce4 Fix typo (#9565)
Corrected a minor documentation typo here:
https://python.langchain.com/docs/modules/model_io/models/llms/#generate-batch-calls-richer-outputs
2023-08-21 15:54:38 -07:00
Bagatur
04f2d69b83 improve confluence doc loader param validation (#9568) 2023-08-21 15:02:36 -07:00
Jacob Lee
0fea987dd2 Add missing param to parent document retriever notebook (#9569) 2023-08-21 15:02:12 -07:00
Zizhong Zhang
00eff8c4a7 feat: Add PromptGuard integration (#9481)
Add PromptGuard integration
-------
There are two approaches to integrate PromptGuard with a LangChain
application.

1. PromptGuardLLMWrapper
2. functions that can be used in LangChain expression.

-----
- Dependencies
`promptguard` python package, which is a runtime requirement if you'd
try out the demo.

- @baskaryan @hwchase17 Thanks for the ideas and suggestions along the
development process.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-21 14:59:36 -07:00
Predrag Gruevski
6c308aabae Use the GitHub-suggested safer pattern for shell interpolation. (#9567)
Using `${{ }}` to construct shell commands is risky, since the `${{ }}`
interpolation runs first and ignores shell quoting rules. This means
that shell commands that look safely quoted, like `echo "${{
github.event.issue.title }}"`, are actually vulnerable to shell
injection.

More details here:
https://github.blog/2023-08-09-four-tips-to-keep-your-github-actions-workflows-secure/
2023-08-21 17:59:10 -04:00
Oleksandr Ichenskyi
8bc1a3dca8 docs: Add memgraph notebook (#9448)
- Description: added graph_memgraph_qa.ipynb which shows how to use LLMs
to provide a natural language interface to a Memgraph database using
[MemgraphGraph](https://github.com/langchain-ai/langchain/pull/8591)
class.
- Dependencies: given that the notebook utilizes the MemgraphGraph
class, it relies on both this class and several Python packages that are
installed in the notebook using pip (langchain, openai, neo4j,
gqlalchemy). The notebook is dependent on having a functional Memgraph
instance running, as it requires this instance to establish a
connection.
2023-08-21 13:45:04 -07:00
Sathindu
652c542b2f fix: Imports for the ConfluenceLoader:process_page (#9432)
### Description
When we're loading documents using `ConfluenceLoader`:`load` function
and, if both `include_comments=True` and `keep_markdown_format=True`,
we're getting an error saying `NameError: free variable 'BeautifulSoup'
referenced before assignment in enclosing scope`.
    
    loader = ConfluenceLoader(url="URI", token="TOKEN")
    documents = loader.load(
        space_key="SPACE", 
        include_comments=True, 
        keep_markdown_format=True, 
    )

This happens because previous imports only consider the
`keep_markdown_format` parameter, however to include the comments, it's
using `BeautifulSoup`

Now it's fixed to handle all four scenarios considering both
`include_comments` and `keep_markdown_format`.

### Twitter
`@SathinduGA`

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-21 13:44:52 -07:00
Ofer Mendelevitch
e92e199ec1 fixed lint issue 2023-08-19 16:59:50 -07:00
Ofer Mendelevitch
90fd840fb1 fixed formatting 2023-08-19 16:51:53 -07:00
Ofer Mendelevitch
47a6b4d674 Merge branch 'master' of https://github.com/vectara/langchain 2023-08-19 14:01:28 -07:00
Ofer Mendelevitch
c4c79da071 Updated usage of metadata so that both part and doc level metadata is returned properly as a single meta-data dict
Updated tests
2023-08-19 13:59:52 -07:00
Taqi Jaffri
069c0a041f comment update for poetry install 2023-08-19 13:50:16 -07:00
Taqi Jaffri
5cd244e9b7 CR feedback 2023-08-19 13:48:15 -07:00
Nuno Campos
354c42afd2 Lint 2023-08-18 15:30:30 +01:00
Nuno Campos
4452314aab Merge branch 'master' into bagatur/locals_in_config 2023-08-18 15:23:05 +01:00
Nuno Campos
d3f10d2f4f Update test 2023-08-18 11:36:16 +01:00
Nuno Campos
6ae58da668 Assign defaults in batch calls 2023-08-18 10:53:10 +01:00
Nuno Campos
ddcb4ff5fb Li t 2023-08-18 10:30:42 +01:00
Nuno Campos
1baedc4e18 Move patch_config 2023-08-18 10:28:39 +01:00
Nuno Campos
46f3850794 Lint 2023-08-18 10:25:41 +01:00
Nuno Campos
24a197f96a Merge branch 'master' into bagatur/locals_in_config 2023-08-18 10:12:10 +01:00
Nuno Campos
8ddaaf3d41 Move config helpers 2023-08-18 10:10:35 +01:00
Nuno Campos
a5e7dcec61 Lint 2023-08-18 10:03:28 +01:00
Nuno Campos
c1b1666ec8 Ensure config defaults apply even when a config is passed in 2023-08-18 10:02:29 +01:00
Nuno Campos
7fe474d198 Update snapshots 2023-08-18 10:02:11 +01:00
Bagatur
ab21af71be wip 2023-08-17 17:28:02 -07:00
Bagatur
6f69b19ff5 wip tests 2023-08-17 16:45:52 -07:00
Bagatur
89bec58cbb Merge branch 'master' into bagatur/locals_in_config 2023-08-17 16:24:28 -07:00
Bagatur
9e906c39ba nit 2023-08-17 16:22:22 -07:00
Bagatur
6b0a849f59 fix 2023-08-17 16:22:12 -07:00
Bagatur
c447e9a854 cr 2023-08-17 15:29:00 -07:00
Bagatur
bd80cad6db add 2023-08-17 13:52:19 -07:00
Bagatur
8c1a528c71 cr 2023-08-17 13:52:09 -07:00
Bagatur
25cbcd9374 merge 2023-08-17 13:03:28 -07:00
Bagatur
15a5002746 Merge branch 'master' into bagatur/locals_in_config 2023-08-09 18:36:44 -07:00
Bagatur
f8ed93e7bd Merge branch 'master' into bagatur/locals_in_config 2023-08-09 17:56:33 -07:00
Bagatur
05cdd22c39 merge 2023-08-09 14:44:29 -07:00
Bagatur
eb0134fbb3 rfc 2023-08-09 14:13:06 -07:00
Bagatur
50b13ab938 wip 2023-08-09 13:26:09 -07:00
Youngwook Kim
429de77b3b refactor(langchain): improve type annotations in url_playwright and its test 2023-08-09 15:56:46 +09:00
Youngwook Kim
04fcd2d2e0 refactor(document_loaders): introduce PlaywrightEvaluator abstract base class for custom evalutors and add tests 2023-08-09 14:14:59 +09:00
Taqi Jaffri
5919c0f4a2 notebook cleanup 2023-08-08 21:38:55 -07:00
Taqi Jaffri
bcdf3be530 Merge branch 'master' into tjaffri/docugami_loader_source 2023-08-08 20:59:13 -07:00
Youngwook Kim
ef7f4aea32 refactor: modify method visibility in url_playwright 2023-08-09 11:09:27 +09:00
Youngwook Kim
224263aa24 refactor(document_loaders): modify evaluation methods in PlaywrightURLLoader 2023-08-09 11:09:27 +09:00
Youngwook Kim
dc4b037957 docs(url_playwright): update docstrings for sync_evaluate_page and async_evaluate_page methods 2023-08-09 11:09:27 +09:00
Youngwook Kim
1fa5d94591 feat(document_loaders): add sync and async page evaluation methods to PlaywrightURLLoader 2023-08-09 11:09:27 +09:00
Taqi Jaffri
4806504ebc Fixed one last key name 2023-08-01 15:43:26 -07:00
Taqi Jaffri
96843f3bd4 Fixed source key name for docugami loader 2023-08-01 12:54:26 -07:00
778 changed files with 50189 additions and 12184 deletions

View File

@@ -44,7 +44,7 @@ If you are adding an issue, please try to keep it focused on a single, modular b
If two issues are related, or blocking, please link them rather than combining them.
We will try to keep these issues as up to date as possible, though
with the rapid rate of develop in this field some may get out of date.
with the rapid rate of development in this field some may get out of date.
If you notice this happening, please let us know.
### 🙋Getting Help
@@ -80,14 +80,14 @@ For example, to contribute to `langchain` run `cd libs/langchain` before getting
To install requirements:
```bash
poetry install -E all
poetry install --with test
```
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage. Note the `-E all` flag will install all optional dependencies necessary for integration testing.
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage.
❗Note: If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running Poetry v1.5.1. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases. If you are still seeing this bug on v1.5.1, you may also try disabling "modern installation" (`poetry config installer.modern-installation false`) and re-installing requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
Now, you should be able to run the common tasks in the following section. To double check, run `make test`, all tests should pass. If they don't you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
Now assuming `make` and `pytest` are installed, you should be able to run the common tasks in the following section. To double check, run `make test` under `libs/langchain`, all tests should pass. If they don't, you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
## ✅ Common Tasks
@@ -134,7 +134,7 @@ We recognize linting can be annoying - if you do not want to do it, please conta
### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
Note that `codespell` finds common typos, so it could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
To check spelling for this project:

View File

@@ -15,66 +15,52 @@ inputs:
description: Poetry version
required: true
install-command:
description: Command run for installing dependencies
required: false
default: poetry install
cache-key:
description: Cache key to use for manual handling of caching
required: true
working-directory:
description: Directory to run install-command in
required: false
default: ""
description: Directory whose poetry.lock file should be cached
required: true
runs:
using: composite
steps:
- uses: actions/setup-python@v4
name: Setup python $${ inputs.python-version }}
name: Setup python ${{ inputs.python-version }}
with:
python-version: ${{ inputs.python-version }}
- uses: actions/cache@v3
id: cache-pip
name: Cache Pip ${{ inputs.python-version }}
id: cache-bin-poetry
name: Cache Poetry binary - Python ${{ inputs.python-version }}
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "1"
with:
path: |
~/.cache/pip
key: pip-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}
/opt/pipx/venvs/poetry
/opt/pipx_bin/poetry
# This step caches the poetry installation, so make sure it's keyed on the poetry version as well.
key: bin-poetry-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-${{ inputs.poetry-version }}
- run: pipx install poetry==${{ inputs.poetry-version }} --python python${{ inputs.python-version }}
- name: Install poetry
if: steps.cache-bin-poetry.outputs.cache-hit != 'true'
shell: bash
- name: Check Poetry File
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry check
- name: Check lock file
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry lock --check
- uses: actions/cache@v3
id: cache-poetry
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
POETRY_VERSION: ${{ inputs.poetry-version }}
PYTHON_VERSION: ${{ inputs.python-version }}
run: pipx install "poetry==$POETRY_VERSION" --python "python$PYTHON_VERSION" --verbose
- name: Restore pip and poetry cached dependencies
uses: actions/cache@v3
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "4"
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
with:
path: |
~/.cache/pip
~/.cache/pypoetry/virtualenvs
~/.cache/pypoetry/cache
~/.cache/pypoetry/artifacts
${{ env.WORKDIR }}/.venv
key: poetry-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-poetry-${{ inputs.poetry-version }}-${{ inputs.cache-key }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
- run: ${{ inputs.install-command }}
working-directory: ${{ inputs.working-directory }}
shell: bash
key: py-deps-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-poetry-${{ inputs.poetry-version }}-${{ inputs.cache-key }}-${{ hashFiles(format('{0}/**/poetry.lock', env.WORKDIR)) }}

View File

@@ -80,31 +80,32 @@ jobs:
find "$WORKDIR" -name '*.py' -type f -not -newermt "$OLDEST_COMMIT_TIME" -exec touch -c -m -t '200001010000' '{}' '+'
echo "oldest-commit=$OLDEST_COMMIT" >> "$GITHUB_OUTPUT"
- uses: actions/cache@v3
id: cache-pip
name: Cache langchain editable pip install - ${{ matrix.python-version }}
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
with:
path: |
~/.cache/pip
key: pip-editable-langchain-deps-${{ runner.os }}-${{ runner.arch }}-py-${{ matrix.python-version }}
- name: Install poetry
run: |
pipx install "poetry==$POETRY_VERSION"
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
cache: poetry
cache-dependency-path: |
${{ env.WORKDIR }}/**/poetry.lock
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: lint
- name: Check Poetry File
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry check
- name: Check lock file
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry lock --check
- name: Install dependencies
working-directory: ${{ inputs.working-directory }}
run: |
poetry install
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.working-directory != 'libs/langchain' }}
@@ -115,7 +116,7 @@ jobs:
uses: actions/cache@v3
env:
CACHE_BASE: black-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "1"
with:
path: |
${{ env.WORKDIR }}/.black_cache
@@ -127,7 +128,7 @@ jobs:
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v3
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache

View File

@@ -0,0 +1,81 @@
name: pydantic v1/v2 compatibility
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
env:
POETRY_VERSION: "1.5.1"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Pydantic v1/v2 compatibility - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: pydantic-cross-compat
- name: Install dependencies
shell: bash
run: poetry install
- name: Install the opposite major version of pydantic
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
shell: bash
run: |
# Determine the major part of pydantic version
REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
if [[ "$REGULAR_VERSION" == "1" ]]; then
PYDANTIC_DEP=">=2.1,<3"
TEST_WITH_VERSION="2"
elif [[ "$REGULAR_VERSION" == "2" ]]; then
PYDANTIC_DEP="<2"
TEST_WITH_VERSION="1"
else
echo "Unexpected pydantic major version '$REGULAR_VERSION', cannot determine which version to use for cross-compatibility test."
exit 1
fi
# Install via `pip` instead of `poetry add` to avoid changing lockfile,
# which would prevent caching from working: the cache would get saved
# to a different key than where it gets loaded from.
poetry run pip install "pydantic${PYDANTIC_DEP}"
# Ensure that the correct pydantic is installed now.
echo "Checking pydantic version... Expecting ${TEST_WITH_VERSION}"
# Determine the major part of pydantic version
CURRENT_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
# Check that the major part of pydantic version is as expected, if not
# raise an error
if [[ "$CURRENT_VERSION" != "$TEST_WITH_VERSION" ]]; then
echo "Error: expected pydantic version ${CURRENT_VERSION} to have been installed, but found: ${TEST_WITH_VERSION}"
exit 1
fi
echo "Found pydantic version ${CURRENT_VERSION}, as expected"
- name: Run pydantic compatibility tests
shell: bash
run: make test

View File

@@ -23,18 +23,23 @@ jobs:
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
# This permission is needed by `ncipollo/release-action` to create the GitHub release.
contents: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v3
- name: Install poetry
run: pipx install "poetry==$POETRY_VERSION"
- name: Set up Python 3.10
uses: actions/setup-python@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: "3.10"
cache: "poetry"
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- name: Build project for distribution
run: poetry build
- name: Check Version

View File

@@ -7,10 +7,6 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
test_type:
type: string
description: "Test types to run"
default: '["core", "extended", "core-pydantic-2"]'
env:
POETRY_VERSION: "1.5.1"
@@ -28,61 +24,22 @@ jobs:
- "3.9"
- "3.10"
- "3.11"
test_type: ${{ fromJSON(inputs.test_type) }}
name: Python ${{ matrix.python-version }} ${{ matrix.test_type }}
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
working-directory: ${{ inputs.working-directory }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: ${{ matrix.test_type }}
install-command: |
if [ "${{ matrix.test_type }}" == "core" ]; then
echo "Running core tests, installing dependencies with poetry..."
poetry install
elif [ "${{ matrix.test_type }}" == "core-pydantic-2" ]; then
echo "Running core-pydantic-v2 tests, installing dependencies with poetry..."
poetry install
working-directory: ${{ inputs.working-directory }}
cache-key: core
# Install via `pip` instead of `poetry add` to avoid changing lockfile,
# which would prevent caching from working: the cache would get saved
# to a different key than where it gets loaded from.
poetry run pip install 'pydantic>=2.1,<3'
else
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
fi
- name: Verify pydantic version
run: |
if [ "${{ matrix.test_type }}" == "core-pydantic-2" ]; then
EXPECTED_VERSION=2
else
EXPECTED_VERSION=1
fi
echo "Checking pydantic version... Expecting ${EXPECTED_VERSION}"
# Determine the major part of pydantic version
VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
# Check that the major part of pydantic version is as expected, if not
# raise an error
if [[ "$VERSION" -ne $EXPECTED_VERSION ]]; then
echo "Error: pydantic version must be equal to ${EXPECTED_VERSION}; Found: ${VERSION}"
exit 1
fi
echo "Found pydantic version ${VERSION}, as expected"
- name: Install dependencies
shell: bash
- name: Run ${{matrix.test_type}} tests
run: |
case "${{ matrix.test_type }}" in
core | core-pydantic-2)
make test
;;
*)
make extended_tests
;;
esac
run: poetry install
- name: Run core tests
shell: bash
run: make test

View File

@@ -8,10 +8,25 @@ on:
paths:
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_ci.yml'
- 'libs/langchain/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.5.1"
WORKDIR: "libs/langchain"
jobs:
lint:
uses:
@@ -19,10 +34,50 @@ jobs:
with:
working-directory: libs/langchain
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/langchain
test_type: '["core", "extended", "core-pydantic-2"]'
secrets: inherit
secrets: inherit
pydantic-compatibility:
uses:
./.github/workflows/_pydantic_compatibility.yml
with:
working-directory: libs/langchain
secrets: inherit
extended-tests:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/langchain
cache-key: extended
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
- name: Run extended tests
run: make extended_tests

View File

@@ -13,6 +13,20 @@ on:
- 'libs/experimental/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.5.1"
WORKDIR: "libs/experimental"
jobs:
lint:
uses:
@@ -20,10 +34,82 @@ jobs:
with:
working-directory: libs/experimental
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/experimental
test_type: '["core"]'
secrets: inherit
secrets: inherit
# It's possible that langchain-experimental works fine with the latest *published* langchain,
# but is broken with the langchain on `master`.
#
# We want to catch situations like that *before* releasing a new langchain, hence this test.
test-with-latest-langchain:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: test with unpublished langchain - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ env.WORKDIR }}
cache-key: unpublished-langchain
- name: Install dependencies
shell: bash
run: |
echo "Running tests with unpublished langchain, installing dependencies with poetry..."
poetry install
echo "Editably installing langchain outside of poetry, to avoid messing up lockfile..."
poetry run pip install -e ../langchain
- name: Run tests
run: make test
extended-tests:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/experimental
cache-key: extended
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
- name: Run extended tests
run: make extended_tests

View File

@@ -25,18 +25,25 @@ jobs:
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/langchain
install-command: |
echo "Running scheduled tests, installing dependencies with poetry..."
poetry install --with=test_integration
cache-key: scheduled
- name: Install dependencies
working-directory: libs/langchain
shell: bash
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
poetry install --with=test_integration
- name: Run tests
shell: bash
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: |
make scheduled_tests
shell: bash

View File

@@ -156,7 +156,7 @@ html_context = {
html_static_path = ["_static"]
# These paths are either relative to html_static_path
# or fully qualified paths (eg. https://...)
# or fully qualified paths (e.g. https://...)
html_css_files = [
"css/custom.css",
]

View File

@@ -228,7 +228,7 @@ Classes
:toctree: {module}
"""
for class_ in classes:
for class_ in sorted(classes, key=lambda c: c["qualified_name"]):
if not class_["is_public"]:
continue

View File

@@ -338,10 +338,11 @@
"Neptune Open Cypher QA Chain": "https://python.langchain.com/docs/use_cases/more/graph/neptune_cypher_qa",
"NebulaGraphQAChain": "https://python.langchain.com/docs/use_cases/more/graph/graph_nebula_qa",
"KuzuQAChain": "https://python.langchain.com/docs/use_cases/more/graph/graph_kuzu_qa",
"FalkorDBQAChain": "https://python.langchain.com/docs/use_cases/more/graph/graph_falkordb_qa",
"HugeGraph QA Chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_hugegraph_qa",
"GraphSparqlQAChain": "https://python.langchain.com/docs/use_cases/more/graph/graph_sparql_qa",
"ArangoDB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_arangodb_qa",
"Graph DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa",
"Neo4j DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa",
"How to use a SmartLLMChain": "https://python.langchain.com/docs/use_cases/more/self_check/smart_llm",
"Multi-Agent Simulated Environment: Petting Zoo": "https://python.langchain.com/docs/use_cases/agent_simulations/petting_zoo",
"Multi-agent decentralized speaker selection": "https://python.langchain.com/docs/use_cases/agent_simulations/multiagent_bidding",
@@ -2071,8 +2072,8 @@
"PromptLayer": "https://python.langchain.com/docs/integrations/providers/promptlayer",
"PromptLayer OpenAI": "https://python.langchain.com/docs/integrations/llms/promptlayer_openai"
},
"DeepLake": {
"Deep Lake": "https://python.langchain.com/docs/integrations/providers/deeplake",
"Activeloop DeepLake": {
"Deep Lake": "https://python.langchain.com/docs/integrations/providers/activeloop_deeplake",
"Activeloop's Deep Lake": "https://python.langchain.com/docs/integrations/vectorstores/activeloop_deeplake",
"Analysis of Twitter the-algorithm source code with LangChain, GPT4 and Activeloop's Deep Lake": "https://python.langchain.com/docs/use_cases/question_answering/how_to/code/twitter-the-algorithm-analysis-deeplake",
"Use LangChain, GPT and Activeloop's Deep Lake to work with code base": "https://python.langchain.com/docs/use_cases/question_answering/how_to/code/code-analysis-deeplake",
@@ -3174,6 +3175,12 @@
"KuzuQAChain": {
"KuzuQAChain": "https://python.langchain.com/docs/use_cases/more/graph/graph_kuzu_qa"
},
"FalkorDBGraph": {
"KuzuQAChain": "https://python.langchain.com/docs/use_cases/more/graph/graph_falkordb_qa"
},
"FalkorDBQAChain": {
"FalkorDB QA Chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_falkordb_qa"
},
"HugeGraphQAChain": {
"HugeGraph QA Chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_hugegraph_qa"
},
@@ -3202,10 +3209,10 @@
"Graph QA": "https://python.langchain.com/docs/use_cases/more/graph/graph_qa"
},
"GraphCypherQAChain": {
"Graph DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa"
"Neo4j DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa"
},
"Neo4jGraph": {
"Graph DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa"
"Neo4j DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa"
},
"LLMBashChain": {
"Bash chain": "https://python.langchain.com/docs/use_cases/more/code_writing/llm_bash"

View File

@@ -5,9 +5,10 @@
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="Refresh" content="0; url={{ redirect }}" />
<meta name="Description" content="scikit-learn: machine learning in Python">
<meta name="robots" content="follow, index">
<meta name="Description" content="Python API reference for LangChain.">
<link rel="canonical" href="{{ redirect }}" />
<title>scikit-learn: machine learning in Python</title>
<title>LangChain Python API Reference Documentation.</title>
</head>
<body>
<p>You will be automatically redirected to the <a href="{{ redirect }}">new location of this page</a>.</p>

View File

@@ -47,8 +47,8 @@ If youre working on something youre proud of, and think the LangChain comm
Heres where our team hangs out, talks shop, spotlights cool work, and shares what were up to. Wed love to see you there too.
- **[Twitter](https://twitter.com/LangChainAI):** we post about what were working on and what cool things were seeing in the space. If you tag @langchainai in your post, well almost certainly see it, and can snow you some love!
- **[Discord](https://discord.gg/6adMQxSpJS):** connect with with >30k developers who are building with LangChain
- **[Twitter](https://twitter.com/LangChainAI):** we post about what were working on and what cool things were seeing in the space. If you tag @langchainai in your post, well almost certainly see it, and can show you some love!
- **[Discord](https://discord.gg/6adMQxSpJS):** connect with >30k developers who are building with LangChain
- **[GitHub](https://github.com/langchain-ai/langchain):** open pull requests, contribute to a discussion, and/or contribute
- **[Subscribe to our bi-weekly Release Notes](https://6w1pwbss0py.typeform.com/to/KjZB1auB):** a twice/month email roundup of the coolest things going on in our orbit
- **Slack:** if youre building an application in production at your company, wed love to get into a Slack channel together. Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) and well get in touch about setting one up.

View File

@@ -0,0 +1,14 @@
---
sidebar_class_name: hidden
---
# LangChain Expression Language (LCEL)
LangChain Expression Language or LCEL is a declarative way to easily compose chains together.
Any chain constructed this way will automatically have full sync, async, and streaming support.
#### [Interface](/docs/expression_language/interface)
The base interface shared by all LCEL objects
#### [Cookbook](/docs/expression_language/cookbook)
Examples of common LCEL usage patterns

View File

@@ -42,23 +42,22 @@ Log and stream intermediate steps of any chain
## Examples, ecosystem, and resources
### [Use cases](/docs/use_cases/)
Walkthroughs and best-practices for common end-to-end use cases, like:
- [Chatbots](/docs/use_cases/chatbots/)
- [Chatbots](/docs/use_cases/chatbots)
- [Answering questions using sources](/docs/use_cases/question_answering/)
- [Analyzing structured data](/docs/use_cases/tabular.html)
- [Analyzing structured data](/docs/use_cases/sql)
- and much more...
### [Guides](/docs/guides/)
Learn best practices for developing with LangChain.
### [Ecosystem](/docs/ecosystem/)
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/integrations/) and [dependent repos](/docs/ecosystem/dependents).
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/integrations/) and [dependent repos](/docs/additional_resources/dependents).
### [Additional resources](/docs/additional_resources/)
Our community is full of prolific developers, creative builders, and fantastic teachers. Check out [YouTube tutorials](/docs/additional_resources/youtube.html) for great tutorials from folks in the community, and [Gallery](https://github.com/kyrolabs/awesome-langchain) for a list of awesome LangChain projects, compiled by the folks at [KyroLabs](https://kyrolabs.com).
<h3><span style={{color:"#2e8555"}}> Support </span></h3>
Join us on [GitHub](https://github.com/hwchase17/langchain) or [Discord](https://discord.gg/6adMQxSpJS) to ask questions, share feedback, meet other developers building with LangChain, and dream about the future of LLMs.
### [Community](/docs/community)
Head to the [Community navigator](/docs/community) to find places to ask questions, share feedback, meet other developers, and dream about the future of LLMs.
## API reference

View File

@@ -59,8 +59,8 @@ LangChain provides several objects to easily distinguish between different roles
If none of those roles sound right, there is also a `ChatMessage` class where you can specify the role manually.
For more information on how to use these different messages most effectively, see our prompting guide.
LangChain exposes a standard interface for both, but it's useful to understand this difference in order to construct prompts for a given language model.
The standard interface that LangChain exposes has two methods:
LangChain provides a standard interface for both, but it's useful to understand this difference in order to construct prompts for a given language model.
The standard interface that LangChain provides has two methods:
- `predict`: Takes in a string, returns a string
- `predict_messages`: Takes in a list of messages, returns a message.
@@ -107,7 +107,7 @@ import PromptTemplateChatModel from "@snippets/get_started/quickstart/prompt_tem
<PromptTemplateLLM/>
However, the advantages of using these over raw string formatting are several.
You can "partial" out variables - eg you can format only some of the variables at a time.
You can "partial" out variables - e.g. you can format only some of the variables at a time.
You can compose them together, easily combining different templates into a single prompt.
For explanations of these functionalities, see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
@@ -121,12 +121,12 @@ Let's take a look at this below:
ChatPromptTemplates can also include other things besides ChatMessageTemplates - see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
## Output Parsers
## Output parsers
OutputParsers convert the raw output of an LLM into a format that can be used downstream.
There are few main type of OutputParsers, including:
- Convert text from LLM -> structured information (eg JSON)
- Convert text from LLM -> structured information (e.g. JSON)
- Convert a ChatMessage into just a string
- Convert the extra information returned from a call besides the message (like OpenAI function invocation) into a string.
@@ -149,7 +149,7 @@ import LLMChain from "@snippets/get_started/quickstart/llm_chain.mdx"
<LLMChain/>
## Next Steps
## Next steps
This is it!
We've now gone over how to create the core building block of LangChain applications - the LLMChains.

View File

@@ -3,7 +3,7 @@ sidebar_position: 3
---
# Comparison Evaluators
Comparison evaluators in LangChain help measure two different chain or LLM outputs. These evaluators are helpful for comparative analyses, such as A/B testing between two language models, or comparing different versions of the same model. They can also be useful for things like generating preference scores for ai-assisted reinforcement learning.
Comparison evaluators in LangChain help measure two different chains or LLM outputs. These evaluators are helpful for comparative analyses, such as A/B testing between two language models, or comparing different versions of the same model. They can also be useful for things like generating preference scores for ai-assisted reinforcement learning.
These evaluators inherit from the `PairwiseStringEvaluator` class, providing a comparison interface for two strings - typically, the outputs from two different prompts or models, or two versions of the same model. In essence, a comparison evaluator performs an evaluation on a pair of strings and returns a dictionary containing the evaluation score and other relevant details.
@@ -16,7 +16,7 @@ Here's a summary of the key methods and properties of a comparison evaluator:
- `requires_input`: This property indicates whether this evaluator requires an input string.
- `requires_reference`: This property specifies whether this evaluator requires a reference label.
Detailed information about creating custom evaluators and the available built-in comparison evaluators are provided in the following sections.
Detailed information about creating custom evaluators and the available built-in comparison evaluators is provided in the following sections.
import DocCardList from "@theme/DocCardList";

View File

@@ -1,7 +1,3 @@
---
sidebar_position: 6
---
import DocCardList from "@theme/DocCardList";
# Evaluation

View File

@@ -1,9 +0,0 @@
# LangChain Expression Language
import DocCardList from "@theme/DocCardList";
LangChain Expression Language is a declarative way to easily compose chains together.
Any chain constructed this way will automatically have full sync, async, and streaming support.
See guides below for how to interact with chains constructed this way as well as cookbook examples.
<DocCardList />

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,8 @@
# Preventing harmful outputs
# Moderation
One of the key concerns with using LLMs is that they may generate harmful or unethical text. This is an area of active research in the field. Here we present some built-in chains inspired by this research, which are intended to make the outputs of LLMs safer.
- [Moderation chain](/docs/use_cases/safety/moderation): Explicitly check if any output text is harmful and flag it.
- [Constitutional chain](/docs/use_cases/safety/constitutional_chain): Prompt the model with a set of principles which should guide it's behavior.
- [Moderation chain](/docs/guides/safety/moderation): Explicitly check if any output text is harmful and flag it.
- [Constitutional chain](/docs/guides/safety/constitutional_chain): Prompt the model with a set of principles which should guide it's behavior.
- [Logical Fallacy chain](/docs/guides/safety/logical_fallacy_chain): Checks the model output against logical fallacies to correct any deviation.
- [Amazon Comprehend moderation chain](/docs/guides/safety/amazon_comprehend_chain): Use [Amazon Comprehend](https://aws.amazon.com/comprehend/) to detect and handle PII and toxicity.

View File

@@ -0,0 +1,85 @@
# Removing logical fallacies from model output
Logical fallacies are flawed reasoning or false arguments that can undermine the validity of a model's outputs. Examples include circular reasoning, false
dichotomies, ad hominem attacks, etc. Machine learning models are optimized to perform well on specific metrics like accuracy, perplexity, or loss. However,
optimizing for metrics alone does not guarantee logically sound reasoning.
Language models can learn to exploit flaws in reasoning to generate plausible-sounding but logically invalid arguments. When models rely on fallacies, their outputs become unreliable and untrustworthy, even if they achieve high scores on metrics. Users cannot depend on such outputs. Propagating logical fallacies can spread misinformation, confuse users, and lead to harmful real-world consequences when models are deployed in products or services.
Monitoring and testing specifically for logical flaws is challenging unlike other quality issues. It requires reasoning about arguments rather than pattern matching.
Therefore, it is crucial that model developers proactively address logical fallacies after optimizing metrics. Specialized techniques like causal modeling, robustness testing, and bias mitigation can help avoid flawed reasoning. Overall, allowing logical flaws to persist makes models less safe and ethical. Eliminating fallacies ensures model outputs remain logically valid and aligned with human reasoning. This maintains user trust and mitigates risks.
```python
# Imports
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain_experimental.fallacy_removal.base import FallacyChain
```
```python
# Example of a model output being returned with a logical fallacy
misleading_prompt = PromptTemplate(
template="""You have to respond by using only logical fallacies inherent in your answer explanations.
Question: {question}
Bad answer:""",
input_variables=["question"],
)
llm = OpenAI(temperature=0)
misleading_chain = LLMChain(llm=llm, prompt=misleading_prompt)
misleading_chain.run(question="How do I know the earth is round?")
```
<CodeOutputBlock lang="python">
```
'The earth is round because my professor said it is, and everyone believes my professor'
```
</CodeOutputBlock>
```python
fallacies = FallacyChain.get_fallacies(["correction"])
fallacy_chain = FallacyChain.from_llm(
chain=misleading_chain,
logical_fallacies=fallacies,
llm=llm,
verbose=True,
)
fallacy_chain.run(question="How do I know the earth is round?")
```
<CodeOutputBlock lang="python">
```
> Entering new FallacyChain chain...
Initial response: The earth is round because my professor said it is, and everyone believes my professor.
Applying correction...
Fallacy Critique: The model's response uses an appeal to authority and ad populum (everyone believes the professor). Fallacy Critique Needed.
Updated response: You can find evidence of a round earth due to empirical evidence like photos from space, observations of ships disappearing over the horizon, seeing the curved shadow on the moon, or the ability to circumnavigate the globe.
> Finished chain.
'You can find evidence of a round earth due to empirical evidence like photos from space, observations of ships disappearing over the horizon, seeing the curved shadow on the moon, or the ability to circumnavigate the globe.'
```
</CodeOutputBlock>

View File

@@ -37,11 +37,11 @@ This agent is designed to be used in conversational settings.
The prompt is designed to make the agent helpful and conversational.
It uses the ReAct framework to decide which tool to use, and uses memory to remember the previous conversation interactions.
### [Self ask with search](/docs/modules/agents/agent_types/self_ask_with_search.html)
### [Self-ask with search](/docs/modules/agents/agent_types/self_ask_with_search.html)
This agent utilizes a single tool that should be named `Intermediate Answer`.
This tool should be able to lookup factual answers to questions. This agent
is equivalent to the original [self ask with search paper](https://ofir.io/self-ask.pdf),
is equivalent to the original [self-ask with search paper](https://ofir.io/self-ask.pdf),
where a Google search API was provided as the tool.
### [ReAct document store](/docs/modules/agents/agent_types/react_docstore.html)
@@ -54,4 +54,4 @@ This agent is equivalent to the
original [ReAct paper](https://arxiv.org/pdf/2210.03629.pdf), specifically the Wikipedia example.
## [Plan-and-execute agents](/docs/modules/agents/agent_types/plan_and_execute.html)
Plan and execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).
Plan-and-execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).

View File

@@ -1,6 +1,6 @@
# Plan and execute
# Plan-and-execute
Plan and execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).
Plan-and-execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).
The planning is almost always done by an LLM.

View File

@@ -1,13 +1,13 @@
# Custom LLM Agent
# Custom LLM agent
This notebook goes through how to create your own custom LLM agent.
An LLM agent consists of three parts:
- PromptTemplate: This is the prompt template that can be used to instruct the language model on what to do
- `PromptTemplate`: This is the prompt template that can be used to instruct the language model on what to do
- LLM: This is the language model that powers the agent
- `stop` sequence: Instructs the LLM to stop generating as soon as this string is found
- OutputParser: This determines how to parse the LLMOutput into an AgentAction or AgentFinish object
- `OutputParser`: This determines how to parse the LLM output into an `AgentAction` or `AgentFinish` object
import Example from "@snippets/modules/agents/how_to/custom_llm_agent.mdx"

View File

@@ -4,10 +4,10 @@ This notebook goes through how to create your own custom agent based on a chat m
An LLM chat agent consists of three parts:
- PromptTemplate: This is the prompt template that can be used to instruct the language model on what to do
- ChatModel: This is the language model that powers the agent
- `PromptTemplate`: This is the prompt template that can be used to instruct the language model on what to do
- `ChatModel`: This is the language model that powers the agent
- `stop` sequence: Instructs the LLM to stop generating as soon as this string is found
- OutputParser: This determines how to parse the LLMOutput into an AgentAction or AgentFinish object
- `OutputParser`: This determines how to parse the LLM output into an `AgentAction` or `AgentFinish` object
import Example from "@snippets/modules/agents/how_to/custom_llm_chat_agent.mdx"

View File

@@ -3,7 +3,7 @@ sidebar_position: 2
---
# Documents
These are the core chains for working with Documents. They are useful for summarizing documents, answering questions over documents, extracting information from documents, and more.
These are the core chains for working with documents. They are useful for summarizing documents, answering questions over documents, extracting information from documents, and more.
These chains all implement a common interface:

View File

@@ -3,10 +3,10 @@ sidebar_position: 1
---
# Refine
The refine documents chain constructs a response by looping over the input documents and iteratively updating its answer. For each document, it passes all non-document inputs, the current document, and the latest intermediate answer to an LLM chain to get a new answer.
The Refine documents chain constructs a response by looping over the input documents and iteratively updating its answer. For each document, it passes all non-document inputs, the current document, and the latest intermediate answer to an LLM chain to get a new answer.
Since the Refine chain only passes a single document to the LLM at a time, it is well-suited for tasks that require analyzing more documents than can fit in the model's context.
The obvious tradeoff is that this chain will make far more LLM calls than, for example, the Stuff documents chain.
There are also certain tasks which are difficult to accomplish iteratively. For example, the Refine chain can perform poorly when documents frequently cross-reference one another or when a task requires detailed information from many documents.
![refine_diagram](/img/refine.jpg)
![refine_diagram](/img/refine.jpg)

View File

@@ -1,11 +1,11 @@
# LLM
An LLMChain is a simple chain that adds some functionality around language models. It is used widely throughout LangChain, including in other chains and agents.
An `LLMChain` is a simple chain that adds some functionality around language models. It is used widely throughout LangChain, including in other chains and agents.
An LLMChain consists of a PromptTemplate and a language model (either an LLM or chat model). It formats the prompt template using the input key values provided (and also memory key values, if available), passes the formatted string to LLM and returns the LLM output.
An `LLMChain` consists of a `PromptTemplate` and a language model (either an LLM or chat model). It formats the prompt template using the input key values provided (and also memory key values, if available), passes the formatted string to LLM and returns the LLM output.
## Get started
import Example from "@snippets/modules/chains/foundational/llm_chain.mdx"
<Example/>
<Example/>

View File

@@ -4,7 +4,7 @@
The next step after calling a language model is make a series of calls to a language model. This is particularly useful when you want to take the output from one call and use it as the input to another.
In this notebook we will walk through some examples for how to do this, using sequential chains. Sequential chains allow you to connect multiple chains and compose them into pipelines that execute some specific scenario.. There are two types of sequential chains:
In this notebook we will walk through some examples for how to do this, using sequential chains. Sequential chains allow you to connect multiple chains and compose them into pipelines that execute some specific scenario. There are two types of sequential chains:
- `SimpleSequentialChain`: The simplest form of sequential chains, where each step has a singular input/output, and the output of one step is the input to the next.
- `SequentialChain`: A more general form of sequential chains, allowing for multiple inputs/outputs.

View File

@@ -30,4 +30,4 @@ Chains allow us to combine multiple components together to create a single, cohe
import GetStarted from "@snippets/modules/chains/get_started.mdx"
<GetStarted/>
<GetStarted/>

View File

@@ -11,7 +11,7 @@ Use document loaders to load data from a source as `Document`'s. A `Document` is
and associated metadata. For example, there are document loaders for loading a simple `.txt` file, for loading the text
contents of any web page, or even for loading a transcript of a YouTube video.
Document loaders expose a "load" method for loading data as documents from a configured source. They optionally
Document loaders provide a "load" method for loading data as documents from a configured source. They optionally
implement a "lazy load" as well for lazily loading data into memory.
## Get started

View File

@@ -2,8 +2,8 @@
This is the simplest method. This splits based on characters (by default "\n\n") and measure chunk length by number of characters.
1. How the text is split: by single character
2. How the chunk size is measured: by number of characters
1. How the text is split: by single character.
2. How the chunk size is measured: by number of characters.
import Example from "@snippets/modules/data_connection/document_transformers/text_splitters/character_text_splitter.mdx"

View File

@@ -1,6 +1,6 @@
# Split code
CodeTextSplitter allows you to split your code with multiple language support. Import enum `Language` and specify the language.
CodeTextSplitter allows you to split your code with multiple languages supported. Import enum `Language` and specify the language.
import Example from "@snippets/modules/data_connection/document_transformers/text_splitters/code_splitter.mdx"

View File

@@ -2,8 +2,8 @@
This text splitter is the recommended one for generic text. It is parameterized by a list of characters. It tries to split on them in order until the chunks are small enough. The default list is `["\n\n", "\n", " ", ""]`. This has the effect of trying to keep all paragraphs (and then sentences, and then words) together as long as possible, as those would generically seem to be the strongest semantically related pieces of text.
1. How the text is split: by list of characters
2. How the chunk size is measured: by number of characters
1. How the text is split: by list of characters.
2. How the chunk size is measured: by number of characters.
import Example from "@snippets/modules/data_connection/document_transformers/text_splitters/recursive_text_splitter.mdx"

View File

@@ -18,9 +18,9 @@ This encompasses several key modules.
**[Document loaders](/docs/modules/data_connection/document_loaders/)**
Load documents from many different sources.
LangChain provides over a 100 different document loaders as well as integrations with other major providers in the space,
LangChain provides over 100 different document loaders as well as integrations with other major providers in the space,
like AirByte and Unstructured.
We provide integrations to load all types of documents (html, PDF, code) from all types of locations (private s3 buckets, public websites).
We provide integrations to load all types of documents (HTML, PDF, code) from all types of locations (private s3 buckets, public websites).
**[Document transformers](/docs/modules/data_connection/document_transformers/)**
@@ -32,18 +32,18 @@ LangChain provides several different algorithms for doing this, as well as logic
**[Text embedding models](/docs/modules/data_connection/text_embedding/)**
Another key part of retrieval has become creating embeddings for documents.
Embeddings capture the semantic meaning of text, allowing you to quickly and
Embeddings capture the semantic meaning of the text, allowing you to quickly and
efficiently find other pieces of text that are similar.
LangChain provides integrations with over 25 different embedding providers and methods,
from open-source to proprietary API,
allowing you to choose the one best suited for your needs.
LangChain exposes a standard interface, allowing you to easily swap between models.
LangChain provides a standard interface, allowing you to easily swap between models.
**[Vector stores](/docs/modules/data_connection/vectorstores/)**
With the rise of embeddings, there has emerged a need for databases to support efficient storage and searching of these embeddings.
LangChain provides integrations with over 50 different vectorstores, from open-source local ones to cloud-hosted proprietary ones,
allowing you choose the one best suited for your needs.
allowing you to choose the one best suited for your needs.
LangChain exposes a standard interface, allowing you to easily swap between vector stores.
**[Retrievers](/docs/modules/data_connection/retrievers/)**
@@ -55,7 +55,7 @@ However, we have also added a collection of algorithms on top of this to increas
These include:
- [Parent Document Retriever](/docs/modules/data_connection/retrievers/parent_document_retriever): This allows you to create multiple embeddings per parent document, allowing you to look up smaller chunks but return larger context.
- [Self Query Retriever](/docs/modules/data_connection/retrievers/self_query): User questions often contain reference to something that isn't just semantic, but rather expresses some logic that can best be represented as a metadata filter. Self-query allows you to parse out the *semantic* part of a query from other *metadata filters* present in the query
- [Self Query Retriever](/docs/modules/data_connection/retrievers/self_query): User questions often contain a reference to something that isn't just semantic but rather expresses some logic that can best be represented as a metadata filter. Self-query allows you to parse out the *semantic* part of a query from other *metadata filters* present in the query.
- [Ensemble Retriever](/docs/modules/data_connection/retrievers/ensemble): Sometimes you may want to retrieve documents from multiple different sources, or using multiple different algorithms. The ensemble retriever allows you to easily do this.
- And more!

View File

@@ -5,10 +5,10 @@ One challenge with retrieval is that usually you don't know the specific queries
Contextual compression is meant to fix this. The idea is simple: instead of immediately returning retrieved documents as-is, you can compress them using the context of the given query, so that only the relevant information is returned. “Compressing” here refers to both compressing the contents of an individual document and filtering out documents wholesale.
To use the Contextual Compression Retriever, you'll need:
- a base Retriever
- a base retriever
- a Document Compressor
The Contextual Compression Retriever passes queries to the base Retriever, takes the initial documents and passes them through the Document Compressor. The Document Compressor takes a list of Documents and shortens it by reducing the contents of Documents or dropping Documents altogether.
The Contextual Compression Retriever passes queries to the base retriever, takes the initial documents and passes them through the Document Compressor. The Document Compressor takes a list of documents and shortens it by reducing the contents of documents or dropping documents altogether.
![](https://drive.google.com/uc?id=1CtNgWODXZudxAWSRiWgSGEoTNrUFT98v)

View File

@@ -8,7 +8,7 @@ Head to [Integrations](/docs/integrations/retrievers/) for documentation on buil
:::
A retriever is an interface that returns documents given an unstructured query. It is more general than a vector store.
A retriever does not need to be able to store documents, only to return (or retrieve) it. Vector stores can be used
A retriever does not need to be able to store documents, only to return (or retrieve) them. Vector stores can be used
as the backbone of a retriever, but there are other types of retrievers as well.
## Get started

View File

@@ -1,6 +1,6 @@
# Self-querying
A self-querying retriever is one that, as the name suggests, has the ability to query itself. Specifically, given any natural language query, the retriever uses a query-constructing LLM chain to write a structured query and then applies that structured query to it's underlying VectorStore. This allows the retriever to not only use the user-input query for semantic similarity comparison with the contents of stored documented, but to also extract filters from the user query on the metadata of stored documents and to execute those filters.
A self-querying retriever is one that, as the name suggests, has the ability to query itself. Specifically, given any natural language query, the retriever uses a query-constructing LLM chain to write a structured query and then applies that structured query to its underlying VectorStore. This allows the retriever to not only use the user-input query for semantic similarity comparison with the contents of stored documents but to also extract filters from the user query on the metadata of stored documents and to execute those filters.
![](https://drive.google.com/uc?id=1OQUN-0MJcDUxmPXofgS7MqReEs720pqS)

View File

@@ -8,7 +8,7 @@ The algorithm for scoring them is:
semantic_similarity + (1.0 - decay_rate) ^ hours_passed
```
Notably, `hours_passed` refers to the hours passed since the object in the retriever **was last accessed**, not since it was created. This means that frequently accessed objects remain "fresh."
Notably, `hours_passed` refers to the hours passed since the object in the retriever **was last accessed**, not since it was created. This means that frequently accessed objects remain "fresh".
import Example from "@snippets/modules/data_connection/retrievers/how_to/time_weighted_vectorstore.mdx"

View File

@@ -1,9 +1,9 @@
# Vector store-backed retriever
A vector store retriever is a retriever that uses a vector store to retrieve documents. It is a lightweight wrapper around the Vector Store class to make it conform to the Retriever interface.
A vector store retriever is a retriever that uses a vector store to retrieve documents. It is a lightweight wrapper around the vector store class to make it conform to the retriever interface.
It uses the search methods implemented by a vector store, like similarity search and MMR, to query the texts in the vector store.
Once you construct a Vector store, it's very easy to construct a retriever. Let's walk through an example.
Once you construct a vector store, it's very easy to construct a retriever. Let's walk through an example.
import Example from "@snippets/modules/data_connection/retrievers/how_to/vectorstore.mdx"

View File

@@ -11,7 +11,7 @@ The Embeddings class is a class designed for interfacing with text embedding mod
Embeddings create a vector representation of a piece of text. This is useful because it means we can think about text in the vector space, and do things like semantic search where we look for pieces of text that are most similar in the vector space.
The base Embeddings class in LangChain exposes two methods: one for embedding documents and one for embedding a query. The former takes as input multiple texts, while the latter takes a single text. The reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself).
The base Embeddings class in LangChain provides two methods: one for embedding documents and one for embedding a query. The former takes as input multiple texts, while the latter takes a single text. The reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself).
## Get started

View File

@@ -16,7 +16,7 @@ for you.
## Get started
This walkthrough showcases basic functionality related to VectorStores. A key part of working with vector stores is creating the vector to put in them, which is usually created via embeddings. Therefore, it is recommended that you familiarize yourself with the [text embedding model](/docs/modules/data_connection/text_embedding/) interfaces before diving into this.
This walkthrough showcases basic functionality related to vector stores. A key part of working with vector stores is creating the vector to put in them, which is usually created via embeddings. Therefore, it is recommended that you familiarize yourself with the [text embedding model](/docs/modules/data_connection/text_embedding/) interfaces before diving into this.
import GetStarted from "@snippets/modules/data_connection/vectorstores/get_started.mdx"

View File

@@ -8,10 +8,10 @@ Head to [Integrations](/docs/integrations/memory/) for documentation on built-in
:::
One of the core utility classes underpinning most (if not all) memory modules is the `ChatMessageHistory` class.
This is a super lightweight wrapper which exposes convenience methods for saving Human messages, AI messages, and then fetching them all.
This is a super lightweight wrapper which provides convenience methods for saving HumanMessages, AIMessages, and then fetching them all.
You may want to use this class directly if you are managing memory outside of a chain.
import GetStarted from "@snippets/modules/memory/chat_messages/get_started.mdx"
<GetStarted/>
<GetStarted/>

View File

@@ -32,7 +32,7 @@ Even if these are not all used directly, they need to be stored in some form.
One of the key parts of the LangChain memory module is a series of integrations for storing these chat messages,
from in-memory lists to persistent databases.
- [Chat message storage](/docs/modules/memory/chat_messages/): How to work with Chat Messages, and the various integrations offered
- [Chat message storage](/docs/modules/memory/chat_messages/): How to work with Chat Messages, and the various integrations offered.
### Querying: Data structures and algorithms on top of chat messages
Keeping a list of chat messages is fairly straight-forward.

View File

@@ -1,4 +1,4 @@
# Conversation buffer memory
# Conversation Buffer
This notebook shows how to use `ConversationBufferMemory`. This memory allows for storing of messages and then extracts the messages in a variable.

View File

@@ -1,6 +1,6 @@
# Conversation buffer window memory
# Conversation Buffer Window
`ConversationBufferWindowMemory` keeps a list of the interactions of the conversation over time. It only uses the last K interactions. This can be useful for keeping a sliding window of the most recent interactions, so the buffer does not get too large
`ConversationBufferWindowMemory` keeps a list of the interactions of the conversation over time. It only uses the last K interactions. This can be useful for keeping a sliding window of the most recent interactions, so the buffer does not get too large.
Let's first explore the basic functionality of this type of memory.

View File

@@ -1,6 +1,6 @@
# Entity memory
# Entity
Entity Memory remembers given facts about specific entities in a conversation. It extracts information on entities (using an LLM) and builds up its knowledge about that entity over time (also using an LLM).
Entity memory remembers given facts about specific entities in a conversation. It extracts information on entities (using an LLM) and builds up its knowledge about that entity over time (also using an LLM).
Let's first walk through using this functionality.

View File

@@ -1,8 +1,8 @@
---
sidebar_position: 2
---
# Memory Types
# Memory types
There are many different types of memory.
Each have their own parameters, their own return types, and are useful in different scenarios.
Each has their own parameters, their own return types, and is useful in different scenarios.
Please see their individual page for more detail on each one.

View File

@@ -1,4 +1,4 @@
# Conversation summary memory
# Conversation Summary
Now let's take a look at using a slightly more complex type of memory - `ConversationSummaryMemory`. This type of memory creates a summary of the conversation over time. This can be useful for condensing information from the conversation over time.
Conversation summary memory summarizes the conversation as it happens and stores the current summary in memory. This memory can then be used to inject the summary of the conversation so far into a prompt/chain. This memory is most useful for longer conversations, where keeping the past message history in the prompt verbatim would take up too many tokens.

View File

@@ -1,6 +1,6 @@
# Vector store-backed memory
# Backed by a Vector Store
`VectorStoreRetrieverMemory` stores memories in a VectorDB and queries the top-K most "salient" docs every time it is called.
`VectorStoreRetrieverMemory` stores memories in a vector store and queries the top-K most "salient" docs every time it is called.
This differs from most of the other Memory classes in that it doesn't explicitly track the order of interactions.

View File

@@ -1,5 +1,5 @@
# Caching
LangChain provides an optional caching layer for Chat Models. This is useful for two reasons:
LangChain provides an optional caching layer for chat models. This is useful for two reasons:
It can save you money by reducing the number of API calls you make to the LLM provider, if you're often requesting the same completion multiple times.
It can speed up your application by reducing the number of API calls you make to the LLM provider.

View File

@@ -8,8 +8,8 @@ Head to [Integrations](/docs/integrations/chat/) for documentation on built-in i
:::
Chat models are a variation on language models.
While chat models use language models under the hood, the interface they expose is a bit different.
Rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs.
While chat models use language models under the hood, the interface they use is a bit different.
Rather than using a "text in, text out" API, they use an interface where "chat messages" are the inputs and outputs.
Chat model APIs are fairly new, so we are still figuring out the correct abstractions.

View File

@@ -1,6 +1,6 @@
# Prompts
Prompts for Chat models are built around messages, instead of just plain text.
Prompts for chat models are built around messages, instead of just plain text.
import Prompts from "@snippets/modules/model_io/models/chat/how_to/prompts.mdx"

View File

@@ -1,6 +1,6 @@
# Streaming
Some Chat models provide a streaming response. This means that instead of waiting for the entire response to be returned, you can start processing it as soon as it's available. This is useful if you want to display the response to the user as it's being generated, or if you want to process the response as it's being generated.
Some chat models provide a streaming response. This means that instead of waiting for the entire response to be returned, you can start processing it as soon as it's available. This is useful if you want to display the response to the user as it's being generated, or if you want to process the response as it's being generated.
import StreamingChatModel from "@snippets/modules/model_io/models/chat/how_to/streaming.mdx"

View File

@@ -8,16 +8,16 @@ LangChain provides interfaces and integrations for two types of models:
- [LLMs](/docs/modules/model_io/models/llms/): Models that take a text string as input and return a text string
- [Chat models](/docs/modules/model_io/models/chat/): Models that are backed by a language model but take a list of Chat Messages as input and return a Chat Message
## LLMs vs Chat Models
## LLMs vs chat models
LLMs and Chat Models are subtly but importantly different. LLMs in LangChain refer to pure text completion models.
LLMs and chat models are subtly but importantly different. LLMs in LangChain refer to pure text completion models.
The APIs they wrap take a string prompt as input and output a string completion. OpenAI's GPT-3 is implemented as an LLM.
Chat models are often backed by LLMs but tuned specifically for having conversations.
And, crucially, their provider APIs expose a different interface than pure text completion models. Instead of a single string,
And, crucially, their provider APIs use a different interface than pure text completion models. Instead of a single string,
they take a list of chat messages as input. Usually these messages are labeled with the speaker (usually one of "System",
"AI", and "Human"). And they return a ("AI") chat message as output. GPT-4 and Anthropic's Claude are both implemented as Chat Models.
"AI", and "Human"). And they return an AI chat message as output. GPT-4 and Anthropic's Claude are both implemented as chat models.
To make it possible to swap LLMs and Chat Models, both implement the Base Language Model interface. This exposes common
To make it possible to swap LLMs and chat models, both implement the Base Language Model interface. This includes common
methods "predict", which takes a string and returns a string, and "predict messages", which takes messages and returns a message.
If you are using a specific model it's recommended you use the methods specific to that model class (i.e., "predict" for LLMs and "predict messages" for Chat Models),
If you are using a specific model it's recommended you use the methods specific to that model class (i.e., "predict" for LLMs and "predict messages" for chat models),
but if you're creating an application that should work with different types of models the shared interface can be helpful.

View File

@@ -1,6 +1,6 @@
# Few-shot prompt templates
In this tutorial, we'll learn how to create a prompt template that uses few shot examples. A few shot prompt template can be constructed from either a set of examples, or from an Example Selector object.
In this tutorial, we'll learn how to create a prompt template that uses few-shot examples. A few-shot prompt template can be constructed from either a set of examples, or from an Example Selector object.
import Example from "@snippets/modules/model_io/prompts/prompt_templates/few_shot_examples.mdx"

View File

@@ -6,7 +6,7 @@ sidebar_position: 0
Prompt templates are pre-defined recipes for generating prompts for language models.
A template may include instructions, few shot examples, and specific context and
A template may include instructions, few-shot examples, and specific context and
questions appropriate for a given task.
LangChain provides tooling to create and work with prompt templates.

View File

@@ -1,6 +1,6 @@
# Partial prompt templates
Like other methods, it can make sense to "partial" a prompt template - eg pass in a subset of the required values, as to create a new prompt template which expects only the remaining subset of values.
Like other methods, it can make sense to "partial" a prompt template - e.g. pass in a subset of the required values, as to create a new prompt template which expects only the remaining subset of values.
LangChain supports this in two ways:
1. Partial formatting with string values.

View File

@@ -2,8 +2,8 @@
This notebook goes over how to compose multiple prompts together. This can be useful when you want to reuse parts of prompts. This can be done with a PipelinePrompt. A PipelinePrompt consists of two main parts:
- Final prompt: This is the final prompt that is returned
- Pipeline prompts: This is a list of tuples, consisting of a string name and a prompt template. Each prompt template will be formatted and then passed to future prompt templates as a variable with the same name.
- Final prompt: The final prompt that is returned
- Pipeline prompts: A list of tuples, consisting of a string name and a prompt template. Each prompt template will be formatted and then passed to future prompt templates as a variable with the same name.
import Example from "@snippets/modules/model_io/prompts/prompt_templates/prompt_composition.mdx"

View File

@@ -5,7 +5,7 @@ sidebar_position: 2
# Store and reference chat history
The ConversationalRetrievalQA chain builds on RetrievalQAChain to provide a chat history component.
It first combines the chat history (either explicitly passed in or retrieved from the provided memory) and the question into a standalone question, then looks up relevant documents from the retriever, and finally passes those documents and the question to a question answering chain to return a response.
It first combines the chat history (either explicitly passed in or retrieved from the provided memory) and the question into a standalone question, then looks up relevant documents from the retriever, and finally passes those documents and the question to a question-answering chain to return a response.
To create one, you will need a retriever. In the below example, we will create one from a vector store, which can be created from embeddings.

View File

@@ -6,4 +6,4 @@ sidebar_position: 3
Web scraping has historically been a challenging endeavor due to the ever-changing nature of website structures, making it tedious for developers to maintain their scraping scripts. Traditional methods often rely on specific HTML tags and patterns which, when altered, can disrupt data extraction processes.
Enter the LLM-based method for parsing HTML: By leveraging the capabilities of LLMs, and especially OpenAI Functions in LangChain's extraction chain, developers can instruct the model to extract only the desired data in a specified format. This method not only streamlines the extraction process but also significantly reduces the time spent on manual debugging and script modifications. Its adaptability means that even if websites undergo significant design changes, the extraction remains consistent and robust. This level of resilience translates to reduced maintenance efforts, cost savings, and ensures a higher quality of extracted data. Compared to its predecessors, LLM-based approach wins out the web scraping domain by transforming a historically cumbersome task into a more automated and efficient process.
Enter the LLM-based method for parsing HTML: By leveraging the capabilities of LLMs, and especially OpenAI Functions in LangChain's extraction chain, developers can instruct the model to extract only the desired data in a specified format. This method not only streamlines the extraction process but also significantly reduces the time spent on manual debugging and script modifications. Its adaptability means that even if websites undergo significant design changes, the extraction remains consistent and robust. This level of resilience translates to reduced maintenance efforts, cost savings, and ensures a higher quality of extracted data. Compared to its predecessors, the LLM-based approach wins out in the web scraping domain by transforming a historically cumbersome task into a more automated and efficient process.

View File

@@ -44,6 +44,16 @@ module.exports = {
id: "modules/index"
},
},
{
type: "category",
label: "LangChain Expression Language",
collapsed: true,
items: [{ type: "autogenerated", dirName: "expression_language" } ],
link: {
type: 'doc',
id: "expression_language/index"
},
},
{
type: "category",
label: "Guides",
@@ -52,17 +62,7 @@ module.exports = {
link: {
type: 'generated-index',
description: 'Design guides for key parts of the development process',
slug: "guides",
},
},
{
type: "category",
label: "Ecosystem",
collapsed: true,
items: [{ type: "autogenerated", dirName: "ecosystem" }],
link: {
type: 'generated-index',
slug: "ecosystem",
slug: "guides",
},
},
{
@@ -72,7 +72,7 @@ module.exports = {
items: [{ type: "autogenerated", dirName: "additional_resources" }, { type: "link", label: "Gallery", href: "https://github.com/kyrolabs/awesome-langchain" }],
link: {
type: 'generated-index',
slug: "additional_resources",
slug: "additional_resources",
},
},
'community'

View File

@@ -24,8 +24,7 @@ function Imports({ imports }) {
<li key={imported}>
<a href={docs}>
<span>{imported}</span>
</a>{" "}
from <code>{source}</code>
</a>
</li>
))}
</ul>

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 236 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 177 KiB

View File

@@ -1,5 +1,9 @@
{
"redirects": [
{
"source": "/docs/modules/data_connection/caching_embeddings(/?)",
"destination": "/docs/modules/data_connection/text_embedding/caching_embeddings"
},
{
"source": "/en/latest/additional_resources/youtube.html",
"destination": "/docs/additional_resources/youtube"
@@ -166,7 +170,7 @@
},
{
"source": "/docs/integrations/deeplake",
"destination": "/docs/integrations/providers/deeplake"
"destination": "/docs/integrations/providers/activeloop_deeplake"
},
{
"source": "/docs/integrations/diffbot",
@@ -2948,6 +2952,46 @@
"source": "/docs/modules/model_io/models/llms/integrations/writer",
"destination": "/docs/integrations/llms/writer"
},
{
"source": "/docs/integrations/llms/amazon_api_gateway_example",
"destination": "/docs/integrations/llms/amazon_api_gateway"
},
{
"source": "/docs/integrations/llms/azureml_endpoint_example",
"destination": "/docs/integrations/llms/azure_ml"
},
{
"source": "/docs/integrations/llms/azure_openai_example",
"destination": "/docs/integrations/llms/azure_openai"
},
{
"source": "/docs/integrations/llms/cerebriumai_example",
"destination": "/docs/integrations/llms/cerebriumai"
},
{
"source": "/docs/integrations/llms/deepinfra_example",
"destination": "/docs/integrations/llms/deepinfra"
},
{
"source": "/docs/integrations/llms/Fireworks",
"destination": "/docs/integrations/llms/fireworks"
},
{
"source": "/docs/integrations/llms/forefrontai_example",
"destination": "/docs/integrations/llms/forefrontai"
},
{
"source": "/docs/integrations/llms/gooseai_example",
"destination": "/docs/integrations/llms/gooseai"
},
{
"source": "/docs/integrations/llms/petals_example",
"destination": "/docs/integrations/llms/petals"
},
{
"source": "/docs/integrations/llms/pipelineai_example",
"destination": "/docs/integrations/llms/pipelineai"
},
{
"source": "/en/latest/modules/prompts.html",
"destination": "/docs/modules/model_io/prompts"
@@ -3432,6 +3476,14 @@
"source": "/docs/modules/chains/additional/graph_kuzu_qa",
"destination": "/docs/use_cases/more/graph/graph_kuzu_qa"
},
{
"source": "/docs/use_cases/graph/graph_falkordb_qa",
"destination": "/docs/use_cases/more/graph/graph_falkordb_qa"
},
{
"source": "/docs/modules/chains/additional/graph_falkordb_qa",
"destination": "/docs/use_cases/more/graph/graph_falkordb_qa"
},
{
"source": "/docs/use_cases/graph/graph_nebula_qa",
"destination": "/docs/use_cases/more/graph/graph_nebula_qa"
@@ -3543,6 +3595,18 @@
{
"source": "/en/latest/integrations/:path*",
"destination": "/docs/integrations/providers/:path*"
},
{
"source": "/docs/guides/expression_language(/?)",
"destination": "/docs/expression_language/"
},
{
"source": "/docs/guides/expression_language/:path*",
"destination": "/docs/expression_language/:path*"
},
{
"source": "/docs/ecosystem/dependents",
"destination": "/docs/additional_resources/dependents"
}
]
}

View File

@@ -47,7 +47,7 @@ from langchain.embeddings import integration_class_REPLACE_ME
```
## Chat Models
## Chat models
See a [usage example](/docs/integrations/chat/INCLUDE_REAL_NAME)

View File

@@ -51,6 +51,7 @@ Dependents stats for `langchain-ai/langchain`
|[e2b-dev/e2b](https://github.com/e2b-dev/e2b) | 5365 |
|[mage-ai/mage-ai](https://github.com/mage-ai/mage-ai) | 5352 |
|[wenda-LLM/wenda](https://github.com/wenda-LLM/wenda) | 5192 |
|[liaokongVFX/LangChain-Chinese-Getting-Started-Guide](https://github.com/liaokongVFX/LangChain-Chinese-Getting-Started-Guide) | 5129 |
|[zilliztech/GPTCache](https://github.com/zilliztech/GPTCache) | 4993 |
|[GreyDGL/PentestGPT](https://github.com/GreyDGL/PentestGPT) | 4831 |
|[zauberzeug/nicegui](https://github.com/zauberzeug/nicegui) | 4824 |

View File

@@ -1318,7 +1318,7 @@
"source": [
"template = \"\"\"Write some python code to solve the user's problem. \n",
"\n",
"Return only python code in Markdown format, eg:\n",
"Return only python code in Markdown format, e.g.:\n",
"\n",
"```python\n",
"....\n",

View File

@@ -62,7 +62,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 3,
"id": "d1850a1f",
"metadata": {},
"outputs": [],
@@ -72,7 +72,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 4,
"id": "56d0669f",
"metadata": {},
"outputs": [],
@@ -170,6 +170,36 @@
"chain.batch([{\"topic\": \"bears\"}, {\"topic\": \"cats\"}])"
]
},
{
"cell_type": "markdown",
"id": "2434ab15",
"metadata": {},
"source": [
"You can set the number of concurrent requests by using the `max_concurrency` parameter"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a08522f6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Why don't bears wear shoes?\\n\\nBecause they have bear feet!\", additional_kwargs={}, example=False),\n",
" AIMessage(content=\"Why don't cats play poker in the wild?\\n\\nToo many cheetahs!\", additional_kwargs={}, example=False)]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.batch([{\"topic\": \"bears\"}, {\"topic\": \"cats\"}], config={\"max_concurrency\": 5})"
]
},
{
"cell_type": "markdown",
"id": "b960cbfe",

View File

@@ -8,7 +8,7 @@ Here's a few different tools and functionalities to aid in debugging.
## Tracing
Platforms with tracing capabilities like [LangSmith](/docs/guides/langsmith/) and [WandB](/docs/ecosystem/integrations/agent_with_wandb_tracing) are the most comprehensive solutions for debugging. These platforms make it easy to not only log and visualize LLM apps, but also to actively debug, test and refine them.
Platforms with tracing capabilities like [LangSmith](/docs/guides/langsmith/) and [WandB](/docs/integrations/providers/wandb_tracing) are the most comprehensive solutions for debugging. These platforms make it easy to not only log and visualize LLM apps, but also to actively debug, test and refine them.
For anyone building production-grade LLM applications, we highly recommend using a platform like this.

View File

@@ -14,7 +14,7 @@ It also contains instructions for how to deploy this app on the Streamlit platfo
## [Gradio (on Hugging Face)](https://github.com/hwchase17/langchain-gradio-template)
This repo serves as a template for how deploy a LangChain with Gradio.
This repo serves as a template for how to deploy a LangChain with Gradio.
It implements a chatbot interface, with a "Bring-Your-Own-Token" approach (nice for not wracking up big bills).
It also contains instructions for how to deploy this app on the Hugging Face platform.
This is heavily influenced by James Weaver's [excellent examples](https://huggingface.co/JavaFXpert).
@@ -27,7 +27,7 @@ Chainlit [doc](https://docs.chainlit.io/langchain) on the integration with LangC
## [Beam](https://github.com/slai-labs/get-beam/tree/main/examples/langchain-question-answering)
This repo serves as a template for how deploy a LangChain with [Beam](https://beam.cloud).
This repo serves as a template for how to deploy a LangChain with [Beam](https://beam.cloud).
It implements a Question Answering app and contains instructions for deploying the app as a serverless REST API.
@@ -49,7 +49,7 @@ A minimal example of how to deploy LangChain to [Fly.io](https://fly.io/) using
## [Digitalocean App Platform](https://github.com/homanp/digitalocean-langchain)
A minimal example on how to deploy LangChain to DigitalOcean App Platform.
A minimal example of how to deploy LangChain to DigitalOcean App Platform.
## [CI/CD Google Cloud Build + Dockerfile + Serverless Google Cloud Run](https://github.com/g-emarco/github-assistant)
@@ -57,7 +57,7 @@ Boilerplate LangChain project on how to deploy to Google Cloud Run using Docker
## [Google Cloud Run](https://github.com/homanp/gcp-langchain)
A minimal example on how to deploy LangChain to Google Cloud Run.
A minimal example of how to deploy LangChain to Google Cloud Run.
## [SteamShip](https://github.com/steamship-core/steamship-langchain/)
@@ -79,3 +79,7 @@ See OpenLLM's [integration doc](https://github.com/bentoml/OpenLLM#%EF%B8%8F-int
## [Databutton](https://databutton.com/home?new-data-app=true)
These templates serve as examples of how to build, deploy, and share LangChain applications using Databutton. You can create user interfaces with Streamlit, automate tasks by scheduling Python code, and store files and data in the built-in store. Examples include a Chatbot interface with conversational memory, a Personal search engine, and a starter template for LangChain apps. Deploying and sharing is just one click away.
## [AzureML Online Endpoint](https://github.com/Azure/azureml-examples/blob/main/sdk/python/endpoints/online/llm/langchain/1_langchain_basic_deploy.ipynb)
A minimal example of how to deploy LangChain to an Azure Machine Learning Online Endpoint.

View File

@@ -5,7 +5,7 @@
"id": "b8982428",
"metadata": {},
"source": [
"# Private, local, open source LLMs\n",
"# Run LLMs locally\n",
"\n",
"## Use case\n",
"\n",
@@ -146,7 +146,7 @@
"source": [
"## Environment\n",
"\n",
"Inference speed is a chllenge when running models locally (see above).\n",
"Inference speed is a challenge when running models locally (see above).\n",
"\n",
"To minimize latency, it is desiable to run models locally on GPU, which ships with many consumer laptops [e.g., Apple devices](https://www.apple.com/newsroom/2022/06/apple-unveils-m2-with-breakthrough-performance-and-capabilities/).\n",
"\n",
@@ -264,88 +264,19 @@
"metadata": {},
"outputs": [],
"source": [
"pip install llama-cpp-python"
"CMAKE_ARGS=\"-DLLAMA_METAL=on\" FORCE_CMAKE=1 pip install -U llama-cpp-python --no-cache-dirclear"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "9d5f94b5",
"execution_count": null,
"id": "a88bf0c8-e989-4bcd-bcb7-4d7757e684f2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"objc[10142]: Class GGMLMetalClass is implemented in both /Users/rlm/miniforge3/envs/llama/lib/python3.9/site-packages/gpt4all/llmodel_DO_NOT_MODIFY/build/libreplit-mainline-metal.dylib (0x2a0c4c208) and /Users/rlm/miniforge3/envs/llama/lib/python3.9/site-packages/llama_cpp/libllama.dylib (0x2c28bc208). One of the two will be used. Which one is undefined.\n",
"llama.cpp: loading model from /Users/rlm/Desktop/Code/llama.cpp/llama-2-13b-chat.ggmlv3.q4_0.bin\n",
"llama_model_load_internal: format = ggjt v3 (latest)\n",
"llama_model_load_internal: n_vocab = 32000\n",
"llama_model_load_internal: n_ctx = 2048\n",
"llama_model_load_internal: n_embd = 5120\n",
"llama_model_load_internal: n_mult = 256\n",
"llama_model_load_internal: n_head = 40\n",
"llama_model_load_internal: n_layer = 40\n",
"llama_model_load_internal: n_rot = 128\n",
"llama_model_load_internal: freq_base = 10000.0\n",
"llama_model_load_internal: freq_scale = 1\n",
"llama_model_load_internal: ftype = 2 (mostly Q4_0)\n",
"llama_model_load_internal: n_ff = 13824\n",
"llama_model_load_internal: model size = 13B\n",
"llama_model_load_internal: ggml ctx size = 0.09 MB\n",
"llama_model_load_internal: mem required = 8953.71 MB (+ 1608.00 MB per state)\n",
"llama_new_context_with_model: kv self size = 1600.00 MB\n",
"ggml_metal_init: allocating\n",
"ggml_metal_init: using MPS\n",
"ggml_metal_init: loading '/Users/rlm/miniforge3/envs/llama/lib/python3.9/site-packages/llama_cpp/ggml-metal.metal'\n",
"ggml_metal_init: loaded kernel_add 0x47774af60\n",
"ggml_metal_init: loaded kernel_mul 0x47774bc00\n",
"ggml_metal_init: loaded kernel_mul_row 0x47774c230\n",
"ggml_metal_init: loaded kernel_scale 0x47774c890\n",
"ggml_metal_init: loaded kernel_silu 0x47774cef0\n",
"ggml_metal_init: loaded kernel_relu 0x10e33e500\n",
"ggml_metal_init: loaded kernel_gelu 0x47774b2f0\n",
"ggml_metal_init: loaded kernel_soft_max 0x47771a580\n",
"ggml_metal_init: loaded kernel_diag_mask_inf 0x47774dab0\n",
"ggml_metal_init: loaded kernel_get_rows_f16 0x47774e110\n",
"ggml_metal_init: loaded kernel_get_rows_q4_0 0x47774e7d0\n",
"ggml_metal_init: loaded kernel_get_rows_q4_1 0x13efd7170\n",
"ggml_metal_init: loaded kernel_get_rows_q2_K 0x13efd73d0\n",
"ggml_metal_init: loaded kernel_get_rows_q3_K 0x13efd7630\n",
"ggml_metal_init: loaded kernel_get_rows_q4_K 0x13efd7890\n",
"ggml_metal_init: loaded kernel_get_rows_q5_K 0x4744c9740\n",
"ggml_metal_init: loaded kernel_get_rows_q6_K 0x4744ca6b0\n",
"ggml_metal_init: loaded kernel_rms_norm 0x4744cb250\n",
"ggml_metal_init: loaded kernel_norm 0x4744cb970\n",
"ggml_metal_init: loaded kernel_mul_mat_f16_f32 0x10e33f700\n",
"ggml_metal_init: loaded kernel_mul_mat_q4_0_f32 0x10e33fcd0\n",
"ggml_metal_init: loaded kernel_mul_mat_q4_1_f32 0x4744cc2d0\n",
"ggml_metal_init: loaded kernel_mul_mat_q2_K_f32 0x4744cc6f0\n",
"ggml_metal_init: loaded kernel_mul_mat_q3_K_f32 0x4744cd6b0\n",
"ggml_metal_init: loaded kernel_mul_mat_q4_K_f32 0x4744cde20\n",
"ggml_metal_init: loaded kernel_mul_mat_q5_K_f32 0x10e33ff30\n",
"ggml_metal_init: loaded kernel_mul_mat_q6_K_f32 0x10e340190\n",
"ggml_metal_init: loaded kernel_rope 0x10e3403f0\n",
"ggml_metal_init: loaded kernel_alibi_f32 0x10e340de0\n",
"ggml_metal_init: loaded kernel_cpy_f32_f16 0x10e3416d0\n",
"ggml_metal_init: loaded kernel_cpy_f32_f32 0x10e342080\n",
"ggml_metal_init: loaded kernel_cpy_f16_f16 0x10e342ca0\n",
"ggml_metal_init: recommendedMaxWorkingSetSize = 21845.34 MB\n",
"ggml_metal_init: hasUnifiedMemory = true\n",
"ggml_metal_init: maxTransferRate = built-in GPU\n",
"ggml_metal_add_buffer: allocated 'data ' buffer, size = 6984.06 MB, ( 6986.19 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'eval ' buffer, size = 1032.00 MB, ( 8018.19 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'kv ' buffer, size = 1602.00 MB, ( 9620.19 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'scr0 ' buffer, size = 426.00 MB, (10046.19 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'scr1 ' buffer, size = 512.00 MB, (10558.19 / 21845.34)\n",
"AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | \n"
]
}
],
"outputs": [],
"source": [
"from langchain.llms import LlamaCpp\n",
"llm = LlamaCpp(\n",
" model_path=\"/Users/rlm/Desktop/Code/llama.cpp/llama-2-13b-chat.ggmlv3.q4_0.bin\",\n",
" model_path=\"/Users/rlm/Desktop/Code/llama.cpp/models/openorca-platypus2-13b.gguf.q4_0.bin\",\n",
" n_gpu_layers=1,\n",
" n_batch=512,\n",
" n_ctx=2048,\n",
@@ -448,87 +379,10 @@
},
{
"cell_type": "code",
"execution_count": 46,
"id": "b55a2147",
"execution_count": null,
"id": "915ecd4c-8f6b-4de3-a787-b64cb7c682b4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found model file at /Users/rlm/Desktop/Code/gpt4all/models/nous-hermes-13b.ggmlv3.q4_0.bin\n",
"llama_new_context_with_model: max tensor size = 87.89 MB\n",
"llama_new_context_with_model: max tensor size = 87.89 MB\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"llama.cpp: using Metal\n",
"llama.cpp: loading model from /Users/rlm/Desktop/Code/gpt4all/models/nous-hermes-13b.ggmlv3.q4_0.bin\n",
"llama_model_load_internal: format = ggjt v3 (latest)\n",
"llama_model_load_internal: n_vocab = 32001\n",
"llama_model_load_internal: n_ctx = 2048\n",
"llama_model_load_internal: n_embd = 5120\n",
"llama_model_load_internal: n_mult = 256\n",
"llama_model_load_internal: n_head = 40\n",
"llama_model_load_internal: n_layer = 40\n",
"llama_model_load_internal: n_rot = 128\n",
"llama_model_load_internal: ftype = 2 (mostly Q4_0)\n",
"llama_model_load_internal: n_ff = 13824\n",
"llama_model_load_internal: n_parts = 1\n",
"llama_model_load_internal: model size = 13B\n",
"llama_model_load_internal: ggml ctx size = 0.09 MB\n",
"llama_model_load_internal: mem required = 9031.71 MB (+ 1608.00 MB per state)\n",
"llama_new_context_with_model: kv self size = 1600.00 MB\n",
"ggml_metal_init: allocating\n",
"ggml_metal_init: using MPS\n",
"ggml_metal_init: loading '/Users/rlm/miniforge3/envs/llama/lib/python3.9/site-packages/gpt4all/llmodel_DO_NOT_MODIFY/build/ggml-metal.metal'\n",
"ggml_metal_init: loaded kernel_add 0x37944d850\n",
"ggml_metal_init: loaded kernel_mul 0x37944f350\n",
"ggml_metal_init: loaded kernel_mul_row 0x37944fdd0\n",
"ggml_metal_init: loaded kernel_scale 0x3794505a0\n",
"ggml_metal_init: loaded kernel_silu 0x379450800\n",
"ggml_metal_init: loaded kernel_relu 0x379450a60\n",
"ggml_metal_init: loaded kernel_gelu 0x379450cc0\n",
"ggml_metal_init: loaded kernel_soft_max 0x379450ff0\n",
"ggml_metal_init: loaded kernel_diag_mask_inf 0x379451250\n",
"ggml_metal_init: loaded kernel_get_rows_f16 0x3794514b0\n",
"ggml_metal_init: loaded kernel_get_rows_q4_0 0x379451710\n",
"ggml_metal_init: loaded kernel_get_rows_q4_1 0x379451970\n",
"ggml_metal_init: loaded kernel_get_rows_q2_k 0x379451bd0\n",
"ggml_metal_init: loaded kernel_get_rows_q3_k 0x379451e30\n",
"ggml_metal_init: loaded kernel_get_rows_q4_k 0x379452090\n",
"ggml_metal_init: loaded kernel_get_rows_q5_k 0x3794522f0\n",
"ggml_metal_init: loaded kernel_get_rows_q6_k 0x379452550\n",
"ggml_metal_init: loaded kernel_rms_norm 0x3794527b0\n",
"ggml_metal_init: loaded kernel_norm 0x379452a10\n",
"ggml_metal_init: loaded kernel_mul_mat_f16_f32 0x379452c70\n",
"ggml_metal_init: loaded kernel_mul_mat_q4_0_f32 0x379452ed0\n",
"ggml_metal_init: loaded kernel_mul_mat_q4_1_f32 0x379453130\n",
"ggml_metal_init: loaded kernel_mul_mat_q2_k_f32 0x379453390\n",
"ggml_metal_init: loaded kernel_mul_mat_q3_k_f32 0x3794535f0\n",
"ggml_metal_init: loaded kernel_mul_mat_q4_k_f32 0x379453850\n",
"ggml_metal_init: loaded kernel_mul_mat_q5_k_f32 0x379453ab0\n",
"ggml_metal_init: loaded kernel_mul_mat_q6_k_f32 0x379453d10\n",
"ggml_metal_init: loaded kernel_rope 0x379453f70\n",
"ggml_metal_init: loaded kernel_alibi_f32 0x3794541d0\n",
"ggml_metal_init: loaded kernel_cpy_f32_f16 0x379454430\n",
"ggml_metal_init: loaded kernel_cpy_f32_f32 0x379454690\n",
"ggml_metal_init: loaded kernel_cpy_f16_f16 0x3794548f0\n",
"ggml_metal_init: recommendedMaxWorkingSetSize = 21845.34 MB\n",
"ggml_metal_init: hasUnifiedMemory = true\n",
"ggml_metal_init: maxTransferRate = built-in GPU\n",
"ggml_metal_add_buffer: allocated 'data ' buffer, size = 6984.06 MB, (17542.94 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'eval ' buffer, size = 1024.00 MB, (18566.94 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'kv ' buffer, size = 1602.00 MB, (20168.94 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'scr0 ' buffer, size = 512.00 MB, (20680.94 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'scr1 ' buffer, size = 512.00 MB, (21192.94 / 21845.34)\n",
"ggml_metal_free: deallocating\n"
]
}
],
"outputs": [],
"source": [
"from langchain.llms import GPT4All\n",
"llm = GPT4All(model=\"/Users/rlm/Desktop/Code/gpt4all/models/nous-hermes-13b.ggmlv3.q4_0.bin\")"
@@ -564,89 +418,21 @@
"\n",
"Some LLMs will benefit from specific prompts.\n",
"\n",
"For example, llama2 can use [special tokens](https://twitter.com/RLanceMartin/status/1681879318493003776?s=20).\n",
"For example, LLaMA will use [special tokens](https://twitter.com/RLanceMartin/status/1681879318493003776?s=20).\n",
"\n",
"We can use `ConditionalPromptSelector` to set prompt based on the model type."
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "d082b10a",
"execution_count": null,
"id": "16759b7c-7903-4269-b7b4-f83b313d8091",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"llama.cpp: loading model from /Users/rlm/Desktop/Code/llama.cpp/llama-2-13b-chat.ggmlv3.q4_0.bin\n",
"llama_model_load_internal: format = ggjt v3 (latest)\n",
"llama_model_load_internal: n_vocab = 32000\n",
"llama_model_load_internal: n_ctx = 2048\n",
"llama_model_load_internal: n_embd = 5120\n",
"llama_model_load_internal: n_mult = 256\n",
"llama_model_load_internal: n_head = 40\n",
"llama_model_load_internal: n_layer = 40\n",
"llama_model_load_internal: n_rot = 128\n",
"llama_model_load_internal: freq_base = 10000.0\n",
"llama_model_load_internal: freq_scale = 1\n",
"llama_model_load_internal: ftype = 2 (mostly Q4_0)\n",
"llama_model_load_internal: n_ff = 13824\n",
"llama_model_load_internal: model size = 13B\n",
"llama_model_load_internal: ggml ctx size = 0.09 MB\n",
"llama_model_load_internal: mem required = 8953.71 MB (+ 1608.00 MB per state)\n",
"llama_new_context_with_model: kv self size = 1600.00 MB\n",
"ggml_metal_init: allocating\n",
"ggml_metal_init: using MPS\n",
"ggml_metal_init: loading '/Users/rlm/miniforge3/envs/llama/lib/python3.9/site-packages/llama_cpp/ggml-metal.metal'\n",
"ggml_metal_init: loaded kernel_add 0x4744d09d0\n",
"ggml_metal_init: loaded kernel_mul 0x3781cb3d0\n",
"ggml_metal_init: loaded kernel_mul_row 0x37813bb60\n",
"ggml_metal_init: loaded kernel_scale 0x474481080\n",
"ggml_metal_init: loaded kernel_silu 0x4744d29f0\n",
"ggml_metal_init: loaded kernel_relu 0x3781254c0\n",
"ggml_metal_init: loaded kernel_gelu 0x47447f280\n",
"ggml_metal_init: loaded kernel_soft_max 0x4744cf470\n",
"ggml_metal_init: loaded kernel_diag_mask_inf 0x4744cf6d0\n",
"ggml_metal_init: loaded kernel_get_rows_f16 0x4744cf930\n",
"ggml_metal_init: loaded kernel_get_rows_q4_0 0x4744cfb90\n",
"ggml_metal_init: loaded kernel_get_rows_q4_1 0x4744cfdf0\n",
"ggml_metal_init: loaded kernel_get_rows_q2_K 0x4744d0050\n",
"ggml_metal_init: loaded kernel_get_rows_q3_K 0x4744ce980\n",
"ggml_metal_init: loaded kernel_get_rows_q4_K 0x4744cebe0\n",
"ggml_metal_init: loaded kernel_get_rows_q5_K 0x4744cee40\n",
"ggml_metal_init: loaded kernel_get_rows_q6_K 0x4744cf0a0\n",
"ggml_metal_init: loaded kernel_rms_norm 0x474482450\n",
"ggml_metal_init: loaded kernel_norm 0x4744826b0\n",
"ggml_metal_init: loaded kernel_mul_mat_f16_f32 0x474482910\n",
"ggml_metal_init: loaded kernel_mul_mat_q4_0_f32 0x474482b70\n",
"ggml_metal_init: loaded kernel_mul_mat_q4_1_f32 0x474482dd0\n",
"ggml_metal_init: loaded kernel_mul_mat_q2_K_f32 0x474483030\n",
"ggml_metal_init: loaded kernel_mul_mat_q3_K_f32 0x474483290\n",
"ggml_metal_init: loaded kernel_mul_mat_q4_K_f32 0x4744834f0\n",
"ggml_metal_init: loaded kernel_mul_mat_q5_K_f32 0x474483750\n",
"ggml_metal_init: loaded kernel_mul_mat_q6_K_f32 0x4744839b0\n",
"ggml_metal_init: loaded kernel_rope 0x474483c10\n",
"ggml_metal_init: loaded kernel_alibi_f32 0x474483e70\n",
"ggml_metal_init: loaded kernel_cpy_f32_f16 0x4744840d0\n",
"ggml_metal_init: loaded kernel_cpy_f32_f32 0x474484330\n",
"ggml_metal_init: loaded kernel_cpy_f16_f16 0x474484590\n",
"ggml_metal_init: recommendedMaxWorkingSetSize = 21845.34 MB\n",
"ggml_metal_init: hasUnifiedMemory = true\n",
"ggml_metal_init: maxTransferRate = built-in GPU\n",
"ggml_metal_add_buffer: allocated 'data ' buffer, size = 6984.06 MB, ( 6986.94 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'eval ' buffer, size = 1032.00 MB, ( 8018.94 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'kv ' buffer, size = 1602.00 MB, ( 9620.94 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'scr0 ' buffer, size = 426.00 MB, (10046.94 / 21845.34)\n",
"ggml_metal_add_buffer: allocated 'scr1 ' buffer, size = 512.00 MB, (10558.94 / 21845.34)\n",
"AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | \n"
]
}
],
"outputs": [],
"source": [
"# Set our LLM\n",
"llm = LlamaCpp(\n",
" model_path=\"/Users/rlm/Desktop/Code/llama.cpp/llama-2-13b-chat.ggmlv3.q4_0.bin\",\n",
" model_path=\"/Users/rlm/Desktop/Code/llama.cpp/models/openorca-platypus2-13b.gguf.q4_0.bin\",\n",
" n_gpu_layers=1,\n",
" n_batch=512,\n",
" n_ctx=2048,\n",
@@ -661,7 +447,7 @@
"id": "66656084",
"metadata": {},
"source": [
"Set the associated prompt."
"Set the associated prompt based upon the model version."
]
},
{
@@ -759,6 +545,18 @@
"llm_chain.run({\"question\":question})"
]
},
{
"cell_type": "markdown",
"id": "6e0d37e7-f1d9-4848-bf2c-c22392ee141f",
"metadata": {},
"source": [
"We also can use the LangChain Prompt Hub to fetch and / or store prompts that are model specific.\n",
"\n",
"This will work with your [LangSmith API key](https://docs.smith.langchain.com/).\n",
"\n",
"For example, [here](https://smith.langchain.com/hub/rlm/rag-prompt-llama) is a prompt for RAG with LLaMA-specific tokens."
]
},
{
"cell_type": "markdown",
"id": "6ba66260",
@@ -770,16 +568,12 @@
"\n",
"For example, here is a guide to [RAG](docs/use_cases/question_answering/how_to/local_retrieval_qa) with local LLMs.\n",
"\n",
"In general, use cases for local model can be driven by at least two factors:\n",
"In general, use cases for local LLMs can be driven by at least two factors:\n",
"\n",
"* `Privacy`: private data (e.g., journals, etc) that a user does not want to share \n",
"* `Cost`: text preprocessing (extraction/tagging), summarization, and agent simulations are token-use-intensive tasks\n",
"\n",
"There are a few approach to support specific use-cases: \n",
"\n",
"* Fine-tuning (e.g., [gpt-llm-trainer](https://github.com/mshumer/gpt-llm-trainer), [Anyscale](https://www.anyscale.com/blog/fine-tuning-llama-2-a-comprehensive-case-study-for-tailoring-models-to-unique-applications)) \n",
"* [Function-calling](https://github.com/MeetKai/functionary/tree/main) for use-cases like extraction or tagging\n",
"\n"
"In addition, [here](https://blog.langchain.dev/using-langsmith-to-support-fine-tuning-of-open-source-llms/) is an overview on fine-tuning, which can utilize open source LLMs."
]
}
],
@@ -799,7 +593,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -0,0 +1 @@
label: 'Privacy'

View File

@@ -0,0 +1,451 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data anonymization with Microsoft Presidio\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/guides/privacy/presidio_data_anonymization.ipynb)\n",
"\n",
"## Use case\n",
"\n",
"Data anonymization is crucial before passing information to a language model like GPT-4 because it helps protect privacy and maintain confidentiality. If data is not anonymized, sensitive information such as names, addresses, contact numbers, or other identifiers linked to specific individuals could potentially be learned and misused. Hence, by obscuring or removing this personally identifiable information (PII), data can be used freely without compromising individuals' privacy rights or breaching data protection laws and regulations.\n",
"\n",
"## Overview\n",
"\n",
"Anonynization consists of two steps:\n",
"\n",
"1. **Identification:** Identify all data fields that contain personally identifiable information (PII).\n",
"2. **Replacement**: Replace all PIIs with pseudo values or codes that do not reveal any personal information about the individual but can be used for reference. We're not using regular encryption, because the language model won't be able to understand the meaning or context of the encrypted data.\n",
"\n",
"We use *Microsoft Presidio* together with *Faker* framework for anonymization purposes because of the wide range of functionalities they provide. The full implementation is available in `PresidioAnonymizer`.\n",
"\n",
"## Quickstart\n",
"\n",
"Below you will find the use case on how to leverage anonymization in LangChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install necessary packages\n",
"# ! pip install langchain langchain-experimental openai presidio-analyzer presidio-anonymizer spacy Faker\n",
"# ! python -m spacy download en_core_web_lg"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\\\n",
"Let's see how PII anonymization works using a sample sentence:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'My name is Mrs. Rachel Chen DDS, call me at 849-829-7628x073 or email me at christopherfrey@example.org'"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_experimental.data_anonymizer import PresidioAnonymizer\n",
"\n",
"anonymizer = PresidioAnonymizer()\n",
"\n",
"anonymizer.anonymize(\n",
" \"My name is Slim Shady, call me at 313-666-7440 or email me at real.slim.shady@gmail.com\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using with LangChain Expression Language\n",
"\n",
"With LCEL we can easily chain together anonymization with the rest of our application."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set env var OPENAI_API_KEY or load from a .env file:\n",
"# import dotenv\n",
"\n",
"# dotenv.load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='You can find our super secret data at https://www.ross.com/', additional_kwargs={}, example=False)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"template = \"\"\"According to this text, where can you find our super secret data?\n",
"\n",
"{anonymized_text}\n",
"\n",
"Answer:\"\"\"\n",
"prompt = PromptTemplate.from_template(template)\n",
"llm = ChatOpenAI()\n",
"\n",
"chain = {\"anonymized_text\": anonymizer.anonymize} | prompt | llm\n",
"chain.invoke(\"You can find our super secret data at https://supersecretdata.com\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Customization\n",
"We can specify ``analyzed_fields`` to only anonymize particular types of data."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'My name is Gabrielle Edwards, call me at 313-666-7440 or email me at real.slim.shady@gmail.com'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"anonymizer = PresidioAnonymizer(analyzed_fields=[\"PERSON\"])\n",
"\n",
"anonymizer.anonymize(\n",
" \"My name is Slim Shady, call me at 313-666-7440 or email me at real.slim.shady@gmail.com\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As can be observed, the name was correctly identified and replaced with another. The `analyzed_fields` attribute is responsible for what values are to be detected and substituted. We can add *PHONE_NUMBER* to the list:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'My name is Victoria Mckinney, call me at 713-549-8623 or email me at real.slim.shady@gmail.com'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"anonymizer = PresidioAnonymizer(analyzed_fields=[\"PERSON\", \"PHONE_NUMBER\"])\n",
"anonymizer.anonymize(\n",
" \"My name is Slim Shady, call me at 313-666-7440 or email me at real.slim.shady@gmail.com\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\\\n",
"If no analyzed_fields are specified, by default the anonymizer will detect all supported formats. Below is the full list of them:\n",
"\n",
"`['PERSON', 'EMAIL_ADDRESS', 'PHONE_NUMBER', 'IBAN_CODE', 'CREDIT_CARD', 'CRYPTO', 'IP_ADDRESS', 'LOCATION', 'DATE_TIME', 'NRP', 'MEDICAL_LICENSE', 'URL', 'US_BANK_NUMBER', 'US_DRIVER_LICENSE', 'US_ITIN', 'US_PASSPORT', 'US_SSN']`\n",
"\n",
"**Disclaimer:** We suggest carefully defining the private data to be detected - Presidio doesn't work perfectly and it sometimes makes mistakes, so it's better to have more control over the data."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'My name is Billy Russo, call me at 970-996-9453x038 or email me at jamie80@example.org'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"anonymizer = PresidioAnonymizer()\n",
"anonymizer.anonymize(\n",
" \"My name is Slim Shady, call me at 313-666-7440 or email me at real.slim.shady@gmail.com\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\\\n",
"It may be that the above list of detected fields is not sufficient. For example, the already available *PHONE_NUMBER* field does not support polish phone numbers and confuses it with another field:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'My polish phone number is EVIA70648911396944'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"anonymizer = PresidioAnonymizer()\n",
"anonymizer.anonymize(\"My polish phone number is 666555444\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\\\n",
"You can then write your own recognizers and add them to the pool of those present. How exactly to create recognizers is described in the [Presidio documentation](https://microsoft.github.io/presidio/samples/python/customizing_presidio_analyzer/)."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Define the regex pattern in a Presidio `Pattern` object:\n",
"from presidio_analyzer import Pattern, PatternRecognizer\n",
"\n",
"\n",
"polish_phone_numbers_pattern = Pattern(\n",
" name=\"polish_phone_numbers_pattern\",\n",
" regex=\"(?<!\\w)(\\(?(\\+|00)?48\\)?)?[ -]?\\d{3}[ -]?\\d{3}[ -]?\\d{3}(?!\\w)\",\n",
" score=1,\n",
")\n",
"\n",
"# Define the recognizer with one or more patterns\n",
"polish_phone_numbers_recognizer = PatternRecognizer(\n",
" supported_entity=\"POLISH_PHONE_NUMBER\", patterns=[polish_phone_numbers_pattern]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\\\n",
"Now, we can add recognizer by calling `add_recognizer` method on the anonymizer:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"anonymizer.add_recognizer(polish_phone_numbers_recognizer)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\\\n",
"And voilà! With the added pattern-based recognizer, the anonymizer now handles polish phone numbers."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"My polish phone number is <POLISH_PHONE_NUMBER>\n",
"My polish phone number is <POLISH_PHONE_NUMBER>\n",
"My polish phone number is <POLISH_PHONE_NUMBER>\n"
]
}
],
"source": [
"print(anonymizer.anonymize(\"My polish phone number is 666555444\"))\n",
"print(anonymizer.anonymize(\"My polish phone number is 666 555 444\"))\n",
"print(anonymizer.anonymize(\"My polish phone number is +48 666 555 444\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\\\n",
"The problem is - even though we recognize polish phone numbers now, we don't have a method (operator) that would tell how to substitute a given field - because of this, in the outpit we only provide string `<POLISH_PHONE_NUMBER>` We need to create a method to replace it correctly: "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'+48 533 220 543'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from faker import Faker\n",
"\n",
"fake = Faker(locale=\"pl_PL\")\n",
"\n",
"\n",
"def fake_polish_phone_number(_=None):\n",
" return fake.phone_number()\n",
"\n",
"\n",
"fake_polish_phone_number()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\\\n",
"We used Faker to create pseudo data. Now we can create an operator and add it to the anonymizer. For complete information about operators and their creation, see the Presidio documentation for [simple](https://microsoft.github.io/presidio/tutorial/10_simple_anonymization/) and [custom](https://microsoft.github.io/presidio/tutorial/11_custom_anonymization/) anonymization."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from presidio_anonymizer.entities import OperatorConfig\n",
"\n",
"new_operators = {\n",
" \"POLISH_PHONE_NUMBER\": OperatorConfig(\n",
" \"custom\", {\"lambda\": fake_polish_phone_number}\n",
" )\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"anonymizer.add_operators(new_operators)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'My polish phone number is +48 692 715 636'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"anonymizer.anonymize(\"My polish phone number is 666555444\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Future works\n",
"\n",
"- **deanonymization** - add the ability to reverse anonymization. For example, the workflow could look like this: `anonymize -> LLMChain -> deanonymize`. By doing this, we will retain anonymity in requests to, for example, OpenAI, and then be able restore the original data.\n",
"- **instance anonymization** - at this point, each occurrence of PII is treated as a separate entity and separately anonymized. Therefore, two occurrences of the name John Doe in the text will be changed to two different names. It is therefore worth introducing support for full instance detection, so that repeated occurrences are treated as a single object."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,10 +1,10 @@
# Pydantic Compatibility
# Pydantic compatibility
- Pydantic v2 was released in June, 2023 (https://docs.pydantic.dev/2.0/blog/pydantic-v2-final/)
- v2 contains has a number of breaking changes (https://docs.pydantic.dev/2.0/migration/)
- Pydantic v2 and v1 are under the same package name, so both versions cannot be installed at the same time
## LangChain Pydantic Migration Plan
## LangChain Pydantic migration plan
As of `langchain>=0.0.267`, LangChain will allow users to install either Pydantic V1 or V2.
* Internally LangChain will continue to [use V1](https://docs.pydantic.dev/latest/migration/#continue-using-pydantic-v1-features).

File diff suppressed because it is too large Load Diff

View File

@@ -93,7 +93,7 @@
"metadata": {},
"source": [
"## Usage\n",
"### Using the Context callback within a Chat Model\n",
"### Using the Context callback within a chat model\n",
"\n",
"The Context callback handler can be used to directly record transcripts between users and AI assistants.\n",
"\n",

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,63 @@
# LLMonitor
[LLMonitor](https://llmonitor.com) is an open-source observability platform that provides cost tracking, user tracking and powerful agent tracing.
<video controls width='100%' >
<source src='https://llmonitor.com/videos/demo-annotated.mp4'/>
</video>
## Setup
Create an account on [llmonitor.com](https://llmonitor.com), create an `App`, and then copy the associated `tracking id`.
Once you have it, set it as an environment variable by running:
```bash
export LLMONITOR_APP_ID="..."
```
If you'd prefer not to set an environment variable, you can pass the key directly when initializing the callback handler:
```python
from langchain.callbacks import LLMonitorCallbackHandler
handler = LLMonitorCallbackHandler(app_id="...")
```
## Usage with LLM/Chat models
```python
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks import LLMonitorCallbackHandler
handler = LLMonitorCallbackHandler(app_id="...")
llm = OpenAI(
callbacks=[handler],
)
chat = ChatOpenAI(
callbacks=[handler],
metadata={"userId": "123"}, # you can assign user ids to models in the metadata
)
```
## Usage with agents
```python
from langchain.agents import load_tools, initialize_agent, AgentType
from langchain.llms import OpenAI
from langchain.callbacks import LLMonitorCallbackHandler
handler = LLMonitorCallbackHandler(app_id="...")
llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)
agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?",
callbacks=[handler],
metadata={
"agentName": "Leo DiCaprio's girlfriend", # you can assign a custom agent in the metadata
},
)
```
## Support
For any question or issue with integration you can reach out to the LLMonitor team on [Discord](http://discord.com/invite/8PafSG58kK) or via [email](mailto:vince@llmonitor.com).

View File

@@ -11,7 +11,7 @@
"\n",
"[PromptLayer](https://promptlayer.com) is a an LLM observability platform that lets you visualize requests, version prompts, and track usage. In this guide we will go over how to setup the `PromptLayerCallbackHandler`. \n",
"\n",
"While PromptLayer does have LLMs that integrate directly with LangChain (eg [`PromptLayerOpenAI`](https://python.langchain.com/docs/integrations/llms/promptlayer_openai)), this callback is the recommended way to integrate PromptLayer with LangChain.\n",
"While PromptLayer does have LLMs that integrate directly with LangChain (e.g. [`PromptLayerOpenAI`](https://python.langchain.com/docs/integrations/llms/promptlayer_openai)), this callback is the recommended way to integrate PromptLayer with LangChain.\n",
"\n",
"See [our docs](https://docs.promptlayer.com/languages/langchain) for more information."
]

View File

@@ -0,0 +1,106 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# Bedrock Chat\n",
"\n",
"[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d51edc81",
"metadata": {},
"outputs": [],
"source": [
"%pip install boto3"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import BedrockChat\n",
"from langchain.schema import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat = BedrockChat(model_id=\"anthropic.claude-v2\", model_kwargs={\"temperature\":0.1})"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\" Voici la traduction en français : J'adore programmer.\", additional_kwargs={}, example=False)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
"]\n",
"chat(messages)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c253883f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,382 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ollama\n",
"\n",
"[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as LLaMA2, locally.\n",
"\n",
"Ollama bundles model weights, configuration, and data into a single package, defined by a Modelfile. \n",
"\n",
"It optimizes setup and configuration details, including GPU usage.\n",
"\n",
"For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).\n",
"\n",
"## Setup\n",
"\n",
"First, follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance:\n",
"\n",
"* [Download](https://ollama.ai/download)\n",
"* Fetch a model via `ollama pull <model family>`\n",
"* e.g., for `Llama-7b`: `ollama pull llama2`\n",
"* This will download the most basic version of the model (e.g., minimum # parameters and 4-bit quantization)\n",
"* On Mac, it will download to:\n",
"\n",
"`~/.ollama/models/manifests/registry.ollama.ai/library/<model family>/latest`\n",
"\n",
"* And we can specify a particular version, e.g., for `ollama pull vicuna:13b-v1.5-16k-q4_0`\n",
"* The file is here with the model version in place of `latest`\n",
"\n",
"`~/.ollama/models/manifests/registry.ollama.ai/library/vicuna/13b-v1.5-16k-q4_0`\n",
"\n",
"You can easily access models in a few ways:\n",
"\n",
"1/ if the app is running:\n",
"* All of your local models are automatically served on `localhost:11434`\n",
"* Select your model when setting `llm = Ollama(..., model=\"<model family>:<version>\")`\n",
"* If you set `llm = Ollama(..., model=\"<model family\")` withoout a version it will simply look for `latest`\n",
"\n",
"2/ if building from source or just running the binary: \n",
"* Then you must run `ollama serve`\n",
"* All of your local models are automatically served on `localhost:11434`\n",
"* Then, select as shown above\n",
"\n",
"\n",
"## Usage\n",
"\n",
"You can see a full list of supported parameters on the [API reference page](https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html).\n",
"\n",
"If you are using a LLaMA `chat` model (e.g., `ollama pull llama2:7b-chat`) then you can use the `ChatOllama` interface.\n",
"\n",
"This includes [special tokens](https://huggingface.co/blog/llama2#how-to-prompt-llama-2) for system message and user input."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOllama\n",
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler \n",
"chat_model = ChatOllama(model=\"llama2:7b-chat\", \n",
" callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With `StreamingStdOutCallbackHandler`, you will see tokens streamed."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Artificial intelligence (AI) has a rich and varied history that spans several decades. Hinweis: The following is a brief overview of the major milestones in the history of AI, but it is by no means exhaustive.\n",
"\n",
"1. Early Beginnings (1950s-1960s): The term \"Artificial Intelligence\" was coined in 1956 by computer scientist John McCarthy. However, the concept of creating machines that can think and learn like humans dates back to ancient times. In the 1950s and 1960s, researchers began exploring the possibilities of AI using simple algorithms and machine learning techniques.\n",
"2. Rule-Based Systems (1970s-1980s): In the 1970s and 1980s, AI research focused on developing rule-based systems, which use predefined rules to reason and make decisions. This led to the development of expert systems, which were designed to mimic the decision-making abilities of human experts in specific domains.\n",
"3. Machine Learning (1980s-1990s): The 1980s saw a shift towards machine learning, which enables machines to learn from data without being explicitly programmed. This led to the development of algorithms such as decision trees, neural networks, and support vector machines.\n",
"4. Deep Learning (2000s-present): In the early 2000s, deep learning emerged as a subfield of machine learning, focusing on neural networks with multiple layers. These networks can learn complex representations of data, leading to breakthroughs in image and speech recognition, natural language processing, and other areas.\n",
"5. Natural Language Processing (NLP) (1980s-present): NLP has been an active area of research since the 1980s, with a focus on developing algorithms that can understand and generate human language. This has led to applications such as chatbots, voice assistants, and language translation systems.\n",
"6. Robotics (1970s-present): The development of robotics has been closely tied to AI research, with a focus on creating machines that can perform tasks that typically require human intelligence, such as manipulation and locomotion.\n",
"7. Computer Vision (1980s-present): Computer vision has been an active area of research since the 1980s, with a focus on enabling machines to interpret and understand visual data from the world around us. This has led to applications such as image recognition, object detection, and autonomous driving.\n",
"8. Ethics and Society (1990s-present): As AI technology has become more advanced and integrated into various aspects of society, there has been a growing concern about the ethical implications of AI. This includes issues related to privacy, bias, and job displacement.\n",
"9. Reinforcement Learning (2000s-present): Reinforcement learning is a subfield of machine learning that involves training machines to make decisions based on feedback from their environment. This has led to breakthroughs in areas such as game playing, robotics, and autonomous driving.\n",
"10. Generative Models (2010s-present): Generative models are a class of AI algorithms that can generate new data that is similar to a given dataset. This has led to applications such as image synthesis, music generation, and language creation.\n",
"\n",
"These are just a few of the many developments in the history of AI. As the field continues to evolve, we can expect even more exciting breakthroughs and innovations in the years to come."
]
},
{
"data": {
"text/plain": [
"AIMessage(content=' Artificial intelligence (AI) has a rich and varied history that spans several decades. Hinweis: The following is a brief overview of the major milestones in the history of AI, but it is by no means exhaustive.\\n\\n1. Early Beginnings (1950s-1960s): The term \"Artificial Intelligence\" was coined in 1956 by computer scientist John McCarthy. However, the concept of creating machines that can think and learn like humans dates back to ancient times. In the 1950s and 1960s, researchers began exploring the possibilities of AI using simple algorithms and machine learning techniques.\\n2. Rule-Based Systems (1970s-1980s): In the 1970s and 1980s, AI research focused on developing rule-based systems, which use predefined rules to reason and make decisions. This led to the development of expert systems, which were designed to mimic the decision-making abilities of human experts in specific domains.\\n3. Machine Learning (1980s-1990s): The 1980s saw a shift towards machine learning, which enables machines to learn from data without being explicitly programmed. This led to the development of algorithms such as decision trees, neural networks, and support vector machines.\\n4. Deep Learning (2000s-present): In the early 2000s, deep learning emerged as a subfield of machine learning, focusing on neural networks with multiple layers. These networks can learn complex representations of data, leading to breakthroughs in image and speech recognition, natural language processing, and other areas.\\n5. Natural Language Processing (NLP) (1980s-present): NLP has been an active area of research since the 1980s, with a focus on developing algorithms that can understand and generate human language. This has led to applications such as chatbots, voice assistants, and language translation systems.\\n6. Robotics (1970s-present): The development of robotics has been closely tied to AI research, with a focus on creating machines that can perform tasks that typically require human intelligence, such as manipulation and locomotion.\\n7. Computer Vision (1980s-present): Computer vision has been an active area of research since the 1980s, with a focus on enabling machines to interpret and understand visual data from the world around us. This has led to applications such as image recognition, object detection, and autonomous driving.\\n8. Ethics and Society (1990s-present): As AI technology has become more advanced and integrated into various aspects of society, there has been a growing concern about the ethical implications of AI. This includes issues related to privacy, bias, and job displacement.\\n9. Reinforcement Learning (2000s-present): Reinforcement learning is a subfield of machine learning that involves training machines to make decisions based on feedback from their environment. This has led to breakthroughs in areas such as game playing, robotics, and autonomous driving.\\n10. Generative Models (2010s-present): Generative models are a class of AI algorithms that can generate new data that is similar to a given dataset. This has led to applications such as image synthesis, music generation, and language creation.\\n\\nThese are just a few of the many developments in the history of AI. As the field continues to evolve, we can expect even more exciting breakthroughs and innovations in the years to come.', additional_kwargs={}, example=False)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.schema import HumanMessage\n",
"\n",
"messages = [\n",
" HumanMessage(content=\"Tell me about the history of AI\")\n",
"]\n",
"chat_model(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## RAG\n",
"\n",
"We can use Olama with RAG, [just as shown here](https://python.langchain.com/docs/use_cases/question_answering/how_to/local_retrieval_qa).\n",
"\n",
"Let's use the 13b model:\n",
"\n",
"```\n",
"ollama pull llama2:13b\n",
"```\n",
"\n",
"Or, the 13b-chat model:\n",
"\n",
"```\n",
"ollama pull llama2:13b-chat\n",
"```\n",
"\n",
"Let's also use local embeddings from `GPT4AllEmbeddings` and `Chroma`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install gpt4all chromadb"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import WebBaseLoader\n",
"loader = WebBaseLoader(\"https://lilianweng.github.io/posts/2023-06-23-agent/\")\n",
"data = loader.load()\n",
"\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found model file at /Users/rlm/.cache/gpt4all/ggml-all-MiniLM-L6-v2-f16.bin\n"
]
}
],
"source": [
"from langchain.vectorstores import Chroma\n",
"from langchain.embeddings import GPT4AllEmbeddings\n",
"\n",
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question = \"What are the approaches to Task Decomposition?\"\n",
"docs = vectorstore.similarity_search(question)\n",
"len(docs)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain import PromptTemplate\n",
"\n",
"# Prompt\n",
"template = \"\"\"[INST] <<SYS>> Use the following pieces of context to answer the question at the end. \n",
"If you don't know the answer, just say that you don't know, don't try to make up an answer. \n",
"Use three sentences maximum and keep the answer as concise as possible. <</SYS>>\n",
"{context}\n",
"Question: {question}\n",
"Helpful Answer:[/INST]\"\"\"\n",
"QA_CHAIN_PROMPT = PromptTemplate(\n",
" input_variables=[\"context\", \"question\"],\n",
" template=template,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# Chat model\n",
"from langchain.chat_models import ChatOllama\n",
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"chat_model = ChatOllama(model=\"llama2:13b-chat\",\n",
" verbose=True,\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# QA chain\n",
"from langchain.chains import RetrievalQA\n",
"qa_chain = RetrievalQA.from_chain_type(\n",
" chat_model,\n",
" retriever=vectorstore.as_retriever(),\n",
" chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Based on the provided context, there are three approaches to task decomposition for AI agents:\n",
"\n",
"1. LLM with simple prompting, such as \"Steps for XYZ.\" or \"What are the subgoals for achieving XYZ?\"\n",
"2. Task-specific instructions, such as \"Write a story outline\" for writing a novel.\n",
"3. Human inputs."
]
}
],
"source": [
"question = \"What are the various approaches to Task Decomposition for AI Agents?\"\n",
"result = qa_chain({\"query\": question})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also get logging for tokens."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Based on the given context, here is the answer to the question \"What are the approaches to Task Decomposition?\"\n",
"\n",
"There are three approaches to task decomposition:\n",
"\n",
"1. LLM with simple prompting, such as \"Steps for XYZ.\" or \"What are the subgoals for achieving XYZ?\"\n",
"2. Using task-specific instructions, like \"Write a story outline\" for writing a novel.\n",
"3. With human inputs.{'model': 'llama2:13b-chat', 'created_at': '2023-08-23T15:37:51.469127Z', 'done': True, 'context': [1, 29871, 1, 29961, 25580, 29962, 518, 25580, 29962, 518, 25580, 29962, 3532, 14816, 29903, 6778, 4803, 278, 1494, 12785, 310, 3030, 304, 1234, 278, 1139, 472, 278, 1095, 29889, 29871, 13, 3644, 366, 1016, 29915, 29873, 1073, 278, 1234, 29892, 925, 1827, 393, 366, 1016, 29915, 29873, 1073, 29892, 1016, 29915, 29873, 1018, 304, 1207, 701, 385, 1234, 29889, 29871, 13, 11403, 2211, 25260, 7472, 322, 3013, 278, 1234, 408, 3022, 895, 408, 1950, 29889, 529, 829, 14816, 29903, 6778, 13, 5398, 26227, 508, 367, 2309, 313, 29896, 29897, 491, 365, 26369, 411, 2560, 9508, 292, 763, 376, 7789, 567, 363, 1060, 29979, 29999, 7790, 29876, 29896, 19602, 376, 5618, 526, 278, 1014, 1484, 1338, 363, 3657, 15387, 1060, 29979, 29999, 29973, 613, 313, 29906, 29897, 491, 773, 3414, 29899, 14940, 11994, 29936, 321, 29889, 29887, 29889, 376, 6113, 263, 5828, 27887, 1213, 363, 5007, 263, 9554, 29892, 470, 313, 29941, 29897, 411, 5199, 10970, 29889, 13, 13, 5398, 26227, 508, 367, 2309, 313, 29896, 29897, 491, 365, 26369, 411, 2560, 9508, 292, 763, 376, 7789, 567, 363, 1060, 29979, 29999, 7790, 29876, 29896, 19602, 376, 5618, 526, 278, 1014, 1484, 1338, 363, 3657, 15387, 1060, 29979, 29999, 29973, 613, 313, 29906, 29897, 491, 773, 3414, 29899, 14940, 11994, 29936, 321, 29889, 29887, 29889, 376, 6113, 263, 5828, 27887, 1213, 363, 5007, 263, 9554, 29892, 470, 313, 29941, 29897, 411, 5199, 10970, 29889, 13, 13, 1451, 16047, 267, 297, 1472, 29899, 8489, 18987, 322, 3414, 26227, 29901, 1858, 9450, 975, 263, 3309, 29891, 4955, 322, 17583, 3902, 8253, 278, 1650, 2913, 3933, 18066, 292, 29889, 365, 26369, 29879, 21117, 304, 10365, 13900, 746, 20050, 411, 15668, 4436, 29892, 3907, 963, 3109, 16424, 9401, 304, 25618, 1058, 5110, 515, 14260, 322, 1059, 29889, 13, 13, 1451, 16047, 267, 297, 1472, 29899, 8489, 18987, 322, 3414, 26227, 29901, 1858, 9450, 975, 263, 3309, 29891, 4955, 322, 17583, 3902, 8253, 278, 1650, 2913, 3933, 18066, 292, 29889, 365, 26369, 29879, 21117, 304, 10365, 13900, 746, 20050, 411, 15668, 4436, 29892, 3907, 963, 3109, 16424, 9401, 304, 25618, 1058, 5110, 515, 14260, 322, 1059, 29889, 13, 16492, 29901, 1724, 526, 278, 13501, 304, 9330, 897, 510, 3283, 29973, 13, 29648, 1319, 673, 10834, 29914, 25580, 29962, 518, 29914, 25580, 29962, 518, 29914, 25580, 29962, 29871, 16564, 373, 278, 2183, 3030, 29892, 1244, 338, 278, 1234, 304, 278, 1139, 376, 5618, 526, 278, 13501, 304, 9330, 897, 510, 3283, 3026, 13, 13, 8439, 526, 2211, 13501, 304, 3414, 26227, 29901, 13, 13, 29896, 29889, 365, 26369, 411, 2560, 9508, 292, 29892, 1316, 408, 376, 7789, 567, 363, 1060, 29979, 29999, 1213, 470, 376, 5618, 526, 278, 1014, 1484, 1338, 363, 3657, 15387, 1060, 29979, 29999, 3026, 13, 29906, 29889, 5293, 3414, 29899, 14940, 11994, 29892, 763, 376, 6113, 263, 5828, 27887, 29908, 363, 5007, 263, 9554, 29889, 13, 29941, 29889, 2973, 5199, 10970, 29889, 2], 'total_duration': 9514823750, 'load_duration': 795542, 'sample_count': 99, 'sample_duration': 68732000, 'prompt_eval_count': 146, 'prompt_eval_duration': 6206275000, 'eval_count': 98, 'eval_duration': 3229641000}\n"
]
}
],
"source": [
"from langchain.schema import LLMResult\n",
"from langchain.callbacks.base import BaseCallbackHandler\n",
"\n",
"class GenerationStatisticsCallback(BaseCallbackHandler):\n",
" def on_llm_end(self, response: LLMResult, **kwargs) -> None:\n",
" print(response.generations[0][0].generation_info)\n",
" \n",
"callback_manager = CallbackManager([StreamingStdOutCallbackHandler(), GenerationStatisticsCallback()])\n",
"\n",
"chat_model = ChatOllama(model=\"llama2:13b-chat\",\n",
" verbose=True,\n",
" callback_manager=callback_manager)\n",
"\n",
"qa_chain = RetrievalQA.from_chain_type(\n",
" chat_model,\n",
" retriever=vectorstore.as_retriever(),\n",
" chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT},\n",
")\n",
"\n",
"question = \"What are the approaches to Task Decomposition?\"\n",
"result = qa_chain({\"query\": question})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`eval_count` / (`eval_duration`/10e9) gets `tok / s`"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"30.343929867127645"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"98 / (3229641000/1000/1000/1000)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -143,12 +143,39 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c095285d",
"cell_type": "markdown",
"id": "57e27714",
"metadata": {},
"outputs": [],
"source": []
"source": [
"## Fine-tuning\n",
"\n",
"You can call fine-tuned OpenAI models by passing in your corresponding `modelName` parameter.\n",
"\n",
"This generally takes the form of `ft:{OPENAI_MODEL_NAME}:{ORG_NAME}::{MODEL_ID}`. For example:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "33c4a8b0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, example=False)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fine_tuned_model = ChatOpenAI(temperature=0, model_name=\"ft:gpt-3.5-turbo-0613:langchain::7qTVM5AR\")\n",
"\n",
"fine_tuned_model(messages)"
]
}
],
"metadata": {
@@ -167,7 +194,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,325 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "c4ff9336-1cf3-459e-bd70-d1314c1da6a0",
"metadata": {},
"source": [
"# Discord\n",
"\n",
"This notebook shows how to create your own chat loader that works on copy-pasted messages (from dms) to a list of LangChain messages.\n",
"\n",
"The process has four steps:\n",
"1. Create the chat .txt file by copying chats from the Discord app and pasting them in a file on your local computer\n",
"2. Copy the chat loader definition from below to a local file.\n",
"3. Initialize the `DiscordChatLoader` with the file path pointed to the text file.\n",
"4. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion.\n",
"\n",
"## 1. Creat message dump\n",
"\n",
"Currently (2023/08/23) this loader only supports .txt files in the format generated by copying messages in the app to your clipboard and pasting in a file. Below is an example."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e4ccfdfa-6869-4d67-90a0-ab99f01b7553",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting discord_chats.txt\n"
]
}
],
"source": [
"%%writefile discord_chats.txt\n",
"talkingtower — 08/15/2023 11:10 AM\n",
"Love music! Do you like jazz?\n",
"reporterbob — 08/15/2023 9:27 PM\n",
"Yes! Jazz is fantastic. Ever heard this one?\n",
"Website\n",
"Listen to classic jazz track...\n",
"\n",
"talkingtower — Yesterday at 5:03 AM\n",
"Indeed! Great choice. 🎷\n",
"reporterbob — Yesterday at 5:23 AM\n",
"Thanks! How about some virtual sightseeing?\n",
"Website\n",
"Virtual tour of famous landmarks...\n",
"\n",
"talkingtower — Today at 2:38 PM\n",
"Sounds fun! Let's explore.\n",
"reporterbob — Today at 2:56 PM\n",
"Enjoy the tour! See you around.\n",
"talkingtower — Today at 3:00 PM\n",
"Thank you! Goodbye! 👋\n",
"reporterbob — Today at 3:02 PM\n",
"Farewell! Happy exploring."
]
},
{
"cell_type": "markdown",
"id": "359565a7-dad3-403c-a73c-6414b1295127",
"metadata": {},
"source": [
"## 2. Define chat loader\n",
"\n",
"LangChain currently does not support "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a429e0c4-4d7d-45f8-bbbb-c7fc5229f6af",
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import re\n",
"from typing import Iterator, List\n",
"\n",
"from langchain import schema\n",
"from langchain.chat_loaders import base as chat_loaders\n",
"\n",
"logger = logging.getLogger()\n",
"\n",
"\n",
"class DiscordChatLoader(chat_loaders.BaseChatLoader):\n",
" \n",
" def __init__(self, path: str):\n",
" \"\"\"\n",
" Initialize the Discord chat loader.\n",
"\n",
" Args:\n",
" path: Path to the exported Discord chat text file.\n",
" \"\"\"\n",
" self.path = path\n",
" self._message_line_regex = re.compile(\n",
" r\"(.+?) — (\\w{3,9} \\d{1,2}(?:st|nd|rd|th)?(?:, \\d{4})? \\d{1,2}:\\d{2} (?:AM|PM)|Today at \\d{1,2}:\\d{2} (?:AM|PM)|Yesterday at \\d{1,2}:\\d{2} (?:AM|PM))\", # noqa\n",
" flags=re.DOTALL,\n",
" )\n",
"\n",
" def _load_single_chat_session_from_txt(\n",
" self, file_path: str\n",
" ) -> chat_loaders.ChatSession:\n",
" \"\"\"\n",
" Load a single chat session from a text file.\n",
"\n",
" Args:\n",
" file_path: Path to the text file containing the chat messages.\n",
"\n",
" Returns:\n",
" A `ChatSession` object containing the loaded chat messages.\n",
" \"\"\"\n",
" with open(file_path, \"r\", encoding=\"utf-8\") as file:\n",
" lines = file.readlines()\n",
"\n",
" results: List[schema.BaseMessage] = []\n",
" current_sender = None\n",
" current_timestamp = None\n",
" current_content = []\n",
" for line in lines:\n",
" if re.match(\n",
" r\".+? — (\\d{2}/\\d{2}/\\d{4} \\d{1,2}:\\d{2} (?:AM|PM)|Today at \\d{1,2}:\\d{2} (?:AM|PM)|Yesterday at \\d{1,2}:\\d{2} (?:AM|PM))\", # noqa\n",
" line,\n",
" ):\n",
" if current_sender and current_content:\n",
" results.append(\n",
" schema.HumanMessage(\n",
" content=\"\".join(current_content).strip(),\n",
" additional_kwargs={\n",
" \"sender\": current_sender,\n",
" \"events\": [{\"message_time\": current_timestamp}],\n",
" },\n",
" )\n",
" )\n",
" current_sender, current_timestamp = line.split(\" — \")[:2]\n",
" current_content = [\n",
" line[len(current_sender) + len(current_timestamp) + 4 :].strip()\n",
" ]\n",
" elif re.match(r\"\\[\\d{1,2}:\\d{2} (?:AM|PM)\\]\", line.strip()):\n",
" results.append(\n",
" schema.HumanMessage(\n",
" content=\"\".join(current_content).strip(),\n",
" additional_kwargs={\n",
" \"sender\": current_sender,\n",
" \"events\": [{\"message_time\": current_timestamp}],\n",
" },\n",
" )\n",
" )\n",
" current_timestamp = line.strip()[1:-1]\n",
" current_content = []\n",
" else:\n",
" current_content.append(\"\\n\" + line.strip())\n",
"\n",
" if current_sender and current_content:\n",
" results.append(\n",
" schema.HumanMessage(\n",
" content=\"\".join(current_content).strip(),\n",
" additional_kwargs={\n",
" \"sender\": current_sender,\n",
" \"events\": [{\"message_time\": current_timestamp}],\n",
" },\n",
" )\n",
" )\n",
"\n",
" return chat_loaders.ChatSession(messages=results)\n",
"\n",
" def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:\n",
" \"\"\"\n",
" Lazy load the messages from the chat file and yield them in the required format.\n",
"\n",
" Yields:\n",
" A `ChatSession` object containing the loaded chat messages.\n",
" \"\"\"\n",
" yield self._load_single_chat_session_from_txt(self.path)\n"
]
},
{
"cell_type": "markdown",
"id": "c8240393-48be-44d2-b0d6-52c215cd8ac2",
"metadata": {},
"source": [
"## 2. Create loader\n",
"\n",
"We will point to the file we just wrote to disk."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1268de40-b0e5-445d-9cd8-54856cd0293a",
"metadata": {},
"outputs": [],
"source": [
"loader = DiscordChatLoader(\n",
" path=\"./discord_chats.txt\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "4928df4b-ae31-48a7-bd76-be3ecee1f3e0",
"metadata": {},
"source": [
"## 3. Load Messages\n",
"\n",
"Assuming the format is correct, the loader will convert the chats to langchain messages."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c8a0836d-4a22-4790-bfe9-97f2145bb0d6",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"from langchain.chat_loaders.base import ChatSession\n",
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
" merge_chat_runs,\n",
")\n",
"\n",
"raw_messages = loader.lazy_load()\n",
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"talkingtower\" to AI messages\n",
"messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"talkingtower\"))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1913963b-c44e-4f7a-aba7-0423c9b8bd59",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'messages': [AIMessage(content='Love music! Do you like jazz?', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': '08/15/2023 11:10 AM\\n'}]}, example=False),\n",
" HumanMessage(content='Yes! Jazz is fantastic. Ever heard this one?\\nWebsite\\nListen to classic jazz track...', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': '08/15/2023 9:27 PM\\n'}]}, example=False),\n",
" AIMessage(content='Indeed! Great choice. 🎷', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Yesterday at 5:03 AM\\n'}]}, example=False),\n",
" HumanMessage(content='Thanks! How about some virtual sightseeing?\\nWebsite\\nVirtual tour of famous landmarks...', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Yesterday at 5:23 AM\\n'}]}, example=False),\n",
" AIMessage(content=\"Sounds fun! Let's explore.\", additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Today at 2:38 PM\\n'}]}, example=False),\n",
" HumanMessage(content='Enjoy the tour! See you around.', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Today at 2:56 PM\\n'}]}, example=False),\n",
" AIMessage(content='Thank you! Goodbye! 👋', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Today at 3:00 PM\\n'}]}, example=False),\n",
" HumanMessage(content='Farewell! Happy exploring.', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Today at 3:02 PM\\n'}]}, example=False)]}]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages"
]
},
{
"cell_type": "markdown",
"id": "8595a518-5c89-44aa-94a7-ca51e7e2a5fa",
"metadata": {},
"source": [
"### Next Steps\n",
"\n",
"You can then use these messages how you see fit, such as finetuning a model, few-shot example selection, or directly make predictions for the next message "
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "08ff0a1e-fca0-4da3-aacd-d7401f99d946",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Thank you! Have a wonderful day! 🌟"
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"for chunk in llm.stream(messages[0]['messages']):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "50a5251f-074a-4a3c-a2b0-b1de85e0ac6a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,579 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e4bd269b",
"metadata": {},
"source": [
"# Facebook Messenger\n",
"\n",
"This notebook shows how to load data from Facebook in a format you can finetune on. The overall steps are:\n",
"\n",
"1. Download your messenger data to disk.\n",
"2. Create the Chat Loader and call `loader.load()` (or `loader.lazy_load()`) to perform the conversion.\n",
"3. Optionally use `merge_chat_runs` to combine message from the same sender in sequence, and/or `map_ai_messages` to convert messages from the specified sender to the \"AIMessage\" class. Once you've done this, call `convert_messages_for_finetuning` to prepare your data for fine-tuning.\n",
"\n",
"\n",
"Once this has been done, you can fine-tune your model. To do so you would complete the following steps:\n",
"\n",
"4. Upload your messages to OpenAI and run a fine-tuning job.\n",
"6. Use the resulting model in your LangChain app!\n",
"\n",
"\n",
"Let's begin.\n",
"\n",
"\n",
"## 1. Download Data\n",
"\n",
"To download your own messenger data, following instructions [here](https://www.zapptales.com/en/download-facebook-messenger-chat-history-how-to/). IMPORTANT - make sure to download them in JSON format (not HTML).\n",
"\n",
"We are hosting an example dump at [this google drive link](https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing) that we will use in this walkthrough."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "647f2158-a42e-4634-b283-b8492caf542a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File file.zip downloaded.\n",
"File file.zip has been unzipped.\n"
]
}
],
"source": [
"# This uses some example data\n",
"import requests\n",
"import zipfile\n",
"\n",
"def download_and_unzip(url: str, output_path: str = 'file.zip') -> None:\n",
" file_id = url.split('/')[-2]\n",
" download_url = f'https://drive.google.com/uc?export=download&id={file_id}'\n",
"\n",
" response = requests.get(download_url)\n",
" if response.status_code != 200:\n",
" print('Failed to download the file.')\n",
" return\n",
"\n",
" with open(output_path, 'wb') as file:\n",
" file.write(response.content)\n",
" print(f'File {output_path} downloaded.')\n",
"\n",
" with zipfile.ZipFile(output_path, 'r') as zip_ref:\n",
" zip_ref.extractall()\n",
" print(f'File {output_path} has been unzipped.')\n",
"\n",
"# URL of the file to download\n",
"url = 'https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing'\n",
"\n",
"# Download and unzip\n",
"download_and_unzip(url)\n"
]
},
{
"cell_type": "markdown",
"id": "48ef8bb1-fc28-453c-835a-94a552f05a91",
"metadata": {},
"source": [
"## 2. Create Chat Loader\n",
"\n",
"We have 2 different `FacebookMessengerChatLoader` classes, one for an entire directory of chats, and one to load individual files. We"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a0869bc6",
"metadata": {},
"outputs": [],
"source": [
"directory_path = \"./hogwarts\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0460bf25",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.facebook_messenger import (\n",
" SingleFileFacebookMessengerChatLoader,\n",
" FolderFacebookMessengerChatLoader,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f61ee277",
"metadata": {},
"outputs": [],
"source": [
"loader = SingleFileFacebookMessengerChatLoader(\n",
" path=\"./hogwarts/inbox/HermioneGranger/messages_Hermione_Granger.json\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ec466ad7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content=\"Hi Hermione! How's your summer going so far?\", additional_kwargs={'sender': 'Harry Potter'}, example=False),\n",
" HumanMessage(content=\"Harry! Lovely to hear from you. My summer is going well, though I do miss everyone. I'm spending most of my time going through my books and researching fascinating new topics. How about you?\", additional_kwargs={'sender': 'Hermione Granger'}, example=False),\n",
" HumanMessage(content=\"I miss you all too. The Dursleys are being their usual unpleasant selves but I'm getting by. At least I can practice some spells in my room without them knowing. Let me know if you find anything good in your researching!\", additional_kwargs={'sender': 'Harry Potter'}, example=False)]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_session = loader.load()[0]\n",
"chat_session[\"messages\"][:3]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "8a3ee473",
"metadata": {},
"outputs": [],
"source": [
"loader = FolderFacebookMessengerChatLoader(\n",
" path=\"./hogwarts\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "9f41e122",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_sessions = loader.load()\n",
"len(chat_sessions)"
]
},
{
"cell_type": "markdown",
"id": "d4aa3580-adc1-4b48-9bba-0e8e8d9f44ce",
"metadata": {},
"source": [
"## 3. Prepare for fine-tuning\n",
"\n",
"Calling `load()` returns all the chat messages we could extract as human messages. When conversing with chat bots, conversations typically follow a more strict alternating dialogue pattern relative to real conversations. \n",
"\n",
"You can choose to merge message \"runs\" (consecutive messages from the same sender) and select a sender to represent the \"AI\". The fine-tuned LLM will learn to generate these AI messages."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "5a78030d-b757-4bbe-8a6c-841056f46df7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.utils import (\n",
" merge_chat_runs,\n",
" map_ai_messages,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ff35b028-78bf-4c5b-9ec6-939fe67de7f7",
"metadata": {},
"outputs": [],
"source": [
"merged_sessions = merge_chat_runs(chat_sessions)\n",
"alternating_sessions = list(map_ai_messages(merged_sessions, \"Harry Potter\"))"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "4b11906e-a496-4d01-9f0d-1938c14147bf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.\", additional_kwargs={'sender': 'Harry Potter'}, example=False),\n",
" HumanMessage(content=\"What is it, Potter? I'm quite busy at the moment.\", additional_kwargs={'sender': 'Severus Snape'}, example=False),\n",
" AIMessage(content=\"I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.\", additional_kwargs={'sender': 'Harry Potter'}, example=False)]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now all of Harry Potter's messages will take the AI message class\n",
"# which maps to the 'assistant' role in OpenAI's training format\n",
"alternating_sessions[0]['messages'][:3]"
]
},
{
"cell_type": "markdown",
"id": "d985478d-062e-47b9-ae9a-102f59be07c0",
"metadata": {},
"source": [
"#### Now we can convert to OpenAI format dictionaries"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "21372331",
"metadata": {},
"outputs": [],
"source": [
"from langchain.adapters.openai import convert_messages_for_finetuning"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "92c5ae7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prepared 9 dialogues for training\n"
]
}
],
"source": [
"training_data = convert_messages_for_finetuning(alternating_sessions)\n",
"print(f\"Prepared {len(training_data)} dialogues for training\")"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "dfcbd181",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"[{'role': 'assistant',\n",
" 'content': \"Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.\"},\n",
" {'role': 'user',\n",
" 'content': \"What is it, Potter? I'm quite busy at the moment.\"},\n",
" {'role': 'assistant',\n",
" 'content': \"I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.\"}]"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_data[0][:3]"
]
},
{
"cell_type": "markdown",
"id": "f1a9fd64-4f9f-42d3-b5dc-2a340e51e9e7",
"metadata": {},
"source": [
"OpenAI currently requires at least 10 training examples for a fine-tuning job, though they recommend between 50-100 for most tasks. Since we only have 9 chat sessions, we can subdivide them (optionally with some overlap) so that each training example is comprised of a portion of a whole conversation.\n",
"\n",
"Facebook chat sessions (1 per person) often span multiple days and conversations,\n",
"so the long-range dependencies may not be that important to model anyhow."
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "13cd290a-b1e9-4686-bb5e-d99de8b8612b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"100"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Our chat is alternating, we will make each datapoint a group of 8 messages,\n",
"# with 2 messages overlapping\n",
"chunk_size = 8\n",
"overlap = 2\n",
"\n",
"training_examples = [\n",
" conversation_messages[i: i + chunk_size] \n",
" for conversation_messages in training_data\n",
" for i in range(\n",
" 0, len(conversation_messages) - chunk_size + 1, \n",
" chunk_size - overlap)\n",
"]\n",
"\n",
"len(training_examples)"
]
},
{
"cell_type": "markdown",
"id": "cc8baf41-ff07-4492-96bd-b2472ee7cef9",
"metadata": {},
"source": [
"## 4. Fine-tune the model\n",
"\n",
"It's time to fine-tune the model. Make sure you have `openai` installed\n",
"and have set your `OPENAI_API_KEY` appropriately"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "95ce3f63-3c80-44b2-9060-534ad74e16fa",
"metadata": {},
"outputs": [],
"source": [
"# %pip install -U openai --quiet"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "ab9e28eb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File file-zCyNBeg4snpbBL7VkvsuhCz8 ready afer 30.55 seconds.\n"
]
}
],
"source": [
"import json\n",
"from io import BytesIO\n",
"import time\n",
"\n",
"import openai\n",
"\n",
"# We will write the jsonl file in memory\n",
"my_file = BytesIO()\n",
"for m in training_examples:\n",
" my_file.write((json.dumps({\"messages\": m}) + \"\\n\").encode('utf-8'))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(\n",
" file=my_file,\n",
" purpose='fine-tune'\n",
")\n",
"\n",
"# OpenAI audits each training file for compliance reasons.\n",
"# This make take a few minutes\n",
"status = openai.File.retrieve(training_file.id).status\n",
"start_time = time.time()\n",
"while status != \"processed\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" status = openai.File.retrieve(training_file.id).status\n",
"print(f\"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.\")"
]
},
{
"cell_type": "markdown",
"id": "759a7f51-fde9-4b75-aaa9-e600e6537bd1",
"metadata": {},
"source": [
"With the file ready, it's time to kick off a training job."
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "3f451425",
"metadata": {},
"outputs": [],
"source": [
"job = openai.FineTuningJob.create(\n",
" training_file=training_file.id,\n",
" model=\"gpt-3.5-turbo\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "489b23ef-5e14-42a9-bafb-44220ec6960b",
"metadata": {},
"source": [
"Grab a cup of tea while your model is being prepared. This may take some time!"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "bac1637a-c087-4523-ade1-c47f9bf4c6f4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Status=[running]... 908.87s\r"
]
}
],
"source": [
"status = openai.FineTuningJob.retrieve(job.id).status\n",
"start_time = time.time()\n",
"while status != \"succeeded\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" job = openai.FineTuningJob.retrieve(job.id)\n",
" status = job.status"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "535895e1-bc69-40e5-82ed-e24ed2baeeee",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ft:gpt-3.5-turbo-0613:personal::7rDwkaOq\n"
]
}
],
"source": [
"print(job.fine_tuned_model)"
]
},
{
"cell_type": "markdown",
"id": "502ff73b-f9e9-49ce-ba45-401811e57946",
"metadata": {},
"source": [
"## 5. Use in LangChain\n",
"\n",
"You can use the resulting model ID directly the `ChatOpenAI` model class."
]
},
{
"cell_type": "code",
"execution_count": 67,
"id": "3925d60d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model=job.fine_tuned_model,\n",
" temperature=1,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 69,
"id": "7190cf2e-ab34-4ceb-bdad-45f24f069c29",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "f02057e9-f914-40b1-9c9d-9432ff594b98",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The usual - Potions, Transfiguration, Defense Against the Dark Arts. What about you?"
]
}
],
"source": [
"for tok in chain.stream({\"input\": \"What classes are you taking?\"}):\n",
" print(tok, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35331503-3cc6-4d64-955e-64afe6b5fef3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,179 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "b3d1705d",
"metadata": {},
"source": [
"# GMail\n",
"\n",
"This loader goes over how to load data from GMail. There are many ways you could want to load data from GMail. This loader is currently fairly opionated in how to do so. The way it does it is it first looks for all messages that you have sent. It then looks for messages where you are responding to a previous email. It then fetches that previous email, and creates a training example of that email, followed by your email.\n",
"\n",
"Note that there are clear limitations here. For example, all examples created are only looking at the previous email for context.\n",
"\n",
"To use:\n",
"\n",
"- Set up a Google Developer Account: Go to the Google Developer Console, create a project, and enable the Gmail API for that project. This will give you a credentials.json file that you'll need later.\n",
"\n",
"- Install the Google Client Library: Run the following command to install the Google Client Library:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "84578039",
"metadata": {},
"outputs": [],
"source": [
"!pip install --upgrade google-auth google-auth-oauthlib google-auth-httplib2 google-api-python-client"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "be18f796",
"metadata": {},
"outputs": [],
"source": [
"import os.path\n",
"import base64\n",
"import json\n",
"import re\n",
"import time\n",
"from google.auth.transport.requests import Request\n",
"from google.oauth2.credentials import Credentials\n",
"from google_auth_oauthlib.flow import InstalledAppFlow\n",
"from googleapiclient.discovery import build\n",
"import logging\n",
"import requests\n",
"\n",
"SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']\n",
"\n",
"\n",
"creds = None\n",
"# The file token.json stores the user's access and refresh tokens, and is\n",
"# created automatically when the authorization flow completes for the first\n",
"# time.\n",
"if os.path.exists('email_token.json'):\n",
" creds = Credentials.from_authorized_user_file('email_token.json', SCOPES)\n",
"# If there are no (valid) credentials available, let the user log in.\n",
"if not creds or not creds.valid:\n",
" if creds and creds.expired and creds.refresh_token:\n",
" creds.refresh(Request())\n",
" else:\n",
" flow = InstalledAppFlow.from_client_secrets_file( \n",
" # your creds file here. Please create json file as here https://cloud.google.com/docs/authentication/getting-started\n",
" 'creds.json', SCOPES)\n",
" creds = flow.run_local_server(port=0)\n",
" # Save the credentials for the next run\n",
" with open('email_token.json', 'w') as token:\n",
" token.write(creds.to_json())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a2793ba0",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.gmail import GMailLoader"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2154597f",
"metadata": {},
"outputs": [],
"source": [
"loader = GMailLoader(creds=creds, n=3)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "0b7d11bd",
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "74764bc7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Sometimes there can be errors which we silently ignore\n",
"len(data)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d9360a85",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "a9646f7a",
"metadata": {},
"outputs": [],
"source": [
"# This makes messages sent by hchase@langchain.com the AI Messages\n",
"# This means you will train an LLM to predict as if it's responding as hchase\n",
"training_data = list(map_ai_messages(data, sender=\"Harrison Chase <hchase@langchain.com>\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1a182f0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,420 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "01fcfa2f-33a9-48f3-835a-b1956c394d6b",
"metadata": {},
"source": [
"# iMessage\n",
"\n",
"This notebook shows how to use the iMessage chat loader. This class helps convert iMessage conversations to LangChain chat messages.\n",
"\n",
"On MacOS, iMessage stores conversations in a sqlite database at `~/Library/Messages/chat.db` (at least for macOS Ventura 13.4). \n",
"The `IMessageChatLoader` loads from this database file. \n",
"\n",
"1. Create the `IMessageChatLoader` with the file path pointed to `chat.db` database you'd like to process.\n",
"2. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion. Optionally use `merge_chat_runs` to combine message from the same sender in sequence, and/or `map_ai_messages` to convert messages from the specified sender to the \"AIMessage\" class.\n",
"\n",
"## 1. Access Chat DB\n",
"\n",
"It's likely that your terminal is denied access to `~/Library/Messages`. To use this class, you can copy the DB to an accessible directory (e.g., Documents) and load from there. Alternatively (and not recommended), you can grant full disk access for your terminal emulator in System Settings > Securityand Privacy > Full Disk Access.\n",
"\n",
"We have created an example database you can use at [this linked drive file](https://drive.google.com/file/d/1NebNKqTA2NXApCmeH6mu0unJD2tANZzo/view?usp=sharing)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "036ce7e0-a38f-4cbe-89a6-a205ae7c23be",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File chat.db downloaded.\n"
]
}
],
"source": [
"# This uses some example data\n",
"import requests\n",
"\n",
"def download_drive_file(url: str, output_path: str = 'chat.db') -> None:\n",
" file_id = url.split('/')[-2]\n",
" download_url = f'https://drive.google.com/uc?export=download&id={file_id}'\n",
"\n",
" response = requests.get(download_url)\n",
" if response.status_code != 200:\n",
" print('Failed to download the file.')\n",
" return\n",
"\n",
" with open(output_path, 'wb') as file:\n",
" file.write(response.content)\n",
" print(f'File {output_path} downloaded.')\n",
"\n",
"url = 'https://drive.google.com/file/d/1NebNKqTA2NXApCmeH6mu0unJD2tANZzo/view?usp=sharing'\n",
"\n",
"# Download file to chat.db\n",
"download_drive_file(url)"
]
},
{
"cell_type": "markdown",
"id": "cf60f703-76f1-4602-a723-02c59535c1af",
"metadata": {},
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"Provide the loader with the file path to the zip directory. You can optionally specify the user id that maps to an ai message as well an configure whether to merge message runs."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4b8b432a-d2bc-49e1-b35f-761730a8fd6d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.imessage import IMessageChatLoader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8ec6661b-0aca-48ae-9e2b-6412856c287b",
"metadata": {},
"outputs": [],
"source": [
"loader = IMessageChatLoader(\n",
" path=\"./chat.db\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "8805a7c5-84b4-49f5-8989-0022f2054ace",
"metadata": {},
"source": [
"## 3. Load messages\n",
"\n",
"The `load()` (or `lazy_load`) methods return a list of \"ChatSessions\" that currently just contain a list of messages per loaded conversation. All messages are mapped to \"HumanMessage\" objects to start. \n",
"\n",
"You can optionally choose to merge message \"runs\" (consecutive messages from the same sender) and select a sender to represent the \"AI\". The fine-tuned LLM will learn to generate these AI messages."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "fcd69b3e-020d-4a15-8a0d-61c2d34e1ee1",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"from langchain.chat_loaders.base import ChatSession\n",
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
" merge_chat_runs,\n",
")\n",
"\n",
"raw_messages = loader.lazy_load()\n",
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"Tortoise\" to AI messages. Do you have a guess who these conversations are between?\n",
"chat_sessions: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"Tortoise\"))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "370b8c26-c7a8-434c-a225-45c20ff14a03",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Slow and steady, that's my motto.\", additional_kwargs={'message_time': 1693182723, 'sender': 'Tortoise'}, example=False),\n",
" HumanMessage(content='Speed is key!', additional_kwargs={'message_time': 1693182753, 'sender': 'Hare'}, example=False),\n",
" AIMessage(content='A balanced approach is more reliable.', additional_kwargs={'message_time': 1693182783, 'sender': 'Tortoise'}, example=False)]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now all of the Tortoise's messages will take the AI message class\n",
"# which maps to the 'assistant' role in OpenAI's training format\n",
"alternating_sessions[0]['messages'][:3]"
]
},
{
"cell_type": "markdown",
"id": "05208f9d-3193-4a8d-86a5-13df2c8197e5",
"metadata": {},
"source": [
"## 3. Prepare for fine-tuning\n",
"\n",
"Now it's time to convert our chat messages to OpenAI dictionaries. We can use the `convert_messages_for_finetuning` utility to do so."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8834861f-f37f-4c08-96c6-917269bf09b8",
"metadata": {},
"outputs": [],
"source": [
"from langchain.adapters.openai import convert_messages_for_finetuning"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "ce7ab0f9-6e6a-4a1c-8b86-c635251d437e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prepared 10 dialogues for training\n"
]
}
],
"source": [
"training_data = convert_messages_for_finetuning(alternating_sessions)\n",
"print(f\"Prepared {len(training_data)} dialogues for training\")"
]
},
{
"cell_type": "markdown",
"id": "b494d64c-8056-42ae-b4c1-a9cfabc002ea",
"metadata": {},
"source": [
"## 4. Fine-tune the model\n",
"\n",
"It's time to fine-tune the model. Make sure you have `openai` installed\n",
"and have set your `OPENAI_API_KEY` appropriately"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "b4b60daa-b899-4291-a09a-412ce9c218fc",
"metadata": {},
"outputs": [],
"source": [
"# %pip install -U openai --quiet"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "2cca6c95-c0d6-4826-b4fa-1c403f217f93",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File file-zHIgf4r8LltZG3RFpkGd4Sjf ready after 10.19 seconds.\n"
]
}
],
"source": [
"import json\n",
"from io import BytesIO\n",
"import time\n",
"\n",
"import openai\n",
"\n",
"# We will write the jsonl file in memory\n",
"my_file = BytesIO()\n",
"for m in training_data:\n",
" my_file.write((json.dumps({\"messages\": m}) + \"\\n\").encode('utf-8'))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(\n",
" file=my_file,\n",
" purpose='fine-tune'\n",
")\n",
"\n",
"# OpenAI audits each training file for compliance reasons.\n",
"# This make take a few minutes\n",
"status = openai.File.retrieve(training_file.id).status\n",
"start_time = time.time()\n",
"while status != \"processed\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" status = openai.File.retrieve(training_file.id).status\n",
"print(f\"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.\")"
]
},
{
"cell_type": "markdown",
"id": "60ee0476-3113-4dc8-a886-bce878c60b07",
"metadata": {},
"source": [
"With the file ready, it's time to kick off a training job."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c376ddca-5b4f-4e5a-bf4e-6beeb467eacc",
"metadata": {},
"outputs": [],
"source": [
"job = openai.FineTuningJob.create(\n",
" training_file=training_file.id,\n",
" model=\"gpt-3.5-turbo\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "09344c60-0bee-4989-b8d1-4a8821553cc3",
"metadata": {},
"source": [
"Grab a cup of tea while your model is being prepared. This may take some time!"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "22eae900-04ca-456b-ba51-1dfff1f8e0e1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Status=[running]... 524.95s\r"
]
}
],
"source": [
"status = openai.FineTuningJob.retrieve(job.id).status\n",
"start_time = time.time()\n",
"while status != \"succeeded\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" job = openai.FineTuningJob.retrieve(job.id)\n",
" status = job.status"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "39e72616-a7d9-44b8-a4eb-506611d119f4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ft:gpt-3.5-turbo-0613:personal::7sKoRdlz\n"
]
}
],
"source": [
"print(job.fine_tuned_model)"
]
},
{
"cell_type": "markdown",
"id": "0d717749-b1b6-451f-b3c5-3286b82d45b9",
"metadata": {},
"source": [
"## 5. Use in LangChain\n",
"\n",
"You can use the resulting model ID directly the `ChatOpenAI` model class."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "1579dfca-95c6-47b7-8549-1195b9dce5b0",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model=job.fine_tuned_model,\n",
" temperature=1,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "6f53d1b1-dcbf-4976-a61a-17f74c6f1b0a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are speaking to hare.\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "6619c9bc-54ea-4136-bd9a-44557f7da724",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"A symbol of interconnectedness."
]
}
],
"source": [
"for tok in chain.stream({\"input\": \"What's the golden thread?\"}):\n",
" print(tok, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "88e0d1a1-48a9-4d9d-9f4e-010cbbb65af8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,188 @@
---
sidebar_position: 0
---
# Chat loaders
Like document loaders, chat loaders are utilities designed to help load conversations from popular communication platforms such as Facebook, Slack, Discord, etc. These are loaded into memory as LangChain chat message objects. Such utilities facilitate tasks such as fine-tuning a language model to match your personal style or voice.
This brief guide will illustrate the process using [OpenAI's fine-tuning API](https://platform.openai.com/docs/guides/fine-tuning) comprised of six steps:
1. Export your Facebook Messenger chat data in a compatible format for your intended chat loader.
2. Load the chat data into memory as LangChain chat message objects. (_this is what is covered in each integration notebook in this section of the documentation_).
- Assign a person to the "AI" role and optionally filter, group, and merge messages.
3. Export these acquired messages in a format expected by the fine-tuning API.
4. Upload this data to OpenAI.
5. Fine-tune your model.
6. Implement the fine-tuned model in LangChain.
This guide is not wholly comprehensive but is designed to take you through the fundamentals of going from raw data to fine-tuned model.
We will demonstrate the procedure through an example of fine-tuning a `gpt-3.5-turbo` model on Facebook Messenger data.
### 1. Export your chat data
To export your Facebook messenger data, you can follow the [instructions here](https://www.zapptales.com/en/download-facebook-messenger-chat-history-how-to/).
:::important JSON format
You must select "JSON format" (instead of HTML) when exporting your data to be compatible with the current loader.
:::
OpenAI requires at least 10 examples to fine-tune your model, but they recommend between 50-100 for more optimal results.
You can use the example data stored at [this google drive link](https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing) to test the process.
### 2. Load the chat
Once you've obtained your chat data, you can load it into memory as LangChain chat message objects. Heres an example of loading data using the Python code:
```python
from langchain.chat_loaders.facebook_messenger import FolderFacebookMessengerChatLoader
loader = FolderFacebookMessengerChatLoader(
path="./facebook_messenger_chats",
)
chat_sessions = loader.load()
```
In this snippet, we point the loader to a directory of Facebook chat dumps which are then loaded as multiple "sessions" of messages, one session per conversation file.
Once you've loaded the messages, you should decide which person you want to fine-tune the model to (usually yourself). You can also decide to merge consecutive messages from the same sender into a single chat message.
For both of these tasks, you can use the chat_loaders utilities to do so:
```
from langchain.chat_loaders.utils import (
merge_chat_runs,
map_ai_messages,
)
merged_sessions = merge_chat_runs(chat_sessions)
alternating_sessions = list(map_ai_messages(merged_sessions, "My Name"))
```
### 3. Export messages to OpenAI format
Convert the chat messages to dictionaries using the `convert_messages_for_finetuning` function. Then, group the data into chunks for better context modeling and overlap management.
```python
from langchain.adapters.openai import convert_messages_for_finetuning
openai_messages = convert_messages_for_finetuning(chat_sessions)
```
At this point, the data is ready for upload to OpenAI. You can choose to split up conversations into smaller chunks for training if you
do not have enough conversations to train on. Feel free to play around with different chunk sizes or with adding system messages to the fine-tuning data.
```python
chunk_size = 8
overlap = 2
message_groups = [
conversation_messages[i: i + chunk_size]
for conversation_messages in openai_messages
for i in range(
0, len(conversation_messages) - chunk_size + 1,
chunk_size - overlap)
]
len(message_groups)
# 9
```
### 4. Upload the data to OpenAI
Ensure you have set your OpenAI API key by following these [instructions](https://platform.openai.com/account/api-keys), then upload the training file.
An audit is performed to ensure data compliance, so you may have to wait a few minutes for the dataset to become ready for use.
```python
import time
import json
import io
import openai
my_file = io.BytesIO()
for group in message_groups:
my_file.write((json.dumps({"messages": group}) + "\n").encode('utf-8'))
my_file.seek(0)
training_file = openai.File.create(
file=my_file,
purpose='fine-tune'
)
# Wait while the file is processed
status = openai.File.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.File.retrieve(training_file.id).status
print(f"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.")
```
Once this is done, you can proceed to the model training!
### 5. Fine-tune the model
Start the fine-tuning job with your chosen base model.
```python
job = openai.FineTuningJob.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
```
This might take a while. Check the status with `openai.FineTuningJob.retrieve(job.id).status` and wait for it to report `succeeded`.
```python
# It may take 10-20+ minutes to complete training.
status = openai.FineTuningJob.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
job = openai.FineTuningJob.retrieve(job.id)
status = job.status
```
### 6. Use the model in LangChain
You're almost there! Use the fine-tuned model in LangChain.
```python
from langchain import chat_models
model_name = job.fine_tuned_model
# Example: ft:gpt-3.5-turbo-0613:personal::5mty86jblapsed
model = chat_models.ChatOpenAI(model=model_name)
```
```python
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
]
)
chain = prompt | model | StrOutputParser()
for tok in chain.stream({"input": "What classes are you taking?"}):
print(tok, end="", flush=True)
# The usual - Potions, Transfiguration, Defense Against the Dark Arts. What about you?
```
And that's it! You've successfully fine-tuned a model and used it in LangChain.
## Supported Chat Loaders
LangChain currently supports the following chat loaders. Feel free to contribute more!
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -0,0 +1,163 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "01fcfa2f-33a9-48f3-835a-b1956c394d6b",
"metadata": {},
"source": [
"# Slack\n",
"\n",
"This notebook shows how to use the Slack chat loader. This class helps map exported slack conversations to LangChain chat messages.\n",
"\n",
"The process has three steps:\n",
"1. Export the desired conversation thread by following the [instructions here](https://slack.com/help/articles/1500001548241-Request-to-export-all-conversations).\n",
"2. Create the `SlackChatLoader` with the file path pointed to the json file or directory of JSON files\n",
"3. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion. Optionally use `merge_chat_runs` to combine message from the same sender in sequence, and/or `map_ai_messages` to convert messages from the specified sender to the \"AIMessage\" class.\n",
"\n",
"## 1. Creat message dump\n",
"\n",
"Currently (2023/08/23) this loader best supports a zip directory of files in the format generated by exporting your a direct message converstion from Slack. Follow up-to-date instructions from slack on how to do so.\n",
"\n",
"We have an example in the LangChain repo."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a79d35bf-5f21-4063-84bf-a60845c1c51f",
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"permalink = \"https://raw.githubusercontent.com/langchain-ai/langchain/342087bdfa3ac31d622385d0f2d09cf5e06c8db3/libs/langchain/tests/integration_tests/examples/slack_export.zip\"\n",
"response = requests.get(permalink)\n",
"with open(\"slack_dump.zip\", \"wb\") as f:\n",
" f.write(response.content)"
]
},
{
"cell_type": "markdown",
"id": "cf60f703-76f1-4602-a723-02c59535c1af",
"metadata": {},
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"Provide the loader with the file path to the zip directory. You can optionally specify the user id that maps to an ai message as well an configure whether to merge message runs."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4b8b432a-d2bc-49e1-b35f-761730a8fd6d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.slack import SlackChatLoader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8ec6661b-0aca-48ae-9e2b-6412856c287b",
"metadata": {},
"outputs": [],
"source": [
"loader = SlackChatLoader(\n",
" path=\"slack_dump.zip\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "8805a7c5-84b4-49f5-8989-0022f2054ace",
"metadata": {},
"source": [
"## 3. Load messages\n",
"\n",
"The `load()` (or `lazy_load`) methods return a list of \"ChatSessions\" that currently just contain a list of messages per loaded conversation."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fcd69b3e-020d-4a15-8a0d-61c2d34e1ee1",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"from langchain.chat_loaders.base import ChatSession\n",
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
" merge_chat_runs,\n",
")\n",
"\n",
"raw_messages = loader.lazy_load()\n",
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"U0500003428\" to AI messages\n",
"messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"U0500003428\"))"
]
},
{
"cell_type": "markdown",
"id": "7d033f87-cd0c-4f44-a753-41b871c1e919",
"metadata": {},
"source": [
"### Next Steps\n",
"\n",
"You can then use these messages how you see fit, such as finetuning a model, few-shot example selection, or directly make predictions for the next message. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7d8a1629-5d9e-49b3-b978-3add57027d59",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hi, \n",
"\n",
"I hope you're doing well. I wanted to reach out and ask if you'd be available to meet up for coffee sometime next week. I'd love to catch up and hear about what's been going on in your life. Let me know if you're interested and we can find a time that works for both of us. \n",
"\n",
"Looking forward to hearing from you!\n",
"\n",
"Best, [Your Name]"
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"for chunk in llm.stream(messages[1]['messages']):\n",
" print(chunk.content, end=\"\", flush=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,206 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "735455a6-f82e-4252-b545-27385ef883f4",
"metadata": {},
"source": [
"# Telegram\n",
"\n",
"This notebook shows how to use the Telegram chat loader. This class helps map exported Telegram conversations to LangChain chat messages.\n",
"\n",
"The process has three steps:\n",
"1. Export the chat .txt file by copying chats from the Discord app and pasting them in a file on your local computer\n",
"2. Create the `TelegramChatLoader` with the file path pointed to the json file or directory of JSON files\n",
"3. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion. Optionally use `merge_chat_runs` to combine message from the same sender in sequence, and/or `map_ai_messages` to convert messages from the specified sender to the \"AIMessage\" class.\n",
"\n",
"## 1. Creat message dump\n",
"\n",
"Currently (2023/08/23) this loader best supports json files in the format generated by exporting your chat history from the [Telegram Desktop App](https://desktop.telegram.org/).\n",
"\n",
"**Important:** There are 'lite' versions of telegram such as \"Telegram for MacOS\" that lack the export functionality. Please make sure you use the correct app to export the file.\n",
"\n",
"To make the export:\n",
"1. Download and open telegram desktop\n",
"2. Select a conversation\n",
"3. Navigate to the conversation settings (currently the three dots in the top right corner)\n",
"4. Click \"Export Chat History\"\n",
"5. Unselect photos and other media. Select \"Machine-readable JSON\" format to export.\n",
"\n",
"An example is below: "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "285f2044-0f58-4b92-addb-9f8569076734",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting telegram_conversation.json\n"
]
}
],
"source": [
"%%writefile telegram_conversation.json\n",
"{\n",
" \"name\": \"Jiminy\",\n",
" \"type\": \"personal_chat\",\n",
" \"id\": 5965280513,\n",
" \"messages\": [\n",
" {\n",
" \"id\": 1,\n",
" \"type\": \"message\",\n",
" \"date\": \"2023-08-23T13:11:23\",\n",
" \"date_unixtime\": \"1692821483\",\n",
" \"from\": \"Jiminy Cricket\",\n",
" \"from_id\": \"user123450513\",\n",
" \"text\": \"You better trust your conscience\",\n",
" \"text_entities\": [\n",
" {\n",
" \"type\": \"plain\",\n",
" \"text\": \"You better trust your conscience\"\n",
" }\n",
" ]\n",
" },\n",
" {\n",
" \"id\": 2,\n",
" \"type\": \"message\",\n",
" \"date\": \"2023-08-23T13:13:20\",\n",
" \"date_unixtime\": \"1692821600\",\n",
" \"from\": \"Batman & Robin\",\n",
" \"from_id\": \"user6565661032\",\n",
" \"text\": \"What did you just say?\",\n",
" \"text_entities\": [\n",
" {\n",
" \"type\": \"plain\",\n",
" \"text\": \"What did you just say?\"\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "7cc109f4-4c92-4cd3-8143-c322776c3f03",
"metadata": {},
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"All that's required is the file path. You can optionally specify the user name that maps to an ai message as well an configure whether to merge message runs."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "111f7767-573c-42d4-86f0-bd766bbaa071",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.telegram import TelegramChatLoader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a4226efa-2640-4990-a20c-6861d1887329",
"metadata": {},
"outputs": [],
"source": [
"loader = TelegramChatLoader(\n",
" path=\"./telegram_conversation.json\", \n",
")"
]
},
{
"cell_type": "markdown",
"id": "71699fb7-7815-4c89-8d96-30e8fada6923",
"metadata": {},
"source": [
"## 3. Load messages\n",
"\n",
"The `load()` (or `lazy_load`) methods return a list of \"ChatSessions\" that currently just contain a list of messages per loaded conversation."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "81121efb-c875-4a77-ad1e-fe26b3d7e812",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"from langchain.chat_loaders.base import ChatSession\n",
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
" merge_chat_runs,\n",
")\n",
"\n",
"raw_messages = loader.lazy_load()\n",
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"Jiminy Cricket\" to AI messages\n",
"messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"Jiminy Cricket\"))"
]
},
{
"cell_type": "markdown",
"id": "b9089c05-7375-41ca-a2f9-672a845314e4",
"metadata": {},
"source": [
"### Next Steps\n",
"\n",
"You can then use these messages how you see fit, such as finetuning a model, few-shot example selection, or directly make predictions for the next message "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "637a6f5d-6944-4722-9361-a76ef5e9dd2a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"I said, \"You better trust your conscience.\""
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"for chunk in llm.stream(messages[0]['messages']):\n",
" print(chunk.content, end=\"\", flush=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,77 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d86853d2",
"metadata": {},
"source": [
"# Twitter (via Apify)\n",
"\n",
"This notebook shows how to load chat messages from Twitter to finetune on. We do this by utilizing Apify. \n",
"\n",
"First, use Apify to export tweets. An example"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e5034b4e",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from langchain.schema import AIMessage\n",
"from langchain.adapters.openai import convert_message_to_dict"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8bf0fb93",
"metadata": {},
"outputs": [],
"source": [
"with open('example_data/dataset_twitter-scraper_2023-08-23_22-13-19-740.json') as f:\n",
" data = json.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "468124fa",
"metadata": {},
"outputs": [],
"source": [
"# Filter out tweets that reference other tweets, because it's a bit weird\n",
"tweets = [d[\"full_text\"] for d in data if \"t.co\" not in d['full_text']]\n",
"# Create them as AI messages\n",
"messages = [AIMessage(content=t) for t in tweets]\n",
"# Add in a system message at the start\n",
"# TODO: we could try to extract the subject from the tweets, and put that in the system message.\n",
"system_message = {\"role\": \"system\", \"content\": \"write a tweet\"}\n",
"data = [[system_message, convert_message_to_dict(m)] for m in messages]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,204 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "735455a6-f82e-4252-b545-27385ef883f4",
"metadata": {},
"source": [
"# WhatsApp\n",
"\n",
"This notebook shows how to use the WhatsApp chat loader. This class helps map exported Telegram conversations to LangChain chat messages.\n",
"\n",
"The process has three steps:\n",
"1. Export the chat conversations to computer\n",
"2. Create the `WhatsAppChatLoader` with the file path pointed to the json file or directory of JSON files\n",
"3. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion.\n",
"\n",
"## 1. Creat message dump\n",
"\n",
"To make the export of your WhatsApp conversation(s), complete the following steps:\n",
"\n",
"1. Open the target conversation\n",
"2. Click the three dots in the top right corner and select \"More\".\n",
"3. Then select \"Export chat\" and choose \"Without media\".\n",
"\n",
"An example of the data format for each converation is below: "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "285f2044-0f58-4b92-addb-9f8569076734",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Writing whatsapp_chat.txt\n"
]
}
],
"source": [
"%%writefile whatsapp_chat.txt\n",
"[8/15/23, 9:12:33 AM] Dr. Feather: Messages and calls are end-to-end encrypted. No one outside of this chat, not even WhatsApp, can read or listen to them.\n",
"[8/15/23, 9:12:43 AM] Dr. Feather: I spotted a rare Hyacinth Macaw yesterday in the Amazon Rainforest. Such a magnificent creature!\n",
"[8/15/23, 9:12:48 AM] Dr. Feather: image omitted\n",
"[8/15/23, 9:13:15 AM] Jungle Jane: That's stunning! Were you able to observe its behavior?\n",
"[8/15/23, 9:13:23 AM] Dr. Feather: image omitted\n",
"[8/15/23, 9:14:02 AM] Dr. Feather: Yes, it seemed quite social with other macaws. They're known for their playful nature.\n",
"[8/15/23, 9:14:15 AM] Jungle Jane: How's the research going on parrot communication?\n",
"[8/15/23, 9:14:30 AM] Dr. Feather: image omitted\n",
"[8/15/23, 9:14:50 AM] Dr. Feather: It's progressing well. We're learning so much about how they use sound and color to communicate.\n",
"[8/15/23, 9:15:10 AM] Jungle Jane: That's fascinating! Can't wait to read your paper on it.\n",
"[8/15/23, 9:15:20 AM] Dr. Feather: Thank you! I'll send you a draft soon.\n",
"[8/15/23, 9:25:16 PM] Jungle Jane: Looking forward to it! Keep up the great work."
]
},
{
"cell_type": "markdown",
"id": "7cc109f4-4c92-4cd3-8143-c322776c3f03",
"metadata": {},
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"The WhatsAppChatLoader accepts the resulting zip file, unzipped directory, or the path to any of the chat `.txt` files therein.\n",
"\n",
"Provide that as well as the user name you want to take on the role of \"AI\" when finetuning."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "111f7767-573c-42d4-86f0-bd766bbaa071",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.whatsapp import WhatsAppChatLoader"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a4226efa-2640-4990-a20c-6861d1887329",
"metadata": {},
"outputs": [],
"source": [
"loader = WhatsAppChatLoader(\n",
" path=\"./whatsapp_chat.txt\", \n",
")"
]
},
{
"cell_type": "markdown",
"id": "71699fb7-7815-4c89-8d96-30e8fada6923",
"metadata": {},
"source": [
"## 3. Load messages\n",
"\n",
"The `load()` (or `lazy_load`) methods return a list of \"ChatSessions\" that currently store the list of messages per loaded conversation."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "81121efb-c875-4a77-ad1e-fe26b3d7e812",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'messages': [AIMessage(content='I spotted a rare Hyacinth Macaw yesterday in the Amazon Rainforest. Such a magnificent creature!', additional_kwargs={'sender': 'Dr. Feather', 'events': [{'message_time': '8/15/23, 9:12:43 AM'}]}, example=False),\n",
" HumanMessage(content=\"That's stunning! Were you able to observe its behavior?\", additional_kwargs={'sender': 'Jungle Jane', 'events': [{'message_time': '8/15/23, 9:13:15 AM'}]}, example=False),\n",
" AIMessage(content=\"Yes, it seemed quite social with other macaws. They're known for their playful nature.\", additional_kwargs={'sender': 'Dr. Feather', 'events': [{'message_time': '8/15/23, 9:14:02 AM'}]}, example=False),\n",
" HumanMessage(content=\"How's the research going on parrot communication?\", additional_kwargs={'sender': 'Jungle Jane', 'events': [{'message_time': '8/15/23, 9:14:15 AM'}]}, example=False),\n",
" AIMessage(content=\"It's progressing well. We're learning so much about how they use sound and color to communicate.\", additional_kwargs={'sender': 'Dr. Feather', 'events': [{'message_time': '8/15/23, 9:14:50 AM'}]}, example=False),\n",
" HumanMessage(content=\"That's fascinating! Can't wait to read your paper on it.\", additional_kwargs={'sender': 'Jungle Jane', 'events': [{'message_time': '8/15/23, 9:15:10 AM'}]}, example=False),\n",
" AIMessage(content=\"Thank you! I'll send you a draft soon.\", additional_kwargs={'sender': 'Dr. Feather', 'events': [{'message_time': '8/15/23, 9:15:20 AM'}]}, example=False),\n",
" HumanMessage(content='Looking forward to it! Keep up the great work.', additional_kwargs={'sender': 'Jungle Jane', 'events': [{'message_time': '8/15/23, 9:25:16 PM'}]}, example=False)]}]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import List\n",
"from langchain.chat_loaders.base import ChatSession\n",
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
" merge_chat_runs,\n",
")\n",
"\n",
"raw_messages = loader.lazy_load()\n",
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"Dr. Feather\" to AI messages\n",
"messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"Dr. Feather\"))"
]
},
{
"cell_type": "markdown",
"id": "b9089c05-7375-41ca-a2f9-672a845314e4",
"metadata": {},
"source": [
"### Next Steps\n",
"\n",
"You can then use these messages how you see fit, such as finetuning a model, few-shot example selection, or directly make predictions for the next message."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "637a6f5d-6944-4722-9361-a76ef5e9dd2a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Thank you for the encouragement! I'll do my best to continue studying and sharing fascinating insights about parrot communication."
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"for chunk in llm.stream(messages[0]['messages']):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16156643-cfbd-444f-b4ae-198eb44f0267",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Some files were not shown because too many files have changed in this diff Show More